1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
26 #include "diagnostic-core.h"
28 /* Include insn-config.h before expr.h so that HAVE_conditional_move
29 is properly defined. */
30 #include "insn-config.h"
34 #include "tree-hasher.h"
35 #include "stor-layout.h"
36 #include "stringpool.h"
48 #include "insn-codes.h"
55 struct target_optabs default_target_optabs
;
56 struct target_libfuncs default_target_libfuncs
;
57 struct target_optabs
*this_fn_optabs
= &default_target_optabs
;
59 struct target_optabs
*this_target_optabs
= &default_target_optabs
;
60 struct target_libfuncs
*this_target_libfuncs
= &default_target_libfuncs
;
63 #define libfunc_hash \
64 (this_target_libfuncs->x_libfunc_hash)
66 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
68 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
69 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
71 /* Debug facility for use in GDB. */
72 void debug_optab_libfuncs (void);
74 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
75 #if ENABLE_DECIMAL_BID_FORMAT
76 #define DECIMAL_PREFIX "bid_"
78 #define DECIMAL_PREFIX "dpd_"
81 /* Used for libfunc_hash. */
84 libfunc_hasher::hash (libfunc_entry
*e
)
86 return ((e
->mode1
+ e
->mode2
* NUM_MACHINE_MODES
) ^ e
->op
);
89 /* Used for libfunc_hash. */
92 libfunc_hasher::equal (libfunc_entry
*e1
, libfunc_entry
*e2
)
94 return e1
->op
== e2
->op
&& e1
->mode1
== e2
->mode1
&& e1
->mode2
== e2
->mode2
;
97 /* Return libfunc corresponding operation defined by OPTAB converting
98 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
99 if no libfunc is available. */
101 convert_optab_libfunc (convert_optab optab
, machine_mode mode1
,
104 struct libfunc_entry e
;
105 struct libfunc_entry
**slot
;
107 /* ??? This ought to be an assert, but not all of the places
108 that we expand optabs know about the optabs that got moved
110 if (!(optab
>= FIRST_CONV_OPTAB
&& optab
<= LAST_CONVLIB_OPTAB
))
116 slot
= libfunc_hash
->find_slot (&e
, NO_INSERT
);
119 const struct convert_optab_libcall_d
*d
120 = &convlib_def
[optab
- FIRST_CONV_OPTAB
];
122 if (d
->libcall_gen
== NULL
)
125 d
->libcall_gen (optab
, d
->libcall_basename
, mode1
, mode2
);
126 slot
= libfunc_hash
->find_slot (&e
, NO_INSERT
);
130 return (*slot
)->libfunc
;
133 /* Return libfunc corresponding operation defined by OPTAB in MODE.
134 Trigger lazy initialization if needed, return NULL if no libfunc is
137 optab_libfunc (optab optab
, machine_mode mode
)
139 struct libfunc_entry e
;
140 struct libfunc_entry
**slot
;
142 /* ??? This ought to be an assert, but not all of the places
143 that we expand optabs know about the optabs that got moved
145 if (!(optab
>= FIRST_NORM_OPTAB
&& optab
<= LAST_NORMLIB_OPTAB
))
151 slot
= libfunc_hash
->find_slot (&e
, NO_INSERT
);
154 const struct optab_libcall_d
*d
155 = &normlib_def
[optab
- FIRST_NORM_OPTAB
];
157 if (d
->libcall_gen
== NULL
)
160 d
->libcall_gen (optab
, d
->libcall_basename
, d
->libcall_suffix
, mode
);
161 slot
= libfunc_hash
->find_slot (&e
, NO_INSERT
);
165 return (*slot
)->libfunc
;
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
173 If the last insn does not set TARGET, don't do anything, but return 1.
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
180 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
, rtx op1
)
186 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
188 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
189 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
190 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
191 && GET_RTX_CLASS (code
) != RTX_COMPARE
192 && GET_RTX_CLASS (code
) != RTX_UNARY
)
195 if (GET_CODE (target
) == ZERO_EXTRACT
)
198 for (last_insn
= insns
;
199 NEXT_INSN (last_insn
) != NULL_RTX
;
200 last_insn
= NEXT_INSN (last_insn
))
203 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
204 a value changing in the insn, so the note would be invalid for CSE. */
205 if (reg_overlap_mentioned_p (target
, op0
)
206 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
209 && (rtx_equal_p (target
, op0
)
210 || (op1
&& rtx_equal_p (target
, op1
))))
212 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
213 over expanding it as temp = MEM op X, MEM = temp. If the target
214 supports MEM = MEM op X instructions, it is sometimes too hard
215 to reconstruct that form later, especially if X is also a memory,
216 and due to multiple occurrences of addresses the address might
217 be forced into register unnecessarily.
218 Note that not emitting the REG_EQUIV note might inhibit
219 CSE in some cases. */
220 set
= single_set (last_insn
);
222 && GET_CODE (SET_SRC (set
)) == code
223 && MEM_P (SET_DEST (set
))
224 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
225 || (op1
&& rtx_equal_p (SET_DEST (set
),
226 XEXP (SET_SRC (set
), 1)))))
232 set
= set_for_reg_notes (last_insn
);
236 if (! rtx_equal_p (SET_DEST (set
), target
)
237 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
238 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
239 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
242 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
252 if (GET_MODE (op0
) != VOIDmode
&& GET_MODE (target
) != GET_MODE (op0
))
254 note
= gen_rtx_fmt_e (code
, GET_MODE (op0
), copy_rtx (op0
));
255 if (GET_MODE_SIZE (GET_MODE (op0
))
256 > GET_MODE_SIZE (GET_MODE (target
)))
257 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
258 note
, GET_MODE (op0
));
260 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
261 note
, GET_MODE (op0
));
266 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
270 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
272 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
277 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
278 for a widening operation would be. In most cases this would be OP0, but if
279 that's a constant it'll be VOIDmode, which isn't useful. */
282 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
284 machine_mode m0
= GET_MODE (op0
);
285 machine_mode m1
= GET_MODE (op1
);
288 if (m0
== VOIDmode
&& m1
== VOIDmode
)
290 else if (m0
== VOIDmode
|| GET_MODE_SIZE (m0
) < GET_MODE_SIZE (m1
))
295 if (GET_MODE_SIZE (result
) > GET_MODE_SIZE (to_mode
))
301 /* Like optab_handler, but for widening_operations that have a
302 TO_MODE and a FROM_MODE. */
305 widening_optab_handler (optab op
, machine_mode to_mode
,
306 machine_mode from_mode
)
308 unsigned scode
= (op
<< 16) | to_mode
;
309 if (to_mode
!= from_mode
&& from_mode
!= VOIDmode
)
311 /* ??? Why does find_widening_optab_handler_and_mode attempt to
312 widen things that can't be widened? E.g. add_optab... */
313 if (op
> LAST_CONV_OPTAB
)
314 return CODE_FOR_nothing
;
315 scode
|= from_mode
<< 8;
317 return raw_optab_handler (scode
);
320 /* Find a widening optab even if it doesn't widen as much as we want.
321 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
322 direct HI->SI insn, then return SI->DI, if that exists.
323 If PERMIT_NON_WIDENING is non-zero then this can be used with
324 non-widening optabs also. */
327 find_widening_optab_handler_and_mode (optab op
, machine_mode to_mode
,
328 machine_mode from_mode
,
329 int permit_non_widening
,
330 machine_mode
*found_mode
)
332 for (; (permit_non_widening
|| from_mode
!= to_mode
)
333 && GET_MODE_SIZE (from_mode
) <= GET_MODE_SIZE (to_mode
)
334 && from_mode
!= VOIDmode
;
335 from_mode
= GET_MODE_WIDER_MODE (from_mode
))
337 enum insn_code handler
= widening_optab_handler (op
, to_mode
,
340 if (handler
!= CODE_FOR_nothing
)
343 *found_mode
= from_mode
;
348 return CODE_FOR_nothing
;
351 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
352 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
353 not actually do a sign-extend or zero-extend, but can leave the
354 higher-order bits of the result rtx undefined, for example, in the case
355 of logical operations, but not right shifts. */
358 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
359 int unsignedp
, int no_extend
)
363 /* If we don't have to extend and this is a constant, return it. */
364 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
367 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
368 extend since it will be more efficient to do so unless the signedness of
369 a promoted object differs from our extension. */
371 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
372 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
373 return convert_modes (mode
, oldmode
, op
, unsignedp
);
375 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
377 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
378 return gen_lowpart (mode
, force_reg (GET_MODE (op
), op
));
380 /* Otherwise, get an object of MODE, clobber it, and set the low-order
383 result
= gen_reg_rtx (mode
);
384 emit_clobber (result
);
385 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
389 /* Return the optab used for computing the operation given by the tree code,
390 CODE and the tree EXP. This function is not always usable (for example, it
391 cannot give complete results for multiplication or division) but probably
392 ought to be relied on more widely throughout the expander. */
394 optab_for_tree_code (enum tree_code code
, const_tree type
,
395 enum optab_subtype subtype
)
407 return one_cmpl_optab
;
412 case MULT_HIGHPART_EXPR
:
413 return TYPE_UNSIGNED (type
) ? umul_highpart_optab
: smul_highpart_optab
;
419 return TYPE_UNSIGNED (type
) ? umod_optab
: smod_optab
;
427 if (TYPE_SATURATING (type
))
428 return TYPE_UNSIGNED (type
) ? usdiv_optab
: ssdiv_optab
;
429 return TYPE_UNSIGNED (type
) ? udiv_optab
: sdiv_optab
;
432 if (TREE_CODE (type
) == VECTOR_TYPE
)
434 if (subtype
== optab_vector
)
435 return TYPE_SATURATING (type
) ? unknown_optab
: vashl_optab
;
437 gcc_assert (subtype
== optab_scalar
);
439 if (TYPE_SATURATING (type
))
440 return TYPE_UNSIGNED (type
) ? usashl_optab
: ssashl_optab
;
444 if (TREE_CODE (type
) == VECTOR_TYPE
)
446 if (subtype
== optab_vector
)
447 return TYPE_UNSIGNED (type
) ? vlshr_optab
: vashr_optab
;
449 gcc_assert (subtype
== optab_scalar
);
451 return TYPE_UNSIGNED (type
) ? lshr_optab
: ashr_optab
;
454 if (TREE_CODE (type
) == VECTOR_TYPE
)
456 if (subtype
== optab_vector
)
459 gcc_assert (subtype
== optab_scalar
);
464 if (TREE_CODE (type
) == VECTOR_TYPE
)
466 if (subtype
== optab_vector
)
469 gcc_assert (subtype
== optab_scalar
);
474 return TYPE_UNSIGNED (type
) ? umax_optab
: smax_optab
;
477 return TYPE_UNSIGNED (type
) ? umin_optab
: smin_optab
;
479 case REALIGN_LOAD_EXPR
:
480 return vec_realign_load_optab
;
483 return TYPE_UNSIGNED (type
) ? usum_widen_optab
: ssum_widen_optab
;
486 return TYPE_UNSIGNED (type
) ? udot_prod_optab
: sdot_prod_optab
;
489 return TYPE_UNSIGNED (type
) ? usad_optab
: ssad_optab
;
491 case WIDEN_MULT_PLUS_EXPR
:
492 return (TYPE_UNSIGNED (type
)
493 ? (TYPE_SATURATING (type
)
494 ? usmadd_widen_optab
: umadd_widen_optab
)
495 : (TYPE_SATURATING (type
)
496 ? ssmadd_widen_optab
: smadd_widen_optab
));
498 case WIDEN_MULT_MINUS_EXPR
:
499 return (TYPE_UNSIGNED (type
)
500 ? (TYPE_SATURATING (type
)
501 ? usmsub_widen_optab
: umsub_widen_optab
)
502 : (TYPE_SATURATING (type
)
503 ? ssmsub_widen_optab
: smsub_widen_optab
));
509 return TYPE_UNSIGNED (type
)
510 ? reduc_umax_scal_optab
: reduc_smax_scal_optab
;
513 return TYPE_UNSIGNED (type
)
514 ? reduc_umin_scal_optab
: reduc_smin_scal_optab
;
516 case REDUC_PLUS_EXPR
:
517 return reduc_plus_scal_optab
;
519 case VEC_WIDEN_MULT_HI_EXPR
:
520 return TYPE_UNSIGNED (type
) ?
521 vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
523 case VEC_WIDEN_MULT_LO_EXPR
:
524 return TYPE_UNSIGNED (type
) ?
525 vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
527 case VEC_WIDEN_MULT_EVEN_EXPR
:
528 return TYPE_UNSIGNED (type
) ?
529 vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
531 case VEC_WIDEN_MULT_ODD_EXPR
:
532 return TYPE_UNSIGNED (type
) ?
533 vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
535 case VEC_WIDEN_LSHIFT_HI_EXPR
:
536 return TYPE_UNSIGNED (type
) ?
537 vec_widen_ushiftl_hi_optab
: vec_widen_sshiftl_hi_optab
;
539 case VEC_WIDEN_LSHIFT_LO_EXPR
:
540 return TYPE_UNSIGNED (type
) ?
541 vec_widen_ushiftl_lo_optab
: vec_widen_sshiftl_lo_optab
;
543 case VEC_UNPACK_HI_EXPR
:
544 return TYPE_UNSIGNED (type
) ?
545 vec_unpacku_hi_optab
: vec_unpacks_hi_optab
;
547 case VEC_UNPACK_LO_EXPR
:
548 return TYPE_UNSIGNED (type
) ?
549 vec_unpacku_lo_optab
: vec_unpacks_lo_optab
;
551 case VEC_UNPACK_FLOAT_HI_EXPR
:
552 /* The signedness is determined from input operand. */
553 return TYPE_UNSIGNED (type
) ?
554 vec_unpacku_float_hi_optab
: vec_unpacks_float_hi_optab
;
556 case VEC_UNPACK_FLOAT_LO_EXPR
:
557 /* The signedness is determined from input operand. */
558 return TYPE_UNSIGNED (type
) ?
559 vec_unpacku_float_lo_optab
: vec_unpacks_float_lo_optab
;
561 case VEC_PACK_TRUNC_EXPR
:
562 return vec_pack_trunc_optab
;
564 case VEC_PACK_SAT_EXPR
:
565 return TYPE_UNSIGNED (type
) ? vec_pack_usat_optab
: vec_pack_ssat_optab
;
567 case VEC_PACK_FIX_TRUNC_EXPR
:
568 /* The signedness is determined from output operand. */
569 return TYPE_UNSIGNED (type
) ?
570 vec_pack_ufix_trunc_optab
: vec_pack_sfix_trunc_optab
;
576 trapv
= INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_TRAPS (type
);
579 case POINTER_PLUS_EXPR
:
581 if (TYPE_SATURATING (type
))
582 return TYPE_UNSIGNED (type
) ? usadd_optab
: ssadd_optab
;
583 return trapv
? addv_optab
: add_optab
;
586 if (TYPE_SATURATING (type
))
587 return TYPE_UNSIGNED (type
) ? ussub_optab
: sssub_optab
;
588 return trapv
? subv_optab
: sub_optab
;
591 if (TYPE_SATURATING (type
))
592 return TYPE_UNSIGNED (type
) ? usmul_optab
: ssmul_optab
;
593 return trapv
? smulv_optab
: smul_optab
;
596 if (TYPE_SATURATING (type
))
597 return TYPE_UNSIGNED (type
) ? usneg_optab
: ssneg_optab
;
598 return trapv
? negv_optab
: neg_optab
;
601 return trapv
? absv_optab
: abs_optab
;
604 return unknown_optab
;
608 /* Given optab UNOPTAB that reduces a vector to a scalar, find instead the old
609 optab that produces a vector with the reduction result in one element,
610 for a tree with type TYPE. */
613 scalar_reduc_to_vector (optab unoptab
, const_tree type
)
617 case reduc_plus_scal_optab
:
618 return TYPE_UNSIGNED (type
) ? reduc_uplus_optab
: reduc_splus_optab
;
620 case reduc_smin_scal_optab
: return reduc_smin_optab
;
621 case reduc_umin_scal_optab
: return reduc_umin_optab
;
622 case reduc_smax_scal_optab
: return reduc_smax_optab
;
623 case reduc_umax_scal_optab
: return reduc_umax_optab
;
624 default: return unknown_optab
;
628 /* Expand vector widening operations.
630 There are two different classes of operations handled here:
631 1) Operations whose result is wider than all the arguments to the operation.
632 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
633 In this case OP0 and optionally OP1 would be initialized,
634 but WIDE_OP wouldn't (not relevant for this case).
635 2) Operations whose result is of the same size as the last argument to the
636 operation, but wider than all the other arguments to the operation.
637 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
638 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
640 E.g, when called to expand the following operations, this is how
641 the arguments will be initialized:
643 widening-sum 2 oprnd0 - oprnd1
644 widening-dot-product 3 oprnd0 oprnd1 oprnd2
645 widening-mult 2 oprnd0 oprnd1 -
646 type-promotion (vec-unpack) 1 oprnd0 - - */
649 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
650 rtx target
, int unsignedp
)
652 struct expand_operand eops
[4];
653 tree oprnd0
, oprnd1
, oprnd2
;
654 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
655 optab widen_pattern_optab
;
656 enum insn_code icode
;
657 int nops
= TREE_CODE_LENGTH (ops
->code
);
661 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
662 widen_pattern_optab
=
663 optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
664 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
665 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
666 icode
= find_widening_optab_handler (widen_pattern_optab
,
667 TYPE_MODE (TREE_TYPE (ops
->op2
)),
670 icode
= optab_handler (widen_pattern_optab
, tmode0
);
671 gcc_assert (icode
!= CODE_FOR_nothing
);
676 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
679 /* The last operand is of a wider mode than the rest of the operands. */
684 gcc_assert (tmode1
== tmode0
);
687 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
691 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
692 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
694 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
696 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
697 expand_insn (icode
, op
, eops
);
698 return eops
[0].value
;
701 /* Generate code to perform an operation specified by TERNARY_OPTAB
702 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
704 UNSIGNEDP is for the case where we have to widen the operands
705 to perform the operation. It says to use zero-extension.
707 If TARGET is nonzero, the value
708 is generated there, if it is convenient to do so.
709 In all cases an rtx is returned for the locus of the value;
710 this may or may not be TARGET. */
713 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
714 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
716 struct expand_operand ops
[4];
717 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
719 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
721 create_output_operand (&ops
[0], target
, mode
);
722 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
723 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
724 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
725 expand_insn (icode
, 4, ops
);
730 /* Like expand_binop, but return a constant rtx if the result can be
731 calculated at compile time. The arguments and return value are
732 otherwise the same as for expand_binop. */
735 simplify_expand_binop (machine_mode mode
, optab binoptab
,
736 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
737 enum optab_methods methods
)
739 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
741 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
747 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
750 /* Like simplify_expand_binop, but always put the result in TARGET.
751 Return true if the expansion succeeded. */
754 force_expand_binop (machine_mode mode
, optab binoptab
,
755 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
756 enum optab_methods methods
)
758 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
759 target
, unsignedp
, methods
);
763 emit_move_insn (target
, x
);
767 /* Create a new vector value in VMODE with all elements set to OP. The
768 mode of OP must be the element mode of VMODE. If OP is a constant,
769 then the return value will be a constant. */
772 expand_vector_broadcast (machine_mode vmode
, rtx op
)
774 enum insn_code icode
;
779 gcc_checking_assert (VECTOR_MODE_P (vmode
));
781 n
= GET_MODE_NUNITS (vmode
);
782 vec
= rtvec_alloc (n
);
783 for (i
= 0; i
< n
; ++i
)
784 RTVEC_ELT (vec
, i
) = op
;
787 return gen_rtx_CONST_VECTOR (vmode
, vec
);
789 /* ??? If the target doesn't have a vec_init, then we have no easy way
790 of performing this operation. Most of this sort of generic support
791 is hidden away in the vector lowering support in gimple. */
792 icode
= optab_handler (vec_init_optab
, vmode
);
793 if (icode
== CODE_FOR_nothing
)
796 ret
= gen_reg_rtx (vmode
);
797 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
802 /* This subroutine of expand_doubleword_shift handles the cases in which
803 the effective shift value is >= BITS_PER_WORD. The arguments and return
804 value are the same as for the parent routine, except that SUPERWORD_OP1
805 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
806 INTO_TARGET may be null if the caller has decided to calculate it. */
809 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
810 rtx outof_target
, rtx into_target
,
811 int unsignedp
, enum optab_methods methods
)
813 if (into_target
!= 0)
814 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
815 into_target
, unsignedp
, methods
))
818 if (outof_target
!= 0)
820 /* For a signed right shift, we must fill OUTOF_TARGET with copies
821 of the sign bit, otherwise we must fill it with zeros. */
822 if (binoptab
!= ashr_optab
)
823 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
825 if (!force_expand_binop (word_mode
, binoptab
,
826 outof_input
, GEN_INT (BITS_PER_WORD
- 1),
827 outof_target
, unsignedp
, methods
))
833 /* This subroutine of expand_doubleword_shift handles the cases in which
834 the effective shift value is < BITS_PER_WORD. The arguments and return
835 value are the same as for the parent routine. */
838 expand_subword_shift (machine_mode op1_mode
, optab binoptab
,
839 rtx outof_input
, rtx into_input
, rtx op1
,
840 rtx outof_target
, rtx into_target
,
841 int unsignedp
, enum optab_methods methods
,
842 unsigned HOST_WIDE_INT shift_mask
)
844 optab reverse_unsigned_shift
, unsigned_shift
;
847 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
848 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
850 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
851 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
852 the opposite direction to BINOPTAB. */
853 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
855 carries
= outof_input
;
856 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
857 op1_mode
), op1_mode
);
858 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
863 /* We must avoid shifting by BITS_PER_WORD bits since that is either
864 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
865 has unknown behavior. Do a single shift first, then shift by the
866 remainder. It's OK to use ~OP1 as the remainder if shift counts
867 are truncated to the mode size. */
868 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
869 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
870 if (shift_mask
== BITS_PER_WORD
- 1)
872 tmp
= immed_wide_int_const
873 (wi::minus_one (GET_MODE_PRECISION (op1_mode
)), op1_mode
);
874 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
879 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
880 op1_mode
), op1_mode
);
881 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
885 if (tmp
== 0 || carries
== 0)
887 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
888 carries
, tmp
, 0, unsignedp
, methods
);
892 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
893 so the result can go directly into INTO_TARGET if convenient. */
894 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
895 into_target
, unsignedp
, methods
);
899 /* Now OR in the bits carried over from OUTOF_INPUT. */
900 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
901 into_target
, unsignedp
, methods
))
904 /* Use a standard word_mode shift for the out-of half. */
905 if (outof_target
!= 0)
906 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
907 outof_target
, unsignedp
, methods
))
914 /* Try implementing expand_doubleword_shift using conditional moves.
915 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
916 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
917 are the shift counts to use in the former and latter case. All other
918 arguments are the same as the parent routine. */
921 expand_doubleword_shift_condmove (machine_mode op1_mode
, optab binoptab
,
922 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
923 rtx outof_input
, rtx into_input
,
924 rtx subword_op1
, rtx superword_op1
,
925 rtx outof_target
, rtx into_target
,
926 int unsignedp
, enum optab_methods methods
,
927 unsigned HOST_WIDE_INT shift_mask
)
929 rtx outof_superword
, into_superword
;
931 /* Put the superword version of the output into OUTOF_SUPERWORD and
933 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
934 if (outof_target
!= 0 && subword_op1
== superword_op1
)
936 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
937 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
938 into_superword
= outof_target
;
939 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
940 outof_superword
, 0, unsignedp
, methods
))
945 into_superword
= gen_reg_rtx (word_mode
);
946 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
947 outof_superword
, into_superword
,
952 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
953 if (!expand_subword_shift (op1_mode
, binoptab
,
954 outof_input
, into_input
, subword_op1
,
955 outof_target
, into_target
,
956 unsignedp
, methods
, shift_mask
))
959 /* Select between them. Do the INTO half first because INTO_SUPERWORD
960 might be the current value of OUTOF_TARGET. */
961 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
962 into_target
, into_superword
, word_mode
, false))
965 if (outof_target
!= 0)
966 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
967 outof_target
, outof_superword
,
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1001 Return true if the shift could be successfully synthesized. */
1004 expand_doubleword_shift (machine_mode op1_mode
, optab binoptab
,
1005 rtx outof_input
, rtx into_input
, rtx op1
,
1006 rtx outof_target
, rtx into_target
,
1007 int unsignedp
, enum optab_methods methods
,
1008 unsigned HOST_WIDE_INT shift_mask
)
1010 rtx superword_op1
, tmp
, cmp1
, cmp2
;
1011 enum rtx_code cmp_code
;
1013 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1014 fill the result with sign or zero bits as appropriate. If so, the value
1015 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1016 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1017 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1019 This isn't worthwhile for constant shifts since the optimizers will
1020 cope better with in-range shift counts. */
1021 if (shift_mask
>= BITS_PER_WORD
1022 && outof_target
!= 0
1023 && !CONSTANT_P (op1
))
1025 if (!expand_doubleword_shift (op1_mode
, binoptab
,
1026 outof_input
, into_input
, op1
,
1028 unsignedp
, methods
, shift_mask
))
1030 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
1031 outof_target
, unsignedp
, methods
))
1036 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1037 is true when the effective shift value is less than BITS_PER_WORD.
1038 Set SUPERWORD_OP1 to the shift count that should be used to shift
1039 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1040 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
1041 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
1043 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1044 is a subword shift count. */
1045 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
1047 cmp2
= CONST0_RTX (op1_mode
);
1049 superword_op1
= op1
;
1053 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1054 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
1056 cmp2
= CONST0_RTX (op1_mode
);
1058 superword_op1
= cmp1
;
1063 /* If we can compute the condition at compile time, pick the
1064 appropriate subroutine. */
1065 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
1066 if (tmp
!= 0 && CONST_INT_P (tmp
))
1068 if (tmp
== const0_rtx
)
1069 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
1070 outof_target
, into_target
,
1071 unsignedp
, methods
);
1073 return expand_subword_shift (op1_mode
, binoptab
,
1074 outof_input
, into_input
, op1
,
1075 outof_target
, into_target
,
1076 unsignedp
, methods
, shift_mask
);
1079 /* Try using conditional moves to generate straight-line code. */
1080 if (HAVE_conditional_move
)
1082 rtx_insn
*start
= get_last_insn ();
1083 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
1084 cmp_code
, cmp1
, cmp2
,
1085 outof_input
, into_input
,
1087 outof_target
, into_target
,
1088 unsignedp
, methods
, shift_mask
))
1090 delete_insns_since (start
);
1093 /* As a last resort, use branches to select the correct alternative. */
1094 rtx_code_label
*subword_label
= gen_label_rtx ();
1095 rtx_code_label
*done_label
= gen_label_rtx ();
1098 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
1099 0, 0, subword_label
, -1);
1102 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
1103 outof_target
, into_target
,
1104 unsignedp
, methods
))
1107 emit_jump_insn (targetm
.gen_jump (done_label
));
1109 emit_label (subword_label
);
1111 if (!expand_subword_shift (op1_mode
, binoptab
,
1112 outof_input
, into_input
, op1
,
1113 outof_target
, into_target
,
1114 unsignedp
, methods
, shift_mask
))
1117 emit_label (done_label
);
1121 /* Subroutine of expand_binop. Perform a double word multiplication of
1122 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1123 as the target's word_mode. This function return NULL_RTX if anything
1124 goes wrong, in which case it may have already emitted instructions
1125 which need to be deleted.
1127 If we want to multiply two two-word values and have normal and widening
1128 multiplies of single-word values, we can do this with three smaller
1131 The multiplication proceeds as follows:
1132 _______________________
1133 [__op0_high_|__op0_low__]
1134 _______________________
1135 * [__op1_high_|__op1_low__]
1136 _______________________________________________
1137 _______________________
1138 (1) [__op0_low__*__op1_low__]
1139 _______________________
1140 (2a) [__op0_low__*__op1_high_]
1141 _______________________
1142 (2b) [__op0_high_*__op1_low__]
1143 _______________________
1144 (3) [__op0_high_*__op1_high_]
1147 This gives a 4-word result. Since we are only interested in the
1148 lower 2 words, partial result (3) and the upper words of (2a) and
1149 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1150 calculated using non-widening multiplication.
1152 (1), however, needs to be calculated with an unsigned widening
1153 multiplication. If this operation is not directly supported we
1154 try using a signed widening multiplication and adjust the result.
1155 This adjustment works as follows:
1157 If both operands are positive then no adjustment is needed.
1159 If the operands have different signs, for example op0_low < 0 and
1160 op1_low >= 0, the instruction treats the most significant bit of
1161 op0_low as a sign bit instead of a bit with significance
1162 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1163 with 2**BITS_PER_WORD - op0_low, and two's complements the
1164 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1167 Similarly, if both operands are negative, we need to add
1168 (op0_low + op1_low) * 2**BITS_PER_WORD.
1170 We use a trick to adjust quickly. We logically shift op0_low right
1171 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1172 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1173 logical shift exists, we do an arithmetic right shift and subtract
1177 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
1178 bool umulp
, enum optab_methods methods
)
1180 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
1181 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
1182 rtx wordm1
= umulp
? NULL_RTX
: GEN_INT (BITS_PER_WORD
- 1);
1183 rtx product
, adjust
, product_high
, temp
;
1185 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
1186 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
1187 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
1188 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
1190 /* If we're using an unsigned multiply to directly compute the product
1191 of the low-order words of the operands and perform any required
1192 adjustments of the operands, we begin by trying two more multiplications
1193 and then computing the appropriate sum.
1195 We have checked above that the required addition is provided.
1196 Full-word addition will normally always succeed, especially if
1197 it is provided at all, so we don't worry about its failure. The
1198 multiplication may well fail, however, so we do handle that. */
1202 /* ??? This could be done with emit_store_flag where available. */
1203 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
1204 NULL_RTX
, 1, methods
);
1206 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
1207 NULL_RTX
, 0, OPTAB_DIRECT
);
1210 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
1211 NULL_RTX
, 0, methods
);
1214 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
1215 NULL_RTX
, 0, OPTAB_DIRECT
);
1222 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
1223 NULL_RTX
, 0, OPTAB_DIRECT
);
1227 /* OP0_HIGH should now be dead. */
1231 /* ??? This could be done with emit_store_flag where available. */
1232 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
1233 NULL_RTX
, 1, methods
);
1235 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
1236 NULL_RTX
, 0, OPTAB_DIRECT
);
1239 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
1240 NULL_RTX
, 0, methods
);
1243 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
1244 NULL_RTX
, 0, OPTAB_DIRECT
);
1251 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
1252 NULL_RTX
, 0, OPTAB_DIRECT
);
1256 /* OP1_HIGH should now be dead. */
1258 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
1259 NULL_RTX
, 0, OPTAB_DIRECT
);
1261 if (target
&& !REG_P (target
))
1265 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
1266 target
, 1, OPTAB_DIRECT
);
1268 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
1269 target
, 1, OPTAB_DIRECT
);
1274 product_high
= operand_subword (product
, high
, 1, mode
);
1275 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
1276 NULL_RTX
, 0, OPTAB_DIRECT
);
1277 emit_move_insn (product_high
, adjust
);
1281 /* Wrapper around expand_binop which takes an rtx code to specify
1282 the operation to perform, not an optab pointer. All other
1283 arguments are the same. */
1285 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
1286 rtx op1
, rtx target
, int unsignedp
,
1287 enum optab_methods methods
)
1289 optab binop
= code_to_optab (code
);
1292 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
1295 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1296 binop. Order them according to commutative_operand_precedence and, if
1297 possible, try to put TARGET or a pseudo first. */
1299 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
1301 int op0_prec
= commutative_operand_precedence (op0
);
1302 int op1_prec
= commutative_operand_precedence (op1
);
1304 if (op0_prec
< op1_prec
)
1307 if (op0_prec
> op1_prec
)
1310 /* With equal precedence, both orders are ok, but it is better if the
1311 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1312 if (target
== 0 || REG_P (target
))
1313 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
1315 return rtx_equal_p (op1
, target
);
1318 /* Return true if BINOPTAB implements a shift operation. */
1321 shift_optab_p (optab binoptab
)
1323 switch (optab_to_code (binoptab
))
1339 /* Return true if BINOPTAB implements a commutative binary operation. */
1342 commutative_optab_p (optab binoptab
)
1344 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
1345 || binoptab
== smul_widen_optab
1346 || binoptab
== umul_widen_optab
1347 || binoptab
== smul_highpart_optab
1348 || binoptab
== umul_highpart_optab
);
1351 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1352 optimizing, and if the operand is a constant that costs more than
1353 1 instruction, force the constant into a register and return that
1354 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1357 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
1358 int opn
, rtx x
, bool unsignedp
)
1360 bool speed
= optimize_insn_for_speed_p ();
1362 if (mode
!= VOIDmode
1365 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
1366 > set_src_cost (x
, mode
, speed
)))
1368 if (CONST_INT_P (x
))
1370 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
1371 if (intval
!= INTVAL (x
))
1372 x
= GEN_INT (intval
);
1375 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1376 x
= force_reg (mode
, x
);
1381 /* Helper function for expand_binop: handle the case where there
1382 is an insn that directly implements the indicated operation.
1383 Returns null if this is not possible. */
1385 expand_binop_directly (machine_mode mode
, optab binoptab
,
1387 rtx target
, int unsignedp
, enum optab_methods methods
,
1390 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
1391 enum insn_code icode
= find_widening_optab_handler (binoptab
, mode
,
1393 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1394 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1395 machine_mode mode0
, mode1
, tmp_mode
;
1396 struct expand_operand ops
[3];
1399 rtx xop0
= op0
, xop1
= op1
;
1401 /* If it is a commutative operator and the modes would match
1402 if we would swap the operands, we can save the conversions. */
1403 commutative_p
= commutative_optab_p (binoptab
);
1405 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1406 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1407 std::swap (xop0
, xop1
);
1409 /* If we are optimizing, force expensive constants into a register. */
1410 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1411 if (!shift_optab_p (binoptab
))
1412 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1414 /* In case the insn wants input operands in modes different from
1415 those of the actual operands, convert the operands. It would
1416 seem that we don't need to convert CONST_INTs, but we do, so
1417 that they're properly zero-extended, sign-extended or truncated
1420 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1421 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1423 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1427 mode1
= GET_MODE (xop1
) != VOIDmode
? GET_MODE (xop1
) : mode
;
1428 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1430 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1434 /* If operation is commutative,
1435 try to make the first operand a register.
1436 Even better, try to make it the same as the target.
1437 Also try to make the last operand a constant. */
1439 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1440 std::swap (xop0
, xop1
);
1442 /* Now, if insn's predicates don't allow our operands, put them into
1445 if (binoptab
== vec_pack_trunc_optab
1446 || binoptab
== vec_pack_usat_optab
1447 || binoptab
== vec_pack_ssat_optab
1448 || binoptab
== vec_pack_ufix_trunc_optab
1449 || binoptab
== vec_pack_sfix_trunc_optab
)
1451 /* The mode of the result is different then the mode of the
1453 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1454 if (GET_MODE_NUNITS (tmp_mode
) != 2 * GET_MODE_NUNITS (mode
))
1456 delete_insns_since (last
);
1463 create_output_operand (&ops
[0], target
, tmp_mode
);
1464 create_input_operand (&ops
[1], xop0
, mode0
);
1465 create_input_operand (&ops
[2], xop1
, mode1
);
1466 pat
= maybe_gen_insn (icode
, 3, ops
);
1469 /* If PAT is composed of more than one insn, try to add an appropriate
1470 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1471 operand, call expand_binop again, this time without a target. */
1472 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1473 && ! add_equal_note (pat
, ops
[0].value
,
1474 optab_to_code (binoptab
),
1475 ops
[1].value
, ops
[2].value
))
1477 delete_insns_since (last
);
1478 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1479 unsignedp
, methods
);
1483 return ops
[0].value
;
1485 delete_insns_since (last
);
1489 /* Generate code to perform an operation specified by BINOPTAB
1490 on operands OP0 and OP1, with result having machine-mode MODE.
1492 UNSIGNEDP is for the case where we have to widen the operands
1493 to perform the operation. It says to use zero-extension.
1495 If TARGET is nonzero, the value
1496 is generated there, if it is convenient to do so.
1497 In all cases an rtx is returned for the locus of the value;
1498 this may or may not be TARGET. */
1501 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1502 rtx target
, int unsignedp
, enum optab_methods methods
)
1504 enum optab_methods next_methods
1505 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1506 ? OPTAB_WIDEN
: methods
);
1507 enum mode_class mclass
;
1508 machine_mode wider_mode
;
1511 rtx_insn
*entry_last
= get_last_insn ();
1514 mclass
= GET_MODE_CLASS (mode
);
1516 /* If subtracting an integer constant, convert this into an addition of
1517 the negated constant. */
1519 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1521 op1
= negate_rtx (mode
, op1
);
1522 binoptab
= add_optab
;
1525 /* Record where to delete back to if we backtrack. */
1526 last
= get_last_insn ();
1528 /* If we can do it with a three-operand insn, do so. */
1530 if (methods
!= OPTAB_MUST_WIDEN
1531 && find_widening_optab_handler (binoptab
, mode
,
1532 widened_mode (mode
, op0
, op1
), 1)
1533 != CODE_FOR_nothing
)
1535 temp
= expand_binop_directly (mode
, binoptab
, op0
, op1
, target
,
1536 unsignedp
, methods
, last
);
1541 /* If we were trying to rotate, and that didn't work, try rotating
1542 the other direction before falling back to shifts and bitwise-or. */
1543 if (((binoptab
== rotl_optab
1544 && optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
1545 || (binoptab
== rotr_optab
1546 && optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
))
1547 && mclass
== MODE_INT
)
1549 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1551 unsigned int bits
= GET_MODE_PRECISION (mode
);
1553 if (CONST_INT_P (op1
))
1554 newop1
= GEN_INT (bits
- INTVAL (op1
));
1555 else if (targetm
.shift_truncation_mask (mode
) == bits
- 1)
1556 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1558 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1559 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1560 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1562 temp
= expand_binop_directly (mode
, otheroptab
, op0
, newop1
,
1563 target
, unsignedp
, methods
, last
);
1568 /* If this is a multiply, see if we can do a widening operation that
1569 takes operands of this mode and makes a wider mode. */
1571 if (binoptab
== smul_optab
1572 && GET_MODE_2XWIDER_MODE (mode
) != VOIDmode
1573 && (widening_optab_handler ((unsignedp
? umul_widen_optab
1574 : smul_widen_optab
),
1575 GET_MODE_2XWIDER_MODE (mode
), mode
)
1576 != CODE_FOR_nothing
))
1578 temp
= expand_binop (GET_MODE_2XWIDER_MODE (mode
),
1579 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1580 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1584 if (GET_MODE_CLASS (mode
) == MODE_INT
1585 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1586 return gen_lowpart (mode
, temp
);
1588 return convert_to_mode (mode
, temp
, unsignedp
);
1592 /* If this is a vector shift by a scalar, see if we can do a vector
1593 shift by a vector. If so, broadcast the scalar into a vector. */
1594 if (mclass
== MODE_VECTOR_INT
)
1596 optab otheroptab
= unknown_optab
;
1598 if (binoptab
== ashl_optab
)
1599 otheroptab
= vashl_optab
;
1600 else if (binoptab
== ashr_optab
)
1601 otheroptab
= vashr_optab
;
1602 else if (binoptab
== lshr_optab
)
1603 otheroptab
= vlshr_optab
;
1604 else if (binoptab
== rotl_optab
)
1605 otheroptab
= vrotl_optab
;
1606 else if (binoptab
== rotr_optab
)
1607 otheroptab
= vrotr_optab
;
1609 if (otheroptab
&& optab_handler (otheroptab
, mode
) != CODE_FOR_nothing
)
1611 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1614 temp
= expand_binop_directly (mode
, otheroptab
, op0
, vop1
,
1615 target
, unsignedp
, methods
, last
);
1622 /* Look for a wider mode of the same class for which we think we
1623 can open-code the operation. Check for a widening multiply at the
1624 wider mode as well. */
1626 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1627 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1628 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1629 wider_mode
!= VOIDmode
;
1630 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1632 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1633 || (binoptab
== smul_optab
1634 && GET_MODE_WIDER_MODE (wider_mode
) != VOIDmode
1635 && (find_widening_optab_handler ((unsignedp
1637 : smul_widen_optab
),
1638 GET_MODE_WIDER_MODE (wider_mode
),
1640 != CODE_FOR_nothing
)))
1642 rtx xop0
= op0
, xop1
= op1
;
1645 /* For certain integer operations, we need not actually extend
1646 the narrow operands, as long as we will truncate
1647 the results to the same narrowness. */
1649 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1650 || binoptab
== xor_optab
1651 || binoptab
== add_optab
|| binoptab
== sub_optab
1652 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1653 && mclass
== MODE_INT
)
1656 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1658 if (binoptab
!= ashl_optab
)
1659 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1663 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1665 /* The second operand of a shift must always be extended. */
1666 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1667 no_extend
&& binoptab
!= ashl_optab
);
1669 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1670 unsignedp
, OPTAB_DIRECT
);
1673 if (mclass
!= MODE_INT
1674 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1677 target
= gen_reg_rtx (mode
);
1678 convert_move (target
, temp
, 0);
1682 return gen_lowpart (mode
, temp
);
1685 delete_insns_since (last
);
1689 /* If operation is commutative,
1690 try to make the first operand a register.
1691 Even better, try to make it the same as the target.
1692 Also try to make the last operand a constant. */
1693 if (commutative_optab_p (binoptab
)
1694 && swap_commutative_operands_with_target (target
, op0
, op1
))
1695 std::swap (op0
, op1
);
1697 /* These can be done a word at a time. */
1698 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1699 && mclass
== MODE_INT
1700 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1701 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1706 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1707 won't be accurate, so use a new target. */
1711 || !valid_multiword_target_p (target
))
1712 target
= gen_reg_rtx (mode
);
1716 /* Do the actual arithmetic. */
1717 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
1719 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
1720 rtx x
= expand_binop (word_mode
, binoptab
,
1721 operand_subword_force (op0
, i
, mode
),
1722 operand_subword_force (op1
, i
, mode
),
1723 target_piece
, unsignedp
, next_methods
);
1728 if (target_piece
!= x
)
1729 emit_move_insn (target_piece
, x
);
1732 insns
= get_insns ();
1735 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
1742 /* Synthesize double word shifts from single word shifts. */
1743 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1744 || binoptab
== ashr_optab
)
1745 && mclass
== MODE_INT
1746 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1747 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1748 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
)
1749 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1750 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1751 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1753 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1754 machine_mode op1_mode
;
1756 double_shift_mask
= targetm
.shift_truncation_mask (mode
);
1757 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1758 op1_mode
= GET_MODE (op1
) != VOIDmode
? GET_MODE (op1
) : word_mode
;
1760 /* Apply the truncation to constant shifts. */
1761 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1762 op1
= GEN_INT (INTVAL (op1
) & double_shift_mask
);
1764 if (op1
== CONST0_RTX (op1_mode
))
1767 /* Make sure that this is a combination that expand_doubleword_shift
1768 can handle. See the comments there for details. */
1769 if (double_shift_mask
== 0
1770 || (shift_mask
== BITS_PER_WORD
- 1
1771 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1774 rtx into_target
, outof_target
;
1775 rtx into_input
, outof_input
;
1776 int left_shift
, outof_word
;
1778 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1779 won't be accurate, so use a new target. */
1783 || !valid_multiword_target_p (target
))
1784 target
= gen_reg_rtx (mode
);
1788 /* OUTOF_* is the word we are shifting bits away from, and
1789 INTO_* is the word that we are shifting bits towards, thus
1790 they differ depending on the direction of the shift and
1791 WORDS_BIG_ENDIAN. */
1793 left_shift
= binoptab
== ashl_optab
;
1794 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1796 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1797 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1799 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1800 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1802 if (expand_doubleword_shift (op1_mode
, binoptab
,
1803 outof_input
, into_input
, op1
,
1804 outof_target
, into_target
,
1805 unsignedp
, next_methods
, shift_mask
))
1807 insns
= get_insns ();
1817 /* Synthesize double word rotates from single word shifts. */
1818 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1819 && mclass
== MODE_INT
1820 && CONST_INT_P (op1
)
1821 && GET_MODE_PRECISION (mode
) == 2 * BITS_PER_WORD
1822 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1823 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1826 rtx into_target
, outof_target
;
1827 rtx into_input
, outof_input
;
1829 int shift_count
, left_shift
, outof_word
;
1831 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1832 won't be accurate, so use a new target. Do this also if target is not
1833 a REG, first because having a register instead may open optimization
1834 opportunities, and second because if target and op0 happen to be MEMs
1835 designating the same location, we would risk clobbering it too early
1836 in the code sequence we generate below. */
1841 || !valid_multiword_target_p (target
))
1842 target
= gen_reg_rtx (mode
);
1846 shift_count
= INTVAL (op1
);
1848 /* OUTOF_* is the word we are shifting bits away from, and
1849 INTO_* is the word that we are shifting bits towards, thus
1850 they differ depending on the direction of the shift and
1851 WORDS_BIG_ENDIAN. */
1853 left_shift
= (binoptab
== rotl_optab
);
1854 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1856 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1857 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1859 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1860 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1862 if (shift_count
== BITS_PER_WORD
)
1864 /* This is just a word swap. */
1865 emit_move_insn (outof_target
, into_input
);
1866 emit_move_insn (into_target
, outof_input
);
1871 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1872 rtx first_shift_count
, second_shift_count
;
1873 optab reverse_unsigned_shift
, unsigned_shift
;
1875 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1876 ? lshr_optab
: ashl_optab
);
1878 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1879 ? ashl_optab
: lshr_optab
);
1881 if (shift_count
> BITS_PER_WORD
)
1883 first_shift_count
= GEN_INT (shift_count
- BITS_PER_WORD
);
1884 second_shift_count
= GEN_INT (2 * BITS_PER_WORD
- shift_count
);
1888 first_shift_count
= GEN_INT (BITS_PER_WORD
- shift_count
);
1889 second_shift_count
= GEN_INT (shift_count
);
1892 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1893 outof_input
, first_shift_count
,
1894 NULL_RTX
, unsignedp
, next_methods
);
1895 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1896 into_input
, second_shift_count
,
1897 NULL_RTX
, unsignedp
, next_methods
);
1899 if (into_temp1
!= 0 && into_temp2
!= 0)
1900 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1901 into_target
, unsignedp
, next_methods
);
1905 if (inter
!= 0 && inter
!= into_target
)
1906 emit_move_insn (into_target
, inter
);
1908 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1909 into_input
, first_shift_count
,
1910 NULL_RTX
, unsignedp
, next_methods
);
1911 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1912 outof_input
, second_shift_count
,
1913 NULL_RTX
, unsignedp
, next_methods
);
1915 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1916 inter
= expand_binop (word_mode
, ior_optab
,
1917 outof_temp1
, outof_temp2
,
1918 outof_target
, unsignedp
, next_methods
);
1920 if (inter
!= 0 && inter
!= outof_target
)
1921 emit_move_insn (outof_target
, inter
);
1924 insns
= get_insns ();
1934 /* These can be done a word at a time by propagating carries. */
1935 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1936 && mclass
== MODE_INT
1937 && GET_MODE_SIZE (mode
) >= 2 * UNITS_PER_WORD
1938 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1941 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1942 const unsigned int nwords
= GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
;
1943 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1944 rtx xop0
, xop1
, xtarget
;
1946 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1947 value is one of those, use it. Otherwise, use 1 since it is the
1948 one easiest to get. */
1949 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1950 int normalizep
= STORE_FLAG_VALUE
;
1955 /* Prepare the operands. */
1956 xop0
= force_reg (mode
, op0
);
1957 xop1
= force_reg (mode
, op1
);
1959 xtarget
= gen_reg_rtx (mode
);
1961 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1964 /* Indicate for flow that the entire target reg is being set. */
1966 emit_clobber (xtarget
);
1968 /* Do the actual arithmetic. */
1969 for (i
= 0; i
< nwords
; i
++)
1971 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1972 rtx target_piece
= operand_subword (xtarget
, index
, 1, mode
);
1973 rtx op0_piece
= operand_subword_force (xop0
, index
, mode
);
1974 rtx op1_piece
= operand_subword_force (xop1
, index
, mode
);
1977 /* Main add/subtract of the input operands. */
1978 x
= expand_binop (word_mode
, binoptab
,
1979 op0_piece
, op1_piece
,
1980 target_piece
, unsignedp
, next_methods
);
1986 /* Store carry from main add/subtract. */
1987 carry_out
= gen_reg_rtx (word_mode
);
1988 carry_out
= emit_store_flag_force (carry_out
,
1989 (binoptab
== add_optab
1992 word_mode
, 1, normalizep
);
1999 /* Add/subtract previous carry to main result. */
2000 newx
= expand_binop (word_mode
,
2001 normalizep
== 1 ? binoptab
: otheroptab
,
2003 NULL_RTX
, 1, next_methods
);
2007 /* Get out carry from adding/subtracting carry in. */
2008 rtx carry_tmp
= gen_reg_rtx (word_mode
);
2009 carry_tmp
= emit_store_flag_force (carry_tmp
,
2010 (binoptab
== add_optab
2013 word_mode
, 1, normalizep
);
2015 /* Logical-ior the two poss. carry together. */
2016 carry_out
= expand_binop (word_mode
, ior_optab
,
2017 carry_out
, carry_tmp
,
2018 carry_out
, 0, next_methods
);
2022 emit_move_insn (target_piece
, newx
);
2026 if (x
!= target_piece
)
2027 emit_move_insn (target_piece
, x
);
2030 carry_in
= carry_out
;
2033 if (i
== GET_MODE_BITSIZE (mode
) / (unsigned) BITS_PER_WORD
)
2035 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
2036 || ! rtx_equal_p (target
, xtarget
))
2038 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
2040 set_dst_reg_note (temp
, REG_EQUAL
,
2041 gen_rtx_fmt_ee (optab_to_code (binoptab
),
2042 mode
, copy_rtx (xop0
),
2053 delete_insns_since (last
);
2056 /* Attempt to synthesize double word multiplies using a sequence of word
2057 mode multiplications. We first attempt to generate a sequence using a
2058 more efficient unsigned widening multiply, and if that fails we then
2059 try using a signed widening multiply. */
2061 if (binoptab
== smul_optab
2062 && mclass
== MODE_INT
2063 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2064 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
2065 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
2067 rtx product
= NULL_RTX
;
2068 if (widening_optab_handler (umul_widen_optab
, mode
, word_mode
)
2069 != CODE_FOR_nothing
)
2071 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
2074 delete_insns_since (last
);
2077 if (product
== NULL_RTX
2078 && widening_optab_handler (smul_widen_optab
, mode
, word_mode
)
2079 != CODE_FOR_nothing
)
2081 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
2084 delete_insns_since (last
);
2087 if (product
!= NULL_RTX
)
2089 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
)
2091 temp
= emit_move_insn (target
? target
: product
, product
);
2092 set_dst_reg_note (temp
,
2094 gen_rtx_fmt_ee (MULT
, mode
,
2097 target
? target
: product
);
2103 /* It can't be open-coded in this mode.
2104 Use a library call if one is available and caller says that's ok. */
2106 libfunc
= optab_libfunc (binoptab
, mode
);
2108 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
2112 machine_mode op1_mode
= mode
;
2117 if (shift_optab_p (binoptab
))
2119 op1_mode
= targetm
.libgcc_shift_count_mode ();
2120 /* Specify unsigned here,
2121 since negative shift counts are meaningless. */
2122 op1x
= convert_to_mode (op1_mode
, op1
, 1);
2125 if (GET_MODE (op0
) != VOIDmode
2126 && GET_MODE (op0
) != mode
)
2127 op0
= convert_to_mode (mode
, op0
, unsignedp
);
2129 /* Pass 1 for NO_QUEUE so we don't lose any increments
2130 if the libcall is cse'd or moved. */
2131 value
= emit_library_call_value (libfunc
,
2132 NULL_RTX
, LCT_CONST
, mode
, 2,
2133 op0
, mode
, op1x
, op1_mode
);
2135 insns
= get_insns ();
2138 target
= gen_reg_rtx (mode
);
2139 emit_libcall_block_1 (insns
, target
, value
,
2140 gen_rtx_fmt_ee (optab_to_code (binoptab
),
2142 trapv_binoptab_p (binoptab
));
2147 delete_insns_since (last
);
2149 /* It can't be done in this mode. Can we do it in a wider mode? */
2151 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
2152 || methods
== OPTAB_MUST_WIDEN
))
2154 /* Caller says, don't even try. */
2155 delete_insns_since (entry_last
);
2159 /* Compute the value of METHODS to pass to recursive calls.
2160 Don't allow widening to be tried recursively. */
2162 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
2164 /* Look for a wider mode of the same class for which it appears we can do
2167 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2169 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2170 wider_mode
!= VOIDmode
;
2171 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2173 if (find_widening_optab_handler (binoptab
, wider_mode
, mode
, 1)
2175 || (methods
== OPTAB_LIB
2176 && optab_libfunc (binoptab
, wider_mode
)))
2178 rtx xop0
= op0
, xop1
= op1
;
2181 /* For certain integer operations, we need not actually extend
2182 the narrow operands, as long as we will truncate
2183 the results to the same narrowness. */
2185 if ((binoptab
== ior_optab
|| binoptab
== and_optab
2186 || binoptab
== xor_optab
2187 || binoptab
== add_optab
|| binoptab
== sub_optab
2188 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
2189 && mclass
== MODE_INT
)
2192 xop0
= widen_operand (xop0
, wider_mode
, mode
,
2193 unsignedp
, no_extend
);
2195 /* The second operand of a shift must always be extended. */
2196 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
2197 no_extend
&& binoptab
!= ashl_optab
);
2199 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
2200 unsignedp
, methods
);
2203 if (mclass
!= MODE_INT
2204 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2207 target
= gen_reg_rtx (mode
);
2208 convert_move (target
, temp
, 0);
2212 return gen_lowpart (mode
, temp
);
2215 delete_insns_since (last
);
2220 delete_insns_since (entry_last
);
2224 /* Expand a binary operator which has both signed and unsigned forms.
2225 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2228 If we widen unsigned operands, we may use a signed wider operation instead
2229 of an unsigned wider operation, since the result would be the same. */
2232 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
2233 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
2234 enum optab_methods methods
)
2237 optab direct_optab
= unsignedp
? uoptab
: soptab
;
2240 /* Do it without widening, if possible. */
2241 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2242 unsignedp
, OPTAB_DIRECT
);
2243 if (temp
|| methods
== OPTAB_DIRECT
)
2246 /* Try widening to a signed int. Disable any direct use of any
2247 signed insn in the current mode. */
2248 save_enable
= swap_optab_enable (soptab
, mode
, false);
2250 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
2251 unsignedp
, OPTAB_WIDEN
);
2253 /* For unsigned operands, try widening to an unsigned int. */
2254 if (!temp
&& unsignedp
)
2255 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2256 unsignedp
, OPTAB_WIDEN
);
2257 if (temp
|| methods
== OPTAB_WIDEN
)
2260 /* Use the right width libcall if that exists. */
2261 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2262 unsignedp
, OPTAB_LIB
);
2263 if (temp
|| methods
== OPTAB_LIB
)
2266 /* Must widen and use a libcall, use either signed or unsigned. */
2267 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
2268 unsignedp
, methods
);
2269 if (!temp
&& unsignedp
)
2270 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2271 unsignedp
, methods
);
2274 /* Undo the fiddling above. */
2276 swap_optab_enable (soptab
, mode
, true);
2280 /* Generate code to perform an operation specified by UNOPPTAB
2281 on operand OP0, with two results to TARG0 and TARG1.
2282 We assume that the order of the operands for the instruction
2283 is TARG0, TARG1, OP0.
2285 Either TARG0 or TARG1 may be zero, but what that means is that
2286 the result is not actually wanted. We will generate it into
2287 a dummy pseudo-reg and discard it. They may not both be zero.
2289 Returns 1 if this operation can be performed; 0 if not. */
2292 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
2295 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2296 enum mode_class mclass
;
2297 machine_mode wider_mode
;
2298 rtx_insn
*entry_last
= get_last_insn ();
2301 mclass
= GET_MODE_CLASS (mode
);
2304 targ0
= gen_reg_rtx (mode
);
2306 targ1
= gen_reg_rtx (mode
);
2308 /* Record where to go back to if we fail. */
2309 last
= get_last_insn ();
2311 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2313 struct expand_operand ops
[3];
2314 enum insn_code icode
= optab_handler (unoptab
, mode
);
2316 create_fixed_operand (&ops
[0], targ0
);
2317 create_fixed_operand (&ops
[1], targ1
);
2318 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
2319 if (maybe_expand_insn (icode
, 3, ops
))
2323 /* It can't be done in this mode. Can we do it in a wider mode? */
2325 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2327 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2328 wider_mode
!= VOIDmode
;
2329 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2331 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2333 rtx t0
= gen_reg_rtx (wider_mode
);
2334 rtx t1
= gen_reg_rtx (wider_mode
);
2335 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2337 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2339 convert_move (targ0
, t0
, unsignedp
);
2340 convert_move (targ1
, t1
, unsignedp
);
2344 delete_insns_since (last
);
2349 delete_insns_since (entry_last
);
2353 /* Generate code to perform an operation specified by BINOPTAB
2354 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2355 We assume that the order of the operands for the instruction
2356 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2357 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2359 Either TARG0 or TARG1 may be zero, but what that means is that
2360 the result is not actually wanted. We will generate it into
2361 a dummy pseudo-reg and discard it. They may not both be zero.
2363 Returns 1 if this operation can be performed; 0 if not. */
2366 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2369 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2370 enum mode_class mclass
;
2371 machine_mode wider_mode
;
2372 rtx_insn
*entry_last
= get_last_insn ();
2375 mclass
= GET_MODE_CLASS (mode
);
2378 targ0
= gen_reg_rtx (mode
);
2380 targ1
= gen_reg_rtx (mode
);
2382 /* Record where to go back to if we fail. */
2383 last
= get_last_insn ();
2385 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2387 struct expand_operand ops
[4];
2388 enum insn_code icode
= optab_handler (binoptab
, mode
);
2389 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2390 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2391 rtx xop0
= op0
, xop1
= op1
;
2393 /* If we are optimizing, force expensive constants into a register. */
2394 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2395 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2397 create_fixed_operand (&ops
[0], targ0
);
2398 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2399 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
2400 create_fixed_operand (&ops
[3], targ1
);
2401 if (maybe_expand_insn (icode
, 4, ops
))
2403 delete_insns_since (last
);
2406 /* It can't be done in this mode. Can we do it in a wider mode? */
2408 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2410 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2411 wider_mode
!= VOIDmode
;
2412 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2414 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2416 rtx t0
= gen_reg_rtx (wider_mode
);
2417 rtx t1
= gen_reg_rtx (wider_mode
);
2418 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2419 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2421 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2424 convert_move (targ0
, t0
, unsignedp
);
2425 convert_move (targ1
, t1
, unsignedp
);
2429 delete_insns_since (last
);
2434 delete_insns_since (entry_last
);
2438 /* Expand the two-valued library call indicated by BINOPTAB, but
2439 preserve only one of the values. If TARG0 is non-NULL, the first
2440 value is placed into TARG0; otherwise the second value is placed
2441 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2442 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2443 This routine assumes that the value returned by the library call is
2444 as if the return value was of an integral mode twice as wide as the
2445 mode of OP0. Returns 1 if the call was successful. */
2448 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2449 rtx targ0
, rtx targ1
, enum rtx_code code
)
2452 machine_mode libval_mode
;
2457 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2458 gcc_assert (!targ0
!= !targ1
);
2460 mode
= GET_MODE (op0
);
2461 libfunc
= optab_libfunc (binoptab
, mode
);
2465 /* The value returned by the library function will have twice as
2466 many bits as the nominal MODE. */
2467 libval_mode
= smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode
),
2470 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2474 /* Get the part of VAL containing the value that we want. */
2475 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2476 targ0
? 0 : GET_MODE_SIZE (mode
));
2477 insns
= get_insns ();
2479 /* Move the into the desired location. */
2480 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2481 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2487 /* Wrapper around expand_unop which takes an rtx code to specify
2488 the operation to perform, not an optab pointer. All other
2489 arguments are the same. */
2491 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2492 rtx target
, int unsignedp
)
2494 optab unop
= code_to_optab (code
);
2497 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2503 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2505 A similar operation can be used for clrsb. UNOPTAB says which operation
2506 we are trying to expand. */
2508 widen_leading (machine_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2510 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2511 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2513 machine_mode wider_mode
;
2514 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2515 wider_mode
!= VOIDmode
;
2516 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2518 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2523 last
= get_last_insn ();
2526 target
= gen_reg_rtx (mode
);
2527 xop0
= widen_operand (op0
, wider_mode
, mode
,
2528 unoptab
!= clrsb_optab
, false);
2529 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2530 unoptab
!= clrsb_optab
);
2533 (wider_mode
, sub_optab
, temp
,
2534 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2535 - GET_MODE_PRECISION (mode
),
2537 target
, true, OPTAB_DIRECT
);
2539 delete_insns_since (last
);
2548 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2549 quantities, choosing which based on whether the high word is nonzero. */
2551 expand_doubleword_clz (machine_mode mode
, rtx op0
, rtx target
)
2553 rtx xop0
= force_reg (mode
, op0
);
2554 rtx subhi
= gen_highpart (word_mode
, xop0
);
2555 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2556 rtx_code_label
*hi0_label
= gen_label_rtx ();
2557 rtx_code_label
*after_label
= gen_label_rtx ();
2561 /* If we were not given a target, use a word_mode register, not a
2562 'mode' register. The result will fit, and nobody is expecting
2563 anything bigger (the return type of __builtin_clz* is int). */
2565 target
= gen_reg_rtx (word_mode
);
2567 /* In any case, write to a word_mode scratch in both branches of the
2568 conditional, so we can ensure there is a single move insn setting
2569 'target' to tag a REG_EQUAL note on. */
2570 result
= gen_reg_rtx (word_mode
);
2574 /* If the high word is not equal to zero,
2575 then clz of the full value is clz of the high word. */
2576 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2577 word_mode
, true, hi0_label
);
2579 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2584 convert_move (result
, temp
, true);
2586 emit_jump_insn (targetm
.gen_jump (after_label
));
2589 /* Else clz of the full value is clz of the low word plus the number
2590 of bits in the high word. */
2591 emit_label (hi0_label
);
2593 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2596 temp
= expand_binop (word_mode
, add_optab
, temp
,
2597 gen_int_mode (GET_MODE_BITSIZE (word_mode
), word_mode
),
2598 result
, true, OPTAB_DIRECT
);
2602 convert_move (result
, temp
, true);
2604 emit_label (after_label
);
2605 convert_move (target
, result
, true);
2610 add_equal_note (seq
, target
, CLZ
, xop0
, 0);
2622 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2624 widen_bswap (machine_mode mode
, rtx op0
, rtx target
)
2626 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2627 machine_mode wider_mode
;
2631 if (!CLASS_HAS_WIDER_MODES_P (mclass
))
2634 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2635 wider_mode
!= VOIDmode
;
2636 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2637 if (optab_handler (bswap_optab
, wider_mode
) != CODE_FOR_nothing
)
2642 last
= get_last_insn ();
2644 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2645 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2647 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2648 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2650 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2651 GET_MODE_BITSIZE (wider_mode
)
2652 - GET_MODE_BITSIZE (mode
),
2658 target
= gen_reg_rtx (mode
);
2659 emit_move_insn (target
, gen_lowpart (mode
, x
));
2662 delete_insns_since (last
);
2667 /* Try calculating bswap as two bswaps of two word-sized operands. */
2670 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2674 t1
= expand_unop (word_mode
, bswap_optab
,
2675 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2676 t0
= expand_unop (word_mode
, bswap_optab
,
2677 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2679 if (target
== 0 || !valid_multiword_target_p (target
))
2680 target
= gen_reg_rtx (mode
);
2682 emit_clobber (target
);
2683 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2684 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2689 /* Try calculating (parity x) as (and (popcount x) 1), where
2690 popcount can also be done in a wider mode. */
2692 expand_parity (machine_mode mode
, rtx op0
, rtx target
)
2694 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2695 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2697 machine_mode wider_mode
;
2698 for (wider_mode
= mode
; wider_mode
!= VOIDmode
;
2699 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2701 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2706 last
= get_last_insn ();
2709 target
= gen_reg_rtx (mode
);
2710 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2711 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2714 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2715 target
, true, OPTAB_DIRECT
);
2717 delete_insns_since (last
);
2726 /* Try calculating ctz(x) as K - clz(x & -x) ,
2727 where K is GET_MODE_PRECISION(mode) - 1.
2729 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2730 don't have to worry about what the hardware does in that case. (If
2731 the clz instruction produces the usual value at 0, which is K, the
2732 result of this code sequence will be -1; expand_ffs, below, relies
2733 on this. It might be nice to have it be K instead, for consistency
2734 with the (very few) processors that provide a ctz with a defined
2735 value, but that would take one more instruction, and it would be
2736 less convenient for expand_ffs anyway. */
2739 expand_ctz (machine_mode mode
, rtx op0
, rtx target
)
2744 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2749 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2751 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2752 true, OPTAB_DIRECT
);
2754 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2756 temp
= expand_binop (mode
, sub_optab
,
2757 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
2759 true, OPTAB_DIRECT
);
2769 add_equal_note (seq
, temp
, CTZ
, op0
, 0);
2775 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2776 else with the sequence used by expand_clz.
2778 The ffs builtin promises to return zero for a zero value and ctz/clz
2779 may have an undefined value in that case. If they do not give us a
2780 convenient value, we have to generate a test and branch. */
2782 expand_ffs (machine_mode mode
, rtx op0
, rtx target
)
2784 HOST_WIDE_INT val
= 0;
2785 bool defined_at_zero
= false;
2789 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2793 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2797 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2799 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2802 temp
= expand_ctz (mode
, op0
, 0);
2806 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2808 defined_at_zero
= true;
2809 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
2815 if (defined_at_zero
&& val
== -1)
2816 /* No correction needed at zero. */;
2819 /* We don't try to do anything clever with the situation found
2820 on some processors (eg Alpha) where ctz(0:mode) ==
2821 bitsize(mode). If someone can think of a way to send N to -1
2822 and leave alone all values in the range 0..N-1 (where N is a
2823 power of two), cheaper than this test-and-branch, please add it.
2825 The test-and-branch is done after the operation itself, in case
2826 the operation sets condition codes that can be recycled for this.
2827 (This is true on i386, for instance.) */
2829 rtx_code_label
*nonzero_label
= gen_label_rtx ();
2830 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2831 mode
, true, nonzero_label
);
2833 convert_move (temp
, GEN_INT (-1), false);
2834 emit_label (nonzero_label
);
2837 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2838 to produce a value in the range 0..bitsize. */
2839 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
2840 target
, false, OPTAB_DIRECT
);
2847 add_equal_note (seq
, temp
, FFS
, op0
, 0);
2856 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2857 conditions, VAL may already be a SUBREG against which we cannot generate
2858 a further SUBREG. In this case, we expect forcing the value into a
2859 register will work around the situation. */
2862 lowpart_subreg_maybe_copy (machine_mode omode
, rtx val
,
2866 ret
= lowpart_subreg (omode
, val
, imode
);
2869 val
= force_reg (imode
, val
);
2870 ret
= lowpart_subreg (omode
, val
, imode
);
2871 gcc_assert (ret
!= NULL
);
2876 /* Expand a floating point absolute value or negation operation via a
2877 logical operation on the sign bit. */
2880 expand_absneg_bit (enum rtx_code code
, machine_mode mode
,
2881 rtx op0
, rtx target
)
2883 const struct real_format
*fmt
;
2884 int bitpos
, word
, nwords
, i
;
2889 /* The format has to have a simple sign bit. */
2890 fmt
= REAL_MODE_FORMAT (mode
);
2894 bitpos
= fmt
->signbit_rw
;
2898 /* Don't create negative zeros if the format doesn't support them. */
2899 if (code
== NEG
&& !fmt
->has_signed_zero
)
2902 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2904 imode
= int_mode_for_mode (mode
);
2905 if (imode
== BLKmode
)
2914 if (FLOAT_WORDS_BIG_ENDIAN
)
2915 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2917 word
= bitpos
/ BITS_PER_WORD
;
2918 bitpos
= bitpos
% BITS_PER_WORD
;
2919 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2922 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
2928 || (nwords
> 1 && !valid_multiword_target_p (target
)))
2929 target
= gen_reg_rtx (mode
);
2935 for (i
= 0; i
< nwords
; ++i
)
2937 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2938 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2942 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2944 immed_wide_int_const (mask
, imode
),
2945 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2946 if (temp
!= targ_piece
)
2947 emit_move_insn (targ_piece
, temp
);
2950 emit_move_insn (targ_piece
, op0_piece
);
2953 insns
= get_insns ();
2960 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2961 gen_lowpart (imode
, op0
),
2962 immed_wide_int_const (mask
, imode
),
2963 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2964 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2966 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
2967 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
2974 /* As expand_unop, but will fail rather than attempt the operation in a
2975 different mode or with a libcall. */
2977 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2980 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2982 struct expand_operand ops
[2];
2983 enum insn_code icode
= optab_handler (unoptab
, mode
);
2984 rtx_insn
*last
= get_last_insn ();
2987 create_output_operand (&ops
[0], target
, mode
);
2988 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2989 pat
= maybe_gen_insn (icode
, 2, ops
);
2992 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2993 && ! add_equal_note (pat
, ops
[0].value
,
2994 optab_to_code (unoptab
),
2995 ops
[1].value
, NULL_RTX
))
2997 delete_insns_since (last
);
2998 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
3003 return ops
[0].value
;
3009 /* Generate code to perform an operation specified by UNOPTAB
3010 on operand OP0, with result having machine-mode MODE.
3012 UNSIGNEDP is for the case where we have to widen the operands
3013 to perform the operation. It says to use zero-extension.
3015 If TARGET is nonzero, the value
3016 is generated there, if it is convenient to do so.
3017 In all cases an rtx is returned for the locus of the value;
3018 this may or may not be TARGET. */
3021 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
3024 enum mode_class mclass
= GET_MODE_CLASS (mode
);
3025 machine_mode wider_mode
;
3029 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
3033 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3035 /* Widening (or narrowing) clz needs special treatment. */
3036 if (unoptab
== clz_optab
)
3038 temp
= widen_leading (mode
, op0
, target
, unoptab
);
3042 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
3043 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3045 temp
= expand_doubleword_clz (mode
, op0
, target
);
3053 if (unoptab
== clrsb_optab
)
3055 temp
= widen_leading (mode
, op0
, target
, unoptab
);
3061 /* Widening (or narrowing) bswap needs special treatment. */
3062 if (unoptab
== bswap_optab
)
3064 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3065 or ROTATERT. First try these directly; if this fails, then try the
3066 obvious pair of shifts with allowed widening, as this will probably
3067 be always more efficient than the other fallback methods. */
3073 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
3075 temp
= expand_binop (mode
, rotl_optab
, op0
, GEN_INT (8), target
,
3076 unsignedp
, OPTAB_DIRECT
);
3081 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
3083 temp
= expand_binop (mode
, rotr_optab
, op0
, GEN_INT (8), target
,
3084 unsignedp
, OPTAB_DIRECT
);
3089 last
= get_last_insn ();
3091 temp1
= expand_binop (mode
, ashl_optab
, op0
, GEN_INT (8), NULL_RTX
,
3092 unsignedp
, OPTAB_WIDEN
);
3093 temp2
= expand_binop (mode
, lshr_optab
, op0
, GEN_INT (8), NULL_RTX
,
3094 unsignedp
, OPTAB_WIDEN
);
3097 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
3098 unsignedp
, OPTAB_WIDEN
);
3103 delete_insns_since (last
);
3106 temp
= widen_bswap (mode
, op0
, target
);
3110 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
3111 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3113 temp
= expand_doubleword_bswap (mode
, op0
, target
);
3121 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3122 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
3123 wider_mode
!= VOIDmode
;
3124 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
3126 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
3129 rtx_insn
*last
= get_last_insn ();
3131 /* For certain operations, we need not actually extend
3132 the narrow operand, as long as we will truncate the
3133 results to the same narrowness. */
3135 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3136 (unoptab
== neg_optab
3137 || unoptab
== one_cmpl_optab
)
3138 && mclass
== MODE_INT
);
3140 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3145 if (mclass
!= MODE_INT
3146 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
3149 target
= gen_reg_rtx (mode
);
3150 convert_move (target
, temp
, 0);
3154 return gen_lowpart (mode
, temp
);
3157 delete_insns_since (last
);
3161 /* These can be done a word at a time. */
3162 if (unoptab
== one_cmpl_optab
3163 && mclass
== MODE_INT
3164 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
3165 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3170 if (target
== 0 || target
== op0
|| !valid_multiword_target_p (target
))
3171 target
= gen_reg_rtx (mode
);
3175 /* Do the actual arithmetic. */
3176 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
3178 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
3179 rtx x
= expand_unop (word_mode
, unoptab
,
3180 operand_subword_force (op0
, i
, mode
),
3181 target_piece
, unsignedp
);
3183 if (target_piece
!= x
)
3184 emit_move_insn (target_piece
, x
);
3187 insns
= get_insns ();
3194 if (optab_to_code (unoptab
) == NEG
)
3196 /* Try negating floating point values by flipping the sign bit. */
3197 if (SCALAR_FLOAT_MODE_P (mode
))
3199 temp
= expand_absneg_bit (NEG
, mode
, op0
, target
);
3204 /* If there is no negation pattern, and we have no negative zero,
3205 try subtracting from zero. */
3206 if (!HONOR_SIGNED_ZEROS (mode
))
3208 temp
= expand_binop (mode
, (unoptab
== negv_optab
3209 ? subv_optab
: sub_optab
),
3210 CONST0_RTX (mode
), op0
, target
,
3211 unsignedp
, OPTAB_DIRECT
);
3217 /* Try calculating parity (x) as popcount (x) % 2. */
3218 if (unoptab
== parity_optab
)
3220 temp
= expand_parity (mode
, op0
, target
);
3225 /* Try implementing ffs (x) in terms of clz (x). */
3226 if (unoptab
== ffs_optab
)
3228 temp
= expand_ffs (mode
, op0
, target
);
3233 /* Try implementing ctz (x) in terms of clz (x). */
3234 if (unoptab
== ctz_optab
)
3236 temp
= expand_ctz (mode
, op0
, target
);
3242 /* Now try a library call in this mode. */
3243 libfunc
= optab_libfunc (unoptab
, mode
);
3249 machine_mode outmode
= mode
;
3251 /* All of these functions return small values. Thus we choose to
3252 have them return something that isn't a double-word. */
3253 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
3254 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
3255 || unoptab
== parity_optab
)
3257 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3258 optab_libfunc (unoptab
, mode
)));
3262 /* Pass 1 for NO_QUEUE so we don't lose any increments
3263 if the libcall is cse'd or moved. */
3264 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3266 insns
= get_insns ();
3269 target
= gen_reg_rtx (outmode
);
3270 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
3271 if (GET_MODE_SIZE (outmode
) < GET_MODE_SIZE (mode
))
3272 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3273 else if (GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (mode
))
3274 eq_value
= simplify_gen_unary (ZERO_EXTEND
, outmode
, eq_value
, mode
);
3275 emit_libcall_block_1 (insns
, target
, value
, eq_value
,
3276 trapv_unoptab_p (unoptab
));
3281 /* It can't be done in this mode. Can we do it in a wider mode? */
3283 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3285 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
3286 wider_mode
!= VOIDmode
;
3287 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
3289 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3290 || optab_libfunc (unoptab
, wider_mode
))
3293 rtx_insn
*last
= get_last_insn ();
3295 /* For certain operations, we need not actually extend
3296 the narrow operand, as long as we will truncate the
3297 results to the same narrowness. */
3298 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3299 (unoptab
== neg_optab
3300 || unoptab
== one_cmpl_optab
3301 || unoptab
== bswap_optab
)
3302 && mclass
== MODE_INT
);
3304 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3307 /* If we are generating clz using wider mode, adjust the
3308 result. Similarly for clrsb. */
3309 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3312 (wider_mode
, sub_optab
, temp
,
3313 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
3314 - GET_MODE_PRECISION (mode
),
3316 target
, true, OPTAB_DIRECT
);
3318 /* Likewise for bswap. */
3319 if (unoptab
== bswap_optab
&& temp
!= 0)
3321 gcc_assert (GET_MODE_PRECISION (wider_mode
)
3322 == GET_MODE_BITSIZE (wider_mode
)
3323 && GET_MODE_PRECISION (mode
)
3324 == GET_MODE_BITSIZE (mode
));
3326 temp
= expand_shift (RSHIFT_EXPR
, wider_mode
, temp
,
3327 GET_MODE_BITSIZE (wider_mode
)
3328 - GET_MODE_BITSIZE (mode
),
3334 if (mclass
!= MODE_INT
)
3337 target
= gen_reg_rtx (mode
);
3338 convert_move (target
, temp
, 0);
3342 return gen_lowpart (mode
, temp
);
3345 delete_insns_since (last
);
3350 /* One final attempt at implementing negation via subtraction,
3351 this time allowing widening of the operand. */
3352 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3355 temp
= expand_binop (mode
,
3356 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3357 CONST0_RTX (mode
), op0
,
3358 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3366 /* Emit code to compute the absolute value of OP0, with result to
3367 TARGET if convenient. (TARGET may be 0.) The return value says
3368 where the result actually is to be found.
3370 MODE is the mode of the operand; the mode of the result is
3371 different but can be deduced from MODE.
3376 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3377 int result_unsignedp
)
3381 if (GET_MODE_CLASS (mode
) != MODE_INT
3383 result_unsignedp
= 1;
3385 /* First try to do it with a special abs instruction. */
3386 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3391 /* For floating point modes, try clearing the sign bit. */
3392 if (SCALAR_FLOAT_MODE_P (mode
))
3394 temp
= expand_absneg_bit (ABS
, mode
, op0
, target
);
3399 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3400 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3401 && !HONOR_SIGNED_ZEROS (mode
))
3403 rtx_insn
*last
= get_last_insn ();
3405 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3408 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3414 delete_insns_since (last
);
3417 /* If this machine has expensive jumps, we can do integer absolute
3418 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3419 where W is the width of MODE. */
3421 if (GET_MODE_CLASS (mode
) == MODE_INT
3422 && BRANCH_COST (optimize_insn_for_speed_p (),
3425 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3426 GET_MODE_PRECISION (mode
) - 1,
3429 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3432 temp
= expand_binop (mode
, result_unsignedp
? sub_optab
: subv_optab
,
3433 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3443 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3444 int result_unsignedp
, int safe
)
3447 rtx_code_label
*op1
;
3449 if (GET_MODE_CLASS (mode
) != MODE_INT
3451 result_unsignedp
= 1;
3453 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3457 /* If that does not win, use conditional jump and negate. */
3459 /* It is safe to use the target if it is the same
3460 as the source if this is also a pseudo register */
3461 if (op0
== target
&& REG_P (op0
)
3462 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3465 op1
= gen_label_rtx ();
3466 if (target
== 0 || ! safe
3467 || GET_MODE (target
) != mode
3468 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3470 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3471 target
= gen_reg_rtx (mode
);
3473 emit_move_insn (target
, op0
);
3476 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3477 NULL_RTX
, NULL
, op1
, -1);
3479 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3482 emit_move_insn (target
, op0
);
3488 /* Emit code to compute the one's complement absolute value of OP0
3489 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3490 (TARGET may be NULL_RTX.) The return value says where the result
3491 actually is to be found.
3493 MODE is the mode of the operand; the mode of the result is
3494 different but can be deduced from MODE. */
3497 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3501 /* Not applicable for floating point modes. */
3502 if (FLOAT_MODE_P (mode
))
3505 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3506 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3508 rtx_insn
*last
= get_last_insn ();
3510 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3512 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3518 delete_insns_since (last
);
3521 /* If this machine has expensive jumps, we can do one's complement
3522 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3524 if (GET_MODE_CLASS (mode
) == MODE_INT
3525 && BRANCH_COST (optimize_insn_for_speed_p (),
3528 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3529 GET_MODE_PRECISION (mode
) - 1,
3532 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3542 /* A subroutine of expand_copysign, perform the copysign operation using the
3543 abs and neg primitives advertised to exist on the target. The assumption
3544 is that we have a split register file, and leaving op0 in fp registers,
3545 and not playing with subregs so much, will help the register allocator. */
3548 expand_copysign_absneg (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3549 int bitpos
, bool op0_is_abs
)
3552 enum insn_code icode
;
3554 rtx_code_label
*label
;
3559 /* Check if the back end provides an insn that handles signbit for the
3561 icode
= optab_handler (signbit_optab
, mode
);
3562 if (icode
!= CODE_FOR_nothing
)
3564 imode
= insn_data
[(int) icode
].operand
[0].mode
;
3565 sign
= gen_reg_rtx (imode
);
3566 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3570 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3572 imode
= int_mode_for_mode (mode
);
3573 if (imode
== BLKmode
)
3575 op1
= gen_lowpart (imode
, op1
);
3582 if (FLOAT_WORDS_BIG_ENDIAN
)
3583 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3585 word
= bitpos
/ BITS_PER_WORD
;
3586 bitpos
= bitpos
% BITS_PER_WORD
;
3587 op1
= operand_subword_force (op1
, word
, mode
);
3590 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3591 sign
= expand_binop (imode
, and_optab
, op1
,
3592 immed_wide_int_const (mask
, imode
),
3593 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3598 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3605 if (target
== NULL_RTX
)
3606 target
= copy_to_reg (op0
);
3608 emit_move_insn (target
, op0
);
3611 label
= gen_label_rtx ();
3612 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3614 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3615 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3617 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3619 emit_move_insn (target
, op0
);
3627 /* A subroutine of expand_copysign, perform the entire copysign operation
3628 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3629 is true if op0 is known to have its sign bit clear. */
3632 expand_copysign_bit (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3633 int bitpos
, bool op0_is_abs
)
3636 int word
, nwords
, i
;
3640 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3642 imode
= int_mode_for_mode (mode
);
3643 if (imode
== BLKmode
)
3652 if (FLOAT_WORDS_BIG_ENDIAN
)
3653 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3655 word
= bitpos
/ BITS_PER_WORD
;
3656 bitpos
= bitpos
% BITS_PER_WORD
;
3657 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3660 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3665 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3666 target
= gen_reg_rtx (mode
);
3672 for (i
= 0; i
< nwords
; ++i
)
3674 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3675 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3681 = expand_binop (imode
, and_optab
, op0_piece
,
3682 immed_wide_int_const (~mask
, imode
),
3683 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3684 op1
= expand_binop (imode
, and_optab
,
3685 operand_subword_force (op1
, i
, mode
),
3686 immed_wide_int_const (mask
, imode
),
3687 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3689 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3690 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3691 if (temp
!= targ_piece
)
3692 emit_move_insn (targ_piece
, temp
);
3695 emit_move_insn (targ_piece
, op0_piece
);
3698 insns
= get_insns ();
3705 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3706 immed_wide_int_const (mask
, imode
),
3707 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3709 op0
= gen_lowpart (imode
, op0
);
3711 op0
= expand_binop (imode
, and_optab
, op0
,
3712 immed_wide_int_const (~mask
, imode
),
3713 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3715 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3716 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3717 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3723 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3724 scalar floating point mode. Return NULL if we do not know how to
3725 expand the operation inline. */
3728 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3730 machine_mode mode
= GET_MODE (op0
);
3731 const struct real_format
*fmt
;
3735 gcc_assert (SCALAR_FLOAT_MODE_P (mode
));
3736 gcc_assert (GET_MODE (op1
) == mode
);
3738 /* First try to do it with a special instruction. */
3739 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3740 target
, 0, OPTAB_DIRECT
);
3744 fmt
= REAL_MODE_FORMAT (mode
);
3745 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3749 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3751 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3752 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3756 if (fmt
->signbit_ro
>= 0
3757 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
3758 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3759 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3761 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3762 fmt
->signbit_ro
, op0_is_abs
);
3767 if (fmt
->signbit_rw
< 0)
3769 return expand_copysign_bit (mode
, op0
, op1
, target
,
3770 fmt
->signbit_rw
, op0_is_abs
);
3773 /* Generate an instruction whose insn-code is INSN_CODE,
3774 with two operands: an output TARGET and an input OP0.
3775 TARGET *must* be nonzero, and the output is always stored there.
3776 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3777 the value that is stored into TARGET.
3779 Return false if expansion failed. */
3782 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3785 struct expand_operand ops
[2];
3788 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3789 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3790 pat
= maybe_gen_insn (icode
, 2, ops
);
3794 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3796 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
);
3800 if (ops
[0].value
!= target
)
3801 emit_move_insn (target
, ops
[0].value
);
3804 /* Generate an instruction whose insn-code is INSN_CODE,
3805 with two operands: an output TARGET and an input OP0.
3806 TARGET *must* be nonzero, and the output is always stored there.
3807 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3808 the value that is stored into TARGET. */
3811 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3813 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3817 struct no_conflict_data
3820 rtx_insn
*first
, *insn
;
3824 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3825 the currently examined clobber / store has to stay in the list of
3826 insns that constitute the actual libcall block. */
3828 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3830 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3832 /* If this inns directly contributes to setting the target, it must stay. */
3833 if (reg_overlap_mentioned_p (p
->target
, dest
))
3834 p
->must_stay
= true;
3835 /* If we haven't committed to keeping any other insns in the list yet,
3836 there is nothing more to check. */
3837 else if (p
->insn
== p
->first
)
3839 /* If this insn sets / clobbers a register that feeds one of the insns
3840 already in the list, this insn has to stay too. */
3841 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3842 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3843 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3844 /* Likewise if this insn depends on a register set by a previous
3845 insn in the list, or if it sets a result (presumably a hard
3846 register) that is set or clobbered by a previous insn.
3847 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3848 SET_DEST perform the former check on the address, and the latter
3849 check on the MEM. */
3850 || (GET_CODE (set
) == SET
3851 && (modified_in_p (SET_SRC (set
), p
->first
)
3852 || modified_in_p (SET_DEST (set
), p
->first
)
3853 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3854 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3855 p
->must_stay
= true;
3859 /* Emit code to make a call to a constant function or a library call.
3861 INSNS is a list containing all insns emitted in the call.
3862 These insns leave the result in RESULT. Our block is to copy RESULT
3863 to TARGET, which is logically equivalent to EQUIV.
3865 We first emit any insns that set a pseudo on the assumption that these are
3866 loading constants into registers; doing so allows them to be safely cse'ed
3867 between blocks. Then we emit all the other insns in the block, followed by
3868 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3869 note with an operand of EQUIV. */
3872 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
3873 bool equiv_may_trap
)
3875 rtx final_dest
= target
;
3876 rtx_insn
*next
, *last
, *insn
;
3878 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3879 into a MEM later. Protect the libcall block from this change. */
3880 if (! REG_P (target
) || REG_USERVAR_P (target
))
3881 target
= gen_reg_rtx (GET_MODE (target
));
3883 /* If we're using non-call exceptions, a libcall corresponding to an
3884 operation that may trap may also trap. */
3885 /* ??? See the comment in front of make_reg_eh_region_note. */
3886 if (cfun
->can_throw_non_call_exceptions
3887 && (equiv_may_trap
|| may_trap_p (equiv
)))
3889 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3892 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3895 int lp_nr
= INTVAL (XEXP (note
, 0));
3896 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3897 remove_note (insn
, note
);
3903 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3904 reg note to indicate that this call cannot throw or execute a nonlocal
3905 goto (unless there is already a REG_EH_REGION note, in which case
3907 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3909 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3912 /* First emit all insns that set pseudos. Remove them from the list as
3913 we go. Avoid insns that set pseudos which were referenced in previous
3914 insns. These can be generated by move_by_pieces, for example,
3915 to update an address. Similarly, avoid insns that reference things
3916 set in previous insns. */
3918 for (insn
= insns
; insn
; insn
= next
)
3920 rtx set
= single_set (insn
);
3922 next
= NEXT_INSN (insn
);
3924 if (set
!= 0 && REG_P (SET_DEST (set
))
3925 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3927 struct no_conflict_data data
;
3929 data
.target
= const0_rtx
;
3933 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3934 if (! data
.must_stay
)
3936 if (PREV_INSN (insn
))
3937 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
3942 SET_PREV_INSN (next
) = PREV_INSN (insn
);
3948 /* Some ports use a loop to copy large arguments onto the stack.
3949 Don't move anything outside such a loop. */
3954 /* Write the remaining insns followed by the final copy. */
3955 for (insn
= insns
; insn
; insn
= next
)
3957 next
= NEXT_INSN (insn
);
3962 last
= emit_move_insn (target
, result
);
3963 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
3965 if (final_dest
!= target
)
3966 emit_move_insn (final_dest
, target
);
3970 emit_libcall_block (rtx insns
, rtx target
, rtx result
, rtx equiv
)
3972 emit_libcall_block_1 (safe_as_a
<rtx_insn
*> (insns
),
3973 target
, result
, equiv
, false);
3976 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3977 PURPOSE describes how this comparison will be used. CODE is the rtx
3978 comparison code we will be using.
3980 ??? Actually, CODE is slightly weaker than that. A target is still
3981 required to implement all of the normal bcc operations, but not
3982 required to implement all (or any) of the unordered bcc operations. */
3985 can_compare_p (enum rtx_code code
, machine_mode mode
,
3986 enum can_compare_purpose purpose
)
3989 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3992 enum insn_code icode
;
3994 if (purpose
== ccp_jump
3995 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3996 && insn_operand_matches (icode
, 0, test
))
3998 if (purpose
== ccp_store_flag
3999 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
4000 && insn_operand_matches (icode
, 1, test
))
4002 if (purpose
== ccp_cmov
4003 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
4006 mode
= GET_MODE_WIDER_MODE (mode
);
4007 PUT_MODE (test
, mode
);
4009 while (mode
!= VOIDmode
);
4014 /* This function is called when we are going to emit a compare instruction that
4015 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4017 *PMODE is the mode of the inputs (in case they are const_int).
4018 *PUNSIGNEDP nonzero says that the operands are unsigned;
4019 this matters if they need to be widened (as given by METHODS).
4021 If they have mode BLKmode, then SIZE specifies the size of both operands.
4023 This function performs all the setup necessary so that the caller only has
4024 to emit a single comparison insn. This setup can involve doing a BLKmode
4025 comparison or emitting a library call to perform the comparison if no insn
4026 is available to handle it.
4027 The values which are passed in through pointers can be modified; the caller
4028 should perform the comparison on the modified values. Constant
4029 comparisons must have already been folded. */
4032 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4033 int unsignedp
, enum optab_methods methods
,
4034 rtx
*ptest
, machine_mode
*pmode
)
4036 machine_mode mode
= *pmode
;
4038 machine_mode cmp_mode
;
4039 enum mode_class mclass
;
4041 /* The other methods are not needed. */
4042 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
4043 || methods
== OPTAB_LIB_WIDEN
);
4045 /* If we are optimizing, force expensive constants into a register. */
4046 if (CONSTANT_P (x
) && optimize
4047 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
4048 > COSTS_N_INSNS (1)))
4049 x
= force_reg (mode
, x
);
4051 if (CONSTANT_P (y
) && optimize
4052 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
4053 > COSTS_N_INSNS (1)))
4054 y
= force_reg (mode
, y
);
4057 /* Make sure if we have a canonical comparison. The RTL
4058 documentation states that canonical comparisons are required only
4059 for targets which have cc0. */
4060 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
4063 /* Don't let both operands fail to indicate the mode. */
4064 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
4065 x
= force_reg (mode
, x
);
4066 if (mode
== VOIDmode
)
4067 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
4069 /* Handle all BLKmode compares. */
4071 if (mode
== BLKmode
)
4073 machine_mode result_mode
;
4074 enum insn_code cmp_code
;
4079 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
4083 /* Try to use a memory block compare insn - either cmpstr
4084 or cmpmem will do. */
4085 for (cmp_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
4086 cmp_mode
!= VOIDmode
;
4087 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
))
4089 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
4090 if (cmp_code
== CODE_FOR_nothing
)
4091 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
4092 if (cmp_code
== CODE_FOR_nothing
)
4093 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
4094 if (cmp_code
== CODE_FOR_nothing
)
4097 /* Must make sure the size fits the insn's mode. */
4098 if ((CONST_INT_P (size
)
4099 && INTVAL (size
) >= (1 << GET_MODE_BITSIZE (cmp_mode
)))
4100 || (GET_MODE_BITSIZE (GET_MODE (size
))
4101 > GET_MODE_BITSIZE (cmp_mode
)))
4104 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
4105 result
= gen_reg_rtx (result_mode
);
4106 size
= convert_to_mode (cmp_mode
, size
, 1);
4107 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
4109 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
4110 *pmode
= result_mode
;
4114 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
4117 /* Otherwise call a library function, memcmp. */
4118 libfunc
= memcmp_libfunc
;
4119 length_type
= sizetype
;
4120 result_mode
= TYPE_MODE (integer_type_node
);
4121 cmp_mode
= TYPE_MODE (length_type
);
4122 size
= convert_to_mode (TYPE_MODE (length_type
), size
,
4123 TYPE_UNSIGNED (length_type
));
4125 result
= emit_library_call_value (libfunc
, 0, LCT_PURE
,
4133 methods
= OPTAB_LIB_WIDEN
;
4137 /* Don't allow operands to the compare to trap, as that can put the
4138 compare and branch in different basic blocks. */
4139 if (cfun
->can_throw_non_call_exceptions
)
4142 x
= force_reg (mode
, x
);
4144 y
= force_reg (mode
, y
);
4147 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4149 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
4150 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4151 gcc_assert (icode
!= CODE_FOR_nothing
4152 && insn_operand_matches (icode
, 0, test
));
4157 mclass
= GET_MODE_CLASS (mode
);
4158 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4162 enum insn_code icode
;
4163 icode
= optab_handler (cbranch_optab
, cmp_mode
);
4164 if (icode
!= CODE_FOR_nothing
4165 && insn_operand_matches (icode
, 0, test
))
4167 rtx_insn
*last
= get_last_insn ();
4168 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
4169 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
4171 && insn_operand_matches (icode
, 1, op0
)
4172 && insn_operand_matches (icode
, 2, op1
))
4174 XEXP (test
, 0) = op0
;
4175 XEXP (test
, 1) = op1
;
4180 delete_insns_since (last
);
4183 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
4185 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
);
4187 while (cmp_mode
!= VOIDmode
);
4189 if (methods
!= OPTAB_LIB_WIDEN
)
4192 if (!SCALAR_FLOAT_MODE_P (mode
))
4195 machine_mode ret_mode
;
4197 /* Handle a libcall just for the mode we are using. */
4198 libfunc
= optab_libfunc (cmp_optab
, mode
);
4199 gcc_assert (libfunc
);
4201 /* If we want unsigned, and this mode has a distinct unsigned
4202 comparison routine, use that. */
4205 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
4210 ret_mode
= targetm
.libgcc_cmp_return_mode ();
4211 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4212 ret_mode
, 2, x
, mode
, y
, mode
);
4214 /* There are two kinds of comparison routines. Biased routines
4215 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4216 of gcc expect that the comparison operation is equivalent
4217 to the modified comparison. For signed comparisons compare the
4218 result against 1 in the biased case, and zero in the unbiased
4219 case. For unsigned comparisons always compare against 1 after
4220 biasing the unbiased result by adding 1. This gives us a way to
4222 The comparisons in the fixed-point helper library are always
4227 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
4230 x
= plus_constant (ret_mode
, result
, 1);
4236 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
4240 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
4248 /* Before emitting an insn with code ICODE, make sure that X, which is going
4249 to be used for operand OPNUM of the insn, is converted from mode MODE to
4250 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4251 that it is accepted by the operand predicate. Return the new value. */
4254 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
4255 machine_mode wider_mode
, int unsignedp
)
4257 if (mode
!= wider_mode
)
4258 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
4260 if (!insn_operand_matches (icode
, opnum
, x
))
4262 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
4263 if (reload_completed
)
4265 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
4267 x
= copy_to_mode_reg (op_mode
, x
);
4273 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4274 we can do the branch. */
4277 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
, int prob
)
4279 machine_mode optab_mode
;
4280 enum mode_class mclass
;
4281 enum insn_code icode
;
4284 mclass
= GET_MODE_CLASS (mode
);
4285 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
4286 icode
= optab_handler (cbranch_optab
, optab_mode
);
4288 gcc_assert (icode
!= CODE_FOR_nothing
);
4289 gcc_assert (insn_operand_matches (icode
, 0, test
));
4290 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
4291 XEXP (test
, 1), label
));
4293 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
4296 && any_condjump_p (insn
)
4297 && !find_reg_note (insn
, REG_BR_PROB
, 0))
4298 add_int_reg_note (insn
, REG_BR_PROB
, prob
);
4301 /* Generate code to compare X with Y so that the condition codes are
4302 set and to jump to LABEL if the condition is true. If X is a
4303 constant and Y is not a constant, then the comparison is swapped to
4304 ensure that the comparison RTL has the canonical form.
4306 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4307 need to be widened. UNSIGNEDP is also used to select the proper
4308 branch condition code.
4310 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4312 MODE is the mode of the inputs (in case they are const_int).
4314 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4315 It will be potentially converted into an unsigned variant based on
4316 UNSIGNEDP to select a proper jump instruction.
4318 PROB is the probability of jumping to LABEL. */
4321 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4322 machine_mode mode
, int unsignedp
, rtx label
,
4325 rtx op0
= x
, op1
= y
;
4328 /* Swap operands and condition to ensure canonical RTL. */
4329 if (swap_commutative_operands_p (x
, y
)
4330 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4333 comparison
= swap_condition (comparison
);
4336 /* If OP0 is still a constant, then both X and Y must be constants
4337 or the opposite comparison is not supported. Force X into a register
4338 to create canonical RTL. */
4339 if (CONSTANT_P (op0
))
4340 op0
= force_reg (mode
, op0
);
4343 comparison
= unsigned_condition (comparison
);
4345 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4347 emit_cmp_and_jump_insn_1 (test
, mode
, label
, prob
);
4351 /* Emit a library call comparison between floating point X and Y.
4352 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4355 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4356 rtx
*ptest
, machine_mode
*pmode
)
4358 enum rtx_code swapped
= swap_condition (comparison
);
4359 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4360 machine_mode orig_mode
= GET_MODE (x
);
4361 machine_mode mode
, cmp_mode
;
4362 rtx true_rtx
, false_rtx
;
4363 rtx value
, target
, equiv
;
4366 bool reversed_p
= false;
4367 cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4369 for (mode
= orig_mode
;
4371 mode
= GET_MODE_WIDER_MODE (mode
))
4373 if (code_to_optab (comparison
)
4374 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4377 if (code_to_optab (swapped
)
4378 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4381 comparison
= swapped
;
4385 if (code_to_optab (reversed
)
4386 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4388 comparison
= reversed
;
4394 gcc_assert (mode
!= VOIDmode
);
4396 if (mode
!= orig_mode
)
4398 x
= convert_to_mode (mode
, x
, 0);
4399 y
= convert_to_mode (mode
, y
, 0);
4402 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4403 the RTL. The allows the RTL optimizers to delete the libcall if the
4404 condition can be determined at compile-time. */
4405 if (comparison
== UNORDERED
4406 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4408 true_rtx
= const_true_rtx
;
4409 false_rtx
= const0_rtx
;
4416 true_rtx
= const0_rtx
;
4417 false_rtx
= const_true_rtx
;
4421 true_rtx
= const_true_rtx
;
4422 false_rtx
= const0_rtx
;
4426 true_rtx
= const1_rtx
;
4427 false_rtx
= const0_rtx
;
4431 true_rtx
= const0_rtx
;
4432 false_rtx
= constm1_rtx
;
4436 true_rtx
= constm1_rtx
;
4437 false_rtx
= const0_rtx
;
4441 true_rtx
= const0_rtx
;
4442 false_rtx
= const1_rtx
;
4450 if (comparison
== UNORDERED
)
4452 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4453 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4454 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4455 temp
, const_true_rtx
, equiv
);
4459 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4460 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4461 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4462 equiv
, true_rtx
, false_rtx
);
4466 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4467 cmp_mode
, 2, x
, mode
, y
, mode
);
4468 insns
= get_insns ();
4471 target
= gen_reg_rtx (cmp_mode
);
4472 emit_libcall_block (insns
, target
, value
, equiv
);
4474 if (comparison
== UNORDERED
4475 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4477 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4479 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4484 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4487 emit_indirect_jump (rtx loc
)
4489 if (!targetm
.have_indirect_jump ())
4490 sorry ("indirect jumps are not available on this target");
4492 struct expand_operand ops
[1];
4493 create_address_operand (&ops
[0], loc
);
4494 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4499 /* Emit a conditional move instruction if the machine supports one for that
4500 condition and machine mode.
4502 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4503 the mode to use should they be constants. If it is VOIDmode, they cannot
4506 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4507 should be stored there. MODE is the mode to use should they be constants.
4508 If it is VOIDmode, they cannot both be constants.
4510 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4511 is not supported. */
4514 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4515 machine_mode cmode
, rtx op2
, rtx op3
,
4516 machine_mode mode
, int unsignedp
)
4520 enum insn_code icode
;
4521 enum rtx_code reversed
;
4523 /* If one operand is constant, make it the second one. Only do this
4524 if the other operand is not constant as well. */
4526 if (swap_commutative_operands_p (op0
, op1
))
4528 std::swap (op0
, op1
);
4529 code
= swap_condition (code
);
4532 /* get_condition will prefer to generate LT and GT even if the old
4533 comparison was against zero, so undo that canonicalization here since
4534 comparisons against zero are cheaper. */
4535 if (code
== LT
&& op1
== const1_rtx
)
4536 code
= LE
, op1
= const0_rtx
;
4537 else if (code
== GT
&& op1
== constm1_rtx
)
4538 code
= GE
, op1
= const0_rtx
;
4540 if (cmode
== VOIDmode
)
4541 cmode
= GET_MODE (op0
);
4543 if (swap_commutative_operands_p (op2
, op3
)
4544 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4547 std::swap (op2
, op3
);
4551 if (mode
== VOIDmode
)
4552 mode
= GET_MODE (op2
);
4554 icode
= direct_optab_handler (movcc_optab
, mode
);
4556 if (icode
== CODE_FOR_nothing
)
4560 target
= gen_reg_rtx (mode
);
4562 code
= unsignedp
? unsigned_condition (code
) : code
;
4563 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4565 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4566 return NULL and let the caller figure out how best to deal with this
4568 if (!COMPARISON_P (comparison
))
4571 saved_pending_stack_adjust save
;
4572 save_pending_stack_adjust (&save
);
4573 last
= get_last_insn ();
4574 do_pending_stack_adjust ();
4575 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4576 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4577 &comparison
, &cmode
);
4580 struct expand_operand ops
[4];
4582 create_output_operand (&ops
[0], target
, mode
);
4583 create_fixed_operand (&ops
[1], comparison
);
4584 create_input_operand (&ops
[2], op2
, mode
);
4585 create_input_operand (&ops
[3], op3
, mode
);
4586 if (maybe_expand_insn (icode
, 4, ops
))
4588 if (ops
[0].value
!= target
)
4589 convert_move (target
, ops
[0].value
, false);
4593 delete_insns_since (last
);
4594 restore_pending_stack_adjust (&save
);
4598 /* Return nonzero if a conditional move of mode MODE is supported.
4600 This function is for combine so it can tell whether an insn that looks
4601 like a conditional move is actually supported by the hardware. If we
4602 guess wrong we lose a bit on optimization, but that's it. */
4603 /* ??? sparc64 supports conditionally moving integers values based on fp
4604 comparisons, and vice versa. How do we handle them? */
4607 can_conditionally_move_p (machine_mode mode
)
4609 if (direct_optab_handler (movcc_optab
, mode
) != CODE_FOR_nothing
)
4615 /* Emit a conditional addition instruction if the machine supports one for that
4616 condition and machine mode.
4618 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4619 the mode to use should they be constants. If it is VOIDmode, they cannot
4622 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4623 should be stored there. MODE is the mode to use should they be constants.
4624 If it is VOIDmode, they cannot both be constants.
4626 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4627 is not supported. */
4630 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4631 machine_mode cmode
, rtx op2
, rtx op3
,
4632 machine_mode mode
, int unsignedp
)
4636 enum insn_code icode
;
4638 /* If one operand is constant, make it the second one. Only do this
4639 if the other operand is not constant as well. */
4641 if (swap_commutative_operands_p (op0
, op1
))
4643 std::swap (op0
, op1
);
4644 code
= swap_condition (code
);
4647 /* get_condition will prefer to generate LT and GT even if the old
4648 comparison was against zero, so undo that canonicalization here since
4649 comparisons against zero are cheaper. */
4650 if (code
== LT
&& op1
== const1_rtx
)
4651 code
= LE
, op1
= const0_rtx
;
4652 else if (code
== GT
&& op1
== constm1_rtx
)
4653 code
= GE
, op1
= const0_rtx
;
4655 if (cmode
== VOIDmode
)
4656 cmode
= GET_MODE (op0
);
4658 if (mode
== VOIDmode
)
4659 mode
= GET_MODE (op2
);
4661 icode
= optab_handler (addcc_optab
, mode
);
4663 if (icode
== CODE_FOR_nothing
)
4667 target
= gen_reg_rtx (mode
);
4669 code
= unsignedp
? unsigned_condition (code
) : code
;
4670 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4672 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4673 return NULL and let the caller figure out how best to deal with this
4675 if (!COMPARISON_P (comparison
))
4678 do_pending_stack_adjust ();
4679 last
= get_last_insn ();
4680 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4681 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4682 &comparison
, &cmode
);
4685 struct expand_operand ops
[4];
4687 create_output_operand (&ops
[0], target
, mode
);
4688 create_fixed_operand (&ops
[1], comparison
);
4689 create_input_operand (&ops
[2], op2
, mode
);
4690 create_input_operand (&ops
[3], op3
, mode
);
4691 if (maybe_expand_insn (icode
, 4, ops
))
4693 if (ops
[0].value
!= target
)
4694 convert_move (target
, ops
[0].value
, false);
4698 delete_insns_since (last
);
4702 /* These functions attempt to generate an insn body, rather than
4703 emitting the insn, but if the gen function already emits them, we
4704 make no attempt to turn them back into naked patterns. */
4706 /* Generate and return an insn body to add Y to X. */
4709 gen_add2_insn (rtx x
, rtx y
)
4711 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4713 gcc_assert (insn_operand_matches (icode
, 0, x
));
4714 gcc_assert (insn_operand_matches (icode
, 1, x
));
4715 gcc_assert (insn_operand_matches (icode
, 2, y
));
4717 return GEN_FCN (icode
) (x
, x
, y
);
4720 /* Generate and return an insn body to add r1 and c,
4721 storing the result in r0. */
4724 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4726 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4728 if (icode
== CODE_FOR_nothing
4729 || !insn_operand_matches (icode
, 0, r0
)
4730 || !insn_operand_matches (icode
, 1, r1
)
4731 || !insn_operand_matches (icode
, 2, c
))
4734 return GEN_FCN (icode
) (r0
, r1
, c
);
4738 have_add2_insn (rtx x
, rtx y
)
4740 enum insn_code icode
;
4742 gcc_assert (GET_MODE (x
) != VOIDmode
);
4744 icode
= optab_handler (add_optab
, GET_MODE (x
));
4746 if (icode
== CODE_FOR_nothing
)
4749 if (!insn_operand_matches (icode
, 0, x
)
4750 || !insn_operand_matches (icode
, 1, x
)
4751 || !insn_operand_matches (icode
, 2, y
))
4757 /* Generate and return an insn body to add Y to X. */
4760 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
4762 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4764 gcc_assert (insn_operand_matches (icode
, 0, x
));
4765 gcc_assert (insn_operand_matches (icode
, 1, y
));
4766 gcc_assert (insn_operand_matches (icode
, 2, z
));
4768 return GEN_FCN (icode
) (x
, y
, z
);
4771 /* Return true if the target implements an addptr pattern and X, Y,
4772 and Z are valid for the pattern predicates. */
4775 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
4777 enum insn_code icode
;
4779 gcc_assert (GET_MODE (x
) != VOIDmode
);
4781 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4783 if (icode
== CODE_FOR_nothing
)
4786 if (!insn_operand_matches (icode
, 0, x
)
4787 || !insn_operand_matches (icode
, 1, y
)
4788 || !insn_operand_matches (icode
, 2, z
))
4794 /* Generate and return an insn body to subtract Y from X. */
4797 gen_sub2_insn (rtx x
, rtx y
)
4799 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4801 gcc_assert (insn_operand_matches (icode
, 0, x
));
4802 gcc_assert (insn_operand_matches (icode
, 1, x
));
4803 gcc_assert (insn_operand_matches (icode
, 2, y
));
4805 return GEN_FCN (icode
) (x
, x
, y
);
4808 /* Generate and return an insn body to subtract r1 and c,
4809 storing the result in r0. */
4812 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4814 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4816 if (icode
== CODE_FOR_nothing
4817 || !insn_operand_matches (icode
, 0, r0
)
4818 || !insn_operand_matches (icode
, 1, r1
)
4819 || !insn_operand_matches (icode
, 2, c
))
4822 return GEN_FCN (icode
) (r0
, r1
, c
);
4826 have_sub2_insn (rtx x
, rtx y
)
4828 enum insn_code icode
;
4830 gcc_assert (GET_MODE (x
) != VOIDmode
);
4832 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4834 if (icode
== CODE_FOR_nothing
)
4837 if (!insn_operand_matches (icode
, 0, x
)
4838 || !insn_operand_matches (icode
, 1, x
)
4839 || !insn_operand_matches (icode
, 2, y
))
4845 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4846 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4847 no such operation exists, CODE_FOR_nothing will be returned. */
4850 can_extend_p (machine_mode to_mode
, machine_mode from_mode
,
4854 if (unsignedp
< 0 && targetm
.have_ptr_extend ())
4855 return targetm
.code_for_ptr_extend
;
4857 tab
= unsignedp
? zext_optab
: sext_optab
;
4858 return convert_optab_handler (tab
, to_mode
, from_mode
);
4861 /* Generate the body of an insn to extend Y (with mode MFROM)
4862 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4865 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
4866 machine_mode mfrom
, int unsignedp
)
4868 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4869 return GEN_FCN (icode
) (x
, y
);
4872 /* can_fix_p and can_float_p say whether the target machine
4873 can directly convert a given fixed point type to
4874 a given floating point type, or vice versa.
4875 The returned value is the CODE_FOR_... value to use,
4876 or CODE_FOR_nothing if these modes cannot be directly converted.
4878 *TRUNCP_PTR is set to 1 if it is necessary to output
4879 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4881 static enum insn_code
4882 can_fix_p (machine_mode fixmode
, machine_mode fltmode
,
4883 int unsignedp
, int *truncp_ptr
)
4886 enum insn_code icode
;
4888 tab
= unsignedp
? ufixtrunc_optab
: sfixtrunc_optab
;
4889 icode
= convert_optab_handler (tab
, fixmode
, fltmode
);
4890 if (icode
!= CODE_FOR_nothing
)
4896 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4897 for this to work. We need to rework the fix* and ftrunc* patterns
4898 and documentation. */
4899 tab
= unsignedp
? ufix_optab
: sfix_optab
;
4900 icode
= convert_optab_handler (tab
, fixmode
, fltmode
);
4901 if (icode
!= CODE_FOR_nothing
4902 && optab_handler (ftrunc_optab
, fltmode
) != CODE_FOR_nothing
)
4909 return CODE_FOR_nothing
;
4913 can_float_p (machine_mode fltmode
, machine_mode fixmode
,
4918 tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4919 return convert_optab_handler (tab
, fltmode
, fixmode
);
4922 /* Function supportable_convert_operation
4924 Check whether an operation represented by the code CODE is a
4925 convert operation that is supported by the target platform in
4926 vector form (i.e., when operating on arguments of type VECTYPE_IN
4927 producing a result of type VECTYPE_OUT).
4929 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4930 This function checks if these operations are supported
4931 by the target platform either directly (via vector tree-codes), or via
4935 - CODE1 is code of vector operation to be used when
4936 vectorizing the operation, if available.
4937 - DECL is decl of target builtin functions to be used
4938 when vectorizing the operation, if available. In this case,
4939 CODE1 is CALL_EXPR. */
4942 supportable_convert_operation (enum tree_code code
,
4943 tree vectype_out
, tree vectype_in
,
4944 tree
*decl
, enum tree_code
*code1
)
4949 m1
= TYPE_MODE (vectype_out
);
4950 m2
= TYPE_MODE (vectype_in
);
4952 /* First check if we can done conversion directly. */
4953 if ((code
== FIX_TRUNC_EXPR
4954 && can_fix_p (m1
,m2
,TYPE_UNSIGNED (vectype_out
), &truncp
)
4955 != CODE_FOR_nothing
)
4956 || (code
== FLOAT_EXPR
4957 && can_float_p (m1
,m2
,TYPE_UNSIGNED (vectype_in
))
4958 != CODE_FOR_nothing
))
4964 /* Now check for builtin. */
4965 if (targetm
.vectorize
.builtin_conversion
4966 && targetm
.vectorize
.builtin_conversion (code
, vectype_out
, vectype_in
))
4969 *decl
= targetm
.vectorize
.builtin_conversion (code
, vectype_out
, vectype_in
);
4976 /* Generate code to convert FROM to floating point
4977 and store in TO. FROM must be fixed point and not VOIDmode.
4978 UNSIGNEDP nonzero means regard FROM as unsigned.
4979 Normally this is done by correcting the final value
4980 if it is negative. */
4983 expand_float (rtx to
, rtx from
, int unsignedp
)
4985 enum insn_code icode
;
4987 machine_mode fmode
, imode
;
4988 bool can_do_signed
= false;
4990 /* Crash now, because we won't be able to decide which mode to use. */
4991 gcc_assert (GET_MODE (from
) != VOIDmode
);
4993 /* Look for an insn to do the conversion. Do it in the specified
4994 modes if possible; otherwise convert either input, output or both to
4995 wider mode. If the integer mode is wider than the mode of FROM,
4996 we can do the conversion signed even if the input is unsigned. */
4998 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4999 fmode
= GET_MODE_WIDER_MODE (fmode
))
5000 for (imode
= GET_MODE (from
); imode
!= VOIDmode
;
5001 imode
= GET_MODE_WIDER_MODE (imode
))
5003 int doing_unsigned
= unsignedp
;
5005 if (fmode
!= GET_MODE (to
)
5006 && significand_size (fmode
) < GET_MODE_PRECISION (GET_MODE (from
)))
5009 icode
= can_float_p (fmode
, imode
, unsignedp
);
5010 if (icode
== CODE_FOR_nothing
&& unsignedp
)
5012 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
5013 if (scode
!= CODE_FOR_nothing
)
5014 can_do_signed
= true;
5015 if (imode
!= GET_MODE (from
))
5016 icode
= scode
, doing_unsigned
= 0;
5019 if (icode
!= CODE_FOR_nothing
)
5021 if (imode
!= GET_MODE (from
))
5022 from
= convert_to_mode (imode
, from
, unsignedp
);
5024 if (fmode
!= GET_MODE (to
))
5025 target
= gen_reg_rtx (fmode
);
5027 emit_unop_insn (icode
, target
, from
,
5028 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
5031 convert_move (to
, target
, 0);
5036 /* Unsigned integer, and no way to convert directly. Convert as signed,
5037 then unconditionally adjust the result. */
5038 if (unsignedp
&& can_do_signed
)
5040 rtx_code_label
*label
= gen_label_rtx ();
5042 REAL_VALUE_TYPE offset
;
5044 /* Look for a usable floating mode FMODE wider than the source and at
5045 least as wide as the target. Using FMODE will avoid rounding woes
5046 with unsigned values greater than the signed maximum value. */
5048 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
5049 fmode
= GET_MODE_WIDER_MODE (fmode
))
5050 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_BITSIZE (fmode
)
5051 && can_float_p (fmode
, GET_MODE (from
), 0) != CODE_FOR_nothing
)
5054 if (fmode
== VOIDmode
)
5056 /* There is no such mode. Pretend the target is wide enough. */
5057 fmode
= GET_MODE (to
);
5059 /* Avoid double-rounding when TO is narrower than FROM. */
5060 if ((significand_size (fmode
) + 1)
5061 < GET_MODE_PRECISION (GET_MODE (from
)))
5064 rtx_code_label
*neglabel
= gen_label_rtx ();
5066 /* Don't use TARGET if it isn't a register, is a hard register,
5067 or is the wrong mode. */
5069 || REGNO (target
) < FIRST_PSEUDO_REGISTER
5070 || GET_MODE (target
) != fmode
)
5071 target
= gen_reg_rtx (fmode
);
5073 imode
= GET_MODE (from
);
5074 do_pending_stack_adjust ();
5076 /* Test whether the sign bit is set. */
5077 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
5080 /* The sign bit is not set. Convert as signed. */
5081 expand_float (target
, from
, 0);
5082 emit_jump_insn (targetm
.gen_jump (label
));
5085 /* The sign bit is set.
5086 Convert to a usable (positive signed) value by shifting right
5087 one bit, while remembering if a nonzero bit was shifted
5088 out; i.e., compute (from & 1) | (from >> 1). */
5090 emit_label (neglabel
);
5091 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
5092 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
5093 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
5094 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
5096 expand_float (target
, temp
, 0);
5098 /* Multiply by 2 to undo the shift above. */
5099 temp
= expand_binop (fmode
, add_optab
, target
, target
,
5100 target
, 0, OPTAB_LIB_WIDEN
);
5102 emit_move_insn (target
, temp
);
5104 do_pending_stack_adjust ();
5110 /* If we are about to do some arithmetic to correct for an
5111 unsigned operand, do it in a pseudo-register. */
5113 if (GET_MODE (to
) != fmode
5114 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
5115 target
= gen_reg_rtx (fmode
);
5117 /* Convert as signed integer to floating. */
5118 expand_float (target
, from
, 0);
5120 /* If FROM is negative (and therefore TO is negative),
5121 correct its value by 2**bitwidth. */
5123 do_pending_stack_adjust ();
5124 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, GET_MODE (from
),
5128 real_2expN (&offset
, GET_MODE_PRECISION (GET_MODE (from
)), fmode
);
5129 temp
= expand_binop (fmode
, add_optab
, target
,
5130 CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
),
5131 target
, 0, OPTAB_LIB_WIDEN
);
5133 emit_move_insn (target
, temp
);
5135 do_pending_stack_adjust ();
5140 /* No hardware instruction available; call a library routine. */
5145 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
5147 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_PRECISION (SImode
))
5148 from
= convert_to_mode (SImode
, from
, unsignedp
);
5150 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5151 gcc_assert (libfunc
);
5155 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5156 GET_MODE (to
), 1, from
,
5158 insns
= get_insns ();
5161 emit_libcall_block (insns
, target
, value
,
5162 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
5163 GET_MODE (to
), from
));
5168 /* Copy result to requested destination
5169 if we have been computing in a temp location. */
5173 if (GET_MODE (target
) == GET_MODE (to
))
5174 emit_move_insn (to
, target
);
5176 convert_move (to
, target
, 0);
5180 /* Generate code to convert FROM to fixed point and store in TO. FROM
5181 must be floating point. */
5184 expand_fix (rtx to
, rtx from
, int unsignedp
)
5186 enum insn_code icode
;
5188 machine_mode fmode
, imode
;
5191 /* We first try to find a pair of modes, one real and one integer, at
5192 least as wide as FROM and TO, respectively, in which we can open-code
5193 this conversion. If the integer mode is wider than the mode of TO,
5194 we can do the conversion either signed or unsigned. */
5196 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5197 fmode
= GET_MODE_WIDER_MODE (fmode
))
5198 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
5199 imode
= GET_MODE_WIDER_MODE (imode
))
5201 int doing_unsigned
= unsignedp
;
5203 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
5204 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
5205 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
5207 if (icode
!= CODE_FOR_nothing
)
5209 rtx_insn
*last
= get_last_insn ();
5210 if (fmode
!= GET_MODE (from
))
5211 from
= convert_to_mode (fmode
, from
, 0);
5215 rtx temp
= gen_reg_rtx (GET_MODE (from
));
5216 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
5220 if (imode
!= GET_MODE (to
))
5221 target
= gen_reg_rtx (imode
);
5223 if (maybe_emit_unop_insn (icode
, target
, from
,
5224 doing_unsigned
? UNSIGNED_FIX
: FIX
))
5227 convert_move (to
, target
, unsignedp
);
5230 delete_insns_since (last
);
5234 /* For an unsigned conversion, there is one more way to do it.
5235 If we have a signed conversion, we generate code that compares
5236 the real value to the largest representable positive number. If if
5237 is smaller, the conversion is done normally. Otherwise, subtract
5238 one plus the highest signed number, convert, and add it back.
5240 We only need to check all real modes, since we know we didn't find
5241 anything with a wider integer mode.
5243 This code used to extend FP value into mode wider than the destination.
5244 This is needed for decimal float modes which cannot accurately
5245 represent one plus the highest signed number of the same size, but
5246 not for binary modes. Consider, for instance conversion from SFmode
5249 The hot path through the code is dealing with inputs smaller than 2^63
5250 and doing just the conversion, so there is no bits to lose.
5252 In the other path we know the value is positive in the range 2^63..2^64-1
5253 inclusive. (as for other input overflow happens and result is undefined)
5254 So we know that the most important bit set in mantissa corresponds to
5255 2^63. The subtraction of 2^63 should not generate any rounding as it
5256 simply clears out that bit. The rest is trivial. */
5258 if (unsignedp
&& GET_MODE_PRECISION (GET_MODE (to
)) <= HOST_BITS_PER_WIDE_INT
)
5259 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5260 fmode
= GET_MODE_WIDER_MODE (fmode
))
5261 if (CODE_FOR_nothing
!= can_fix_p (GET_MODE (to
), fmode
, 0, &must_trunc
)
5262 && (!DECIMAL_FLOAT_MODE_P (fmode
)
5263 || GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (GET_MODE (to
))))
5266 REAL_VALUE_TYPE offset
;
5268 rtx_code_label
*lab1
, *lab2
;
5271 bitsize
= GET_MODE_PRECISION (GET_MODE (to
));
5272 real_2expN (&offset
, bitsize
- 1, fmode
);
5273 limit
= CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
);
5274 lab1
= gen_label_rtx ();
5275 lab2
= gen_label_rtx ();
5277 if (fmode
!= GET_MODE (from
))
5278 from
= convert_to_mode (fmode
, from
, 0);
5280 /* See if we need to do the subtraction. */
5281 do_pending_stack_adjust ();
5282 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
, GET_MODE (from
),
5285 /* If not, do the signed "fix" and branch around fixup code. */
5286 expand_fix (to
, from
, 0);
5287 emit_jump_insn (targetm
.gen_jump (lab2
));
5290 /* Otherwise, subtract 2**(N-1), convert to signed number,
5291 then add 2**(N-1). Do the addition using XOR since this
5292 will often generate better code. */
5294 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
5295 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5296 expand_fix (to
, target
, 0);
5297 target
= expand_binop (GET_MODE (to
), xor_optab
, to
,
5299 ((HOST_WIDE_INT
) 1 << (bitsize
- 1),
5301 to
, 1, OPTAB_LIB_WIDEN
);
5304 emit_move_insn (to
, target
);
5308 if (optab_handler (mov_optab
, GET_MODE (to
)) != CODE_FOR_nothing
)
5310 /* Make a place for a REG_NOTE and add it. */
5311 insn
= emit_move_insn (to
, to
);
5312 set_dst_reg_note (insn
, REG_EQUAL
,
5313 gen_rtx_fmt_e (UNSIGNED_FIX
, GET_MODE (to
),
5321 /* We can't do it with an insn, so use a library call. But first ensure
5322 that the mode of TO is at least as wide as SImode, since those are the
5323 only library calls we know about. */
5325 if (GET_MODE_PRECISION (GET_MODE (to
)) < GET_MODE_PRECISION (SImode
))
5327 target
= gen_reg_rtx (SImode
);
5329 expand_fix (target
, from
, unsignedp
);
5337 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
5338 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5339 gcc_assert (libfunc
);
5343 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5344 GET_MODE (to
), 1, from
,
5346 insns
= get_insns ();
5349 emit_libcall_block (insns
, target
, value
,
5350 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
5351 GET_MODE (to
), from
));
5356 if (GET_MODE (to
) == GET_MODE (target
))
5357 emit_move_insn (to
, target
);
5359 convert_move (to
, target
, 0);
5363 /* Generate code to convert FROM or TO a fixed-point.
5364 If UINTP is true, either TO or FROM is an unsigned integer.
5365 If SATP is true, we need to saturate the result. */
5368 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5370 machine_mode to_mode
= GET_MODE (to
);
5371 machine_mode from_mode
= GET_MODE (from
);
5373 enum rtx_code this_code
;
5374 enum insn_code code
;
5379 if (to_mode
== from_mode
)
5381 emit_move_insn (to
, from
);
5387 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5388 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5392 tab
= satp
? satfract_optab
: fract_optab
;
5393 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5395 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5396 if (code
!= CODE_FOR_nothing
)
5398 emit_unop_insn (code
, to
, from
, this_code
);
5402 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5403 gcc_assert (libfunc
);
5406 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5407 1, from
, from_mode
);
5408 insns
= get_insns ();
5411 emit_libcall_block (insns
, to
, value
,
5412 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
5415 /* Generate code to convert FROM to fixed point and store in TO. FROM
5416 must be floating point, TO must be signed. Use the conversion optab
5417 TAB to do the conversion. */
5420 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5422 enum insn_code icode
;
5424 machine_mode fmode
, imode
;
5426 /* We first try to find a pair of modes, one real and one integer, at
5427 least as wide as FROM and TO, respectively, in which we can open-code
5428 this conversion. If the integer mode is wider than the mode of TO,
5429 we can do the conversion either signed or unsigned. */
5431 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5432 fmode
= GET_MODE_WIDER_MODE (fmode
))
5433 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
5434 imode
= GET_MODE_WIDER_MODE (imode
))
5436 icode
= convert_optab_handler (tab
, imode
, fmode
);
5437 if (icode
!= CODE_FOR_nothing
)
5439 rtx_insn
*last
= get_last_insn ();
5440 if (fmode
!= GET_MODE (from
))
5441 from
= convert_to_mode (fmode
, from
, 0);
5443 if (imode
!= GET_MODE (to
))
5444 target
= gen_reg_rtx (imode
);
5446 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5448 delete_insns_since (last
);
5452 convert_move (to
, target
, 0);
5460 /* Report whether we have an instruction to perform the operation
5461 specified by CODE on operands of mode MODE. */
5463 have_insn_for (enum rtx_code code
, machine_mode mode
)
5465 return (code_to_optab (code
)
5466 && (optab_handler (code_to_optab (code
), mode
)
5467 != CODE_FOR_nothing
));
5470 /* Initialize the libfunc fields of an entire group of entries in some
5471 optab. Each entry is set equal to a string consisting of a leading
5472 pair of underscores followed by a generic operation name followed by
5473 a mode name (downshifted to lowercase) followed by a single character
5474 representing the number of operands for the given operation (which is
5475 usually one of the characters '2', '3', or '4').
5477 OPTABLE is the table in which libfunc fields are to be initialized.
5478 OPNAME is the generic (string) name of the operation.
5479 SUFFIX is the character which specifies the number of operands for
5480 the given generic operation.
5481 MODE is the mode to generate for.
5485 gen_libfunc (optab optable
, const char *opname
, int suffix
,
5488 unsigned opname_len
= strlen (opname
);
5489 const char *mname
= GET_MODE_NAME (mode
);
5490 unsigned mname_len
= strlen (mname
);
5491 int prefix_len
= targetm
.libfunc_gnu_prefix
? 6 : 2;
5492 int len
= prefix_len
+ opname_len
+ mname_len
+ 1 + 1;
5493 char *libfunc_name
= XALLOCAVEC (char, len
);
5500 if (targetm
.libfunc_gnu_prefix
)
5507 for (q
= opname
; *q
; )
5509 for (q
= mname
; *q
; q
++)
5510 *p
++ = TOLOWER (*q
);
5514 set_optab_libfunc (optable
, mode
,
5515 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5518 /* Like gen_libfunc, but verify that integer operation is involved. */
5521 gen_int_libfunc (optab optable
, const char *opname
, char suffix
,
5524 int maxsize
= 2 * BITS_PER_WORD
;
5525 int minsize
= BITS_PER_WORD
;
5527 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5529 if (maxsize
< LONG_LONG_TYPE_SIZE
)
5530 maxsize
= LONG_LONG_TYPE_SIZE
;
5531 if (minsize
> INT_TYPE_SIZE
5532 && (trapv_binoptab_p (optable
)
5533 || trapv_unoptab_p (optable
)))
5534 minsize
= INT_TYPE_SIZE
;
5535 if (GET_MODE_BITSIZE (mode
) < minsize
5536 || GET_MODE_BITSIZE (mode
) > maxsize
)
5538 gen_libfunc (optable
, opname
, suffix
, mode
);
5541 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5544 gen_fp_libfunc (optab optable
, const char *opname
, char suffix
,
5549 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5550 gen_libfunc (optable
, opname
, suffix
, mode
);
5551 if (DECIMAL_FLOAT_MODE_P (mode
))
5553 dec_opname
= XALLOCAVEC (char, sizeof (DECIMAL_PREFIX
) + strlen (opname
));
5554 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5555 depending on the low level floating format used. */
5556 memcpy (dec_opname
, DECIMAL_PREFIX
, sizeof (DECIMAL_PREFIX
) - 1);
5557 strcpy (dec_opname
+ sizeof (DECIMAL_PREFIX
) - 1, opname
);
5558 gen_libfunc (optable
, dec_opname
, suffix
, mode
);
5562 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5565 gen_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5568 if (!ALL_FIXED_POINT_MODE_P (mode
))
5570 gen_libfunc (optable
, opname
, suffix
, mode
);
5573 /* Like gen_libfunc, but verify that signed fixed-point operation is
5577 gen_signed_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5580 if (!SIGNED_FIXED_POINT_MODE_P (mode
))
5582 gen_libfunc (optable
, opname
, suffix
, mode
);
5585 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5589 gen_unsigned_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5592 if (!UNSIGNED_FIXED_POINT_MODE_P (mode
))
5594 gen_libfunc (optable
, opname
, suffix
, mode
);
5597 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5600 gen_int_fp_libfunc (optab optable
, const char *name
, char suffix
,
5603 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5604 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5605 if (INTEGRAL_MODE_P (mode
))
5606 gen_int_libfunc (optable
, name
, suffix
, mode
);
5609 /* Like gen_libfunc, but verify that FP or INT operation is involved
5610 and add 'v' suffix for integer operation. */
5613 gen_intv_fp_libfunc (optab optable
, const char *name
, char suffix
,
5616 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5617 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5618 if (GET_MODE_CLASS (mode
) == MODE_INT
)
5620 int len
= strlen (name
);
5621 char *v_name
= XALLOCAVEC (char, len
+ 2);
5622 strcpy (v_name
, name
);
5624 v_name
[len
+ 1] = 0;
5625 gen_int_libfunc (optable
, v_name
, suffix
, mode
);
5629 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5633 gen_int_fp_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5636 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5637 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5638 if (INTEGRAL_MODE_P (mode
))
5639 gen_int_libfunc (optable
, name
, suffix
, mode
);
5640 if (ALL_FIXED_POINT_MODE_P (mode
))
5641 gen_fixed_libfunc (optable
, name
, suffix
, mode
);
5644 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5648 gen_int_fp_signed_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5651 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5652 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5653 if (INTEGRAL_MODE_P (mode
))
5654 gen_int_libfunc (optable
, name
, suffix
, mode
);
5655 if (SIGNED_FIXED_POINT_MODE_P (mode
))
5656 gen_signed_fixed_libfunc (optable
, name
, suffix
, mode
);
5659 /* Like gen_libfunc, but verify that INT or FIXED operation is
5663 gen_int_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5666 if (INTEGRAL_MODE_P (mode
))
5667 gen_int_libfunc (optable
, name
, suffix
, mode
);
5668 if (ALL_FIXED_POINT_MODE_P (mode
))
5669 gen_fixed_libfunc (optable
, name
, suffix
, mode
);
5672 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5676 gen_int_signed_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5679 if (INTEGRAL_MODE_P (mode
))
5680 gen_int_libfunc (optable
, name
, suffix
, mode
);
5681 if (SIGNED_FIXED_POINT_MODE_P (mode
))
5682 gen_signed_fixed_libfunc (optable
, name
, suffix
, mode
);
5685 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5689 gen_int_unsigned_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5692 if (INTEGRAL_MODE_P (mode
))
5693 gen_int_libfunc (optable
, name
, suffix
, mode
);
5694 if (UNSIGNED_FIXED_POINT_MODE_P (mode
))
5695 gen_unsigned_fixed_libfunc (optable
, name
, suffix
, mode
);
5698 /* Initialize the libfunc fields of an entire group of entries of an
5699 inter-mode-class conversion optab. The string formation rules are
5700 similar to the ones for init_libfuncs, above, but instead of having
5701 a mode name and an operand count these functions have two mode names
5702 and no operand count. */
5705 gen_interclass_conv_libfunc (convert_optab tab
,
5710 size_t opname_len
= strlen (opname
);
5711 size_t mname_len
= 0;
5713 const char *fname
, *tname
;
5715 int prefix_len
= targetm
.libfunc_gnu_prefix
? 6 : 2;
5716 char *libfunc_name
, *suffix
;
5717 char *nondec_name
, *dec_name
, *nondec_suffix
, *dec_suffix
;
5720 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5721 depends on which underlying decimal floating point format is used. */
5722 const size_t dec_len
= sizeof (DECIMAL_PREFIX
) - 1;
5724 mname_len
= strlen (GET_MODE_NAME (tmode
)) + strlen (GET_MODE_NAME (fmode
));
5726 nondec_name
= XALLOCAVEC (char, prefix_len
+ opname_len
+ mname_len
+ 1 + 1);
5727 nondec_name
[0] = '_';
5728 nondec_name
[1] = '_';
5729 if (targetm
.libfunc_gnu_prefix
)
5731 nondec_name
[2] = 'g';
5732 nondec_name
[3] = 'n';
5733 nondec_name
[4] = 'u';
5734 nondec_name
[5] = '_';
5737 memcpy (&nondec_name
[prefix_len
], opname
, opname_len
);
5738 nondec_suffix
= nondec_name
+ opname_len
+ prefix_len
;
5740 dec_name
= XALLOCAVEC (char, 2 + dec_len
+ opname_len
+ mname_len
+ 1 + 1);
5743 memcpy (&dec_name
[2], DECIMAL_PREFIX
, dec_len
);
5744 memcpy (&dec_name
[2+dec_len
], opname
, opname_len
);
5745 dec_suffix
= dec_name
+ dec_len
+ opname_len
+ 2;
5747 fname
= GET_MODE_NAME (fmode
);
5748 tname
= GET_MODE_NAME (tmode
);
5750 if (DECIMAL_FLOAT_MODE_P (fmode
) || DECIMAL_FLOAT_MODE_P (tmode
))
5752 libfunc_name
= dec_name
;
5753 suffix
= dec_suffix
;
5757 libfunc_name
= nondec_name
;
5758 suffix
= nondec_suffix
;
5762 for (q
= fname
; *q
; p
++, q
++)
5764 for (q
= tname
; *q
; p
++, q
++)
5769 set_conv_libfunc (tab
, tmode
, fmode
,
5770 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5773 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5774 int->fp conversion. */
5777 gen_int_to_fp_conv_libfunc (convert_optab tab
,
5782 if (GET_MODE_CLASS (fmode
) != MODE_INT
)
5784 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5786 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5789 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5793 gen_ufloat_conv_libfunc (convert_optab tab
,
5794 const char *opname ATTRIBUTE_UNUSED
,
5798 if (DECIMAL_FLOAT_MODE_P (tmode
))
5799 gen_int_to_fp_conv_libfunc (tab
, "floatuns", tmode
, fmode
);
5801 gen_int_to_fp_conv_libfunc (tab
, "floatun", tmode
, fmode
);
5804 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5805 fp->int conversion. */
5808 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab
,
5813 if (GET_MODE_CLASS (fmode
) != MODE_INT
)
5815 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
)
5817 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5820 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5821 fp->int conversion with no decimal floating point involved. */
5824 gen_fp_to_int_conv_libfunc (convert_optab tab
,
5829 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5831 if (GET_MODE_CLASS (tmode
) != MODE_INT
)
5833 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5836 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5837 The string formation rules are
5838 similar to the ones for init_libfunc, above. */
5841 gen_intraclass_conv_libfunc (convert_optab tab
, const char *opname
,
5842 machine_mode tmode
, machine_mode fmode
)
5844 size_t opname_len
= strlen (opname
);
5845 size_t mname_len
= 0;
5847 const char *fname
, *tname
;
5849 int prefix_len
= targetm
.libfunc_gnu_prefix
? 6 : 2;
5850 char *nondec_name
, *dec_name
, *nondec_suffix
, *dec_suffix
;
5851 char *libfunc_name
, *suffix
;
5854 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5855 depends on which underlying decimal floating point format is used. */
5856 const size_t dec_len
= sizeof (DECIMAL_PREFIX
) - 1;
5858 mname_len
= strlen (GET_MODE_NAME (tmode
)) + strlen (GET_MODE_NAME (fmode
));
5860 nondec_name
= XALLOCAVEC (char, 2 + opname_len
+ mname_len
+ 1 + 1);
5861 nondec_name
[0] = '_';
5862 nondec_name
[1] = '_';
5863 if (targetm
.libfunc_gnu_prefix
)
5865 nondec_name
[2] = 'g';
5866 nondec_name
[3] = 'n';
5867 nondec_name
[4] = 'u';
5868 nondec_name
[5] = '_';
5870 memcpy (&nondec_name
[prefix_len
], opname
, opname_len
);
5871 nondec_suffix
= nondec_name
+ opname_len
+ prefix_len
;
5873 dec_name
= XALLOCAVEC (char, 2 + dec_len
+ opname_len
+ mname_len
+ 1 + 1);
5876 memcpy (&dec_name
[2], DECIMAL_PREFIX
, dec_len
);
5877 memcpy (&dec_name
[2 + dec_len
], opname
, opname_len
);
5878 dec_suffix
= dec_name
+ dec_len
+ opname_len
+ 2;
5880 fname
= GET_MODE_NAME (fmode
);
5881 tname
= GET_MODE_NAME (tmode
);
5883 if (DECIMAL_FLOAT_MODE_P (fmode
) || DECIMAL_FLOAT_MODE_P (tmode
))
5885 libfunc_name
= dec_name
;
5886 suffix
= dec_suffix
;
5890 libfunc_name
= nondec_name
;
5891 suffix
= nondec_suffix
;
5895 for (q
= fname
; *q
; p
++, q
++)
5897 for (q
= tname
; *q
; p
++, q
++)
5903 set_conv_libfunc (tab
, tmode
, fmode
,
5904 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5907 /* Pick proper libcall for trunc_optab. We need to chose if we do
5908 truncation or extension and interclass or intraclass. */
5911 gen_trunc_conv_libfunc (convert_optab tab
,
5916 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5918 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5923 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (fmode
))
5924 || (GET_MODE_CLASS (fmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (tmode
)))
5925 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5927 if (GET_MODE_PRECISION (fmode
) <= GET_MODE_PRECISION (tmode
))
5930 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
5931 && GET_MODE_CLASS (fmode
) == MODE_FLOAT
)
5932 || (DECIMAL_FLOAT_MODE_P (fmode
) && DECIMAL_FLOAT_MODE_P (tmode
)))
5933 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5936 /* Pick proper libcall for extend_optab. We need to chose if we do
5937 truncation or extension and interclass or intraclass. */
5940 gen_extend_conv_libfunc (convert_optab tab
,
5941 const char *opname ATTRIBUTE_UNUSED
,
5945 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5947 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5952 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (fmode
))
5953 || (GET_MODE_CLASS (fmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (tmode
)))
5954 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5956 if (GET_MODE_PRECISION (fmode
) > GET_MODE_PRECISION (tmode
))
5959 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
5960 && GET_MODE_CLASS (fmode
) == MODE_FLOAT
)
5961 || (DECIMAL_FLOAT_MODE_P (fmode
) && DECIMAL_FLOAT_MODE_P (tmode
)))
5962 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5965 /* Pick proper libcall for fract_optab. We need to chose if we do
5966 interclass or intraclass. */
5969 gen_fract_conv_libfunc (convert_optab tab
,
5976 if (!(ALL_FIXED_POINT_MODE_P (tmode
) || ALL_FIXED_POINT_MODE_P (fmode
)))
5979 if (GET_MODE_CLASS (tmode
) == GET_MODE_CLASS (fmode
))
5980 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5982 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5985 /* Pick proper libcall for fractuns_optab. */
5988 gen_fractuns_conv_libfunc (convert_optab tab
,
5995 /* One mode must be a fixed-point mode, and the other must be an integer
5997 if (!((ALL_FIXED_POINT_MODE_P (tmode
) && GET_MODE_CLASS (fmode
) == MODE_INT
)
5998 || (ALL_FIXED_POINT_MODE_P (fmode
)
5999 && GET_MODE_CLASS (tmode
) == MODE_INT
)))
6002 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
6005 /* Pick proper libcall for satfract_optab. We need to chose if we do
6006 interclass or intraclass. */
6009 gen_satfract_conv_libfunc (convert_optab tab
,
6016 /* TMODE must be a fixed-point mode. */
6017 if (!ALL_FIXED_POINT_MODE_P (tmode
))
6020 if (GET_MODE_CLASS (tmode
) == GET_MODE_CLASS (fmode
))
6021 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
6023 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
6026 /* Pick proper libcall for satfractuns_optab. */
6029 gen_satfractuns_conv_libfunc (convert_optab tab
,
6036 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6037 if (!(ALL_FIXED_POINT_MODE_P (tmode
) && GET_MODE_CLASS (fmode
) == MODE_INT
))
6040 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
6043 /* Hashtable callbacks for libfunc_decls. */
6045 struct libfunc_decl_hasher
: ggc_ptr_hash
<tree_node
>
6050 return IDENTIFIER_HASH_VALUE (DECL_NAME (entry
));
6054 equal (tree decl
, tree name
)
6056 return DECL_NAME (decl
) == name
;
6060 /* A table of previously-created libfuncs, hashed by name. */
6061 static GTY (()) hash_table
<libfunc_decl_hasher
> *libfunc_decls
;
6063 /* Build a decl for a libfunc named NAME. */
6066 build_libfunc_function (const char *name
)
6068 tree decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
6069 get_identifier (name
),
6070 build_function_type (integer_type_node
, NULL_TREE
));
6071 /* ??? We don't have any type information except for this is
6072 a function. Pretend this is "int foo()". */
6073 DECL_ARTIFICIAL (decl
) = 1;
6074 DECL_EXTERNAL (decl
) = 1;
6075 TREE_PUBLIC (decl
) = 1;
6076 gcc_assert (DECL_ASSEMBLER_NAME (decl
));
6078 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6079 are the flags assigned by targetm.encode_section_info. */
6080 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
6086 init_one_libfunc (const char *name
)
6091 if (libfunc_decls
== NULL
)
6092 libfunc_decls
= hash_table
<libfunc_decl_hasher
>::create_ggc (37);
6094 /* See if we have already created a libfunc decl for this function. */
6095 id
= get_identifier (name
);
6096 hash
= IDENTIFIER_HASH_VALUE (id
);
6097 tree
*slot
= libfunc_decls
->find_slot_with_hash (id
, hash
, INSERT
);
6101 /* Create a new decl, so that it can be passed to
6102 targetm.encode_section_info. */
6103 decl
= build_libfunc_function (name
);
6106 return XEXP (DECL_RTL (decl
), 0);
6109 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6112 set_user_assembler_libfunc (const char *name
, const char *asmspec
)
6117 id
= get_identifier (name
);
6118 hash
= IDENTIFIER_HASH_VALUE (id
);
6119 tree
*slot
= libfunc_decls
->find_slot_with_hash (id
, hash
, NO_INSERT
);
6121 decl
= (tree
) *slot
;
6122 set_user_assembler_name (decl
, asmspec
);
6123 return XEXP (DECL_RTL (decl
), 0);
6126 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6127 MODE to NAME, which should be either 0 or a string constant. */
6129 set_optab_libfunc (optab op
, machine_mode mode
, const char *name
)
6132 struct libfunc_entry e
;
6133 struct libfunc_entry
**slot
;
6140 val
= init_one_libfunc (name
);
6143 slot
= libfunc_hash
->find_slot (&e
, INSERT
);
6145 *slot
= ggc_alloc
<libfunc_entry
> ();
6147 (*slot
)->mode1
= mode
;
6148 (*slot
)->mode2
= VOIDmode
;
6149 (*slot
)->libfunc
= val
;
6152 /* Call this to reset the function entry for one conversion optab
6153 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6154 either 0 or a string constant. */
6156 set_conv_libfunc (convert_optab optab
, machine_mode tmode
,
6157 machine_mode fmode
, const char *name
)
6160 struct libfunc_entry e
;
6161 struct libfunc_entry
**slot
;
6168 val
= init_one_libfunc (name
);
6171 slot
= libfunc_hash
->find_slot (&e
, INSERT
);
6173 *slot
= ggc_alloc
<libfunc_entry
> ();
6174 (*slot
)->op
= optab
;
6175 (*slot
)->mode1
= tmode
;
6176 (*slot
)->mode2
= fmode
;
6177 (*slot
)->libfunc
= val
;
6180 /* Call this to initialize the contents of the optabs
6181 appropriately for the current target machine. */
6187 libfunc_hash
->empty ();
6189 libfunc_hash
= hash_table
<libfunc_hasher
>::create_ggc (10);
6191 /* Fill in the optabs with the insns we support. */
6192 init_all_optabs (this_fn_optabs
);
6194 /* The ffs function operates on `int'. Fall back on it if we do not
6195 have a libgcc2 function for that width. */
6196 if (INT_TYPE_SIZE
< BITS_PER_WORD
)
6197 set_optab_libfunc (ffs_optab
, mode_for_size (INT_TYPE_SIZE
, MODE_INT
, 0),
6200 /* Explicitly initialize the bswap libfuncs since we need them to be
6201 valid for things other than word_mode. */
6202 if (targetm
.libfunc_gnu_prefix
)
6204 set_optab_libfunc (bswap_optab
, SImode
, "__gnu_bswapsi2");
6205 set_optab_libfunc (bswap_optab
, DImode
, "__gnu_bswapdi2");
6209 set_optab_libfunc (bswap_optab
, SImode
, "__bswapsi2");
6210 set_optab_libfunc (bswap_optab
, DImode
, "__bswapdi2");
6213 /* Use cabs for double complex abs, since systems generally have cabs.
6214 Don't define any libcall for float complex, so that cabs will be used. */
6215 if (complex_double_type_node
)
6216 set_optab_libfunc (abs_optab
, TYPE_MODE (complex_double_type_node
),
6219 abort_libfunc
= init_one_libfunc ("abort");
6220 memcpy_libfunc
= init_one_libfunc ("memcpy");
6221 memmove_libfunc
= init_one_libfunc ("memmove");
6222 memcmp_libfunc
= init_one_libfunc ("memcmp");
6223 memset_libfunc
= init_one_libfunc ("memset");
6224 setbits_libfunc
= init_one_libfunc ("__setbits");
6226 #ifndef DONT_USE_BUILTIN_SETJMP
6227 setjmp_libfunc
= init_one_libfunc ("__builtin_setjmp");
6228 longjmp_libfunc
= init_one_libfunc ("__builtin_longjmp");
6230 setjmp_libfunc
= init_one_libfunc ("setjmp");
6231 longjmp_libfunc
= init_one_libfunc ("longjmp");
6233 unwind_sjlj_register_libfunc
= init_one_libfunc ("_Unwind_SjLj_Register");
6234 unwind_sjlj_unregister_libfunc
6235 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6237 /* For function entry/exit instrumentation. */
6238 profile_function_entry_libfunc
6239 = init_one_libfunc ("__cyg_profile_func_enter");
6240 profile_function_exit_libfunc
6241 = init_one_libfunc ("__cyg_profile_func_exit");
6243 gcov_flush_libfunc
= init_one_libfunc ("__gcov_flush");
6245 /* Allow the target to add more libcalls or rename some, etc. */
6246 targetm
.init_libfuncs ();
6249 /* Use the current target and options to initialize
6250 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6253 init_tree_optimization_optabs (tree optnode
)
6255 /* Quick exit if we have already computed optabs for this target. */
6256 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode
) == this_target_optabs
)
6259 /* Forget any previous information and set up for the current target. */
6260 TREE_OPTIMIZATION_BASE_OPTABS (optnode
) = this_target_optabs
;
6261 struct target_optabs
*tmp_optabs
= (struct target_optabs
*)
6262 TREE_OPTIMIZATION_OPTABS (optnode
);
6264 memset (tmp_optabs
, 0, sizeof (struct target_optabs
));
6266 tmp_optabs
= ggc_alloc
<target_optabs
> ();
6268 /* Generate a new set of optabs into tmp_optabs. */
6269 init_all_optabs (tmp_optabs
);
6271 /* If the optabs changed, record it. */
6272 if (memcmp (tmp_optabs
, this_target_optabs
, sizeof (struct target_optabs
)))
6273 TREE_OPTIMIZATION_OPTABS (optnode
) = tmp_optabs
;
6276 TREE_OPTIMIZATION_OPTABS (optnode
) = NULL
;
6277 ggc_free (tmp_optabs
);
6281 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6282 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6285 init_sync_libfuncs_1 (optab tab
, const char *base
, int max
)
6289 size_t len
= strlen (base
);
6292 gcc_assert (max
<= 8);
6293 gcc_assert (len
+ 3 < sizeof (buf
));
6295 memcpy (buf
, base
, len
);
6298 buf
[len
+ 2] = '\0';
6301 for (i
= 1; i
<= max
; i
*= 2)
6303 buf
[len
+ 1] = '0' + i
;
6304 set_optab_libfunc (tab
, mode
, buf
);
6305 mode
= GET_MODE_2XWIDER_MODE (mode
);
6310 init_sync_libfuncs (int max
)
6312 if (!flag_sync_libcalls
)
6315 init_sync_libfuncs_1 (sync_compare_and_swap_optab
,
6316 "__sync_val_compare_and_swap", max
);
6317 init_sync_libfuncs_1 (sync_lock_test_and_set_optab
,
6318 "__sync_lock_test_and_set", max
);
6320 init_sync_libfuncs_1 (sync_old_add_optab
, "__sync_fetch_and_add", max
);
6321 init_sync_libfuncs_1 (sync_old_sub_optab
, "__sync_fetch_and_sub", max
);
6322 init_sync_libfuncs_1 (sync_old_ior_optab
, "__sync_fetch_and_or", max
);
6323 init_sync_libfuncs_1 (sync_old_and_optab
, "__sync_fetch_and_and", max
);
6324 init_sync_libfuncs_1 (sync_old_xor_optab
, "__sync_fetch_and_xor", max
);
6325 init_sync_libfuncs_1 (sync_old_nand_optab
, "__sync_fetch_and_nand", max
);
6327 init_sync_libfuncs_1 (sync_new_add_optab
, "__sync_add_and_fetch", max
);
6328 init_sync_libfuncs_1 (sync_new_sub_optab
, "__sync_sub_and_fetch", max
);
6329 init_sync_libfuncs_1 (sync_new_ior_optab
, "__sync_or_and_fetch", max
);
6330 init_sync_libfuncs_1 (sync_new_and_optab
, "__sync_and_and_fetch", max
);
6331 init_sync_libfuncs_1 (sync_new_xor_optab
, "__sync_xor_and_fetch", max
);
6332 init_sync_libfuncs_1 (sync_new_nand_optab
, "__sync_nand_and_fetch", max
);
6335 /* Print information about the current contents of the optabs on
6339 debug_optab_libfuncs (void)
6343 /* Dump the arithmetic optabs. */
6344 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
6345 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6347 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
6350 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6351 fprintf (stderr
, "%s\t%s:\t%s\n",
6352 GET_RTX_NAME (optab_to_code ((optab
) i
)),
6358 /* Dump the conversion optabs. */
6359 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
6360 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6361 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
6363 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
6367 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6368 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
6369 GET_RTX_NAME (optab_to_code ((optab
) i
)),
6378 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6379 CODE. Return 0 on failure. */
6382 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
6384 machine_mode mode
= GET_MODE (op1
);
6385 enum insn_code icode
;
6389 if (mode
== VOIDmode
)
6392 icode
= optab_handler (ctrap_optab
, mode
);
6393 if (icode
== CODE_FOR_nothing
)
6396 /* Some targets only accept a zero trap code. */
6397 if (!insn_operand_matches (icode
, 3, tcode
))
6400 do_pending_stack_adjust ();
6402 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
6407 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
6410 /* If that failed, then give up. */
6418 insn
= get_insns ();
6423 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6424 or unsigned operation code. */
6427 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
6439 code
= unsignedp
? LTU
: LT
;
6442 code
= unsignedp
? LEU
: LE
;
6445 code
= unsignedp
? GTU
: GT
;
6448 code
= unsignedp
? GEU
: GE
;
6451 case UNORDERED_EXPR
:
6490 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6491 unsigned operators. Do not generate compare instruction. */
6494 vector_compare_rtx (enum tree_code tcode
, tree t_op0
, tree t_op1
,
6495 bool unsignedp
, enum insn_code icode
)
6497 struct expand_operand ops
[2];
6498 rtx rtx_op0
, rtx_op1
;
6499 machine_mode m0
, m1
;
6500 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
6502 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
6504 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
6505 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
6506 cases, use the original mode. */
6507 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
6509 m0
= GET_MODE (rtx_op0
);
6511 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
6513 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
6515 m1
= GET_MODE (rtx_op1
);
6517 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
6519 create_input_operand (&ops
[0], rtx_op0
, m0
);
6520 create_input_operand (&ops
[1], rtx_op1
, m1
);
6521 if (!maybe_legitimize_operands (icode
, 4, 2, ops
))
6523 return gen_rtx_fmt_ee (rcode
, VOIDmode
, ops
[0].value
, ops
[1].value
);
6526 /* Return true if VEC_PERM_EXPR of arbitrary input vectors can be expanded using
6527 SIMD extensions of the CPU. SEL may be NULL, which stands for an unknown
6528 constant. Note that additional permutations representing whole-vector shifts
6529 may also be handled via the vec_shr optab, but only where the second input
6530 vector is entirely constant zeroes; this case is not dealt with here. */
6533 can_vec_perm_p (machine_mode mode
, bool variable
,
6534 const unsigned char *sel
)
6536 machine_mode qimode
;
6538 /* If the target doesn't implement a vector mode for the vector type,
6539 then no operations are supported. */
6540 if (!VECTOR_MODE_P (mode
))
6545 if (direct_optab_handler (vec_perm_const_optab
, mode
) != CODE_FOR_nothing
6547 || targetm
.vectorize
.vec_perm_const_ok
== NULL
6548 || targetm
.vectorize
.vec_perm_const_ok (mode
, sel
)))
6552 if (direct_optab_handler (vec_perm_optab
, mode
) != CODE_FOR_nothing
)
6555 /* We allow fallback to a QI vector mode, and adjust the mask. */
6556 if (GET_MODE_INNER (mode
) == QImode
)
6558 qimode
= mode_for_vector (QImode
, GET_MODE_SIZE (mode
));
6559 if (!VECTOR_MODE_P (qimode
))
6562 /* ??? For completeness, we ought to check the QImode version of
6563 vec_perm_const_optab. But all users of this implicit lowering
6564 feature implement the variable vec_perm_optab. */
6565 if (direct_optab_handler (vec_perm_optab
, qimode
) == CODE_FOR_nothing
)
6568 /* In order to support the lowering of variable permutations,
6569 we need to support shifts and adds. */
6572 if (GET_MODE_UNIT_SIZE (mode
) > 2
6573 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
6574 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
)
6576 if (optab_handler (add_optab
, qimode
) == CODE_FOR_nothing
)
6583 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
6584 vec_perm operand, assuming the second operand is a constant vector of zeroes.
6585 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
6588 shift_amt_for_vec_perm_mask (rtx sel
)
6590 unsigned int i
, first
, nelt
= GET_MODE_NUNITS (GET_MODE (sel
));
6591 unsigned int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (sel
)));
6593 if (GET_CODE (sel
) != CONST_VECTOR
)
6596 first
= INTVAL (CONST_VECTOR_ELT (sel
, 0));
6597 if (first
>= 2*nelt
)
6599 for (i
= 1; i
< nelt
; i
++)
6601 int idx
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
6602 unsigned int expected
= (i
+ first
) & (2 * nelt
- 1);
6603 /* Indices into the second vector are all equivalent. */
6604 if (idx
< 0 || (MIN (nelt
, (unsigned) idx
) != MIN (nelt
, expected
)))
6608 return GEN_INT (first
* bitsize
);
6611 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6614 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
6615 rtx v0
, rtx v1
, rtx sel
)
6617 machine_mode tmode
= GET_MODE (target
);
6618 machine_mode smode
= GET_MODE (sel
);
6619 struct expand_operand ops
[4];
6621 create_output_operand (&ops
[0], target
, tmode
);
6622 create_input_operand (&ops
[3], sel
, smode
);
6624 /* Make an effort to preserve v0 == v1. The target expander is able to
6625 rely on this to determine if we're permuting a single input operand. */
6626 if (rtx_equal_p (v0
, v1
))
6628 if (!insn_operand_matches (icode
, 1, v0
))
6629 v0
= force_reg (tmode
, v0
);
6630 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
6631 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
6633 create_fixed_operand (&ops
[1], v0
);
6634 create_fixed_operand (&ops
[2], v0
);
6638 create_input_operand (&ops
[1], v0
, tmode
);
6639 /* See if this can be handled with a vec_shr. We only do this if the
6640 second vector is all zeroes. */
6641 enum insn_code shift_code
= optab_handler (vec_shr_optab
, GET_MODE (v0
));
6642 if (v1
== CONST0_RTX (GET_MODE (v1
)) && shift_code
)
6643 if (rtx shift_amt
= shift_amt_for_vec_perm_mask (sel
))
6645 create_convert_operand_from_type (&ops
[2], shift_amt
,
6646 sizetype_tab
[(int) stk_sizetype
]);
6647 if (maybe_expand_insn (shift_code
, 3, ops
))
6648 return ops
[0].value
;
6650 create_input_operand (&ops
[2], v1
, tmode
);
6653 if (maybe_expand_insn (icode
, 4, ops
))
6654 return ops
[0].value
;
6658 /* Generate instructions for vec_perm optab given its mode
6659 and three operands. */
6662 expand_vec_perm (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
6664 enum insn_code icode
;
6665 machine_mode qimode
;
6666 unsigned int i
, w
, e
, u
;
6667 rtx tmp
, sel_qi
= NULL
;
6670 if (!target
|| GET_MODE (target
) != mode
)
6671 target
= gen_reg_rtx (mode
);
6673 w
= GET_MODE_SIZE (mode
);
6674 e
= GET_MODE_NUNITS (mode
);
6675 u
= GET_MODE_UNIT_SIZE (mode
);
6677 /* Set QIMODE to a different vector mode with byte elements.
6678 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6680 if (GET_MODE_INNER (mode
) != QImode
)
6682 qimode
= mode_for_vector (QImode
, w
);
6683 if (!VECTOR_MODE_P (qimode
))
6687 /* If the input is a constant, expand it specially. */
6688 gcc_assert (GET_MODE_CLASS (GET_MODE (sel
)) == MODE_VECTOR_INT
);
6689 if (GET_CODE (sel
) == CONST_VECTOR
)
6691 icode
= direct_optab_handler (vec_perm_const_optab
, mode
);
6692 if (icode
!= CODE_FOR_nothing
)
6694 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
6699 /* Fall back to a constant byte-based permutation. */
6700 if (qimode
!= VOIDmode
)
6702 vec
= rtvec_alloc (w
);
6703 for (i
= 0; i
< e
; ++i
)
6705 unsigned int j
, this_e
;
6707 this_e
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
6708 this_e
&= 2 * e
- 1;
6711 for (j
= 0; j
< u
; ++j
)
6712 RTVEC_ELT (vec
, i
* u
+ j
) = GEN_INT (this_e
+ j
);
6714 sel_qi
= gen_rtx_CONST_VECTOR (qimode
, vec
);
6716 icode
= direct_optab_handler (vec_perm_const_optab
, qimode
);
6717 if (icode
!= CODE_FOR_nothing
)
6719 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
6720 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
6721 gen_lowpart (qimode
, v1
), sel_qi
);
6723 return gen_lowpart (mode
, tmp
);
6728 /* Otherwise expand as a fully variable permuation. */
6729 icode
= direct_optab_handler (vec_perm_optab
, mode
);
6730 if (icode
!= CODE_FOR_nothing
)
6732 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
6737 /* As a special case to aid several targets, lower the element-based
6738 permutation to a byte-based permutation and try again. */
6739 if (qimode
== VOIDmode
)
6741 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
6742 if (icode
== CODE_FOR_nothing
)
6747 /* Multiply each element by its byte size. */
6748 machine_mode selmode
= GET_MODE (sel
);
6750 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
6751 NULL
, 0, OPTAB_DIRECT
);
6753 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
6754 GEN_INT (exact_log2 (u
)),
6755 NULL
, 0, OPTAB_DIRECT
);
6756 gcc_assert (sel
!= NULL
);
6758 /* Broadcast the low byte each element into each of its bytes. */
6759 vec
= rtvec_alloc (w
);
6760 for (i
= 0; i
< w
; ++i
)
6762 int this_e
= i
/ u
* u
;
6763 if (BYTES_BIG_ENDIAN
)
6765 RTVEC_ELT (vec
, i
) = GEN_INT (this_e
);
6767 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
6768 sel
= gen_lowpart (qimode
, sel
);
6769 sel
= expand_vec_perm (qimode
, sel
, sel
, tmp
, NULL
);
6770 gcc_assert (sel
!= NULL
);
6772 /* Add the byte offset to each byte element. */
6773 /* Note that the definition of the indicies here is memory ordering,
6774 so there should be no difference between big and little endian. */
6775 vec
= rtvec_alloc (w
);
6776 for (i
= 0; i
< w
; ++i
)
6777 RTVEC_ELT (vec
, i
) = GEN_INT (i
% u
);
6778 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
6779 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
6780 sel
, 0, OPTAB_DIRECT
);
6781 gcc_assert (sel_qi
!= NULL
);
6784 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
6785 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
6786 gen_lowpart (qimode
, v1
), sel_qi
);
6788 tmp
= gen_lowpart (mode
, tmp
);
6792 /* Return insn code for a conditional operator with a comparison in
6793 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6795 static inline enum insn_code
6796 get_vcond_icode (machine_mode vmode
, machine_mode cmode
, bool uns
)
6798 enum insn_code icode
= CODE_FOR_nothing
;
6800 icode
= convert_optab_handler (vcondu_optab
, vmode
, cmode
);
6802 icode
= convert_optab_handler (vcond_optab
, vmode
, cmode
);
6806 /* Return TRUE iff, appropriate vector insns are available
6807 for vector cond expr with vector type VALUE_TYPE and a comparison
6808 with operand vector types in CMP_OP_TYPE. */
6811 expand_vec_cond_expr_p (tree value_type
, tree cmp_op_type
)
6813 machine_mode value_mode
= TYPE_MODE (value_type
);
6814 machine_mode cmp_op_mode
= TYPE_MODE (cmp_op_type
);
6815 if (GET_MODE_SIZE (value_mode
) != GET_MODE_SIZE (cmp_op_mode
)
6816 || GET_MODE_NUNITS (value_mode
) != GET_MODE_NUNITS (cmp_op_mode
)
6817 || get_vcond_icode (TYPE_MODE (value_type
), TYPE_MODE (cmp_op_type
),
6818 TYPE_UNSIGNED (cmp_op_type
)) == CODE_FOR_nothing
)
6823 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6827 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
6830 struct expand_operand ops
[6];
6831 enum insn_code icode
;
6832 rtx comparison
, rtx_op1
, rtx_op2
;
6833 machine_mode mode
= TYPE_MODE (vec_cond_type
);
6834 machine_mode cmp_op_mode
;
6837 enum tree_code tcode
;
6839 if (COMPARISON_CLASS_P (op0
))
6841 op0a
= TREE_OPERAND (op0
, 0);
6842 op0b
= TREE_OPERAND (op0
, 1);
6843 tcode
= TREE_CODE (op0
);
6848 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0
)));
6850 op0b
= build_zero_cst (TREE_TYPE (op0
));
6853 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
6854 cmp_op_mode
= TYPE_MODE (TREE_TYPE (op0a
));
6857 gcc_assert (GET_MODE_SIZE (mode
) == GET_MODE_SIZE (cmp_op_mode
)
6858 && GET_MODE_NUNITS (mode
) == GET_MODE_NUNITS (cmp_op_mode
));
6860 icode
= get_vcond_icode (mode
, cmp_op_mode
, unsignedp
);
6861 if (icode
== CODE_FOR_nothing
)
6864 comparison
= vector_compare_rtx (tcode
, op0a
, op0b
, unsignedp
, icode
);
6865 rtx_op1
= expand_normal (op1
);
6866 rtx_op2
= expand_normal (op2
);
6868 create_output_operand (&ops
[0], target
, mode
);
6869 create_input_operand (&ops
[1], rtx_op1
, mode
);
6870 create_input_operand (&ops
[2], rtx_op2
, mode
);
6871 create_fixed_operand (&ops
[3], comparison
);
6872 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
6873 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
6874 expand_insn (icode
, 6, ops
);
6875 return ops
[0].value
;
6878 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6879 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6880 2 for even/odd widening, and 3 for hi/lo widening. */
6883 can_mult_highpart_p (machine_mode mode
, bool uns_p
)
6889 op
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
6890 if (optab_handler (op
, mode
) != CODE_FOR_nothing
)
6893 /* If the mode is an integral vector, synth from widening operations. */
6894 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
6897 nunits
= GET_MODE_NUNITS (mode
);
6898 sel
= XALLOCAVEC (unsigned char, nunits
);
6900 op
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
6901 if (optab_handler (op
, mode
) != CODE_FOR_nothing
)
6903 op
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
6904 if (optab_handler (op
, mode
) != CODE_FOR_nothing
)
6906 for (i
= 0; i
< nunits
; ++i
)
6907 sel
[i
] = !BYTES_BIG_ENDIAN
+ (i
& ~1) + ((i
& 1) ? nunits
: 0);
6908 if (can_vec_perm_p (mode
, false, sel
))
6913 op
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
6914 if (optab_handler (op
, mode
) != CODE_FOR_nothing
)
6916 op
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
6917 if (optab_handler (op
, mode
) != CODE_FOR_nothing
)
6919 for (i
= 0; i
< nunits
; ++i
)
6920 sel
[i
] = 2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1);
6921 if (can_vec_perm_p (mode
, false, sel
))
6929 /* Expand a highpart multiply. */
6932 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
6933 rtx target
, bool uns_p
)
6935 struct expand_operand eops
[3];
6936 enum insn_code icode
;
6937 int method
, i
, nunits
;
6943 method
= can_mult_highpart_p (mode
, uns_p
);
6949 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
6950 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
6953 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
6954 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
6957 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
6958 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
6959 if (BYTES_BIG_ENDIAN
)
6960 std::swap (tab1
, tab2
);
6966 icode
= optab_handler (tab1
, mode
);
6967 nunits
= GET_MODE_NUNITS (mode
);
6968 wmode
= insn_data
[icode
].operand
[0].mode
;
6969 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode
) == nunits
);
6970 gcc_checking_assert (GET_MODE_SIZE (wmode
) == GET_MODE_SIZE (mode
));
6972 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
6973 create_input_operand (&eops
[1], op0
, mode
);
6974 create_input_operand (&eops
[2], op1
, mode
);
6975 expand_insn (icode
, 3, eops
);
6976 m1
= gen_lowpart (mode
, eops
[0].value
);
6978 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
6979 create_input_operand (&eops
[1], op0
, mode
);
6980 create_input_operand (&eops
[2], op1
, mode
);
6981 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
6982 m2
= gen_lowpart (mode
, eops
[0].value
);
6984 v
= rtvec_alloc (nunits
);
6987 for (i
= 0; i
< nunits
; ++i
)
6988 RTVEC_ELT (v
, i
) = GEN_INT (!BYTES_BIG_ENDIAN
+ (i
& ~1)
6989 + ((i
& 1) ? nunits
: 0));
6993 for (i
= 0; i
< nunits
; ++i
)
6994 RTVEC_ELT (v
, i
) = GEN_INT (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
6996 perm
= gen_rtx_CONST_VECTOR (mode
, v
);
6998 return expand_vec_perm (mode
, m1
, m2
, perm
, target
);
7001 /* Return true if target supports vector masked load/store for mode. */
7003 can_vec_mask_load_store_p (machine_mode mode
, bool is_load
)
7005 optab op
= is_load
? maskload_optab
: maskstore_optab
;
7007 unsigned int vector_sizes
;
7009 /* If mode is vector mode, check it directly. */
7010 if (VECTOR_MODE_P (mode
))
7011 return optab_handler (op
, mode
) != CODE_FOR_nothing
;
7013 /* Otherwise, return true if there is some vector mode with
7014 the mask load/store supported. */
7016 /* See if there is any chance the mask load or store might be
7017 vectorized. If not, punt. */
7018 vmode
= targetm
.vectorize
.preferred_simd_mode (mode
);
7019 if (!VECTOR_MODE_P (vmode
))
7022 if (optab_handler (op
, vmode
) != CODE_FOR_nothing
)
7025 vector_sizes
= targetm
.vectorize
.autovectorize_vector_sizes ();
7026 while (vector_sizes
!= 0)
7028 unsigned int cur
= 1 << floor_log2 (vector_sizes
);
7029 vector_sizes
&= ~cur
;
7030 if (cur
<= GET_MODE_SIZE (mode
))
7032 vmode
= mode_for_vector (mode
, cur
/ GET_MODE_SIZE (mode
));
7033 if (VECTOR_MODE_P (vmode
)
7034 && optab_handler (op
, vmode
) != CODE_FOR_nothing
)
7040 /* Return true if there is a compare_and_swap pattern. */
7043 can_compare_and_swap_p (machine_mode mode
, bool allow_libcall
)
7045 enum insn_code icode
;
7047 /* Check for __atomic_compare_and_swap. */
7048 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
7049 if (icode
!= CODE_FOR_nothing
)
7052 /* Check for __sync_compare_and_swap. */
7053 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
7054 if (icode
!= CODE_FOR_nothing
)
7056 if (allow_libcall
&& optab_libfunc (sync_compare_and_swap_optab
, mode
))
7059 /* No inline compare and swap. */
7063 /* Return true if an atomic exchange can be performed. */
7066 can_atomic_exchange_p (machine_mode mode
, bool allow_libcall
)
7068 enum insn_code icode
;
7070 /* Check for __atomic_exchange. */
7071 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
7072 if (icode
!= CODE_FOR_nothing
)
7075 /* Don't check __sync_test_and_set, as on some platforms that
7076 has reduced functionality. Targets that really do support
7077 a proper exchange should simply be updated to the __atomics. */
7079 return can_compare_and_swap_p (mode
, allow_libcall
);
7083 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7087 find_cc_set (rtx x
, const_rtx pat
, void *data
)
7089 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
7090 && GET_CODE (pat
) == SET
)
7092 rtx
*p_cc_reg
= (rtx
*) data
;
7093 gcc_assert (!*p_cc_reg
);
7098 /* This is a helper function for the other atomic operations. This function
7099 emits a loop that contains SEQ that iterates until a compare-and-swap
7100 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7101 a set of instructions that takes a value from OLD_REG as an input and
7102 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7103 set to the current contents of MEM. After SEQ, a compare-and-swap will
7104 attempt to update MEM with NEW_REG. The function returns true when the
7105 loop was generated successfully. */
7108 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
7110 machine_mode mode
= GET_MODE (mem
);
7111 rtx_code_label
*label
;
7112 rtx cmp_reg
, success
, oldval
;
7114 /* The loop we want to generate looks like
7120 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7124 Note that we only do the plain load from memory once. Subsequent
7125 iterations use the value loaded by the compare-and-swap pattern. */
7127 label
= gen_label_rtx ();
7128 cmp_reg
= gen_reg_rtx (mode
);
7130 emit_move_insn (cmp_reg
, mem
);
7132 emit_move_insn (old_reg
, cmp_reg
);
7138 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
7139 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
7143 if (oldval
!= cmp_reg
)
7144 emit_move_insn (cmp_reg
, oldval
);
7146 /* Mark this jump predicted not taken. */
7147 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
7148 GET_MODE (success
), 1, label
, 0);
7153 /* This function tries to emit an atomic_exchange intruction. VAL is written
7154 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7155 using TARGET if possible. */
7158 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
7160 machine_mode mode
= GET_MODE (mem
);
7161 enum insn_code icode
;
7163 /* If the target supports the exchange directly, great. */
7164 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
7165 if (icode
!= CODE_FOR_nothing
)
7167 struct expand_operand ops
[4];
7169 create_output_operand (&ops
[0], target
, mode
);
7170 create_fixed_operand (&ops
[1], mem
);
7171 create_input_operand (&ops
[2], val
, mode
);
7172 create_integer_operand (&ops
[3], model
);
7173 if (maybe_expand_insn (icode
, 4, ops
))
7174 return ops
[0].value
;
7180 /* This function tries to implement an atomic exchange operation using
7181 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7182 The previous contents of *MEM are returned, using TARGET if possible.
7183 Since this instructionn is an acquire barrier only, stronger memory
7184 models may require additional barriers to be emitted. */
7187 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
7188 enum memmodel model
)
7190 machine_mode mode
= GET_MODE (mem
);
7191 enum insn_code icode
;
7192 rtx_insn
*last_insn
= get_last_insn ();
7194 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
7196 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7197 exists, and the memory model is stronger than acquire, add a release
7198 barrier before the instruction. */
7200 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
7201 expand_mem_thread_fence (model
);
7203 if (icode
!= CODE_FOR_nothing
)
7205 struct expand_operand ops
[3];
7206 create_output_operand (&ops
[0], target
, mode
);
7207 create_fixed_operand (&ops
[1], mem
);
7208 create_input_operand (&ops
[2], val
, mode
);
7209 if (maybe_expand_insn (icode
, 3, ops
))
7210 return ops
[0].value
;
7213 /* If an external test-and-set libcall is provided, use that instead of
7214 any external compare-and-swap that we might get from the compare-and-
7215 swap-loop expansion later. */
7216 if (!can_compare_and_swap_p (mode
, false))
7218 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
7219 if (libfunc
!= NULL
)
7223 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7224 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
7225 mode
, 2, addr
, ptr_mode
,
7230 /* If the test_and_set can't be emitted, eliminate any barrier that might
7231 have been emitted. */
7232 delete_insns_since (last_insn
);
7236 /* This function tries to implement an atomic exchange operation using a
7237 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7238 *MEM are returned, using TARGET if possible. No memory model is required
7239 since a compare_and_swap loop is seq-cst. */
7242 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
7244 machine_mode mode
= GET_MODE (mem
);
7246 if (can_compare_and_swap_p (mode
, true))
7248 if (!target
|| !register_operand (target
, mode
))
7249 target
= gen_reg_rtx (mode
);
7250 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
7257 /* This function tries to implement an atomic test-and-set operation
7258 using the atomic_test_and_set instruction pattern. A boolean value
7259 is returned from the operation, using TARGET if possible. */
7262 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
7264 machine_mode pat_bool_mode
;
7265 struct expand_operand ops
[3];
7267 if (!targetm
.have_atomic_test_and_set ())
7270 /* While we always get QImode from __atomic_test_and_set, we get
7271 other memory modes from __sync_lock_test_and_set. Note that we
7272 use no endian adjustment here. This matches the 4.6 behavior
7273 in the Sparc backend. */
7274 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
7275 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
7276 if (GET_MODE (mem
) != QImode
)
7277 mem
= adjust_address_nv (mem
, QImode
, 0);
7279 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
7280 create_output_operand (&ops
[0], target
, pat_bool_mode
);
7281 create_fixed_operand (&ops
[1], mem
);
7282 create_integer_operand (&ops
[2], model
);
7284 if (maybe_expand_insn (icode
, 3, ops
))
7285 return ops
[0].value
;
7289 /* This function expands the legacy _sync_lock test_and_set operation which is
7290 generally an atomic exchange. Some limited targets only allow the
7291 constant 1 to be stored. This is an ACQUIRE operation.
7293 TARGET is an optional place to stick the return value.
7294 MEM is where VAL is stored. */
7297 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
7301 /* Try an atomic_exchange first. */
7302 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
7306 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
7307 MEMMODEL_SYNC_ACQUIRE
);
7311 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
7315 /* If there are no other options, try atomic_test_and_set if the value
7316 being stored is 1. */
7317 if (val
== const1_rtx
)
7318 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
7323 /* This function expands the atomic test_and_set operation:
7324 atomically store a boolean TRUE into MEM and return the previous value.
7326 MEMMODEL is the memory model variant to use.
7327 TARGET is an optional place to stick the return value. */
7330 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
7332 machine_mode mode
= GET_MODE (mem
);
7333 rtx ret
, trueval
, subtarget
;
7335 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
7339 /* Be binary compatible with non-default settings of trueval, and different
7340 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7341 another only has atomic-exchange. */
7342 if (targetm
.atomic_test_and_set_trueval
== 1)
7344 trueval
= const1_rtx
;
7345 subtarget
= target
? target
: gen_reg_rtx (mode
);
7349 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
7350 subtarget
= gen_reg_rtx (mode
);
7353 /* Try the atomic-exchange optab... */
7354 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
7356 /* ... then an atomic-compare-and-swap loop ... */
7358 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
7360 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7362 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
7364 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7365 things with the value 1. Thus we try again without trueval. */
7366 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
7367 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
7369 /* Failing all else, assume a single threaded environment and simply
7370 perform the operation. */
7373 /* If the result is ignored skip the move to target. */
7374 if (subtarget
!= const0_rtx
)
7375 emit_move_insn (subtarget
, mem
);
7377 emit_move_insn (mem
, trueval
);
7381 /* Recall that have to return a boolean value; rectify if trueval
7382 is not exactly one. */
7383 if (targetm
.atomic_test_and_set_trueval
!= 1)
7384 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
7389 /* This function expands the atomic exchange operation:
7390 atomically store VAL in MEM and return the previous value in MEM.
7392 MEMMODEL is the memory model variant to use.
7393 TARGET is an optional place to stick the return value. */
7396 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
7400 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7402 /* Next try a compare-and-swap loop for the exchange. */
7404 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
7409 /* This function expands the atomic compare exchange operation:
7411 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7412 *PTARGET_OVAL is an optional place to store the old value from memory.
7413 Both target parameters may be NULL to indicate that we do not care about
7414 that return value. Both target parameters are updated on success to
7415 the actual location of the corresponding result.
7417 MEMMODEL is the memory model variant to use.
7419 The return value of the function is true for success. */
7422 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
7423 rtx mem
, rtx expected
, rtx desired
,
7424 bool is_weak
, enum memmodel succ_model
,
7425 enum memmodel fail_model
)
7427 machine_mode mode
= GET_MODE (mem
);
7428 struct expand_operand ops
[8];
7429 enum insn_code icode
;
7430 rtx target_oval
, target_bool
= NULL_RTX
;
7433 /* Load expected into a register for the compare and swap. */
7434 if (MEM_P (expected
))
7435 expected
= copy_to_reg (expected
);
7437 /* Make sure we always have some place to put the return oldval.
7438 Further, make sure that place is distinct from the input expected,
7439 just in case we need that path down below. */
7440 if (ptarget_oval
== NULL
7441 || (target_oval
= *ptarget_oval
) == NULL
7442 || reg_overlap_mentioned_p (expected
, target_oval
))
7443 target_oval
= gen_reg_rtx (mode
);
7445 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
7446 if (icode
!= CODE_FOR_nothing
)
7448 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
7450 /* Make sure we always have a place for the bool operand. */
7451 if (ptarget_bool
== NULL
7452 || (target_bool
= *ptarget_bool
) == NULL
7453 || GET_MODE (target_bool
) != bool_mode
)
7454 target_bool
= gen_reg_rtx (bool_mode
);
7456 /* Emit the compare_and_swap. */
7457 create_output_operand (&ops
[0], target_bool
, bool_mode
);
7458 create_output_operand (&ops
[1], target_oval
, mode
);
7459 create_fixed_operand (&ops
[2], mem
);
7460 create_input_operand (&ops
[3], expected
, mode
);
7461 create_input_operand (&ops
[4], desired
, mode
);
7462 create_integer_operand (&ops
[5], is_weak
);
7463 create_integer_operand (&ops
[6], succ_model
);
7464 create_integer_operand (&ops
[7], fail_model
);
7465 if (maybe_expand_insn (icode
, 8, ops
))
7467 /* Return success/failure. */
7468 target_bool
= ops
[0].value
;
7469 target_oval
= ops
[1].value
;
7474 /* Otherwise fall back to the original __sync_val_compare_and_swap
7475 which is always seq-cst. */
7476 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
7477 if (icode
!= CODE_FOR_nothing
)
7481 create_output_operand (&ops
[0], target_oval
, mode
);
7482 create_fixed_operand (&ops
[1], mem
);
7483 create_input_operand (&ops
[2], expected
, mode
);
7484 create_input_operand (&ops
[3], desired
, mode
);
7485 if (!maybe_expand_insn (icode
, 4, ops
))
7488 target_oval
= ops
[0].value
;
7490 /* If the caller isn't interested in the boolean return value,
7491 skip the computation of it. */
7492 if (ptarget_bool
== NULL
)
7495 /* Otherwise, work out if the compare-and-swap succeeded. */
7497 if (have_insn_for (COMPARE
, CCmode
))
7498 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
7501 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
7502 const0_rtx
, VOIDmode
, 0, 1);
7505 goto success_bool_from_val
;
7508 /* Also check for library support for __sync_val_compare_and_swap. */
7509 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
7510 if (libfunc
!= NULL
)
7512 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7513 target_oval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
7514 mode
, 3, addr
, ptr_mode
,
7515 expected
, mode
, desired
, mode
);
7517 /* Compute the boolean return value only if requested. */
7519 goto success_bool_from_val
;
7527 success_bool_from_val
:
7528 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
7529 expected
, VOIDmode
, 1, 1);
7531 /* Make sure that the oval output winds up where the caller asked. */
7533 *ptarget_oval
= target_oval
;
7535 *ptarget_bool
= target_bool
;
7539 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7542 expand_asm_memory_barrier (void)
7546 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, empty_string
, empty_string
, 0,
7547 rtvec_alloc (0), rtvec_alloc (0),
7548 rtvec_alloc (0), UNKNOWN_LOCATION
);
7549 MEM_VOLATILE_P (asm_op
) = 1;
7551 clob
= gen_rtx_SCRATCH (VOIDmode
);
7552 clob
= gen_rtx_MEM (BLKmode
, clob
);
7553 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
7555 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
7558 /* This routine will either emit the mem_thread_fence pattern or issue a
7559 sync_synchronize to generate a fence for memory model MEMMODEL. */
7562 expand_mem_thread_fence (enum memmodel model
)
7564 if (targetm
.have_mem_thread_fence ())
7565 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
7566 else if (!is_mm_relaxed (model
))
7568 if (targetm
.have_memory_barrier ())
7569 emit_insn (targetm
.gen_memory_barrier ());
7570 else if (synchronize_libfunc
!= NULL_RTX
)
7571 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
, 0);
7573 expand_asm_memory_barrier ();
7577 /* This routine will either emit the mem_signal_fence pattern or issue a
7578 sync_synchronize to generate a fence for memory model MEMMODEL. */
7581 expand_mem_signal_fence (enum memmodel model
)
7583 if (targetm
.have_mem_signal_fence ())
7584 emit_insn (targetm
.gen_mem_signal_fence (GEN_INT (model
)));
7585 else if (!is_mm_relaxed (model
))
7587 /* By default targets are coherent between a thread and the signal
7588 handler running on the same thread. Thus this really becomes a
7589 compiler barrier, in that stores must not be sunk past
7590 (or raised above) a given point. */
7591 expand_asm_memory_barrier ();
7595 /* This function expands the atomic load operation:
7596 return the atomically loaded value in MEM.
7598 MEMMODEL is the memory model variant to use.
7599 TARGET is an option place to stick the return value. */
7602 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
7604 machine_mode mode
= GET_MODE (mem
);
7605 enum insn_code icode
;
7607 /* If the target supports the load directly, great. */
7608 icode
= direct_optab_handler (atomic_load_optab
, mode
);
7609 if (icode
!= CODE_FOR_nothing
)
7611 struct expand_operand ops
[3];
7613 create_output_operand (&ops
[0], target
, mode
);
7614 create_fixed_operand (&ops
[1], mem
);
7615 create_integer_operand (&ops
[2], model
);
7616 if (maybe_expand_insn (icode
, 3, ops
))
7617 return ops
[0].value
;
7620 /* If the size of the object is greater than word size on this target,
7621 then we assume that a load will not be atomic. */
7622 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
7624 /* Issue val = compare_and_swap (mem, 0, 0).
7625 This may cause the occasional harmless store of 0 when the value is
7626 already 0, but it seems to be OK according to the standards guys. */
7627 if (expand_atomic_compare_and_swap (NULL
, &target
, mem
, const0_rtx
,
7628 const0_rtx
, false, model
, model
))
7631 /* Otherwise there is no atomic load, leave the library call. */
7635 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7636 if (!target
|| target
== const0_rtx
)
7637 target
= gen_reg_rtx (mode
);
7639 /* For SEQ_CST, emit a barrier before the load. */
7640 if (is_mm_seq_cst (model
))
7641 expand_mem_thread_fence (model
);
7643 emit_move_insn (target
, mem
);
7645 /* Emit the appropriate barrier after the load. */
7646 expand_mem_thread_fence (model
);
7651 /* This function expands the atomic store operation:
7652 Atomically store VAL in MEM.
7653 MEMMODEL is the memory model variant to use.
7654 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7655 function returns const0_rtx if a pattern was emitted. */
7658 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
7660 machine_mode mode
= GET_MODE (mem
);
7661 enum insn_code icode
;
7662 struct expand_operand ops
[3];
7664 /* If the target supports the store directly, great. */
7665 icode
= direct_optab_handler (atomic_store_optab
, mode
);
7666 if (icode
!= CODE_FOR_nothing
)
7668 create_fixed_operand (&ops
[0], mem
);
7669 create_input_operand (&ops
[1], val
, mode
);
7670 create_integer_operand (&ops
[2], model
);
7671 if (maybe_expand_insn (icode
, 3, ops
))
7675 /* If using __sync_lock_release is a viable alternative, try it. */
7678 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
7679 if (icode
!= CODE_FOR_nothing
)
7681 create_fixed_operand (&ops
[0], mem
);
7682 create_input_operand (&ops
[1], const0_rtx
, mode
);
7683 if (maybe_expand_insn (icode
, 2, ops
))
7685 /* lock_release is only a release barrier. */
7686 if (is_mm_seq_cst (model
))
7687 expand_mem_thread_fence (model
);
7693 /* If the size of the object is greater than word size on this target,
7694 a default store will not be atomic, Try a mem_exchange and throw away
7695 the result. If that doesn't work, don't do anything. */
7696 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
7698 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
7700 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
, val
);
7707 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7708 expand_mem_thread_fence (model
);
7710 emit_move_insn (mem
, val
);
7712 /* For SEQ_CST, also emit a barrier after the store. */
7713 if (is_mm_seq_cst (model
))
7714 expand_mem_thread_fence (model
);
7720 /* Structure containing the pointers and values required to process the
7721 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7723 struct atomic_op_functions
7725 direct_optab mem_fetch_before
;
7726 direct_optab mem_fetch_after
;
7727 direct_optab mem_no_result
;
7730 direct_optab no_result
;
7731 enum rtx_code reverse_code
;
7735 /* Fill in structure pointed to by OP with the various optab entries for an
7736 operation of type CODE. */
7739 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
7741 gcc_assert (op
!= NULL
);
7743 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7744 in the source code during compilation, and the optab entries are not
7745 computable until runtime. Fill in the values at runtime. */
7749 op
->mem_fetch_before
= atomic_fetch_add_optab
;
7750 op
->mem_fetch_after
= atomic_add_fetch_optab
;
7751 op
->mem_no_result
= atomic_add_optab
;
7752 op
->fetch_before
= sync_old_add_optab
;
7753 op
->fetch_after
= sync_new_add_optab
;
7754 op
->no_result
= sync_add_optab
;
7755 op
->reverse_code
= MINUS
;
7758 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
7759 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
7760 op
->mem_no_result
= atomic_sub_optab
;
7761 op
->fetch_before
= sync_old_sub_optab
;
7762 op
->fetch_after
= sync_new_sub_optab
;
7763 op
->no_result
= sync_sub_optab
;
7764 op
->reverse_code
= PLUS
;
7767 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
7768 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
7769 op
->mem_no_result
= atomic_xor_optab
;
7770 op
->fetch_before
= sync_old_xor_optab
;
7771 op
->fetch_after
= sync_new_xor_optab
;
7772 op
->no_result
= sync_xor_optab
;
7773 op
->reverse_code
= XOR
;
7776 op
->mem_fetch_before
= atomic_fetch_and_optab
;
7777 op
->mem_fetch_after
= atomic_and_fetch_optab
;
7778 op
->mem_no_result
= atomic_and_optab
;
7779 op
->fetch_before
= sync_old_and_optab
;
7780 op
->fetch_after
= sync_new_and_optab
;
7781 op
->no_result
= sync_and_optab
;
7782 op
->reverse_code
= UNKNOWN
;
7785 op
->mem_fetch_before
= atomic_fetch_or_optab
;
7786 op
->mem_fetch_after
= atomic_or_fetch_optab
;
7787 op
->mem_no_result
= atomic_or_optab
;
7788 op
->fetch_before
= sync_old_ior_optab
;
7789 op
->fetch_after
= sync_new_ior_optab
;
7790 op
->no_result
= sync_ior_optab
;
7791 op
->reverse_code
= UNKNOWN
;
7794 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
7795 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
7796 op
->mem_no_result
= atomic_nand_optab
;
7797 op
->fetch_before
= sync_old_nand_optab
;
7798 op
->fetch_after
= sync_new_nand_optab
;
7799 op
->no_result
= sync_nand_optab
;
7800 op
->reverse_code
= UNKNOWN
;
7807 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7808 using memory order MODEL. If AFTER is true the operation needs to return
7809 the value of *MEM after the operation, otherwise the previous value.
7810 TARGET is an optional place to place the result. The result is unused if
7812 Return the result if there is a better sequence, otherwise NULL_RTX. */
7815 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7816 enum memmodel model
, bool after
)
7818 /* If the value is prefetched, or not used, it may be possible to replace
7819 the sequence with a native exchange operation. */
7820 if (!after
|| target
== const0_rtx
)
7822 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7823 if (code
== AND
&& val
== const0_rtx
)
7825 if (target
== const0_rtx
)
7826 target
= gen_reg_rtx (GET_MODE (mem
));
7827 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7830 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7831 if (code
== IOR
&& val
== constm1_rtx
)
7833 if (target
== const0_rtx
)
7834 target
= gen_reg_rtx (GET_MODE (mem
));
7835 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7842 /* Try to emit an instruction for a specific operation varaition.
7843 OPTAB contains the OP functions.
7844 TARGET is an optional place to return the result. const0_rtx means unused.
7845 MEM is the memory location to operate on.
7846 VAL is the value to use in the operation.
7847 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7848 MODEL is the memory model, if used.
7849 AFTER is true if the returned result is the value after the operation. */
7852 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
7853 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
7855 machine_mode mode
= GET_MODE (mem
);
7856 struct expand_operand ops
[4];
7857 enum insn_code icode
;
7861 /* Check to see if there is a result returned. */
7862 if (target
== const0_rtx
)
7866 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
7867 create_integer_operand (&ops
[2], model
);
7872 icode
= direct_optab_handler (optab
->no_result
, mode
);
7876 /* Otherwise, we need to generate a result. */
7881 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
7882 : optab
->mem_fetch_before
, mode
);
7883 create_integer_operand (&ops
[3], model
);
7888 icode
= optab_handler (after
? optab
->fetch_after
7889 : optab
->fetch_before
, mode
);
7892 create_output_operand (&ops
[op_counter
++], target
, mode
);
7894 if (icode
== CODE_FOR_nothing
)
7897 create_fixed_operand (&ops
[op_counter
++], mem
);
7898 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7899 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
7901 if (maybe_expand_insn (icode
, num_ops
, ops
))
7902 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
7908 /* This function expands an atomic fetch_OP or OP_fetch operation:
7909 TARGET is an option place to stick the return value. const0_rtx indicates
7910 the result is unused.
7911 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7912 CODE is the operation being performed (OP)
7913 MEMMODEL is the memory model variant to use.
7914 AFTER is true to return the result of the operation (OP_fetch).
7915 AFTER is false to return the value before the operation (fetch_OP).
7917 This function will *only* generate instructions if there is a direct
7918 optab. No compare and swap loops or libcalls will be generated. */
7921 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
7922 enum rtx_code code
, enum memmodel model
,
7925 machine_mode mode
= GET_MODE (mem
);
7926 struct atomic_op_functions optab
;
7928 bool unused_result
= (target
== const0_rtx
);
7930 get_atomic_op_for_code (&optab
, code
);
7932 /* Check to see if there are any better instructions. */
7933 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
7937 /* Check for the case where the result isn't used and try those patterns. */
7940 /* Try the memory model variant first. */
7941 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
7945 /* Next try the old style withuot a memory model. */
7946 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
7950 /* There is no no-result pattern, so try patterns with a result. */
7954 /* Try the __atomic version. */
7955 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
7959 /* Try the older __sync version. */
7960 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
7964 /* If the fetch value can be calculated from the other variation of fetch,
7965 try that operation. */
7966 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
7968 /* Try the __atomic version, then the older __sync version. */
7969 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
7971 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
7975 /* If the result isn't used, no need to do compensation code. */
7979 /* Issue compensation code. Fetch_after == fetch_before OP val.
7980 Fetch_before == after REVERSE_OP val. */
7982 code
= optab
.reverse_code
;
7985 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
7986 true, OPTAB_LIB_WIDEN
);
7987 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
7990 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
7991 true, OPTAB_LIB_WIDEN
);
7996 /* No direct opcode can be generated. */
8002 /* This function expands an atomic fetch_OP or OP_fetch operation:
8003 TARGET is an option place to stick the return value. const0_rtx indicates
8004 the result is unused.
8005 atomically fetch MEM, perform the operation with VAL and return it to MEM.
8006 CODE is the operation being performed (OP)
8007 MEMMODEL is the memory model variant to use.
8008 AFTER is true to return the result of the operation (OP_fetch).
8009 AFTER is false to return the value before the operation (fetch_OP). */
8011 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
8012 enum memmodel model
, bool after
)
8014 machine_mode mode
= GET_MODE (mem
);
8016 bool unused_result
= (target
== const0_rtx
);
8018 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
8024 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8025 if (code
== PLUS
|| code
== MINUS
)
8028 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
8031 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
8032 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
8036 /* PLUS worked so emit the insns and return. */
8043 /* PLUS did not work, so throw away the negation code and continue. */
8047 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8048 if (!can_compare_and_swap_p (mode
, false))
8052 enum rtx_code orig_code
= code
;
8053 struct atomic_op_functions optab
;
8055 get_atomic_op_for_code (&optab
, code
);
8056 libfunc
= optab_libfunc (after
? optab
.fetch_after
8057 : optab
.fetch_before
, mode
);
8059 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
8063 code
= optab
.reverse_code
;
8064 libfunc
= optab_libfunc (after
? optab
.fetch_before
8065 : optab
.fetch_after
, mode
);
8067 if (libfunc
!= NULL
)
8069 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
8070 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
8071 2, addr
, ptr_mode
, val
, mode
);
8073 if (!unused_result
&& fixup
)
8074 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
8075 true, OPTAB_LIB_WIDEN
);
8079 /* We need the original code for any further attempts. */
8083 /* If nothing else has succeeded, default to a compare and swap loop. */
8084 if (can_compare_and_swap_p (mode
, true))
8087 rtx t0
= gen_reg_rtx (mode
), t1
;
8091 /* If the result is used, get a register for it. */
8094 if (!target
|| !register_operand (target
, mode
))
8095 target
= gen_reg_rtx (mode
);
8096 /* If fetch_before, copy the value now. */
8098 emit_move_insn (target
, t0
);
8101 target
= const0_rtx
;
8106 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
8107 true, OPTAB_LIB_WIDEN
);
8108 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
8111 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
8114 /* For after, copy the value now. */
8115 if (!unused_result
&& after
)
8116 emit_move_insn (target
, t1
);
8117 insn
= get_insns ();
8120 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
8127 /* Return true if OPERAND is suitable for operand number OPNO of
8128 instruction ICODE. */
8131 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
8133 return (!insn_data
[(int) icode
].operand
[opno
].predicate
8134 || (insn_data
[(int) icode
].operand
[opno
].predicate
8135 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
8138 /* TARGET is a target of a multiword operation that we are going to
8139 implement as a series of word-mode operations. Return true if
8140 TARGET is suitable for this purpose. */
8143 valid_multiword_target_p (rtx target
)
8148 mode
= GET_MODE (target
);
8149 for (i
= 0; i
< GET_MODE_SIZE (mode
); i
+= UNITS_PER_WORD
)
8150 if (!validate_subreg (word_mode
, mode
, target
, i
))
8155 /* Like maybe_legitimize_operand, but do not change the code of the
8156 current rtx value. */
8159 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
8160 struct expand_operand
*op
)
8162 /* See if the operand matches in its current form. */
8163 if (insn_operand_matches (icode
, opno
, op
->value
))
8166 /* If the operand is a memory whose address has no side effects,
8167 try forcing the address into a non-virtual pseudo register.
8168 The check for side effects is important because copy_to_mode_reg
8169 cannot handle things like auto-modified addresses. */
8170 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
8175 addr
= XEXP (mem
, 0);
8176 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
8177 && !side_effects_p (addr
))
8182 last
= get_last_insn ();
8183 mode
= get_address_mode (mem
);
8184 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
8185 if (insn_operand_matches (icode
, opno
, mem
))
8190 delete_insns_since (last
);
8197 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8198 on success, storing the new operand value back in OP. */
8201 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
8202 struct expand_operand
*op
)
8204 machine_mode mode
, imode
;
8205 bool old_volatile_ok
, result
;
8211 old_volatile_ok
= volatile_ok
;
8213 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
8214 volatile_ok
= old_volatile_ok
;
8218 gcc_assert (mode
!= VOIDmode
);
8220 && op
->value
!= const0_rtx
8221 && GET_MODE (op
->value
) == mode
8222 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
8225 op
->value
= gen_reg_rtx (mode
);
8230 gcc_assert (mode
!= VOIDmode
);
8231 gcc_assert (GET_MODE (op
->value
) == VOIDmode
8232 || GET_MODE (op
->value
) == mode
);
8233 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
8236 op
->value
= copy_to_mode_reg (mode
, op
->value
);
8239 case EXPAND_CONVERT_TO
:
8240 gcc_assert (mode
!= VOIDmode
);
8241 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
8244 case EXPAND_CONVERT_FROM
:
8245 if (GET_MODE (op
->value
) != VOIDmode
)
8246 mode
= GET_MODE (op
->value
);
8248 /* The caller must tell us what mode this value has. */
8249 gcc_assert (mode
!= VOIDmode
);
8251 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
8252 if (imode
!= VOIDmode
&& imode
!= mode
)
8254 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
8259 case EXPAND_ADDRESS
:
8260 gcc_assert (mode
!= VOIDmode
);
8261 op
->value
= convert_memory_address (mode
, op
->value
);
8264 case EXPAND_INTEGER
:
8265 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
8266 if (mode
!= VOIDmode
&& const_int_operand (op
->value
, mode
))
8270 return insn_operand_matches (icode
, opno
, op
->value
);
8273 /* Make OP describe an input operand that should have the same value
8274 as VALUE, after any mode conversion that the target might request.
8275 TYPE is the type of VALUE. */
8278 create_convert_operand_from_type (struct expand_operand
*op
,
8279 rtx value
, tree type
)
8281 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
8282 TYPE_UNSIGNED (type
));
8285 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8286 of instruction ICODE. Return true on success, leaving the new operand
8287 values in the OPS themselves. Emit no code on failure. */
8290 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
8291 unsigned int nops
, struct expand_operand
*ops
)
8296 last
= get_last_insn ();
8297 for (i
= 0; i
< nops
; i
++)
8298 if (!maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
8300 delete_insns_since (last
);
8306 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8307 as its operands. Return the instruction pattern on success,
8308 and emit any necessary set-up code. Return null and emit no
8312 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
8313 struct expand_operand
*ops
)
8315 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
8316 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
8322 return GEN_FCN (icode
) (ops
[0].value
);
8324 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
8326 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
8328 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8331 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8332 ops
[3].value
, ops
[4].value
);
8334 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8335 ops
[3].value
, ops
[4].value
, ops
[5].value
);
8337 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8338 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8341 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8342 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8343 ops
[6].value
, ops
[7].value
);
8345 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8346 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8347 ops
[6].value
, ops
[7].value
, ops
[8].value
);
8352 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8353 as its operands. Return true on success and emit no code on failure. */
8356 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
8357 struct expand_operand
*ops
)
8359 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
8368 /* Like maybe_expand_insn, but for jumps. */
8371 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8372 struct expand_operand
*ops
)
8374 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
8377 emit_jump_insn (pat
);
8383 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8387 expand_insn (enum insn_code icode
, unsigned int nops
,
8388 struct expand_operand
*ops
)
8390 if (!maybe_expand_insn (icode
, nops
, ops
))
8394 /* Like expand_insn, but for jumps. */
8397 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8398 struct expand_operand
*ops
)
8400 if (!maybe_expand_jump_insn (icode
, nops
, ops
))
8404 /* Reduce conditional compilation elsewhere. */
8406 /* Enumerates the possible types of structure operand to an
8408 enum extraction_type
{ ET_unaligned_mem
, ET_reg
};
8410 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8411 insertion or extraction of type TYPE on a structure of mode MODE.
8412 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8413 operand number of the structure (the first sign_extract or zero_extract
8414 operand) and FIELD_OP is the operand number of the field (the other
8415 side of the set from the sign_extract or zero_extract). */
8418 get_traditional_extraction_insn (extraction_insn
*insn
,
8419 enum extraction_type type
,
8421 enum insn_code icode
,
8422 int struct_op
, int field_op
)
8424 const struct insn_data_d
*data
= &insn_data
[icode
];
8426 machine_mode struct_mode
= data
->operand
[struct_op
].mode
;
8427 if (struct_mode
== VOIDmode
)
8428 struct_mode
= word_mode
;
8429 if (mode
!= struct_mode
)
8432 machine_mode field_mode
= data
->operand
[field_op
].mode
;
8433 if (field_mode
== VOIDmode
)
8434 field_mode
= word_mode
;
8436 machine_mode pos_mode
= data
->operand
[struct_op
+ 2].mode
;
8437 if (pos_mode
== VOIDmode
)
8438 pos_mode
= word_mode
;
8440 insn
->icode
= icode
;
8441 insn
->field_mode
= field_mode
;
8442 insn
->struct_mode
= (type
== ET_unaligned_mem
? byte_mode
: struct_mode
);
8443 insn
->pos_mode
= pos_mode
;
8447 /* Return true if an optab exists to perform an insertion or extraction
8448 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8450 REG_OPTAB is the optab to use for register structures and
8451 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8452 POS_OP is the operand number of the bit position. */
8455 get_optab_extraction_insn (struct extraction_insn
*insn
,
8456 enum extraction_type type
,
8457 machine_mode mode
, direct_optab reg_optab
,
8458 direct_optab misalign_optab
, int pos_op
)
8460 direct_optab optab
= (type
== ET_unaligned_mem
? misalign_optab
: reg_optab
);
8461 enum insn_code icode
= direct_optab_handler (optab
, mode
);
8462 if (icode
== CODE_FOR_nothing
)
8465 const struct insn_data_d
*data
= &insn_data
[icode
];
8467 insn
->icode
= icode
;
8468 insn
->field_mode
= mode
;
8469 insn
->struct_mode
= (type
== ET_unaligned_mem
? BLKmode
: mode
);
8470 insn
->pos_mode
= data
->operand
[pos_op
].mode
;
8471 if (insn
->pos_mode
== VOIDmode
)
8472 insn
->pos_mode
= word_mode
;
8476 /* Return true if an instruction exists to perform an insertion or
8477 extraction (PATTERN says which) of type TYPE in mode MODE.
8478 Describe the instruction in *INSN if so. */
8481 get_extraction_insn (extraction_insn
*insn
,
8482 enum extraction_pattern pattern
,
8483 enum extraction_type type
,
8489 if (targetm
.have_insv ()
8490 && get_traditional_extraction_insn (insn
, type
, mode
,
8491 targetm
.code_for_insv
, 0, 3))
8493 return get_optab_extraction_insn (insn
, type
, mode
, insv_optab
,
8494 insvmisalign_optab
, 2);
8497 if (targetm
.have_extv ()
8498 && get_traditional_extraction_insn (insn
, type
, mode
,
8499 targetm
.code_for_extv
, 1, 0))
8501 return get_optab_extraction_insn (insn
, type
, mode
, extv_optab
,
8502 extvmisalign_optab
, 3);
8505 if (targetm
.have_extzv ()
8506 && get_traditional_extraction_insn (insn
, type
, mode
,
8507 targetm
.code_for_extzv
, 1, 0))
8509 return get_optab_extraction_insn (insn
, type
, mode
, extzv_optab
,
8510 extzvmisalign_optab
, 3);
8517 /* Return true if an instruction exists to access a field of mode
8518 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8519 Describe the "best" such instruction in *INSN if so. PATTERN and
8520 TYPE describe the type of insertion or extraction we want to perform.
8522 For an insertion, the number of significant structure bits includes
8523 all bits of the target. For an extraction, it need only include the
8524 most significant bit of the field. Larger widths are acceptable
8528 get_best_extraction_insn (extraction_insn
*insn
,
8529 enum extraction_pattern pattern
,
8530 enum extraction_type type
,
8531 unsigned HOST_WIDE_INT struct_bits
,
8532 machine_mode field_mode
)
8534 machine_mode mode
= smallest_mode_for_size (struct_bits
, MODE_INT
);
8535 while (mode
!= VOIDmode
)
8537 if (get_extraction_insn (insn
, pattern
, type
, mode
))
8539 while (mode
!= VOIDmode
8540 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (field_mode
)
8541 && !TRULY_NOOP_TRUNCATION_MODES_P (insn
->field_mode
,
8544 get_extraction_insn (insn
, pattern
, type
, mode
);
8545 mode
= GET_MODE_WIDER_MODE (mode
);
8549 mode
= GET_MODE_WIDER_MODE (mode
);
8554 /* Return true if an instruction exists to access a field of mode
8555 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8556 Describe the "best" such instruction in *INSN if so. PATTERN describes
8557 the type of insertion or extraction we want to perform.
8559 For an insertion, the number of significant structure bits includes
8560 all bits of the target. For an extraction, it need only include the
8561 most significant bit of the field. Larger widths are acceptable
8565 get_best_reg_extraction_insn (extraction_insn
*insn
,
8566 enum extraction_pattern pattern
,
8567 unsigned HOST_WIDE_INT struct_bits
,
8568 machine_mode field_mode
)
8570 return get_best_extraction_insn (insn
, pattern
, ET_reg
, struct_bits
,
8574 /* Return true if an instruction exists to access a field of BITSIZE
8575 bits starting BITNUM bits into a memory structure. Describe the
8576 "best" such instruction in *INSN if so. PATTERN describes the type
8577 of insertion or extraction we want to perform and FIELDMODE is the
8578 natural mode of the extracted field.
8580 The instructions considered here only access bytes that overlap
8581 the bitfield; they do not touch any surrounding bytes. */
8584 get_best_mem_extraction_insn (extraction_insn
*insn
,
8585 enum extraction_pattern pattern
,
8586 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitnum
,
8587 machine_mode field_mode
)
8589 unsigned HOST_WIDE_INT struct_bits
= (bitnum
% BITS_PER_UNIT
8591 + BITS_PER_UNIT
- 1);
8592 struct_bits
-= struct_bits
% BITS_PER_UNIT
;
8593 return get_best_extraction_insn (insn
, pattern
, ET_unaligned_mem
,
8594 struct_bits
, field_mode
);
8597 /* Determine whether "1 << x" is relatively cheap in word_mode. */
8600 lshift_cheap_p (bool speed_p
)
8602 /* FIXME: This should be made target dependent via this "this_target"
8603 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
8604 static bool init
[2] = { false, false };
8605 static bool cheap
[2] = { true, true };
8607 /* If the targer has no lshift in word_mode, the operation will most
8608 probably not be cheap. ??? Does GCC even work for such targets? */
8609 if (optab_handler (ashl_optab
, word_mode
) == CODE_FOR_nothing
)
8614 rtx reg
= gen_raw_REG (word_mode
, 10000);
8615 int cost
= set_src_cost (gen_rtx_ASHIFT (word_mode
, const1_rtx
, reg
),
8616 word_mode
, speed_p
);
8617 cheap
[speed_p
] = cost
< COSTS_N_INSNS (3);
8618 init
[speed_p
] = true;
8621 return cheap
[speed_p
];
8624 #include "gt-optabs.h"