2015-08-04 Thomas Preud'homme <thomas.preudhomme@arm.com>
[official-gcc.git] / gcc / expmed.c
blob3c70cdece38aff9bfe90f5f9c11438e81b766a37
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "predict.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "df.h"
30 #include "diagnostic-core.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "varasm.h"
43 #include "stmt.h"
44 #include "expr.h"
45 #include "insn-codes.h"
46 #include "optabs.h"
47 #include "recog.h"
48 #include "langhooks.h"
49 #include "target.h"
51 struct target_expmed default_target_expmed;
52 #if SWITCHABLE_TARGET
53 struct target_expmed *this_target_expmed = &default_target_expmed;
54 #endif
56 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT,
58 unsigned HOST_WIDE_INT,
59 unsigned HOST_WIDE_INT,
60 rtx);
61 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
62 unsigned HOST_WIDE_INT,
63 rtx);
64 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
65 unsigned HOST_WIDE_INT,
66 unsigned HOST_WIDE_INT,
67 unsigned HOST_WIDE_INT,
68 rtx);
69 static rtx extract_fixed_bit_field (machine_mode, rtx,
70 unsigned HOST_WIDE_INT,
71 unsigned HOST_WIDE_INT, rtx, int);
72 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
73 unsigned HOST_WIDE_INT,
74 unsigned HOST_WIDE_INT, rtx, int);
75 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
76 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, int);
78 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
79 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
80 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
82 /* Return a constant integer mask value of mode MODE with BITSIZE ones
83 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
84 The mask is truncated if necessary to the width of mode MODE. The
85 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
87 static inline rtx
88 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
90 return immed_wide_int_const
91 (wi::shifted_mask (bitpos, bitsize, complement,
92 GET_MODE_PRECISION (mode)), mode);
95 /* Test whether a value is zero of a power of two. */
96 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
97 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
99 struct init_expmed_rtl
101 rtx reg;
102 rtx plus;
103 rtx neg;
104 rtx mult;
105 rtx sdiv;
106 rtx udiv;
107 rtx sdiv_32;
108 rtx smod_32;
109 rtx wide_mult;
110 rtx wide_lshr;
111 rtx wide_trunc;
112 rtx shift;
113 rtx shift_mult;
114 rtx shift_add;
115 rtx shift_sub0;
116 rtx shift_sub1;
117 rtx zext;
118 rtx trunc;
120 rtx pow2[MAX_BITS_PER_WORD];
121 rtx cint[MAX_BITS_PER_WORD];
124 static void
125 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
126 machine_mode from_mode, bool speed)
128 int to_size, from_size;
129 rtx which;
131 to_size = GET_MODE_PRECISION (to_mode);
132 from_size = GET_MODE_PRECISION (from_mode);
134 /* Most partial integers have a precision less than the "full"
135 integer it requires for storage. In case one doesn't, for
136 comparison purposes here, reduce the bit size by one in that
137 case. */
138 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
139 && exact_log2 (to_size) != -1)
140 to_size --;
141 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
142 && exact_log2 (from_size) != -1)
143 from_size --;
145 /* Assume cost of zero-extend and sign-extend is the same. */
146 which = (to_size < from_size ? all->trunc : all->zext);
148 PUT_MODE (all->reg, from_mode);
149 set_convert_cost (to_mode, from_mode, speed,
150 set_src_cost (which, to_mode, speed));
153 static void
154 init_expmed_one_mode (struct init_expmed_rtl *all,
155 machine_mode mode, int speed)
157 int m, n, mode_bitsize;
158 machine_mode mode_from;
160 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
162 PUT_MODE (all->reg, mode);
163 PUT_MODE (all->plus, mode);
164 PUT_MODE (all->neg, mode);
165 PUT_MODE (all->mult, mode);
166 PUT_MODE (all->sdiv, mode);
167 PUT_MODE (all->udiv, mode);
168 PUT_MODE (all->sdiv_32, mode);
169 PUT_MODE (all->smod_32, mode);
170 PUT_MODE (all->wide_trunc, mode);
171 PUT_MODE (all->shift, mode);
172 PUT_MODE (all->shift_mult, mode);
173 PUT_MODE (all->shift_add, mode);
174 PUT_MODE (all->shift_sub0, mode);
175 PUT_MODE (all->shift_sub1, mode);
176 PUT_MODE (all->zext, mode);
177 PUT_MODE (all->trunc, mode);
179 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
180 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
181 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
182 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
183 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
185 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
186 <= 2 * add_cost (speed, mode)));
187 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
188 <= 4 * add_cost (speed, mode)));
190 set_shift_cost (speed, mode, 0, 0);
192 int cost = add_cost (speed, mode);
193 set_shiftadd_cost (speed, mode, 0, cost);
194 set_shiftsub0_cost (speed, mode, 0, cost);
195 set_shiftsub1_cost (speed, mode, 0, cost);
198 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
199 for (m = 1; m < n; m++)
201 XEXP (all->shift, 1) = all->cint[m];
202 XEXP (all->shift_mult, 1) = all->pow2[m];
204 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
205 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
206 speed));
207 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
208 speed));
209 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
210 speed));
213 if (SCALAR_INT_MODE_P (mode))
215 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
216 mode_from = (machine_mode)(mode_from + 1))
217 init_expmed_one_conv (all, mode, mode_from, speed);
219 if (GET_MODE_CLASS (mode) == MODE_INT)
221 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
222 if (wider_mode != VOIDmode)
224 PUT_MODE (all->zext, wider_mode);
225 PUT_MODE (all->wide_mult, wider_mode);
226 PUT_MODE (all->wide_lshr, wider_mode);
227 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
229 set_mul_widen_cost (speed, wider_mode,
230 set_src_cost (all->wide_mult, wider_mode, speed));
231 set_mul_highpart_cost (speed, mode,
232 set_src_cost (all->wide_trunc, mode, speed));
237 void
238 init_expmed (void)
240 struct init_expmed_rtl all;
241 machine_mode mode = QImode;
242 int m, speed;
244 memset (&all, 0, sizeof all);
245 for (m = 1; m < MAX_BITS_PER_WORD; m++)
247 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
248 all.cint[m] = GEN_INT (m);
251 /* Avoid using hard regs in ways which may be unsupported. */
252 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
253 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
254 all.neg = gen_rtx_NEG (mode, all.reg);
255 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
256 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
257 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
258 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
259 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
260 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
261 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
262 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
263 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
264 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
265 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
266 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
267 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
268 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
269 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
271 for (speed = 0; speed < 2; speed++)
273 crtl->maybe_hot_insn_p = speed;
274 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
276 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
277 mode = (machine_mode)(mode + 1))
278 init_expmed_one_mode (&all, mode, speed);
280 if (MIN_MODE_PARTIAL_INT != VOIDmode)
281 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
282 mode = (machine_mode)(mode + 1))
283 init_expmed_one_mode (&all, mode, speed);
285 if (MIN_MODE_VECTOR_INT != VOIDmode)
286 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
287 mode = (machine_mode)(mode + 1))
288 init_expmed_one_mode (&all, mode, speed);
291 if (alg_hash_used_p ())
293 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
294 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
296 else
297 set_alg_hash_used_p (true);
298 default_rtl_profile ();
300 ggc_free (all.trunc);
301 ggc_free (all.shift_sub1);
302 ggc_free (all.shift_sub0);
303 ggc_free (all.shift_add);
304 ggc_free (all.shift_mult);
305 ggc_free (all.shift);
306 ggc_free (all.wide_trunc);
307 ggc_free (all.wide_lshr);
308 ggc_free (all.wide_mult);
309 ggc_free (all.zext);
310 ggc_free (all.smod_32);
311 ggc_free (all.sdiv_32);
312 ggc_free (all.udiv);
313 ggc_free (all.sdiv);
314 ggc_free (all.mult);
315 ggc_free (all.neg);
316 ggc_free (all.plus);
317 ggc_free (all.reg);
320 /* Return an rtx representing minus the value of X.
321 MODE is the intended mode of the result,
322 useful if X is a CONST_INT. */
325 negate_rtx (machine_mode mode, rtx x)
327 rtx result = simplify_unary_operation (NEG, mode, x, mode);
329 if (result == 0)
330 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
332 return result;
335 /* Adjust bitfield memory MEM so that it points to the first unit of mode
336 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
337 If MODE is BLKmode, return a reference to every byte in the bitfield.
338 Set *NEW_BITNUM to the bit position of the field within the new memory. */
340 static rtx
341 narrow_bit_field_mem (rtx mem, machine_mode mode,
342 unsigned HOST_WIDE_INT bitsize,
343 unsigned HOST_WIDE_INT bitnum,
344 unsigned HOST_WIDE_INT *new_bitnum)
346 if (mode == BLKmode)
348 *new_bitnum = bitnum % BITS_PER_UNIT;
349 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
350 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
351 / BITS_PER_UNIT);
352 return adjust_bitfield_address_size (mem, mode, offset, size);
354 else
356 unsigned int unit = GET_MODE_BITSIZE (mode);
357 *new_bitnum = bitnum % unit;
358 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
359 return adjust_bitfield_address (mem, mode, offset);
363 /* The caller wants to perform insertion or extraction PATTERN on a
364 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
365 BITREGION_START and BITREGION_END are as for store_bit_field
366 and FIELDMODE is the natural mode of the field.
368 Search for a mode that is compatible with the memory access
369 restrictions and (where applicable) with a register insertion or
370 extraction. Return the new memory on success, storing the adjusted
371 bit position in *NEW_BITNUM. Return null otherwise. */
373 static rtx
374 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
375 rtx op0, HOST_WIDE_INT bitsize,
376 HOST_WIDE_INT bitnum,
377 unsigned HOST_WIDE_INT bitregion_start,
378 unsigned HOST_WIDE_INT bitregion_end,
379 machine_mode fieldmode,
380 unsigned HOST_WIDE_INT *new_bitnum)
382 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
383 bitregion_end, MEM_ALIGN (op0),
384 MEM_VOLATILE_P (op0));
385 machine_mode best_mode;
386 if (iter.next_mode (&best_mode))
388 /* We can use a memory in BEST_MODE. See whether this is true for
389 any wider modes. All other things being equal, we prefer to
390 use the widest mode possible because it tends to expose more
391 CSE opportunities. */
392 if (!iter.prefer_smaller_modes ())
394 /* Limit the search to the mode required by the corresponding
395 register insertion or extraction instruction, if any. */
396 machine_mode limit_mode = word_mode;
397 extraction_insn insn;
398 if (get_best_reg_extraction_insn (&insn, pattern,
399 GET_MODE_BITSIZE (best_mode),
400 fieldmode))
401 limit_mode = insn.field_mode;
403 machine_mode wider_mode;
404 while (iter.next_mode (&wider_mode)
405 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
406 best_mode = wider_mode;
408 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
409 new_bitnum);
411 return NULL_RTX;
414 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
415 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
416 offset is then BITNUM / BITS_PER_UNIT. */
418 static bool
419 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
420 unsigned HOST_WIDE_INT bitsize,
421 machine_mode struct_mode)
423 if (BYTES_BIG_ENDIAN)
424 return (bitnum % BITS_PER_UNIT == 0
425 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
426 || (bitnum + bitsize) % BITS_PER_WORD == 0));
427 else
428 return bitnum % BITS_PER_WORD == 0;
431 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
432 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
433 Return false if the access would touch memory outside the range
434 BITREGION_START to BITREGION_END for conformance to the C++ memory
435 model. */
437 static bool
438 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
439 unsigned HOST_WIDE_INT bitnum,
440 machine_mode fieldmode,
441 unsigned HOST_WIDE_INT bitregion_start,
442 unsigned HOST_WIDE_INT bitregion_end)
444 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
446 /* -fstrict-volatile-bitfields must be enabled and we must have a
447 volatile MEM. */
448 if (!MEM_P (op0)
449 || !MEM_VOLATILE_P (op0)
450 || flag_strict_volatile_bitfields <= 0)
451 return false;
453 /* Non-integral modes likely only happen with packed structures.
454 Punt. */
455 if (!SCALAR_INT_MODE_P (fieldmode))
456 return false;
458 /* The bit size must not be larger than the field mode, and
459 the field mode must not be larger than a word. */
460 if (bitsize > modesize || modesize > BITS_PER_WORD)
461 return false;
463 /* Check for cases of unaligned fields that must be split. */
464 if (bitnum % modesize + bitsize > modesize)
465 return false;
467 /* The memory must be sufficiently aligned for a MODESIZE access.
468 This condition guarantees, that the memory access will not
469 touch anything after the end of the structure. */
470 if (MEM_ALIGN (op0) < modesize)
471 return false;
473 /* Check for cases where the C++ memory model applies. */
474 if (bitregion_end != 0
475 && (bitnum - bitnum % modesize < bitregion_start
476 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
477 return false;
479 return true;
482 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
483 bit number BITNUM can be treated as a simple value of mode MODE. */
485 static bool
486 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
487 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
489 return (MEM_P (op0)
490 && bitnum % BITS_PER_UNIT == 0
491 && bitsize == GET_MODE_BITSIZE (mode)
492 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
493 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
494 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
497 /* Try to use instruction INSV to store VALUE into a field of OP0.
498 BITSIZE and BITNUM are as for store_bit_field. */
500 static bool
501 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
502 unsigned HOST_WIDE_INT bitsize,
503 unsigned HOST_WIDE_INT bitnum,
504 rtx value)
506 struct expand_operand ops[4];
507 rtx value1;
508 rtx xop0 = op0;
509 rtx_insn *last = get_last_insn ();
510 bool copy_back = false;
512 machine_mode op_mode = insv->field_mode;
513 unsigned int unit = GET_MODE_BITSIZE (op_mode);
514 if (bitsize == 0 || bitsize > unit)
515 return false;
517 if (MEM_P (xop0))
518 /* Get a reference to the first byte of the field. */
519 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
520 &bitnum);
521 else
523 /* Convert from counting within OP0 to counting in OP_MODE. */
524 if (BYTES_BIG_ENDIAN)
525 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
527 /* If xop0 is a register, we need it in OP_MODE
528 to make it acceptable to the format of insv. */
529 if (GET_CODE (xop0) == SUBREG)
530 /* We can't just change the mode, because this might clobber op0,
531 and we will need the original value of op0 if insv fails. */
532 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
533 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
534 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
537 /* If the destination is a paradoxical subreg such that we need a
538 truncate to the inner mode, perform the insertion on a temporary and
539 truncate the result to the original destination. Note that we can't
540 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
541 X) 0)) is (reg:N X). */
542 if (GET_CODE (xop0) == SUBREG
543 && REG_P (SUBREG_REG (xop0))
544 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
545 op_mode))
547 rtx tem = gen_reg_rtx (op_mode);
548 emit_move_insn (tem, xop0);
549 xop0 = tem;
550 copy_back = true;
553 /* There are similar overflow check at the start of store_bit_field_1,
554 but that only check the situation where the field lies completely
555 outside the register, while there do have situation where the field
556 lies partialy in the register, we need to adjust bitsize for this
557 partial overflow situation. Without this fix, pr48335-2.c on big-endian
558 will broken on those arch support bit insert instruction, like arm, aarch64
559 etc. */
560 if (bitsize + bitnum > unit && bitnum < unit)
562 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
563 "destination object, data truncated into %wu-bit",
564 bitsize, unit - bitnum);
565 bitsize = unit - bitnum;
568 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
569 "backwards" from the size of the unit we are inserting into.
570 Otherwise, we count bits from the most significant on a
571 BYTES/BITS_BIG_ENDIAN machine. */
573 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
574 bitnum = unit - bitsize - bitnum;
576 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
577 value1 = value;
578 if (GET_MODE (value) != op_mode)
580 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
582 /* Optimization: Don't bother really extending VALUE
583 if it has all the bits we will actually use. However,
584 if we must narrow it, be sure we do it correctly. */
586 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
588 rtx tmp;
590 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
591 if (! tmp)
592 tmp = simplify_gen_subreg (op_mode,
593 force_reg (GET_MODE (value),
594 value1),
595 GET_MODE (value), 0);
596 value1 = tmp;
598 else
599 value1 = gen_lowpart (op_mode, value1);
601 else if (CONST_INT_P (value))
602 value1 = gen_int_mode (INTVAL (value), op_mode);
603 else
604 /* Parse phase is supposed to make VALUE's data type
605 match that of the component reference, which is a type
606 at least as wide as the field; so VALUE should have
607 a mode that corresponds to that type. */
608 gcc_assert (CONSTANT_P (value));
611 create_fixed_operand (&ops[0], xop0);
612 create_integer_operand (&ops[1], bitsize);
613 create_integer_operand (&ops[2], bitnum);
614 create_input_operand (&ops[3], value1, op_mode);
615 if (maybe_expand_insn (insv->icode, 4, ops))
617 if (copy_back)
618 convert_move (op0, xop0, true);
619 return true;
621 delete_insns_since (last);
622 return false;
625 /* A subroutine of store_bit_field, with the same arguments. Return true
626 if the operation could be implemented.
628 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
629 no other way of implementing the operation. If FALLBACK_P is false,
630 return false instead. */
632 static bool
633 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
634 unsigned HOST_WIDE_INT bitnum,
635 unsigned HOST_WIDE_INT bitregion_start,
636 unsigned HOST_WIDE_INT bitregion_end,
637 machine_mode fieldmode,
638 rtx value, bool fallback_p)
640 rtx op0 = str_rtx;
641 rtx orig_value;
643 while (GET_CODE (op0) == SUBREG)
645 /* The following line once was done only if WORDS_BIG_ENDIAN,
646 but I think that is a mistake. WORDS_BIG_ENDIAN is
647 meaningful at a much higher level; when structures are copied
648 between memory and regs, the higher-numbered regs
649 always get higher addresses. */
650 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
651 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
652 int byte_offset = 0;
654 /* Paradoxical subregs need special handling on big endian machines. */
655 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
657 int difference = inner_mode_size - outer_mode_size;
659 if (WORDS_BIG_ENDIAN)
660 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
661 if (BYTES_BIG_ENDIAN)
662 byte_offset += difference % UNITS_PER_WORD;
664 else
665 byte_offset = SUBREG_BYTE (op0);
667 bitnum += byte_offset * BITS_PER_UNIT;
668 op0 = SUBREG_REG (op0);
671 /* No action is needed if the target is a register and if the field
672 lies completely outside that register. This can occur if the source
673 code contains an out-of-bounds access to a small array. */
674 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
675 return true;
677 /* Use vec_set patterns for inserting parts of vectors whenever
678 available. */
679 if (VECTOR_MODE_P (GET_MODE (op0))
680 && !MEM_P (op0)
681 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
682 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
683 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
684 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
686 struct expand_operand ops[3];
687 machine_mode outermode = GET_MODE (op0);
688 machine_mode innermode = GET_MODE_INNER (outermode);
689 enum insn_code icode = optab_handler (vec_set_optab, outermode);
690 int pos = bitnum / GET_MODE_BITSIZE (innermode);
692 create_fixed_operand (&ops[0], op0);
693 create_input_operand (&ops[1], value, innermode);
694 create_integer_operand (&ops[2], pos);
695 if (maybe_expand_insn (icode, 3, ops))
696 return true;
699 /* If the target is a register, overwriting the entire object, or storing
700 a full-word or multi-word field can be done with just a SUBREG. */
701 if (!MEM_P (op0)
702 && bitsize == GET_MODE_BITSIZE (fieldmode)
703 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
704 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
706 /* Use the subreg machinery either to narrow OP0 to the required
707 words or to cope with mode punning between equal-sized modes.
708 In the latter case, use subreg on the rhs side, not lhs. */
709 rtx sub;
711 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
713 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
714 if (sub)
716 emit_move_insn (op0, sub);
717 return true;
720 else
722 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
723 bitnum / BITS_PER_UNIT);
724 if (sub)
726 emit_move_insn (sub, value);
727 return true;
732 /* If the target is memory, storing any naturally aligned field can be
733 done with a simple store. For targets that support fast unaligned
734 memory, any naturally sized, unit aligned field can be done directly. */
735 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
737 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
738 emit_move_insn (op0, value);
739 return true;
742 /* Make sure we are playing with integral modes. Pun with subregs
743 if we aren't. This must come after the entire register case above,
744 since that case is valid for any mode. The following cases are only
745 valid for integral modes. */
747 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
748 if (imode != GET_MODE (op0))
750 if (MEM_P (op0))
751 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
752 else
754 gcc_assert (imode != BLKmode);
755 op0 = gen_lowpart (imode, op0);
760 /* Storing an lsb-aligned field in a register
761 can be done with a movstrict instruction. */
763 if (!MEM_P (op0)
764 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
765 && bitsize == GET_MODE_BITSIZE (fieldmode)
766 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
768 struct expand_operand ops[2];
769 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
770 rtx arg0 = op0;
771 unsigned HOST_WIDE_INT subreg_off;
773 if (GET_CODE (arg0) == SUBREG)
775 /* Else we've got some float mode source being extracted into
776 a different float mode destination -- this combination of
777 subregs results in Severe Tire Damage. */
778 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
779 || GET_MODE_CLASS (fieldmode) == MODE_INT
780 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
781 arg0 = SUBREG_REG (arg0);
784 subreg_off = bitnum / BITS_PER_UNIT;
785 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
787 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
789 create_fixed_operand (&ops[0], arg0);
790 /* Shrink the source operand to FIELDMODE. */
791 create_convert_operand_to (&ops[1], value, fieldmode, false);
792 if (maybe_expand_insn (icode, 2, ops))
793 return true;
797 /* Handle fields bigger than a word. */
799 if (bitsize > BITS_PER_WORD)
801 /* Here we transfer the words of the field
802 in the order least significant first.
803 This is because the most significant word is the one which may
804 be less than full.
805 However, only do that if the value is not BLKmode. */
807 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
808 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
809 unsigned int i;
810 rtx_insn *last;
812 /* This is the mode we must force value to, so that there will be enough
813 subwords to extract. Note that fieldmode will often (always?) be
814 VOIDmode, because that is what store_field uses to indicate that this
815 is a bit field, but passing VOIDmode to operand_subword_force
816 is not allowed. */
817 fieldmode = GET_MODE (value);
818 if (fieldmode == VOIDmode)
819 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
821 last = get_last_insn ();
822 for (i = 0; i < nwords; i++)
824 /* If I is 0, use the low-order word in both field and target;
825 if I is 1, use the next to lowest word; and so on. */
826 unsigned int wordnum = (backwards
827 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
828 - i - 1
829 : i);
830 unsigned int bit_offset = (backwards
831 ? MAX ((int) bitsize - ((int) i + 1)
832 * BITS_PER_WORD,
834 : (int) i * BITS_PER_WORD);
835 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
836 unsigned HOST_WIDE_INT new_bitsize =
837 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
839 /* If the remaining chunk doesn't have full wordsize we have
840 to make sure that for big endian machines the higher order
841 bits are used. */
842 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
843 value_word = simplify_expand_binop (word_mode, lshr_optab,
844 value_word,
845 GEN_INT (BITS_PER_WORD
846 - new_bitsize),
847 NULL_RTX, true,
848 OPTAB_LIB_WIDEN);
850 if (!store_bit_field_1 (op0, new_bitsize,
851 bitnum + bit_offset,
852 bitregion_start, bitregion_end,
853 word_mode,
854 value_word, fallback_p))
856 delete_insns_since (last);
857 return false;
860 return true;
863 /* If VALUE has a floating-point or complex mode, access it as an
864 integer of the corresponding size. This can occur on a machine
865 with 64 bit registers that uses SFmode for float. It can also
866 occur for unaligned float or complex fields. */
867 orig_value = value;
868 if (GET_MODE (value) != VOIDmode
869 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
870 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
872 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
873 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
876 /* If OP0 is a multi-word register, narrow it to the affected word.
877 If the region spans two words, defer to store_split_bit_field. */
878 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
880 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
881 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
882 gcc_assert (op0);
883 bitnum %= BITS_PER_WORD;
884 if (bitnum + bitsize > BITS_PER_WORD)
886 if (!fallback_p)
887 return false;
889 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
890 bitregion_end, value);
891 return true;
895 /* From here on we can assume that the field to be stored in fits
896 within a word. If the destination is a register, it too fits
897 in a word. */
899 extraction_insn insv;
900 if (!MEM_P (op0)
901 && get_best_reg_extraction_insn (&insv, EP_insv,
902 GET_MODE_BITSIZE (GET_MODE (op0)),
903 fieldmode)
904 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
905 return true;
907 /* If OP0 is a memory, try copying it to a register and seeing if a
908 cheap register alternative is available. */
909 if (MEM_P (op0))
911 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
912 fieldmode)
913 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
914 return true;
916 rtx_insn *last = get_last_insn ();
918 /* Try loading part of OP0 into a register, inserting the bitfield
919 into that, and then copying the result back to OP0. */
920 unsigned HOST_WIDE_INT bitpos;
921 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
922 bitregion_start, bitregion_end,
923 fieldmode, &bitpos);
924 if (xop0)
926 rtx tempreg = copy_to_reg (xop0);
927 if (store_bit_field_1 (tempreg, bitsize, bitpos,
928 bitregion_start, bitregion_end,
929 fieldmode, orig_value, false))
931 emit_move_insn (xop0, tempreg);
932 return true;
934 delete_insns_since (last);
938 if (!fallback_p)
939 return false;
941 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
942 bitregion_end, value);
943 return true;
946 /* Generate code to store value from rtx VALUE
947 into a bit-field within structure STR_RTX
948 containing BITSIZE bits starting at bit BITNUM.
950 BITREGION_START is bitpos of the first bitfield in this region.
951 BITREGION_END is the bitpos of the ending bitfield in this region.
952 These two fields are 0, if the C++ memory model does not apply,
953 or we are not interested in keeping track of bitfield regions.
955 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
957 void
958 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
959 unsigned HOST_WIDE_INT bitnum,
960 unsigned HOST_WIDE_INT bitregion_start,
961 unsigned HOST_WIDE_INT bitregion_end,
962 machine_mode fieldmode,
963 rtx value)
965 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
966 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
967 bitregion_start, bitregion_end))
969 /* Storing of a full word can be done with a simple store.
970 We know here that the field can be accessed with one single
971 instruction. For targets that support unaligned memory,
972 an unaligned access may be necessary. */
973 if (bitsize == GET_MODE_BITSIZE (fieldmode))
975 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
976 bitnum / BITS_PER_UNIT);
977 gcc_assert (bitnum % BITS_PER_UNIT == 0);
978 emit_move_insn (str_rtx, value);
980 else
982 rtx temp;
984 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
985 &bitnum);
986 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
987 temp = copy_to_reg (str_rtx);
988 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
989 fieldmode, value, true))
990 gcc_unreachable ();
992 emit_move_insn (str_rtx, temp);
995 return;
998 /* Under the C++0x memory model, we must not touch bits outside the
999 bit region. Adjust the address to start at the beginning of the
1000 bit region. */
1001 if (MEM_P (str_rtx) && bitregion_start > 0)
1003 machine_mode bestmode;
1004 HOST_WIDE_INT offset, size;
1006 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1008 offset = bitregion_start / BITS_PER_UNIT;
1009 bitnum -= bitregion_start;
1010 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1011 bitregion_end -= bitregion_start;
1012 bitregion_start = 0;
1013 bestmode = get_best_mode (bitsize, bitnum,
1014 bitregion_start, bitregion_end,
1015 MEM_ALIGN (str_rtx), VOIDmode,
1016 MEM_VOLATILE_P (str_rtx));
1017 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1020 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1021 bitregion_start, bitregion_end,
1022 fieldmode, value, true))
1023 gcc_unreachable ();
1026 /* Use shifts and boolean operations to store VALUE into a bit field of
1027 width BITSIZE in OP0, starting at bit BITNUM. */
1029 static void
1030 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1031 unsigned HOST_WIDE_INT bitnum,
1032 unsigned HOST_WIDE_INT bitregion_start,
1033 unsigned HOST_WIDE_INT bitregion_end,
1034 rtx value)
1036 /* There is a case not handled here:
1037 a structure with a known alignment of just a halfword
1038 and a field split across two aligned halfwords within the structure.
1039 Or likewise a structure with a known alignment of just a byte
1040 and a field split across two bytes.
1041 Such cases are not supposed to be able to occur. */
1043 if (MEM_P (op0))
1045 machine_mode mode = GET_MODE (op0);
1046 if (GET_MODE_BITSIZE (mode) == 0
1047 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1048 mode = word_mode;
1049 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1050 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1052 if (mode == VOIDmode)
1054 /* The only way this should occur is if the field spans word
1055 boundaries. */
1056 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1057 bitregion_end, value);
1058 return;
1061 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1064 store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
1067 /* Helper function for store_fixed_bit_field, stores
1068 the bit field always using the MODE of OP0. */
1070 static void
1071 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1072 unsigned HOST_WIDE_INT bitnum,
1073 rtx value)
1075 machine_mode mode;
1076 rtx temp;
1077 int all_zero = 0;
1078 int all_one = 0;
1080 mode = GET_MODE (op0);
1081 gcc_assert (SCALAR_INT_MODE_P (mode));
1083 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1084 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1086 if (BYTES_BIG_ENDIAN)
1087 /* BITNUM is the distance between our msb
1088 and that of the containing datum.
1089 Convert it to the distance from the lsb. */
1090 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1092 /* Now BITNUM is always the distance between our lsb
1093 and that of OP0. */
1095 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1096 we must first convert its mode to MODE. */
1098 if (CONST_INT_P (value))
1100 unsigned HOST_WIDE_INT v = UINTVAL (value);
1102 if (bitsize < HOST_BITS_PER_WIDE_INT)
1103 v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1105 if (v == 0)
1106 all_zero = 1;
1107 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1108 && v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1109 || (bitsize == HOST_BITS_PER_WIDE_INT
1110 && v == (unsigned HOST_WIDE_INT) -1))
1111 all_one = 1;
1113 value = lshift_value (mode, v, bitnum);
1115 else
1117 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1118 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1120 if (GET_MODE (value) != mode)
1121 value = convert_to_mode (mode, value, 1);
1123 if (must_and)
1124 value = expand_binop (mode, and_optab, value,
1125 mask_rtx (mode, 0, bitsize, 0),
1126 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1127 if (bitnum > 0)
1128 value = expand_shift (LSHIFT_EXPR, mode, value,
1129 bitnum, NULL_RTX, 1);
1132 /* Now clear the chosen bits in OP0,
1133 except that if VALUE is -1 we need not bother. */
1134 /* We keep the intermediates in registers to allow CSE to combine
1135 consecutive bitfield assignments. */
1137 temp = force_reg (mode, op0);
1139 if (! all_one)
1141 temp = expand_binop (mode, and_optab, temp,
1142 mask_rtx (mode, bitnum, bitsize, 1),
1143 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1144 temp = force_reg (mode, temp);
1147 /* Now logical-or VALUE into OP0, unless it is zero. */
1149 if (! all_zero)
1151 temp = expand_binop (mode, ior_optab, temp, value,
1152 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1153 temp = force_reg (mode, temp);
1156 if (op0 != temp)
1158 op0 = copy_rtx (op0);
1159 emit_move_insn (op0, temp);
1163 /* Store a bit field that is split across multiple accessible memory objects.
1165 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1166 BITSIZE is the field width; BITPOS the position of its first bit
1167 (within the word).
1168 VALUE is the value to store.
1170 This does not yet handle fields wider than BITS_PER_WORD. */
1172 static void
1173 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1174 unsigned HOST_WIDE_INT bitpos,
1175 unsigned HOST_WIDE_INT bitregion_start,
1176 unsigned HOST_WIDE_INT bitregion_end,
1177 rtx value)
1179 unsigned int unit;
1180 unsigned int bitsdone = 0;
1182 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1183 much at a time. */
1184 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1185 unit = BITS_PER_WORD;
1186 else
1187 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1189 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1190 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1191 again, and we will mutually recurse forever. */
1192 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1193 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1195 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1196 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1197 that VALUE might be a floating-point constant. */
1198 if (CONSTANT_P (value) && !CONST_INT_P (value))
1200 rtx word = gen_lowpart_common (word_mode, value);
1202 if (word && (value != word))
1203 value = word;
1204 else
1205 value = gen_lowpart_common (word_mode,
1206 force_reg (GET_MODE (value) != VOIDmode
1207 ? GET_MODE (value)
1208 : word_mode, value));
1211 while (bitsdone < bitsize)
1213 unsigned HOST_WIDE_INT thissize;
1214 rtx part, word;
1215 unsigned HOST_WIDE_INT thispos;
1216 unsigned HOST_WIDE_INT offset;
1218 offset = (bitpos + bitsdone) / unit;
1219 thispos = (bitpos + bitsdone) % unit;
1221 /* When region of bytes we can touch is restricted, decrease
1222 UNIT close to the end of the region as needed. If op0 is a REG
1223 or SUBREG of REG, don't do this, as there can't be data races
1224 on a register and we can expand shorter code in some cases. */
1225 if (bitregion_end
1226 && unit > BITS_PER_UNIT
1227 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1228 && !REG_P (op0)
1229 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1231 unit = unit / 2;
1232 continue;
1235 /* THISSIZE must not overrun a word boundary. Otherwise,
1236 store_fixed_bit_field will call us again, and we will mutually
1237 recurse forever. */
1238 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1239 thissize = MIN (thissize, unit - thispos);
1241 if (BYTES_BIG_ENDIAN)
1243 /* Fetch successively less significant portions. */
1244 if (CONST_INT_P (value))
1245 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1246 >> (bitsize - bitsdone - thissize))
1247 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1248 else
1250 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1251 /* The args are chosen so that the last part includes the
1252 lsb. Give extract_bit_field the value it needs (with
1253 endianness compensation) to fetch the piece we want. */
1254 part = extract_fixed_bit_field (word_mode, value, thissize,
1255 total_bits - bitsize + bitsdone,
1256 NULL_RTX, 1);
1259 else
1261 /* Fetch successively more significant portions. */
1262 if (CONST_INT_P (value))
1263 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1264 >> bitsdone)
1265 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1266 else
1267 part = extract_fixed_bit_field (word_mode, value, thissize,
1268 bitsdone, NULL_RTX, 1);
1271 /* If OP0 is a register, then handle OFFSET here.
1273 When handling multiword bitfields, extract_bit_field may pass
1274 down a word_mode SUBREG of a larger REG for a bitfield that actually
1275 crosses a word boundary. Thus, for a SUBREG, we must find
1276 the current word starting from the base register. */
1277 if (GET_CODE (op0) == SUBREG)
1279 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1280 + (offset * unit / BITS_PER_WORD);
1281 machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1282 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1283 word = word_offset ? const0_rtx : op0;
1284 else
1285 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1286 GET_MODE (SUBREG_REG (op0)));
1287 offset &= BITS_PER_WORD / unit - 1;
1289 else if (REG_P (op0))
1291 machine_mode op0_mode = GET_MODE (op0);
1292 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1293 word = offset ? const0_rtx : op0;
1294 else
1295 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1296 GET_MODE (op0));
1297 offset &= BITS_PER_WORD / unit - 1;
1299 else
1300 word = op0;
1302 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1303 it is just an out-of-bounds access. Ignore it. */
1304 if (word != const0_rtx)
1305 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1306 bitregion_start, bitregion_end, part);
1307 bitsdone += thissize;
1311 /* A subroutine of extract_bit_field_1 that converts return value X
1312 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1313 to extract_bit_field. */
1315 static rtx
1316 convert_extracted_bit_field (rtx x, machine_mode mode,
1317 machine_mode tmode, bool unsignedp)
1319 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1320 return x;
1322 /* If the x mode is not a scalar integral, first convert to the
1323 integer mode of that size and then access it as a floating-point
1324 value via a SUBREG. */
1325 if (!SCALAR_INT_MODE_P (tmode))
1327 machine_mode smode;
1329 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1330 x = convert_to_mode (smode, x, unsignedp);
1331 x = force_reg (smode, x);
1332 return gen_lowpart (tmode, x);
1335 return convert_to_mode (tmode, x, unsignedp);
1338 /* Try to use an ext(z)v pattern to extract a field from OP0.
1339 Return the extracted value on success, otherwise return null.
1340 EXT_MODE is the mode of the extraction and the other arguments
1341 are as for extract_bit_field. */
1343 static rtx
1344 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1345 unsigned HOST_WIDE_INT bitsize,
1346 unsigned HOST_WIDE_INT bitnum,
1347 int unsignedp, rtx target,
1348 machine_mode mode, machine_mode tmode)
1350 struct expand_operand ops[4];
1351 rtx spec_target = target;
1352 rtx spec_target_subreg = 0;
1353 machine_mode ext_mode = extv->field_mode;
1354 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1356 if (bitsize == 0 || unit < bitsize)
1357 return NULL_RTX;
1359 if (MEM_P (op0))
1360 /* Get a reference to the first byte of the field. */
1361 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1362 &bitnum);
1363 else
1365 /* Convert from counting within OP0 to counting in EXT_MODE. */
1366 if (BYTES_BIG_ENDIAN)
1367 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1369 /* If op0 is a register, we need it in EXT_MODE to make it
1370 acceptable to the format of ext(z)v. */
1371 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1372 return NULL_RTX;
1373 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1374 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1377 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1378 "backwards" from the size of the unit we are extracting from.
1379 Otherwise, we count bits from the most significant on a
1380 BYTES/BITS_BIG_ENDIAN machine. */
1382 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1383 bitnum = unit - bitsize - bitnum;
1385 if (target == 0)
1386 target = spec_target = gen_reg_rtx (tmode);
1388 if (GET_MODE (target) != ext_mode)
1390 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1391 between the mode of the extraction (word_mode) and the target
1392 mode. Instead, create a temporary and use convert_move to set
1393 the target. */
1394 if (REG_P (target)
1395 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1397 target = gen_lowpart (ext_mode, target);
1398 if (GET_MODE_PRECISION (ext_mode)
1399 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1400 spec_target_subreg = target;
1402 else
1403 target = gen_reg_rtx (ext_mode);
1406 create_output_operand (&ops[0], target, ext_mode);
1407 create_fixed_operand (&ops[1], op0);
1408 create_integer_operand (&ops[2], bitsize);
1409 create_integer_operand (&ops[3], bitnum);
1410 if (maybe_expand_insn (extv->icode, 4, ops))
1412 target = ops[0].value;
1413 if (target == spec_target)
1414 return target;
1415 if (target == spec_target_subreg)
1416 return spec_target;
1417 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1419 return NULL_RTX;
1422 /* A subroutine of extract_bit_field, with the same arguments.
1423 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1424 if we can find no other means of implementing the operation.
1425 if FALLBACK_P is false, return NULL instead. */
1427 static rtx
1428 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1429 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1430 machine_mode mode, machine_mode tmode,
1431 bool fallback_p)
1433 rtx op0 = str_rtx;
1434 machine_mode int_mode;
1435 machine_mode mode1;
1437 if (tmode == VOIDmode)
1438 tmode = mode;
1440 while (GET_CODE (op0) == SUBREG)
1442 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1443 op0 = SUBREG_REG (op0);
1446 /* If we have an out-of-bounds access to a register, just return an
1447 uninitialized register of the required mode. This can occur if the
1448 source code contains an out-of-bounds access to a small array. */
1449 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1450 return gen_reg_rtx (tmode);
1452 if (REG_P (op0)
1453 && mode == GET_MODE (op0)
1454 && bitnum == 0
1455 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1457 /* We're trying to extract a full register from itself. */
1458 return op0;
1461 /* See if we can get a better vector mode before extracting. */
1462 if (VECTOR_MODE_P (GET_MODE (op0))
1463 && !MEM_P (op0)
1464 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1466 machine_mode new_mode;
1468 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1469 new_mode = MIN_MODE_VECTOR_FLOAT;
1470 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1471 new_mode = MIN_MODE_VECTOR_FRACT;
1472 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1473 new_mode = MIN_MODE_VECTOR_UFRACT;
1474 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1475 new_mode = MIN_MODE_VECTOR_ACCUM;
1476 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1477 new_mode = MIN_MODE_VECTOR_UACCUM;
1478 else
1479 new_mode = MIN_MODE_VECTOR_INT;
1481 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1482 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1483 && targetm.vector_mode_supported_p (new_mode))
1484 break;
1485 if (new_mode != VOIDmode)
1486 op0 = gen_lowpart (new_mode, op0);
1489 /* Use vec_extract patterns for extracting parts of vectors whenever
1490 available. */
1491 if (VECTOR_MODE_P (GET_MODE (op0))
1492 && !MEM_P (op0)
1493 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1494 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1495 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1497 struct expand_operand ops[3];
1498 machine_mode outermode = GET_MODE (op0);
1499 machine_mode innermode = GET_MODE_INNER (outermode);
1500 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1501 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1503 create_output_operand (&ops[0], target, innermode);
1504 create_input_operand (&ops[1], op0, outermode);
1505 create_integer_operand (&ops[2], pos);
1506 if (maybe_expand_insn (icode, 3, ops))
1508 target = ops[0].value;
1509 if (GET_MODE (target) != mode)
1510 return gen_lowpart (tmode, target);
1511 return target;
1515 /* Make sure we are playing with integral modes. Pun with subregs
1516 if we aren't. */
1518 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1519 if (imode != GET_MODE (op0))
1521 if (MEM_P (op0))
1522 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1523 else if (imode != BLKmode)
1525 op0 = gen_lowpart (imode, op0);
1527 /* If we got a SUBREG, force it into a register since we
1528 aren't going to be able to do another SUBREG on it. */
1529 if (GET_CODE (op0) == SUBREG)
1530 op0 = force_reg (imode, op0);
1532 else if (REG_P (op0))
1534 rtx reg, subreg;
1535 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1536 MODE_INT);
1537 reg = gen_reg_rtx (imode);
1538 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1539 emit_move_insn (subreg, op0);
1540 op0 = reg;
1541 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1543 else
1545 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1546 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1547 emit_move_insn (mem, op0);
1548 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1553 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1554 If that's wrong, the solution is to test for it and set TARGET to 0
1555 if needed. */
1557 /* Get the mode of the field to use for atomic access or subreg
1558 conversion. */
1559 mode1 = mode;
1560 if (SCALAR_INT_MODE_P (tmode))
1562 machine_mode try_mode = mode_for_size (bitsize,
1563 GET_MODE_CLASS (tmode), 0);
1564 if (try_mode != BLKmode)
1565 mode1 = try_mode;
1567 gcc_assert (mode1 != BLKmode);
1569 /* Extraction of a full MODE1 value can be done with a subreg as long
1570 as the least significant bit of the value is the least significant
1571 bit of either OP0 or a word of OP0. */
1572 if (!MEM_P (op0)
1573 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1574 && bitsize == GET_MODE_BITSIZE (mode1)
1575 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1577 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1578 bitnum / BITS_PER_UNIT);
1579 if (sub)
1580 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1583 /* Extraction of a full MODE1 value can be done with a load as long as
1584 the field is on a byte boundary and is sufficiently aligned. */
1585 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1587 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1588 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1591 /* Handle fields bigger than a word. */
1593 if (bitsize > BITS_PER_WORD)
1595 /* Here we transfer the words of the field
1596 in the order least significant first.
1597 This is because the most significant word is the one which may
1598 be less than full. */
1600 unsigned int backwards = WORDS_BIG_ENDIAN;
1601 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1602 unsigned int i;
1603 rtx_insn *last;
1605 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1606 target = gen_reg_rtx (mode);
1608 /* In case we're about to clobber a base register or something
1609 (see gcc.c-torture/execute/20040625-1.c). */
1610 if (reg_mentioned_p (target, str_rtx))
1611 target = gen_reg_rtx (mode);
1613 /* Indicate for flow that the entire target reg is being set. */
1614 emit_clobber (target);
1616 last = get_last_insn ();
1617 for (i = 0; i < nwords; i++)
1619 /* If I is 0, use the low-order word in both field and target;
1620 if I is 1, use the next to lowest word; and so on. */
1621 /* Word number in TARGET to use. */
1622 unsigned int wordnum
1623 = (backwards
1624 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1625 : i);
1626 /* Offset from start of field in OP0. */
1627 unsigned int bit_offset = (backwards
1628 ? MAX ((int) bitsize - ((int) i + 1)
1629 * BITS_PER_WORD,
1631 : (int) i * BITS_PER_WORD);
1632 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1633 rtx result_part
1634 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1635 bitsize - i * BITS_PER_WORD),
1636 bitnum + bit_offset, 1, target_part,
1637 mode, word_mode, fallback_p);
1639 gcc_assert (target_part);
1640 if (!result_part)
1642 delete_insns_since (last);
1643 return NULL;
1646 if (result_part != target_part)
1647 emit_move_insn (target_part, result_part);
1650 if (unsignedp)
1652 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1653 need to be zero'd out. */
1654 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1656 unsigned int i, total_words;
1658 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1659 for (i = nwords; i < total_words; i++)
1660 emit_move_insn
1661 (operand_subword (target,
1662 backwards ? total_words - i - 1 : i,
1663 1, VOIDmode),
1664 const0_rtx);
1666 return target;
1669 /* Signed bit field: sign-extend with two arithmetic shifts. */
1670 target = expand_shift (LSHIFT_EXPR, mode, target,
1671 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1672 return expand_shift (RSHIFT_EXPR, mode, target,
1673 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1676 /* If OP0 is a multi-word register, narrow it to the affected word.
1677 If the region spans two words, defer to extract_split_bit_field. */
1678 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1680 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1681 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1682 bitnum %= BITS_PER_WORD;
1683 if (bitnum + bitsize > BITS_PER_WORD)
1685 if (!fallback_p)
1686 return NULL_RTX;
1687 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1688 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1692 /* From here on we know the desired field is smaller than a word.
1693 If OP0 is a register, it too fits within a word. */
1694 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1695 extraction_insn extv;
1696 if (!MEM_P (op0)
1697 /* ??? We could limit the structure size to the part of OP0 that
1698 contains the field, with appropriate checks for endianness
1699 and TRULY_NOOP_TRUNCATION. */
1700 && get_best_reg_extraction_insn (&extv, pattern,
1701 GET_MODE_BITSIZE (GET_MODE (op0)),
1702 tmode))
1704 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1705 unsignedp, target, mode,
1706 tmode);
1707 if (result)
1708 return result;
1711 /* If OP0 is a memory, try copying it to a register and seeing if a
1712 cheap register alternative is available. */
1713 if (MEM_P (op0))
1715 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1716 tmode))
1718 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1719 bitnum, unsignedp,
1720 target, mode,
1721 tmode);
1722 if (result)
1723 return result;
1726 rtx_insn *last = get_last_insn ();
1728 /* Try loading part of OP0 into a register and extracting the
1729 bitfield from that. */
1730 unsigned HOST_WIDE_INT bitpos;
1731 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1732 0, 0, tmode, &bitpos);
1733 if (xop0)
1735 xop0 = copy_to_reg (xop0);
1736 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1737 unsignedp, target,
1738 mode, tmode, false);
1739 if (result)
1740 return result;
1741 delete_insns_since (last);
1745 if (!fallback_p)
1746 return NULL;
1748 /* Find a correspondingly-sized integer field, so we can apply
1749 shifts and masks to it. */
1750 int_mode = int_mode_for_mode (tmode);
1751 if (int_mode == BLKmode)
1752 int_mode = int_mode_for_mode (mode);
1753 /* Should probably push op0 out to memory and then do a load. */
1754 gcc_assert (int_mode != BLKmode);
1756 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1757 target, unsignedp);
1758 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1761 /* Generate code to extract a byte-field from STR_RTX
1762 containing BITSIZE bits, starting at BITNUM,
1763 and put it in TARGET if possible (if TARGET is nonzero).
1764 Regardless of TARGET, we return the rtx for where the value is placed.
1766 STR_RTX is the structure containing the byte (a REG or MEM).
1767 UNSIGNEDP is nonzero if this is an unsigned bit field.
1768 MODE is the natural mode of the field value once extracted.
1769 TMODE is the mode the caller would like the value to have;
1770 but the value may be returned with type MODE instead.
1772 If a TARGET is specified and we can store in it at no extra cost,
1773 we do so, and return TARGET.
1774 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1775 if they are equally easy. */
1778 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1779 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1780 machine_mode mode, machine_mode tmode)
1782 machine_mode mode1;
1784 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1785 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1786 mode1 = GET_MODE (str_rtx);
1787 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1788 mode1 = GET_MODE (target);
1789 else
1790 mode1 = tmode;
1792 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1794 /* Extraction of a full MODE1 value can be done with a simple load.
1795 We know here that the field can be accessed with one single
1796 instruction. For targets that support unaligned memory,
1797 an unaligned access may be necessary. */
1798 if (bitsize == GET_MODE_BITSIZE (mode1))
1800 rtx result = adjust_bitfield_address (str_rtx, mode1,
1801 bitnum / BITS_PER_UNIT);
1802 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1803 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1806 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1807 &bitnum);
1808 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1809 str_rtx = copy_to_reg (str_rtx);
1812 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1813 target, mode, tmode, true);
1816 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1817 from bit BITNUM of OP0.
1819 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1820 If TARGET is nonzero, attempts to store the value there
1821 and return TARGET, but this is not guaranteed.
1822 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1824 static rtx
1825 extract_fixed_bit_field (machine_mode tmode, rtx op0,
1826 unsigned HOST_WIDE_INT bitsize,
1827 unsigned HOST_WIDE_INT bitnum, rtx target,
1828 int unsignedp)
1830 if (MEM_P (op0))
1832 machine_mode mode
1833 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1834 MEM_VOLATILE_P (op0));
1836 if (mode == VOIDmode)
1837 /* The only way this should occur is if the field spans word
1838 boundaries. */
1839 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1841 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1844 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1845 target, unsignedp);
1848 /* Helper function for extract_fixed_bit_field, extracts
1849 the bit field always using the MODE of OP0. */
1851 static rtx
1852 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1853 unsigned HOST_WIDE_INT bitsize,
1854 unsigned HOST_WIDE_INT bitnum, rtx target,
1855 int unsignedp)
1857 machine_mode mode = GET_MODE (op0);
1858 gcc_assert (SCALAR_INT_MODE_P (mode));
1860 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1861 for invalid input, such as extract equivalent of f5 from
1862 gcc.dg/pr48335-2.c. */
1864 if (BYTES_BIG_ENDIAN)
1865 /* BITNUM is the distance between our msb and that of OP0.
1866 Convert it to the distance from the lsb. */
1867 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1869 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1870 We have reduced the big-endian case to the little-endian case. */
1872 if (unsignedp)
1874 if (bitnum)
1876 /* If the field does not already start at the lsb,
1877 shift it so it does. */
1878 /* Maybe propagate the target for the shift. */
1879 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1880 if (tmode != mode)
1881 subtarget = 0;
1882 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1884 /* Convert the value to the desired mode. */
1885 if (mode != tmode)
1886 op0 = convert_to_mode (tmode, op0, 1);
1888 /* Unless the msb of the field used to be the msb when we shifted,
1889 mask out the upper bits. */
1891 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1892 return expand_binop (GET_MODE (op0), and_optab, op0,
1893 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1894 target, 1, OPTAB_LIB_WIDEN);
1895 return op0;
1898 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1899 then arithmetic-shift its lsb to the lsb of the word. */
1900 op0 = force_reg (mode, op0);
1902 /* Find the narrowest integer mode that contains the field. */
1904 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1905 mode = GET_MODE_WIDER_MODE (mode))
1906 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1908 op0 = convert_to_mode (mode, op0, 0);
1909 break;
1912 if (mode != tmode)
1913 target = 0;
1915 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1917 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1918 /* Maybe propagate the target for the shift. */
1919 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1920 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1923 return expand_shift (RSHIFT_EXPR, mode, op0,
1924 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1927 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1928 VALUE << BITPOS. */
1930 static rtx
1931 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
1932 int bitpos)
1934 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
1937 /* Extract a bit field that is split across two words
1938 and return an RTX for the result.
1940 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1941 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1942 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1944 static rtx
1945 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1946 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1948 unsigned int unit;
1949 unsigned int bitsdone = 0;
1950 rtx result = NULL_RTX;
1951 int first = 1;
1953 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1954 much at a time. */
1955 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1956 unit = BITS_PER_WORD;
1957 else
1958 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1960 while (bitsdone < bitsize)
1962 unsigned HOST_WIDE_INT thissize;
1963 rtx part, word;
1964 unsigned HOST_WIDE_INT thispos;
1965 unsigned HOST_WIDE_INT offset;
1967 offset = (bitpos + bitsdone) / unit;
1968 thispos = (bitpos + bitsdone) % unit;
1970 /* THISSIZE must not overrun a word boundary. Otherwise,
1971 extract_fixed_bit_field will call us again, and we will mutually
1972 recurse forever. */
1973 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1974 thissize = MIN (thissize, unit - thispos);
1976 /* If OP0 is a register, then handle OFFSET here.
1978 When handling multiword bitfields, extract_bit_field may pass
1979 down a word_mode SUBREG of a larger REG for a bitfield that actually
1980 crosses a word boundary. Thus, for a SUBREG, we must find
1981 the current word starting from the base register. */
1982 if (GET_CODE (op0) == SUBREG)
1984 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1985 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1986 GET_MODE (SUBREG_REG (op0)));
1987 offset = 0;
1989 else if (REG_P (op0))
1991 word = operand_subword_force (op0, offset, GET_MODE (op0));
1992 offset = 0;
1994 else
1995 word = op0;
1997 /* Extract the parts in bit-counting order,
1998 whose meaning is determined by BYTES_PER_UNIT.
1999 OFFSET is in UNITs, and UNIT is in bits. */
2000 part = extract_fixed_bit_field (word_mode, word, thissize,
2001 offset * unit + thispos, 0, 1);
2002 bitsdone += thissize;
2004 /* Shift this part into place for the result. */
2005 if (BYTES_BIG_ENDIAN)
2007 if (bitsize != bitsdone)
2008 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2009 bitsize - bitsdone, 0, 1);
2011 else
2013 if (bitsdone != thissize)
2014 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2015 bitsdone - thissize, 0, 1);
2018 if (first)
2019 result = part;
2020 else
2021 /* Combine the parts with bitwise or. This works
2022 because we extracted each part as an unsigned bit field. */
2023 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2024 OPTAB_LIB_WIDEN);
2026 first = 0;
2029 /* Unsigned bit field: we are done. */
2030 if (unsignedp)
2031 return result;
2032 /* Signed bit field: sign-extend with two arithmetic shifts. */
2033 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2034 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2035 return expand_shift (RSHIFT_EXPR, word_mode, result,
2036 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2039 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2040 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2041 MODE, fill the upper bits with zeros. Fail if the layout of either
2042 mode is unknown (as for CC modes) or if the extraction would involve
2043 unprofitable mode punning. Return the value on success, otherwise
2044 return null.
2046 This is different from gen_lowpart* in these respects:
2048 - the returned value must always be considered an rvalue
2050 - when MODE is wider than SRC_MODE, the extraction involves
2051 a zero extension
2053 - when MODE is smaller than SRC_MODE, the extraction involves
2054 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2056 In other words, this routine performs a computation, whereas the
2057 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2058 operations. */
2061 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2063 machine_mode int_mode, src_int_mode;
2065 if (mode == src_mode)
2066 return src;
2068 if (CONSTANT_P (src))
2070 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2071 fails, it will happily create (subreg (symbol_ref)) or similar
2072 invalid SUBREGs. */
2073 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2074 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2075 if (ret)
2076 return ret;
2078 if (GET_MODE (src) == VOIDmode
2079 || !validate_subreg (mode, src_mode, src, byte))
2080 return NULL_RTX;
2082 src = force_reg (GET_MODE (src), src);
2083 return gen_rtx_SUBREG (mode, src, byte);
2086 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2087 return NULL_RTX;
2089 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2090 && MODES_TIEABLE_P (mode, src_mode))
2092 rtx x = gen_lowpart_common (mode, src);
2093 if (x)
2094 return x;
2097 src_int_mode = int_mode_for_mode (src_mode);
2098 int_mode = int_mode_for_mode (mode);
2099 if (src_int_mode == BLKmode || int_mode == BLKmode)
2100 return NULL_RTX;
2102 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2103 return NULL_RTX;
2104 if (!MODES_TIEABLE_P (int_mode, mode))
2105 return NULL_RTX;
2107 src = gen_lowpart (src_int_mode, src);
2108 src = convert_modes (int_mode, src_int_mode, src, true);
2109 src = gen_lowpart (mode, src);
2110 return src;
2113 /* Add INC into TARGET. */
2115 void
2116 expand_inc (rtx target, rtx inc)
2118 rtx value = expand_binop (GET_MODE (target), add_optab,
2119 target, inc,
2120 target, 0, OPTAB_LIB_WIDEN);
2121 if (value != target)
2122 emit_move_insn (target, value);
2125 /* Subtract DEC from TARGET. */
2127 void
2128 expand_dec (rtx target, rtx dec)
2130 rtx value = expand_binop (GET_MODE (target), sub_optab,
2131 target, dec,
2132 target, 0, OPTAB_LIB_WIDEN);
2133 if (value != target)
2134 emit_move_insn (target, value);
2137 /* Output a shift instruction for expression code CODE,
2138 with SHIFTED being the rtx for the value to shift,
2139 and AMOUNT the rtx for the amount to shift by.
2140 Store the result in the rtx TARGET, if that is convenient.
2141 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2142 Return the rtx for where the value is. */
2144 static rtx
2145 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2146 rtx amount, rtx target, int unsignedp)
2148 rtx op1, temp = 0;
2149 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2150 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2151 optab lshift_optab = ashl_optab;
2152 optab rshift_arith_optab = ashr_optab;
2153 optab rshift_uns_optab = lshr_optab;
2154 optab lrotate_optab = rotl_optab;
2155 optab rrotate_optab = rotr_optab;
2156 machine_mode op1_mode;
2157 machine_mode scalar_mode = mode;
2158 int attempt;
2159 bool speed = optimize_insn_for_speed_p ();
2161 if (VECTOR_MODE_P (mode))
2162 scalar_mode = GET_MODE_INNER (mode);
2163 op1 = amount;
2164 op1_mode = GET_MODE (op1);
2166 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2167 shift amount is a vector, use the vector/vector shift patterns. */
2168 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2170 lshift_optab = vashl_optab;
2171 rshift_arith_optab = vashr_optab;
2172 rshift_uns_optab = vlshr_optab;
2173 lrotate_optab = vrotl_optab;
2174 rrotate_optab = vrotr_optab;
2177 /* Previously detected shift-counts computed by NEGATE_EXPR
2178 and shifted in the other direction; but that does not work
2179 on all machines. */
2181 if (SHIFT_COUNT_TRUNCATED)
2183 if (CONST_INT_P (op1)
2184 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2185 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2186 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2187 % GET_MODE_BITSIZE (scalar_mode));
2188 else if (GET_CODE (op1) == SUBREG
2189 && subreg_lowpart_p (op1)
2190 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2191 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2192 op1 = SUBREG_REG (op1);
2195 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2196 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2197 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2198 amount instead. */
2199 if (rotate
2200 && CONST_INT_P (op1)
2201 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2202 GET_MODE_BITSIZE (scalar_mode) - 1))
2204 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2205 left = !left;
2206 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2209 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2210 Note that this is not the case for bigger values. For instance a rotation
2211 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2212 0x04030201 (bswapsi). */
2213 if (rotate
2214 && CONST_INT_P (op1)
2215 && INTVAL (op1) == BITS_PER_UNIT
2216 && GET_MODE_SIZE (scalar_mode) == 2
2217 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2218 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2219 unsignedp);
2221 if (op1 == const0_rtx)
2222 return shifted;
2224 /* Check whether its cheaper to implement a left shift by a constant
2225 bit count by a sequence of additions. */
2226 if (code == LSHIFT_EXPR
2227 && CONST_INT_P (op1)
2228 && INTVAL (op1) > 0
2229 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2230 && INTVAL (op1) < MAX_BITS_PER_WORD
2231 && (shift_cost (speed, mode, INTVAL (op1))
2232 > INTVAL (op1) * add_cost (speed, mode))
2233 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2235 int i;
2236 for (i = 0; i < INTVAL (op1); i++)
2238 temp = force_reg (mode, shifted);
2239 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2240 unsignedp, OPTAB_LIB_WIDEN);
2242 return shifted;
2245 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2247 enum optab_methods methods;
2249 if (attempt == 0)
2250 methods = OPTAB_DIRECT;
2251 else if (attempt == 1)
2252 methods = OPTAB_WIDEN;
2253 else
2254 methods = OPTAB_LIB_WIDEN;
2256 if (rotate)
2258 /* Widening does not work for rotation. */
2259 if (methods == OPTAB_WIDEN)
2260 continue;
2261 else if (methods == OPTAB_LIB_WIDEN)
2263 /* If we have been unable to open-code this by a rotation,
2264 do it as the IOR of two shifts. I.e., to rotate A
2265 by N bits, compute
2266 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2267 where C is the bitsize of A.
2269 It is theoretically possible that the target machine might
2270 not be able to perform either shift and hence we would
2271 be making two libcalls rather than just the one for the
2272 shift (similarly if IOR could not be done). We will allow
2273 this extremely unlikely lossage to avoid complicating the
2274 code below. */
2276 rtx subtarget = target == shifted ? 0 : target;
2277 rtx new_amount, other_amount;
2278 rtx temp1;
2280 new_amount = op1;
2281 if (op1 == const0_rtx)
2282 return shifted;
2283 else if (CONST_INT_P (op1))
2284 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2285 - INTVAL (op1));
2286 else
2288 other_amount
2289 = simplify_gen_unary (NEG, GET_MODE (op1),
2290 op1, GET_MODE (op1));
2291 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2292 other_amount
2293 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2294 gen_int_mode (mask, GET_MODE (op1)));
2297 shifted = force_reg (mode, shifted);
2299 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2300 mode, shifted, new_amount, 0, 1);
2301 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2302 mode, shifted, other_amount,
2303 subtarget, 1);
2304 return expand_binop (mode, ior_optab, temp, temp1, target,
2305 unsignedp, methods);
2308 temp = expand_binop (mode,
2309 left ? lrotate_optab : rrotate_optab,
2310 shifted, op1, target, unsignedp, methods);
2312 else if (unsignedp)
2313 temp = expand_binop (mode,
2314 left ? lshift_optab : rshift_uns_optab,
2315 shifted, op1, target, unsignedp, methods);
2317 /* Do arithmetic shifts.
2318 Also, if we are going to widen the operand, we can just as well
2319 use an arithmetic right-shift instead of a logical one. */
2320 if (temp == 0 && ! rotate
2321 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2323 enum optab_methods methods1 = methods;
2325 /* If trying to widen a log shift to an arithmetic shift,
2326 don't accept an arithmetic shift of the same size. */
2327 if (unsignedp)
2328 methods1 = OPTAB_MUST_WIDEN;
2330 /* Arithmetic shift */
2332 temp = expand_binop (mode,
2333 left ? lshift_optab : rshift_arith_optab,
2334 shifted, op1, target, unsignedp, methods1);
2337 /* We used to try extzv here for logical right shifts, but that was
2338 only useful for one machine, the VAX, and caused poor code
2339 generation there for lshrdi3, so the code was deleted and a
2340 define_expand for lshrsi3 was added to vax.md. */
2343 gcc_assert (temp);
2344 return temp;
2347 /* Output a shift instruction for expression code CODE,
2348 with SHIFTED being the rtx for the value to shift,
2349 and AMOUNT the amount to shift by.
2350 Store the result in the rtx TARGET, if that is convenient.
2351 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2352 Return the rtx for where the value is. */
2355 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2356 int amount, rtx target, int unsignedp)
2358 return expand_shift_1 (code, mode,
2359 shifted, GEN_INT (amount), target, unsignedp);
2362 /* Output a shift instruction for expression code CODE,
2363 with SHIFTED being the rtx for the value to shift,
2364 and AMOUNT the tree for the amount to shift by.
2365 Store the result in the rtx TARGET, if that is convenient.
2366 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2367 Return the rtx for where the value is. */
2370 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2371 tree amount, rtx target, int unsignedp)
2373 return expand_shift_1 (code, mode,
2374 shifted, expand_normal (amount), target, unsignedp);
2378 /* Indicates the type of fixup needed after a constant multiplication.
2379 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2380 the result should be negated, and ADD_VARIANT means that the
2381 multiplicand should be added to the result. */
2382 enum mult_variant {basic_variant, negate_variant, add_variant};
2384 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2385 const struct mult_cost *, machine_mode mode);
2386 static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2387 struct algorithm *, enum mult_variant *, int);
2388 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2389 const struct algorithm *, enum mult_variant);
2390 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2391 static rtx extract_high_half (machine_mode, rtx);
2392 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2393 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2394 int, int);
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2401 static void
2402 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2403 const struct mult_cost *cost_limit, machine_mode mode)
2405 int m;
2406 struct algorithm *alg_in, *best_alg;
2407 struct mult_cost best_cost;
2408 struct mult_cost new_limit;
2409 int op_cost, op_latency;
2410 unsigned HOST_WIDE_INT orig_t = t;
2411 unsigned HOST_WIDE_INT q;
2412 int maxm, hash_index;
2413 bool cache_hit = false;
2414 enum alg_code cache_alg = alg_zero;
2415 bool speed = optimize_insn_for_speed_p ();
2416 machine_mode imode;
2417 struct alg_hash_entry *entry_ptr;
2419 /* Indicate that no algorithm is yet found. If no algorithm
2420 is found, this value will be returned and indicate failure. */
2421 alg_out->cost.cost = cost_limit->cost + 1;
2422 alg_out->cost.latency = cost_limit->latency + 1;
2424 if (cost_limit->cost < 0
2425 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2426 return;
2428 /* Be prepared for vector modes. */
2429 imode = GET_MODE_INNER (mode);
2431 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2433 /* Restrict the bits of "t" to the multiplication's mode. */
2434 t &= GET_MODE_MASK (imode);
2436 /* t == 1 can be done in zero cost. */
2437 if (t == 1)
2439 alg_out->ops = 1;
2440 alg_out->cost.cost = 0;
2441 alg_out->cost.latency = 0;
2442 alg_out->op[0] = alg_m;
2443 return;
2446 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2447 fail now. */
2448 if (t == 0)
2450 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2451 return;
2452 else
2454 alg_out->ops = 1;
2455 alg_out->cost.cost = zero_cost (speed);
2456 alg_out->cost.latency = zero_cost (speed);
2457 alg_out->op[0] = alg_zero;
2458 return;
2462 /* We'll be needing a couple extra algorithm structures now. */
2464 alg_in = XALLOCA (struct algorithm);
2465 best_alg = XALLOCA (struct algorithm);
2466 best_cost = *cost_limit;
2468 /* Compute the hash index. */
2469 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2471 /* See if we already know what to do for T. */
2472 entry_ptr = alg_hash_entry_ptr (hash_index);
2473 if (entry_ptr->t == t
2474 && entry_ptr->mode == mode
2475 && entry_ptr->mode == mode
2476 && entry_ptr->speed == speed
2477 && entry_ptr->alg != alg_unknown)
2479 cache_alg = entry_ptr->alg;
2481 if (cache_alg == alg_impossible)
2483 /* The cache tells us that it's impossible to synthesize
2484 multiplication by T within entry_ptr->cost. */
2485 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2486 /* COST_LIMIT is at least as restrictive as the one
2487 recorded in the hash table, in which case we have no
2488 hope of synthesizing a multiplication. Just
2489 return. */
2490 return;
2492 /* If we get here, COST_LIMIT is less restrictive than the
2493 one recorded in the hash table, so we may be able to
2494 synthesize a multiplication. Proceed as if we didn't
2495 have the cache entry. */
2497 else
2499 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2500 /* The cached algorithm shows that this multiplication
2501 requires more cost than COST_LIMIT. Just return. This
2502 way, we don't clobber this cache entry with
2503 alg_impossible but retain useful information. */
2504 return;
2506 cache_hit = true;
2508 switch (cache_alg)
2510 case alg_shift:
2511 goto do_alg_shift;
2513 case alg_add_t_m2:
2514 case alg_sub_t_m2:
2515 goto do_alg_addsub_t_m2;
2517 case alg_add_factor:
2518 case alg_sub_factor:
2519 goto do_alg_addsub_factor;
2521 case alg_add_t2_m:
2522 goto do_alg_add_t2_m;
2524 case alg_sub_t2_m:
2525 goto do_alg_sub_t2_m;
2527 default:
2528 gcc_unreachable ();
2533 /* If we have a group of zero bits at the low-order part of T, try
2534 multiplying by the remaining bits and then doing a shift. */
2536 if ((t & 1) == 0)
2538 do_alg_shift:
2539 m = floor_log2 (t & -t); /* m = number of low zero bits */
2540 if (m < maxm)
2542 q = t >> m;
2543 /* The function expand_shift will choose between a shift and
2544 a sequence of additions, so the observed cost is given as
2545 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2546 op_cost = m * add_cost (speed, mode);
2547 if (shift_cost (speed, mode, m) < op_cost)
2548 op_cost = shift_cost (speed, mode, m);
2549 new_limit.cost = best_cost.cost - op_cost;
2550 new_limit.latency = best_cost.latency - op_cost;
2551 synth_mult (alg_in, q, &new_limit, mode);
2553 alg_in->cost.cost += op_cost;
2554 alg_in->cost.latency += op_cost;
2555 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2557 best_cost = alg_in->cost;
2558 std::swap (alg_in, best_alg);
2559 best_alg->log[best_alg->ops] = m;
2560 best_alg->op[best_alg->ops] = alg_shift;
2563 /* See if treating ORIG_T as a signed number yields a better
2564 sequence. Try this sequence only for a negative ORIG_T
2565 as it would be useless for a non-negative ORIG_T. */
2566 if ((HOST_WIDE_INT) orig_t < 0)
2568 /* Shift ORIG_T as follows because a right shift of a
2569 negative-valued signed type is implementation
2570 defined. */
2571 q = ~(~orig_t >> m);
2572 /* The function expand_shift will choose between a shift
2573 and a sequence of additions, so the observed cost is
2574 given as MIN (m * add_cost(speed, mode),
2575 shift_cost(speed, mode, m)). */
2576 op_cost = m * add_cost (speed, mode);
2577 if (shift_cost (speed, mode, m) < op_cost)
2578 op_cost = shift_cost (speed, mode, m);
2579 new_limit.cost = best_cost.cost - op_cost;
2580 new_limit.latency = best_cost.latency - op_cost;
2581 synth_mult (alg_in, q, &new_limit, mode);
2583 alg_in->cost.cost += op_cost;
2584 alg_in->cost.latency += op_cost;
2585 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2587 best_cost = alg_in->cost;
2588 std::swap (alg_in, best_alg);
2589 best_alg->log[best_alg->ops] = m;
2590 best_alg->op[best_alg->ops] = alg_shift;
2594 if (cache_hit)
2595 goto done;
2598 /* If we have an odd number, add or subtract one. */
2599 if ((t & 1) != 0)
2601 unsigned HOST_WIDE_INT w;
2603 do_alg_addsub_t_m2:
2604 for (w = 1; (w & t) != 0; w <<= 1)
2606 /* If T was -1, then W will be zero after the loop. This is another
2607 case where T ends with ...111. Handling this with (T + 1) and
2608 subtract 1 produces slightly better code and results in algorithm
2609 selection much faster than treating it like the ...0111 case
2610 below. */
2611 if (w == 0
2612 || (w > 2
2613 /* Reject the case where t is 3.
2614 Thus we prefer addition in that case. */
2615 && t != 3))
2617 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2619 op_cost = add_cost (speed, mode);
2620 new_limit.cost = best_cost.cost - op_cost;
2621 new_limit.latency = best_cost.latency - op_cost;
2622 synth_mult (alg_in, t + 1, &new_limit, mode);
2624 alg_in->cost.cost += op_cost;
2625 alg_in->cost.latency += op_cost;
2626 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2628 best_cost = alg_in->cost;
2629 std::swap (alg_in, best_alg);
2630 best_alg->log[best_alg->ops] = 0;
2631 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2634 else
2636 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2638 op_cost = add_cost (speed, mode);
2639 new_limit.cost = best_cost.cost - op_cost;
2640 new_limit.latency = best_cost.latency - op_cost;
2641 synth_mult (alg_in, t - 1, &new_limit, mode);
2643 alg_in->cost.cost += op_cost;
2644 alg_in->cost.latency += op_cost;
2645 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2647 best_cost = alg_in->cost;
2648 std::swap (alg_in, best_alg);
2649 best_alg->log[best_alg->ops] = 0;
2650 best_alg->op[best_alg->ops] = alg_add_t_m2;
2654 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2655 quickly with a - a * n for some appropriate constant n. */
2656 m = exact_log2 (-orig_t + 1);
2657 if (m >= 0 && m < maxm)
2659 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2660 /* If the target has a cheap shift-and-subtract insn use
2661 that in preference to a shift insn followed by a sub insn.
2662 Assume that the shift-and-sub is "atomic" with a latency
2663 equal to it's cost, otherwise assume that on superscalar
2664 hardware the shift may be executed concurrently with the
2665 earlier steps in the algorithm. */
2666 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2668 op_cost = shiftsub1_cost (speed, mode, m);
2669 op_latency = op_cost;
2671 else
2672 op_latency = add_cost (speed, mode);
2674 new_limit.cost = best_cost.cost - op_cost;
2675 new_limit.latency = best_cost.latency - op_latency;
2676 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2677 &new_limit, mode);
2679 alg_in->cost.cost += op_cost;
2680 alg_in->cost.latency += op_latency;
2681 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2683 best_cost = alg_in->cost;
2684 std::swap (alg_in, best_alg);
2685 best_alg->log[best_alg->ops] = m;
2686 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2690 if (cache_hit)
2691 goto done;
2694 /* Look for factors of t of the form
2695 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2696 If we find such a factor, we can multiply by t using an algorithm that
2697 multiplies by q, shift the result by m and add/subtract it to itself.
2699 We search for large factors first and loop down, even if large factors
2700 are less probable than small; if we find a large factor we will find a
2701 good sequence quickly, and therefore be able to prune (by decreasing
2702 COST_LIMIT) the search. */
2704 do_alg_addsub_factor:
2705 for (m = floor_log2 (t - 1); m >= 2; m--)
2707 unsigned HOST_WIDE_INT d;
2709 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2710 if (t % d == 0 && t > d && m < maxm
2711 && (!cache_hit || cache_alg == alg_add_factor))
2713 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2714 if (shiftadd_cost (speed, mode, m) <= op_cost)
2715 op_cost = shiftadd_cost (speed, mode, m);
2717 op_latency = op_cost;
2720 new_limit.cost = best_cost.cost - op_cost;
2721 new_limit.latency = best_cost.latency - op_latency;
2722 synth_mult (alg_in, t / d, &new_limit, mode);
2724 alg_in->cost.cost += op_cost;
2725 alg_in->cost.latency += op_latency;
2726 if (alg_in->cost.latency < op_cost)
2727 alg_in->cost.latency = op_cost;
2728 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2730 best_cost = alg_in->cost;
2731 std::swap (alg_in, best_alg);
2732 best_alg->log[best_alg->ops] = m;
2733 best_alg->op[best_alg->ops] = alg_add_factor;
2735 /* Other factors will have been taken care of in the recursion. */
2736 break;
2739 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2740 if (t % d == 0 && t > d && m < maxm
2741 && (!cache_hit || cache_alg == alg_sub_factor))
2743 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2744 if (shiftsub0_cost (speed, mode, m) <= op_cost)
2745 op_cost = shiftsub0_cost (speed, mode, m);
2747 op_latency = op_cost;
2749 new_limit.cost = best_cost.cost - op_cost;
2750 new_limit.latency = best_cost.latency - op_latency;
2751 synth_mult (alg_in, t / d, &new_limit, mode);
2753 alg_in->cost.cost += op_cost;
2754 alg_in->cost.latency += op_latency;
2755 if (alg_in->cost.latency < op_cost)
2756 alg_in->cost.latency = op_cost;
2757 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2759 best_cost = alg_in->cost;
2760 std::swap (alg_in, best_alg);
2761 best_alg->log[best_alg->ops] = m;
2762 best_alg->op[best_alg->ops] = alg_sub_factor;
2764 break;
2767 if (cache_hit)
2768 goto done;
2770 /* Try shift-and-add (load effective address) instructions,
2771 i.e. do a*3, a*5, a*9. */
2772 if ((t & 1) != 0)
2774 do_alg_add_t2_m:
2775 q = t - 1;
2776 q = q & -q;
2777 m = exact_log2 (q);
2778 if (m >= 0 && m < maxm)
2780 op_cost = shiftadd_cost (speed, mode, m);
2781 new_limit.cost = best_cost.cost - op_cost;
2782 new_limit.latency = best_cost.latency - op_cost;
2783 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2785 alg_in->cost.cost += op_cost;
2786 alg_in->cost.latency += op_cost;
2787 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2789 best_cost = alg_in->cost;
2790 std::swap (alg_in, best_alg);
2791 best_alg->log[best_alg->ops] = m;
2792 best_alg->op[best_alg->ops] = alg_add_t2_m;
2795 if (cache_hit)
2796 goto done;
2798 do_alg_sub_t2_m:
2799 q = t + 1;
2800 q = q & -q;
2801 m = exact_log2 (q);
2802 if (m >= 0 && m < maxm)
2804 op_cost = shiftsub0_cost (speed, mode, m);
2805 new_limit.cost = best_cost.cost - op_cost;
2806 new_limit.latency = best_cost.latency - op_cost;
2807 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2809 alg_in->cost.cost += op_cost;
2810 alg_in->cost.latency += op_cost;
2811 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2813 best_cost = alg_in->cost;
2814 std::swap (alg_in, best_alg);
2815 best_alg->log[best_alg->ops] = m;
2816 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2819 if (cache_hit)
2820 goto done;
2823 done:
2824 /* If best_cost has not decreased, we have not found any algorithm. */
2825 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2827 /* We failed to find an algorithm. Record alg_impossible for
2828 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2829 we are asked to find an algorithm for T within the same or
2830 lower COST_LIMIT, we can immediately return to the
2831 caller. */
2832 entry_ptr->t = t;
2833 entry_ptr->mode = mode;
2834 entry_ptr->speed = speed;
2835 entry_ptr->alg = alg_impossible;
2836 entry_ptr->cost = *cost_limit;
2837 return;
2840 /* Cache the result. */
2841 if (!cache_hit)
2843 entry_ptr->t = t;
2844 entry_ptr->mode = mode;
2845 entry_ptr->speed = speed;
2846 entry_ptr->alg = best_alg->op[best_alg->ops];
2847 entry_ptr->cost.cost = best_cost.cost;
2848 entry_ptr->cost.latency = best_cost.latency;
2851 /* If we are getting a too long sequence for `struct algorithm'
2852 to record, make this search fail. */
2853 if (best_alg->ops == MAX_BITS_PER_WORD)
2854 return;
2856 /* Copy the algorithm from temporary space to the space at alg_out.
2857 We avoid using structure assignment because the majority of
2858 best_alg is normally undefined, and this is a critical function. */
2859 alg_out->ops = best_alg->ops + 1;
2860 alg_out->cost = best_cost;
2861 memcpy (alg_out->op, best_alg->op,
2862 alg_out->ops * sizeof *alg_out->op);
2863 memcpy (alg_out->log, best_alg->log,
2864 alg_out->ops * sizeof *alg_out->log);
2867 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2868 Try three variations:
2870 - a shift/add sequence based on VAL itself
2871 - a shift/add sequence based on -VAL, followed by a negation
2872 - a shift/add sequence based on VAL - 1, followed by an addition.
2874 Return true if the cheapest of these cost less than MULT_COST,
2875 describing the algorithm in *ALG and final fixup in *VARIANT. */
2877 static bool
2878 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
2879 struct algorithm *alg, enum mult_variant *variant,
2880 int mult_cost)
2882 struct algorithm alg2;
2883 struct mult_cost limit;
2884 int op_cost;
2885 bool speed = optimize_insn_for_speed_p ();
2887 /* Fail quickly for impossible bounds. */
2888 if (mult_cost < 0)
2889 return false;
2891 /* Ensure that mult_cost provides a reasonable upper bound.
2892 Any constant multiplication can be performed with less
2893 than 2 * bits additions. */
2894 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2895 if (mult_cost > op_cost)
2896 mult_cost = op_cost;
2898 *variant = basic_variant;
2899 limit.cost = mult_cost;
2900 limit.latency = mult_cost;
2901 synth_mult (alg, val, &limit, mode);
2903 /* This works only if the inverted value actually fits in an
2904 `unsigned int' */
2905 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2907 op_cost = neg_cost (speed, mode);
2908 if (MULT_COST_LESS (&alg->cost, mult_cost))
2910 limit.cost = alg->cost.cost - op_cost;
2911 limit.latency = alg->cost.latency - op_cost;
2913 else
2915 limit.cost = mult_cost - op_cost;
2916 limit.latency = mult_cost - op_cost;
2919 synth_mult (&alg2, -val, &limit, mode);
2920 alg2.cost.cost += op_cost;
2921 alg2.cost.latency += op_cost;
2922 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2923 *alg = alg2, *variant = negate_variant;
2926 /* This proves very useful for division-by-constant. */
2927 op_cost = add_cost (speed, mode);
2928 if (MULT_COST_LESS (&alg->cost, mult_cost))
2930 limit.cost = alg->cost.cost - op_cost;
2931 limit.latency = alg->cost.latency - op_cost;
2933 else
2935 limit.cost = mult_cost - op_cost;
2936 limit.latency = mult_cost - op_cost;
2939 synth_mult (&alg2, val - 1, &limit, mode);
2940 alg2.cost.cost += op_cost;
2941 alg2.cost.latency += op_cost;
2942 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2943 *alg = alg2, *variant = add_variant;
2945 return MULT_COST_LESS (&alg->cost, mult_cost);
2948 /* A subroutine of expand_mult, used for constant multiplications.
2949 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2950 convenient. Use the shift/add sequence described by ALG and apply
2951 the final fixup specified by VARIANT. */
2953 static rtx
2954 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
2955 rtx target, const struct algorithm *alg,
2956 enum mult_variant variant)
2958 HOST_WIDE_INT val_so_far;
2959 rtx_insn *insn;
2960 rtx accum, tem;
2961 int opno;
2962 machine_mode nmode;
2964 /* Avoid referencing memory over and over and invalid sharing
2965 on SUBREGs. */
2966 op0 = force_reg (mode, op0);
2968 /* ACCUM starts out either as OP0 or as a zero, depending on
2969 the first operation. */
2971 if (alg->op[0] == alg_zero)
2973 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2974 val_so_far = 0;
2976 else if (alg->op[0] == alg_m)
2978 accum = copy_to_mode_reg (mode, op0);
2979 val_so_far = 1;
2981 else
2982 gcc_unreachable ();
2984 for (opno = 1; opno < alg->ops; opno++)
2986 int log = alg->log[opno];
2987 rtx shift_subtarget = optimize ? 0 : accum;
2988 rtx add_target
2989 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2990 && !optimize)
2991 ? target : 0;
2992 rtx accum_target = optimize ? 0 : accum;
2993 rtx accum_inner;
2995 switch (alg->op[opno])
2997 case alg_shift:
2998 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2999 /* REG_EQUAL note will be attached to the following insn. */
3000 emit_move_insn (accum, tem);
3001 val_so_far <<= log;
3002 break;
3004 case alg_add_t_m2:
3005 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3006 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3007 add_target ? add_target : accum_target);
3008 val_so_far += (HOST_WIDE_INT) 1 << log;
3009 break;
3011 case alg_sub_t_m2:
3012 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3013 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3014 add_target ? add_target : accum_target);
3015 val_so_far -= (HOST_WIDE_INT) 1 << log;
3016 break;
3018 case alg_add_t2_m:
3019 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3020 log, shift_subtarget, 0);
3021 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3022 add_target ? add_target : accum_target);
3023 val_so_far = (val_so_far << log) + 1;
3024 break;
3026 case alg_sub_t2_m:
3027 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3028 log, shift_subtarget, 0);
3029 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3030 add_target ? add_target : accum_target);
3031 val_so_far = (val_so_far << log) - 1;
3032 break;
3034 case alg_add_factor:
3035 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3036 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3037 add_target ? add_target : accum_target);
3038 val_so_far += val_so_far << log;
3039 break;
3041 case alg_sub_factor:
3042 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3043 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3044 (add_target
3045 ? add_target : (optimize ? 0 : tem)));
3046 val_so_far = (val_so_far << log) - val_so_far;
3047 break;
3049 default:
3050 gcc_unreachable ();
3053 if (SCALAR_INT_MODE_P (mode))
3055 /* Write a REG_EQUAL note on the last insn so that we can cse
3056 multiplication sequences. Note that if ACCUM is a SUBREG,
3057 we've set the inner register and must properly indicate that. */
3058 tem = op0, nmode = mode;
3059 accum_inner = accum;
3060 if (GET_CODE (accum) == SUBREG)
3062 accum_inner = SUBREG_REG (accum);
3063 nmode = GET_MODE (accum_inner);
3064 tem = gen_lowpart (nmode, op0);
3067 insn = get_last_insn ();
3068 set_dst_reg_note (insn, REG_EQUAL,
3069 gen_rtx_MULT (nmode, tem,
3070 gen_int_mode (val_so_far, nmode)),
3071 accum_inner);
3075 if (variant == negate_variant)
3077 val_so_far = -val_so_far;
3078 accum = expand_unop (mode, neg_optab, accum, target, 0);
3080 else if (variant == add_variant)
3082 val_so_far = val_so_far + 1;
3083 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3086 /* Compare only the bits of val and val_so_far that are significant
3087 in the result mode, to avoid sign-/zero-extension confusion. */
3088 nmode = GET_MODE_INNER (mode);
3089 val &= GET_MODE_MASK (nmode);
3090 val_so_far &= GET_MODE_MASK (nmode);
3091 gcc_assert (val == val_so_far);
3093 return accum;
3096 /* Perform a multiplication and return an rtx for the result.
3097 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3098 TARGET is a suggestion for where to store the result (an rtx).
3100 We check specially for a constant integer as OP1.
3101 If you want this check for OP0 as well, then before calling
3102 you should swap the two operands if OP0 would be constant. */
3105 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3106 int unsignedp)
3108 enum mult_variant variant;
3109 struct algorithm algorithm;
3110 rtx scalar_op1;
3111 int max_cost;
3112 bool speed = optimize_insn_for_speed_p ();
3113 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3115 if (CONSTANT_P (op0))
3116 std::swap (op0, op1);
3118 /* For vectors, there are several simplifications that can be made if
3119 all elements of the vector constant are identical. */
3120 scalar_op1 = op1;
3121 if (GET_CODE (op1) == CONST_VECTOR)
3123 int i, n = CONST_VECTOR_NUNITS (op1);
3124 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3125 for (i = 1; i < n; ++i)
3126 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3127 goto skip_scalar;
3130 if (INTEGRAL_MODE_P (mode))
3132 rtx fake_reg;
3133 HOST_WIDE_INT coeff;
3134 bool is_neg;
3135 int mode_bitsize;
3137 if (op1 == CONST0_RTX (mode))
3138 return op1;
3139 if (op1 == CONST1_RTX (mode))
3140 return op0;
3141 if (op1 == CONSTM1_RTX (mode))
3142 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3143 op0, target, 0);
3145 if (do_trapv)
3146 goto skip_synth;
3148 /* If mode is integer vector mode, check if the backend supports
3149 vector lshift (by scalar or vector) at all. If not, we can't use
3150 synthetized multiply. */
3151 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3152 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3153 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3154 goto skip_synth;
3156 /* These are the operations that are potentially turned into
3157 a sequence of shifts and additions. */
3158 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3160 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3161 less than or equal in size to `unsigned int' this doesn't matter.
3162 If the mode is larger than `unsigned int', then synth_mult works
3163 only if the constant value exactly fits in an `unsigned int' without
3164 any truncation. This means that multiplying by negative values does
3165 not work; results are off by 2^32 on a 32 bit machine. */
3166 if (CONST_INT_P (scalar_op1))
3168 coeff = INTVAL (scalar_op1);
3169 is_neg = coeff < 0;
3171 #if TARGET_SUPPORTS_WIDE_INT
3172 else if (CONST_WIDE_INT_P (scalar_op1))
3173 #else
3174 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3175 #endif
3177 int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3178 /* Perfect power of 2 (other than 1, which is handled above). */
3179 if (shift > 0)
3180 return expand_shift (LSHIFT_EXPR, mode, op0,
3181 shift, target, unsignedp);
3182 else
3183 goto skip_synth;
3185 else
3186 goto skip_synth;
3188 /* We used to test optimize here, on the grounds that it's better to
3189 produce a smaller program when -O is not used. But this causes
3190 such a terrible slowdown sometimes that it seems better to always
3191 use synth_mult. */
3193 /* Special case powers of two. */
3194 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3195 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3196 return expand_shift (LSHIFT_EXPR, mode, op0,
3197 floor_log2 (coeff), target, unsignedp);
3199 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3201 /* Attempt to handle multiplication of DImode values by negative
3202 coefficients, by performing the multiplication by a positive
3203 multiplier and then inverting the result. */
3204 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3206 /* Its safe to use -coeff even for INT_MIN, as the
3207 result is interpreted as an unsigned coefficient.
3208 Exclude cost of op0 from max_cost to match the cost
3209 calculation of the synth_mult. */
3210 coeff = -(unsigned HOST_WIDE_INT) coeff;
3211 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3212 mode, speed)
3213 - neg_cost (speed, mode));
3214 if (max_cost <= 0)
3215 goto skip_synth;
3217 /* Special case powers of two. */
3218 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3220 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3221 floor_log2 (coeff), target, unsignedp);
3222 return expand_unop (mode, neg_optab, temp, target, 0);
3225 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3226 max_cost))
3228 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3229 &algorithm, variant);
3230 return expand_unop (mode, neg_optab, temp, target, 0);
3232 goto skip_synth;
3235 /* Exclude cost of op0 from max_cost to match the cost
3236 calculation of the synth_mult. */
3237 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3238 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3239 return expand_mult_const (mode, op0, coeff, target,
3240 &algorithm, variant);
3242 skip_synth:
3244 /* Expand x*2.0 as x+x. */
3245 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3247 REAL_VALUE_TYPE d;
3248 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3250 if (REAL_VALUES_EQUAL (d, dconst2))
3252 op0 = force_reg (GET_MODE (op0), op0);
3253 return expand_binop (mode, add_optab, op0, op0,
3254 target, unsignedp, OPTAB_LIB_WIDEN);
3257 skip_scalar:
3259 /* This used to use umul_optab if unsigned, but for non-widening multiply
3260 there is no difference between signed and unsigned. */
3261 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3262 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3263 gcc_assert (op0);
3264 return op0;
3267 /* Return a cost estimate for multiplying a register by the given
3268 COEFFicient in the given MODE and SPEED. */
3271 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3273 int max_cost;
3274 struct algorithm algorithm;
3275 enum mult_variant variant;
3277 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3278 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3279 mode, speed);
3280 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3281 return algorithm.cost.cost;
3282 else
3283 return max_cost;
3286 /* Perform a widening multiplication and return an rtx for the result.
3287 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3288 TARGET is a suggestion for where to store the result (an rtx).
3289 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3290 or smul_widen_optab.
3292 We check specially for a constant integer as OP1, comparing the
3293 cost of a widening multiply against the cost of a sequence of shifts
3294 and adds. */
3297 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3298 int unsignedp, optab this_optab)
3300 bool speed = optimize_insn_for_speed_p ();
3301 rtx cop1;
3303 if (CONST_INT_P (op1)
3304 && GET_MODE (op0) != VOIDmode
3305 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3306 this_optab == umul_widen_optab))
3307 && CONST_INT_P (cop1)
3308 && (INTVAL (cop1) >= 0
3309 || HWI_COMPUTABLE_MODE_P (mode)))
3311 HOST_WIDE_INT coeff = INTVAL (cop1);
3312 int max_cost;
3313 enum mult_variant variant;
3314 struct algorithm algorithm;
3316 if (coeff == 0)
3317 return CONST0_RTX (mode);
3319 /* Special case powers of two. */
3320 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3322 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3323 return expand_shift (LSHIFT_EXPR, mode, op0,
3324 floor_log2 (coeff), target, unsignedp);
3327 /* Exclude cost of op0 from max_cost to match the cost
3328 calculation of the synth_mult. */
3329 max_cost = mul_widen_cost (speed, mode);
3330 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3331 max_cost))
3333 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3334 return expand_mult_const (mode, op0, coeff, target,
3335 &algorithm, variant);
3338 return expand_binop (mode, this_optab, op0, op1, target,
3339 unsignedp, OPTAB_LIB_WIDEN);
3342 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3343 replace division by D, and put the least significant N bits of the result
3344 in *MULTIPLIER_PTR and return the most significant bit.
3346 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3347 needed precision is in PRECISION (should be <= N).
3349 PRECISION should be as small as possible so this function can choose
3350 multiplier more freely.
3352 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3353 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3355 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3356 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3358 unsigned HOST_WIDE_INT
3359 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3360 unsigned HOST_WIDE_INT *multiplier_ptr,
3361 int *post_shift_ptr, int *lgup_ptr)
3363 int lgup, post_shift;
3364 int pow, pow2;
3366 /* lgup = ceil(log2(divisor)); */
3367 lgup = ceil_log2 (d);
3369 gcc_assert (lgup <= n);
3371 pow = n + lgup;
3372 pow2 = n + lgup - precision;
3374 /* mlow = 2^(N + lgup)/d */
3375 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3376 wide_int mlow = wi::udiv_trunc (val, d);
3378 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3379 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3380 wide_int mhigh = wi::udiv_trunc (val, d);
3382 /* If precision == N, then mlow, mhigh exceed 2^N
3383 (but they do not exceed 2^(N+1)). */
3385 /* Reduce to lowest terms. */
3386 for (post_shift = lgup; post_shift > 0; post_shift--)
3388 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3389 HOST_BITS_PER_WIDE_INT);
3390 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3391 HOST_BITS_PER_WIDE_INT);
3392 if (ml_lo >= mh_lo)
3393 break;
3395 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3396 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3399 *post_shift_ptr = post_shift;
3400 *lgup_ptr = lgup;
3401 if (n < HOST_BITS_PER_WIDE_INT)
3403 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3404 *multiplier_ptr = mhigh.to_uhwi () & mask;
3405 return mhigh.to_uhwi () >= mask;
3407 else
3409 *multiplier_ptr = mhigh.to_uhwi ();
3410 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3414 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3415 congruent to 1 (mod 2**N). */
3417 static unsigned HOST_WIDE_INT
3418 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3420 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3422 /* The algorithm notes that the choice y = x satisfies
3423 x*y == 1 mod 2^3, since x is assumed odd.
3424 Each iteration doubles the number of bits of significance in y. */
3426 unsigned HOST_WIDE_INT mask;
3427 unsigned HOST_WIDE_INT y = x;
3428 int nbit = 3;
3430 mask = (n == HOST_BITS_PER_WIDE_INT
3431 ? ~(unsigned HOST_WIDE_INT) 0
3432 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3434 while (nbit < n)
3436 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3437 nbit *= 2;
3439 return y;
3442 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3443 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3444 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3445 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3446 become signed.
3448 The result is put in TARGET if that is convenient.
3450 MODE is the mode of operation. */
3453 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3454 rtx op1, rtx target, int unsignedp)
3456 rtx tem;
3457 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3459 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3460 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3461 tem = expand_and (mode, tem, op1, NULL_RTX);
3462 adj_operand
3463 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3464 adj_operand);
3466 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3467 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3468 tem = expand_and (mode, tem, op0, NULL_RTX);
3469 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3470 target);
3472 return target;
3475 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3477 static rtx
3478 extract_high_half (machine_mode mode, rtx op)
3480 machine_mode wider_mode;
3482 if (mode == word_mode)
3483 return gen_highpart (mode, op);
3485 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3487 wider_mode = GET_MODE_WIDER_MODE (mode);
3488 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3489 GET_MODE_BITSIZE (mode), 0, 1);
3490 return convert_modes (mode, wider_mode, op, 0);
3493 /* Like expmed_mult_highpart, but only consider using a multiplication
3494 optab. OP1 is an rtx for the constant operand. */
3496 static rtx
3497 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3498 rtx target, int unsignedp, int max_cost)
3500 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3501 machine_mode wider_mode;
3502 optab moptab;
3503 rtx tem;
3504 int size;
3505 bool speed = optimize_insn_for_speed_p ();
3507 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3509 wider_mode = GET_MODE_WIDER_MODE (mode);
3510 size = GET_MODE_BITSIZE (mode);
3512 /* Firstly, try using a multiplication insn that only generates the needed
3513 high part of the product, and in the sign flavor of unsignedp. */
3514 if (mul_highpart_cost (speed, mode) < max_cost)
3516 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3517 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3518 unsignedp, OPTAB_DIRECT);
3519 if (tem)
3520 return tem;
3523 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3524 Need to adjust the result after the multiplication. */
3525 if (size - 1 < BITS_PER_WORD
3526 && (mul_highpart_cost (speed, mode)
3527 + 2 * shift_cost (speed, mode, size-1)
3528 + 4 * add_cost (speed, mode) < max_cost))
3530 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3531 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3532 unsignedp, OPTAB_DIRECT);
3533 if (tem)
3534 /* We used the wrong signedness. Adjust the result. */
3535 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3536 tem, unsignedp);
3539 /* Try widening multiplication. */
3540 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3541 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3542 && mul_widen_cost (speed, wider_mode) < max_cost)
3544 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3545 unsignedp, OPTAB_WIDEN);
3546 if (tem)
3547 return extract_high_half (mode, tem);
3550 /* Try widening the mode and perform a non-widening multiplication. */
3551 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3552 && size - 1 < BITS_PER_WORD
3553 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3554 < max_cost))
3556 rtx_insn *insns;
3557 rtx wop0, wop1;
3559 /* We need to widen the operands, for example to ensure the
3560 constant multiplier is correctly sign or zero extended.
3561 Use a sequence to clean-up any instructions emitted by
3562 the conversions if things don't work out. */
3563 start_sequence ();
3564 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3565 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3566 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3567 unsignedp, OPTAB_WIDEN);
3568 insns = get_insns ();
3569 end_sequence ();
3571 if (tem)
3573 emit_insn (insns);
3574 return extract_high_half (mode, tem);
3578 /* Try widening multiplication of opposite signedness, and adjust. */
3579 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3580 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3581 && size - 1 < BITS_PER_WORD
3582 && (mul_widen_cost (speed, wider_mode)
3583 + 2 * shift_cost (speed, mode, size-1)
3584 + 4 * add_cost (speed, mode) < max_cost))
3586 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3587 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3588 if (tem != 0)
3590 tem = extract_high_half (mode, tem);
3591 /* We used the wrong signedness. Adjust the result. */
3592 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3593 target, unsignedp);
3597 return 0;
3600 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3601 putting the high half of the result in TARGET if that is convenient,
3602 and return where the result is. If the operation can not be performed,
3603 0 is returned.
3605 MODE is the mode of operation and result.
3607 UNSIGNEDP nonzero means unsigned multiply.
3609 MAX_COST is the total allowed cost for the expanded RTL. */
3611 static rtx
3612 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3613 rtx target, int unsignedp, int max_cost)
3615 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3616 unsigned HOST_WIDE_INT cnst1;
3617 int extra_cost;
3618 bool sign_adjust = false;
3619 enum mult_variant variant;
3620 struct algorithm alg;
3621 rtx tem;
3622 bool speed = optimize_insn_for_speed_p ();
3624 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3625 /* We can't support modes wider than HOST_BITS_PER_INT. */
3626 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3628 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3630 /* We can't optimize modes wider than BITS_PER_WORD.
3631 ??? We might be able to perform double-word arithmetic if
3632 mode == word_mode, however all the cost calculations in
3633 synth_mult etc. assume single-word operations. */
3634 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3635 return expmed_mult_highpart_optab (mode, op0, op1, target,
3636 unsignedp, max_cost);
3638 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3640 /* Check whether we try to multiply by a negative constant. */
3641 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3643 sign_adjust = true;
3644 extra_cost += add_cost (speed, mode);
3647 /* See whether shift/add multiplication is cheap enough. */
3648 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3649 max_cost - extra_cost))
3651 /* See whether the specialized multiplication optabs are
3652 cheaper than the shift/add version. */
3653 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3654 alg.cost.cost + extra_cost);
3655 if (tem)
3656 return tem;
3658 tem = convert_to_mode (wider_mode, op0, unsignedp);
3659 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3660 tem = extract_high_half (mode, tem);
3662 /* Adjust result for signedness. */
3663 if (sign_adjust)
3664 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3666 return tem;
3668 return expmed_mult_highpart_optab (mode, op0, op1, target,
3669 unsignedp, max_cost);
3673 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3675 static rtx
3676 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3678 rtx result, temp, shift;
3679 rtx_code_label *label;
3680 int logd;
3681 int prec = GET_MODE_PRECISION (mode);
3683 logd = floor_log2 (d);
3684 result = gen_reg_rtx (mode);
3686 /* Avoid conditional branches when they're expensive. */
3687 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3688 && optimize_insn_for_speed_p ())
3690 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3691 mode, 0, -1);
3692 if (signmask)
3694 HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3695 signmask = force_reg (mode, signmask);
3696 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3698 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3699 which instruction sequence to use. If logical right shifts
3700 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3701 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3703 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3704 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3705 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3706 > COSTS_N_INSNS (2)))
3708 temp = expand_binop (mode, xor_optab, op0, signmask,
3709 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3710 temp = expand_binop (mode, sub_optab, temp, signmask,
3711 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3712 temp = expand_binop (mode, and_optab, temp,
3713 gen_int_mode (masklow, mode),
3714 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3715 temp = expand_binop (mode, xor_optab, temp, signmask,
3716 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3717 temp = expand_binop (mode, sub_optab, temp, signmask,
3718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3720 else
3722 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3723 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3724 signmask = force_reg (mode, signmask);
3726 temp = expand_binop (mode, add_optab, op0, signmask,
3727 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3728 temp = expand_binop (mode, and_optab, temp,
3729 gen_int_mode (masklow, mode),
3730 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3731 temp = expand_binop (mode, sub_optab, temp, signmask,
3732 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3734 return temp;
3738 /* Mask contains the mode's signbit and the significant bits of the
3739 modulus. By including the signbit in the operation, many targets
3740 can avoid an explicit compare operation in the following comparison
3741 against zero. */
3742 wide_int mask = wi::mask (logd, false, prec);
3743 mask = wi::set_bit (mask, prec - 1);
3745 temp = expand_binop (mode, and_optab, op0,
3746 immed_wide_int_const (mask, mode),
3747 result, 1, OPTAB_LIB_WIDEN);
3748 if (temp != result)
3749 emit_move_insn (result, temp);
3751 label = gen_label_rtx ();
3752 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3754 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3755 0, OPTAB_LIB_WIDEN);
3757 mask = wi::mask (logd, true, prec);
3758 temp = expand_binop (mode, ior_optab, temp,
3759 immed_wide_int_const (mask, mode),
3760 result, 1, OPTAB_LIB_WIDEN);
3761 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3762 0, OPTAB_LIB_WIDEN);
3763 if (temp != result)
3764 emit_move_insn (result, temp);
3765 emit_label (label);
3766 return result;
3769 /* Expand signed division of OP0 by a power of two D in mode MODE.
3770 This routine is only called for positive values of D. */
3772 static rtx
3773 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3775 rtx temp;
3776 rtx_code_label *label;
3777 int logd;
3779 logd = floor_log2 (d);
3781 if (d == 2
3782 && BRANCH_COST (optimize_insn_for_speed_p (),
3783 false) >= 1)
3785 temp = gen_reg_rtx (mode);
3786 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3787 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3788 0, OPTAB_LIB_WIDEN);
3789 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3792 if (HAVE_conditional_move
3793 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3795 rtx temp2;
3797 start_sequence ();
3798 temp2 = copy_to_mode_reg (mode, op0);
3799 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3800 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3801 temp = force_reg (mode, temp);
3803 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3804 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3805 mode, temp, temp2, mode, 0);
3806 if (temp2)
3808 rtx_insn *seq = get_insns ();
3809 end_sequence ();
3810 emit_insn (seq);
3811 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3813 end_sequence ();
3816 if (BRANCH_COST (optimize_insn_for_speed_p (),
3817 false) >= 2)
3819 int ushift = GET_MODE_BITSIZE (mode) - logd;
3821 temp = gen_reg_rtx (mode);
3822 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3823 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3824 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3825 > COSTS_N_INSNS (1))
3826 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3827 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3828 else
3829 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3830 ushift, NULL_RTX, 1);
3831 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3832 0, OPTAB_LIB_WIDEN);
3833 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3836 label = gen_label_rtx ();
3837 temp = copy_to_mode_reg (mode, op0);
3838 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3839 expand_inc (temp, gen_int_mode (d - 1, mode));
3840 emit_label (label);
3841 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3844 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3845 if that is convenient, and returning where the result is.
3846 You may request either the quotient or the remainder as the result;
3847 specify REM_FLAG nonzero to get the remainder.
3849 CODE is the expression code for which kind of division this is;
3850 it controls how rounding is done. MODE is the machine mode to use.
3851 UNSIGNEDP nonzero means do unsigned division. */
3853 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3854 and then correct it by or'ing in missing high bits
3855 if result of ANDI is nonzero.
3856 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3857 This could optimize to a bfexts instruction.
3858 But C doesn't use these operations, so their optimizations are
3859 left for later. */
3860 /* ??? For modulo, we don't actually need the highpart of the first product,
3861 the low part will do nicely. And for small divisors, the second multiply
3862 can also be a low-part only multiply or even be completely left out.
3863 E.g. to calculate the remainder of a division by 3 with a 32 bit
3864 multiply, multiply with 0x55555556 and extract the upper two bits;
3865 the result is exact for inputs up to 0x1fffffff.
3866 The input range can be reduced by using cross-sum rules.
3867 For odd divisors >= 3, the following table gives right shift counts
3868 so that if a number is shifted by an integer multiple of the given
3869 amount, the remainder stays the same:
3870 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3871 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3872 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3873 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3874 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3876 Cross-sum rules for even numbers can be derived by leaving as many bits
3877 to the right alone as the divisor has zeros to the right.
3878 E.g. if x is an unsigned 32 bit number:
3879 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3883 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
3884 rtx op0, rtx op1, rtx target, int unsignedp)
3886 machine_mode compute_mode;
3887 rtx tquotient;
3888 rtx quotient = 0, remainder = 0;
3889 rtx_insn *last;
3890 int size;
3891 rtx_insn *insn;
3892 optab optab1, optab2;
3893 int op1_is_constant, op1_is_pow2 = 0;
3894 int max_cost, extra_cost;
3895 static HOST_WIDE_INT last_div_const = 0;
3896 bool speed = optimize_insn_for_speed_p ();
3898 op1_is_constant = CONST_INT_P (op1);
3899 if (op1_is_constant)
3901 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3902 if (unsignedp)
3903 ext_op1 &= GET_MODE_MASK (mode);
3904 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3905 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3909 This is the structure of expand_divmod:
3911 First comes code to fix up the operands so we can perform the operations
3912 correctly and efficiently.
3914 Second comes a switch statement with code specific for each rounding mode.
3915 For some special operands this code emits all RTL for the desired
3916 operation, for other cases, it generates only a quotient and stores it in
3917 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3918 to indicate that it has not done anything.
3920 Last comes code that finishes the operation. If QUOTIENT is set and
3921 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3922 QUOTIENT is not set, it is computed using trunc rounding.
3924 We try to generate special code for division and remainder when OP1 is a
3925 constant. If |OP1| = 2**n we can use shifts and some other fast
3926 operations. For other values of OP1, we compute a carefully selected
3927 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3928 by m.
3930 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3931 half of the product. Different strategies for generating the product are
3932 implemented in expmed_mult_highpart.
3934 If what we actually want is the remainder, we generate that by another
3935 by-constant multiplication and a subtraction. */
3937 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3938 code below will malfunction if we are, so check here and handle
3939 the special case if so. */
3940 if (op1 == const1_rtx)
3941 return rem_flag ? const0_rtx : op0;
3943 /* When dividing by -1, we could get an overflow.
3944 negv_optab can handle overflows. */
3945 if (! unsignedp && op1 == constm1_rtx)
3947 if (rem_flag)
3948 return const0_rtx;
3949 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
3950 ? negv_optab : neg_optab, op0, target, 0);
3953 if (target
3954 /* Don't use the function value register as a target
3955 since we have to read it as well as write it,
3956 and function-inlining gets confused by this. */
3957 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3958 /* Don't clobber an operand while doing a multi-step calculation. */
3959 || ((rem_flag || op1_is_constant)
3960 && (reg_mentioned_p (target, op0)
3961 || (MEM_P (op0) && MEM_P (target))))
3962 || reg_mentioned_p (target, op1)
3963 || (MEM_P (op1) && MEM_P (target))))
3964 target = 0;
3966 /* Get the mode in which to perform this computation. Normally it will
3967 be MODE, but sometimes we can't do the desired operation in MODE.
3968 If so, pick a wider mode in which we can do the operation. Convert
3969 to that mode at the start to avoid repeated conversions.
3971 First see what operations we need. These depend on the expression
3972 we are evaluating. (We assume that divxx3 insns exist under the
3973 same conditions that modxx3 insns and that these insns don't normally
3974 fail. If these assumptions are not correct, we may generate less
3975 efficient code in some cases.)
3977 Then see if we find a mode in which we can open-code that operation
3978 (either a division, modulus, or shift). Finally, check for the smallest
3979 mode for which we can do the operation with a library call. */
3981 /* We might want to refine this now that we have division-by-constant
3982 optimization. Since expmed_mult_highpart tries so many variants, it is
3983 not straightforward to generalize this. Maybe we should make an array
3984 of possible modes in init_expmed? Save this for GCC 2.7. */
3986 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3987 ? (unsignedp ? lshr_optab : ashr_optab)
3988 : (unsignedp ? udiv_optab : sdiv_optab));
3989 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3990 ? optab1
3991 : (unsignedp ? udivmod_optab : sdivmod_optab));
3993 for (compute_mode = mode; compute_mode != VOIDmode;
3994 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3995 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3996 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3997 break;
3999 if (compute_mode == VOIDmode)
4000 for (compute_mode = mode; compute_mode != VOIDmode;
4001 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4002 if (optab_libfunc (optab1, compute_mode)
4003 || optab_libfunc (optab2, compute_mode))
4004 break;
4006 /* If we still couldn't find a mode, use MODE, but expand_binop will
4007 probably die. */
4008 if (compute_mode == VOIDmode)
4009 compute_mode = mode;
4011 if (target && GET_MODE (target) == compute_mode)
4012 tquotient = target;
4013 else
4014 tquotient = gen_reg_rtx (compute_mode);
4016 size = GET_MODE_BITSIZE (compute_mode);
4017 #if 0
4018 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4019 (mode), and thereby get better code when OP1 is a constant. Do that
4020 later. It will require going over all usages of SIZE below. */
4021 size = GET_MODE_BITSIZE (mode);
4022 #endif
4024 /* Only deduct something for a REM if the last divide done was
4025 for a different constant. Then set the constant of the last
4026 divide. */
4027 max_cost = (unsignedp
4028 ? udiv_cost (speed, compute_mode)
4029 : sdiv_cost (speed, compute_mode));
4030 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4031 && INTVAL (op1) == last_div_const))
4032 max_cost -= (mul_cost (speed, compute_mode)
4033 + add_cost (speed, compute_mode));
4035 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4037 /* Now convert to the best mode to use. */
4038 if (compute_mode != mode)
4040 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4041 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4043 /* convert_modes may have placed op1 into a register, so we
4044 must recompute the following. */
4045 op1_is_constant = CONST_INT_P (op1);
4046 op1_is_pow2 = (op1_is_constant
4047 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4048 || (! unsignedp
4049 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4052 /* If one of the operands is a volatile MEM, copy it into a register. */
4054 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4055 op0 = force_reg (compute_mode, op0);
4056 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4057 op1 = force_reg (compute_mode, op1);
4059 /* If we need the remainder or if OP1 is constant, we need to
4060 put OP0 in a register in case it has any queued subexpressions. */
4061 if (rem_flag || op1_is_constant)
4062 op0 = force_reg (compute_mode, op0);
4064 last = get_last_insn ();
4066 /* Promote floor rounding to trunc rounding for unsigned operations. */
4067 if (unsignedp)
4069 if (code == FLOOR_DIV_EXPR)
4070 code = TRUNC_DIV_EXPR;
4071 if (code == FLOOR_MOD_EXPR)
4072 code = TRUNC_MOD_EXPR;
4073 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4074 code = TRUNC_DIV_EXPR;
4077 if (op1 != const0_rtx)
4078 switch (code)
4080 case TRUNC_MOD_EXPR:
4081 case TRUNC_DIV_EXPR:
4082 if (op1_is_constant)
4084 if (unsignedp)
4086 unsigned HOST_WIDE_INT mh, ml;
4087 int pre_shift, post_shift;
4088 int dummy;
4089 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4090 & GET_MODE_MASK (compute_mode));
4092 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4094 pre_shift = floor_log2 (d);
4095 if (rem_flag)
4097 unsigned HOST_WIDE_INT mask
4098 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4099 remainder
4100 = expand_binop (compute_mode, and_optab, op0,
4101 gen_int_mode (mask, compute_mode),
4102 remainder, 1,
4103 OPTAB_LIB_WIDEN);
4104 if (remainder)
4105 return gen_lowpart (mode, remainder);
4107 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4108 pre_shift, tquotient, 1);
4110 else if (size <= HOST_BITS_PER_WIDE_INT)
4112 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4114 /* Most significant bit of divisor is set; emit an scc
4115 insn. */
4116 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4117 compute_mode, 1, 1);
4119 else
4121 /* Find a suitable multiplier and right shift count
4122 instead of multiplying with D. */
4124 mh = choose_multiplier (d, size, size,
4125 &ml, &post_shift, &dummy);
4127 /* If the suggested multiplier is more than SIZE bits,
4128 we can do better for even divisors, using an
4129 initial right shift. */
4130 if (mh != 0 && (d & 1) == 0)
4132 pre_shift = floor_log2 (d & -d);
4133 mh = choose_multiplier (d >> pre_shift, size,
4134 size - pre_shift,
4135 &ml, &post_shift, &dummy);
4136 gcc_assert (!mh);
4138 else
4139 pre_shift = 0;
4141 if (mh != 0)
4143 rtx t1, t2, t3, t4;
4145 if (post_shift - 1 >= BITS_PER_WORD)
4146 goto fail1;
4148 extra_cost
4149 = (shift_cost (speed, compute_mode, post_shift - 1)
4150 + shift_cost (speed, compute_mode, 1)
4151 + 2 * add_cost (speed, compute_mode));
4152 t1 = expmed_mult_highpart
4153 (compute_mode, op0,
4154 gen_int_mode (ml, compute_mode),
4155 NULL_RTX, 1, max_cost - extra_cost);
4156 if (t1 == 0)
4157 goto fail1;
4158 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4159 op0, t1),
4160 NULL_RTX);
4161 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4162 t2, 1, NULL_RTX, 1);
4163 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4164 t1, t3),
4165 NULL_RTX);
4166 quotient = expand_shift
4167 (RSHIFT_EXPR, compute_mode, t4,
4168 post_shift - 1, tquotient, 1);
4170 else
4172 rtx t1, t2;
4174 if (pre_shift >= BITS_PER_WORD
4175 || post_shift >= BITS_PER_WORD)
4176 goto fail1;
4178 t1 = expand_shift
4179 (RSHIFT_EXPR, compute_mode, op0,
4180 pre_shift, NULL_RTX, 1);
4181 extra_cost
4182 = (shift_cost (speed, compute_mode, pre_shift)
4183 + shift_cost (speed, compute_mode, post_shift));
4184 t2 = expmed_mult_highpart
4185 (compute_mode, t1,
4186 gen_int_mode (ml, compute_mode),
4187 NULL_RTX, 1, max_cost - extra_cost);
4188 if (t2 == 0)
4189 goto fail1;
4190 quotient = expand_shift
4191 (RSHIFT_EXPR, compute_mode, t2,
4192 post_shift, tquotient, 1);
4196 else /* Too wide mode to use tricky code */
4197 break;
4199 insn = get_last_insn ();
4200 if (insn != last)
4201 set_dst_reg_note (insn, REG_EQUAL,
4202 gen_rtx_UDIV (compute_mode, op0, op1),
4203 quotient);
4205 else /* TRUNC_DIV, signed */
4207 unsigned HOST_WIDE_INT ml;
4208 int lgup, post_shift;
4209 rtx mlr;
4210 HOST_WIDE_INT d = INTVAL (op1);
4211 unsigned HOST_WIDE_INT abs_d;
4213 /* Since d might be INT_MIN, we have to cast to
4214 unsigned HOST_WIDE_INT before negating to avoid
4215 undefined signed overflow. */
4216 abs_d = (d >= 0
4217 ? (unsigned HOST_WIDE_INT) d
4218 : - (unsigned HOST_WIDE_INT) d);
4220 /* n rem d = n rem -d */
4221 if (rem_flag && d < 0)
4223 d = abs_d;
4224 op1 = gen_int_mode (abs_d, compute_mode);
4227 if (d == 1)
4228 quotient = op0;
4229 else if (d == -1)
4230 quotient = expand_unop (compute_mode, neg_optab, op0,
4231 tquotient, 0);
4232 else if (HOST_BITS_PER_WIDE_INT >= size
4233 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4235 /* This case is not handled correctly below. */
4236 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4237 compute_mode, 1, 1);
4238 if (quotient == 0)
4239 goto fail1;
4241 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4242 && (rem_flag
4243 ? smod_pow2_cheap (speed, compute_mode)
4244 : sdiv_pow2_cheap (speed, compute_mode))
4245 /* We assume that cheap metric is true if the
4246 optab has an expander for this mode. */
4247 && ((optab_handler ((rem_flag ? smod_optab
4248 : sdiv_optab),
4249 compute_mode)
4250 != CODE_FOR_nothing)
4251 || (optab_handler (sdivmod_optab,
4252 compute_mode)
4253 != CODE_FOR_nothing)))
4255 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4257 if (rem_flag)
4259 remainder = expand_smod_pow2 (compute_mode, op0, d);
4260 if (remainder)
4261 return gen_lowpart (mode, remainder);
4264 if (sdiv_pow2_cheap (speed, compute_mode)
4265 && ((optab_handler (sdiv_optab, compute_mode)
4266 != CODE_FOR_nothing)
4267 || (optab_handler (sdivmod_optab, compute_mode)
4268 != CODE_FOR_nothing)))
4269 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4270 compute_mode, op0,
4271 gen_int_mode (abs_d,
4272 compute_mode),
4273 NULL_RTX, 0);
4274 else
4275 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4277 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4278 negate the quotient. */
4279 if (d < 0)
4281 insn = get_last_insn ();
4282 if (insn != last
4283 && abs_d < ((unsigned HOST_WIDE_INT) 1
4284 << (HOST_BITS_PER_WIDE_INT - 1)))
4285 set_dst_reg_note (insn, REG_EQUAL,
4286 gen_rtx_DIV (compute_mode, op0,
4287 gen_int_mode
4288 (abs_d,
4289 compute_mode)),
4290 quotient);
4292 quotient = expand_unop (compute_mode, neg_optab,
4293 quotient, quotient, 0);
4296 else if (size <= HOST_BITS_PER_WIDE_INT)
4298 choose_multiplier (abs_d, size, size - 1,
4299 &ml, &post_shift, &lgup);
4300 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4302 rtx t1, t2, t3;
4304 if (post_shift >= BITS_PER_WORD
4305 || size - 1 >= BITS_PER_WORD)
4306 goto fail1;
4308 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4309 + shift_cost (speed, compute_mode, size - 1)
4310 + add_cost (speed, compute_mode));
4311 t1 = expmed_mult_highpart
4312 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4313 NULL_RTX, 0, max_cost - extra_cost);
4314 if (t1 == 0)
4315 goto fail1;
4316 t2 = expand_shift
4317 (RSHIFT_EXPR, compute_mode, t1,
4318 post_shift, NULL_RTX, 0);
4319 t3 = expand_shift
4320 (RSHIFT_EXPR, compute_mode, op0,
4321 size - 1, NULL_RTX, 0);
4322 if (d < 0)
4323 quotient
4324 = force_operand (gen_rtx_MINUS (compute_mode,
4325 t3, t2),
4326 tquotient);
4327 else
4328 quotient
4329 = force_operand (gen_rtx_MINUS (compute_mode,
4330 t2, t3),
4331 tquotient);
4333 else
4335 rtx t1, t2, t3, t4;
4337 if (post_shift >= BITS_PER_WORD
4338 || size - 1 >= BITS_PER_WORD)
4339 goto fail1;
4341 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4342 mlr = gen_int_mode (ml, compute_mode);
4343 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4344 + shift_cost (speed, compute_mode, size - 1)
4345 + 2 * add_cost (speed, compute_mode));
4346 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4347 NULL_RTX, 0,
4348 max_cost - extra_cost);
4349 if (t1 == 0)
4350 goto fail1;
4351 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4352 t1, op0),
4353 NULL_RTX);
4354 t3 = expand_shift
4355 (RSHIFT_EXPR, compute_mode, t2,
4356 post_shift, NULL_RTX, 0);
4357 t4 = expand_shift
4358 (RSHIFT_EXPR, compute_mode, op0,
4359 size - 1, NULL_RTX, 0);
4360 if (d < 0)
4361 quotient
4362 = force_operand (gen_rtx_MINUS (compute_mode,
4363 t4, t3),
4364 tquotient);
4365 else
4366 quotient
4367 = force_operand (gen_rtx_MINUS (compute_mode,
4368 t3, t4),
4369 tquotient);
4372 else /* Too wide mode to use tricky code */
4373 break;
4375 insn = get_last_insn ();
4376 if (insn != last)
4377 set_dst_reg_note (insn, REG_EQUAL,
4378 gen_rtx_DIV (compute_mode, op0, op1),
4379 quotient);
4381 break;
4383 fail1:
4384 delete_insns_since (last);
4385 break;
4387 case FLOOR_DIV_EXPR:
4388 case FLOOR_MOD_EXPR:
4389 /* We will come here only for signed operations. */
4390 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4392 unsigned HOST_WIDE_INT mh, ml;
4393 int pre_shift, lgup, post_shift;
4394 HOST_WIDE_INT d = INTVAL (op1);
4396 if (d > 0)
4398 /* We could just as easily deal with negative constants here,
4399 but it does not seem worth the trouble for GCC 2.6. */
4400 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4402 pre_shift = floor_log2 (d);
4403 if (rem_flag)
4405 unsigned HOST_WIDE_INT mask
4406 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4407 remainder = expand_binop
4408 (compute_mode, and_optab, op0,
4409 gen_int_mode (mask, compute_mode),
4410 remainder, 0, OPTAB_LIB_WIDEN);
4411 if (remainder)
4412 return gen_lowpart (mode, remainder);
4414 quotient = expand_shift
4415 (RSHIFT_EXPR, compute_mode, op0,
4416 pre_shift, tquotient, 0);
4418 else
4420 rtx t1, t2, t3, t4;
4422 mh = choose_multiplier (d, size, size - 1,
4423 &ml, &post_shift, &lgup);
4424 gcc_assert (!mh);
4426 if (post_shift < BITS_PER_WORD
4427 && size - 1 < BITS_PER_WORD)
4429 t1 = expand_shift
4430 (RSHIFT_EXPR, compute_mode, op0,
4431 size - 1, NULL_RTX, 0);
4432 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4433 NULL_RTX, 0, OPTAB_WIDEN);
4434 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4435 + shift_cost (speed, compute_mode, size - 1)
4436 + 2 * add_cost (speed, compute_mode));
4437 t3 = expmed_mult_highpart
4438 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4439 NULL_RTX, 1, max_cost - extra_cost);
4440 if (t3 != 0)
4442 t4 = expand_shift
4443 (RSHIFT_EXPR, compute_mode, t3,
4444 post_shift, NULL_RTX, 1);
4445 quotient = expand_binop (compute_mode, xor_optab,
4446 t4, t1, tquotient, 0,
4447 OPTAB_WIDEN);
4452 else
4454 rtx nsign, t1, t2, t3, t4;
4455 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4456 op0, constm1_rtx), NULL_RTX);
4457 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4458 0, OPTAB_WIDEN);
4459 nsign = expand_shift
4460 (RSHIFT_EXPR, compute_mode, t2,
4461 size - 1, NULL_RTX, 0);
4462 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4463 NULL_RTX);
4464 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4465 NULL_RTX, 0);
4466 if (t4)
4468 rtx t5;
4469 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4470 NULL_RTX, 0);
4471 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4472 t4, t5),
4473 tquotient);
4478 if (quotient != 0)
4479 break;
4480 delete_insns_since (last);
4482 /* Try using an instruction that produces both the quotient and
4483 remainder, using truncation. We can easily compensate the quotient
4484 or remainder to get floor rounding, once we have the remainder.
4485 Notice that we compute also the final remainder value here,
4486 and return the result right away. */
4487 if (target == 0 || GET_MODE (target) != compute_mode)
4488 target = gen_reg_rtx (compute_mode);
4490 if (rem_flag)
4492 remainder
4493 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4494 quotient = gen_reg_rtx (compute_mode);
4496 else
4498 quotient
4499 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4500 remainder = gen_reg_rtx (compute_mode);
4503 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4504 quotient, remainder, 0))
4506 /* This could be computed with a branch-less sequence.
4507 Save that for later. */
4508 rtx tem;
4509 rtx_code_label *label = gen_label_rtx ();
4510 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4511 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4512 NULL_RTX, 0, OPTAB_WIDEN);
4513 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4514 expand_dec (quotient, const1_rtx);
4515 expand_inc (remainder, op1);
4516 emit_label (label);
4517 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4520 /* No luck with division elimination or divmod. Have to do it
4521 by conditionally adjusting op0 *and* the result. */
4523 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4524 rtx adjusted_op0;
4525 rtx tem;
4527 quotient = gen_reg_rtx (compute_mode);
4528 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4529 label1 = gen_label_rtx ();
4530 label2 = gen_label_rtx ();
4531 label3 = gen_label_rtx ();
4532 label4 = gen_label_rtx ();
4533 label5 = gen_label_rtx ();
4534 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4535 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4536 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4537 quotient, 0, OPTAB_LIB_WIDEN);
4538 if (tem != quotient)
4539 emit_move_insn (quotient, tem);
4540 emit_jump_insn (targetm.gen_jump (label5));
4541 emit_barrier ();
4542 emit_label (label1);
4543 expand_inc (adjusted_op0, const1_rtx);
4544 emit_jump_insn (targetm.gen_jump (label4));
4545 emit_barrier ();
4546 emit_label (label2);
4547 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4548 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4549 quotient, 0, OPTAB_LIB_WIDEN);
4550 if (tem != quotient)
4551 emit_move_insn (quotient, tem);
4552 emit_jump_insn (targetm.gen_jump (label5));
4553 emit_barrier ();
4554 emit_label (label3);
4555 expand_dec (adjusted_op0, const1_rtx);
4556 emit_label (label4);
4557 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4558 quotient, 0, OPTAB_LIB_WIDEN);
4559 if (tem != quotient)
4560 emit_move_insn (quotient, tem);
4561 expand_dec (quotient, const1_rtx);
4562 emit_label (label5);
4564 break;
4566 case CEIL_DIV_EXPR:
4567 case CEIL_MOD_EXPR:
4568 if (unsignedp)
4570 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4572 rtx t1, t2, t3;
4573 unsigned HOST_WIDE_INT d = INTVAL (op1);
4574 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4575 floor_log2 (d), tquotient, 1);
4576 t2 = expand_binop (compute_mode, and_optab, op0,
4577 gen_int_mode (d - 1, compute_mode),
4578 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4579 t3 = gen_reg_rtx (compute_mode);
4580 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4581 compute_mode, 1, 1);
4582 if (t3 == 0)
4584 rtx_code_label *lab;
4585 lab = gen_label_rtx ();
4586 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4587 expand_inc (t1, const1_rtx);
4588 emit_label (lab);
4589 quotient = t1;
4591 else
4592 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4593 t1, t3),
4594 tquotient);
4595 break;
4598 /* Try using an instruction that produces both the quotient and
4599 remainder, using truncation. We can easily compensate the
4600 quotient or remainder to get ceiling rounding, once we have the
4601 remainder. Notice that we compute also the final remainder
4602 value here, and return the result right away. */
4603 if (target == 0 || GET_MODE (target) != compute_mode)
4604 target = gen_reg_rtx (compute_mode);
4606 if (rem_flag)
4608 remainder = (REG_P (target)
4609 ? target : gen_reg_rtx (compute_mode));
4610 quotient = gen_reg_rtx (compute_mode);
4612 else
4614 quotient = (REG_P (target)
4615 ? target : gen_reg_rtx (compute_mode));
4616 remainder = gen_reg_rtx (compute_mode);
4619 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4620 remainder, 1))
4622 /* This could be computed with a branch-less sequence.
4623 Save that for later. */
4624 rtx_code_label *label = gen_label_rtx ();
4625 do_cmp_and_jump (remainder, const0_rtx, EQ,
4626 compute_mode, label);
4627 expand_inc (quotient, const1_rtx);
4628 expand_dec (remainder, op1);
4629 emit_label (label);
4630 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4633 /* No luck with division elimination or divmod. Have to do it
4634 by conditionally adjusting op0 *and* the result. */
4636 rtx_code_label *label1, *label2;
4637 rtx adjusted_op0, tem;
4639 quotient = gen_reg_rtx (compute_mode);
4640 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4641 label1 = gen_label_rtx ();
4642 label2 = gen_label_rtx ();
4643 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4644 compute_mode, label1);
4645 emit_move_insn (quotient, const0_rtx);
4646 emit_jump_insn (targetm.gen_jump (label2));
4647 emit_barrier ();
4648 emit_label (label1);
4649 expand_dec (adjusted_op0, const1_rtx);
4650 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4651 quotient, 1, OPTAB_LIB_WIDEN);
4652 if (tem != quotient)
4653 emit_move_insn (quotient, tem);
4654 expand_inc (quotient, const1_rtx);
4655 emit_label (label2);
4658 else /* signed */
4660 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4661 && INTVAL (op1) >= 0)
4663 /* This is extremely similar to the code for the unsigned case
4664 above. For 2.7 we should merge these variants, but for
4665 2.6.1 I don't want to touch the code for unsigned since that
4666 get used in C. The signed case will only be used by other
4667 languages (Ada). */
4669 rtx t1, t2, t3;
4670 unsigned HOST_WIDE_INT d = INTVAL (op1);
4671 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4672 floor_log2 (d), tquotient, 0);
4673 t2 = expand_binop (compute_mode, and_optab, op0,
4674 gen_int_mode (d - 1, compute_mode),
4675 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4676 t3 = gen_reg_rtx (compute_mode);
4677 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4678 compute_mode, 1, 1);
4679 if (t3 == 0)
4681 rtx_code_label *lab;
4682 lab = gen_label_rtx ();
4683 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4684 expand_inc (t1, const1_rtx);
4685 emit_label (lab);
4686 quotient = t1;
4688 else
4689 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4690 t1, t3),
4691 tquotient);
4692 break;
4695 /* Try using an instruction that produces both the quotient and
4696 remainder, using truncation. We can easily compensate the
4697 quotient or remainder to get ceiling rounding, once we have the
4698 remainder. Notice that we compute also the final remainder
4699 value here, and return the result right away. */
4700 if (target == 0 || GET_MODE (target) != compute_mode)
4701 target = gen_reg_rtx (compute_mode);
4702 if (rem_flag)
4704 remainder= (REG_P (target)
4705 ? target : gen_reg_rtx (compute_mode));
4706 quotient = gen_reg_rtx (compute_mode);
4708 else
4710 quotient = (REG_P (target)
4711 ? target : gen_reg_rtx (compute_mode));
4712 remainder = gen_reg_rtx (compute_mode);
4715 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4716 remainder, 0))
4718 /* This could be computed with a branch-less sequence.
4719 Save that for later. */
4720 rtx tem;
4721 rtx_code_label *label = gen_label_rtx ();
4722 do_cmp_and_jump (remainder, const0_rtx, EQ,
4723 compute_mode, label);
4724 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4725 NULL_RTX, 0, OPTAB_WIDEN);
4726 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4727 expand_inc (quotient, const1_rtx);
4728 expand_dec (remainder, op1);
4729 emit_label (label);
4730 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4733 /* No luck with division elimination or divmod. Have to do it
4734 by conditionally adjusting op0 *and* the result. */
4736 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4737 rtx adjusted_op0;
4738 rtx tem;
4740 quotient = gen_reg_rtx (compute_mode);
4741 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4742 label1 = gen_label_rtx ();
4743 label2 = gen_label_rtx ();
4744 label3 = gen_label_rtx ();
4745 label4 = gen_label_rtx ();
4746 label5 = gen_label_rtx ();
4747 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4748 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4749 compute_mode, label1);
4750 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4751 quotient, 0, OPTAB_LIB_WIDEN);
4752 if (tem != quotient)
4753 emit_move_insn (quotient, tem);
4754 emit_jump_insn (targetm.gen_jump (label5));
4755 emit_barrier ();
4756 emit_label (label1);
4757 expand_dec (adjusted_op0, const1_rtx);
4758 emit_jump_insn (targetm.gen_jump (label4));
4759 emit_barrier ();
4760 emit_label (label2);
4761 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4762 compute_mode, label3);
4763 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4764 quotient, 0, OPTAB_LIB_WIDEN);
4765 if (tem != quotient)
4766 emit_move_insn (quotient, tem);
4767 emit_jump_insn (targetm.gen_jump (label5));
4768 emit_barrier ();
4769 emit_label (label3);
4770 expand_inc (adjusted_op0, const1_rtx);
4771 emit_label (label4);
4772 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4773 quotient, 0, OPTAB_LIB_WIDEN);
4774 if (tem != quotient)
4775 emit_move_insn (quotient, tem);
4776 expand_inc (quotient, const1_rtx);
4777 emit_label (label5);
4780 break;
4782 case EXACT_DIV_EXPR:
4783 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4785 HOST_WIDE_INT d = INTVAL (op1);
4786 unsigned HOST_WIDE_INT ml;
4787 int pre_shift;
4788 rtx t1;
4790 pre_shift = floor_log2 (d & -d);
4791 ml = invert_mod2n (d >> pre_shift, size);
4792 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4793 pre_shift, NULL_RTX, unsignedp);
4794 quotient = expand_mult (compute_mode, t1,
4795 gen_int_mode (ml, compute_mode),
4796 NULL_RTX, 1);
4798 insn = get_last_insn ();
4799 set_dst_reg_note (insn, REG_EQUAL,
4800 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4801 compute_mode, op0, op1),
4802 quotient);
4804 break;
4806 case ROUND_DIV_EXPR:
4807 case ROUND_MOD_EXPR:
4808 if (unsignedp)
4810 rtx tem;
4811 rtx_code_label *label;
4812 label = gen_label_rtx ();
4813 quotient = gen_reg_rtx (compute_mode);
4814 remainder = gen_reg_rtx (compute_mode);
4815 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4817 rtx tem;
4818 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4819 quotient, 1, OPTAB_LIB_WIDEN);
4820 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4821 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4822 remainder, 1, OPTAB_LIB_WIDEN);
4824 tem = plus_constant (compute_mode, op1, -1);
4825 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4826 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4827 expand_inc (quotient, const1_rtx);
4828 expand_dec (remainder, op1);
4829 emit_label (label);
4831 else
4833 rtx abs_rem, abs_op1, tem, mask;
4834 rtx_code_label *label;
4835 label = gen_label_rtx ();
4836 quotient = gen_reg_rtx (compute_mode);
4837 remainder = gen_reg_rtx (compute_mode);
4838 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4840 rtx tem;
4841 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4842 quotient, 0, OPTAB_LIB_WIDEN);
4843 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4844 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4845 remainder, 0, OPTAB_LIB_WIDEN);
4847 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4848 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4849 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4850 1, NULL_RTX, 1);
4851 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4852 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4853 NULL_RTX, 0, OPTAB_WIDEN);
4854 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4855 size - 1, NULL_RTX, 0);
4856 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4857 NULL_RTX, 0, OPTAB_WIDEN);
4858 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4859 NULL_RTX, 0, OPTAB_WIDEN);
4860 expand_inc (quotient, tem);
4861 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4862 NULL_RTX, 0, OPTAB_WIDEN);
4863 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4864 NULL_RTX, 0, OPTAB_WIDEN);
4865 expand_dec (remainder, tem);
4866 emit_label (label);
4868 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4870 default:
4871 gcc_unreachable ();
4874 if (quotient == 0)
4876 if (target && GET_MODE (target) != compute_mode)
4877 target = 0;
4879 if (rem_flag)
4881 /* Try to produce the remainder without producing the quotient.
4882 If we seem to have a divmod pattern that does not require widening,
4883 don't try widening here. We should really have a WIDEN argument
4884 to expand_twoval_binop, since what we'd really like to do here is
4885 1) try a mod insn in compute_mode
4886 2) try a divmod insn in compute_mode
4887 3) try a div insn in compute_mode and multiply-subtract to get
4888 remainder
4889 4) try the same things with widening allowed. */
4890 remainder
4891 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4892 op0, op1, target,
4893 unsignedp,
4894 ((optab_handler (optab2, compute_mode)
4895 != CODE_FOR_nothing)
4896 ? OPTAB_DIRECT : OPTAB_WIDEN));
4897 if (remainder == 0)
4899 /* No luck there. Can we do remainder and divide at once
4900 without a library call? */
4901 remainder = gen_reg_rtx (compute_mode);
4902 if (! expand_twoval_binop ((unsignedp
4903 ? udivmod_optab
4904 : sdivmod_optab),
4905 op0, op1,
4906 NULL_RTX, remainder, unsignedp))
4907 remainder = 0;
4910 if (remainder)
4911 return gen_lowpart (mode, remainder);
4914 /* Produce the quotient. Try a quotient insn, but not a library call.
4915 If we have a divmod in this mode, use it in preference to widening
4916 the div (for this test we assume it will not fail). Note that optab2
4917 is set to the one of the two optabs that the call below will use. */
4918 quotient
4919 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4920 op0, op1, rem_flag ? NULL_RTX : target,
4921 unsignedp,
4922 ((optab_handler (optab2, compute_mode)
4923 != CODE_FOR_nothing)
4924 ? OPTAB_DIRECT : OPTAB_WIDEN));
4926 if (quotient == 0)
4928 /* No luck there. Try a quotient-and-remainder insn,
4929 keeping the quotient alone. */
4930 quotient = gen_reg_rtx (compute_mode);
4931 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4932 op0, op1,
4933 quotient, NULL_RTX, unsignedp))
4935 quotient = 0;
4936 if (! rem_flag)
4937 /* Still no luck. If we are not computing the remainder,
4938 use a library call for the quotient. */
4939 quotient = sign_expand_binop (compute_mode,
4940 udiv_optab, sdiv_optab,
4941 op0, op1, target,
4942 unsignedp, OPTAB_LIB_WIDEN);
4947 if (rem_flag)
4949 if (target && GET_MODE (target) != compute_mode)
4950 target = 0;
4952 if (quotient == 0)
4954 /* No divide instruction either. Use library for remainder. */
4955 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4956 op0, op1, target,
4957 unsignedp, OPTAB_LIB_WIDEN);
4958 /* No remainder function. Try a quotient-and-remainder
4959 function, keeping the remainder. */
4960 if (!remainder)
4962 remainder = gen_reg_rtx (compute_mode);
4963 if (!expand_twoval_binop_libfunc
4964 (unsignedp ? udivmod_optab : sdivmod_optab,
4965 op0, op1,
4966 NULL_RTX, remainder,
4967 unsignedp ? UMOD : MOD))
4968 remainder = NULL_RTX;
4971 else
4973 /* We divided. Now finish doing X - Y * (X / Y). */
4974 remainder = expand_mult (compute_mode, quotient, op1,
4975 NULL_RTX, unsignedp);
4976 remainder = expand_binop (compute_mode, sub_optab, op0,
4977 remainder, target, unsignedp,
4978 OPTAB_LIB_WIDEN);
4982 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4985 /* Return a tree node with data type TYPE, describing the value of X.
4986 Usually this is an VAR_DECL, if there is no obvious better choice.
4987 X may be an expression, however we only support those expressions
4988 generated by loop.c. */
4990 tree
4991 make_tree (tree type, rtx x)
4993 tree t;
4995 switch (GET_CODE (x))
4997 case CONST_INT:
4998 case CONST_WIDE_INT:
4999 t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
5000 return t;
5002 case CONST_DOUBLE:
5003 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5004 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5005 t = wide_int_to_tree (type,
5006 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5007 HOST_BITS_PER_WIDE_INT * 2));
5008 else
5010 REAL_VALUE_TYPE d;
5012 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5013 t = build_real (type, d);
5016 return t;
5018 case CONST_VECTOR:
5020 int units = CONST_VECTOR_NUNITS (x);
5021 tree itype = TREE_TYPE (type);
5022 tree *elts;
5023 int i;
5025 /* Build a tree with vector elements. */
5026 elts = XALLOCAVEC (tree, units);
5027 for (i = units - 1; i >= 0; --i)
5029 rtx elt = CONST_VECTOR_ELT (x, i);
5030 elts[i] = make_tree (itype, elt);
5033 return build_vector (type, elts);
5036 case PLUS:
5037 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5038 make_tree (type, XEXP (x, 1)));
5040 case MINUS:
5041 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5042 make_tree (type, XEXP (x, 1)));
5044 case NEG:
5045 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5047 case MULT:
5048 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5049 make_tree (type, XEXP (x, 1)));
5051 case ASHIFT:
5052 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5053 make_tree (type, XEXP (x, 1)));
5055 case LSHIFTRT:
5056 t = unsigned_type_for (type);
5057 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5058 make_tree (t, XEXP (x, 0)),
5059 make_tree (type, XEXP (x, 1))));
5061 case ASHIFTRT:
5062 t = signed_type_for (type);
5063 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5064 make_tree (t, XEXP (x, 0)),
5065 make_tree (type, XEXP (x, 1))));
5067 case DIV:
5068 if (TREE_CODE (type) != REAL_TYPE)
5069 t = signed_type_for (type);
5070 else
5071 t = type;
5073 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5074 make_tree (t, XEXP (x, 0)),
5075 make_tree (t, XEXP (x, 1))));
5076 case UDIV:
5077 t = unsigned_type_for (type);
5078 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5079 make_tree (t, XEXP (x, 0)),
5080 make_tree (t, XEXP (x, 1))));
5082 case SIGN_EXTEND:
5083 case ZERO_EXTEND:
5084 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5085 GET_CODE (x) == ZERO_EXTEND);
5086 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5088 case CONST:
5089 return make_tree (type, XEXP (x, 0));
5091 case SYMBOL_REF:
5092 t = SYMBOL_REF_DECL (x);
5093 if (t)
5094 return fold_convert (type, build_fold_addr_expr (t));
5095 /* else fall through. */
5097 default:
5098 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5100 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5101 address mode to pointer mode. */
5102 if (POINTER_TYPE_P (type))
5103 x = convert_memory_address_addr_space
5104 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5106 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5107 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5108 t->decl_with_rtl.rtl = x;
5110 return t;
5114 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5115 and returning TARGET.
5117 If TARGET is 0, a pseudo-register or constant is returned. */
5120 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5122 rtx tem = 0;
5124 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5125 tem = simplify_binary_operation (AND, mode, op0, op1);
5126 if (tem == 0)
5127 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5129 if (target == 0)
5130 target = tem;
5131 else if (tem != target)
5132 emit_move_insn (target, tem);
5133 return target;
5136 /* Helper function for emit_store_flag. */
5138 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5139 machine_mode mode, machine_mode compare_mode,
5140 int unsignedp, rtx x, rtx y, int normalizep,
5141 machine_mode target_mode)
5143 struct expand_operand ops[4];
5144 rtx op0, comparison, subtarget;
5145 rtx_insn *last;
5146 machine_mode result_mode = targetm.cstore_mode (icode);
5148 last = get_last_insn ();
5149 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5150 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5151 if (!x || !y)
5153 delete_insns_since (last);
5154 return NULL_RTX;
5157 if (target_mode == VOIDmode)
5158 target_mode = result_mode;
5159 if (!target)
5160 target = gen_reg_rtx (target_mode);
5162 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5164 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5165 create_fixed_operand (&ops[1], comparison);
5166 create_fixed_operand (&ops[2], x);
5167 create_fixed_operand (&ops[3], y);
5168 if (!maybe_expand_insn (icode, 4, ops))
5170 delete_insns_since (last);
5171 return NULL_RTX;
5173 subtarget = ops[0].value;
5175 /* If we are converting to a wider mode, first convert to
5176 TARGET_MODE, then normalize. This produces better combining
5177 opportunities on machines that have a SIGN_EXTRACT when we are
5178 testing a single bit. This mostly benefits the 68k.
5180 If STORE_FLAG_VALUE does not have the sign bit set when
5181 interpreted in MODE, we can do this conversion as unsigned, which
5182 is usually more efficient. */
5183 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5185 convert_move (target, subtarget,
5186 val_signbit_known_clear_p (result_mode,
5187 STORE_FLAG_VALUE));
5188 op0 = target;
5189 result_mode = target_mode;
5191 else
5192 op0 = subtarget;
5194 /* If we want to keep subexpressions around, don't reuse our last
5195 target. */
5196 if (optimize)
5197 subtarget = 0;
5199 /* Now normalize to the proper value in MODE. Sometimes we don't
5200 have to do anything. */
5201 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5203 /* STORE_FLAG_VALUE might be the most negative number, so write
5204 the comparison this way to avoid a compiler-time warning. */
5205 else if (- normalizep == STORE_FLAG_VALUE)
5206 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5208 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5209 it hard to use a value of just the sign bit due to ANSI integer
5210 constant typing rules. */
5211 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5212 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5213 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5214 normalizep == 1);
5215 else
5217 gcc_assert (STORE_FLAG_VALUE & 1);
5219 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5220 if (normalizep == -1)
5221 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5224 /* If we were converting to a smaller mode, do the conversion now. */
5225 if (target_mode != result_mode)
5227 convert_move (target, op0, 0);
5228 return target;
5230 else
5231 return op0;
5235 /* A subroutine of emit_store_flag only including "tricks" that do not
5236 need a recursive call. These are kept separate to avoid infinite
5237 loops. */
5239 static rtx
5240 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5241 machine_mode mode, int unsignedp, int normalizep,
5242 machine_mode target_mode)
5244 rtx subtarget;
5245 enum insn_code icode;
5246 machine_mode compare_mode;
5247 enum mode_class mclass;
5248 enum rtx_code scode;
5250 if (unsignedp)
5251 code = unsigned_condition (code);
5252 scode = swap_condition (code);
5254 /* If one operand is constant, make it the second one. Only do this
5255 if the other operand is not constant as well. */
5257 if (swap_commutative_operands_p (op0, op1))
5259 std::swap (op0, op1);
5260 code = swap_condition (code);
5263 if (mode == VOIDmode)
5264 mode = GET_MODE (op0);
5266 /* For some comparisons with 1 and -1, we can convert this to
5267 comparisons with zero. This will often produce more opportunities for
5268 store-flag insns. */
5270 switch (code)
5272 case LT:
5273 if (op1 == const1_rtx)
5274 op1 = const0_rtx, code = LE;
5275 break;
5276 case LE:
5277 if (op1 == constm1_rtx)
5278 op1 = const0_rtx, code = LT;
5279 break;
5280 case GE:
5281 if (op1 == const1_rtx)
5282 op1 = const0_rtx, code = GT;
5283 break;
5284 case GT:
5285 if (op1 == constm1_rtx)
5286 op1 = const0_rtx, code = GE;
5287 break;
5288 case GEU:
5289 if (op1 == const1_rtx)
5290 op1 = const0_rtx, code = NE;
5291 break;
5292 case LTU:
5293 if (op1 == const1_rtx)
5294 op1 = const0_rtx, code = EQ;
5295 break;
5296 default:
5297 break;
5300 /* If we are comparing a double-word integer with zero or -1, we can
5301 convert the comparison into one involving a single word. */
5302 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5303 && GET_MODE_CLASS (mode) == MODE_INT
5304 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5306 rtx tem;
5307 if ((code == EQ || code == NE)
5308 && (op1 == const0_rtx || op1 == constm1_rtx))
5310 rtx op00, op01;
5312 /* Do a logical OR or AND of the two words and compare the
5313 result. */
5314 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5315 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5316 tem = expand_binop (word_mode,
5317 op1 == const0_rtx ? ior_optab : and_optab,
5318 op00, op01, NULL_RTX, unsignedp,
5319 OPTAB_DIRECT);
5321 if (tem != 0)
5322 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5323 unsignedp, normalizep);
5325 else if ((code == LT || code == GE) && op1 == const0_rtx)
5327 rtx op0h;
5329 /* If testing the sign bit, can just test on high word. */
5330 op0h = simplify_gen_subreg (word_mode, op0, mode,
5331 subreg_highpart_offset (word_mode,
5332 mode));
5333 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5334 unsignedp, normalizep);
5336 else
5337 tem = NULL_RTX;
5339 if (tem)
5341 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5342 return tem;
5343 if (!target)
5344 target = gen_reg_rtx (target_mode);
5346 convert_move (target, tem,
5347 !val_signbit_known_set_p (word_mode,
5348 (normalizep ? normalizep
5349 : STORE_FLAG_VALUE)));
5350 return target;
5354 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5355 complement of A (for GE) and shifting the sign bit to the low bit. */
5356 if (op1 == const0_rtx && (code == LT || code == GE)
5357 && GET_MODE_CLASS (mode) == MODE_INT
5358 && (normalizep || STORE_FLAG_VALUE == 1
5359 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5361 subtarget = target;
5363 if (!target)
5364 target_mode = mode;
5366 /* If the result is to be wider than OP0, it is best to convert it
5367 first. If it is to be narrower, it is *incorrect* to convert it
5368 first. */
5369 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5371 op0 = convert_modes (target_mode, mode, op0, 0);
5372 mode = target_mode;
5375 if (target_mode != mode)
5376 subtarget = 0;
5378 if (code == GE)
5379 op0 = expand_unop (mode, one_cmpl_optab, op0,
5380 ((STORE_FLAG_VALUE == 1 || normalizep)
5381 ? 0 : subtarget), 0);
5383 if (STORE_FLAG_VALUE == 1 || normalizep)
5384 /* If we are supposed to produce a 0/1 value, we want to do
5385 a logical shift from the sign bit to the low-order bit; for
5386 a -1/0 value, we do an arithmetic shift. */
5387 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5388 GET_MODE_BITSIZE (mode) - 1,
5389 subtarget, normalizep != -1);
5391 if (mode != target_mode)
5392 op0 = convert_modes (target_mode, mode, op0, 0);
5394 return op0;
5397 mclass = GET_MODE_CLASS (mode);
5398 for (compare_mode = mode; compare_mode != VOIDmode;
5399 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5401 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5402 icode = optab_handler (cstore_optab, optab_mode);
5403 if (icode != CODE_FOR_nothing)
5405 do_pending_stack_adjust ();
5406 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5407 unsignedp, op0, op1, normalizep, target_mode);
5408 if (tem)
5409 return tem;
5411 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5413 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5414 unsignedp, op1, op0, normalizep, target_mode);
5415 if (tem)
5416 return tem;
5418 break;
5422 return 0;
5425 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5426 and storing in TARGET. Normally return TARGET.
5427 Return 0 if that cannot be done.
5429 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5430 it is VOIDmode, they cannot both be CONST_INT.
5432 UNSIGNEDP is for the case where we have to widen the operands
5433 to perform the operation. It says to use zero-extension.
5435 NORMALIZEP is 1 if we should convert the result to be either zero
5436 or one. Normalize is -1 if we should convert the result to be
5437 either zero or -1. If NORMALIZEP is zero, the result will be left
5438 "raw" out of the scc insn. */
5441 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5442 machine_mode mode, int unsignedp, int normalizep)
5444 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5445 enum rtx_code rcode;
5446 rtx subtarget;
5447 rtx tem, trueval;
5448 rtx_insn *last;
5450 /* If we compare constants, we shouldn't use a store-flag operation,
5451 but a constant load. We can get there via the vanilla route that
5452 usually generates a compare-branch sequence, but will in this case
5453 fold the comparison to a constant, and thus elide the branch. */
5454 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5455 return NULL_RTX;
5457 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5458 target_mode);
5459 if (tem)
5460 return tem;
5462 /* If we reached here, we can't do this with a scc insn, however there
5463 are some comparisons that can be done in other ways. Don't do any
5464 of these cases if branches are very cheap. */
5465 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5466 return 0;
5468 /* See what we need to return. We can only return a 1, -1, or the
5469 sign bit. */
5471 if (normalizep == 0)
5473 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5474 normalizep = STORE_FLAG_VALUE;
5476 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5478 else
5479 return 0;
5482 last = get_last_insn ();
5484 /* If optimizing, use different pseudo registers for each insn, instead
5485 of reusing the same pseudo. This leads to better CSE, but slows
5486 down the compiler, since there are more pseudos */
5487 subtarget = (!optimize
5488 && (target_mode == mode)) ? target : NULL_RTX;
5489 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5491 /* For floating-point comparisons, try the reverse comparison or try
5492 changing the "orderedness" of the comparison. */
5493 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5495 enum rtx_code first_code;
5496 bool and_them;
5498 rcode = reverse_condition_maybe_unordered (code);
5499 if (can_compare_p (rcode, mode, ccp_store_flag)
5500 && (code == ORDERED || code == UNORDERED
5501 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5502 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5504 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5505 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5507 /* For the reverse comparison, use either an addition or a XOR. */
5508 if (want_add
5509 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5510 optimize_insn_for_speed_p ()) == 0)
5512 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5513 STORE_FLAG_VALUE, target_mode);
5514 if (tem)
5515 return expand_binop (target_mode, add_optab, tem,
5516 gen_int_mode (normalizep, target_mode),
5517 target, 0, OPTAB_WIDEN);
5519 else if (!want_add
5520 && rtx_cost (trueval, mode, XOR, 1,
5521 optimize_insn_for_speed_p ()) == 0)
5523 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5524 normalizep, target_mode);
5525 if (tem)
5526 return expand_binop (target_mode, xor_optab, tem, trueval,
5527 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5531 delete_insns_since (last);
5533 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5534 if (code == ORDERED || code == UNORDERED)
5535 return 0;
5537 and_them = split_comparison (code, mode, &first_code, &code);
5539 /* If there are no NaNs, the first comparison should always fall through.
5540 Effectively change the comparison to the other one. */
5541 if (!HONOR_NANS (mode))
5543 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5544 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5545 target_mode);
5548 if (!HAVE_conditional_move)
5549 return 0;
5551 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5552 conditional move. */
5553 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5554 normalizep, target_mode);
5555 if (tem == 0)
5556 return 0;
5558 if (and_them)
5559 tem = emit_conditional_move (target, code, op0, op1, mode,
5560 tem, const0_rtx, GET_MODE (tem), 0);
5561 else
5562 tem = emit_conditional_move (target, code, op0, op1, mode,
5563 trueval, tem, GET_MODE (tem), 0);
5565 if (tem == 0)
5566 delete_insns_since (last);
5567 return tem;
5570 /* The remaining tricks only apply to integer comparisons. */
5572 if (GET_MODE_CLASS (mode) != MODE_INT)
5573 return 0;
5575 /* If this is an equality comparison of integers, we can try to exclusive-or
5576 (or subtract) the two operands and use a recursive call to try the
5577 comparison with zero. Don't do any of these cases if branches are
5578 very cheap. */
5580 if ((code == EQ || code == NE) && op1 != const0_rtx)
5582 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5583 OPTAB_WIDEN);
5585 if (tem == 0)
5586 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5587 OPTAB_WIDEN);
5588 if (tem != 0)
5589 tem = emit_store_flag (target, code, tem, const0_rtx,
5590 mode, unsignedp, normalizep);
5591 if (tem != 0)
5592 return tem;
5594 delete_insns_since (last);
5597 /* For integer comparisons, try the reverse comparison. However, for
5598 small X and if we'd have anyway to extend, implementing "X != 0"
5599 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5600 rcode = reverse_condition (code);
5601 if (can_compare_p (rcode, mode, ccp_store_flag)
5602 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5603 && code == NE
5604 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5605 && op1 == const0_rtx))
5607 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5608 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5610 /* Again, for the reverse comparison, use either an addition or a XOR. */
5611 if (want_add
5612 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5613 optimize_insn_for_speed_p ()) == 0)
5615 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5616 STORE_FLAG_VALUE, target_mode);
5617 if (tem != 0)
5618 tem = expand_binop (target_mode, add_optab, tem,
5619 gen_int_mode (normalizep, target_mode),
5620 target, 0, OPTAB_WIDEN);
5622 else if (!want_add
5623 && rtx_cost (trueval, mode, XOR, 1,
5624 optimize_insn_for_speed_p ()) == 0)
5626 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5627 normalizep, target_mode);
5628 if (tem != 0)
5629 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5630 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5633 if (tem != 0)
5634 return tem;
5635 delete_insns_since (last);
5638 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5639 the constant zero. Reject all other comparisons at this point. Only
5640 do LE and GT if branches are expensive since they are expensive on
5641 2-operand machines. */
5643 if (op1 != const0_rtx
5644 || (code != EQ && code != NE
5645 && (BRANCH_COST (optimize_insn_for_speed_p (),
5646 false) <= 1 || (code != LE && code != GT))))
5647 return 0;
5649 /* Try to put the result of the comparison in the sign bit. Assume we can't
5650 do the necessary operation below. */
5652 tem = 0;
5654 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5655 the sign bit set. */
5657 if (code == LE)
5659 /* This is destructive, so SUBTARGET can't be OP0. */
5660 if (rtx_equal_p (subtarget, op0))
5661 subtarget = 0;
5663 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5664 OPTAB_WIDEN);
5665 if (tem)
5666 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5667 OPTAB_WIDEN);
5670 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5671 number of bits in the mode of OP0, minus one. */
5673 if (code == GT)
5675 if (rtx_equal_p (subtarget, op0))
5676 subtarget = 0;
5678 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5679 GET_MODE_BITSIZE (mode) - 1,
5680 subtarget, 0);
5681 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5682 OPTAB_WIDEN);
5685 if (code == EQ || code == NE)
5687 /* For EQ or NE, one way to do the comparison is to apply an operation
5688 that converts the operand into a positive number if it is nonzero
5689 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5690 for NE we negate. This puts the result in the sign bit. Then we
5691 normalize with a shift, if needed.
5693 Two operations that can do the above actions are ABS and FFS, so try
5694 them. If that doesn't work, and MODE is smaller than a full word,
5695 we can use zero-extension to the wider mode (an unsigned conversion)
5696 as the operation. */
5698 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5699 that is compensated by the subsequent overflow when subtracting
5700 one / negating. */
5702 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5703 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5704 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5705 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5706 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5708 tem = convert_modes (word_mode, mode, op0, 1);
5709 mode = word_mode;
5712 if (tem != 0)
5714 if (code == EQ)
5715 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5716 0, OPTAB_WIDEN);
5717 else
5718 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5721 /* If we couldn't do it that way, for NE we can "or" the two's complement
5722 of the value with itself. For EQ, we take the one's complement of
5723 that "or", which is an extra insn, so we only handle EQ if branches
5724 are expensive. */
5726 if (tem == 0
5727 && (code == NE
5728 || BRANCH_COST (optimize_insn_for_speed_p (),
5729 false) > 1))
5731 if (rtx_equal_p (subtarget, op0))
5732 subtarget = 0;
5734 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5735 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5736 OPTAB_WIDEN);
5738 if (tem && code == EQ)
5739 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5743 if (tem && normalizep)
5744 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5745 GET_MODE_BITSIZE (mode) - 1,
5746 subtarget, normalizep == 1);
5748 if (tem)
5750 if (!target)
5752 else if (GET_MODE (tem) != target_mode)
5754 convert_move (target, tem, 0);
5755 tem = target;
5757 else if (!subtarget)
5759 emit_move_insn (target, tem);
5760 tem = target;
5763 else
5764 delete_insns_since (last);
5766 return tem;
5769 /* Like emit_store_flag, but always succeeds. */
5772 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5773 machine_mode mode, int unsignedp, int normalizep)
5775 rtx tem;
5776 rtx_code_label *label;
5777 rtx trueval, falseval;
5779 /* First see if emit_store_flag can do the job. */
5780 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5781 if (tem != 0)
5782 return tem;
5784 if (!target)
5785 target = gen_reg_rtx (word_mode);
5787 /* If this failed, we have to do this with set/compare/jump/set code.
5788 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5789 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5790 if (code == NE
5791 && GET_MODE_CLASS (mode) == MODE_INT
5792 && REG_P (target)
5793 && op0 == target
5794 && op1 == const0_rtx)
5796 label = gen_label_rtx ();
5797 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
5798 NULL_RTX, NULL, label, -1);
5799 emit_move_insn (target, trueval);
5800 emit_label (label);
5801 return target;
5804 if (!REG_P (target)
5805 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5806 target = gen_reg_rtx (GET_MODE (target));
5808 /* Jump in the right direction if the target cannot implement CODE
5809 but can jump on its reverse condition. */
5810 falseval = const0_rtx;
5811 if (! can_compare_p (code, mode, ccp_jump)
5812 && (! FLOAT_MODE_P (mode)
5813 || code == ORDERED || code == UNORDERED
5814 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5815 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5817 enum rtx_code rcode;
5818 if (FLOAT_MODE_P (mode))
5819 rcode = reverse_condition_maybe_unordered (code);
5820 else
5821 rcode = reverse_condition (code);
5823 /* Canonicalize to UNORDERED for the libcall. */
5824 if (can_compare_p (rcode, mode, ccp_jump)
5825 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5827 falseval = trueval;
5828 trueval = const0_rtx;
5829 code = rcode;
5833 emit_move_insn (target, trueval);
5834 label = gen_label_rtx ();
5835 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
5836 label, -1);
5838 emit_move_insn (target, falseval);
5839 emit_label (label);
5841 return target;
5844 /* Perform possibly multi-word comparison and conditional jump to LABEL
5845 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5846 now a thin wrapper around do_compare_rtx_and_jump. */
5848 static void
5849 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5850 rtx_code_label *label)
5852 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5853 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
5854 NULL, label, -1);