Use sreal::nearest_int
[official-gcc.git] / gcc / predict.cc
blob6777e6cb9c5216b0f6e454b065adaa4fd9045a50
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57 #include "ipa-utils.h"
58 #include "gimple-pretty-print.h"
59 #include "selftest.h"
60 #include "cfgrtl.h"
61 #include "stringpool.h"
62 #include "attribs.h"
64 /* Enum with reasons why a predictor is ignored. */
66 enum predictor_reason
68 REASON_NONE,
69 REASON_IGNORED,
70 REASON_SINGLE_EDGE_DUPLICATE,
71 REASON_EDGE_PAIR_DUPLICATE
74 /* String messages for the aforementioned enum. */
76 static const char *reason_messages[] = {"", " (ignored)",
77 " (single edge duplicate)", " (edge pair duplicate)"};
80 static void combine_predictions_for_insn (rtx_insn *, basic_block);
81 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83 static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 class loop *in_loop = NULL);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 class loop *in_loop = NULL);
89 static bool can_predict_insn_p (const rtx_insn *);
90 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
91 static void determine_unlikely_bbs ();
92 static void estimate_bb_frequencies ();
94 /* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
97 struct predictor_info
99 const char *const name; /* Name used in the debugging dumps. */
100 const int hitrate; /* Expected hitrate used by
101 predict_insn_def call. */
102 const int flags;
105 /* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107 #define PRED_FLAG_FIRST_MATCH 1
109 /* Recompute hitrate in percent to our representation. */
111 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
113 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
114 static const struct predictor_info predictor_info[]= {
115 #include "predict.def"
117 /* Upper bound on predictors. */
118 {NULL, 0, 0}
120 #undef DEF_PREDICTOR
122 static gcov_type min_count = -1;
124 /* Determine the threshold for hot BB counts. */
126 gcov_type
127 get_hot_bb_threshold ()
129 if (min_count == -1)
131 const int hot_frac = param_hot_bb_count_fraction;
132 const gcov_type min_hot_count
133 = hot_frac
134 ? profile_info->sum_max / hot_frac
135 : (gcov_type)profile_count::max_count;
136 set_hot_bb_threshold (min_hot_count);
137 if (dump_file)
138 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
139 min_hot_count);
141 return min_count;
144 /* Set the threshold for hot BB counts. */
146 void
147 set_hot_bb_threshold (gcov_type min)
149 min_count = min;
152 /* Return TRUE if COUNT is considered to be hot in function FUN. */
154 bool
155 maybe_hot_count_p (struct function *fun, profile_count count)
157 if (!count.initialized_p ())
158 return true;
159 if (count.ipa () == profile_count::zero ())
160 return false;
161 if (!count.ipa_p ())
163 struct cgraph_node *node = cgraph_node::get (fun->decl);
164 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
166 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
167 return false;
168 if (node->frequency == NODE_FREQUENCY_HOT)
169 return true;
171 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
172 return true;
173 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
174 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
175 return false;
176 if (count * param_hot_bb_frequency_fraction
177 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
178 return false;
179 return true;
181 /* Code executed at most once is not hot. */
182 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
183 return false;
184 return (count >= get_hot_bb_threshold ());
187 /* Return true if basic block BB of function FUN can be CPU intensive
188 and should thus be optimized for maximum performance. */
190 bool
191 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
193 gcc_checking_assert (fun);
194 return maybe_hot_count_p (fun, bb->count);
197 /* Return true if edge E can be CPU intensive and should thus be optimized
198 for maximum performance. */
200 bool
201 maybe_hot_edge_p (edge e)
203 return maybe_hot_count_p (cfun, e->count ());
206 /* Return true if COUNT is considered to be never executed in function FUN
207 or if function FUN is considered so in the static profile. */
209 static bool
210 probably_never_executed (struct function *fun, profile_count count)
212 gcc_checking_assert (fun);
213 if (count.ipa () == profile_count::zero ())
214 return true;
215 /* Do not trust adjusted counts. This will make us to drop int cold section
216 code with low execution count as a result of inlining. These low counts
217 are not safe even with read profile and may lead us to dropping
218 code which actually gets executed into cold section of binary that is not
219 desirable. */
220 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
222 const int unlikely_frac = param_unlikely_bb_count_fraction;
223 if (count * unlikely_frac >= profile_info->runs)
224 return false;
225 return true;
227 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
228 && (cgraph_node::get (fun->decl)->frequency
229 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
230 return true;
231 return false;
234 /* Return true if basic block BB of function FUN is probably never executed. */
236 bool
237 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
239 return probably_never_executed (fun, bb->count);
242 /* Return true if edge E is unlikely executed for obvious reasons. */
244 static bool
245 unlikely_executed_edge_p (edge e)
247 return (e->src->count == profile_count::zero ()
248 || e->probability == profile_probability::never ())
249 || (e->flags & (EDGE_EH | EDGE_FAKE));
252 /* Return true if edge E of function FUN is probably never executed. */
254 bool
255 probably_never_executed_edge_p (struct function *fun, edge e)
257 if (unlikely_executed_edge_p (e))
258 return true;
259 return probably_never_executed (fun, e->count ());
262 /* Return true if function FUN should always be optimized for size. */
264 optimize_size_level
265 optimize_function_for_size_p (struct function *fun)
267 if (!fun || !fun->decl)
268 return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
269 cgraph_node *n = cgraph_node::get (fun->decl);
270 if (n)
271 return n->optimize_for_size_p ();
272 return OPTIMIZE_SIZE_NO;
275 /* Return true if function FUN should always be optimized for speed. */
277 bool
278 optimize_function_for_speed_p (struct function *fun)
280 return !optimize_function_for_size_p (fun);
283 /* Return the optimization type that should be used for function FUN. */
285 optimization_type
286 function_optimization_type (struct function *fun)
288 return (optimize_function_for_speed_p (fun)
289 ? OPTIMIZE_FOR_SPEED
290 : OPTIMIZE_FOR_SIZE);
293 /* Return TRUE if basic block BB should be optimized for size. */
295 optimize_size_level
296 optimize_bb_for_size_p (const_basic_block bb)
298 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
300 if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
301 ret = OPTIMIZE_SIZE_MAX;
302 if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
303 ret = OPTIMIZE_SIZE_BALANCED;
304 return ret;
307 /* Return TRUE if basic block BB should be optimized for speed. */
309 bool
310 optimize_bb_for_speed_p (const_basic_block bb)
312 return !optimize_bb_for_size_p (bb);
315 /* Return the optimization type that should be used for basic block BB. */
317 optimization_type
318 bb_optimization_type (const_basic_block bb)
320 return (optimize_bb_for_speed_p (bb)
321 ? OPTIMIZE_FOR_SPEED
322 : OPTIMIZE_FOR_SIZE);
325 /* Return TRUE if edge E should be optimized for size. */
327 optimize_size_level
328 optimize_edge_for_size_p (edge e)
330 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
332 if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
333 ret = OPTIMIZE_SIZE_MAX;
334 if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
335 ret = OPTIMIZE_SIZE_BALANCED;
336 return ret;
339 /* Return TRUE if edge E should be optimized for speed. */
341 bool
342 optimize_edge_for_speed_p (edge e)
344 return !optimize_edge_for_size_p (e);
347 /* Return TRUE if the current function is optimized for size. */
349 optimize_size_level
350 optimize_insn_for_size_p (void)
352 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
353 if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
354 ret = OPTIMIZE_SIZE_BALANCED;
355 return ret;
358 /* Return TRUE if the current function is optimized for speed. */
360 bool
361 optimize_insn_for_speed_p (void)
363 return !optimize_insn_for_size_p ();
366 /* Return the optimization type that should be used for the current
367 instruction. */
369 optimization_type
370 insn_optimization_type ()
372 return (optimize_insn_for_speed_p ()
373 ? OPTIMIZE_FOR_SPEED
374 : OPTIMIZE_FOR_SIZE);
377 /* Return TRUE if LOOP should be optimized for size. */
379 optimize_size_level
380 optimize_loop_for_size_p (class loop *loop)
382 return optimize_bb_for_size_p (loop->header);
385 /* Return TRUE if LOOP should be optimized for speed. */
387 bool
388 optimize_loop_for_speed_p (class loop *loop)
390 return optimize_bb_for_speed_p (loop->header);
393 /* Return TRUE if nest rooted at LOOP should be optimized for speed. */
395 bool
396 optimize_loop_nest_for_speed_p (class loop *loop)
398 class loop *l = loop;
399 if (optimize_loop_for_speed_p (loop))
400 return true;
401 l = loop->inner;
402 while (l && l != loop)
404 if (optimize_loop_for_speed_p (l))
405 return true;
406 if (l->inner)
407 l = l->inner;
408 else if (l->next)
409 l = l->next;
410 else
412 while (l != loop && !l->next)
413 l = loop_outer (l);
414 if (l != loop)
415 l = l->next;
418 return false;
421 /* Return TRUE if nest rooted at LOOP should be optimized for size. */
423 optimize_size_level
424 optimize_loop_nest_for_size_p (class loop *loop)
426 enum optimize_size_level ret = optimize_loop_for_size_p (loop);
427 class loop *l = loop;
429 l = loop->inner;
430 while (l && l != loop)
432 if (ret == OPTIMIZE_SIZE_NO)
433 break;
434 ret = MIN (optimize_loop_for_size_p (l), ret);
435 if (l->inner)
436 l = l->inner;
437 else if (l->next)
438 l = l->next;
439 else
441 while (l != loop && !l->next)
442 l = loop_outer (l);
443 if (l != loop)
444 l = l->next;
447 return ret;
450 /* Return true if edge E is likely to be well predictable by branch
451 predictor. */
453 bool
454 predictable_edge_p (edge e)
456 if (!e->probability.initialized_p ())
457 return false;
458 if ((e->probability.to_reg_br_prob_base ()
459 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
460 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
461 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
462 return true;
463 return false;
467 /* Set RTL expansion for BB profile. */
469 void
470 rtl_profile_for_bb (basic_block bb)
472 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
475 /* Set RTL expansion for edge profile. */
477 void
478 rtl_profile_for_edge (edge e)
480 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
483 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
484 void
485 default_rtl_profile (void)
487 crtl->maybe_hot_insn_p = true;
490 /* Return true if the one of outgoing edges is already predicted by
491 PREDICTOR. */
493 bool
494 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
496 rtx note;
497 if (!INSN_P (BB_END (bb)))
498 return false;
499 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
500 if (REG_NOTE_KIND (note) == REG_BR_PRED
501 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
502 return true;
503 return false;
506 /* Structure representing predictions in tree level. */
508 struct edge_prediction {
509 struct edge_prediction *ep_next;
510 edge ep_edge;
511 enum br_predictor ep_predictor;
512 int ep_probability;
515 /* This map contains for a basic block the list of predictions for the
516 outgoing edges. */
518 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
520 /* Return true if the one of outgoing edges is already predicted by
521 PREDICTOR. */
523 bool
524 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
526 struct edge_prediction *i;
527 edge_prediction **preds = bb_predictions->get (bb);
529 if (!preds)
530 return false;
532 for (i = *preds; i; i = i->ep_next)
533 if (i->ep_predictor == predictor)
534 return true;
535 return false;
538 /* Return true if the one of outgoing edges is already predicted by
539 PREDICTOR for edge E predicted as TAKEN. */
541 bool
542 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
544 struct edge_prediction *i;
545 basic_block bb = e->src;
546 edge_prediction **preds = bb_predictions->get (bb);
547 if (!preds)
548 return false;
550 int probability = predictor_info[(int) predictor].hitrate;
552 if (taken != TAKEN)
553 probability = REG_BR_PROB_BASE - probability;
555 for (i = *preds; i; i = i->ep_next)
556 if (i->ep_predictor == predictor
557 && i->ep_edge == e
558 && i->ep_probability == probability)
559 return true;
560 return false;
563 /* Same predicate as above, working on edges. */
564 bool
565 edge_probability_reliable_p (const_edge e)
567 return e->probability.probably_reliable_p ();
570 /* Same predicate as edge_probability_reliable_p, working on notes. */
571 bool
572 br_prob_note_reliable_p (const_rtx note)
574 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
575 return profile_probability::from_reg_br_prob_note
576 (XINT (note, 0)).probably_reliable_p ();
579 static void
580 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
582 gcc_assert (any_condjump_p (insn));
583 if (!flag_guess_branch_prob)
584 return;
586 add_reg_note (insn, REG_BR_PRED,
587 gen_rtx_CONCAT (VOIDmode,
588 GEN_INT ((int) predictor),
589 GEN_INT ((int) probability)));
592 /* Predict insn by given predictor. */
594 void
595 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
596 enum prediction taken)
598 int probability = predictor_info[(int) predictor].hitrate;
599 gcc_assert (probability != PROB_UNINITIALIZED);
601 if (taken != TAKEN)
602 probability = REG_BR_PROB_BASE - probability;
604 predict_insn (insn, predictor, probability);
607 /* Predict edge E with given probability if possible. */
609 void
610 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
612 rtx_insn *last_insn;
613 last_insn = BB_END (e->src);
615 /* We can store the branch prediction information only about
616 conditional jumps. */
617 if (!any_condjump_p (last_insn))
618 return;
620 /* We always store probability of branching. */
621 if (e->flags & EDGE_FALLTHRU)
622 probability = REG_BR_PROB_BASE - probability;
624 predict_insn (last_insn, predictor, probability);
627 /* Predict edge E with the given PROBABILITY. */
628 void
629 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
631 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
632 && EDGE_COUNT (e->src->succs) > 1
633 && flag_guess_branch_prob
634 && optimize)
636 struct edge_prediction *i = XNEW (struct edge_prediction);
637 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
639 i->ep_next = preds;
640 preds = i;
641 i->ep_probability = probability;
642 i->ep_predictor = predictor;
643 i->ep_edge = e;
647 /* Filter edge predictions PREDS by a function FILTER: if FILTER return false
648 the prediction is removed.
649 DATA are passed to the filter function. */
651 static void
652 filter_predictions (edge_prediction **preds,
653 bool (*filter) (edge_prediction *, void *), void *data)
655 if (!bb_predictions)
656 return;
658 if (preds)
660 struct edge_prediction **prediction = preds;
661 struct edge_prediction *next;
663 while (*prediction)
665 if ((*filter) (*prediction, data))
666 prediction = &((*prediction)->ep_next);
667 else
669 next = (*prediction)->ep_next;
670 free (*prediction);
671 *prediction = next;
677 /* Filter function predicate that returns true for a edge predicate P
678 if its edge is equal to DATA. */
680 static bool
681 not_equal_edge_p (edge_prediction *p, void *data)
683 return p->ep_edge != (edge)data;
686 /* Remove all predictions on given basic block that are attached
687 to edge E. */
688 void
689 remove_predictions_associated_with_edge (edge e)
691 if (!bb_predictions)
692 return;
694 edge_prediction **preds = bb_predictions->get (e->src);
695 filter_predictions (preds, not_equal_edge_p, e);
698 /* Clears the list of predictions stored for BB. */
700 static void
701 clear_bb_predictions (basic_block bb)
703 edge_prediction **preds = bb_predictions->get (bb);
704 struct edge_prediction *pred, *next;
706 if (!preds)
707 return;
709 for (pred = *preds; pred; pred = next)
711 next = pred->ep_next;
712 free (pred);
714 *preds = NULL;
717 /* Return true when we can store prediction on insn INSN.
718 At the moment we represent predictions only on conditional
719 jumps, not at computed jump or other complicated cases. */
720 static bool
721 can_predict_insn_p (const rtx_insn *insn)
723 return (JUMP_P (insn)
724 && any_condjump_p (insn)
725 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
728 /* Predict edge E by given predictor if possible. */
730 void
731 predict_edge_def (edge e, enum br_predictor predictor,
732 enum prediction taken)
734 int probability = predictor_info[(int) predictor].hitrate;
736 if (taken != TAKEN)
737 probability = REG_BR_PROB_BASE - probability;
739 predict_edge (e, predictor, probability);
742 /* Invert all branch predictions or probability notes in the INSN. This needs
743 to be done each time we invert the condition used by the jump. */
745 void
746 invert_br_probabilities (rtx insn)
748 rtx note;
750 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
751 if (REG_NOTE_KIND (note) == REG_BR_PROB)
752 XINT (note, 0) = profile_probability::from_reg_br_prob_note
753 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
754 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
755 XEXP (XEXP (note, 0), 1)
756 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
759 /* Dump information about the branch prediction to the output file. */
761 static void
762 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
763 basic_block bb, enum predictor_reason reason = REASON_NONE,
764 edge ep_edge = NULL)
766 edge e = ep_edge;
767 edge_iterator ei;
769 if (!file)
770 return;
772 if (e == NULL)
773 FOR_EACH_EDGE (e, ei, bb->succs)
774 if (! (e->flags & EDGE_FALLTHRU))
775 break;
777 char edge_info_str[128];
778 if (ep_edge)
779 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
780 ep_edge->dest->index);
781 else
782 edge_info_str[0] = '\0';
784 fprintf (file, " %s heuristics%s%s: %.2f%%",
785 predictor_info[predictor].name,
786 edge_info_str, reason_messages[reason],
787 probability * 100.0 / REG_BR_PROB_BASE);
789 if (bb->count.initialized_p ())
791 fprintf (file, " exec ");
792 bb->count.dump (file);
793 if (e)
795 fprintf (file, " hit ");
796 e->count ().dump (file);
797 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
798 / bb->count.to_gcov_type ());
802 fprintf (file, "\n");
804 /* Print output that be easily read by analyze_brprob.py script. We are
805 interested only in counts that are read from GCDA files. */
806 if (dump_file && (dump_flags & TDF_DETAILS)
807 && bb->count.precise_p ()
808 && reason == REASON_NONE)
810 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
811 predictor_info[predictor].name,
812 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
813 probability * 100.0 / REG_BR_PROB_BASE);
817 /* Return true if STMT is known to be unlikely executed. */
819 static bool
820 unlikely_executed_stmt_p (gimple *stmt)
822 if (!is_gimple_call (stmt))
823 return false;
824 /* NORETURN attribute alone is not strong enough: exit() may be quite
825 likely executed once during program run. */
826 if (gimple_call_fntype (stmt)
827 && lookup_attribute ("cold",
828 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
829 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
830 return true;
831 tree decl = gimple_call_fndecl (stmt);
832 if (!decl)
833 return false;
834 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
835 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
836 return true;
838 cgraph_node *n = cgraph_node::get (decl);
839 if (!n)
840 return false;
842 availability avail;
843 n = n->ultimate_alias_target (&avail);
844 if (avail < AVAIL_AVAILABLE)
845 return false;
846 if (!n->analyzed
847 || n->decl == current_function_decl)
848 return false;
849 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
852 /* Return true if BB is unlikely executed. */
854 static bool
855 unlikely_executed_bb_p (basic_block bb)
857 if (bb->count == profile_count::zero ())
858 return true;
859 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
860 return false;
861 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
862 !gsi_end_p (gsi); gsi_next (&gsi))
864 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
865 return true;
866 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
867 return false;
869 return false;
872 /* We cannot predict the probabilities of outgoing edges of bb. Set them
873 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
874 even probability for all edges not mentioned in the set. These edges
875 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
876 if we have exactly one likely edge, make the other edges predicted
877 as not probable. */
879 static void
880 set_even_probabilities (basic_block bb,
881 hash_set<edge> *unlikely_edges = NULL,
882 hash_set<edge_prediction *> *likely_edges = NULL)
884 unsigned nedges = 0, unlikely_count = 0;
885 edge e = NULL;
886 edge_iterator ei;
887 profile_probability all = profile_probability::always ();
889 FOR_EACH_EDGE (e, ei, bb->succs)
890 if (e->probability.initialized_p ())
891 all -= e->probability;
892 else if (!unlikely_executed_edge_p (e))
894 nedges++;
895 if (unlikely_edges != NULL && unlikely_edges->contains (e))
897 all -= profile_probability::very_unlikely ();
898 unlikely_count++;
902 /* Make the distribution even if all edges are unlikely. */
903 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
904 if (unlikely_count == nedges)
906 unlikely_edges = NULL;
907 unlikely_count = 0;
910 /* If we have one likely edge, then use its probability and distribute
911 remaining probabilities as even. */
912 if (likely_count == 1)
914 FOR_EACH_EDGE (e, ei, bb->succs)
915 if (e->probability.initialized_p ())
917 else if (!unlikely_executed_edge_p (e))
919 edge_prediction *prediction = *likely_edges->begin ();
920 int p = prediction->ep_probability;
921 profile_probability prob
922 = profile_probability::from_reg_br_prob_base (p);
924 if (prediction->ep_edge == e)
925 e->probability = prob;
926 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
927 e->probability = profile_probability::very_unlikely ();
928 else
930 profile_probability remainder = prob.invert ();
931 remainder -= (profile_probability::very_unlikely ()
932 * unlikely_count);
933 int count = nedges - unlikely_count - 1;
934 gcc_assert (count >= 0);
936 e->probability = remainder / count;
939 else
940 e->probability = profile_probability::never ();
942 else
944 /* Make all unlikely edges unlikely and the rest will have even
945 probability. */
946 unsigned scale = nedges - unlikely_count;
947 FOR_EACH_EDGE (e, ei, bb->succs)
948 if (e->probability.initialized_p ())
950 else if (!unlikely_executed_edge_p (e))
952 if (unlikely_edges != NULL && unlikely_edges->contains (e))
953 e->probability = profile_probability::very_unlikely ();
954 else
955 e->probability = all / scale;
957 else
958 e->probability = profile_probability::never ();
962 /* Add REG_BR_PROB note to JUMP with PROB. */
964 void
965 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
967 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
968 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
971 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
972 note if not already present. Remove now useless REG_BR_PRED notes. */
974 static void
975 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
977 rtx prob_note;
978 rtx *pnote;
979 rtx note;
980 int best_probability = PROB_EVEN;
981 enum br_predictor best_predictor = END_PREDICTORS;
982 int combined_probability = REG_BR_PROB_BASE / 2;
983 int d;
984 bool first_match = false;
985 bool found = false;
987 if (!can_predict_insn_p (insn))
989 set_even_probabilities (bb);
990 return;
993 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
994 pnote = &REG_NOTES (insn);
995 if (dump_file)
996 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
997 bb->index);
999 /* We implement "first match" heuristics and use probability guessed
1000 by predictor with smallest index. */
1001 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1002 if (REG_NOTE_KIND (note) == REG_BR_PRED)
1004 enum br_predictor predictor = ((enum br_predictor)
1005 INTVAL (XEXP (XEXP (note, 0), 0)));
1006 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
1008 found = true;
1009 if (best_predictor > predictor
1010 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1011 best_probability = probability, best_predictor = predictor;
1013 d = (combined_probability * probability
1014 + (REG_BR_PROB_BASE - combined_probability)
1015 * (REG_BR_PROB_BASE - probability));
1017 /* Use FP math to avoid overflows of 32bit integers. */
1018 if (d == 0)
1019 /* If one probability is 0% and one 100%, avoid division by zero. */
1020 combined_probability = REG_BR_PROB_BASE / 2;
1021 else
1022 combined_probability = (((double) combined_probability) * probability
1023 * REG_BR_PROB_BASE / d + 0.5);
1026 /* Decide which heuristic to use. In case we didn't match anything,
1027 use no_prediction heuristic, in case we did match, use either
1028 first match or Dempster-Shaffer theory depending on the flags. */
1030 if (best_predictor != END_PREDICTORS)
1031 first_match = true;
1033 if (!found)
1034 dump_prediction (dump_file, PRED_NO_PREDICTION,
1035 combined_probability, bb);
1036 else
1038 if (!first_match)
1039 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
1040 bb, !first_match ? REASON_NONE : REASON_IGNORED);
1041 else
1042 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
1043 bb, first_match ? REASON_NONE : REASON_IGNORED);
1046 if (first_match)
1047 combined_probability = best_probability;
1048 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1050 while (*pnote)
1052 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1054 enum br_predictor predictor = ((enum br_predictor)
1055 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1056 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1058 dump_prediction (dump_file, predictor, probability, bb,
1059 (!first_match || best_predictor == predictor)
1060 ? REASON_NONE : REASON_IGNORED);
1061 *pnote = XEXP (*pnote, 1);
1063 else
1064 pnote = &XEXP (*pnote, 1);
1067 if (!prob_note)
1069 profile_probability p
1070 = profile_probability::from_reg_br_prob_base (combined_probability);
1071 add_reg_br_prob_note (insn, p);
1073 /* Save the prediction into CFG in case we are seeing non-degenerated
1074 conditional jump. */
1075 if (!single_succ_p (bb))
1077 BRANCH_EDGE (bb)->probability = p;
1078 FALLTHRU_EDGE (bb)->probability
1079 = BRANCH_EDGE (bb)->probability.invert ();
1082 else if (!single_succ_p (bb))
1084 profile_probability prob = profile_probability::from_reg_br_prob_note
1085 (XINT (prob_note, 0));
1087 BRANCH_EDGE (bb)->probability = prob;
1088 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1090 else
1091 single_succ_edge (bb)->probability = profile_probability::always ();
1094 /* Edge prediction hash traits. */
1096 struct predictor_hash: pointer_hash <edge_prediction>
1099 static inline hashval_t hash (const edge_prediction *);
1100 static inline bool equal (const edge_prediction *, const edge_prediction *);
1103 /* Calculate hash value of an edge prediction P based on predictor and
1104 normalized probability. */
1106 inline hashval_t
1107 predictor_hash::hash (const edge_prediction *p)
1109 inchash::hash hstate;
1110 hstate.add_int (p->ep_predictor);
1112 int prob = p->ep_probability;
1113 if (prob > REG_BR_PROB_BASE / 2)
1114 prob = REG_BR_PROB_BASE - prob;
1116 hstate.add_int (prob);
1118 return hstate.end ();
1121 /* Return true whether edge predictions P1 and P2 use the same predictor and
1122 have equal (or opposed probability). */
1124 inline bool
1125 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1127 return (p1->ep_predictor == p2->ep_predictor
1128 && (p1->ep_probability == p2->ep_probability
1129 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1132 struct predictor_hash_traits: predictor_hash,
1133 typed_noop_remove <edge_prediction *> {};
1135 /* Return true if edge prediction P is not in DATA hash set. */
1137 static bool
1138 not_removed_prediction_p (edge_prediction *p, void *data)
1140 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1141 return !remove->contains (p);
1144 /* Prune predictions for a basic block BB. Currently we do following
1145 clean-up steps:
1147 1) remove duplicate prediction that is guessed with the same probability
1148 (different than 1/2) to both edge
1149 2) remove duplicates for a prediction that belongs with the same probability
1150 to a single edge
1154 static void
1155 prune_predictions_for_bb (basic_block bb)
1157 edge_prediction **preds = bb_predictions->get (bb);
1159 if (preds)
1161 hash_table <predictor_hash_traits> s (13);
1162 hash_set <edge_prediction *> remove;
1164 /* Step 1: identify predictors that should be removed. */
1165 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1167 edge_prediction *existing = s.find (pred);
1168 if (existing)
1170 if (pred->ep_edge == existing->ep_edge
1171 && pred->ep_probability == existing->ep_probability)
1173 /* Remove a duplicate predictor. */
1174 dump_prediction (dump_file, pred->ep_predictor,
1175 pred->ep_probability, bb,
1176 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1178 remove.add (pred);
1180 else if (pred->ep_edge != existing->ep_edge
1181 && pred->ep_probability == existing->ep_probability
1182 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1184 /* Remove both predictors as they predict the same
1185 for both edges. */
1186 dump_prediction (dump_file, existing->ep_predictor,
1187 pred->ep_probability, bb,
1188 REASON_EDGE_PAIR_DUPLICATE,
1189 existing->ep_edge);
1190 dump_prediction (dump_file, pred->ep_predictor,
1191 pred->ep_probability, bb,
1192 REASON_EDGE_PAIR_DUPLICATE,
1193 pred->ep_edge);
1195 remove.add (existing);
1196 remove.add (pred);
1200 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1201 *slot2 = pred;
1204 /* Step 2: Remove predictors. */
1205 filter_predictions (preds, not_removed_prediction_p, &remove);
1209 /* Combine predictions into single probability and store them into CFG.
1210 Remove now useless prediction entries.
1211 If DRY_RUN is set, only produce dumps and do not modify profile. */
1213 static void
1214 combine_predictions_for_bb (basic_block bb, bool dry_run)
1216 int best_probability = PROB_EVEN;
1217 enum br_predictor best_predictor = END_PREDICTORS;
1218 int combined_probability = REG_BR_PROB_BASE / 2;
1219 int d;
1220 bool first_match = false;
1221 bool found = false;
1222 struct edge_prediction *pred;
1223 int nedges = 0;
1224 edge e, first = NULL, second = NULL;
1225 edge_iterator ei;
1226 int nzero = 0;
1227 int nunknown = 0;
1229 FOR_EACH_EDGE (e, ei, bb->succs)
1231 if (!unlikely_executed_edge_p (e))
1233 nedges ++;
1234 if (first && !second)
1235 second = e;
1236 if (!first)
1237 first = e;
1239 else if (!e->probability.initialized_p ())
1240 e->probability = profile_probability::never ();
1241 if (!e->probability.initialized_p ())
1242 nunknown++;
1243 else if (e->probability == profile_probability::never ())
1244 nzero++;
1247 /* When there is no successor or only one choice, prediction is easy.
1249 When we have a basic block with more than 2 successors, the situation
1250 is more complicated as DS theory cannot be used literally.
1251 More precisely, let's assume we predicted edge e1 with probability p1,
1252 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1253 need to find probability of e.g. m1({b2}), which we don't know.
1254 The only approximation is to equally distribute 1-p1 to all edges
1255 different from b1.
1257 According to numbers we've got from SPEC2006 benchark, there's only
1258 one interesting reliable predictor (noreturn call), which can be
1259 handled with a bit easier approach. */
1260 if (nedges != 2)
1262 hash_set<edge> unlikely_edges (4);
1263 hash_set<edge_prediction *> likely_edges (4);
1265 /* Identify all edges that have a probability close to very unlikely.
1266 Doing the approach for very unlikely doesn't worth for doing as
1267 there's no such probability in SPEC2006 benchmark. */
1268 edge_prediction **preds = bb_predictions->get (bb);
1269 if (preds)
1270 for (pred = *preds; pred; pred = pred->ep_next)
1272 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1273 || pred->ep_predictor == PRED_COLD_LABEL)
1274 unlikely_edges.add (pred->ep_edge);
1275 else if (pred->ep_probability >= PROB_VERY_LIKELY
1276 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1277 || pred->ep_predictor == PRED_HOT_LABEL)
1278 likely_edges.add (pred);
1281 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1282 Clear both sets in that situation. */
1283 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1284 it != likely_edges.end (); ++it)
1285 if (unlikely_edges.contains ((*it)->ep_edge))
1287 likely_edges.empty ();
1288 unlikely_edges.empty ();
1289 break;
1292 if (!dry_run)
1293 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1294 clear_bb_predictions (bb);
1295 if (dump_file)
1297 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1298 if (unlikely_edges.is_empty ())
1299 fprintf (dump_file,
1300 "%i edges in bb %i predicted to even probabilities\n",
1301 nedges, bb->index);
1302 else
1304 fprintf (dump_file,
1305 "%i edges in bb %i predicted with some unlikely edges\n",
1306 nedges, bb->index);
1307 FOR_EACH_EDGE (e, ei, bb->succs)
1308 if (!unlikely_executed_edge_p (e))
1309 dump_prediction (dump_file, PRED_COMBINED,
1310 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1313 return;
1316 if (dump_file)
1317 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1319 prune_predictions_for_bb (bb);
1321 edge_prediction **preds = bb_predictions->get (bb);
1323 if (preds)
1325 /* We implement "first match" heuristics and use probability guessed
1326 by predictor with smallest index. */
1327 for (pred = *preds; pred; pred = pred->ep_next)
1329 enum br_predictor predictor = pred->ep_predictor;
1330 int probability = pred->ep_probability;
1332 if (pred->ep_edge != first)
1333 probability = REG_BR_PROB_BASE - probability;
1335 found = true;
1336 /* First match heuristics would be widly confused if we predicted
1337 both directions. */
1338 if (best_predictor > predictor
1339 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1341 struct edge_prediction *pred2;
1342 int prob = probability;
1344 for (pred2 = (struct edge_prediction *) *preds;
1345 pred2; pred2 = pred2->ep_next)
1346 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1348 int probability2 = pred2->ep_probability;
1350 if (pred2->ep_edge != first)
1351 probability2 = REG_BR_PROB_BASE - probability2;
1353 if ((probability < REG_BR_PROB_BASE / 2) !=
1354 (probability2 < REG_BR_PROB_BASE / 2))
1355 break;
1357 /* If the same predictor later gave better result, go for it! */
1358 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1359 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1360 prob = probability2;
1362 if (!pred2)
1363 best_probability = prob, best_predictor = predictor;
1366 d = (combined_probability * probability
1367 + (REG_BR_PROB_BASE - combined_probability)
1368 * (REG_BR_PROB_BASE - probability));
1370 /* Use FP math to avoid overflows of 32bit integers. */
1371 if (d == 0)
1372 /* If one probability is 0% and one 100%, avoid division by zero. */
1373 combined_probability = REG_BR_PROB_BASE / 2;
1374 else
1375 combined_probability = (((double) combined_probability)
1376 * probability
1377 * REG_BR_PROB_BASE / d + 0.5);
1381 /* Decide which heuristic to use. In case we didn't match anything,
1382 use no_prediction heuristic, in case we did match, use either
1383 first match or Dempster-Shaffer theory depending on the flags. */
1385 if (best_predictor != END_PREDICTORS)
1386 first_match = true;
1388 if (!found)
1389 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1390 else
1392 if (!first_match)
1393 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1394 !first_match ? REASON_NONE : REASON_IGNORED);
1395 else
1396 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1397 first_match ? REASON_NONE : REASON_IGNORED);
1400 if (first_match)
1401 combined_probability = best_probability;
1402 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1404 if (preds)
1406 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1408 enum br_predictor predictor = pred->ep_predictor;
1409 int probability = pred->ep_probability;
1411 dump_prediction (dump_file, predictor, probability, bb,
1412 (!first_match || best_predictor == predictor)
1413 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1416 clear_bb_predictions (bb);
1419 /* If we have only one successor which is unknown, we can compute missing
1420 probability. */
1421 if (nunknown == 1)
1423 profile_probability prob = profile_probability::always ();
1424 edge missing = NULL;
1426 FOR_EACH_EDGE (e, ei, bb->succs)
1427 if (e->probability.initialized_p ())
1428 prob -= e->probability;
1429 else if (missing == NULL)
1430 missing = e;
1431 else
1432 gcc_unreachable ();
1433 missing->probability = prob;
1435 /* If nothing is unknown, we have nothing to update. */
1436 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1438 else if (!dry_run)
1440 first->probability
1441 = profile_probability::from_reg_br_prob_base (combined_probability);
1442 second->probability = first->probability.invert ();
1446 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1447 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1449 T1 and T2 should be one of the following cases:
1450 1. T1 is SSA_NAME, T2 is NULL
1451 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1452 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1454 static tree
1455 strips_small_constant (tree t1, tree t2)
1457 tree ret = NULL;
1458 int value = 0;
1460 if (!t1)
1461 return NULL;
1462 else if (TREE_CODE (t1) == SSA_NAME)
1463 ret = t1;
1464 else if (tree_fits_shwi_p (t1))
1465 value = tree_to_shwi (t1);
1466 else
1467 return NULL;
1469 if (!t2)
1470 return ret;
1471 else if (tree_fits_shwi_p (t2))
1472 value = tree_to_shwi (t2);
1473 else if (TREE_CODE (t2) == SSA_NAME)
1475 if (ret)
1476 return NULL;
1477 else
1478 ret = t2;
1481 if (value <= 4 && value >= -4)
1482 return ret;
1483 else
1484 return NULL;
1487 /* Return the SSA_NAME in T or T's operands.
1488 Return NULL if SSA_NAME cannot be found. */
1490 static tree
1491 get_base_value (tree t)
1493 if (TREE_CODE (t) == SSA_NAME)
1494 return t;
1496 if (!BINARY_CLASS_P (t))
1497 return NULL;
1499 switch (TREE_OPERAND_LENGTH (t))
1501 case 1:
1502 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1503 case 2:
1504 return strips_small_constant (TREE_OPERAND (t, 0),
1505 TREE_OPERAND (t, 1));
1506 default:
1507 return NULL;
1511 /* Check the compare STMT in LOOP. If it compares an induction
1512 variable to a loop invariant, return true, and save
1513 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1514 Otherwise return false and set LOOP_INVAIANT to NULL. */
1516 static bool
1517 is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1518 tree *loop_invariant,
1519 enum tree_code *compare_code,
1520 tree *loop_step,
1521 tree *loop_iv_base)
1523 tree op0, op1, bound, base;
1524 affine_iv iv0, iv1;
1525 enum tree_code code;
1526 tree step;
1528 code = gimple_cond_code (stmt);
1529 *loop_invariant = NULL;
1531 switch (code)
1533 case GT_EXPR:
1534 case GE_EXPR:
1535 case NE_EXPR:
1536 case LT_EXPR:
1537 case LE_EXPR:
1538 case EQ_EXPR:
1539 break;
1541 default:
1542 return false;
1545 op0 = gimple_cond_lhs (stmt);
1546 op1 = gimple_cond_rhs (stmt);
1548 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1549 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1550 return false;
1551 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1552 return false;
1553 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1554 return false;
1555 if (TREE_CODE (iv0.step) != INTEGER_CST
1556 || TREE_CODE (iv1.step) != INTEGER_CST)
1557 return false;
1558 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1559 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1560 return false;
1562 if (integer_zerop (iv0.step))
1564 if (code != NE_EXPR && code != EQ_EXPR)
1565 code = invert_tree_comparison (code, false);
1566 bound = iv0.base;
1567 base = iv1.base;
1568 if (tree_fits_shwi_p (iv1.step))
1569 step = iv1.step;
1570 else
1571 return false;
1573 else
1575 bound = iv1.base;
1576 base = iv0.base;
1577 if (tree_fits_shwi_p (iv0.step))
1578 step = iv0.step;
1579 else
1580 return false;
1583 if (TREE_CODE (bound) != INTEGER_CST)
1584 bound = get_base_value (bound);
1585 if (!bound)
1586 return false;
1587 if (TREE_CODE (base) != INTEGER_CST)
1588 base = get_base_value (base);
1589 if (!base)
1590 return false;
1592 *loop_invariant = bound;
1593 *compare_code = code;
1594 *loop_step = step;
1595 *loop_iv_base = base;
1596 return true;
1599 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1601 static bool
1602 expr_coherent_p (tree t1, tree t2)
1604 gimple *stmt;
1605 tree ssa_name_1 = NULL;
1606 tree ssa_name_2 = NULL;
1608 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1609 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1611 if (t1 == t2)
1612 return true;
1614 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1615 return true;
1616 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1617 return false;
1619 /* Check to see if t1 is expressed/defined with t2. */
1620 stmt = SSA_NAME_DEF_STMT (t1);
1621 gcc_assert (stmt != NULL);
1622 if (is_gimple_assign (stmt))
1624 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1625 if (ssa_name_1 && ssa_name_1 == t2)
1626 return true;
1629 /* Check to see if t2 is expressed/defined with t1. */
1630 stmt = SSA_NAME_DEF_STMT (t2);
1631 gcc_assert (stmt != NULL);
1632 if (is_gimple_assign (stmt))
1634 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1635 if (ssa_name_2 && ssa_name_2 == t1)
1636 return true;
1639 /* Compare if t1 and t2's def_stmts are identical. */
1640 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1641 return true;
1642 else
1643 return false;
1646 /* Return true if E is predicted by one of loop heuristics. */
1648 static bool
1649 predicted_by_loop_heuristics_p (basic_block bb)
1651 struct edge_prediction *i;
1652 edge_prediction **preds = bb_predictions->get (bb);
1654 if (!preds)
1655 return false;
1657 for (i = *preds; i; i = i->ep_next)
1658 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1659 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1660 || i->ep_predictor == PRED_LOOP_ITERATIONS
1661 || i->ep_predictor == PRED_LOOP_EXIT
1662 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1663 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1664 return true;
1665 return false;
1668 /* Predict branch probability of BB when BB contains a branch that compares
1669 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1670 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1672 E.g.
1673 for (int i = 0; i < bound; i++) {
1674 if (i < bound - 2)
1675 computation_1();
1676 else
1677 computation_2();
1680 In this loop, we will predict the branch inside the loop to be taken. */
1682 static void
1683 predict_iv_comparison (class loop *loop, basic_block bb,
1684 tree loop_bound_var,
1685 tree loop_iv_base_var,
1686 enum tree_code loop_bound_code,
1687 int loop_bound_step)
1689 tree compare_var, compare_base;
1690 enum tree_code compare_code;
1691 tree compare_step_var;
1692 edge then_edge;
1693 edge_iterator ei;
1695 if (predicted_by_loop_heuristics_p (bb))
1696 return;
1698 gcond *stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
1699 if (!stmt)
1700 return;
1701 if (!is_comparison_with_loop_invariant_p (stmt,
1702 loop, &compare_var,
1703 &compare_code,
1704 &compare_step_var,
1705 &compare_base))
1706 return;
1708 /* Find the taken edge. */
1709 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1710 if (then_edge->flags & EDGE_TRUE_VALUE)
1711 break;
1713 /* When comparing an IV to a loop invariant, NE is more likely to be
1714 taken while EQ is more likely to be not-taken. */
1715 if (compare_code == NE_EXPR)
1717 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1718 return;
1720 else if (compare_code == EQ_EXPR)
1722 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1723 return;
1726 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1727 return;
1729 /* If loop bound, base and compare bound are all constants, we can
1730 calculate the probability directly. */
1731 if (tree_fits_shwi_p (loop_bound_var)
1732 && tree_fits_shwi_p (compare_var)
1733 && tree_fits_shwi_p (compare_base))
1735 int probability;
1736 wi::overflow_type overflow;
1737 bool overall_overflow = false;
1738 widest_int compare_count, tem;
1740 /* (loop_bound - base) / compare_step */
1741 tem = wi::sub (wi::to_widest (loop_bound_var),
1742 wi::to_widest (compare_base), SIGNED, &overflow);
1743 overall_overflow |= overflow;
1744 widest_int loop_count = wi::div_trunc (tem,
1745 wi::to_widest (compare_step_var),
1746 SIGNED, &overflow);
1747 overall_overflow |= overflow;
1749 if (!wi::neg_p (wi::to_widest (compare_step_var))
1750 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1752 /* (loop_bound - compare_bound) / compare_step */
1753 tem = wi::sub (wi::to_widest (loop_bound_var),
1754 wi::to_widest (compare_var), SIGNED, &overflow);
1755 overall_overflow |= overflow;
1756 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1757 SIGNED, &overflow);
1758 overall_overflow |= overflow;
1760 else
1762 /* (compare_bound - base) / compare_step */
1763 tem = wi::sub (wi::to_widest (compare_var),
1764 wi::to_widest (compare_base), SIGNED, &overflow);
1765 overall_overflow |= overflow;
1766 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1767 SIGNED, &overflow);
1768 overall_overflow |= overflow;
1770 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1771 ++compare_count;
1772 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1773 ++loop_count;
1774 if (wi::neg_p (compare_count))
1775 compare_count = 0;
1776 if (wi::neg_p (loop_count))
1777 loop_count = 0;
1778 if (loop_count == 0)
1779 probability = 0;
1780 else if (wi::cmps (compare_count, loop_count) == 1)
1781 probability = REG_BR_PROB_BASE;
1782 else
1784 tem = compare_count * REG_BR_PROB_BASE;
1785 tem = wi::udiv_trunc (tem, loop_count);
1786 probability = tem.to_uhwi ();
1789 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1790 if (!overall_overflow)
1791 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1793 return;
1796 if (expr_coherent_p (loop_bound_var, compare_var))
1798 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1799 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1800 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1801 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1802 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1803 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1804 else if (loop_bound_code == NE_EXPR)
1806 /* If the loop backedge condition is "(i != bound)", we do
1807 the comparison based on the step of IV:
1808 * step < 0 : backedge condition is like (i > bound)
1809 * step > 0 : backedge condition is like (i < bound) */
1810 gcc_assert (loop_bound_step != 0);
1811 if (loop_bound_step > 0
1812 && (compare_code == LT_EXPR
1813 || compare_code == LE_EXPR))
1814 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1815 else if (loop_bound_step < 0
1816 && (compare_code == GT_EXPR
1817 || compare_code == GE_EXPR))
1818 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1819 else
1820 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1822 else
1823 /* The branch is predicted not-taken if loop_bound_code is
1824 opposite with compare_code. */
1825 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1827 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1829 /* For cases like:
1830 for (i = s; i < h; i++)
1831 if (i > s + 2) ....
1832 The branch should be predicted taken. */
1833 if (loop_bound_step > 0
1834 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1835 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1836 else if (loop_bound_step < 0
1837 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1838 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1839 else
1840 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1844 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1845 exits are resulted from short-circuit conditions that will generate an
1846 if_tmp. E.g.:
1848 if (foo() || global > 10)
1849 break;
1851 This will be translated into:
1853 BB3:
1854 loop header...
1855 BB4:
1856 if foo() goto BB6 else goto BB5
1857 BB5:
1858 if global > 10 goto BB6 else goto BB7
1859 BB6:
1860 goto BB7
1861 BB7:
1862 iftmp = (PHI 0(BB5), 1(BB6))
1863 if iftmp == 1 goto BB8 else goto BB3
1864 BB8:
1865 outside of the loop...
1867 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1868 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1869 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1870 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1872 static void
1873 predict_extra_loop_exits (class loop *loop, edge exit_edge)
1875 unsigned i;
1876 bool check_value_one;
1877 gimple *lhs_def_stmt;
1878 gphi *phi_stmt;
1879 tree cmp_rhs, cmp_lhs;
1881 gcond *cmp_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit_edge->src));
1882 if (!cmp_stmt)
1883 return;
1885 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1886 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1887 if (!TREE_CONSTANT (cmp_rhs)
1888 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1889 return;
1890 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1891 return;
1893 /* If check_value_one is true, only the phi_args with value '1' will lead
1894 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1895 loop exit. */
1896 check_value_one = (((integer_onep (cmp_rhs))
1897 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1898 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1900 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1901 if (!lhs_def_stmt)
1902 return;
1904 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1905 if (!phi_stmt)
1906 return;
1908 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1910 edge e1;
1911 edge_iterator ei;
1912 tree val = gimple_phi_arg_def (phi_stmt, i);
1913 edge e = gimple_phi_arg_edge (phi_stmt, i);
1915 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1916 continue;
1917 if ((check_value_one ^ integer_onep (val)) == 1)
1918 continue;
1919 if (EDGE_COUNT (e->src->succs) != 1)
1921 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1922 loop);
1923 continue;
1926 FOR_EACH_EDGE (e1, ei, e->src->preds)
1927 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1928 loop);
1933 /* Predict edge probabilities by exploiting loop structure. */
1935 static void
1936 predict_loops (void)
1938 basic_block bb;
1939 hash_set <class loop *> with_recursion(10);
1941 FOR_EACH_BB_FN (bb, cfun)
1943 gimple_stmt_iterator gsi;
1944 tree decl;
1946 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1947 if (is_gimple_call (gsi_stmt (gsi))
1948 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1949 && recursive_call_p (current_function_decl, decl))
1951 class loop *loop = bb->loop_father;
1952 while (loop && !with_recursion.add (loop))
1953 loop = loop_outer (loop);
1957 /* Try to predict out blocks in a loop that are not part of a
1958 natural loop. */
1959 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1961 basic_block bb, *bbs;
1962 unsigned j, n_exits = 0;
1963 class tree_niter_desc niter_desc;
1964 edge ex;
1965 class nb_iter_bound *nb_iter;
1966 enum tree_code loop_bound_code = ERROR_MARK;
1967 tree loop_bound_step = NULL;
1968 tree loop_bound_var = NULL;
1969 tree loop_iv_base = NULL;
1970 gcond *stmt = NULL;
1971 bool recursion = with_recursion.contains (loop);
1973 auto_vec<edge> exits = get_loop_exit_edges (loop);
1974 FOR_EACH_VEC_ELT (exits, j, ex)
1975 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1976 n_exits ++;
1977 if (!n_exits)
1978 continue;
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1981 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1982 loop->num, recursion ? " (with recursion)":"", n_exits);
1983 if (dump_file && (dump_flags & TDF_DETAILS)
1984 && max_loop_iterations_int (loop) >= 0)
1986 fprintf (dump_file,
1987 "Loop %d iterates at most %i times.\n", loop->num,
1988 (int)max_loop_iterations_int (loop));
1990 if (dump_file && (dump_flags & TDF_DETAILS)
1991 && likely_max_loop_iterations_int (loop) >= 0)
1993 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1994 loop->num, (int)likely_max_loop_iterations_int (loop));
1997 FOR_EACH_VEC_ELT (exits, j, ex)
1999 tree niter = NULL;
2000 HOST_WIDE_INT nitercst;
2001 int max = param_max_predicted_iterations;
2002 int probability;
2003 enum br_predictor predictor;
2004 widest_int nit;
2006 if (unlikely_executed_edge_p (ex)
2007 || (ex->flags & EDGE_ABNORMAL_CALL))
2008 continue;
2009 /* Loop heuristics do not expect exit conditional to be inside
2010 inner loop. We predict from innermost to outermost loop. */
2011 if (predicted_by_loop_heuristics_p (ex->src))
2013 if (dump_file && (dump_flags & TDF_DETAILS))
2014 fprintf (dump_file, "Skipping exit %i->%i because "
2015 "it is already predicted.\n",
2016 ex->src->index, ex->dest->index);
2017 continue;
2019 predict_extra_loop_exits (loop, ex);
2021 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
2022 niter = niter_desc.niter;
2023 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
2024 niter = loop_niter_by_eval (loop, ex);
2025 if (dump_file && (dump_flags & TDF_DETAILS)
2026 && TREE_CODE (niter) == INTEGER_CST)
2028 fprintf (dump_file, "Exit %i->%i %d iterates ",
2029 ex->src->index, ex->dest->index,
2030 loop->num);
2031 print_generic_expr (dump_file, niter, TDF_SLIM);
2032 fprintf (dump_file, " times.\n");
2035 if (TREE_CODE (niter) == INTEGER_CST)
2037 if (tree_fits_uhwi_p (niter)
2038 && max
2039 && compare_tree_int (niter, max - 1) == -1)
2040 nitercst = tree_to_uhwi (niter) + 1;
2041 else
2042 nitercst = max;
2043 predictor = PRED_LOOP_ITERATIONS;
2045 /* If we have just one exit and we can derive some information about
2046 the number of iterations of the loop from the statements inside
2047 the loop, use it to predict this exit. */
2048 else if (n_exits == 1
2049 && estimated_stmt_executions (loop, &nit))
2051 if (wi::gtu_p (nit, max))
2052 nitercst = max;
2053 else
2054 nitercst = nit.to_shwi ();
2055 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2057 /* If we have likely upper bound, trust it for very small iteration
2058 counts. Such loops would otherwise get mispredicted by standard
2059 LOOP_EXIT heuristics. */
2060 else if (n_exits == 1
2061 && likely_max_stmt_executions (loop, &nit)
2062 && wi::ltu_p (nit,
2063 RDIV (REG_BR_PROB_BASE,
2064 REG_BR_PROB_BASE
2065 - predictor_info
2066 [recursion
2067 ? PRED_LOOP_EXIT_WITH_RECURSION
2068 : PRED_LOOP_EXIT].hitrate)))
2070 nitercst = nit.to_shwi ();
2071 predictor = PRED_LOOP_ITERATIONS_MAX;
2073 else
2075 if (dump_file && (dump_flags & TDF_DETAILS))
2076 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2077 ex->src->index, ex->dest->index);
2078 continue;
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2083 (int)nitercst, predictor_info[predictor].name);
2084 /* If the prediction for number of iterations is zero, do not
2085 predict the exit edges. */
2086 if (nitercst == 0)
2087 continue;
2089 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2090 predict_edge (ex, predictor, probability);
2093 /* Find information about loop bound variables. */
2094 for (nb_iter = loop->bounds; nb_iter;
2095 nb_iter = nb_iter->next)
2096 if (nb_iter->stmt
2097 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2099 stmt = as_a <gcond *> (nb_iter->stmt);
2100 break;
2102 if (!stmt)
2103 stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (loop->header));
2104 if (stmt)
2105 is_comparison_with_loop_invariant_p (stmt, loop,
2106 &loop_bound_var,
2107 &loop_bound_code,
2108 &loop_bound_step,
2109 &loop_iv_base);
2111 bbs = get_loop_body (loop);
2113 for (j = 0; j < loop->num_nodes; j++)
2115 edge e;
2116 edge_iterator ei;
2118 bb = bbs[j];
2120 /* Bypass loop heuristics on continue statement. These
2121 statements construct loops via "non-loop" constructs
2122 in the source language and are better to be handled
2123 separately. */
2124 if (predicted_by_p (bb, PRED_CONTINUE))
2126 if (dump_file && (dump_flags & TDF_DETAILS))
2127 fprintf (dump_file, "BB %i predicted by continue.\n",
2128 bb->index);
2129 continue;
2132 /* If we already used more reliable loop exit predictors, do not
2133 bother with PRED_LOOP_EXIT. */
2134 if (!predicted_by_loop_heuristics_p (bb))
2136 /* For loop with many exits we don't want to predict all exits
2137 with the pretty large probability, because if all exits are
2138 considered in row, the loop would be predicted to iterate
2139 almost never. The code to divide probability by number of
2140 exits is very rough. It should compute the number of exits
2141 taken in each patch through function (not the overall number
2142 of exits that might be a lot higher for loops with wide switch
2143 statements in them) and compute n-th square root.
2145 We limit the minimal probability by 2% to avoid
2146 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2147 as this was causing regression in perl benchmark containing such
2148 a wide loop. */
2150 int probability = ((REG_BR_PROB_BASE
2151 - predictor_info
2152 [recursion
2153 ? PRED_LOOP_EXIT_WITH_RECURSION
2154 : PRED_LOOP_EXIT].hitrate)
2155 / n_exits);
2156 if (probability < HITRATE (2))
2157 probability = HITRATE (2);
2158 FOR_EACH_EDGE (e, ei, bb->succs)
2159 if (e->dest->index < NUM_FIXED_BLOCKS
2160 || !flow_bb_inside_loop_p (loop, e->dest))
2162 if (dump_file && (dump_flags & TDF_DETAILS))
2163 fprintf (dump_file,
2164 "Predicting exit %i->%i with prob %i.\n",
2165 e->src->index, e->dest->index, probability);
2166 predict_edge (e,
2167 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2168 : PRED_LOOP_EXIT, probability);
2171 if (loop_bound_var)
2172 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2173 loop_bound_code,
2174 tree_to_shwi (loop_bound_step));
2177 /* In the following code
2178 for (loop1)
2179 if (cond)
2180 for (loop2)
2181 body;
2182 guess that cond is unlikely. */
2183 if (loop_outer (loop)->num)
2185 basic_block bb = NULL;
2186 edge preheader_edge = loop_preheader_edge (loop);
2188 if (single_pred_p (preheader_edge->src)
2189 && single_succ_p (preheader_edge->src))
2190 preheader_edge = single_pred_edge (preheader_edge->src);
2192 /* Pattern match fortran loop preheader:
2193 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2194 _17 = (logical(kind=4)) _16;
2195 if (_17 != 0)
2196 goto <bb 11>;
2197 else
2198 goto <bb 13>;
2200 Loop guard branch prediction says nothing about duplicated loop
2201 headers produced by fortran frontend and in this case we want
2202 to predict paths leading to this preheader. */
2204 gcond *stmt
2205 = safe_dyn_cast <gcond *> (*gsi_last_bb (preheader_edge->src));
2206 if (stmt
2207 && gimple_cond_code (stmt) == NE_EXPR
2208 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2209 && integer_zerop (gimple_cond_rhs (stmt)))
2211 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2212 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2213 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
2214 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2215 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2216 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2217 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2218 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2219 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2220 == PRED_FORTRAN_LOOP_PREHEADER)
2221 bb = preheader_edge->src;
2223 if (!bb)
2225 if (!dominated_by_p (CDI_DOMINATORS,
2226 loop_outer (loop)->latch, loop->header))
2227 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2228 recursion
2229 ? PRED_LOOP_GUARD_WITH_RECURSION
2230 : PRED_LOOP_GUARD,
2231 NOT_TAKEN,
2232 loop_outer (loop));
2234 else
2236 if (!dominated_by_p (CDI_DOMINATORS,
2237 loop_outer (loop)->latch, bb))
2238 predict_paths_leading_to (bb,
2239 recursion
2240 ? PRED_LOOP_GUARD_WITH_RECURSION
2241 : PRED_LOOP_GUARD,
2242 NOT_TAKEN,
2243 loop_outer (loop));
2247 /* Free basic blocks from get_loop_body. */
2248 free (bbs);
2252 /* Attempt to predict probabilities of BB outgoing edges using local
2253 properties. */
2254 static void
2255 bb_estimate_probability_locally (basic_block bb)
2257 rtx_insn *last_insn = BB_END (bb);
2258 rtx cond;
2260 if (! can_predict_insn_p (last_insn))
2261 return;
2262 cond = get_condition (last_insn, NULL, false, false);
2263 if (! cond)
2264 return;
2266 /* Try "pointer heuristic."
2267 A comparison ptr == 0 is predicted as false.
2268 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2269 if (COMPARISON_P (cond)
2270 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2271 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2273 if (GET_CODE (cond) == EQ)
2274 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2275 else if (GET_CODE (cond) == NE)
2276 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2278 else
2280 /* Try "opcode heuristic."
2281 EQ tests are usually false and NE tests are usually true. Also,
2282 most quantities are positive, so we can make the appropriate guesses
2283 about signed comparisons against zero. */
2284 switch (GET_CODE (cond))
2286 case CONST_INT:
2287 /* Unconditional branch. */
2288 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2289 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2290 break;
2292 case EQ:
2293 case UNEQ:
2294 /* Floating point comparisons appears to behave in a very
2295 unpredictable way because of special role of = tests in
2296 FP code. */
2297 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2299 /* Comparisons with 0 are often used for booleans and there is
2300 nothing useful to predict about them. */
2301 else if (XEXP (cond, 1) == const0_rtx
2302 || XEXP (cond, 0) == const0_rtx)
2304 else
2305 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2306 break;
2308 case NE:
2309 case LTGT:
2310 /* Floating point comparisons appears to behave in a very
2311 unpredictable way because of special role of = tests in
2312 FP code. */
2313 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2315 /* Comparisons with 0 are often used for booleans and there is
2316 nothing useful to predict about them. */
2317 else if (XEXP (cond, 1) == const0_rtx
2318 || XEXP (cond, 0) == const0_rtx)
2320 else
2321 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2322 break;
2324 case ORDERED:
2325 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2326 break;
2328 case UNORDERED:
2329 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2330 break;
2332 case LE:
2333 case LT:
2334 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2335 || XEXP (cond, 1) == constm1_rtx)
2336 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2337 break;
2339 case GE:
2340 case GT:
2341 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2342 || XEXP (cond, 1) == constm1_rtx)
2343 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2344 break;
2346 default:
2347 break;
2351 /* Set edge->probability for each successor edge of BB. */
2352 void
2353 guess_outgoing_edge_probabilities (basic_block bb)
2355 bb_estimate_probability_locally (bb);
2356 combine_predictions_for_insn (BB_END (bb), bb);
2359 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2360 HOST_WIDE_INT *probability);
2362 /* Helper function for expr_expected_value. */
2364 static tree
2365 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2366 tree op1, bitmap visited, enum br_predictor *predictor,
2367 HOST_WIDE_INT *probability)
2369 gimple *def;
2371 /* Reset returned probability value. */
2372 *probability = -1;
2373 *predictor = PRED_UNCONDITIONAL;
2375 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2377 if (TREE_CONSTANT (op0))
2378 return op0;
2380 if (code == IMAGPART_EXPR)
2382 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2384 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2385 if (is_gimple_call (def)
2386 && gimple_call_internal_p (def)
2387 && (gimple_call_internal_fn (def)
2388 == IFN_ATOMIC_COMPARE_EXCHANGE))
2390 /* Assume that any given atomic operation has low contention,
2391 and thus the compare-and-swap operation succeeds. */
2392 *predictor = PRED_COMPARE_AND_SWAP;
2393 return build_one_cst (TREE_TYPE (op0));
2398 if (code != SSA_NAME)
2399 return NULL_TREE;
2401 def = SSA_NAME_DEF_STMT (op0);
2403 /* If we were already here, break the infinite cycle. */
2404 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2405 return NULL;
2407 if (gimple_code (def) == GIMPLE_PHI)
2409 /* All the arguments of the PHI node must have the same constant
2410 length. */
2411 int i, n = gimple_phi_num_args (def);
2412 tree val = NULL, new_val;
2414 for (i = 0; i < n; i++)
2416 tree arg = PHI_ARG_DEF (def, i);
2417 enum br_predictor predictor2;
2419 /* If this PHI has itself as an argument, we cannot
2420 determine the string length of this argument. However,
2421 if we can find an expected constant value for the other
2422 PHI args then we can still be sure that this is
2423 likely a constant. So be optimistic and just
2424 continue with the next argument. */
2425 if (arg == PHI_RESULT (def))
2426 continue;
2428 HOST_WIDE_INT probability2;
2429 new_val = expr_expected_value (arg, visited, &predictor2,
2430 &probability2);
2432 /* It is difficult to combine value predictors. Simply assume
2433 that later predictor is weaker and take its prediction. */
2434 if (*predictor < predictor2)
2436 *predictor = predictor2;
2437 *probability = probability2;
2439 if (!new_val)
2440 return NULL;
2441 if (!val)
2442 val = new_val;
2443 else if (!operand_equal_p (val, new_val, false))
2444 return NULL;
2446 return val;
2448 if (is_gimple_assign (def))
2450 if (gimple_assign_lhs (def) != op0)
2451 return NULL;
2453 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2454 gimple_assign_rhs1 (def),
2455 gimple_assign_rhs_code (def),
2456 gimple_assign_rhs2 (def),
2457 visited, predictor, probability);
2460 if (is_gimple_call (def))
2462 tree decl = gimple_call_fndecl (def);
2463 if (!decl)
2465 if (gimple_call_internal_p (def)
2466 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2468 gcc_assert (gimple_call_num_args (def) == 3);
2469 tree val = gimple_call_arg (def, 0);
2470 if (TREE_CONSTANT (val))
2471 return val;
2472 tree val2 = gimple_call_arg (def, 2);
2473 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2474 && tree_fits_uhwi_p (val2)
2475 && tree_to_uhwi (val2) < END_PREDICTORS);
2476 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2477 if (*predictor == PRED_BUILTIN_EXPECT)
2478 *probability
2479 = HITRATE (param_builtin_expect_probability);
2480 return gimple_call_arg (def, 1);
2482 return NULL;
2485 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2487 if (predictor)
2488 *predictor = PRED_MALLOC_NONNULL;
2489 /* FIXME: This is wrong and we need to convert the logic
2490 to value ranges. This makes predictor to assume that
2491 malloc always returns (size_t)1 which is not the same
2492 as returning non-NULL. */
2493 return fold_convert (type, boolean_true_node);
2496 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2497 switch (DECL_FUNCTION_CODE (decl))
2499 case BUILT_IN_EXPECT:
2501 tree val;
2502 if (gimple_call_num_args (def) != 2)
2503 return NULL;
2504 val = gimple_call_arg (def, 0);
2505 if (TREE_CONSTANT (val))
2506 return val;
2507 *predictor = PRED_BUILTIN_EXPECT;
2508 *probability
2509 = HITRATE (param_builtin_expect_probability);
2510 return gimple_call_arg (def, 1);
2512 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2514 tree val;
2515 if (gimple_call_num_args (def) != 3)
2516 return NULL;
2517 val = gimple_call_arg (def, 0);
2518 if (TREE_CONSTANT (val))
2519 return val;
2520 /* Compute final probability as:
2521 probability * REG_BR_PROB_BASE. */
2522 tree prob = gimple_call_arg (def, 2);
2523 tree t = TREE_TYPE (prob);
2524 tree base = build_int_cst (integer_type_node,
2525 REG_BR_PROB_BASE);
2526 base = build_real_from_int_cst (t, base);
2527 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2528 MULT_EXPR, t, prob, base);
2529 if (TREE_CODE (r) != REAL_CST)
2531 error_at (gimple_location (def),
2532 "probability %qE must be "
2533 "constant floating-point expression", prob);
2534 return NULL;
2536 HOST_WIDE_INT probi
2537 = real_to_integer (TREE_REAL_CST_PTR (r));
2538 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2540 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2541 *probability = probi;
2543 else
2544 error_at (gimple_location (def),
2545 "probability %qE is outside "
2546 "the range [0.0, 1.0]", prob);
2548 return gimple_call_arg (def, 1);
2551 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2552 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2553 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2554 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2555 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2556 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2557 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2558 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2559 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2560 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2561 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2562 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2563 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2564 /* Assume that any given atomic operation has low contention,
2565 and thus the compare-and-swap operation succeeds. */
2566 *predictor = PRED_COMPARE_AND_SWAP;
2567 return boolean_true_node;
2568 case BUILT_IN_REALLOC:
2569 if (predictor)
2570 *predictor = PRED_MALLOC_NONNULL;
2571 /* FIXME: This is wrong and we need to convert the logic
2572 to value ranges. */
2573 return fold_convert (type, boolean_true_node);
2574 default:
2575 break;
2579 return NULL;
2582 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2584 tree res;
2585 tree nop0 = op0;
2586 tree nop1 = op1;
2587 if (TREE_CODE (op0) != INTEGER_CST)
2589 /* See if expected value of op0 is good enough to determine the result. */
2590 nop0 = expr_expected_value (op0, visited, predictor, probability);
2591 if (nop0
2592 && (res = fold_build2 (code, type, nop0, op1)) != NULL
2593 && TREE_CODE (res) == INTEGER_CST)
2594 return res;
2595 if (!nop0)
2596 nop0 = op0;
2598 enum br_predictor predictor2;
2599 HOST_WIDE_INT probability2;
2600 if (TREE_CODE (op1) != INTEGER_CST)
2602 /* See if expected value of op1 is good enough to determine the result. */
2603 nop1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2604 if (nop1
2605 && (res = fold_build2 (code, type, op0, nop1)) != NULL
2606 && TREE_CODE (res) == INTEGER_CST)
2608 *predictor = predictor2;
2609 *probability = probability2;
2610 return res;
2612 if (!nop1)
2613 nop1 = op1;
2615 if (nop0 == op0 || nop1 == op1)
2616 return NULL;
2617 /* Finally see if we have two known values. */
2618 res = fold_build2 (code, type, nop0, nop1);
2619 if (TREE_CODE (res) == INTEGER_CST
2620 && TREE_CODE (nop0) == INTEGER_CST
2621 && TREE_CODE (nop1) == INTEGER_CST)
2623 /* Combine binary predictions. */
2624 if (*probability != -1 || probability2 != -1)
2626 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2627 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2628 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2631 if (predictor2 < *predictor)
2632 *predictor = predictor2;
2634 return res;
2636 return NULL;
2638 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2640 tree res;
2641 op0 = expr_expected_value (op0, visited, predictor, probability);
2642 if (!op0)
2643 return NULL;
2644 res = fold_build1 (code, type, op0);
2645 if (TREE_CONSTANT (res))
2646 return res;
2647 return NULL;
2649 return NULL;
2652 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2653 The function is used by builtin_expect branch predictor so the evidence
2654 must come from this construct and additional possible constant folding.
2656 We may want to implement more involved value guess (such as value range
2657 propagation based prediction), but such tricks shall go to new
2658 implementation. */
2660 static tree
2661 expr_expected_value (tree expr, bitmap visited,
2662 enum br_predictor *predictor,
2663 HOST_WIDE_INT *probability)
2665 enum tree_code code;
2666 tree op0, op1;
2668 if (TREE_CONSTANT (expr))
2670 *predictor = PRED_UNCONDITIONAL;
2671 *probability = -1;
2672 return expr;
2675 extract_ops_from_tree (expr, &code, &op0, &op1);
2676 return expr_expected_value_1 (TREE_TYPE (expr),
2677 op0, code, op1, visited, predictor,
2678 probability);
2682 /* Return probability of a PREDICTOR. If the predictor has variable
2683 probability return passed PROBABILITY. */
2685 static HOST_WIDE_INT
2686 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2688 switch (predictor)
2690 case PRED_BUILTIN_EXPECT:
2691 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2692 gcc_assert (probability != -1);
2693 return probability;
2694 default:
2695 gcc_assert (probability == -1);
2696 return predictor_info[(int) predictor].hitrate;
2700 /* Predict using opcode of the last statement in basic block. */
2701 static void
2702 tree_predict_by_opcode (basic_block bb)
2704 edge then_edge;
2705 tree op0, op1;
2706 tree type;
2707 tree val;
2708 enum tree_code cmp;
2709 edge_iterator ei;
2710 enum br_predictor predictor;
2711 HOST_WIDE_INT probability;
2713 gimple *stmt = *gsi_last_bb (bb);
2714 if (!stmt)
2715 return;
2717 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2719 tree index = gimple_switch_index (sw);
2720 tree val = expr_expected_value (index, auto_bitmap (),
2721 &predictor, &probability);
2722 if (val && TREE_CODE (val) == INTEGER_CST)
2724 edge e = find_taken_edge_switch_expr (sw, val);
2725 if (predictor == PRED_BUILTIN_EXPECT)
2727 int percent = param_builtin_expect_probability;
2728 gcc_assert (percent >= 0 && percent <= 100);
2729 predict_edge (e, PRED_BUILTIN_EXPECT,
2730 HITRATE (percent));
2732 else
2733 predict_edge_def (e, predictor, TAKEN);
2737 if (gimple_code (stmt) != GIMPLE_COND)
2738 return;
2739 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2740 if (then_edge->flags & EDGE_TRUE_VALUE)
2741 break;
2742 op0 = gimple_cond_lhs (stmt);
2743 op1 = gimple_cond_rhs (stmt);
2744 cmp = gimple_cond_code (stmt);
2745 type = TREE_TYPE (op0);
2746 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2747 &predictor, &probability);
2748 if (val && TREE_CODE (val) == INTEGER_CST)
2750 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2751 if (integer_zerop (val))
2752 prob = REG_BR_PROB_BASE - prob;
2753 predict_edge (then_edge, predictor, prob);
2755 /* Try "pointer heuristic."
2756 A comparison ptr == 0 is predicted as false.
2757 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2758 if (POINTER_TYPE_P (type))
2760 if (cmp == EQ_EXPR)
2761 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2762 else if (cmp == NE_EXPR)
2763 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2765 else
2767 /* Try "opcode heuristic."
2768 EQ tests are usually false and NE tests are usually true. Also,
2769 most quantities are positive, so we can make the appropriate guesses
2770 about signed comparisons against zero. */
2771 switch (cmp)
2773 case EQ_EXPR:
2774 case UNEQ_EXPR:
2775 /* Floating point comparisons appears to behave in a very
2776 unpredictable way because of special role of = tests in
2777 FP code. */
2778 if (FLOAT_TYPE_P (type))
2780 /* Comparisons with 0 are often used for booleans and there is
2781 nothing useful to predict about them. */
2782 else if (integer_zerop (op0) || integer_zerop (op1))
2784 else
2785 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2786 break;
2788 case NE_EXPR:
2789 case LTGT_EXPR:
2790 /* Floating point comparisons appears to behave in a very
2791 unpredictable way because of special role of = tests in
2792 FP code. */
2793 if (FLOAT_TYPE_P (type))
2795 /* Comparisons with 0 are often used for booleans and there is
2796 nothing useful to predict about them. */
2797 else if (integer_zerop (op0)
2798 || integer_zerop (op1))
2800 else
2801 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2802 break;
2804 case ORDERED_EXPR:
2805 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2806 break;
2808 case UNORDERED_EXPR:
2809 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2810 break;
2812 case LE_EXPR:
2813 case LT_EXPR:
2814 if (integer_zerop (op1)
2815 || integer_onep (op1)
2816 || integer_all_onesp (op1)
2817 || real_zerop (op1)
2818 || real_onep (op1)
2819 || real_minus_onep (op1))
2820 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2821 break;
2823 case GE_EXPR:
2824 case GT_EXPR:
2825 if (integer_zerop (op1)
2826 || integer_onep (op1)
2827 || integer_all_onesp (op1)
2828 || real_zerop (op1)
2829 || real_onep (op1)
2830 || real_minus_onep (op1))
2831 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2832 break;
2834 default:
2835 break;
2839 /* Returns TRUE if the STMT is exit(0) like statement. */
2841 static bool
2842 is_exit_with_zero_arg (const gimple *stmt)
2844 /* This is not exit, _exit or _Exit. */
2845 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2846 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2847 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2848 return false;
2850 /* Argument is an interger zero. */
2851 return integer_zerop (gimple_call_arg (stmt, 0));
2854 /* Try to guess whether the value of return means error code. */
2856 static enum br_predictor
2857 return_prediction (tree val, enum prediction *prediction)
2859 /* VOID. */
2860 if (!val)
2861 return PRED_NO_PREDICTION;
2862 /* Different heuristics for pointers and scalars. */
2863 if (POINTER_TYPE_P (TREE_TYPE (val)))
2865 /* NULL is usually not returned. */
2866 if (integer_zerop (val))
2868 *prediction = NOT_TAKEN;
2869 return PRED_NULL_RETURN;
2872 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2874 /* Negative return values are often used to indicate
2875 errors. */
2876 if (TREE_CODE (val) == INTEGER_CST
2877 && tree_int_cst_sgn (val) < 0)
2879 *prediction = NOT_TAKEN;
2880 return PRED_NEGATIVE_RETURN;
2882 /* Constant return values seems to be commonly taken.
2883 Zero/one often represent booleans so exclude them from the
2884 heuristics. */
2885 if (TREE_CONSTANT (val)
2886 && (!integer_zerop (val) && !integer_onep (val)))
2888 *prediction = NOT_TAKEN;
2889 return PRED_CONST_RETURN;
2892 return PRED_NO_PREDICTION;
2895 /* Return zero if phi result could have values other than -1, 0 or 1,
2896 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2897 values are used or likely. */
2899 static int
2900 zero_one_minusone (gphi *phi, int limit)
2902 int phi_num_args = gimple_phi_num_args (phi);
2903 int ret = 0;
2904 for (int i = 0; i < phi_num_args; i++)
2906 tree t = PHI_ARG_DEF (phi, i);
2907 if (TREE_CODE (t) != INTEGER_CST)
2908 continue;
2909 wide_int w = wi::to_wide (t);
2910 if (w == -1)
2911 ret |= 1;
2912 else if (w == 0)
2913 ret |= 2;
2914 else if (w == 1)
2915 ret |= 4;
2916 else
2917 return 0;
2919 for (int i = 0; i < phi_num_args; i++)
2921 tree t = PHI_ARG_DEF (phi, i);
2922 if (TREE_CODE (t) == INTEGER_CST)
2923 continue;
2924 if (TREE_CODE (t) != SSA_NAME)
2925 return 0;
2926 gimple *g = SSA_NAME_DEF_STMT (t);
2927 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2928 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2930 ret |= r;
2931 continue;
2933 if (!is_gimple_assign (g))
2934 return 0;
2935 if (gimple_assign_cast_p (g))
2937 tree rhs1 = gimple_assign_rhs1 (g);
2938 if (TREE_CODE (rhs1) != SSA_NAME
2939 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2940 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2941 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2942 return 0;
2943 ret |= (2 | 4);
2944 continue;
2946 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2947 return 0;
2948 ret |= (2 | 4);
2950 return ret;
2953 /* Find the basic block with return expression and look up for possible
2954 return value trying to apply RETURN_PREDICTION heuristics. */
2955 static void
2956 apply_return_prediction (void)
2958 greturn *return_stmt = NULL;
2959 tree return_val;
2960 edge e;
2961 gphi *phi;
2962 int phi_num_args, i;
2963 enum br_predictor pred;
2964 enum prediction direction;
2965 edge_iterator ei;
2967 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2969 if (greturn *last = safe_dyn_cast <greturn *> (*gsi_last_bb (e->src)))
2971 return_stmt = last;
2972 break;
2975 if (!e)
2976 return;
2977 return_val = gimple_return_retval (return_stmt);
2978 if (!return_val)
2979 return;
2980 if (TREE_CODE (return_val) != SSA_NAME
2981 || !SSA_NAME_DEF_STMT (return_val)
2982 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2983 return;
2984 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2985 phi_num_args = gimple_phi_num_args (phi);
2986 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2988 /* Avoid the case where the function returns -1, 0 and 1 values and
2989 nothing else. Those could be qsort etc. comparison functions
2990 where the negative return isn't less probable than positive.
2991 For this require that the function returns at least -1 or 1
2992 or -1 and a boolean value or comparison result, so that functions
2993 returning just -1 and 0 are treated as if -1 represents error value. */
2994 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2995 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2996 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2997 if (int r = zero_one_minusone (phi, 3))
2998 if ((r & (1 | 4)) == (1 | 4))
2999 return;
3001 /* Avoid the degenerate case where all return values form the function
3002 belongs to same category (ie they are all positive constants)
3003 so we can hardly say something about them. */
3004 for (i = 1; i < phi_num_args; i++)
3005 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
3006 break;
3007 if (i != phi_num_args)
3008 for (i = 0; i < phi_num_args; i++)
3010 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
3011 if (pred != PRED_NO_PREDICTION)
3012 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
3013 direction);
3017 /* Look for basic block that contains unlikely to happen events
3018 (such as noreturn calls) and mark all paths leading to execution
3019 of this basic blocks as unlikely. */
3021 static void
3022 tree_bb_level_predictions (void)
3024 basic_block bb;
3025 bool has_return_edges = false;
3026 edge e;
3027 edge_iterator ei;
3029 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
3030 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
3032 has_return_edges = true;
3033 break;
3036 apply_return_prediction ();
3038 FOR_EACH_BB_FN (bb, cfun)
3040 gimple_stmt_iterator gsi;
3042 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3044 gimple *stmt = gsi_stmt (gsi);
3045 tree decl;
3047 if (is_gimple_call (stmt))
3049 if (gimple_call_noreturn_p (stmt)
3050 && has_return_edges
3051 && !is_exit_with_zero_arg (stmt))
3052 predict_paths_leading_to (bb, PRED_NORETURN,
3053 NOT_TAKEN);
3054 decl = gimple_call_fndecl (stmt);
3055 if (decl
3056 && lookup_attribute ("cold",
3057 DECL_ATTRIBUTES (decl)))
3058 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
3059 NOT_TAKEN);
3060 if (decl && recursive_call_p (current_function_decl, decl))
3061 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3062 NOT_TAKEN);
3064 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3066 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3067 gimple_predict_outcome (stmt));
3068 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3069 hints to callers. */
3075 /* Callback for hash_map::traverse, asserts that the pointer map is
3076 empty. */
3078 bool
3079 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3080 void *)
3082 gcc_assert (!value);
3083 return true;
3086 /* Predict branch probabilities and estimate profile for basic block BB.
3087 When LOCAL_ONLY is set do not use any global properties of CFG. */
3089 static void
3090 tree_estimate_probability_bb (basic_block bb, bool local_only)
3092 edge e;
3093 edge_iterator ei;
3095 FOR_EACH_EDGE (e, ei, bb->succs)
3097 /* Look for block we are guarding (ie we dominate it,
3098 but it doesn't postdominate us). */
3099 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3100 && !local_only
3101 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3102 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3104 gimple_stmt_iterator bi;
3106 /* The call heuristic claims that a guarded function call
3107 is improbable. This is because such calls are often used
3108 to signal exceptional situations such as printing error
3109 messages. */
3110 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3111 gsi_next (&bi))
3113 gimple *stmt = gsi_stmt (bi);
3114 if (is_gimple_call (stmt)
3115 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3116 /* Constant and pure calls are hardly used to signalize
3117 something exceptional. */
3118 && gimple_has_side_effects (stmt))
3120 if (gimple_call_fndecl (stmt))
3121 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3122 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3123 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3124 else
3125 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3126 break;
3131 tree_predict_by_opcode (bb);
3134 /* Predict branch probabilities and estimate profile of the tree CFG.
3135 This function can be called from the loop optimizers to recompute
3136 the profile information.
3137 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3139 void
3140 tree_estimate_probability (bool dry_run)
3142 basic_block bb;
3144 connect_infinite_loops_to_exit ();
3145 /* We use loop_niter_by_eval, which requires that the loops have
3146 preheaders. */
3147 create_preheaders (CP_SIMPLE_PREHEADERS);
3148 calculate_dominance_info (CDI_POST_DOMINATORS);
3149 /* Decide which edges are known to be unlikely. This improves later
3150 branch prediction. */
3151 determine_unlikely_bbs ();
3153 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3154 tree_bb_level_predictions ();
3155 record_loop_exits ();
3157 if (number_of_loops (cfun) > 1)
3158 predict_loops ();
3160 FOR_EACH_BB_FN (bb, cfun)
3161 tree_estimate_probability_bb (bb, false);
3163 FOR_EACH_BB_FN (bb, cfun)
3164 combine_predictions_for_bb (bb, dry_run);
3166 if (flag_checking)
3167 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3169 delete bb_predictions;
3170 bb_predictions = NULL;
3172 if (!dry_run
3173 && profile_status_for_fn (cfun) != PROFILE_READ)
3174 estimate_bb_frequencies ();
3175 free_dominance_info (CDI_POST_DOMINATORS);
3176 remove_fake_exit_edges ();
3179 /* Set edge->probability for each successor edge of BB. */
3180 void
3181 tree_guess_outgoing_edge_probabilities (basic_block bb)
3183 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3184 tree_estimate_probability_bb (bb, true);
3185 combine_predictions_for_bb (bb, false);
3186 if (flag_checking)
3187 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3188 delete bb_predictions;
3189 bb_predictions = NULL;
3192 /* Filter function predicate that returns true for a edge predicate P
3193 if its edge is equal to DATA. */
3195 static bool
3196 not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
3198 return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
3201 /* Predict edge E with PRED unless it is already predicted by some predictor
3202 considered equivalent. */
3204 static void
3205 maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
3207 if (edge_predicted_by_p (e, pred, taken))
3208 return;
3209 if (pred == PRED_LOOP_GUARD
3210 && edge_predicted_by_p (e, PRED_LOOP_GUARD_WITH_RECURSION, taken))
3211 return;
3212 /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD. */
3213 if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
3215 edge_prediction **preds = bb_predictions->get (e->src);
3216 if (preds)
3217 filter_predictions (preds, not_loop_guard_equal_edge_p, e);
3219 predict_edge_def (e, pred, taken);
3221 /* Predict edges to successors of CUR whose sources are not postdominated by
3222 BB by PRED and recurse to all postdominators. */
3224 static void
3225 predict_paths_for_bb (basic_block cur, basic_block bb,
3226 enum br_predictor pred,
3227 enum prediction taken,
3228 bitmap visited, class loop *in_loop = NULL)
3230 edge e;
3231 edge_iterator ei;
3232 basic_block son;
3234 /* If we exited the loop or CUR is unconditional in the loop, there is
3235 nothing to do. */
3236 if (in_loop
3237 && (!flow_bb_inside_loop_p (in_loop, cur)
3238 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3239 return;
3241 /* We are looking for all edges forming edge cut induced by
3242 set of all blocks postdominated by BB. */
3243 FOR_EACH_EDGE (e, ei, cur->preds)
3244 if (e->src->index >= NUM_FIXED_BLOCKS
3245 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3247 edge e2;
3248 edge_iterator ei2;
3249 bool found = false;
3251 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3252 if (unlikely_executed_edge_p (e))
3253 continue;
3254 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3256 /* See if there is an edge from e->src that is not abnormal
3257 and does not lead to BB and does not exit the loop. */
3258 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3259 if (e2 != e
3260 && !unlikely_executed_edge_p (e2)
3261 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3262 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3264 found = true;
3265 break;
3268 /* If there is non-abnormal path leaving e->src, predict edge
3269 using predictor. Otherwise we need to look for paths
3270 leading to e->src.
3272 The second may lead to infinite loop in the case we are predicitng
3273 regions that are only reachable by abnormal edges. We simply
3274 prevent visiting given BB twice. */
3275 if (found)
3276 maybe_predict_edge (e, pred, taken);
3277 else if (bitmap_set_bit (visited, e->src->index))
3278 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3280 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3281 son;
3282 son = next_dom_son (CDI_POST_DOMINATORS, son))
3283 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3286 /* Sets branch probabilities according to PREDiction and
3287 FLAGS. */
3289 static void
3290 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3291 enum prediction taken, class loop *in_loop)
3293 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3296 /* Like predict_paths_leading_to but take edge instead of basic block. */
3298 static void
3299 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3300 enum prediction taken, class loop *in_loop)
3302 bool has_nonloop_edge = false;
3303 edge_iterator ei;
3304 edge e2;
3306 basic_block bb = e->src;
3307 FOR_EACH_EDGE (e2, ei, bb->succs)
3308 if (e2->dest != e->src && e2->dest != e->dest
3309 && !unlikely_executed_edge_p (e2)
3310 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3312 has_nonloop_edge = true;
3313 break;
3316 if (!has_nonloop_edge)
3317 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3318 else
3319 maybe_predict_edge (e, pred, taken);
3322 /* This is used to carry information about basic blocks. It is
3323 attached to the AUX field of the standard CFG block. */
3325 class block_info
3327 public:
3328 /* Estimated frequency of execution of basic_block. */
3329 sreal frequency;
3331 /* To keep queue of basic blocks to process. */
3332 basic_block next;
3334 /* Number of predecessors we need to visit first. */
3335 int npredecessors;
3338 /* Similar information for edges. */
3339 class edge_prob_info
3341 public:
3342 /* In case edge is a loopback edge, the probability edge will be reached
3343 in case header is. Estimated number of iterations of the loop can be
3344 then computed as 1 / (1 - back_edge_prob). */
3345 sreal back_edge_prob;
3346 /* True if the edge is a loopback edge in the natural loop. */
3347 unsigned int back_edge:1;
3350 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3351 #undef EDGE_INFO
3352 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3354 /* Helper function for estimate_bb_frequencies.
3355 Propagate the frequencies in blocks marked in
3356 TOVISIT, starting in HEAD. */
3358 static void
3359 propagate_freq (basic_block head, bitmap tovisit,
3360 sreal max_cyclic_prob)
3362 basic_block bb;
3363 basic_block last;
3364 unsigned i;
3365 edge e;
3366 basic_block nextbb;
3367 bitmap_iterator bi;
3369 /* For each basic block we need to visit count number of his predecessors
3370 we need to visit first. */
3371 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3373 edge_iterator ei;
3374 int count = 0;
3376 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3378 FOR_EACH_EDGE (e, ei, bb->preds)
3380 bool visit = bitmap_bit_p (tovisit, e->src->index);
3382 if (visit && !(e->flags & EDGE_DFS_BACK))
3383 count++;
3384 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3385 fprintf (dump_file,
3386 "Irreducible region hit, ignoring edge to %i->%i\n",
3387 e->src->index, bb->index);
3389 BLOCK_INFO (bb)->npredecessors = count;
3390 /* When function never returns, we will never process exit block. */
3391 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3392 bb->count = profile_count::zero ();
3395 BLOCK_INFO (head)->frequency = 1;
3396 last = head;
3397 for (bb = head; bb; bb = nextbb)
3399 edge_iterator ei;
3400 sreal cyclic_probability = 0;
3401 sreal frequency = 0;
3403 nextbb = BLOCK_INFO (bb)->next;
3404 BLOCK_INFO (bb)->next = NULL;
3406 /* Compute frequency of basic block. */
3407 if (bb != head)
3409 if (flag_checking)
3410 FOR_EACH_EDGE (e, ei, bb->preds)
3411 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3412 || (e->flags & EDGE_DFS_BACK));
3414 FOR_EACH_EDGE (e, ei, bb->preds)
3415 if (EDGE_INFO (e)->back_edge)
3416 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3417 else if (!(e->flags & EDGE_DFS_BACK))
3419 /* FIXME: Graphite is producing edges with no profile. Once
3420 this is fixed, drop this. */
3421 sreal tmp = e->probability.initialized_p () ?
3422 e->probability.to_sreal () : 0;
3423 frequency += tmp * BLOCK_INFO (e->src)->frequency;
3426 if (cyclic_probability == 0)
3428 BLOCK_INFO (bb)->frequency = frequency;
3430 else
3432 if (cyclic_probability > max_cyclic_prob)
3434 if (dump_file)
3435 fprintf (dump_file,
3436 "cyclic probability of bb %i is %f (capped to %f)"
3437 "; turning freq %f",
3438 bb->index, cyclic_probability.to_double (),
3439 max_cyclic_prob.to_double (),
3440 frequency.to_double ());
3442 cyclic_probability = max_cyclic_prob;
3444 else if (dump_file)
3445 fprintf (dump_file,
3446 "cyclic probability of bb %i is %f; turning freq %f",
3447 bb->index, cyclic_probability.to_double (),
3448 frequency.to_double ());
3450 BLOCK_INFO (bb)->frequency = frequency
3451 / (sreal (1) - cyclic_probability);
3452 if (dump_file)
3453 fprintf (dump_file, " to %f\n",
3454 BLOCK_INFO (bb)->frequency.to_double ());
3458 bitmap_clear_bit (tovisit, bb->index);
3460 e = find_edge (bb, head);
3461 if (e)
3463 /* FIXME: Graphite is producing edges with no profile. Once
3464 this is fixed, drop this. */
3465 sreal tmp = e->probability.initialized_p () ?
3466 e->probability.to_sreal () : 0;
3467 EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
3470 /* Propagate to successor blocks. */
3471 FOR_EACH_EDGE (e, ei, bb->succs)
3472 if (!(e->flags & EDGE_DFS_BACK)
3473 && BLOCK_INFO (e->dest)->npredecessors)
3475 BLOCK_INFO (e->dest)->npredecessors--;
3476 if (!BLOCK_INFO (e->dest)->npredecessors)
3478 if (!nextbb)
3479 nextbb = e->dest;
3480 else
3481 BLOCK_INFO (last)->next = e->dest;
3483 last = e->dest;
3489 /* Estimate frequencies in loops at same nest level. */
3491 static void
3492 estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
3494 class loop *loop;
3496 for (loop = first_loop; loop; loop = loop->next)
3498 edge e;
3499 basic_block *bbs;
3500 unsigned i;
3501 auto_bitmap tovisit;
3503 estimate_loops_at_level (loop->inner, max_cyclic_prob);
3505 /* Find current loop back edge and mark it. */
3506 e = loop_latch_edge (loop);
3507 EDGE_INFO (e)->back_edge = 1;
3509 bbs = get_loop_body (loop);
3510 for (i = 0; i < loop->num_nodes; i++)
3511 bitmap_set_bit (tovisit, bbs[i]->index);
3512 free (bbs);
3513 propagate_freq (loop->header, tovisit, max_cyclic_prob);
3517 /* Propagates frequencies through structure of loops. */
3519 static void
3520 estimate_loops (void)
3522 auto_bitmap tovisit;
3523 basic_block bb;
3524 sreal max_cyclic_prob = (sreal)1
3525 - (sreal)1 / (param_max_predicted_iterations + 1);
3527 /* Start by estimating the frequencies in the loops. */
3528 if (number_of_loops (cfun) > 1)
3529 estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);
3531 /* Now propagate the frequencies through all the blocks. */
3532 FOR_ALL_BB_FN (bb, cfun)
3534 bitmap_set_bit (tovisit, bb->index);
3536 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
3539 /* Drop the profile for NODE to guessed, and update its frequency based on
3540 whether it is expected to be hot given the CALL_COUNT. */
3542 static void
3543 drop_profile (struct cgraph_node *node, profile_count call_count)
3545 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3546 /* In the case where this was called by another function with a
3547 dropped profile, call_count will be 0. Since there are no
3548 non-zero call counts to this function, we don't know for sure
3549 whether it is hot, and therefore it will be marked normal below. */
3550 bool hot = maybe_hot_count_p (NULL, call_count);
3552 if (dump_file)
3553 fprintf (dump_file,
3554 "Dropping 0 profile for %s. %s based on calls.\n",
3555 node->dump_name (),
3556 hot ? "Function is hot" : "Function is normal");
3557 /* We only expect to miss profiles for functions that are reached
3558 via non-zero call edges in cases where the function may have
3559 been linked from another module or library (COMDATs and extern
3560 templates). See the comments below for handle_missing_profiles.
3561 Also, only warn in cases where the missing counts exceed the
3562 number of training runs. In certain cases with an execv followed
3563 by a no-return call the profile for the no-return call is not
3564 dumped and there can be a mismatch. */
3565 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3566 && call_count > profile_info->runs)
3568 if (flag_profile_correction)
3570 if (dump_file)
3571 fprintf (dump_file,
3572 "Missing counts for called function %s\n",
3573 node->dump_name ());
3575 else
3576 warning (0, "Missing counts for called function %s",
3577 node->dump_name ());
3580 basic_block bb;
3581 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3583 bool clear_zeros
3584 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3585 FOR_ALL_BB_FN (bb, fn)
3586 if (clear_zeros || !(bb->count == profile_count::zero ()))
3587 bb->count = bb->count.guessed_local ();
3588 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3590 else
3592 FOR_ALL_BB_FN (bb, fn)
3593 bb->count = profile_count::uninitialized ();
3594 fn->cfg->count_max = profile_count::uninitialized ();
3597 struct cgraph_edge *e;
3598 for (e = node->callees; e; e = e->next_callee)
3599 e->count = gimple_bb (e->call_stmt)->count;
3600 for (e = node->indirect_calls; e; e = e->next_callee)
3601 e->count = gimple_bb (e->call_stmt)->count;
3602 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3604 profile_status_for_fn (fn)
3605 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3606 node->frequency
3607 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3610 /* In the case of COMDAT routines, multiple object files will contain the same
3611 function and the linker will select one for the binary. In that case
3612 all the other copies from the profile instrument binary will be missing
3613 profile counts. Look for cases where this happened, due to non-zero
3614 call counts going to 0-count functions, and drop the profile to guessed
3615 so that we can use the estimated probabilities and avoid optimizing only
3616 for size.
3618 The other case where the profile may be missing is when the routine
3619 is not going to be emitted to the object file, e.g. for "extern template"
3620 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3621 all other cases of non-zero calls to 0-count functions. */
3623 void
3624 handle_missing_profiles (void)
3626 const int unlikely_frac = param_unlikely_bb_count_fraction;
3627 struct cgraph_node *node;
3628 auto_vec<struct cgraph_node *, 64> worklist;
3630 /* See if 0 count function has non-0 count callers. In this case we
3631 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3632 FOR_EACH_DEFINED_FUNCTION (node)
3634 struct cgraph_edge *e;
3635 profile_count call_count = profile_count::zero ();
3636 gcov_type max_tp_first_run = 0;
3637 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3639 if (node->count.ipa ().nonzero_p ())
3640 continue;
3641 for (e = node->callers; e; e = e->next_caller)
3642 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3644 call_count = call_count + e->count.ipa ();
3646 if (e->caller->tp_first_run > max_tp_first_run)
3647 max_tp_first_run = e->caller->tp_first_run;
3650 /* If time profile is missing, let assign the maximum that comes from
3651 caller functions. */
3652 if (!node->tp_first_run && max_tp_first_run)
3653 node->tp_first_run = max_tp_first_run + 1;
3655 if (call_count > 0
3656 && fn && fn->cfg
3657 && call_count * unlikely_frac >= profile_info->runs)
3659 drop_profile (node, call_count);
3660 worklist.safe_push (node);
3664 /* Propagate the profile dropping to other 0-count COMDATs that are
3665 potentially called by COMDATs we already dropped the profile on. */
3666 while (worklist.length () > 0)
3668 struct cgraph_edge *e;
3670 node = worklist.pop ();
3671 for (e = node->callees; e; e = e->next_caller)
3673 struct cgraph_node *callee = e->callee;
3674 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3676 if (!(e->count.ipa () == profile_count::zero ())
3677 && callee->count.ipa ().nonzero_p ())
3678 continue;
3679 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3680 && fn && fn->cfg
3681 && profile_status_for_fn (fn) == PROFILE_READ)
3683 drop_profile (node, profile_count::zero ());
3684 worklist.safe_push (callee);
3690 /* Convert counts measured by profile driven feedback to frequencies.
3691 Return nonzero iff there was any nonzero execution count. */
3693 bool
3694 update_max_bb_count (void)
3696 profile_count true_count_max = profile_count::uninitialized ();
3697 basic_block bb;
3699 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3700 true_count_max = true_count_max.max (bb->count);
3702 cfun->cfg->count_max = true_count_max;
3704 return true_count_max.ipa ().nonzero_p ();
3707 /* Return true if function is likely to be expensive, so there is no point to
3708 optimize performance of prologue, epilogue or do inlining at the expense
3709 of code size growth. THRESHOLD is the limit of number of instructions
3710 function can execute at average to be still considered not expensive. */
3712 bool
3713 expensive_function_p (int threshold)
3715 basic_block bb;
3717 /* If profile was scaled in a way entry block has count 0, then the function
3718 is deifnitly taking a lot of time. */
3719 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3720 return true;
3722 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count * threshold;
3723 profile_count sum = profile_count::zero ();
3724 FOR_EACH_BB_FN (bb, cfun)
3726 rtx_insn *insn;
3728 if (!bb->count.initialized_p ())
3730 if (dump_file)
3731 fprintf (dump_file, "Function is considered expensive because"
3732 " count of bb %i is not initialized\n", bb->index);
3733 return true;
3736 FOR_BB_INSNS (bb, insn)
3737 if (active_insn_p (insn))
3739 sum += bb->count;
3740 if (sum > limit)
3741 return true;
3745 return false;
3748 /* All basic blocks that are reachable only from unlikely basic blocks are
3749 unlikely. */
3751 void
3752 propagate_unlikely_bbs_forward (void)
3754 auto_vec<basic_block, 64> worklist;
3755 basic_block bb;
3756 edge_iterator ei;
3757 edge e;
3759 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3761 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3762 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3764 while (worklist.length () > 0)
3766 bb = worklist.pop ();
3767 FOR_EACH_EDGE (e, ei, bb->succs)
3768 if (!(e->count () == profile_count::zero ())
3769 && !(e->dest->count == profile_count::zero ())
3770 && !e->dest->aux)
3772 e->dest->aux = (void *)(size_t) 1;
3773 worklist.safe_push (e->dest);
3778 FOR_ALL_BB_FN (bb, cfun)
3780 if (!bb->aux)
3782 if (!(bb->count == profile_count::zero ())
3783 && (dump_file && (dump_flags & TDF_DETAILS)))
3784 fprintf (dump_file,
3785 "Basic block %i is marked unlikely by forward prop\n",
3786 bb->index);
3787 bb->count = profile_count::zero ();
3789 else
3790 bb->aux = NULL;
3794 /* Determine basic blocks/edges that are known to be unlikely executed and set
3795 their counters to zero.
3796 This is done with first identifying obviously unlikely BBs/edges and then
3797 propagating in both directions. */
3799 static void
3800 determine_unlikely_bbs ()
3802 basic_block bb;
3803 auto_vec<basic_block, 64> worklist;
3804 edge_iterator ei;
3805 edge e;
3807 FOR_EACH_BB_FN (bb, cfun)
3809 if (!(bb->count == profile_count::zero ())
3810 && unlikely_executed_bb_p (bb))
3812 if (dump_file && (dump_flags & TDF_DETAILS))
3813 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3814 bb->index);
3815 bb->count = profile_count::zero ();
3818 FOR_EACH_EDGE (e, ei, bb->succs)
3819 if (!(e->probability == profile_probability::never ())
3820 && unlikely_executed_edge_p (e))
3822 if (dump_file && (dump_flags & TDF_DETAILS))
3823 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3824 bb->index, e->dest->index);
3825 e->probability = profile_probability::never ();
3828 gcc_checking_assert (!bb->aux);
3830 propagate_unlikely_bbs_forward ();
3832 auto_vec<int, 64> nsuccs;
3833 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
3834 FOR_ALL_BB_FN (bb, cfun)
3835 if (!(bb->count == profile_count::zero ())
3836 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3838 nsuccs[bb->index] = 0;
3839 FOR_EACH_EDGE (e, ei, bb->succs)
3840 if (!(e->probability == profile_probability::never ())
3841 && !(e->dest->count == profile_count::zero ()))
3842 nsuccs[bb->index]++;
3843 if (!nsuccs[bb->index])
3844 worklist.safe_push (bb);
3846 while (worklist.length () > 0)
3848 bb = worklist.pop ();
3849 if (bb->count == profile_count::zero ())
3850 continue;
3851 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3853 bool found = false;
3854 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3855 !gsi_end_p (gsi); gsi_next (&gsi))
3856 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3857 /* stmt_can_terminate_bb_p special cases noreturns because it
3858 assumes that fake edges are created. We want to know that
3859 noreturn alone does not imply BB to be unlikely. */
3860 || (is_gimple_call (gsi_stmt (gsi))
3861 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3863 found = true;
3864 break;
3866 if (found)
3867 continue;
3869 if (dump_file && (dump_flags & TDF_DETAILS))
3870 fprintf (dump_file,
3871 "Basic block %i is marked unlikely by backward prop\n",
3872 bb->index);
3873 bb->count = profile_count::zero ();
3874 FOR_EACH_EDGE (e, ei, bb->preds)
3875 if (!(e->probability == profile_probability::never ()))
3877 if (!(e->src->count == profile_count::zero ()))
3879 gcc_checking_assert (nsuccs[e->src->index] > 0);
3880 nsuccs[e->src->index]--;
3881 if (!nsuccs[e->src->index])
3882 worklist.safe_push (e->src);
3886 /* Finally all edges from non-0 regions to 0 are unlikely. */
3887 FOR_ALL_BB_FN (bb, cfun)
3889 if (!(bb->count == profile_count::zero ()))
3890 FOR_EACH_EDGE (e, ei, bb->succs)
3891 if (!(e->probability == profile_probability::never ())
3892 && e->dest->count == profile_count::zero ())
3894 if (dump_file && (dump_flags & TDF_DETAILS))
3895 fprintf (dump_file, "Edge %i->%i is unlikely because "
3896 "it enters unlikely block\n",
3897 bb->index, e->dest->index);
3898 e->probability = profile_probability::never ();
3901 edge other = NULL;
3903 FOR_EACH_EDGE (e, ei, bb->succs)
3904 if (e->probability == profile_probability::never ())
3906 else if (other)
3908 other = NULL;
3909 break;
3911 else
3912 other = e;
3913 if (other
3914 && !(other->probability == profile_probability::always ()))
3916 if (dump_file && (dump_flags & TDF_DETAILS))
3917 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3918 bb->index, other->dest->index);
3919 other->probability = profile_probability::always ();
3922 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3923 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3926 /* Estimate and propagate basic block frequencies using the given branch
3927 probabilities. */
3929 static void
3930 estimate_bb_frequencies ()
3932 basic_block bb;
3933 sreal freq_max;
3935 determine_unlikely_bbs ();
3937 mark_dfs_back_edges ();
3939 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3940 profile_probability::always ();
3942 /* Set up block info for each basic block. */
3943 alloc_aux_for_blocks (sizeof (block_info));
3944 alloc_aux_for_edges (sizeof (edge_prob_info));
3945 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3947 edge e;
3948 edge_iterator ei;
3950 FOR_EACH_EDGE (e, ei, bb->succs)
3952 /* FIXME: Graphite is producing edges with no profile. Once
3953 this is fixed, drop this. */
3954 if (e->probability.initialized_p ())
3955 EDGE_INFO (e)->back_edge_prob
3956 = e->probability.to_sreal ();
3957 else
3958 /* back_edge_prob = 0.5 */
3959 EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
3963 /* First compute frequencies locally for each loop from innermost
3964 to outermost to examine frequencies for back edges. */
3965 estimate_loops ();
3967 freq_max = 0;
3968 FOR_EACH_BB_FN (bb, cfun)
3969 if (freq_max < BLOCK_INFO (bb)->frequency)
3970 freq_max = BLOCK_INFO (bb)->frequency;
3972 /* Scaling frequencies up to maximal profile count may result in
3973 frequent overflows especially when inlining loops.
3974 Small scalling results in unnecesary precision loss. Stay in
3975 the half of the (exponential) range. */
3976 freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
3977 if (freq_max < 16)
3978 freq_max = 16;
3979 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3980 cfun->cfg->count_max = profile_count::uninitialized ();
3981 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3983 sreal tmp = BLOCK_INFO (bb)->frequency;
3984 if (tmp >= 1)
3986 gimple_stmt_iterator gsi;
3987 tree decl;
3989 /* Self recursive calls can not have frequency greater than 1
3990 or program will never terminate. This will result in an
3991 inconsistent bb profile but it is better than greatly confusing
3992 IPA cost metrics. */
3993 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3994 if (is_gimple_call (gsi_stmt (gsi))
3995 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
3996 && recursive_call_p (current_function_decl, decl))
3998 if (dump_file)
3999 fprintf (dump_file, "Dropping frequency of recursive call"
4000 " in bb %i from %f\n", bb->index,
4001 tmp.to_double ());
4002 tmp = (sreal)9 / (sreal)10;
4003 break;
4006 tmp = tmp * freq_max;
4007 profile_count count = profile_count::from_gcov_type (tmp.to_nearest_int ());
4009 /* If we have profile feedback in which this function was never
4010 executed, then preserve this info. */
4011 if (!(bb->count == profile_count::zero ()))
4012 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
4013 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4016 free_aux_for_blocks ();
4017 free_aux_for_edges ();
4018 compute_function_frequency ();
4021 /* Decide whether function is hot, cold or unlikely executed. */
4022 void
4023 compute_function_frequency (void)
4025 basic_block bb;
4026 struct cgraph_node *node = cgraph_node::get (current_function_decl);
4028 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4029 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
4030 node->only_called_at_startup = true;
4031 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
4032 node->only_called_at_exit = true;
4034 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
4036 int flags = flags_from_decl_or_type (current_function_decl);
4037 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4038 != NULL)
4039 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4040 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
4041 != NULL)
4042 node->frequency = NODE_FREQUENCY_HOT;
4043 else if (flags & ECF_NORETURN)
4044 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4045 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
4046 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4047 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4048 || DECL_STATIC_DESTRUCTOR (current_function_decl))
4049 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4050 return;
4053 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4054 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4055 == NULL)
4056 warn_function_cold (current_function_decl);
4057 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
4058 return;
4059 FOR_EACH_BB_FN (bb, cfun)
4061 if (maybe_hot_bb_p (cfun, bb))
4063 node->frequency = NODE_FREQUENCY_HOT;
4064 return;
4066 if (!probably_never_executed_bb_p (cfun, bb))
4067 node->frequency = NODE_FREQUENCY_NORMAL;
4071 /* Build PREDICT_EXPR. */
4072 tree
4073 build_predict_expr (enum br_predictor predictor, enum prediction taken)
4075 tree t = build1 (PREDICT_EXPR, void_type_node,
4076 build_int_cst (integer_type_node, predictor));
4077 SET_PREDICT_EXPR_OUTCOME (t, taken);
4078 return t;
4081 const char *
4082 predictor_name (enum br_predictor predictor)
4084 return predictor_info[predictor].name;
4087 /* Predict branch probabilities and estimate profile of the tree CFG. */
4089 namespace {
4091 const pass_data pass_data_profile =
4093 GIMPLE_PASS, /* type */
4094 "profile_estimate", /* name */
4095 OPTGROUP_NONE, /* optinfo_flags */
4096 TV_BRANCH_PROB, /* tv_id */
4097 PROP_cfg, /* properties_required */
4098 0, /* properties_provided */
4099 0, /* properties_destroyed */
4100 0, /* todo_flags_start */
4101 0, /* todo_flags_finish */
4104 class pass_profile : public gimple_opt_pass
4106 public:
4107 pass_profile (gcc::context *ctxt)
4108 : gimple_opt_pass (pass_data_profile, ctxt)
4111 /* opt_pass methods: */
4112 bool gate (function *) final override { return flag_guess_branch_prob; }
4113 unsigned int execute (function *) final override;
4115 }; // class pass_profile
4117 unsigned int
4118 pass_profile::execute (function *fun)
4120 unsigned nb_loops;
4122 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4123 return 0;
4125 loop_optimizer_init (LOOPS_NORMAL);
4126 if (dump_file && (dump_flags & TDF_DETAILS))
4127 flow_loops_dump (dump_file, NULL, 0);
4129 nb_loops = number_of_loops (fun);
4130 if (nb_loops > 1)
4131 scev_initialize ();
4133 tree_estimate_probability (false);
4135 if (nb_loops > 1)
4136 scev_finalize ();
4138 loop_optimizer_finalize ();
4139 if (dump_file && (dump_flags & TDF_DETAILS))
4140 gimple_dump_cfg (dump_file, dump_flags);
4141 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4142 profile_status_for_fn (fun) = PROFILE_GUESSED;
4143 if (dump_file && (dump_flags & TDF_DETAILS))
4145 sreal iterations;
4146 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
4147 if (expected_loop_iterations_by_profile (loop, &iterations))
4148 fprintf (dump_file, "Loop got predicted %d to iterate %f times.\n",
4149 loop->num, iterations.to_double ());
4151 return 0;
4154 } // anon namespace
4156 gimple_opt_pass *
4157 make_pass_profile (gcc::context *ctxt)
4159 return new pass_profile (ctxt);
4162 /* Return true when PRED predictor should be removed after early
4163 tree passes. Most of the predictors are beneficial to survive
4164 as early inlining can also distribute then into caller's bodies. */
4166 static bool
4167 strip_predictor_early (enum br_predictor pred)
4169 switch (pred)
4171 case PRED_TREE_EARLY_RETURN:
4172 return true;
4173 default:
4174 return false;
4178 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4179 we no longer need. EARLY is set to true when called from early
4180 optimizations. */
4182 unsigned int
4183 strip_predict_hints (function *fun, bool early)
4185 basic_block bb;
4186 gimple *ass_stmt;
4187 tree var;
4188 bool changed = false;
4190 FOR_EACH_BB_FN (bb, fun)
4192 gimple_stmt_iterator bi;
4193 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4195 gimple *stmt = gsi_stmt (bi);
4197 if (gimple_code (stmt) == GIMPLE_PREDICT)
4199 if (!early
4200 || strip_predictor_early (gimple_predict_predictor (stmt)))
4202 gsi_remove (&bi, true);
4203 changed = true;
4204 continue;
4207 else if (is_gimple_call (stmt))
4209 tree fndecl = gimple_call_fndecl (stmt);
4211 if (!early
4212 && ((fndecl != NULL_TREE
4213 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4214 && gimple_call_num_args (stmt) == 2)
4215 || (fndecl != NULL_TREE
4216 && fndecl_built_in_p (fndecl,
4217 BUILT_IN_EXPECT_WITH_PROBABILITY)
4218 && gimple_call_num_args (stmt) == 3)
4219 || (gimple_call_internal_p (stmt)
4220 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4222 var = gimple_call_lhs (stmt);
4223 changed = true;
4224 if (var)
4226 ass_stmt
4227 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4228 gsi_replace (&bi, ass_stmt, true);
4230 else
4232 gsi_remove (&bi, true);
4233 continue;
4237 gsi_next (&bi);
4240 return changed ? TODO_cleanup_cfg : 0;
4243 namespace {
4245 const pass_data pass_data_strip_predict_hints =
4247 GIMPLE_PASS, /* type */
4248 "*strip_predict_hints", /* name */
4249 OPTGROUP_NONE, /* optinfo_flags */
4250 TV_BRANCH_PROB, /* tv_id */
4251 PROP_cfg, /* properties_required */
4252 0, /* properties_provided */
4253 0, /* properties_destroyed */
4254 0, /* todo_flags_start */
4255 0, /* todo_flags_finish */
4258 class pass_strip_predict_hints : public gimple_opt_pass
4260 public:
4261 pass_strip_predict_hints (gcc::context *ctxt)
4262 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4265 /* opt_pass methods: */
4266 opt_pass * clone () final override
4268 return new pass_strip_predict_hints (m_ctxt);
4270 void set_pass_param (unsigned int n, bool param) final override
4272 gcc_assert (n == 0);
4273 early_p = param;
4276 unsigned int execute (function *) final override;
4278 private:
4279 bool early_p;
4281 }; // class pass_strip_predict_hints
4283 unsigned int
4284 pass_strip_predict_hints::execute (function *fun)
4286 return strip_predict_hints (fun, early_p);
4289 } // anon namespace
4291 gimple_opt_pass *
4292 make_pass_strip_predict_hints (gcc::context *ctxt)
4294 return new pass_strip_predict_hints (ctxt);
4297 /* Rebuild function frequencies. Passes are in general expected to
4298 maintain profile by hand, however in some cases this is not possible:
4299 for example when inlining several functions with loops freuqencies might run
4300 out of scale and thus needs to be recomputed. */
4302 void
4303 rebuild_frequencies (void)
4305 /* If we have no profile, do nothing. Note that after inlining
4306 profile_status_for_fn may not represent the actual presence/absence of
4307 profile. */
4308 if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4309 && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.initialized_p ())
4310 return;
4313 /* See if everything is OK and update count_max. */
4314 basic_block bb;
4315 bool inconsistency_found = false;
4316 bool uninitialized_probablity_found = false;
4317 bool uninitialized_count_found = false;
4319 cfun->cfg->count_max = profile_count::uninitialized ();
4320 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4322 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4323 /* Uninitialized count may be result of inlining or an omision in an
4324 optimization pass. */
4325 if (!bb->count.initialized_p ())
4327 uninitialized_count_found = true;
4328 if (dump_file)
4329 fprintf (dump_file, "BB %i has uninitialized count\n",
4330 bb->index);
4332 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4333 && (!uninitialized_probablity_found || !inconsistency_found))
4335 profile_count sum = profile_count::zero ();
4336 edge e;
4337 edge_iterator ei;
4339 FOR_EACH_EDGE (e, ei, bb->preds)
4341 sum += e->count ();
4342 /* Uninitialized probability may be result of inlining or an
4343 omision in an optimization pass. */
4344 if (!e->probability.initialized_p ())
4346 if (dump_file)
4347 fprintf (dump_file,
4348 "Edge %i->%i has uninitialized probability\n",
4349 e->src->index, e->dest->index);
4352 if (sum.differs_from_p (bb->count))
4354 if (dump_file)
4355 fprintf (dump_file,
4356 "BB %i has invalid sum of incomming counts\n",
4357 bb->index);
4358 inconsistency_found = true;
4363 /* If everything is OK, do not re-propagate frequencies. */
4364 if (!inconsistency_found
4365 && (!uninitialized_count_found || uninitialized_probablity_found)
4366 && !cfun->cfg->count_max.very_large_p ())
4368 if (dump_file)
4369 fprintf (dump_file, "Profile is consistent\n");
4370 return;
4372 /* Do not re-propagate if we have profile feedback. Even if the profile is
4373 inconsistent from previous transofrmations, it is probably more realistic
4374 for hot part of the program than result of repropagating.
4376 Consider example where we previously has
4378 if (test)
4379 then [large probability for true]
4381 and we later proved that test is always 0. In this case, if profile was
4382 read correctly, we must have duplicated the conditional (for example by
4383 inlining) in to a context where test is false. From profile feedback
4384 we know that most executions if the conditionals were true, so the
4385 important copy is not the one we look on.
4387 Propagating from probabilities would make profile look consistent, but
4388 because probablities after code duplication may not be representative
4389 for a given run, we would only propagate the error further. */
4390 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().nonzero_p ()
4391 && !uninitialized_count_found)
4393 if (dump_file)
4394 fprintf (dump_file,
4395 "Profile is inconsistent but read from profile feedback;"
4396 " not rebuilding\n");
4397 return;
4400 loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
4401 connect_infinite_loops_to_exit ();
4402 estimate_bb_frequencies ();
4403 remove_fake_exit_edges ();
4404 loop_optimizer_finalize ();
4405 if (dump_file)
4406 fprintf (dump_file, "Rebuilt basic block counts\n");
4408 return;
4411 namespace {
4413 const pass_data pass_data_rebuild_frequencies =
4415 GIMPLE_PASS, /* type */
4416 "rebuild_frequencies", /* name */
4417 OPTGROUP_NONE, /* optinfo_flags */
4418 TV_REBUILD_FREQUENCIES, /* tv_id */
4419 PROP_cfg, /* properties_required */
4420 0, /* properties_provided */
4421 0, /* properties_destroyed */
4422 0, /* todo_flags_start */
4423 0, /* todo_flags_finish */
4426 class pass_rebuild_frequencies : public gimple_opt_pass
4428 public:
4429 pass_rebuild_frequencies (gcc::context *ctxt)
4430 : gimple_opt_pass (pass_data_rebuild_frequencies, ctxt)
4433 /* opt_pass methods: */
4434 opt_pass * clone () final override
4436 return new pass_rebuild_frequencies (m_ctxt);
4438 void set_pass_param (unsigned int n, bool param) final override
4440 gcc_assert (n == 0);
4441 early_p = param;
4444 unsigned int execute (function *) final override
4446 rebuild_frequencies ();
4447 return 0;
4450 private:
4451 bool early_p;
4453 }; // class pass_rebuild_frequencies
4455 } // anon namespace
4457 gimple_opt_pass *
4458 make_pass_rebuild_frequencies (gcc::context *ctxt)
4460 return new pass_rebuild_frequencies (ctxt);
4463 /* Perform a dry run of the branch prediction pass and report comparsion of
4464 the predicted and real profile into the dump file. */
4466 void
4467 report_predictor_hitrates (void)
4469 unsigned nb_loops;
4471 loop_optimizer_init (LOOPS_NORMAL);
4472 if (dump_file && (dump_flags & TDF_DETAILS))
4473 flow_loops_dump (dump_file, NULL, 0);
4475 nb_loops = number_of_loops (cfun);
4476 if (nb_loops > 1)
4477 scev_initialize ();
4479 tree_estimate_probability (true);
4481 if (nb_loops > 1)
4482 scev_finalize ();
4484 loop_optimizer_finalize ();
4487 /* Force edge E to be cold.
4488 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4489 keep low probability to represent possible error in a guess. This is used
4490 i.e. in case we predict loop to likely iterate given number of times but
4491 we are not 100% sure.
4493 This function locally updates profile without attempt to keep global
4494 consistency which cannot be reached in full generality without full profile
4495 rebuild from probabilities alone. Doing so is not necessarily a good idea
4496 because frequencies and counts may be more realistic then probabilities.
4498 In some cases (such as for elimination of early exits during full loop
4499 unrolling) the caller can ensure that profile will get consistent
4500 afterwards. */
4502 void
4503 force_edge_cold (edge e, bool impossible)
4505 profile_count count_sum = profile_count::zero ();
4506 profile_probability prob_sum = profile_probability::never ();
4507 edge_iterator ei;
4508 edge e2;
4509 bool uninitialized_exit = false;
4511 /* When branch probability guesses are not known, then do nothing. */
4512 if (!impossible && !e->count ().initialized_p ())
4513 return;
4515 profile_probability goal = (impossible ? profile_probability::never ()
4516 : profile_probability::very_unlikely ());
4518 /* If edge is already improbably or cold, just return. */
4519 if (e->probability <= goal
4520 && (!impossible || e->count () == profile_count::zero ()))
4521 return;
4522 FOR_EACH_EDGE (e2, ei, e->src->succs)
4523 if (e2 != e)
4525 if (e->flags & EDGE_FAKE)
4526 continue;
4527 if (e2->count ().initialized_p ())
4528 count_sum += e2->count ();
4529 if (e2->probability.initialized_p ())
4530 prob_sum += e2->probability;
4531 else
4532 uninitialized_exit = true;
4535 /* If we are not guessing profiles but have some other edges out,
4536 just assume the control flow goes elsewhere. */
4537 if (uninitialized_exit)
4538 e->probability = goal;
4539 /* If there are other edges out of e->src, redistribute probabilitity
4540 there. */
4541 else if (prob_sum > profile_probability::never ())
4543 if (dump_file && (dump_flags & TDF_DETAILS))
4545 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4546 "probability to other edges. Original probability: ",
4547 e->src->index, e->dest->index,
4548 impossible ? "impossible" : "cold");
4549 e->probability.dump (dump_file);
4550 fprintf (dump_file, "\n");
4552 set_edge_probability_and_rescale_others (e, goal);
4553 if (current_ir_type () != IR_GIMPLE
4554 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4555 update_br_prob_note (e->src);
4557 /* If all edges out of e->src are unlikely, the basic block itself
4558 is unlikely. */
4559 else
4561 if (prob_sum == profile_probability::never ())
4562 e->probability = profile_probability::always ();
4563 else
4565 if (impossible)
4566 e->probability = profile_probability::never ();
4567 /* If BB has some edges out that are not impossible, we cannot
4568 assume that BB itself is. */
4569 impossible = false;
4571 if (current_ir_type () != IR_GIMPLE
4572 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4573 update_br_prob_note (e->src);
4574 if (e->src->count == profile_count::zero ())
4575 return;
4576 if (count_sum == profile_count::zero () && impossible)
4578 bool found = false;
4579 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4581 else if (current_ir_type () == IR_GIMPLE)
4582 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4583 !gsi_end_p (gsi); gsi_next (&gsi))
4585 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4587 found = true;
4588 break;
4591 /* FIXME: Implement RTL path. */
4592 else
4593 found = true;
4594 if (!found)
4596 if (dump_file && (dump_flags & TDF_DETAILS))
4597 fprintf (dump_file,
4598 "Making bb %i impossible and dropping count to 0.\n",
4599 e->src->index);
4600 e->src->count = profile_count::zero ();
4601 FOR_EACH_EDGE (e2, ei, e->src->preds)
4602 force_edge_cold (e2, impossible);
4603 return;
4607 /* If we did not adjusting, the source basic block has no likely edeges
4608 leaving other direction. In that case force that bb cold, too.
4609 This in general is difficult task to do, but handle special case when
4610 BB has only one predecestor. This is common case when we are updating
4611 after loop transforms. */
4612 if (!(prob_sum > profile_probability::never ())
4613 && count_sum == profile_count::zero ()
4614 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4615 > (impossible ? 0 : 1))
4617 int old_frequency = e->src->count.to_frequency (cfun);
4618 if (dump_file && (dump_flags & TDF_DETAILS))
4619 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4620 impossible ? "impossible" : "cold");
4621 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4622 impossible ? 0 : 1);
4623 if (impossible)
4624 e->src->count = profile_count::zero ();
4625 else
4626 e->src->count = e->count ().apply_scale (new_frequency,
4627 old_frequency);
4628 force_edge_cold (single_pred_edge (e->src), impossible);
4630 else if (dump_file && (dump_flags & TDF_DETAILS)
4631 && maybe_hot_bb_p (cfun, e->src))
4632 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4633 impossible ? "impossible" : "cold");
4637 /* Change E's probability to NEW_E_PROB, redistributing the probabilities
4638 of other outgoing edges proportionally.
4640 Note that this function does not change the profile counts of any
4641 basic blocks. The caller must do that instead, using whatever
4642 information it has about the region that needs updating. */
4644 void
4645 change_edge_frequency (edge e, profile_probability new_e_prob)
4647 profile_probability old_e_prob = e->probability;
4648 profile_probability old_other_prob = old_e_prob.invert ();
4649 profile_probability new_other_prob = new_e_prob.invert ();
4651 e->probability = new_e_prob;
4652 profile_probability cumulative_prob = new_e_prob;
4654 unsigned int num_other = EDGE_COUNT (e->src->succs) - 1;
4655 edge other_e;
4656 edge_iterator ei;
4657 FOR_EACH_EDGE (other_e, ei, e->src->succs)
4658 if (other_e != e)
4660 num_other -= 1;
4661 if (num_other == 0)
4662 /* Ensure that the probabilities add up to 1 without
4663 rounding error. */
4664 other_e->probability = cumulative_prob.invert ();
4665 else
4667 other_e->probability /= old_other_prob;
4668 other_e->probability *= new_other_prob;
4669 cumulative_prob += other_e->probability;
4674 #if CHECKING_P
4676 namespace selftest {
4678 /* Test that value range of predictor values defined in predict.def is
4679 within range (50, 100]. */
4681 struct branch_predictor
4683 const char *name;
4684 int probability;
4687 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4689 static void
4690 test_prediction_value_range ()
4692 branch_predictor predictors[] = {
4693 #include "predict.def"
4694 { NULL, PROB_UNINITIALIZED }
4697 for (unsigned i = 0; predictors[i].name != NULL; i++)
4699 if (predictors[i].probability == PROB_UNINITIALIZED)
4700 continue;
4702 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4703 ASSERT_TRUE (p >= 50 && p <= 100);
4707 #undef DEF_PREDICTOR
4709 /* Run all of the selfests within this file. */
4711 void
4712 predict_cc_tests ()
4714 test_prediction_value_range ();
4717 } // namespace selftest
4718 #endif /* CHECKING_P. */