c++: ambiguous member lookup for rewritten cands [PR113529]
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blob873a28d7c560d36ddf7b1f265f598554defb5c35
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
53 #include "langhooks.h"
54 #include "tree-vector-builder.h"
55 #include "optabs-tree.h"
57 /*************************************************************************
58 Simple Loop Peeling Utilities
60 Utilities to support loop peeling for vectorization purposes.
61 *************************************************************************/
64 /* Renames the use *OP_P. */
66 static void
67 rename_use_op (use_operand_p op_p)
69 tree new_name;
71 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
72 return;
74 new_name = get_current_def (USE_FROM_PTR (op_p));
76 /* Something defined outside of the loop. */
77 if (!new_name)
78 return;
80 /* An ordinary ssa name defined in the loop. */
82 SET_USE (op_p, new_name);
86 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
87 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
88 true. */
90 static void
91 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
93 gimple *stmt;
94 use_operand_p use_p;
95 ssa_op_iter iter;
96 edge e;
97 edge_iterator ei;
98 class loop *loop = bb->loop_father;
99 class loop *outer_loop = NULL;
101 if (rename_from_outer_loop)
103 gcc_assert (loop);
104 outer_loop = loop_outer (loop);
107 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
110 stmt = gsi_stmt (gsi);
111 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
112 rename_use_op (use_p);
115 FOR_EACH_EDGE (e, ei, bb->preds)
117 if (!flow_bb_inside_loop_p (loop, e->src))
119 if (!rename_from_outer_loop)
120 continue;
121 if (e->src != outer_loop->header)
123 if (outer_loop->inner->next)
125 /* If outer_loop has 2 inner loops, allow there to
126 be an extra basic block which decides which of the
127 two loops to use using LOOP_VECTORIZED. */
128 if (!single_pred_p (e->src)
129 || single_pred (e->src) != outer_loop->header)
130 continue;
134 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
135 gsi_next (&gsi))
136 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
141 struct adjust_info
143 tree from, to;
144 basic_block bb;
147 /* A stack of values to be adjusted in debug stmts. We have to
148 process them LIFO, so that the closest substitution applies. If we
149 processed them FIFO, without the stack, we might substitute uses
150 with a PHI DEF that would soon become non-dominant, and when we got
151 to the suitable one, it wouldn't have anything to substitute any
152 more. */
153 static vec<adjust_info, va_heap> adjust_vec;
155 /* Adjust any debug stmts that referenced AI->from values to use the
156 loop-closed AI->to, if the references are dominated by AI->bb and
157 not by the definition of AI->from. */
159 static void
160 adjust_debug_stmts_now (adjust_info *ai)
162 basic_block bbphi = ai->bb;
163 tree orig_def = ai->from;
164 tree new_def = ai->to;
165 imm_use_iterator imm_iter;
166 gimple *stmt;
167 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
169 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
171 /* Adjust any debug stmts that held onto non-loop-closed
172 references. */
173 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
175 use_operand_p use_p;
176 basic_block bbuse;
178 if (!is_gimple_debug (stmt))
179 continue;
181 gcc_assert (gimple_debug_bind_p (stmt));
183 bbuse = gimple_bb (stmt);
185 if ((bbuse == bbphi
186 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
187 && !(bbuse == bbdef
188 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
190 if (new_def)
191 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
192 SET_USE (use_p, new_def);
193 else
195 gimple_debug_bind_reset_value (stmt);
196 update_stmt (stmt);
202 /* Adjust debug stmts as scheduled before. */
204 static void
205 adjust_vec_debug_stmts (void)
207 if (!MAY_HAVE_DEBUG_BIND_STMTS)
208 return;
210 gcc_assert (adjust_vec.exists ());
212 while (!adjust_vec.is_empty ())
214 adjust_debug_stmts_now (&adjust_vec.last ());
215 adjust_vec.pop ();
219 /* Adjust any debug stmts that referenced FROM values to use the
220 loop-closed TO, if the references are dominated by BB and not by
221 the definition of FROM. If adjust_vec is non-NULL, adjustments
222 will be postponed until adjust_vec_debug_stmts is called. */
224 static void
225 adjust_debug_stmts (tree from, tree to, basic_block bb)
227 adjust_info ai;
229 if (MAY_HAVE_DEBUG_BIND_STMTS
230 && TREE_CODE (from) == SSA_NAME
231 && ! SSA_NAME_IS_DEFAULT_DEF (from)
232 && ! virtual_operand_p (from))
234 ai.from = from;
235 ai.to = to;
236 ai.bb = bb;
238 if (adjust_vec.exists ())
239 adjust_vec.safe_push (ai);
240 else
241 adjust_debug_stmts_now (&ai);
245 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
246 to adjust any debug stmts that referenced the old phi arg,
247 presumably non-loop-closed references left over from other
248 transformations. */
250 static void
251 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
253 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
255 gcc_assert (TREE_CODE (orig_def) != SSA_NAME
256 || orig_def != new_def);
258 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
260 if (MAY_HAVE_DEBUG_BIND_STMTS)
261 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
262 gimple_bb (update_phi));
265 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
266 that the control should have during the first iteration and NEXT_CTRL is the
267 value that it should have on subsequent iterations. */
269 static void
270 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
271 tree next_ctrl)
273 gphi *phi = create_phi_node (ctrl, loop->header);
274 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
275 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
278 /* Add SEQ to the end of LOOP's preheader block. */
280 static void
281 add_preheader_seq (class loop *loop, gimple_seq seq)
283 if (seq)
285 edge pe = loop_preheader_edge (loop);
286 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
287 gcc_assert (!new_bb);
291 /* Add SEQ to the beginning of LOOP's header block. */
293 static void
294 add_header_seq (class loop *loop, gimple_seq seq)
296 if (seq)
298 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
299 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
303 /* Return true if the target can interleave elements of two vectors.
304 OFFSET is 0 if the first half of the vectors should be interleaved
305 or 1 if the second half should. When returning true, store the
306 associated permutation in INDICES. */
308 static bool
309 interleave_supported_p (vec_perm_indices *indices, tree vectype,
310 unsigned int offset)
312 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
313 poly_uint64 base = exact_div (nelts, 2) * offset;
314 vec_perm_builder sel (nelts, 2, 3);
315 for (unsigned int i = 0; i < 3; ++i)
317 sel.quick_push (base + i);
318 sel.quick_push (base + i + nelts);
320 indices->new_vector (sel, 2, nelts);
321 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
322 *indices);
325 /* Try to use permutes to define the masks in DEST_RGM using the masks
326 in SRC_RGM, given that the former has twice as many masks as the
327 latter. Return true on success, adding any new statements to SEQ. */
329 static bool
330 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
331 rgroup_controls *src_rgm)
333 tree src_masktype = src_rgm->type;
334 tree dest_masktype = dest_rgm->type;
335 machine_mode src_mode = TYPE_MODE (src_masktype);
336 insn_code icode1, icode2;
337 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
338 && (icode1 = optab_handler (vec_unpacku_hi_optab,
339 src_mode)) != CODE_FOR_nothing
340 && (icode2 = optab_handler (vec_unpacku_lo_optab,
341 src_mode)) != CODE_FOR_nothing)
343 /* Unpacking the source masks gives at least as many mask bits as
344 we need. We can then VIEW_CONVERT any excess bits away. */
345 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
346 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
347 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
348 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
350 tree src = src_rgm->controls[i / 2];
351 tree dest = dest_rgm->controls[i];
352 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
353 ? VEC_UNPACK_HI_EXPR
354 : VEC_UNPACK_LO_EXPR);
355 gassign *stmt;
356 if (dest_masktype == unpack_masktype)
357 stmt = gimple_build_assign (dest, code, src);
358 else
360 tree temp = make_ssa_name (unpack_masktype);
361 stmt = gimple_build_assign (temp, code, src);
362 gimple_seq_add_stmt (seq, stmt);
363 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
364 build1 (VIEW_CONVERT_EXPR,
365 dest_masktype, temp));
367 gimple_seq_add_stmt (seq, stmt);
369 return true;
371 vec_perm_indices indices[2];
372 if (dest_masktype == src_masktype
373 && interleave_supported_p (&indices[0], src_masktype, 0)
374 && interleave_supported_p (&indices[1], src_masktype, 1))
376 /* The destination requires twice as many mask bits as the source, so
377 we can use interleaving permutes to double up the number of bits. */
378 tree masks[2];
379 for (unsigned int i = 0; i < 2; ++i)
380 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
381 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
383 tree src = src_rgm->controls[i / 2];
384 tree dest = dest_rgm->controls[i];
385 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
386 src, src, masks[i & 1]);
387 gimple_seq_add_stmt (seq, stmt);
389 return true;
391 return false;
394 /* Populate DEST_RGM->controls, given that they should add up to STEP.
396 STEP = MIN_EXPR <ivtmp_34, VF>;
398 First length (MIN (X, VF/N)):
399 loop_len_15 = MIN_EXPR <STEP, VF/N>;
401 Second length:
402 tmp = STEP - loop_len_15;
403 loop_len_16 = MIN (tmp, VF/N);
405 Third length:
406 tmp2 = tmp - loop_len_16;
407 loop_len_17 = MIN (tmp2, VF/N);
409 Last length:
410 loop_len_18 = tmp2 - loop_len_17;
413 static void
414 vect_adjust_loop_lens_control (tree iv_type, gimple_seq *seq,
415 rgroup_controls *dest_rgm, tree step)
417 tree ctrl_type = dest_rgm->type;
418 poly_uint64 nitems_per_ctrl
419 = TYPE_VECTOR_SUBPARTS (ctrl_type) * dest_rgm->factor;
420 tree length_limit = build_int_cst (iv_type, nitems_per_ctrl);
422 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
424 tree ctrl = dest_rgm->controls[i];
425 if (i == 0)
427 /* First iteration: MIN (X, VF/N) capped to the range [0, VF/N]. */
428 gassign *assign
429 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
430 gimple_seq_add_stmt (seq, assign);
432 else if (i == dest_rgm->controls.length () - 1)
434 /* Last iteration: Remain capped to the range [0, VF/N]. */
435 gassign *assign = gimple_build_assign (ctrl, MINUS_EXPR, step,
436 dest_rgm->controls[i - 1]);
437 gimple_seq_add_stmt (seq, assign);
439 else
441 /* (MIN (remain, VF*I/N)) capped to the range [0, VF/N]. */
442 step = gimple_build (seq, MINUS_EXPR, iv_type, step,
443 dest_rgm->controls[i - 1]);
444 gassign *assign
445 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
446 gimple_seq_add_stmt (seq, assign);
451 /* Stores the standard position for induction variable increment in belonging to
452 LOOP_EXIT (just before the exit condition of the given exit to BSI.
453 INSERT_AFTER is set to true if the increment should be inserted after
454 *BSI. */
456 void
457 vect_iv_increment_position (edge loop_exit, gimple_stmt_iterator *bsi,
458 bool *insert_after)
460 basic_block bb = loop_exit->src;
461 *bsi = gsi_last_bb (bb);
462 *insert_after = false;
465 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
466 for all the rgroup controls in RGC and return a control that is nonzero
467 when the loop needs to iterate. Add any new preheader statements to
468 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
470 RGC belongs to loop LOOP. The loop originally iterated NITERS
471 times and has been vectorized according to LOOP_VINFO.
473 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
474 starts with NITERS_SKIP dummy iterations of the scalar loop before
475 the real work starts. The mask elements for these dummy iterations
476 must be 0, to ensure that the extra iterations do not have an effect.
478 It is known that:
480 NITERS * RGC->max_nscalars_per_iter * RGC->factor
482 does not overflow. However, MIGHT_WRAP_P says whether an induction
483 variable that starts at 0 and has step:
485 VF * RGC->max_nscalars_per_iter * RGC->factor
487 might overflow before hitting a value above:
489 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
491 This means that we cannot guarantee that such an induction variable
492 would ever hit a value that produces a set of all-false masks or zero
493 lengths for RGC.
495 Note: the cost of the code generated by this function is modeled
496 by vect_estimate_min_profitable_iters, so changes here may need
497 corresponding changes there. */
499 static tree
500 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
501 gimple_seq *preheader_seq,
502 gimple_seq *header_seq,
503 gimple_stmt_iterator loop_cond_gsi,
504 rgroup_controls *rgc, tree niters,
505 tree niters_skip, bool might_wrap_p,
506 tree *iv_step, tree *compare_step)
508 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
509 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
510 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
512 tree ctrl_type = rgc->type;
513 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
514 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
515 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
516 tree length_limit = NULL_TREE;
517 /* For length, we need length_limit to ensure length in range. */
518 if (!use_masks_p)
519 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
521 /* Calculate the maximum number of item values that the rgroup
522 handles in total, the number that it handles for each iteration
523 of the vector loop, and the number that it should skip during the
524 first iteration of the vector loop. */
525 tree nitems_total = niters;
526 tree nitems_step = build_int_cst (iv_type, vf);
527 tree nitems_skip = niters_skip;
528 if (nitems_per_iter != 1)
530 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
531 these multiplications don't overflow. */
532 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
533 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
534 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
535 nitems_total, compare_factor);
536 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
537 nitems_step, iv_factor);
538 if (nitems_skip)
539 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
540 nitems_skip, compare_factor);
543 /* Create an induction variable that counts the number of items
544 processed. */
545 tree index_before_incr, index_after_incr;
546 gimple_stmt_iterator incr_gsi;
547 bool insert_after;
548 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
549 vect_iv_increment_position (exit_e, &incr_gsi, &insert_after);
550 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo))
552 /* Create an IV that counts down from niters_total and whose step
553 is the (variable) amount processed in the current iteration:
555 _10 = (unsigned long) count_12(D);
557 # ivtmp_9 = PHI <ivtmp_35(6), _10(5)>
558 _36 = (MIN_EXPR | SELECT_VL) <ivtmp_9, POLY_INT_CST [4, 4]>;
560 vect__4.8_28 = .LEN_LOAD (_17, 32B, _36, 0);
562 ivtmp_35 = ivtmp_9 - POLY_INT_CST [4, 4];
564 if (ivtmp_9 > POLY_INT_CST [4, 4])
565 goto <bb 4>; [83.33%]
566 else
567 goto <bb 5>; [16.67%]
569 nitems_total = gimple_convert (preheader_seq, iv_type, nitems_total);
570 tree step = rgc->controls.length () == 1 ? rgc->controls[0]
571 : make_ssa_name (iv_type);
572 /* Create decrement IV. */
573 if (LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
575 create_iv (nitems_total, MINUS_EXPR, step, NULL_TREE, loop, &incr_gsi,
576 insert_after, &index_before_incr, &index_after_incr);
577 tree len = gimple_build (header_seq, IFN_SELECT_VL, iv_type,
578 index_before_incr, nitems_step);
579 gimple_seq_add_stmt (header_seq, gimple_build_assign (step, len));
581 else
583 create_iv (nitems_total, MINUS_EXPR, nitems_step, NULL_TREE, loop,
584 &incr_gsi, insert_after, &index_before_incr,
585 &index_after_incr);
586 gimple_seq_add_stmt (header_seq,
587 gimple_build_assign (step, MIN_EXPR,
588 index_before_incr,
589 nitems_step));
591 *iv_step = step;
592 *compare_step = nitems_step;
593 return LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo) ? index_after_incr
594 : index_before_incr;
597 /* Create increment IV. */
598 create_iv (build_int_cst (iv_type, 0), PLUS_EXPR, nitems_step, NULL_TREE,
599 loop, &incr_gsi, insert_after, &index_before_incr,
600 &index_after_incr);
602 tree zero_index = build_int_cst (compare_type, 0);
603 tree test_index, test_limit, first_limit;
604 gimple_stmt_iterator *test_gsi;
605 if (might_wrap_p)
607 /* In principle the loop should stop iterating once the incremented
608 IV reaches a value greater than or equal to:
610 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
612 However, there's no guarantee that this addition doesn't overflow
613 the comparison type, or that the IV hits a value above it before
614 wrapping around. We therefore adjust the limit down by one
615 IV step:
617 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
618 -[infinite-prec] NITEMS_STEP
620 and compare the IV against this limit _before_ incrementing it.
621 Since the comparison type is unsigned, we actually want the
622 subtraction to saturate at zero:
624 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
625 -[sat] NITEMS_STEP
627 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
629 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
631 where the rightmost subtraction can be done directly in
632 COMPARE_TYPE. */
633 test_index = index_before_incr;
634 tree adjust = gimple_convert (preheader_seq, compare_type,
635 nitems_step);
636 if (nitems_skip)
637 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
638 adjust, nitems_skip);
639 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
640 nitems_total, adjust);
641 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
642 test_limit, adjust);
643 test_gsi = &incr_gsi;
645 /* Get a safe limit for the first iteration. */
646 if (nitems_skip)
648 /* The first vector iteration can handle at most NITEMS_STEP
649 items. NITEMS_STEP <= CONST_LIMIT, and adding
650 NITEMS_SKIP to that cannot overflow. */
651 tree const_limit = build_int_cst (compare_type,
652 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
653 * nitems_per_iter);
654 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
655 nitems_total, const_limit);
656 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
657 first_limit, nitems_skip);
659 else
660 /* For the first iteration it doesn't matter whether the IV hits
661 a value above NITEMS_TOTAL. That only matters for the latch
662 condition. */
663 first_limit = nitems_total;
665 else
667 /* Test the incremented IV, which will always hit a value above
668 the bound before wrapping. */
669 test_index = index_after_incr;
670 test_limit = nitems_total;
671 if (nitems_skip)
672 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
673 test_limit, nitems_skip);
674 test_gsi = &loop_cond_gsi;
676 first_limit = test_limit;
679 /* Convert the IV value to the comparison type (either a no-op or
680 a demotion). */
681 gimple_seq test_seq = NULL;
682 test_index = gimple_convert (&test_seq, compare_type, test_index);
683 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
685 /* Provide a definition of each control in the group. */
686 tree next_ctrl = NULL_TREE;
687 tree ctrl;
688 unsigned int i;
689 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
691 /* Previous controls will cover BIAS items. This control covers the
692 next batch. */
693 poly_uint64 bias = nitems_per_ctrl * i;
694 tree bias_tree = build_int_cst (compare_type, bias);
696 /* See whether the first iteration of the vector loop is known
697 to have a full control. */
698 poly_uint64 const_limit;
699 bool first_iteration_full
700 = (poly_int_tree_p (first_limit, &const_limit)
701 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
703 /* Rather than have a new IV that starts at BIAS and goes up to
704 TEST_LIMIT, prefer to use the same 0-based IV for each control
705 and adjust the bound down by BIAS. */
706 tree this_test_limit = test_limit;
707 if (i != 0)
709 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
710 compare_type, this_test_limit,
711 bias_tree);
712 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
713 compare_type, this_test_limit,
714 bias_tree);
717 /* Create the initial control. First include all items that
718 are within the loop limit. */
719 tree init_ctrl = NULL_TREE;
720 if (!first_iteration_full)
722 tree start, end;
723 if (first_limit == test_limit)
725 /* Use a natural test between zero (the initial IV value)
726 and the loop limit. The "else" block would be valid too,
727 but this choice can avoid the need to load BIAS_TREE into
728 a register. */
729 start = zero_index;
730 end = this_test_limit;
732 else
734 /* FIRST_LIMIT is the maximum number of items handled by the
735 first iteration of the vector loop. Test the portion
736 associated with this control. */
737 start = bias_tree;
738 end = first_limit;
741 if (use_masks_p)
742 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
743 start, end, "max_mask");
744 else
746 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
747 gimple_seq seq = vect_gen_len (init_ctrl, start,
748 end, length_limit);
749 gimple_seq_add_seq (preheader_seq, seq);
753 /* Now AND out the bits that are within the number of skipped
754 items. */
755 poly_uint64 const_skip;
756 if (nitems_skip
757 && !(poly_int_tree_p (nitems_skip, &const_skip)
758 && known_le (const_skip, bias)))
760 gcc_assert (use_masks_p);
761 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
762 bias_tree, nitems_skip);
763 if (init_ctrl)
764 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
765 init_ctrl, unskipped_mask);
766 else
767 init_ctrl = unskipped_mask;
770 if (!init_ctrl)
772 /* First iteration is full. */
773 if (use_masks_p)
774 init_ctrl = build_minus_one_cst (ctrl_type);
775 else
776 init_ctrl = length_limit;
779 /* Get the control value for the next iteration of the loop. */
780 if (use_masks_p)
782 gimple_seq stmts = NULL;
783 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
784 this_test_limit, "next_mask");
785 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
787 else
789 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
790 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
791 length_limit);
792 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
795 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
798 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
799 if (partial_load_bias != 0)
801 tree adjusted_len = rgc->bias_adjusted_ctrl;
802 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
803 rgc->controls[0],
804 build_int_cst
805 (TREE_TYPE (rgc->controls[0]),
806 partial_load_bias));
807 gimple_seq_add_stmt (header_seq, minus);
810 return next_ctrl;
813 /* Set up the iteration condition and rgroup controls for LOOP, given
814 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
815 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
816 the number of iterations of the original scalar loop that should be
817 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
818 for vect_set_loop_condition.
820 Insert the branch-back condition before LOOP_COND_GSI and return the
821 final gcond. */
823 static gcond *
824 vect_set_loop_condition_partial_vectors (class loop *loop, edge exit_edge,
825 loop_vec_info loop_vinfo, tree niters,
826 tree final_iv, bool niters_maybe_zero,
827 gimple_stmt_iterator loop_cond_gsi)
829 gimple_seq preheader_seq = NULL;
830 gimple_seq header_seq = NULL;
832 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
833 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
834 unsigned int compare_precision = TYPE_PRECISION (compare_type);
835 tree orig_niters = niters;
837 /* Type of the initial value of NITERS. */
838 tree ni_actual_type = TREE_TYPE (niters);
839 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
840 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
841 if (niters_skip)
842 niters_skip = gimple_convert (&preheader_seq, compare_type, niters_skip);
844 /* Convert NITERS to the same size as the compare. */
845 if (compare_precision > ni_actual_precision
846 && niters_maybe_zero)
848 /* We know that there is always at least one iteration, so if the
849 count is zero then it must have wrapped. Cope with this by
850 subtracting 1 before the conversion and adding 1 to the result. */
851 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
852 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
853 niters, build_minus_one_cst (ni_actual_type));
854 niters = gimple_convert (&preheader_seq, compare_type, niters);
855 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
856 niters, build_one_cst (compare_type));
858 else
859 niters = gimple_convert (&preheader_seq, compare_type, niters);
861 /* Iterate over all the rgroups and fill in their controls. We could use
862 the first control from any rgroup for the loop condition; here we
863 arbitrarily pick the last. */
864 tree test_ctrl = NULL_TREE;
865 tree iv_step = NULL_TREE;
866 tree compare_step = NULL_TREE;
867 rgroup_controls *rgc;
868 rgroup_controls *iv_rgc = nullptr;
869 unsigned int i;
870 auto_vec<rgroup_controls> *controls = use_masks_p
871 ? &LOOP_VINFO_MASKS (loop_vinfo).rgc_vec
872 : &LOOP_VINFO_LENS (loop_vinfo);
873 FOR_EACH_VEC_ELT (*controls, i, rgc)
874 if (!rgc->controls.is_empty ())
876 /* First try using permutes. This adds a single vector
877 instruction to the loop for each mask, but needs no extra
878 loop invariants or IVs. */
879 unsigned int nmasks = i + 1;
880 if (use_masks_p && (nmasks & 1) == 0)
882 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
883 if (!half_rgc->controls.is_empty ()
884 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
885 continue;
888 if (!LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
889 || !iv_rgc
890 || (iv_rgc->max_nscalars_per_iter * iv_rgc->factor
891 != rgc->max_nscalars_per_iter * rgc->factor))
893 /* See whether zero-based IV would ever generate all-false masks
894 or zero length before wrapping around. */
895 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
897 /* Set up all controls for this group. */
898 test_ctrl
899 = vect_set_loop_controls_directly (loop, loop_vinfo,
900 &preheader_seq, &header_seq,
901 loop_cond_gsi, rgc, niters,
902 niters_skip, might_wrap_p,
903 &iv_step, &compare_step);
905 iv_rgc = rgc;
908 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
909 && rgc->controls.length () > 1)
911 /* vect_set_loop_controls_directly creates an IV whose step
912 is equal to the expected sum of RGC->controls. Use that
913 information to populate RGC->controls. */
914 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
915 gcc_assert (iv_step);
916 vect_adjust_loop_lens_control (iv_type, &header_seq, rgc, iv_step);
920 /* Emit all accumulated statements. */
921 add_preheader_seq (loop, preheader_seq);
922 add_header_seq (loop, header_seq);
924 /* Get a boolean result that tells us whether to iterate. */
925 gcond *cond_stmt;
926 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
927 && !LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
929 gcc_assert (compare_step);
930 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
931 cond_stmt = gimple_build_cond (code, test_ctrl, compare_step, NULL_TREE,
932 NULL_TREE);
934 else
936 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
937 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
938 cond_stmt
939 = gimple_build_cond (code, test_ctrl, zero_ctrl, NULL_TREE, NULL_TREE);
941 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
943 /* The loop iterates (NITERS - 1) / VF + 1 times.
944 Subtract one from this to get the latch count. */
945 tree step = build_int_cst (compare_type,
946 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
947 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
948 build_minus_one_cst (compare_type));
949 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
950 niters_minus_one, step);
952 if (final_iv)
954 gassign *assign;
955 /* If vectorizing an inverted early break loop we have to restart the
956 scalar loop at niters - vf. This matches what we do in
957 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
958 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
960 tree ftype = TREE_TYPE (orig_niters);
961 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
962 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
964 else
965 assign = gimple_build_assign (final_iv, orig_niters);
966 gsi_insert_on_edge_immediate (exit_edge, assign);
969 return cond_stmt;
972 /* Set up the iteration condition and rgroup controls for LOOP in AVX512
973 style, given that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the
974 vectorized loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
975 the number of iterations of the original scalar loop that should be
976 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
977 for vect_set_loop_condition.
979 Insert the branch-back condition before LOOP_COND_GSI and return the
980 final gcond. */
982 static gcond *
983 vect_set_loop_condition_partial_vectors_avx512 (class loop *loop,
984 edge exit_edge,
985 loop_vec_info loop_vinfo, tree niters,
986 tree final_iv,
987 bool niters_maybe_zero,
988 gimple_stmt_iterator loop_cond_gsi)
990 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
991 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
992 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
993 tree orig_niters = niters;
994 gimple_seq preheader_seq = NULL;
996 /* Create an IV that counts down from niters and whose step
997 is the number of iterations processed in the current iteration.
998 Produce the controls with compares like the following.
1000 # iv_2 = PHI <niters, iv_3>
1001 rem_4 = MIN <iv_2, VF>;
1002 remv_6 = { rem_4, rem_4, rem_4, ... }
1003 mask_5 = { 0, 0, 1, 1, 2, 2, ... } < remv6;
1004 iv_3 = iv_2 - VF;
1005 if (iv_2 > VF)
1006 continue;
1008 Where the constant is built with elements at most VF - 1 and
1009 repetitions according to max_nscalars_per_iter which is guarnateed
1010 to be the same within a group. */
1012 /* Convert NITERS to the determined IV type. */
1013 if (TYPE_PRECISION (iv_type) > TYPE_PRECISION (TREE_TYPE (niters))
1014 && niters_maybe_zero)
1016 /* We know that there is always at least one iteration, so if the
1017 count is zero then it must have wrapped. Cope with this by
1018 subtracting 1 before the conversion and adding 1 to the result. */
1019 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (niters)));
1020 niters = gimple_build (&preheader_seq, PLUS_EXPR, TREE_TYPE (niters),
1021 niters, build_minus_one_cst (TREE_TYPE (niters)));
1022 niters = gimple_convert (&preheader_seq, iv_type, niters);
1023 niters = gimple_build (&preheader_seq, PLUS_EXPR, iv_type,
1024 niters, build_one_cst (iv_type));
1026 else
1027 niters = gimple_convert (&preheader_seq, iv_type, niters);
1029 /* Bias the initial value of the IV in case we need to skip iterations
1030 at the beginning. */
1031 tree niters_adj = niters;
1032 if (niters_skip)
1034 tree skip = gimple_convert (&preheader_seq, iv_type, niters_skip);
1035 niters_adj = gimple_build (&preheader_seq, PLUS_EXPR,
1036 iv_type, niters, skip);
1039 /* The iteration step is the vectorization factor. */
1040 tree iv_step = build_int_cst (iv_type, vf);
1042 /* Create the decrement IV. */
1043 tree index_before_incr, index_after_incr;
1044 gimple_stmt_iterator incr_gsi;
1045 bool insert_after;
1046 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1047 create_iv (niters_adj, MINUS_EXPR, iv_step, NULL_TREE, loop,
1048 &incr_gsi, insert_after, &index_before_incr,
1049 &index_after_incr);
1051 /* Iterate over all the rgroups and fill in their controls. */
1052 for (auto &rgc : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
1054 if (rgc.controls.is_empty ())
1055 continue;
1057 tree ctrl_type = rgc.type;
1058 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type);
1060 tree vectype = rgc.compare_type;
1062 /* index_after_incr is the IV specifying the remaining iterations in
1063 the next iteration. */
1064 tree rem = index_after_incr;
1065 /* When the data type for the compare to produce the mask is
1066 smaller than the IV type we need to saturate. Saturate to
1067 the smallest possible value (IV_TYPE) so we only have to
1068 saturate once (CSE will catch redundant ones we add). */
1069 if (TYPE_PRECISION (TREE_TYPE (vectype)) < TYPE_PRECISION (iv_type))
1070 rem = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1071 UNKNOWN_LOCATION,
1072 MIN_EXPR, TREE_TYPE (rem), rem, iv_step);
1073 rem = gimple_convert (&incr_gsi, false, GSI_CONTINUE_LINKING,
1074 UNKNOWN_LOCATION, TREE_TYPE (vectype), rem);
1076 /* Build a data vector composed of the remaining iterations. */
1077 rem = gimple_build_vector_from_val (&incr_gsi, false, GSI_CONTINUE_LINKING,
1078 UNKNOWN_LOCATION, vectype, rem);
1080 /* Provide a definition of each vector in the control group. */
1081 tree next_ctrl = NULL_TREE;
1082 tree first_rem = NULL_TREE;
1083 tree ctrl;
1084 unsigned int i;
1085 FOR_EACH_VEC_ELT_REVERSE (rgc.controls, i, ctrl)
1087 /* Previous controls will cover BIAS items. This control covers the
1088 next batch. */
1089 poly_uint64 bias = nitems_per_ctrl * i;
1091 /* Build the constant to compare the remaining iters against,
1092 this is sth like { 0, 0, 1, 1, 2, 2, 3, 3, ... } appropriately
1093 split into pieces. */
1094 unsigned n = TYPE_VECTOR_SUBPARTS (ctrl_type).to_constant ();
1095 tree_vector_builder builder (vectype, n, 1);
1096 for (unsigned i = 0; i < n; ++i)
1098 unsigned HOST_WIDE_INT val
1099 = (i + bias.to_constant ()) / rgc.max_nscalars_per_iter;
1100 gcc_assert (val < vf.to_constant ());
1101 builder.quick_push (build_int_cst (TREE_TYPE (vectype), val));
1103 tree cmp_series = builder.build ();
1105 /* Create the initial control. First include all items that
1106 are within the loop limit. */
1107 tree init_ctrl = NULL_TREE;
1108 poly_uint64 const_limit;
1109 /* See whether the first iteration of the vector loop is known
1110 to have a full control. */
1111 if (poly_int_tree_p (niters, &const_limit)
1112 && known_ge (const_limit, (i + 1) * nitems_per_ctrl))
1113 init_ctrl = build_minus_one_cst (ctrl_type);
1114 else
1116 /* The remaining work items initially are niters. Saturate,
1117 splat and compare. */
1118 if (!first_rem)
1120 first_rem = niters;
1121 if (TYPE_PRECISION (TREE_TYPE (vectype))
1122 < TYPE_PRECISION (iv_type))
1123 first_rem = gimple_build (&preheader_seq,
1124 MIN_EXPR, TREE_TYPE (first_rem),
1125 first_rem, iv_step);
1126 first_rem = gimple_convert (&preheader_seq, TREE_TYPE (vectype),
1127 first_rem);
1128 first_rem = gimple_build_vector_from_val (&preheader_seq,
1129 vectype, first_rem);
1131 init_ctrl = gimple_build (&preheader_seq, LT_EXPR, ctrl_type,
1132 cmp_series, first_rem);
1135 /* Now AND out the bits that are within the number of skipped
1136 items. */
1137 poly_uint64 const_skip;
1138 if (niters_skip
1139 && !(poly_int_tree_p (niters_skip, &const_skip)
1140 && known_le (const_skip, bias)))
1142 /* For integer mode masks it's cheaper to shift out the bits
1143 since that avoids loading a constant. */
1144 gcc_assert (GET_MODE_CLASS (TYPE_MODE (ctrl_type)) == MODE_INT);
1145 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1146 lang_hooks.types.type_for_mode
1147 (TYPE_MODE (ctrl_type), 1),
1148 init_ctrl);
1149 /* ??? But when the shift amount isn't constant this requires
1150 a round-trip to GRPs. We could apply the bias to either
1151 side of the compare instead. */
1152 tree shift = gimple_build (&preheader_seq, MULT_EXPR,
1153 TREE_TYPE (niters_skip), niters_skip,
1154 build_int_cst (TREE_TYPE (niters_skip),
1155 rgc.max_nscalars_per_iter));
1156 init_ctrl = gimple_build (&preheader_seq, LSHIFT_EXPR,
1157 TREE_TYPE (init_ctrl),
1158 init_ctrl, shift);
1159 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1160 ctrl_type, init_ctrl);
1163 /* Get the control value for the next iteration of the loop. */
1164 next_ctrl = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1165 UNKNOWN_LOCATION,
1166 LT_EXPR, ctrl_type, cmp_series, rem);
1168 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
1172 /* Emit all accumulated statements. */
1173 add_preheader_seq (loop, preheader_seq);
1175 /* Adjust the exit test using the decrementing IV. */
1176 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
1177 /* When we peel for alignment with niter_skip != 0 this can
1178 cause niter + niter_skip to wrap and since we are comparing the
1179 value before the decrement here we get a false early exit.
1180 We can't compare the value after decrement either because that
1181 decrement could wrap as well as we're not doing a saturating
1182 decrement. To avoid this situation we force a larger
1183 iv_type. */
1184 gcond *cond_stmt = gimple_build_cond (code, index_before_incr, iv_step,
1185 NULL_TREE, NULL_TREE);
1186 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1188 /* The loop iterates (NITERS - 1 + NITERS_SKIP) / VF + 1 times.
1189 Subtract one from this to get the latch count. */
1190 tree niters_minus_one
1191 = fold_build2 (PLUS_EXPR, TREE_TYPE (orig_niters), orig_niters,
1192 build_minus_one_cst (TREE_TYPE (orig_niters)));
1193 tree niters_adj2 = fold_convert (iv_type, niters_minus_one);
1194 if (niters_skip)
1195 niters_adj2 = fold_build2 (PLUS_EXPR, iv_type, niters_minus_one,
1196 fold_convert (iv_type, niters_skip));
1197 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, iv_type,
1198 niters_adj2, iv_step);
1200 if (final_iv)
1202 gassign *assign;
1203 /* If vectorizing an inverted early break loop we have to restart the
1204 scalar loop at niters - vf. This matches what we do in
1205 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
1206 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
1208 tree ftype = TREE_TYPE (orig_niters);
1209 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1210 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
1212 else
1213 assign = gimple_build_assign (final_iv, orig_niters);
1214 gsi_insert_on_edge_immediate (exit_edge, assign);
1217 return cond_stmt;
1221 /* Like vect_set_loop_condition, but handle the case in which the vector
1222 loop handles exactly VF scalars per iteration. */
1224 static gcond *
1225 vect_set_loop_condition_normal (loop_vec_info /* loop_vinfo */, edge exit_edge,
1226 class loop *loop, tree niters, tree step,
1227 tree final_iv, bool niters_maybe_zero,
1228 gimple_stmt_iterator loop_cond_gsi)
1230 tree indx_before_incr, indx_after_incr;
1231 gcond *cond_stmt;
1232 gcond *orig_cond;
1233 edge pe = loop_preheader_edge (loop);
1234 gimple_stmt_iterator incr_gsi;
1235 bool insert_after;
1236 enum tree_code code;
1237 tree niters_type = TREE_TYPE (niters);
1239 orig_cond = get_loop_exit_condition (exit_edge);
1240 gcc_assert (orig_cond);
1241 loop_cond_gsi = gsi_for_stmt (orig_cond);
1243 tree init, limit;
1244 if (!niters_maybe_zero && integer_onep (step))
1246 /* In this case we can use a simple 0-based IV:
1249 x = 0;
1253 x += 1;
1255 while (x < NITERS); */
1256 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1257 init = build_zero_cst (niters_type);
1258 limit = niters;
1260 else
1262 /* The following works for all values of NITERS except 0:
1265 x = 0;
1269 x += STEP;
1271 while (x <= NITERS - STEP);
1273 so that the loop continues to iterate if x + STEP - 1 < NITERS
1274 but stops if x + STEP - 1 >= NITERS.
1276 However, if NITERS is zero, x never hits a value above NITERS - STEP
1277 before wrapping around. There are two obvious ways of dealing with
1278 this:
1280 - start at STEP - 1 and compare x before incrementing it
1281 - start at -1 and compare x after incrementing it
1283 The latter is simpler and is what we use. The loop in this case
1284 looks like:
1287 x = -1;
1291 x += STEP;
1293 while (x < NITERS - STEP);
1295 In both cases the loop limit is NITERS - STEP. */
1296 gimple_seq seq = NULL;
1297 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
1298 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
1299 if (seq)
1301 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1302 gcc_assert (!new_bb);
1304 if (niters_maybe_zero)
1306 /* Case C. */
1307 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1308 init = build_all_ones_cst (niters_type);
1310 else
1312 /* Case B. */
1313 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
1314 init = build_zero_cst (niters_type);
1318 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1319 create_iv (init, PLUS_EXPR, step, NULL_TREE, loop,
1320 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
1321 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
1322 true, NULL_TREE, true,
1323 GSI_SAME_STMT);
1324 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
1325 true, GSI_SAME_STMT);
1327 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
1328 NULL_TREE);
1330 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1332 /* Record the number of latch iterations. */
1333 if (limit == niters)
1334 /* Case A: the loop iterates NITERS times. Subtract one to get the
1335 latch count. */
1336 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
1337 build_int_cst (niters_type, 1));
1338 else
1339 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
1340 Subtract one from this to get the latch count. */
1341 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
1342 limit, step);
1344 if (final_iv)
1346 gassign *assign;
1347 gcc_assert (single_pred_p (exit_edge->dest));
1348 tree phi_dest
1349 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
1350 /* Make sure to maintain LC SSA form here and elide the subtraction
1351 if the value is zero. */
1352 gphi *phi = create_phi_node (phi_dest, exit_edge->dest);
1353 add_phi_arg (phi, indx_after_incr, exit_edge, UNKNOWN_LOCATION);
1354 if (!integer_zerop (init))
1356 assign = gimple_build_assign (final_iv, MINUS_EXPR,
1357 phi_dest, init);
1358 gimple_stmt_iterator gsi = gsi_after_labels (exit_edge->dest);
1359 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
1363 return cond_stmt;
1366 /* If we're using fully-masked loops, make LOOP iterate:
1368 N == (NITERS - 1) / STEP + 1
1370 times. When NITERS is zero, this is equivalent to making the loop
1371 execute (1 << M) / STEP times, where M is the precision of NITERS.
1372 NITERS_MAYBE_ZERO is true if this last case might occur.
1374 If we're not using fully-masked loops, make LOOP iterate:
1376 N == (NITERS - STEP) / STEP + 1
1378 times, where NITERS is known to be outside the range [1, STEP - 1].
1379 This is equivalent to making the loop execute NITERS / STEP times
1380 when NITERS is nonzero and (1 << M) / STEP times otherwise.
1381 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
1383 If FINAL_IV is nonnull, it is an SSA name that should be set to
1384 N * STEP on exit from the loop.
1386 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
1388 void
1389 vect_set_loop_condition (class loop *loop, edge loop_e, loop_vec_info loop_vinfo,
1390 tree niters, tree step, tree final_iv,
1391 bool niters_maybe_zero)
1393 gcond *cond_stmt;
1394 gcond *orig_cond = get_loop_exit_condition (loop_e);
1395 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
1397 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
1399 if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) == vect_partial_vectors_avx512)
1400 cond_stmt = vect_set_loop_condition_partial_vectors_avx512 (loop, loop_e,
1401 loop_vinfo,
1402 niters, final_iv,
1403 niters_maybe_zero,
1404 loop_cond_gsi);
1405 else
1406 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_e,
1407 loop_vinfo,
1408 niters, final_iv,
1409 niters_maybe_zero,
1410 loop_cond_gsi);
1412 else
1413 cond_stmt = vect_set_loop_condition_normal (loop_vinfo, loop_e, loop,
1414 niters,
1415 step, final_iv,
1416 niters_maybe_zero,
1417 loop_cond_gsi);
1419 /* Remove old loop exit test. */
1420 stmt_vec_info orig_cond_info;
1421 if (loop_vinfo
1422 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
1423 loop_vinfo->remove_stmt (orig_cond_info);
1424 else
1425 gsi_remove (&loop_cond_gsi, true);
1427 if (dump_enabled_p ())
1428 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
1429 (gimple *) cond_stmt);
1432 /* Given LOOP this function generates a new copy of it and puts it
1433 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1434 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1435 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1436 entry or exit of LOOP. If FLOW_LOOPS then connect LOOP to SCALAR_LOOP as a
1437 continuation. This is correct for cases where one loop continues from the
1438 other like in the vectorizer, but not true for uses in e.g. loop distribution
1439 where the contents of the loop body are split but the iteration space of both
1440 copies remains the same.
1442 If UPDATED_DOMS is not NULL it is update with the list of basic blocks whoms
1443 dominators were updated during the peeling. When doing early break vectorization
1444 then LOOP_VINFO needs to be provided and is used to keep track of any newly created
1445 memory references that need to be updated should we decide to vectorize. */
1447 class loop *
1448 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop, edge loop_exit,
1449 class loop *scalar_loop,
1450 edge scalar_exit, edge e, edge *new_e,
1451 bool flow_loops,
1452 vec<basic_block> *updated_doms)
1454 class loop *new_loop;
1455 basic_block *new_bbs, *bbs, *pbbs;
1456 bool at_exit;
1457 bool was_imm_dom;
1458 basic_block exit_dest;
1459 edge exit, new_exit;
1460 bool duplicate_outer_loop = false;
1462 exit = loop_exit;
1463 at_exit = (e == exit);
1464 if (!at_exit && e != loop_preheader_edge (loop))
1465 return NULL;
1467 if (scalar_loop == NULL)
1469 scalar_loop = loop;
1470 scalar_exit = loop_exit;
1472 else if (scalar_loop == loop)
1473 scalar_exit = loop_exit;
1474 else
1476 /* Loop has been version, match exits up using the aux index. */
1477 for (edge exit : get_loop_exit_edges (scalar_loop))
1478 if (exit->aux == loop_exit->aux)
1480 scalar_exit = exit;
1481 break;
1484 gcc_assert (scalar_exit);
1487 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1488 pbbs = bbs + 1;
1489 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1490 /* Allow duplication of outer loops. */
1491 if (scalar_loop->inner)
1492 duplicate_outer_loop = true;
1494 /* Generate new loop structure. */
1495 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1496 duplicate_subloops (scalar_loop, new_loop);
1498 exit_dest = exit->dest;
1499 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1500 exit_dest) == loop->header ?
1501 true : false);
1503 /* Also copy the pre-header, this avoids jumping through hoops to
1504 duplicate the loop entry PHI arguments. Create an empty
1505 pre-header unconditionally for this. */
1506 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1507 edge entry_e = single_pred_edge (preheader);
1508 bbs[0] = preheader;
1509 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1511 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1512 &scalar_exit, 1, &new_exit, NULL,
1513 at_exit ? loop->latch : e->src, true);
1514 exit = loop_exit;
1515 basic_block new_preheader = new_bbs[0];
1517 gcc_assert (new_exit);
1519 /* Record the new loop exit information. new_loop doesn't have SCEV data and
1520 so we must initialize the exit information. */
1521 if (new_e)
1522 *new_e = new_exit;
1524 /* Before installing PHI arguments make sure that the edges
1525 into them match that of the scalar loop we analyzed. This
1526 makes sure the SLP tree matches up between the main vectorized
1527 loop and the epilogue vectorized copies. */
1528 if (single_succ_edge (preheader)->dest_idx
1529 != single_succ_edge (new_bbs[0])->dest_idx)
1531 basic_block swap_bb = new_bbs[1];
1532 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1533 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1534 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1535 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1537 if (duplicate_outer_loop)
1539 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1540 if (loop_preheader_edge (scalar_loop)->dest_idx
1541 != loop_preheader_edge (new_inner_loop)->dest_idx)
1543 basic_block swap_bb = new_inner_loop->header;
1544 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1545 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1546 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1547 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1551 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1553 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1554 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1555 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1557 /* Rename the exit uses. */
1558 for (edge exit : get_loop_exit_edges (new_loop))
1559 for (auto gsi = gsi_start_phis (exit->dest);
1560 !gsi_end_p (gsi); gsi_next (&gsi))
1562 tree orig_def = PHI_ARG_DEF_FROM_EDGE (gsi.phi (), exit);
1563 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), exit));
1564 if (MAY_HAVE_DEBUG_BIND_STMTS)
1565 adjust_debug_stmts (orig_def, PHI_RESULT (gsi.phi ()), exit->dest);
1568 auto loop_exits = get_loop_exit_edges (loop);
1569 bool multiple_exits_p = loop_exits.length () > 1;
1570 auto_vec<basic_block> doms;
1571 class loop *update_loop = NULL;
1573 if (at_exit) /* Add the loop copy at exit. */
1575 if (scalar_loop != loop && new_exit->dest != exit_dest)
1577 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1578 flush_pending_stmts (new_exit);
1581 bool need_virtual_phi = get_virtual_phi (loop->header);
1583 /* For the main loop exit preserve the LC PHI nodes. For vectorization
1584 we need them to continue or finalize reductions. Since we do not
1585 copy the loop exit blocks we have to materialize PHIs at the
1586 new destination before redirecting edges. */
1587 for (auto gsi_from = gsi_start_phis (loop_exit->dest);
1588 !gsi_end_p (gsi_from); gsi_next (&gsi_from))
1590 tree res = gimple_phi_result (*gsi_from);
1591 create_phi_node (copy_ssa_name (res), new_preheader);
1593 edge e = redirect_edge_and_branch (loop_exit, new_preheader);
1594 gcc_assert (e == loop_exit);
1595 flush_pending_stmts (loop_exit);
1596 set_immediate_dominator (CDI_DOMINATORS, new_preheader, loop_exit->src);
1598 bool multiple_exits_p = loop_exits.length () > 1;
1599 basic_block main_loop_exit_block = new_preheader;
1600 basic_block alt_loop_exit_block = NULL;
1601 /* Create the CFG for multiple exits.
1602 | loop_exit | alt1 | altN
1603 v v ... v
1604 main_loop_exit_block: alt_loop_exit_block:
1607 new_preheader:
1608 where in the new preheader we need merge PHIs for
1609 the continuation values into the epilogue header.
1610 Do not bother with exit PHIs for the early exits but
1611 their live virtual operand. We'll fix up things below. */
1612 if (multiple_exits_p)
1614 edge loop_e = single_succ_edge (new_preheader);
1615 new_preheader = split_edge (loop_e);
1617 gphi *vphi = NULL;
1618 alt_loop_exit_block = new_preheader;
1619 for (auto exit : loop_exits)
1620 if (exit != loop_exit)
1622 tree vphi_def = NULL_TREE;
1623 if (gphi *evphi = get_virtual_phi (exit->dest))
1624 vphi_def = gimple_phi_arg_def_from_edge (evphi, exit);
1625 edge res = redirect_edge_and_branch (exit, alt_loop_exit_block);
1626 gcc_assert (res == exit);
1627 redirect_edge_var_map_clear (exit);
1628 if (alt_loop_exit_block == new_preheader)
1629 alt_loop_exit_block = split_edge (exit);
1630 if (!need_virtual_phi)
1631 continue;
1632 if (vphi_def)
1634 if (!vphi)
1635 vphi = create_phi_node (copy_ssa_name (vphi_def),
1636 alt_loop_exit_block);
1637 else
1638 /* Edge redirection might re-allocate the PHI node
1639 so we have to rediscover it. */
1640 vphi = get_virtual_phi (alt_loop_exit_block);
1641 add_phi_arg (vphi, vphi_def, exit, UNKNOWN_LOCATION);
1645 set_immediate_dominator (CDI_DOMINATORS, new_preheader,
1646 loop->header);
1649 /* Adjust the epilog loop PHI entry values to continue iteration.
1650 This adds remaining necessary LC PHI nodes to the main exit
1651 and creates merge PHIs when we have multiple exits with
1652 their appropriate continuation. */
1653 if (flow_loops)
1655 edge loop_entry = single_succ_edge (new_preheader);
1656 bool peeled_iters = single_pred (loop->latch) != loop_exit->src;
1658 /* Record the new SSA names in the cache so that we can skip
1659 materializing them again when we fill in the rest of the LC SSA
1660 variables. */
1661 hash_map <tree, tree> new_phi_args;
1662 for (auto psi = gsi_start_phis (main_loop_exit_block);
1663 !gsi_end_p (psi); gsi_next (&psi))
1665 gphi *phi = *psi;
1666 tree new_arg = gimple_phi_arg_def_from_edge (phi, loop_exit);
1667 if (TREE_CODE (new_arg) != SSA_NAME)
1668 continue;
1670 /* If the loop doesn't have a virtual def then only possibly keep
1671 the epilog LC PHI for it and avoid creating new defs. */
1672 if (virtual_operand_p (new_arg) && !need_virtual_phi)
1674 auto gsi = gsi_for_stmt (phi);
1675 remove_phi_node (&gsi, true);
1676 continue;
1679 /* If we decided not to remove the PHI node we should also not
1680 rematerialize it later on. */
1681 new_phi_args.put (new_arg, gimple_phi_result (phi));
1684 /* Create the merge PHI nodes in new_preheader and populate the
1685 arguments for the exits. */
1686 if (multiple_exits_p)
1688 for (auto gsi_from = gsi_start_phis (loop->header),
1689 gsi_to = gsi_start_phis (new_loop->header);
1690 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1691 gsi_next (&gsi_from), gsi_next (&gsi_to))
1693 gimple *from_phi = gsi_stmt (gsi_from);
1694 gimple *to_phi = gsi_stmt (gsi_to);
1696 /* When the vector loop is peeled then we need to use the
1697 value at start of the loop, otherwise the main loop exit
1698 should use the final iter value. */
1699 tree new_arg;
1700 if (peeled_iters)
1701 new_arg = gimple_phi_result (from_phi);
1702 else
1703 new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1704 loop_latch_edge (loop));
1706 /* Check if we've already created a new phi node during edge
1707 redirection and re-use it if so. Otherwise create a
1708 LC PHI node to feed the merge PHI. */
1709 tree *res;
1710 if (virtual_operand_p (new_arg))
1711 /* Use the existing virtual LC SSA from exit block. */
1712 new_arg = gimple_phi_result
1713 (get_virtual_phi (main_loop_exit_block));
1714 else if ((res = new_phi_args.get (new_arg)))
1715 new_arg = *res;
1716 else
1718 /* Create the LC PHI node for the exit. */
1719 tree new_def = copy_ssa_name (new_arg);
1720 gphi *lc_phi
1721 = create_phi_node (new_def, main_loop_exit_block);
1722 SET_PHI_ARG_DEF (lc_phi, 0, new_arg);
1723 new_arg = new_def;
1726 /* Create the PHI node in the merge block merging the
1727 main and early exit values. */
1728 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1729 gphi *lcssa_phi = create_phi_node (new_res, new_preheader);
1730 edge main_e = single_succ_edge (main_loop_exit_block);
1731 SET_PHI_ARG_DEF_ON_EDGE (lcssa_phi, main_e, new_arg);
1733 /* And adjust the epilog entry value. */
1734 adjust_phi_and_debug_stmts (to_phi, loop_entry, new_res);
1737 /* After creating the merge PHIs handle the early exits those
1738 should use the values at the start of the loop. */
1739 for (auto gsi_from = gsi_start_phis (loop->header),
1740 gsi_to = gsi_start_phis (new_preheader);
1741 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1742 gsi_next (&gsi_from), gsi_next (&gsi_to))
1744 gimple *from_phi = gsi_stmt (gsi_from);
1745 gimple *to_phi = gsi_stmt (gsi_to);
1747 /* Now update the virtual PHI nodes with the right value. */
1748 tree alt_arg = gimple_phi_result (from_phi);
1749 if (virtual_operand_p (alt_arg))
1751 gphi *vphi = get_virtual_phi (alt_loop_exit_block);
1752 /* ??? When the exit yields to a path without
1753 any virtual use we can miss a LC PHI for the
1754 live virtual operand. Simply choosing the
1755 one live at the start of the loop header isn't
1756 correct, but we should get here only with
1757 early-exit vectorization which will move all
1758 defs after the main exit, so leave a temporarily
1759 wrong virtual operand in place. This happens
1760 for gcc.c-torture/execute/20150611-1.c */
1761 if (vphi)
1762 alt_arg = gimple_phi_result (vphi);
1764 /* For other live args we didn't create LC PHI nodes.
1765 Do so here. */
1766 else
1768 tree alt_def = copy_ssa_name (alt_arg);
1769 gphi *lc_phi
1770 = create_phi_node (alt_def, alt_loop_exit_block);
1771 for (unsigned i = 0; i < gimple_phi_num_args (lc_phi);
1772 ++i)
1773 SET_PHI_ARG_DEF (lc_phi, i, alt_arg);
1774 alt_arg = alt_def;
1776 edge alt_e = single_succ_edge (alt_loop_exit_block);
1777 SET_PHI_ARG_DEF_ON_EDGE (to_phi, alt_e, alt_arg);
1780 /* For the single exit case only create the missing LC PHI nodes
1781 for the continuation of the loop IVs that are not also already
1782 reductions and thus had LC PHI nodes on the exit already. */
1783 else
1785 for (auto gsi_from = gsi_start_phis (loop->header),
1786 gsi_to = gsi_start_phis (new_loop->header);
1787 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1788 gsi_next (&gsi_from), gsi_next (&gsi_to))
1790 gimple *from_phi = gsi_stmt (gsi_from);
1791 gimple *to_phi = gsi_stmt (gsi_to);
1792 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1793 loop_latch_edge (loop));
1795 /* Check if we've already created a new phi node during edge
1796 redirection. If we have, only propagate the value
1797 downwards. */
1798 if (tree *res = new_phi_args.get (new_arg))
1800 adjust_phi_and_debug_stmts (to_phi, loop_entry, *res);
1801 continue;
1804 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1805 gphi *lcssa_phi = create_phi_node (new_res, new_preheader);
1806 SET_PHI_ARG_DEF_ON_EDGE (lcssa_phi, loop_exit, new_arg);
1807 adjust_phi_and_debug_stmts (to_phi, loop_entry, new_res);
1812 if (was_imm_dom || duplicate_outer_loop)
1813 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1815 /* And remove the non-necessary forwarder again. Keep the other
1816 one so we have a proper pre-header for the loop at the exit edge. */
1817 redirect_edge_pred (single_succ_edge (preheader),
1818 single_pred (preheader));
1819 delete_basic_block (preheader);
1820 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1821 loop_preheader_edge (scalar_loop)->src);
1823 /* Finally after wiring the new epilogue we need to update its main exit
1824 to the original function exit we recorded. Other exits are already
1825 correct. */
1826 if (multiple_exits_p)
1828 update_loop = new_loop;
1829 doms = get_all_dominated_blocks (CDI_DOMINATORS, loop->header);
1830 for (unsigned i = 0; i < doms.length (); ++i)
1831 if (flow_bb_inside_loop_p (loop, doms[i]))
1832 doms.unordered_remove (i);
1835 else /* Add the copy at entry. */
1837 /* Copy the current loop LC PHI nodes between the original loop exit
1838 block and the new loop header. This allows us to later split the
1839 preheader block and still find the right LC nodes. */
1840 if (flow_loops)
1841 for (auto gsi_from = gsi_start_phis (new_loop->header),
1842 gsi_to = gsi_start_phis (loop->header);
1843 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1844 gsi_next (&gsi_from), gsi_next (&gsi_to))
1846 gimple *from_phi = gsi_stmt (gsi_from);
1847 gimple *to_phi = gsi_stmt (gsi_to);
1848 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1849 loop_latch_edge (new_loop));
1850 adjust_phi_and_debug_stmts (to_phi, loop_preheader_edge (loop),
1851 new_arg);
1854 if (scalar_loop != loop)
1856 /* Remove the non-necessary forwarder of scalar_loop again. */
1857 redirect_edge_pred (single_succ_edge (preheader),
1858 single_pred (preheader));
1859 delete_basic_block (preheader);
1860 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1861 loop_preheader_edge (scalar_loop)->src);
1862 preheader = split_edge (loop_preheader_edge (loop));
1863 entry_e = single_pred_edge (preheader);
1866 redirect_edge_and_branch_force (entry_e, new_preheader);
1867 flush_pending_stmts (entry_e);
1868 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1870 redirect_edge_and_branch_force (new_exit, preheader);
1871 flush_pending_stmts (new_exit);
1872 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1874 /* And remove the non-necessary forwarder again. Keep the other
1875 one so we have a proper pre-header for the loop at the exit edge. */
1876 redirect_edge_pred (single_succ_edge (new_preheader),
1877 single_pred (new_preheader));
1878 delete_basic_block (new_preheader);
1879 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1880 loop_preheader_edge (new_loop)->src);
1882 if (multiple_exits_p)
1883 update_loop = loop;
1886 if (multiple_exits_p)
1888 for (edge e : get_loop_exit_edges (update_loop))
1890 edge ex;
1891 edge_iterator ei;
1892 FOR_EACH_EDGE (ex, ei, e->dest->succs)
1894 /* Find the first non-fallthrough block as fall-throughs can't
1895 dominate other blocks. */
1896 if (single_succ_p (ex->dest))
1898 doms.safe_push (ex->dest);
1899 ex = single_succ_edge (ex->dest);
1901 doms.safe_push (ex->dest);
1903 doms.safe_push (e->dest);
1906 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
1907 if (updated_doms)
1908 updated_doms->safe_splice (doms);
1911 free (new_bbs);
1912 free (bbs);
1914 checking_verify_dominators (CDI_DOMINATORS);
1916 return new_loop;
1920 /* Given the condition expression COND, put it as the last statement of
1921 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1922 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1923 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1924 new edge as irreducible if IRREDUCIBLE_P is true. */
1926 static edge
1927 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1928 basic_block guard_to, basic_block dom_bb,
1929 profile_probability probability, bool irreducible_p)
1931 gimple_stmt_iterator gsi;
1932 edge new_e, enter_e;
1933 gcond *cond_stmt;
1934 gimple_seq gimplify_stmt_list = NULL;
1936 enter_e = EDGE_SUCC (guard_bb, 0);
1937 enter_e->flags &= ~EDGE_FALLTHRU;
1938 enter_e->flags |= EDGE_FALSE_VALUE;
1939 gsi = gsi_last_bb (guard_bb);
1941 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1942 is_gimple_condexpr_for_cond, NULL_TREE);
1943 if (gimplify_stmt_list)
1944 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1946 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1947 gsi = gsi_last_bb (guard_bb);
1948 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1950 /* Add new edge to connect guard block to the merge/loop-exit block. */
1951 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1953 new_e->probability = probability;
1954 if (irreducible_p)
1955 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1957 enter_e->probability = probability.invert ();
1958 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1960 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1961 if (enter_e->dest->loop_father->header == enter_e->dest)
1962 split_edge (enter_e);
1964 return new_e;
1968 /* This function verifies that the following restrictions apply to LOOP:
1969 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1970 for innermost loop and 5 basic blocks for outer-loop.
1971 (2) it is single entry, single exit
1972 (3) its exit condition is the last stmt in the header
1973 (4) E is the entry/exit edge of LOOP.
1976 bool
1977 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge exit_e,
1978 const_edge e)
1980 edge entry_e = loop_preheader_edge (loop);
1981 gcond *orig_cond = get_loop_exit_condition (exit_e);
1982 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1984 /* All loops have an outer scope; the only case loop->outer is NULL is for
1985 the function itself. */
1986 if (!loop_outer (loop)
1987 || !empty_block_p (loop->latch)
1988 || !exit_e
1989 /* Verify that new loop exit condition can be trivially modified. */
1990 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1991 || (e != exit_e && e != entry_e))
1992 return false;
1994 basic_block *bbs = XNEWVEC (basic_block, loop->num_nodes);
1995 get_loop_body_with_size (loop, bbs, loop->num_nodes);
1996 bool ret = can_copy_bbs_p (bbs, loop->num_nodes);
1997 free (bbs);
1998 return ret;
2001 /* Function find_loop_location.
2003 Extract the location of the loop in the source code.
2004 If the loop is not well formed for vectorization, an estimated
2005 location is calculated.
2006 Return the loop location if succeed and NULL if not. */
2008 dump_user_location_t
2009 find_loop_location (class loop *loop)
2011 gimple *stmt = NULL;
2012 basic_block bb;
2013 gimple_stmt_iterator si;
2015 if (!loop)
2016 return dump_user_location_t ();
2018 /* For the root of the loop tree return the function location. */
2019 if (!loop_outer (loop))
2020 return dump_user_location_t::from_function_decl (cfun->decl);
2022 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
2024 /* We only care about the loop location, so use any exit with location
2025 information. */
2026 for (edge e : get_loop_exit_edges (loop))
2028 stmt = get_loop_exit_condition (e);
2030 if (stmt
2031 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
2032 return stmt;
2036 /* If we got here the loop is probably not "well formed",
2037 try to estimate the loop location */
2039 if (!loop->header)
2040 return dump_user_location_t ();
2042 bb = loop->header;
2044 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2046 stmt = gsi_stmt (si);
2047 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
2048 return stmt;
2051 return dump_user_location_t ();
2054 /* Return true if the phi described by STMT_INFO defines an IV of the
2055 loop to be vectorized. */
2057 static bool
2058 iv_phi_p (stmt_vec_info stmt_info)
2060 gphi *phi = as_a <gphi *> (stmt_info->stmt);
2061 if (virtual_operand_p (PHI_RESULT (phi)))
2062 return false;
2064 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
2065 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
2066 return false;
2068 return true;
2071 /* Return true if vectorizer can peel for nonlinear iv. */
2072 static bool
2073 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
2074 stmt_vec_info stmt_info)
2076 enum vect_induction_op_type induction_type
2077 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
2078 tree niters_skip;
2079 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
2080 if niters or vf is unkown:
2081 For shift, when shift mount >= precision, there would be UD.
2082 For mult, don't known how to generate
2083 init_expr * pow (step, niters) for variable niters.
2084 For neg, it should be ok, since niters of vectorized main loop
2085 will always be multiple of 2. */
2086 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2087 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ())
2088 && induction_type != vect_step_op_neg)
2090 if (dump_enabled_p ())
2091 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2092 "Peeling for epilogue is not supported"
2093 " for nonlinear induction except neg"
2094 " when iteration count is unknown.\n");
2095 return false;
2098 /* Avoid compile time hog on vect_peel_nonlinear_iv_init. */
2099 if (induction_type == vect_step_op_mul)
2101 tree step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
2102 tree type = TREE_TYPE (step_expr);
2104 if (wi::exact_log2 (wi::to_wide (step_expr)) == -1
2105 && LOOP_VINFO_INT_NITERS(loop_vinfo) >= TYPE_PRECISION (type))
2107 if (dump_enabled_p ())
2108 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2109 "Avoid compile time hog on"
2110 " vect_peel_nonlinear_iv_init"
2111 " for nonlinear induction vec_step_op_mul"
2112 " when iteration count is too big.\n");
2113 return false;
2117 /* Also doens't support peel for neg when niter is variable.
2118 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
2119 niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
2120 if ((niters_skip != NULL_TREE
2121 && (TREE_CODE (niters_skip) != INTEGER_CST
2122 || (HOST_WIDE_INT) TREE_INT_CST_LOW (niters_skip) < 0))
2123 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo)
2124 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0))
2126 if (dump_enabled_p ())
2127 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2128 "Peeling for alignement is not supported"
2129 " for nonlinear induction when niters_skip"
2130 " is not constant.\n");
2131 return false;
2134 /* We can't support partial vectors and early breaks with an induction
2135 type other than add or neg since we require the epilog and can't
2136 perform the peeling. The below condition mirrors that of
2137 vect_gen_vector_loop_niters where niters_vector_mult_vf_var then sets
2138 step_vector to VF rather than 1. This is what creates the nonlinear
2139 IV. PR113163. */
2140 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo)
2141 && LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ()
2142 && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2143 && induction_type != vect_step_op_neg)
2145 if (dump_enabled_p ())
2146 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2147 "Peeling for epilogue is not supported"
2148 " for nonlinear induction except neg"
2149 " when VF is known and early breaks.\n");
2150 return false;
2153 return true;
2156 /* Function vect_can_advance_ivs_p
2158 In case the number of iterations that LOOP iterates is unknown at compile
2159 time, an epilog loop will be generated, and the loop induction variables
2160 (IVs) will be "advanced" to the value they are supposed to take just before
2161 the epilog loop. Here we check that the access function of the loop IVs
2162 and the expression that represents the loop bound are simple enough.
2163 These restrictions will be relaxed in the future. */
2165 bool
2166 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
2168 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2169 basic_block bb = loop->header;
2170 gphi_iterator gsi;
2172 /* Analyze phi functions of the loop header. */
2174 if (dump_enabled_p ())
2175 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
2176 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2178 tree evolution_part;
2179 enum vect_induction_op_type induction_type;
2181 gphi *phi = gsi.phi ();
2182 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2183 if (dump_enabled_p ())
2184 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
2185 phi_info->stmt);
2187 /* Skip virtual phi's. The data dependences that are associated with
2188 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
2190 Skip reduction phis. */
2191 if (!iv_phi_p (phi_info))
2193 if (dump_enabled_p ())
2194 dump_printf_loc (MSG_NOTE, vect_location,
2195 "reduc or virtual phi. skip.\n");
2196 continue;
2199 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2200 if (induction_type != vect_step_op_add)
2202 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, phi_info))
2203 return false;
2205 continue;
2208 /* Analyze the evolution function. */
2210 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2211 if (evolution_part == NULL_TREE)
2213 if (dump_enabled_p ())
2214 dump_printf (MSG_MISSED_OPTIMIZATION,
2215 "No access function or evolution.\n");
2216 return false;
2219 /* FORNOW: We do not transform initial conditions of IVs
2220 which evolution functions are not invariants in the loop. */
2222 if (!expr_invariant_in_loop_p (loop, evolution_part))
2224 if (dump_enabled_p ())
2225 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2226 "evolution not invariant in loop.\n");
2227 return false;
2230 /* FORNOW: We do not transform initial conditions of IVs
2231 which evolution functions are a polynomial of degree >= 2. */
2233 if (tree_is_chrec (evolution_part))
2235 if (dump_enabled_p ())
2236 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2237 "evolution is chrec.\n");
2238 return false;
2242 return true;
2246 /* Function vect_update_ivs_after_vectorizer.
2248 "Advance" the induction variables of LOOP to the value they should take
2249 after the execution of LOOP. This is currently necessary because the
2250 vectorizer does not handle induction variables that are used after the
2251 loop. Such a situation occurs when the last iterations of LOOP are
2252 peeled, because:
2253 1. We introduced new uses after LOOP for IVs that were not originally used
2254 after LOOP: the IVs of LOOP are now used by an epilog loop.
2255 2. LOOP is going to be vectorized; this means that it will iterate N/VF
2256 times, whereas the loop IVs should be bumped N times.
2258 Input:
2259 - LOOP - a loop that is going to be vectorized. The last few iterations
2260 of LOOP were peeled.
2261 - NITERS - the number of iterations that LOOP executes (before it is
2262 vectorized). i.e, the number of times the ivs should be bumped.
2263 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
2264 coming out from LOOP on which there are uses of the LOOP ivs
2265 (this is the path from LOOP->exit to epilog_loop->preheader).
2267 The new definitions of the ivs are placed in LOOP->exit.
2268 The phi args associated with the edge UPDATE_E in the bb
2269 UPDATE_E->dest are updated accordingly.
2271 Assumption 1: Like the rest of the vectorizer, this function assumes
2272 a single loop exit that has a single predecessor.
2274 Assumption 2: The phi nodes in the LOOP header and in update_bb are
2275 organized in the same order.
2277 Assumption 3: The access function of the ivs is simple enough (see
2278 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
2280 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
2281 coming out of LOOP on which the ivs of LOOP are used (this is the path
2282 that leads to the epilog loop; other paths skip the epilog loop). This
2283 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
2284 needs to have its phis updated.
2287 static void
2288 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
2289 tree niters, edge update_e)
2291 gphi_iterator gsi, gsi1;
2292 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2293 basic_block update_bb = update_e->dest;
2294 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2295 gimple_stmt_iterator last_gsi = gsi_last_bb (exit_bb);
2297 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
2298 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
2299 gsi_next (&gsi), gsi_next (&gsi1))
2301 tree init_expr;
2302 tree step_expr, off;
2303 tree type;
2304 tree var, ni, ni_name;
2306 gphi *phi = gsi.phi ();
2307 gphi *phi1 = gsi1.phi ();
2308 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2309 if (dump_enabled_p ())
2310 dump_printf_loc (MSG_NOTE, vect_location,
2311 "vect_update_ivs_after_vectorizer: phi: %G",
2312 (gimple *) phi);
2314 /* Skip reduction and virtual phis. */
2315 if (!iv_phi_p (phi_info))
2317 if (dump_enabled_p ())
2318 dump_printf_loc (MSG_NOTE, vect_location,
2319 "reduc or virtual phi. skip.\n");
2320 continue;
2323 type = TREE_TYPE (gimple_phi_result (phi));
2324 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2325 step_expr = unshare_expr (step_expr);
2327 /* FORNOW: We do not support IVs whose evolution function is a polynomial
2328 of degree >= 2 or exponential. */
2329 gcc_assert (!tree_is_chrec (step_expr));
2331 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2332 gimple_seq stmts = NULL;
2333 enum vect_induction_op_type induction_type
2334 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2336 if (induction_type == vect_step_op_add)
2338 tree stype = TREE_TYPE (step_expr);
2339 off = fold_build2 (MULT_EXPR, stype,
2340 fold_convert (stype, niters), step_expr);
2342 if (POINTER_TYPE_P (type))
2343 ni = fold_build_pointer_plus (init_expr, off);
2344 else
2345 ni = fold_convert (type,
2346 fold_build2 (PLUS_EXPR, stype,
2347 fold_convert (stype, init_expr),
2348 off));
2350 /* Don't bother call vect_peel_nonlinear_iv_init. */
2351 else if (induction_type == vect_step_op_neg)
2352 ni = init_expr;
2353 else
2354 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
2355 niters, step_expr,
2356 induction_type);
2358 var = create_tmp_var (type, "tmp");
2360 gimple_seq new_stmts = NULL;
2361 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
2363 /* Exit_bb shouldn't be empty. */
2364 if (!gsi_end_p (last_gsi))
2366 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
2367 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
2369 else
2371 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
2372 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
2375 /* Fix phi expressions in the successor bb. */
2376 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
2380 /* Return a gimple value containing the misalignment (measured in vector
2381 elements) for the loop described by LOOP_VINFO, i.e. how many elements
2382 it is away from a perfectly aligned address. Add any new statements
2383 to SEQ. */
2385 static tree
2386 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
2388 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2389 stmt_vec_info stmt_info = dr_info->stmt;
2390 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2392 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2393 unsigned HOST_WIDE_INT target_align_c;
2394 tree target_align_minus_1;
2396 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2397 size_zero_node) < 0;
2398 tree offset = (negative
2399 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
2400 * TREE_INT_CST_LOW
2401 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
2402 : size_zero_node);
2403 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
2404 stmt_info, seq,
2405 offset);
2406 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2407 if (target_align.is_constant (&target_align_c))
2408 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
2409 else
2411 tree vla = build_int_cst (type, target_align);
2412 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
2413 fold_build2 (MINUS_EXPR, type,
2414 build_int_cst (type, 0), vla));
2415 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
2416 build_int_cst (type, 1));
2419 HOST_WIDE_INT elem_size
2420 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2421 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2423 /* Create: misalign_in_bytes = addr & (target_align - 1). */
2424 tree int_start_addr = fold_convert (type, start_addr);
2425 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
2426 target_align_minus_1);
2428 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
2429 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
2430 elem_size_log);
2432 return misalign_in_elems;
2435 /* Function vect_gen_prolog_loop_niters
2437 Generate the number of iterations which should be peeled as prolog for the
2438 loop represented by LOOP_VINFO. It is calculated as the misalignment of
2439 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
2440 As a result, after the execution of this loop, the data reference DR will
2441 refer to an aligned location. The following computation is generated:
2443 If the misalignment of DR is known at compile time:
2444 addr_mis = int mis = DR_MISALIGNMENT (dr);
2445 Else, compute address misalignment in bytes:
2446 addr_mis = addr & (target_align - 1)
2448 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
2450 (elem_size = element type size; an element is the scalar element whose type
2451 is the inner type of the vectype)
2453 The computations will be emitted at the end of BB. We also compute and
2454 store upper bound (included) of the result in BOUND.
2456 When the step of the data-ref in the loop is not 1 (as in interleaved data
2457 and SLP), the number of iterations of the prolog must be divided by the step
2458 (which is equal to the size of interleaved group).
2460 The above formulas assume that VF == number of elements in the vector. This
2461 may not hold when there are multiple-types in the loop.
2462 In this case, for some data-references in the loop the VF does not represent
2463 the number of elements that fit in the vector. Therefore, instead of VF we
2464 use TYPE_VECTOR_SUBPARTS. */
2466 static tree
2467 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
2468 basic_block bb, int *bound)
2470 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2471 tree var;
2472 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2473 gimple_seq stmts = NULL, new_stmts = NULL;
2474 tree iters, iters_name;
2475 stmt_vec_info stmt_info = dr_info->stmt;
2476 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2477 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2479 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2481 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2483 if (dump_enabled_p ())
2484 dump_printf_loc (MSG_NOTE, vect_location,
2485 "known peeling = %d.\n", npeel);
2487 iters = build_int_cst (niters_type, npeel);
2488 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2490 else
2492 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
2493 tree type = TREE_TYPE (misalign_in_elems);
2494 HOST_WIDE_INT elem_size
2495 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2496 /* We only do prolog peeling if the target alignment is known at compile
2497 time. */
2498 poly_uint64 align_in_elems =
2499 exact_div (target_align, elem_size);
2500 tree align_in_elems_minus_1 =
2501 build_int_cst (type, align_in_elems - 1);
2502 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
2504 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
2505 & (align_in_elems - 1)). */
2506 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2507 size_zero_node) < 0;
2508 if (negative)
2509 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
2510 align_in_elems_tree);
2511 else
2512 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
2513 misalign_in_elems);
2514 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
2515 iters = fold_convert (niters_type, iters);
2516 unsigned HOST_WIDE_INT align_in_elems_c;
2517 if (align_in_elems.is_constant (&align_in_elems_c))
2518 *bound = align_in_elems_c - 1;
2519 else
2520 *bound = -1;
2523 if (dump_enabled_p ())
2524 dump_printf_loc (MSG_NOTE, vect_location,
2525 "niters for prolog loop: %T\n", iters);
2527 var = create_tmp_var (niters_type, "prolog_loop_niters");
2528 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
2530 if (new_stmts)
2531 gimple_seq_add_seq (&stmts, new_stmts);
2532 if (stmts)
2534 gcc_assert (single_succ_p (bb));
2535 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2536 if (gsi_end_p (gsi))
2537 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2538 else
2539 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
2541 return iters_name;
2545 /* Function vect_update_init_of_dr
2547 If CODE is PLUS, the vector loop starts NITERS iterations after the
2548 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
2549 iterations before the scalar one (using masking to skip inactive
2550 elements). This function updates the information recorded in DR to
2551 account for the difference. Specifically, it updates the OFFSET
2552 field of DR_INFO. */
2554 static void
2555 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
2557 struct data_reference *dr = dr_info->dr;
2558 tree offset = dr_info->offset;
2559 if (!offset)
2560 offset = build_zero_cst (sizetype);
2562 niters = fold_build2 (MULT_EXPR, sizetype,
2563 fold_convert (sizetype, niters),
2564 fold_convert (sizetype, DR_STEP (dr)));
2565 offset = fold_build2 (code, sizetype,
2566 fold_convert (sizetype, offset), niters);
2567 dr_info->offset = offset;
2571 /* Function vect_update_inits_of_drs
2573 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
2574 CODE and NITERS are as for vect_update_inits_of_dr. */
2576 void
2577 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
2578 tree_code code)
2580 unsigned int i;
2581 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2582 struct data_reference *dr;
2584 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
2586 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
2587 here, but since we might use these niters to update the epilogues niters
2588 and data references we can't insert them here as this definition might not
2589 always dominate its uses. */
2590 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
2591 niters = fold_convert (sizetype, niters);
2593 FOR_EACH_VEC_ELT (datarefs, i, dr)
2595 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2596 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
2597 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
2598 vect_update_init_of_dr (dr_info, niters, code);
2602 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
2603 by masking. This involves calculating the number of iterations to
2604 be peeled and then aligning all memory references appropriately. */
2606 void
2607 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
2609 tree misalign_in_elems;
2610 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2612 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
2614 /* From the information recorded in LOOP_VINFO get the number of iterations
2615 that need to be skipped via masking. */
2616 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2618 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2619 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2620 misalign_in_elems = build_int_cst (type, misalign);
2622 else
2624 gimple_seq seq1 = NULL, seq2 = NULL;
2625 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
2626 misalign_in_elems = fold_convert (type, misalign_in_elems);
2627 misalign_in_elems = force_gimple_operand (misalign_in_elems,
2628 &seq2, true, NULL_TREE);
2629 gimple_seq_add_seq (&seq1, seq2);
2630 if (seq1)
2632 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2633 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
2634 gcc_assert (!new_bb);
2638 if (dump_enabled_p ())
2639 dump_printf_loc (MSG_NOTE, vect_location,
2640 "misalignment for fully-masked loop: %T\n",
2641 misalign_in_elems);
2643 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
2645 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
2648 /* This function builds ni_name = number of iterations. Statements
2649 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
2650 it to TRUE if new ssa_var is generated. */
2652 tree
2653 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
2655 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
2656 if (TREE_CODE (ni) == INTEGER_CST)
2657 return ni;
2658 else
2660 tree ni_name, var;
2661 gimple_seq stmts = NULL;
2662 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2664 var = create_tmp_var (TREE_TYPE (ni), "niters");
2665 ni_name = force_gimple_operand (ni, &stmts, false, var);
2666 if (stmts)
2668 gsi_insert_seq_on_edge_immediate (pe, stmts);
2669 if (new_var_p != NULL)
2670 *new_var_p = true;
2673 return ni_name;
2677 /* Calculate the number of iterations above which vectorized loop will be
2678 preferred than scalar loop. NITERS_PROLOG is the number of iterations
2679 of prolog loop. If it's integer const, the integer number is also passed
2680 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
2681 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
2682 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
2683 threshold below which the scalar (rather than vectorized) loop will be
2684 executed. This function stores the upper bound (inclusive) of the result
2685 in BOUND_SCALAR. */
2687 static tree
2688 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
2689 int bound_prolog, poly_int64 bound_epilog, int th,
2690 poly_uint64 *bound_scalar,
2691 bool check_profitability)
2693 tree type = TREE_TYPE (niters_prolog);
2694 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
2695 build_int_cst (type, bound_epilog));
2697 *bound_scalar = bound_prolog + bound_epilog;
2698 if (check_profitability)
2700 /* TH indicates the minimum niters of vectorized loop, while we
2701 compute the maximum niters of scalar loop. */
2702 th--;
2703 /* Peeling for constant times. */
2704 if (int_niters_prolog >= 0)
2706 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
2707 return build_int_cst (type, *bound_scalar);
2709 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
2710 and BOUND_EPILOG are inclusive upper bounds. */
2711 if (known_ge (th, bound_prolog + bound_epilog))
2713 *bound_scalar = th;
2714 return build_int_cst (type, th);
2716 /* Need to do runtime comparison. */
2717 else if (maybe_gt (th, bound_epilog))
2719 *bound_scalar = upper_bound (*bound_scalar, th);
2720 return fold_build2 (MAX_EXPR, type,
2721 build_int_cst (type, th), niters);
2724 return niters;
2727 /* NITERS is the number of times that the original scalar loop executes
2728 after peeling. Work out the maximum number of iterations N that can
2729 be handled by the vectorized form of the loop and then either:
2731 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2733 niters_vector = N
2735 b) set *STEP_VECTOR_PTR to one and generate:
2737 niters_vector = N / vf
2739 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2740 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2741 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2743 void
2744 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
2745 tree *niters_vector_ptr, tree *step_vector_ptr,
2746 bool niters_no_overflow)
2748 tree ni_minus_gap, var;
2749 tree niters_vector, step_vector, type = TREE_TYPE (niters);
2750 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2751 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2752 tree log_vf = NULL_TREE;
2754 /* If epilogue loop is required because of data accesses with gaps, we
2755 subtract one iteration from the total number of iterations here for
2756 correct calculation of RATIO. */
2757 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2759 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2760 build_one_cst (type));
2761 if (!is_gimple_val (ni_minus_gap))
2763 var = create_tmp_var (type, "ni_gap");
2764 gimple *stmts = NULL;
2765 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2766 true, var);
2767 gsi_insert_seq_on_edge_immediate (pe, stmts);
2770 else
2771 ni_minus_gap = niters;
2773 /* To silence some unexpected warnings, simply initialize to 0. */
2774 unsigned HOST_WIDE_INT const_vf = 0;
2775 if (vf.is_constant (&const_vf)
2776 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2778 /* Create: niters >> log2(vf) */
2779 /* If it's known that niters == number of latch executions + 1 doesn't
2780 overflow, we can generate niters >> log2(vf); otherwise we generate
2781 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2782 will be at least one. */
2783 log_vf = build_int_cst (type, exact_log2 (const_vf));
2784 if (niters_no_overflow)
2785 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2786 else
2787 niters_vector
2788 = fold_build2 (PLUS_EXPR, type,
2789 fold_build2 (RSHIFT_EXPR, type,
2790 fold_build2 (MINUS_EXPR, type,
2791 ni_minus_gap,
2792 build_int_cst (type, vf)),
2793 log_vf),
2794 build_int_cst (type, 1));
2795 step_vector = build_one_cst (type);
2797 else
2799 niters_vector = ni_minus_gap;
2800 step_vector = build_int_cst (type, vf);
2803 if (!is_gimple_val (niters_vector))
2805 var = create_tmp_var (type, "bnd");
2806 gimple_seq stmts = NULL;
2807 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2808 gsi_insert_seq_on_edge_immediate (pe, stmts);
2809 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2810 we set range information to make niters analyzer's life easier.
2811 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2812 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2813 if (stmts != NULL && log_vf)
2815 if (niters_no_overflow)
2817 value_range vr (type,
2818 wi::one (TYPE_PRECISION (type)),
2819 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2820 TYPE_SIGN (type)),
2821 exact_log2 (const_vf),
2822 TYPE_SIGN (type)));
2823 set_range_info (niters_vector, vr);
2825 /* For VF == 1 the vector IV might also overflow so we cannot
2826 assert a minimum value of 1. */
2827 else if (const_vf > 1)
2829 value_range vr (type,
2830 wi::one (TYPE_PRECISION (type)),
2831 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2832 TYPE_SIGN (type))
2833 - (const_vf - 1),
2834 exact_log2 (const_vf), TYPE_SIGN (type))
2835 + 1);
2836 set_range_info (niters_vector, vr);
2840 *niters_vector_ptr = niters_vector;
2841 *step_vector_ptr = step_vector;
2843 return;
2846 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2847 loop specified by LOOP_VINFO after vectorization, compute the number
2848 of iterations before vectorization (niters_vector * vf) and store it
2849 to NITERS_VECTOR_MULT_VF_PTR. */
2851 static void
2852 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2853 tree niters_vector,
2854 tree *niters_vector_mult_vf_ptr)
2856 /* We should be using a step_vector of VF if VF is variable. */
2857 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2858 tree type = TREE_TYPE (niters_vector);
2859 tree log_vf = build_int_cst (type, exact_log2 (vf));
2860 tree tree_vf = build_int_cst (type, vf);
2861 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2863 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2864 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2865 niters_vector, log_vf);
2867 /* If we've peeled a vector iteration then subtract one full vector
2868 iteration. */
2869 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
2870 niters_vector_mult_vf = fold_build2 (MINUS_EXPR, type,
2871 niters_vector_mult_vf, tree_vf);
2873 if (!is_gimple_val (niters_vector_mult_vf))
2875 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2876 gimple_seq stmts = NULL;
2877 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2878 &stmts, true, var);
2879 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2880 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2882 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2885 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2886 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2887 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2888 appear like below:
2890 guard_bb:
2891 if (cond)
2892 goto merge_bb;
2893 else
2894 goto skip_loop;
2896 skip_loop:
2897 header_a:
2898 i_1 = PHI<i_0, i_2>;
2900 i_2 = i_1 + 1;
2901 if (cond_a)
2902 goto latch_a;
2903 else
2904 goto exit_a;
2905 latch_a:
2906 goto header_a;
2908 exit_a:
2909 i_5 = PHI<i_2>;
2911 merge_bb:
2912 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2914 update_loop:
2915 header_b:
2916 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2918 i_4 = i_3 + 1;
2919 if (cond_b)
2920 goto latch_b;
2921 else
2922 goto exit_bb;
2923 latch_b:
2924 goto header_b;
2926 exit_bb:
2928 This function creates PHI nodes at merge_bb and replaces the use of i_5
2929 in the update_loop's PHI node with the result of new PHI result. */
2931 static void
2932 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2933 class loop *update_loop,
2934 edge guard_edge, edge merge_edge)
2936 location_t merge_loc, guard_loc;
2937 edge orig_e = loop_preheader_edge (skip_loop);
2938 edge update_e = loop_preheader_edge (update_loop);
2939 gphi_iterator gsi_orig, gsi_update;
2941 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2942 gsi_update = gsi_start_phis (update_loop->header));
2943 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2944 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2946 gphi *orig_phi = gsi_orig.phi ();
2947 gphi *update_phi = gsi_update.phi ();
2949 /* Generate new phi node at merge bb of the guard. */
2950 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2951 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2953 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2954 args in NEW_PHI for these edges. */
2955 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2956 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2957 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2958 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2959 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2960 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2962 /* Update phi in UPDATE_PHI. */
2963 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2967 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2968 Return a value that equals:
2970 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2971 - SKIP_VALUE when the main loop is skipped. */
2973 tree
2974 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2975 tree skip_value)
2977 gcc_assert (loop_vinfo->main_loop_edge);
2979 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2980 basic_block bb = loop_vinfo->main_loop_edge->dest;
2981 gphi *new_phi = create_phi_node (phi_result, bb);
2982 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2983 UNKNOWN_LOCATION);
2984 add_phi_arg (new_phi, skip_value,
2985 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2986 return phi_result;
2989 /* Function vect_do_peeling.
2991 Input:
2992 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2994 preheader:
2995 LOOP:
2996 header_bb:
2997 loop_body
2998 if (exit_loop_cond) goto exit_bb
2999 else goto header_bb
3000 exit_bb:
3002 - NITERS: The number of iterations of the loop.
3003 - NITERSM1: The number of iterations of the loop's latch.
3004 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
3005 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
3006 CHECK_PROFITABILITY is true.
3007 Output:
3008 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
3009 iterate after vectorization; see vect_set_loop_condition for details.
3010 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
3011 should be set to the number of scalar iterations handled by the
3012 vector loop. The SSA name is only used on exit from the loop.
3014 This function peels prolog and epilog from the loop, adds guards skipping
3015 PROLOG and EPILOG for various conditions. As a result, the changed CFG
3016 would look like:
3018 guard_bb_1:
3019 if (prefer_scalar_loop) goto merge_bb_1
3020 else goto guard_bb_2
3022 guard_bb_2:
3023 if (skip_prolog) goto merge_bb_2
3024 else goto prolog_preheader
3026 prolog_preheader:
3027 PROLOG:
3028 prolog_header_bb:
3029 prolog_body
3030 if (exit_prolog_cond) goto prolog_exit_bb
3031 else goto prolog_header_bb
3032 prolog_exit_bb:
3034 merge_bb_2:
3036 vector_preheader:
3037 VECTOR LOOP:
3038 vector_header_bb:
3039 vector_body
3040 if (exit_vector_cond) goto vector_exit_bb
3041 else goto vector_header_bb
3042 vector_exit_bb:
3044 guard_bb_3:
3045 if (skip_epilog) goto merge_bb_3
3046 else goto epilog_preheader
3048 merge_bb_1:
3050 epilog_preheader:
3051 EPILOG:
3052 epilog_header_bb:
3053 epilog_body
3054 if (exit_epilog_cond) goto merge_bb_3
3055 else goto epilog_header_bb
3057 merge_bb_3:
3059 Note this function peels prolog and epilog only if it's necessary,
3060 as well as guards.
3061 This function returns the epilogue loop if a decision was made to vectorize
3062 it, otherwise NULL.
3064 The analysis resulting in this epilogue loop's loop_vec_info was performed
3065 in the same vect_analyze_loop call as the main loop's. At that time
3066 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
3067 vectorization factors than the main loop. This list is stored in the main
3068 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
3069 vectorize the epilogue loop for a lower vectorization factor, the
3070 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
3071 updated and linked to the epilogue loop. This is later used to vectorize
3072 the epilogue. The reason the loop_vec_info needs updating is that it was
3073 constructed based on the original main loop, and the epilogue loop is a
3074 copy of this loop, so all links pointing to statements in the original loop
3075 need updating. Furthermore, these loop_vec_infos share the
3076 data_reference's records, which will also need to be updated.
3078 TODO: Guard for prefer_scalar_loop should be emitted along with
3079 versioning conditions if loop versioning is needed. */
3082 class loop *
3083 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
3084 tree *niters_vector, tree *step_vector,
3085 tree *niters_vector_mult_vf_var, int th,
3086 bool check_profitability, bool niters_no_overflow,
3087 tree *advance)
3089 edge e, guard_e;
3090 tree type = TREE_TYPE (niters), guard_cond;
3091 basic_block guard_bb, guard_to;
3092 profile_probability prob_prolog, prob_vector, prob_epilog;
3093 int estimated_vf;
3094 int prolog_peeling = 0;
3095 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
3096 /* We currently do not support prolog peeling if the target alignment is not
3097 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
3098 target alignment being constant. */
3099 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
3100 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
3101 return NULL;
3103 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
3104 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3106 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3107 poly_uint64 bound_epilog = 0;
3108 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
3109 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
3110 bound_epilog += vf - 1;
3111 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
3112 bound_epilog += 1;
3114 /* For early breaks the scalar loop needs to execute at most VF times
3115 to find the element that caused the break. */
3116 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3117 bound_epilog = vf;
3119 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
3120 poly_uint64 bound_scalar = bound_epilog;
3122 if (!prolog_peeling && !epilog_peeling)
3123 return NULL;
3125 /* Before doing any peeling make sure to reset debug binds outside of
3126 the loop refering to defs not in LC SSA. */
3127 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3128 for (unsigned i = 0; i < loop->num_nodes; ++i)
3130 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
3131 imm_use_iterator ui;
3132 gimple *use_stmt;
3133 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
3134 gsi_next (&gsi))
3136 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
3137 if (gimple_debug_bind_p (use_stmt)
3138 && loop != gimple_bb (use_stmt)->loop_father
3139 && !flow_loop_nested_p (loop,
3140 gimple_bb (use_stmt)->loop_father))
3142 gimple_debug_bind_reset_value (use_stmt);
3143 update_stmt (use_stmt);
3146 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3147 gsi_next (&gsi))
3149 ssa_op_iter op_iter;
3150 def_operand_p def_p;
3151 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
3152 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
3153 if (gimple_debug_bind_p (use_stmt)
3154 && loop != gimple_bb (use_stmt)->loop_father
3155 && !flow_loop_nested_p (loop,
3156 gimple_bb (use_stmt)->loop_father))
3158 gimple_debug_bind_reset_value (use_stmt);
3159 update_stmt (use_stmt);
3164 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
3165 estimated_vf = vect_vf_for_cost (loop_vinfo);
3166 if (estimated_vf == 2)
3167 estimated_vf = 3;
3168 prob_prolog = prob_epilog = profile_probability::guessed_always ()
3169 .apply_scale (estimated_vf - 1, estimated_vf);
3171 class loop *prolog, *epilog = NULL;
3172 class loop *first_loop = loop;
3173 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
3175 /* SSA form needs to be up-to-date since we are going to manually
3176 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
3177 update SSA state after that, so we have to make sure to not lose any
3178 pending update needs. */
3179 gcc_assert (!need_ssa_update_p (cfun));
3181 /* If we're vectorizing an epilogue loop, we have ensured that the
3182 virtual operand is in SSA form throughout the vectorized main loop.
3183 Normally it is possible to trace the updated
3184 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
3185 back to scalar-stmt vuses, meaning that the effect of the SSA update
3186 remains local to the main loop. However, there are rare cases in
3187 which the vectorized loop should have vdefs even when the original scalar
3188 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
3189 introduces clobbers of the temporary vector array, which in turn
3190 needs new vdefs. If the scalar loop doesn't write to memory, these
3191 new vdefs will be the only ones in the vector loop.
3192 We are currently defering updating virtual SSA form and creating
3193 of a virtual PHI for this case so we do not have to make sure the
3194 newly introduced virtual def is in LCSSA form. */
3196 if (MAY_HAVE_DEBUG_BIND_STMTS)
3198 gcc_assert (!adjust_vec.exists ());
3199 adjust_vec.create (32);
3201 initialize_original_copy_tables ();
3203 /* Record the anchor bb at which the guard should be placed if the scalar
3204 loop might be preferred. */
3205 basic_block anchor = loop_preheader_edge (loop)->src;
3207 /* Generate the number of iterations for the prolog loop. We do this here
3208 so that we can also get the upper bound on the number of iterations. */
3209 tree niters_prolog;
3210 int bound_prolog = 0;
3211 if (prolog_peeling)
3213 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
3214 &bound_prolog);
3215 /* If algonment peeling is known, we will always execute prolog. */
3216 if (TREE_CODE (niters_prolog) == INTEGER_CST)
3217 prob_prolog = profile_probability::always ();
3219 else
3220 niters_prolog = build_int_cst (type, 0);
3222 loop_vec_info epilogue_vinfo = NULL;
3223 if (vect_epilogues)
3225 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
3226 loop_vinfo->epilogue_vinfos.ordered_remove (0);
3229 tree niters_vector_mult_vf = NULL_TREE;
3230 /* Saving NITERs before the loop, as this may be changed by prologue. */
3231 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
3232 edge update_e = NULL, skip_e = NULL;
3233 unsigned int lowest_vf = constant_lower_bound (vf);
3234 /* Prolog loop may be skipped. */
3235 bool skip_prolog = (prolog_peeling != 0);
3236 /* Skip this loop to epilog when there are not enough iterations to enter this
3237 vectorized loop. If true we should perform runtime checks on the NITERS
3238 to check whether we should skip the current vectorized loop. If we know
3239 the number of scalar iterations we may choose to add a runtime check if
3240 this number "maybe" smaller than the number of iterations required
3241 when we know the number of scalar iterations may potentially
3242 be smaller than the number of iterations required to enter this loop, for
3243 this we use the upper bounds on the prolog and epilog peeling. When we
3244 don't know the number of iterations and don't require versioning it is
3245 because we have asserted that there are enough scalar iterations to enter
3246 the main loop, so this skip is not necessary. When we are versioning then
3247 we only add such a skip if we have chosen to vectorize the epilogue. */
3248 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3249 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
3250 bound_prolog + bound_epilog)
3251 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
3252 || vect_epilogues));
3254 /* Epilog loop must be executed if the number of iterations for epilog
3255 loop is known at compile time, otherwise we need to add a check at
3256 the end of vector loop and skip to the end of epilog loop. */
3257 bool skip_epilog = (prolog_peeling < 0
3258 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3259 || !vf.is_constant ());
3260 /* PEELING_FOR_GAPS and peeling for early breaks are special because epilog
3261 loop must be executed. */
3262 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
3263 || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3264 skip_epilog = false;
3266 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3267 auto_vec<profile_count> original_counts;
3268 basic_block *original_bbs = NULL;
3270 if (skip_vector)
3272 split_edge (loop_preheader_edge (loop));
3274 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
3276 original_bbs = get_loop_body (loop);
3277 for (unsigned int i = 0; i < loop->num_nodes; i++)
3278 original_counts.safe_push(original_bbs[i]->count);
3281 /* Due to the order in which we peel prolog and epilog, we first
3282 propagate probability to the whole loop. The purpose is to
3283 avoid adjusting probabilities of both prolog and vector loops
3284 separately. Note in this case, the probability of epilog loop
3285 needs to be scaled back later. */
3286 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
3287 if (prob_vector.initialized_p ())
3289 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
3290 scale_loop_profile (loop, prob_vector, -1);
3294 if (vect_epilogues)
3296 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
3297 use the original scalar loop as remaining epilogue if necessary. */
3298 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
3299 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3300 LOOP_VINFO_SCALAR_IV_EXIT (epilogue_vinfo)
3301 = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3304 if (prolog_peeling)
3306 e = loop_preheader_edge (loop);
3307 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3308 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, exit_e, e)
3309 && !LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo));
3311 /* Peel prolog and put it on preheader edge of loop. */
3312 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3313 edge prolog_e = NULL;
3314 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, exit_e,
3315 scalar_loop, scalar_e,
3316 e, &prolog_e);
3317 gcc_assert (prolog);
3318 prolog->force_vectorize = false;
3320 first_loop = prolog;
3321 reset_original_copy_tables ();
3323 /* Update the number of iterations for prolog loop. */
3324 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
3325 vect_set_loop_condition (prolog, prolog_e, NULL, niters_prolog,
3326 step_prolog, NULL_TREE, false);
3328 /* Skip the prolog loop. */
3329 if (skip_prolog)
3331 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3332 niters_prolog, build_int_cst (type, 0));
3333 guard_bb = loop_preheader_edge (prolog)->src;
3334 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
3335 guard_to = split_edge (loop_preheader_edge (loop));
3336 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3337 guard_to, guard_bb,
3338 prob_prolog.invert (),
3339 irred_flag);
3340 e = EDGE_PRED (guard_to, 0);
3341 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3342 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
3344 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
3345 scale_loop_profile (prolog, prob_prolog, bound_prolog - 1);
3348 /* Update init address of DRs. */
3349 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
3350 /* Update niters for vector loop. */
3351 LOOP_VINFO_NITERS (loop_vinfo)
3352 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
3353 LOOP_VINFO_NITERSM1 (loop_vinfo)
3354 = fold_build2 (MINUS_EXPR, type,
3355 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
3356 bool new_var_p = false;
3357 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
3358 /* It's guaranteed that vector loop bound before vectorization is at
3359 least VF, so set range information for newly generated var. */
3360 if (new_var_p)
3362 value_range vr (type,
3363 wi::to_wide (build_int_cst (type, lowest_vf)),
3364 wi::to_wide (TYPE_MAX_VALUE (type)));
3365 set_range_info (niters, vr);
3368 /* Prolog iterates at most bound_prolog times, latch iterates at
3369 most bound_prolog - 1 times. */
3370 record_niter_bound (prolog, bound_prolog - 1, false, true);
3371 delete_update_ssa ();
3372 adjust_vec_debug_stmts ();
3373 scev_reset ();
3375 basic_block bb_before_epilog = NULL;
3377 if (epilog_peeling)
3379 e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3380 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, e, e));
3382 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
3383 said epilog then we should use a copy of the main loop as a starting
3384 point. This loop may have already had some preliminary transformations
3385 to allow for more optimal vectorization, for example if-conversion.
3386 If we are not vectorizing the epilog then we should use the scalar loop
3387 as the transformations mentioned above make less or no sense when not
3388 vectorizing. */
3389 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3390 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
3391 edge epilog_e = vect_epilogues ? e : scalar_e;
3392 edge new_epilog_e = NULL;
3393 auto_vec<basic_block> doms;
3394 epilog
3395 = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e, epilog, epilog_e, e,
3396 &new_epilog_e, true, &doms);
3398 LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo) = new_epilog_e;
3399 gcc_assert (epilog);
3400 gcc_assert (new_epilog_e);
3401 epilog->force_vectorize = false;
3402 bb_before_epilog = loop_preheader_edge (epilog)->src;
3404 /* Scalar version loop may be preferred. In this case, add guard
3405 and skip to epilog. Note this only happens when the number of
3406 iterations of loop is unknown at compile time, otherwise this
3407 won't be vectorized. */
3408 if (skip_vector)
3410 /* Additional epilogue iteration is peeled if gap exists. */
3411 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
3412 bound_prolog, bound_epilog,
3413 th, &bound_scalar,
3414 check_profitability);
3415 /* Build guard against NITERSM1 since NITERS may overflow. */
3416 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
3417 guard_bb = anchor;
3418 guard_to = split_edge (loop_preheader_edge (epilog));
3419 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3420 guard_to, guard_bb,
3421 prob_vector.invert (),
3422 irred_flag);
3423 skip_e = guard_e;
3424 e = EDGE_PRED (guard_to, 0);
3425 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3426 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
3428 /* Simply propagate profile info from guard_bb to guard_to which is
3429 a merge point of control flow. */
3430 profile_count old_count = guard_to->count;
3431 guard_to->count = guard_bb->count;
3433 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3434 if (vect_epilogues || scalar_loop == NULL)
3436 gcc_assert(epilog->num_nodes == loop->num_nodes);
3437 basic_block *bbs = get_loop_body (epilog);
3438 for (unsigned int i = 0; i < epilog->num_nodes; i++)
3440 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
3441 bbs[i]->count = original_counts[i];
3443 free (bbs);
3444 free (original_bbs);
3446 else if (old_count.nonzero_p ())
3447 scale_loop_profile (epilog, guard_to->count.probability_in (old_count), -1);
3449 /* Only need to handle basic block before epilog loop if it's not
3450 the guard_bb, which is the case when skip_vector is true. */
3451 if (guard_bb != bb_before_epilog && single_pred_p (bb_before_epilog))
3452 bb_before_epilog->count = single_pred_edge (bb_before_epilog)->count ();
3453 bb_before_epilog = loop_preheader_edge (epilog)->src;
3456 /* If loop is peeled for non-zero constant times, now niters refers to
3457 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3458 overflows. */
3459 niters_no_overflow |= (prolog_peeling > 0);
3460 vect_gen_vector_loop_niters (loop_vinfo, niters,
3461 niters_vector, step_vector,
3462 niters_no_overflow);
3463 if (!integer_onep (*step_vector))
3465 /* On exit from the loop we will have an easy way of calcalating
3466 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3467 until then. */
3468 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
3469 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
3470 *niters_vector_mult_vf_var = niters_vector_mult_vf;
3472 else
3473 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
3474 &niters_vector_mult_vf);
3475 /* Update IVs of original loop as if they were advanced by
3476 niters_vector_mult_vf steps. */
3477 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
3478 update_e = skip_vector ? e : loop_preheader_edge (epilog);
3479 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3480 update_e = single_succ_edge (LOOP_VINFO_IV_EXIT (loop_vinfo)->dest);
3482 /* If we have a peeled vector iteration, all exits are the same, leave it
3483 and so the main exit needs to be treated the same as the alternative
3484 exits in that we leave their updates to vectorizable_live_operations.
3486 if (!LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
3487 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3488 update_e);
3490 /* If we have a peeled vector iteration we will never skip the epilog loop
3491 and we can simplify the cfg a lot by not doing the edge split. */
3492 if (skip_epilog || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3494 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3495 niters, niters_vector_mult_vf);
3497 guard_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
3498 edge epilog_e = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3499 guard_to = epilog_e->dest;
3500 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3501 skip_vector ? anchor : guard_bb,
3502 prob_epilog.invert (),
3503 irred_flag);
3504 doms.safe_push (guard_to);
3505 if (vect_epilogues)
3506 epilogue_vinfo->skip_this_loop_edge = guard_e;
3507 edge main_iv = LOOP_VINFO_IV_EXIT (loop_vinfo);
3508 gphi_iterator gsi2 = gsi_start_phis (main_iv->dest);
3509 for (gphi_iterator gsi = gsi_start_phis (guard_to);
3510 !gsi_end_p (gsi); gsi_next (&gsi))
3512 /* We are expecting all of the PHIs we have on epilog_e
3513 to be also on the main loop exit. But sometimes
3514 a stray virtual definition can appear at epilog_e
3515 which we can then take as the same on all exits,
3516 we've removed the LC SSA PHI on the main exit before
3517 so we wouldn't need to create a loop PHI for it. */
3518 if (virtual_operand_p (gimple_phi_result (*gsi))
3519 && (gsi_end_p (gsi2)
3520 || !virtual_operand_p (gimple_phi_result (*gsi2))))
3521 add_phi_arg (*gsi,
3522 gimple_phi_arg_def_from_edge (*gsi, epilog_e),
3523 guard_e, UNKNOWN_LOCATION);
3524 else
3526 add_phi_arg (*gsi, gimple_phi_result (*gsi2), guard_e,
3527 UNKNOWN_LOCATION);
3528 gsi_next (&gsi2);
3532 /* Only need to handle basic block before epilog loop if it's not
3533 the guard_bb, which is the case when skip_vector is true. */
3534 if (guard_bb != bb_before_epilog)
3536 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3538 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3540 scale_loop_profile (epilog, prob_epilog, -1);
3543 /* Recalculate the dominators after adding the guard edge. */
3544 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3545 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
3547 /* When we do not have a loop-around edge to the epilog we know
3548 the vector loop covered at least VF scalar iterations unless
3549 we have early breaks.
3550 Update any known upper bound with this knowledge. */
3551 if (! skip_vector
3552 && ! LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3554 if (epilog->any_upper_bound)
3555 epilog->nb_iterations_upper_bound -= lowest_vf;
3556 if (epilog->any_likely_upper_bound)
3557 epilog->nb_iterations_likely_upper_bound -= lowest_vf;
3558 if (epilog->any_estimate)
3559 epilog->nb_iterations_estimate -= lowest_vf;
3562 unsigned HOST_WIDE_INT bound;
3563 if (bound_scalar.is_constant (&bound))
3565 gcc_assert (bound != 0);
3566 /* Adjust the upper bound by the extra peeled vector iteration if we
3567 are an epilogue of an peeled vect loop and not VLA. For VLA the
3568 loop bounds are unknown. */
3569 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo)
3570 && vf.is_constant ())
3571 bound += vf.to_constant ();
3572 /* -1 to convert loop iterations to latch iterations. */
3573 record_niter_bound (epilog, bound - 1, false, true);
3574 scale_loop_profile (epilog, profile_probability::always (),
3575 bound - 1);
3578 delete_update_ssa ();
3579 adjust_vec_debug_stmts ();
3580 scev_reset ();
3583 if (vect_epilogues)
3585 epilog->aux = epilogue_vinfo;
3586 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3587 LOOP_VINFO_IV_EXIT (epilogue_vinfo)
3588 = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3590 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3592 /* We now must calculate the number of NITERS performed by the previous
3593 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3594 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3595 niters_prolog, niters_vector_mult_vf);
3597 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3598 determine whether we are coming from the previous vectorized loop
3599 using the update_e edge or the skip_vector basic block using the
3600 skip_e edge. */
3601 if (skip_vector)
3603 gcc_assert (update_e != NULL && skip_e != NULL);
3604 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3605 update_e->dest);
3606 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3607 gimple *stmt = gimple_build_assign (new_ssa, niters);
3608 gimple_stmt_iterator gsi;
3609 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3610 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3612 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3613 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3615 else
3617 gsi = gsi_last_bb (update_e->src);
3618 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3621 niters = new_ssa;
3622 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3623 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3624 UNKNOWN_LOCATION);
3625 niters = PHI_RESULT (new_phi);
3626 epilogue_vinfo->main_loop_edge = update_e;
3627 epilogue_vinfo->skip_main_loop_edge = skip_e;
3630 /* Set ADVANCE to the number of iterations performed by the previous
3631 loop and its prologue. */
3632 *advance = niters;
3634 /* Subtract the number of iterations performed by the vectorized loop
3635 from the number of total iterations. */
3636 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3637 before_loop_niters,
3638 niters);
3640 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3641 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3642 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3643 epilogue_niters,
3644 build_one_cst (TREE_TYPE (epilogue_niters)));
3646 /* Decide what to do if the number of epilogue iterations is not
3647 a multiple of the epilogue loop's vectorization factor.
3648 We should have rejected the loop during the analysis phase
3649 if this fails. */
3650 bool res = vect_determine_partial_vectors_and_peeling (epilogue_vinfo);
3651 gcc_assert (res);
3654 adjust_vec.release ();
3655 free_original_copy_tables ();
3657 return vect_epilogues ? epilog : NULL;
3660 /* Function vect_create_cond_for_niters_checks.
3662 Create a conditional expression that represents the run-time checks for
3663 loop's niter. The loop is guaranteed to terminate if the run-time
3664 checks hold.
3666 Input:
3667 COND_EXPR - input conditional expression. New conditions will be chained
3668 with logical AND operation. If it is NULL, then the function
3669 is used to return the number of alias checks.
3670 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3671 to be checked.
3673 Output:
3674 COND_EXPR - conditional expression.
3676 The returned COND_EXPR is the conditional expression to be used in the
3677 if statement that controls which version of the loop gets executed at
3678 runtime. */
3680 static void
3681 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3683 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3685 if (*cond_expr)
3686 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3687 *cond_expr, part_cond_expr);
3688 else
3689 *cond_expr = part_cond_expr;
3692 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3693 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3695 static void
3696 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3698 if (*cond_expr)
3699 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3700 *cond_expr, part_cond_expr);
3701 else
3702 *cond_expr = part_cond_expr;
3705 /* Function vect_create_cond_for_align_checks.
3707 Create a conditional expression that represents the alignment checks for
3708 all of data references (array element references) whose alignment must be
3709 checked at runtime.
3711 Input:
3712 COND_EXPR - input conditional expression. New conditions will be chained
3713 with logical AND operation.
3714 LOOP_VINFO - two fields of the loop information are used.
3715 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3716 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3718 Output:
3719 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3720 expression.
3721 The returned value is the conditional expression to be used in the if
3722 statement that controls which version of the loop gets executed at runtime.
3724 The algorithm makes two assumptions:
3725 1) The number of bytes "n" in a vector is a power of 2.
3726 2) An address "a" is aligned if a%n is zero and that this
3727 test can be done as a&(n-1) == 0. For example, for 16
3728 byte vectors the test is a&0xf == 0. */
3730 static void
3731 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3732 tree *cond_expr,
3733 gimple_seq *cond_expr_stmt_list)
3735 const vec<stmt_vec_info> &may_misalign_stmts
3736 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3737 stmt_vec_info stmt_info;
3738 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3739 tree mask_cst;
3740 unsigned int i;
3741 tree int_ptrsize_type;
3742 char tmp_name[20];
3743 tree or_tmp_name = NULL_TREE;
3744 tree and_tmp_name;
3745 gimple *and_stmt;
3746 tree ptrsize_zero;
3747 tree part_cond_expr;
3749 /* Check that mask is one less than a power of 2, i.e., mask is
3750 all zeros followed by all ones. */
3751 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3753 int_ptrsize_type = signed_type_for (ptr_type_node);
3755 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3756 of the first vector of the i'th data reference. */
3758 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3760 gimple_seq new_stmt_list = NULL;
3761 tree addr_base;
3762 tree addr_tmp_name;
3763 tree new_or_tmp_name;
3764 gimple *addr_stmt, *or_stmt;
3765 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3766 bool negative = tree_int_cst_compare
3767 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3768 tree offset = negative
3769 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3770 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3771 : size_zero_node;
3773 /* create: addr_tmp = (int)(address_of_first_vector) */
3774 addr_base =
3775 vect_create_addr_base_for_vector_ref (loop_vinfo,
3776 stmt_info, &new_stmt_list,
3777 offset);
3778 if (new_stmt_list != NULL)
3779 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3781 sprintf (tmp_name, "addr2int%d", i);
3782 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3783 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3784 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3786 /* The addresses are OR together. */
3788 if (or_tmp_name != NULL_TREE)
3790 /* create: or_tmp = or_tmp | addr_tmp */
3791 sprintf (tmp_name, "orptrs%d", i);
3792 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3793 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3794 or_tmp_name, addr_tmp_name);
3795 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3796 or_tmp_name = new_or_tmp_name;
3798 else
3799 or_tmp_name = addr_tmp_name;
3801 } /* end for i */
3803 mask_cst = build_int_cst (int_ptrsize_type, mask);
3805 /* create: and_tmp = or_tmp & mask */
3806 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3808 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3809 or_tmp_name, mask_cst);
3810 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3812 /* Make and_tmp the left operand of the conditional test against zero.
3813 if and_tmp has a nonzero bit then some address is unaligned. */
3814 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3815 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3816 and_tmp_name, ptrsize_zero);
3817 chain_cond_expr (cond_expr, part_cond_expr);
3820 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3821 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3822 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3823 and this new condition are true. Treat a null *COND_EXPR as "true". */
3825 static void
3826 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3828 const vec<vec_object_pair> &pairs
3829 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3830 unsigned int i;
3831 vec_object_pair *pair;
3832 FOR_EACH_VEC_ELT (pairs, i, pair)
3834 tree addr1 = build_fold_addr_expr (pair->first);
3835 tree addr2 = build_fold_addr_expr (pair->second);
3836 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3837 addr1, addr2);
3838 chain_cond_expr (cond_expr, part_cond_expr);
3842 /* Create an expression that is true when all lower-bound conditions for
3843 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3845 static void
3846 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3848 const vec<vec_lower_bound> &lower_bounds
3849 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3850 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3852 tree expr = lower_bounds[i].expr;
3853 tree type = unsigned_type_for (TREE_TYPE (expr));
3854 expr = fold_convert (type, expr);
3855 poly_uint64 bound = lower_bounds[i].min_value;
3856 if (!lower_bounds[i].unsigned_p)
3858 expr = fold_build2 (PLUS_EXPR, type, expr,
3859 build_int_cstu (type, bound - 1));
3860 bound += bound - 1;
3862 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3863 build_int_cstu (type, bound));
3864 chain_cond_expr (cond_expr, part_cond_expr);
3868 /* Function vect_create_cond_for_alias_checks.
3870 Create a conditional expression that represents the run-time checks for
3871 overlapping of address ranges represented by a list of data references
3872 relations passed as input.
3874 Input:
3875 COND_EXPR - input conditional expression. New conditions will be chained
3876 with logical AND operation. If it is NULL, then the function
3877 is used to return the number of alias checks.
3878 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3879 to be checked.
3881 Output:
3882 COND_EXPR - conditional expression.
3884 The returned COND_EXPR is the conditional expression to be used in the if
3885 statement that controls which version of the loop gets executed at runtime.
3888 void
3889 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3891 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3892 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3894 if (comp_alias_ddrs.is_empty ())
3895 return;
3897 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3898 &comp_alias_ddrs, cond_expr);
3899 if (dump_enabled_p ())
3900 dump_printf_loc (MSG_NOTE, vect_location,
3901 "created %u versioning for alias checks.\n",
3902 comp_alias_ddrs.length ());
3906 /* Function vect_loop_versioning.
3908 If the loop has data references that may or may not be aligned or/and
3909 has data reference relations whose independence was not proven then
3910 two versions of the loop need to be generated, one which is vectorized
3911 and one which isn't. A test is then generated to control which of the
3912 loops is executed. The test checks for the alignment of all of the
3913 data references that may or may not be aligned. An additional
3914 sequence of runtime tests is generated for each pairs of DDRs whose
3915 independence was not proven. The vectorized version of loop is
3916 executed only if both alias and alignment tests are passed.
3918 The test generated to check which version of loop is executed
3919 is modified to also check for profitability as indicated by the
3920 cost model threshold TH.
3922 The versioning precondition(s) are placed in *COND_EXPR and
3923 *COND_EXPR_STMT_LIST. */
3925 class loop *
3926 vect_loop_versioning (loop_vec_info loop_vinfo,
3927 gimple *loop_vectorized_call)
3929 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3930 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3931 basic_block condition_bb;
3932 gphi_iterator gsi;
3933 gimple_stmt_iterator cond_exp_gsi;
3934 basic_block merge_bb;
3935 basic_block new_exit_bb;
3936 edge new_exit_e, e;
3937 gphi *orig_phi, *new_phi;
3938 tree cond_expr = NULL_TREE;
3939 gimple_seq cond_expr_stmt_list = NULL;
3940 tree arg;
3941 profile_probability prob = profile_probability::likely ();
3942 gimple_seq gimplify_stmt_list = NULL;
3943 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3944 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3945 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3946 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3947 poly_uint64 versioning_threshold
3948 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3949 tree version_simd_if_cond
3950 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3951 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3953 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3954 && !ordered_p (th, versioning_threshold))
3955 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3956 build_int_cst (TREE_TYPE (scalar_loop_iters),
3957 th - 1));
3958 if (maybe_ne (versioning_threshold, 0U))
3960 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3961 build_int_cst (TREE_TYPE (scalar_loop_iters),
3962 versioning_threshold - 1));
3963 if (cond_expr)
3964 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3965 expr, cond_expr);
3966 else
3967 cond_expr = expr;
3970 tree cost_name = NULL_TREE;
3971 profile_probability prob2 = profile_probability::always ();
3972 if (cond_expr
3973 && EXPR_P (cond_expr)
3974 && (version_niter
3975 || version_align
3976 || version_alias
3977 || version_simd_if_cond))
3979 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3980 &cond_expr_stmt_list,
3981 is_gimple_val, NULL_TREE);
3982 /* Split prob () into two so that the overall probability of passing
3983 both the cost-model and versioning checks is the orig prob. */
3984 prob2 = prob = prob.sqrt ();
3987 if (version_niter)
3988 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3990 if (cond_expr)
3992 gimple_seq tem = NULL;
3993 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3994 &tem, is_gimple_condexpr_for_cond,
3995 NULL_TREE);
3996 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3999 if (version_align)
4000 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
4001 &cond_expr_stmt_list);
4003 if (version_alias)
4005 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
4006 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
4007 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
4010 if (version_simd_if_cond)
4012 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
4013 if (flag_checking)
4014 if (basic_block bb
4015 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
4016 gcc_assert (bb != loop->header
4017 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
4018 && (scalar_loop == NULL
4019 || (bb != scalar_loop->header
4020 && dominated_by_p (CDI_DOMINATORS,
4021 scalar_loop->header, bb))));
4022 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
4023 tree c = fold_build2 (NE_EXPR, boolean_type_node,
4024 version_simd_if_cond, zero);
4025 if (cond_expr)
4026 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
4027 c, cond_expr);
4028 else
4029 cond_expr = c;
4030 if (dump_enabled_p ())
4031 dump_printf_loc (MSG_NOTE, vect_location,
4032 "created versioning for simd if condition check.\n");
4035 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
4036 &gimplify_stmt_list,
4037 is_gimple_condexpr_for_cond, NULL_TREE);
4038 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
4040 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
4041 invariant in. */
4042 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
4043 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
4044 !gsi_end_p (gsi); gsi_next (&gsi))
4046 gimple *stmt = gsi_stmt (gsi);
4047 update_stmt (stmt);
4048 ssa_op_iter iter;
4049 use_operand_p use_p;
4050 basic_block def_bb;
4051 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
4052 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
4053 && flow_bb_inside_loop_p (outermost, def_bb))
4054 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
4057 /* Search for the outermost loop we can version. Avoid versioning of
4058 non-perfect nests but allow if-conversion versioned loops inside. */
4059 class loop *loop_to_version = loop;
4060 if (flow_loop_nested_p (outermost, loop))
4062 if (dump_enabled_p ())
4063 dump_printf_loc (MSG_NOTE, vect_location,
4064 "trying to apply versioning to outer loop %d\n",
4065 outermost->num);
4066 if (outermost->num == 0)
4067 outermost = superloop_at_depth (loop, 1);
4068 /* And avoid applying versioning on non-perfect nests. */
4069 while (loop_to_version != outermost
4070 && (e = single_exit (loop_outer (loop_to_version)))
4071 && !(e->flags & EDGE_COMPLEX)
4072 && (!loop_outer (loop_to_version)->inner->next
4073 || vect_loop_vectorized_call (loop_to_version))
4074 && (!loop_outer (loop_to_version)->inner->next
4075 || !loop_outer (loop_to_version)->inner->next->next))
4076 loop_to_version = loop_outer (loop_to_version);
4079 /* Apply versioning. If there is already a scalar version created by
4080 if-conversion re-use that. Note we cannot re-use the copy of
4081 an if-converted outer-loop when vectorizing the inner loop only. */
4082 gcond *cond;
4083 if ((!loop_to_version->inner || loop == loop_to_version)
4084 && loop_vectorized_call)
4086 gcc_assert (scalar_loop);
4087 condition_bb = gimple_bb (loop_vectorized_call);
4088 cond = as_a <gcond *> (*gsi_last_bb (condition_bb));
4089 gimple_cond_set_condition_from_tree (cond, cond_expr);
4090 update_stmt (cond);
4092 if (cond_expr_stmt_list)
4094 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
4095 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4096 GSI_SAME_STMT);
4099 /* if-conversion uses profile_probability::always () for both paths,
4100 reset the paths probabilities appropriately. */
4101 edge te, fe;
4102 extract_true_false_edges_from_block (condition_bb, &te, &fe);
4103 te->probability = prob;
4104 fe->probability = prob.invert ();
4105 /* We can scale loops counts immediately but have to postpone
4106 scaling the scalar loop because we re-use it during peeling.
4108 Ifcvt duplicates loop preheader, loop body and produces an basic
4109 block after loop exit. We need to scale all that. */
4110 basic_block preheader = loop_preheader_edge (loop_to_version)->src;
4111 preheader->count = preheader->count.apply_probability (prob * prob2);
4112 scale_loop_frequencies (loop_to_version, prob * prob2);
4113 /* When the loop has multiple exits then we can only version itself.
4114 This is denoted by loop_to_version == loop. In this case we can
4115 do the versioning by selecting the exit edge the vectorizer is
4116 currently using. */
4117 edge exit_edge;
4118 if (loop_to_version == loop)
4119 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4120 else
4121 exit_edge = single_exit (loop_to_version);
4122 exit_edge->dest->count = preheader->count;
4123 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = (prob * prob2).invert ();
4125 nloop = scalar_loop;
4126 if (dump_enabled_p ())
4127 dump_printf_loc (MSG_NOTE, vect_location,
4128 "reusing %sloop version created by if conversion\n",
4129 loop_to_version != loop ? "outer " : "");
4131 else
4133 if (loop_to_version != loop
4134 && dump_enabled_p ())
4135 dump_printf_loc (MSG_NOTE, vect_location,
4136 "applying loop versioning to outer loop %d\n",
4137 loop_to_version->num);
4139 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
4141 initialize_original_copy_tables ();
4142 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
4143 prob * prob2, (prob * prob2).invert (),
4144 prob * prob2, (prob * prob2).invert (),
4145 true);
4146 /* We will later insert second conditional so overall outcome of
4147 both is prob * prob2. */
4148 edge true_e, false_e;
4149 extract_true_false_edges_from_block (condition_bb, &true_e, &false_e);
4150 true_e->probability = prob;
4151 false_e->probability = prob.invert ();
4152 gcc_assert (nloop);
4153 nloop = get_loop_copy (loop);
4155 /* For cycle vectorization with SLP we rely on the PHI arguments
4156 appearing in the same order as the SLP node operands which for the
4157 loop PHI nodes means the preheader edge dest index needs to remain
4158 the same for the analyzed loop which also becomes the vectorized one.
4159 Make it so in case the state after versioning differs by redirecting
4160 the first edge into the header to the same destination which moves
4161 it last. */
4162 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
4164 edge e = EDGE_PRED (loop->header, 0);
4165 ssa_redirect_edge (e, e->dest);
4166 flush_pending_stmts (e);
4168 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
4170 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
4171 reap those otherwise; they also refer to the original
4172 loops. */
4173 class loop *l = loop;
4174 while (gimple *call = vect_loop_vectorized_call (l))
4176 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
4177 fold_loop_internal_call (call, boolean_false_node);
4178 l = loop_outer (l);
4180 free_original_copy_tables ();
4182 if (cond_expr_stmt_list)
4184 cond_exp_gsi = gsi_last_bb (condition_bb);
4185 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4186 GSI_SAME_STMT);
4189 /* Loop versioning violates an assumption we try to maintain during
4190 vectorization - that the loop exit block has a single predecessor.
4191 After versioning, the exit block of both loop versions is the same
4192 basic block (i.e. it has two predecessors). Just in order to simplify
4193 following transformations in the vectorizer, we fix this situation
4194 here by adding a new (empty) block on the exit-edge of the loop,
4195 with the proper loop-exit phis to maintain loop-closed-form.
4196 If loop versioning wasn't done from loop, but scalar_loop instead,
4197 merge_bb will have already just a single successor. */
4199 /* When the loop has multiple exits then we can only version itself.
4200 This is denoted by loop_to_version == loop. In this case we can
4201 do the versioning by selecting the exit edge the vectorizer is
4202 currently using. */
4203 edge exit_edge;
4204 if (loop_to_version == loop)
4205 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4206 else
4207 exit_edge = single_exit (loop_to_version);
4209 gcc_assert (exit_edge);
4210 merge_bb = exit_edge->dest;
4211 if (EDGE_COUNT (merge_bb->preds) >= 2)
4213 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
4214 new_exit_bb = split_edge (exit_edge);
4215 new_exit_e = exit_edge;
4216 e = EDGE_SUCC (new_exit_bb, 0);
4218 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
4219 gsi_next (&gsi))
4221 tree new_res;
4222 orig_phi = gsi.phi ();
4223 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
4224 new_phi = create_phi_node (new_res, new_exit_bb);
4225 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
4226 add_phi_arg (new_phi, arg, new_exit_e,
4227 gimple_phi_arg_location_from_edge (orig_phi, e));
4228 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
4232 update_ssa (TODO_update_ssa_no_phi);
4235 /* Split the cost model check off to a separate BB. Costing assumes
4236 this is the only thing we perform when we enter the scalar loop
4237 from a failed cost decision. */
4238 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
4240 gimple *def = SSA_NAME_DEF_STMT (cost_name);
4241 gcc_assert (gimple_bb (def) == condition_bb);
4242 /* All uses of the cost check are 'true' after the check we
4243 are going to insert. */
4244 replace_uses_by (cost_name, boolean_true_node);
4245 /* And we're going to build the new single use of it. */
4246 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
4247 NULL_TREE, NULL_TREE);
4248 edge e = split_block (gimple_bb (def), def);
4249 gimple_stmt_iterator gsi = gsi_for_stmt (def);
4250 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
4251 edge true_e, false_e;
4252 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
4253 e->flags &= ~EDGE_FALLTHRU;
4254 e->flags |= EDGE_TRUE_VALUE;
4255 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
4256 e->probability = prob2;
4257 e2->probability = prob2.invert ();
4258 e->dest->count = e->count ();
4259 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
4260 auto_vec<basic_block, 3> adj;
4261 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
4262 son;
4263 son = next_dom_son (CDI_DOMINATORS, son))
4264 if (EDGE_COUNT (son->preds) > 1)
4265 adj.safe_push (son);
4266 for (auto son : adj)
4267 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
4268 //debug_bb (condition_bb);
4269 //debug_bb (e->src);
4272 if (version_niter)
4274 /* The versioned loop could be infinite, we need to clear existing
4275 niter information which is copied from the original loop. */
4276 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
4277 vect_free_loop_info_assumptions (nloop);
4280 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
4281 && dump_enabled_p ())
4283 if (version_alias)
4284 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4285 vect_location,
4286 "loop versioned for vectorization because of "
4287 "possible aliasing\n");
4288 if (version_align)
4289 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4290 vect_location,
4291 "loop versioned for vectorization to enhance "
4292 "alignment\n");
4296 return nloop;