1 ;; Machine description for PowerPC synchronization instructions.
2 ;; Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 ;; Contributed by Geoffrey Keating.
5 ;; This file is part of GCC.
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published
9 ;; by the Free Software Foundation; either version 3, or (at your
10 ;; option) any later version.
12 ;; GCC is distributed in the hope that it will be useful, but WITHOUT
13 ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 ;; License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3. If not see
19 ;; <http://www.gnu.org/licenses/>.
21 (define_mode_attr larx [(QI "lbarx")
27 (define_mode_attr stcx [(QI "stbcx.")
33 (define_code_iterator FETCHOP [plus minus ior xor and])
34 (define_code_attr fetchop_name
35 [(plus "add") (minus "sub") (ior "or") (xor "xor") (and "and")])
36 (define_code_attr fetchop_pred
37 [(plus "add_operand") (minus "int_reg_operand")
38 (ior "logical_operand") (xor "logical_operand") (and "and_operand")])
40 (define_expand "mem_thread_fence"
41 [(match_operand:SI 0 "const_int_operand" "")] ;; model
44 enum memmodel model = memmodel_base (INTVAL (operands[0]));
47 case MEMMODEL_RELAXED:
49 case MEMMODEL_CONSUME:
50 case MEMMODEL_ACQUIRE:
51 case MEMMODEL_RELEASE:
52 case MEMMODEL_ACQ_REL:
53 emit_insn (gen_lwsync ());
55 case MEMMODEL_SEQ_CST:
56 emit_insn (gen_hwsync ());
64 (define_expand "hwsync"
66 (unspec:BLK [(match_dup 0)] UNSPEC_SYNC))]
69 operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
70 MEM_VOLATILE_P (operands[0]) = 1;
73 (define_insn "*hwsync"
74 [(set (match_operand:BLK 0 "" "")
75 (unspec:BLK [(match_dup 0)] UNSPEC_SYNC))]
78 [(set_attr "type" "sync")])
80 (define_expand "lwsync"
82 (unspec:BLK [(match_dup 0)] UNSPEC_LWSYNC))]
85 operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
86 MEM_VOLATILE_P (operands[0]) = 1;
89 (define_insn "*lwsync"
90 [(set (match_operand:BLK 0 "" "")
91 (unspec:BLK [(match_dup 0)] UNSPEC_LWSYNC))]
94 /* Some AIX assemblers don't accept lwsync, so we use a .long. */
97 else if (TARGET_LWSYNC_INSTRUCTION)
100 return ".long 0x7c2004ac";
102 [(set_attr "type" "sync")])
105 [(unspec_volatile:BLK [(const_int 0)] UNSPECV_ISYNC)]
108 [(set_attr "type" "isync")])
110 ;; Types that we should provide atomic instructions for.
111 (define_mode_iterator AINT [QI
114 (DI "TARGET_POWERPC64")
115 (TI "TARGET_SYNC_TI")])
117 ;; The control dependency used for load dependency described
118 ;; in B.2.3 of the Power ISA 2.06B.
119 (define_insn "loadsync_<mode>"
120 [(unspec_volatile:BLK [(match_operand:AINT 0 "register_operand" "r")]
122 (clobber (match_scratch:CC 1 "=y"))]
124 "cmpw %1,%0,%0\;bne- %1,$+4\;isync"
125 [(set_attr "type" "isync")
126 (set_attr "length" "12")])
128 (define_insn "load_quadpti"
129 [(set (match_operand:PTI 0 "quad_int_reg_operand" "=&r")
131 [(match_operand:TI 1 "quad_memory_operand" "wQ")] UNSPEC_LSQ))]
133 && !reg_mentioned_p (operands[0], operands[1])"
135 [(set_attr "type" "load")
136 (set_attr "length" "4")])
138 (define_expand "atomic_load<mode>"
139 [(set (match_operand:AINT 0 "register_operand" "") ;; output
140 (match_operand:AINT 1 "memory_operand" "")) ;; memory
141 (use (match_operand:SI 2 "const_int_operand" ""))] ;; model
144 if (<MODE>mode == TImode && !TARGET_SYNC_TI)
147 enum memmodel model = memmodel_base (INTVAL (operands[2]));
149 if (is_mm_seq_cst (model))
150 emit_insn (gen_hwsync ());
152 if (<MODE>mode != TImode)
153 emit_move_insn (operands[0], operands[1]);
156 rtx op0 = operands[0];
157 rtx op1 = operands[1];
158 rtx pti_reg = gen_reg_rtx (PTImode);
160 if (!quad_address_p (XEXP (op1, 0), TImode, false))
162 rtx old_addr = XEXP (op1, 0);
163 rtx new_addr = force_reg (Pmode, old_addr);
164 operands[1] = op1 = replace_equiv_address (op1, new_addr);
167 emit_insn (gen_load_quadpti (pti_reg, op1));
169 if (WORDS_BIG_ENDIAN)
170 emit_move_insn (op0, gen_lowpart (TImode, pti_reg));
173 emit_move_insn (gen_lowpart (DImode, op0), gen_highpart (DImode, pti_reg));
174 emit_move_insn (gen_highpart (DImode, op0), gen_lowpart (DImode, pti_reg));
180 case MEMMODEL_RELAXED:
182 case MEMMODEL_CONSUME:
183 case MEMMODEL_ACQUIRE:
184 case MEMMODEL_SEQ_CST:
185 emit_insn (gen_loadsync_<mode> (operands[0]));
193 (define_insn "store_quadpti"
194 [(set (match_operand:PTI 0 "quad_memory_operand" "=wQ")
196 [(match_operand:PTI 1 "quad_int_reg_operand" "r")] UNSPEC_LSQ))]
199 [(set_attr "type" "store")
200 (set_attr "length" "4")])
202 (define_expand "atomic_store<mode>"
203 [(set (match_operand:AINT 0 "memory_operand" "") ;; memory
204 (match_operand:AINT 1 "register_operand" "")) ;; input
205 (use (match_operand:SI 2 "const_int_operand" ""))] ;; model
208 if (<MODE>mode == TImode && !TARGET_SYNC_TI)
211 enum memmodel model = memmodel_base (INTVAL (operands[2]));
214 case MEMMODEL_RELAXED:
216 case MEMMODEL_RELEASE:
217 emit_insn (gen_lwsync ());
219 case MEMMODEL_SEQ_CST:
220 emit_insn (gen_hwsync ());
225 if (<MODE>mode != TImode)
226 emit_move_insn (operands[0], operands[1]);
229 rtx op0 = operands[0];
230 rtx op1 = operands[1];
231 rtx pti_reg = gen_reg_rtx (PTImode);
233 if (!quad_address_p (XEXP (op0, 0), TImode, false))
235 rtx old_addr = XEXP (op0, 0);
236 rtx new_addr = force_reg (Pmode, old_addr);
237 operands[0] = op0 = replace_equiv_address (op0, new_addr);
240 if (WORDS_BIG_ENDIAN)
241 emit_move_insn (pti_reg, gen_lowpart (PTImode, op1));
244 emit_move_insn (gen_lowpart (DImode, pti_reg), gen_highpart (DImode, op1));
245 emit_move_insn (gen_highpart (DImode, pti_reg), gen_lowpart (DImode, op1));
248 emit_insn (gen_store_quadpti (gen_lowpart (PTImode, op0), pti_reg));
254 ;; Any supported integer mode that has atomic l<x>arx/st<x>cx. instrucitons
255 ;; other than the quad memory operations, which have special restrictions.
256 ;; Byte/halfword atomic instructions were added in ISA 2.06B, but were phased
257 ;; in and did not show up until power8. TImode atomic lqarx/stqcx. require
258 ;; special handling due to even/odd register requirements.
259 (define_mode_iterator ATOMIC [(QI "TARGET_SYNC_HI_QI")
260 (HI "TARGET_SYNC_HI_QI")
262 (DI "TARGET_POWERPC64")])
264 (define_insn "load_locked<mode>"
265 [(set (match_operand:ATOMIC 0 "int_reg_operand" "=r")
266 (unspec_volatile:ATOMIC
267 [(match_operand:ATOMIC 1 "memory_operand" "Z")] UNSPECV_LL))]
270 [(set_attr "type" "load_l")])
272 (define_insn "load_locked<QHI:mode>_si"
273 [(set (match_operand:SI 0 "int_reg_operand" "=r")
275 [(match_operand:QHI 1 "memory_operand" "Z")] UNSPECV_LL))]
278 [(set_attr "type" "load_l")])
280 ;; Use PTImode to get even/odd register pairs.
281 ;; Use a temporary register to force getting an even register for the
282 ;; lqarx/stqcrx. instructions. Normal optimizations will eliminate this extra
283 ;; copy on big endian systems.
285 ;; On little endian systems where non-atomic quad word load/store instructions
286 ;; are not used, the address can be register+offset, so make sure the address
287 ;; is indexed or indirect before register allocation.
289 (define_expand "load_lockedti"
290 [(use (match_operand:TI 0 "quad_int_reg_operand" ""))
291 (use (match_operand:TI 1 "memory_operand" ""))]
294 rtx op0 = operands[0];
295 rtx op1 = operands[1];
296 rtx pti = gen_reg_rtx (PTImode);
298 if (!indexed_or_indirect_operand (op1, TImode))
300 rtx old_addr = XEXP (op1, 0);
301 rtx new_addr = force_reg (Pmode, old_addr);
302 operands[1] = op1 = change_address (op1, TImode, new_addr);
305 emit_insn (gen_load_lockedpti (pti, op1));
306 if (WORDS_BIG_ENDIAN)
307 emit_move_insn (op0, gen_lowpart (TImode, pti));
310 emit_move_insn (gen_lowpart (DImode, op0), gen_highpart (DImode, pti));
311 emit_move_insn (gen_highpart (DImode, op0), gen_lowpart (DImode, pti));
316 (define_insn "load_lockedpti"
317 [(set (match_operand:PTI 0 "quad_int_reg_operand" "=&r")
319 [(match_operand:TI 1 "indexed_or_indirect_operand" "Z")] UNSPECV_LL))]
321 && !reg_mentioned_p (operands[0], operands[1])
322 && quad_int_reg_operand (operands[0], PTImode)"
324 [(set_attr "type" "load_l")])
326 (define_insn "store_conditional<mode>"
327 [(set (match_operand:CC 0 "cc_reg_operand" "=x")
328 (unspec_volatile:CC [(const_int 0)] UNSPECV_SC))
329 (set (match_operand:ATOMIC 1 "memory_operand" "=Z")
330 (match_operand:ATOMIC 2 "int_reg_operand" "r"))]
333 [(set_attr "type" "store_c")])
335 ;; Use a temporary register to force getting an even register for the
336 ;; lqarx/stqcrx. instructions. Normal optimizations will eliminate this extra
337 ;; copy on big endian systems.
339 ;; On little endian systems where non-atomic quad word load/store instructions
340 ;; are not used, the address can be register+offset, so make sure the address
341 ;; is indexed or indirect before register allocation.
343 (define_expand "store_conditionalti"
344 [(use (match_operand:CC 0 "cc_reg_operand" ""))
345 (use (match_operand:TI 1 "memory_operand" ""))
346 (use (match_operand:TI 2 "quad_int_reg_operand" ""))]
349 rtx op0 = operands[0];
350 rtx op1 = operands[1];
351 rtx op2 = operands[2];
352 rtx addr = XEXP (op1, 0);
356 if (!indexed_or_indirect_operand (op1, TImode))
358 rtx new_addr = force_reg (Pmode, addr);
359 operands[1] = op1 = change_address (op1, TImode, new_addr);
363 pti_mem = change_address (op1, PTImode, addr);
364 pti_reg = gen_reg_rtx (PTImode);
366 if (WORDS_BIG_ENDIAN)
367 emit_move_insn (pti_reg, gen_lowpart (PTImode, op2));
370 emit_move_insn (gen_lowpart (DImode, pti_reg), gen_highpart (DImode, op2));
371 emit_move_insn (gen_highpart (DImode, pti_reg), gen_lowpart (DImode, op2));
374 emit_insn (gen_store_conditionalpti (op0, pti_mem, pti_reg));
378 (define_insn "store_conditionalpti"
379 [(set (match_operand:CC 0 "cc_reg_operand" "=x")
380 (unspec_volatile:CC [(const_int 0)] UNSPECV_SC))
381 (set (match_operand:PTI 1 "indexed_or_indirect_operand" "=Z")
382 (match_operand:PTI 2 "quad_int_reg_operand" "r"))]
383 "TARGET_SYNC_TI && quad_int_reg_operand (operands[2], PTImode)"
385 [(set_attr "type" "store_c")])
387 (define_expand "atomic_compare_and_swap<mode>"
388 [(match_operand:SI 0 "int_reg_operand" "") ;; bool out
389 (match_operand:AINT 1 "int_reg_operand" "") ;; val out
390 (match_operand:AINT 2 "memory_operand" "") ;; memory
391 (match_operand:AINT 3 "reg_or_short_operand" "") ;; expected
392 (match_operand:AINT 4 "int_reg_operand" "") ;; desired
393 (match_operand:SI 5 "const_int_operand" "") ;; is_weak
394 (match_operand:SI 6 "const_int_operand" "") ;; model succ
395 (match_operand:SI 7 "const_int_operand" "")] ;; model fail
398 rs6000_expand_atomic_compare_and_swap (operands);
402 (define_expand "atomic_exchange<mode>"
403 [(match_operand:AINT 0 "int_reg_operand" "") ;; output
404 (match_operand:AINT 1 "memory_operand" "") ;; memory
405 (match_operand:AINT 2 "int_reg_operand" "") ;; input
406 (match_operand:SI 3 "const_int_operand" "")] ;; model
409 rs6000_expand_atomic_exchange (operands);
413 (define_expand "atomic_<fetchop_name><mode>"
414 [(match_operand:AINT 0 "memory_operand" "") ;; memory
415 (FETCHOP:AINT (match_dup 0)
416 (match_operand:AINT 1 "<fetchop_pred>" "")) ;; operand
417 (match_operand:SI 2 "const_int_operand" "")] ;; model
420 rs6000_expand_atomic_op (<CODE>, operands[0], operands[1],
421 NULL_RTX, NULL_RTX, operands[2]);
425 (define_expand "atomic_nand<mode>"
426 [(match_operand:AINT 0 "memory_operand" "") ;; memory
427 (match_operand:AINT 1 "int_reg_operand" "") ;; operand
428 (match_operand:SI 2 "const_int_operand" "")] ;; model
431 rs6000_expand_atomic_op (NOT, operands[0], operands[1],
432 NULL_RTX, NULL_RTX, operands[2]);
436 (define_expand "atomic_fetch_<fetchop_name><mode>"
437 [(match_operand:AINT 0 "int_reg_operand" "") ;; output
438 (match_operand:AINT 1 "memory_operand" "") ;; memory
439 (FETCHOP:AINT (match_dup 1)
440 (match_operand:AINT 2 "<fetchop_pred>" "")) ;; operand
441 (match_operand:SI 3 "const_int_operand" "")] ;; model
444 rs6000_expand_atomic_op (<CODE>, operands[1], operands[2],
445 operands[0], NULL_RTX, operands[3]);
449 (define_expand "atomic_fetch_nand<mode>"
450 [(match_operand:AINT 0 "int_reg_operand" "") ;; output
451 (match_operand:AINT 1 "memory_operand" "") ;; memory
452 (match_operand:AINT 2 "int_reg_operand" "") ;; operand
453 (match_operand:SI 3 "const_int_operand" "")] ;; model
456 rs6000_expand_atomic_op (NOT, operands[1], operands[2],
457 operands[0], NULL_RTX, operands[3]);
461 (define_expand "atomic_<fetchop_name>_fetch<mode>"
462 [(match_operand:AINT 0 "int_reg_operand" "") ;; output
463 (match_operand:AINT 1 "memory_operand" "") ;; memory
464 (FETCHOP:AINT (match_dup 1)
465 (match_operand:AINT 2 "<fetchop_pred>" "")) ;; operand
466 (match_operand:SI 3 "const_int_operand" "")] ;; model
469 rs6000_expand_atomic_op (<CODE>, operands[1], operands[2],
470 NULL_RTX, operands[0], operands[3]);
474 (define_expand "atomic_nand_fetch<mode>"
475 [(match_operand:AINT 0 "int_reg_operand" "") ;; output
476 (match_operand:AINT 1 "memory_operand" "") ;; memory
477 (match_operand:AINT 2 "int_reg_operand" "") ;; operand
478 (match_operand:SI 3 "const_int_operand" "")] ;; model
481 rs6000_expand_atomic_op (NOT, operands[1], operands[2],
482 NULL_RTX, operands[0], operands[3]);