2015-08-04 Thomas Preud'homme <thomas.preudhomme@arm.com>
[official-gcc.git] / gcc / reload1.c
blobce06e0696e42a7ba85de6f96c80aa51efb52f3ba
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "predict.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "flags.h"
33 #include "alias.h"
34 #include "expmed.h"
35 #include "dojump.h"
36 #include "explow.h"
37 #include "calls.h"
38 #include "emit-rtl.h"
39 #include "varasm.h"
40 #include "stmt.h"
41 #include "expr.h"
42 #include "insn-codes.h"
43 #include "optabs.h"
44 #include "regs.h"
45 #include "addresses.h"
46 #include "cfgrtl.h"
47 #include "cfgbuild.h"
48 #include "reload.h"
49 #include "recog.h"
50 #include "except.h"
51 #include "ira.h"
52 #include "target.h"
53 #include "dumpfile.h"
54 #include "rtl-iter.h"
56 /* This file contains the reload pass of the compiler, which is
57 run after register allocation has been done. It checks that
58 each insn is valid (operands required to be in registers really
59 are in registers of the proper class) and fixes up invalid ones
60 by copying values temporarily into registers for the insns
61 that need them.
63 The results of register allocation are described by the vector
64 reg_renumber; the insns still contain pseudo regs, but reg_renumber
65 can be used to find which hard reg, if any, a pseudo reg is in.
67 The technique we always use is to free up a few hard regs that are
68 called ``reload regs'', and for each place where a pseudo reg
69 must be in a hard reg, copy it temporarily into one of the reload regs.
71 Reload regs are allocated locally for every instruction that needs
72 reloads. When there are pseudos which are allocated to a register that
73 has been chosen as a reload reg, such pseudos must be ``spilled''.
74 This means that they go to other hard regs, or to stack slots if no other
75 available hard regs can be found. Spilling can invalidate more
76 insns, requiring additional need for reloads, so we must keep checking
77 until the process stabilizes.
79 For machines with different classes of registers, we must keep track
80 of the register class needed for each reload, and make sure that
81 we allocate enough reload registers of each class.
83 The file reload.c contains the code that checks one insn for
84 validity and reports the reloads that it needs. This file
85 is in charge of scanning the entire rtl code, accumulating the
86 reload needs, spilling, assigning reload registers to use for
87 fixing up each insn, and generating the new insns to copy values
88 into the reload registers. */
90 struct target_reload default_target_reload;
91 #if SWITCHABLE_TARGET
92 struct target_reload *this_target_reload = &default_target_reload;
93 #endif
95 #define spill_indirect_levels \
96 (this_target_reload->x_spill_indirect_levels)
98 /* During reload_as_needed, element N contains a REG rtx for the hard reg
99 into which reg N has been reloaded (perhaps for a previous insn). */
100 static rtx *reg_last_reload_reg;
102 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
103 for an output reload that stores into reg N. */
104 static regset_head reg_has_output_reload;
106 /* Indicates which hard regs are reload-registers for an output reload
107 in the current insn. */
108 static HARD_REG_SET reg_is_output_reload;
110 /* Widest width in which each pseudo reg is referred to (via subreg). */
111 static unsigned int *reg_max_ref_width;
113 /* Vector to remember old contents of reg_renumber before spilling. */
114 static short *reg_old_renumber;
116 /* During reload_as_needed, element N contains the last pseudo regno reloaded
117 into hard register N. If that pseudo reg occupied more than one register,
118 reg_reloaded_contents points to that pseudo for each spill register in
119 use; all of these must remain set for an inheritance to occur. */
120 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
122 /* During reload_as_needed, element N contains the insn for which
123 hard register N was last used. Its contents are significant only
124 when reg_reloaded_valid is set for this register. */
125 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
127 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
128 static HARD_REG_SET reg_reloaded_valid;
129 /* Indicate if the register was dead at the end of the reload.
130 This is only valid if reg_reloaded_contents is set and valid. */
131 static HARD_REG_SET reg_reloaded_dead;
133 /* Indicate whether the register's current value is one that is not
134 safe to retain across a call, even for registers that are normally
135 call-saved. This is only meaningful for members of reg_reloaded_valid. */
136 static HARD_REG_SET reg_reloaded_call_part_clobbered;
138 /* Number of spill-regs so far; number of valid elements of spill_regs. */
139 static int n_spills;
141 /* In parallel with spill_regs, contains REG rtx's for those regs.
142 Holds the last rtx used for any given reg, or 0 if it has never
143 been used for spilling yet. This rtx is reused, provided it has
144 the proper mode. */
145 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
147 /* In parallel with spill_regs, contains nonzero for a spill reg
148 that was stored after the last time it was used.
149 The precise value is the insn generated to do the store. */
150 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
152 /* This is the register that was stored with spill_reg_store. This is a
153 copy of reload_out / reload_out_reg when the value was stored; if
154 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
155 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
157 /* This table is the inverse mapping of spill_regs:
158 indexed by hard reg number,
159 it contains the position of that reg in spill_regs,
160 or -1 for something that is not in spill_regs.
162 ?!? This is no longer accurate. */
163 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
165 /* This reg set indicates registers that can't be used as spill registers for
166 the currently processed insn. These are the hard registers which are live
167 during the insn, but not allocated to pseudos, as well as fixed
168 registers. */
169 static HARD_REG_SET bad_spill_regs;
171 /* These are the hard registers that can't be used as spill register for any
172 insn. This includes registers used for user variables and registers that
173 we can't eliminate. A register that appears in this set also can't be used
174 to retry register allocation. */
175 static HARD_REG_SET bad_spill_regs_global;
177 /* Describes order of use of registers for reloading
178 of spilled pseudo-registers. `n_spills' is the number of
179 elements that are actually valid; new ones are added at the end.
181 Both spill_regs and spill_reg_order are used on two occasions:
182 once during find_reload_regs, where they keep track of the spill registers
183 for a single insn, but also during reload_as_needed where they show all
184 the registers ever used by reload. For the latter case, the information
185 is calculated during finish_spills. */
186 static short spill_regs[FIRST_PSEUDO_REGISTER];
188 /* This vector of reg sets indicates, for each pseudo, which hard registers
189 may not be used for retrying global allocation because the register was
190 formerly spilled from one of them. If we allowed reallocating a pseudo to
191 a register that it was already allocated to, reload might not
192 terminate. */
193 static HARD_REG_SET *pseudo_previous_regs;
195 /* This vector of reg sets indicates, for each pseudo, which hard
196 registers may not be used for retrying global allocation because they
197 are used as spill registers during one of the insns in which the
198 pseudo is live. */
199 static HARD_REG_SET *pseudo_forbidden_regs;
201 /* All hard regs that have been used as spill registers for any insn are
202 marked in this set. */
203 static HARD_REG_SET used_spill_regs;
205 /* Index of last register assigned as a spill register. We allocate in
206 a round-robin fashion. */
207 static int last_spill_reg;
209 /* Record the stack slot for each spilled hard register. */
210 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
212 /* Width allocated so far for that stack slot. */
213 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
215 /* Record which pseudos needed to be spilled. */
216 static regset_head spilled_pseudos;
218 /* Record which pseudos changed their allocation in finish_spills. */
219 static regset_head changed_allocation_pseudos;
221 /* Used for communication between order_regs_for_reload and count_pseudo.
222 Used to avoid counting one pseudo twice. */
223 static regset_head pseudos_counted;
225 /* First uid used by insns created by reload in this function.
226 Used in find_equiv_reg. */
227 int reload_first_uid;
229 /* Flag set by local-alloc or global-alloc if anything is live in
230 a call-clobbered reg across calls. */
231 int caller_save_needed;
233 /* Set to 1 while reload_as_needed is operating.
234 Required by some machines to handle any generated moves differently. */
235 int reload_in_progress = 0;
237 /* This obstack is used for allocation of rtl during register elimination.
238 The allocated storage can be freed once find_reloads has processed the
239 insn. */
240 static struct obstack reload_obstack;
242 /* Points to the beginning of the reload_obstack. All insn_chain structures
243 are allocated first. */
244 static char *reload_startobj;
246 /* The point after all insn_chain structures. Used to quickly deallocate
247 memory allocated in copy_reloads during calculate_needs_all_insns. */
248 static char *reload_firstobj;
250 /* This points before all local rtl generated by register elimination.
251 Used to quickly free all memory after processing one insn. */
252 static char *reload_insn_firstobj;
254 /* List of insn_chain instructions, one for every insn that reload needs to
255 examine. */
256 struct insn_chain *reload_insn_chain;
258 /* TRUE if we potentially left dead insns in the insn stream and want to
259 run DCE immediately after reload, FALSE otherwise. */
260 static bool need_dce;
262 /* List of all insns needing reloads. */
263 static struct insn_chain *insns_need_reload;
265 /* This structure is used to record information about register eliminations.
266 Each array entry describes one possible way of eliminating a register
267 in favor of another. If there is more than one way of eliminating a
268 particular register, the most preferred should be specified first. */
270 struct elim_table
272 int from; /* Register number to be eliminated. */
273 int to; /* Register number used as replacement. */
274 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
275 int can_eliminate; /* Nonzero if this elimination can be done. */
276 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
277 target hook in previous scan over insns
278 made by reload. */
279 HOST_WIDE_INT offset; /* Current offset between the two regs. */
280 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
281 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
282 rtx from_rtx; /* REG rtx for the register to be eliminated.
283 We cannot simply compare the number since
284 we might then spuriously replace a hard
285 register corresponding to a pseudo
286 assigned to the reg to be eliminated. */
287 rtx to_rtx; /* REG rtx for the replacement. */
290 static struct elim_table *reg_eliminate = 0;
292 /* This is an intermediate structure to initialize the table. It has
293 exactly the members provided by ELIMINABLE_REGS. */
294 static const struct elim_table_1
296 const int from;
297 const int to;
298 } reg_eliminate_1[] =
300 /* If a set of eliminable registers was specified, define the table from it.
301 Otherwise, default to the normal case of the frame pointer being
302 replaced by the stack pointer. */
304 #ifdef ELIMINABLE_REGS
305 ELIMINABLE_REGS;
306 #else
307 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
308 #endif
310 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
312 /* Record the number of pending eliminations that have an offset not equal
313 to their initial offset. If nonzero, we use a new copy of each
314 replacement result in any insns encountered. */
315 int num_not_at_initial_offset;
317 /* Count the number of registers that we may be able to eliminate. */
318 static int num_eliminable;
319 /* And the number of registers that are equivalent to a constant that
320 can be eliminated to frame_pointer / arg_pointer + constant. */
321 static int num_eliminable_invariants;
323 /* For each label, we record the offset of each elimination. If we reach
324 a label by more than one path and an offset differs, we cannot do the
325 elimination. This information is indexed by the difference of the
326 number of the label and the first label number. We can't offset the
327 pointer itself as this can cause problems on machines with segmented
328 memory. The first table is an array of flags that records whether we
329 have yet encountered a label and the second table is an array of arrays,
330 one entry in the latter array for each elimination. */
332 static int first_label_num;
333 static char *offsets_known_at;
334 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
336 vec<reg_equivs_t, va_gc> *reg_equivs;
338 /* Stack of addresses where an rtx has been changed. We can undo the
339 changes by popping items off the stack and restoring the original
340 value at each location.
342 We use this simplistic undo capability rather than copy_rtx as copy_rtx
343 will not make a deep copy of a normally sharable rtx, such as
344 (const (plus (symbol_ref) (const_int))). If such an expression appears
345 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
346 rtx expression would be changed. See PR 42431. */
348 typedef rtx *rtx_p;
349 static vec<rtx_p> substitute_stack;
351 /* Number of labels in the current function. */
353 static int num_labels;
355 static void replace_pseudos_in (rtx *, machine_mode, rtx);
356 static void maybe_fix_stack_asms (void);
357 static void copy_reloads (struct insn_chain *);
358 static void calculate_needs_all_insns (int);
359 static int find_reg (struct insn_chain *, int);
360 static void find_reload_regs (struct insn_chain *);
361 static void select_reload_regs (void);
362 static void delete_caller_save_insns (void);
364 static void spill_failure (rtx_insn *, enum reg_class);
365 static void count_spilled_pseudo (int, int, int);
366 static void delete_dead_insn (rtx_insn *);
367 static void alter_reg (int, int, bool);
368 static void set_label_offsets (rtx, rtx_insn *, int);
369 static void check_eliminable_occurrences (rtx);
370 static void elimination_effects (rtx, machine_mode);
371 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
372 static int eliminate_regs_in_insn (rtx_insn *, int);
373 static void update_eliminable_offsets (void);
374 static void mark_not_eliminable (rtx, const_rtx, void *);
375 static void set_initial_elim_offsets (void);
376 static bool verify_initial_elim_offsets (void);
377 static void set_initial_label_offsets (void);
378 static void set_offsets_for_label (rtx_insn *);
379 static void init_eliminable_invariants (rtx_insn *, bool);
380 static void init_elim_table (void);
381 static void free_reg_equiv (void);
382 static void update_eliminables (HARD_REG_SET *);
383 static bool update_eliminables_and_spill (void);
384 static void elimination_costs_in_insn (rtx_insn *);
385 static void spill_hard_reg (unsigned int, int);
386 static int finish_spills (int);
387 static void scan_paradoxical_subregs (rtx);
388 static void count_pseudo (int);
389 static void order_regs_for_reload (struct insn_chain *);
390 static void reload_as_needed (int);
391 static void forget_old_reloads_1 (rtx, const_rtx, void *);
392 static void forget_marked_reloads (regset);
393 static int reload_reg_class_lower (const void *, const void *);
394 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
395 machine_mode);
396 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
397 machine_mode);
398 static int reload_reg_free_p (unsigned int, int, enum reload_type);
399 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
400 rtx, rtx, int, int);
401 static int free_for_value_p (int, machine_mode, int, enum reload_type,
402 rtx, rtx, int, int);
403 static int allocate_reload_reg (struct insn_chain *, int, int);
404 static int conflicts_with_override (rtx);
405 static void failed_reload (rtx_insn *, int);
406 static int set_reload_reg (int, int);
407 static void choose_reload_regs_init (struct insn_chain *, rtx *);
408 static void choose_reload_regs (struct insn_chain *);
409 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
410 rtx, int);
411 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
412 int);
413 static void do_input_reload (struct insn_chain *, struct reload *, int);
414 static void do_output_reload (struct insn_chain *, struct reload *, int);
415 static void emit_reload_insns (struct insn_chain *);
416 static void delete_output_reload (rtx_insn *, int, int, rtx);
417 static void delete_address_reloads (rtx_insn *, rtx_insn *);
418 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
419 static void inc_for_reload (rtx, rtx, rtx, int);
420 static void add_auto_inc_notes (rtx_insn *, rtx);
421 static void substitute (rtx *, const_rtx, rtx);
422 static bool gen_reload_chain_without_interm_reg_p (int, int);
423 static int reloads_conflict (int, int);
424 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
425 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
427 /* Initialize the reload pass. This is called at the beginning of compilation
428 and may be called again if the target is reinitialized. */
430 void
431 init_reload (void)
433 int i;
435 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
436 Set spill_indirect_levels to the number of levels such addressing is
437 permitted, zero if it is not permitted at all. */
439 rtx tem
440 = gen_rtx_MEM (Pmode,
441 gen_rtx_PLUS (Pmode,
442 gen_rtx_REG (Pmode,
443 LAST_VIRTUAL_REGISTER + 1),
444 gen_int_mode (4, Pmode)));
445 spill_indirect_levels = 0;
447 while (memory_address_p (QImode, tem))
449 spill_indirect_levels++;
450 tem = gen_rtx_MEM (Pmode, tem);
453 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
455 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
456 indirect_symref_ok = memory_address_p (QImode, tem);
458 /* See if reg+reg is a valid (and offsettable) address. */
460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
462 tem = gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
464 gen_rtx_REG (Pmode, i));
466 /* This way, we make sure that reg+reg is an offsettable address. */
467 tem = plus_constant (Pmode, tem, 4);
469 if (memory_address_p (QImode, tem))
471 double_reg_address_ok = 1;
472 break;
476 /* Initialize obstack for our rtl allocation. */
477 if (reload_startobj == NULL)
479 gcc_obstack_init (&reload_obstack);
480 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
483 INIT_REG_SET (&spilled_pseudos);
484 INIT_REG_SET (&changed_allocation_pseudos);
485 INIT_REG_SET (&pseudos_counted);
488 /* List of insn chains that are currently unused. */
489 static struct insn_chain *unused_insn_chains = 0;
491 /* Allocate an empty insn_chain structure. */
492 struct insn_chain *
493 new_insn_chain (void)
495 struct insn_chain *c;
497 if (unused_insn_chains == 0)
499 c = XOBNEW (&reload_obstack, struct insn_chain);
500 INIT_REG_SET (&c->live_throughout);
501 INIT_REG_SET (&c->dead_or_set);
503 else
505 c = unused_insn_chains;
506 unused_insn_chains = c->next;
508 c->is_caller_save_insn = 0;
509 c->need_operand_change = 0;
510 c->need_reload = 0;
511 c->need_elim = 0;
512 return c;
515 /* Small utility function to set all regs in hard reg set TO which are
516 allocated to pseudos in regset FROM. */
518 void
519 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
521 unsigned int regno;
522 reg_set_iterator rsi;
524 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
526 int r = reg_renumber[regno];
528 if (r < 0)
530 /* reload_combine uses the information from DF_LIVE_IN,
531 which might still contain registers that have not
532 actually been allocated since they have an
533 equivalence. */
534 gcc_assert (ira_conflicts_p || reload_completed);
536 else
537 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
541 /* Replace all pseudos found in LOC with their corresponding
542 equivalences. */
544 static void
545 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
547 rtx x = *loc;
548 enum rtx_code code;
549 const char *fmt;
550 int i, j;
552 if (! x)
553 return;
555 code = GET_CODE (x);
556 if (code == REG)
558 unsigned int regno = REGNO (x);
560 if (regno < FIRST_PSEUDO_REGISTER)
561 return;
563 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
564 if (x != *loc)
566 *loc = x;
567 replace_pseudos_in (loc, mem_mode, usage);
568 return;
571 if (reg_equiv_constant (regno))
572 *loc = reg_equiv_constant (regno);
573 else if (reg_equiv_invariant (regno))
574 *loc = reg_equiv_invariant (regno);
575 else if (reg_equiv_mem (regno))
576 *loc = reg_equiv_mem (regno);
577 else if (reg_equiv_address (regno))
578 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
579 else
581 gcc_assert (!REG_P (regno_reg_rtx[regno])
582 || REGNO (regno_reg_rtx[regno]) != regno);
583 *loc = regno_reg_rtx[regno];
586 return;
588 else if (code == MEM)
590 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
591 return;
594 /* Process each of our operands recursively. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
597 if (*fmt == 'e')
598 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
599 else if (*fmt == 'E')
600 for (j = 0; j < XVECLEN (x, i); j++)
601 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
604 /* Determine if the current function has an exception receiver block
605 that reaches the exit block via non-exceptional edges */
607 static bool
608 has_nonexceptional_receiver (void)
610 edge e;
611 edge_iterator ei;
612 basic_block *tos, *worklist, bb;
614 /* If we're not optimizing, then just err on the safe side. */
615 if (!optimize)
616 return true;
618 /* First determine which blocks can reach exit via normal paths. */
619 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
621 FOR_EACH_BB_FN (bb, cfun)
622 bb->flags &= ~BB_REACHABLE;
624 /* Place the exit block on our worklist. */
625 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
626 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
628 /* Iterate: find everything reachable from what we've already seen. */
629 while (tos != worklist)
631 bb = *--tos;
633 FOR_EACH_EDGE (e, ei, bb->preds)
634 if (!(e->flags & EDGE_ABNORMAL))
636 basic_block src = e->src;
638 if (!(src->flags & BB_REACHABLE))
640 src->flags |= BB_REACHABLE;
641 *tos++ = src;
645 free (worklist);
647 /* Now see if there's a reachable block with an exceptional incoming
648 edge. */
649 FOR_EACH_BB_FN (bb, cfun)
650 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
651 return true;
653 /* No exceptional block reached exit unexceptionally. */
654 return false;
657 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
658 zero elements) to MAX_REG_NUM elements.
660 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
661 void
662 grow_reg_equivs (void)
664 int old_size = vec_safe_length (reg_equivs);
665 int max_regno = max_reg_num ();
666 int i;
667 reg_equivs_t ze;
669 memset (&ze, 0, sizeof (reg_equivs_t));
670 vec_safe_reserve (reg_equivs, max_regno);
671 for (i = old_size; i < max_regno; i++)
672 reg_equivs->quick_insert (i, ze);
676 /* Global variables used by reload and its subroutines. */
678 /* The current basic block while in calculate_elim_costs_all_insns. */
679 static basic_block elim_bb;
681 /* Set during calculate_needs if an insn needs register elimination. */
682 static int something_needs_elimination;
683 /* Set during calculate_needs if an insn needs an operand changed. */
684 static int something_needs_operands_changed;
685 /* Set by alter_regs if we spilled a register to the stack. */
686 static bool something_was_spilled;
688 /* Nonzero means we couldn't get enough spill regs. */
689 static int failure;
691 /* Temporary array of pseudo-register number. */
692 static int *temp_pseudo_reg_arr;
694 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
695 If that insn didn't set the register (i.e., it copied the register to
696 memory), just delete that insn instead of the equivalencing insn plus
697 anything now dead. If we call delete_dead_insn on that insn, we may
698 delete the insn that actually sets the register if the register dies
699 there and that is incorrect. */
700 static void
701 remove_init_insns ()
703 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
707 rtx list;
708 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
710 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
712 /* If we already deleted the insn or if it may trap, we can't
713 delete it. The latter case shouldn't happen, but can
714 if an insn has a variable address, gets a REG_EH_REGION
715 note added to it, and then gets converted into a load
716 from a constant address. */
717 if (NOTE_P (equiv_insn)
718 || can_throw_internal (equiv_insn))
720 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
721 delete_dead_insn (equiv_insn);
722 else
723 SET_INSN_DELETED (equiv_insn);
729 /* Return true if remove_init_insns will delete INSN. */
730 static bool
731 will_delete_init_insn_p (rtx_insn *insn)
733 rtx set = single_set (insn);
734 if (!set || !REG_P (SET_DEST (set)))
735 return false;
736 unsigned regno = REGNO (SET_DEST (set));
738 if (can_throw_internal (insn))
739 return false;
741 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
742 return false;
744 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
746 rtx equiv_insn = XEXP (list, 0);
747 if (equiv_insn == insn)
748 return true;
750 return false;
753 /* Main entry point for the reload pass.
755 FIRST is the first insn of the function being compiled.
757 GLOBAL nonzero means we were called from global_alloc
758 and should attempt to reallocate any pseudoregs that we
759 displace from hard regs we will use for reloads.
760 If GLOBAL is zero, we do not have enough information to do that,
761 so any pseudo reg that is spilled must go to the stack.
763 Return value is TRUE if reload likely left dead insns in the
764 stream and a DCE pass should be run to elimiante them. Else the
765 return value is FALSE. */
767 bool
768 reload (rtx_insn *first, int global)
770 int i, n;
771 rtx_insn *insn;
772 struct elim_table *ep;
773 basic_block bb;
774 bool inserted;
776 /* Make sure even insns with volatile mem refs are recognizable. */
777 init_recog ();
779 failure = 0;
781 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
783 /* Make sure that the last insn in the chain
784 is not something that needs reloading. */
785 emit_note (NOTE_INSN_DELETED);
787 /* Enable find_equiv_reg to distinguish insns made by reload. */
788 reload_first_uid = get_max_uid ();
790 #ifdef SECONDARY_MEMORY_NEEDED
791 /* Initialize the secondary memory table. */
792 clear_secondary_mem ();
793 #endif
795 /* We don't have a stack slot for any spill reg yet. */
796 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
797 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
799 /* Initialize the save area information for caller-save, in case some
800 are needed. */
801 init_save_areas ();
803 /* Compute which hard registers are now in use
804 as homes for pseudo registers.
805 This is done here rather than (eg) in global_alloc
806 because this point is reached even if not optimizing. */
807 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
808 mark_home_live (i);
810 /* A function that has a nonlocal label that can reach the exit
811 block via non-exceptional paths must save all call-saved
812 registers. */
813 if (cfun->has_nonlocal_label
814 && has_nonexceptional_receiver ())
815 crtl->saves_all_registers = 1;
817 if (crtl->saves_all_registers)
818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
819 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
820 df_set_regs_ever_live (i, true);
822 /* Find all the pseudo registers that didn't get hard regs
823 but do have known equivalent constants or memory slots.
824 These include parameters (known equivalent to parameter slots)
825 and cse'd or loop-moved constant memory addresses.
827 Record constant equivalents in reg_equiv_constant
828 so they will be substituted by find_reloads.
829 Record memory equivalents in reg_mem_equiv so they can
830 be substituted eventually by altering the REG-rtx's. */
832 grow_reg_equivs ();
833 reg_old_renumber = XCNEWVEC (short, max_regno);
834 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
835 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
836 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
838 CLEAR_HARD_REG_SET (bad_spill_regs_global);
840 init_eliminable_invariants (first, true);
841 init_elim_table ();
843 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
844 stack slots to the pseudos that lack hard regs or equivalents.
845 Do not touch virtual registers. */
847 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
848 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
849 temp_pseudo_reg_arr[n++] = i;
851 if (ira_conflicts_p)
852 /* Ask IRA to order pseudo-registers for better stack slot
853 sharing. */
854 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
856 for (i = 0; i < n; i++)
857 alter_reg (temp_pseudo_reg_arr[i], -1, false);
859 /* If we have some registers we think can be eliminated, scan all insns to
860 see if there is an insn that sets one of these registers to something
861 other than itself plus a constant. If so, the register cannot be
862 eliminated. Doing this scan here eliminates an extra pass through the
863 main reload loop in the most common case where register elimination
864 cannot be done. */
865 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
866 if (INSN_P (insn))
867 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
869 maybe_fix_stack_asms ();
871 insns_need_reload = 0;
872 something_needs_elimination = 0;
874 /* Initialize to -1, which means take the first spill register. */
875 last_spill_reg = -1;
877 /* Spill any hard regs that we know we can't eliminate. */
878 CLEAR_HARD_REG_SET (used_spill_regs);
879 /* There can be multiple ways to eliminate a register;
880 they should be listed adjacently.
881 Elimination for any register fails only if all possible ways fail. */
882 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
884 int from = ep->from;
885 int can_eliminate = 0;
888 can_eliminate |= ep->can_eliminate;
889 ep++;
891 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
892 if (! can_eliminate)
893 spill_hard_reg (from, 1);
896 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
897 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
899 finish_spills (global);
901 /* From now on, we may need to generate moves differently. We may also
902 allow modifications of insns which cause them to not be recognized.
903 Any such modifications will be cleaned up during reload itself. */
904 reload_in_progress = 1;
906 /* This loop scans the entire function each go-round
907 and repeats until one repetition spills no additional hard regs. */
908 for (;;)
910 int something_changed;
911 int did_spill;
912 HOST_WIDE_INT starting_frame_size;
914 starting_frame_size = get_frame_size ();
915 something_was_spilled = false;
917 set_initial_elim_offsets ();
918 set_initial_label_offsets ();
920 /* For each pseudo register that has an equivalent location defined,
921 try to eliminate any eliminable registers (such as the frame pointer)
922 assuming initial offsets for the replacement register, which
923 is the normal case.
925 If the resulting location is directly addressable, substitute
926 the MEM we just got directly for the old REG.
928 If it is not addressable but is a constant or the sum of a hard reg
929 and constant, it is probably not addressable because the constant is
930 out of range, in that case record the address; we will generate
931 hairy code to compute the address in a register each time it is
932 needed. Similarly if it is a hard register, but one that is not
933 valid as an address register.
935 If the location is not addressable, but does not have one of the
936 above forms, assign a stack slot. We have to do this to avoid the
937 potential of producing lots of reloads if, e.g., a location involves
938 a pseudo that didn't get a hard register and has an equivalent memory
939 location that also involves a pseudo that didn't get a hard register.
941 Perhaps at some point we will improve reload_when_needed handling
942 so this problem goes away. But that's very hairy. */
944 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
945 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
947 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
948 NULL_RTX);
950 if (strict_memory_address_addr_space_p
951 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
952 MEM_ADDR_SPACE (x)))
953 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
954 else if (CONSTANT_P (XEXP (x, 0))
955 || (REG_P (XEXP (x, 0))
956 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
957 || (GET_CODE (XEXP (x, 0)) == PLUS
958 && REG_P (XEXP (XEXP (x, 0), 0))
959 && (REGNO (XEXP (XEXP (x, 0), 0))
960 < FIRST_PSEUDO_REGISTER)
961 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
962 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
963 else
965 /* Make a new stack slot. Then indicate that something
966 changed so we go back and recompute offsets for
967 eliminable registers because the allocation of memory
968 below might change some offset. reg_equiv_{mem,address}
969 will be set up for this pseudo on the next pass around
970 the loop. */
971 reg_equiv_memory_loc (i) = 0;
972 reg_equiv_init (i) = 0;
973 alter_reg (i, -1, true);
977 if (caller_save_needed)
978 setup_save_areas ();
980 if (starting_frame_size && crtl->stack_alignment_needed)
982 /* If we have a stack frame, we must align it now. The
983 stack size may be a part of the offset computation for
984 register elimination. So if this changes the stack size,
985 then repeat the elimination bookkeeping. We don't
986 realign when there is no stack, as that will cause a
987 stack frame when none is needed should
988 STARTING_FRAME_OFFSET not be already aligned to
989 STACK_BOUNDARY. */
990 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
992 /* If we allocated another stack slot, redo elimination bookkeeping. */
993 if (something_was_spilled || starting_frame_size != get_frame_size ())
995 update_eliminables_and_spill ();
996 continue;
999 if (caller_save_needed)
1001 save_call_clobbered_regs ();
1002 /* That might have allocated new insn_chain structures. */
1003 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1006 calculate_needs_all_insns (global);
1008 if (! ira_conflicts_p)
1009 /* Don't do it for IRA. We need this info because we don't
1010 change live_throughout and dead_or_set for chains when IRA
1011 is used. */
1012 CLEAR_REG_SET (&spilled_pseudos);
1014 did_spill = 0;
1016 something_changed = 0;
1018 /* If we allocated any new memory locations, make another pass
1019 since it might have changed elimination offsets. */
1020 if (something_was_spilled || starting_frame_size != get_frame_size ())
1021 something_changed = 1;
1023 /* Even if the frame size remained the same, we might still have
1024 changed elimination offsets, e.g. if find_reloads called
1025 force_const_mem requiring the back end to allocate a constant
1026 pool base register that needs to be saved on the stack. */
1027 else if (!verify_initial_elim_offsets ())
1028 something_changed = 1;
1030 if (update_eliminables_and_spill ())
1032 did_spill = 1;
1033 something_changed = 1;
1036 select_reload_regs ();
1037 if (failure)
1038 goto failed;
1040 if (insns_need_reload != 0 || did_spill)
1041 something_changed |= finish_spills (global);
1043 if (! something_changed)
1044 break;
1046 if (caller_save_needed)
1047 delete_caller_save_insns ();
1049 obstack_free (&reload_obstack, reload_firstobj);
1052 /* If global-alloc was run, notify it of any register eliminations we have
1053 done. */
1054 if (global)
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1056 if (ep->can_eliminate)
1057 mark_elimination (ep->from, ep->to);
1059 remove_init_insns ();
1061 /* Use the reload registers where necessary
1062 by generating move instructions to move the must-be-register
1063 values into or out of the reload registers. */
1065 if (insns_need_reload != 0 || something_needs_elimination
1066 || something_needs_operands_changed)
1068 HOST_WIDE_INT old_frame_size = get_frame_size ();
1070 reload_as_needed (global);
1072 gcc_assert (old_frame_size == get_frame_size ());
1074 gcc_assert (verify_initial_elim_offsets ());
1077 /* If we were able to eliminate the frame pointer, show that it is no
1078 longer live at the start of any basic block. If it ls live by
1079 virtue of being in a pseudo, that pseudo will be marked live
1080 and hence the frame pointer will be known to be live via that
1081 pseudo. */
1083 if (! frame_pointer_needed)
1084 FOR_EACH_BB_FN (bb, cfun)
1085 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1087 /* Come here (with failure set nonzero) if we can't get enough spill
1088 regs. */
1089 failed:
1091 CLEAR_REG_SET (&changed_allocation_pseudos);
1092 CLEAR_REG_SET (&spilled_pseudos);
1093 reload_in_progress = 0;
1095 /* Now eliminate all pseudo regs by modifying them into
1096 their equivalent memory references.
1097 The REG-rtx's for the pseudos are modified in place,
1098 so all insns that used to refer to them now refer to memory.
1100 For a reg that has a reg_equiv_address, all those insns
1101 were changed by reloading so that no insns refer to it any longer;
1102 but the DECL_RTL of a variable decl may refer to it,
1103 and if so this causes the debugging info to mention the variable. */
1105 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1107 rtx addr = 0;
1109 if (reg_equiv_mem (i))
1110 addr = XEXP (reg_equiv_mem (i), 0);
1112 if (reg_equiv_address (i))
1113 addr = reg_equiv_address (i);
1115 if (addr)
1117 if (reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1121 REG_USERVAR_P (reg) = 0;
1122 PUT_CODE (reg, MEM);
1123 XEXP (reg, 0) = addr;
1124 if (reg_equiv_memory_loc (i))
1125 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1126 else
1127 MEM_ATTRS (reg) = 0;
1128 MEM_NOTRAP_P (reg) = 1;
1130 else if (reg_equiv_mem (i))
1131 XEXP (reg_equiv_mem (i), 0) = addr;
1134 /* We don't want complex addressing modes in debug insns
1135 if simpler ones will do, so delegitimize equivalences
1136 in debug insns. */
1137 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1139 rtx reg = regno_reg_rtx[i];
1140 rtx equiv = 0;
1141 df_ref use, next;
1143 if (reg_equiv_constant (i))
1144 equiv = reg_equiv_constant (i);
1145 else if (reg_equiv_invariant (i))
1146 equiv = reg_equiv_invariant (i);
1147 else if (reg && MEM_P (reg))
1148 equiv = targetm.delegitimize_address (reg);
1149 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1150 equiv = reg;
1152 if (equiv == reg)
1153 continue;
1155 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1157 insn = DF_REF_INSN (use);
1159 /* Make sure the next ref is for a different instruction,
1160 so that we're not affected by the rescan. */
1161 next = DF_REF_NEXT_REG (use);
1162 while (next && DF_REF_INSN (next) == insn)
1163 next = DF_REF_NEXT_REG (next);
1165 if (DEBUG_INSN_P (insn))
1167 if (!equiv)
1169 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1170 df_insn_rescan_debug_internal (insn);
1172 else
1173 INSN_VAR_LOCATION_LOC (insn)
1174 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1175 reg, equiv);
1181 /* We must set reload_completed now since the cleanup_subreg_operands call
1182 below will re-recognize each insn and reload may have generated insns
1183 which are only valid during and after reload. */
1184 reload_completed = 1;
1186 /* Make a pass over all the insns and delete all USEs which we inserted
1187 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1188 notes. Delete all CLOBBER insns, except those that refer to the return
1189 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1190 from misarranging variable-array code, and simplify (subreg (reg))
1191 operands. Strip and regenerate REG_INC notes that may have been moved
1192 around. */
1194 for (insn = first; insn; insn = NEXT_INSN (insn))
1195 if (INSN_P (insn))
1197 rtx *pnote;
1199 if (CALL_P (insn))
1200 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1201 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1203 if ((GET_CODE (PATTERN (insn)) == USE
1204 /* We mark with QImode USEs introduced by reload itself. */
1205 && (GET_MODE (insn) == QImode
1206 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1207 || (GET_CODE (PATTERN (insn)) == CLOBBER
1208 && (!MEM_P (XEXP (PATTERN (insn), 0))
1209 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1210 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1211 && XEXP (XEXP (PATTERN (insn), 0), 0)
1212 != stack_pointer_rtx))
1213 && (!REG_P (XEXP (PATTERN (insn), 0))
1214 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1216 delete_insn (insn);
1217 continue;
1220 /* Some CLOBBERs may survive until here and still reference unassigned
1221 pseudos with const equivalent, which may in turn cause ICE in later
1222 passes if the reference remains in place. */
1223 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1224 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1225 VOIDmode, PATTERN (insn));
1227 /* Discard obvious no-ops, even without -O. This optimization
1228 is fast and doesn't interfere with debugging. */
1229 if (NONJUMP_INSN_P (insn)
1230 && GET_CODE (PATTERN (insn)) == SET
1231 && REG_P (SET_SRC (PATTERN (insn)))
1232 && REG_P (SET_DEST (PATTERN (insn)))
1233 && (REGNO (SET_SRC (PATTERN (insn)))
1234 == REGNO (SET_DEST (PATTERN (insn)))))
1236 delete_insn (insn);
1237 continue;
1240 pnote = &REG_NOTES (insn);
1241 while (*pnote != 0)
1243 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1244 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1245 || REG_NOTE_KIND (*pnote) == REG_INC)
1246 *pnote = XEXP (*pnote, 1);
1247 else
1248 pnote = &XEXP (*pnote, 1);
1251 if (AUTO_INC_DEC)
1252 add_auto_inc_notes (insn, PATTERN (insn));
1254 /* Simplify (subreg (reg)) if it appears as an operand. */
1255 cleanup_subreg_operands (insn);
1257 /* Clean up invalid ASMs so that they don't confuse later passes.
1258 See PR 21299. */
1259 if (asm_noperands (PATTERN (insn)) >= 0)
1261 extract_insn (insn);
1262 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1264 error_for_asm (insn,
1265 "%<asm%> operand has impossible constraints");
1266 delete_insn (insn);
1267 continue;
1272 /* If we are doing generic stack checking, give a warning if this
1273 function's frame size is larger than we expect. */
1274 if (flag_stack_check == GENERIC_STACK_CHECK)
1276 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1277 static int verbose_warned = 0;
1279 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1280 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1281 size += UNITS_PER_WORD;
1283 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1285 warning (0, "frame size too large for reliable stack checking");
1286 if (! verbose_warned)
1288 warning (0, "try reducing the number of local variables");
1289 verbose_warned = 1;
1294 free (temp_pseudo_reg_arr);
1296 /* Indicate that we no longer have known memory locations or constants. */
1297 free_reg_equiv ();
1299 free (reg_max_ref_width);
1300 free (reg_old_renumber);
1301 free (pseudo_previous_regs);
1302 free (pseudo_forbidden_regs);
1304 CLEAR_HARD_REG_SET (used_spill_regs);
1305 for (i = 0; i < n_spills; i++)
1306 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1308 /* Free all the insn_chain structures at once. */
1309 obstack_free (&reload_obstack, reload_startobj);
1310 unused_insn_chains = 0;
1312 inserted = fixup_abnormal_edges ();
1314 /* We've possibly turned single trapping insn into multiple ones. */
1315 if (cfun->can_throw_non_call_exceptions)
1317 sbitmap blocks;
1318 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1319 bitmap_ones (blocks);
1320 find_many_sub_basic_blocks (blocks);
1321 sbitmap_free (blocks);
1324 if (inserted)
1325 commit_edge_insertions ();
1327 /* Replacing pseudos with their memory equivalents might have
1328 created shared rtx. Subsequent passes would get confused
1329 by this, so unshare everything here. */
1330 unshare_all_rtl_again (first);
1332 #ifdef STACK_BOUNDARY
1333 /* init_emit has set the alignment of the hard frame pointer
1334 to STACK_BOUNDARY. It is very likely no longer valid if
1335 the hard frame pointer was used for register allocation. */
1336 if (!frame_pointer_needed)
1337 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1338 #endif
1340 substitute_stack.release ();
1342 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1344 reload_completed = !failure;
1346 return need_dce;
1349 /* Yet another special case. Unfortunately, reg-stack forces people to
1350 write incorrect clobbers in asm statements. These clobbers must not
1351 cause the register to appear in bad_spill_regs, otherwise we'll call
1352 fatal_insn later. We clear the corresponding regnos in the live
1353 register sets to avoid this.
1354 The whole thing is rather sick, I'm afraid. */
1356 static void
1357 maybe_fix_stack_asms (void)
1359 #ifdef STACK_REGS
1360 const char *constraints[MAX_RECOG_OPERANDS];
1361 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1362 struct insn_chain *chain;
1364 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1366 int i, noperands;
1367 HARD_REG_SET clobbered, allowed;
1368 rtx pat;
1370 if (! INSN_P (chain->insn)
1371 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1372 continue;
1373 pat = PATTERN (chain->insn);
1374 if (GET_CODE (pat) != PARALLEL)
1375 continue;
1377 CLEAR_HARD_REG_SET (clobbered);
1378 CLEAR_HARD_REG_SET (allowed);
1380 /* First, make a mask of all stack regs that are clobbered. */
1381 for (i = 0; i < XVECLEN (pat, 0); i++)
1383 rtx t = XVECEXP (pat, 0, i);
1384 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1385 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1388 /* Get the operand values and constraints out of the insn. */
1389 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1390 constraints, operand_mode, NULL);
1392 /* For every operand, see what registers are allowed. */
1393 for (i = 0; i < noperands; i++)
1395 const char *p = constraints[i];
1396 /* For every alternative, we compute the class of registers allowed
1397 for reloading in CLS, and merge its contents into the reg set
1398 ALLOWED. */
1399 int cls = (int) NO_REGS;
1401 for (;;)
1403 char c = *p;
1405 if (c == '\0' || c == ',' || c == '#')
1407 /* End of one alternative - mark the regs in the current
1408 class, and reset the class. */
1409 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1410 cls = NO_REGS;
1411 p++;
1412 if (c == '#')
1413 do {
1414 c = *p++;
1415 } while (c != '\0' && c != ',');
1416 if (c == '\0')
1417 break;
1418 continue;
1421 switch (c)
1423 case 'g':
1424 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1425 break;
1427 default:
1428 enum constraint_num cn = lookup_constraint (p);
1429 if (insn_extra_address_constraint (cn))
1430 cls = (int) reg_class_subunion[cls]
1431 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1432 ADDRESS, SCRATCH)];
1433 else
1434 cls = (int) reg_class_subunion[cls]
1435 [reg_class_for_constraint (cn)];
1436 break;
1438 p += CONSTRAINT_LEN (c, p);
1441 /* Those of the registers which are clobbered, but allowed by the
1442 constraints, must be usable as reload registers. So clear them
1443 out of the life information. */
1444 AND_HARD_REG_SET (allowed, clobbered);
1445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1446 if (TEST_HARD_REG_BIT (allowed, i))
1448 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1449 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1453 #endif
1456 /* Copy the global variables n_reloads and rld into the corresponding elts
1457 of CHAIN. */
1458 static void
1459 copy_reloads (struct insn_chain *chain)
1461 chain->n_reloads = n_reloads;
1462 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1463 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1464 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1467 /* Walk the chain of insns, and determine for each whether it needs reloads
1468 and/or eliminations. Build the corresponding insns_need_reload list, and
1469 set something_needs_elimination as appropriate. */
1470 static void
1471 calculate_needs_all_insns (int global)
1473 struct insn_chain **pprev_reload = &insns_need_reload;
1474 struct insn_chain *chain, *next = 0;
1476 something_needs_elimination = 0;
1478 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1479 for (chain = reload_insn_chain; chain != 0; chain = next)
1481 rtx_insn *insn = chain->insn;
1483 next = chain->next;
1485 /* Clear out the shortcuts. */
1486 chain->n_reloads = 0;
1487 chain->need_elim = 0;
1488 chain->need_reload = 0;
1489 chain->need_operand_change = 0;
1491 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1492 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1493 what effects this has on the known offsets at labels. */
1495 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1496 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1497 set_label_offsets (insn, insn, 0);
1499 if (INSN_P (insn))
1501 rtx old_body = PATTERN (insn);
1502 int old_code = INSN_CODE (insn);
1503 rtx old_notes = REG_NOTES (insn);
1504 int did_elimination = 0;
1505 int operands_changed = 0;
1507 /* Skip insns that only set an equivalence. */
1508 if (will_delete_init_insn_p (insn))
1509 continue;
1511 /* If needed, eliminate any eliminable registers. */
1512 if (num_eliminable || num_eliminable_invariants)
1513 did_elimination = eliminate_regs_in_insn (insn, 0);
1515 /* Analyze the instruction. */
1516 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1517 global, spill_reg_order);
1519 /* If a no-op set needs more than one reload, this is likely
1520 to be something that needs input address reloads. We
1521 can't get rid of this cleanly later, and it is of no use
1522 anyway, so discard it now.
1523 We only do this when expensive_optimizations is enabled,
1524 since this complements reload inheritance / output
1525 reload deletion, and it can make debugging harder. */
1526 if (flag_expensive_optimizations && n_reloads > 1)
1528 rtx set = single_set (insn);
1529 if (set
1531 ((SET_SRC (set) == SET_DEST (set)
1532 && REG_P (SET_SRC (set))
1533 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1534 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1535 && reg_renumber[REGNO (SET_SRC (set))] < 0
1536 && reg_renumber[REGNO (SET_DEST (set))] < 0
1537 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1538 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1539 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1540 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1542 if (ira_conflicts_p)
1543 /* Inform IRA about the insn deletion. */
1544 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1545 REGNO (SET_SRC (set)));
1546 delete_insn (insn);
1547 /* Delete it from the reload chain. */
1548 if (chain->prev)
1549 chain->prev->next = next;
1550 else
1551 reload_insn_chain = next;
1552 if (next)
1553 next->prev = chain->prev;
1554 chain->next = unused_insn_chains;
1555 unused_insn_chains = chain;
1556 continue;
1559 if (num_eliminable)
1560 update_eliminable_offsets ();
1562 /* Remember for later shortcuts which insns had any reloads or
1563 register eliminations. */
1564 chain->need_elim = did_elimination;
1565 chain->need_reload = n_reloads > 0;
1566 chain->need_operand_change = operands_changed;
1568 /* Discard any register replacements done. */
1569 if (did_elimination)
1571 obstack_free (&reload_obstack, reload_insn_firstobj);
1572 PATTERN (insn) = old_body;
1573 INSN_CODE (insn) = old_code;
1574 REG_NOTES (insn) = old_notes;
1575 something_needs_elimination = 1;
1578 something_needs_operands_changed |= operands_changed;
1580 if (n_reloads != 0)
1582 copy_reloads (chain);
1583 *pprev_reload = chain;
1584 pprev_reload = &chain->next_need_reload;
1588 *pprev_reload = 0;
1591 /* This function is called from the register allocator to set up estimates
1592 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1593 an invariant. The structure is similar to calculate_needs_all_insns. */
1595 void
1596 calculate_elim_costs_all_insns (void)
1598 int *reg_equiv_init_cost;
1599 basic_block bb;
1600 int i;
1602 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1603 init_elim_table ();
1604 init_eliminable_invariants (get_insns (), false);
1606 set_initial_elim_offsets ();
1607 set_initial_label_offsets ();
1609 FOR_EACH_BB_FN (bb, cfun)
1611 rtx_insn *insn;
1612 elim_bb = bb;
1614 FOR_BB_INSNS (bb, insn)
1616 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1617 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1618 what effects this has on the known offsets at labels. */
1620 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1621 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1622 set_label_offsets (insn, insn, 0);
1624 if (INSN_P (insn))
1626 rtx set = single_set (insn);
1628 /* Skip insns that only set an equivalence. */
1629 if (set && REG_P (SET_DEST (set))
1630 && reg_renumber[REGNO (SET_DEST (set))] < 0
1631 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1632 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1634 unsigned regno = REGNO (SET_DEST (set));
1635 rtx_insn_list *init = reg_equiv_init (regno);
1636 if (init)
1638 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1639 false, true);
1640 machine_mode mode = GET_MODE (SET_DEST (set));
1641 int cost = set_src_cost (t, mode,
1642 optimize_bb_for_speed_p (bb));
1643 int freq = REG_FREQ_FROM_BB (bb);
1645 reg_equiv_init_cost[regno] = cost * freq;
1646 continue;
1649 /* If needed, eliminate any eliminable registers. */
1650 if (num_eliminable || num_eliminable_invariants)
1651 elimination_costs_in_insn (insn);
1653 if (num_eliminable)
1654 update_eliminable_offsets ();
1658 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 if (reg_equiv_invariant (i))
1662 if (reg_equiv_init (i))
1664 int cost = reg_equiv_init_cost[i];
1665 if (dump_file)
1666 fprintf (dump_file,
1667 "Reg %d has equivalence, initial gains %d\n", i, cost);
1668 if (cost != 0)
1669 ira_adjust_equiv_reg_cost (i, cost);
1671 else
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d had equivalence, but can't be eliminated\n",
1677 ira_adjust_equiv_reg_cost (i, 0);
1682 free (reg_equiv_init_cost);
1683 free (offsets_known_at);
1684 free (offsets_at);
1685 offsets_at = NULL;
1686 offsets_known_at = NULL;
1689 /* Comparison function for qsort to decide which of two reloads
1690 should be handled first. *P1 and *P2 are the reload numbers. */
1692 static int
1693 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1696 int t;
1698 /* Consider required reloads before optional ones. */
1699 t = rld[r1].optional - rld[r2].optional;
1700 if (t != 0)
1701 return t;
1703 /* Count all solitary classes before non-solitary ones. */
1704 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1705 - (reg_class_size[(int) rld[r1].rclass] == 1));
1706 if (t != 0)
1707 return t;
1709 /* Aside from solitaires, consider all multi-reg groups first. */
1710 t = rld[r2].nregs - rld[r1].nregs;
1711 if (t != 0)
1712 return t;
1714 /* Consider reloads in order of increasing reg-class number. */
1715 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1716 if (t != 0)
1717 return t;
1719 /* If reloads are equally urgent, sort by reload number,
1720 so that the results of qsort leave nothing to chance. */
1721 return r1 - r2;
1724 /* The cost of spilling each hard reg. */
1725 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727 /* When spilling multiple hard registers, we use SPILL_COST for the first
1728 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1729 only the first hard reg for a multi-reg pseudo. */
1730 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732 /* Map of hard regno to pseudo regno currently occupying the hard
1733 reg. */
1734 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738 static void
1739 count_pseudo (int reg)
1741 int freq = REG_FREQ (reg);
1742 int r = reg_renumber[reg];
1743 int nregs;
1745 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1746 if (ira_conflicts_p && r < 0)
1747 return;
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1751 return;
1753 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755 gcc_assert (r >= 0);
1757 spill_add_cost[r] += freq;
1758 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1759 while (nregs-- > 0)
1761 hard_regno_to_pseudo_regno[r + nregs] = reg;
1762 spill_cost[r + nregs] += freq;
1766 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1767 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769 static void
1770 order_regs_for_reload (struct insn_chain *chain)
1772 unsigned i;
1773 HARD_REG_SET used_by_pseudos;
1774 HARD_REG_SET used_by_pseudos2;
1775 reg_set_iterator rsi;
1777 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779 memset (spill_cost, 0, sizeof spill_cost);
1780 memset (spill_add_cost, 0, sizeof spill_add_cost);
1781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1782 hard_regno_to_pseudo_regno[i] = -1;
1784 /* Count number of uses of each hard reg by pseudo regs allocated to it
1785 and then order them by decreasing use. First exclude hard registers
1786 that are live in or across this insn. */
1788 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1790 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793 /* Now find out which pseudos are allocated to it, and update
1794 hard_reg_n_uses. */
1795 CLEAR_REG_SET (&pseudos_counted);
1797 EXECUTE_IF_SET_IN_REG_SET
1798 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 count_pseudo (i);
1802 EXECUTE_IF_SET_IN_REG_SET
1803 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 count_pseudo (i);
1807 CLEAR_REG_SET (&pseudos_counted);
1810 /* Vector of reload-numbers showing the order in which the reloads should
1811 be processed. */
1812 static short reload_order[MAX_RELOADS];
1814 /* This is used to keep track of the spill regs used in one insn. */
1815 static HARD_REG_SET used_spill_regs_local;
1817 /* We decided to spill hard register SPILLED, which has a size of
1818 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1819 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1820 update SPILL_COST/SPILL_ADD_COST. */
1822 static void
1823 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 int freq = REG_FREQ (reg);
1826 int r = reg_renumber[reg];
1827 int nregs;
1829 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1830 if (ira_conflicts_p && r < 0)
1831 return;
1833 gcc_assert (r >= 0);
1835 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1838 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1839 return;
1841 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843 spill_add_cost[r] -= freq;
1844 while (nregs-- > 0)
1846 hard_regno_to_pseudo_regno[r + nregs] = -1;
1847 spill_cost[r + nregs] -= freq;
1851 /* Find reload register to use for reload number ORDER. */
1853 static int
1854 find_reg (struct insn_chain *chain, int order)
1856 int rnum = reload_order[order];
1857 struct reload *rl = rld + rnum;
1858 int best_cost = INT_MAX;
1859 int best_reg = -1;
1860 unsigned int i, j, n;
1861 int k;
1862 HARD_REG_SET not_usable;
1863 HARD_REG_SET used_by_other_reload;
1864 reg_set_iterator rsi;
1865 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1869 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1870 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872 CLEAR_HARD_REG_SET (used_by_other_reload);
1873 for (k = 0; k < order; k++)
1875 int other = reload_order[k];
1877 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1878 for (j = 0; j < rld[other].nregs; j++)
1879 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1882 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 #ifdef REG_ALLOC_ORDER
1885 unsigned int regno = reg_alloc_order[i];
1886 #else
1887 unsigned int regno = i;
1888 #endif
1890 if (! TEST_HARD_REG_BIT (not_usable, regno)
1891 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1892 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 int this_cost = spill_cost[regno];
1895 int ok = 1;
1896 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898 for (j = 1; j < this_nregs; j++)
1900 this_cost += spill_add_cost[regno + j];
1901 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1902 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1903 ok = 0;
1905 if (! ok)
1906 continue;
1908 if (ira_conflicts_p)
1910 /* Ask IRA to find a better pseudo-register for
1911 spilling. */
1912 for (n = j = 0; j < this_nregs; j++)
1914 int r = hard_regno_to_pseudo_regno[regno + j];
1916 if (r < 0)
1917 continue;
1918 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1919 regno_pseudo_regs[n++] = r;
1921 regno_pseudo_regs[n++] = -1;
1922 if (best_reg < 0
1923 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1924 best_regno_pseudo_regs,
1925 rl->in, rl->out,
1926 chain->insn))
1928 best_reg = regno;
1929 for (j = 0;; j++)
1931 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1932 if (regno_pseudo_regs[j] < 0)
1933 break;
1936 continue;
1939 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1940 this_cost--;
1941 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1942 this_cost--;
1943 if (this_cost < best_cost
1944 /* Among registers with equal cost, prefer caller-saved ones, or
1945 use REG_ALLOC_ORDER if it is defined. */
1946 || (this_cost == best_cost
1947 #ifdef REG_ALLOC_ORDER
1948 && (inv_reg_alloc_order[regno]
1949 < inv_reg_alloc_order[best_reg])
1950 #else
1951 && call_used_regs[regno]
1952 && ! call_used_regs[best_reg]
1953 #endif
1956 best_reg = regno;
1957 best_cost = this_cost;
1961 if (best_reg == -1)
1962 return 0;
1964 if (dump_file)
1965 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1968 rl->regno = best_reg;
1970 EXECUTE_IF_SET_IN_REG_SET
1971 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 count_spilled_pseudo (best_reg, rl->nregs, j);
1976 EXECUTE_IF_SET_IN_REG_SET
1977 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 count_spilled_pseudo (best_reg, rl->nregs, j);
1982 for (i = 0; i < rl->nregs; i++)
1984 gcc_assert (spill_cost[best_reg + i] == 0);
1985 gcc_assert (spill_add_cost[best_reg + i] == 0);
1986 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1987 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 return 1;
1992 /* Find more reload regs to satisfy the remaining need of an insn, which
1993 is given by CHAIN.
1994 Do it by ascending class number, since otherwise a reg
1995 might be spilled for a big class and might fail to count
1996 for a smaller class even though it belongs to that class. */
1998 static void
1999 find_reload_regs (struct insn_chain *chain)
2001 int i;
2003 /* In order to be certain of getting the registers we need,
2004 we must sort the reloads into order of increasing register class.
2005 Then our grabbing of reload registers will parallel the process
2006 that provided the reload registers. */
2007 for (i = 0; i < chain->n_reloads; i++)
2009 /* Show whether this reload already has a hard reg. */
2010 if (chain->rld[i].reg_rtx)
2012 int regno = REGNO (chain->rld[i].reg_rtx);
2013 chain->rld[i].regno = regno;
2014 chain->rld[i].nregs
2015 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 else
2018 chain->rld[i].regno = -1;
2019 reload_order[i] = i;
2022 n_reloads = chain->n_reloads;
2023 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027 if (dump_file)
2028 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032 /* Compute the order of preference for hard registers to spill. */
2034 order_regs_for_reload (chain);
2036 for (i = 0; i < n_reloads; i++)
2038 int r = reload_order[i];
2040 /* Ignore reloads that got marked inoperative. */
2041 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2042 && ! rld[r].optional
2043 && rld[r].regno == -1)
2044 if (! find_reg (chain, i))
2046 if (dump_file)
2047 fprintf (dump_file, "reload failure for reload %d\n", r);
2048 spill_failure (chain->insn, rld[r].rclass);
2049 failure = 1;
2050 return;
2054 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2055 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2060 static void
2061 select_reload_regs (void)
2063 struct insn_chain *chain;
2065 /* Try to satisfy the needs for each insn. */
2066 for (chain = insns_need_reload; chain != 0;
2067 chain = chain->next_need_reload)
2068 find_reload_regs (chain);
2071 /* Delete all insns that were inserted by emit_caller_save_insns during
2072 this iteration. */
2073 static void
2074 delete_caller_save_insns (void)
2076 struct insn_chain *c = reload_insn_chain;
2078 while (c != 0)
2080 while (c != 0 && c->is_caller_save_insn)
2082 struct insn_chain *next = c->next;
2083 rtx_insn *insn = c->insn;
2085 if (c == reload_insn_chain)
2086 reload_insn_chain = next;
2087 delete_insn (insn);
2089 if (next)
2090 next->prev = c->prev;
2091 if (c->prev)
2092 c->prev->next = next;
2093 c->next = unused_insn_chains;
2094 unused_insn_chains = c;
2095 c = next;
2097 if (c != 0)
2098 c = c->next;
2102 /* Handle the failure to find a register to spill.
2103 INSN should be one of the insns which needed this particular spill reg. */
2105 static void
2106 spill_failure (rtx_insn *insn, enum reg_class rclass)
2108 if (asm_noperands (PATTERN (insn)) >= 0)
2109 error_for_asm (insn, "can%'t find a register in class %qs while "
2110 "reloading %<asm%>",
2111 reg_class_names[rclass]);
2112 else
2114 error ("unable to find a register to spill in class %qs",
2115 reg_class_names[rclass]);
2117 if (dump_file)
2119 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2120 debug_reload_to_stream (dump_file);
2122 fatal_insn ("this is the insn:", insn);
2126 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2127 data that is dead in INSN. */
2129 static void
2130 delete_dead_insn (rtx_insn *insn)
2132 rtx_insn *prev = prev_active_insn (insn);
2133 rtx prev_dest;
2135 /* If the previous insn sets a register that dies in our insn make
2136 a note that we want to run DCE immediately after reload.
2138 We used to delete the previous insn & recurse, but that's wrong for
2139 block local equivalences. Instead of trying to figure out the exact
2140 circumstances where we can delete the potentially dead insns, just
2141 let DCE do the job. */
2142 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2143 && GET_CODE (PATTERN (prev)) == SET
2144 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2145 && reg_mentioned_p (prev_dest, PATTERN (insn))
2146 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2147 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2148 need_dce = 1;
2150 SET_INSN_DELETED (insn);
2153 /* Modify the home of pseudo-reg I.
2154 The new home is present in reg_renumber[I].
2156 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2157 or it may be -1, meaning there is none or it is not relevant.
2158 This is used so that all pseudos spilled from a given hard reg
2159 can share one stack slot. */
2161 static void
2162 alter_reg (int i, int from_reg, bool dont_share_p)
2164 /* When outputting an inline function, this can happen
2165 for a reg that isn't actually used. */
2166 if (regno_reg_rtx[i] == 0)
2167 return;
2169 /* If the reg got changed to a MEM at rtl-generation time,
2170 ignore it. */
2171 if (!REG_P (regno_reg_rtx[i]))
2172 return;
2174 /* Modify the reg-rtx to contain the new hard reg
2175 number or else to contain its pseudo reg number. */
2176 SET_REGNO (regno_reg_rtx[i],
2177 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2179 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2180 allocate a stack slot for it. */
2182 if (reg_renumber[i] < 0
2183 && REG_N_REFS (i) > 0
2184 && reg_equiv_constant (i) == 0
2185 && (reg_equiv_invariant (i) == 0
2186 || reg_equiv_init (i) == 0)
2187 && reg_equiv_memory_loc (i) == 0)
2189 rtx x = NULL_RTX;
2190 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2191 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2192 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2193 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2194 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2195 int adjust = 0;
2197 something_was_spilled = true;
2199 if (ira_conflicts_p)
2201 /* Mark the spill for IRA. */
2202 SET_REGNO_REG_SET (&spilled_pseudos, i);
2203 if (!dont_share_p)
2204 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2207 if (x)
2210 /* Each pseudo reg has an inherent size which comes from its own mode,
2211 and a total size which provides room for paradoxical subregs
2212 which refer to the pseudo reg in wider modes.
2214 We can use a slot already allocated if it provides both
2215 enough inherent space and enough total space.
2216 Otherwise, we allocate a new slot, making sure that it has no less
2217 inherent space, and no less total space, then the previous slot. */
2218 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2220 rtx stack_slot;
2222 /* No known place to spill from => no slot to reuse. */
2223 x = assign_stack_local (mode, total_size,
2224 min_align > inherent_align
2225 || total_size > inherent_size ? -1 : 0);
2227 stack_slot = x;
2229 /* Cancel the big-endian correction done in assign_stack_local.
2230 Get the address of the beginning of the slot. This is so we
2231 can do a big-endian correction unconditionally below. */
2232 if (BYTES_BIG_ENDIAN)
2234 adjust = inherent_size - total_size;
2235 if (adjust)
2236 stack_slot
2237 = adjust_address_nv (x, mode_for_size (total_size
2238 * BITS_PER_UNIT,
2239 MODE_INT, 1),
2240 adjust);
2243 if (! dont_share_p && ira_conflicts_p)
2244 /* Inform IRA about allocation a new stack slot. */
2245 ira_mark_new_stack_slot (stack_slot, i, total_size);
2248 /* Reuse a stack slot if possible. */
2249 else if (spill_stack_slot[from_reg] != 0
2250 && spill_stack_slot_width[from_reg] >= total_size
2251 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2252 >= inherent_size)
2253 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2254 x = spill_stack_slot[from_reg];
2256 /* Allocate a bigger slot. */
2257 else
2259 /* Compute maximum size needed, both for inherent size
2260 and for total size. */
2261 rtx stack_slot;
2263 if (spill_stack_slot[from_reg])
2265 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2266 > inherent_size)
2267 mode = GET_MODE (spill_stack_slot[from_reg]);
2268 if (spill_stack_slot_width[from_reg] > total_size)
2269 total_size = spill_stack_slot_width[from_reg];
2270 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2271 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2274 /* Make a slot with that size. */
2275 x = assign_stack_local (mode, total_size,
2276 min_align > inherent_align
2277 || total_size > inherent_size ? -1 : 0);
2278 stack_slot = x;
2280 /* Cancel the big-endian correction done in assign_stack_local.
2281 Get the address of the beginning of the slot. This is so we
2282 can do a big-endian correction unconditionally below. */
2283 if (BYTES_BIG_ENDIAN)
2285 adjust = GET_MODE_SIZE (mode) - total_size;
2286 if (adjust)
2287 stack_slot
2288 = adjust_address_nv (x, mode_for_size (total_size
2289 * BITS_PER_UNIT,
2290 MODE_INT, 1),
2291 adjust);
2294 spill_stack_slot[from_reg] = stack_slot;
2295 spill_stack_slot_width[from_reg] = total_size;
2298 /* On a big endian machine, the "address" of the slot
2299 is the address of the low part that fits its inherent mode. */
2300 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2301 adjust += (total_size - inherent_size);
2303 /* If we have any adjustment to make, or if the stack slot is the
2304 wrong mode, make a new stack slot. */
2305 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2307 /* Set all of the memory attributes as appropriate for a spill. */
2308 set_mem_attrs_for_spill (x);
2310 /* Save the stack slot for later. */
2311 reg_equiv_memory_loc (i) = x;
2315 /* Mark the slots in regs_ever_live for the hard regs used by
2316 pseudo-reg number REGNO, accessed in MODE. */
2318 static void
2319 mark_home_live_1 (int regno, machine_mode mode)
2321 int i, lim;
2323 i = reg_renumber[regno];
2324 if (i < 0)
2325 return;
2326 lim = end_hard_regno (mode, i);
2327 while (i < lim)
2328 df_set_regs_ever_live (i++, true);
2331 /* Mark the slots in regs_ever_live for the hard regs
2332 used by pseudo-reg number REGNO. */
2334 void
2335 mark_home_live (int regno)
2337 if (reg_renumber[regno] >= 0)
2338 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2341 /* This function handles the tracking of elimination offsets around branches.
2343 X is a piece of RTL being scanned.
2345 INSN is the insn that it came from, if any.
2347 INITIAL_P is nonzero if we are to set the offset to be the initial
2348 offset and zero if we are setting the offset of the label to be the
2349 current offset. */
2351 static void
2352 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2354 enum rtx_code code = GET_CODE (x);
2355 rtx tem;
2356 unsigned int i;
2357 struct elim_table *p;
2359 switch (code)
2361 case LABEL_REF:
2362 if (LABEL_REF_NONLOCAL_P (x))
2363 return;
2365 x = LABEL_REF_LABEL (x);
2367 /* ... fall through ... */
2369 case CODE_LABEL:
2370 /* If we know nothing about this label, set the desired offsets. Note
2371 that this sets the offset at a label to be the offset before a label
2372 if we don't know anything about the label. This is not correct for
2373 the label after a BARRIER, but is the best guess we can make. If
2374 we guessed wrong, we will suppress an elimination that might have
2375 been possible had we been able to guess correctly. */
2377 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2379 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2380 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2381 = (initial_p ? reg_eliminate[i].initial_offset
2382 : reg_eliminate[i].offset);
2383 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2386 /* Otherwise, if this is the definition of a label and it is
2387 preceded by a BARRIER, set our offsets to the known offset of
2388 that label. */
2390 else if (x == insn
2391 && (tem = prev_nonnote_insn (insn)) != 0
2392 && BARRIER_P (tem))
2393 set_offsets_for_label (insn);
2394 else
2395 /* If neither of the above cases is true, compare each offset
2396 with those previously recorded and suppress any eliminations
2397 where the offsets disagree. */
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 != (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset))
2403 reg_eliminate[i].can_eliminate = 0;
2405 return;
2407 case JUMP_TABLE_DATA:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2409 return;
2411 case JUMP_INSN:
2412 set_label_offsets (PATTERN (insn), insn, initial_p);
2414 /* ... fall through ... */
2416 case INSN:
2417 case CALL_INSN:
2418 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2419 to indirectly and hence must have all eliminations at their
2420 initial offsets. */
2421 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2422 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2423 set_label_offsets (XEXP (tem, 0), insn, 1);
2424 return;
2426 case PARALLEL:
2427 case ADDR_VEC:
2428 case ADDR_DIFF_VEC:
2429 /* Each of the labels in the parallel or address vector must be
2430 at their initial offsets. We want the first field for PARALLEL
2431 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2433 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2434 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2435 insn, initial_p);
2436 return;
2438 case SET:
2439 /* We only care about setting PC. If the source is not RETURN,
2440 IF_THEN_ELSE, or a label, disable any eliminations not at
2441 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2442 isn't one of those possibilities. For branches to a label,
2443 call ourselves recursively.
2445 Note that this can disable elimination unnecessarily when we have
2446 a non-local goto since it will look like a non-constant jump to
2447 someplace in the current function. This isn't a significant
2448 problem since such jumps will normally be when all elimination
2449 pairs are back to their initial offsets. */
2451 if (SET_DEST (x) != pc_rtx)
2452 return;
2454 switch (GET_CODE (SET_SRC (x)))
2456 case PC:
2457 case RETURN:
2458 return;
2460 case LABEL_REF:
2461 set_label_offsets (SET_SRC (x), insn, initial_p);
2462 return;
2464 case IF_THEN_ELSE:
2465 tem = XEXP (SET_SRC (x), 1);
2466 if (GET_CODE (tem) == LABEL_REF)
2467 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2468 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2469 break;
2471 tem = XEXP (SET_SRC (x), 2);
2472 if (GET_CODE (tem) == LABEL_REF)
2473 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2474 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2475 break;
2476 return;
2478 default:
2479 break;
2482 /* If we reach here, all eliminations must be at their initial
2483 offset because we are doing a jump to a variable address. */
2484 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2485 if (p->offset != p->initial_offset)
2486 p->can_eliminate = 0;
2487 break;
2489 default:
2490 break;
2494 /* This function examines every reg that occurs in X and adjusts the
2495 costs for its elimination which are gathered by IRA. INSN is the
2496 insn in which X occurs. We do not recurse into MEM expressions. */
2498 static void
2499 note_reg_elim_costly (const_rtx x, rtx insn)
2501 subrtx_iterator::array_type array;
2502 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2504 const_rtx x = *iter;
2505 if (MEM_P (x))
2506 iter.skip_subrtxes ();
2507 else if (REG_P (x)
2508 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2509 && reg_equiv_init (REGNO (x))
2510 && reg_equiv_invariant (REGNO (x)))
2512 rtx t = reg_equiv_invariant (REGNO (x));
2513 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2514 int cost = set_src_cost (new_rtx, Pmode,
2515 optimize_bb_for_speed_p (elim_bb));
2516 int freq = REG_FREQ_FROM_BB (elim_bb);
2518 if (cost != 0)
2519 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2524 /* Scan X and replace any eliminable registers (such as fp) with a
2525 replacement (such as sp), plus an offset.
2527 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2528 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2529 MEM, we are allowed to replace a sum of a register and the constant zero
2530 with the register, which we cannot do outside a MEM. In addition, we need
2531 to record the fact that a register is referenced outside a MEM.
2533 If INSN is an insn, it is the insn containing X. If we replace a REG
2534 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2535 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2536 the REG is being modified.
2538 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2539 That's used when we eliminate in expressions stored in notes.
2540 This means, do not set ref_outside_mem even if the reference
2541 is outside of MEMs.
2543 If FOR_COSTS is true, we are being called before reload in order to
2544 estimate the costs of keeping registers with an equivalence unallocated.
2546 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2547 replacements done assuming all offsets are at their initial values. If
2548 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2549 encounter, return the actual location so that find_reloads will do
2550 the proper thing. */
2552 static rtx
2553 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2554 bool may_use_invariant, bool for_costs)
2556 enum rtx_code code = GET_CODE (x);
2557 struct elim_table *ep;
2558 int regno;
2559 rtx new_rtx;
2560 int i, j;
2561 const char *fmt;
2562 int copied = 0;
2564 if (! current_function_decl)
2565 return x;
2567 switch (code)
2569 CASE_CONST_ANY:
2570 case CONST:
2571 case SYMBOL_REF:
2572 case CODE_LABEL:
2573 case PC:
2574 case CC0:
2575 case ASM_INPUT:
2576 case ADDR_VEC:
2577 case ADDR_DIFF_VEC:
2578 case RETURN:
2579 return x;
2581 case REG:
2582 regno = REGNO (x);
2584 /* First handle the case where we encounter a bare register that
2585 is eliminable. Replace it with a PLUS. */
2586 if (regno < FIRST_PSEUDO_REGISTER)
2588 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2589 ep++)
2590 if (ep->from_rtx == x && ep->can_eliminate)
2591 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2594 else if (reg_renumber && reg_renumber[regno] < 0
2595 && reg_equivs
2596 && reg_equiv_invariant (regno))
2598 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2599 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2600 mem_mode, insn, true, for_costs);
2601 /* There exists at least one use of REGNO that cannot be
2602 eliminated. Prevent the defining insn from being deleted. */
2603 reg_equiv_init (regno) = NULL;
2604 if (!for_costs)
2605 alter_reg (regno, -1, true);
2607 return x;
2609 /* You might think handling MINUS in a manner similar to PLUS is a
2610 good idea. It is not. It has been tried multiple times and every
2611 time the change has had to have been reverted.
2613 Other parts of reload know a PLUS is special (gen_reload for example)
2614 and require special code to handle code a reloaded PLUS operand.
2616 Also consider backends where the flags register is clobbered by a
2617 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2618 lea instruction comes to mind). If we try to reload a MINUS, we
2619 may kill the flags register that was holding a useful value.
2621 So, please before trying to handle MINUS, consider reload as a
2622 whole instead of this little section as well as the backend issues. */
2623 case PLUS:
2624 /* If this is the sum of an eliminable register and a constant, rework
2625 the sum. */
2626 if (REG_P (XEXP (x, 0))
2627 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2628 && CONSTANT_P (XEXP (x, 1)))
2630 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2631 ep++)
2632 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2634 /* The only time we want to replace a PLUS with a REG (this
2635 occurs when the constant operand of the PLUS is the negative
2636 of the offset) is when we are inside a MEM. We won't want
2637 to do so at other times because that would change the
2638 structure of the insn in a way that reload can't handle.
2639 We special-case the commonest situation in
2640 eliminate_regs_in_insn, so just replace a PLUS with a
2641 PLUS here, unless inside a MEM. */
2642 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2643 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2644 return ep->to_rtx;
2645 else
2646 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2647 plus_constant (Pmode, XEXP (x, 1),
2648 ep->previous_offset));
2651 /* If the register is not eliminable, we are done since the other
2652 operand is a constant. */
2653 return x;
2656 /* If this is part of an address, we want to bring any constant to the
2657 outermost PLUS. We will do this by doing register replacement in
2658 our operands and seeing if a constant shows up in one of them.
2660 Note that there is no risk of modifying the structure of the insn,
2661 since we only get called for its operands, thus we are either
2662 modifying the address inside a MEM, or something like an address
2663 operand of a load-address insn. */
2666 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2667 for_costs);
2668 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2669 for_costs);
2671 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2673 /* If one side is a PLUS and the other side is a pseudo that
2674 didn't get a hard register but has a reg_equiv_constant,
2675 we must replace the constant here since it may no longer
2676 be in the position of any operand. */
2677 if (GET_CODE (new0) == PLUS && REG_P (new1)
2678 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2679 && reg_renumber[REGNO (new1)] < 0
2680 && reg_equivs
2681 && reg_equiv_constant (REGNO (new1)) != 0)
2682 new1 = reg_equiv_constant (REGNO (new1));
2683 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2684 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2685 && reg_renumber[REGNO (new0)] < 0
2686 && reg_equiv_constant (REGNO (new0)) != 0)
2687 new0 = reg_equiv_constant (REGNO (new0));
2689 new_rtx = form_sum (GET_MODE (x), new0, new1);
2691 /* As above, if we are not inside a MEM we do not want to
2692 turn a PLUS into something else. We might try to do so here
2693 for an addition of 0 if we aren't optimizing. */
2694 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2695 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2696 else
2697 return new_rtx;
2700 return x;
2702 case MULT:
2703 /* If this is the product of an eliminable register and a
2704 constant, apply the distribute law and move the constant out
2705 so that we have (plus (mult ..) ..). This is needed in order
2706 to keep load-address insns valid. This case is pathological.
2707 We ignore the possibility of overflow here. */
2708 if (REG_P (XEXP (x, 0))
2709 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2710 && CONST_INT_P (XEXP (x, 1)))
2711 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2712 ep++)
2713 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2715 if (! mem_mode
2716 /* Refs inside notes or in DEBUG_INSNs don't count for
2717 this purpose. */
2718 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2719 || GET_CODE (insn) == INSN_LIST
2720 || DEBUG_INSN_P (insn))))
2721 ep->ref_outside_mem = 1;
2723 return
2724 plus_constant (Pmode,
2725 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2726 ep->previous_offset * INTVAL (XEXP (x, 1)));
2729 /* ... fall through ... */
2731 case CALL:
2732 case COMPARE:
2733 /* See comments before PLUS about handling MINUS. */
2734 case MINUS:
2735 case DIV: case UDIV:
2736 case MOD: case UMOD:
2737 case AND: case IOR: case XOR:
2738 case ROTATERT: case ROTATE:
2739 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2740 case NE: case EQ:
2741 case GE: case GT: case GEU: case GTU:
2742 case LE: case LT: case LEU: case LTU:
2744 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2745 for_costs);
2746 rtx new1 = XEXP (x, 1)
2747 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2748 for_costs) : 0;
2750 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2751 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2753 return x;
2755 case EXPR_LIST:
2756 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2757 if (XEXP (x, 0))
2759 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 0))
2763 /* If this is a REG_DEAD note, it is not valid anymore.
2764 Using the eliminated version could result in creating a
2765 REG_DEAD note for the stack or frame pointer. */
2766 if (REG_NOTE_KIND (x) == REG_DEAD)
2767 return (XEXP (x, 1)
2768 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2769 for_costs)
2770 : NULL_RTX);
2772 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2776 /* ... fall through ... */
2778 case INSN_LIST:
2779 case INT_LIST:
2780 /* Now do eliminations in the rest of the chain. If this was
2781 an EXPR_LIST, this might result in allocating more memory than is
2782 strictly needed, but it simplifies the code. */
2783 if (XEXP (x, 1))
2785 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2786 for_costs);
2787 if (new_rtx != XEXP (x, 1))
2788 return
2789 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2791 return x;
2793 case PRE_INC:
2794 case POST_INC:
2795 case PRE_DEC:
2796 case POST_DEC:
2797 /* We do not support elimination of a register that is modified.
2798 elimination_effects has already make sure that this does not
2799 happen. */
2800 return x;
2802 case PRE_MODIFY:
2803 case POST_MODIFY:
2804 /* We do not support elimination of a register that is modified.
2805 elimination_effects has already make sure that this does not
2806 happen. The only remaining case we need to consider here is
2807 that the increment value may be an eliminable register. */
2808 if (GET_CODE (XEXP (x, 1)) == PLUS
2809 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2811 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2812 insn, true, for_costs);
2814 if (new_rtx != XEXP (XEXP (x, 1), 1))
2815 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2816 gen_rtx_PLUS (GET_MODE (x),
2817 XEXP (x, 0), new_rtx));
2819 return x;
2821 case STRICT_LOW_PART:
2822 case NEG: case NOT:
2823 case SIGN_EXTEND: case ZERO_EXTEND:
2824 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2825 case FLOAT: case FIX:
2826 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2827 case ABS:
2828 case SQRT:
2829 case FFS:
2830 case CLZ:
2831 case CTZ:
2832 case POPCOUNT:
2833 case PARITY:
2834 case BSWAP:
2835 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2836 for_costs);
2837 if (new_rtx != XEXP (x, 0))
2838 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2839 return x;
2841 case SUBREG:
2842 /* Similar to above processing, but preserve SUBREG_BYTE.
2843 Convert (subreg (mem)) to (mem) if not paradoxical.
2844 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2845 pseudo didn't get a hard reg, we must replace this with the
2846 eliminated version of the memory location because push_reload
2847 may do the replacement in certain circumstances. */
2848 if (REG_P (SUBREG_REG (x))
2849 && !paradoxical_subreg_p (x)
2850 && reg_equivs
2851 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2853 new_rtx = SUBREG_REG (x);
2855 else
2856 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2858 if (new_rtx != SUBREG_REG (x))
2860 int x_size = GET_MODE_SIZE (GET_MODE (x));
2861 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2863 if (MEM_P (new_rtx)
2864 && ((x_size < new_size
2865 #if WORD_REGISTER_OPERATIONS
2866 /* On these machines, combine can create rtl of the form
2867 (set (subreg:m1 (reg:m2 R) 0) ...)
2868 where m1 < m2, and expects something interesting to
2869 happen to the entire word. Moreover, it will use the
2870 (reg:m2 R) later, expecting all bits to be preserved.
2871 So if the number of words is the same, preserve the
2872 subreg so that push_reload can see it. */
2873 && ! ((x_size - 1) / UNITS_PER_WORD
2874 == (new_size -1 ) / UNITS_PER_WORD)
2875 #endif
2877 || x_size == new_size)
2879 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2880 else
2881 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2884 return x;
2886 case MEM:
2887 /* Our only special processing is to pass the mode of the MEM to our
2888 recursive call and copy the flags. While we are here, handle this
2889 case more efficiently. */
2891 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2892 for_costs);
2893 if (for_costs
2894 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2895 && !memory_address_p (GET_MODE (x), new_rtx))
2896 note_reg_elim_costly (XEXP (x, 0), insn);
2898 return replace_equiv_address_nv (x, new_rtx);
2900 case USE:
2901 /* Handle insn_list USE that a call to a pure function may generate. */
2902 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2903 for_costs);
2904 if (new_rtx != XEXP (x, 0))
2905 return gen_rtx_USE (GET_MODE (x), new_rtx);
2906 return x;
2908 case CLOBBER:
2909 case ASM_OPERANDS:
2910 gcc_assert (insn && DEBUG_INSN_P (insn));
2911 break;
2913 case SET:
2914 gcc_unreachable ();
2916 default:
2917 break;
2920 /* Process each of our operands recursively. If any have changed, make a
2921 copy of the rtx. */
2922 fmt = GET_RTX_FORMAT (code);
2923 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2925 if (*fmt == 'e')
2927 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2928 for_costs);
2929 if (new_rtx != XEXP (x, i) && ! copied)
2931 x = shallow_copy_rtx (x);
2932 copied = 1;
2934 XEXP (x, i) = new_rtx;
2936 else if (*fmt == 'E')
2938 int copied_vec = 0;
2939 for (j = 0; j < XVECLEN (x, i); j++)
2941 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2942 for_costs);
2943 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2945 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2946 XVEC (x, i)->elem);
2947 if (! copied)
2949 x = shallow_copy_rtx (x);
2950 copied = 1;
2952 XVEC (x, i) = new_v;
2953 copied_vec = 1;
2955 XVECEXP (x, i, j) = new_rtx;
2960 return x;
2964 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2966 if (reg_eliminate == NULL)
2968 gcc_assert (targetm.no_register_allocation);
2969 return x;
2971 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2974 /* Scan rtx X for modifications of elimination target registers. Update
2975 the table of eliminables to reflect the changed state. MEM_MODE is
2976 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2978 static void
2979 elimination_effects (rtx x, machine_mode mem_mode)
2981 enum rtx_code code = GET_CODE (x);
2982 struct elim_table *ep;
2983 int regno;
2984 int i, j;
2985 const char *fmt;
2987 switch (code)
2989 CASE_CONST_ANY:
2990 case CONST:
2991 case SYMBOL_REF:
2992 case CODE_LABEL:
2993 case PC:
2994 case CC0:
2995 case ASM_INPUT:
2996 case ADDR_VEC:
2997 case ADDR_DIFF_VEC:
2998 case RETURN:
2999 return;
3001 case REG:
3002 regno = REGNO (x);
3004 /* First handle the case where we encounter a bare register that
3005 is eliminable. Replace it with a PLUS. */
3006 if (regno < FIRST_PSEUDO_REGISTER)
3008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3009 ep++)
3010 if (ep->from_rtx == x && ep->can_eliminate)
3012 if (! mem_mode)
3013 ep->ref_outside_mem = 1;
3014 return;
3018 else if (reg_renumber[regno] < 0
3019 && reg_equivs
3020 && reg_equiv_constant (regno)
3021 && ! function_invariant_p (reg_equiv_constant (regno)))
3022 elimination_effects (reg_equiv_constant (regno), mem_mode);
3023 return;
3025 case PRE_INC:
3026 case POST_INC:
3027 case PRE_DEC:
3028 case POST_DEC:
3029 case POST_MODIFY:
3030 case PRE_MODIFY:
3031 /* If we modify the source of an elimination rule, disable it. */
3032 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3033 if (ep->from_rtx == XEXP (x, 0))
3034 ep->can_eliminate = 0;
3036 /* If we modify the target of an elimination rule by adding a constant,
3037 update its offset. If we modify the target in any other way, we'll
3038 have to disable the rule as well. */
3039 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3040 if (ep->to_rtx == XEXP (x, 0))
3042 int size = GET_MODE_SIZE (mem_mode);
3044 /* If more bytes than MEM_MODE are pushed, account for them. */
3045 #ifdef PUSH_ROUNDING
3046 if (ep->to_rtx == stack_pointer_rtx)
3047 size = PUSH_ROUNDING (size);
3048 #endif
3049 if (code == PRE_DEC || code == POST_DEC)
3050 ep->offset += size;
3051 else if (code == PRE_INC || code == POST_INC)
3052 ep->offset -= size;
3053 else if (code == PRE_MODIFY || code == POST_MODIFY)
3055 if (GET_CODE (XEXP (x, 1)) == PLUS
3056 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3057 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3058 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3059 else
3060 ep->can_eliminate = 0;
3064 /* These two aren't unary operators. */
3065 if (code == POST_MODIFY || code == PRE_MODIFY)
3066 break;
3068 /* Fall through to generic unary operation case. */
3069 case STRICT_LOW_PART:
3070 case NEG: case NOT:
3071 case SIGN_EXTEND: case ZERO_EXTEND:
3072 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3073 case FLOAT: case FIX:
3074 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3075 case ABS:
3076 case SQRT:
3077 case FFS:
3078 case CLZ:
3079 case CTZ:
3080 case POPCOUNT:
3081 case PARITY:
3082 case BSWAP:
3083 elimination_effects (XEXP (x, 0), mem_mode);
3084 return;
3086 case SUBREG:
3087 if (REG_P (SUBREG_REG (x))
3088 && (GET_MODE_SIZE (GET_MODE (x))
3089 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3090 && reg_equivs
3091 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3092 return;
3094 elimination_effects (SUBREG_REG (x), mem_mode);
3095 return;
3097 case USE:
3098 /* If using a register that is the source of an eliminate we still
3099 think can be performed, note it cannot be performed since we don't
3100 know how this register is used. */
3101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3102 if (ep->from_rtx == XEXP (x, 0))
3103 ep->can_eliminate = 0;
3105 elimination_effects (XEXP (x, 0), mem_mode);
3106 return;
3108 case CLOBBER:
3109 /* If clobbering a register that is the replacement register for an
3110 elimination we still think can be performed, note that it cannot
3111 be performed. Otherwise, we need not be concerned about it. */
3112 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3113 if (ep->to_rtx == XEXP (x, 0))
3114 ep->can_eliminate = 0;
3116 elimination_effects (XEXP (x, 0), mem_mode);
3117 return;
3119 case SET:
3120 /* Check for setting a register that we know about. */
3121 if (REG_P (SET_DEST (x)))
3123 /* See if this is setting the replacement register for an
3124 elimination.
3126 If DEST is the hard frame pointer, we do nothing because we
3127 assume that all assignments to the frame pointer are for
3128 non-local gotos and are being done at a time when they are valid
3129 and do not disturb anything else. Some machines want to
3130 eliminate a fake argument pointer (or even a fake frame pointer)
3131 with either the real frame or the stack pointer. Assignments to
3132 the hard frame pointer must not prevent this elimination. */
3134 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3135 ep++)
3136 if (ep->to_rtx == SET_DEST (x)
3137 && SET_DEST (x) != hard_frame_pointer_rtx)
3139 /* If it is being incremented, adjust the offset. Otherwise,
3140 this elimination can't be done. */
3141 rtx src = SET_SRC (x);
3143 if (GET_CODE (src) == PLUS
3144 && XEXP (src, 0) == SET_DEST (x)
3145 && CONST_INT_P (XEXP (src, 1)))
3146 ep->offset -= INTVAL (XEXP (src, 1));
3147 else
3148 ep->can_eliminate = 0;
3152 elimination_effects (SET_DEST (x), VOIDmode);
3153 elimination_effects (SET_SRC (x), VOIDmode);
3154 return;
3156 case MEM:
3157 /* Our only special processing is to pass the mode of the MEM to our
3158 recursive call. */
3159 elimination_effects (XEXP (x, 0), GET_MODE (x));
3160 return;
3162 default:
3163 break;
3166 fmt = GET_RTX_FORMAT (code);
3167 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3169 if (*fmt == 'e')
3170 elimination_effects (XEXP (x, i), mem_mode);
3171 else if (*fmt == 'E')
3172 for (j = 0; j < XVECLEN (x, i); j++)
3173 elimination_effects (XVECEXP (x, i, j), mem_mode);
3177 /* Descend through rtx X and verify that no references to eliminable registers
3178 remain. If any do remain, mark the involved register as not
3179 eliminable. */
3181 static void
3182 check_eliminable_occurrences (rtx x)
3184 const char *fmt;
3185 int i;
3186 enum rtx_code code;
3188 if (x == 0)
3189 return;
3191 code = GET_CODE (x);
3193 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3195 struct elim_table *ep;
3197 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3198 if (ep->from_rtx == x)
3199 ep->can_eliminate = 0;
3200 return;
3203 fmt = GET_RTX_FORMAT (code);
3204 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3206 if (*fmt == 'e')
3207 check_eliminable_occurrences (XEXP (x, i));
3208 else if (*fmt == 'E')
3210 int j;
3211 for (j = 0; j < XVECLEN (x, i); j++)
3212 check_eliminable_occurrences (XVECEXP (x, i, j));
3217 /* Scan INSN and eliminate all eliminable registers in it.
3219 If REPLACE is nonzero, do the replacement destructively. Also
3220 delete the insn as dead it if it is setting an eliminable register.
3222 If REPLACE is zero, do all our allocations in reload_obstack.
3224 If no eliminations were done and this insn doesn't require any elimination
3225 processing (these are not identical conditions: it might be updating sp,
3226 but not referencing fp; this needs to be seen during reload_as_needed so
3227 that the offset between fp and sp can be taken into consideration), zero
3228 is returned. Otherwise, 1 is returned. */
3230 static int
3231 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3233 int icode = recog_memoized (insn);
3234 rtx old_body = PATTERN (insn);
3235 int insn_is_asm = asm_noperands (old_body) >= 0;
3236 rtx old_set = single_set (insn);
3237 rtx new_body;
3238 int val = 0;
3239 int i;
3240 rtx substed_operand[MAX_RECOG_OPERANDS];
3241 rtx orig_operand[MAX_RECOG_OPERANDS];
3242 struct elim_table *ep;
3243 rtx plus_src, plus_cst_src;
3245 if (! insn_is_asm && icode < 0)
3247 gcc_assert (DEBUG_INSN_P (insn)
3248 || GET_CODE (PATTERN (insn)) == USE
3249 || GET_CODE (PATTERN (insn)) == CLOBBER
3250 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3251 if (DEBUG_INSN_P (insn))
3252 INSN_VAR_LOCATION_LOC (insn)
3253 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3254 return 0;
3257 if (old_set != 0 && REG_P (SET_DEST (old_set))
3258 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3260 /* Check for setting an eliminable register. */
3261 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3262 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3264 /* If this is setting the frame pointer register to the
3265 hardware frame pointer register and this is an elimination
3266 that will be done (tested above), this insn is really
3267 adjusting the frame pointer downward to compensate for
3268 the adjustment done before a nonlocal goto. */
3269 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3270 && ep->from == FRAME_POINTER_REGNUM
3271 && ep->to == HARD_FRAME_POINTER_REGNUM)
3273 rtx base = SET_SRC (old_set);
3274 rtx_insn *base_insn = insn;
3275 HOST_WIDE_INT offset = 0;
3277 while (base != ep->to_rtx)
3279 rtx_insn *prev_insn;
3280 rtx prev_set;
3282 if (GET_CODE (base) == PLUS
3283 && CONST_INT_P (XEXP (base, 1)))
3285 offset += INTVAL (XEXP (base, 1));
3286 base = XEXP (base, 0);
3288 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3289 && (prev_set = single_set (prev_insn)) != 0
3290 && rtx_equal_p (SET_DEST (prev_set), base))
3292 base = SET_SRC (prev_set);
3293 base_insn = prev_insn;
3295 else
3296 break;
3299 if (base == ep->to_rtx)
3301 rtx src = plus_constant (Pmode, ep->to_rtx,
3302 offset - ep->offset);
3304 new_body = old_body;
3305 if (! replace)
3307 new_body = copy_insn (old_body);
3308 if (REG_NOTES (insn))
3309 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3311 PATTERN (insn) = new_body;
3312 old_set = single_set (insn);
3314 /* First see if this insn remains valid when we
3315 make the change. If not, keep the INSN_CODE
3316 the same and let reload fit it up. */
3317 validate_change (insn, &SET_SRC (old_set), src, 1);
3318 validate_change (insn, &SET_DEST (old_set),
3319 ep->to_rtx, 1);
3320 if (! apply_change_group ())
3322 SET_SRC (old_set) = src;
3323 SET_DEST (old_set) = ep->to_rtx;
3326 val = 1;
3327 goto done;
3331 /* In this case this insn isn't serving a useful purpose. We
3332 will delete it in reload_as_needed once we know that this
3333 elimination is, in fact, being done.
3335 If REPLACE isn't set, we can't delete this insn, but needn't
3336 process it since it won't be used unless something changes. */
3337 if (replace)
3339 delete_dead_insn (insn);
3340 return 1;
3342 val = 1;
3343 goto done;
3347 /* We allow one special case which happens to work on all machines we
3348 currently support: a single set with the source or a REG_EQUAL
3349 note being a PLUS of an eliminable register and a constant. */
3350 plus_src = plus_cst_src = 0;
3351 if (old_set && REG_P (SET_DEST (old_set)))
3353 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3354 plus_src = SET_SRC (old_set);
3355 /* First see if the source is of the form (plus (...) CST). */
3356 if (plus_src
3357 && CONST_INT_P (XEXP (plus_src, 1)))
3358 plus_cst_src = plus_src;
3359 else if (REG_P (SET_SRC (old_set))
3360 || plus_src)
3362 /* Otherwise, see if we have a REG_EQUAL note of the form
3363 (plus (...) CST). */
3364 rtx links;
3365 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3367 if ((REG_NOTE_KIND (links) == REG_EQUAL
3368 || REG_NOTE_KIND (links) == REG_EQUIV)
3369 && GET_CODE (XEXP (links, 0)) == PLUS
3370 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3372 plus_cst_src = XEXP (links, 0);
3373 break;
3378 /* Check that the first operand of the PLUS is a hard reg or
3379 the lowpart subreg of one. */
3380 if (plus_cst_src)
3382 rtx reg = XEXP (plus_cst_src, 0);
3383 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3384 reg = SUBREG_REG (reg);
3386 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3387 plus_cst_src = 0;
3390 if (plus_cst_src)
3392 rtx reg = XEXP (plus_cst_src, 0);
3393 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3395 if (GET_CODE (reg) == SUBREG)
3396 reg = SUBREG_REG (reg);
3398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3399 if (ep->from_rtx == reg && ep->can_eliminate)
3401 rtx to_rtx = ep->to_rtx;
3402 offset += ep->offset;
3403 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3405 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3406 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3407 to_rtx);
3408 /* If we have a nonzero offset, and the source is already
3409 a simple REG, the following transformation would
3410 increase the cost of the insn by replacing a simple REG
3411 with (plus (reg sp) CST). So try only when we already
3412 had a PLUS before. */
3413 if (offset == 0 || plus_src)
3415 rtx new_src = plus_constant (GET_MODE (to_rtx),
3416 to_rtx, offset);
3418 new_body = old_body;
3419 if (! replace)
3421 new_body = copy_insn (old_body);
3422 if (REG_NOTES (insn))
3423 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3425 PATTERN (insn) = new_body;
3426 old_set = single_set (insn);
3428 /* First see if this insn remains valid when we make the
3429 change. If not, try to replace the whole pattern with
3430 a simple set (this may help if the original insn was a
3431 PARALLEL that was only recognized as single_set due to
3432 REG_UNUSED notes). If this isn't valid either, keep
3433 the INSN_CODE the same and let reload fix it up. */
3434 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3436 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3438 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3439 SET_SRC (old_set) = new_src;
3442 else
3443 break;
3445 val = 1;
3446 /* This can't have an effect on elimination offsets, so skip right
3447 to the end. */
3448 goto done;
3452 /* Determine the effects of this insn on elimination offsets. */
3453 elimination_effects (old_body, VOIDmode);
3455 /* Eliminate all eliminable registers occurring in operands that
3456 can be handled by reload. */
3457 extract_insn (insn);
3458 for (i = 0; i < recog_data.n_operands; i++)
3460 orig_operand[i] = recog_data.operand[i];
3461 substed_operand[i] = recog_data.operand[i];
3463 /* For an asm statement, every operand is eliminable. */
3464 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3466 bool is_set_src, in_plus;
3468 /* Check for setting a register that we know about. */
3469 if (recog_data.operand_type[i] != OP_IN
3470 && REG_P (orig_operand[i]))
3472 /* If we are assigning to a register that can be eliminated, it
3473 must be as part of a PARALLEL, since the code above handles
3474 single SETs. We must indicate that we can no longer
3475 eliminate this reg. */
3476 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3477 ep++)
3478 if (ep->from_rtx == orig_operand[i])
3479 ep->can_eliminate = 0;
3482 /* Companion to the above plus substitution, we can allow
3483 invariants as the source of a plain move. */
3484 is_set_src = false;
3485 if (old_set
3486 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3487 is_set_src = true;
3488 in_plus = false;
3489 if (plus_src
3490 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3491 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3492 in_plus = true;
3494 substed_operand[i]
3495 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3496 replace ? insn : NULL_RTX,
3497 is_set_src || in_plus, false);
3498 if (substed_operand[i] != orig_operand[i])
3499 val = 1;
3500 /* Terminate the search in check_eliminable_occurrences at
3501 this point. */
3502 *recog_data.operand_loc[i] = 0;
3504 /* If an output operand changed from a REG to a MEM and INSN is an
3505 insn, write a CLOBBER insn. */
3506 if (recog_data.operand_type[i] != OP_IN
3507 && REG_P (orig_operand[i])
3508 && MEM_P (substed_operand[i])
3509 && replace)
3510 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3514 for (i = 0; i < recog_data.n_dups; i++)
3515 *recog_data.dup_loc[i]
3516 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3518 /* If any eliminable remain, they aren't eliminable anymore. */
3519 check_eliminable_occurrences (old_body);
3521 /* Substitute the operands; the new values are in the substed_operand
3522 array. */
3523 for (i = 0; i < recog_data.n_operands; i++)
3524 *recog_data.operand_loc[i] = substed_operand[i];
3525 for (i = 0; i < recog_data.n_dups; i++)
3526 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3528 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3529 re-recognize the insn. We do this in case we had a simple addition
3530 but now can do this as a load-address. This saves an insn in this
3531 common case.
3532 If re-recognition fails, the old insn code number will still be used,
3533 and some register operands may have changed into PLUS expressions.
3534 These will be handled by find_reloads by loading them into a register
3535 again. */
3537 if (val)
3539 /* If we aren't replacing things permanently and we changed something,
3540 make another copy to ensure that all the RTL is new. Otherwise
3541 things can go wrong if find_reload swaps commutative operands
3542 and one is inside RTL that has been copied while the other is not. */
3543 new_body = old_body;
3544 if (! replace)
3546 new_body = copy_insn (old_body);
3547 if (REG_NOTES (insn))
3548 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3550 PATTERN (insn) = new_body;
3552 /* If we had a move insn but now we don't, rerecognize it. This will
3553 cause spurious re-recognition if the old move had a PARALLEL since
3554 the new one still will, but we can't call single_set without
3555 having put NEW_BODY into the insn and the re-recognition won't
3556 hurt in this rare case. */
3557 /* ??? Why this huge if statement - why don't we just rerecognize the
3558 thing always? */
3559 if (! insn_is_asm
3560 && old_set != 0
3561 && ((REG_P (SET_SRC (old_set))
3562 && (GET_CODE (new_body) != SET
3563 || !REG_P (SET_SRC (new_body))))
3564 /* If this was a load from or store to memory, compare
3565 the MEM in recog_data.operand to the one in the insn.
3566 If they are not equal, then rerecognize the insn. */
3567 || (old_set != 0
3568 && ((MEM_P (SET_SRC (old_set))
3569 && SET_SRC (old_set) != recog_data.operand[1])
3570 || (MEM_P (SET_DEST (old_set))
3571 && SET_DEST (old_set) != recog_data.operand[0])))
3572 /* If this was an add insn before, rerecognize. */
3573 || GET_CODE (SET_SRC (old_set)) == PLUS))
3575 int new_icode = recog (PATTERN (insn), insn, 0);
3576 if (new_icode >= 0)
3577 INSN_CODE (insn) = new_icode;
3581 /* Restore the old body. If there were any changes to it, we made a copy
3582 of it while the changes were still in place, so we'll correctly return
3583 a modified insn below. */
3584 if (! replace)
3586 /* Restore the old body. */
3587 for (i = 0; i < recog_data.n_operands; i++)
3588 /* Restoring a top-level match_parallel would clobber the new_body
3589 we installed in the insn. */
3590 if (recog_data.operand_loc[i] != &PATTERN (insn))
3591 *recog_data.operand_loc[i] = orig_operand[i];
3592 for (i = 0; i < recog_data.n_dups; i++)
3593 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3596 /* Update all elimination pairs to reflect the status after the current
3597 insn. The changes we make were determined by the earlier call to
3598 elimination_effects.
3600 We also detect cases where register elimination cannot be done,
3601 namely, if a register would be both changed and referenced outside a MEM
3602 in the resulting insn since such an insn is often undefined and, even if
3603 not, we cannot know what meaning will be given to it. Note that it is
3604 valid to have a register used in an address in an insn that changes it
3605 (presumably with a pre- or post-increment or decrement).
3607 If anything changes, return nonzero. */
3609 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3611 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3612 ep->can_eliminate = 0;
3614 ep->ref_outside_mem = 0;
3616 if (ep->previous_offset != ep->offset)
3617 val = 1;
3620 done:
3621 /* If we changed something, perform elimination in REG_NOTES. This is
3622 needed even when REPLACE is zero because a REG_DEAD note might refer
3623 to a register that we eliminate and could cause a different number
3624 of spill registers to be needed in the final reload pass than in
3625 the pre-passes. */
3626 if (val && REG_NOTES (insn) != 0)
3627 REG_NOTES (insn)
3628 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3629 false);
3631 return val;
3634 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3635 register allocator. INSN is the instruction we need to examine, we perform
3636 eliminations in its operands and record cases where eliminating a reg with
3637 an invariant equivalence would add extra cost. */
3639 static void
3640 elimination_costs_in_insn (rtx_insn *insn)
3642 int icode = recog_memoized (insn);
3643 rtx old_body = PATTERN (insn);
3644 int insn_is_asm = asm_noperands (old_body) >= 0;
3645 rtx old_set = single_set (insn);
3646 int i;
3647 rtx orig_operand[MAX_RECOG_OPERANDS];
3648 rtx orig_dup[MAX_RECOG_OPERANDS];
3649 struct elim_table *ep;
3650 rtx plus_src, plus_cst_src;
3651 bool sets_reg_p;
3653 if (! insn_is_asm && icode < 0)
3655 gcc_assert (DEBUG_INSN_P (insn)
3656 || GET_CODE (PATTERN (insn)) == USE
3657 || GET_CODE (PATTERN (insn)) == CLOBBER
3658 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3659 return;
3662 if (old_set != 0 && REG_P (SET_DEST (old_set))
3663 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3665 /* Check for setting an eliminable register. */
3666 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3667 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3668 return;
3671 /* We allow one special case which happens to work on all machines we
3672 currently support: a single set with the source or a REG_EQUAL
3673 note being a PLUS of an eliminable register and a constant. */
3674 plus_src = plus_cst_src = 0;
3675 sets_reg_p = false;
3676 if (old_set && REG_P (SET_DEST (old_set)))
3678 sets_reg_p = true;
3679 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3680 plus_src = SET_SRC (old_set);
3681 /* First see if the source is of the form (plus (...) CST). */
3682 if (plus_src
3683 && CONST_INT_P (XEXP (plus_src, 1)))
3684 plus_cst_src = plus_src;
3685 else if (REG_P (SET_SRC (old_set))
3686 || plus_src)
3688 /* Otherwise, see if we have a REG_EQUAL note of the form
3689 (plus (...) CST). */
3690 rtx links;
3691 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3693 if ((REG_NOTE_KIND (links) == REG_EQUAL
3694 || REG_NOTE_KIND (links) == REG_EQUIV)
3695 && GET_CODE (XEXP (links, 0)) == PLUS
3696 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3698 plus_cst_src = XEXP (links, 0);
3699 break;
3705 /* Determine the effects of this insn on elimination offsets. */
3706 elimination_effects (old_body, VOIDmode);
3708 /* Eliminate all eliminable registers occurring in operands that
3709 can be handled by reload. */
3710 extract_insn (insn);
3711 for (i = 0; i < recog_data.n_dups; i++)
3712 orig_dup[i] = *recog_data.dup_loc[i];
3714 for (i = 0; i < recog_data.n_operands; i++)
3716 orig_operand[i] = recog_data.operand[i];
3718 /* For an asm statement, every operand is eliminable. */
3719 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3721 bool is_set_src, in_plus;
3723 /* Check for setting a register that we know about. */
3724 if (recog_data.operand_type[i] != OP_IN
3725 && REG_P (orig_operand[i]))
3727 /* If we are assigning to a register that can be eliminated, it
3728 must be as part of a PARALLEL, since the code above handles
3729 single SETs. We must indicate that we can no longer
3730 eliminate this reg. */
3731 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3732 ep++)
3733 if (ep->from_rtx == orig_operand[i])
3734 ep->can_eliminate = 0;
3737 /* Companion to the above plus substitution, we can allow
3738 invariants as the source of a plain move. */
3739 is_set_src = false;
3740 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3741 is_set_src = true;
3742 if (is_set_src && !sets_reg_p)
3743 note_reg_elim_costly (SET_SRC (old_set), insn);
3744 in_plus = false;
3745 if (plus_src && sets_reg_p
3746 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3747 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3748 in_plus = true;
3750 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3751 NULL_RTX,
3752 is_set_src || in_plus, true);
3753 /* Terminate the search in check_eliminable_occurrences at
3754 this point. */
3755 *recog_data.operand_loc[i] = 0;
3759 for (i = 0; i < recog_data.n_dups; i++)
3760 *recog_data.dup_loc[i]
3761 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3763 /* If any eliminable remain, they aren't eliminable anymore. */
3764 check_eliminable_occurrences (old_body);
3766 /* Restore the old body. */
3767 for (i = 0; i < recog_data.n_operands; i++)
3768 *recog_data.operand_loc[i] = orig_operand[i];
3769 for (i = 0; i < recog_data.n_dups; i++)
3770 *recog_data.dup_loc[i] = orig_dup[i];
3772 /* Update all elimination pairs to reflect the status after the current
3773 insn. The changes we make were determined by the earlier call to
3774 elimination_effects. */
3776 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3778 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3779 ep->can_eliminate = 0;
3781 ep->ref_outside_mem = 0;
3784 return;
3787 /* Loop through all elimination pairs.
3788 Recalculate the number not at initial offset.
3790 Compute the maximum offset (minimum offset if the stack does not
3791 grow downward) for each elimination pair. */
3793 static void
3794 update_eliminable_offsets (void)
3796 struct elim_table *ep;
3798 num_not_at_initial_offset = 0;
3799 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3801 ep->previous_offset = ep->offset;
3802 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3803 num_not_at_initial_offset++;
3807 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3808 replacement we currently believe is valid, mark it as not eliminable if X
3809 modifies DEST in any way other than by adding a constant integer to it.
3811 If DEST is the frame pointer, we do nothing because we assume that
3812 all assignments to the hard frame pointer are nonlocal gotos and are being
3813 done at a time when they are valid and do not disturb anything else.
3814 Some machines want to eliminate a fake argument pointer with either the
3815 frame or stack pointer. Assignments to the hard frame pointer must not
3816 prevent this elimination.
3818 Called via note_stores from reload before starting its passes to scan
3819 the insns of the function. */
3821 static void
3822 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3824 unsigned int i;
3826 /* A SUBREG of a hard register here is just changing its mode. We should
3827 not see a SUBREG of an eliminable hard register, but check just in
3828 case. */
3829 if (GET_CODE (dest) == SUBREG)
3830 dest = SUBREG_REG (dest);
3832 if (dest == hard_frame_pointer_rtx)
3833 return;
3835 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3836 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3837 && (GET_CODE (x) != SET
3838 || GET_CODE (SET_SRC (x)) != PLUS
3839 || XEXP (SET_SRC (x), 0) != dest
3840 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3842 reg_eliminate[i].can_eliminate_previous
3843 = reg_eliminate[i].can_eliminate = 0;
3844 num_eliminable--;
3848 /* Verify that the initial elimination offsets did not change since the
3849 last call to set_initial_elim_offsets. This is used to catch cases
3850 where something illegal happened during reload_as_needed that could
3851 cause incorrect code to be generated if we did not check for it. */
3853 static bool
3854 verify_initial_elim_offsets (void)
3856 HOST_WIDE_INT t;
3858 if (!num_eliminable)
3859 return true;
3861 #ifdef ELIMINABLE_REGS
3863 struct elim_table *ep;
3865 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3867 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3868 if (t != ep->initial_offset)
3869 return false;
3872 #else
3873 INITIAL_FRAME_POINTER_OFFSET (t);
3874 if (t != reg_eliminate[0].initial_offset)
3875 return false;
3876 #endif
3878 return true;
3881 /* Reset all offsets on eliminable registers to their initial values. */
3883 static void
3884 set_initial_elim_offsets (void)
3886 struct elim_table *ep = reg_eliminate;
3888 #ifdef ELIMINABLE_REGS
3889 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3891 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3894 #else
3895 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3896 ep->previous_offset = ep->offset = ep->initial_offset;
3897 #endif
3899 num_not_at_initial_offset = 0;
3902 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3904 static void
3905 set_initial_eh_label_offset (rtx label)
3907 set_label_offsets (label, NULL, 1);
3910 /* Initialize the known label offsets.
3911 Set a known offset for each forced label to be at the initial offset
3912 of each elimination. We do this because we assume that all
3913 computed jumps occur from a location where each elimination is
3914 at its initial offset.
3915 For all other labels, show that we don't know the offsets. */
3917 static void
3918 set_initial_label_offsets (void)
3920 memset (offsets_known_at, 0, num_labels);
3922 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3923 if (x->insn ())
3924 set_label_offsets (x->insn (), NULL, 1);
3926 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3927 if (x->insn ())
3928 set_label_offsets (x->insn (), NULL, 1);
3930 for_each_eh_label (set_initial_eh_label_offset);
3933 /* Set all elimination offsets to the known values for the code label given
3934 by INSN. */
3936 static void
3937 set_offsets_for_label (rtx_insn *insn)
3939 unsigned int i;
3940 int label_nr = CODE_LABEL_NUMBER (insn);
3941 struct elim_table *ep;
3943 num_not_at_initial_offset = 0;
3944 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3946 ep->offset = ep->previous_offset
3947 = offsets_at[label_nr - first_label_num][i];
3948 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3949 num_not_at_initial_offset++;
3953 /* See if anything that happened changes which eliminations are valid.
3954 For example, on the SPARC, whether or not the frame pointer can
3955 be eliminated can depend on what registers have been used. We need
3956 not check some conditions again (such as flag_omit_frame_pointer)
3957 since they can't have changed. */
3959 static void
3960 update_eliminables (HARD_REG_SET *pset)
3962 int previous_frame_pointer_needed = frame_pointer_needed;
3963 struct elim_table *ep;
3965 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3966 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3967 && targetm.frame_pointer_required ())
3968 #ifdef ELIMINABLE_REGS
3969 || ! targetm.can_eliminate (ep->from, ep->to)
3970 #endif
3972 ep->can_eliminate = 0;
3974 /* Look for the case where we have discovered that we can't replace
3975 register A with register B and that means that we will now be
3976 trying to replace register A with register C. This means we can
3977 no longer replace register C with register B and we need to disable
3978 such an elimination, if it exists. This occurs often with A == ap,
3979 B == sp, and C == fp. */
3981 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3983 struct elim_table *op;
3984 int new_to = -1;
3986 if (! ep->can_eliminate && ep->can_eliminate_previous)
3988 /* Find the current elimination for ep->from, if there is a
3989 new one. */
3990 for (op = reg_eliminate;
3991 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3992 if (op->from == ep->from && op->can_eliminate)
3994 new_to = op->to;
3995 break;
3998 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3999 disable it. */
4000 for (op = reg_eliminate;
4001 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4002 if (op->from == new_to && op->to == ep->to)
4003 op->can_eliminate = 0;
4007 /* See if any registers that we thought we could eliminate the previous
4008 time are no longer eliminable. If so, something has changed and we
4009 must spill the register. Also, recompute the number of eliminable
4010 registers and see if the frame pointer is needed; it is if there is
4011 no elimination of the frame pointer that we can perform. */
4013 frame_pointer_needed = 1;
4014 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4016 if (ep->can_eliminate
4017 && ep->from == FRAME_POINTER_REGNUM
4018 && ep->to != HARD_FRAME_POINTER_REGNUM
4019 && (! SUPPORTS_STACK_ALIGNMENT
4020 || ! crtl->stack_realign_needed))
4021 frame_pointer_needed = 0;
4023 if (! ep->can_eliminate && ep->can_eliminate_previous)
4025 ep->can_eliminate_previous = 0;
4026 SET_HARD_REG_BIT (*pset, ep->from);
4027 num_eliminable--;
4031 /* If we didn't need a frame pointer last time, but we do now, spill
4032 the hard frame pointer. */
4033 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4034 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4037 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4038 Return true iff a register was spilled. */
4040 static bool
4041 update_eliminables_and_spill (void)
4043 int i;
4044 bool did_spill = false;
4045 HARD_REG_SET to_spill;
4046 CLEAR_HARD_REG_SET (to_spill);
4047 update_eliminables (&to_spill);
4048 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4051 if (TEST_HARD_REG_BIT (to_spill, i))
4053 spill_hard_reg (i, 1);
4054 did_spill = true;
4056 /* Regardless of the state of spills, if we previously had
4057 a register that we thought we could eliminate, but now can
4058 not eliminate, we must run another pass.
4060 Consider pseudos which have an entry in reg_equiv_* which
4061 reference an eliminable register. We must make another pass
4062 to update reg_equiv_* so that we do not substitute in the
4063 old value from when we thought the elimination could be
4064 performed. */
4066 return did_spill;
4069 /* Return true if X is used as the target register of an elimination. */
4071 bool
4072 elimination_target_reg_p (rtx x)
4074 struct elim_table *ep;
4076 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4077 if (ep->to_rtx == x && ep->can_eliminate)
4078 return true;
4080 return false;
4083 /* Initialize the table of registers to eliminate.
4084 Pre-condition: global flag frame_pointer_needed has been set before
4085 calling this function. */
4087 static void
4088 init_elim_table (void)
4090 struct elim_table *ep;
4091 #ifdef ELIMINABLE_REGS
4092 const struct elim_table_1 *ep1;
4093 #endif
4095 if (!reg_eliminate)
4096 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4098 num_eliminable = 0;
4100 #ifdef ELIMINABLE_REGS
4101 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4102 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4104 ep->from = ep1->from;
4105 ep->to = ep1->to;
4106 ep->can_eliminate = ep->can_eliminate_previous
4107 = (targetm.can_eliminate (ep->from, ep->to)
4108 && ! (ep->to == STACK_POINTER_REGNUM
4109 && frame_pointer_needed
4110 && (! SUPPORTS_STACK_ALIGNMENT
4111 || ! stack_realign_fp)));
4113 #else
4114 reg_eliminate[0].from = reg_eliminate_1[0].from;
4115 reg_eliminate[0].to = reg_eliminate_1[0].to;
4116 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4117 = ! frame_pointer_needed;
4118 #endif
4120 /* Count the number of eliminable registers and build the FROM and TO
4121 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4122 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4123 We depend on this. */
4124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4126 num_eliminable += ep->can_eliminate;
4127 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4128 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4132 /* Find all the pseudo registers that didn't get hard regs
4133 but do have known equivalent constants or memory slots.
4134 These include parameters (known equivalent to parameter slots)
4135 and cse'd or loop-moved constant memory addresses.
4137 Record constant equivalents in reg_equiv_constant
4138 so they will be substituted by find_reloads.
4139 Record memory equivalents in reg_mem_equiv so they can
4140 be substituted eventually by altering the REG-rtx's. */
4142 static void
4143 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4145 int i;
4146 rtx_insn *insn;
4148 grow_reg_equivs ();
4149 if (do_subregs)
4150 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4151 else
4152 reg_max_ref_width = NULL;
4154 num_eliminable_invariants = 0;
4156 first_label_num = get_first_label_num ();
4157 num_labels = max_label_num () - first_label_num;
4159 /* Allocate the tables used to store offset information at labels. */
4160 offsets_known_at = XNEWVEC (char, num_labels);
4161 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4163 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4164 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4165 find largest such for each pseudo. FIRST is the head of the insn
4166 list. */
4168 for (insn = first; insn; insn = NEXT_INSN (insn))
4170 rtx set = single_set (insn);
4172 /* We may introduce USEs that we want to remove at the end, so
4173 we'll mark them with QImode. Make sure there are no
4174 previously-marked insns left by say regmove. */
4175 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4176 && GET_MODE (insn) != VOIDmode)
4177 PUT_MODE (insn, VOIDmode);
4179 if (do_subregs && NONDEBUG_INSN_P (insn))
4180 scan_paradoxical_subregs (PATTERN (insn));
4182 if (set != 0 && REG_P (SET_DEST (set)))
4184 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4185 rtx x;
4187 if (! note)
4188 continue;
4190 i = REGNO (SET_DEST (set));
4191 x = XEXP (note, 0);
4193 if (i <= LAST_VIRTUAL_REGISTER)
4194 continue;
4196 /* If flag_pic and we have constant, verify it's legitimate. */
4197 if (!CONSTANT_P (x)
4198 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4200 /* It can happen that a REG_EQUIV note contains a MEM
4201 that is not a legitimate memory operand. As later
4202 stages of reload assume that all addresses found
4203 in the reg_equiv_* arrays were originally legitimate,
4204 we ignore such REG_EQUIV notes. */
4205 if (memory_operand (x, VOIDmode))
4207 /* Always unshare the equivalence, so we can
4208 substitute into this insn without touching the
4209 equivalence. */
4210 reg_equiv_memory_loc (i) = copy_rtx (x);
4212 else if (function_invariant_p (x))
4214 machine_mode mode;
4216 mode = GET_MODE (SET_DEST (set));
4217 if (GET_CODE (x) == PLUS)
4219 /* This is PLUS of frame pointer and a constant,
4220 and might be shared. Unshare it. */
4221 reg_equiv_invariant (i) = copy_rtx (x);
4222 num_eliminable_invariants++;
4224 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4226 reg_equiv_invariant (i) = x;
4227 num_eliminable_invariants++;
4229 else if (targetm.legitimate_constant_p (mode, x))
4230 reg_equiv_constant (i) = x;
4231 else
4233 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4234 if (! reg_equiv_memory_loc (i))
4235 reg_equiv_init (i) = NULL;
4238 else
4240 reg_equiv_init (i) = NULL;
4241 continue;
4244 else
4245 reg_equiv_init (i) = NULL;
4249 if (dump_file)
4250 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4251 if (reg_equiv_init (i))
4253 fprintf (dump_file, "init_insns for %u: ", i);
4254 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4255 fprintf (dump_file, "\n");
4259 /* Indicate that we no longer have known memory locations or constants.
4260 Free all data involved in tracking these. */
4262 static void
4263 free_reg_equiv (void)
4265 int i;
4267 free (offsets_known_at);
4268 free (offsets_at);
4269 offsets_at = 0;
4270 offsets_known_at = 0;
4272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4273 if (reg_equiv_alt_mem_list (i))
4274 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4275 vec_free (reg_equivs);
4278 /* Kick all pseudos out of hard register REGNO.
4280 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4281 because we found we can't eliminate some register. In the case, no pseudos
4282 are allowed to be in the register, even if they are only in a block that
4283 doesn't require spill registers, unlike the case when we are spilling this
4284 hard reg to produce another spill register.
4286 Return nonzero if any pseudos needed to be kicked out. */
4288 static void
4289 spill_hard_reg (unsigned int regno, int cant_eliminate)
4291 int i;
4293 if (cant_eliminate)
4295 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4296 df_set_regs_ever_live (regno, true);
4299 /* Spill every pseudo reg that was allocated to this reg
4300 or to something that overlaps this reg. */
4302 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4303 if (reg_renumber[i] >= 0
4304 && (unsigned int) reg_renumber[i] <= regno
4305 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4306 SET_REGNO_REG_SET (&spilled_pseudos, i);
4309 /* After find_reload_regs has been run for all insn that need reloads,
4310 and/or spill_hard_regs was called, this function is used to actually
4311 spill pseudo registers and try to reallocate them. It also sets up the
4312 spill_regs array for use by choose_reload_regs. */
4314 static int
4315 finish_spills (int global)
4317 struct insn_chain *chain;
4318 int something_changed = 0;
4319 unsigned i;
4320 reg_set_iterator rsi;
4322 /* Build the spill_regs array for the function. */
4323 /* If there are some registers still to eliminate and one of the spill regs
4324 wasn't ever used before, additional stack space may have to be
4325 allocated to store this register. Thus, we may have changed the offset
4326 between the stack and frame pointers, so mark that something has changed.
4328 One might think that we need only set VAL to 1 if this is a call-used
4329 register. However, the set of registers that must be saved by the
4330 prologue is not identical to the call-used set. For example, the
4331 register used by the call insn for the return PC is a call-used register,
4332 but must be saved by the prologue. */
4334 n_spills = 0;
4335 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4336 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4338 spill_reg_order[i] = n_spills;
4339 spill_regs[n_spills++] = i;
4340 if (num_eliminable && ! df_regs_ever_live_p (i))
4341 something_changed = 1;
4342 df_set_regs_ever_live (i, true);
4344 else
4345 spill_reg_order[i] = -1;
4347 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4348 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4350 /* Record the current hard register the pseudo is allocated to
4351 in pseudo_previous_regs so we avoid reallocating it to the
4352 same hard reg in a later pass. */
4353 gcc_assert (reg_renumber[i] >= 0);
4355 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4356 /* Mark it as no longer having a hard register home. */
4357 reg_renumber[i] = -1;
4358 if (ira_conflicts_p)
4359 /* Inform IRA about the change. */
4360 ira_mark_allocation_change (i);
4361 /* We will need to scan everything again. */
4362 something_changed = 1;
4365 /* Retry global register allocation if possible. */
4366 if (global && ira_conflicts_p)
4368 unsigned int n;
4370 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4371 /* For every insn that needs reloads, set the registers used as spill
4372 regs in pseudo_forbidden_regs for every pseudo live across the
4373 insn. */
4374 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4376 EXECUTE_IF_SET_IN_REG_SET
4377 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4379 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4380 chain->used_spill_regs);
4382 EXECUTE_IF_SET_IN_REG_SET
4383 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4385 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4386 chain->used_spill_regs);
4390 /* Retry allocating the pseudos spilled in IRA and the
4391 reload. For each reg, merge the various reg sets that
4392 indicate which hard regs can't be used, and call
4393 ira_reassign_pseudos. */
4394 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4395 if (reg_old_renumber[i] != reg_renumber[i])
4397 if (reg_renumber[i] < 0)
4398 temp_pseudo_reg_arr[n++] = i;
4399 else
4400 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4402 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4403 bad_spill_regs_global,
4404 pseudo_forbidden_regs, pseudo_previous_regs,
4405 &spilled_pseudos))
4406 something_changed = 1;
4408 /* Fix up the register information in the insn chain.
4409 This involves deleting those of the spilled pseudos which did not get
4410 a new hard register home from the live_{before,after} sets. */
4411 for (chain = reload_insn_chain; chain; chain = chain->next)
4413 HARD_REG_SET used_by_pseudos;
4414 HARD_REG_SET used_by_pseudos2;
4416 if (! ira_conflicts_p)
4418 /* Don't do it for IRA because IRA and the reload still can
4419 assign hard registers to the spilled pseudos on next
4420 reload iterations. */
4421 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4422 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4424 /* Mark any unallocated hard regs as available for spills. That
4425 makes inheritance work somewhat better. */
4426 if (chain->need_reload)
4428 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4429 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4430 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4432 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4433 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4434 /* Value of chain->used_spill_regs from previous iteration
4435 may be not included in the value calculated here because
4436 of possible removing caller-saves insns (see function
4437 delete_caller_save_insns. */
4438 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4439 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4443 CLEAR_REG_SET (&changed_allocation_pseudos);
4444 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4445 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4447 int regno = reg_renumber[i];
4448 if (reg_old_renumber[i] == regno)
4449 continue;
4451 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4453 alter_reg (i, reg_old_renumber[i], false);
4454 reg_old_renumber[i] = regno;
4455 if (dump_file)
4457 if (regno == -1)
4458 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4459 else
4460 fprintf (dump_file, " Register %d now in %d.\n\n",
4461 i, reg_renumber[i]);
4465 return something_changed;
4468 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4470 static void
4471 scan_paradoxical_subregs (rtx x)
4473 int i;
4474 const char *fmt;
4475 enum rtx_code code = GET_CODE (x);
4477 switch (code)
4479 case REG:
4480 case CONST:
4481 case SYMBOL_REF:
4482 case LABEL_REF:
4483 CASE_CONST_ANY:
4484 case CC0:
4485 case PC:
4486 case USE:
4487 case CLOBBER:
4488 return;
4490 case SUBREG:
4491 if (REG_P (SUBREG_REG (x))
4492 && (GET_MODE_SIZE (GET_MODE (x))
4493 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4495 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4496 = GET_MODE_SIZE (GET_MODE (x));
4497 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4499 return;
4501 default:
4502 break;
4505 fmt = GET_RTX_FORMAT (code);
4506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4508 if (fmt[i] == 'e')
4509 scan_paradoxical_subregs (XEXP (x, i));
4510 else if (fmt[i] == 'E')
4512 int j;
4513 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4514 scan_paradoxical_subregs (XVECEXP (x, i, j));
4519 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4520 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4521 and apply the corresponding narrowing subreg to *OTHER_PTR.
4522 Return true if the operands were changed, false otherwise. */
4524 static bool
4525 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4527 rtx op, inner, other, tem;
4529 op = *op_ptr;
4530 if (!paradoxical_subreg_p (op))
4531 return false;
4532 inner = SUBREG_REG (op);
4534 other = *other_ptr;
4535 tem = gen_lowpart_common (GET_MODE (inner), other);
4536 if (!tem)
4537 return false;
4539 /* If the lowpart operation turned a hard register into a subreg,
4540 rather than simplifying it to another hard register, then the
4541 mode change cannot be properly represented. For example, OTHER
4542 might be valid in its current mode, but not in the new one. */
4543 if (GET_CODE (tem) == SUBREG
4544 && REG_P (other)
4545 && HARD_REGISTER_P (other))
4546 return false;
4548 *op_ptr = inner;
4549 *other_ptr = tem;
4550 return true;
4553 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4554 examine all of the reload insns between PREV and NEXT exclusive, and
4555 annotate all that may trap. */
4557 static void
4558 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4560 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4561 if (note == NULL)
4562 return;
4563 if (!insn_could_throw_p (insn))
4564 remove_note (insn, note);
4565 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4568 /* Reload pseudo-registers into hard regs around each insn as needed.
4569 Additional register load insns are output before the insn that needs it
4570 and perhaps store insns after insns that modify the reloaded pseudo reg.
4572 reg_last_reload_reg and reg_reloaded_contents keep track of
4573 which registers are already available in reload registers.
4574 We update these for the reloads that we perform,
4575 as the insns are scanned. */
4577 static void
4578 reload_as_needed (int live_known)
4580 struct insn_chain *chain;
4581 #if AUTO_INC_DEC
4582 int i;
4583 #endif
4584 rtx_note *marker;
4586 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4587 memset (spill_reg_store, 0, sizeof spill_reg_store);
4588 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4589 INIT_REG_SET (&reg_has_output_reload);
4590 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4591 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4593 set_initial_elim_offsets ();
4595 /* Generate a marker insn that we will move around. */
4596 marker = emit_note (NOTE_INSN_DELETED);
4597 unlink_insn_chain (marker, marker);
4599 for (chain = reload_insn_chain; chain; chain = chain->next)
4601 rtx_insn *prev = 0;
4602 rtx_insn *insn = chain->insn;
4603 rtx_insn *old_next = NEXT_INSN (insn);
4604 #if AUTO_INC_DEC
4605 rtx_insn *old_prev = PREV_INSN (insn);
4606 #endif
4608 if (will_delete_init_insn_p (insn))
4609 continue;
4611 /* If we pass a label, copy the offsets from the label information
4612 into the current offsets of each elimination. */
4613 if (LABEL_P (insn))
4614 set_offsets_for_label (insn);
4616 else if (INSN_P (insn))
4618 regset_head regs_to_forget;
4619 INIT_REG_SET (&regs_to_forget);
4620 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4622 /* If this is a USE and CLOBBER of a MEM, ensure that any
4623 references to eliminable registers have been removed. */
4625 if ((GET_CODE (PATTERN (insn)) == USE
4626 || GET_CODE (PATTERN (insn)) == CLOBBER)
4627 && MEM_P (XEXP (PATTERN (insn), 0)))
4628 XEXP (XEXP (PATTERN (insn), 0), 0)
4629 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4630 GET_MODE (XEXP (PATTERN (insn), 0)),
4631 NULL_RTX);
4633 /* If we need to do register elimination processing, do so.
4634 This might delete the insn, in which case we are done. */
4635 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4637 eliminate_regs_in_insn (insn, 1);
4638 if (NOTE_P (insn))
4640 update_eliminable_offsets ();
4641 CLEAR_REG_SET (&regs_to_forget);
4642 continue;
4646 /* If need_elim is nonzero but need_reload is zero, one might think
4647 that we could simply set n_reloads to 0. However, find_reloads
4648 could have done some manipulation of the insn (such as swapping
4649 commutative operands), and these manipulations are lost during
4650 the first pass for every insn that needs register elimination.
4651 So the actions of find_reloads must be redone here. */
4653 if (! chain->need_elim && ! chain->need_reload
4654 && ! chain->need_operand_change)
4655 n_reloads = 0;
4656 /* First find the pseudo regs that must be reloaded for this insn.
4657 This info is returned in the tables reload_... (see reload.h).
4658 Also modify the body of INSN by substituting RELOAD
4659 rtx's for those pseudo regs. */
4660 else
4662 CLEAR_REG_SET (&reg_has_output_reload);
4663 CLEAR_HARD_REG_SET (reg_is_output_reload);
4665 find_reloads (insn, 1, spill_indirect_levels, live_known,
4666 spill_reg_order);
4669 if (n_reloads > 0)
4671 rtx_insn *next = NEXT_INSN (insn);
4673 /* ??? PREV can get deleted by reload inheritance.
4674 Work around this by emitting a marker note. */
4675 prev = PREV_INSN (insn);
4676 reorder_insns_nobb (marker, marker, prev);
4678 /* Now compute which reload regs to reload them into. Perhaps
4679 reusing reload regs from previous insns, or else output
4680 load insns to reload them. Maybe output store insns too.
4681 Record the choices of reload reg in reload_reg_rtx. */
4682 choose_reload_regs (chain);
4684 /* Generate the insns to reload operands into or out of
4685 their reload regs. */
4686 emit_reload_insns (chain);
4688 /* Substitute the chosen reload regs from reload_reg_rtx
4689 into the insn's body (or perhaps into the bodies of other
4690 load and store insn that we just made for reloading
4691 and that we moved the structure into). */
4692 subst_reloads (insn);
4694 prev = PREV_INSN (marker);
4695 unlink_insn_chain (marker, marker);
4697 /* Adjust the exception region notes for loads and stores. */
4698 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4699 fixup_eh_region_note (insn, prev, next);
4701 /* Adjust the location of REG_ARGS_SIZE. */
4702 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4703 if (p)
4705 remove_note (insn, p);
4706 fixup_args_size_notes (prev, PREV_INSN (next),
4707 INTVAL (XEXP (p, 0)));
4710 /* If this was an ASM, make sure that all the reload insns
4711 we have generated are valid. If not, give an error
4712 and delete them. */
4713 if (asm_noperands (PATTERN (insn)) >= 0)
4714 for (rtx_insn *p = NEXT_INSN (prev);
4715 p != next;
4716 p = NEXT_INSN (p))
4717 if (p != insn && INSN_P (p)
4718 && GET_CODE (PATTERN (p)) != USE
4719 && (recog_memoized (p) < 0
4720 || (extract_insn (p),
4721 !(constrain_operands (1,
4722 get_enabled_alternatives (p))))))
4724 error_for_asm (insn,
4725 "%<asm%> operand requires "
4726 "impossible reload");
4727 delete_insn (p);
4731 if (num_eliminable && chain->need_elim)
4732 update_eliminable_offsets ();
4734 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4735 is no longer validly lying around to save a future reload.
4736 Note that this does not detect pseudos that were reloaded
4737 for this insn in order to be stored in
4738 (obeying register constraints). That is correct; such reload
4739 registers ARE still valid. */
4740 forget_marked_reloads (&regs_to_forget);
4741 CLEAR_REG_SET (&regs_to_forget);
4743 /* There may have been CLOBBER insns placed after INSN. So scan
4744 between INSN and NEXT and use them to forget old reloads. */
4745 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4746 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4747 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4749 #if AUTO_INC_DEC
4750 /* Likewise for regs altered by auto-increment in this insn.
4751 REG_INC notes have been changed by reloading:
4752 find_reloads_address_1 records substitutions for them,
4753 which have been performed by subst_reloads above. */
4754 for (i = n_reloads - 1; i >= 0; i--)
4756 rtx in_reg = rld[i].in_reg;
4757 if (in_reg)
4759 enum rtx_code code = GET_CODE (in_reg);
4760 /* PRE_INC / PRE_DEC will have the reload register ending up
4761 with the same value as the stack slot, but that doesn't
4762 hold true for POST_INC / POST_DEC. Either we have to
4763 convert the memory access to a true POST_INC / POST_DEC,
4764 or we can't use the reload register for inheritance. */
4765 if ((code == POST_INC || code == POST_DEC)
4766 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4767 REGNO (rld[i].reg_rtx))
4768 /* Make sure it is the inc/dec pseudo, and not
4769 some other (e.g. output operand) pseudo. */
4770 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4771 == REGNO (XEXP (in_reg, 0))))
4774 rtx reload_reg = rld[i].reg_rtx;
4775 machine_mode mode = GET_MODE (reload_reg);
4776 int n = 0;
4777 rtx_insn *p;
4779 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4781 /* We really want to ignore REG_INC notes here, so
4782 use PATTERN (p) as argument to reg_set_p . */
4783 if (reg_set_p (reload_reg, PATTERN (p)))
4784 break;
4785 n = count_occurrences (PATTERN (p), reload_reg, 0);
4786 if (! n)
4787 continue;
4788 if (n == 1)
4790 rtx replace_reg
4791 = gen_rtx_fmt_e (code, mode, reload_reg);
4793 validate_replace_rtx_group (reload_reg,
4794 replace_reg, p);
4795 n = verify_changes (0);
4797 /* We must also verify that the constraints
4798 are met after the replacement. Make sure
4799 extract_insn is only called for an insn
4800 where the replacements were found to be
4801 valid so far. */
4802 if (n)
4804 extract_insn (p);
4805 n = constrain_operands (1,
4806 get_enabled_alternatives (p));
4809 /* If the constraints were not met, then
4810 undo the replacement, else confirm it. */
4811 if (!n)
4812 cancel_changes (0);
4813 else
4814 confirm_change_group ();
4816 break;
4818 if (n == 1)
4820 add_reg_note (p, REG_INC, reload_reg);
4821 /* Mark this as having an output reload so that the
4822 REG_INC processing code below won't invalidate
4823 the reload for inheritance. */
4824 SET_HARD_REG_BIT (reg_is_output_reload,
4825 REGNO (reload_reg));
4826 SET_REGNO_REG_SET (&reg_has_output_reload,
4827 REGNO (XEXP (in_reg, 0)));
4829 else
4830 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4831 NULL);
4833 else if ((code == PRE_INC || code == PRE_DEC)
4834 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4835 REGNO (rld[i].reg_rtx))
4836 /* Make sure it is the inc/dec pseudo, and not
4837 some other (e.g. output operand) pseudo. */
4838 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4839 == REGNO (XEXP (in_reg, 0))))
4841 SET_HARD_REG_BIT (reg_is_output_reload,
4842 REGNO (rld[i].reg_rtx));
4843 SET_REGNO_REG_SET (&reg_has_output_reload,
4844 REGNO (XEXP (in_reg, 0)));
4846 else if (code == PRE_INC || code == PRE_DEC
4847 || code == POST_INC || code == POST_DEC)
4849 int in_regno = REGNO (XEXP (in_reg, 0));
4851 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4853 int in_hard_regno;
4854 bool forget_p = true;
4856 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4857 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4858 in_hard_regno))
4860 for (rtx_insn *x = (old_prev ?
4861 NEXT_INSN (old_prev) : insn);
4862 x != old_next;
4863 x = NEXT_INSN (x))
4864 if (x == reg_reloaded_insn[in_hard_regno])
4866 forget_p = false;
4867 break;
4870 /* If for some reasons, we didn't set up
4871 reg_last_reload_reg in this insn,
4872 invalidate inheritance from previous
4873 insns for the incremented/decremented
4874 register. Such registers will be not in
4875 reg_has_output_reload. Invalidate it
4876 also if the corresponding element in
4877 reg_reloaded_insn is also
4878 invalidated. */
4879 if (forget_p)
4880 forget_old_reloads_1 (XEXP (in_reg, 0),
4881 NULL_RTX, NULL);
4886 /* If a pseudo that got a hard register is auto-incremented,
4887 we must purge records of copying it into pseudos without
4888 hard registers. */
4889 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4890 if (REG_NOTE_KIND (x) == REG_INC)
4892 /* See if this pseudo reg was reloaded in this insn.
4893 If so, its last-reload info is still valid
4894 because it is based on this insn's reload. */
4895 for (i = 0; i < n_reloads; i++)
4896 if (rld[i].out == XEXP (x, 0))
4897 break;
4899 if (i == n_reloads)
4900 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4902 #endif
4904 /* A reload reg's contents are unknown after a label. */
4905 if (LABEL_P (insn))
4906 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4908 /* Don't assume a reload reg is still good after a call insn
4909 if it is a call-used reg, or if it contains a value that will
4910 be partially clobbered by the call. */
4911 else if (CALL_P (insn))
4913 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4914 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4916 /* If this is a call to a setjmp-type function, we must not
4917 reuse any reload reg contents across the call; that will
4918 just be clobbered by other uses of the register in later
4919 code, before the longjmp. */
4920 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4921 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4925 /* Clean up. */
4926 free (reg_last_reload_reg);
4927 CLEAR_REG_SET (&reg_has_output_reload);
4930 /* Discard all record of any value reloaded from X,
4931 or reloaded in X from someplace else;
4932 unless X is an output reload reg of the current insn.
4934 X may be a hard reg (the reload reg)
4935 or it may be a pseudo reg that was reloaded from.
4937 When DATA is non-NULL just mark the registers in regset
4938 to be forgotten later. */
4940 static void
4941 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4942 void *data)
4944 unsigned int regno;
4945 unsigned int nr;
4946 regset regs = (regset) data;
4948 /* note_stores does give us subregs of hard regs,
4949 subreg_regno_offset requires a hard reg. */
4950 while (GET_CODE (x) == SUBREG)
4952 /* We ignore the subreg offset when calculating the regno,
4953 because we are using the entire underlying hard register
4954 below. */
4955 x = SUBREG_REG (x);
4958 if (!REG_P (x))
4959 return;
4961 regno = REGNO (x);
4963 if (regno >= FIRST_PSEUDO_REGISTER)
4964 nr = 1;
4965 else
4967 unsigned int i;
4969 nr = hard_regno_nregs[regno][GET_MODE (x)];
4970 /* Storing into a spilled-reg invalidates its contents.
4971 This can happen if a block-local pseudo is allocated to that reg
4972 and it wasn't spilled because this block's total need is 0.
4973 Then some insn might have an optional reload and use this reg. */
4974 if (!regs)
4975 for (i = 0; i < nr; i++)
4976 /* But don't do this if the reg actually serves as an output
4977 reload reg in the current instruction. */
4978 if (n_reloads == 0
4979 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4981 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4982 spill_reg_store[regno + i] = 0;
4986 if (regs)
4987 while (nr-- > 0)
4988 SET_REGNO_REG_SET (regs, regno + nr);
4989 else
4991 /* Since value of X has changed,
4992 forget any value previously copied from it. */
4994 while (nr-- > 0)
4995 /* But don't forget a copy if this is the output reload
4996 that establishes the copy's validity. */
4997 if (n_reloads == 0
4998 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4999 reg_last_reload_reg[regno + nr] = 0;
5003 /* Forget the reloads marked in regset by previous function. */
5004 static void
5005 forget_marked_reloads (regset regs)
5007 unsigned int reg;
5008 reg_set_iterator rsi;
5009 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5011 if (reg < FIRST_PSEUDO_REGISTER
5012 /* But don't do this if the reg actually serves as an output
5013 reload reg in the current instruction. */
5014 && (n_reloads == 0
5015 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5017 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5018 spill_reg_store[reg] = 0;
5020 if (n_reloads == 0
5021 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5022 reg_last_reload_reg[reg] = 0;
5026 /* The following HARD_REG_SETs indicate when each hard register is
5027 used for a reload of various parts of the current insn. */
5029 /* If reg is unavailable for all reloads. */
5030 static HARD_REG_SET reload_reg_unavailable;
5031 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5032 static HARD_REG_SET reload_reg_used;
5033 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5034 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5035 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5036 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5037 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5038 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5039 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5040 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5041 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5042 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5043 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5044 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5045 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5046 static HARD_REG_SET reload_reg_used_in_op_addr;
5047 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5048 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5049 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5050 static HARD_REG_SET reload_reg_used_in_insn;
5051 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5052 static HARD_REG_SET reload_reg_used_in_other_addr;
5054 /* If reg is in use as a reload reg for any sort of reload. */
5055 static HARD_REG_SET reload_reg_used_at_all;
5057 /* If reg is use as an inherited reload. We just mark the first register
5058 in the group. */
5059 static HARD_REG_SET reload_reg_used_for_inherit;
5061 /* Records which hard regs are used in any way, either as explicit use or
5062 by being allocated to a pseudo during any point of the current insn. */
5063 static HARD_REG_SET reg_used_in_insn;
5065 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5066 TYPE. MODE is used to indicate how many consecutive regs are
5067 actually used. */
5069 static void
5070 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5071 machine_mode mode)
5073 switch (type)
5075 case RELOAD_OTHER:
5076 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5077 break;
5079 case RELOAD_FOR_INPUT_ADDRESS:
5080 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5081 break;
5083 case RELOAD_FOR_INPADDR_ADDRESS:
5084 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5085 break;
5087 case RELOAD_FOR_OUTPUT_ADDRESS:
5088 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5089 break;
5091 case RELOAD_FOR_OUTADDR_ADDRESS:
5092 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5093 break;
5095 case RELOAD_FOR_OPERAND_ADDRESS:
5096 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5097 break;
5099 case RELOAD_FOR_OPADDR_ADDR:
5100 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5101 break;
5103 case RELOAD_FOR_OTHER_ADDRESS:
5104 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5105 break;
5107 case RELOAD_FOR_INPUT:
5108 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5109 break;
5111 case RELOAD_FOR_OUTPUT:
5112 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5113 break;
5115 case RELOAD_FOR_INSN:
5116 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5117 break;
5120 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5123 /* Similarly, but show REGNO is no longer in use for a reload. */
5125 static void
5126 clear_reload_reg_in_use (unsigned int regno, int opnum,
5127 enum reload_type type, machine_mode mode)
5129 unsigned int nregs = hard_regno_nregs[regno][mode];
5130 unsigned int start_regno, end_regno, r;
5131 int i;
5132 /* A complication is that for some reload types, inheritance might
5133 allow multiple reloads of the same types to share a reload register.
5134 We set check_opnum if we have to check only reloads with the same
5135 operand number, and check_any if we have to check all reloads. */
5136 int check_opnum = 0;
5137 int check_any = 0;
5138 HARD_REG_SET *used_in_set;
5140 switch (type)
5142 case RELOAD_OTHER:
5143 used_in_set = &reload_reg_used;
5144 break;
5146 case RELOAD_FOR_INPUT_ADDRESS:
5147 used_in_set = &reload_reg_used_in_input_addr[opnum];
5148 break;
5150 case RELOAD_FOR_INPADDR_ADDRESS:
5151 check_opnum = 1;
5152 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5153 break;
5155 case RELOAD_FOR_OUTPUT_ADDRESS:
5156 used_in_set = &reload_reg_used_in_output_addr[opnum];
5157 break;
5159 case RELOAD_FOR_OUTADDR_ADDRESS:
5160 check_opnum = 1;
5161 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5162 break;
5164 case RELOAD_FOR_OPERAND_ADDRESS:
5165 used_in_set = &reload_reg_used_in_op_addr;
5166 break;
5168 case RELOAD_FOR_OPADDR_ADDR:
5169 check_any = 1;
5170 used_in_set = &reload_reg_used_in_op_addr_reload;
5171 break;
5173 case RELOAD_FOR_OTHER_ADDRESS:
5174 used_in_set = &reload_reg_used_in_other_addr;
5175 check_any = 1;
5176 break;
5178 case RELOAD_FOR_INPUT:
5179 used_in_set = &reload_reg_used_in_input[opnum];
5180 break;
5182 case RELOAD_FOR_OUTPUT:
5183 used_in_set = &reload_reg_used_in_output[opnum];
5184 break;
5186 case RELOAD_FOR_INSN:
5187 used_in_set = &reload_reg_used_in_insn;
5188 break;
5189 default:
5190 gcc_unreachable ();
5192 /* We resolve conflicts with remaining reloads of the same type by
5193 excluding the intervals of reload registers by them from the
5194 interval of freed reload registers. Since we only keep track of
5195 one set of interval bounds, we might have to exclude somewhat
5196 more than what would be necessary if we used a HARD_REG_SET here.
5197 But this should only happen very infrequently, so there should
5198 be no reason to worry about it. */
5200 start_regno = regno;
5201 end_regno = regno + nregs;
5202 if (check_opnum || check_any)
5204 for (i = n_reloads - 1; i >= 0; i--)
5206 if (rld[i].when_needed == type
5207 && (check_any || rld[i].opnum == opnum)
5208 && rld[i].reg_rtx)
5210 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5211 unsigned int conflict_end
5212 = end_hard_regno (rld[i].mode, conflict_start);
5214 /* If there is an overlap with the first to-be-freed register,
5215 adjust the interval start. */
5216 if (conflict_start <= start_regno && conflict_end > start_regno)
5217 start_regno = conflict_end;
5218 /* Otherwise, if there is a conflict with one of the other
5219 to-be-freed registers, adjust the interval end. */
5220 if (conflict_start > start_regno && conflict_start < end_regno)
5221 end_regno = conflict_start;
5226 for (r = start_regno; r < end_regno; r++)
5227 CLEAR_HARD_REG_BIT (*used_in_set, r);
5230 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5231 specified by OPNUM and TYPE. */
5233 static int
5234 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5236 int i;
5238 /* In use for a RELOAD_OTHER means it's not available for anything. */
5239 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5240 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5241 return 0;
5243 switch (type)
5245 case RELOAD_OTHER:
5246 /* In use for anything means we can't use it for RELOAD_OTHER. */
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5248 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5249 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5250 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5251 return 0;
5253 for (i = 0; i < reload_n_operands; i++)
5254 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5255 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5256 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5257 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5258 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5259 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5260 return 0;
5262 return 1;
5264 case RELOAD_FOR_INPUT:
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5266 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5267 return 0;
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5270 return 0;
5272 /* If it is used for some other input, can't use it. */
5273 for (i = 0; i < reload_n_operands; i++)
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5275 return 0;
5277 /* If it is used in a later operand's address, can't use it. */
5278 for (i = opnum + 1; i < reload_n_operands; i++)
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5280 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5281 return 0;
5283 return 1;
5285 case RELOAD_FOR_INPUT_ADDRESS:
5286 /* Can't use a register if it is used for an input address for this
5287 operand or used as an input in an earlier one. */
5288 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5289 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5290 return 0;
5292 for (i = 0; i < opnum; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5294 return 0;
5296 return 1;
5298 case RELOAD_FOR_INPADDR_ADDRESS:
5299 /* Can't use a register if it is used for an input address
5300 for this operand or used as an input in an earlier
5301 one. */
5302 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5303 return 0;
5305 for (i = 0; i < opnum; i++)
5306 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5307 return 0;
5309 return 1;
5311 case RELOAD_FOR_OUTPUT_ADDRESS:
5312 /* Can't use a register if it is used for an output address for this
5313 operand or used as an output in this or a later operand. Note
5314 that multiple output operands are emitted in reverse order, so
5315 the conflicting ones are those with lower indices. */
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5317 return 0;
5319 for (i = 0; i <= opnum; i++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5321 return 0;
5323 return 1;
5325 case RELOAD_FOR_OUTADDR_ADDRESS:
5326 /* Can't use a register if it is used for an output address
5327 for this operand or used as an output in this or a
5328 later operand. Note that multiple output operands are
5329 emitted in reverse order, so the conflicting ones are
5330 those with lower indices. */
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5332 return 0;
5334 for (i = 0; i <= opnum; i++)
5335 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5336 return 0;
5338 return 1;
5340 case RELOAD_FOR_OPERAND_ADDRESS:
5341 for (i = 0; i < reload_n_operands; i++)
5342 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5343 return 0;
5345 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5346 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5348 case RELOAD_FOR_OPADDR_ADDR:
5349 for (i = 0; i < reload_n_operands; i++)
5350 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5351 return 0;
5353 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5355 case RELOAD_FOR_OUTPUT:
5356 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5357 outputs, or an operand address for this or an earlier output.
5358 Note that multiple output operands are emitted in reverse order,
5359 so the conflicting ones are those with higher indices. */
5360 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5361 return 0;
5363 for (i = 0; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5365 return 0;
5367 for (i = opnum; i < reload_n_operands; i++)
5368 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5369 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5370 return 0;
5372 return 1;
5374 case RELOAD_FOR_INSN:
5375 for (i = 0; i < reload_n_operands; i++)
5376 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5377 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5378 return 0;
5380 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5381 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5383 case RELOAD_FOR_OTHER_ADDRESS:
5384 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5386 default:
5387 gcc_unreachable ();
5391 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5392 the number RELOADNUM, is still available in REGNO at the end of the insn.
5394 We can assume that the reload reg was already tested for availability
5395 at the time it is needed, and we should not check this again,
5396 in case the reg has already been marked in use. */
5398 static int
5399 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5401 int opnum = rld[reloadnum].opnum;
5402 enum reload_type type = rld[reloadnum].when_needed;
5403 int i;
5405 /* See if there is a reload with the same type for this operand, using
5406 the same register. This case is not handled by the code below. */
5407 for (i = reloadnum + 1; i < n_reloads; i++)
5409 rtx reg;
5410 int nregs;
5412 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5413 continue;
5414 reg = rld[i].reg_rtx;
5415 if (reg == NULL_RTX)
5416 continue;
5417 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5418 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5419 return 0;
5422 switch (type)
5424 case RELOAD_OTHER:
5425 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5426 its value must reach the end. */
5427 return 1;
5429 /* If this use is for part of the insn,
5430 its value reaches if no subsequent part uses the same register.
5431 Just like the above function, don't try to do this with lots
5432 of fallthroughs. */
5434 case RELOAD_FOR_OTHER_ADDRESS:
5435 /* Here we check for everything else, since these don't conflict
5436 with anything else and everything comes later. */
5438 for (i = 0; i < reload_n_operands; i++)
5439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5442 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5443 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5444 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5445 return 0;
5447 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5448 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5449 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5450 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5452 case RELOAD_FOR_INPUT_ADDRESS:
5453 case RELOAD_FOR_INPADDR_ADDRESS:
5454 /* Similar, except that we check only for this and subsequent inputs
5455 and the address of only subsequent inputs and we do not need
5456 to check for RELOAD_OTHER objects since they are known not to
5457 conflict. */
5459 for (i = opnum; i < reload_n_operands; i++)
5460 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5461 return 0;
5463 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5464 could be killed if the register is also used by reload with type
5465 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5466 if (type == RELOAD_FOR_INPADDR_ADDRESS
5467 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5468 return 0;
5470 for (i = opnum + 1; i < reload_n_operands; i++)
5471 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5472 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5473 return 0;
5475 for (i = 0; i < reload_n_operands; i++)
5476 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5477 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5478 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5479 return 0;
5481 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5482 return 0;
5484 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5485 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5486 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5488 case RELOAD_FOR_INPUT:
5489 /* Similar to input address, except we start at the next operand for
5490 both input and input address and we do not check for
5491 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5492 would conflict. */
5494 for (i = opnum + 1; i < reload_n_operands; i++)
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5498 return 0;
5500 /* ... fall through ... */
5502 case RELOAD_FOR_OPERAND_ADDRESS:
5503 /* Check outputs and their addresses. */
5505 for (i = 0; i < reload_n_operands; i++)
5506 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5507 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5508 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5509 return 0;
5511 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5513 case RELOAD_FOR_OPADDR_ADDR:
5514 for (i = 0; i < reload_n_operands; i++)
5515 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5516 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5517 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5518 return 0;
5520 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5521 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5522 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5524 case RELOAD_FOR_INSN:
5525 /* These conflict with other outputs with RELOAD_OTHER. So
5526 we need only check for output addresses. */
5528 opnum = reload_n_operands;
5530 /* ... fall through ... */
5532 case RELOAD_FOR_OUTPUT:
5533 case RELOAD_FOR_OUTPUT_ADDRESS:
5534 case RELOAD_FOR_OUTADDR_ADDRESS:
5535 /* We already know these can't conflict with a later output. So the
5536 only thing to check are later output addresses.
5537 Note that multiple output operands are emitted in reverse order,
5538 so the conflicting ones are those with lower indices. */
5539 for (i = 0; i < opnum; i++)
5540 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5541 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5542 return 0;
5544 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5545 could be killed if the register is also used by reload with type
5546 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5547 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5548 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5549 return 0;
5551 return 1;
5553 default:
5554 gcc_unreachable ();
5558 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5559 every register in REG. */
5561 static bool
5562 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5564 unsigned int i;
5566 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5567 if (!reload_reg_reaches_end_p (i, reloadnum))
5568 return false;
5569 return true;
5573 /* Returns whether R1 and R2 are uniquely chained: the value of one
5574 is used by the other, and that value is not used by any other
5575 reload for this insn. This is used to partially undo the decision
5576 made in find_reloads when in the case of multiple
5577 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5578 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5579 reloads. This code tries to avoid the conflict created by that
5580 change. It might be cleaner to explicitly keep track of which
5581 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5582 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5583 this after the fact. */
5584 static bool
5585 reloads_unique_chain_p (int r1, int r2)
5587 int i;
5589 /* We only check input reloads. */
5590 if (! rld[r1].in || ! rld[r2].in)
5591 return false;
5593 /* Avoid anything with output reloads. */
5594 if (rld[r1].out || rld[r2].out)
5595 return false;
5597 /* "chained" means one reload is a component of the other reload,
5598 not the same as the other reload. */
5599 if (rld[r1].opnum != rld[r2].opnum
5600 || rtx_equal_p (rld[r1].in, rld[r2].in)
5601 || rld[r1].optional || rld[r2].optional
5602 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5603 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5604 return false;
5606 /* The following loop assumes that r1 is the reload that feeds r2. */
5607 if (r1 > r2)
5608 std::swap (r1, r2);
5610 for (i = 0; i < n_reloads; i ++)
5611 /* Look for input reloads that aren't our two */
5612 if (i != r1 && i != r2 && rld[i].in)
5614 /* If our reload is mentioned at all, it isn't a simple chain. */
5615 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5616 return false;
5618 return true;
5621 /* The recursive function change all occurrences of WHAT in *WHERE
5622 to REPL. */
5623 static void
5624 substitute (rtx *where, const_rtx what, rtx repl)
5626 const char *fmt;
5627 int i;
5628 enum rtx_code code;
5630 if (*where == 0)
5631 return;
5633 if (*where == what || rtx_equal_p (*where, what))
5635 /* Record the location of the changed rtx. */
5636 substitute_stack.safe_push (where);
5637 *where = repl;
5638 return;
5641 code = GET_CODE (*where);
5642 fmt = GET_RTX_FORMAT (code);
5643 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5645 if (fmt[i] == 'E')
5647 int j;
5649 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5650 substitute (&XVECEXP (*where, i, j), what, repl);
5652 else if (fmt[i] == 'e')
5653 substitute (&XEXP (*where, i), what, repl);
5657 /* The function returns TRUE if chain of reload R1 and R2 (in any
5658 order) can be evaluated without usage of intermediate register for
5659 the reload containing another reload. It is important to see
5660 gen_reload to understand what the function is trying to do. As an
5661 example, let us have reload chain
5663 r2: const
5664 r1: <something> + const
5666 and reload R2 got reload reg HR. The function returns true if
5667 there is a correct insn HR = HR + <something>. Otherwise,
5668 gen_reload will use intermediate register (and this is the reload
5669 reg for R1) to reload <something>.
5671 We need this function to find a conflict for chain reloads. In our
5672 example, if HR = HR + <something> is incorrect insn, then we cannot
5673 use HR as a reload register for R2. If we do use it then we get a
5674 wrong code:
5676 HR = const
5677 HR = <something>
5678 HR = HR + HR
5681 static bool
5682 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5684 /* Assume other cases in gen_reload are not possible for
5685 chain reloads or do need an intermediate hard registers. */
5686 bool result = true;
5687 int regno, code;
5688 rtx out, in;
5689 rtx_insn *insn;
5690 rtx_insn *last = get_last_insn ();
5692 /* Make r2 a component of r1. */
5693 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5694 std::swap (r1, r2);
5696 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5697 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5698 gcc_assert (regno >= 0);
5699 out = gen_rtx_REG (rld[r1].mode, regno);
5700 in = rld[r1].in;
5701 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5703 /* If IN is a paradoxical SUBREG, remove it and try to put the
5704 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5705 strip_paradoxical_subreg (&in, &out);
5707 if (GET_CODE (in) == PLUS
5708 && (REG_P (XEXP (in, 0))
5709 || GET_CODE (XEXP (in, 0)) == SUBREG
5710 || MEM_P (XEXP (in, 0)))
5711 && (REG_P (XEXP (in, 1))
5712 || GET_CODE (XEXP (in, 1)) == SUBREG
5713 || CONSTANT_P (XEXP (in, 1))
5714 || MEM_P (XEXP (in, 1))))
5716 insn = emit_insn (gen_rtx_SET (out, in));
5717 code = recog_memoized (insn);
5718 result = false;
5720 if (code >= 0)
5722 extract_insn (insn);
5723 /* We want constrain operands to treat this insn strictly in
5724 its validity determination, i.e., the way it would after
5725 reload has completed. */
5726 result = constrain_operands (1, get_enabled_alternatives (insn));
5729 delete_insns_since (last);
5732 /* Restore the original value at each changed address within R1. */
5733 while (!substitute_stack.is_empty ())
5735 rtx *where = substitute_stack.pop ();
5736 *where = rld[r2].in;
5739 return result;
5742 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5743 Return 0 otherwise.
5745 This function uses the same algorithm as reload_reg_free_p above. */
5747 static int
5748 reloads_conflict (int r1, int r2)
5750 enum reload_type r1_type = rld[r1].when_needed;
5751 enum reload_type r2_type = rld[r2].when_needed;
5752 int r1_opnum = rld[r1].opnum;
5753 int r2_opnum = rld[r2].opnum;
5755 /* RELOAD_OTHER conflicts with everything. */
5756 if (r2_type == RELOAD_OTHER)
5757 return 1;
5759 /* Otherwise, check conflicts differently for each type. */
5761 switch (r1_type)
5763 case RELOAD_FOR_INPUT:
5764 return (r2_type == RELOAD_FOR_INSN
5765 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5766 || r2_type == RELOAD_FOR_OPADDR_ADDR
5767 || r2_type == RELOAD_FOR_INPUT
5768 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5769 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5770 && r2_opnum > r1_opnum));
5772 case RELOAD_FOR_INPUT_ADDRESS:
5773 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5774 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5776 case RELOAD_FOR_INPADDR_ADDRESS:
5777 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5778 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5780 case RELOAD_FOR_OUTPUT_ADDRESS:
5781 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5782 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5784 case RELOAD_FOR_OUTADDR_ADDRESS:
5785 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5786 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5788 case RELOAD_FOR_OPERAND_ADDRESS:
5789 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5790 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5791 && (!reloads_unique_chain_p (r1, r2)
5792 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5794 case RELOAD_FOR_OPADDR_ADDR:
5795 return (r2_type == RELOAD_FOR_INPUT
5796 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5798 case RELOAD_FOR_OUTPUT:
5799 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5800 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5801 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5802 && r2_opnum >= r1_opnum));
5804 case RELOAD_FOR_INSN:
5805 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5806 || r2_type == RELOAD_FOR_INSN
5807 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5809 case RELOAD_FOR_OTHER_ADDRESS:
5810 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5812 case RELOAD_OTHER:
5813 return 1;
5815 default:
5816 gcc_unreachable ();
5820 /* Indexed by reload number, 1 if incoming value
5821 inherited from previous insns. */
5822 static char reload_inherited[MAX_RELOADS];
5824 /* For an inherited reload, this is the insn the reload was inherited from,
5825 if we know it. Otherwise, this is 0. */
5826 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5828 /* If nonzero, this is a place to get the value of the reload,
5829 rather than using reload_in. */
5830 static rtx reload_override_in[MAX_RELOADS];
5832 /* For each reload, the hard register number of the register used,
5833 or -1 if we did not need a register for this reload. */
5834 static int reload_spill_index[MAX_RELOADS];
5836 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5837 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5839 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5840 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5842 /* Subroutine of free_for_value_p, used to check a single register.
5843 START_REGNO is the starting regno of the full reload register
5844 (possibly comprising multiple hard registers) that we are considering. */
5846 static int
5847 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5848 enum reload_type type, rtx value, rtx out,
5849 int reloadnum, int ignore_address_reloads)
5851 int time1;
5852 /* Set if we see an input reload that must not share its reload register
5853 with any new earlyclobber, but might otherwise share the reload
5854 register with an output or input-output reload. */
5855 int check_earlyclobber = 0;
5856 int i;
5857 int copy = 0;
5859 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5860 return 0;
5862 if (out == const0_rtx)
5864 copy = 1;
5865 out = NULL_RTX;
5868 /* We use some pseudo 'time' value to check if the lifetimes of the
5869 new register use would overlap with the one of a previous reload
5870 that is not read-only or uses a different value.
5871 The 'time' used doesn't have to be linear in any shape or form, just
5872 monotonic.
5873 Some reload types use different 'buckets' for each operand.
5874 So there are MAX_RECOG_OPERANDS different time values for each
5875 such reload type.
5876 We compute TIME1 as the time when the register for the prospective
5877 new reload ceases to be live, and TIME2 for each existing
5878 reload as the time when that the reload register of that reload
5879 becomes live.
5880 Where there is little to be gained by exact lifetime calculations,
5881 we just make conservative assumptions, i.e. a longer lifetime;
5882 this is done in the 'default:' cases. */
5883 switch (type)
5885 case RELOAD_FOR_OTHER_ADDRESS:
5886 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5887 time1 = copy ? 0 : 1;
5888 break;
5889 case RELOAD_OTHER:
5890 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5891 break;
5892 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5893 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5894 respectively, to the time values for these, we get distinct time
5895 values. To get distinct time values for each operand, we have to
5896 multiply opnum by at least three. We round that up to four because
5897 multiply by four is often cheaper. */
5898 case RELOAD_FOR_INPADDR_ADDRESS:
5899 time1 = opnum * 4 + 2;
5900 break;
5901 case RELOAD_FOR_INPUT_ADDRESS:
5902 time1 = opnum * 4 + 3;
5903 break;
5904 case RELOAD_FOR_INPUT:
5905 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5906 executes (inclusive). */
5907 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5908 break;
5909 case RELOAD_FOR_OPADDR_ADDR:
5910 /* opnum * 4 + 4
5911 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5912 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5913 break;
5914 case RELOAD_FOR_OPERAND_ADDRESS:
5915 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5916 is executed. */
5917 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5918 break;
5919 case RELOAD_FOR_OUTADDR_ADDRESS:
5920 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5921 break;
5922 case RELOAD_FOR_OUTPUT_ADDRESS:
5923 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5924 break;
5925 default:
5926 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5929 for (i = 0; i < n_reloads; i++)
5931 rtx reg = rld[i].reg_rtx;
5932 if (reg && REG_P (reg)
5933 && ((unsigned) regno - true_regnum (reg)
5934 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5935 && i != reloadnum)
5937 rtx other_input = rld[i].in;
5939 /* If the other reload loads the same input value, that
5940 will not cause a conflict only if it's loading it into
5941 the same register. */
5942 if (true_regnum (reg) != start_regno)
5943 other_input = NULL_RTX;
5944 if (! other_input || ! rtx_equal_p (other_input, value)
5945 || rld[i].out || out)
5947 int time2;
5948 switch (rld[i].when_needed)
5950 case RELOAD_FOR_OTHER_ADDRESS:
5951 time2 = 0;
5952 break;
5953 case RELOAD_FOR_INPADDR_ADDRESS:
5954 /* find_reloads makes sure that a
5955 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5956 by at most one - the first -
5957 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5958 address reload is inherited, the address address reload
5959 goes away, so we can ignore this conflict. */
5960 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5961 && ignore_address_reloads
5962 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5963 Then the address address is still needed to store
5964 back the new address. */
5965 && ! rld[reloadnum].out)
5966 continue;
5967 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5968 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5969 reloads go away. */
5970 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5971 && ignore_address_reloads
5972 /* Unless we are reloading an auto_inc expression. */
5973 && ! rld[reloadnum].out)
5974 continue;
5975 time2 = rld[i].opnum * 4 + 2;
5976 break;
5977 case RELOAD_FOR_INPUT_ADDRESS:
5978 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5979 && ignore_address_reloads
5980 && ! rld[reloadnum].out)
5981 continue;
5982 time2 = rld[i].opnum * 4 + 3;
5983 break;
5984 case RELOAD_FOR_INPUT:
5985 time2 = rld[i].opnum * 4 + 4;
5986 check_earlyclobber = 1;
5987 break;
5988 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5989 == MAX_RECOG_OPERAND * 4 */
5990 case RELOAD_FOR_OPADDR_ADDR:
5991 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5992 && ignore_address_reloads
5993 && ! rld[reloadnum].out)
5994 continue;
5995 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5996 break;
5997 case RELOAD_FOR_OPERAND_ADDRESS:
5998 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5999 check_earlyclobber = 1;
6000 break;
6001 case RELOAD_FOR_INSN:
6002 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6003 break;
6004 case RELOAD_FOR_OUTPUT:
6005 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6006 instruction is executed. */
6007 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6008 break;
6009 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6010 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6011 value. */
6012 case RELOAD_FOR_OUTADDR_ADDRESS:
6013 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6014 && ignore_address_reloads
6015 && ! rld[reloadnum].out)
6016 continue;
6017 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6018 break;
6019 case RELOAD_FOR_OUTPUT_ADDRESS:
6020 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6021 break;
6022 case RELOAD_OTHER:
6023 /* If there is no conflict in the input part, handle this
6024 like an output reload. */
6025 if (! rld[i].in || rtx_equal_p (other_input, value))
6027 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6028 /* Earlyclobbered outputs must conflict with inputs. */
6029 if (earlyclobber_operand_p (rld[i].out))
6030 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6032 break;
6034 time2 = 1;
6035 /* RELOAD_OTHER might be live beyond instruction execution,
6036 but this is not obvious when we set time2 = 1. So check
6037 here if there might be a problem with the new reload
6038 clobbering the register used by the RELOAD_OTHER. */
6039 if (out)
6040 return 0;
6041 break;
6042 default:
6043 return 0;
6045 if ((time1 >= time2
6046 && (! rld[i].in || rld[i].out
6047 || ! rtx_equal_p (other_input, value)))
6048 || (out && rld[reloadnum].out_reg
6049 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6050 return 0;
6055 /* Earlyclobbered outputs must conflict with inputs. */
6056 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6057 return 0;
6059 return 1;
6062 /* Return 1 if the value in reload reg REGNO, as used by a reload
6063 needed for the part of the insn specified by OPNUM and TYPE,
6064 may be used to load VALUE into it.
6066 MODE is the mode in which the register is used, this is needed to
6067 determine how many hard regs to test.
6069 Other read-only reloads with the same value do not conflict
6070 unless OUT is nonzero and these other reloads have to live while
6071 output reloads live.
6072 If OUT is CONST0_RTX, this is a special case: it means that the
6073 test should not be for using register REGNO as reload register, but
6074 for copying from register REGNO into the reload register.
6076 RELOADNUM is the number of the reload we want to load this value for;
6077 a reload does not conflict with itself.
6079 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6080 reloads that load an address for the very reload we are considering.
6082 The caller has to make sure that there is no conflict with the return
6083 register. */
6085 static int
6086 free_for_value_p (int regno, machine_mode mode, int opnum,
6087 enum reload_type type, rtx value, rtx out, int reloadnum,
6088 int ignore_address_reloads)
6090 int nregs = hard_regno_nregs[regno][mode];
6091 while (nregs-- > 0)
6092 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6093 value, out, reloadnum,
6094 ignore_address_reloads))
6095 return 0;
6096 return 1;
6099 /* Return nonzero if the rtx X is invariant over the current function. */
6100 /* ??? Actually, the places where we use this expect exactly what is
6101 tested here, and not everything that is function invariant. In
6102 particular, the frame pointer and arg pointer are special cased;
6103 pic_offset_table_rtx is not, and we must not spill these things to
6104 memory. */
6107 function_invariant_p (const_rtx x)
6109 if (CONSTANT_P (x))
6110 return 1;
6111 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6112 return 1;
6113 if (GET_CODE (x) == PLUS
6114 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6115 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6116 return 1;
6117 return 0;
6120 /* Determine whether the reload reg X overlaps any rtx'es used for
6121 overriding inheritance. Return nonzero if so. */
6123 static int
6124 conflicts_with_override (rtx x)
6126 int i;
6127 for (i = 0; i < n_reloads; i++)
6128 if (reload_override_in[i]
6129 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6130 return 1;
6131 return 0;
6134 /* Give an error message saying we failed to find a reload for INSN,
6135 and clear out reload R. */
6136 static void
6137 failed_reload (rtx_insn *insn, int r)
6139 if (asm_noperands (PATTERN (insn)) < 0)
6140 /* It's the compiler's fault. */
6141 fatal_insn ("could not find a spill register", insn);
6143 /* It's the user's fault; the operand's mode and constraint
6144 don't match. Disable this reload so we don't crash in final. */
6145 error_for_asm (insn,
6146 "%<asm%> operand constraint incompatible with operand size");
6147 rld[r].in = 0;
6148 rld[r].out = 0;
6149 rld[r].reg_rtx = 0;
6150 rld[r].optional = 1;
6151 rld[r].secondary_p = 1;
6154 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6155 for reload R. If it's valid, get an rtx for it. Return nonzero if
6156 successful. */
6157 static int
6158 set_reload_reg (int i, int r)
6160 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6161 parameter. */
6162 int regno ATTRIBUTE_UNUSED;
6163 rtx reg = spill_reg_rtx[i];
6165 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6166 spill_reg_rtx[i] = reg
6167 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6169 regno = true_regnum (reg);
6171 /* Detect when the reload reg can't hold the reload mode.
6172 This used to be one `if', but Sequent compiler can't handle that. */
6173 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6175 machine_mode test_mode = VOIDmode;
6176 if (rld[r].in)
6177 test_mode = GET_MODE (rld[r].in);
6178 /* If rld[r].in has VOIDmode, it means we will load it
6179 in whatever mode the reload reg has: to wit, rld[r].mode.
6180 We have already tested that for validity. */
6181 /* Aside from that, we need to test that the expressions
6182 to reload from or into have modes which are valid for this
6183 reload register. Otherwise the reload insns would be invalid. */
6184 if (! (rld[r].in != 0 && test_mode != VOIDmode
6185 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6186 if (! (rld[r].out != 0
6187 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6189 /* The reg is OK. */
6190 last_spill_reg = i;
6192 /* Mark as in use for this insn the reload regs we use
6193 for this. */
6194 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6195 rld[r].when_needed, rld[r].mode);
6197 rld[r].reg_rtx = reg;
6198 reload_spill_index[r] = spill_regs[i];
6199 return 1;
6202 return 0;
6205 /* Find a spill register to use as a reload register for reload R.
6206 LAST_RELOAD is nonzero if this is the last reload for the insn being
6207 processed.
6209 Set rld[R].reg_rtx to the register allocated.
6211 We return 1 if successful, or 0 if we couldn't find a spill reg and
6212 we didn't change anything. */
6214 static int
6215 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6216 int last_reload)
6218 int i, pass, count;
6220 /* If we put this reload ahead, thinking it is a group,
6221 then insist on finding a group. Otherwise we can grab a
6222 reg that some other reload needs.
6223 (That can happen when we have a 68000 DATA_OR_FP_REG
6224 which is a group of data regs or one fp reg.)
6225 We need not be so restrictive if there are no more reloads
6226 for this insn.
6228 ??? Really it would be nicer to have smarter handling
6229 for that kind of reg class, where a problem like this is normal.
6230 Perhaps those classes should be avoided for reloading
6231 by use of more alternatives. */
6233 int force_group = rld[r].nregs > 1 && ! last_reload;
6235 /* If we want a single register and haven't yet found one,
6236 take any reg in the right class and not in use.
6237 If we want a consecutive group, here is where we look for it.
6239 We use three passes so we can first look for reload regs to
6240 reuse, which are already in use for other reloads in this insn,
6241 and only then use additional registers which are not "bad", then
6242 finally any register.
6244 I think that maximizing reuse is needed to make sure we don't
6245 run out of reload regs. Suppose we have three reloads, and
6246 reloads A and B can share regs. These need two regs.
6247 Suppose A and B are given different regs.
6248 That leaves none for C. */
6249 for (pass = 0; pass < 3; pass++)
6251 /* I is the index in spill_regs.
6252 We advance it round-robin between insns to use all spill regs
6253 equally, so that inherited reloads have a chance
6254 of leapfrogging each other. */
6256 i = last_spill_reg;
6258 for (count = 0; count < n_spills; count++)
6260 int rclass = (int) rld[r].rclass;
6261 int regnum;
6263 i++;
6264 if (i >= n_spills)
6265 i -= n_spills;
6266 regnum = spill_regs[i];
6268 if ((reload_reg_free_p (regnum, rld[r].opnum,
6269 rld[r].when_needed)
6270 || (rld[r].in
6271 /* We check reload_reg_used to make sure we
6272 don't clobber the return register. */
6273 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6274 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6275 rld[r].when_needed, rld[r].in,
6276 rld[r].out, r, 1)))
6277 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6278 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6279 /* Look first for regs to share, then for unshared. But
6280 don't share regs used for inherited reloads; they are
6281 the ones we want to preserve. */
6282 && (pass
6283 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6284 regnum)
6285 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6286 regnum))))
6288 int nr = hard_regno_nregs[regnum][rld[r].mode];
6290 /* During the second pass we want to avoid reload registers
6291 which are "bad" for this reload. */
6292 if (pass == 1
6293 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6294 continue;
6296 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6297 (on 68000) got us two FP regs. If NR is 1,
6298 we would reject both of them. */
6299 if (force_group)
6300 nr = rld[r].nregs;
6301 /* If we need only one reg, we have already won. */
6302 if (nr == 1)
6304 /* But reject a single reg if we demand a group. */
6305 if (force_group)
6306 continue;
6307 break;
6309 /* Otherwise check that as many consecutive regs as we need
6310 are available here. */
6311 while (nr > 1)
6313 int regno = regnum + nr - 1;
6314 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6315 && spill_reg_order[regno] >= 0
6316 && reload_reg_free_p (regno, rld[r].opnum,
6317 rld[r].when_needed)))
6318 break;
6319 nr--;
6321 if (nr == 1)
6322 break;
6326 /* If we found something on the current pass, omit later passes. */
6327 if (count < n_spills)
6328 break;
6331 /* We should have found a spill register by now. */
6332 if (count >= n_spills)
6333 return 0;
6335 /* I is the index in SPILL_REG_RTX of the reload register we are to
6336 allocate. Get an rtx for it and find its register number. */
6338 return set_reload_reg (i, r);
6341 /* Initialize all the tables needed to allocate reload registers.
6342 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6343 is the array we use to restore the reg_rtx field for every reload. */
6345 static void
6346 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6348 int i;
6350 for (i = 0; i < n_reloads; i++)
6351 rld[i].reg_rtx = save_reload_reg_rtx[i];
6353 memset (reload_inherited, 0, MAX_RELOADS);
6354 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6355 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6357 CLEAR_HARD_REG_SET (reload_reg_used);
6358 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6359 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6360 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6361 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6362 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6364 CLEAR_HARD_REG_SET (reg_used_in_insn);
6366 HARD_REG_SET tmp;
6367 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6368 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6369 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6370 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6371 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6372 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6375 for (i = 0; i < reload_n_operands; i++)
6377 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6378 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6379 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6380 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6381 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6382 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6385 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6387 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6389 for (i = 0; i < n_reloads; i++)
6390 /* If we have already decided to use a certain register,
6391 don't use it in another way. */
6392 if (rld[i].reg_rtx)
6393 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6394 rld[i].when_needed, rld[i].mode);
6397 #ifdef SECONDARY_MEMORY_NEEDED
6398 /* If X is not a subreg, return it unmodified. If it is a subreg,
6399 look up whether we made a replacement for the SUBREG_REG. Return
6400 either the replacement or the SUBREG_REG. */
6402 static rtx
6403 replaced_subreg (rtx x)
6405 if (GET_CODE (x) == SUBREG)
6406 return find_replacement (&SUBREG_REG (x));
6407 return x;
6409 #endif
6411 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6412 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6413 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6414 otherwise it is NULL. */
6416 static int
6417 compute_reload_subreg_offset (machine_mode outermode,
6418 rtx subreg,
6419 machine_mode innermode)
6421 int outer_offset;
6422 machine_mode middlemode;
6424 if (!subreg)
6425 return subreg_lowpart_offset (outermode, innermode);
6427 outer_offset = SUBREG_BYTE (subreg);
6428 middlemode = GET_MODE (SUBREG_REG (subreg));
6430 /* If SUBREG is paradoxical then return the normal lowpart offset
6431 for OUTERMODE and INNERMODE. Our caller has already checked
6432 that OUTERMODE fits in INNERMODE. */
6433 if (outer_offset == 0
6434 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6435 return subreg_lowpart_offset (outermode, innermode);
6437 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6438 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6439 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6442 /* Assign hard reg targets for the pseudo-registers we must reload
6443 into hard regs for this insn.
6444 Also output the instructions to copy them in and out of the hard regs.
6446 For machines with register classes, we are responsible for
6447 finding a reload reg in the proper class. */
6449 static void
6450 choose_reload_regs (struct insn_chain *chain)
6452 rtx_insn *insn = chain->insn;
6453 int i, j;
6454 unsigned int max_group_size = 1;
6455 enum reg_class group_class = NO_REGS;
6456 int pass, win, inheritance;
6458 rtx save_reload_reg_rtx[MAX_RELOADS];
6460 /* In order to be certain of getting the registers we need,
6461 we must sort the reloads into order of increasing register class.
6462 Then our grabbing of reload registers will parallel the process
6463 that provided the reload registers.
6465 Also note whether any of the reloads wants a consecutive group of regs.
6466 If so, record the maximum size of the group desired and what
6467 register class contains all the groups needed by this insn. */
6469 for (j = 0; j < n_reloads; j++)
6471 reload_order[j] = j;
6472 if (rld[j].reg_rtx != NULL_RTX)
6474 gcc_assert (REG_P (rld[j].reg_rtx)
6475 && HARD_REGISTER_P (rld[j].reg_rtx));
6476 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6478 else
6479 reload_spill_index[j] = -1;
6481 if (rld[j].nregs > 1)
6483 max_group_size = MAX (rld[j].nregs, max_group_size);
6484 group_class
6485 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6488 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6491 if (n_reloads > 1)
6492 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6494 /* If -O, try first with inheritance, then turning it off.
6495 If not -O, don't do inheritance.
6496 Using inheritance when not optimizing leads to paradoxes
6497 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6498 because one side of the comparison might be inherited. */
6499 win = 0;
6500 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6502 choose_reload_regs_init (chain, save_reload_reg_rtx);
6504 /* Process the reloads in order of preference just found.
6505 Beyond this point, subregs can be found in reload_reg_rtx.
6507 This used to look for an existing reloaded home for all of the
6508 reloads, and only then perform any new reloads. But that could lose
6509 if the reloads were done out of reg-class order because a later
6510 reload with a looser constraint might have an old home in a register
6511 needed by an earlier reload with a tighter constraint.
6513 To solve this, we make two passes over the reloads, in the order
6514 described above. In the first pass we try to inherit a reload
6515 from a previous insn. If there is a later reload that needs a
6516 class that is a proper subset of the class being processed, we must
6517 also allocate a spill register during the first pass.
6519 Then make a second pass over the reloads to allocate any reloads
6520 that haven't been given registers yet. */
6522 for (j = 0; j < n_reloads; j++)
6524 int r = reload_order[j];
6525 rtx search_equiv = NULL_RTX;
6527 /* Ignore reloads that got marked inoperative. */
6528 if (rld[r].out == 0 && rld[r].in == 0
6529 && ! rld[r].secondary_p)
6530 continue;
6532 /* If find_reloads chose to use reload_in or reload_out as a reload
6533 register, we don't need to chose one. Otherwise, try even if it
6534 found one since we might save an insn if we find the value lying
6535 around.
6536 Try also when reload_in is a pseudo without a hard reg. */
6537 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6538 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6539 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6540 && !MEM_P (rld[r].in)
6541 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6542 continue;
6544 #if 0 /* No longer needed for correct operation.
6545 It might give better code, or might not; worth an experiment? */
6546 /* If this is an optional reload, we can't inherit from earlier insns
6547 until we are sure that any non-optional reloads have been allocated.
6548 The following code takes advantage of the fact that optional reloads
6549 are at the end of reload_order. */
6550 if (rld[r].optional != 0)
6551 for (i = 0; i < j; i++)
6552 if ((rld[reload_order[i]].out != 0
6553 || rld[reload_order[i]].in != 0
6554 || rld[reload_order[i]].secondary_p)
6555 && ! rld[reload_order[i]].optional
6556 && rld[reload_order[i]].reg_rtx == 0)
6557 allocate_reload_reg (chain, reload_order[i], 0);
6558 #endif
6560 /* First see if this pseudo is already available as reloaded
6561 for a previous insn. We cannot try to inherit for reloads
6562 that are smaller than the maximum number of registers needed
6563 for groups unless the register we would allocate cannot be used
6564 for the groups.
6566 We could check here to see if this is a secondary reload for
6567 an object that is already in a register of the desired class.
6568 This would avoid the need for the secondary reload register.
6569 But this is complex because we can't easily determine what
6570 objects might want to be loaded via this reload. So let a
6571 register be allocated here. In `emit_reload_insns' we suppress
6572 one of the loads in the case described above. */
6574 if (inheritance)
6576 int byte = 0;
6577 int regno = -1;
6578 machine_mode mode = VOIDmode;
6579 rtx subreg = NULL_RTX;
6581 if (rld[r].in == 0)
6583 else if (REG_P (rld[r].in))
6585 regno = REGNO (rld[r].in);
6586 mode = GET_MODE (rld[r].in);
6588 else if (REG_P (rld[r].in_reg))
6590 regno = REGNO (rld[r].in_reg);
6591 mode = GET_MODE (rld[r].in_reg);
6593 else if (GET_CODE (rld[r].in_reg) == SUBREG
6594 && REG_P (SUBREG_REG (rld[r].in_reg)))
6596 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6597 if (regno < FIRST_PSEUDO_REGISTER)
6598 regno = subreg_regno (rld[r].in_reg);
6599 else
6601 subreg = rld[r].in_reg;
6602 byte = SUBREG_BYTE (subreg);
6604 mode = GET_MODE (rld[r].in_reg);
6606 #if AUTO_INC_DEC
6607 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6608 && REG_P (XEXP (rld[r].in_reg, 0)))
6610 regno = REGNO (XEXP (rld[r].in_reg, 0));
6611 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6612 rld[r].out = rld[r].in;
6614 #endif
6615 #if 0
6616 /* This won't work, since REGNO can be a pseudo reg number.
6617 Also, it takes much more hair to keep track of all the things
6618 that can invalidate an inherited reload of part of a pseudoreg. */
6619 else if (GET_CODE (rld[r].in) == SUBREG
6620 && REG_P (SUBREG_REG (rld[r].in)))
6621 regno = subreg_regno (rld[r].in);
6622 #endif
6624 if (regno >= 0
6625 && reg_last_reload_reg[regno] != 0
6626 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6627 >= GET_MODE_SIZE (mode) + byte)
6628 #ifdef CANNOT_CHANGE_MODE_CLASS
6629 /* Verify that the register it's in can be used in
6630 mode MODE. */
6631 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6632 GET_MODE (reg_last_reload_reg[regno]),
6633 mode)
6634 #endif
6637 enum reg_class rclass = rld[r].rclass, last_class;
6638 rtx last_reg = reg_last_reload_reg[regno];
6640 i = REGNO (last_reg);
6641 byte = compute_reload_subreg_offset (mode,
6642 subreg,
6643 GET_MODE (last_reg));
6644 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6645 last_class = REGNO_REG_CLASS (i);
6647 if (reg_reloaded_contents[i] == regno
6648 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6649 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6650 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6651 /* Even if we can't use this register as a reload
6652 register, we might use it for reload_override_in,
6653 if copying it to the desired class is cheap
6654 enough. */
6655 || ((register_move_cost (mode, last_class, rclass)
6656 < memory_move_cost (mode, rclass, true))
6657 && (secondary_reload_class (1, rclass, mode,
6658 last_reg)
6659 == NO_REGS)
6660 #ifdef SECONDARY_MEMORY_NEEDED
6661 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6662 mode)
6663 #endif
6666 && (rld[r].nregs == max_group_size
6667 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6669 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6670 rld[r].when_needed, rld[r].in,
6671 const0_rtx, r, 1))
6673 /* If a group is needed, verify that all the subsequent
6674 registers still have their values intact. */
6675 int nr = hard_regno_nregs[i][rld[r].mode];
6676 int k;
6678 for (k = 1; k < nr; k++)
6679 if (reg_reloaded_contents[i + k] != regno
6680 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6681 break;
6683 if (k == nr)
6685 int i1;
6686 int bad_for_class;
6688 last_reg = (GET_MODE (last_reg) == mode
6689 ? last_reg : gen_rtx_REG (mode, i));
6691 bad_for_class = 0;
6692 for (k = 0; k < nr; k++)
6693 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6694 i+k);
6696 /* We found a register that contains the
6697 value we need. If this register is the
6698 same as an `earlyclobber' operand of the
6699 current insn, just mark it as a place to
6700 reload from since we can't use it as the
6701 reload register itself. */
6703 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6704 if (reg_overlap_mentioned_for_reload_p
6705 (reg_last_reload_reg[regno],
6706 reload_earlyclobbers[i1]))
6707 break;
6709 if (i1 != n_earlyclobbers
6710 || ! (free_for_value_p (i, rld[r].mode,
6711 rld[r].opnum,
6712 rld[r].when_needed, rld[r].in,
6713 rld[r].out, r, 1))
6714 /* Don't use it if we'd clobber a pseudo reg. */
6715 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6716 && rld[r].out
6717 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6718 /* Don't clobber the frame pointer. */
6719 || (i == HARD_FRAME_POINTER_REGNUM
6720 && frame_pointer_needed
6721 && rld[r].out)
6722 /* Don't really use the inherited spill reg
6723 if we need it wider than we've got it. */
6724 || (GET_MODE_SIZE (rld[r].mode)
6725 > GET_MODE_SIZE (mode))
6726 || bad_for_class
6728 /* If find_reloads chose reload_out as reload
6729 register, stay with it - that leaves the
6730 inherited register for subsequent reloads. */
6731 || (rld[r].out && rld[r].reg_rtx
6732 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6734 if (! rld[r].optional)
6736 reload_override_in[r] = last_reg;
6737 reload_inheritance_insn[r]
6738 = reg_reloaded_insn[i];
6741 else
6743 int k;
6744 /* We can use this as a reload reg. */
6745 /* Mark the register as in use for this part of
6746 the insn. */
6747 mark_reload_reg_in_use (i,
6748 rld[r].opnum,
6749 rld[r].when_needed,
6750 rld[r].mode);
6751 rld[r].reg_rtx = last_reg;
6752 reload_inherited[r] = 1;
6753 reload_inheritance_insn[r]
6754 = reg_reloaded_insn[i];
6755 reload_spill_index[r] = i;
6756 for (k = 0; k < nr; k++)
6757 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6758 i + k);
6765 /* Here's another way to see if the value is already lying around. */
6766 if (inheritance
6767 && rld[r].in != 0
6768 && ! reload_inherited[r]
6769 && rld[r].out == 0
6770 && (CONSTANT_P (rld[r].in)
6771 || GET_CODE (rld[r].in) == PLUS
6772 || REG_P (rld[r].in)
6773 || MEM_P (rld[r].in))
6774 && (rld[r].nregs == max_group_size
6775 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6776 search_equiv = rld[r].in;
6778 if (search_equiv)
6780 rtx equiv
6781 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6782 -1, NULL, 0, rld[r].mode);
6783 int regno = 0;
6785 if (equiv != 0)
6787 if (REG_P (equiv))
6788 regno = REGNO (equiv);
6789 else
6791 /* This must be a SUBREG of a hard register.
6792 Make a new REG since this might be used in an
6793 address and not all machines support SUBREGs
6794 there. */
6795 gcc_assert (GET_CODE (equiv) == SUBREG);
6796 regno = subreg_regno (equiv);
6797 equiv = gen_rtx_REG (rld[r].mode, regno);
6798 /* If we choose EQUIV as the reload register, but the
6799 loop below decides to cancel the inheritance, we'll
6800 end up reloading EQUIV in rld[r].mode, not the mode
6801 it had originally. That isn't safe when EQUIV isn't
6802 available as a spill register since its value might
6803 still be live at this point. */
6804 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6805 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6806 equiv = 0;
6810 /* If we found a spill reg, reject it unless it is free
6811 and of the desired class. */
6812 if (equiv != 0)
6814 int regs_used = 0;
6815 int bad_for_class = 0;
6816 int max_regno = regno + rld[r].nregs;
6818 for (i = regno; i < max_regno; i++)
6820 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6822 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6826 if ((regs_used
6827 && ! free_for_value_p (regno, rld[r].mode,
6828 rld[r].opnum, rld[r].when_needed,
6829 rld[r].in, rld[r].out, r, 1))
6830 || bad_for_class)
6831 equiv = 0;
6834 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6835 equiv = 0;
6837 /* We found a register that contains the value we need.
6838 If this register is the same as an `earlyclobber' operand
6839 of the current insn, just mark it as a place to reload from
6840 since we can't use it as the reload register itself. */
6842 if (equiv != 0)
6843 for (i = 0; i < n_earlyclobbers; i++)
6844 if (reg_overlap_mentioned_for_reload_p (equiv,
6845 reload_earlyclobbers[i]))
6847 if (! rld[r].optional)
6848 reload_override_in[r] = equiv;
6849 equiv = 0;
6850 break;
6853 /* If the equiv register we have found is explicitly clobbered
6854 in the current insn, it depends on the reload type if we
6855 can use it, use it for reload_override_in, or not at all.
6856 In particular, we then can't use EQUIV for a
6857 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6859 if (equiv != 0)
6861 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6862 switch (rld[r].when_needed)
6864 case RELOAD_FOR_OTHER_ADDRESS:
6865 case RELOAD_FOR_INPADDR_ADDRESS:
6866 case RELOAD_FOR_INPUT_ADDRESS:
6867 case RELOAD_FOR_OPADDR_ADDR:
6868 break;
6869 case RELOAD_OTHER:
6870 case RELOAD_FOR_INPUT:
6871 case RELOAD_FOR_OPERAND_ADDRESS:
6872 if (! rld[r].optional)
6873 reload_override_in[r] = equiv;
6874 /* Fall through. */
6875 default:
6876 equiv = 0;
6877 break;
6879 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6880 switch (rld[r].when_needed)
6882 case RELOAD_FOR_OTHER_ADDRESS:
6883 case RELOAD_FOR_INPADDR_ADDRESS:
6884 case RELOAD_FOR_INPUT_ADDRESS:
6885 case RELOAD_FOR_OPADDR_ADDR:
6886 case RELOAD_FOR_OPERAND_ADDRESS:
6887 case RELOAD_FOR_INPUT:
6888 break;
6889 case RELOAD_OTHER:
6890 if (! rld[r].optional)
6891 reload_override_in[r] = equiv;
6892 /* Fall through. */
6893 default:
6894 equiv = 0;
6895 break;
6899 /* If we found an equivalent reg, say no code need be generated
6900 to load it, and use it as our reload reg. */
6901 if (equiv != 0
6902 && (regno != HARD_FRAME_POINTER_REGNUM
6903 || !frame_pointer_needed))
6905 int nr = hard_regno_nregs[regno][rld[r].mode];
6906 int k;
6907 rld[r].reg_rtx = equiv;
6908 reload_spill_index[r] = regno;
6909 reload_inherited[r] = 1;
6911 /* If reg_reloaded_valid is not set for this register,
6912 there might be a stale spill_reg_store lying around.
6913 We must clear it, since otherwise emit_reload_insns
6914 might delete the store. */
6915 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6916 spill_reg_store[regno] = NULL;
6917 /* If any of the hard registers in EQUIV are spill
6918 registers, mark them as in use for this insn. */
6919 for (k = 0; k < nr; k++)
6921 i = spill_reg_order[regno + k];
6922 if (i >= 0)
6924 mark_reload_reg_in_use (regno, rld[r].opnum,
6925 rld[r].when_needed,
6926 rld[r].mode);
6927 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6928 regno + k);
6934 /* If we found a register to use already, or if this is an optional
6935 reload, we are done. */
6936 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6937 continue;
6939 #if 0
6940 /* No longer needed for correct operation. Might or might
6941 not give better code on the average. Want to experiment? */
6943 /* See if there is a later reload that has a class different from our
6944 class that intersects our class or that requires less register
6945 than our reload. If so, we must allocate a register to this
6946 reload now, since that reload might inherit a previous reload
6947 and take the only available register in our class. Don't do this
6948 for optional reloads since they will force all previous reloads
6949 to be allocated. Also don't do this for reloads that have been
6950 turned off. */
6952 for (i = j + 1; i < n_reloads; i++)
6954 int s = reload_order[i];
6956 if ((rld[s].in == 0 && rld[s].out == 0
6957 && ! rld[s].secondary_p)
6958 || rld[s].optional)
6959 continue;
6961 if ((rld[s].rclass != rld[r].rclass
6962 && reg_classes_intersect_p (rld[r].rclass,
6963 rld[s].rclass))
6964 || rld[s].nregs < rld[r].nregs)
6965 break;
6968 if (i == n_reloads)
6969 continue;
6971 allocate_reload_reg (chain, r, j == n_reloads - 1);
6972 #endif
6975 /* Now allocate reload registers for anything non-optional that
6976 didn't get one yet. */
6977 for (j = 0; j < n_reloads; j++)
6979 int r = reload_order[j];
6981 /* Ignore reloads that got marked inoperative. */
6982 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6983 continue;
6985 /* Skip reloads that already have a register allocated or are
6986 optional. */
6987 if (rld[r].reg_rtx != 0 || rld[r].optional)
6988 continue;
6990 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6991 break;
6994 /* If that loop got all the way, we have won. */
6995 if (j == n_reloads)
6997 win = 1;
6998 break;
7001 /* Loop around and try without any inheritance. */
7004 if (! win)
7006 /* First undo everything done by the failed attempt
7007 to allocate with inheritance. */
7008 choose_reload_regs_init (chain, save_reload_reg_rtx);
7010 /* Some sanity tests to verify that the reloads found in the first
7011 pass are identical to the ones we have now. */
7012 gcc_assert (chain->n_reloads == n_reloads);
7014 for (i = 0; i < n_reloads; i++)
7016 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7017 continue;
7018 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7019 for (j = 0; j < n_spills; j++)
7020 if (spill_regs[j] == chain->rld[i].regno)
7021 if (! set_reload_reg (j, i))
7022 failed_reload (chain->insn, i);
7026 /* If we thought we could inherit a reload, because it seemed that
7027 nothing else wanted the same reload register earlier in the insn,
7028 verify that assumption, now that all reloads have been assigned.
7029 Likewise for reloads where reload_override_in has been set. */
7031 /* If doing expensive optimizations, do one preliminary pass that doesn't
7032 cancel any inheritance, but removes reloads that have been needed only
7033 for reloads that we know can be inherited. */
7034 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7036 for (j = 0; j < n_reloads; j++)
7038 int r = reload_order[j];
7039 rtx check_reg;
7040 #ifdef SECONDARY_MEMORY_NEEDED
7041 rtx tem;
7042 #endif
7043 if (reload_inherited[r] && rld[r].reg_rtx)
7044 check_reg = rld[r].reg_rtx;
7045 else if (reload_override_in[r]
7046 && (REG_P (reload_override_in[r])
7047 || GET_CODE (reload_override_in[r]) == SUBREG))
7048 check_reg = reload_override_in[r];
7049 else
7050 continue;
7051 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7052 rld[r].opnum, rld[r].when_needed, rld[r].in,
7053 (reload_inherited[r]
7054 ? rld[r].out : const0_rtx),
7055 r, 1))
7057 if (pass)
7058 continue;
7059 reload_inherited[r] = 0;
7060 reload_override_in[r] = 0;
7062 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7063 reload_override_in, then we do not need its related
7064 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7065 likewise for other reload types.
7066 We handle this by removing a reload when its only replacement
7067 is mentioned in reload_in of the reload we are going to inherit.
7068 A special case are auto_inc expressions; even if the input is
7069 inherited, we still need the address for the output. We can
7070 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7071 If we succeeded removing some reload and we are doing a preliminary
7072 pass just to remove such reloads, make another pass, since the
7073 removal of one reload might allow us to inherit another one. */
7074 else if (rld[r].in
7075 && rld[r].out != rld[r].in
7076 && remove_address_replacements (rld[r].in))
7078 if (pass)
7079 pass = 2;
7081 #ifdef SECONDARY_MEMORY_NEEDED
7082 /* If we needed a memory location for the reload, we also have to
7083 remove its related reloads. */
7084 else if (rld[r].in
7085 && rld[r].out != rld[r].in
7086 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7087 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7088 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7089 rld[r].rclass, rld[r].inmode)
7090 && remove_address_replacements
7091 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7092 rld[r].when_needed)))
7094 if (pass)
7095 pass = 2;
7097 #endif
7101 /* Now that reload_override_in is known valid,
7102 actually override reload_in. */
7103 for (j = 0; j < n_reloads; j++)
7104 if (reload_override_in[j])
7105 rld[j].in = reload_override_in[j];
7107 /* If this reload won't be done because it has been canceled or is
7108 optional and not inherited, clear reload_reg_rtx so other
7109 routines (such as subst_reloads) don't get confused. */
7110 for (j = 0; j < n_reloads; j++)
7111 if (rld[j].reg_rtx != 0
7112 && ((rld[j].optional && ! reload_inherited[j])
7113 || (rld[j].in == 0 && rld[j].out == 0
7114 && ! rld[j].secondary_p)))
7116 int regno = true_regnum (rld[j].reg_rtx);
7118 if (spill_reg_order[regno] >= 0)
7119 clear_reload_reg_in_use (regno, rld[j].opnum,
7120 rld[j].when_needed, rld[j].mode);
7121 rld[j].reg_rtx = 0;
7122 reload_spill_index[j] = -1;
7125 /* Record which pseudos and which spill regs have output reloads. */
7126 for (j = 0; j < n_reloads; j++)
7128 int r = reload_order[j];
7130 i = reload_spill_index[r];
7132 /* I is nonneg if this reload uses a register.
7133 If rld[r].reg_rtx is 0, this is an optional reload
7134 that we opted to ignore. */
7135 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7136 && rld[r].reg_rtx != 0)
7138 int nregno = REGNO (rld[r].out_reg);
7139 int nr = 1;
7141 if (nregno < FIRST_PSEUDO_REGISTER)
7142 nr = hard_regno_nregs[nregno][rld[r].mode];
7144 while (--nr >= 0)
7145 SET_REGNO_REG_SET (&reg_has_output_reload,
7146 nregno + nr);
7148 if (i >= 0)
7149 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7151 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7152 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7153 || rld[r].when_needed == RELOAD_FOR_INSN);
7158 /* Deallocate the reload register for reload R. This is called from
7159 remove_address_replacements. */
7161 void
7162 deallocate_reload_reg (int r)
7164 int regno;
7166 if (! rld[r].reg_rtx)
7167 return;
7168 regno = true_regnum (rld[r].reg_rtx);
7169 rld[r].reg_rtx = 0;
7170 if (spill_reg_order[regno] >= 0)
7171 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7172 rld[r].mode);
7173 reload_spill_index[r] = -1;
7176 /* These arrays are filled by emit_reload_insns and its subroutines. */
7177 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7178 static rtx_insn *other_input_address_reload_insns = 0;
7179 static rtx_insn *other_input_reload_insns = 0;
7180 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7181 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7182 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7183 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7184 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7185 static rtx_insn *operand_reload_insns = 0;
7186 static rtx_insn *other_operand_reload_insns = 0;
7187 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7189 /* Values to be put in spill_reg_store are put here first. Instructions
7190 must only be placed here if the associated reload register reaches
7191 the end of the instruction's reload sequence. */
7192 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7193 static HARD_REG_SET reg_reloaded_died;
7195 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7196 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7197 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7198 adjusted register, and return true. Otherwise, return false. */
7199 static bool
7200 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7201 enum reg_class new_class,
7202 machine_mode new_mode)
7205 rtx reg;
7207 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7209 unsigned regno = REGNO (reg);
7211 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7212 continue;
7213 if (GET_MODE (reg) != new_mode)
7215 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7216 continue;
7217 if (hard_regno_nregs[regno][new_mode]
7218 > hard_regno_nregs[regno][GET_MODE (reg)])
7219 continue;
7220 reg = reload_adjust_reg_for_mode (reg, new_mode);
7222 *reload_reg = reg;
7223 return true;
7225 return false;
7228 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7229 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7230 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7231 adjusted register, and return true. Otherwise, return false. */
7232 static bool
7233 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7234 enum insn_code icode)
7237 enum reg_class new_class = scratch_reload_class (icode);
7238 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7240 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7241 new_class, new_mode);
7244 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7245 has the number J. OLD contains the value to be used as input. */
7247 static void
7248 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7249 rtx old, int j)
7251 rtx_insn *insn = chain->insn;
7252 rtx reloadreg;
7253 rtx oldequiv_reg = 0;
7254 rtx oldequiv = 0;
7255 int special = 0;
7256 machine_mode mode;
7257 rtx_insn **where;
7259 /* delete_output_reload is only invoked properly if old contains
7260 the original pseudo register. Since this is replaced with a
7261 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7262 find the pseudo in RELOAD_IN_REG. This is also used to
7263 determine whether a secondary reload is needed. */
7264 if (reload_override_in[j]
7265 && (REG_P (rl->in_reg)
7266 || (GET_CODE (rl->in_reg) == SUBREG
7267 && REG_P (SUBREG_REG (rl->in_reg)))))
7269 oldequiv = old;
7270 old = rl->in_reg;
7272 if (oldequiv == 0)
7273 oldequiv = old;
7274 else if (REG_P (oldequiv))
7275 oldequiv_reg = oldequiv;
7276 else if (GET_CODE (oldequiv) == SUBREG)
7277 oldequiv_reg = SUBREG_REG (oldequiv);
7279 reloadreg = reload_reg_rtx_for_input[j];
7280 mode = GET_MODE (reloadreg);
7282 /* If we are reloading from a register that was recently stored in
7283 with an output-reload, see if we can prove there was
7284 actually no need to store the old value in it. */
7286 if (optimize && REG_P (oldequiv)
7287 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7288 && spill_reg_store[REGNO (oldequiv)]
7289 && REG_P (old)
7290 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7291 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7292 rl->out_reg)))
7293 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7295 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7296 OLDEQUIV. */
7298 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7299 oldequiv = SUBREG_REG (oldequiv);
7300 if (GET_MODE (oldequiv) != VOIDmode
7301 && mode != GET_MODE (oldequiv))
7302 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7304 /* Switch to the right place to emit the reload insns. */
7305 switch (rl->when_needed)
7307 case RELOAD_OTHER:
7308 where = &other_input_reload_insns;
7309 break;
7310 case RELOAD_FOR_INPUT:
7311 where = &input_reload_insns[rl->opnum];
7312 break;
7313 case RELOAD_FOR_INPUT_ADDRESS:
7314 where = &input_address_reload_insns[rl->opnum];
7315 break;
7316 case RELOAD_FOR_INPADDR_ADDRESS:
7317 where = &inpaddr_address_reload_insns[rl->opnum];
7318 break;
7319 case RELOAD_FOR_OUTPUT_ADDRESS:
7320 where = &output_address_reload_insns[rl->opnum];
7321 break;
7322 case RELOAD_FOR_OUTADDR_ADDRESS:
7323 where = &outaddr_address_reload_insns[rl->opnum];
7324 break;
7325 case RELOAD_FOR_OPERAND_ADDRESS:
7326 where = &operand_reload_insns;
7327 break;
7328 case RELOAD_FOR_OPADDR_ADDR:
7329 where = &other_operand_reload_insns;
7330 break;
7331 case RELOAD_FOR_OTHER_ADDRESS:
7332 where = &other_input_address_reload_insns;
7333 break;
7334 default:
7335 gcc_unreachable ();
7338 push_to_sequence (*where);
7340 /* Auto-increment addresses must be reloaded in a special way. */
7341 if (rl->out && ! rl->out_reg)
7343 /* We are not going to bother supporting the case where a
7344 incremented register can't be copied directly from
7345 OLDEQUIV since this seems highly unlikely. */
7346 gcc_assert (rl->secondary_in_reload < 0);
7348 if (reload_inherited[j])
7349 oldequiv = reloadreg;
7351 old = XEXP (rl->in_reg, 0);
7353 /* Prevent normal processing of this reload. */
7354 special = 1;
7355 /* Output a special code sequence for this case. */
7356 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7359 /* If we are reloading a pseudo-register that was set by the previous
7360 insn, see if we can get rid of that pseudo-register entirely
7361 by redirecting the previous insn into our reload register. */
7363 else if (optimize && REG_P (old)
7364 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7365 && dead_or_set_p (insn, old)
7366 /* This is unsafe if some other reload
7367 uses the same reg first. */
7368 && ! conflicts_with_override (reloadreg)
7369 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7370 rl->when_needed, old, rl->out, j, 0))
7372 rtx_insn *temp = PREV_INSN (insn);
7373 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7374 temp = PREV_INSN (temp);
7375 if (temp
7376 && NONJUMP_INSN_P (temp)
7377 && GET_CODE (PATTERN (temp)) == SET
7378 && SET_DEST (PATTERN (temp)) == old
7379 /* Make sure we can access insn_operand_constraint. */
7380 && asm_noperands (PATTERN (temp)) < 0
7381 /* This is unsafe if operand occurs more than once in current
7382 insn. Perhaps some occurrences aren't reloaded. */
7383 && count_occurrences (PATTERN (insn), old, 0) == 1)
7385 rtx old = SET_DEST (PATTERN (temp));
7386 /* Store into the reload register instead of the pseudo. */
7387 SET_DEST (PATTERN (temp)) = reloadreg;
7389 /* Verify that resulting insn is valid.
7391 Note that we have replaced the destination of TEMP with
7392 RELOADREG. If TEMP references RELOADREG within an
7393 autoincrement addressing mode, then the resulting insn
7394 is ill-formed and we must reject this optimization. */
7395 extract_insn (temp);
7396 if (constrain_operands (1, get_enabled_alternatives (temp))
7397 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7399 /* If the previous insn is an output reload, the source is
7400 a reload register, and its spill_reg_store entry will
7401 contain the previous destination. This is now
7402 invalid. */
7403 if (REG_P (SET_SRC (PATTERN (temp)))
7404 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7406 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7407 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7410 /* If these are the only uses of the pseudo reg,
7411 pretend for GDB it lives in the reload reg we used. */
7412 if (REG_N_DEATHS (REGNO (old)) == 1
7413 && REG_N_SETS (REGNO (old)) == 1)
7415 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7416 if (ira_conflicts_p)
7417 /* Inform IRA about the change. */
7418 ira_mark_allocation_change (REGNO (old));
7419 alter_reg (REGNO (old), -1, false);
7421 special = 1;
7423 /* Adjust any debug insns between temp and insn. */
7424 while ((temp = NEXT_INSN (temp)) != insn)
7425 if (DEBUG_INSN_P (temp))
7426 replace_rtx (PATTERN (temp), old, reloadreg);
7427 else
7428 gcc_assert (NOTE_P (temp));
7430 else
7432 SET_DEST (PATTERN (temp)) = old;
7437 /* We can't do that, so output an insn to load RELOADREG. */
7439 /* If we have a secondary reload, pick up the secondary register
7440 and icode, if any. If OLDEQUIV and OLD are different or
7441 if this is an in-out reload, recompute whether or not we
7442 still need a secondary register and what the icode should
7443 be. If we still need a secondary register and the class or
7444 icode is different, go back to reloading from OLD if using
7445 OLDEQUIV means that we got the wrong type of register. We
7446 cannot have different class or icode due to an in-out reload
7447 because we don't make such reloads when both the input and
7448 output need secondary reload registers. */
7450 if (! special && rl->secondary_in_reload >= 0)
7452 rtx second_reload_reg = 0;
7453 rtx third_reload_reg = 0;
7454 int secondary_reload = rl->secondary_in_reload;
7455 rtx real_oldequiv = oldequiv;
7456 rtx real_old = old;
7457 rtx tmp;
7458 enum insn_code icode;
7459 enum insn_code tertiary_icode = CODE_FOR_nothing;
7461 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7462 and similarly for OLD.
7463 See comments in get_secondary_reload in reload.c. */
7464 /* If it is a pseudo that cannot be replaced with its
7465 equivalent MEM, we must fall back to reload_in, which
7466 will have all the necessary substitutions registered.
7467 Likewise for a pseudo that can't be replaced with its
7468 equivalent constant.
7470 Take extra care for subregs of such pseudos. Note that
7471 we cannot use reg_equiv_mem in this case because it is
7472 not in the right mode. */
7474 tmp = oldequiv;
7475 if (GET_CODE (tmp) == SUBREG)
7476 tmp = SUBREG_REG (tmp);
7477 if (REG_P (tmp)
7478 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7479 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7480 || reg_equiv_constant (REGNO (tmp)) != 0))
7482 if (! reg_equiv_mem (REGNO (tmp))
7483 || num_not_at_initial_offset
7484 || GET_CODE (oldequiv) == SUBREG)
7485 real_oldequiv = rl->in;
7486 else
7487 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7490 tmp = old;
7491 if (GET_CODE (tmp) == SUBREG)
7492 tmp = SUBREG_REG (tmp);
7493 if (REG_P (tmp)
7494 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7495 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7496 || reg_equiv_constant (REGNO (tmp)) != 0))
7498 if (! reg_equiv_mem (REGNO (tmp))
7499 || num_not_at_initial_offset
7500 || GET_CODE (old) == SUBREG)
7501 real_old = rl->in;
7502 else
7503 real_old = reg_equiv_mem (REGNO (tmp));
7506 second_reload_reg = rld[secondary_reload].reg_rtx;
7507 if (rld[secondary_reload].secondary_in_reload >= 0)
7509 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7511 third_reload_reg = rld[tertiary_reload].reg_rtx;
7512 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7513 /* We'd have to add more code for quartary reloads. */
7514 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7516 icode = rl->secondary_in_icode;
7518 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7519 || (rl->in != 0 && rl->out != 0))
7521 secondary_reload_info sri, sri2;
7522 enum reg_class new_class, new_t_class;
7524 sri.icode = CODE_FOR_nothing;
7525 sri.prev_sri = NULL;
7526 new_class
7527 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7528 rl->rclass, mode,
7529 &sri);
7531 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7532 second_reload_reg = 0;
7533 else if (new_class == NO_REGS)
7535 if (reload_adjust_reg_for_icode (&second_reload_reg,
7536 third_reload_reg,
7537 (enum insn_code) sri.icode))
7539 icode = (enum insn_code) sri.icode;
7540 third_reload_reg = 0;
7542 else
7544 oldequiv = old;
7545 real_oldequiv = real_old;
7548 else if (sri.icode != CODE_FOR_nothing)
7549 /* We currently lack a way to express this in reloads. */
7550 gcc_unreachable ();
7551 else
7553 sri2.icode = CODE_FOR_nothing;
7554 sri2.prev_sri = &sri;
7555 new_t_class
7556 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7557 new_class, mode,
7558 &sri);
7559 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7561 if (reload_adjust_reg_for_temp (&second_reload_reg,
7562 third_reload_reg,
7563 new_class, mode))
7565 third_reload_reg = 0;
7566 tertiary_icode = (enum insn_code) sri2.icode;
7568 else
7570 oldequiv = old;
7571 real_oldequiv = real_old;
7574 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7576 rtx intermediate = second_reload_reg;
7578 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7579 new_class, mode)
7580 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7581 ((enum insn_code)
7582 sri2.icode)))
7584 second_reload_reg = intermediate;
7585 tertiary_icode = (enum insn_code) sri2.icode;
7587 else
7589 oldequiv = old;
7590 real_oldequiv = real_old;
7593 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7595 rtx intermediate = second_reload_reg;
7597 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7598 new_class, mode)
7599 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7600 new_t_class, mode))
7602 second_reload_reg = intermediate;
7603 tertiary_icode = (enum insn_code) sri2.icode;
7605 else
7607 oldequiv = old;
7608 real_oldequiv = real_old;
7611 else
7613 /* This could be handled more intelligently too. */
7614 oldequiv = old;
7615 real_oldequiv = real_old;
7620 /* If we still need a secondary reload register, check
7621 to see if it is being used as a scratch or intermediate
7622 register and generate code appropriately. If we need
7623 a scratch register, use REAL_OLDEQUIV since the form of
7624 the insn may depend on the actual address if it is
7625 a MEM. */
7627 if (second_reload_reg)
7629 if (icode != CODE_FOR_nothing)
7631 /* We'd have to add extra code to handle this case. */
7632 gcc_assert (!third_reload_reg);
7634 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7635 second_reload_reg));
7636 special = 1;
7638 else
7640 /* See if we need a scratch register to load the
7641 intermediate register (a tertiary reload). */
7642 if (tertiary_icode != CODE_FOR_nothing)
7644 emit_insn ((GEN_FCN (tertiary_icode)
7645 (second_reload_reg, real_oldequiv,
7646 third_reload_reg)));
7648 else if (third_reload_reg)
7650 gen_reload (third_reload_reg, real_oldequiv,
7651 rl->opnum,
7652 rl->when_needed);
7653 gen_reload (second_reload_reg, third_reload_reg,
7654 rl->opnum,
7655 rl->when_needed);
7657 else
7658 gen_reload (second_reload_reg, real_oldequiv,
7659 rl->opnum,
7660 rl->when_needed);
7662 oldequiv = second_reload_reg;
7667 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7669 rtx real_oldequiv = oldequiv;
7671 if ((REG_P (oldequiv)
7672 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7673 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7674 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7675 || (GET_CODE (oldequiv) == SUBREG
7676 && REG_P (SUBREG_REG (oldequiv))
7677 && (REGNO (SUBREG_REG (oldequiv))
7678 >= FIRST_PSEUDO_REGISTER)
7679 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7680 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7681 || (CONSTANT_P (oldequiv)
7682 && (targetm.preferred_reload_class (oldequiv,
7683 REGNO_REG_CLASS (REGNO (reloadreg)))
7684 == NO_REGS)))
7685 real_oldequiv = rl->in;
7686 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7687 rl->when_needed);
7690 if (cfun->can_throw_non_call_exceptions)
7691 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7693 /* End this sequence. */
7694 *where = get_insns ();
7695 end_sequence ();
7697 /* Update reload_override_in so that delete_address_reloads_1
7698 can see the actual register usage. */
7699 if (oldequiv_reg)
7700 reload_override_in[j] = oldequiv;
7703 /* Generate insns to for the output reload RL, which is for the insn described
7704 by CHAIN and has the number J. */
7705 static void
7706 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7707 int j)
7709 rtx reloadreg;
7710 rtx_insn *insn = chain->insn;
7711 int special = 0;
7712 rtx old = rl->out;
7713 machine_mode mode;
7714 rtx_insn *p;
7715 rtx rl_reg_rtx;
7717 if (rl->when_needed == RELOAD_OTHER)
7718 start_sequence ();
7719 else
7720 push_to_sequence (output_reload_insns[rl->opnum]);
7722 rl_reg_rtx = reload_reg_rtx_for_output[j];
7723 mode = GET_MODE (rl_reg_rtx);
7725 reloadreg = rl_reg_rtx;
7727 /* If we need two reload regs, set RELOADREG to the intermediate
7728 one, since it will be stored into OLD. We might need a secondary
7729 register only for an input reload, so check again here. */
7731 if (rl->secondary_out_reload >= 0)
7733 rtx real_old = old;
7734 int secondary_reload = rl->secondary_out_reload;
7735 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7737 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7738 && reg_equiv_mem (REGNO (old)) != 0)
7739 real_old = reg_equiv_mem (REGNO (old));
7741 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7743 rtx second_reloadreg = reloadreg;
7744 reloadreg = rld[secondary_reload].reg_rtx;
7746 /* See if RELOADREG is to be used as a scratch register
7747 or as an intermediate register. */
7748 if (rl->secondary_out_icode != CODE_FOR_nothing)
7750 /* We'd have to add extra code to handle this case. */
7751 gcc_assert (tertiary_reload < 0);
7753 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7754 (real_old, second_reloadreg, reloadreg)));
7755 special = 1;
7757 else
7759 /* See if we need both a scratch and intermediate reload
7760 register. */
7762 enum insn_code tertiary_icode
7763 = rld[secondary_reload].secondary_out_icode;
7765 /* We'd have to add more code for quartary reloads. */
7766 gcc_assert (tertiary_reload < 0
7767 || rld[tertiary_reload].secondary_out_reload < 0);
7769 if (GET_MODE (reloadreg) != mode)
7770 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7772 if (tertiary_icode != CODE_FOR_nothing)
7774 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7776 /* Copy primary reload reg to secondary reload reg.
7777 (Note that these have been swapped above, then
7778 secondary reload reg to OLD using our insn.) */
7780 /* If REAL_OLD is a paradoxical SUBREG, remove it
7781 and try to put the opposite SUBREG on
7782 RELOADREG. */
7783 strip_paradoxical_subreg (&real_old, &reloadreg);
7785 gen_reload (reloadreg, second_reloadreg,
7786 rl->opnum, rl->when_needed);
7787 emit_insn ((GEN_FCN (tertiary_icode)
7788 (real_old, reloadreg, third_reloadreg)));
7789 special = 1;
7792 else
7794 /* Copy between the reload regs here and then to
7795 OUT later. */
7797 gen_reload (reloadreg, second_reloadreg,
7798 rl->opnum, rl->when_needed);
7799 if (tertiary_reload >= 0)
7801 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7803 gen_reload (third_reloadreg, reloadreg,
7804 rl->opnum, rl->when_needed);
7805 reloadreg = third_reloadreg;
7812 /* Output the last reload insn. */
7813 if (! special)
7815 rtx set;
7817 /* Don't output the last reload if OLD is not the dest of
7818 INSN and is in the src and is clobbered by INSN. */
7819 if (! flag_expensive_optimizations
7820 || !REG_P (old)
7821 || !(set = single_set (insn))
7822 || rtx_equal_p (old, SET_DEST (set))
7823 || !reg_mentioned_p (old, SET_SRC (set))
7824 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7825 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7826 gen_reload (old, reloadreg, rl->opnum,
7827 rl->when_needed);
7830 /* Look at all insns we emitted, just to be safe. */
7831 for (p = get_insns (); p; p = NEXT_INSN (p))
7832 if (INSN_P (p))
7834 rtx pat = PATTERN (p);
7836 /* If this output reload doesn't come from a spill reg,
7837 clear any memory of reloaded copies of the pseudo reg.
7838 If this output reload comes from a spill reg,
7839 reg_has_output_reload will make this do nothing. */
7840 note_stores (pat, forget_old_reloads_1, NULL);
7842 if (reg_mentioned_p (rl_reg_rtx, pat))
7844 rtx set = single_set (insn);
7845 if (reload_spill_index[j] < 0
7846 && set
7847 && SET_SRC (set) == rl_reg_rtx)
7849 int src = REGNO (SET_SRC (set));
7851 reload_spill_index[j] = src;
7852 SET_HARD_REG_BIT (reg_is_output_reload, src);
7853 if (find_regno_note (insn, REG_DEAD, src))
7854 SET_HARD_REG_BIT (reg_reloaded_died, src);
7856 if (HARD_REGISTER_P (rl_reg_rtx))
7858 int s = rl->secondary_out_reload;
7859 set = single_set (p);
7860 /* If this reload copies only to the secondary reload
7861 register, the secondary reload does the actual
7862 store. */
7863 if (s >= 0 && set == NULL_RTX)
7864 /* We can't tell what function the secondary reload
7865 has and where the actual store to the pseudo is
7866 made; leave new_spill_reg_store alone. */
7868 else if (s >= 0
7869 && SET_SRC (set) == rl_reg_rtx
7870 && SET_DEST (set) == rld[s].reg_rtx)
7872 /* Usually the next instruction will be the
7873 secondary reload insn; if we can confirm
7874 that it is, setting new_spill_reg_store to
7875 that insn will allow an extra optimization. */
7876 rtx s_reg = rld[s].reg_rtx;
7877 rtx_insn *next = NEXT_INSN (p);
7878 rld[s].out = rl->out;
7879 rld[s].out_reg = rl->out_reg;
7880 set = single_set (next);
7881 if (set && SET_SRC (set) == s_reg
7882 && reload_reg_rtx_reaches_end_p (s_reg, s))
7884 SET_HARD_REG_BIT (reg_is_output_reload,
7885 REGNO (s_reg));
7886 new_spill_reg_store[REGNO (s_reg)] = next;
7889 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7890 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7895 if (rl->when_needed == RELOAD_OTHER)
7897 emit_insn (other_output_reload_insns[rl->opnum]);
7898 other_output_reload_insns[rl->opnum] = get_insns ();
7900 else
7901 output_reload_insns[rl->opnum] = get_insns ();
7903 if (cfun->can_throw_non_call_exceptions)
7904 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7906 end_sequence ();
7909 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7910 and has the number J. */
7911 static void
7912 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7914 rtx_insn *insn = chain->insn;
7915 rtx old = (rl->in && MEM_P (rl->in)
7916 ? rl->in_reg : rl->in);
7917 rtx reg_rtx = rl->reg_rtx;
7919 if (old && reg_rtx)
7921 machine_mode mode;
7923 /* Determine the mode to reload in.
7924 This is very tricky because we have three to choose from.
7925 There is the mode the insn operand wants (rl->inmode).
7926 There is the mode of the reload register RELOADREG.
7927 There is the intrinsic mode of the operand, which we could find
7928 by stripping some SUBREGs.
7929 It turns out that RELOADREG's mode is irrelevant:
7930 we can change that arbitrarily.
7932 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7933 then the reload reg may not support QImode moves, so use SImode.
7934 If foo is in memory due to spilling a pseudo reg, this is safe,
7935 because the QImode value is in the least significant part of a
7936 slot big enough for a SImode. If foo is some other sort of
7937 memory reference, then it is impossible to reload this case,
7938 so previous passes had better make sure this never happens.
7940 Then consider a one-word union which has SImode and one of its
7941 members is a float, being fetched as (SUBREG:SF union:SI).
7942 We must fetch that as SFmode because we could be loading into
7943 a float-only register. In this case OLD's mode is correct.
7945 Consider an immediate integer: it has VOIDmode. Here we need
7946 to get a mode from something else.
7948 In some cases, there is a fourth mode, the operand's
7949 containing mode. If the insn specifies a containing mode for
7950 this operand, it overrides all others.
7952 I am not sure whether the algorithm here is always right,
7953 but it does the right things in those cases. */
7955 mode = GET_MODE (old);
7956 if (mode == VOIDmode)
7957 mode = rl->inmode;
7959 /* We cannot use gen_lowpart_common since it can do the wrong thing
7960 when REG_RTX has a multi-word mode. Note that REG_RTX must
7961 always be a REG here. */
7962 if (GET_MODE (reg_rtx) != mode)
7963 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7965 reload_reg_rtx_for_input[j] = reg_rtx;
7967 if (old != 0
7968 /* AUTO_INC reloads need to be handled even if inherited. We got an
7969 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7970 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7971 && ! rtx_equal_p (reg_rtx, old)
7972 && reg_rtx != 0)
7973 emit_input_reload_insns (chain, rld + j, old, j);
7975 /* When inheriting a wider reload, we have a MEM in rl->in,
7976 e.g. inheriting a SImode output reload for
7977 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7978 if (optimize && reload_inherited[j] && rl->in
7979 && MEM_P (rl->in)
7980 && MEM_P (rl->in_reg)
7981 && reload_spill_index[j] >= 0
7982 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7983 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7985 /* If we are reloading a register that was recently stored in with an
7986 output-reload, see if we can prove there was
7987 actually no need to store the old value in it. */
7989 if (optimize
7990 && (reload_inherited[j] || reload_override_in[j])
7991 && reg_rtx
7992 && REG_P (reg_rtx)
7993 && spill_reg_store[REGNO (reg_rtx)] != 0
7994 #if 0
7995 /* There doesn't seem to be any reason to restrict this to pseudos
7996 and doing so loses in the case where we are copying from a
7997 register of the wrong class. */
7998 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7999 #endif
8000 /* The insn might have already some references to stackslots
8001 replaced by MEMs, while reload_out_reg still names the
8002 original pseudo. */
8003 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8004 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8005 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8008 /* Do output reloading for reload RL, which is for the insn described by
8009 CHAIN and has the number J.
8010 ??? At some point we need to support handling output reloads of
8011 JUMP_INSNs or insns that set cc0. */
8012 static void
8013 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8015 rtx note, old;
8016 rtx_insn *insn = chain->insn;
8017 /* If this is an output reload that stores something that is
8018 not loaded in this same reload, see if we can eliminate a previous
8019 store. */
8020 rtx pseudo = rl->out_reg;
8021 rtx reg_rtx = rl->reg_rtx;
8023 if (rl->out && reg_rtx)
8025 machine_mode mode;
8027 /* Determine the mode to reload in.
8028 See comments above (for input reloading). */
8029 mode = GET_MODE (rl->out);
8030 if (mode == VOIDmode)
8032 /* VOIDmode should never happen for an output. */
8033 if (asm_noperands (PATTERN (insn)) < 0)
8034 /* It's the compiler's fault. */
8035 fatal_insn ("VOIDmode on an output", insn);
8036 error_for_asm (insn, "output operand is constant in %<asm%>");
8037 /* Prevent crash--use something we know is valid. */
8038 mode = word_mode;
8039 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8041 if (GET_MODE (reg_rtx) != mode)
8042 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8044 reload_reg_rtx_for_output[j] = reg_rtx;
8046 if (pseudo
8047 && optimize
8048 && REG_P (pseudo)
8049 && ! rtx_equal_p (rl->in_reg, pseudo)
8050 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8051 && reg_last_reload_reg[REGNO (pseudo)])
8053 int pseudo_no = REGNO (pseudo);
8054 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8056 /* We don't need to test full validity of last_regno for
8057 inherit here; we only want to know if the store actually
8058 matches the pseudo. */
8059 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8060 && reg_reloaded_contents[last_regno] == pseudo_no
8061 && spill_reg_store[last_regno]
8062 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8063 delete_output_reload (insn, j, last_regno, reg_rtx);
8066 old = rl->out_reg;
8067 if (old == 0
8068 || reg_rtx == 0
8069 || rtx_equal_p (old, reg_rtx))
8070 return;
8072 /* An output operand that dies right away does need a reload,
8073 but need not be copied from it. Show the new location in the
8074 REG_UNUSED note. */
8075 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8076 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8078 XEXP (note, 0) = reg_rtx;
8079 return;
8081 /* Likewise for a SUBREG of an operand that dies. */
8082 else if (GET_CODE (old) == SUBREG
8083 && REG_P (SUBREG_REG (old))
8084 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8085 SUBREG_REG (old))))
8087 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8088 return;
8090 else if (GET_CODE (old) == SCRATCH)
8091 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8092 but we don't want to make an output reload. */
8093 return;
8095 /* If is a JUMP_INSN, we can't support output reloads yet. */
8096 gcc_assert (NONJUMP_INSN_P (insn));
8098 emit_output_reload_insns (chain, rld + j, j);
8101 /* A reload copies values of MODE from register SRC to register DEST.
8102 Return true if it can be treated for inheritance purposes like a
8103 group of reloads, each one reloading a single hard register. The
8104 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8105 occupy the same number of hard registers. */
8107 static bool
8108 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8109 int src ATTRIBUTE_UNUSED,
8110 machine_mode mode ATTRIBUTE_UNUSED)
8112 #ifdef CANNOT_CHANGE_MODE_CLASS
8113 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8114 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8115 #else
8116 return true;
8117 #endif
8120 /* Output insns to reload values in and out of the chosen reload regs. */
8122 static void
8123 emit_reload_insns (struct insn_chain *chain)
8125 rtx_insn *insn = chain->insn;
8127 int j;
8129 CLEAR_HARD_REG_SET (reg_reloaded_died);
8131 for (j = 0; j < reload_n_operands; j++)
8132 input_reload_insns[j] = input_address_reload_insns[j]
8133 = inpaddr_address_reload_insns[j]
8134 = output_reload_insns[j] = output_address_reload_insns[j]
8135 = outaddr_address_reload_insns[j]
8136 = other_output_reload_insns[j] = 0;
8137 other_input_address_reload_insns = 0;
8138 other_input_reload_insns = 0;
8139 operand_reload_insns = 0;
8140 other_operand_reload_insns = 0;
8142 /* Dump reloads into the dump file. */
8143 if (dump_file)
8145 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8146 debug_reload_to_stream (dump_file);
8149 for (j = 0; j < n_reloads; j++)
8150 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8152 unsigned int i;
8154 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8155 new_spill_reg_store[i] = 0;
8158 /* Now output the instructions to copy the data into and out of the
8159 reload registers. Do these in the order that the reloads were reported,
8160 since reloads of base and index registers precede reloads of operands
8161 and the operands may need the base and index registers reloaded. */
8163 for (j = 0; j < n_reloads; j++)
8165 do_input_reload (chain, rld + j, j);
8166 do_output_reload (chain, rld + j, j);
8169 /* Now write all the insns we made for reloads in the order expected by
8170 the allocation functions. Prior to the insn being reloaded, we write
8171 the following reloads:
8173 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8175 RELOAD_OTHER reloads.
8177 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8178 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8179 RELOAD_FOR_INPUT reload for the operand.
8181 RELOAD_FOR_OPADDR_ADDRS reloads.
8183 RELOAD_FOR_OPERAND_ADDRESS reloads.
8185 After the insn being reloaded, we write the following:
8187 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8188 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8189 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8190 reloads for the operand. The RELOAD_OTHER output reloads are
8191 output in descending order by reload number. */
8193 emit_insn_before (other_input_address_reload_insns, insn);
8194 emit_insn_before (other_input_reload_insns, insn);
8196 for (j = 0; j < reload_n_operands; j++)
8198 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8199 emit_insn_before (input_address_reload_insns[j], insn);
8200 emit_insn_before (input_reload_insns[j], insn);
8203 emit_insn_before (other_operand_reload_insns, insn);
8204 emit_insn_before (operand_reload_insns, insn);
8206 for (j = 0; j < reload_n_operands; j++)
8208 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8209 x = emit_insn_after (output_address_reload_insns[j], x);
8210 x = emit_insn_after (output_reload_insns[j], x);
8211 emit_insn_after (other_output_reload_insns[j], x);
8214 /* For all the spill regs newly reloaded in this instruction,
8215 record what they were reloaded from, so subsequent instructions
8216 can inherit the reloads.
8218 Update spill_reg_store for the reloads of this insn.
8219 Copy the elements that were updated in the loop above. */
8221 for (j = 0; j < n_reloads; j++)
8223 int r = reload_order[j];
8224 int i = reload_spill_index[r];
8226 /* If this is a non-inherited input reload from a pseudo, we must
8227 clear any memory of a previous store to the same pseudo. Only do
8228 something if there will not be an output reload for the pseudo
8229 being reloaded. */
8230 if (rld[r].in_reg != 0
8231 && ! (reload_inherited[r] || reload_override_in[r]))
8233 rtx reg = rld[r].in_reg;
8235 if (GET_CODE (reg) == SUBREG)
8236 reg = SUBREG_REG (reg);
8238 if (REG_P (reg)
8239 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8240 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8242 int nregno = REGNO (reg);
8244 if (reg_last_reload_reg[nregno])
8246 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8248 if (reg_reloaded_contents[last_regno] == nregno)
8249 spill_reg_store[last_regno] = 0;
8254 /* I is nonneg if this reload used a register.
8255 If rld[r].reg_rtx is 0, this is an optional reload
8256 that we opted to ignore. */
8258 if (i >= 0 && rld[r].reg_rtx != 0)
8260 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8261 int k;
8263 /* For a multi register reload, we need to check if all or part
8264 of the value lives to the end. */
8265 for (k = 0; k < nr; k++)
8266 if (reload_reg_reaches_end_p (i + k, r))
8267 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8269 /* Maybe the spill reg contains a copy of reload_out. */
8270 if (rld[r].out != 0
8271 && (REG_P (rld[r].out)
8272 || (rld[r].out_reg
8273 ? REG_P (rld[r].out_reg)
8274 /* The reload value is an auto-modification of
8275 some kind. For PRE_INC, POST_INC, PRE_DEC
8276 and POST_DEC, we record an equivalence
8277 between the reload register and the operand
8278 on the optimistic assumption that we can make
8279 the equivalence hold. reload_as_needed must
8280 then either make it hold or invalidate the
8281 equivalence.
8283 PRE_MODIFY and POST_MODIFY addresses are reloaded
8284 somewhat differently, and allowing them here leads
8285 to problems. */
8286 : (GET_CODE (rld[r].out) != POST_MODIFY
8287 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8289 rtx reg;
8291 reg = reload_reg_rtx_for_output[r];
8292 if (reload_reg_rtx_reaches_end_p (reg, r))
8294 machine_mode mode = GET_MODE (reg);
8295 int regno = REGNO (reg);
8296 int nregs = hard_regno_nregs[regno][mode];
8297 rtx out = (REG_P (rld[r].out)
8298 ? rld[r].out
8299 : rld[r].out_reg
8300 ? rld[r].out_reg
8301 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8302 int out_regno = REGNO (out);
8303 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8304 : hard_regno_nregs[out_regno][mode]);
8305 bool piecemeal;
8307 spill_reg_store[regno] = new_spill_reg_store[regno];
8308 spill_reg_stored_to[regno] = out;
8309 reg_last_reload_reg[out_regno] = reg;
8311 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8312 && nregs == out_nregs
8313 && inherit_piecemeal_p (out_regno, regno, mode));
8315 /* If OUT_REGNO is a hard register, it may occupy more than
8316 one register. If it does, say what is in the
8317 rest of the registers assuming that both registers
8318 agree on how many words the object takes. If not,
8319 invalidate the subsequent registers. */
8321 if (HARD_REGISTER_NUM_P (out_regno))
8322 for (k = 1; k < out_nregs; k++)
8323 reg_last_reload_reg[out_regno + k]
8324 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8326 /* Now do the inverse operation. */
8327 for (k = 0; k < nregs; k++)
8329 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8330 reg_reloaded_contents[regno + k]
8331 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8332 ? out_regno
8333 : out_regno + k);
8334 reg_reloaded_insn[regno + k] = insn;
8335 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8336 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8337 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8338 regno + k);
8339 else
8340 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8341 regno + k);
8345 /* Maybe the spill reg contains a copy of reload_in. Only do
8346 something if there will not be an output reload for
8347 the register being reloaded. */
8348 else if (rld[r].out_reg == 0
8349 && rld[r].in != 0
8350 && ((REG_P (rld[r].in)
8351 && !HARD_REGISTER_P (rld[r].in)
8352 && !REGNO_REG_SET_P (&reg_has_output_reload,
8353 REGNO (rld[r].in)))
8354 || (REG_P (rld[r].in_reg)
8355 && !REGNO_REG_SET_P (&reg_has_output_reload,
8356 REGNO (rld[r].in_reg))))
8357 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8359 rtx reg;
8361 reg = reload_reg_rtx_for_input[r];
8362 if (reload_reg_rtx_reaches_end_p (reg, r))
8364 machine_mode mode;
8365 int regno;
8366 int nregs;
8367 int in_regno;
8368 int in_nregs;
8369 rtx in;
8370 bool piecemeal;
8372 mode = GET_MODE (reg);
8373 regno = REGNO (reg);
8374 nregs = hard_regno_nregs[regno][mode];
8375 if (REG_P (rld[r].in)
8376 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8377 in = rld[r].in;
8378 else if (REG_P (rld[r].in_reg))
8379 in = rld[r].in_reg;
8380 else
8381 in = XEXP (rld[r].in_reg, 0);
8382 in_regno = REGNO (in);
8384 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8385 : hard_regno_nregs[in_regno][mode]);
8387 reg_last_reload_reg[in_regno] = reg;
8389 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8390 && nregs == in_nregs
8391 && inherit_piecemeal_p (regno, in_regno, mode));
8393 if (HARD_REGISTER_NUM_P (in_regno))
8394 for (k = 1; k < in_nregs; k++)
8395 reg_last_reload_reg[in_regno + k]
8396 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8398 /* Unless we inherited this reload, show we haven't
8399 recently done a store.
8400 Previous stores of inherited auto_inc expressions
8401 also have to be discarded. */
8402 if (! reload_inherited[r]
8403 || (rld[r].out && ! rld[r].out_reg))
8404 spill_reg_store[regno] = 0;
8406 for (k = 0; k < nregs; k++)
8408 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8409 reg_reloaded_contents[regno + k]
8410 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8411 ? in_regno
8412 : in_regno + k);
8413 reg_reloaded_insn[regno + k] = insn;
8414 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8415 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8416 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8417 regno + k);
8418 else
8419 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8420 regno + k);
8426 /* The following if-statement was #if 0'd in 1.34 (or before...).
8427 It's reenabled in 1.35 because supposedly nothing else
8428 deals with this problem. */
8430 /* If a register gets output-reloaded from a non-spill register,
8431 that invalidates any previous reloaded copy of it.
8432 But forget_old_reloads_1 won't get to see it, because
8433 it thinks only about the original insn. So invalidate it here.
8434 Also do the same thing for RELOAD_OTHER constraints where the
8435 output is discarded. */
8436 if (i < 0
8437 && ((rld[r].out != 0
8438 && (REG_P (rld[r].out)
8439 || (MEM_P (rld[r].out)
8440 && REG_P (rld[r].out_reg))))
8441 || (rld[r].out == 0 && rld[r].out_reg
8442 && REG_P (rld[r].out_reg))))
8444 rtx out = ((rld[r].out && REG_P (rld[r].out))
8445 ? rld[r].out : rld[r].out_reg);
8446 int out_regno = REGNO (out);
8447 machine_mode mode = GET_MODE (out);
8449 /* REG_RTX is now set or clobbered by the main instruction.
8450 As the comment above explains, forget_old_reloads_1 only
8451 sees the original instruction, and there is no guarantee
8452 that the original instruction also clobbered REG_RTX.
8453 For example, if find_reloads sees that the input side of
8454 a matched operand pair dies in this instruction, it may
8455 use the input register as the reload register.
8457 Calling forget_old_reloads_1 is a waste of effort if
8458 REG_RTX is also the output register.
8460 If we know that REG_RTX holds the value of a pseudo
8461 register, the code after the call will record that fact. */
8462 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8463 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8465 if (!HARD_REGISTER_NUM_P (out_regno))
8467 rtx src_reg;
8468 rtx_insn *store_insn = NULL;
8470 reg_last_reload_reg[out_regno] = 0;
8472 /* If we can find a hard register that is stored, record
8473 the storing insn so that we may delete this insn with
8474 delete_output_reload. */
8475 src_reg = reload_reg_rtx_for_output[r];
8477 if (src_reg)
8479 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8480 store_insn = new_spill_reg_store[REGNO (src_reg)];
8481 else
8482 src_reg = NULL_RTX;
8484 else
8486 /* If this is an optional reload, try to find the
8487 source reg from an input reload. */
8488 rtx set = single_set (insn);
8489 if (set && SET_DEST (set) == rld[r].out)
8491 int k;
8493 src_reg = SET_SRC (set);
8494 store_insn = insn;
8495 for (k = 0; k < n_reloads; k++)
8497 if (rld[k].in == src_reg)
8499 src_reg = reload_reg_rtx_for_input[k];
8500 break;
8505 if (src_reg && REG_P (src_reg)
8506 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8508 int src_regno, src_nregs, k;
8509 rtx note;
8511 gcc_assert (GET_MODE (src_reg) == mode);
8512 src_regno = REGNO (src_reg);
8513 src_nregs = hard_regno_nregs[src_regno][mode];
8514 /* The place where to find a death note varies with
8515 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8516 necessarily checked exactly in the code that moves
8517 notes, so just check both locations. */
8518 note = find_regno_note (insn, REG_DEAD, src_regno);
8519 if (! note && store_insn)
8520 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8521 for (k = 0; k < src_nregs; k++)
8523 spill_reg_store[src_regno + k] = store_insn;
8524 spill_reg_stored_to[src_regno + k] = out;
8525 reg_reloaded_contents[src_regno + k] = out_regno;
8526 reg_reloaded_insn[src_regno + k] = store_insn;
8527 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8528 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8529 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8530 mode))
8531 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8532 src_regno + k);
8533 else
8534 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8535 src_regno + k);
8536 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8537 if (note)
8538 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8539 else
8540 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8542 reg_last_reload_reg[out_regno] = src_reg;
8543 /* We have to set reg_has_output_reload here, or else
8544 forget_old_reloads_1 will clear reg_last_reload_reg
8545 right away. */
8546 SET_REGNO_REG_SET (&reg_has_output_reload,
8547 out_regno);
8550 else
8552 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8554 for (k = 0; k < out_nregs; k++)
8555 reg_last_reload_reg[out_regno + k] = 0;
8559 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8562 /* Go through the motions to emit INSN and test if it is strictly valid.
8563 Return the emitted insn if valid, else return NULL. */
8565 static rtx_insn *
8566 emit_insn_if_valid_for_reload (rtx pat)
8568 rtx_insn *last = get_last_insn ();
8569 int code;
8571 rtx_insn *insn = emit_insn (pat);
8572 code = recog_memoized (insn);
8574 if (code >= 0)
8576 extract_insn (insn);
8577 /* We want constrain operands to treat this insn strictly in its
8578 validity determination, i.e., the way it would after reload has
8579 completed. */
8580 if (constrain_operands (1, get_enabled_alternatives (insn)))
8581 return insn;
8584 delete_insns_since (last);
8585 return NULL;
8588 /* Emit code to perform a reload from IN (which may be a reload register) to
8589 OUT (which may also be a reload register). IN or OUT is from operand
8590 OPNUM with reload type TYPE.
8592 Returns first insn emitted. */
8594 static rtx_insn *
8595 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8597 rtx_insn *last = get_last_insn ();
8598 rtx_insn *tem;
8599 #ifdef SECONDARY_MEMORY_NEEDED
8600 rtx tem1, tem2;
8601 #endif
8603 /* If IN is a paradoxical SUBREG, remove it and try to put the
8604 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8605 if (!strip_paradoxical_subreg (&in, &out))
8606 strip_paradoxical_subreg (&out, &in);
8608 /* How to do this reload can get quite tricky. Normally, we are being
8609 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8610 register that didn't get a hard register. In that case we can just
8611 call emit_move_insn.
8613 We can also be asked to reload a PLUS that adds a register or a MEM to
8614 another register, constant or MEM. This can occur during frame pointer
8615 elimination and while reloading addresses. This case is handled by
8616 trying to emit a single insn to perform the add. If it is not valid,
8617 we use a two insn sequence.
8619 Or we can be asked to reload an unary operand that was a fragment of
8620 an addressing mode, into a register. If it isn't recognized as-is,
8621 we try making the unop operand and the reload-register the same:
8622 (set reg:X (unop:X expr:Y))
8623 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8625 Finally, we could be called to handle an 'o' constraint by putting
8626 an address into a register. In that case, we first try to do this
8627 with a named pattern of "reload_load_address". If no such pattern
8628 exists, we just emit a SET insn and hope for the best (it will normally
8629 be valid on machines that use 'o').
8631 This entire process is made complex because reload will never
8632 process the insns we generate here and so we must ensure that
8633 they will fit their constraints and also by the fact that parts of
8634 IN might be being reloaded separately and replaced with spill registers.
8635 Because of this, we are, in some sense, just guessing the right approach
8636 here. The one listed above seems to work.
8638 ??? At some point, this whole thing needs to be rethought. */
8640 if (GET_CODE (in) == PLUS
8641 && (REG_P (XEXP (in, 0))
8642 || GET_CODE (XEXP (in, 0)) == SUBREG
8643 || MEM_P (XEXP (in, 0)))
8644 && (REG_P (XEXP (in, 1))
8645 || GET_CODE (XEXP (in, 1)) == SUBREG
8646 || CONSTANT_P (XEXP (in, 1))
8647 || MEM_P (XEXP (in, 1))))
8649 /* We need to compute the sum of a register or a MEM and another
8650 register, constant, or MEM, and put it into the reload
8651 register. The best possible way of doing this is if the machine
8652 has a three-operand ADD insn that accepts the required operands.
8654 The simplest approach is to try to generate such an insn and see if it
8655 is recognized and matches its constraints. If so, it can be used.
8657 It might be better not to actually emit the insn unless it is valid,
8658 but we need to pass the insn as an operand to `recog' and
8659 `extract_insn' and it is simpler to emit and then delete the insn if
8660 not valid than to dummy things up. */
8662 rtx op0, op1, tem;
8663 rtx_insn *insn;
8664 enum insn_code code;
8666 op0 = find_replacement (&XEXP (in, 0));
8667 op1 = find_replacement (&XEXP (in, 1));
8669 /* Since constraint checking is strict, commutativity won't be
8670 checked, so we need to do that here to avoid spurious failure
8671 if the add instruction is two-address and the second operand
8672 of the add is the same as the reload reg, which is frequently
8673 the case. If the insn would be A = B + A, rearrange it so
8674 it will be A = A + B as constrain_operands expects. */
8676 if (REG_P (XEXP (in, 1))
8677 && REGNO (out) == REGNO (XEXP (in, 1)))
8678 tem = op0, op0 = op1, op1 = tem;
8680 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8681 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8683 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8684 if (insn)
8685 return insn;
8687 /* If that failed, we must use a conservative two-insn sequence.
8689 Use a move to copy one operand into the reload register. Prefer
8690 to reload a constant, MEM or pseudo since the move patterns can
8691 handle an arbitrary operand. If OP1 is not a constant, MEM or
8692 pseudo and OP1 is not a valid operand for an add instruction, then
8693 reload OP1.
8695 After reloading one of the operands into the reload register, add
8696 the reload register to the output register.
8698 If there is another way to do this for a specific machine, a
8699 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8700 we emit below. */
8702 code = optab_handler (add_optab, GET_MODE (out));
8704 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8705 || (REG_P (op1)
8706 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8707 || (code != CODE_FOR_nothing
8708 && !insn_operand_matches (code, 2, op1)))
8709 tem = op0, op0 = op1, op1 = tem;
8711 gen_reload (out, op0, opnum, type);
8713 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8714 This fixes a problem on the 32K where the stack pointer cannot
8715 be used as an operand of an add insn. */
8717 if (rtx_equal_p (op0, op1))
8718 op1 = out;
8720 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8721 if (insn)
8723 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8724 set_dst_reg_note (insn, REG_EQUIV, in, out);
8725 return insn;
8728 /* If that failed, copy the address register to the reload register.
8729 Then add the constant to the reload register. */
8731 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8732 gen_reload (out, op1, opnum, type);
8733 insn = emit_insn (gen_add2_insn (out, op0));
8734 set_dst_reg_note (insn, REG_EQUIV, in, out);
8737 #ifdef SECONDARY_MEMORY_NEEDED
8738 /* If we need a memory location to do the move, do it that way. */
8739 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8740 (REG_P (tem1) && REG_P (tem2)))
8741 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8742 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8743 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8744 REGNO_REG_CLASS (REGNO (tem2)),
8745 GET_MODE (out)))
8747 /* Get the memory to use and rewrite both registers to its mode. */
8748 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8750 if (GET_MODE (loc) != GET_MODE (out))
8751 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8753 if (GET_MODE (loc) != GET_MODE (in))
8754 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8756 gen_reload (loc, in, opnum, type);
8757 gen_reload (out, loc, opnum, type);
8759 #endif
8760 else if (REG_P (out) && UNARY_P (in))
8762 rtx insn;
8763 rtx op1;
8764 rtx out_moded;
8765 rtx_insn *set;
8767 op1 = find_replacement (&XEXP (in, 0));
8768 if (op1 != XEXP (in, 0))
8769 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8771 /* First, try a plain SET. */
8772 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8773 if (set)
8774 return set;
8776 /* If that failed, move the inner operand to the reload
8777 register, and try the same unop with the inner expression
8778 replaced with the reload register. */
8780 if (GET_MODE (op1) != GET_MODE (out))
8781 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8782 else
8783 out_moded = out;
8785 gen_reload (out_moded, op1, opnum, type);
8787 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8788 out_moded));
8789 insn = emit_insn_if_valid_for_reload (insn);
8790 if (insn)
8792 set_unique_reg_note (insn, REG_EQUIV, in);
8793 return as_a <rtx_insn *> (insn);
8796 fatal_insn ("failure trying to reload:", set);
8798 /* If IN is a simple operand, use gen_move_insn. */
8799 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8801 tem = emit_insn (gen_move_insn (out, in));
8802 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8803 mark_jump_label (in, tem, 0);
8806 else if (targetm.have_reload_load_address ())
8807 emit_insn (targetm.gen_reload_load_address (out, in));
8809 /* Otherwise, just write (set OUT IN) and hope for the best. */
8810 else
8811 emit_insn (gen_rtx_SET (out, in));
8813 /* Return the first insn emitted.
8814 We can not just return get_last_insn, because there may have
8815 been multiple instructions emitted. Also note that gen_move_insn may
8816 emit more than one insn itself, so we can not assume that there is one
8817 insn emitted per emit_insn_before call. */
8819 return last ? NEXT_INSN (last) : get_insns ();
8822 /* Delete a previously made output-reload whose result we now believe
8823 is not needed. First we double-check.
8825 INSN is the insn now being processed.
8826 LAST_RELOAD_REG is the hard register number for which we want to delete
8827 the last output reload.
8828 J is the reload-number that originally used REG. The caller has made
8829 certain that reload J doesn't use REG any longer for input.
8830 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8832 static void
8833 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8834 rtx new_reload_reg)
8836 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8837 rtx reg = spill_reg_stored_to[last_reload_reg];
8838 int k;
8839 int n_occurrences;
8840 int n_inherited = 0;
8841 rtx substed;
8842 unsigned regno;
8843 int nregs;
8845 /* It is possible that this reload has been only used to set another reload
8846 we eliminated earlier and thus deleted this instruction too. */
8847 if (output_reload_insn->deleted ())
8848 return;
8850 /* Get the raw pseudo-register referred to. */
8852 while (GET_CODE (reg) == SUBREG)
8853 reg = SUBREG_REG (reg);
8854 substed = reg_equiv_memory_loc (REGNO (reg));
8856 /* This is unsafe if the operand occurs more often in the current
8857 insn than it is inherited. */
8858 for (k = n_reloads - 1; k >= 0; k--)
8860 rtx reg2 = rld[k].in;
8861 if (! reg2)
8862 continue;
8863 if (MEM_P (reg2) || reload_override_in[k])
8864 reg2 = rld[k].in_reg;
8866 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8867 reg2 = XEXP (rld[k].in_reg, 0);
8869 while (GET_CODE (reg2) == SUBREG)
8870 reg2 = SUBREG_REG (reg2);
8871 if (rtx_equal_p (reg2, reg))
8873 if (reload_inherited[k] || reload_override_in[k] || k == j)
8874 n_inherited++;
8875 else
8876 return;
8879 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8880 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8881 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8882 reg, 0);
8883 if (substed)
8884 n_occurrences += count_occurrences (PATTERN (insn),
8885 eliminate_regs (substed, VOIDmode,
8886 NULL_RTX), 0);
8887 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8889 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8890 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8892 if (n_occurrences > n_inherited)
8893 return;
8895 regno = REGNO (reg);
8896 if (regno >= FIRST_PSEUDO_REGISTER)
8897 nregs = 1;
8898 else
8899 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8901 /* If the pseudo-reg we are reloading is no longer referenced
8902 anywhere between the store into it and here,
8903 and we're within the same basic block, then the value can only
8904 pass through the reload reg and end up here.
8905 Otherwise, give up--return. */
8906 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8907 i1 != insn; i1 = NEXT_INSN (i1))
8909 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8910 return;
8911 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8912 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8914 /* If this is USE in front of INSN, we only have to check that
8915 there are no more references than accounted for by inheritance. */
8916 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8918 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8919 i1 = NEXT_INSN (i1);
8921 if (n_occurrences <= n_inherited && i1 == insn)
8922 break;
8923 return;
8927 /* We will be deleting the insn. Remove the spill reg information. */
8928 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8930 spill_reg_store[last_reload_reg + k] = 0;
8931 spill_reg_stored_to[last_reload_reg + k] = 0;
8934 /* The caller has already checked that REG dies or is set in INSN.
8935 It has also checked that we are optimizing, and thus some
8936 inaccuracies in the debugging information are acceptable.
8937 So we could just delete output_reload_insn. But in some cases
8938 we can improve the debugging information without sacrificing
8939 optimization - maybe even improving the code: See if the pseudo
8940 reg has been completely replaced with reload regs. If so, delete
8941 the store insn and forget we had a stack slot for the pseudo. */
8942 if (rld[j].out != rld[j].in
8943 && REG_N_DEATHS (REGNO (reg)) == 1
8944 && REG_N_SETS (REGNO (reg)) == 1
8945 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8946 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8948 rtx_insn *i2;
8950 /* We know that it was used only between here and the beginning of
8951 the current basic block. (We also know that the last use before
8952 INSN was the output reload we are thinking of deleting, but never
8953 mind that.) Search that range; see if any ref remains. */
8954 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8956 rtx set = single_set (i2);
8958 /* Uses which just store in the pseudo don't count,
8959 since if they are the only uses, they are dead. */
8960 if (set != 0 && SET_DEST (set) == reg)
8961 continue;
8962 if (LABEL_P (i2) || JUMP_P (i2))
8963 break;
8964 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8965 && reg_mentioned_p (reg, PATTERN (i2)))
8967 /* Some other ref remains; just delete the output reload we
8968 know to be dead. */
8969 delete_address_reloads (output_reload_insn, insn);
8970 delete_insn (output_reload_insn);
8971 return;
8975 /* Delete the now-dead stores into this pseudo. Note that this
8976 loop also takes care of deleting output_reload_insn. */
8977 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8979 rtx set = single_set (i2);
8981 if (set != 0 && SET_DEST (set) == reg)
8983 delete_address_reloads (i2, insn);
8984 delete_insn (i2);
8986 if (LABEL_P (i2) || JUMP_P (i2))
8987 break;
8990 /* For the debugging info, say the pseudo lives in this reload reg. */
8991 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8992 if (ira_conflicts_p)
8993 /* Inform IRA about the change. */
8994 ira_mark_allocation_change (REGNO (reg));
8995 alter_reg (REGNO (reg), -1, false);
8997 else
8999 delete_address_reloads (output_reload_insn, insn);
9000 delete_insn (output_reload_insn);
9004 /* We are going to delete DEAD_INSN. Recursively delete loads of
9005 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9006 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9007 static void
9008 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9010 rtx set = single_set (dead_insn);
9011 rtx set2, dst;
9012 rtx_insn *prev, *next;
9013 if (set)
9015 rtx dst = SET_DEST (set);
9016 if (MEM_P (dst))
9017 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9019 /* If we deleted the store from a reloaded post_{in,de}c expression,
9020 we can delete the matching adds. */
9021 prev = PREV_INSN (dead_insn);
9022 next = NEXT_INSN (dead_insn);
9023 if (! prev || ! next)
9024 return;
9025 set = single_set (next);
9026 set2 = single_set (prev);
9027 if (! set || ! set2
9028 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9029 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9030 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9031 return;
9032 dst = SET_DEST (set);
9033 if (! rtx_equal_p (dst, SET_DEST (set2))
9034 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9035 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9036 || (INTVAL (XEXP (SET_SRC (set), 1))
9037 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9038 return;
9039 delete_related_insns (prev);
9040 delete_related_insns (next);
9043 /* Subfunction of delete_address_reloads: process registers found in X. */
9044 static void
9045 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9047 rtx_insn *prev, *i2;
9048 rtx set, dst;
9049 int i, j;
9050 enum rtx_code code = GET_CODE (x);
9052 if (code != REG)
9054 const char *fmt = GET_RTX_FORMAT (code);
9055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9057 if (fmt[i] == 'e')
9058 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9059 else if (fmt[i] == 'E')
9061 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9062 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9063 current_insn);
9066 return;
9069 if (spill_reg_order[REGNO (x)] < 0)
9070 return;
9072 /* Scan backwards for the insn that sets x. This might be a way back due
9073 to inheritance. */
9074 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9076 code = GET_CODE (prev);
9077 if (code == CODE_LABEL || code == JUMP_INSN)
9078 return;
9079 if (!INSN_P (prev))
9080 continue;
9081 if (reg_set_p (x, PATTERN (prev)))
9082 break;
9083 if (reg_referenced_p (x, PATTERN (prev)))
9084 return;
9086 if (! prev || INSN_UID (prev) < reload_first_uid)
9087 return;
9088 /* Check that PREV only sets the reload register. */
9089 set = single_set (prev);
9090 if (! set)
9091 return;
9092 dst = SET_DEST (set);
9093 if (!REG_P (dst)
9094 || ! rtx_equal_p (dst, x))
9095 return;
9096 if (! reg_set_p (dst, PATTERN (dead_insn)))
9098 /* Check if DST was used in a later insn -
9099 it might have been inherited. */
9100 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9102 if (LABEL_P (i2))
9103 break;
9104 if (! INSN_P (i2))
9105 continue;
9106 if (reg_referenced_p (dst, PATTERN (i2)))
9108 /* If there is a reference to the register in the current insn,
9109 it might be loaded in a non-inherited reload. If no other
9110 reload uses it, that means the register is set before
9111 referenced. */
9112 if (i2 == current_insn)
9114 for (j = n_reloads - 1; j >= 0; j--)
9115 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9116 || reload_override_in[j] == dst)
9117 return;
9118 for (j = n_reloads - 1; j >= 0; j--)
9119 if (rld[j].in && rld[j].reg_rtx == dst)
9120 break;
9121 if (j >= 0)
9122 break;
9124 return;
9126 if (JUMP_P (i2))
9127 break;
9128 /* If DST is still live at CURRENT_INSN, check if it is used for
9129 any reload. Note that even if CURRENT_INSN sets DST, we still
9130 have to check the reloads. */
9131 if (i2 == current_insn)
9133 for (j = n_reloads - 1; j >= 0; j--)
9134 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9135 || reload_override_in[j] == dst)
9136 return;
9137 /* ??? We can't finish the loop here, because dst might be
9138 allocated to a pseudo in this block if no reload in this
9139 block needs any of the classes containing DST - see
9140 spill_hard_reg. There is no easy way to tell this, so we
9141 have to scan till the end of the basic block. */
9143 if (reg_set_p (dst, PATTERN (i2)))
9144 break;
9147 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9148 reg_reloaded_contents[REGNO (dst)] = -1;
9149 delete_insn (prev);
9152 /* Output reload-insns to reload VALUE into RELOADREG.
9153 VALUE is an autoincrement or autodecrement RTX whose operand
9154 is a register or memory location;
9155 so reloading involves incrementing that location.
9156 IN is either identical to VALUE, or some cheaper place to reload from.
9158 INC_AMOUNT is the number to increment or decrement by (always positive).
9159 This cannot be deduced from VALUE. */
9161 static void
9162 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9164 /* REG or MEM to be copied and incremented. */
9165 rtx incloc = find_replacement (&XEXP (value, 0));
9166 /* Nonzero if increment after copying. */
9167 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9168 || GET_CODE (value) == POST_MODIFY);
9169 rtx_insn *last;
9170 rtx inc;
9171 rtx_insn *add_insn;
9172 int code;
9173 rtx real_in = in == value ? incloc : in;
9175 /* No hard register is equivalent to this register after
9176 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9177 we could inc/dec that register as well (maybe even using it for
9178 the source), but I'm not sure it's worth worrying about. */
9179 if (REG_P (incloc))
9180 reg_last_reload_reg[REGNO (incloc)] = 0;
9182 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9184 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9185 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9187 else
9189 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9190 inc_amount = -inc_amount;
9192 inc = GEN_INT (inc_amount);
9195 /* If this is post-increment, first copy the location to the reload reg. */
9196 if (post && real_in != reloadreg)
9197 emit_insn (gen_move_insn (reloadreg, real_in));
9199 if (in == value)
9201 /* See if we can directly increment INCLOC. Use a method similar to
9202 that in gen_reload. */
9204 last = get_last_insn ();
9205 add_insn = emit_insn (gen_rtx_SET (incloc,
9206 gen_rtx_PLUS (GET_MODE (incloc),
9207 incloc, inc)));
9209 code = recog_memoized (add_insn);
9210 if (code >= 0)
9212 extract_insn (add_insn);
9213 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9215 /* If this is a pre-increment and we have incremented the value
9216 where it lives, copy the incremented value to RELOADREG to
9217 be used as an address. */
9219 if (! post)
9220 emit_insn (gen_move_insn (reloadreg, incloc));
9221 return;
9224 delete_insns_since (last);
9227 /* If couldn't do the increment directly, must increment in RELOADREG.
9228 The way we do this depends on whether this is pre- or post-increment.
9229 For pre-increment, copy INCLOC to the reload register, increment it
9230 there, then save back. */
9232 if (! post)
9234 if (in != reloadreg)
9235 emit_insn (gen_move_insn (reloadreg, real_in));
9236 emit_insn (gen_add2_insn (reloadreg, inc));
9237 emit_insn (gen_move_insn (incloc, reloadreg));
9239 else
9241 /* Postincrement.
9242 Because this might be a jump insn or a compare, and because RELOADREG
9243 may not be available after the insn in an input reload, we must do
9244 the incrementation before the insn being reloaded for.
9246 We have already copied IN to RELOADREG. Increment the copy in
9247 RELOADREG, save that back, then decrement RELOADREG so it has
9248 the original value. */
9250 emit_insn (gen_add2_insn (reloadreg, inc));
9251 emit_insn (gen_move_insn (incloc, reloadreg));
9252 if (CONST_INT_P (inc))
9253 emit_insn (gen_add2_insn (reloadreg,
9254 gen_int_mode (-INTVAL (inc),
9255 GET_MODE (reloadreg))));
9256 else
9257 emit_insn (gen_sub2_insn (reloadreg, inc));
9261 static void
9262 add_auto_inc_notes (rtx_insn *insn, rtx x)
9264 enum rtx_code code = GET_CODE (x);
9265 const char *fmt;
9266 int i, j;
9268 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9270 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9271 return;
9274 /* Scan all the operand sub-expressions. */
9275 fmt = GET_RTX_FORMAT (code);
9276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9278 if (fmt[i] == 'e')
9279 add_auto_inc_notes (insn, XEXP (x, i));
9280 else if (fmt[i] == 'E')
9281 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9282 add_auto_inc_notes (insn, XVECEXP (x, i, j));