* doc/install.texi (Downloading the Source): Update references to
[official-gcc.git] / gcc / tree-data-ref.h
blob93a75f2ef79d9015e2ac01c5beb5baa5b66d38b3
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "omega.h"
26 #include "tree-chrec.h"
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
33 constant offset (INIT). Examples, in loop nest
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
38 Example 1 Example 2
39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
46 step D_j 4
49 struct innermost_loop_behavior
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
56 /* Alignment information. ALIGNED_TO is set to the largest power of two
57 that divides OFFSET. */
58 tree aligned_to;
61 /* Describes the evolutions of indices of the memory reference. The indices
62 are indices of the ARRAY_REFs, indexes in artificial dimensions
63 added for member selection of records and the operands of MEM_REFs.
64 BASE_OBJECT is the part of the reference that is loop-invariant
65 (note that this reference does not have to cover the whole object
66 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
67 not recommended to use BASE_OBJECT in any code generation).
68 For the examples above,
70 base_object: a *(p + x + 4B * j_0)
71 indices: {j_0, +, 1}_2 {16, +, 4}_2
73 {i_0, +, 1}_1
74 {j_0, +, 1}_2
77 struct indices
79 /* The object. */
80 tree base_object;
82 /* A list of chrecs. Access functions of the indices. */
83 vec<tree> access_fns;
85 /* Whether BASE_OBJECT is an access representing the whole object
86 or whether the access could not be constrained. */
87 bool unconstrained_base;
90 struct dr_alias
92 /* The alias information that should be used for new pointers to this
93 location. */
94 struct ptr_info_def *ptr_info;
97 /* An integer vector. A vector formally consists of an element of a vector
98 space. A vector space is a set that is closed under vector addition
99 and scalar multiplication. In this vector space, an element is a list of
100 integers. */
101 typedef int *lambda_vector;
103 /* An integer matrix. A matrix consists of m vectors of length n (IE
104 all vectors are the same length). */
105 typedef lambda_vector *lambda_matrix;
107 /* Each vector of the access matrix represents a linear access
108 function for a subscript. First elements correspond to the
109 leftmost indices, ie. for a[i][j] the first vector corresponds to
110 the subscript in "i". The elements of a vector are relative to
111 the loop nests in which the data reference is considered,
112 i.e. the vector is relative to the SCoP that provides the context
113 in which this data reference occurs.
115 For example, in
117 | loop_1
118 | loop_2
119 | a[i+3][2*j+n-1]
121 if "i" varies in loop_1 and "j" varies in loop_2, the access
122 matrix with respect to the loop nest {loop_1, loop_2} is:
124 | loop_1 loop_2 param_n cst
125 | 1 0 0 3
126 | 0 2 1 -1
128 whereas the access matrix with respect to loop_2 considers "i" as
129 a parameter:
131 | loop_2 param_i param_n cst
132 | 0 1 0 3
133 | 2 0 1 -1
135 struct access_matrix
137 vec<loop_p> loop_nest;
138 int nb_induction_vars;
139 vec<tree> parameters;
140 vec<lambda_vector, va_gc> *matrix;
143 #define AM_LOOP_NEST(M) (M)->loop_nest
144 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
145 #define AM_PARAMETERS(M) (M)->parameters
146 #define AM_MATRIX(M) (M)->matrix
147 #define AM_NB_PARAMETERS(M) (AM_PARAMETERS(M)).length ()
148 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
149 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
150 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
151 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
153 /* Return the column in the access matrix of LOOP_NUM. */
155 static inline int
156 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
158 int i;
159 loop_p l;
161 for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
162 if (l->num == loop_num)
163 return i;
165 gcc_unreachable();
168 struct data_reference
170 /* A pointer to the statement that contains this DR. */
171 gimple stmt;
173 /* A pointer to the memory reference. */
174 tree ref;
176 /* Auxiliary info specific to a pass. */
177 void *aux;
179 /* True when the data reference is in RHS of a stmt. */
180 bool is_read;
182 /* Behavior of the memory reference in the innermost loop. */
183 struct innermost_loop_behavior innermost;
185 /* Subscripts of this data reference. */
186 struct indices indices;
188 /* Alias information for the data reference. */
189 struct dr_alias alias;
191 /* Matrix representation for the data access functions. */
192 struct access_matrix *access_matrix;
195 #define DR_STMT(DR) (DR)->stmt
196 #define DR_REF(DR) (DR)->ref
197 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
198 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
199 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
200 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
201 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
202 #define DR_IS_READ(DR) (DR)->is_read
203 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
204 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
205 #define DR_OFFSET(DR) (DR)->innermost.offset
206 #define DR_INIT(DR) (DR)->innermost.init
207 #define DR_STEP(DR) (DR)->innermost.step
208 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
209 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
210 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
212 typedef struct data_reference *data_reference_p;
214 enum data_dependence_direction {
215 dir_positive,
216 dir_negative,
217 dir_equal,
218 dir_positive_or_negative,
219 dir_positive_or_equal,
220 dir_negative_or_equal,
221 dir_star,
222 dir_independent
225 /* The description of the grid of iterations that overlap. At most
226 two loops are considered at the same time just now, hence at most
227 two functions are needed. For each of the functions, we store
228 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
229 where x, y, ... are variables. */
231 #define MAX_DIM 2
233 /* Special values of N. */
234 #define NO_DEPENDENCE 0
235 #define NOT_KNOWN (MAX_DIM + 1)
236 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
237 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
238 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
240 typedef vec<tree> affine_fn;
242 typedef struct
244 unsigned n;
245 affine_fn fns[MAX_DIM];
246 } conflict_function;
248 /* What is a subscript? Given two array accesses a subscript is the
249 tuple composed of the access functions for a given dimension.
250 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
251 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
252 are stored in the data_dependence_relation structure under the form
253 of an array of subscripts. */
255 struct subscript
257 /* A description of the iterations for which the elements are
258 accessed twice. */
259 conflict_function *conflicting_iterations_in_a;
260 conflict_function *conflicting_iterations_in_b;
262 /* This field stores the information about the iteration domain
263 validity of the dependence relation. */
264 tree last_conflict;
266 /* Distance from the iteration that access a conflicting element in
267 A to the iteration that access this same conflicting element in
268 B. The distance is a tree scalar expression, i.e. a constant or a
269 symbolic expression, but certainly not a chrec function. */
270 tree distance;
273 typedef struct subscript *subscript_p;
275 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
276 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
277 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
278 #define SUB_DISTANCE(SUB) SUB->distance
280 /* A data_dependence_relation represents a relation between two
281 data_references A and B. */
283 struct data_dependence_relation
286 struct data_reference *a;
287 struct data_reference *b;
289 /* A "yes/no/maybe" field for the dependence relation:
291 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
292 relation between A and B, and the description of this relation
293 is given in the SUBSCRIPTS array,
295 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
296 SUBSCRIPTS is empty,
298 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
299 but the analyzer cannot be more specific. */
300 tree are_dependent;
302 /* For each subscript in the dependence test, there is an element in
303 this array. This is the attribute that labels the edge A->B of
304 the data_dependence_relation. */
305 vec<subscript_p> subscripts;
307 /* The analyzed loop nest. */
308 vec<loop_p> loop_nest;
310 /* The classic direction vector. */
311 vec<lambda_vector> dir_vects;
313 /* The classic distance vector. */
314 vec<lambda_vector> dist_vects;
316 /* An index in loop_nest for the innermost loop that varies for
317 this data dependence relation. */
318 unsigned inner_loop;
320 /* Is the dependence reversed with respect to the lexicographic order? */
321 bool reversed_p;
323 /* When the dependence relation is affine, it can be represented by
324 a distance vector. */
325 bool affine_p;
327 /* Set to true when the dependence relation is on the same data
328 access. */
329 bool self_reference_p;
332 typedef struct data_dependence_relation *ddr_p;
334 #define DDR_A(DDR) DDR->a
335 #define DDR_B(DDR) DDR->b
336 #define DDR_AFFINE_P(DDR) DDR->affine_p
337 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
338 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
339 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
340 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
342 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
343 /* The size of the direction/distance vectors: the number of loops in
344 the loop nest. */
345 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
346 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
347 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
349 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
350 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
351 #define DDR_NUM_DIST_VECTS(DDR) \
352 (DDR_DIST_VECTS (DDR).length ())
353 #define DDR_NUM_DIR_VECTS(DDR) \
354 (DDR_DIR_VECTS (DDR).length ())
355 #define DDR_DIR_VECT(DDR, I) \
356 DDR_DIR_VECTS (DDR)[I]
357 #define DDR_DIST_VECT(DDR, I) \
358 DDR_DIST_VECTS (DDR)[I]
359 #define DDR_REVERSED_P(DDR) DDR->reversed_p
362 bool dr_analyze_innermost (struct data_reference *, struct loop *);
363 extern bool compute_data_dependences_for_loop (struct loop *, bool,
364 vec<loop_p> *,
365 vec<data_reference_p> *,
366 vec<ddr_p> *);
367 extern bool compute_data_dependences_for_bb (basic_block, bool,
368 vec<data_reference_p> *,
369 vec<ddr_p> *);
370 extern void debug_ddrs (vec<ddr_p> );
371 extern void dump_data_reference (FILE *, struct data_reference *);
372 extern void debug_data_reference (struct data_reference *);
373 extern void debug_data_references (vec<data_reference_p> );
374 extern void debug_data_dependence_relation (struct data_dependence_relation *);
375 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
376 extern void debug_data_dependence_relations (vec<ddr_p> );
377 extern void free_dependence_relation (struct data_dependence_relation *);
378 extern void free_dependence_relations (vec<ddr_p> );
379 extern void free_data_ref (data_reference_p);
380 extern void free_data_refs (vec<data_reference_p> );
381 extern bool find_data_references_in_stmt (struct loop *, gimple,
382 vec<data_reference_p> *);
383 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
384 vec<data_reference_p> *);
385 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
386 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
387 extern struct data_dependence_relation *initialize_data_dependence_relation
388 (struct data_reference *, struct data_reference *, vec<loop_p>);
389 extern void compute_affine_dependence (struct data_dependence_relation *,
390 loop_p);
391 extern void compute_self_dependence (struct data_dependence_relation *);
392 extern bool compute_all_dependences (vec<data_reference_p> ,
393 vec<ddr_p> *,
394 vec<loop_p>, bool);
395 extern tree find_data_references_in_bb (struct loop *, basic_block,
396 vec<data_reference_p> *);
398 extern bool dr_may_alias_p (const struct data_reference *,
399 const struct data_reference *, bool);
400 extern bool dr_equal_offsets_p (struct data_reference *,
401 struct data_reference *);
404 /* Return true when the base objects of data references A and B are
405 the same memory object. */
407 static inline bool
408 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
410 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
411 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
414 /* Return true when the data references A and B are accessing the same
415 memory object with the same access functions. */
417 static inline bool
418 same_data_refs (data_reference_p a, data_reference_p b)
420 unsigned int i;
422 /* The references are exactly the same. */
423 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
424 return true;
426 if (!same_data_refs_base_objects (a, b))
427 return false;
429 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
430 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
431 return false;
433 return true;
436 /* Return true when the DDR contains two data references that have the
437 same access functions. */
439 static inline bool
440 same_access_functions (const struct data_dependence_relation *ddr)
442 unsigned i;
444 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
445 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
446 DR_ACCESS_FN (DDR_B (ddr), i)))
447 return false;
449 return true;
452 /* Return true when DDR is an anti-dependence relation. */
454 static inline bool
455 ddr_is_anti_dependent (ddr_p ddr)
457 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
458 && DR_IS_READ (DDR_A (ddr))
459 && DR_IS_WRITE (DDR_B (ddr))
460 && !same_access_functions (ddr));
463 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
465 static inline bool
466 ddrs_have_anti_deps (vec<ddr_p> dependence_relations)
468 unsigned i;
469 ddr_p ddr;
471 for (i = 0; dependence_relations.iterate (i, &ddr); i++)
472 if (ddr_is_anti_dependent (ddr))
473 return true;
475 return false;
478 /* Returns the dependence level for a vector DIST of size LENGTH.
479 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
480 to the sequence of statements, not carried by any loop. */
482 static inline unsigned
483 dependence_level (lambda_vector dist_vect, int length)
485 int i;
487 for (i = 0; i < length; i++)
488 if (dist_vect[i] != 0)
489 return i + 1;
491 return 0;
494 /* Return the dependence level for the DDR relation. */
496 static inline unsigned
497 ddr_dependence_level (ddr_p ddr)
499 unsigned vector;
500 unsigned level = 0;
502 if (DDR_DIST_VECTS (ddr).exists ())
503 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
505 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
506 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
507 DDR_NB_LOOPS (ddr)));
508 return level;
513 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
514 typedef struct rdg_vertex
516 /* The statement represented by this vertex. */
517 gimple stmt;
519 /* Vector of data-references in this statement. */
520 vec<data_reference_p> datarefs;
522 /* True when the statement contains a write to memory. */
523 bool has_mem_write;
525 /* True when the statement contains a read from memory. */
526 bool has_mem_reads;
527 } *rdg_vertex_p;
529 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
530 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
531 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
532 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
533 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
534 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
535 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
536 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
538 void debug_rdg_vertex (struct graph *, int);
539 void debug_rdg_component (struct graph *, int);
540 void dump_rdg (FILE *, struct graph *);
541 void debug_rdg (struct graph *);
542 int rdg_vertex_for_stmt (struct graph *, gimple);
544 /* Data dependence type. */
546 enum rdg_dep_type
548 /* Read After Write (RAW). */
549 flow_dd = 'f',
551 /* Write After Read (WAR). */
552 anti_dd = 'a',
554 /* Write After Write (WAW). */
555 output_dd = 'o',
557 /* Read After Read (RAR). */
558 input_dd = 'i'
561 /* Dependence information attached to an edge of the RDG. */
563 typedef struct rdg_edge
565 /* Type of the dependence. */
566 enum rdg_dep_type type;
568 /* Levels of the dependence: the depth of the loops that carry the
569 dependence. */
570 unsigned level;
572 /* Dependence relation between data dependences, NULL when one of
573 the vertices is a scalar. */
574 ddr_p relation;
575 } *rdg_edge_p;
577 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
578 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
579 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
581 struct graph *build_rdg (struct loop *,
582 vec<loop_p> *,
583 vec<ddr_p> *,
584 vec<data_reference_p> *);
585 struct graph *build_empty_rdg (int);
586 void free_rdg (struct graph *);
588 /* Return the index of the variable VAR in the LOOP_NEST array. */
590 static inline int
591 index_in_loop_nest (int var, vec<loop_p> loop_nest)
593 struct loop *loopi;
594 int var_index;
596 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
597 var_index++)
598 if (loopi->num == var)
599 break;
601 return var_index;
604 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
606 /* Returns true when the data reference DR the form "A[i] = ..."
607 with a stride equal to its unit type size. */
609 static inline bool
610 adjacent_dr_p (struct data_reference *dr)
612 /* If this is a bitfield store bail out. */
613 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
614 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
615 return false;
617 if (!DR_STEP (dr)
618 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
619 return false;
621 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
622 DR_STEP (dr)),
623 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
626 /* In tree-data-ref.c */
627 void split_constant_offset (tree , tree *, tree *);
629 /* Strongly connected components of the reduced data dependence graph. */
631 typedef struct rdg_component
633 int num;
634 vec<int> vertices;
635 } *rdgc;
639 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
641 static inline int
642 lambda_vector_gcd (lambda_vector vector, int size)
644 int i;
645 int gcd1 = 0;
647 if (size > 0)
649 gcd1 = vector[0];
650 for (i = 1; i < size; i++)
651 gcd1 = gcd (gcd1, vector[i]);
653 return gcd1;
656 /* Allocate a new vector of given SIZE. */
658 static inline lambda_vector
659 lambda_vector_new (int size)
661 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
664 /* Clear out vector VEC1 of length SIZE. */
666 static inline void
667 lambda_vector_clear (lambda_vector vec1, int size)
669 memset (vec1, 0, size * sizeof (*vec1));
672 /* Returns true when the vector V is lexicographically positive, in
673 other words, when the first nonzero element is positive. */
675 static inline bool
676 lambda_vector_lexico_pos (lambda_vector v,
677 unsigned n)
679 unsigned i;
680 for (i = 0; i < n; i++)
682 if (v[i] == 0)
683 continue;
684 if (v[i] < 0)
685 return false;
686 if (v[i] > 0)
687 return true;
689 return true;
692 /* Return true if vector VEC1 of length SIZE is the zero vector. */
694 static inline bool
695 lambda_vector_zerop (lambda_vector vec1, int size)
697 int i;
698 for (i = 0; i < size; i++)
699 if (vec1[i] != 0)
700 return false;
701 return true;
704 /* Allocate a matrix of M rows x N cols. */
706 static inline lambda_matrix
707 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
709 lambda_matrix mat;
710 int i;
712 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
713 sizeof (lambda_vector *) * m);
715 for (i = 0; i < m; i++)
716 mat[i] = lambda_vector_new (n);
718 return mat;
721 #endif /* GCC_TREE_DATA_REF_H */