1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Casing
; use Casing
;
29 with Checks
; use Checks
;
30 with Debug
; use Debug
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Ch11
; use Exp_Ch11
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Util
; use Exp_Util
;
36 with Fname
; use Fname
;
37 with Freeze
; use Freeze
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
43 with Output
; use Output
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
46 with Rtsfind
; use Rtsfind
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Attr
; use Sem_Attr
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Ch13
; use Sem_Ch13
;
52 with Sem_Disp
; use Sem_Disp
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Prag
; use Sem_Prag
;
55 with Sem_Res
; use Sem_Res
;
56 with Sem_Warn
; use Sem_Warn
;
57 with Sem_Type
; use Sem_Type
;
58 with Sinfo
; use Sinfo
;
59 with Sinput
; use Sinput
;
60 with Stand
; use Stand
;
62 with Stringt
; use Stringt
;
63 with Targparm
; use Targparm
;
64 with Tbuild
; use Tbuild
;
65 with Ttypes
; use Ttypes
;
66 with Uname
; use Uname
;
68 with GNAT
.HTable
; use GNAT
.HTable
;
70 package body Sem_Util
is
72 ----------------------------------------
73 -- Global_Variables for New_Copy_Tree --
74 ----------------------------------------
76 -- These global variables are used by New_Copy_Tree. See description of the
77 -- body of this subprogram for details. Global variables can be safely used
78 -- by New_Copy_Tree, since there is no case of a recursive call from the
79 -- processing inside New_Copy_Tree.
81 NCT_Hash_Threshold
: constant := 20;
82 -- If there are more than this number of pairs of entries in the map, then
83 -- Hash_Tables_Used will be set, and the hash tables will be initialized
84 -- and used for the searches.
86 NCT_Hash_Tables_Used
: Boolean := False;
87 -- Set to True if hash tables are in use
89 NCT_Table_Entries
: Nat
:= 0;
90 -- Count entries in table to see if threshold is reached
92 NCT_Hash_Table_Setup
: Boolean := False;
93 -- Set to True if hash table contains data. We set this True if we setup
94 -- the hash table with data, and leave it set permanently from then on,
95 -- this is a signal that second and subsequent users of the hash table
96 -- must clear the old entries before reuse.
98 subtype NCT_Header_Num
is Int
range 0 .. 511;
99 -- Defines range of headers in hash tables (512 headers)
101 -----------------------
102 -- Local Subprograms --
103 -----------------------
105 function Build_Component_Subtype
108 T
: Entity_Id
) return Node_Id
;
109 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
110 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
111 -- Loc is the source location, T is the original subtype.
113 function Is_Fully_Initialized_Variant
(Typ
: Entity_Id
) return Boolean;
114 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
115 -- with discriminants whose default values are static, examine only the
116 -- components in the selected variant to determine whether all of them
119 function Has_Enabled_Property
120 (Item_Id
: Entity_Id
;
121 Property
: Name_Id
) return Boolean;
122 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
123 -- Determine whether an abstract state or a variable denoted by entity
124 -- Item_Id has enabled property Property.
126 function Has_Null_Extension
(T
: Entity_Id
) return Boolean;
127 -- T is a derived tagged type. Check whether the type extension is null.
128 -- If the parent type is fully initialized, T can be treated as such.
130 ------------------------------
131 -- Abstract_Interface_List --
132 ------------------------------
134 function Abstract_Interface_List
(Typ
: Entity_Id
) return List_Id
is
138 if Is_Concurrent_Type
(Typ
) then
140 -- If we are dealing with a synchronized subtype, go to the base
141 -- type, whose declaration has the interface list.
143 -- Shouldn't this be Declaration_Node???
145 Nod
:= Parent
(Base_Type
(Typ
));
147 if Nkind
(Nod
) = N_Full_Type_Declaration
then
151 elsif Ekind
(Typ
) = E_Record_Type_With_Private
then
152 if Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
then
153 Nod
:= Type_Definition
(Parent
(Typ
));
155 elsif Nkind
(Parent
(Typ
)) = N_Private_Type_Declaration
then
156 if Present
(Full_View
(Typ
))
158 Nkind
(Parent
(Full_View
(Typ
))) = N_Full_Type_Declaration
160 Nod
:= Type_Definition
(Parent
(Full_View
(Typ
)));
162 -- If the full-view is not available we cannot do anything else
163 -- here (the source has errors).
169 -- Support for generic formals with interfaces is still missing ???
171 elsif Nkind
(Parent
(Typ
)) = N_Formal_Type_Declaration
then
176 (Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
);
180 elsif Ekind
(Typ
) = E_Record_Subtype
then
181 Nod
:= Type_Definition
(Parent
(Etype
(Typ
)));
183 elsif Ekind
(Typ
) = E_Record_Subtype_With_Private
then
185 -- Recurse, because parent may still be a private extension. Also
186 -- note that the full view of the subtype or the full view of its
187 -- base type may (both) be unavailable.
189 return Abstract_Interface_List
(Etype
(Typ
));
191 else pragma Assert
((Ekind
(Typ
)) = E_Record_Type
);
192 if Nkind
(Parent
(Typ
)) = N_Formal_Type_Declaration
then
193 Nod
:= Formal_Type_Definition
(Parent
(Typ
));
195 Nod
:= Type_Definition
(Parent
(Typ
));
199 return Interface_List
(Nod
);
200 end Abstract_Interface_List
;
202 --------------------------------
203 -- Add_Access_Type_To_Process --
204 --------------------------------
206 procedure Add_Access_Type_To_Process
(E
: Entity_Id
; A
: Entity_Id
) is
210 Ensure_Freeze_Node
(E
);
211 L
:= Access_Types_To_Process
(Freeze_Node
(E
));
215 Set_Access_Types_To_Process
(Freeze_Node
(E
), L
);
219 end Add_Access_Type_To_Process
;
221 --------------------------
222 -- Add_Block_Identifier --
223 --------------------------
225 procedure Add_Block_Identifier
(N
: Node_Id
; Id
: out Entity_Id
) is
226 Loc
: constant Source_Ptr
:= Sloc
(N
);
229 pragma Assert
(Nkind
(N
) = N_Block_Statement
);
231 -- The block already has a label, return its entity
233 if Present
(Identifier
(N
)) then
234 Id
:= Entity
(Identifier
(N
));
236 -- Create a new block label and set its attributes
239 Id
:= New_Internal_Entity
(E_Block
, Current_Scope
, Loc
, 'B');
240 Set_Etype
(Id
, Standard_Void_Type
);
243 Set_Identifier
(N
, New_Occurrence_Of
(Id
, Loc
));
244 Set_Block_Node
(Id
, Identifier
(N
));
246 end Add_Block_Identifier
;
248 -----------------------
249 -- Add_Contract_Item --
250 -----------------------
252 procedure Add_Contract_Item
(Prag
: Node_Id
; Id
: Entity_Id
) is
253 Items
: constant Node_Id
:= Contract
(Id
);
255 procedure Add_Classification
;
256 -- Prepend Prag to the list of classifications
258 procedure Add_Contract_Test_Case
;
259 -- Prepend Prag to the list of contract and test cases
261 procedure Add_Pre_Post_Condition
;
262 -- Prepend Prag to the list of pre- and postconditions
264 ------------------------
265 -- Add_Classification --
266 ------------------------
268 procedure Add_Classification
is
270 Set_Next_Pragma
(Prag
, Classifications
(Items
));
271 Set_Classifications
(Items
, Prag
);
272 end Add_Classification
;
274 ----------------------------
275 -- Add_Contract_Test_Case --
276 ----------------------------
278 procedure Add_Contract_Test_Case
is
280 Set_Next_Pragma
(Prag
, Contract_Test_Cases
(Items
));
281 Set_Contract_Test_Cases
(Items
, Prag
);
282 end Add_Contract_Test_Case
;
284 ----------------------------
285 -- Add_Pre_Post_Condition --
286 ----------------------------
288 procedure Add_Pre_Post_Condition
is
290 Set_Next_Pragma
(Prag
, Pre_Post_Conditions
(Items
));
291 Set_Pre_Post_Conditions
(Items
, Prag
);
292 end Add_Pre_Post_Condition
;
299 -- Start of processing for Add_Contract_Item
302 -- The related context must have a contract and the item to be added
305 pragma Assert
(Present
(Items
));
306 pragma Assert
(Nkind
(Prag
) = N_Pragma
);
308 Nam
:= Original_Aspect_Name
(Prag
);
310 -- Contract items related to [generic] packages or instantiations. The
311 -- applicable pragmas are:
315 -- Part_Of (instantiation only)
317 if Ekind_In
(Id
, E_Generic_Package
, E_Package
) then
318 if Nam_In
(Nam
, Name_Abstract_State
,
319 Name_Initial_Condition
,
324 -- Indicator Part_Of must be associated with a package instantiation
326 elsif Nam
= Name_Part_Of
and then Is_Generic_Instance
(Id
) then
329 -- The pragma is not a proper contract item
335 -- Contract items related to package bodies. The applicable pragmas are:
338 elsif Ekind
(Id
) = E_Package_Body
then
339 if Nam
= Name_Refined_State
then
342 -- The pragma is not a proper contract item
348 -- Contract items related to subprogram or entry declarations. The
349 -- applicable pragmas are:
352 -- Extensions_Visible
360 elsif Ekind_In
(Id
, E_Entry
, E_Entry_Family
)
361 or else Is_Generic_Subprogram
(Id
)
362 or else Is_Subprogram
(Id
)
364 if Nam_In
(Nam
, Name_Pre
,
371 -- Before we add a precondition or postcondition to the list, make
372 -- sure we do not have a disallowed duplicate, which can happen if
373 -- we use a pragma for Pre[_Class] or Post[_Class] instead of the
374 -- corresponding aspect.
376 if not From_Aspect_Specification
(Prag
)
377 and then Nam_In
(Nam
, Name_Pre
,
382 PPC
:= Pre_Post_Conditions
(Items
);
383 while Present
(PPC
) loop
384 if not Split_PPC
(PPC
)
385 and then Original_Aspect_Name
(PPC
) = Nam
387 Error_Msg_Sloc
:= Sloc
(PPC
);
389 ("duplication of aspect for & given#", Prag
, Id
);
393 PPC
:= Next_Pragma
(PPC
);
397 Add_Pre_Post_Condition
;
399 elsif Nam_In
(Nam
, Name_Contract_Cases
, Name_Test_Case
) then
400 Add_Contract_Test_Case
;
402 elsif Nam_In
(Nam
, Name_Depends
,
403 Name_Extensions_Visible
,
408 -- The pragma is not a proper contract item
414 -- Contract items related to subprogram bodies. Applicable pragmas are:
419 elsif Ekind
(Id
) = E_Subprogram_Body
then
420 if Nam_In
(Nam
, Name_Refined_Depends
, Name_Refined_Global
) then
423 elsif Nam
= Name_Refined_Post
then
424 Add_Pre_Post_Condition
;
426 -- The pragma is not a proper contract item
432 -- Contract items related to variables. Applicable pragmas are:
439 elsif Ekind
(Id
) = E_Variable
then
440 if Nam_In
(Nam
, Name_Async_Readers
,
442 Name_Effective_Reads
,
443 Name_Effective_Writes
,
448 -- The pragma is not a proper contract item
454 end Add_Contract_Item
;
456 ----------------------------
457 -- Add_Global_Declaration --
458 ----------------------------
460 procedure Add_Global_Declaration
(N
: Node_Id
) is
461 Aux_Node
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Current_Sem_Unit
));
464 if No
(Declarations
(Aux_Node
)) then
465 Set_Declarations
(Aux_Node
, New_List
);
468 Append_To
(Declarations
(Aux_Node
), N
);
470 end Add_Global_Declaration
;
472 --------------------------------
473 -- Address_Integer_Convert_OK --
474 --------------------------------
476 function Address_Integer_Convert_OK
(T1
, T2
: Entity_Id
) return Boolean is
478 if Allow_Integer_Address
479 and then ((Is_Descendent_Of_Address
(T1
)
480 and then Is_Private_Type
(T1
)
481 and then Is_Integer_Type
(T2
))
483 (Is_Descendent_Of_Address
(T2
)
484 and then Is_Private_Type
(T2
)
485 and then Is_Integer_Type
(T1
)))
491 end Address_Integer_Convert_OK
;
497 -- For now, just 8/16/32/64. but analyze later if AAMP is special???
499 function Addressable
(V
: Uint
) return Boolean is
501 return V
= Uint_8
or else
507 function Addressable
(V
: Int
) return Boolean is
515 ---------------------------------
516 -- Aggregate_Constraint_Checks --
517 ---------------------------------
519 procedure Aggregate_Constraint_Checks
521 Check_Typ
: Entity_Id
)
523 Exp_Typ
: constant Entity_Id
:= Etype
(Exp
);
526 if Raises_Constraint_Error
(Exp
) then
530 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
531 -- component's type to force the appropriate accessibility checks.
533 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
534 -- type to force the corresponding run-time check
536 if Is_Access_Type
(Check_Typ
)
537 and then ((Is_Local_Anonymous_Access
(Check_Typ
))
538 or else (Can_Never_Be_Null
(Check_Typ
)
539 and then not Can_Never_Be_Null
(Exp_Typ
)))
541 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
542 Analyze_And_Resolve
(Exp
, Check_Typ
);
543 Check_Unset_Reference
(Exp
);
546 -- This is really expansion activity, so make sure that expansion is
547 -- on and is allowed. In GNATprove mode, we also want check flags to
548 -- be added in the tree, so that the formal verification can rely on
549 -- those to be present. In GNATprove mode for formal verification, some
550 -- treatment typically only done during expansion needs to be performed
551 -- on the tree, but it should not be applied inside generics. Otherwise,
552 -- this breaks the name resolution mechanism for generic instances.
554 if not Expander_Active
555 and (Inside_A_Generic
or not Full_Analysis
or not GNATprove_Mode
)
560 -- First check if we have to insert discriminant checks
562 if Has_Discriminants
(Exp_Typ
) then
563 Apply_Discriminant_Check
(Exp
, Check_Typ
);
565 -- Next emit length checks for array aggregates
567 elsif Is_Array_Type
(Exp_Typ
) then
568 Apply_Length_Check
(Exp
, Check_Typ
);
570 -- Finally emit scalar and string checks. If we are dealing with a
571 -- scalar literal we need to check by hand because the Etype of
572 -- literals is not necessarily correct.
574 elsif Is_Scalar_Type
(Exp_Typ
)
575 and then Compile_Time_Known_Value
(Exp
)
577 if Is_Out_Of_Range
(Exp
, Base_Type
(Check_Typ
)) then
578 Apply_Compile_Time_Constraint_Error
579 (Exp
, "value not in range of}??", CE_Range_Check_Failed
,
580 Ent
=> Base_Type
(Check_Typ
),
581 Typ
=> Base_Type
(Check_Typ
));
583 elsif Is_Out_Of_Range
(Exp
, Check_Typ
) then
584 Apply_Compile_Time_Constraint_Error
585 (Exp
, "value not in range of}??", CE_Range_Check_Failed
,
589 elsif not Range_Checks_Suppressed
(Check_Typ
) then
590 Apply_Scalar_Range_Check
(Exp
, Check_Typ
);
593 -- Verify that target type is also scalar, to prevent view anomalies
594 -- in instantiations.
596 elsif (Is_Scalar_Type
(Exp_Typ
)
597 or else Nkind
(Exp
) = N_String_Literal
)
598 and then Is_Scalar_Type
(Check_Typ
)
599 and then Exp_Typ
/= Check_Typ
601 if Is_Entity_Name
(Exp
)
602 and then Ekind
(Entity
(Exp
)) = E_Constant
604 -- If expression is a constant, it is worthwhile checking whether
605 -- it is a bound of the type.
607 if (Is_Entity_Name
(Type_Low_Bound
(Check_Typ
))
608 and then Entity
(Exp
) = Entity
(Type_Low_Bound
(Check_Typ
)))
610 (Is_Entity_Name
(Type_High_Bound
(Check_Typ
))
611 and then Entity
(Exp
) = Entity
(Type_High_Bound
(Check_Typ
)))
616 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
617 Analyze_And_Resolve
(Exp
, Check_Typ
);
618 Check_Unset_Reference
(Exp
);
621 -- Could use a comment on this case ???
624 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
625 Analyze_And_Resolve
(Exp
, Check_Typ
);
626 Check_Unset_Reference
(Exp
);
630 end Aggregate_Constraint_Checks
;
632 -----------------------
633 -- Alignment_In_Bits --
634 -----------------------
636 function Alignment_In_Bits
(E
: Entity_Id
) return Uint
is
638 return Alignment
(E
) * System_Storage_Unit
;
639 end Alignment_In_Bits
;
641 ---------------------------------
642 -- Append_Inherited_Subprogram --
643 ---------------------------------
645 procedure Append_Inherited_Subprogram
(S
: Entity_Id
) is
646 Par
: constant Entity_Id
:= Alias
(S
);
647 -- The parent subprogram
649 Scop
: constant Entity_Id
:= Scope
(Par
);
650 -- The scope of definition of the parent subprogram
652 Typ
: constant Entity_Id
:= Defining_Entity
(Parent
(S
));
653 -- The derived type of which S is a primitive operation
659 if Ekind
(Current_Scope
) = E_Package
660 and then In_Private_Part
(Current_Scope
)
661 and then Has_Private_Declaration
(Typ
)
662 and then Is_Tagged_Type
(Typ
)
663 and then Scop
= Current_Scope
665 -- The inherited operation is available at the earliest place after
666 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
667 -- relevant for type extensions. If the parent operation appears
668 -- after the type extension, the operation is not visible.
671 (Visible_Declarations
672 (Package_Specification
(Current_Scope
)));
673 while Present
(Decl
) loop
674 if Nkind
(Decl
) = N_Private_Extension_Declaration
675 and then Defining_Entity
(Decl
) = Typ
677 if Sloc
(Decl
) > Sloc
(Par
) then
678 Next_E
:= Next_Entity
(Par
);
679 Set_Next_Entity
(Par
, S
);
680 Set_Next_Entity
(S
, Next_E
);
692 -- If partial view is not a type extension, or it appears before the
693 -- subprogram declaration, insert normally at end of entity list.
695 Append_Entity
(S
, Current_Scope
);
696 end Append_Inherited_Subprogram
;
698 -----------------------------------------
699 -- Apply_Compile_Time_Constraint_Error --
700 -----------------------------------------
702 procedure Apply_Compile_Time_Constraint_Error
705 Reason
: RT_Exception_Code
;
706 Ent
: Entity_Id
:= Empty
;
707 Typ
: Entity_Id
:= Empty
;
708 Loc
: Source_Ptr
:= No_Location
;
709 Rep
: Boolean := True;
710 Warn
: Boolean := False)
712 Stat
: constant Boolean := Is_Static_Expression
(N
);
713 R_Stat
: constant Node_Id
:=
714 Make_Raise_Constraint_Error
(Sloc
(N
), Reason
=> Reason
);
725 (Compile_Time_Constraint_Error
(N
, Msg
, Ent
, Loc
, Warn
=> Warn
));
731 -- Now we replace the node by an N_Raise_Constraint_Error node
732 -- This does not need reanalyzing, so set it as analyzed now.
735 Set_Analyzed
(N
, True);
738 Set_Raises_Constraint_Error
(N
);
740 -- Now deal with possible local raise handling
742 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
744 -- If the original expression was marked as static, the result is
745 -- still marked as static, but the Raises_Constraint_Error flag is
746 -- always set so that further static evaluation is not attempted.
749 Set_Is_Static_Expression
(N
);
751 end Apply_Compile_Time_Constraint_Error
;
753 ---------------------------
754 -- Async_Readers_Enabled --
755 ---------------------------
757 function Async_Readers_Enabled
(Id
: Entity_Id
) return Boolean is
759 return Has_Enabled_Property
(Id
, Name_Async_Readers
);
760 end Async_Readers_Enabled
;
762 ---------------------------
763 -- Async_Writers_Enabled --
764 ---------------------------
766 function Async_Writers_Enabled
(Id
: Entity_Id
) return Boolean is
768 return Has_Enabled_Property
(Id
, Name_Async_Writers
);
769 end Async_Writers_Enabled
;
771 --------------------------------------
772 -- Available_Full_View_Of_Component --
773 --------------------------------------
775 function Available_Full_View_Of_Component
(T
: Entity_Id
) return Boolean is
776 ST
: constant Entity_Id
:= Scope
(T
);
777 SCT
: constant Entity_Id
:= Scope
(Component_Type
(T
));
779 return In_Open_Scopes
(ST
)
780 and then In_Open_Scopes
(SCT
)
781 and then Scope_Depth
(ST
) >= Scope_Depth
(SCT
);
782 end Available_Full_View_Of_Component
;
788 procedure Bad_Attribute
791 Warn
: Boolean := False)
794 Error_Msg_Warn
:= Warn
;
795 Error_Msg_N
("unrecognized attribute&<<", N
);
797 -- Check for possible misspelling
799 Error_Msg_Name_1
:= First_Attribute_Name
;
800 while Error_Msg_Name_1
<= Last_Attribute_Name
loop
801 if Is_Bad_Spelling_Of
(Nam
, Error_Msg_Name_1
) then
802 Error_Msg_N
-- CODEFIX
803 ("\possible misspelling of %<<", N
);
807 Error_Msg_Name_1
:= Error_Msg_Name_1
+ 1;
811 --------------------------------
812 -- Bad_Predicated_Subtype_Use --
813 --------------------------------
815 procedure Bad_Predicated_Subtype_Use
819 Suggest_Static
: Boolean := False)
824 -- Avoid cascaded errors
826 if Error_Posted
(N
) then
830 if Inside_A_Generic
then
831 Gen
:= Current_Scope
;
832 while Present
(Gen
) and then Ekind
(Gen
) /= E_Generic_Package
loop
840 if Is_Generic_Formal
(Typ
) and then Is_Discrete_Type
(Typ
) then
841 Set_No_Predicate_On_Actual
(Typ
);
844 elsif Has_Predicates
(Typ
) then
845 if Is_Generic_Actual_Type
(Typ
) then
847 -- The restriction on loop parameters is only that the type
848 -- should have no dynamic predicates.
850 if Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
851 and then not Has_Dynamic_Predicate_Aspect
(Typ
)
852 and then Is_OK_Static_Subtype
(Typ
)
857 Gen
:= Current_Scope
;
858 while not Is_Generic_Instance
(Gen
) loop
862 pragma Assert
(Present
(Gen
));
864 if Ekind
(Gen
) = E_Package
and then In_Package_Body
(Gen
) then
865 Error_Msg_Warn
:= SPARK_Mode
/= On
;
866 Error_Msg_FE
(Msg
& "<<", N
, Typ
);
867 Error_Msg_F
("\Program_Error [<<", N
);
870 Make_Raise_Program_Error
(Sloc
(N
),
871 Reason
=> PE_Bad_Predicated_Generic_Type
));
874 Error_Msg_FE
(Msg
& "<<", N
, Typ
);
878 Error_Msg_FE
(Msg
, N
, Typ
);
881 -- Emit an optional suggestion on how to remedy the error if the
882 -- context warrants it.
884 if Suggest_Static
and then Has_Static_Predicate
(Typ
) then
885 Error_Msg_FE
("\predicate of & should be marked static", N
, Typ
);
888 end Bad_Predicated_Subtype_Use
;
890 -----------------------------------------
891 -- Bad_Unordered_Enumeration_Reference --
892 -----------------------------------------
894 function Bad_Unordered_Enumeration_Reference
896 T
: Entity_Id
) return Boolean
899 return Is_Enumeration_Type
(T
)
900 and then Warn_On_Unordered_Enumeration_Type
901 and then not Is_Generic_Type
(T
)
902 and then Comes_From_Source
(N
)
903 and then not Has_Pragma_Ordered
(T
)
904 and then not In_Same_Extended_Unit
(N
, T
);
905 end Bad_Unordered_Enumeration_Reference
;
907 --------------------------
908 -- Build_Actual_Subtype --
909 --------------------------
911 function Build_Actual_Subtype
913 N
: Node_Or_Entity_Id
) return Node_Id
916 -- Normally Sloc (N), but may point to corresponding body in some cases
918 Constraints
: List_Id
;
924 Disc_Type
: Entity_Id
;
930 if Nkind
(N
) = N_Defining_Identifier
then
931 Obj
:= New_Occurrence_Of
(N
, Loc
);
933 -- If this is a formal parameter of a subprogram declaration, and
934 -- we are compiling the body, we want the declaration for the
935 -- actual subtype to carry the source position of the body, to
936 -- prevent anomalies in gdb when stepping through the code.
938 if Is_Formal
(N
) then
940 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(N
));
942 if Nkind
(Decl
) = N_Subprogram_Declaration
943 and then Present
(Corresponding_Body
(Decl
))
945 Loc
:= Sloc
(Corresponding_Body
(Decl
));
954 if Is_Array_Type
(T
) then
955 Constraints
:= New_List
;
956 for J
in 1 .. Number_Dimensions
(T
) loop
958 -- Build an array subtype declaration with the nominal subtype and
959 -- the bounds of the actual. Add the declaration in front of the
960 -- local declarations for the subprogram, for analysis before any
961 -- reference to the formal in the body.
964 Make_Attribute_Reference
(Loc
,
966 Duplicate_Subexpr_No_Checks
(Obj
, Name_Req
=> True),
967 Attribute_Name
=> Name_First
,
968 Expressions
=> New_List
(
969 Make_Integer_Literal
(Loc
, J
)));
972 Make_Attribute_Reference
(Loc
,
974 Duplicate_Subexpr_No_Checks
(Obj
, Name_Req
=> True),
975 Attribute_Name
=> Name_Last
,
976 Expressions
=> New_List
(
977 Make_Integer_Literal
(Loc
, J
)));
979 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
982 -- If the type has unknown discriminants there is no constrained
983 -- subtype to build. This is never called for a formal or for a
984 -- lhs, so returning the type is ok ???
986 elsif Has_Unknown_Discriminants
(T
) then
990 Constraints
:= New_List
;
992 -- Type T is a generic derived type, inherit the discriminants from
995 if Is_Private_Type
(T
)
996 and then No
(Full_View
(T
))
998 -- T was flagged as an error if it was declared as a formal
999 -- derived type with known discriminants. In this case there
1000 -- is no need to look at the parent type since T already carries
1001 -- its own discriminants.
1003 and then not Error_Posted
(T
)
1005 Disc_Type
:= Etype
(Base_Type
(T
));
1010 Discr
:= First_Discriminant
(Disc_Type
);
1011 while Present
(Discr
) loop
1012 Append_To
(Constraints
,
1013 Make_Selected_Component
(Loc
,
1015 Duplicate_Subexpr_No_Checks
(Obj
),
1016 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)));
1017 Next_Discriminant
(Discr
);
1021 Subt
:= Make_Temporary
(Loc
, 'S', Related_Node
=> N
);
1022 Set_Is_Internal
(Subt
);
1025 Make_Subtype_Declaration
(Loc
,
1026 Defining_Identifier
=> Subt
,
1027 Subtype_Indication
=>
1028 Make_Subtype_Indication
(Loc
,
1029 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
1031 Make_Index_Or_Discriminant_Constraint
(Loc
,
1032 Constraints
=> Constraints
)));
1034 Mark_Rewrite_Insertion
(Decl
);
1036 end Build_Actual_Subtype
;
1038 ---------------------------------------
1039 -- Build_Actual_Subtype_Of_Component --
1040 ---------------------------------------
1042 function Build_Actual_Subtype_Of_Component
1044 N
: Node_Id
) return Node_Id
1046 Loc
: constant Source_Ptr
:= Sloc
(N
);
1047 P
: constant Node_Id
:= Prefix
(N
);
1050 Index_Typ
: Entity_Id
;
1052 Desig_Typ
: Entity_Id
;
1053 -- This is either a copy of T, or if T is an access type, then it is
1054 -- the directly designated type of this access type.
1056 function Build_Actual_Array_Constraint
return List_Id
;
1057 -- If one or more of the bounds of the component depends on
1058 -- discriminants, build actual constraint using the discriminants
1061 function Build_Actual_Record_Constraint
return List_Id
;
1062 -- Similar to previous one, for discriminated components constrained
1063 -- by the discriminant of the enclosing object.
1065 -----------------------------------
1066 -- Build_Actual_Array_Constraint --
1067 -----------------------------------
1069 function Build_Actual_Array_Constraint
return List_Id
is
1070 Constraints
: constant List_Id
:= New_List
;
1078 Indx
:= First_Index
(Desig_Typ
);
1079 while Present
(Indx
) loop
1080 Old_Lo
:= Type_Low_Bound
(Etype
(Indx
));
1081 Old_Hi
:= Type_High_Bound
(Etype
(Indx
));
1083 if Denotes_Discriminant
(Old_Lo
) then
1085 Make_Selected_Component
(Loc
,
1086 Prefix
=> New_Copy_Tree
(P
),
1087 Selector_Name
=> New_Occurrence_Of
(Entity
(Old_Lo
), Loc
));
1090 Lo
:= New_Copy_Tree
(Old_Lo
);
1092 -- The new bound will be reanalyzed in the enclosing
1093 -- declaration. For literal bounds that come from a type
1094 -- declaration, the type of the context must be imposed, so
1095 -- insure that analysis will take place. For non-universal
1096 -- types this is not strictly necessary.
1098 Set_Analyzed
(Lo
, False);
1101 if Denotes_Discriminant
(Old_Hi
) then
1103 Make_Selected_Component
(Loc
,
1104 Prefix
=> New_Copy_Tree
(P
),
1105 Selector_Name
=> New_Occurrence_Of
(Entity
(Old_Hi
), Loc
));
1108 Hi
:= New_Copy_Tree
(Old_Hi
);
1109 Set_Analyzed
(Hi
, False);
1112 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
1117 end Build_Actual_Array_Constraint
;
1119 ------------------------------------
1120 -- Build_Actual_Record_Constraint --
1121 ------------------------------------
1123 function Build_Actual_Record_Constraint
return List_Id
is
1124 Constraints
: constant List_Id
:= New_List
;
1129 D
:= First_Elmt
(Discriminant_Constraint
(Desig_Typ
));
1130 while Present
(D
) loop
1131 if Denotes_Discriminant
(Node
(D
)) then
1132 D_Val
:= Make_Selected_Component
(Loc
,
1133 Prefix
=> New_Copy_Tree
(P
),
1134 Selector_Name
=> New_Occurrence_Of
(Entity
(Node
(D
)), Loc
));
1137 D_Val
:= New_Copy_Tree
(Node
(D
));
1140 Append
(D_Val
, Constraints
);
1145 end Build_Actual_Record_Constraint
;
1147 -- Start of processing for Build_Actual_Subtype_Of_Component
1150 -- Why the test for Spec_Expression mode here???
1152 if In_Spec_Expression
then
1155 -- More comments for the rest of this body would be good ???
1157 elsif Nkind
(N
) = N_Explicit_Dereference
then
1158 if Is_Composite_Type
(T
)
1159 and then not Is_Constrained
(T
)
1160 and then not (Is_Class_Wide_Type
(T
)
1161 and then Is_Constrained
(Root_Type
(T
)))
1162 and then not Has_Unknown_Discriminants
(T
)
1164 -- If the type of the dereference is already constrained, it is an
1167 if Is_Array_Type
(Etype
(N
))
1168 and then Is_Constrained
(Etype
(N
))
1172 Remove_Side_Effects
(P
);
1173 return Build_Actual_Subtype
(T
, N
);
1180 if Ekind
(T
) = E_Access_Subtype
then
1181 Desig_Typ
:= Designated_Type
(T
);
1186 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
1187 Id
:= First_Index
(Desig_Typ
);
1188 while Present
(Id
) loop
1189 Index_Typ
:= Underlying_Type
(Etype
(Id
));
1191 if Denotes_Discriminant
(Type_Low_Bound
(Index_Typ
))
1193 Denotes_Discriminant
(Type_High_Bound
(Index_Typ
))
1195 Remove_Side_Effects
(P
);
1197 Build_Component_Subtype
1198 (Build_Actual_Array_Constraint
, Loc
, Base_Type
(T
));
1204 elsif Is_Composite_Type
(Desig_Typ
)
1205 and then Has_Discriminants
(Desig_Typ
)
1206 and then not Has_Unknown_Discriminants
(Desig_Typ
)
1208 if Is_Private_Type
(Desig_Typ
)
1209 and then No
(Discriminant_Constraint
(Desig_Typ
))
1211 Desig_Typ
:= Full_View
(Desig_Typ
);
1214 D
:= First_Elmt
(Discriminant_Constraint
(Desig_Typ
));
1215 while Present
(D
) loop
1216 if Denotes_Discriminant
(Node
(D
)) then
1217 Remove_Side_Effects
(P
);
1219 Build_Component_Subtype
(
1220 Build_Actual_Record_Constraint
, Loc
, Base_Type
(T
));
1227 -- If none of the above, the actual and nominal subtypes are the same
1230 end Build_Actual_Subtype_Of_Component
;
1232 -----------------------------
1233 -- Build_Component_Subtype --
1234 -----------------------------
1236 function Build_Component_Subtype
1239 T
: Entity_Id
) return Node_Id
1245 -- Unchecked_Union components do not require component subtypes
1247 if Is_Unchecked_Union
(T
) then
1251 Subt
:= Make_Temporary
(Loc
, 'S');
1252 Set_Is_Internal
(Subt
);
1255 Make_Subtype_Declaration
(Loc
,
1256 Defining_Identifier
=> Subt
,
1257 Subtype_Indication
=>
1258 Make_Subtype_Indication
(Loc
,
1259 Subtype_Mark
=> New_Occurrence_Of
(Base_Type
(T
), Loc
),
1261 Make_Index_Or_Discriminant_Constraint
(Loc
,
1262 Constraints
=> C
)));
1264 Mark_Rewrite_Insertion
(Decl
);
1266 end Build_Component_Subtype
;
1268 ----------------------------------
1269 -- Build_Default_Init_Cond_Call --
1270 ----------------------------------
1272 function Build_Default_Init_Cond_Call
1275 Typ
: Entity_Id
) return Node_Id
1277 Proc_Id
: constant Entity_Id
:= Default_Init_Cond_Procedure
(Typ
);
1278 Formal_Typ
: constant Entity_Id
:= Etype
(First_Formal
(Proc_Id
));
1282 Make_Procedure_Call_Statement
(Loc
,
1283 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
1284 Parameter_Associations
=> New_List
(
1285 Make_Unchecked_Type_Conversion
(Loc
,
1286 Subtype_Mark
=> New_Occurrence_Of
(Formal_Typ
, Loc
),
1287 Expression
=> New_Occurrence_Of
(Obj_Id
, Loc
))));
1288 end Build_Default_Init_Cond_Call
;
1290 ----------------------------------------------
1291 -- Build_Default_Init_Cond_Procedure_Bodies --
1292 ----------------------------------------------
1294 procedure Build_Default_Init_Cond_Procedure_Bodies
(Priv_Decls
: List_Id
) is
1295 procedure Build_Default_Init_Cond_Procedure_Body
(Typ
: Entity_Id
);
1296 -- If type Typ is subject to pragma Default_Initial_Condition, build the
1297 -- body of the procedure which verifies the assumption of the pragma at
1298 -- run time. The generated body is added after the type declaration.
1300 --------------------------------------------
1301 -- Build_Default_Init_Cond_Procedure_Body --
1302 --------------------------------------------
1304 procedure Build_Default_Init_Cond_Procedure_Body
(Typ
: Entity_Id
) is
1305 Param_Id
: Entity_Id
;
1306 -- The entity of the sole formal parameter of the default initial
1307 -- condition procedure.
1309 procedure Replace_Type_Reference
(N
: Node_Id
);
1310 -- Replace a single reference to type Typ with a reference to formal
1311 -- parameter Param_Id.
1313 ----------------------------
1314 -- Replace_Type_Reference --
1315 ----------------------------
1317 procedure Replace_Type_Reference
(N
: Node_Id
) is
1319 Rewrite
(N
, New_Occurrence_Of
(Param_Id
, Sloc
(N
)));
1320 end Replace_Type_Reference
;
1322 procedure Replace_Type_References
is
1323 new Replace_Type_References_Generic
(Replace_Type_Reference
);
1327 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
1328 Prag
: constant Node_Id
:=
1329 Get_Pragma
(Typ
, Pragma_Default_Initial_Condition
);
1330 Proc_Id
: constant Entity_Id
:= Default_Init_Cond_Procedure
(Typ
);
1331 Spec_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Proc_Id
);
1332 Body_Decl
: Node_Id
;
1336 -- Start of processing for Build_Default_Init_Cond_Procedure_Body
1339 -- The procedure should be generated only for [sub]types subject to
1340 -- pragma Default_Initial_Condition. Types that inherit the pragma do
1341 -- not get this specialized procedure.
1343 pragma Assert
(Has_Default_Init_Cond
(Typ
));
1344 pragma Assert
(Present
(Prag
));
1345 pragma Assert
(Present
(Proc_Id
));
1347 -- Nothing to do if the body was already built
1349 if Present
(Corresponding_Body
(Spec_Decl
)) then
1353 Param_Id
:= First_Formal
(Proc_Id
);
1355 -- The pragma has an argument. Note that the argument is analyzed
1356 -- after all references to the current instance of the type are
1359 if Present
(Pragma_Argument_Associations
(Prag
)) then
1361 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(Prag
)));
1363 if Nkind
(Expr
) = N_Null
then
1364 Stmt
:= Make_Null_Statement
(Loc
);
1366 -- Preserve the original argument of the pragma by replicating it.
1367 -- Replace all references to the current instance of the type with
1368 -- references to the formal parameter.
1371 Expr
:= New_Copy_Tree
(Expr
);
1372 Replace_Type_References
(Expr
, Typ
);
1375 -- pragma Check (Default_Initial_Condition, <Expr>);
1379 Pragma_Identifier
=>
1380 Make_Identifier
(Loc
, Name_Check
),
1382 Pragma_Argument_Associations
=> New_List
(
1383 Make_Pragma_Argument_Association
(Loc
,
1385 Make_Identifier
(Loc
,
1386 Chars
=> Name_Default_Initial_Condition
)),
1387 Make_Pragma_Argument_Association
(Loc
,
1388 Expression
=> Expr
)));
1391 -- Otherwise the pragma appears without an argument
1394 Stmt
:= Make_Null_Statement
(Loc
);
1398 -- procedure <Typ>Default_Init_Cond (I : <Typ>) is
1401 -- end <Typ>Default_Init_Cond;
1404 Make_Subprogram_Body
(Loc
,
1406 Copy_Separate_Tree
(Specification
(Spec_Decl
)),
1407 Declarations
=> Empty_List
,
1408 Handled_Statement_Sequence
=>
1409 Make_Handled_Sequence_Of_Statements
(Loc
,
1410 Statements
=> New_List
(Stmt
)));
1412 -- Link the spec and body of the default initial condition procedure
1413 -- to prevent the generation of a duplicate body.
1415 Set_Corresponding_Body
(Spec_Decl
, Defining_Entity
(Body_Decl
));
1416 Set_Corresponding_Spec
(Body_Decl
, Proc_Id
);
1418 Insert_After_And_Analyze
(Declaration_Node
(Typ
), Body_Decl
);
1419 end Build_Default_Init_Cond_Procedure_Body
;
1426 -- Start of processing for Build_Default_Init_Cond_Procedure_Bodies
1429 -- Inspect the private declarations looking for [sub]type declarations
1431 Decl
:= First
(Priv_Decls
);
1432 while Present
(Decl
) loop
1433 if Nkind_In
(Decl
, N_Full_Type_Declaration
,
1434 N_Subtype_Declaration
)
1436 Typ
:= Defining_Entity
(Decl
);
1438 -- Guard against partially decorate types due to previous errors
1440 if Is_Type
(Typ
) then
1442 -- If the type is subject to pragma Default_Initial_Condition,
1443 -- generate the body of the internal procedure which verifies
1444 -- the assertion of the pragma at run time.
1446 if Has_Default_Init_Cond
(Typ
) then
1447 Build_Default_Init_Cond_Procedure_Body
(Typ
);
1449 -- A derived type inherits the default initial condition
1450 -- procedure from its parent type.
1452 elsif Has_Inherited_Default_Init_Cond
(Typ
) then
1453 Inherit_Default_Init_Cond_Procedure
(Typ
);
1460 end Build_Default_Init_Cond_Procedure_Bodies
;
1462 ---------------------------------------------------
1463 -- Build_Default_Init_Cond_Procedure_Declaration --
1464 ---------------------------------------------------
1466 procedure Build_Default_Init_Cond_Procedure_Declaration
(Typ
: Entity_Id
) is
1467 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
1468 Prag
: constant Node_Id
:=
1469 Get_Pragma
(Typ
, Pragma_Default_Initial_Condition
);
1470 Proc_Id
: Entity_Id
;
1473 -- The procedure should be generated only for types subject to pragma
1474 -- Default_Initial_Condition. Types that inherit the pragma do not get
1475 -- this specialized procedure.
1477 pragma Assert
(Has_Default_Init_Cond
(Typ
));
1478 pragma Assert
(Present
(Prag
));
1480 -- Nothing to do if default initial condition procedure already built
1482 if Present
(Default_Init_Cond_Procedure
(Typ
)) then
1487 Make_Defining_Identifier
(Loc
,
1488 Chars
=> New_External_Name
(Chars
(Typ
), "Default_Init_Cond"));
1490 -- Associate default initial condition procedure with the private type
1492 Set_Ekind
(Proc_Id
, E_Procedure
);
1493 Set_Is_Default_Init_Cond_Procedure
(Proc_Id
);
1494 Set_Default_Init_Cond_Procedure
(Typ
, Proc_Id
);
1497 -- procedure <Typ>Default_Init_Cond (Inn : <Typ>);
1499 Insert_After_And_Analyze
(Prag
,
1500 Make_Subprogram_Declaration
(Loc
,
1502 Make_Procedure_Specification
(Loc
,
1503 Defining_Unit_Name
=> Proc_Id
,
1504 Parameter_Specifications
=> New_List
(
1505 Make_Parameter_Specification
(Loc
,
1506 Defining_Identifier
=> Make_Temporary
(Loc
, 'I'),
1507 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))))));
1508 end Build_Default_Init_Cond_Procedure_Declaration
;
1510 ---------------------------
1511 -- Build_Default_Subtype --
1512 ---------------------------
1514 function Build_Default_Subtype
1516 N
: Node_Id
) return Entity_Id
1518 Loc
: constant Source_Ptr
:= Sloc
(N
);
1522 -- The base type that is to be constrained by the defaults
1525 if not Has_Discriminants
(T
) or else Is_Constrained
(T
) then
1529 Bas
:= Base_Type
(T
);
1531 -- If T is non-private but its base type is private, this is the
1532 -- completion of a subtype declaration whose parent type is private
1533 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1534 -- are to be found in the full view of the base. Check that the private
1535 -- status of T and its base differ.
1537 if Is_Private_Type
(Bas
)
1538 and then not Is_Private_Type
(T
)
1539 and then Present
(Full_View
(Bas
))
1541 Bas
:= Full_View
(Bas
);
1544 Disc
:= First_Discriminant
(T
);
1546 if No
(Discriminant_Default_Value
(Disc
)) then
1551 Act
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1552 Constraints
: constant List_Id
:= New_List
;
1556 while Present
(Disc
) loop
1557 Append_To
(Constraints
,
1558 New_Copy_Tree
(Discriminant_Default_Value
(Disc
)));
1559 Next_Discriminant
(Disc
);
1563 Make_Subtype_Declaration
(Loc
,
1564 Defining_Identifier
=> Act
,
1565 Subtype_Indication
=>
1566 Make_Subtype_Indication
(Loc
,
1567 Subtype_Mark
=> New_Occurrence_Of
(Bas
, Loc
),
1569 Make_Index_Or_Discriminant_Constraint
(Loc
,
1570 Constraints
=> Constraints
)));
1572 Insert_Action
(N
, Decl
);
1576 end Build_Default_Subtype
;
1578 --------------------------------------------
1579 -- Build_Discriminal_Subtype_Of_Component --
1580 --------------------------------------------
1582 function Build_Discriminal_Subtype_Of_Component
1583 (T
: Entity_Id
) return Node_Id
1585 Loc
: constant Source_Ptr
:= Sloc
(T
);
1589 function Build_Discriminal_Array_Constraint
return List_Id
;
1590 -- If one or more of the bounds of the component depends on
1591 -- discriminants, build actual constraint using the discriminants
1594 function Build_Discriminal_Record_Constraint
return List_Id
;
1595 -- Similar to previous one, for discriminated components constrained by
1596 -- the discriminant of the enclosing object.
1598 ----------------------------------------
1599 -- Build_Discriminal_Array_Constraint --
1600 ----------------------------------------
1602 function Build_Discriminal_Array_Constraint
return List_Id
is
1603 Constraints
: constant List_Id
:= New_List
;
1611 Indx
:= First_Index
(T
);
1612 while Present
(Indx
) loop
1613 Old_Lo
:= Type_Low_Bound
(Etype
(Indx
));
1614 Old_Hi
:= Type_High_Bound
(Etype
(Indx
));
1616 if Denotes_Discriminant
(Old_Lo
) then
1617 Lo
:= New_Occurrence_Of
(Discriminal
(Entity
(Old_Lo
)), Loc
);
1620 Lo
:= New_Copy_Tree
(Old_Lo
);
1623 if Denotes_Discriminant
(Old_Hi
) then
1624 Hi
:= New_Occurrence_Of
(Discriminal
(Entity
(Old_Hi
)), Loc
);
1627 Hi
:= New_Copy_Tree
(Old_Hi
);
1630 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
1635 end Build_Discriminal_Array_Constraint
;
1637 -----------------------------------------
1638 -- Build_Discriminal_Record_Constraint --
1639 -----------------------------------------
1641 function Build_Discriminal_Record_Constraint
return List_Id
is
1642 Constraints
: constant List_Id
:= New_List
;
1647 D
:= First_Elmt
(Discriminant_Constraint
(T
));
1648 while Present
(D
) loop
1649 if Denotes_Discriminant
(Node
(D
)) then
1651 New_Occurrence_Of
(Discriminal
(Entity
(Node
(D
))), Loc
);
1653 D_Val
:= New_Copy_Tree
(Node
(D
));
1656 Append
(D_Val
, Constraints
);
1661 end Build_Discriminal_Record_Constraint
;
1663 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1666 if Ekind
(T
) = E_Array_Subtype
then
1667 Id
:= First_Index
(T
);
1668 while Present
(Id
) loop
1669 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(Id
)))
1671 Denotes_Discriminant
(Type_High_Bound
(Etype
(Id
)))
1673 return Build_Component_Subtype
1674 (Build_Discriminal_Array_Constraint
, Loc
, T
);
1680 elsif Ekind
(T
) = E_Record_Subtype
1681 and then Has_Discriminants
(T
)
1682 and then not Has_Unknown_Discriminants
(T
)
1684 D
:= First_Elmt
(Discriminant_Constraint
(T
));
1685 while Present
(D
) loop
1686 if Denotes_Discriminant
(Node
(D
)) then
1687 return Build_Component_Subtype
1688 (Build_Discriminal_Record_Constraint
, Loc
, T
);
1695 -- If none of the above, the actual and nominal subtypes are the same
1698 end Build_Discriminal_Subtype_Of_Component
;
1700 ------------------------------
1701 -- Build_Elaboration_Entity --
1702 ------------------------------
1704 procedure Build_Elaboration_Entity
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1705 Loc
: constant Source_Ptr
:= Sloc
(N
);
1707 Elab_Ent
: Entity_Id
;
1709 procedure Set_Package_Name
(Ent
: Entity_Id
);
1710 -- Given an entity, sets the fully qualified name of the entity in
1711 -- Name_Buffer, with components separated by double underscores. This
1712 -- is a recursive routine that climbs the scope chain to Standard.
1714 ----------------------
1715 -- Set_Package_Name --
1716 ----------------------
1718 procedure Set_Package_Name
(Ent
: Entity_Id
) is
1720 if Scope
(Ent
) /= Standard_Standard
then
1721 Set_Package_Name
(Scope
(Ent
));
1724 Nam
: constant String := Get_Name_String
(Chars
(Ent
));
1726 Name_Buffer
(Name_Len
+ 1) := '_';
1727 Name_Buffer
(Name_Len
+ 2) := '_';
1728 Name_Buffer
(Name_Len
+ 3 .. Name_Len
+ Nam
'Length + 2) := Nam
;
1729 Name_Len
:= Name_Len
+ Nam
'Length + 2;
1733 Get_Name_String
(Chars
(Ent
));
1735 end Set_Package_Name
;
1737 -- Start of processing for Build_Elaboration_Entity
1740 -- Ignore call if already constructed
1742 if Present
(Elaboration_Entity
(Spec_Id
)) then
1745 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1746 -- no role in analysis.
1748 elsif ASIS_Mode
then
1751 -- See if we need elaboration entity. We always need it for the dynamic
1752 -- elaboration model, since it is needed to properly generate the PE
1753 -- exception for access before elaboration.
1755 elsif Dynamic_Elaboration_Checks
then
1758 -- For the static model, we don't need the elaboration counter if this
1759 -- unit is sure to have no elaboration code, since that means there
1760 -- is no elaboration unit to be called. Note that we can't just decide
1761 -- after the fact by looking to see whether there was elaboration code,
1762 -- because that's too late to make this decision.
1764 elsif Restriction_Active
(No_Elaboration_Code
) then
1767 -- Similarly, for the static model, we can skip the elaboration counter
1768 -- if we have the No_Multiple_Elaboration restriction, since for the
1769 -- static model, that's the only purpose of the counter (to avoid
1770 -- multiple elaboration).
1772 elsif Restriction_Active
(No_Multiple_Elaboration
) then
1776 -- Here we need the elaboration entity
1778 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1779 -- name with dots replaced by double underscore. We have to manually
1780 -- construct this name, since it will be elaborated in the outer scope,
1781 -- and thus will not have the unit name automatically prepended.
1783 Set_Package_Name
(Spec_Id
);
1784 Add_Str_To_Name_Buffer
("_E");
1786 -- Create elaboration counter
1788 Elab_Ent
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_Find
);
1789 Set_Elaboration_Entity
(Spec_Id
, Elab_Ent
);
1792 Make_Object_Declaration
(Loc
,
1793 Defining_Identifier
=> Elab_Ent
,
1794 Object_Definition
=>
1795 New_Occurrence_Of
(Standard_Short_Integer
, Loc
),
1796 Expression
=> Make_Integer_Literal
(Loc
, Uint_0
));
1798 Push_Scope
(Standard_Standard
);
1799 Add_Global_Declaration
(Decl
);
1802 -- Reset True_Constant indication, since we will indeed assign a value
1803 -- to the variable in the binder main. We also kill the Current_Value
1804 -- and Last_Assignment fields for the same reason.
1806 Set_Is_True_Constant
(Elab_Ent
, False);
1807 Set_Current_Value
(Elab_Ent
, Empty
);
1808 Set_Last_Assignment
(Elab_Ent
, Empty
);
1810 -- We do not want any further qualification of the name (if we did not
1811 -- do this, we would pick up the name of the generic package in the case
1812 -- of a library level generic instantiation).
1814 Set_Has_Qualified_Name
(Elab_Ent
);
1815 Set_Has_Fully_Qualified_Name
(Elab_Ent
);
1816 end Build_Elaboration_Entity
;
1818 --------------------------------
1819 -- Build_Explicit_Dereference --
1820 --------------------------------
1822 procedure Build_Explicit_Dereference
1826 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
1829 -- An entity of a type with a reference aspect is overloaded with
1830 -- both interpretations: with and without the dereference. Now that
1831 -- the dereference is made explicit, set the type of the node properly,
1832 -- to prevent anomalies in the backend. Same if the expression is an
1833 -- overloaded function call whose return type has a reference aspect.
1835 if Is_Entity_Name
(Expr
) then
1836 Set_Etype
(Expr
, Etype
(Entity
(Expr
)));
1838 elsif Nkind
(Expr
) = N_Function_Call
then
1839 Set_Etype
(Expr
, Etype
(Name
(Expr
)));
1842 Set_Is_Overloaded
(Expr
, False);
1844 -- The expression will often be a generalized indexing that yields a
1845 -- container element that is then dereferenced, in which case the
1846 -- generalized indexing call is also non-overloaded.
1848 if Nkind
(Expr
) = N_Indexed_Component
1849 and then Present
(Generalized_Indexing
(Expr
))
1851 Set_Is_Overloaded
(Generalized_Indexing
(Expr
), False);
1855 Make_Explicit_Dereference
(Loc
,
1857 Make_Selected_Component
(Loc
,
1858 Prefix
=> Relocate_Node
(Expr
),
1859 Selector_Name
=> New_Occurrence_Of
(Disc
, Loc
))));
1860 Set_Etype
(Prefix
(Expr
), Etype
(Disc
));
1861 Set_Etype
(Expr
, Designated_Type
(Etype
(Disc
)));
1862 end Build_Explicit_Dereference
;
1864 -----------------------------------
1865 -- Cannot_Raise_Constraint_Error --
1866 -----------------------------------
1868 function Cannot_Raise_Constraint_Error
(Expr
: Node_Id
) return Boolean is
1870 if Compile_Time_Known_Value
(Expr
) then
1873 elsif Do_Range_Check
(Expr
) then
1876 elsif Raises_Constraint_Error
(Expr
) then
1880 case Nkind
(Expr
) is
1881 when N_Identifier
=>
1884 when N_Expanded_Name
=>
1887 when N_Selected_Component
=>
1888 return not Do_Discriminant_Check
(Expr
);
1890 when N_Attribute_Reference
=>
1891 if Do_Overflow_Check
(Expr
) then
1894 elsif No
(Expressions
(Expr
)) then
1902 N
:= First
(Expressions
(Expr
));
1903 while Present
(N
) loop
1904 if Cannot_Raise_Constraint_Error
(N
) then
1915 when N_Type_Conversion
=>
1916 if Do_Overflow_Check
(Expr
)
1917 or else Do_Length_Check
(Expr
)
1918 or else Do_Tag_Check
(Expr
)
1922 return Cannot_Raise_Constraint_Error
(Expression
(Expr
));
1925 when N_Unchecked_Type_Conversion
=>
1926 return Cannot_Raise_Constraint_Error
(Expression
(Expr
));
1929 if Do_Overflow_Check
(Expr
) then
1932 return Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1939 if Do_Division_Check
(Expr
)
1941 Do_Overflow_Check
(Expr
)
1946 Cannot_Raise_Constraint_Error
(Left_Opnd
(Expr
))
1948 Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1967 N_Op_Shift_Right_Arithmetic |
1971 if Do_Overflow_Check
(Expr
) then
1975 Cannot_Raise_Constraint_Error
(Left_Opnd
(Expr
))
1977 Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1984 end Cannot_Raise_Constraint_Error
;
1986 -----------------------------------------
1987 -- Check_Dynamically_Tagged_Expression --
1988 -----------------------------------------
1990 procedure Check_Dynamically_Tagged_Expression
1993 Related_Nod
: Node_Id
)
1996 pragma Assert
(Is_Tagged_Type
(Typ
));
1998 -- In order to avoid spurious errors when analyzing the expanded code,
1999 -- this check is done only for nodes that come from source and for
2000 -- actuals of generic instantiations.
2002 if (Comes_From_Source
(Related_Nod
)
2003 or else In_Generic_Actual
(Expr
))
2004 and then (Is_Class_Wide_Type
(Etype
(Expr
))
2005 or else Is_Dynamically_Tagged
(Expr
))
2006 and then Is_Tagged_Type
(Typ
)
2007 and then not Is_Class_Wide_Type
(Typ
)
2009 Error_Msg_N
("dynamically tagged expression not allowed!", Expr
);
2011 end Check_Dynamically_Tagged_Expression
;
2013 --------------------------
2014 -- Check_Fully_Declared --
2015 --------------------------
2017 procedure Check_Fully_Declared
(T
: Entity_Id
; N
: Node_Id
) is
2019 if Ekind
(T
) = E_Incomplete_Type
then
2021 -- Ada 2005 (AI-50217): If the type is available through a limited
2022 -- with_clause, verify that its full view has been analyzed.
2024 if From_Limited_With
(T
)
2025 and then Present
(Non_Limited_View
(T
))
2026 and then Ekind
(Non_Limited_View
(T
)) /= E_Incomplete_Type
2028 -- The non-limited view is fully declared
2034 ("premature usage of incomplete}", N
, First_Subtype
(T
));
2037 -- Need comments for these tests ???
2039 elsif Has_Private_Component
(T
)
2040 and then not Is_Generic_Type
(Root_Type
(T
))
2041 and then not In_Spec_Expression
2043 -- Special case: if T is the anonymous type created for a single
2044 -- task or protected object, use the name of the source object.
2046 if Is_Concurrent_Type
(T
)
2047 and then not Comes_From_Source
(T
)
2048 and then Nkind
(N
) = N_Object_Declaration
2051 ("type of& has incomplete component",
2052 N
, Defining_Identifier
(N
));
2055 ("premature usage of incomplete}",
2056 N
, First_Subtype
(T
));
2059 end Check_Fully_Declared
;
2061 -------------------------------------
2062 -- Check_Function_Writable_Actuals --
2063 -------------------------------------
2065 procedure Check_Function_Writable_Actuals
(N
: Node_Id
) is
2066 Writable_Actuals_List
: Elist_Id
:= No_Elist
;
2067 Identifiers_List
: Elist_Id
:= No_Elist
;
2068 Error_Node
: Node_Id
:= Empty
;
2070 procedure Collect_Identifiers
(N
: Node_Id
);
2071 -- In a single traversal of subtree N collect in Writable_Actuals_List
2072 -- all the actuals of functions with writable actuals, and in the list
2073 -- Identifiers_List collect all the identifiers that are not actuals of
2074 -- functions with writable actuals. If a writable actual is referenced
2075 -- twice as writable actual then Error_Node is set to reference its
2076 -- second occurrence, the error is reported, and the tree traversal
2079 function Get_Function_Id
(Call
: Node_Id
) return Entity_Id
;
2080 -- Return the entity associated with the function call
2082 procedure Preanalyze_Without_Errors
(N
: Node_Id
);
2083 -- Preanalyze N without reporting errors. Very dubious, you can't just
2084 -- go analyzing things more than once???
2086 -------------------------
2087 -- Collect_Identifiers --
2088 -------------------------
2090 procedure Collect_Identifiers
(N
: Node_Id
) is
2092 function Check_Node
(N
: Node_Id
) return Traverse_Result
;
2093 -- Process a single node during the tree traversal to collect the
2094 -- writable actuals of functions and all the identifiers which are
2095 -- not writable actuals of functions.
2097 function Contains
(List
: Elist_Id
; N
: Node_Id
) return Boolean;
2098 -- Returns True if List has a node whose Entity is Entity (N)
2100 -------------------------
2101 -- Check_Function_Call --
2102 -------------------------
2104 function Check_Node
(N
: Node_Id
) return Traverse_Result
is
2105 Is_Writable_Actual
: Boolean := False;
2109 if Nkind
(N
) = N_Identifier
then
2111 -- No analysis possible if the entity is not decorated
2113 if No
(Entity
(N
)) then
2116 -- Don't collect identifiers of packages, called functions, etc
2118 elsif Ekind_In
(Entity
(N
), E_Package
,
2125 -- Analyze if N is a writable actual of a function
2127 elsif Nkind
(Parent
(N
)) = N_Function_Call
then
2129 Call
: constant Node_Id
:= Parent
(N
);
2134 Id
:= Get_Function_Id
(Call
);
2136 Formal
:= First_Formal
(Id
);
2137 Actual
:= First_Actual
(Call
);
2138 while Present
(Actual
) and then Present
(Formal
) loop
2140 if Ekind_In
(Formal
, E_Out_Parameter
,
2143 Is_Writable_Actual
:= True;
2149 Next_Formal
(Formal
);
2150 Next_Actual
(Actual
);
2155 if Is_Writable_Actual
then
2156 if Contains
(Writable_Actuals_List
, N
) then
2158 ("value may be affected by call to& "
2159 & "because order of evaluation is arbitrary", N
, Id
);
2164 Append_New_Elmt
(N
, To
=> Writable_Actuals_List
);
2167 if Identifiers_List
= No_Elist
then
2168 Identifiers_List
:= New_Elmt_List
;
2171 Append_Unique_Elmt
(N
, Identifiers_List
);
2184 N
: Node_Id
) return Boolean
2186 pragma Assert
(Nkind
(N
) in N_Has_Entity
);
2191 if List
= No_Elist
then
2195 Elmt
:= First_Elmt
(List
);
2196 while Present
(Elmt
) loop
2197 if Entity
(Node
(Elmt
)) = Entity
(N
) then
2211 procedure Do_Traversal
is new Traverse_Proc
(Check_Node
);
2212 -- The traversal procedure
2214 -- Start of processing for Collect_Identifiers
2217 if Present
(Error_Node
) then
2221 if Nkind
(N
) in N_Subexpr
and then Is_OK_Static_Expression
(N
) then
2226 end Collect_Identifiers
;
2228 ---------------------
2229 -- Get_Function_Id --
2230 ---------------------
2232 function Get_Function_Id
(Call
: Node_Id
) return Entity_Id
is
2233 Nam
: constant Node_Id
:= Name
(Call
);
2237 if Nkind
(Nam
) = N_Explicit_Dereference
then
2239 pragma Assert
(Ekind
(Id
) = E_Subprogram_Type
);
2241 elsif Nkind
(Nam
) = N_Selected_Component
then
2242 Id
:= Entity
(Selector_Name
(Nam
));
2244 elsif Nkind
(Nam
) = N_Indexed_Component
then
2245 Id
:= Entity
(Selector_Name
(Prefix
(Nam
)));
2252 end Get_Function_Id
;
2254 ---------------------------
2255 -- Preanalyze_Expression --
2256 ---------------------------
2258 procedure Preanalyze_Without_Errors
(N
: Node_Id
) is
2259 Status
: constant Boolean := Get_Ignore_Errors
;
2261 Set_Ignore_Errors
(True);
2263 Set_Ignore_Errors
(Status
);
2264 end Preanalyze_Without_Errors
;
2266 -- Start of processing for Check_Function_Writable_Actuals
2269 -- The check only applies to Ada 2012 code, and only to constructs that
2270 -- have multiple constituents whose order of evaluation is not specified
2273 if Ada_Version
< Ada_2012
2274 or else (not (Nkind
(N
) in N_Op
)
2275 and then not (Nkind
(N
) in N_Membership_Test
)
2276 and then not Nkind_In
(N
, N_Range
,
2278 N_Extension_Aggregate
,
2279 N_Full_Type_Declaration
,
2281 N_Procedure_Call_Statement
,
2282 N_Entry_Call_Statement
))
2283 or else (Nkind
(N
) = N_Full_Type_Declaration
2284 and then not Is_Record_Type
(Defining_Identifier
(N
)))
2286 -- In addition, this check only applies to source code, not to code
2287 -- generated by constraint checks.
2289 or else not Comes_From_Source
(N
)
2294 -- If a construct C has two or more direct constituents that are names
2295 -- or expressions whose evaluation may occur in an arbitrary order, at
2296 -- least one of which contains a function call with an in out or out
2297 -- parameter, then the construct is legal only if: for each name N that
2298 -- is passed as a parameter of mode in out or out to some inner function
2299 -- call C2 (not including the construct C itself), there is no other
2300 -- name anywhere within a direct constituent of the construct C other
2301 -- than the one containing C2, that is known to refer to the same
2302 -- object (RM 6.4.1(6.17/3)).
2306 Collect_Identifiers
(Low_Bound
(N
));
2307 Collect_Identifiers
(High_Bound
(N
));
2309 when N_Op | N_Membership_Test
=>
2314 Collect_Identifiers
(Left_Opnd
(N
));
2316 if Present
(Right_Opnd
(N
)) then
2317 Collect_Identifiers
(Right_Opnd
(N
));
2320 if Nkind_In
(N
, N_In
, N_Not_In
)
2321 and then Present
(Alternatives
(N
))
2323 Expr
:= First
(Alternatives
(N
));
2324 while Present
(Expr
) loop
2325 Collect_Identifiers
(Expr
);
2332 when N_Full_Type_Declaration
=>
2334 function Get_Record_Part
(N
: Node_Id
) return Node_Id
;
2335 -- Return the record part of this record type definition
2337 function Get_Record_Part
(N
: Node_Id
) return Node_Id
is
2338 Type_Def
: constant Node_Id
:= Type_Definition
(N
);
2340 if Nkind
(Type_Def
) = N_Derived_Type_Definition
then
2341 return Record_Extension_Part
(Type_Def
);
2345 end Get_Record_Part
;
2348 Def_Id
: Entity_Id
:= Defining_Identifier
(N
);
2349 Rec
: Node_Id
:= Get_Record_Part
(N
);
2352 -- No need to perform any analysis if the record has no
2355 if No
(Rec
) or else No
(Component_List
(Rec
)) then
2359 -- Collect the identifiers starting from the deepest
2360 -- derivation. Done to report the error in the deepest
2364 if Present
(Component_List
(Rec
)) then
2365 Comp
:= First
(Component_Items
(Component_List
(Rec
)));
2366 while Present
(Comp
) loop
2367 if Nkind
(Comp
) = N_Component_Declaration
2368 and then Present
(Expression
(Comp
))
2370 Collect_Identifiers
(Expression
(Comp
));
2377 exit when No
(Underlying_Type
(Etype
(Def_Id
)))
2378 or else Base_Type
(Underlying_Type
(Etype
(Def_Id
)))
2381 Def_Id
:= Base_Type
(Underlying_Type
(Etype
(Def_Id
)));
2382 Rec
:= Get_Record_Part
(Parent
(Def_Id
));
2386 when N_Subprogram_Call |
2387 N_Entry_Call_Statement
=>
2389 Id
: constant Entity_Id
:= Get_Function_Id
(N
);
2394 Formal
:= First_Formal
(Id
);
2395 Actual
:= First_Actual
(N
);
2396 while Present
(Actual
) and then Present
(Formal
) loop
2397 if Ekind_In
(Formal
, E_Out_Parameter
,
2400 Collect_Identifiers
(Actual
);
2403 Next_Formal
(Formal
);
2404 Next_Actual
(Actual
);
2409 N_Extension_Aggregate
=>
2413 Comp_Expr
: Node_Id
;
2416 -- Handle the N_Others_Choice of array aggregates with static
2417 -- bounds. There is no need to perform this analysis in
2418 -- aggregates without static bounds since we cannot evaluate
2419 -- if the N_Others_Choice covers several elements. There is
2420 -- no need to handle the N_Others choice of record aggregates
2421 -- since at this stage it has been already expanded by
2422 -- Resolve_Record_Aggregate.
2424 if Is_Array_Type
(Etype
(N
))
2425 and then Nkind
(N
) = N_Aggregate
2426 and then Present
(Aggregate_Bounds
(N
))
2427 and then Compile_Time_Known_Bounds
(Etype
(N
))
2428 and then Expr_Value
(High_Bound
(Aggregate_Bounds
(N
)))
2430 Expr_Value
(Low_Bound
(Aggregate_Bounds
(N
)))
2433 Count_Components
: Uint
:= Uint_0
;
2434 Num_Components
: Uint
;
2435 Others_Assoc
: Node_Id
;
2436 Others_Choice
: Node_Id
:= Empty
;
2437 Others_Box_Present
: Boolean := False;
2440 -- Count positional associations
2442 if Present
(Expressions
(N
)) then
2443 Comp_Expr
:= First
(Expressions
(N
));
2444 while Present
(Comp_Expr
) loop
2445 Count_Components
:= Count_Components
+ 1;
2450 -- Count the rest of elements and locate the N_Others
2453 Assoc
:= First
(Component_Associations
(N
));
2454 while Present
(Assoc
) loop
2455 Choice
:= First
(Choices
(Assoc
));
2456 while Present
(Choice
) loop
2457 if Nkind
(Choice
) = N_Others_Choice
then
2458 Others_Assoc
:= Assoc
;
2459 Others_Choice
:= Choice
;
2460 Others_Box_Present
:= Box_Present
(Assoc
);
2462 -- Count several components
2464 elsif Nkind_In
(Choice
, N_Range
,
2465 N_Subtype_Indication
)
2466 or else (Is_Entity_Name
(Choice
)
2467 and then Is_Type
(Entity
(Choice
)))
2472 Get_Index_Bounds
(Choice
, L
, H
);
2474 (Compile_Time_Known_Value
(L
)
2475 and then Compile_Time_Known_Value
(H
));
2478 + Expr_Value
(H
) - Expr_Value
(L
) + 1;
2481 -- Count single component. No other case available
2482 -- since we are handling an aggregate with static
2486 pragma Assert
(Is_OK_Static_Expression
(Choice
)
2487 or else Nkind
(Choice
) = N_Identifier
2488 or else Nkind
(Choice
) = N_Integer_Literal
);
2490 Count_Components
:= Count_Components
+ 1;
2500 Expr_Value
(High_Bound
(Aggregate_Bounds
(N
))) -
2501 Expr_Value
(Low_Bound
(Aggregate_Bounds
(N
))) + 1;
2503 pragma Assert
(Count_Components
<= Num_Components
);
2505 -- Handle the N_Others choice if it covers several
2508 if Present
(Others_Choice
)
2509 and then (Num_Components
- Count_Components
) > 1
2511 if not Others_Box_Present
then
2513 -- At this stage, if expansion is active, the
2514 -- expression of the others choice has not been
2515 -- analyzed. Hence we generate a duplicate and
2516 -- we analyze it silently to have available the
2517 -- minimum decoration required to collect the
2520 if not Expander_Active
then
2521 Comp_Expr
:= Expression
(Others_Assoc
);
2524 New_Copy_Tree
(Expression
(Others_Assoc
));
2525 Preanalyze_Without_Errors
(Comp_Expr
);
2528 Collect_Identifiers
(Comp_Expr
);
2530 if Writable_Actuals_List
/= No_Elist
then
2532 -- As suggested by Robert, at current stage we
2533 -- report occurrences of this case as warnings.
2536 ("writable function parameter may affect "
2537 & "value in other component because order "
2538 & "of evaluation is unspecified??",
2539 Node
(First_Elmt
(Writable_Actuals_List
)));
2546 -- Handle ancestor part of extension aggregates
2548 if Nkind
(N
) = N_Extension_Aggregate
then
2549 Collect_Identifiers
(Ancestor_Part
(N
));
2552 -- Handle positional associations
2554 if Present
(Expressions
(N
)) then
2555 Comp_Expr
:= First
(Expressions
(N
));
2556 while Present
(Comp_Expr
) loop
2557 if not Is_OK_Static_Expression
(Comp_Expr
) then
2558 Collect_Identifiers
(Comp_Expr
);
2565 -- Handle discrete associations
2567 if Present
(Component_Associations
(N
)) then
2568 Assoc
:= First
(Component_Associations
(N
));
2569 while Present
(Assoc
) loop
2571 if not Box_Present
(Assoc
) then
2572 Choice
:= First
(Choices
(Assoc
));
2573 while Present
(Choice
) loop
2575 -- For now we skip discriminants since it requires
2576 -- performing the analysis in two phases: first one
2577 -- analyzing discriminants and second one analyzing
2578 -- the rest of components since discriminants are
2579 -- evaluated prior to components: too much extra
2580 -- work to detect a corner case???
2582 if Nkind
(Choice
) in N_Has_Entity
2583 and then Present
(Entity
(Choice
))
2584 and then Ekind
(Entity
(Choice
)) = E_Discriminant
2588 elsif Box_Present
(Assoc
) then
2592 if not Analyzed
(Expression
(Assoc
)) then
2594 New_Copy_Tree
(Expression
(Assoc
));
2595 Set_Parent
(Comp_Expr
, Parent
(N
));
2596 Preanalyze_Without_Errors
(Comp_Expr
);
2598 Comp_Expr
:= Expression
(Assoc
);
2601 Collect_Identifiers
(Comp_Expr
);
2617 -- No further action needed if we already reported an error
2619 if Present
(Error_Node
) then
2623 -- Check if some writable argument of a function is referenced
2625 if Writable_Actuals_List
/= No_Elist
2626 and then Identifiers_List
/= No_Elist
2633 Elmt_1
:= First_Elmt
(Writable_Actuals_List
);
2634 while Present
(Elmt_1
) loop
2635 Elmt_2
:= First_Elmt
(Identifiers_List
);
2636 while Present
(Elmt_2
) loop
2637 if Entity
(Node
(Elmt_1
)) = Entity
(Node
(Elmt_2
)) then
2638 case Nkind
(Parent
(Node
(Elmt_2
))) is
2640 N_Component_Association |
2641 N_Component_Declaration
=>
2643 ("value may be affected by call in other "
2644 & "component because they are evaluated "
2645 & "in unspecified order",
2648 when N_In | N_Not_In
=>
2650 ("value may be affected by call in other "
2651 & "alternative because they are evaluated "
2652 & "in unspecified order",
2657 ("value of actual may be affected by call in "
2658 & "other actual because they are evaluated "
2659 & "in unspecified order",
2671 end Check_Function_Writable_Actuals
;
2673 ----------------------------
2674 -- Check_Ghost_Completion --
2675 ----------------------------
2677 procedure Check_Ghost_Completion
2678 (Partial_View
: Entity_Id
;
2679 Full_View
: Entity_Id
)
2681 Policy
: constant Name_Id
:= Policy_In_Effect
(Name_Ghost
);
2684 -- The Ghost policy in effect at the point of declaration and at the
2685 -- point of completion must match (SPARK RM 6.9(15)).
2687 if Is_Checked_Ghost_Entity
(Partial_View
)
2688 and then Policy
= Name_Ignore
2690 Error_Msg_Sloc
:= Sloc
(Full_View
);
2692 Error_Msg_N
("incompatible ghost policies in effect", Partial_View
);
2693 Error_Msg_N
("\& declared with ghost policy Check", Partial_View
);
2694 Error_Msg_N
("\& completed # with ghost policy Ignore", Partial_View
);
2696 elsif Is_Ignored_Ghost_Entity
(Partial_View
)
2697 and then Policy
= Name_Check
2699 Error_Msg_Sloc
:= Sloc
(Full_View
);
2701 Error_Msg_N
("incompatible ghost policies in effect", Partial_View
);
2702 Error_Msg_N
("\& declared with ghost policy Ignore", Partial_View
);
2703 Error_Msg_N
("\& completed # with ghost policy Check", Partial_View
);
2705 end Check_Ghost_Completion
;
2707 ----------------------------
2708 -- Check_Ghost_Derivation --
2709 ----------------------------
2711 procedure Check_Ghost_Derivation
(Typ
: Entity_Id
) is
2712 Parent_Typ
: constant Entity_Id
:= Etype
(Typ
);
2714 Iface_Elmt
: Elmt_Id
;
2717 -- Allow untagged derivations from predefined types such as Integer as
2718 -- those are not Ghost by definition.
2720 if Is_Scalar_Type
(Typ
) and then Parent_Typ
= Base_Type
(Typ
) then
2723 -- The parent type of a Ghost type extension must be Ghost
2725 elsif not Is_Ghost_Entity
(Parent_Typ
) then
2726 Error_Msg_N
("type extension & cannot be ghost", Typ
);
2727 Error_Msg_NE
("\parent type & is not ghost", Typ
, Parent_Typ
);
2731 -- All progenitors (if any) must be Ghost as well
2733 if Is_Tagged_Type
(Typ
) and then Present
(Interfaces
(Typ
)) then
2734 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
2735 while Present
(Iface_Elmt
) loop
2736 Iface
:= Node
(Iface_Elmt
);
2738 if not Is_Ghost_Entity
(Iface
) then
2739 Error_Msg_N
("type extension & cannot be ghost", Typ
);
2740 Error_Msg_NE
("\interface type & is not ghost", Typ
, Iface
);
2744 Next_Elmt
(Iface_Elmt
);
2747 end Check_Ghost_Derivation
;
2749 --------------------------------
2750 -- Check_Implicit_Dereference --
2751 --------------------------------
2753 procedure Check_Implicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
2759 if Nkind
(N
) = N_Indexed_Component
2760 and then Present
(Generalized_Indexing
(N
))
2762 Nam
:= Generalized_Indexing
(N
);
2767 if Ada_Version
< Ada_2012
2768 or else not Has_Implicit_Dereference
(Base_Type
(Typ
))
2772 elsif not Comes_From_Source
(N
)
2773 and then Nkind
(N
) /= N_Indexed_Component
2777 elsif Is_Entity_Name
(Nam
) and then Is_Type
(Entity
(Nam
)) then
2781 Disc
:= First_Discriminant
(Typ
);
2782 while Present
(Disc
) loop
2783 if Has_Implicit_Dereference
(Disc
) then
2784 Desig
:= Designated_Type
(Etype
(Disc
));
2785 Add_One_Interp
(Nam
, Disc
, Desig
);
2787 -- If the node is a generalized indexing, add interpretation
2788 -- to that node as well, for subsequent resolution.
2790 if Nkind
(N
) = N_Indexed_Component
then
2791 Add_One_Interp
(N
, Disc
, Desig
);
2794 -- If the operation comes from a generic unit and the context
2795 -- is a selected component, the selector name may be global
2796 -- and set in the instance already. Remove the entity to
2797 -- force resolution of the selected component, and the
2798 -- generation of an explicit dereference if needed.
2801 and then Nkind
(Parent
(Nam
)) = N_Selected_Component
2803 Set_Entity
(Selector_Name
(Parent
(Nam
)), Empty
);
2809 Next_Discriminant
(Disc
);
2812 end Check_Implicit_Dereference
;
2814 ----------------------------------
2815 -- Check_Internal_Protected_Use --
2816 ----------------------------------
2818 procedure Check_Internal_Protected_Use
(N
: Node_Id
; Nam
: Entity_Id
) is
2824 while Present
(S
) loop
2825 if S
= Standard_Standard
then
2828 elsif Ekind
(S
) = E_Function
2829 and then Ekind
(Scope
(S
)) = E_Protected_Type
2838 if Scope
(Nam
) = Prot
and then Ekind
(Nam
) /= E_Function
then
2840 -- An indirect function call (e.g. a callback within a protected
2841 -- function body) is not statically illegal. If the access type is
2842 -- anonymous and is the type of an access parameter, the scope of Nam
2843 -- will be the protected type, but it is not a protected operation.
2845 if Ekind
(Nam
) = E_Subprogram_Type
2847 Nkind
(Associated_Node_For_Itype
(Nam
)) = N_Function_Specification
2851 elsif Nkind
(N
) = N_Subprogram_Renaming_Declaration
then
2853 ("within protected function cannot use protected "
2854 & "procedure in renaming or as generic actual", N
);
2856 elsif Nkind
(N
) = N_Attribute_Reference
then
2858 ("within protected function cannot take access of "
2859 & " protected procedure", N
);
2863 ("within protected function, protected object is constant", N
);
2865 ("\cannot call operation that may modify it", N
);
2868 end Check_Internal_Protected_Use
;
2870 ---------------------------------------
2871 -- Check_Later_Vs_Basic_Declarations --
2872 ---------------------------------------
2874 procedure Check_Later_Vs_Basic_Declarations
2876 During_Parsing
: Boolean)
2878 Body_Sloc
: Source_Ptr
;
2881 function Is_Later_Declarative_Item
(Decl
: Node_Id
) return Boolean;
2882 -- Return whether Decl is considered as a declarative item.
2883 -- When During_Parsing is True, the semantics of Ada 83 is followed.
2884 -- When During_Parsing is False, the semantics of SPARK is followed.
2886 -------------------------------
2887 -- Is_Later_Declarative_Item --
2888 -------------------------------
2890 function Is_Later_Declarative_Item
(Decl
: Node_Id
) return Boolean is
2892 if Nkind
(Decl
) in N_Later_Decl_Item
then
2895 elsif Nkind
(Decl
) = N_Pragma
then
2898 elsif During_Parsing
then
2901 -- In SPARK, a package declaration is not considered as a later
2902 -- declarative item.
2904 elsif Nkind
(Decl
) = N_Package_Declaration
then
2907 -- In SPARK, a renaming is considered as a later declarative item
2909 elsif Nkind
(Decl
) in N_Renaming_Declaration
then
2915 end Is_Later_Declarative_Item
;
2917 -- Start of Check_Later_Vs_Basic_Declarations
2920 Decl
:= First
(Decls
);
2922 -- Loop through sequence of basic declarative items
2924 Outer
: while Present
(Decl
) loop
2925 if not Nkind_In
(Decl
, N_Subprogram_Body
, N_Package_Body
, N_Task_Body
)
2926 and then Nkind
(Decl
) not in N_Body_Stub
2930 -- Once a body is encountered, we only allow later declarative
2931 -- items. The inner loop checks the rest of the list.
2934 Body_Sloc
:= Sloc
(Decl
);
2936 Inner
: while Present
(Decl
) loop
2937 if not Is_Later_Declarative_Item
(Decl
) then
2938 if During_Parsing
then
2939 if Ada_Version
= Ada_83
then
2940 Error_Msg_Sloc
:= Body_Sloc
;
2942 ("(Ada 83) decl cannot appear after body#", Decl
);
2945 Error_Msg_Sloc
:= Body_Sloc
;
2946 Check_SPARK_05_Restriction
2947 ("decl cannot appear after body#", Decl
);
2955 end Check_Later_Vs_Basic_Declarations
;
2957 -------------------------
2958 -- Check_Nested_Access --
2959 -------------------------
2961 procedure Check_Nested_Access
(Ent
: Entity_Id
) is
2962 Scop
: constant Entity_Id
:= Current_Scope
;
2963 Current_Subp
: Entity_Id
;
2964 Enclosing
: Entity_Id
;
2967 -- Currently only enabled for VM back-ends for efficiency, should we
2968 -- enable it more systematically ???
2970 -- Check for Is_Imported needs commenting below ???
2972 if VM_Target
/= No_VM
2973 and then Ekind_In
(Ent
, E_Variable
, E_Constant
, E_Loop_Parameter
)
2974 and then Scope
(Ent
) /= Empty
2975 and then not Is_Library_Level_Entity
(Ent
)
2976 and then not Is_Imported
(Ent
)
2978 if Is_Subprogram
(Scop
)
2979 or else Is_Generic_Subprogram
(Scop
)
2980 or else Is_Entry
(Scop
)
2982 Current_Subp
:= Scop
;
2984 Current_Subp
:= Current_Subprogram
;
2987 Enclosing
:= Enclosing_Subprogram
(Ent
);
2989 if Enclosing
/= Empty
and then Enclosing
/= Current_Subp
then
2990 Set_Has_Up_Level_Access
(Ent
, True);
2993 end Check_Nested_Access
;
2995 ---------------------------
2996 -- Check_No_Hidden_State --
2997 ---------------------------
2999 procedure Check_No_Hidden_State
(Id
: Entity_Id
) is
3000 function Has_Null_Abstract_State
(Pkg
: Entity_Id
) return Boolean;
3001 -- Determine whether the entity of a package denoted by Pkg has a null
3004 -----------------------------
3005 -- Has_Null_Abstract_State --
3006 -----------------------------
3008 function Has_Null_Abstract_State
(Pkg
: Entity_Id
) return Boolean is
3009 States
: constant Elist_Id
:= Abstract_States
(Pkg
);
3012 -- Check first available state of related package. A null abstract
3013 -- state always appears as the sole element of the state list.
3017 and then Is_Null_State
(Node
(First_Elmt
(States
)));
3018 end Has_Null_Abstract_State
;
3022 Context
: Entity_Id
:= Empty
;
3023 Not_Visible
: Boolean := False;
3026 -- Start of processing for Check_No_Hidden_State
3029 pragma Assert
(Ekind_In
(Id
, E_Abstract_State
, E_Variable
));
3031 -- Find the proper context where the object or state appears
3034 while Present
(Scop
) loop
3037 -- Keep track of the context's visibility
3039 Not_Visible
:= Not_Visible
or else In_Private_Part
(Context
);
3041 -- Prevent the search from going too far
3043 if Context
= Standard_Standard
then
3046 -- Objects and states that appear immediately within a subprogram or
3047 -- inside a construct nested within a subprogram do not introduce a
3048 -- hidden state. They behave as local variable declarations.
3050 elsif Is_Subprogram
(Context
) then
3053 -- When examining a package body, use the entity of the spec as it
3054 -- carries the abstract state declarations.
3056 elsif Ekind
(Context
) = E_Package_Body
then
3057 Context
:= Spec_Entity
(Context
);
3060 -- Stop the traversal when a package subject to a null abstract state
3063 if Ekind_In
(Context
, E_Generic_Package
, E_Package
)
3064 and then Has_Null_Abstract_State
(Context
)
3069 Scop
:= Scope
(Scop
);
3072 -- At this point we know that there is at least one package with a null
3073 -- abstract state in visibility. Emit an error message unconditionally
3074 -- if the entity being processed is a state because the placement of the
3075 -- related package is irrelevant. This is not the case for objects as
3076 -- the intermediate context matters.
3078 if Present
(Context
)
3079 and then (Ekind
(Id
) = E_Abstract_State
or else Not_Visible
)
3081 Error_Msg_N
("cannot introduce hidden state &", Id
);
3082 Error_Msg_NE
("\package & has null abstract state", Id
, Context
);
3084 end Check_No_Hidden_State
;
3086 ------------------------------------------
3087 -- Check_Potentially_Blocking_Operation --
3088 ------------------------------------------
3090 procedure Check_Potentially_Blocking_Operation
(N
: Node_Id
) is
3094 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3095 -- When pragma Detect_Blocking is active, the run time will raise
3096 -- Program_Error. Here we only issue a warning, since we generally
3097 -- support the use of potentially blocking operations in the absence
3100 -- Indirect blocking through a subprogram call cannot be diagnosed
3101 -- statically without interprocedural analysis, so we do not attempt
3104 S
:= Scope
(Current_Scope
);
3105 while Present
(S
) and then S
/= Standard_Standard
loop
3106 if Is_Protected_Type
(S
) then
3108 ("potentially blocking operation in protected operation??", N
);
3114 end Check_Potentially_Blocking_Operation
;
3116 ---------------------------------
3117 -- Check_Result_And_Post_State --
3118 ---------------------------------
3120 procedure Check_Result_And_Post_State
3122 Result_Seen
: in out Boolean)
3124 procedure Check_Expression
(Expr
: Node_Id
);
3125 -- Perform the 'Result and post-state checks on a given expression
3127 function Is_Function_Result
(N
: Node_Id
) return Traverse_Result
;
3128 -- Attempt to find attribute 'Result in a subtree denoted by N
3130 function Is_Trivial_Boolean
(N
: Node_Id
) return Boolean;
3131 -- Determine whether source node N denotes "True" or "False"
3133 function Mentions_Post_State
(N
: Node_Id
) return Boolean;
3134 -- Determine whether a subtree denoted by N mentions any construct that
3135 -- denotes a post-state.
3137 procedure Check_Function_Result
is
3138 new Traverse_Proc
(Is_Function_Result
);
3140 ----------------------
3141 -- Check_Expression --
3142 ----------------------
3144 procedure Check_Expression
(Expr
: Node_Id
) is
3146 if not Is_Trivial_Boolean
(Expr
) then
3147 Check_Function_Result
(Expr
);
3149 if not Mentions_Post_State
(Expr
) then
3150 if Pragma_Name
(Prag
) = Name_Contract_Cases
then
3152 ("contract case refers only to pre-state?T?", Expr
);
3154 elsif Pragma_Name
(Prag
) = Name_Refined_Post
then
3156 ("refined postcondition refers only to pre-state?T?",
3161 ("postcondition refers only to pre-state?T?", Prag
);
3165 end Check_Expression
;
3167 ------------------------
3168 -- Is_Function_Result --
3169 ------------------------
3171 function Is_Function_Result
(N
: Node_Id
) return Traverse_Result
is
3173 if Is_Attribute_Result
(N
) then
3174 Result_Seen
:= True;
3177 -- Continue the traversal
3182 end Is_Function_Result
;
3184 ------------------------
3185 -- Is_Trivial_Boolean --
3186 ------------------------
3188 function Is_Trivial_Boolean
(N
: Node_Id
) return Boolean is
3191 Comes_From_Source
(N
)
3192 and then Is_Entity_Name
(N
)
3193 and then (Entity
(N
) = Standard_True
3195 Entity
(N
) = Standard_False
);
3196 end Is_Trivial_Boolean
;
3198 -------------------------
3199 -- Mentions_Post_State --
3200 -------------------------
3202 function Mentions_Post_State
(N
: Node_Id
) return Boolean is
3203 Post_State_Seen
: Boolean := False;
3205 function Is_Post_State
(N
: Node_Id
) return Traverse_Result
;
3206 -- Attempt to find a construct that denotes a post-state. If this is
3207 -- the case, set flag Post_State_Seen.
3213 function Is_Post_State
(N
: Node_Id
) return Traverse_Result
is
3217 if Nkind_In
(N
, N_Explicit_Dereference
, N_Function_Call
) then
3218 Post_State_Seen
:= True;
3221 elsif Nkind_In
(N
, N_Expanded_Name
, N_Identifier
) then
3224 -- The entity may be modifiable through an implicit dereference
3227 or else Ekind
(Ent
) in Assignable_Kind
3228 or else (Is_Access_Type
(Etype
(Ent
))
3229 and then Nkind
(Parent
(N
)) = N_Selected_Component
)
3231 Post_State_Seen
:= True;
3235 elsif Nkind
(N
) = N_Attribute_Reference
then
3236 if Attribute_Name
(N
) = Name_Old
then
3239 elsif Attribute_Name
(N
) = Name_Result
then
3240 Post_State_Seen
:= True;
3248 procedure Find_Post_State
is new Traverse_Proc
(Is_Post_State
);
3250 -- Start of processing for Mentions_Post_State
3253 Find_Post_State
(N
);
3255 return Post_State_Seen
;
3256 end Mentions_Post_State
;
3260 Expr
: constant Node_Id
:=
3261 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(Prag
)));
3262 Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
3265 -- Start of processing for Check_Result_And_Post_State
3268 -- Examine all consequences
3270 if Nam
= Name_Contract_Cases
then
3271 CCase
:= First
(Component_Associations
(Expr
));
3272 while Present
(CCase
) loop
3273 Check_Expression
(Expression
(CCase
));
3278 -- Examine the expression of a postcondition
3280 else pragma Assert
(Nam_In
(Nam
, Name_Postcondition
, Name_Refined_Post
));
3281 Check_Expression
(Expr
);
3283 end Check_Result_And_Post_State
;
3285 ------------------------------
3286 -- Check_Unprotected_Access --
3287 ------------------------------
3289 procedure Check_Unprotected_Access
3293 Cont_Encl_Typ
: Entity_Id
;
3294 Pref_Encl_Typ
: Entity_Id
;
3296 function Enclosing_Protected_Type
(Obj
: Node_Id
) return Entity_Id
;
3297 -- Check whether Obj is a private component of a protected object.
3298 -- Return the protected type where the component resides, Empty
3301 function Is_Public_Operation
return Boolean;
3302 -- Verify that the enclosing operation is callable from outside the
3303 -- protected object, to minimize false positives.
3305 ------------------------------
3306 -- Enclosing_Protected_Type --
3307 ------------------------------
3309 function Enclosing_Protected_Type
(Obj
: Node_Id
) return Entity_Id
is
3311 if Is_Entity_Name
(Obj
) then
3313 Ent
: Entity_Id
:= Entity
(Obj
);
3316 -- The object can be a renaming of a private component, use
3317 -- the original record component.
3319 if Is_Prival
(Ent
) then
3320 Ent
:= Prival_Link
(Ent
);
3323 if Is_Protected_Type
(Scope
(Ent
)) then
3329 -- For indexed and selected components, recursively check the prefix
3331 if Nkind_In
(Obj
, N_Indexed_Component
, N_Selected_Component
) then
3332 return Enclosing_Protected_Type
(Prefix
(Obj
));
3334 -- The object does not denote a protected component
3339 end Enclosing_Protected_Type
;
3341 -------------------------
3342 -- Is_Public_Operation --
3343 -------------------------
3345 function Is_Public_Operation
return Boolean is
3351 while Present
(S
) and then S
/= Pref_Encl_Typ
loop
3352 if Scope
(S
) = Pref_Encl_Typ
then
3353 E
:= First_Entity
(Pref_Encl_Typ
);
3355 and then E
/= First_Private_Entity
(Pref_Encl_Typ
)
3369 end Is_Public_Operation
;
3371 -- Start of processing for Check_Unprotected_Access
3374 if Nkind
(Expr
) = N_Attribute_Reference
3375 and then Attribute_Name
(Expr
) = Name_Unchecked_Access
3377 Cont_Encl_Typ
:= Enclosing_Protected_Type
(Context
);
3378 Pref_Encl_Typ
:= Enclosing_Protected_Type
(Prefix
(Expr
));
3380 -- Check whether we are trying to export a protected component to a
3381 -- context with an equal or lower access level.
3383 if Present
(Pref_Encl_Typ
)
3384 and then No
(Cont_Encl_Typ
)
3385 and then Is_Public_Operation
3386 and then Scope_Depth
(Pref_Encl_Typ
) >=
3387 Object_Access_Level
(Context
)
3390 ("??possible unprotected access to protected data", Expr
);
3393 end Check_Unprotected_Access
;
3395 ------------------------
3396 -- Collect_Interfaces --
3397 ------------------------
3399 procedure Collect_Interfaces
3401 Ifaces_List
: out Elist_Id
;
3402 Exclude_Parents
: Boolean := False;
3403 Use_Full_View
: Boolean := True)
3405 procedure Collect
(Typ
: Entity_Id
);
3406 -- Subsidiary subprogram used to traverse the whole list
3407 -- of directly and indirectly implemented interfaces
3413 procedure Collect
(Typ
: Entity_Id
) is
3414 Ancestor
: Entity_Id
;
3422 -- Handle private types
3425 and then Is_Private_Type
(Typ
)
3426 and then Present
(Full_View
(Typ
))
3428 Full_T
:= Full_View
(Typ
);
3431 -- Include the ancestor if we are generating the whole list of
3432 -- abstract interfaces.
3434 if Etype
(Full_T
) /= Typ
3436 -- Protect the frontend against wrong sources. For example:
3439 -- type A is tagged null record;
3440 -- type B is new A with private;
3441 -- type C is new A with private;
3443 -- type B is new C with null record;
3444 -- type C is new B with null record;
3447 and then Etype
(Full_T
) /= T
3449 Ancestor
:= Etype
(Full_T
);
3452 if Is_Interface
(Ancestor
) and then not Exclude_Parents
then
3453 Append_Unique_Elmt
(Ancestor
, Ifaces_List
);
3457 -- Traverse the graph of ancestor interfaces
3459 if Is_Non_Empty_List
(Abstract_Interface_List
(Full_T
)) then
3460 Id
:= First
(Abstract_Interface_List
(Full_T
));
3461 while Present
(Id
) loop
3462 Iface
:= Etype
(Id
);
3464 -- Protect against wrong uses. For example:
3465 -- type I is interface;
3466 -- type O is tagged null record;
3467 -- type Wrong is new I and O with null record; -- ERROR
3469 if Is_Interface
(Iface
) then
3471 and then Etype
(T
) /= T
3472 and then Interface_Present_In_Ancestor
(Etype
(T
), Iface
)
3477 Append_Unique_Elmt
(Iface
, Ifaces_List
);
3486 -- Start of processing for Collect_Interfaces
3489 pragma Assert
(Is_Tagged_Type
(T
) or else Is_Concurrent_Type
(T
));
3490 Ifaces_List
:= New_Elmt_List
;
3492 end Collect_Interfaces
;
3494 ----------------------------------
3495 -- Collect_Interface_Components --
3496 ----------------------------------
3498 procedure Collect_Interface_Components
3499 (Tagged_Type
: Entity_Id
;
3500 Components_List
: out Elist_Id
)
3502 procedure Collect
(Typ
: Entity_Id
);
3503 -- Subsidiary subprogram used to climb to the parents
3509 procedure Collect
(Typ
: Entity_Id
) is
3510 Tag_Comp
: Entity_Id
;
3511 Parent_Typ
: Entity_Id
;
3514 -- Handle private types
3516 if Present
(Full_View
(Etype
(Typ
))) then
3517 Parent_Typ
:= Full_View
(Etype
(Typ
));
3519 Parent_Typ
:= Etype
(Typ
);
3522 if Parent_Typ
/= Typ
3524 -- Protect the frontend against wrong sources. For example:
3527 -- type A is tagged null record;
3528 -- type B is new A with private;
3529 -- type C is new A with private;
3531 -- type B is new C with null record;
3532 -- type C is new B with null record;
3535 and then Parent_Typ
/= Tagged_Type
3537 Collect
(Parent_Typ
);
3540 -- Collect the components containing tags of secondary dispatch
3543 Tag_Comp
:= Next_Tag_Component
(First_Tag_Component
(Typ
));
3544 while Present
(Tag_Comp
) loop
3545 pragma Assert
(Present
(Related_Type
(Tag_Comp
)));
3546 Append_Elmt
(Tag_Comp
, Components_List
);
3548 Tag_Comp
:= Next_Tag_Component
(Tag_Comp
);
3552 -- Start of processing for Collect_Interface_Components
3555 pragma Assert
(Ekind
(Tagged_Type
) = E_Record_Type
3556 and then Is_Tagged_Type
(Tagged_Type
));
3558 Components_List
:= New_Elmt_List
;
3559 Collect
(Tagged_Type
);
3560 end Collect_Interface_Components
;
3562 -----------------------------
3563 -- Collect_Interfaces_Info --
3564 -----------------------------
3566 procedure Collect_Interfaces_Info
3568 Ifaces_List
: out Elist_Id
;
3569 Components_List
: out Elist_Id
;
3570 Tags_List
: out Elist_Id
)
3572 Comps_List
: Elist_Id
;
3573 Comp_Elmt
: Elmt_Id
;
3574 Comp_Iface
: Entity_Id
;
3575 Iface_Elmt
: Elmt_Id
;
3578 function Search_Tag
(Iface
: Entity_Id
) return Entity_Id
;
3579 -- Search for the secondary tag associated with the interface type
3580 -- Iface that is implemented by T.
3586 function Search_Tag
(Iface
: Entity_Id
) return Entity_Id
is
3589 if not Is_CPP_Class
(T
) then
3590 ADT
:= Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(T
))));
3592 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(T
)));
3596 and then Is_Tag
(Node
(ADT
))
3597 and then Related_Type
(Node
(ADT
)) /= Iface
3599 -- Skip secondary dispatch table referencing thunks to user
3600 -- defined primitives covered by this interface.
3602 pragma Assert
(Has_Suffix
(Node
(ADT
), 'P'));
3605 -- Skip secondary dispatch tables of Ada types
3607 if not Is_CPP_Class
(T
) then
3609 -- Skip secondary dispatch table referencing thunks to
3610 -- predefined primitives.
3612 pragma Assert
(Has_Suffix
(Node
(ADT
), 'Y'));
3615 -- Skip secondary dispatch table referencing user-defined
3616 -- primitives covered by this interface.
3618 pragma Assert
(Has_Suffix
(Node
(ADT
), 'D'));
3621 -- Skip secondary dispatch table referencing predefined
3624 pragma Assert
(Has_Suffix
(Node
(ADT
), 'Z'));
3629 pragma Assert
(Is_Tag
(Node
(ADT
)));
3633 -- Start of processing for Collect_Interfaces_Info
3636 Collect_Interfaces
(T
, Ifaces_List
);
3637 Collect_Interface_Components
(T
, Comps_List
);
3639 -- Search for the record component and tag associated with each
3640 -- interface type of T.
3642 Components_List
:= New_Elmt_List
;
3643 Tags_List
:= New_Elmt_List
;
3645 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
3646 while Present
(Iface_Elmt
) loop
3647 Iface
:= Node
(Iface_Elmt
);
3649 -- Associate the primary tag component and the primary dispatch table
3650 -- with all the interfaces that are parents of T
3652 if Is_Ancestor
(Iface
, T
, Use_Full_View
=> True) then
3653 Append_Elmt
(First_Tag_Component
(T
), Components_List
);
3654 Append_Elmt
(Node
(First_Elmt
(Access_Disp_Table
(T
))), Tags_List
);
3656 -- Otherwise search for the tag component and secondary dispatch
3660 Comp_Elmt
:= First_Elmt
(Comps_List
);
3661 while Present
(Comp_Elmt
) loop
3662 Comp_Iface
:= Related_Type
(Node
(Comp_Elmt
));
3664 if Comp_Iface
= Iface
3665 or else Is_Ancestor
(Iface
, Comp_Iface
, Use_Full_View
=> True)
3667 Append_Elmt
(Node
(Comp_Elmt
), Components_List
);
3668 Append_Elmt
(Search_Tag
(Comp_Iface
), Tags_List
);
3672 Next_Elmt
(Comp_Elmt
);
3674 pragma Assert
(Present
(Comp_Elmt
));
3677 Next_Elmt
(Iface_Elmt
);
3679 end Collect_Interfaces_Info
;
3681 ---------------------
3682 -- Collect_Parents --
3683 ---------------------
3685 procedure Collect_Parents
3687 List
: out Elist_Id
;
3688 Use_Full_View
: Boolean := True)
3690 Current_Typ
: Entity_Id
:= T
;
3691 Parent_Typ
: Entity_Id
;
3694 List
:= New_Elmt_List
;
3696 -- No action if the if the type has no parents
3698 if T
= Etype
(T
) then
3703 Parent_Typ
:= Etype
(Current_Typ
);
3705 if Is_Private_Type
(Parent_Typ
)
3706 and then Present
(Full_View
(Parent_Typ
))
3707 and then Use_Full_View
3709 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
3712 Append_Elmt
(Parent_Typ
, List
);
3714 exit when Parent_Typ
= Current_Typ
;
3715 Current_Typ
:= Parent_Typ
;
3717 end Collect_Parents
;
3719 ----------------------------------
3720 -- Collect_Primitive_Operations --
3721 ----------------------------------
3723 function Collect_Primitive_Operations
(T
: Entity_Id
) return Elist_Id
is
3724 B_Type
: constant Entity_Id
:= Base_Type
(T
);
3725 B_Decl
: constant Node_Id
:= Original_Node
(Parent
(B_Type
));
3726 B_Scope
: Entity_Id
:= Scope
(B_Type
);
3730 Is_Type_In_Pkg
: Boolean;
3731 Formal_Derived
: Boolean := False;
3734 function Match
(E
: Entity_Id
) return Boolean;
3735 -- True if E's base type is B_Type, or E is of an anonymous access type
3736 -- and the base type of its designated type is B_Type.
3742 function Match
(E
: Entity_Id
) return Boolean is
3743 Etyp
: Entity_Id
:= Etype
(E
);
3746 if Ekind
(Etyp
) = E_Anonymous_Access_Type
then
3747 Etyp
:= Designated_Type
(Etyp
);
3750 -- In Ada 2012 a primitive operation may have a formal of an
3751 -- incomplete view of the parent type.
3753 return Base_Type
(Etyp
) = B_Type
3755 (Ada_Version
>= Ada_2012
3756 and then Ekind
(Etyp
) = E_Incomplete_Type
3757 and then Full_View
(Etyp
) = B_Type
);
3760 -- Start of processing for Collect_Primitive_Operations
3763 -- For tagged types, the primitive operations are collected as they
3764 -- are declared, and held in an explicit list which is simply returned.
3766 if Is_Tagged_Type
(B_Type
) then
3767 return Primitive_Operations
(B_Type
);
3769 -- An untagged generic type that is a derived type inherits the
3770 -- primitive operations of its parent type. Other formal types only
3771 -- have predefined operators, which are not explicitly represented.
3773 elsif Is_Generic_Type
(B_Type
) then
3774 if Nkind
(B_Decl
) = N_Formal_Type_Declaration
3775 and then Nkind
(Formal_Type_Definition
(B_Decl
)) =
3776 N_Formal_Derived_Type_Definition
3778 Formal_Derived
:= True;
3780 return New_Elmt_List
;
3784 Op_List
:= New_Elmt_List
;
3786 if B_Scope
= Standard_Standard
then
3787 if B_Type
= Standard_String
then
3788 Append_Elmt
(Standard_Op_Concat
, Op_List
);
3790 elsif B_Type
= Standard_Wide_String
then
3791 Append_Elmt
(Standard_Op_Concatw
, Op_List
);
3797 -- Locate the primitive subprograms of the type
3800 -- The primitive operations appear after the base type, except
3801 -- if the derivation happens within the private part of B_Scope
3802 -- and the type is a private type, in which case both the type
3803 -- and some primitive operations may appear before the base
3804 -- type, and the list of candidates starts after the type.
3806 if In_Open_Scopes
(B_Scope
)
3807 and then Scope
(T
) = B_Scope
3808 and then In_Private_Part
(B_Scope
)
3810 Id
:= Next_Entity
(T
);
3812 -- In Ada 2012, If the type has an incomplete partial view, there
3813 -- may be primitive operations declared before the full view, so
3814 -- we need to start scanning from the incomplete view, which is
3815 -- earlier on the entity chain.
3817 elsif Nkind
(Parent
(B_Type
)) = N_Full_Type_Declaration
3818 and then Present
(Incomplete_View
(Parent
(B_Type
)))
3820 Id
:= Defining_Entity
(Incomplete_View
(Parent
(B_Type
)));
3823 Id
:= Next_Entity
(B_Type
);
3826 -- Set flag if this is a type in a package spec
3829 Is_Package_Or_Generic_Package
(B_Scope
)
3831 Nkind
(Parent
(Declaration_Node
(First_Subtype
(T
)))) /=
3834 while Present
(Id
) loop
3836 -- Test whether the result type or any of the parameter types of
3837 -- each subprogram following the type match that type when the
3838 -- type is declared in a package spec, is a derived type, or the
3839 -- subprogram is marked as primitive. (The Is_Primitive test is
3840 -- needed to find primitives of nonderived types in declarative
3841 -- parts that happen to override the predefined "=" operator.)
3843 -- Note that generic formal subprograms are not considered to be
3844 -- primitive operations and thus are never inherited.
3846 if Is_Overloadable
(Id
)
3847 and then (Is_Type_In_Pkg
3848 or else Is_Derived_Type
(B_Type
)
3849 or else Is_Primitive
(Id
))
3850 and then Nkind
(Parent
(Parent
(Id
)))
3851 not in N_Formal_Subprogram_Declaration
3859 Formal
:= First_Formal
(Id
);
3860 while Present
(Formal
) loop
3861 if Match
(Formal
) then
3866 Next_Formal
(Formal
);
3870 -- For a formal derived type, the only primitives are the ones
3871 -- inherited from the parent type. Operations appearing in the
3872 -- package declaration are not primitive for it.
3875 and then (not Formal_Derived
or else Present
(Alias
(Id
)))
3877 -- In the special case of an equality operator aliased to
3878 -- an overriding dispatching equality belonging to the same
3879 -- type, we don't include it in the list of primitives.
3880 -- This avoids inheriting multiple equality operators when
3881 -- deriving from untagged private types whose full type is
3882 -- tagged, which can otherwise cause ambiguities. Note that
3883 -- this should only happen for this kind of untagged parent
3884 -- type, since normally dispatching operations are inherited
3885 -- using the type's Primitive_Operations list.
3887 if Chars
(Id
) = Name_Op_Eq
3888 and then Is_Dispatching_Operation
(Id
)
3889 and then Present
(Alias
(Id
))
3890 and then Present
(Overridden_Operation
(Alias
(Id
)))
3891 and then Base_Type
(Etype
(First_Entity
(Id
))) =
3892 Base_Type
(Etype
(First_Entity
(Alias
(Id
))))
3896 -- Include the subprogram in the list of primitives
3899 Append_Elmt
(Id
, Op_List
);
3906 -- For a type declared in System, some of its operations may
3907 -- appear in the target-specific extension to System.
3910 and then B_Scope
= RTU_Entity
(System
)
3911 and then Present_System_Aux
3913 B_Scope
:= System_Aux_Id
;
3914 Id
:= First_Entity
(System_Aux_Id
);
3920 end Collect_Primitive_Operations
;
3922 -----------------------------------
3923 -- Compile_Time_Constraint_Error --
3924 -----------------------------------
3926 function Compile_Time_Constraint_Error
3929 Ent
: Entity_Id
:= Empty
;
3930 Loc
: Source_Ptr
:= No_Location
;
3931 Warn
: Boolean := False) return Node_Id
3933 Msgc
: String (1 .. Msg
'Length + 3);
3934 -- Copy of message, with room for possible ?? or << and ! at end
3940 -- Start of processing for Compile_Time_Constraint_Error
3943 -- If this is a warning, convert it into an error if we are in code
3944 -- subject to SPARK_Mode being set ON.
3946 Error_Msg_Warn
:= SPARK_Mode
/= On
;
3948 -- A static constraint error in an instance body is not a fatal error.
3949 -- we choose to inhibit the message altogether, because there is no
3950 -- obvious node (for now) on which to post it. On the other hand the
3951 -- offending node must be replaced with a constraint_error in any case.
3953 -- No messages are generated if we already posted an error on this node
3955 if not Error_Posted
(N
) then
3956 if Loc
/= No_Location
then
3962 -- Copy message to Msgc, converting any ? in the message into
3963 -- < instead, so that we have an error in GNATprove mode.
3967 for J
in 1 .. Msgl
loop
3968 if Msg
(J
) = '?' and then (J
= 1 or else Msg
(J
) /= ''') then
3971 Msgc
(J
) := Msg
(J
);
3975 -- Message is a warning, even in Ada 95 case
3977 if Msg
(Msg
'Last) = '?' or else Msg
(Msg
'Last) = '<' then
3980 -- In Ada 83, all messages are warnings. In the private part and
3981 -- the body of an instance, constraint_checks are only warnings.
3982 -- We also make this a warning if the Warn parameter is set.
3985 or else (Ada_Version
= Ada_83
and then Comes_From_Source
(N
))
3993 elsif In_Instance_Not_Visible
then
4000 -- Otherwise we have a real error message (Ada 95 static case)
4001 -- and we make this an unconditional message. Note that in the
4002 -- warning case we do not make the message unconditional, it seems
4003 -- quite reasonable to delete messages like this (about exceptions
4004 -- that will be raised) in dead code.
4012 -- One more test, skip the warning if the related expression is
4013 -- statically unevaluated, since we don't want to warn about what
4014 -- will happen when something is evaluated if it never will be
4017 if not Is_Statically_Unevaluated
(N
) then
4018 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4020 if Present
(Ent
) then
4021 Error_Msg_NEL
(Msgc
(1 .. Msgl
), N
, Ent
, Eloc
);
4023 Error_Msg_NEL
(Msgc
(1 .. Msgl
), N
, Etype
(N
), Eloc
);
4028 -- Check whether the context is an Init_Proc
4030 if Inside_Init_Proc
then
4032 Conc_Typ
: constant Entity_Id
:=
4033 Corresponding_Concurrent_Type
4034 (Entity
(Parameter_Type
(First
4035 (Parameter_Specifications
4036 (Parent
(Current_Scope
))))));
4039 -- Don't complain if the corresponding concurrent type
4040 -- doesn't come from source (i.e. a single task/protected
4043 if Present
(Conc_Typ
)
4044 and then not Comes_From_Source
(Conc_Typ
)
4047 ("\& [<<", N
, Standard_Constraint_Error
, Eloc
);
4050 if GNATprove_Mode
then
4052 ("\& would have been raised for objects of this "
4053 & "type", N
, Standard_Constraint_Error
, Eloc
);
4056 ("\& will be raised for objects of this type??",
4057 N
, Standard_Constraint_Error
, Eloc
);
4063 Error_Msg_NEL
("\& [<<", N
, Standard_Constraint_Error
, Eloc
);
4067 Error_Msg
("\static expression fails Constraint_Check", Eloc
);
4068 Set_Error_Posted
(N
);
4074 end Compile_Time_Constraint_Error
;
4076 -----------------------
4077 -- Conditional_Delay --
4078 -----------------------
4080 procedure Conditional_Delay
(New_Ent
, Old_Ent
: Entity_Id
) is
4082 if Has_Delayed_Freeze
(Old_Ent
) and then not Is_Frozen
(Old_Ent
) then
4083 Set_Has_Delayed_Freeze
(New_Ent
);
4085 end Conditional_Delay
;
4087 ----------------------------
4088 -- Contains_Refined_State --
4089 ----------------------------
4091 function Contains_Refined_State
(Prag
: Node_Id
) return Boolean is
4092 function Has_State_In_Dependency
(List
: Node_Id
) return Boolean;
4093 -- Determine whether a dependency list mentions a state with a visible
4096 function Has_State_In_Global
(List
: Node_Id
) return Boolean;
4097 -- Determine whether a global list mentions a state with a visible
4100 function Is_Refined_State
(Item
: Node_Id
) return Boolean;
4101 -- Determine whether Item is a reference to an abstract state with a
4102 -- visible refinement.
4104 -----------------------------
4105 -- Has_State_In_Dependency --
4106 -----------------------------
4108 function Has_State_In_Dependency
(List
: Node_Id
) return Boolean is
4113 -- A null dependency list does not mention any states
4115 if Nkind
(List
) = N_Null
then
4118 -- Dependency clauses appear as component associations of an
4121 elsif Nkind
(List
) = N_Aggregate
4122 and then Present
(Component_Associations
(List
))
4124 Clause
:= First
(Component_Associations
(List
));
4125 while Present
(Clause
) loop
4127 -- Inspect the outputs of a dependency clause
4129 Output
:= First
(Choices
(Clause
));
4130 while Present
(Output
) loop
4131 if Is_Refined_State
(Output
) then
4138 -- Inspect the outputs of a dependency clause
4140 if Is_Refined_State
(Expression
(Clause
)) then
4147 -- If we get here, then none of the dependency clauses mention a
4148 -- state with visible refinement.
4152 -- An illegal pragma managed to sneak in
4155 raise Program_Error
;
4157 end Has_State_In_Dependency
;
4159 -------------------------
4160 -- Has_State_In_Global --
4161 -------------------------
4163 function Has_State_In_Global
(List
: Node_Id
) return Boolean is
4167 -- A null global list does not mention any states
4169 if Nkind
(List
) = N_Null
then
4172 -- Simple global list or moded global list declaration
4174 elsif Nkind
(List
) = N_Aggregate
then
4176 -- The declaration of a simple global list appear as a collection
4179 if Present
(Expressions
(List
)) then
4180 Item
:= First
(Expressions
(List
));
4181 while Present
(Item
) loop
4182 if Is_Refined_State
(Item
) then
4189 -- The declaration of a moded global list appears as a collection
4190 -- of component associations where individual choices denote
4194 Item
:= First
(Component_Associations
(List
));
4195 while Present
(Item
) loop
4196 if Has_State_In_Global
(Expression
(Item
)) then
4204 -- If we get here, then the simple/moded global list did not
4205 -- mention any states with a visible refinement.
4209 -- Single global item declaration
4211 elsif Is_Entity_Name
(List
) then
4212 return Is_Refined_State
(List
);
4214 -- An illegal pragma managed to sneak in
4217 raise Program_Error
;
4219 end Has_State_In_Global
;
4221 ----------------------
4222 -- Is_Refined_State --
4223 ----------------------
4225 function Is_Refined_State
(Item
: Node_Id
) return Boolean is
4227 Item_Id
: Entity_Id
;
4230 if Nkind
(Item
) = N_Null
then
4233 -- States cannot be subject to attribute 'Result. This case arises
4234 -- in dependency relations.
4236 elsif Nkind
(Item
) = N_Attribute_Reference
4237 and then Attribute_Name
(Item
) = Name_Result
4241 -- Multiple items appear as an aggregate. This case arises in
4242 -- dependency relations.
4244 elsif Nkind
(Item
) = N_Aggregate
4245 and then Present
(Expressions
(Item
))
4247 Elmt
:= First
(Expressions
(Item
));
4248 while Present
(Elmt
) loop
4249 if Is_Refined_State
(Elmt
) then
4256 -- If we get here, then none of the inputs or outputs reference a
4257 -- state with visible refinement.
4264 Item_Id
:= Entity_Of
(Item
);
4268 and then Ekind
(Item_Id
) = E_Abstract_State
4269 and then Has_Visible_Refinement
(Item_Id
);
4271 end Is_Refined_State
;
4275 Arg
: constant Node_Id
:=
4276 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(Prag
)));
4277 Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
4279 -- Start of processing for Contains_Refined_State
4282 if Nam
= Name_Depends
then
4283 return Has_State_In_Dependency
(Arg
);
4285 else pragma Assert
(Nam
= Name_Global
);
4286 return Has_State_In_Global
(Arg
);
4288 end Contains_Refined_State
;
4290 -------------------------
4291 -- Copy_Component_List --
4292 -------------------------
4294 function Copy_Component_List
4296 Loc
: Source_Ptr
) return List_Id
4299 Comps
: constant List_Id
:= New_List
;
4302 Comp
:= First_Component
(Underlying_Type
(R_Typ
));
4303 while Present
(Comp
) loop
4304 if Comes_From_Source
(Comp
) then
4306 Comp_Decl
: constant Node_Id
:= Declaration_Node
(Comp
);
4309 Make_Component_Declaration
(Loc
,
4310 Defining_Identifier
=>
4311 Make_Defining_Identifier
(Loc
, Chars
(Comp
)),
4312 Component_Definition
=>
4314 (Component_Definition
(Comp_Decl
), New_Sloc
=> Loc
)));
4318 Next_Component
(Comp
);
4322 end Copy_Component_List
;
4324 -------------------------
4325 -- Copy_Parameter_List --
4326 -------------------------
4328 function Copy_Parameter_List
(Subp_Id
: Entity_Id
) return List_Id
is
4329 Loc
: constant Source_Ptr
:= Sloc
(Subp_Id
);
4334 if No
(First_Formal
(Subp_Id
)) then
4338 Formal
:= First_Formal
(Subp_Id
);
4339 while Present
(Formal
) loop
4341 (Make_Parameter_Specification
(Loc
,
4342 Defining_Identifier
=>
4343 Make_Defining_Identifier
(Sloc
(Formal
),
4344 Chars
=> Chars
(Formal
)),
4345 In_Present
=> In_Present
(Parent
(Formal
)),
4346 Out_Present
=> Out_Present
(Parent
(Formal
)),
4348 New_Occurrence_Of
(Etype
(Formal
), Loc
),
4350 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
4353 Next_Formal
(Formal
);
4358 end Copy_Parameter_List
;
4360 --------------------------------
4361 -- Corresponding_Generic_Type --
4362 --------------------------------
4364 function Corresponding_Generic_Type
(T
: Entity_Id
) return Entity_Id
is
4370 if not Is_Generic_Actual_Type
(T
) then
4373 -- If the actual is the actual of an enclosing instance, resolution
4374 -- was correct in the generic.
4376 elsif Nkind
(Parent
(T
)) = N_Subtype_Declaration
4377 and then Is_Entity_Name
(Subtype_Indication
(Parent
(T
)))
4379 Is_Generic_Actual_Type
(Entity
(Subtype_Indication
(Parent
(T
))))
4386 if Is_Wrapper_Package
(Inst
) then
4387 Inst
:= Related_Instance
(Inst
);
4392 (Specification
(Unit_Declaration_Node
(Inst
)));
4394 -- Generic actual has the same name as the corresponding formal
4396 Typ
:= First_Entity
(Gen
);
4397 while Present
(Typ
) loop
4398 if Chars
(Typ
) = Chars
(T
) then
4407 end Corresponding_Generic_Type
;
4409 --------------------
4410 -- Current_Entity --
4411 --------------------
4413 -- The currently visible definition for a given identifier is the
4414 -- one most chained at the start of the visibility chain, i.e. the
4415 -- one that is referenced by the Node_Id value of the name of the
4416 -- given identifier.
4418 function Current_Entity
(N
: Node_Id
) return Entity_Id
is
4420 return Get_Name_Entity_Id
(Chars
(N
));
4423 -----------------------------
4424 -- Current_Entity_In_Scope --
4425 -----------------------------
4427 function Current_Entity_In_Scope
(N
: Node_Id
) return Entity_Id
is
4429 CS
: constant Entity_Id
:= Current_Scope
;
4431 Transient_Case
: constant Boolean := Scope_Is_Transient
;
4434 E
:= Get_Name_Entity_Id
(Chars
(N
));
4436 and then Scope
(E
) /= CS
4437 and then (not Transient_Case
or else Scope
(E
) /= Scope
(CS
))
4443 end Current_Entity_In_Scope
;
4449 function Current_Scope
return Entity_Id
is
4451 if Scope_Stack
.Last
= -1 then
4452 return Standard_Standard
;
4455 C
: constant Entity_Id
:=
4456 Scope_Stack
.Table
(Scope_Stack
.Last
).Entity
;
4461 return Standard_Standard
;
4467 ------------------------
4468 -- Current_Subprogram --
4469 ------------------------
4471 function Current_Subprogram
return Entity_Id
is
4472 Scop
: constant Entity_Id
:= Current_Scope
;
4474 if Is_Subprogram_Or_Generic_Subprogram
(Scop
) then
4477 return Enclosing_Subprogram
(Scop
);
4479 end Current_Subprogram
;
4481 ----------------------------------
4482 -- Deepest_Type_Access_Level --
4483 ----------------------------------
4485 function Deepest_Type_Access_Level
(Typ
: Entity_Id
) return Uint
is
4487 if Ekind
(Typ
) = E_Anonymous_Access_Type
4488 and then not Is_Local_Anonymous_Access
(Typ
)
4489 and then Nkind
(Associated_Node_For_Itype
(Typ
)) = N_Object_Declaration
4491 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
4495 Scope_Depth
(Enclosing_Dynamic_Scope
4496 (Defining_Identifier
4497 (Associated_Node_For_Itype
(Typ
))));
4499 -- For generic formal type, return Int'Last (infinite).
4500 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
4502 elsif Is_Generic_Type
(Root_Type
(Typ
)) then
4503 return UI_From_Int
(Int
'Last);
4506 return Type_Access_Level
(Typ
);
4508 end Deepest_Type_Access_Level
;
4510 ---------------------
4511 -- Defining_Entity --
4512 ---------------------
4514 function Defining_Entity
(N
: Node_Id
) return Entity_Id
is
4515 K
: constant Node_Kind
:= Nkind
(N
);
4516 Err
: Entity_Id
:= Empty
;
4521 N_Subprogram_Declaration |
4522 N_Abstract_Subprogram_Declaration |
4524 N_Package_Declaration |
4525 N_Subprogram_Renaming_Declaration |
4526 N_Subprogram_Body_Stub |
4527 N_Generic_Subprogram_Declaration |
4528 N_Generic_Package_Declaration |
4529 N_Formal_Subprogram_Declaration |
4530 N_Expression_Function
4532 return Defining_Entity
(Specification
(N
));
4535 N_Component_Declaration |
4536 N_Defining_Program_Unit_Name |
4537 N_Discriminant_Specification |
4539 N_Entry_Declaration |
4540 N_Entry_Index_Specification |
4541 N_Exception_Declaration |
4542 N_Exception_Renaming_Declaration |
4543 N_Formal_Object_Declaration |
4544 N_Formal_Package_Declaration |
4545 N_Formal_Type_Declaration |
4546 N_Full_Type_Declaration |
4547 N_Implicit_Label_Declaration |
4548 N_Incomplete_Type_Declaration |
4549 N_Loop_Parameter_Specification |
4550 N_Number_Declaration |
4551 N_Object_Declaration |
4552 N_Object_Renaming_Declaration |
4553 N_Package_Body_Stub |
4554 N_Parameter_Specification |
4555 N_Private_Extension_Declaration |
4556 N_Private_Type_Declaration |
4558 N_Protected_Body_Stub |
4559 N_Protected_Type_Declaration |
4560 N_Single_Protected_Declaration |
4561 N_Single_Task_Declaration |
4562 N_Subtype_Declaration |
4565 N_Task_Type_Declaration
4567 return Defining_Identifier
(N
);
4570 return Defining_Entity
(Proper_Body
(N
));
4573 N_Function_Instantiation |
4574 N_Function_Specification |
4575 N_Generic_Function_Renaming_Declaration |
4576 N_Generic_Package_Renaming_Declaration |
4577 N_Generic_Procedure_Renaming_Declaration |
4579 N_Package_Instantiation |
4580 N_Package_Renaming_Declaration |
4581 N_Package_Specification |
4582 N_Procedure_Instantiation |
4583 N_Procedure_Specification
4586 Nam
: constant Node_Id
:= Defining_Unit_Name
(N
);
4589 if Nkind
(Nam
) in N_Entity
then
4592 -- For Error, make up a name and attach to declaration
4593 -- so we can continue semantic analysis
4595 elsif Nam
= Error
then
4596 Err
:= Make_Temporary
(Sloc
(N
), 'T');
4597 Set_Defining_Unit_Name
(N
, Err
);
4601 -- If not an entity, get defining identifier
4604 return Defining_Identifier
(Nam
);
4612 return Entity
(Identifier
(N
));
4615 raise Program_Error
;
4618 end Defining_Entity
;
4620 --------------------------
4621 -- Denotes_Discriminant --
4622 --------------------------
4624 function Denotes_Discriminant
4626 Check_Concurrent
: Boolean := False) return Boolean
4631 if not Is_Entity_Name
(N
) or else No
(Entity
(N
)) then
4637 -- If we are checking for a protected type, the discriminant may have
4638 -- been rewritten as the corresponding discriminal of the original type
4639 -- or of the corresponding concurrent record, depending on whether we
4640 -- are in the spec or body of the protected type.
4642 return Ekind
(E
) = E_Discriminant
4645 and then Ekind
(E
) = E_In_Parameter
4646 and then Present
(Discriminal_Link
(E
))
4648 (Is_Concurrent_Type
(Scope
(Discriminal_Link
(E
)))
4650 Is_Concurrent_Record_Type
(Scope
(Discriminal_Link
(E
)))));
4652 end Denotes_Discriminant
;
4654 -------------------------
4655 -- Denotes_Same_Object --
4656 -------------------------
4658 function Denotes_Same_Object
(A1
, A2
: Node_Id
) return Boolean is
4659 Obj1
: Node_Id
:= A1
;
4660 Obj2
: Node_Id
:= A2
;
4662 function Has_Prefix
(N
: Node_Id
) return Boolean;
4663 -- Return True if N has attribute Prefix
4665 function Is_Renaming
(N
: Node_Id
) return Boolean;
4666 -- Return true if N names a renaming entity
4668 function Is_Valid_Renaming
(N
: Node_Id
) return Boolean;
4669 -- For renamings, return False if the prefix of any dereference within
4670 -- the renamed object_name is a variable, or any expression within the
4671 -- renamed object_name contains references to variables or calls on
4672 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
4678 function Has_Prefix
(N
: Node_Id
) return Boolean is
4682 N_Attribute_Reference
,
4684 N_Explicit_Dereference
,
4685 N_Indexed_Component
,
4687 N_Selected_Component
,
4695 function Is_Renaming
(N
: Node_Id
) return Boolean is
4697 return Is_Entity_Name
(N
)
4698 and then Present
(Renamed_Entity
(Entity
(N
)));
4701 -----------------------
4702 -- Is_Valid_Renaming --
4703 -----------------------
4705 function Is_Valid_Renaming
(N
: Node_Id
) return Boolean is
4707 function Check_Renaming
(N
: Node_Id
) return Boolean;
4708 -- Recursive function used to traverse all the prefixes of N
4710 function Check_Renaming
(N
: Node_Id
) return Boolean is
4713 and then not Check_Renaming
(Renamed_Entity
(Entity
(N
)))
4718 if Nkind
(N
) = N_Indexed_Component
then
4723 Indx
:= First
(Expressions
(N
));
4724 while Present
(Indx
) loop
4725 if not Is_OK_Static_Expression
(Indx
) then
4734 if Has_Prefix
(N
) then
4736 P
: constant Node_Id
:= Prefix
(N
);
4739 if Nkind
(N
) = N_Explicit_Dereference
4740 and then Is_Variable
(P
)
4744 elsif Is_Entity_Name
(P
)
4745 and then Ekind
(Entity
(P
)) = E_Function
4749 elsif Nkind
(P
) = N_Function_Call
then
4753 -- Recursion to continue traversing the prefix of the
4754 -- renaming expression
4756 return Check_Renaming
(P
);
4763 -- Start of processing for Is_Valid_Renaming
4766 return Check_Renaming
(N
);
4767 end Is_Valid_Renaming
;
4769 -- Start of processing for Denotes_Same_Object
4772 -- Both names statically denote the same stand-alone object or parameter
4773 -- (RM 6.4.1(6.5/3))
4775 if Is_Entity_Name
(Obj1
)
4776 and then Is_Entity_Name
(Obj2
)
4777 and then Entity
(Obj1
) = Entity
(Obj2
)
4782 -- For renamings, the prefix of any dereference within the renamed
4783 -- object_name is not a variable, and any expression within the
4784 -- renamed object_name contains no references to variables nor
4785 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
4787 if Is_Renaming
(Obj1
) then
4788 if Is_Valid_Renaming
(Obj1
) then
4789 Obj1
:= Renamed_Entity
(Entity
(Obj1
));
4795 if Is_Renaming
(Obj2
) then
4796 if Is_Valid_Renaming
(Obj2
) then
4797 Obj2
:= Renamed_Entity
(Entity
(Obj2
));
4803 -- No match if not same node kind (such cases are handled by
4804 -- Denotes_Same_Prefix)
4806 if Nkind
(Obj1
) /= Nkind
(Obj2
) then
4809 -- After handling valid renamings, one of the two names statically
4810 -- denoted a renaming declaration whose renamed object_name is known
4811 -- to denote the same object as the other (RM 6.4.1(6.10/3))
4813 elsif Is_Entity_Name
(Obj1
) then
4814 if Is_Entity_Name
(Obj2
) then
4815 return Entity
(Obj1
) = Entity
(Obj2
);
4820 -- Both names are selected_components, their prefixes are known to
4821 -- denote the same object, and their selector_names denote the same
4822 -- component (RM 6.4.1(6.6/3)
4824 elsif Nkind
(Obj1
) = N_Selected_Component
then
4825 return Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
))
4827 Entity
(Selector_Name
(Obj1
)) = Entity
(Selector_Name
(Obj2
));
4829 -- Both names are dereferences and the dereferenced names are known to
4830 -- denote the same object (RM 6.4.1(6.7/3))
4832 elsif Nkind
(Obj1
) = N_Explicit_Dereference
then
4833 return Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
));
4835 -- Both names are indexed_components, their prefixes are known to denote
4836 -- the same object, and each of the pairs of corresponding index values
4837 -- are either both static expressions with the same static value or both
4838 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
4840 elsif Nkind
(Obj1
) = N_Indexed_Component
then
4841 if not Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
)) then
4849 Indx1
:= First
(Expressions
(Obj1
));
4850 Indx2
:= First
(Expressions
(Obj2
));
4851 while Present
(Indx1
) loop
4853 -- Indexes must denote the same static value or same object
4855 if Is_OK_Static_Expression
(Indx1
) then
4856 if not Is_OK_Static_Expression
(Indx2
) then
4859 elsif Expr_Value
(Indx1
) /= Expr_Value
(Indx2
) then
4863 elsif not Denotes_Same_Object
(Indx1
, Indx2
) then
4875 -- Both names are slices, their prefixes are known to denote the same
4876 -- object, and the two slices have statically matching index constraints
4877 -- (RM 6.4.1(6.9/3))
4879 elsif Nkind
(Obj1
) = N_Slice
4880 and then Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
))
4883 Lo1
, Lo2
, Hi1
, Hi2
: Node_Id
;
4886 Get_Index_Bounds
(Etype
(Obj1
), Lo1
, Hi1
);
4887 Get_Index_Bounds
(Etype
(Obj2
), Lo2
, Hi2
);
4889 -- Check whether bounds are statically identical. There is no
4890 -- attempt to detect partial overlap of slices.
4892 return Denotes_Same_Object
(Lo1
, Lo2
)
4894 Denotes_Same_Object
(Hi1
, Hi2
);
4897 -- In the recursion, literals appear as indexes
4899 elsif Nkind
(Obj1
) = N_Integer_Literal
4901 Nkind
(Obj2
) = N_Integer_Literal
4903 return Intval
(Obj1
) = Intval
(Obj2
);
4908 end Denotes_Same_Object
;
4910 -------------------------
4911 -- Denotes_Same_Prefix --
4912 -------------------------
4914 function Denotes_Same_Prefix
(A1
, A2
: Node_Id
) return Boolean is
4917 if Is_Entity_Name
(A1
) then
4918 if Nkind_In
(A2
, N_Selected_Component
, N_Indexed_Component
)
4919 and then not Is_Access_Type
(Etype
(A1
))
4921 return Denotes_Same_Object
(A1
, Prefix
(A2
))
4922 or else Denotes_Same_Prefix
(A1
, Prefix
(A2
));
4927 elsif Is_Entity_Name
(A2
) then
4928 return Denotes_Same_Prefix
(A1
=> A2
, A2
=> A1
);
4930 elsif Nkind_In
(A1
, N_Selected_Component
, N_Indexed_Component
, N_Slice
)
4932 Nkind_In
(A2
, N_Selected_Component
, N_Indexed_Component
, N_Slice
)
4935 Root1
, Root2
: Node_Id
;
4936 Depth1
, Depth2
: Int
:= 0;
4939 Root1
:= Prefix
(A1
);
4940 while not Is_Entity_Name
(Root1
) loop
4942 (Root1
, N_Selected_Component
, N_Indexed_Component
)
4946 Root1
:= Prefix
(Root1
);
4949 Depth1
:= Depth1
+ 1;
4952 Root2
:= Prefix
(A2
);
4953 while not Is_Entity_Name
(Root2
) loop
4954 if not Nkind_In
(Root2
, N_Selected_Component
,
4955 N_Indexed_Component
)
4959 Root2
:= Prefix
(Root2
);
4962 Depth2
:= Depth2
+ 1;
4965 -- If both have the same depth and they do not denote the same
4966 -- object, they are disjoint and no warning is needed.
4968 if Depth1
= Depth2
then
4971 elsif Depth1
> Depth2
then
4972 Root1
:= Prefix
(A1
);
4973 for J
in 1 .. Depth1
- Depth2
- 1 loop
4974 Root1
:= Prefix
(Root1
);
4977 return Denotes_Same_Object
(Root1
, A2
);
4980 Root2
:= Prefix
(A2
);
4981 for J
in 1 .. Depth2
- Depth1
- 1 loop
4982 Root2
:= Prefix
(Root2
);
4985 return Denotes_Same_Object
(A1
, Root2
);
4992 end Denotes_Same_Prefix
;
4994 ----------------------
4995 -- Denotes_Variable --
4996 ----------------------
4998 function Denotes_Variable
(N
: Node_Id
) return Boolean is
5000 return Is_Variable
(N
) and then Paren_Count
(N
) = 0;
5001 end Denotes_Variable
;
5003 -----------------------------
5004 -- Depends_On_Discriminant --
5005 -----------------------------
5007 function Depends_On_Discriminant
(N
: Node_Id
) return Boolean is
5012 Get_Index_Bounds
(N
, L
, H
);
5013 return Denotes_Discriminant
(L
) or else Denotes_Discriminant
(H
);
5014 end Depends_On_Discriminant
;
5016 -------------------------
5017 -- Designate_Same_Unit --
5018 -------------------------
5020 function Designate_Same_Unit
5022 Name2
: Node_Id
) return Boolean
5024 K1
: constant Node_Kind
:= Nkind
(Name1
);
5025 K2
: constant Node_Kind
:= Nkind
(Name2
);
5027 function Prefix_Node
(N
: Node_Id
) return Node_Id
;
5028 -- Returns the parent unit name node of a defining program unit name
5029 -- or the prefix if N is a selected component or an expanded name.
5031 function Select_Node
(N
: Node_Id
) return Node_Id
;
5032 -- Returns the defining identifier node of a defining program unit
5033 -- name or the selector node if N is a selected component or an
5040 function Prefix_Node
(N
: Node_Id
) return Node_Id
is
5042 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
5053 function Select_Node
(N
: Node_Id
) return Node_Id
is
5055 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
5056 return Defining_Identifier
(N
);
5058 return Selector_Name
(N
);
5062 -- Start of processing for Designate_Next_Unit
5065 if (K1
= N_Identifier
or else K1
= N_Defining_Identifier
)
5067 (K2
= N_Identifier
or else K2
= N_Defining_Identifier
)
5069 return Chars
(Name1
) = Chars
(Name2
);
5072 (K1
= N_Expanded_Name
or else
5073 K1
= N_Selected_Component
or else
5074 K1
= N_Defining_Program_Unit_Name
)
5076 (K2
= N_Expanded_Name
or else
5077 K2
= N_Selected_Component
or else
5078 K2
= N_Defining_Program_Unit_Name
)
5081 (Chars
(Select_Node
(Name1
)) = Chars
(Select_Node
(Name2
)))
5083 Designate_Same_Unit
(Prefix_Node
(Name1
), Prefix_Node
(Name2
));
5088 end Designate_Same_Unit
;
5090 ------------------------------------------
5091 -- function Dynamic_Accessibility_Level --
5092 ------------------------------------------
5094 function Dynamic_Accessibility_Level
(Expr
: Node_Id
) return Node_Id
is
5096 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
5098 function Make_Level_Literal
(Level
: Uint
) return Node_Id
;
5099 -- Construct an integer literal representing an accessibility level
5100 -- with its type set to Natural.
5102 ------------------------
5103 -- Make_Level_Literal --
5104 ------------------------
5106 function Make_Level_Literal
(Level
: Uint
) return Node_Id
is
5107 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Level
);
5109 Set_Etype
(Result
, Standard_Natural
);
5111 end Make_Level_Literal
;
5113 -- Start of processing for Dynamic_Accessibility_Level
5116 if Is_Entity_Name
(Expr
) then
5119 if Present
(Renamed_Object
(E
)) then
5120 return Dynamic_Accessibility_Level
(Renamed_Object
(E
));
5123 if Is_Formal
(E
) or else Ekind_In
(E
, E_Variable
, E_Constant
) then
5124 if Present
(Extra_Accessibility
(E
)) then
5125 return New_Occurrence_Of
(Extra_Accessibility
(E
), Loc
);
5130 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
5132 case Nkind
(Expr
) is
5134 -- For access discriminant, the level of the enclosing object
5136 when N_Selected_Component
=>
5137 if Ekind
(Entity
(Selector_Name
(Expr
))) = E_Discriminant
5138 and then Ekind
(Etype
(Entity
(Selector_Name
(Expr
)))) =
5139 E_Anonymous_Access_Type
5141 return Make_Level_Literal
(Object_Access_Level
(Expr
));
5144 when N_Attribute_Reference
=>
5145 case Get_Attribute_Id
(Attribute_Name
(Expr
)) is
5147 -- For X'Access, the level of the prefix X
5149 when Attribute_Access
=>
5150 return Make_Level_Literal
5151 (Object_Access_Level
(Prefix
(Expr
)));
5153 -- Treat the unchecked attributes as library-level
5155 when Attribute_Unchecked_Access |
5156 Attribute_Unrestricted_Access
=>
5157 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
5159 -- No other access-valued attributes
5162 raise Program_Error
;
5167 -- Unimplemented: depends on context. As an actual parameter where
5168 -- formal type is anonymous, use
5169 -- Scope_Depth (Current_Scope) + 1.
5170 -- For other cases, see 3.10.2(14/3) and following. ???
5174 when N_Type_Conversion
=>
5175 if not Is_Local_Anonymous_Access
(Etype
(Expr
)) then
5177 -- Handle type conversions introduced for a rename of an
5178 -- Ada 2012 stand-alone object of an anonymous access type.
5180 return Dynamic_Accessibility_Level
(Expression
(Expr
));
5187 return Make_Level_Literal
(Type_Access_Level
(Etype
(Expr
)));
5188 end Dynamic_Accessibility_Level
;
5190 -----------------------------------
5191 -- Effective_Extra_Accessibility --
5192 -----------------------------------
5194 function Effective_Extra_Accessibility
(Id
: Entity_Id
) return Entity_Id
is
5196 if Present
(Renamed_Object
(Id
))
5197 and then Is_Entity_Name
(Renamed_Object
(Id
))
5199 return Effective_Extra_Accessibility
(Entity
(Renamed_Object
(Id
)));
5201 return Extra_Accessibility
(Id
);
5203 end Effective_Extra_Accessibility
;
5205 -----------------------------
5206 -- Effective_Reads_Enabled --
5207 -----------------------------
5209 function Effective_Reads_Enabled
(Id
: Entity_Id
) return Boolean is
5211 return Has_Enabled_Property
(Id
, Name_Effective_Reads
);
5212 end Effective_Reads_Enabled
;
5214 ------------------------------
5215 -- Effective_Writes_Enabled --
5216 ------------------------------
5218 function Effective_Writes_Enabled
(Id
: Entity_Id
) return Boolean is
5220 return Has_Enabled_Property
(Id
, Name_Effective_Writes
);
5221 end Effective_Writes_Enabled
;
5223 ------------------------------
5224 -- Enclosing_Comp_Unit_Node --
5225 ------------------------------
5227 function Enclosing_Comp_Unit_Node
(N
: Node_Id
) return Node_Id
is
5228 Current_Node
: Node_Id
;
5232 while Present
(Current_Node
)
5233 and then Nkind
(Current_Node
) /= N_Compilation_Unit
5235 Current_Node
:= Parent
(Current_Node
);
5238 if Nkind
(Current_Node
) /= N_Compilation_Unit
then
5241 return Current_Node
;
5243 end Enclosing_Comp_Unit_Node
;
5245 --------------------------
5246 -- Enclosing_CPP_Parent --
5247 --------------------------
5249 function Enclosing_CPP_Parent
(Typ
: Entity_Id
) return Entity_Id
is
5250 Parent_Typ
: Entity_Id
:= Typ
;
5253 while not Is_CPP_Class
(Parent_Typ
)
5254 and then Etype
(Parent_Typ
) /= Parent_Typ
5256 Parent_Typ
:= Etype
(Parent_Typ
);
5258 if Is_Private_Type
(Parent_Typ
) then
5259 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
5263 pragma Assert
(Is_CPP_Class
(Parent_Typ
));
5265 end Enclosing_CPP_Parent
;
5267 ----------------------------
5268 -- Enclosing_Generic_Body --
5269 ----------------------------
5271 function Enclosing_Generic_Body
5272 (N
: Node_Id
) return Node_Id
5280 while Present
(P
) loop
5281 if Nkind
(P
) = N_Package_Body
5282 or else Nkind
(P
) = N_Subprogram_Body
5284 Spec
:= Corresponding_Spec
(P
);
5286 if Present
(Spec
) then
5287 Decl
:= Unit_Declaration_Node
(Spec
);
5289 if Nkind
(Decl
) = N_Generic_Package_Declaration
5290 or else Nkind
(Decl
) = N_Generic_Subprogram_Declaration
5301 end Enclosing_Generic_Body
;
5303 ----------------------------
5304 -- Enclosing_Generic_Unit --
5305 ----------------------------
5307 function Enclosing_Generic_Unit
5308 (N
: Node_Id
) return Node_Id
5316 while Present
(P
) loop
5317 if Nkind
(P
) = N_Generic_Package_Declaration
5318 or else Nkind
(P
) = N_Generic_Subprogram_Declaration
5322 elsif Nkind
(P
) = N_Package_Body
5323 or else Nkind
(P
) = N_Subprogram_Body
5325 Spec
:= Corresponding_Spec
(P
);
5327 if Present
(Spec
) then
5328 Decl
:= Unit_Declaration_Node
(Spec
);
5330 if Nkind
(Decl
) = N_Generic_Package_Declaration
5331 or else Nkind
(Decl
) = N_Generic_Subprogram_Declaration
5342 end Enclosing_Generic_Unit
;
5344 -------------------------------
5345 -- Enclosing_Lib_Unit_Entity --
5346 -------------------------------
5348 function Enclosing_Lib_Unit_Entity
5349 (E
: Entity_Id
:= Current_Scope
) return Entity_Id
5351 Unit_Entity
: Entity_Id
;
5354 -- Look for enclosing library unit entity by following scope links.
5355 -- Equivalent to, but faster than indexing through the scope stack.
5358 while (Present
(Scope
(Unit_Entity
))
5359 and then Scope
(Unit_Entity
) /= Standard_Standard
)
5360 and not Is_Child_Unit
(Unit_Entity
)
5362 Unit_Entity
:= Scope
(Unit_Entity
);
5366 end Enclosing_Lib_Unit_Entity
;
5368 -----------------------
5369 -- Enclosing_Package --
5370 -----------------------
5372 function Enclosing_Package
(E
: Entity_Id
) return Entity_Id
is
5373 Dynamic_Scope
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(E
);
5376 if Dynamic_Scope
= Standard_Standard
then
5377 return Standard_Standard
;
5379 elsif Dynamic_Scope
= Empty
then
5382 elsif Ekind_In
(Dynamic_Scope
, E_Package
, E_Package_Body
,
5385 return Dynamic_Scope
;
5388 return Enclosing_Package
(Dynamic_Scope
);
5390 end Enclosing_Package
;
5392 --------------------------
5393 -- Enclosing_Subprogram --
5394 --------------------------
5396 function Enclosing_Subprogram
(E
: Entity_Id
) return Entity_Id
is
5397 Dynamic_Scope
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(E
);
5400 if Dynamic_Scope
= Standard_Standard
then
5403 elsif Dynamic_Scope
= Empty
then
5406 elsif Ekind
(Dynamic_Scope
) = E_Subprogram_Body
then
5407 return Corresponding_Spec
(Parent
(Parent
(Dynamic_Scope
)));
5409 elsif Ekind
(Dynamic_Scope
) = E_Block
5410 or else Ekind
(Dynamic_Scope
) = E_Return_Statement
5412 return Enclosing_Subprogram
(Dynamic_Scope
);
5414 elsif Ekind
(Dynamic_Scope
) = E_Task_Type
then
5415 return Get_Task_Body_Procedure
(Dynamic_Scope
);
5417 elsif Ekind
(Dynamic_Scope
) = E_Limited_Private_Type
5418 and then Present
(Full_View
(Dynamic_Scope
))
5419 and then Ekind
(Full_View
(Dynamic_Scope
)) = E_Task_Type
5421 return Get_Task_Body_Procedure
(Full_View
(Dynamic_Scope
));
5423 -- No body is generated if the protected operation is eliminated
5425 elsif Convention
(Dynamic_Scope
) = Convention_Protected
5426 and then not Is_Eliminated
(Dynamic_Scope
)
5427 and then Present
(Protected_Body_Subprogram
(Dynamic_Scope
))
5429 return Protected_Body_Subprogram
(Dynamic_Scope
);
5432 return Dynamic_Scope
;
5434 end Enclosing_Subprogram
;
5436 ------------------------
5437 -- Ensure_Freeze_Node --
5438 ------------------------
5440 procedure Ensure_Freeze_Node
(E
: Entity_Id
) is
5443 if No
(Freeze_Node
(E
)) then
5444 FN
:= Make_Freeze_Entity
(Sloc
(E
));
5445 Set_Has_Delayed_Freeze
(E
);
5446 Set_Freeze_Node
(E
, FN
);
5447 Set_Access_Types_To_Process
(FN
, No_Elist
);
5448 Set_TSS_Elist
(FN
, No_Elist
);
5451 end Ensure_Freeze_Node
;
5457 procedure Enter_Name
(Def_Id
: Entity_Id
) is
5458 C
: constant Entity_Id
:= Current_Entity
(Def_Id
);
5459 E
: constant Entity_Id
:= Current_Entity_In_Scope
(Def_Id
);
5460 S
: constant Entity_Id
:= Current_Scope
;
5463 Generate_Definition
(Def_Id
);
5465 -- Add new name to current scope declarations. Check for duplicate
5466 -- declaration, which may or may not be a genuine error.
5470 -- Case of previous entity entered because of a missing declaration
5471 -- or else a bad subtype indication. Best is to use the new entity,
5472 -- and make the previous one invisible.
5474 if Etype
(E
) = Any_Type
then
5475 Set_Is_Immediately_Visible
(E
, False);
5477 -- Case of renaming declaration constructed for package instances.
5478 -- if there is an explicit declaration with the same identifier,
5479 -- the renaming is not immediately visible any longer, but remains
5480 -- visible through selected component notation.
5482 elsif Nkind
(Parent
(E
)) = N_Package_Renaming_Declaration
5483 and then not Comes_From_Source
(E
)
5485 Set_Is_Immediately_Visible
(E
, False);
5487 -- The new entity may be the package renaming, which has the same
5488 -- same name as a generic formal which has been seen already.
5490 elsif Nkind
(Parent
(Def_Id
)) = N_Package_Renaming_Declaration
5491 and then not Comes_From_Source
(Def_Id
)
5493 Set_Is_Immediately_Visible
(E
, False);
5495 -- For a fat pointer corresponding to a remote access to subprogram,
5496 -- we use the same identifier as the RAS type, so that the proper
5497 -- name appears in the stub. This type is only retrieved through
5498 -- the RAS type and never by visibility, and is not added to the
5499 -- visibility list (see below).
5501 elsif Nkind
(Parent
(Def_Id
)) = N_Full_Type_Declaration
5502 and then Ekind
(Def_Id
) = E_Record_Type
5503 and then Present
(Corresponding_Remote_Type
(Def_Id
))
5507 -- Case of an implicit operation or derived literal. The new entity
5508 -- hides the implicit one, which is removed from all visibility,
5509 -- i.e. the entity list of its scope, and homonym chain of its name.
5511 elsif (Is_Overloadable
(E
) and then Is_Inherited_Operation
(E
))
5512 or else Is_Internal
(E
)
5516 Prev_Vis
: Entity_Id
;
5517 Decl
: constant Node_Id
:= Parent
(E
);
5520 -- If E is an implicit declaration, it cannot be the first
5521 -- entity in the scope.
5523 Prev
:= First_Entity
(Current_Scope
);
5524 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
5530 -- If E is not on the entity chain of the current scope,
5531 -- it is an implicit declaration in the generic formal
5532 -- part of a generic subprogram. When analyzing the body,
5533 -- the generic formals are visible but not on the entity
5534 -- chain of the subprogram. The new entity will become
5535 -- the visible one in the body.
5538 (Nkind
(Parent
(Decl
)) = N_Generic_Subprogram_Declaration
);
5542 Set_Next_Entity
(Prev
, Next_Entity
(E
));
5544 if No
(Next_Entity
(Prev
)) then
5545 Set_Last_Entity
(Current_Scope
, Prev
);
5548 if E
= Current_Entity
(E
) then
5552 Prev_Vis
:= Current_Entity
(E
);
5553 while Homonym
(Prev_Vis
) /= E
loop
5554 Prev_Vis
:= Homonym
(Prev_Vis
);
5558 if Present
(Prev_Vis
) then
5560 -- Skip E in the visibility chain
5562 Set_Homonym
(Prev_Vis
, Homonym
(E
));
5565 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
5570 -- This section of code could use a comment ???
5572 elsif Present
(Etype
(E
))
5573 and then Is_Concurrent_Type
(Etype
(E
))
5578 -- If the homograph is a protected component renaming, it should not
5579 -- be hiding the current entity. Such renamings are treated as weak
5582 elsif Is_Prival
(E
) then
5583 Set_Is_Immediately_Visible
(E
, False);
5585 -- In this case the current entity is a protected component renaming.
5586 -- Perform minimal decoration by setting the scope and return since
5587 -- the prival should not be hiding other visible entities.
5589 elsif Is_Prival
(Def_Id
) then
5590 Set_Scope
(Def_Id
, Current_Scope
);
5593 -- Analogous to privals, the discriminal generated for an entry index
5594 -- parameter acts as a weak declaration. Perform minimal decoration
5595 -- to avoid bogus errors.
5597 elsif Is_Discriminal
(Def_Id
)
5598 and then Ekind
(Discriminal_Link
(Def_Id
)) = E_Entry_Index_Parameter
5600 Set_Scope
(Def_Id
, Current_Scope
);
5603 -- In the body or private part of an instance, a type extension may
5604 -- introduce a component with the same name as that of an actual. The
5605 -- legality rule is not enforced, but the semantics of the full type
5606 -- with two components of same name are not clear at this point???
5608 elsif In_Instance_Not_Visible
then
5611 -- When compiling a package body, some child units may have become
5612 -- visible. They cannot conflict with local entities that hide them.
5614 elsif Is_Child_Unit
(E
)
5615 and then In_Open_Scopes
(Scope
(E
))
5616 and then not Is_Immediately_Visible
(E
)
5620 -- Conversely, with front-end inlining we may compile the parent body
5621 -- first, and a child unit subsequently. The context is now the
5622 -- parent spec, and body entities are not visible.
5624 elsif Is_Child_Unit
(Def_Id
)
5625 and then Is_Package_Body_Entity
(E
)
5626 and then not In_Package_Body
(Current_Scope
)
5630 -- Case of genuine duplicate declaration
5633 Error_Msg_Sloc
:= Sloc
(E
);
5635 -- If the previous declaration is an incomplete type declaration
5636 -- this may be an attempt to complete it with a private type. The
5637 -- following avoids confusing cascaded errors.
5639 if Nkind
(Parent
(E
)) = N_Incomplete_Type_Declaration
5640 and then Nkind
(Parent
(Def_Id
)) = N_Private_Type_Declaration
5643 ("incomplete type cannot be completed with a private " &
5644 "declaration", Parent
(Def_Id
));
5645 Set_Is_Immediately_Visible
(E
, False);
5646 Set_Full_View
(E
, Def_Id
);
5648 -- An inherited component of a record conflicts with a new
5649 -- discriminant. The discriminant is inserted first in the scope,
5650 -- but the error should be posted on it, not on the component.
5652 elsif Ekind
(E
) = E_Discriminant
5653 and then Present
(Scope
(Def_Id
))
5654 and then Scope
(Def_Id
) /= Current_Scope
5656 Error_Msg_Sloc
:= Sloc
(Def_Id
);
5657 Error_Msg_N
("& conflicts with declaration#", E
);
5660 -- If the name of the unit appears in its own context clause, a
5661 -- dummy package with the name has already been created, and the
5662 -- error emitted. Try to continue quietly.
5664 elsif Error_Posted
(E
)
5665 and then Sloc
(E
) = No_Location
5666 and then Nkind
(Parent
(E
)) = N_Package_Specification
5667 and then Current_Scope
= Standard_Standard
5669 Set_Scope
(Def_Id
, Current_Scope
);
5673 Error_Msg_N
("& conflicts with declaration#", Def_Id
);
5675 -- Avoid cascaded messages with duplicate components in
5678 if Ekind_In
(E
, E_Component
, E_Discriminant
) then
5683 if Nkind
(Parent
(Parent
(Def_Id
))) =
5684 N_Generic_Subprogram_Declaration
5686 Defining_Entity
(Specification
(Parent
(Parent
(Def_Id
))))
5688 Error_Msg_N
("\generic units cannot be overloaded", Def_Id
);
5691 -- If entity is in standard, then we are in trouble, because it
5692 -- means that we have a library package with a duplicated name.
5693 -- That's hard to recover from, so abort.
5695 if S
= Standard_Standard
then
5696 raise Unrecoverable_Error
;
5698 -- Otherwise we continue with the declaration. Having two
5699 -- identical declarations should not cause us too much trouble.
5707 -- If we fall through, declaration is OK, at least OK enough to continue
5709 -- If Def_Id is a discriminant or a record component we are in the midst
5710 -- of inheriting components in a derived record definition. Preserve
5711 -- their Ekind and Etype.
5713 if Ekind_In
(Def_Id
, E_Discriminant
, E_Component
) then
5716 -- If a type is already set, leave it alone (happens when a type
5717 -- declaration is reanalyzed following a call to the optimizer).
5719 elsif Present
(Etype
(Def_Id
)) then
5722 -- Otherwise, the kind E_Void insures that premature uses of the entity
5723 -- will be detected. Any_Type insures that no cascaded errors will occur
5726 Set_Ekind
(Def_Id
, E_Void
);
5727 Set_Etype
(Def_Id
, Any_Type
);
5730 -- Inherited discriminants and components in derived record types are
5731 -- immediately visible. Itypes are not.
5733 -- Unless the Itype is for a record type with a corresponding remote
5734 -- type (what is that about, it was not commented ???)
5736 if Ekind_In
(Def_Id
, E_Discriminant
, E_Component
)
5738 ((not Is_Record_Type
(Def_Id
)
5739 or else No
(Corresponding_Remote_Type
(Def_Id
)))
5740 and then not Is_Itype
(Def_Id
))
5742 Set_Is_Immediately_Visible
(Def_Id
);
5743 Set_Current_Entity
(Def_Id
);
5746 Set_Homonym
(Def_Id
, C
);
5747 Append_Entity
(Def_Id
, S
);
5748 Set_Public_Status
(Def_Id
);
5750 -- Declaring a homonym is not allowed in SPARK ...
5752 if Present
(C
) and then Restriction_Check_Required
(SPARK_05
) then
5754 Enclosing_Subp
: constant Node_Id
:= Enclosing_Subprogram
(Def_Id
);
5755 Enclosing_Pack
: constant Node_Id
:= Enclosing_Package
(Def_Id
);
5756 Other_Scope
: constant Node_Id
:= Enclosing_Dynamic_Scope
(C
);
5759 -- ... unless the new declaration is in a subprogram, and the
5760 -- visible declaration is a variable declaration or a parameter
5761 -- specification outside that subprogram.
5763 if Present
(Enclosing_Subp
)
5764 and then Nkind_In
(Parent
(C
), N_Object_Declaration
,
5765 N_Parameter_Specification
)
5766 and then not Scope_Within_Or_Same
(Other_Scope
, Enclosing_Subp
)
5770 -- ... or the new declaration is in a package, and the visible
5771 -- declaration occurs outside that package.
5773 elsif Present
(Enclosing_Pack
)
5774 and then not Scope_Within_Or_Same
(Other_Scope
, Enclosing_Pack
)
5778 -- ... or the new declaration is a component declaration in a
5779 -- record type definition.
5781 elsif Nkind
(Parent
(Def_Id
)) = N_Component_Declaration
then
5784 -- Don't issue error for non-source entities
5786 elsif Comes_From_Source
(Def_Id
)
5787 and then Comes_From_Source
(C
)
5789 Error_Msg_Sloc
:= Sloc
(C
);
5790 Check_SPARK_05_Restriction
5791 ("redeclaration of identifier &#", Def_Id
);
5796 -- Warn if new entity hides an old one
5798 if Warn_On_Hiding
and then Present
(C
)
5800 -- Don't warn for record components since they always have a well
5801 -- defined scope which does not confuse other uses. Note that in
5802 -- some cases, Ekind has not been set yet.
5804 and then Ekind
(C
) /= E_Component
5805 and then Ekind
(C
) /= E_Discriminant
5806 and then Nkind
(Parent
(C
)) /= N_Component_Declaration
5807 and then Ekind
(Def_Id
) /= E_Component
5808 and then Ekind
(Def_Id
) /= E_Discriminant
5809 and then Nkind
(Parent
(Def_Id
)) /= N_Component_Declaration
5811 -- Don't warn for one character variables. It is too common to use
5812 -- such variables as locals and will just cause too many false hits.
5814 and then Length_Of_Name
(Chars
(C
)) /= 1
5816 -- Don't warn for non-source entities
5818 and then Comes_From_Source
(C
)
5819 and then Comes_From_Source
(Def_Id
)
5821 -- Don't warn unless entity in question is in extended main source
5823 and then In_Extended_Main_Source_Unit
(Def_Id
)
5825 -- Finally, the hidden entity must be either immediately visible or
5826 -- use visible (i.e. from a used package).
5829 (Is_Immediately_Visible
(C
)
5831 Is_Potentially_Use_Visible
(C
))
5833 Error_Msg_Sloc
:= Sloc
(C
);
5834 Error_Msg_N
("declaration hides &#?h?", Def_Id
);
5842 function Entity_Of
(N
: Node_Id
) return Entity_Id
is
5848 if Is_Entity_Name
(N
) then
5851 -- Follow a possible chain of renamings to reach the root renamed
5854 while Present
(Id
) and then Present
(Renamed_Object
(Id
)) loop
5855 if Is_Entity_Name
(Renamed_Object
(Id
)) then
5856 Id
:= Entity
(Renamed_Object
(Id
));
5867 --------------------------
5868 -- Explain_Limited_Type --
5869 --------------------------
5871 procedure Explain_Limited_Type
(T
: Entity_Id
; N
: Node_Id
) is
5875 -- For array, component type must be limited
5877 if Is_Array_Type
(T
) then
5878 Error_Msg_Node_2
:= T
;
5880 ("\component type& of type& is limited", N
, Component_Type
(T
));
5881 Explain_Limited_Type
(Component_Type
(T
), N
);
5883 elsif Is_Record_Type
(T
) then
5885 -- No need for extra messages if explicit limited record
5887 if Is_Limited_Record
(Base_Type
(T
)) then
5891 -- Otherwise find a limited component. Check only components that
5892 -- come from source, or inherited components that appear in the
5893 -- source of the ancestor.
5895 C
:= First_Component
(T
);
5896 while Present
(C
) loop
5897 if Is_Limited_Type
(Etype
(C
))
5899 (Comes_From_Source
(C
)
5901 (Present
(Original_Record_Component
(C
))
5903 Comes_From_Source
(Original_Record_Component
(C
))))
5905 Error_Msg_Node_2
:= T
;
5906 Error_Msg_NE
("\component& of type& has limited type", N
, C
);
5907 Explain_Limited_Type
(Etype
(C
), N
);
5914 -- The type may be declared explicitly limited, even if no component
5915 -- of it is limited, in which case we fall out of the loop.
5918 end Explain_Limited_Type
;
5920 -------------------------------
5921 -- Extensions_Visible_Status --
5922 -------------------------------
5924 function Extensions_Visible_Status
5925 (Id
: Entity_Id
) return Extensions_Visible_Mode
5934 -- When a formal parameter is subject to Extensions_Visible, the pragma
5935 -- is stored in the contract of related subprogram.
5937 if Is_Formal
(Id
) then
5940 elsif Is_Subprogram_Or_Generic_Subprogram
(Id
) then
5943 -- No other construct carries this pragma
5946 return Extensions_Visible_None
;
5949 Prag
:= Get_Pragma
(Subp
, Pragma_Extensions_Visible
);
5951 -- In certain cases analysis may request the Extensions_Visible status
5952 -- of an expression function before the pragma has been analyzed yet.
5953 -- Inspect the declarative items after the expression function looking
5954 -- for the pragma (if any).
5956 if No
(Prag
) and then Is_Expression_Function
(Subp
) then
5957 Decl
:= Next
(Unit_Declaration_Node
(Subp
));
5958 while Present
(Decl
) loop
5959 if Nkind
(Decl
) = N_Pragma
5960 and then Pragma_Name
(Decl
) = Name_Extensions_Visible
5965 -- A source construct ends the region where Extensions_Visible may
5966 -- appear, stop the traversal. An expanded expression function is
5967 -- no longer a source construct, but it must still be recognized.
5969 elsif Comes_From_Source
(Decl
)
5971 (Nkind_In
(Decl
, N_Subprogram_Body
,
5972 N_Subprogram_Declaration
)
5973 and then Is_Expression_Function
(Defining_Entity
(Decl
)))
5982 -- Extract the value from the Boolean expression (if any)
5984 if Present
(Prag
) then
5985 Arg
:= First
(Pragma_Argument_Associations
(Prag
));
5987 if Present
(Arg
) then
5988 Expr
:= Get_Pragma_Arg
(Arg
);
5990 -- When the associated subprogram is an expression function, the
5991 -- argument of the pragma may not have been analyzed.
5993 if not Analyzed
(Expr
) then
5994 Preanalyze_And_Resolve
(Expr
, Standard_Boolean
);
5997 -- Guard against cascading errors when the argument of pragma
5998 -- Extensions_Visible is not a valid static Boolean expression.
6000 if Error_Posted
(Expr
) then
6001 return Extensions_Visible_None
;
6003 elsif Is_True
(Expr_Value
(Expr
)) then
6004 return Extensions_Visible_True
;
6007 return Extensions_Visible_False
;
6010 -- Otherwise the aspect or pragma defaults to True
6013 return Extensions_Visible_True
;
6016 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
6017 -- directly specified. In SPARK code, its value defaults to "False".
6019 elsif SPARK_Mode
= On
then
6020 return Extensions_Visible_False
;
6022 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
6026 return Extensions_Visible_True
;
6028 end Extensions_Visible_Status
;
6034 procedure Find_Actual
6036 Formal
: out Entity_Id
;
6039 Parnt
: constant Node_Id
:= Parent
(N
);
6043 if Nkind_In
(Parnt
, N_Indexed_Component
, N_Selected_Component
)
6044 and then N
= Prefix
(Parnt
)
6046 Find_Actual
(Parnt
, Formal
, Call
);
6049 elsif Nkind
(Parnt
) = N_Parameter_Association
6050 and then N
= Explicit_Actual_Parameter
(Parnt
)
6052 Call
:= Parent
(Parnt
);
6054 elsif Nkind
(Parnt
) in N_Subprogram_Call
then
6063 -- If we have a call to a subprogram look for the parameter. Note that
6064 -- we exclude overloaded calls, since we don't know enough to be sure
6065 -- of giving the right answer in this case.
6067 if Nkind_In
(Call
, N_Function_Call
, N_Procedure_Call_Statement
)
6068 and then Is_Entity_Name
(Name
(Call
))
6069 and then Present
(Entity
(Name
(Call
)))
6070 and then Is_Overloadable
(Entity
(Name
(Call
)))
6071 and then not Is_Overloaded
(Name
(Call
))
6073 -- Fall here if we are definitely a parameter
6075 Actual
:= First_Actual
(Call
);
6076 Formal
:= First_Formal
(Entity
(Name
(Call
)));
6077 while Present
(Formal
) and then Present
(Actual
) loop
6081 -- An actual that is the prefix in a prefixed call may have
6082 -- been rewritten in the call, after the deferred reference
6083 -- was collected. Check if sloc and kinds and names match.
6085 elsif Sloc
(Actual
) = Sloc
(N
)
6086 and then Nkind
(Actual
) = N_Identifier
6087 and then Nkind
(Actual
) = Nkind
(N
)
6088 and then Chars
(Actual
) = Chars
(N
)
6093 Actual
:= Next_Actual
(Actual
);
6094 Formal
:= Next_Formal
(Formal
);
6099 -- Fall through here if we did not find matching actual
6105 ---------------------------
6106 -- Find_Body_Discriminal --
6107 ---------------------------
6109 function Find_Body_Discriminal
6110 (Spec_Discriminant
: Entity_Id
) return Entity_Id
6116 -- If expansion is suppressed, then the scope can be the concurrent type
6117 -- itself rather than a corresponding concurrent record type.
6119 if Is_Concurrent_Type
(Scope
(Spec_Discriminant
)) then
6120 Tsk
:= Scope
(Spec_Discriminant
);
6123 pragma Assert
(Is_Concurrent_Record_Type
(Scope
(Spec_Discriminant
)));
6125 Tsk
:= Corresponding_Concurrent_Type
(Scope
(Spec_Discriminant
));
6128 -- Find discriminant of original concurrent type, and use its current
6129 -- discriminal, which is the renaming within the task/protected body.
6131 Disc
:= First_Discriminant
(Tsk
);
6132 while Present
(Disc
) loop
6133 if Chars
(Disc
) = Chars
(Spec_Discriminant
) then
6134 return Discriminal
(Disc
);
6137 Next_Discriminant
(Disc
);
6140 -- That loop should always succeed in finding a matching entry and
6141 -- returning. Fatal error if not.
6143 raise Program_Error
;
6144 end Find_Body_Discriminal
;
6146 -------------------------------------
6147 -- Find_Corresponding_Discriminant --
6148 -------------------------------------
6150 function Find_Corresponding_Discriminant
6152 Typ
: Entity_Id
) return Entity_Id
6154 Par_Disc
: Entity_Id
;
6155 Old_Disc
: Entity_Id
;
6156 New_Disc
: Entity_Id
;
6159 Par_Disc
:= Original_Record_Component
(Original_Discriminant
(Id
));
6161 -- The original type may currently be private, and the discriminant
6162 -- only appear on its full view.
6164 if Is_Private_Type
(Scope
(Par_Disc
))
6165 and then not Has_Discriminants
(Scope
(Par_Disc
))
6166 and then Present
(Full_View
(Scope
(Par_Disc
)))
6168 Old_Disc
:= First_Discriminant
(Full_View
(Scope
(Par_Disc
)));
6170 Old_Disc
:= First_Discriminant
(Scope
(Par_Disc
));
6173 if Is_Class_Wide_Type
(Typ
) then
6174 New_Disc
:= First_Discriminant
(Root_Type
(Typ
));
6176 New_Disc
:= First_Discriminant
(Typ
);
6179 while Present
(Old_Disc
) and then Present
(New_Disc
) loop
6180 if Old_Disc
= Par_Disc
then
6184 Next_Discriminant
(Old_Disc
);
6185 Next_Discriminant
(New_Disc
);
6188 -- Should always find it
6190 raise Program_Error
;
6191 end Find_Corresponding_Discriminant
;
6193 ----------------------------------
6194 -- Find_Enclosing_Iterator_Loop --
6195 ----------------------------------
6197 function Find_Enclosing_Iterator_Loop
(Id
: Entity_Id
) return Entity_Id
is
6202 -- Traverse the scope chain looking for an iterator loop. Such loops are
6203 -- usually transformed into blocks, hence the use of Original_Node.
6206 while Present
(S
) and then S
/= Standard_Standard
loop
6207 if Ekind
(S
) = E_Loop
6208 and then Nkind
(Parent
(S
)) = N_Implicit_Label_Declaration
6210 Constr
:= Original_Node
(Label_Construct
(Parent
(S
)));
6212 if Nkind
(Constr
) = N_Loop_Statement
6213 and then Present
(Iteration_Scheme
(Constr
))
6214 and then Nkind
(Iterator_Specification
6215 (Iteration_Scheme
(Constr
))) =
6216 N_Iterator_Specification
6226 end Find_Enclosing_Iterator_Loop
;
6228 ------------------------------------
6229 -- Find_Loop_In_Conditional_Block --
6230 ------------------------------------
6232 function Find_Loop_In_Conditional_Block
(N
: Node_Id
) return Node_Id
is
6238 if Nkind
(Stmt
) = N_If_Statement
then
6239 Stmt
:= First
(Then_Statements
(Stmt
));
6242 pragma Assert
(Nkind
(Stmt
) = N_Block_Statement
);
6244 -- Inspect the statements of the conditional block. In general the loop
6245 -- should be the first statement in the statement sequence of the block,
6246 -- but the finalization machinery may have introduced extra object
6249 Stmt
:= First
(Statements
(Handled_Statement_Sequence
(Stmt
)));
6250 while Present
(Stmt
) loop
6251 if Nkind
(Stmt
) = N_Loop_Statement
then
6258 -- The expansion of attribute 'Loop_Entry produced a malformed block
6260 raise Program_Error
;
6261 end Find_Loop_In_Conditional_Block
;
6263 --------------------------
6264 -- Find_Overlaid_Entity --
6265 --------------------------
6267 procedure Find_Overlaid_Entity
6269 Ent
: out Entity_Id
;
6275 -- We are looking for one of the two following forms:
6277 -- for X'Address use Y'Address
6281 -- Const : constant Address := expr;
6283 -- for X'Address use Const;
6285 -- In the second case, the expr is either Y'Address, or recursively a
6286 -- constant that eventually references Y'Address.
6291 if Nkind
(N
) = N_Attribute_Definition_Clause
6292 and then Chars
(N
) = Name_Address
6294 Expr
:= Expression
(N
);
6296 -- This loop checks the form of the expression for Y'Address,
6297 -- using recursion to deal with intermediate constants.
6300 -- Check for Y'Address
6302 if Nkind
(Expr
) = N_Attribute_Reference
6303 and then Attribute_Name
(Expr
) = Name_Address
6305 Expr
:= Prefix
(Expr
);
6308 -- Check for Const where Const is a constant entity
6310 elsif Is_Entity_Name
(Expr
)
6311 and then Ekind
(Entity
(Expr
)) = E_Constant
6313 Expr
:= Constant_Value
(Entity
(Expr
));
6315 -- Anything else does not need checking
6322 -- This loop checks the form of the prefix for an entity, using
6323 -- recursion to deal with intermediate components.
6326 -- Check for Y where Y is an entity
6328 if Is_Entity_Name
(Expr
) then
6329 Ent
:= Entity
(Expr
);
6332 -- Check for components
6335 Nkind_In
(Expr
, N_Selected_Component
, N_Indexed_Component
)
6337 Expr
:= Prefix
(Expr
);
6340 -- Anything else does not need checking
6347 end Find_Overlaid_Entity
;
6349 -------------------------
6350 -- Find_Parameter_Type --
6351 -------------------------
6353 function Find_Parameter_Type
(Param
: Node_Id
) return Entity_Id
is
6355 if Nkind
(Param
) /= N_Parameter_Specification
then
6358 -- For an access parameter, obtain the type from the formal entity
6359 -- itself, because access to subprogram nodes do not carry a type.
6360 -- Shouldn't we always use the formal entity ???
6362 elsif Nkind
(Parameter_Type
(Param
)) = N_Access_Definition
then
6363 return Etype
(Defining_Identifier
(Param
));
6366 return Etype
(Parameter_Type
(Param
));
6368 end Find_Parameter_Type
;
6370 -----------------------------------
6371 -- Find_Placement_In_State_Space --
6372 -----------------------------------
6374 procedure Find_Placement_In_State_Space
6375 (Item_Id
: Entity_Id
;
6376 Placement
: out State_Space_Kind
;
6377 Pack_Id
: out Entity_Id
)
6379 Context
: Entity_Id
;
6382 -- Assume that the item does not appear in the state space of a package
6384 Placement
:= Not_In_Package
;
6387 -- Climb the scope stack and examine the enclosing context
6389 Context
:= Scope
(Item_Id
);
6390 while Present
(Context
) and then Context
/= Standard_Standard
loop
6391 if Ekind
(Context
) = E_Package
then
6394 -- A package body is a cut off point for the traversal as the item
6395 -- cannot be visible to the outside from this point on. Note that
6396 -- this test must be done first as a body is also classified as a
6399 if In_Package_Body
(Context
) then
6400 Placement
:= Body_State_Space
;
6403 -- The private part of a package is a cut off point for the
6404 -- traversal as the item cannot be visible to the outside from
6407 elsif In_Private_Part
(Context
) then
6408 Placement
:= Private_State_Space
;
6411 -- When the item appears in the visible state space of a package,
6412 -- continue to climb the scope stack as this may not be the final
6416 Placement
:= Visible_State_Space
;
6418 -- The visible state space of a child unit acts as the proper
6419 -- placement of an item.
6421 if Is_Child_Unit
(Context
) then
6426 -- The item or its enclosing package appear in a construct that has
6430 Placement
:= Not_In_Package
;
6434 Context
:= Scope
(Context
);
6436 end Find_Placement_In_State_Space
;
6438 ------------------------
6439 -- Find_Specific_Type --
6440 ------------------------
6442 function Find_Specific_Type
(CW
: Entity_Id
) return Entity_Id
is
6443 Typ
: Entity_Id
:= Root_Type
(CW
);
6446 if Ekind
(Typ
) = E_Incomplete_Type
then
6447 if From_Limited_With
(Typ
) then
6448 Typ
:= Non_Limited_View
(Typ
);
6450 Typ
:= Full_View
(Typ
);
6454 if Is_Private_Type
(Typ
)
6455 and then not Is_Tagged_Type
(Typ
)
6456 and then Present
(Full_View
(Typ
))
6458 return Full_View
(Typ
);
6462 end Find_Specific_Type
;
6464 -----------------------------
6465 -- Find_Static_Alternative --
6466 -----------------------------
6468 function Find_Static_Alternative
(N
: Node_Id
) return Node_Id
is
6469 Expr
: constant Node_Id
:= Expression
(N
);
6470 Val
: constant Uint
:= Expr_Value
(Expr
);
6475 Alt
:= First
(Alternatives
(N
));
6478 if Nkind
(Alt
) /= N_Pragma
then
6479 Choice
:= First
(Discrete_Choices
(Alt
));
6480 while Present
(Choice
) loop
6482 -- Others choice, always matches
6484 if Nkind
(Choice
) = N_Others_Choice
then
6487 -- Range, check if value is in the range
6489 elsif Nkind
(Choice
) = N_Range
then
6491 Val
>= Expr_Value
(Low_Bound
(Choice
))
6493 Val
<= Expr_Value
(High_Bound
(Choice
));
6495 -- Choice is a subtype name. Note that we know it must
6496 -- be a static subtype, since otherwise it would have
6497 -- been diagnosed as illegal.
6499 elsif Is_Entity_Name
(Choice
)
6500 and then Is_Type
(Entity
(Choice
))
6502 exit Search
when Is_In_Range
(Expr
, Etype
(Choice
),
6503 Assume_Valid
=> False);
6505 -- Choice is a subtype indication
6507 elsif Nkind
(Choice
) = N_Subtype_Indication
then
6509 C
: constant Node_Id
:= Constraint
(Choice
);
6510 R
: constant Node_Id
:= Range_Expression
(C
);
6514 Val
>= Expr_Value
(Low_Bound
(R
))
6516 Val
<= Expr_Value
(High_Bound
(R
));
6519 -- Choice is a simple expression
6522 exit Search
when Val
= Expr_Value
(Choice
);
6530 pragma Assert
(Present
(Alt
));
6533 -- The above loop *must* terminate by finding a match, since
6534 -- we know the case statement is valid, and the value of the
6535 -- expression is known at compile time. When we fall out of
6536 -- the loop, Alt points to the alternative that we know will
6537 -- be selected at run time.
6540 end Find_Static_Alternative
;
6546 function First_Actual
(Node
: Node_Id
) return Node_Id
is
6550 if No
(Parameter_Associations
(Node
)) then
6554 N
:= First
(Parameter_Associations
(Node
));
6556 if Nkind
(N
) = N_Parameter_Association
then
6557 return First_Named_Actual
(Node
);
6563 -----------------------
6564 -- Gather_Components --
6565 -----------------------
6567 procedure Gather_Components
6569 Comp_List
: Node_Id
;
6570 Governed_By
: List_Id
;
6572 Report_Errors
: out Boolean)
6576 Discrete_Choice
: Node_Id
;
6577 Comp_Item
: Node_Id
;
6579 Discrim
: Entity_Id
;
6580 Discrim_Name
: Node_Id
;
6581 Discrim_Value
: Node_Id
;
6584 Report_Errors
:= False;
6586 if No
(Comp_List
) or else Null_Present
(Comp_List
) then
6589 elsif Present
(Component_Items
(Comp_List
)) then
6590 Comp_Item
:= First
(Component_Items
(Comp_List
));
6596 while Present
(Comp_Item
) loop
6598 -- Skip the tag of a tagged record, the interface tags, as well
6599 -- as all items that are not user components (anonymous types,
6600 -- rep clauses, Parent field, controller field).
6602 if Nkind
(Comp_Item
) = N_Component_Declaration
then
6604 Comp
: constant Entity_Id
:= Defining_Identifier
(Comp_Item
);
6606 if not Is_Tag
(Comp
) and then Chars
(Comp
) /= Name_uParent
then
6607 Append_Elmt
(Comp
, Into
);
6615 if No
(Variant_Part
(Comp_List
)) then
6618 Discrim_Name
:= Name
(Variant_Part
(Comp_List
));
6619 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
6622 -- Look for the discriminant that governs this variant part.
6623 -- The discriminant *must* be in the Governed_By List
6625 Assoc
:= First
(Governed_By
);
6626 Find_Constraint
: loop
6627 Discrim
:= First
(Choices
(Assoc
));
6628 exit Find_Constraint
when Chars
(Discrim_Name
) = Chars
(Discrim
)
6629 or else (Present
(Corresponding_Discriminant
(Entity
(Discrim
)))
6631 Chars
(Corresponding_Discriminant
(Entity
(Discrim
))) =
6632 Chars
(Discrim_Name
))
6633 or else Chars
(Original_Record_Component
(Entity
(Discrim
)))
6634 = Chars
(Discrim_Name
);
6636 if No
(Next
(Assoc
)) then
6637 if not Is_Constrained
(Typ
)
6638 and then Is_Derived_Type
(Typ
)
6639 and then Present
(Stored_Constraint
(Typ
))
6641 -- If the type is a tagged type with inherited discriminants,
6642 -- use the stored constraint on the parent in order to find
6643 -- the values of discriminants that are otherwise hidden by an
6644 -- explicit constraint. Renamed discriminants are handled in
6647 -- If several parent discriminants are renamed by a single
6648 -- discriminant of the derived type, the call to obtain the
6649 -- Corresponding_Discriminant field only retrieves the last
6650 -- of them. We recover the constraint on the others from the
6651 -- Stored_Constraint as well.
6658 D
:= First_Discriminant
(Etype
(Typ
));
6659 C
:= First_Elmt
(Stored_Constraint
(Typ
));
6660 while Present
(D
) and then Present
(C
) loop
6661 if Chars
(Discrim_Name
) = Chars
(D
) then
6662 if Is_Entity_Name
(Node
(C
))
6663 and then Entity
(Node
(C
)) = Entity
(Discrim
)
6665 -- D is renamed by Discrim, whose value is given in
6672 Make_Component_Association
(Sloc
(Typ
),
6674 (New_Occurrence_Of
(D
, Sloc
(Typ
))),
6675 Duplicate_Subexpr_No_Checks
(Node
(C
)));
6677 exit Find_Constraint
;
6680 Next_Discriminant
(D
);
6687 if No
(Next
(Assoc
)) then
6688 Error_Msg_NE
(" missing value for discriminant&",
6689 First
(Governed_By
), Discrim_Name
);
6690 Report_Errors
:= True;
6695 end loop Find_Constraint
;
6697 Discrim_Value
:= Expression
(Assoc
);
6699 if not Is_OK_Static_Expression
(Discrim_Value
) then
6701 ("value for discriminant & must be static!",
6702 Discrim_Value
, Discrim
);
6703 Why_Not_Static
(Discrim_Value
);
6704 Report_Errors
:= True;
6708 Search_For_Discriminant_Value
: declare
6714 UI_Discrim_Value
: constant Uint
:= Expr_Value
(Discrim_Value
);
6717 Find_Discrete_Value
: while Present
(Variant
) loop
6718 Discrete_Choice
:= First
(Discrete_Choices
(Variant
));
6719 while Present
(Discrete_Choice
) loop
6720 exit Find_Discrete_Value
when
6721 Nkind
(Discrete_Choice
) = N_Others_Choice
;
6723 Get_Index_Bounds
(Discrete_Choice
, Low
, High
);
6725 UI_Low
:= Expr_Value
(Low
);
6726 UI_High
:= Expr_Value
(High
);
6728 exit Find_Discrete_Value
when
6729 UI_Low
<= UI_Discrim_Value
6731 UI_High
>= UI_Discrim_Value
;
6733 Next
(Discrete_Choice
);
6736 Next_Non_Pragma
(Variant
);
6737 end loop Find_Discrete_Value
;
6738 end Search_For_Discriminant_Value
;
6740 if No
(Variant
) then
6742 ("value of discriminant & is out of range", Discrim_Value
, Discrim
);
6743 Report_Errors
:= True;
6747 -- If we have found the corresponding choice, recursively add its
6748 -- components to the Into list.
6751 (Empty
, Component_List
(Variant
), Governed_By
, Into
, Report_Errors
);
6752 end Gather_Components
;
6754 ------------------------
6755 -- Get_Actual_Subtype --
6756 ------------------------
6758 function Get_Actual_Subtype
(N
: Node_Id
) return Entity_Id
is
6759 Typ
: constant Entity_Id
:= Etype
(N
);
6760 Utyp
: Entity_Id
:= Underlying_Type
(Typ
);
6769 -- If what we have is an identifier that references a subprogram
6770 -- formal, or a variable or constant object, then we get the actual
6771 -- subtype from the referenced entity if one has been built.
6773 if Nkind
(N
) = N_Identifier
6775 (Is_Formal
(Entity
(N
))
6776 or else Ekind
(Entity
(N
)) = E_Constant
6777 or else Ekind
(Entity
(N
)) = E_Variable
)
6778 and then Present
(Actual_Subtype
(Entity
(N
)))
6780 return Actual_Subtype
(Entity
(N
));
6782 -- Actual subtype of unchecked union is always itself. We never need
6783 -- the "real" actual subtype. If we did, we couldn't get it anyway
6784 -- because the discriminant is not available. The restrictions on
6785 -- Unchecked_Union are designed to make sure that this is OK.
6787 elsif Is_Unchecked_Union
(Base_Type
(Utyp
)) then
6790 -- Here for the unconstrained case, we must find actual subtype
6791 -- No actual subtype is available, so we must build it on the fly.
6793 -- Checking the type, not the underlying type, for constrainedness
6794 -- seems to be necessary. Maybe all the tests should be on the type???
6796 elsif (not Is_Constrained
(Typ
))
6797 and then (Is_Array_Type
(Utyp
)
6798 or else (Is_Record_Type
(Utyp
)
6799 and then Has_Discriminants
(Utyp
)))
6800 and then not Has_Unknown_Discriminants
(Utyp
)
6801 and then not (Ekind
(Utyp
) = E_String_Literal_Subtype
)
6803 -- Nothing to do if in spec expression (why not???)
6805 if In_Spec_Expression
then
6808 elsif Is_Private_Type
(Typ
) and then not Has_Discriminants
(Typ
) then
6810 -- If the type has no discriminants, there is no subtype to
6811 -- build, even if the underlying type is discriminated.
6815 -- Else build the actual subtype
6818 Decl
:= Build_Actual_Subtype
(Typ
, N
);
6819 Atyp
:= Defining_Identifier
(Decl
);
6821 -- If Build_Actual_Subtype generated a new declaration then use it
6825 -- The actual subtype is an Itype, so analyze the declaration,
6826 -- but do not attach it to the tree, to get the type defined.
6828 Set_Parent
(Decl
, N
);
6829 Set_Is_Itype
(Atyp
);
6830 Analyze
(Decl
, Suppress
=> All_Checks
);
6831 Set_Associated_Node_For_Itype
(Atyp
, N
);
6832 Set_Has_Delayed_Freeze
(Atyp
, False);
6834 -- We need to freeze the actual subtype immediately. This is
6835 -- needed, because otherwise this Itype will not get frozen
6836 -- at all, and it is always safe to freeze on creation because
6837 -- any associated types must be frozen at this point.
6839 Freeze_Itype
(Atyp
, N
);
6842 -- Otherwise we did not build a declaration, so return original
6849 -- For all remaining cases, the actual subtype is the same as
6850 -- the nominal type.
6855 end Get_Actual_Subtype
;
6857 -------------------------------------
6858 -- Get_Actual_Subtype_If_Available --
6859 -------------------------------------
6861 function Get_Actual_Subtype_If_Available
(N
: Node_Id
) return Entity_Id
is
6862 Typ
: constant Entity_Id
:= Etype
(N
);
6865 -- If what we have is an identifier that references a subprogram
6866 -- formal, or a variable or constant object, then we get the actual
6867 -- subtype from the referenced entity if one has been built.
6869 if Nkind
(N
) = N_Identifier
6871 (Is_Formal
(Entity
(N
))
6872 or else Ekind
(Entity
(N
)) = E_Constant
6873 or else Ekind
(Entity
(N
)) = E_Variable
)
6874 and then Present
(Actual_Subtype
(Entity
(N
)))
6876 return Actual_Subtype
(Entity
(N
));
6878 -- Otherwise the Etype of N is returned unchanged
6883 end Get_Actual_Subtype_If_Available
;
6885 ------------------------
6886 -- Get_Body_From_Stub --
6887 ------------------------
6889 function Get_Body_From_Stub
(N
: Node_Id
) return Node_Id
is
6891 return Proper_Body
(Unit
(Library_Unit
(N
)));
6892 end Get_Body_From_Stub
;
6894 ---------------------
6895 -- Get_Cursor_Type --
6896 ---------------------
6898 function Get_Cursor_Type
6900 Typ
: Entity_Id
) return Entity_Id
6904 First_Op
: Entity_Id
;
6908 -- If error already detected, return
6910 if Error_Posted
(Aspect
) then
6914 -- The cursor type for an Iterable aspect is the return type of a
6915 -- non-overloaded First primitive operation. Locate association for
6918 Assoc
:= First
(Component_Associations
(Expression
(Aspect
)));
6920 while Present
(Assoc
) loop
6921 if Chars
(First
(Choices
(Assoc
))) = Name_First
then
6922 First_Op
:= Expression
(Assoc
);
6929 if First_Op
= Any_Id
then
6930 Error_Msg_N
("aspect Iterable must specify First operation", Aspect
);
6936 -- Locate function with desired name and profile in scope of type
6938 Func
:= First_Entity
(Scope
(Typ
));
6939 while Present
(Func
) loop
6940 if Chars
(Func
) = Chars
(First_Op
)
6941 and then Ekind
(Func
) = E_Function
6942 and then Present
(First_Formal
(Func
))
6943 and then Etype
(First_Formal
(Func
)) = Typ
6944 and then No
(Next_Formal
(First_Formal
(Func
)))
6946 if Cursor
/= Any_Type
then
6948 ("Operation First for iterable type must be unique", Aspect
);
6951 Cursor
:= Etype
(Func
);
6958 -- If not found, no way to resolve remaining primitives.
6960 if Cursor
= Any_Type
then
6962 ("No legal primitive operation First for Iterable type", Aspect
);
6966 end Get_Cursor_Type
;
6968 -------------------------------
6969 -- Get_Default_External_Name --
6970 -------------------------------
6972 function Get_Default_External_Name
(E
: Node_Or_Entity_Id
) return Node_Id
is
6974 Get_Decoded_Name_String
(Chars
(E
));
6976 if Opt
.External_Name_Imp_Casing
= Uppercase
then
6977 Set_Casing
(All_Upper_Case
);
6979 Set_Casing
(All_Lower_Case
);
6983 Make_String_Literal
(Sloc
(E
),
6984 Strval
=> String_From_Name_Buffer
);
6985 end Get_Default_External_Name
;
6987 --------------------------
6988 -- Get_Enclosing_Object --
6989 --------------------------
6991 function Get_Enclosing_Object
(N
: Node_Id
) return Entity_Id
is
6993 if Is_Entity_Name
(N
) then
6997 when N_Indexed_Component |
6999 N_Selected_Component
=>
7001 -- If not generating code, a dereference may be left implicit.
7002 -- In thoses cases, return Empty.
7004 if Is_Access_Type
(Etype
(Prefix
(N
))) then
7007 return Get_Enclosing_Object
(Prefix
(N
));
7010 when N_Type_Conversion
=>
7011 return Get_Enclosing_Object
(Expression
(N
));
7017 end Get_Enclosing_Object
;
7019 ---------------------------
7020 -- Get_Enum_Lit_From_Pos --
7021 ---------------------------
7023 function Get_Enum_Lit_From_Pos
7026 Loc
: Source_Ptr
) return Node_Id
7028 Btyp
: Entity_Id
:= Base_Type
(T
);
7032 -- In the case where the literal is of type Character, Wide_Character
7033 -- or Wide_Wide_Character or of a type derived from them, there needs
7034 -- to be some special handling since there is no explicit chain of
7035 -- literals to search. Instead, an N_Character_Literal node is created
7036 -- with the appropriate Char_Code and Chars fields.
7038 if Is_Standard_Character_Type
(T
) then
7039 Set_Character_Literal_Name
(UI_To_CC
(Pos
));
7041 Make_Character_Literal
(Loc
,
7043 Char_Literal_Value
=> Pos
);
7045 -- For all other cases, we have a complete table of literals, and
7046 -- we simply iterate through the chain of literal until the one
7047 -- with the desired position value is found.
7050 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
7051 Btyp
:= Full_View
(Btyp
);
7054 Lit
:= First_Literal
(Btyp
);
7055 for J
in 1 .. UI_To_Int
(Pos
) loop
7059 return New_Occurrence_Of
(Lit
, Loc
);
7061 end Get_Enum_Lit_From_Pos
;
7063 ---------------------------------
7064 -- Get_Ensures_From_CTC_Pragma --
7065 ---------------------------------
7067 function Get_Ensures_From_CTC_Pragma
(N
: Node_Id
) return Node_Id
is
7068 Args
: constant List_Id
:= Pragma_Argument_Associations
(N
);
7072 if List_Length
(Args
) = 4 then
7073 Res
:= Pick
(Args
, 4);
7075 elsif List_Length
(Args
) = 3 then
7076 Res
:= Pick
(Args
, 3);
7078 if Chars
(Res
) /= Name_Ensures
then
7087 end Get_Ensures_From_CTC_Pragma
;
7089 ------------------------
7090 -- Get_Generic_Entity --
7091 ------------------------
7093 function Get_Generic_Entity
(N
: Node_Id
) return Entity_Id
is
7094 Ent
: constant Entity_Id
:= Entity
(Name
(N
));
7096 if Present
(Renamed_Object
(Ent
)) then
7097 return Renamed_Object
(Ent
);
7101 end Get_Generic_Entity
;
7103 -------------------------------------
7104 -- Get_Incomplete_View_Of_Ancestor --
7105 -------------------------------------
7107 function Get_Incomplete_View_Of_Ancestor
(E
: Entity_Id
) return Entity_Id
is
7108 Cur_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
7109 Par_Scope
: Entity_Id
;
7110 Par_Type
: Entity_Id
;
7113 -- The incomplete view of an ancestor is only relevant for private
7114 -- derived types in child units.
7116 if not Is_Derived_Type
(E
)
7117 or else not Is_Child_Unit
(Cur_Unit
)
7122 Par_Scope
:= Scope
(Cur_Unit
);
7123 if No
(Par_Scope
) then
7127 Par_Type
:= Etype
(Base_Type
(E
));
7129 -- Traverse list of ancestor types until we find one declared in
7130 -- a parent or grandparent unit (two levels seem sufficient).
7132 while Present
(Par_Type
) loop
7133 if Scope
(Par_Type
) = Par_Scope
7134 or else Scope
(Par_Type
) = Scope
(Par_Scope
)
7138 elsif not Is_Derived_Type
(Par_Type
) then
7142 Par_Type
:= Etype
(Base_Type
(Par_Type
));
7146 -- If none found, there is no relevant ancestor type.
7150 end Get_Incomplete_View_Of_Ancestor
;
7152 ----------------------
7153 -- Get_Index_Bounds --
7154 ----------------------
7156 procedure Get_Index_Bounds
(N
: Node_Id
; L
, H
: out Node_Id
) is
7157 Kind
: constant Node_Kind
:= Nkind
(N
);
7161 if Kind
= N_Range
then
7163 H
:= High_Bound
(N
);
7165 elsif Kind
= N_Subtype_Indication
then
7166 R
:= Range_Expression
(Constraint
(N
));
7174 L
:= Low_Bound
(Range_Expression
(Constraint
(N
)));
7175 H
:= High_Bound
(Range_Expression
(Constraint
(N
)));
7178 elsif Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
7179 if Error_Posted
(Scalar_Range
(Entity
(N
))) then
7183 elsif Nkind
(Scalar_Range
(Entity
(N
))) = N_Subtype_Indication
then
7184 Get_Index_Bounds
(Scalar_Range
(Entity
(N
)), L
, H
);
7187 L
:= Low_Bound
(Scalar_Range
(Entity
(N
)));
7188 H
:= High_Bound
(Scalar_Range
(Entity
(N
)));
7192 -- N is an expression, indicating a range with one value
7197 end Get_Index_Bounds
;
7199 ---------------------------------
7200 -- Get_Iterable_Type_Primitive --
7201 ---------------------------------
7203 function Get_Iterable_Type_Primitive
7205 Nam
: Name_Id
) return Entity_Id
7207 Funcs
: constant Node_Id
:= Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
);
7215 Assoc
:= First
(Component_Associations
(Funcs
));
7216 while Present
(Assoc
) loop
7217 if Chars
(First
(Choices
(Assoc
))) = Nam
then
7218 return Entity
(Expression
(Assoc
));
7221 Assoc
:= Next
(Assoc
);
7226 end Get_Iterable_Type_Primitive
;
7228 ----------------------------------
7229 -- Get_Library_Unit_Name_string --
7230 ----------------------------------
7232 procedure Get_Library_Unit_Name_String
(Decl_Node
: Node_Id
) is
7233 Unit_Name_Id
: constant Unit_Name_Type
:= Get_Unit_Name
(Decl_Node
);
7236 Get_Unit_Name_String
(Unit_Name_Id
);
7238 -- Remove seven last character (" (spec)" or " (body)")
7240 Name_Len
:= Name_Len
- 7;
7241 pragma Assert
(Name_Buffer
(Name_Len
+ 1) = ' ');
7242 end Get_Library_Unit_Name_String
;
7244 ------------------------
7245 -- Get_Name_Entity_Id --
7246 ------------------------
7248 function Get_Name_Entity_Id
(Id
: Name_Id
) return Entity_Id
is
7250 return Entity_Id
(Get_Name_Table_Info
(Id
));
7251 end Get_Name_Entity_Id
;
7253 ------------------------------
7254 -- Get_Name_From_CTC_Pragma --
7255 ------------------------------
7257 function Get_Name_From_CTC_Pragma
(N
: Node_Id
) return String_Id
is
7258 Arg
: constant Node_Id
:=
7259 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(N
)));
7261 return Strval
(Expr_Value_S
(Arg
));
7262 end Get_Name_From_CTC_Pragma
;
7264 -----------------------
7265 -- Get_Parent_Entity --
7266 -----------------------
7268 function Get_Parent_Entity
(Unit
: Node_Id
) return Entity_Id
is
7270 if Nkind
(Unit
) = N_Package_Body
7271 and then Nkind
(Original_Node
(Unit
)) = N_Package_Instantiation
7273 return Defining_Entity
7274 (Specification
(Instance_Spec
(Original_Node
(Unit
))));
7275 elsif Nkind
(Unit
) = N_Package_Instantiation
then
7276 return Defining_Entity
(Specification
(Instance_Spec
(Unit
)));
7278 return Defining_Entity
(Unit
);
7280 end Get_Parent_Entity
;
7285 function Get_Pragma_Id
(N
: Node_Id
) return Pragma_Id
is
7287 return Get_Pragma_Id
(Pragma_Name
(N
));
7290 -----------------------
7291 -- Get_Reason_String --
7292 -----------------------
7294 procedure Get_Reason_String
(N
: Node_Id
) is
7296 if Nkind
(N
) = N_String_Literal
then
7297 Store_String_Chars
(Strval
(N
));
7299 elsif Nkind
(N
) = N_Op_Concat
then
7300 Get_Reason_String
(Left_Opnd
(N
));
7301 Get_Reason_String
(Right_Opnd
(N
));
7303 -- If not of required form, error
7307 ("Reason for pragma Warnings has wrong form", N
);
7309 ("\must be string literal or concatenation of string literals", N
);
7312 end Get_Reason_String
;
7314 ---------------------------
7315 -- Get_Referenced_Object --
7316 ---------------------------
7318 function Get_Referenced_Object
(N
: Node_Id
) return Node_Id
is
7323 while Is_Entity_Name
(R
)
7324 and then Present
(Renamed_Object
(Entity
(R
)))
7326 R
:= Renamed_Object
(Entity
(R
));
7330 end Get_Referenced_Object
;
7332 ------------------------
7333 -- Get_Renamed_Entity --
7334 ------------------------
7336 function Get_Renamed_Entity
(E
: Entity_Id
) return Entity_Id
is
7341 while Present
(Renamed_Entity
(R
)) loop
7342 R
:= Renamed_Entity
(R
);
7346 end Get_Renamed_Entity
;
7348 ----------------------------------
7349 -- Get_Requires_From_CTC_Pragma --
7350 ----------------------------------
7352 function Get_Requires_From_CTC_Pragma
(N
: Node_Id
) return Node_Id
is
7353 Args
: constant List_Id
:= Pragma_Argument_Associations
(N
);
7357 if List_Length
(Args
) >= 3 then
7358 Res
:= Pick
(Args
, 3);
7360 if Chars
(Res
) /= Name_Requires
then
7369 end Get_Requires_From_CTC_Pragma
;
7371 -------------------------
7372 -- Get_Subprogram_Body --
7373 -------------------------
7375 function Get_Subprogram_Body
(E
: Entity_Id
) return Node_Id
is
7379 Decl
:= Unit_Declaration_Node
(E
);
7381 if Nkind
(Decl
) = N_Subprogram_Body
then
7384 -- The below comment is bad, because it is possible for
7385 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
7387 else -- Nkind (Decl) = N_Subprogram_Declaration
7389 if Present
(Corresponding_Body
(Decl
)) then
7390 return Unit_Declaration_Node
(Corresponding_Body
(Decl
));
7392 -- Imported subprogram case
7398 end Get_Subprogram_Body
;
7400 ---------------------------
7401 -- Get_Subprogram_Entity --
7402 ---------------------------
7404 function Get_Subprogram_Entity
(Nod
: Node_Id
) return Entity_Id
is
7406 Subp_Id
: Entity_Id
;
7409 if Nkind
(Nod
) = N_Accept_Statement
then
7410 Subp
:= Entry_Direct_Name
(Nod
);
7412 elsif Nkind
(Nod
) = N_Slice
then
7413 Subp
:= Prefix
(Nod
);
7419 -- Strip the subprogram call
7422 if Nkind_In
(Subp
, N_Explicit_Dereference
,
7423 N_Indexed_Component
,
7424 N_Selected_Component
)
7426 Subp
:= Prefix
(Subp
);
7428 elsif Nkind_In
(Subp
, N_Type_Conversion
,
7429 N_Unchecked_Type_Conversion
)
7431 Subp
:= Expression
(Subp
);
7438 -- Extract the entity of the subprogram call
7440 if Is_Entity_Name
(Subp
) then
7441 Subp_Id
:= Entity
(Subp
);
7443 if Ekind
(Subp_Id
) = E_Access_Subprogram_Type
then
7444 Subp_Id
:= Directly_Designated_Type
(Subp_Id
);
7447 if Is_Subprogram
(Subp_Id
) then
7453 -- The search did not find a construct that denotes a subprogram
7458 end Get_Subprogram_Entity
;
7460 -----------------------------
7461 -- Get_Task_Body_Procedure --
7462 -----------------------------
7464 function Get_Task_Body_Procedure
(E
: Entity_Id
) return Node_Id
is
7466 -- Note: A task type may be the completion of a private type with
7467 -- discriminants. When performing elaboration checks on a task
7468 -- declaration, the current view of the type may be the private one,
7469 -- and the procedure that holds the body of the task is held in its
7472 -- This is an odd function, why not have Task_Body_Procedure do
7473 -- the following digging???
7475 return Task_Body_Procedure
(Underlying_Type
(Root_Type
(E
)));
7476 end Get_Task_Body_Procedure
;
7478 -----------------------
7479 -- Has_Access_Values --
7480 -----------------------
7482 function Has_Access_Values
(T
: Entity_Id
) return Boolean is
7483 Typ
: constant Entity_Id
:= Underlying_Type
(T
);
7486 -- Case of a private type which is not completed yet. This can only
7487 -- happen in the case of a generic format type appearing directly, or
7488 -- as a component of the type to which this function is being applied
7489 -- at the top level. Return False in this case, since we certainly do
7490 -- not know that the type contains access types.
7495 elsif Is_Access_Type
(Typ
) then
7498 elsif Is_Array_Type
(Typ
) then
7499 return Has_Access_Values
(Component_Type
(Typ
));
7501 elsif Is_Record_Type
(Typ
) then
7506 -- Loop to Check components
7508 Comp
:= First_Component_Or_Discriminant
(Typ
);
7509 while Present
(Comp
) loop
7511 -- Check for access component, tag field does not count, even
7512 -- though it is implemented internally using an access type.
7514 if Has_Access_Values
(Etype
(Comp
))
7515 and then Chars
(Comp
) /= Name_uTag
7520 Next_Component_Or_Discriminant
(Comp
);
7529 end Has_Access_Values
;
7531 ------------------------------
7532 -- Has_Compatible_Alignment --
7533 ------------------------------
7535 function Has_Compatible_Alignment
7537 Expr
: Node_Id
) return Alignment_Result
7539 function Has_Compatible_Alignment_Internal
7542 Default
: Alignment_Result
) return Alignment_Result
;
7543 -- This is the internal recursive function that actually does the work.
7544 -- There is one additional parameter, which says what the result should
7545 -- be if no alignment information is found, and there is no definite
7546 -- indication of compatible alignments. At the outer level, this is set
7547 -- to Unknown, but for internal recursive calls in the case where types
7548 -- are known to be correct, it is set to Known_Compatible.
7550 ---------------------------------------
7551 -- Has_Compatible_Alignment_Internal --
7552 ---------------------------------------
7554 function Has_Compatible_Alignment_Internal
7557 Default
: Alignment_Result
) return Alignment_Result
7559 Result
: Alignment_Result
:= Known_Compatible
;
7560 -- Holds the current status of the result. Note that once a value of
7561 -- Known_Incompatible is set, it is sticky and does not get changed
7562 -- to Unknown (the value in Result only gets worse as we go along,
7565 Offs
: Uint
:= No_Uint
;
7566 -- Set to a factor of the offset from the base object when Expr is a
7567 -- selected or indexed component, based on Component_Bit_Offset and
7568 -- Component_Size respectively. A negative value is used to represent
7569 -- a value which is not known at compile time.
7571 procedure Check_Prefix
;
7572 -- Checks the prefix recursively in the case where the expression
7573 -- is an indexed or selected component.
7575 procedure Set_Result
(R
: Alignment_Result
);
7576 -- If R represents a worse outcome (unknown instead of known
7577 -- compatible, or known incompatible), then set Result to R.
7583 procedure Check_Prefix
is
7585 -- The subtlety here is that in doing a recursive call to check
7586 -- the prefix, we have to decide what to do in the case where we
7587 -- don't find any specific indication of an alignment problem.
7589 -- At the outer level, we normally set Unknown as the result in
7590 -- this case, since we can only set Known_Compatible if we really
7591 -- know that the alignment value is OK, but for the recursive
7592 -- call, in the case where the types match, and we have not
7593 -- specified a peculiar alignment for the object, we are only
7594 -- concerned about suspicious rep clauses, the default case does
7595 -- not affect us, since the compiler will, in the absence of such
7596 -- rep clauses, ensure that the alignment is correct.
7598 if Default
= Known_Compatible
7600 (Etype
(Obj
) = Etype
(Expr
)
7601 and then (Unknown_Alignment
(Obj
)
7603 Alignment
(Obj
) = Alignment
(Etype
(Obj
))))
7606 (Has_Compatible_Alignment_Internal
7607 (Obj
, Prefix
(Expr
), Known_Compatible
));
7609 -- In all other cases, we need a full check on the prefix
7613 (Has_Compatible_Alignment_Internal
7614 (Obj
, Prefix
(Expr
), Unknown
));
7622 procedure Set_Result
(R
: Alignment_Result
) is
7629 -- Start of processing for Has_Compatible_Alignment_Internal
7632 -- If Expr is a selected component, we must make sure there is no
7633 -- potentially troublesome component clause, and that the record is
7636 if Nkind
(Expr
) = N_Selected_Component
then
7638 -- Packed record always generate unknown alignment
7640 if Is_Packed
(Etype
(Prefix
(Expr
))) then
7641 Set_Result
(Unknown
);
7644 -- Check prefix and component offset
7647 Offs
:= Component_Bit_Offset
(Entity
(Selector_Name
(Expr
)));
7649 -- If Expr is an indexed component, we must make sure there is no
7650 -- potentially troublesome Component_Size clause and that the array
7651 -- is not bit-packed.
7653 elsif Nkind
(Expr
) = N_Indexed_Component
then
7655 Typ
: constant Entity_Id
:= Etype
(Prefix
(Expr
));
7656 Ind
: constant Node_Id
:= First_Index
(Typ
);
7659 -- Bit packed array always generates unknown alignment
7661 if Is_Bit_Packed_Array
(Typ
) then
7662 Set_Result
(Unknown
);
7665 -- Check prefix and component offset
7668 Offs
:= Component_Size
(Typ
);
7670 -- Small optimization: compute the full offset when possible
7673 and then Offs
> Uint_0
7674 and then Present
(Ind
)
7675 and then Nkind
(Ind
) = N_Range
7676 and then Compile_Time_Known_Value
(Low_Bound
(Ind
))
7677 and then Compile_Time_Known_Value
(First
(Expressions
(Expr
)))
7679 Offs
:= Offs
* (Expr_Value
(First
(Expressions
(Expr
)))
7680 - Expr_Value
(Low_Bound
((Ind
))));
7685 -- If we have a null offset, the result is entirely determined by
7686 -- the base object and has already been computed recursively.
7688 if Offs
= Uint_0
then
7691 -- Case where we know the alignment of the object
7693 elsif Known_Alignment
(Obj
) then
7695 ObjA
: constant Uint
:= Alignment
(Obj
);
7696 ExpA
: Uint
:= No_Uint
;
7697 SizA
: Uint
:= No_Uint
;
7700 -- If alignment of Obj is 1, then we are always OK
7703 Set_Result
(Known_Compatible
);
7705 -- Alignment of Obj is greater than 1, so we need to check
7708 -- If we have an offset, see if it is compatible
7710 if Offs
/= No_Uint
and Offs
> Uint_0
then
7711 if Offs
mod (System_Storage_Unit
* ObjA
) /= 0 then
7712 Set_Result
(Known_Incompatible
);
7715 -- See if Expr is an object with known alignment
7717 elsif Is_Entity_Name
(Expr
)
7718 and then Known_Alignment
(Entity
(Expr
))
7720 ExpA
:= Alignment
(Entity
(Expr
));
7722 -- Otherwise, we can use the alignment of the type of
7723 -- Expr given that we already checked for
7724 -- discombobulating rep clauses for the cases of indexed
7725 -- and selected components above.
7727 elsif Known_Alignment
(Etype
(Expr
)) then
7728 ExpA
:= Alignment
(Etype
(Expr
));
7730 -- Otherwise the alignment is unknown
7733 Set_Result
(Default
);
7736 -- If we got an alignment, see if it is acceptable
7738 if ExpA
/= No_Uint
and then ExpA
< ObjA
then
7739 Set_Result
(Known_Incompatible
);
7742 -- If Expr is not a piece of a larger object, see if size
7743 -- is given. If so, check that it is not too small for the
7744 -- required alignment.
7746 if Offs
/= No_Uint
then
7749 -- See if Expr is an object with known size
7751 elsif Is_Entity_Name
(Expr
)
7752 and then Known_Static_Esize
(Entity
(Expr
))
7754 SizA
:= Esize
(Entity
(Expr
));
7756 -- Otherwise, we check the object size of the Expr type
7758 elsif Known_Static_Esize
(Etype
(Expr
)) then
7759 SizA
:= Esize
(Etype
(Expr
));
7762 -- If we got a size, see if it is a multiple of the Obj
7763 -- alignment, if not, then the alignment cannot be
7764 -- acceptable, since the size is always a multiple of the
7767 if SizA
/= No_Uint
then
7768 if SizA
mod (ObjA
* Ttypes
.System_Storage_Unit
) /= 0 then
7769 Set_Result
(Known_Incompatible
);
7775 -- If we do not know required alignment, any non-zero offset is a
7776 -- potential problem (but certainly may be OK, so result is unknown).
7778 elsif Offs
/= No_Uint
then
7779 Set_Result
(Unknown
);
7781 -- If we can't find the result by direct comparison of alignment
7782 -- values, then there is still one case that we can determine known
7783 -- result, and that is when we can determine that the types are the
7784 -- same, and no alignments are specified. Then we known that the
7785 -- alignments are compatible, even if we don't know the alignment
7786 -- value in the front end.
7788 elsif Etype
(Obj
) = Etype
(Expr
) then
7790 -- Types are the same, but we have to check for possible size
7791 -- and alignments on the Expr object that may make the alignment
7792 -- different, even though the types are the same.
7794 if Is_Entity_Name
(Expr
) then
7796 -- First check alignment of the Expr object. Any alignment less
7797 -- than Maximum_Alignment is worrisome since this is the case
7798 -- where we do not know the alignment of Obj.
7800 if Known_Alignment
(Entity
(Expr
))
7801 and then UI_To_Int
(Alignment
(Entity
(Expr
))) <
7802 Ttypes
.Maximum_Alignment
7804 Set_Result
(Unknown
);
7806 -- Now check size of Expr object. Any size that is not an
7807 -- even multiple of Maximum_Alignment is also worrisome
7808 -- since it may cause the alignment of the object to be less
7809 -- than the alignment of the type.
7811 elsif Known_Static_Esize
(Entity
(Expr
))
7813 (UI_To_Int
(Esize
(Entity
(Expr
))) mod
7814 (Ttypes
.Maximum_Alignment
* Ttypes
.System_Storage_Unit
))
7817 Set_Result
(Unknown
);
7819 -- Otherwise same type is decisive
7822 Set_Result
(Known_Compatible
);
7826 -- Another case to deal with is when there is an explicit size or
7827 -- alignment clause when the types are not the same. If so, then the
7828 -- result is Unknown. We don't need to do this test if the Default is
7829 -- Unknown, since that result will be set in any case.
7831 elsif Default
/= Unknown
7832 and then (Has_Size_Clause
(Etype
(Expr
))
7834 Has_Alignment_Clause
(Etype
(Expr
)))
7836 Set_Result
(Unknown
);
7838 -- If no indication found, set default
7841 Set_Result
(Default
);
7844 -- Return worst result found
7847 end Has_Compatible_Alignment_Internal
;
7849 -- Start of processing for Has_Compatible_Alignment
7852 -- If Obj has no specified alignment, then set alignment from the type
7853 -- alignment. Perhaps we should always do this, but for sure we should
7854 -- do it when there is an address clause since we can do more if the
7855 -- alignment is known.
7857 if Unknown_Alignment
(Obj
) then
7858 Set_Alignment
(Obj
, Alignment
(Etype
(Obj
)));
7861 -- Now do the internal call that does all the work
7863 return Has_Compatible_Alignment_Internal
(Obj
, Expr
, Unknown
);
7864 end Has_Compatible_Alignment
;
7866 ----------------------
7867 -- Has_Declarations --
7868 ----------------------
7870 function Has_Declarations
(N
: Node_Id
) return Boolean is
7872 return Nkind_In
(Nkind
(N
), N_Accept_Statement
,
7874 N_Compilation_Unit_Aux
,
7880 N_Package_Specification
);
7881 end Has_Declarations
;
7883 ---------------------------------
7884 -- Has_Defaulted_Discriminants --
7885 ---------------------------------
7887 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
7889 return Has_Discriminants
(Typ
)
7890 and then Present
(First_Discriminant
(Typ
))
7891 and then Present
(Discriminant_Default_Value
7892 (First_Discriminant
(Typ
)));
7893 end Has_Defaulted_Discriminants
;
7899 function Has_Denormals
(E
: Entity_Id
) return Boolean is
7901 return Is_Floating_Point_Type
(E
) and then Denorm_On_Target
;
7904 -------------------------------------------
7905 -- Has_Discriminant_Dependent_Constraint --
7906 -------------------------------------------
7908 function Has_Discriminant_Dependent_Constraint
7909 (Comp
: Entity_Id
) return Boolean
7911 Comp_Decl
: constant Node_Id
:= Parent
(Comp
);
7912 Subt_Indic
: Node_Id
;
7917 -- Discriminants can't depend on discriminants
7919 if Ekind
(Comp
) = E_Discriminant
then
7923 Subt_Indic
:= Subtype_Indication
(Component_Definition
(Comp_Decl
));
7925 if Nkind
(Subt_Indic
) = N_Subtype_Indication
then
7926 Constr
:= Constraint
(Subt_Indic
);
7928 if Nkind
(Constr
) = N_Index_Or_Discriminant_Constraint
then
7929 Assn
:= First
(Constraints
(Constr
));
7930 while Present
(Assn
) loop
7931 case Nkind
(Assn
) is
7932 when N_Subtype_Indication |
7936 if Depends_On_Discriminant
(Assn
) then
7940 when N_Discriminant_Association
=>
7941 if Depends_On_Discriminant
(Expression
(Assn
)) then
7956 end Has_Discriminant_Dependent_Constraint
;
7958 --------------------------
7959 -- Has_Enabled_Property --
7960 --------------------------
7962 function Has_Enabled_Property
7963 (Item_Id
: Entity_Id
;
7964 Property
: Name_Id
) return Boolean
7966 function State_Has_Enabled_Property
return Boolean;
7967 -- Determine whether a state denoted by Item_Id has the property enabled
7969 function Variable_Has_Enabled_Property
return Boolean;
7970 -- Determine whether a variable denoted by Item_Id has the property
7973 --------------------------------
7974 -- State_Has_Enabled_Property --
7975 --------------------------------
7977 function State_Has_Enabled_Property
return Boolean is
7978 Decl
: constant Node_Id
:= Parent
(Item_Id
);
7986 -- The declaration of an external abstract state appears as an
7987 -- extension aggregate. If this is not the case, properties can never
7990 if Nkind
(Decl
) /= N_Extension_Aggregate
then
7994 -- When External appears as a simple option, it automatically enables
7997 Opt
:= First
(Expressions
(Decl
));
7998 while Present
(Opt
) loop
7999 if Nkind
(Opt
) = N_Identifier
8000 and then Chars
(Opt
) = Name_External
8008 -- When External specifies particular properties, inspect those and
8009 -- find the desired one (if any).
8011 Opt
:= First
(Component_Associations
(Decl
));
8012 while Present
(Opt
) loop
8013 Opt_Nam
:= First
(Choices
(Opt
));
8015 if Nkind
(Opt_Nam
) = N_Identifier
8016 and then Chars
(Opt_Nam
) = Name_External
8018 Props
:= Expression
(Opt
);
8020 -- Multiple properties appear as an aggregate
8022 if Nkind
(Props
) = N_Aggregate
then
8024 -- Simple property form
8026 Prop
:= First
(Expressions
(Props
));
8027 while Present
(Prop
) loop
8028 if Chars
(Prop
) = Property
then
8035 -- Property with expression form
8037 Prop
:= First
(Component_Associations
(Props
));
8038 while Present
(Prop
) loop
8039 Prop_Nam
:= First
(Choices
(Prop
));
8041 -- The property can be represented in two ways:
8042 -- others => <value>
8043 -- <property> => <value>
8045 if Nkind
(Prop_Nam
) = N_Others_Choice
8046 or else (Nkind
(Prop_Nam
) = N_Identifier
8047 and then Chars
(Prop_Nam
) = Property
)
8049 return Is_True
(Expr_Value
(Expression
(Prop
)));
8058 return Chars
(Props
) = Property
;
8066 end State_Has_Enabled_Property
;
8068 -----------------------------------
8069 -- Variable_Has_Enabled_Property --
8070 -----------------------------------
8072 function Variable_Has_Enabled_Property
return Boolean is
8073 function Is_Enabled
(Prag
: Node_Id
) return Boolean;
8074 -- Determine whether property pragma Prag (if present) denotes an
8075 -- enabled property.
8081 function Is_Enabled
(Prag
: Node_Id
) return Boolean is
8085 if Present
(Prag
) then
8086 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
8088 -- The pragma has an optional Boolean expression, the related
8089 -- property is enabled only when the expression evaluates to
8092 if Present
(Arg2
) then
8093 return Is_True
(Expr_Value
(Get_Pragma_Arg
(Arg2
)));
8095 -- Otherwise the lack of expression enables the property by
8102 -- The property was never set in the first place
8111 AR
: constant Node_Id
:=
8112 Get_Pragma
(Item_Id
, Pragma_Async_Readers
);
8113 AW
: constant Node_Id
:=
8114 Get_Pragma
(Item_Id
, Pragma_Async_Writers
);
8115 ER
: constant Node_Id
:=
8116 Get_Pragma
(Item_Id
, Pragma_Effective_Reads
);
8117 EW
: constant Node_Id
:=
8118 Get_Pragma
(Item_Id
, Pragma_Effective_Writes
);
8120 -- Start of processing for Variable_Has_Enabled_Property
8123 -- A non-effectively volatile object can never possess external
8126 if not Is_Effectively_Volatile
(Item_Id
) then
8129 -- External properties related to variables come in two flavors -
8130 -- explicit and implicit. The explicit case is characterized by the
8131 -- presence of a property pragma with an optional Boolean flag. The
8132 -- property is enabled when the flag evaluates to True or the flag is
8133 -- missing altogether.
8135 elsif Property
= Name_Async_Readers
and then Is_Enabled
(AR
) then
8138 elsif Property
= Name_Async_Writers
and then Is_Enabled
(AW
) then
8141 elsif Property
= Name_Effective_Reads
and then Is_Enabled
(ER
) then
8144 elsif Property
= Name_Effective_Writes
and then Is_Enabled
(EW
) then
8147 -- The implicit case lacks all property pragmas
8149 elsif No
(AR
) and then No
(AW
) and then No
(ER
) and then No
(EW
) then
8155 end Variable_Has_Enabled_Property
;
8157 -- Start of processing for Has_Enabled_Property
8160 -- Abstract states and variables have a flexible scheme of specifying
8161 -- external properties.
8163 if Ekind
(Item_Id
) = E_Abstract_State
then
8164 return State_Has_Enabled_Property
;
8166 elsif Ekind
(Item_Id
) = E_Variable
then
8167 return Variable_Has_Enabled_Property
;
8169 -- Otherwise a property is enabled when the related item is effectively
8173 return Is_Effectively_Volatile
(Item_Id
);
8175 end Has_Enabled_Property
;
8177 --------------------
8178 -- Has_Infinities --
8179 --------------------
8181 function Has_Infinities
(E
: Entity_Id
) return Boolean is
8184 Is_Floating_Point_Type
(E
)
8185 and then Nkind
(Scalar_Range
(E
)) = N_Range
8186 and then Includes_Infinities
(Scalar_Range
(E
));
8189 --------------------
8190 -- Has_Interfaces --
8191 --------------------
8193 function Has_Interfaces
8195 Use_Full_View
: Boolean := True) return Boolean
8197 Typ
: Entity_Id
:= Base_Type
(T
);
8200 -- Handle concurrent types
8202 if Is_Concurrent_Type
(Typ
) then
8203 Typ
:= Corresponding_Record_Type
(Typ
);
8206 if not Present
(Typ
)
8207 or else not Is_Record_Type
(Typ
)
8208 or else not Is_Tagged_Type
(Typ
)
8213 -- Handle private types
8215 if Use_Full_View
and then Present
(Full_View
(Typ
)) then
8216 Typ
:= Full_View
(Typ
);
8219 -- Handle concurrent record types
8221 if Is_Concurrent_Record_Type
(Typ
)
8222 and then Is_Non_Empty_List
(Abstract_Interface_List
(Typ
))
8228 if Is_Interface
(Typ
)
8230 (Is_Record_Type
(Typ
)
8231 and then Present
(Interfaces
(Typ
))
8232 and then not Is_Empty_Elmt_List
(Interfaces
(Typ
)))
8237 exit when Etype
(Typ
) = Typ
8239 -- Handle private types
8241 or else (Present
(Full_View
(Etype
(Typ
)))
8242 and then Full_View
(Etype
(Typ
)) = Typ
)
8244 -- Protect frontend against wrong sources with cyclic derivations
8246 or else Etype
(Typ
) = T
;
8248 -- Climb to the ancestor type handling private types
8250 if Present
(Full_View
(Etype
(Typ
))) then
8251 Typ
:= Full_View
(Etype
(Typ
));
8260 ---------------------------------
8261 -- Has_No_Obvious_Side_Effects --
8262 ---------------------------------
8264 function Has_No_Obvious_Side_Effects
(N
: Node_Id
) return Boolean is
8266 -- For now, just handle literals, constants, and non-volatile
8267 -- variables and expressions combining these with operators or
8268 -- short circuit forms.
8270 if Nkind
(N
) in N_Numeric_Or_String_Literal
then
8273 elsif Nkind
(N
) = N_Character_Literal
then
8276 elsif Nkind
(N
) in N_Unary_Op
then
8277 return Has_No_Obvious_Side_Effects
(Right_Opnd
(N
));
8279 elsif Nkind
(N
) in N_Binary_Op
or else Nkind
(N
) in N_Short_Circuit
then
8280 return Has_No_Obvious_Side_Effects
(Left_Opnd
(N
))
8282 Has_No_Obvious_Side_Effects
(Right_Opnd
(N
));
8284 elsif Nkind
(N
) = N_Expression_With_Actions
8285 and then Is_Empty_List
(Actions
(N
))
8287 return Has_No_Obvious_Side_Effects
(Expression
(N
));
8289 elsif Nkind
(N
) in N_Has_Entity
then
8290 return Present
(Entity
(N
))
8291 and then Ekind_In
(Entity
(N
), E_Variable
,
8293 E_Enumeration_Literal
,
8297 and then not Is_Volatile
(Entity
(N
));
8302 end Has_No_Obvious_Side_Effects
;
8304 ------------------------
8305 -- Has_Null_Exclusion --
8306 ------------------------
8308 function Has_Null_Exclusion
(N
: Node_Id
) return Boolean is
8311 when N_Access_Definition |
8312 N_Access_Function_Definition |
8313 N_Access_Procedure_Definition |
8314 N_Access_To_Object_Definition |
8316 N_Derived_Type_Definition |
8317 N_Function_Specification |
8318 N_Subtype_Declaration
=>
8319 return Null_Exclusion_Present
(N
);
8321 when N_Component_Definition |
8322 N_Formal_Object_Declaration |
8323 N_Object_Renaming_Declaration
=>
8324 if Present
(Subtype_Mark
(N
)) then
8325 return Null_Exclusion_Present
(N
);
8326 else pragma Assert
(Present
(Access_Definition
(N
)));
8327 return Null_Exclusion_Present
(Access_Definition
(N
));
8330 when N_Discriminant_Specification
=>
8331 if Nkind
(Discriminant_Type
(N
)) = N_Access_Definition
then
8332 return Null_Exclusion_Present
(Discriminant_Type
(N
));
8334 return Null_Exclusion_Present
(N
);
8337 when N_Object_Declaration
=>
8338 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
then
8339 return Null_Exclusion_Present
(Object_Definition
(N
));
8341 return Null_Exclusion_Present
(N
);
8344 when N_Parameter_Specification
=>
8345 if Nkind
(Parameter_Type
(N
)) = N_Access_Definition
then
8346 return Null_Exclusion_Present
(Parameter_Type
(N
));
8348 return Null_Exclusion_Present
(N
);
8355 end Has_Null_Exclusion
;
8357 ------------------------
8358 -- Has_Null_Extension --
8359 ------------------------
8361 function Has_Null_Extension
(T
: Entity_Id
) return Boolean is
8362 B
: constant Entity_Id
:= Base_Type
(T
);
8367 if Nkind
(Parent
(B
)) = N_Full_Type_Declaration
8368 and then Present
(Record_Extension_Part
(Type_Definition
(Parent
(B
))))
8370 Ext
:= Record_Extension_Part
(Type_Definition
(Parent
(B
)));
8372 if Present
(Ext
) then
8373 if Null_Present
(Ext
) then
8376 Comps
:= Component_List
(Ext
);
8378 -- The null component list is rewritten during analysis to
8379 -- include the parent component. Any other component indicates
8380 -- that the extension was not originally null.
8382 return Null_Present
(Comps
)
8383 or else No
(Next
(First
(Component_Items
(Comps
))));
8392 end Has_Null_Extension
;
8394 -------------------------------
8395 -- Has_Overriding_Initialize --
8396 -------------------------------
8398 function Has_Overriding_Initialize
(T
: Entity_Id
) return Boolean is
8399 BT
: constant Entity_Id
:= Base_Type
(T
);
8403 if Is_Controlled
(BT
) then
8404 if Is_RTU
(Scope
(BT
), Ada_Finalization
) then
8407 elsif Present
(Primitive_Operations
(BT
)) then
8408 P
:= First_Elmt
(Primitive_Operations
(BT
));
8409 while Present
(P
) loop
8411 Init
: constant Entity_Id
:= Node
(P
);
8412 Formal
: constant Entity_Id
:= First_Formal
(Init
);
8414 if Ekind
(Init
) = E_Procedure
8415 and then Chars
(Init
) = Name_Initialize
8416 and then Comes_From_Source
(Init
)
8417 and then Present
(Formal
)
8418 and then Etype
(Formal
) = BT
8419 and then No
(Next_Formal
(Formal
))
8420 and then (Ada_Version
< Ada_2012
8421 or else not Null_Present
(Parent
(Init
)))
8431 -- Here if type itself does not have a non-null Initialize operation:
8432 -- check immediate ancestor.
8434 if Is_Derived_Type
(BT
)
8435 and then Has_Overriding_Initialize
(Etype
(BT
))
8442 end Has_Overriding_Initialize
;
8444 --------------------------------------
8445 -- Has_Preelaborable_Initialization --
8446 --------------------------------------
8448 function Has_Preelaborable_Initialization
(E
: Entity_Id
) return Boolean is
8451 procedure Check_Components
(E
: Entity_Id
);
8452 -- Check component/discriminant chain, sets Has_PE False if a component
8453 -- or discriminant does not meet the preelaborable initialization rules.
8455 ----------------------
8456 -- Check_Components --
8457 ----------------------
8459 procedure Check_Components
(E
: Entity_Id
) is
8463 function Is_Preelaborable_Expression
(N
: Node_Id
) return Boolean;
8464 -- Returns True if and only if the expression denoted by N does not
8465 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
8467 ---------------------------------
8468 -- Is_Preelaborable_Expression --
8469 ---------------------------------
8471 function Is_Preelaborable_Expression
(N
: Node_Id
) return Boolean is
8475 Comp_Type
: Entity_Id
;
8476 Is_Array_Aggr
: Boolean;
8479 if Is_OK_Static_Expression
(N
) then
8482 elsif Nkind
(N
) = N_Null
then
8485 -- Attributes are allowed in general, even if their prefix is a
8486 -- formal type. (It seems that certain attributes known not to be
8487 -- static might not be allowed, but there are no rules to prevent
8490 elsif Nkind
(N
) = N_Attribute_Reference
then
8493 -- The name of a discriminant evaluated within its parent type is
8494 -- defined to be preelaborable (10.2.1(8)). Note that we test for
8495 -- names that denote discriminals as well as discriminants to
8496 -- catch references occurring within init procs.
8498 elsif Is_Entity_Name
(N
)
8500 (Ekind
(Entity
(N
)) = E_Discriminant
8501 or else (Ekind_In
(Entity
(N
), E_Constant
, E_In_Parameter
)
8502 and then Present
(Discriminal_Link
(Entity
(N
)))))
8506 elsif Nkind
(N
) = N_Qualified_Expression
then
8507 return Is_Preelaborable_Expression
(Expression
(N
));
8509 -- For aggregates we have to check that each of the associations
8510 -- is preelaborable.
8512 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
8513 Is_Array_Aggr
:= Is_Array_Type
(Etype
(N
));
8515 if Is_Array_Aggr
then
8516 Comp_Type
:= Component_Type
(Etype
(N
));
8519 -- Check the ancestor part of extension aggregates, which must
8520 -- be either the name of a type that has preelaborable init or
8521 -- an expression that is preelaborable.
8523 if Nkind
(N
) = N_Extension_Aggregate
then
8525 Anc_Part
: constant Node_Id
:= Ancestor_Part
(N
);
8528 if Is_Entity_Name
(Anc_Part
)
8529 and then Is_Type
(Entity
(Anc_Part
))
8531 if not Has_Preelaborable_Initialization
8537 elsif not Is_Preelaborable_Expression
(Anc_Part
) then
8543 -- Check positional associations
8545 Exp
:= First
(Expressions
(N
));
8546 while Present
(Exp
) loop
8547 if not Is_Preelaborable_Expression
(Exp
) then
8554 -- Check named associations
8556 Assn
:= First
(Component_Associations
(N
));
8557 while Present
(Assn
) loop
8558 Choice
:= First
(Choices
(Assn
));
8559 while Present
(Choice
) loop
8560 if Is_Array_Aggr
then
8561 if Nkind
(Choice
) = N_Others_Choice
then
8564 elsif Nkind
(Choice
) = N_Range
then
8565 if not Is_OK_Static_Range
(Choice
) then
8569 elsif not Is_OK_Static_Expression
(Choice
) then
8574 Comp_Type
:= Etype
(Choice
);
8580 -- If the association has a <> at this point, then we have
8581 -- to check whether the component's type has preelaborable
8582 -- initialization. Note that this only occurs when the
8583 -- association's corresponding component does not have a
8584 -- default expression, the latter case having already been
8585 -- expanded as an expression for the association.
8587 if Box_Present
(Assn
) then
8588 if not Has_Preelaborable_Initialization
(Comp_Type
) then
8592 -- In the expression case we check whether the expression
8593 -- is preelaborable.
8596 not Is_Preelaborable_Expression
(Expression
(Assn
))
8604 -- If we get here then aggregate as a whole is preelaborable
8608 -- All other cases are not preelaborable
8613 end Is_Preelaborable_Expression
;
8615 -- Start of processing for Check_Components
8618 -- Loop through entities of record or protected type
8621 while Present
(Ent
) loop
8623 -- We are interested only in components and discriminants
8630 -- Get default expression if any. If there is no declaration
8631 -- node, it means we have an internal entity. The parent and
8632 -- tag fields are examples of such entities. For such cases,
8633 -- we just test the type of the entity.
8635 if Present
(Declaration_Node
(Ent
)) then
8636 Exp
:= Expression
(Declaration_Node
(Ent
));
8639 when E_Discriminant
=>
8641 -- Note: for a renamed discriminant, the Declaration_Node
8642 -- may point to the one from the ancestor, and have a
8643 -- different expression, so use the proper attribute to
8644 -- retrieve the expression from the derived constraint.
8646 Exp
:= Discriminant_Default_Value
(Ent
);
8649 goto Check_Next_Entity
;
8652 -- A component has PI if it has no default expression and the
8653 -- component type has PI.
8656 if not Has_Preelaborable_Initialization
(Etype
(Ent
)) then
8661 -- Require the default expression to be preelaborable
8663 elsif not Is_Preelaborable_Expression
(Exp
) then
8668 <<Check_Next_Entity
>>
8671 end Check_Components
;
8673 -- Start of processing for Has_Preelaborable_Initialization
8676 -- Immediate return if already marked as known preelaborable init. This
8677 -- covers types for which this function has already been called once
8678 -- and returned True (in which case the result is cached), and also
8679 -- types to which a pragma Preelaborable_Initialization applies.
8681 if Known_To_Have_Preelab_Init
(E
) then
8685 -- If the type is a subtype representing a generic actual type, then
8686 -- test whether its base type has preelaborable initialization since
8687 -- the subtype representing the actual does not inherit this attribute
8688 -- from the actual or formal. (but maybe it should???)
8690 if Is_Generic_Actual_Type
(E
) then
8691 return Has_Preelaborable_Initialization
(Base_Type
(E
));
8694 -- All elementary types have preelaborable initialization
8696 if Is_Elementary_Type
(E
) then
8699 -- Array types have PI if the component type has PI
8701 elsif Is_Array_Type
(E
) then
8702 Has_PE
:= Has_Preelaborable_Initialization
(Component_Type
(E
));
8704 -- A derived type has preelaborable initialization if its parent type
8705 -- has preelaborable initialization and (in the case of a derived record
8706 -- extension) if the non-inherited components all have preelaborable
8707 -- initialization. However, a user-defined controlled type with an
8708 -- overriding Initialize procedure does not have preelaborable
8711 elsif Is_Derived_Type
(E
) then
8713 -- If the derived type is a private extension then it doesn't have
8714 -- preelaborable initialization.
8716 if Ekind
(Base_Type
(E
)) = E_Record_Type_With_Private
then
8720 -- First check whether ancestor type has preelaborable initialization
8722 Has_PE
:= Has_Preelaborable_Initialization
(Etype
(Base_Type
(E
)));
8724 -- If OK, check extension components (if any)
8726 if Has_PE
and then Is_Record_Type
(E
) then
8727 Check_Components
(First_Entity
(E
));
8730 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
8731 -- with a user defined Initialize procedure does not have PI. If
8732 -- the type is untagged, the control primitives come from a component
8733 -- that has already been checked.
8736 and then Is_Controlled
(E
)
8737 and then Is_Tagged_Type
(E
)
8738 and then Has_Overriding_Initialize
(E
)
8743 -- Private types not derived from a type having preelaborable init and
8744 -- that are not marked with pragma Preelaborable_Initialization do not
8745 -- have preelaborable initialization.
8747 elsif Is_Private_Type
(E
) then
8750 -- Record type has PI if it is non private and all components have PI
8752 elsif Is_Record_Type
(E
) then
8754 Check_Components
(First_Entity
(E
));
8756 -- Protected types must not have entries, and components must meet
8757 -- same set of rules as for record components.
8759 elsif Is_Protected_Type
(E
) then
8760 if Has_Entries
(E
) then
8764 Check_Components
(First_Entity
(E
));
8765 Check_Components
(First_Private_Entity
(E
));
8768 -- Type System.Address always has preelaborable initialization
8770 elsif Is_RTE
(E
, RE_Address
) then
8773 -- In all other cases, type does not have preelaborable initialization
8779 -- If type has preelaborable initialization, cache result
8782 Set_Known_To_Have_Preelab_Init
(E
);
8786 end Has_Preelaborable_Initialization
;
8788 ---------------------------
8789 -- Has_Private_Component --
8790 ---------------------------
8792 function Has_Private_Component
(Type_Id
: Entity_Id
) return Boolean is
8793 Btype
: Entity_Id
:= Base_Type
(Type_Id
);
8794 Component
: Entity_Id
;
8797 if Error_Posted
(Type_Id
)
8798 or else Error_Posted
(Btype
)
8803 if Is_Class_Wide_Type
(Btype
) then
8804 Btype
:= Root_Type
(Btype
);
8807 if Is_Private_Type
(Btype
) then
8809 UT
: constant Entity_Id
:= Underlying_Type
(Btype
);
8812 if No
(Full_View
(Btype
)) then
8813 return not Is_Generic_Type
(Btype
)
8815 not Is_Generic_Type
(Root_Type
(Btype
));
8817 return not Is_Generic_Type
(Root_Type
(Full_View
(Btype
)));
8820 return not Is_Frozen
(UT
) and then Has_Private_Component
(UT
);
8824 elsif Is_Array_Type
(Btype
) then
8825 return Has_Private_Component
(Component_Type
(Btype
));
8827 elsif Is_Record_Type
(Btype
) then
8828 Component
:= First_Component
(Btype
);
8829 while Present
(Component
) loop
8830 if Has_Private_Component
(Etype
(Component
)) then
8834 Next_Component
(Component
);
8839 elsif Is_Protected_Type
(Btype
)
8840 and then Present
(Corresponding_Record_Type
(Btype
))
8842 return Has_Private_Component
(Corresponding_Record_Type
(Btype
));
8847 end Has_Private_Component
;
8849 ----------------------
8850 -- Has_Signed_Zeros --
8851 ----------------------
8853 function Has_Signed_Zeros
(E
: Entity_Id
) return Boolean is
8855 return Is_Floating_Point_Type
(E
) and then Signed_Zeros_On_Target
;
8856 end Has_Signed_Zeros
;
8858 -----------------------------
8859 -- Has_Static_Array_Bounds --
8860 -----------------------------
8862 function Has_Static_Array_Bounds
(Typ
: Node_Id
) return Boolean is
8863 Ndims
: constant Nat
:= Number_Dimensions
(Typ
);
8870 -- Unconstrained types do not have static bounds
8872 if not Is_Constrained
(Typ
) then
8876 -- First treat string literals specially, as the lower bound and length
8877 -- of string literals are not stored like those of arrays.
8879 -- A string literal always has static bounds
8881 if Ekind
(Typ
) = E_String_Literal_Subtype
then
8885 -- Treat all dimensions in turn
8887 Index
:= First_Index
(Typ
);
8888 for Indx
in 1 .. Ndims
loop
8890 -- In case of an illegal index which is not a discrete type, return
8891 -- that the type is not static.
8893 if not Is_Discrete_Type
(Etype
(Index
))
8894 or else Etype
(Index
) = Any_Type
8899 Get_Index_Bounds
(Index
, Low
, High
);
8901 if Error_Posted
(Low
) or else Error_Posted
(High
) then
8905 if Is_OK_Static_Expression
(Low
)
8907 Is_OK_Static_Expression
(High
)
8917 -- If we fall through the loop, all indexes matched
8920 end Has_Static_Array_Bounds
;
8926 function Has_Stream
(T
: Entity_Id
) return Boolean is
8933 elsif Is_RTE
(Root_Type
(T
), RE_Root_Stream_Type
) then
8936 elsif Is_Array_Type
(T
) then
8937 return Has_Stream
(Component_Type
(T
));
8939 elsif Is_Record_Type
(T
) then
8940 E
:= First_Component
(T
);
8941 while Present
(E
) loop
8942 if Has_Stream
(Etype
(E
)) then
8951 elsif Is_Private_Type
(T
) then
8952 return Has_Stream
(Underlying_Type
(T
));
8963 function Has_Suffix
(E
: Entity_Id
; Suffix
: Character) return Boolean is
8965 Get_Name_String
(Chars
(E
));
8966 return Name_Buffer
(Name_Len
) = Suffix
;
8973 function Add_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
is
8975 Get_Name_String
(Chars
(E
));
8976 Add_Char_To_Name_Buffer
(Suffix
);
8984 function Remove_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
is
8986 pragma Assert
(Has_Suffix
(E
, Suffix
));
8987 Get_Name_String
(Chars
(E
));
8988 Name_Len
:= Name_Len
- 1;
8992 --------------------------
8993 -- Has_Tagged_Component --
8994 --------------------------
8996 function Has_Tagged_Component
(Typ
: Entity_Id
) return Boolean is
9000 if Is_Private_Type
(Typ
) and then Present
(Underlying_Type
(Typ
)) then
9001 return Has_Tagged_Component
(Underlying_Type
(Typ
));
9003 elsif Is_Array_Type
(Typ
) then
9004 return Has_Tagged_Component
(Component_Type
(Typ
));
9006 elsif Is_Tagged_Type
(Typ
) then
9009 elsif Is_Record_Type
(Typ
) then
9010 Comp
:= First_Component
(Typ
);
9011 while Present
(Comp
) loop
9012 if Has_Tagged_Component
(Etype
(Comp
)) then
9016 Next_Component
(Comp
);
9024 end Has_Tagged_Component
;
9026 ----------------------------
9027 -- Has_Volatile_Component --
9028 ----------------------------
9030 function Has_Volatile_Component
(Typ
: Entity_Id
) return Boolean is
9034 if Has_Volatile_Components
(Typ
) then
9037 elsif Is_Array_Type
(Typ
) then
9038 return Is_Volatile
(Component_Type
(Typ
));
9040 elsif Is_Record_Type
(Typ
) then
9041 Comp
:= First_Component
(Typ
);
9042 while Present
(Comp
) loop
9043 if Is_Volatile_Object
(Comp
) then
9047 Comp
:= Next_Component
(Comp
);
9052 end Has_Volatile_Component
;
9054 -------------------------
9055 -- Implementation_Kind --
9056 -------------------------
9058 function Implementation_Kind
(Subp
: Entity_Id
) return Name_Id
is
9059 Impl_Prag
: constant Node_Id
:= Get_Rep_Pragma
(Subp
, Name_Implemented
);
9062 pragma Assert
(Present
(Impl_Prag
));
9063 Arg
:= Last
(Pragma_Argument_Associations
(Impl_Prag
));
9064 return Chars
(Get_Pragma_Arg
(Arg
));
9065 end Implementation_Kind
;
9067 --------------------------
9068 -- Implements_Interface --
9069 --------------------------
9071 function Implements_Interface
9072 (Typ_Ent
: Entity_Id
;
9073 Iface_Ent
: Entity_Id
;
9074 Exclude_Parents
: Boolean := False) return Boolean
9076 Ifaces_List
: Elist_Id
;
9078 Iface
: Entity_Id
:= Base_Type
(Iface_Ent
);
9079 Typ
: Entity_Id
:= Base_Type
(Typ_Ent
);
9082 if Is_Class_Wide_Type
(Typ
) then
9083 Typ
:= Root_Type
(Typ
);
9086 if not Has_Interfaces
(Typ
) then
9090 if Is_Class_Wide_Type
(Iface
) then
9091 Iface
:= Root_Type
(Iface
);
9094 Collect_Interfaces
(Typ
, Ifaces_List
);
9096 Elmt
:= First_Elmt
(Ifaces_List
);
9097 while Present
(Elmt
) loop
9098 if Is_Ancestor
(Node
(Elmt
), Typ
, Use_Full_View
=> True)
9099 and then Exclude_Parents
9103 elsif Node
(Elmt
) = Iface
then
9111 end Implements_Interface
;
9113 ------------------------------------
9114 -- In_Assertion_Expression_Pragma --
9115 ------------------------------------
9117 function In_Assertion_Expression_Pragma
(N
: Node_Id
) return Boolean is
9119 Prag
: Node_Id
:= Empty
;
9122 -- Climb the parent chain looking for an enclosing pragma
9125 while Present
(Par
) loop
9126 if Nkind
(Par
) = N_Pragma
then
9130 -- Precondition-like pragmas are expanded into if statements, check
9131 -- the original node instead.
9133 elsif Nkind
(Original_Node
(Par
)) = N_Pragma
then
9134 Prag
:= Original_Node
(Par
);
9137 -- The expansion of attribute 'Old generates a constant to capture
9138 -- the result of the prefix. If the parent traversal reaches
9139 -- one of these constants, then the node technically came from a
9140 -- postcondition-like pragma. Note that the Ekind is not tested here
9141 -- because N may be the expression of an object declaration which is
9142 -- currently being analyzed. Such objects carry Ekind of E_Void.
9144 elsif Nkind
(Par
) = N_Object_Declaration
9145 and then Constant_Present
(Par
)
9146 and then Stores_Attribute_Old_Prefix
(Defining_Entity
(Par
))
9150 -- Prevent the search from going too far
9152 elsif Is_Body_Or_Package_Declaration
(Par
) then
9156 Par
:= Parent
(Par
);
9161 and then Assertion_Expression_Pragma
(Get_Pragma_Id
(Prag
));
9162 end In_Assertion_Expression_Pragma
;
9168 function In_Instance
return Boolean is
9169 Curr_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
9174 while Present
(S
) and then S
/= Standard_Standard
loop
9175 if Ekind_In
(S
, E_Function
, E_Package
, E_Procedure
)
9176 and then Is_Generic_Instance
(S
)
9178 -- A child instance is always compiled in the context of a parent
9179 -- instance. Nevertheless, the actuals are not analyzed in an
9180 -- instance context. We detect this case by examining the current
9181 -- compilation unit, which must be a child instance, and checking
9182 -- that it is not currently on the scope stack.
9184 if Is_Child_Unit
(Curr_Unit
)
9185 and then Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) =
9186 N_Package_Instantiation
9187 and then not In_Open_Scopes
(Curr_Unit
)
9201 ----------------------
9202 -- In_Instance_Body --
9203 ----------------------
9205 function In_Instance_Body
return Boolean is
9210 while Present
(S
) and then S
/= Standard_Standard
loop
9211 if Ekind_In
(S
, E_Function
, E_Procedure
)
9212 and then Is_Generic_Instance
(S
)
9216 elsif Ekind
(S
) = E_Package
9217 and then In_Package_Body
(S
)
9218 and then Is_Generic_Instance
(S
)
9227 end In_Instance_Body
;
9229 -----------------------------
9230 -- In_Instance_Not_Visible --
9231 -----------------------------
9233 function In_Instance_Not_Visible
return Boolean is
9238 while Present
(S
) and then S
/= Standard_Standard
loop
9239 if Ekind_In
(S
, E_Function
, E_Procedure
)
9240 and then Is_Generic_Instance
(S
)
9244 elsif Ekind
(S
) = E_Package
9245 and then (In_Package_Body
(S
) or else In_Private_Part
(S
))
9246 and then Is_Generic_Instance
(S
)
9255 end In_Instance_Not_Visible
;
9257 ------------------------------
9258 -- In_Instance_Visible_Part --
9259 ------------------------------
9261 function In_Instance_Visible_Part
return Boolean is
9266 while Present
(S
) and then S
/= Standard_Standard
loop
9267 if Ekind
(S
) = E_Package
9268 and then Is_Generic_Instance
(S
)
9269 and then not In_Package_Body
(S
)
9270 and then not In_Private_Part
(S
)
9279 end In_Instance_Visible_Part
;
9281 ---------------------
9282 -- In_Package_Body --
9283 ---------------------
9285 function In_Package_Body
return Boolean is
9290 while Present
(S
) and then S
/= Standard_Standard
loop
9291 if Ekind
(S
) = E_Package
and then In_Package_Body
(S
) then
9299 end In_Package_Body
;
9301 --------------------------------
9302 -- In_Parameter_Specification --
9303 --------------------------------
9305 function In_Parameter_Specification
(N
: Node_Id
) return Boolean is
9310 while Present
(PN
) loop
9311 if Nkind
(PN
) = N_Parameter_Specification
then
9319 end In_Parameter_Specification
;
9321 --------------------------
9322 -- In_Pragma_Expression --
9323 --------------------------
9325 function In_Pragma_Expression
(N
: Node_Id
; Nam
: Name_Id
) return Boolean is
9332 elsif Nkind
(P
) = N_Pragma
and then Pragma_Name
(P
) = Nam
then
9338 end In_Pragma_Expression
;
9340 -------------------------------------
9341 -- In_Reverse_Storage_Order_Object --
9342 -------------------------------------
9344 function In_Reverse_Storage_Order_Object
(N
: Node_Id
) return Boolean is
9346 Btyp
: Entity_Id
:= Empty
;
9349 -- Climb up indexed components
9353 case Nkind
(Pref
) is
9354 when N_Selected_Component
=>
9355 Pref
:= Prefix
(Pref
);
9358 when N_Indexed_Component
=>
9359 Pref
:= Prefix
(Pref
);
9367 if Present
(Pref
) then
9368 Btyp
:= Base_Type
(Etype
(Pref
));
9371 return Present
(Btyp
)
9372 and then (Is_Record_Type
(Btyp
) or else Is_Array_Type
(Btyp
))
9373 and then Reverse_Storage_Order
(Btyp
);
9374 end In_Reverse_Storage_Order_Object
;
9376 --------------------------------------
9377 -- In_Subprogram_Or_Concurrent_Unit --
9378 --------------------------------------
9380 function In_Subprogram_Or_Concurrent_Unit
return Boolean is
9385 -- Use scope chain to check successively outer scopes
9391 if K
in Subprogram_Kind
9392 or else K
in Concurrent_Kind
9393 or else K
in Generic_Subprogram_Kind
9397 elsif E
= Standard_Standard
then
9403 end In_Subprogram_Or_Concurrent_Unit
;
9405 ---------------------
9406 -- In_Visible_Part --
9407 ---------------------
9409 function In_Visible_Part
(Scope_Id
: Entity_Id
) return Boolean is
9411 return Is_Package_Or_Generic_Package
(Scope_Id
)
9412 and then In_Open_Scopes
(Scope_Id
)
9413 and then not In_Package_Body
(Scope_Id
)
9414 and then not In_Private_Part
(Scope_Id
);
9415 end In_Visible_Part
;
9417 --------------------------------
9418 -- Incomplete_Or_Partial_View --
9419 --------------------------------
9421 function Incomplete_Or_Partial_View
(Id
: Entity_Id
) return Entity_Id
is
9422 function Inspect_Decls
9424 Taft
: Boolean := False) return Entity_Id
;
9425 -- Check whether a declarative region contains the incomplete or partial
9432 function Inspect_Decls
9434 Taft
: Boolean := False) return Entity_Id
9440 Decl
:= First
(Decls
);
9441 while Present
(Decl
) loop
9445 if Nkind
(Decl
) = N_Incomplete_Type_Declaration
then
9446 Match
:= Defining_Identifier
(Decl
);
9450 if Nkind_In
(Decl
, N_Private_Extension_Declaration
,
9451 N_Private_Type_Declaration
)
9453 Match
:= Defining_Identifier
(Decl
);
9458 and then Present
(Full_View
(Match
))
9459 and then Full_View
(Match
) = Id
9474 -- Start of processing for Incomplete_Or_Partial_View
9477 -- Deferred constant or incomplete type case
9479 Prev
:= Current_Entity_In_Scope
(Id
);
9482 and then (Is_Incomplete_Type
(Prev
) or else Ekind
(Prev
) = E_Constant
)
9483 and then Present
(Full_View
(Prev
))
9484 and then Full_View
(Prev
) = Id
9489 -- Private or Taft amendment type case
9492 Pkg
: constant Entity_Id
:= Scope
(Id
);
9493 Pkg_Decl
: Node_Id
:= Pkg
;
9496 if Ekind
(Pkg
) = E_Package
then
9497 while Nkind
(Pkg_Decl
) /= N_Package_Specification
loop
9498 Pkg_Decl
:= Parent
(Pkg_Decl
);
9501 -- It is knows that Typ has a private view, look for it in the
9502 -- visible declarations of the enclosing scope. A special case
9503 -- of this is when the two views have been exchanged - the full
9504 -- appears earlier than the private.
9506 if Has_Private_Declaration
(Id
) then
9507 Prev
:= Inspect_Decls
(Visible_Declarations
(Pkg_Decl
));
9509 -- Exchanged view case, look in the private declarations
9512 Prev
:= Inspect_Decls
(Private_Declarations
(Pkg_Decl
));
9517 -- Otherwise if this is the package body, then Typ is a potential
9518 -- Taft amendment type. The incomplete view should be located in
9519 -- the private declarations of the enclosing scope.
9521 elsif In_Package_Body
(Pkg
) then
9522 return Inspect_Decls
(Private_Declarations
(Pkg_Decl
), True);
9527 -- The type has no incomplete or private view
9530 end Incomplete_Or_Partial_View
;
9532 -----------------------------------------
9533 -- Inherit_Default_Init_Cond_Procedure --
9534 -----------------------------------------
9536 procedure Inherit_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
9537 Par_Typ
: constant Entity_Id
:= Etype
(Typ
);
9540 -- A derived type inherits the default initial condition procedure of
9543 if No
(Default_Init_Cond_Procedure
(Typ
)) then
9544 Set_Default_Init_Cond_Procedure
9545 (Typ
, Default_Init_Cond_Procedure
(Par_Typ
));
9547 end Inherit_Default_Init_Cond_Procedure
;
9549 ----------------------------
9550 -- Inherit_Rep_Item_Chain --
9551 ----------------------------
9553 procedure Inherit_Rep_Item_Chain
(Typ
: Entity_Id
; From_Typ
: Entity_Id
) is
9554 From_Item
: constant Node_Id
:= First_Rep_Item
(From_Typ
);
9555 Item
: Node_Id
:= Empty
;
9556 Last_Item
: Node_Id
:= Empty
;
9559 -- Reach the end of the destination type's chain (if any) and capture
9562 Item
:= First_Rep_Item
(Typ
);
9563 while Present
(Item
) loop
9565 -- Do not inherit a chain that has been inherited already
9567 if Item
= From_Item
then
9572 Item
:= Next_Rep_Item
(Item
);
9575 -- When the destination type has a rep item chain, the chain of the
9576 -- source type is appended to it.
9578 if Present
(Last_Item
) then
9579 Set_Next_Rep_Item
(Last_Item
, From_Item
);
9581 -- Otherwise the destination type directly inherits the rep item chain
9582 -- of the source type (if any).
9585 Set_First_Rep_Item
(Typ
, From_Item
);
9587 end Inherit_Rep_Item_Chain
;
9589 ---------------------------------
9590 -- Inherit_Subprogram_Contract --
9591 ---------------------------------
9593 procedure Inherit_Subprogram_Contract
9595 From_Subp
: Entity_Id
)
9597 procedure Inherit_Pragma
(Prag_Id
: Pragma_Id
);
9598 -- Propagate a pragma denoted by Prag_Id from From_Subp's contract to
9601 --------------------
9602 -- Inherit_Pragma --
9603 --------------------
9605 procedure Inherit_Pragma
(Prag_Id
: Pragma_Id
) is
9606 Prag
: constant Node_Id
:= Get_Pragma
(From_Subp
, Prag_Id
);
9610 -- A pragma cannot be part of more than one First_Pragma/Next_Pragma
9611 -- chains, therefore the node must be replicated. The new pragma is
9612 -- flagged is inherited for distrinction purposes.
9614 if Present
(Prag
) then
9615 New_Prag
:= New_Copy_Tree
(Prag
);
9616 Set_Is_Inherited
(New_Prag
);
9618 Add_Contract_Item
(New_Prag
, Subp
);
9622 -- Start of processing for Inherit_Subprogram_Contract
9625 -- Inheritance is carried out only when both entities are subprograms
9628 if Is_Subprogram_Or_Generic_Subprogram
(Subp
)
9629 and then Is_Subprogram_Or_Generic_Subprogram
(From_Subp
)
9630 and then Present
(Contract
(Subp
))
9631 and then Present
(Contract
(From_Subp
))
9633 Inherit_Pragma
(Pragma_Extensions_Visible
);
9635 end Inherit_Subprogram_Contract
;
9637 ---------------------------------
9638 -- Insert_Explicit_Dereference --
9639 ---------------------------------
9641 procedure Insert_Explicit_Dereference
(N
: Node_Id
) is
9642 New_Prefix
: constant Node_Id
:= Relocate_Node
(N
);
9643 Ent
: Entity_Id
:= Empty
;
9650 Save_Interps
(N
, New_Prefix
);
9653 Make_Explicit_Dereference
(Sloc
(Parent
(N
)),
9654 Prefix
=> New_Prefix
));
9656 Set_Etype
(N
, Designated_Type
(Etype
(New_Prefix
)));
9658 if Is_Overloaded
(New_Prefix
) then
9660 -- The dereference is also overloaded, and its interpretations are
9661 -- the designated types of the interpretations of the original node.
9663 Set_Etype
(N
, Any_Type
);
9665 Get_First_Interp
(New_Prefix
, I
, It
);
9666 while Present
(It
.Nam
) loop
9669 if Is_Access_Type
(T
) then
9670 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
9673 Get_Next_Interp
(I
, It
);
9679 -- Prefix is unambiguous: mark the original prefix (which might
9680 -- Come_From_Source) as a reference, since the new (relocated) one
9681 -- won't be taken into account.
9683 if Is_Entity_Name
(New_Prefix
) then
9684 Ent
:= Entity
(New_Prefix
);
9687 -- For a retrieval of a subcomponent of some composite object,
9688 -- retrieve the ultimate entity if there is one.
9690 elsif Nkind_In
(New_Prefix
, N_Selected_Component
,
9691 N_Indexed_Component
)
9693 Pref
:= Prefix
(New_Prefix
);
9694 while Present
(Pref
)
9695 and then Nkind_In
(Pref
, N_Selected_Component
,
9696 N_Indexed_Component
)
9698 Pref
:= Prefix
(Pref
);
9701 if Present
(Pref
) and then Is_Entity_Name
(Pref
) then
9702 Ent
:= Entity
(Pref
);
9706 -- Place the reference on the entity node
9708 if Present
(Ent
) then
9709 Generate_Reference
(Ent
, Pref
);
9712 end Insert_Explicit_Dereference
;
9714 ------------------------------------------
9715 -- Inspect_Deferred_Constant_Completion --
9716 ------------------------------------------
9718 procedure Inspect_Deferred_Constant_Completion
(Decls
: List_Id
) is
9722 Decl
:= First
(Decls
);
9723 while Present
(Decl
) loop
9725 -- Deferred constant signature
9727 if Nkind
(Decl
) = N_Object_Declaration
9728 and then Constant_Present
(Decl
)
9729 and then No
(Expression
(Decl
))
9731 -- No need to check internally generated constants
9733 and then Comes_From_Source
(Decl
)
9735 -- The constant is not completed. A full object declaration or a
9736 -- pragma Import complete a deferred constant.
9738 and then not Has_Completion
(Defining_Identifier
(Decl
))
9741 ("constant declaration requires initialization expression",
9742 Defining_Identifier
(Decl
));
9745 Decl
:= Next
(Decl
);
9747 end Inspect_Deferred_Constant_Completion
;
9749 -----------------------------
9750 -- Is_Actual_Out_Parameter --
9751 -----------------------------
9753 function Is_Actual_Out_Parameter
(N
: Node_Id
) return Boolean is
9757 Find_Actual
(N
, Formal
, Call
);
9758 return Present
(Formal
) and then Ekind
(Formal
) = E_Out_Parameter
;
9759 end Is_Actual_Out_Parameter
;
9761 -------------------------
9762 -- Is_Actual_Parameter --
9763 -------------------------
9765 function Is_Actual_Parameter
(N
: Node_Id
) return Boolean is
9766 PK
: constant Node_Kind
:= Nkind
(Parent
(N
));
9770 when N_Parameter_Association
=>
9771 return N
= Explicit_Actual_Parameter
(Parent
(N
));
9773 when N_Subprogram_Call
=>
9774 return Is_List_Member
(N
)
9776 List_Containing
(N
) = Parameter_Associations
(Parent
(N
));
9781 end Is_Actual_Parameter
;
9783 --------------------------------
9784 -- Is_Actual_Tagged_Parameter --
9785 --------------------------------
9787 function Is_Actual_Tagged_Parameter
(N
: Node_Id
) return Boolean is
9791 Find_Actual
(N
, Formal
, Call
);
9792 return Present
(Formal
) and then Is_Tagged_Type
(Etype
(Formal
));
9793 end Is_Actual_Tagged_Parameter
;
9795 ---------------------
9796 -- Is_Aliased_View --
9797 ---------------------
9799 function Is_Aliased_View
(Obj
: Node_Id
) return Boolean is
9803 if Is_Entity_Name
(Obj
) then
9810 or else (Present
(Renamed_Object
(E
))
9811 and then Is_Aliased_View
(Renamed_Object
(E
)))))
9813 or else ((Is_Formal
(E
)
9814 or else Ekind_In
(E
, E_Generic_In_Out_Parameter
,
9815 E_Generic_In_Parameter
))
9816 and then Is_Tagged_Type
(Etype
(E
)))
9818 or else (Is_Concurrent_Type
(E
) and then In_Open_Scopes
(E
))
9820 -- Current instance of type, either directly or as rewritten
9821 -- reference to the current object.
9823 or else (Is_Entity_Name
(Original_Node
(Obj
))
9824 and then Present
(Entity
(Original_Node
(Obj
)))
9825 and then Is_Type
(Entity
(Original_Node
(Obj
))))
9827 or else (Is_Type
(E
) and then E
= Current_Scope
)
9829 or else (Is_Incomplete_Or_Private_Type
(E
)
9830 and then Full_View
(E
) = Current_Scope
)
9832 -- Ada 2012 AI05-0053: the return object of an extended return
9833 -- statement is aliased if its type is immutably limited.
9835 or else (Is_Return_Object
(E
)
9836 and then Is_Limited_View
(Etype
(E
)));
9838 elsif Nkind
(Obj
) = N_Selected_Component
then
9839 return Is_Aliased
(Entity
(Selector_Name
(Obj
)));
9841 elsif Nkind
(Obj
) = N_Indexed_Component
then
9842 return Has_Aliased_Components
(Etype
(Prefix
(Obj
)))
9844 (Is_Access_Type
(Etype
(Prefix
(Obj
)))
9845 and then Has_Aliased_Components
9846 (Designated_Type
(Etype
(Prefix
(Obj
)))));
9848 elsif Nkind_In
(Obj
, N_Unchecked_Type_Conversion
, N_Type_Conversion
) then
9849 return Is_Tagged_Type
(Etype
(Obj
))
9850 and then Is_Aliased_View
(Expression
(Obj
));
9852 elsif Nkind
(Obj
) = N_Explicit_Dereference
then
9853 return Nkind
(Original_Node
(Obj
)) /= N_Function_Call
;
9858 end Is_Aliased_View
;
9860 -------------------------
9861 -- Is_Ancestor_Package --
9862 -------------------------
9864 function Is_Ancestor_Package
9866 E2
: Entity_Id
) return Boolean
9872 while Present
(Par
) and then Par
/= Standard_Standard
loop
9881 end Is_Ancestor_Package
;
9883 ----------------------
9884 -- Is_Atomic_Object --
9885 ----------------------
9887 function Is_Atomic_Object
(N
: Node_Id
) return Boolean is
9889 function Object_Has_Atomic_Components
(N
: Node_Id
) return Boolean;
9890 -- Determines if given object has atomic components
9892 function Is_Atomic_Prefix
(N
: Node_Id
) return Boolean;
9893 -- If prefix is an implicit dereference, examine designated type
9895 ----------------------
9896 -- Is_Atomic_Prefix --
9897 ----------------------
9899 function Is_Atomic_Prefix
(N
: Node_Id
) return Boolean is
9901 if Is_Access_Type
(Etype
(N
)) then
9903 Has_Atomic_Components
(Designated_Type
(Etype
(N
)));
9905 return Object_Has_Atomic_Components
(N
);
9907 end Is_Atomic_Prefix
;
9909 ----------------------------------
9910 -- Object_Has_Atomic_Components --
9911 ----------------------------------
9913 function Object_Has_Atomic_Components
(N
: Node_Id
) return Boolean is
9915 if Has_Atomic_Components
(Etype
(N
))
9916 or else Is_Atomic
(Etype
(N
))
9920 elsif Is_Entity_Name
(N
)
9921 and then (Has_Atomic_Components
(Entity
(N
))
9922 or else Is_Atomic
(Entity
(N
)))
9926 elsif Nkind
(N
) = N_Selected_Component
9927 and then Is_Atomic
(Entity
(Selector_Name
(N
)))
9931 elsif Nkind
(N
) = N_Indexed_Component
9932 or else Nkind
(N
) = N_Selected_Component
9934 return Is_Atomic_Prefix
(Prefix
(N
));
9939 end Object_Has_Atomic_Components
;
9941 -- Start of processing for Is_Atomic_Object
9944 -- Predicate is not relevant to subprograms
9946 if Is_Entity_Name
(N
) and then Is_Overloadable
(Entity
(N
)) then
9949 elsif Is_Atomic
(Etype
(N
))
9950 or else (Is_Entity_Name
(N
) and then Is_Atomic
(Entity
(N
)))
9954 elsif Nkind
(N
) = N_Selected_Component
9955 and then Is_Atomic
(Entity
(Selector_Name
(N
)))
9959 elsif Nkind
(N
) = N_Indexed_Component
9960 or else Nkind
(N
) = N_Selected_Component
9962 return Is_Atomic_Prefix
(Prefix
(N
));
9967 end Is_Atomic_Object
;
9969 -------------------------
9970 -- Is_Attribute_Result --
9971 -------------------------
9973 function Is_Attribute_Result
(N
: Node_Id
) return Boolean is
9975 return Nkind
(N
) = N_Attribute_Reference
9976 and then Attribute_Name
(N
) = Name_Result
;
9977 end Is_Attribute_Result
;
9979 ------------------------------------
9980 -- Is_Body_Or_Package_Declaration --
9981 ------------------------------------
9983 function Is_Body_Or_Package_Declaration
(N
: Node_Id
) return Boolean is
9985 return Nkind_In
(N
, N_Entry_Body
,
9987 N_Package_Declaration
,
9991 end Is_Body_Or_Package_Declaration
;
9993 -----------------------
9994 -- Is_Bounded_String --
9995 -----------------------
9997 function Is_Bounded_String
(T
: Entity_Id
) return Boolean is
9998 Under
: constant Entity_Id
:= Underlying_Type
(Root_Type
(T
));
10001 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
10002 -- Super_String, or one of the [Wide_]Wide_ versions. This will
10003 -- be True for all the Bounded_String types in instances of the
10004 -- Generic_Bounded_Length generics, and for types derived from those.
10006 return Present
(Under
)
10007 and then (Is_RTE
(Root_Type
(Under
), RO_SU_Super_String
) or else
10008 Is_RTE
(Root_Type
(Under
), RO_WI_Super_String
) or else
10009 Is_RTE
(Root_Type
(Under
), RO_WW_Super_String
));
10010 end Is_Bounded_String
;
10012 -------------------------
10013 -- Is_Child_Or_Sibling --
10014 -------------------------
10016 function Is_Child_Or_Sibling
10017 (Pack_1
: Entity_Id
;
10018 Pack_2
: Entity_Id
) return Boolean
10020 function Distance_From_Standard
(Pack
: Entity_Id
) return Nat
;
10021 -- Given an arbitrary package, return the number of "climbs" necessary
10022 -- to reach scope Standard_Standard.
10024 procedure Equalize_Depths
10025 (Pack
: in out Entity_Id
;
10026 Depth
: in out Nat
;
10027 Depth_To_Reach
: Nat
);
10028 -- Given an arbitrary package, its depth and a target depth to reach,
10029 -- climb the scope chain until the said depth is reached. The pointer
10030 -- to the package and its depth a modified during the climb.
10032 ----------------------------
10033 -- Distance_From_Standard --
10034 ----------------------------
10036 function Distance_From_Standard
(Pack
: Entity_Id
) return Nat
is
10043 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
10045 Scop
:= Scope
(Scop
);
10049 end Distance_From_Standard
;
10051 ---------------------
10052 -- Equalize_Depths --
10053 ---------------------
10055 procedure Equalize_Depths
10056 (Pack
: in out Entity_Id
;
10057 Depth
: in out Nat
;
10058 Depth_To_Reach
: Nat
)
10061 -- The package must be at a greater or equal depth
10063 if Depth
< Depth_To_Reach
then
10064 raise Program_Error
;
10067 -- Climb the scope chain until the desired depth is reached
10069 while Present
(Pack
) and then Depth
/= Depth_To_Reach
loop
10070 Pack
:= Scope
(Pack
);
10071 Depth
:= Depth
- 1;
10073 end Equalize_Depths
;
10077 P_1
: Entity_Id
:= Pack_1
;
10078 P_1_Child
: Boolean := False;
10079 P_1_Depth
: Nat
:= Distance_From_Standard
(P_1
);
10080 P_2
: Entity_Id
:= Pack_2
;
10081 P_2_Child
: Boolean := False;
10082 P_2_Depth
: Nat
:= Distance_From_Standard
(P_2
);
10084 -- Start of processing for Is_Child_Or_Sibling
10088 (Ekind
(Pack_1
) = E_Package
and then Ekind
(Pack_2
) = E_Package
);
10090 -- Both packages denote the same entity, therefore they cannot be
10091 -- children or siblings.
10096 -- One of the packages is at a deeper level than the other. Note that
10097 -- both may still come from differen hierarchies.
10105 elsif P_1_Depth
> P_2_Depth
then
10108 Depth
=> P_1_Depth
,
10109 Depth_To_Reach
=> P_2_Depth
);
10118 elsif P_2_Depth
> P_1_Depth
then
10121 Depth
=> P_2_Depth
,
10122 Depth_To_Reach
=> P_1_Depth
);
10126 -- At this stage the package pointers have been elevated to the same
10127 -- depth. If the related entities are the same, then one package is a
10128 -- potential child of the other:
10132 -- X became P_1 P_2 or vica versa
10138 return Is_Child_Unit
(Pack_1
);
10140 else pragma Assert
(P_2_Child
);
10141 return Is_Child_Unit
(Pack_2
);
10144 -- The packages may come from the same package chain or from entirely
10145 -- different hierarcies. To determine this, climb the scope stack until
10146 -- a common root is found.
10148 -- (root) (root 1) (root 2)
10153 while Present
(P_1
) and then Present
(P_2
) loop
10155 -- The two packages may be siblings
10158 return Is_Child_Unit
(Pack_1
) and then Is_Child_Unit
(Pack_2
);
10161 P_1
:= Scope
(P_1
);
10162 P_2
:= Scope
(P_2
);
10167 end Is_Child_Or_Sibling
;
10169 -----------------------------
10170 -- Is_Concurrent_Interface --
10171 -----------------------------
10173 function Is_Concurrent_Interface
(T
: Entity_Id
) return Boolean is
10175 return Is_Interface
(T
)
10177 (Is_Protected_Interface
(T
)
10178 or else Is_Synchronized_Interface
(T
)
10179 or else Is_Task_Interface
(T
));
10180 end Is_Concurrent_Interface
;
10182 ---------------------------
10183 -- Is_Container_Element --
10184 ---------------------------
10186 function Is_Container_Element
(Exp
: Node_Id
) return Boolean is
10187 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
10188 Pref
: constant Node_Id
:= Prefix
(Exp
);
10191 -- Call to an indexing aspect
10193 Cont_Typ
: Entity_Id
;
10194 -- The type of the container being accessed
10196 Elem_Typ
: Entity_Id
;
10197 -- Its element type
10199 Indexing
: Entity_Id
;
10200 Is_Const
: Boolean;
10201 -- Indicates that constant indexing is used, and the element is thus
10204 Ref_Typ
: Entity_Id
;
10205 -- The reference type returned by the indexing operation
10208 -- If C is a container, in a context that imposes the element type of
10209 -- that container, the indexing notation C (X) is rewritten as:
10211 -- Indexing (C, X).Discr.all
10213 -- where Indexing is one of the indexing aspects of the container.
10214 -- If the context does not require a reference, the construct can be
10219 -- First, verify that the construct has the proper form
10221 if not Expander_Active
then
10224 elsif Nkind
(Pref
) /= N_Selected_Component
then
10227 elsif Nkind
(Prefix
(Pref
)) /= N_Function_Call
then
10231 Call
:= Prefix
(Pref
);
10232 Ref_Typ
:= Etype
(Call
);
10235 if not Has_Implicit_Dereference
(Ref_Typ
)
10236 or else No
(First
(Parameter_Associations
(Call
)))
10237 or else not Is_Entity_Name
(Name
(Call
))
10242 -- Retrieve type of container object, and its iterator aspects
10244 Cont_Typ
:= Etype
(First
(Parameter_Associations
(Call
)));
10245 Indexing
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Constant_Indexing
);
10248 if No
(Indexing
) then
10250 -- Container should have at least one indexing operation
10254 elsif Entity
(Name
(Call
)) /= Entity
(Indexing
) then
10256 -- This may be a variable indexing operation
10258 Indexing
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Variable_Indexing
);
10261 or else Entity
(Name
(Call
)) /= Entity
(Indexing
)
10270 Elem_Typ
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Iterator_Element
);
10272 if No
(Elem_Typ
) or else Entity
(Elem_Typ
) /= Etype
(Exp
) then
10276 -- Check that the expression is not the target of an assignment, in
10277 -- which case the rewriting is not possible.
10279 if not Is_Const
then
10285 while Present
(Par
)
10287 if Nkind
(Parent
(Par
)) = N_Assignment_Statement
10288 and then Par
= Name
(Parent
(Par
))
10292 -- A renaming produces a reference, and the transformation
10295 elsif Nkind
(Parent
(Par
)) = N_Object_Renaming_Declaration
then
10299 (Nkind
(Parent
(Par
)), N_Function_Call
,
10300 N_Procedure_Call_Statement
,
10301 N_Entry_Call_Statement
)
10303 -- Check that the element is not part of an actual for an
10304 -- in-out parameter.
10311 F
:= First_Formal
(Entity
(Name
(Parent
(Par
))));
10312 A
:= First
(Parameter_Associations
(Parent
(Par
)));
10313 while Present
(F
) loop
10314 if A
= Par
and then Ekind
(F
) /= E_In_Parameter
then
10323 -- E_In_Parameter in a call: element is not modified.
10328 Par
:= Parent
(Par
);
10333 -- The expression has the proper form and the context requires the
10334 -- element type. Retrieve the Element function of the container and
10335 -- rewrite the construct as a call to it.
10341 Op
:= First_Elmt
(Primitive_Operations
(Cont_Typ
));
10342 while Present
(Op
) loop
10343 exit when Chars
(Node
(Op
)) = Name_Element
;
10352 Make_Function_Call
(Loc
,
10353 Name
=> New_Occurrence_Of
(Node
(Op
), Loc
),
10354 Parameter_Associations
=> Parameter_Associations
(Call
)));
10355 Analyze_And_Resolve
(Exp
, Entity
(Elem_Typ
));
10359 end Is_Container_Element
;
10361 -----------------------
10362 -- Is_Constant_Bound --
10363 -----------------------
10365 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
10367 if Compile_Time_Known_Value
(Exp
) then
10370 elsif Is_Entity_Name
(Exp
) and then Present
(Entity
(Exp
)) then
10371 return Is_Constant_Object
(Entity
(Exp
))
10372 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
10374 elsif Nkind
(Exp
) in N_Binary_Op
then
10375 return Is_Constant_Bound
(Left_Opnd
(Exp
))
10376 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
10377 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
10382 end Is_Constant_Bound
;
10384 --------------------------------------
10385 -- Is_Controlling_Limited_Procedure --
10386 --------------------------------------
10388 function Is_Controlling_Limited_Procedure
10389 (Proc_Nam
: Entity_Id
) return Boolean
10391 Param_Typ
: Entity_Id
:= Empty
;
10394 if Ekind
(Proc_Nam
) = E_Procedure
10395 and then Present
(Parameter_Specifications
(Parent
(Proc_Nam
)))
10397 Param_Typ
:= Etype
(Parameter_Type
(First
(
10398 Parameter_Specifications
(Parent
(Proc_Nam
)))));
10400 -- In this case where an Itype was created, the procedure call has been
10403 elsif Present
(Associated_Node_For_Itype
(Proc_Nam
))
10404 and then Present
(Original_Node
(Associated_Node_For_Itype
(Proc_Nam
)))
10406 Present
(Parameter_Associations
10407 (Associated_Node_For_Itype
(Proc_Nam
)))
10410 Etype
(First
(Parameter_Associations
10411 (Associated_Node_For_Itype
(Proc_Nam
))));
10414 if Present
(Param_Typ
) then
10416 Is_Interface
(Param_Typ
)
10417 and then Is_Limited_Record
(Param_Typ
);
10421 end Is_Controlling_Limited_Procedure
;
10423 -----------------------------
10424 -- Is_CPP_Constructor_Call --
10425 -----------------------------
10427 function Is_CPP_Constructor_Call
(N
: Node_Id
) return Boolean is
10429 return Nkind
(N
) = N_Function_Call
10430 and then Is_CPP_Class
(Etype
(Etype
(N
)))
10431 and then Is_Constructor
(Entity
(Name
(N
)))
10432 and then Is_Imported
(Entity
(Name
(N
)));
10433 end Is_CPP_Constructor_Call
;
10439 function Is_Delegate
(T
: Entity_Id
) return Boolean is
10440 Desig_Type
: Entity_Id
;
10443 if VM_Target
/= CLI_Target
then
10447 -- Access-to-subprograms are delegates in CIL
10449 if Ekind
(T
) = E_Access_Subprogram_Type
then
10453 if not Is_Access_Type
(T
) then
10455 -- A delegate is a managed pointer. If no designated type is defined
10456 -- it means that it's not a delegate.
10461 Desig_Type
:= Etype
(Directly_Designated_Type
(T
));
10463 if not Is_Tagged_Type
(Desig_Type
) then
10467 -- Test if the type is inherited from [mscorlib]System.Delegate
10469 while Etype
(Desig_Type
) /= Desig_Type
loop
10470 if Chars
(Scope
(Desig_Type
)) /= No_Name
10471 and then Is_Imported
(Scope
(Desig_Type
))
10472 and then Get_Name_String
(Chars
(Scope
(Desig_Type
))) = "delegate"
10477 Desig_Type
:= Etype
(Desig_Type
);
10483 ----------------------------------------------
10484 -- Is_Dependent_Component_Of_Mutable_Object --
10485 ----------------------------------------------
10487 function Is_Dependent_Component_Of_Mutable_Object
10488 (Object
: Node_Id
) return Boolean
10490 function Is_Declared_Within_Variant
(Comp
: Entity_Id
) return Boolean;
10491 -- Returns True if and only if Comp is declared within a variant part
10493 --------------------------------
10494 -- Is_Declared_Within_Variant --
10495 --------------------------------
10497 function Is_Declared_Within_Variant
(Comp
: Entity_Id
) return Boolean is
10498 Comp_Decl
: constant Node_Id
:= Parent
(Comp
);
10499 Comp_List
: constant Node_Id
:= Parent
(Comp_Decl
);
10501 return Nkind
(Parent
(Comp_List
)) = N_Variant
;
10502 end Is_Declared_Within_Variant
;
10505 Prefix_Type
: Entity_Id
;
10506 P_Aliased
: Boolean := False;
10509 Deref
: Node_Id
:= Object
;
10510 -- Dereference node, in something like X.all.Y(2)
10512 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
10515 -- Find the dereference node if any
10517 while Nkind_In
(Deref
, N_Indexed_Component
,
10518 N_Selected_Component
,
10521 Deref
:= Prefix
(Deref
);
10524 -- Ada 2005: If we have a component or slice of a dereference,
10525 -- something like X.all.Y (2), and the type of X is access-to-constant,
10526 -- Is_Variable will return False, because it is indeed a constant
10527 -- view. But it might be a view of a variable object, so we want the
10528 -- following condition to be True in that case.
10530 if Is_Variable
(Object
)
10531 or else (Ada_Version
>= Ada_2005
10532 and then Nkind
(Deref
) = N_Explicit_Dereference
)
10534 if Nkind
(Object
) = N_Selected_Component
then
10535 P
:= Prefix
(Object
);
10536 Prefix_Type
:= Etype
(P
);
10538 if Is_Entity_Name
(P
) then
10539 if Ekind
(Entity
(P
)) = E_Generic_In_Out_Parameter
then
10540 Prefix_Type
:= Base_Type
(Prefix_Type
);
10543 if Is_Aliased
(Entity
(P
)) then
10547 -- A discriminant check on a selected component may be expanded
10548 -- into a dereference when removing side-effects. Recover the
10549 -- original node and its type, which may be unconstrained.
10551 elsif Nkind
(P
) = N_Explicit_Dereference
10552 and then not (Comes_From_Source
(P
))
10554 P
:= Original_Node
(P
);
10555 Prefix_Type
:= Etype
(P
);
10558 -- Check for prefix being an aliased component???
10564 -- A heap object is constrained by its initial value
10566 -- Ada 2005 (AI-363): Always assume the object could be mutable in
10567 -- the dereferenced case, since the access value might denote an
10568 -- unconstrained aliased object, whereas in Ada 95 the designated
10569 -- object is guaranteed to be constrained. A worst-case assumption
10570 -- has to apply in Ada 2005 because we can't tell at compile
10571 -- time whether the object is "constrained by its initial value"
10572 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
10573 -- rules (these rules are acknowledged to need fixing).
10575 if Ada_Version
< Ada_2005
then
10576 if Is_Access_Type
(Prefix_Type
)
10577 or else Nkind
(P
) = N_Explicit_Dereference
10582 else pragma Assert
(Ada_Version
>= Ada_2005
);
10583 if Is_Access_Type
(Prefix_Type
) then
10585 -- If the access type is pool-specific, and there is no
10586 -- constrained partial view of the designated type, then the
10587 -- designated object is known to be constrained.
10589 if Ekind
(Prefix_Type
) = E_Access_Type
10590 and then not Object_Type_Has_Constrained_Partial_View
10591 (Typ
=> Designated_Type
(Prefix_Type
),
10592 Scop
=> Current_Scope
)
10596 -- Otherwise (general access type, or there is a constrained
10597 -- partial view of the designated type), we need to check
10598 -- based on the designated type.
10601 Prefix_Type
:= Designated_Type
(Prefix_Type
);
10607 Original_Record_Component
(Entity
(Selector_Name
(Object
)));
10609 -- As per AI-0017, the renaming is illegal in a generic body, even
10610 -- if the subtype is indefinite.
10612 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
10614 if not Is_Constrained
(Prefix_Type
)
10615 and then (not Is_Indefinite_Subtype
(Prefix_Type
)
10617 (Is_Generic_Type
(Prefix_Type
)
10618 and then Ekind
(Current_Scope
) = E_Generic_Package
10619 and then In_Package_Body
(Current_Scope
)))
10621 and then (Is_Declared_Within_Variant
(Comp
)
10622 or else Has_Discriminant_Dependent_Constraint
(Comp
))
10623 and then (not P_Aliased
or else Ada_Version
>= Ada_2005
)
10627 -- If the prefix is of an access type at this point, then we want
10628 -- to return False, rather than calling this function recursively
10629 -- on the access object (which itself might be a discriminant-
10630 -- dependent component of some other object, but that isn't
10631 -- relevant to checking the object passed to us). This avoids
10632 -- issuing wrong errors when compiling with -gnatc, where there
10633 -- can be implicit dereferences that have not been expanded.
10635 elsif Is_Access_Type
(Etype
(Prefix
(Object
))) then
10640 Is_Dependent_Component_Of_Mutable_Object
(Prefix
(Object
));
10643 elsif Nkind
(Object
) = N_Indexed_Component
10644 or else Nkind
(Object
) = N_Slice
10646 return Is_Dependent_Component_Of_Mutable_Object
(Prefix
(Object
));
10648 -- A type conversion that Is_Variable is a view conversion:
10649 -- go back to the denoted object.
10651 elsif Nkind
(Object
) = N_Type_Conversion
then
10653 Is_Dependent_Component_Of_Mutable_Object
(Expression
(Object
));
10658 end Is_Dependent_Component_Of_Mutable_Object
;
10660 ---------------------
10661 -- Is_Dereferenced --
10662 ---------------------
10664 function Is_Dereferenced
(N
: Node_Id
) return Boolean is
10665 P
: constant Node_Id
:= Parent
(N
);
10667 return Nkind_In
(P
, N_Selected_Component
,
10668 N_Explicit_Dereference
,
10669 N_Indexed_Component
,
10671 and then Prefix
(P
) = N
;
10672 end Is_Dereferenced
;
10674 ----------------------
10675 -- Is_Descendent_Of --
10676 ----------------------
10678 function Is_Descendent_Of
(T1
: Entity_Id
; T2
: Entity_Id
) return Boolean is
10683 pragma Assert
(Nkind
(T1
) in N_Entity
);
10684 pragma Assert
(Nkind
(T2
) in N_Entity
);
10686 T
:= Base_Type
(T1
);
10688 -- Immediate return if the types match
10693 -- Comment needed here ???
10695 elsif Ekind
(T
) = E_Class_Wide_Type
then
10696 return Etype
(T
) = T2
;
10704 -- Done if we found the type we are looking for
10709 -- Done if no more derivations to check
10716 -- Following test catches error cases resulting from prev errors
10718 elsif No
(Etyp
) then
10721 elsif Is_Private_Type
(T
) and then Etyp
= Full_View
(T
) then
10724 elsif Is_Private_Type
(Etyp
) and then Full_View
(Etyp
) = T
then
10728 T
:= Base_Type
(Etyp
);
10731 end Is_Descendent_Of
;
10733 -----------------------------
10734 -- Is_Effectively_Volatile --
10735 -----------------------------
10737 function Is_Effectively_Volatile
(Id
: Entity_Id
) return Boolean is
10739 if Is_Type
(Id
) then
10741 -- An arbitrary type is effectively volatile when it is subject to
10742 -- pragma Atomic or Volatile.
10744 if Is_Volatile
(Id
) then
10747 -- An array type is effectively volatile when it is subject to pragma
10748 -- Atomic_Components or Volatile_Components or its compolent type is
10749 -- effectively volatile.
10751 elsif Is_Array_Type
(Id
) then
10753 Has_Volatile_Components
(Id
)
10755 Is_Effectively_Volatile
(Component_Type
(Base_Type
(Id
)));
10761 -- Otherwise Id denotes an object
10766 or else Has_Volatile_Components
(Id
)
10767 or else Is_Effectively_Volatile
(Etype
(Id
));
10769 end Is_Effectively_Volatile
;
10771 ------------------------------------
10772 -- Is_Effectively_Volatile_Object --
10773 ------------------------------------
10775 function Is_Effectively_Volatile_Object
(N
: Node_Id
) return Boolean is
10777 if Is_Entity_Name
(N
) then
10778 return Is_Effectively_Volatile
(Entity
(N
));
10780 elsif Nkind
(N
) = N_Expanded_Name
then
10781 return Is_Effectively_Volatile
(Entity
(N
));
10783 elsif Nkind
(N
) = N_Indexed_Component
then
10784 return Is_Effectively_Volatile_Object
(Prefix
(N
));
10786 elsif Nkind
(N
) = N_Selected_Component
then
10788 Is_Effectively_Volatile_Object
(Prefix
(N
))
10790 Is_Effectively_Volatile_Object
(Selector_Name
(N
));
10795 end Is_Effectively_Volatile_Object
;
10797 ----------------------------
10798 -- Is_Expression_Function --
10799 ----------------------------
10801 function Is_Expression_Function
(Subp
: Entity_Id
) return Boolean is
10805 if Ekind
(Subp
) /= E_Function
then
10809 Decl
:= Unit_Declaration_Node
(Subp
);
10810 return Nkind
(Decl
) = N_Subprogram_Declaration
10812 (Nkind
(Original_Node
(Decl
)) = N_Expression_Function
10814 (Present
(Corresponding_Body
(Decl
))
10816 Nkind
(Original_Node
10817 (Unit_Declaration_Node
10818 (Corresponding_Body
(Decl
)))) =
10819 N_Expression_Function
));
10821 end Is_Expression_Function
;
10823 -----------------------
10824 -- Is_EVF_Expression --
10825 -----------------------
10827 function Is_EVF_Expression
(N
: Node_Id
) return Boolean is
10828 Orig_N
: constant Node_Id
:= Original_Node
(N
);
10834 -- Detect a reference to a formal parameter of a specific tagged type
10835 -- whose related subprogram is subject to pragma Expresions_Visible with
10838 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
10843 and then Is_Specific_Tagged_Type
(Etype
(Id
))
10844 and then Extensions_Visible_Status
(Id
) =
10845 Extensions_Visible_False
;
10847 -- A case expression is an EVF expression when it contains at least one
10848 -- EVF dependent_expression. Note that a case expression may have been
10849 -- expanded, hence the use of Original_Node.
10851 elsif Nkind
(Orig_N
) = N_Case_Expression
then
10852 Alt
:= First
(Alternatives
(Orig_N
));
10853 while Present
(Alt
) loop
10854 if Is_EVF_Expression
(Expression
(Alt
)) then
10861 -- An if expression is an EVF expression when it contains at least one
10862 -- EVF dependent_expression. Note that an if expression may have been
10863 -- expanded, hence the use of Original_Node.
10865 elsif Nkind
(Orig_N
) = N_If_Expression
then
10866 Expr
:= Next
(First
(Expressions
(Orig_N
)));
10867 while Present
(Expr
) loop
10868 if Is_EVF_Expression
(Expr
) then
10875 -- A qualified expression or a type conversion is an EVF expression when
10876 -- its operand is an EVF expression.
10878 elsif Nkind_In
(N
, N_Qualified_Expression
,
10879 N_Unchecked_Type_Conversion
,
10882 return Is_EVF_Expression
(Expression
(N
));
10884 -- Attributes 'Loop_Entry, 'Old and 'Update are an EVF expression when
10885 -- their prefix denotes an EVF expression.
10887 elsif Nkind
(N
) = N_Attribute_Reference
10888 and then Nam_In
(Attribute_Name
(N
), Name_Loop_Entry
,
10892 return Is_EVF_Expression
(Prefix
(N
));
10896 end Is_EVF_Expression
;
10902 function Is_False
(U
: Uint
) return Boolean is
10907 ---------------------------
10908 -- Is_Fixed_Model_Number --
10909 ---------------------------
10911 function Is_Fixed_Model_Number
(U
: Ureal
; T
: Entity_Id
) return Boolean is
10912 S
: constant Ureal
:= Small_Value
(T
);
10913 M
: Urealp
.Save_Mark
;
10917 R
:= (U
= UR_Trunc
(U
/ S
) * S
);
10918 Urealp
.Release
(M
);
10920 end Is_Fixed_Model_Number
;
10922 -------------------------------
10923 -- Is_Fully_Initialized_Type --
10924 -------------------------------
10926 function Is_Fully_Initialized_Type
(Typ
: Entity_Id
) return Boolean is
10930 if Is_Scalar_Type
(Typ
) then
10932 -- A scalar type with an aspect Default_Value is fully initialized
10934 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
10935 -- of a scalar type, but we don't take that into account here, since
10936 -- we don't want these to affect warnings.
10938 return Has_Default_Aspect
(Typ
);
10940 elsif Is_Access_Type
(Typ
) then
10943 elsif Is_Array_Type
(Typ
) then
10944 if Is_Fully_Initialized_Type
(Component_Type
(Typ
))
10945 or else (Ada_Version
>= Ada_2012
and then Has_Default_Aspect
(Typ
))
10950 -- An interesting case, if we have a constrained type one of whose
10951 -- bounds is known to be null, then there are no elements to be
10952 -- initialized, so all the elements are initialized.
10954 if Is_Constrained
(Typ
) then
10957 Indx_Typ
: Entity_Id
;
10958 Lbd
, Hbd
: Node_Id
;
10961 Indx
:= First_Index
(Typ
);
10962 while Present
(Indx
) loop
10963 if Etype
(Indx
) = Any_Type
then
10966 -- If index is a range, use directly
10968 elsif Nkind
(Indx
) = N_Range
then
10969 Lbd
:= Low_Bound
(Indx
);
10970 Hbd
:= High_Bound
(Indx
);
10973 Indx_Typ
:= Etype
(Indx
);
10975 if Is_Private_Type
(Indx_Typ
) then
10976 Indx_Typ
:= Full_View
(Indx_Typ
);
10979 if No
(Indx_Typ
) or else Etype
(Indx_Typ
) = Any_Type
then
10982 Lbd
:= Type_Low_Bound
(Indx_Typ
);
10983 Hbd
:= Type_High_Bound
(Indx_Typ
);
10987 if Compile_Time_Known_Value
(Lbd
)
10989 Compile_Time_Known_Value
(Hbd
)
10991 if Expr_Value
(Hbd
) < Expr_Value
(Lbd
) then
11001 -- If no null indexes, then type is not fully initialized
11007 elsif Is_Record_Type
(Typ
) then
11008 if Has_Discriminants
(Typ
)
11010 Present
(Discriminant_Default_Value
(First_Discriminant
(Typ
)))
11011 and then Is_Fully_Initialized_Variant
(Typ
)
11016 -- We consider bounded string types to be fully initialized, because
11017 -- otherwise we get false alarms when the Data component is not
11018 -- default-initialized.
11020 if Is_Bounded_String
(Typ
) then
11024 -- Controlled records are considered to be fully initialized if
11025 -- there is a user defined Initialize routine. This may not be
11026 -- entirely correct, but as the spec notes, we are guessing here
11027 -- what is best from the point of view of issuing warnings.
11029 if Is_Controlled
(Typ
) then
11031 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
11034 if Present
(Utyp
) then
11036 Init
: constant Entity_Id
:=
11038 (Underlying_Type
(Typ
), Name_Initialize
));
11042 and then Comes_From_Source
(Init
)
11044 Is_Predefined_File_Name
11045 (File_Name
(Get_Source_File_Index
(Sloc
(Init
))))
11049 elsif Has_Null_Extension
(Typ
)
11051 Is_Fully_Initialized_Type
11052 (Etype
(Base_Type
(Typ
)))
11061 -- Otherwise see if all record components are initialized
11067 Ent
:= First_Entity
(Typ
);
11068 while Present
(Ent
) loop
11069 if Ekind
(Ent
) = E_Component
11070 and then (No
(Parent
(Ent
))
11071 or else No
(Expression
(Parent
(Ent
))))
11072 and then not Is_Fully_Initialized_Type
(Etype
(Ent
))
11074 -- Special VM case for tag components, which need to be
11075 -- defined in this case, but are never initialized as VMs
11076 -- are using other dispatching mechanisms. Ignore this
11077 -- uninitialized case. Note that this applies both to the
11078 -- uTag entry and the main vtable pointer (CPP_Class case).
11080 and then (Tagged_Type_Expansion
or else not Is_Tag
(Ent
))
11089 -- No uninitialized components, so type is fully initialized.
11090 -- Note that this catches the case of no components as well.
11094 elsif Is_Concurrent_Type
(Typ
) then
11097 elsif Is_Private_Type
(Typ
) then
11099 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
11105 return Is_Fully_Initialized_Type
(U
);
11112 end Is_Fully_Initialized_Type
;
11114 ----------------------------------
11115 -- Is_Fully_Initialized_Variant --
11116 ----------------------------------
11118 function Is_Fully_Initialized_Variant
(Typ
: Entity_Id
) return Boolean is
11119 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
11120 Constraints
: constant List_Id
:= New_List
;
11121 Components
: constant Elist_Id
:= New_Elmt_List
;
11122 Comp_Elmt
: Elmt_Id
;
11124 Comp_List
: Node_Id
;
11126 Discr_Val
: Node_Id
;
11128 Report_Errors
: Boolean;
11129 pragma Warnings
(Off
, Report_Errors
);
11132 if Serious_Errors_Detected
> 0 then
11136 if Is_Record_Type
(Typ
)
11137 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
11138 and then Nkind
(Type_Definition
(Parent
(Typ
))) = N_Record_Definition
11140 Comp_List
:= Component_List
(Type_Definition
(Parent
(Typ
)));
11142 Discr
:= First_Discriminant
(Typ
);
11143 while Present
(Discr
) loop
11144 if Nkind
(Parent
(Discr
)) = N_Discriminant_Specification
then
11145 Discr_Val
:= Expression
(Parent
(Discr
));
11147 if Present
(Discr_Val
)
11148 and then Is_OK_Static_Expression
(Discr_Val
)
11150 Append_To
(Constraints
,
11151 Make_Component_Association
(Loc
,
11152 Choices
=> New_List
(New_Occurrence_Of
(Discr
, Loc
)),
11153 Expression
=> New_Copy
(Discr_Val
)));
11161 Next_Discriminant
(Discr
);
11166 Comp_List
=> Comp_List
,
11167 Governed_By
=> Constraints
,
11168 Into
=> Components
,
11169 Report_Errors
=> Report_Errors
);
11171 -- Check that each component present is fully initialized
11173 Comp_Elmt
:= First_Elmt
(Components
);
11174 while Present
(Comp_Elmt
) loop
11175 Comp_Id
:= Node
(Comp_Elmt
);
11177 if Ekind
(Comp_Id
) = E_Component
11178 and then (No
(Parent
(Comp_Id
))
11179 or else No
(Expression
(Parent
(Comp_Id
))))
11180 and then not Is_Fully_Initialized_Type
(Etype
(Comp_Id
))
11185 Next_Elmt
(Comp_Elmt
);
11190 elsif Is_Private_Type
(Typ
) then
11192 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
11198 return Is_Fully_Initialized_Variant
(U
);
11205 end Is_Fully_Initialized_Variant
;
11207 ---------------------
11208 -- Is_Ghost_Entity --
11209 ---------------------
11211 function Is_Ghost_Entity
(Id
: Entity_Id
) return Boolean is
11213 return Is_Checked_Ghost_Entity
(Id
) or else Is_Ignored_Ghost_Entity
(Id
);
11214 end Is_Ghost_Entity
;
11216 ----------------------------------
11217 -- Is_Ghost_Statement_Or_Pragma --
11218 ----------------------------------
11220 function Is_Ghost_Statement_Or_Pragma
(N
: Node_Id
) return Boolean is
11221 function Is_Ghost_Entity_Reference
(N
: Node_Id
) return Boolean;
11222 -- Determine whether an arbitrary node denotes a reference to a Ghost
11225 -------------------------------
11226 -- Is_Ghost_Entity_Reference --
11227 -------------------------------
11229 function Is_Ghost_Entity_Reference
(N
: Node_Id
) return Boolean is
11235 -- When the reference extracts a subcomponent, recover the related
11236 -- object (SPARK RM 6.9(1)).
11238 while Nkind_In
(Ref
, N_Explicit_Dereference
,
11239 N_Indexed_Component
,
11240 N_Selected_Component
,
11243 Ref
:= Prefix
(Ref
);
11247 Is_Entity_Name
(Ref
)
11248 and then Present
(Entity
(Ref
))
11249 and then Is_Ghost_Entity
(Entity
(Ref
));
11250 end Is_Ghost_Entity_Reference
;
11257 -- Start of processing for Is_Ghost_Statement_Or_Pragma
11260 if Nkind
(N
) = N_Pragma
then
11262 -- A pragma is Ghost when it appears within a Ghost package or
11265 if Within_Ghost_Scope
then
11269 -- A pragma is Ghost when it mentions a Ghost entity
11271 Arg
:= First
(Pragma_Argument_Associations
(N
));
11272 while Present
(Arg
) loop
11273 if Is_Ghost_Entity_Reference
(Get_Pragma_Arg
(Arg
)) then
11282 while Present
(Stmt
) loop
11284 -- A statement is Ghost when it appears within a Ghost package or
11287 if Is_Statement
(Stmt
) and then Within_Ghost_Scope
then
11290 -- An assignment statement is Ghost when the target is a Ghost
11291 -- variable. A procedure call is Ghost when the invoked procedure
11294 elsif Nkind_In
(Stmt
, N_Assignment_Statement
,
11295 N_Procedure_Call_Statement
)
11297 return Is_Ghost_Entity_Reference
(Name
(Stmt
));
11299 -- Prevent the search from going too far
11301 elsif Is_Body_Or_Package_Declaration
(Stmt
) then
11305 Stmt
:= Parent
(Stmt
);
11309 end Is_Ghost_Statement_Or_Pragma
;
11311 ----------------------------
11312 -- Is_Inherited_Operation --
11313 ----------------------------
11315 function Is_Inherited_Operation
(E
: Entity_Id
) return Boolean is
11316 pragma Assert
(Is_Overloadable
(E
));
11317 Kind
: constant Node_Kind
:= Nkind
(Parent
(E
));
11319 return Kind
= N_Full_Type_Declaration
11320 or else Kind
= N_Private_Extension_Declaration
11321 or else Kind
= N_Subtype_Declaration
11322 or else (Ekind
(E
) = E_Enumeration_Literal
11323 and then Is_Derived_Type
(Etype
(E
)));
11324 end Is_Inherited_Operation
;
11326 -------------------------------------
11327 -- Is_Inherited_Operation_For_Type --
11328 -------------------------------------
11330 function Is_Inherited_Operation_For_Type
11332 Typ
: Entity_Id
) return Boolean
11335 -- Check that the operation has been created by the type declaration
11337 return Is_Inherited_Operation
(E
)
11338 and then Defining_Identifier
(Parent
(E
)) = Typ
;
11339 end Is_Inherited_Operation_For_Type
;
11345 function Is_Iterator
(Typ
: Entity_Id
) return Boolean is
11346 Ifaces_List
: Elist_Id
;
11347 Iface_Elmt
: Elmt_Id
;
11351 if Is_Class_Wide_Type
(Typ
)
11352 and then Nam_In
(Chars
(Etype
(Typ
)), Name_Forward_Iterator
,
11353 Name_Reversible_Iterator
)
11355 Is_Predefined_File_Name
11356 (Unit_File_Name
(Get_Source_Unit
(Etype
(Typ
))))
11360 elsif not Is_Tagged_Type
(Typ
) or else not Is_Derived_Type
(Typ
) then
11363 elsif Present
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)) then
11367 Collect_Interfaces
(Typ
, Ifaces_List
);
11369 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
11370 while Present
(Iface_Elmt
) loop
11371 Iface
:= Node
(Iface_Elmt
);
11372 if Chars
(Iface
) = Name_Forward_Iterator
11374 Is_Predefined_File_Name
11375 (Unit_File_Name
(Get_Source_Unit
(Iface
)))
11380 Next_Elmt
(Iface_Elmt
);
11391 -- We seem to have a lot of overlapping functions that do similar things
11392 -- (testing for left hand sides or lvalues???).
11394 function Is_LHS
(N
: Node_Id
) return Is_LHS_Result
is
11395 P
: constant Node_Id
:= Parent
(N
);
11398 -- Return True if we are the left hand side of an assignment statement
11400 if Nkind
(P
) = N_Assignment_Statement
then
11401 if Name
(P
) = N
then
11407 -- Case of prefix of indexed or selected component or slice
11409 elsif Nkind_In
(P
, N_Indexed_Component
, N_Selected_Component
, N_Slice
)
11410 and then N
= Prefix
(P
)
11412 -- Here we have the case where the parent P is N.Q or N(Q .. R).
11413 -- If P is an LHS, then N is also effectively an LHS, but there
11414 -- is an important exception. If N is of an access type, then
11415 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
11416 -- case this makes N.all a left hand side but not N itself.
11418 -- If we don't know the type yet, this is the case where we return
11419 -- Unknown, since the answer depends on the type which is unknown.
11421 if No
(Etype
(N
)) then
11424 -- We have an Etype set, so we can check it
11426 elsif Is_Access_Type
(Etype
(N
)) then
11429 -- OK, not access type case, so just test whole expression
11435 -- All other cases are not left hand sides
11442 -----------------------------
11443 -- Is_Library_Level_Entity --
11444 -----------------------------
11446 function Is_Library_Level_Entity
(E
: Entity_Id
) return Boolean is
11448 -- The following is a small optimization, and it also properly handles
11449 -- discriminals, which in task bodies might appear in expressions before
11450 -- the corresponding procedure has been created, and which therefore do
11451 -- not have an assigned scope.
11453 if Is_Formal
(E
) then
11457 -- Normal test is simply that the enclosing dynamic scope is Standard
11459 return Enclosing_Dynamic_Scope
(E
) = Standard_Standard
;
11460 end Is_Library_Level_Entity
;
11462 --------------------------------
11463 -- Is_Limited_Class_Wide_Type --
11464 --------------------------------
11466 function Is_Limited_Class_Wide_Type
(Typ
: Entity_Id
) return Boolean is
11469 Is_Class_Wide_Type
(Typ
)
11470 and then (Is_Limited_Type
(Typ
) or else From_Limited_With
(Typ
));
11471 end Is_Limited_Class_Wide_Type
;
11473 ---------------------------------
11474 -- Is_Local_Variable_Reference --
11475 ---------------------------------
11477 function Is_Local_Variable_Reference
(Expr
: Node_Id
) return Boolean is
11479 if not Is_Entity_Name
(Expr
) then
11484 Ent
: constant Entity_Id
:= Entity
(Expr
);
11485 Sub
: constant Entity_Id
:= Enclosing_Subprogram
(Ent
);
11487 if not Ekind_In
(Ent
, E_Variable
, E_In_Out_Parameter
) then
11490 return Present
(Sub
) and then Sub
= Current_Subprogram
;
11494 end Is_Local_Variable_Reference
;
11496 -------------------------
11497 -- Is_Object_Reference --
11498 -------------------------
11500 function Is_Object_Reference
(N
: Node_Id
) return Boolean is
11502 function Is_Internally_Generated_Renaming
(N
: Node_Id
) return Boolean;
11503 -- Determine whether N is the name of an internally-generated renaming
11505 --------------------------------------
11506 -- Is_Internally_Generated_Renaming --
11507 --------------------------------------
11509 function Is_Internally_Generated_Renaming
(N
: Node_Id
) return Boolean is
11514 while Present
(P
) loop
11515 if Nkind
(P
) = N_Object_Renaming_Declaration
then
11516 return not Comes_From_Source
(P
);
11517 elsif Is_List_Member
(P
) then
11525 end Is_Internally_Generated_Renaming
;
11527 -- Start of processing for Is_Object_Reference
11530 if Is_Entity_Name
(N
) then
11531 return Present
(Entity
(N
)) and then Is_Object
(Entity
(N
));
11535 when N_Indexed_Component | N_Slice
=>
11537 Is_Object_Reference
(Prefix
(N
))
11538 or else Is_Access_Type
(Etype
(Prefix
(N
)));
11540 -- In Ada 95, a function call is a constant object; a procedure
11543 when N_Function_Call
=>
11544 return Etype
(N
) /= Standard_Void_Type
;
11546 -- Attributes 'Input, 'Old and 'Result produce objects
11548 when N_Attribute_Reference
=>
11551 (Attribute_Name
(N
), Name_Input
, Name_Old
, Name_Result
);
11553 when N_Selected_Component
=>
11555 Is_Object_Reference
(Selector_Name
(N
))
11557 (Is_Object_Reference
(Prefix
(N
))
11558 or else Is_Access_Type
(Etype
(Prefix
(N
))));
11560 when N_Explicit_Dereference
=>
11563 -- A view conversion of a tagged object is an object reference
11565 when N_Type_Conversion
=>
11566 return Is_Tagged_Type
(Etype
(Subtype_Mark
(N
)))
11567 and then Is_Tagged_Type
(Etype
(Expression
(N
)))
11568 and then Is_Object_Reference
(Expression
(N
));
11570 -- An unchecked type conversion is considered to be an object if
11571 -- the operand is an object (this construction arises only as a
11572 -- result of expansion activities).
11574 when N_Unchecked_Type_Conversion
=>
11577 -- Allow string literals to act as objects as long as they appear
11578 -- in internally-generated renamings. The expansion of iterators
11579 -- may generate such renamings when the range involves a string
11582 when N_String_Literal
=>
11583 return Is_Internally_Generated_Renaming
(Parent
(N
));
11585 -- AI05-0003: In Ada 2012 a qualified expression is a name.
11586 -- This allows disambiguation of function calls and the use
11587 -- of aggregates in more contexts.
11589 when N_Qualified_Expression
=>
11590 if Ada_Version
< Ada_2012
then
11593 return Is_Object_Reference
(Expression
(N
))
11594 or else Nkind
(Expression
(N
)) = N_Aggregate
;
11601 end Is_Object_Reference
;
11603 -----------------------------------
11604 -- Is_OK_Variable_For_Out_Formal --
11605 -----------------------------------
11607 function Is_OK_Variable_For_Out_Formal
(AV
: Node_Id
) return Boolean is
11609 Note_Possible_Modification
(AV
, Sure
=> True);
11611 -- We must reject parenthesized variable names. Comes_From_Source is
11612 -- checked because there are currently cases where the compiler violates
11613 -- this rule (e.g. passing a task object to its controlled Initialize
11614 -- routine). This should be properly documented in sinfo???
11616 if Paren_Count
(AV
) > 0 and then Comes_From_Source
(AV
) then
11619 -- A variable is always allowed
11621 elsif Is_Variable
(AV
) then
11624 -- Unchecked conversions are allowed only if they come from the
11625 -- generated code, which sometimes uses unchecked conversions for out
11626 -- parameters in cases where code generation is unaffected. We tell
11627 -- source unchecked conversions by seeing if they are rewrites of
11628 -- an original Unchecked_Conversion function call, or of an explicit
11629 -- conversion of a function call or an aggregate (as may happen in the
11630 -- expansion of a packed array aggregate).
11632 elsif Nkind
(AV
) = N_Unchecked_Type_Conversion
then
11633 if Nkind_In
(Original_Node
(AV
), N_Function_Call
, N_Aggregate
) then
11636 elsif Comes_From_Source
(AV
)
11637 and then Nkind
(Original_Node
(Expression
(AV
))) = N_Function_Call
11641 elsif Nkind
(Original_Node
(AV
)) = N_Type_Conversion
then
11642 return Is_OK_Variable_For_Out_Formal
(Expression
(AV
));
11648 -- Normal type conversions are allowed if argument is a variable
11650 elsif Nkind
(AV
) = N_Type_Conversion
then
11651 if Is_Variable
(Expression
(AV
))
11652 and then Paren_Count
(Expression
(AV
)) = 0
11654 Note_Possible_Modification
(Expression
(AV
), Sure
=> True);
11657 -- We also allow a non-parenthesized expression that raises
11658 -- constraint error if it rewrites what used to be a variable
11660 elsif Raises_Constraint_Error
(Expression
(AV
))
11661 and then Paren_Count
(Expression
(AV
)) = 0
11662 and then Is_Variable
(Original_Node
(Expression
(AV
)))
11666 -- Type conversion of something other than a variable
11672 -- If this node is rewritten, then test the original form, if that is
11673 -- OK, then we consider the rewritten node OK (for example, if the
11674 -- original node is a conversion, then Is_Variable will not be true
11675 -- but we still want to allow the conversion if it converts a variable).
11677 elsif Original_Node
(AV
) /= AV
then
11679 -- In Ada 2012, the explicit dereference may be a rewritten call to a
11680 -- Reference function.
11682 if Ada_Version
>= Ada_2012
11683 and then Nkind
(Original_Node
(AV
)) = N_Function_Call
11685 Has_Implicit_Dereference
(Etype
(Name
(Original_Node
(AV
))))
11690 return Is_OK_Variable_For_Out_Formal
(Original_Node
(AV
));
11693 -- All other non-variables are rejected
11698 end Is_OK_Variable_For_Out_Formal
;
11700 -----------------------------------
11701 -- Is_Partially_Initialized_Type --
11702 -----------------------------------
11704 function Is_Partially_Initialized_Type
11706 Include_Implicit
: Boolean := True) return Boolean
11709 if Is_Scalar_Type
(Typ
) then
11712 elsif Is_Access_Type
(Typ
) then
11713 return Include_Implicit
;
11715 elsif Is_Array_Type
(Typ
) then
11717 -- If component type is partially initialized, so is array type
11719 if Is_Partially_Initialized_Type
11720 (Component_Type
(Typ
), Include_Implicit
)
11724 -- Otherwise we are only partially initialized if we are fully
11725 -- initialized (this is the empty array case, no point in us
11726 -- duplicating that code here).
11729 return Is_Fully_Initialized_Type
(Typ
);
11732 elsif Is_Record_Type
(Typ
) then
11734 -- A discriminated type is always partially initialized if in
11737 if Has_Discriminants
(Typ
) and then Include_Implicit
then
11740 -- A tagged type is always partially initialized
11742 elsif Is_Tagged_Type
(Typ
) then
11745 -- Case of non-discriminated record
11751 Component_Present
: Boolean := False;
11752 -- Set True if at least one component is present. If no
11753 -- components are present, then record type is fully
11754 -- initialized (another odd case, like the null array).
11757 -- Loop through components
11759 Ent
:= First_Entity
(Typ
);
11760 while Present
(Ent
) loop
11761 if Ekind
(Ent
) = E_Component
then
11762 Component_Present
:= True;
11764 -- If a component has an initialization expression then
11765 -- the enclosing record type is partially initialized
11767 if Present
(Parent
(Ent
))
11768 and then Present
(Expression
(Parent
(Ent
)))
11772 -- If a component is of a type which is itself partially
11773 -- initialized, then the enclosing record type is also.
11775 elsif Is_Partially_Initialized_Type
11776 (Etype
(Ent
), Include_Implicit
)
11785 -- No initialized components found. If we found any components
11786 -- they were all uninitialized so the result is false.
11788 if Component_Present
then
11791 -- But if we found no components, then all the components are
11792 -- initialized so we consider the type to be initialized.
11800 -- Concurrent types are always fully initialized
11802 elsif Is_Concurrent_Type
(Typ
) then
11805 -- For a private type, go to underlying type. If there is no underlying
11806 -- type then just assume this partially initialized. Not clear if this
11807 -- can happen in a non-error case, but no harm in testing for this.
11809 elsif Is_Private_Type
(Typ
) then
11811 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
11816 return Is_Partially_Initialized_Type
(U
, Include_Implicit
);
11820 -- For any other type (are there any?) assume partially initialized
11825 end Is_Partially_Initialized_Type
;
11827 ------------------------------------
11828 -- Is_Potentially_Persistent_Type --
11829 ------------------------------------
11831 function Is_Potentially_Persistent_Type
(T
: Entity_Id
) return Boolean is
11836 -- For private type, test corresponding full type
11838 if Is_Private_Type
(T
) then
11839 return Is_Potentially_Persistent_Type
(Full_View
(T
));
11841 -- Scalar types are potentially persistent
11843 elsif Is_Scalar_Type
(T
) then
11846 -- Record type is potentially persistent if not tagged and the types of
11847 -- all it components are potentially persistent, and no component has
11848 -- an initialization expression.
11850 elsif Is_Record_Type
(T
)
11851 and then not Is_Tagged_Type
(T
)
11852 and then not Is_Partially_Initialized_Type
(T
)
11854 Comp
:= First_Component
(T
);
11855 while Present
(Comp
) loop
11856 if not Is_Potentially_Persistent_Type
(Etype
(Comp
)) then
11859 Next_Entity
(Comp
);
11865 -- Array type is potentially persistent if its component type is
11866 -- potentially persistent and if all its constraints are static.
11868 elsif Is_Array_Type
(T
) then
11869 if not Is_Potentially_Persistent_Type
(Component_Type
(T
)) then
11873 Indx
:= First_Index
(T
);
11874 while Present
(Indx
) loop
11875 if not Is_OK_Static_Subtype
(Etype
(Indx
)) then
11884 -- All other types are not potentially persistent
11889 end Is_Potentially_Persistent_Type
;
11891 --------------------------------
11892 -- Is_Potentially_Unevaluated --
11893 --------------------------------
11895 function Is_Potentially_Unevaluated
(N
: Node_Id
) return Boolean is
11903 -- A postcondition whose expression is a short-circuit is broken down
11904 -- into individual aspects for better exception reporting. The original
11905 -- short-circuit expression is rewritten as the second operand, and an
11906 -- occurrence of 'Old in that operand is potentially unevaluated.
11907 -- See Sem_ch13.adb for details of this transformation.
11909 if Nkind
(Original_Node
(Par
)) = N_And_Then
then
11913 while not Nkind_In
(Par
, N_If_Expression
,
11921 Par
:= Parent
(Par
);
11923 -- If the context is not an expression, or if is the result of
11924 -- expansion of an enclosing construct (such as another attribute)
11925 -- the predicate does not apply.
11927 if Nkind
(Par
) not in N_Subexpr
11928 or else not Comes_From_Source
(Par
)
11934 if Nkind
(Par
) = N_If_Expression
then
11935 return Is_Elsif
(Par
) or else Expr
/= First
(Expressions
(Par
));
11937 elsif Nkind
(Par
) = N_Case_Expression
then
11938 return Expr
/= Expression
(Par
);
11940 elsif Nkind_In
(Par
, N_And_Then
, N_Or_Else
) then
11941 return Expr
= Right_Opnd
(Par
);
11943 elsif Nkind_In
(Par
, N_In
, N_Not_In
) then
11944 return Expr
/= Left_Opnd
(Par
);
11949 end Is_Potentially_Unevaluated
;
11951 ---------------------------------
11952 -- Is_Protected_Self_Reference --
11953 ---------------------------------
11955 function Is_Protected_Self_Reference
(N
: Node_Id
) return Boolean is
11957 function In_Access_Definition
(N
: Node_Id
) return Boolean;
11958 -- Returns true if N belongs to an access definition
11960 --------------------------
11961 -- In_Access_Definition --
11962 --------------------------
11964 function In_Access_Definition
(N
: Node_Id
) return Boolean is
11969 while Present
(P
) loop
11970 if Nkind
(P
) = N_Access_Definition
then
11978 end In_Access_Definition
;
11980 -- Start of processing for Is_Protected_Self_Reference
11983 -- Verify that prefix is analyzed and has the proper form. Note that
11984 -- the attributes Elab_Spec, Elab_Body, Elab_Subp_Body and UET_Address,
11985 -- which also produce the address of an entity, do not analyze their
11986 -- prefix because they denote entities that are not necessarily visible.
11987 -- Neither of them can apply to a protected type.
11989 return Ada_Version
>= Ada_2005
11990 and then Is_Entity_Name
(N
)
11991 and then Present
(Entity
(N
))
11992 and then Is_Protected_Type
(Entity
(N
))
11993 and then In_Open_Scopes
(Entity
(N
))
11994 and then not In_Access_Definition
(N
);
11995 end Is_Protected_Self_Reference
;
11997 -----------------------------
11998 -- Is_RCI_Pkg_Spec_Or_Body --
11999 -----------------------------
12001 function Is_RCI_Pkg_Spec_Or_Body
(Cunit
: Node_Id
) return Boolean is
12003 function Is_RCI_Pkg_Decl_Cunit
(Cunit
: Node_Id
) return Boolean;
12004 -- Return True if the unit of Cunit is an RCI package declaration
12006 ---------------------------
12007 -- Is_RCI_Pkg_Decl_Cunit --
12008 ---------------------------
12010 function Is_RCI_Pkg_Decl_Cunit
(Cunit
: Node_Id
) return Boolean is
12011 The_Unit
: constant Node_Id
:= Unit
(Cunit
);
12014 if Nkind
(The_Unit
) /= N_Package_Declaration
then
12018 return Is_Remote_Call_Interface
(Defining_Entity
(The_Unit
));
12019 end Is_RCI_Pkg_Decl_Cunit
;
12021 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
12024 return Is_RCI_Pkg_Decl_Cunit
(Cunit
)
12026 (Nkind
(Unit
(Cunit
)) = N_Package_Body
12027 and then Is_RCI_Pkg_Decl_Cunit
(Library_Unit
(Cunit
)));
12028 end Is_RCI_Pkg_Spec_Or_Body
;
12030 -----------------------------------------
12031 -- Is_Remote_Access_To_Class_Wide_Type --
12032 -----------------------------------------
12034 function Is_Remote_Access_To_Class_Wide_Type
12035 (E
: Entity_Id
) return Boolean
12038 -- A remote access to class-wide type is a general access to object type
12039 -- declared in the visible part of a Remote_Types or Remote_Call_
12042 return Ekind
(E
) = E_General_Access_Type
12043 and then (Is_Remote_Call_Interface
(E
) or else Is_Remote_Types
(E
));
12044 end Is_Remote_Access_To_Class_Wide_Type
;
12046 -----------------------------------------
12047 -- Is_Remote_Access_To_Subprogram_Type --
12048 -----------------------------------------
12050 function Is_Remote_Access_To_Subprogram_Type
12051 (E
: Entity_Id
) return Boolean
12054 return (Ekind
(E
) = E_Access_Subprogram_Type
12055 or else (Ekind
(E
) = E_Record_Type
12056 and then Present
(Corresponding_Remote_Type
(E
))))
12057 and then (Is_Remote_Call_Interface
(E
) or else Is_Remote_Types
(E
));
12058 end Is_Remote_Access_To_Subprogram_Type
;
12060 --------------------
12061 -- Is_Remote_Call --
12062 --------------------
12064 function Is_Remote_Call
(N
: Node_Id
) return Boolean is
12066 if Nkind
(N
) not in N_Subprogram_Call
then
12068 -- An entry call cannot be remote
12072 elsif Nkind
(Name
(N
)) in N_Has_Entity
12073 and then Is_Remote_Call_Interface
(Entity
(Name
(N
)))
12075 -- A subprogram declared in the spec of a RCI package is remote
12079 elsif Nkind
(Name
(N
)) = N_Explicit_Dereference
12080 and then Is_Remote_Access_To_Subprogram_Type
12081 (Etype
(Prefix
(Name
(N
))))
12083 -- The dereference of a RAS is a remote call
12087 elsif Present
(Controlling_Argument
(N
))
12088 and then Is_Remote_Access_To_Class_Wide_Type
12089 (Etype
(Controlling_Argument
(N
)))
12091 -- Any primitive operation call with a controlling argument of
12092 -- a RACW type is a remote call.
12097 -- All other calls are local calls
12100 end Is_Remote_Call
;
12102 ----------------------
12103 -- Is_Renamed_Entry --
12104 ----------------------
12106 function Is_Renamed_Entry
(Proc_Nam
: Entity_Id
) return Boolean is
12107 Orig_Node
: Node_Id
:= Empty
;
12108 Subp_Decl
: Node_Id
:= Parent
(Parent
(Proc_Nam
));
12110 function Is_Entry
(Nam
: Node_Id
) return Boolean;
12111 -- Determine whether Nam is an entry. Traverse selectors if there are
12112 -- nested selected components.
12118 function Is_Entry
(Nam
: Node_Id
) return Boolean is
12120 if Nkind
(Nam
) = N_Selected_Component
then
12121 return Is_Entry
(Selector_Name
(Nam
));
12124 return Ekind
(Entity
(Nam
)) = E_Entry
;
12127 -- Start of processing for Is_Renamed_Entry
12130 if Present
(Alias
(Proc_Nam
)) then
12131 Subp_Decl
:= Parent
(Parent
(Alias
(Proc_Nam
)));
12134 -- Look for a rewritten subprogram renaming declaration
12136 if Nkind
(Subp_Decl
) = N_Subprogram_Declaration
12137 and then Present
(Original_Node
(Subp_Decl
))
12139 Orig_Node
:= Original_Node
(Subp_Decl
);
12142 -- The rewritten subprogram is actually an entry
12144 if Present
(Orig_Node
)
12145 and then Nkind
(Orig_Node
) = N_Subprogram_Renaming_Declaration
12146 and then Is_Entry
(Name
(Orig_Node
))
12152 end Is_Renamed_Entry
;
12154 ----------------------------
12155 -- Is_Reversible_Iterator --
12156 ----------------------------
12158 function Is_Reversible_Iterator
(Typ
: Entity_Id
) return Boolean is
12159 Ifaces_List
: Elist_Id
;
12160 Iface_Elmt
: Elmt_Id
;
12164 if Is_Class_Wide_Type
(Typ
)
12165 and then Chars
(Etype
(Typ
)) = Name_Reversible_Iterator
12166 and then Is_Predefined_File_Name
12167 (Unit_File_Name
(Get_Source_Unit
(Etype
(Typ
))))
12171 elsif not Is_Tagged_Type
(Typ
) or else not Is_Derived_Type
(Typ
) then
12175 Collect_Interfaces
(Typ
, Ifaces_List
);
12177 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
12178 while Present
(Iface_Elmt
) loop
12179 Iface
:= Node
(Iface_Elmt
);
12180 if Chars
(Iface
) = Name_Reversible_Iterator
12182 Is_Predefined_File_Name
12183 (Unit_File_Name
(Get_Source_Unit
(Iface
)))
12188 Next_Elmt
(Iface_Elmt
);
12193 end Is_Reversible_Iterator
;
12195 ----------------------
12196 -- Is_Selector_Name --
12197 ----------------------
12199 function Is_Selector_Name
(N
: Node_Id
) return Boolean is
12201 if not Is_List_Member
(N
) then
12203 P
: constant Node_Id
:= Parent
(N
);
12205 return Nkind_In
(P
, N_Expanded_Name
,
12206 N_Generic_Association
,
12207 N_Parameter_Association
,
12208 N_Selected_Component
)
12209 and then Selector_Name
(P
) = N
;
12214 L
: constant List_Id
:= List_Containing
(N
);
12215 P
: constant Node_Id
:= Parent
(L
);
12217 return (Nkind
(P
) = N_Discriminant_Association
12218 and then Selector_Names
(P
) = L
)
12220 (Nkind
(P
) = N_Component_Association
12221 and then Choices
(P
) = L
);
12224 end Is_Selector_Name
;
12226 -------------------------------------
12227 -- Is_SPARK_05_Initialization_Expr --
12228 -------------------------------------
12230 function Is_SPARK_05_Initialization_Expr
(N
: Node_Id
) return Boolean is
12233 Comp_Assn
: Node_Id
;
12234 Orig_N
: constant Node_Id
:= Original_Node
(N
);
12239 if not Comes_From_Source
(Orig_N
) then
12243 pragma Assert
(Nkind
(Orig_N
) in N_Subexpr
);
12245 case Nkind
(Orig_N
) is
12246 when N_Character_Literal |
12247 N_Integer_Literal |
12249 N_String_Literal
=>
12252 when N_Identifier |
12254 if Is_Entity_Name
(Orig_N
)
12255 and then Present
(Entity
(Orig_N
)) -- needed in some cases
12257 case Ekind
(Entity
(Orig_N
)) is
12259 E_Enumeration_Literal |
12264 if Is_Type
(Entity
(Orig_N
)) then
12272 when N_Qualified_Expression |
12273 N_Type_Conversion
=>
12274 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Expression
(Orig_N
));
12277 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Right_Opnd
(Orig_N
));
12281 N_Membership_Test
=>
12282 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Left_Opnd
(Orig_N
))
12284 Is_SPARK_05_Initialization_Expr
(Right_Opnd
(Orig_N
));
12287 N_Extension_Aggregate
=>
12288 if Nkind
(Orig_N
) = N_Extension_Aggregate
then
12290 Is_SPARK_05_Initialization_Expr
(Ancestor_Part
(Orig_N
));
12293 Expr
:= First
(Expressions
(Orig_N
));
12294 while Present
(Expr
) loop
12295 if not Is_SPARK_05_Initialization_Expr
(Expr
) then
12303 Comp_Assn
:= First
(Component_Associations
(Orig_N
));
12304 while Present
(Comp_Assn
) loop
12305 Expr
:= Expression
(Comp_Assn
);
12307 -- Note: test for Present here needed for box assocation
12310 and then not Is_SPARK_05_Initialization_Expr
(Expr
)
12319 when N_Attribute_Reference
=>
12320 if Nkind
(Prefix
(Orig_N
)) in N_Subexpr
then
12321 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Prefix
(Orig_N
));
12324 Expr
:= First
(Expressions
(Orig_N
));
12325 while Present
(Expr
) loop
12326 if not Is_SPARK_05_Initialization_Expr
(Expr
) then
12334 -- Selected components might be expanded named not yet resolved, so
12335 -- default on the safe side. (Eg on sparklex.ads)
12337 when N_Selected_Component
=>
12346 end Is_SPARK_05_Initialization_Expr
;
12348 ----------------------------------
12349 -- Is_SPARK_05_Object_Reference --
12350 ----------------------------------
12352 function Is_SPARK_05_Object_Reference
(N
: Node_Id
) return Boolean is
12354 if Is_Entity_Name
(N
) then
12355 return Present
(Entity
(N
))
12357 (Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
12358 or else Ekind
(Entity
(N
)) in Formal_Kind
);
12362 when N_Selected_Component
=>
12363 return Is_SPARK_05_Object_Reference
(Prefix
(N
));
12369 end Is_SPARK_05_Object_Reference
;
12371 -----------------------------
12372 -- Is_Specific_Tagged_Type --
12373 -----------------------------
12375 function Is_Specific_Tagged_Type
(Typ
: Entity_Id
) return Boolean is
12376 Full_Typ
: Entity_Id
;
12379 -- Handle private types
12381 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
12382 Full_Typ
:= Full_View
(Typ
);
12387 -- A specific tagged type is a non-class-wide tagged type
12389 return Is_Tagged_Type
(Full_Typ
) and not Is_Class_Wide_Type
(Full_Typ
);
12390 end Is_Specific_Tagged_Type
;
12396 function Is_Statement
(N
: Node_Id
) return Boolean is
12399 Nkind
(N
) in N_Statement_Other_Than_Procedure_Call
12400 or else Nkind
(N
) = N_Procedure_Call_Statement
;
12403 -------------------------
12404 -- Is_Subject_To_Ghost --
12405 -------------------------
12407 function Is_Subject_To_Ghost
(N
: Node_Id
) return Boolean is
12408 function Enables_Ghostness
(Arg
: Node_Id
) return Boolean;
12409 -- Determine whether aspect or pragma argument Arg enables "ghostness"
12411 -----------------------
12412 -- Enables_Ghostness --
12413 -----------------------
12415 function Enables_Ghostness
(Arg
: Node_Id
) return Boolean is
12421 if Nkind
(Expr
) = N_Pragma_Argument_Association
then
12422 Expr
:= Get_Pragma_Arg
(Expr
);
12425 -- Determine whether the expression of the aspect is static and
12428 if Present
(Expr
) then
12429 Preanalyze_And_Resolve
(Expr
);
12432 Is_OK_Static_Expression
(Expr
)
12433 and then Is_True
(Expr_Value
(Expr
));
12435 -- Otherwise Ghost defaults to True
12440 end Enables_Ghostness
;
12444 Id
: constant Entity_Id
:= Defining_Entity
(N
);
12447 Prev_Id
: Entity_Id
;
12449 -- Start of processing for Is_Subject_To_Ghost
12452 if Is_Ghost_Entity
(Id
) then
12455 -- The completion of a type or a constant is not fully analyzed when the
12456 -- reference to the Ghost entity is resolved. Because the completion is
12457 -- not marked as Ghost yet, inspect the partial view.
12459 elsif Is_Record_Type
(Id
)
12460 or else Ekind
(Id
) = E_Constant
12461 or else (Nkind
(N
) = N_Object_Declaration
12462 and then Constant_Present
(N
))
12464 Prev_Id
:= Incomplete_Or_Partial_View
(Id
);
12466 if Present
(Prev_Id
) and then Is_Ghost_Entity
(Prev_Id
) then
12471 -- Examine the aspect specifications (if any) looking for aspect Ghost
12473 if Permits_Aspect_Specifications
(N
) then
12474 Asp
:= First
(Aspect_Specifications
(N
));
12475 while Present
(Asp
) loop
12476 if Chars
(Identifier
(Asp
)) = Name_Ghost
then
12477 return Enables_Ghostness
(Expression
(Asp
));
12486 -- When the context is a [generic] package declaration, pragma Ghost
12487 -- resides in the visible declarations.
12489 if Nkind_In
(N
, N_Generic_Package_Declaration
,
12490 N_Package_Declaration
)
12492 Decl
:= First
(Visible_Declarations
(Specification
(N
)));
12494 -- Otherwise pragma Ghost appears in the declarations following N
12496 elsif Is_List_Member
(N
) then
12500 while Present
(Decl
) loop
12501 if Nkind
(Decl
) = N_Pragma
12502 and then Pragma_Name
(Decl
) = Name_Ghost
12505 Enables_Ghostness
(First
(Pragma_Argument_Associations
(Decl
)));
12507 -- A source construct ends the region where pragma Ghost may appear,
12508 -- stop the traversal.
12510 elsif Comes_From_Source
(Decl
) then
12518 end Is_Subject_To_Ghost
;
12520 --------------------------------------------------
12521 -- Is_Subprogram_Stub_Without_Prior_Declaration --
12522 --------------------------------------------------
12524 function Is_Subprogram_Stub_Without_Prior_Declaration
12525 (N
: Node_Id
) return Boolean
12528 -- A subprogram stub without prior declaration serves as declaration for
12529 -- the actual subprogram body. As such, it has an attached defining
12530 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
12532 return Nkind
(N
) = N_Subprogram_Body_Stub
12533 and then Ekind
(Defining_Entity
(N
)) /= E_Subprogram_Body
;
12534 end Is_Subprogram_Stub_Without_Prior_Declaration
;
12536 ---------------------------------
12537 -- Is_Synchronized_Tagged_Type --
12538 ---------------------------------
12540 function Is_Synchronized_Tagged_Type
(E
: Entity_Id
) return Boolean is
12541 Kind
: constant Entity_Kind
:= Ekind
(Base_Type
(E
));
12544 -- A task or protected type derived from an interface is a tagged type.
12545 -- Such a tagged type is called a synchronized tagged type, as are
12546 -- synchronized interfaces and private extensions whose declaration
12547 -- includes the reserved word synchronized.
12549 return (Is_Tagged_Type
(E
)
12550 and then (Kind
= E_Task_Type
12552 Kind
= E_Protected_Type
))
12555 and then Is_Synchronized_Interface
(E
))
12557 (Ekind
(E
) = E_Record_Type_With_Private
12558 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
12559 and then (Synchronized_Present
(Parent
(E
))
12560 or else Is_Synchronized_Interface
(Etype
(E
))));
12561 end Is_Synchronized_Tagged_Type
;
12567 function Is_Transfer
(N
: Node_Id
) return Boolean is
12568 Kind
: constant Node_Kind
:= Nkind
(N
);
12571 if Kind
= N_Simple_Return_Statement
12573 Kind
= N_Extended_Return_Statement
12575 Kind
= N_Goto_Statement
12577 Kind
= N_Raise_Statement
12579 Kind
= N_Requeue_Statement
12583 elsif (Kind
= N_Exit_Statement
or else Kind
in N_Raise_xxx_Error
)
12584 and then No
(Condition
(N
))
12588 elsif Kind
= N_Procedure_Call_Statement
12589 and then Is_Entity_Name
(Name
(N
))
12590 and then Present
(Entity
(Name
(N
)))
12591 and then No_Return
(Entity
(Name
(N
)))
12595 elsif Nkind
(Original_Node
(N
)) = N_Raise_Statement
then
12607 function Is_True
(U
: Uint
) return Boolean is
12612 --------------------------------------
12613 -- Is_Unchecked_Conversion_Instance --
12614 --------------------------------------
12616 function Is_Unchecked_Conversion_Instance
(Id
: Entity_Id
) return Boolean is
12617 Gen_Par
: Entity_Id
;
12620 -- Look for a function whose generic parent is the predefined intrinsic
12621 -- function Unchecked_Conversion.
12623 if Ekind
(Id
) = E_Function
then
12624 Gen_Par
:= Generic_Parent
(Parent
(Id
));
12628 and then Chars
(Gen_Par
) = Name_Unchecked_Conversion
12629 and then Is_Intrinsic_Subprogram
(Gen_Par
)
12630 and then Is_Predefined_File_Name
12631 (Unit_File_Name
(Get_Source_Unit
(Gen_Par
)));
12635 end Is_Unchecked_Conversion_Instance
;
12637 -------------------------------
12638 -- Is_Universal_Numeric_Type --
12639 -------------------------------
12641 function Is_Universal_Numeric_Type
(T
: Entity_Id
) return Boolean is
12643 return T
= Universal_Integer
or else T
= Universal_Real
;
12644 end Is_Universal_Numeric_Type
;
12646 -------------------
12647 -- Is_Value_Type --
12648 -------------------
12650 function Is_Value_Type
(T
: Entity_Id
) return Boolean is
12652 return VM_Target
= CLI_Target
12653 and then Nkind
(T
) in N_Has_Chars
12654 and then Chars
(T
) /= No_Name
12655 and then Get_Name_String
(Chars
(T
)) = "valuetype";
12658 ----------------------------
12659 -- Is_Variable_Size_Array --
12660 ----------------------------
12662 function Is_Variable_Size_Array
(E
: Entity_Id
) return Boolean is
12666 pragma Assert
(Is_Array_Type
(E
));
12668 -- Check if some index is initialized with a non-constant value
12670 Idx
:= First_Index
(E
);
12671 while Present
(Idx
) loop
12672 if Nkind
(Idx
) = N_Range
then
12673 if not Is_Constant_Bound
(Low_Bound
(Idx
))
12674 or else not Is_Constant_Bound
(High_Bound
(Idx
))
12680 Idx
:= Next_Index
(Idx
);
12684 end Is_Variable_Size_Array
;
12686 -----------------------------
12687 -- Is_Variable_Size_Record --
12688 -----------------------------
12690 function Is_Variable_Size_Record
(E
: Entity_Id
) return Boolean is
12692 Comp_Typ
: Entity_Id
;
12695 pragma Assert
(Is_Record_Type
(E
));
12697 Comp
:= First_Entity
(E
);
12698 while Present
(Comp
) loop
12699 Comp_Typ
:= Etype
(Comp
);
12701 -- Recursive call if the record type has discriminants
12703 if Is_Record_Type
(Comp_Typ
)
12704 and then Has_Discriminants
(Comp_Typ
)
12705 and then Is_Variable_Size_Record
(Comp_Typ
)
12709 elsif Is_Array_Type
(Comp_Typ
)
12710 and then Is_Variable_Size_Array
(Comp_Typ
)
12715 Next_Entity
(Comp
);
12719 end Is_Variable_Size_Record
;
12725 function Is_Variable
12727 Use_Original_Node
: Boolean := True) return Boolean
12729 Orig_Node
: Node_Id
;
12731 function In_Protected_Function
(E
: Entity_Id
) return Boolean;
12732 -- Within a protected function, the private components of the enclosing
12733 -- protected type are constants. A function nested within a (protected)
12734 -- procedure is not itself protected. Within the body of a protected
12735 -- function the current instance of the protected type is a constant.
12737 function Is_Variable_Prefix
(P
: Node_Id
) return Boolean;
12738 -- Prefixes can involve implicit dereferences, in which case we must
12739 -- test for the case of a reference of a constant access type, which can
12740 -- can never be a variable.
12742 ---------------------------
12743 -- In_Protected_Function --
12744 ---------------------------
12746 function In_Protected_Function
(E
: Entity_Id
) return Boolean is
12751 -- E is the current instance of a type
12753 if Is_Type
(E
) then
12762 if not Is_Protected_Type
(Prot
) then
12766 S
:= Current_Scope
;
12767 while Present
(S
) and then S
/= Prot
loop
12768 if Ekind
(S
) = E_Function
and then Scope
(S
) = Prot
then
12777 end In_Protected_Function
;
12779 ------------------------
12780 -- Is_Variable_Prefix --
12781 ------------------------
12783 function Is_Variable_Prefix
(P
: Node_Id
) return Boolean is
12785 if Is_Access_Type
(Etype
(P
)) then
12786 return not Is_Access_Constant
(Root_Type
(Etype
(P
)));
12788 -- For the case of an indexed component whose prefix has a packed
12789 -- array type, the prefix has been rewritten into a type conversion.
12790 -- Determine variable-ness from the converted expression.
12792 elsif Nkind
(P
) = N_Type_Conversion
12793 and then not Comes_From_Source
(P
)
12794 and then Is_Array_Type
(Etype
(P
))
12795 and then Is_Packed
(Etype
(P
))
12797 return Is_Variable
(Expression
(P
));
12800 return Is_Variable
(P
);
12802 end Is_Variable_Prefix
;
12804 -- Start of processing for Is_Variable
12807 -- Check if we perform the test on the original node since this may be a
12808 -- test of syntactic categories which must not be disturbed by whatever
12809 -- rewriting might have occurred. For example, an aggregate, which is
12810 -- certainly NOT a variable, could be turned into a variable by
12813 if Use_Original_Node
then
12814 Orig_Node
:= Original_Node
(N
);
12819 -- Definitely OK if Assignment_OK is set. Since this is something that
12820 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
12822 if Nkind
(N
) in N_Subexpr
and then Assignment_OK
(N
) then
12825 -- Normally we go to the original node, but there is one exception where
12826 -- we use the rewritten node, namely when it is an explicit dereference.
12827 -- The generated code may rewrite a prefix which is an access type with
12828 -- an explicit dereference. The dereference is a variable, even though
12829 -- the original node may not be (since it could be a constant of the
12832 -- In Ada 2005 we have a further case to consider: the prefix may be a
12833 -- function call given in prefix notation. The original node appears to
12834 -- be a selected component, but we need to examine the call.
12836 elsif Nkind
(N
) = N_Explicit_Dereference
12837 and then Nkind
(Orig_Node
) /= N_Explicit_Dereference
12838 and then Present
(Etype
(Orig_Node
))
12839 and then Is_Access_Type
(Etype
(Orig_Node
))
12841 -- Note that if the prefix is an explicit dereference that does not
12842 -- come from source, we must check for a rewritten function call in
12843 -- prefixed notation before other forms of rewriting, to prevent a
12847 (Nkind
(Orig_Node
) = N_Function_Call
12848 and then not Is_Access_Constant
(Etype
(Prefix
(N
))))
12850 Is_Variable_Prefix
(Original_Node
(Prefix
(N
)));
12852 -- in Ada 2012, the dereference may have been added for a type with
12853 -- a declared implicit dereference aspect. Check that it is not an
12854 -- access to constant.
12856 elsif Nkind
(N
) = N_Explicit_Dereference
12857 and then Present
(Etype
(Orig_Node
))
12858 and then Ada_Version
>= Ada_2012
12859 and then Has_Implicit_Dereference
(Etype
(Orig_Node
))
12860 and then not Is_Access_Constant
(Etype
(Prefix
(N
)))
12864 -- A function call is never a variable
12866 elsif Nkind
(N
) = N_Function_Call
then
12869 -- All remaining checks use the original node
12871 elsif Is_Entity_Name
(Orig_Node
)
12872 and then Present
(Entity
(Orig_Node
))
12875 E
: constant Entity_Id
:= Entity
(Orig_Node
);
12876 K
: constant Entity_Kind
:= Ekind
(E
);
12879 return (K
= E_Variable
12880 and then Nkind
(Parent
(E
)) /= N_Exception_Handler
)
12881 or else (K
= E_Component
12882 and then not In_Protected_Function
(E
))
12883 or else K
= E_Out_Parameter
12884 or else K
= E_In_Out_Parameter
12885 or else K
= E_Generic_In_Out_Parameter
12887 -- Current instance of type. If this is a protected type, check
12888 -- we are not within the body of one of its protected functions.
12890 or else (Is_Type
(E
)
12891 and then In_Open_Scopes
(E
)
12892 and then not In_Protected_Function
(E
))
12894 or else (Is_Incomplete_Or_Private_Type
(E
)
12895 and then In_Open_Scopes
(Full_View
(E
)));
12899 case Nkind
(Orig_Node
) is
12900 when N_Indexed_Component | N_Slice
=>
12901 return Is_Variable_Prefix
(Prefix
(Orig_Node
));
12903 when N_Selected_Component
=>
12904 return (Is_Variable
(Selector_Name
(Orig_Node
))
12905 and then Is_Variable_Prefix
(Prefix
(Orig_Node
)))
12907 (Nkind
(N
) = N_Expanded_Name
12908 and then Scope
(Entity
(N
)) = Entity
(Prefix
(N
)));
12910 -- For an explicit dereference, the type of the prefix cannot
12911 -- be an access to constant or an access to subprogram.
12913 when N_Explicit_Dereference
=>
12915 Typ
: constant Entity_Id
:= Etype
(Prefix
(Orig_Node
));
12917 return Is_Access_Type
(Typ
)
12918 and then not Is_Access_Constant
(Root_Type
(Typ
))
12919 and then Ekind
(Typ
) /= E_Access_Subprogram_Type
;
12922 -- The type conversion is the case where we do not deal with the
12923 -- context dependent special case of an actual parameter. Thus
12924 -- the type conversion is only considered a variable for the
12925 -- purposes of this routine if the target type is tagged. However,
12926 -- a type conversion is considered to be a variable if it does not
12927 -- come from source (this deals for example with the conversions
12928 -- of expressions to their actual subtypes).
12930 when N_Type_Conversion
=>
12931 return Is_Variable
(Expression
(Orig_Node
))
12933 (not Comes_From_Source
(Orig_Node
)
12935 (Is_Tagged_Type
(Etype
(Subtype_Mark
(Orig_Node
)))
12937 Is_Tagged_Type
(Etype
(Expression
(Orig_Node
)))));
12939 -- GNAT allows an unchecked type conversion as a variable. This
12940 -- only affects the generation of internal expanded code, since
12941 -- calls to instantiations of Unchecked_Conversion are never
12942 -- considered variables (since they are function calls).
12944 when N_Unchecked_Type_Conversion
=>
12945 return Is_Variable
(Expression
(Orig_Node
));
12953 ---------------------------
12954 -- Is_Visibly_Controlled --
12955 ---------------------------
12957 function Is_Visibly_Controlled
(T
: Entity_Id
) return Boolean is
12958 Root
: constant Entity_Id
:= Root_Type
(T
);
12960 return Chars
(Scope
(Root
)) = Name_Finalization
12961 and then Chars
(Scope
(Scope
(Root
))) = Name_Ada
12962 and then Scope
(Scope
(Scope
(Root
))) = Standard_Standard
;
12963 end Is_Visibly_Controlled
;
12965 ------------------------
12966 -- Is_Volatile_Object --
12967 ------------------------
12969 function Is_Volatile_Object
(N
: Node_Id
) return Boolean is
12971 function Is_Volatile_Prefix
(N
: Node_Id
) return Boolean;
12972 -- If prefix is an implicit dereference, examine designated type
12974 function Object_Has_Volatile_Components
(N
: Node_Id
) return Boolean;
12975 -- Determines if given object has volatile components
12977 ------------------------
12978 -- Is_Volatile_Prefix --
12979 ------------------------
12981 function Is_Volatile_Prefix
(N
: Node_Id
) return Boolean is
12982 Typ
: constant Entity_Id
:= Etype
(N
);
12985 if Is_Access_Type
(Typ
) then
12987 Dtyp
: constant Entity_Id
:= Designated_Type
(Typ
);
12990 return Is_Volatile
(Dtyp
)
12991 or else Has_Volatile_Components
(Dtyp
);
12995 return Object_Has_Volatile_Components
(N
);
12997 end Is_Volatile_Prefix
;
12999 ------------------------------------
13000 -- Object_Has_Volatile_Components --
13001 ------------------------------------
13003 function Object_Has_Volatile_Components
(N
: Node_Id
) return Boolean is
13004 Typ
: constant Entity_Id
:= Etype
(N
);
13007 if Is_Volatile
(Typ
)
13008 or else Has_Volatile_Components
(Typ
)
13012 elsif Is_Entity_Name
(N
)
13013 and then (Has_Volatile_Components
(Entity
(N
))
13014 or else Is_Volatile
(Entity
(N
)))
13018 elsif Nkind
(N
) = N_Indexed_Component
13019 or else Nkind
(N
) = N_Selected_Component
13021 return Is_Volatile_Prefix
(Prefix
(N
));
13026 end Object_Has_Volatile_Components
;
13028 -- Start of processing for Is_Volatile_Object
13031 if Nkind
(N
) = N_Defining_Identifier
then
13032 return Is_Volatile
(N
) or else Is_Volatile
(Etype
(N
));
13034 elsif Nkind
(N
) = N_Expanded_Name
then
13035 return Is_Volatile_Object
(Entity
(N
));
13037 elsif Is_Volatile
(Etype
(N
))
13038 or else (Is_Entity_Name
(N
) and then Is_Volatile
(Entity
(N
)))
13042 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
)
13043 and then Is_Volatile_Prefix
(Prefix
(N
))
13047 elsif Nkind
(N
) = N_Selected_Component
13048 and then Is_Volatile
(Entity
(Selector_Name
(N
)))
13055 end Is_Volatile_Object
;
13057 ---------------------------
13058 -- Itype_Has_Declaration --
13059 ---------------------------
13061 function Itype_Has_Declaration
(Id
: Entity_Id
) return Boolean is
13063 pragma Assert
(Is_Itype
(Id
));
13064 return Present
(Parent
(Id
))
13065 and then Nkind_In
(Parent
(Id
), N_Full_Type_Declaration
,
13066 N_Subtype_Declaration
)
13067 and then Defining_Entity
(Parent
(Id
)) = Id
;
13068 end Itype_Has_Declaration
;
13070 -------------------------
13071 -- Kill_Current_Values --
13072 -------------------------
13074 procedure Kill_Current_Values
13076 Last_Assignment_Only
: Boolean := False)
13079 if Is_Assignable
(Ent
) then
13080 Set_Last_Assignment
(Ent
, Empty
);
13083 if Is_Object
(Ent
) then
13084 if not Last_Assignment_Only
then
13086 Set_Current_Value
(Ent
, Empty
);
13088 if not Can_Never_Be_Null
(Ent
) then
13089 Set_Is_Known_Non_Null
(Ent
, False);
13092 Set_Is_Known_Null
(Ent
, False);
13094 -- Reset Is_Known_Valid unless type is always valid, or if we have
13095 -- a loop parameter (loop parameters are always valid, since their
13096 -- bounds are defined by the bounds given in the loop header).
13098 if not Is_Known_Valid
(Etype
(Ent
))
13099 and then Ekind
(Ent
) /= E_Loop_Parameter
13101 Set_Is_Known_Valid
(Ent
, False);
13105 end Kill_Current_Values
;
13107 procedure Kill_Current_Values
(Last_Assignment_Only
: Boolean := False) is
13110 procedure Kill_Current_Values_For_Entity_Chain
(E
: Entity_Id
);
13111 -- Clear current value for entity E and all entities chained to E
13113 ------------------------------------------
13114 -- Kill_Current_Values_For_Entity_Chain --
13115 ------------------------------------------
13117 procedure Kill_Current_Values_For_Entity_Chain
(E
: Entity_Id
) is
13121 while Present
(Ent
) loop
13122 Kill_Current_Values
(Ent
, Last_Assignment_Only
);
13125 end Kill_Current_Values_For_Entity_Chain
;
13127 -- Start of processing for Kill_Current_Values
13130 -- Kill all saved checks, a special case of killing saved values
13132 if not Last_Assignment_Only
then
13136 -- Loop through relevant scopes, which includes the current scope and
13137 -- any parent scopes if the current scope is a block or a package.
13139 S
:= Current_Scope
;
13142 -- Clear current values of all entities in current scope
13144 Kill_Current_Values_For_Entity_Chain
(First_Entity
(S
));
13146 -- If scope is a package, also clear current values of all private
13147 -- entities in the scope.
13149 if Is_Package_Or_Generic_Package
(S
)
13150 or else Is_Concurrent_Type
(S
)
13152 Kill_Current_Values_For_Entity_Chain
(First_Private_Entity
(S
));
13155 -- If this is a not a subprogram, deal with parents
13157 if not Is_Subprogram
(S
) then
13159 exit Scope_Loop
when S
= Standard_Standard
;
13163 end loop Scope_Loop
;
13164 end Kill_Current_Values
;
13166 --------------------------
13167 -- Kill_Size_Check_Code --
13168 --------------------------
13170 procedure Kill_Size_Check_Code
(E
: Entity_Id
) is
13172 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
13173 and then Present
(Size_Check_Code
(E
))
13175 Remove
(Size_Check_Code
(E
));
13176 Set_Size_Check_Code
(E
, Empty
);
13178 end Kill_Size_Check_Code
;
13180 --------------------------
13181 -- Known_To_Be_Assigned --
13182 --------------------------
13184 function Known_To_Be_Assigned
(N
: Node_Id
) return Boolean is
13185 P
: constant Node_Id
:= Parent
(N
);
13190 -- Test left side of assignment
13192 when N_Assignment_Statement
=>
13193 return N
= Name
(P
);
13195 -- Function call arguments are never lvalues
13197 when N_Function_Call
=>
13200 -- Positional parameter for procedure or accept call
13202 when N_Procedure_Call_Statement |
13211 Proc
:= Get_Subprogram_Entity
(P
);
13217 -- If we are not a list member, something is strange, so
13218 -- be conservative and return False.
13220 if not Is_List_Member
(N
) then
13224 -- We are going to find the right formal by stepping forward
13225 -- through the formals, as we step backwards in the actuals.
13227 Form
:= First_Formal
(Proc
);
13230 -- If no formal, something is weird, so be conservative
13231 -- and return False.
13238 exit when No
(Act
);
13239 Next_Formal
(Form
);
13242 return Ekind
(Form
) /= E_In_Parameter
;
13245 -- Named parameter for procedure or accept call
13247 when N_Parameter_Association
=>
13253 Proc
:= Get_Subprogram_Entity
(Parent
(P
));
13259 -- Loop through formals to find the one that matches
13261 Form
:= First_Formal
(Proc
);
13263 -- If no matching formal, that's peculiar, some kind of
13264 -- previous error, so return False to be conservative.
13265 -- Actually this also happens in legal code in the case
13266 -- where P is a parameter association for an Extra_Formal???
13272 -- Else test for match
13274 if Chars
(Form
) = Chars
(Selector_Name
(P
)) then
13275 return Ekind
(Form
) /= E_In_Parameter
;
13278 Next_Formal
(Form
);
13282 -- Test for appearing in a conversion that itself appears
13283 -- in an lvalue context, since this should be an lvalue.
13285 when N_Type_Conversion
=>
13286 return Known_To_Be_Assigned
(P
);
13288 -- All other references are definitely not known to be modifications
13294 end Known_To_Be_Assigned
;
13296 ---------------------------
13297 -- Last_Source_Statement --
13298 ---------------------------
13300 function Last_Source_Statement
(HSS
: Node_Id
) return Node_Id
is
13304 N
:= Last
(Statements
(HSS
));
13305 while Present
(N
) loop
13306 exit when Comes_From_Source
(N
);
13311 end Last_Source_Statement
;
13313 ----------------------------------
13314 -- Matching_Static_Array_Bounds --
13315 ----------------------------------
13317 function Matching_Static_Array_Bounds
13319 R_Typ
: Node_Id
) return Boolean
13321 L_Ndims
: constant Nat
:= Number_Dimensions
(L_Typ
);
13322 R_Ndims
: constant Nat
:= Number_Dimensions
(R_Typ
);
13334 if L_Ndims
/= R_Ndims
then
13338 -- Unconstrained types do not have static bounds
13340 if not Is_Constrained
(L_Typ
) or else not Is_Constrained
(R_Typ
) then
13344 -- First treat specially the first dimension, as the lower bound and
13345 -- length of string literals are not stored like those of arrays.
13347 if Ekind
(L_Typ
) = E_String_Literal_Subtype
then
13348 L_Low
:= String_Literal_Low_Bound
(L_Typ
);
13349 L_Len
:= String_Literal_Length
(L_Typ
);
13351 L_Index
:= First_Index
(L_Typ
);
13352 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
13354 if Is_OK_Static_Expression
(L_Low
)
13356 Is_OK_Static_Expression
(L_High
)
13358 if Expr_Value
(L_High
) < Expr_Value
(L_Low
) then
13361 L_Len
:= (Expr_Value
(L_High
) - Expr_Value
(L_Low
)) + 1;
13368 if Ekind
(R_Typ
) = E_String_Literal_Subtype
then
13369 R_Low
:= String_Literal_Low_Bound
(R_Typ
);
13370 R_Len
:= String_Literal_Length
(R_Typ
);
13372 R_Index
:= First_Index
(R_Typ
);
13373 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
13375 if Is_OK_Static_Expression
(R_Low
)
13377 Is_OK_Static_Expression
(R_High
)
13379 if Expr_Value
(R_High
) < Expr_Value
(R_Low
) then
13382 R_Len
:= (Expr_Value
(R_High
) - Expr_Value
(R_Low
)) + 1;
13389 if (Is_OK_Static_Expression
(L_Low
)
13391 Is_OK_Static_Expression
(R_Low
))
13392 and then Expr_Value
(L_Low
) = Expr_Value
(R_Low
)
13393 and then L_Len
= R_Len
13400 -- Then treat all other dimensions
13402 for Indx
in 2 .. L_Ndims
loop
13406 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
13407 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
13409 if (Is_OK_Static_Expression
(L_Low
) and then
13410 Is_OK_Static_Expression
(L_High
) and then
13411 Is_OK_Static_Expression
(R_Low
) and then
13412 Is_OK_Static_Expression
(R_High
))
13413 and then (Expr_Value
(L_Low
) = Expr_Value
(R_Low
)
13415 Expr_Value
(L_High
) = Expr_Value
(R_High
))
13423 -- If we fall through the loop, all indexes matched
13426 end Matching_Static_Array_Bounds
;
13428 -------------------
13429 -- May_Be_Lvalue --
13430 -------------------
13432 function May_Be_Lvalue
(N
: Node_Id
) return Boolean is
13433 P
: constant Node_Id
:= Parent
(N
);
13438 -- Test left side of assignment
13440 when N_Assignment_Statement
=>
13441 return N
= Name
(P
);
13443 -- Test prefix of component or attribute. Note that the prefix of an
13444 -- explicit or implicit dereference cannot be an l-value.
13446 when N_Attribute_Reference
=>
13447 return N
= Prefix
(P
)
13448 and then Name_Implies_Lvalue_Prefix
(Attribute_Name
(P
));
13450 -- For an expanded name, the name is an lvalue if the expanded name
13451 -- is an lvalue, but the prefix is never an lvalue, since it is just
13452 -- the scope where the name is found.
13454 when N_Expanded_Name
=>
13455 if N
= Prefix
(P
) then
13456 return May_Be_Lvalue
(P
);
13461 -- For a selected component A.B, A is certainly an lvalue if A.B is.
13462 -- B is a little interesting, if we have A.B := 3, there is some
13463 -- discussion as to whether B is an lvalue or not, we choose to say
13464 -- it is. Note however that A is not an lvalue if it is of an access
13465 -- type since this is an implicit dereference.
13467 when N_Selected_Component
=>
13469 and then Present
(Etype
(N
))
13470 and then Is_Access_Type
(Etype
(N
))
13474 return May_Be_Lvalue
(P
);
13477 -- For an indexed component or slice, the index or slice bounds is
13478 -- never an lvalue. The prefix is an lvalue if the indexed component
13479 -- or slice is an lvalue, except if it is an access type, where we
13480 -- have an implicit dereference.
13482 when N_Indexed_Component | N_Slice
=>
13484 or else (Present
(Etype
(N
)) and then Is_Access_Type
(Etype
(N
)))
13488 return May_Be_Lvalue
(P
);
13491 -- Prefix of a reference is an lvalue if the reference is an lvalue
13493 when N_Reference
=>
13494 return May_Be_Lvalue
(P
);
13496 -- Prefix of explicit dereference is never an lvalue
13498 when N_Explicit_Dereference
=>
13501 -- Positional parameter for subprogram, entry, or accept call.
13502 -- In older versions of Ada function call arguments are never
13503 -- lvalues. In Ada 2012 functions can have in-out parameters.
13505 when N_Subprogram_Call |
13506 N_Entry_Call_Statement |
13509 if Nkind
(P
) = N_Function_Call
and then Ada_Version
< Ada_2012
then
13513 -- The following mechanism is clumsy and fragile. A single flag
13514 -- set in Resolve_Actuals would be preferable ???
13522 Proc
:= Get_Subprogram_Entity
(P
);
13528 -- If we are not a list member, something is strange, so be
13529 -- conservative and return True.
13531 if not Is_List_Member
(N
) then
13535 -- We are going to find the right formal by stepping forward
13536 -- through the formals, as we step backwards in the actuals.
13538 Form
:= First_Formal
(Proc
);
13541 -- If no formal, something is weird, so be conservative and
13549 exit when No
(Act
);
13550 Next_Formal
(Form
);
13553 return Ekind
(Form
) /= E_In_Parameter
;
13556 -- Named parameter for procedure or accept call
13558 when N_Parameter_Association
=>
13564 Proc
:= Get_Subprogram_Entity
(Parent
(P
));
13570 -- Loop through formals to find the one that matches
13572 Form
:= First_Formal
(Proc
);
13574 -- If no matching formal, that's peculiar, some kind of
13575 -- previous error, so return True to be conservative.
13576 -- Actually happens with legal code for an unresolved call
13577 -- where we may get the wrong homonym???
13583 -- Else test for match
13585 if Chars
(Form
) = Chars
(Selector_Name
(P
)) then
13586 return Ekind
(Form
) /= E_In_Parameter
;
13589 Next_Formal
(Form
);
13593 -- Test for appearing in a conversion that itself appears in an
13594 -- lvalue context, since this should be an lvalue.
13596 when N_Type_Conversion
=>
13597 return May_Be_Lvalue
(P
);
13599 -- Test for appearance in object renaming declaration
13601 when N_Object_Renaming_Declaration
=>
13604 -- All other references are definitely not lvalues
13612 -----------------------
13613 -- Mark_Coextensions --
13614 -----------------------
13616 procedure Mark_Coextensions
(Context_Nod
: Node_Id
; Root_Nod
: Node_Id
) is
13617 Is_Dynamic
: Boolean;
13618 -- Indicates whether the context causes nested coextensions to be
13619 -- dynamic or static
13621 function Mark_Allocator
(N
: Node_Id
) return Traverse_Result
;
13622 -- Recognize an allocator node and label it as a dynamic coextension
13624 --------------------
13625 -- Mark_Allocator --
13626 --------------------
13628 function Mark_Allocator
(N
: Node_Id
) return Traverse_Result
is
13630 if Nkind
(N
) = N_Allocator
then
13632 Set_Is_Dynamic_Coextension
(N
);
13634 -- If the allocator expression is potentially dynamic, it may
13635 -- be expanded out of order and require dynamic allocation
13636 -- anyway, so we treat the coextension itself as dynamic.
13637 -- Potential optimization ???
13639 elsif Nkind
(Expression
(N
)) = N_Qualified_Expression
13640 and then Nkind
(Expression
(Expression
(N
))) = N_Op_Concat
13642 Set_Is_Dynamic_Coextension
(N
);
13644 Set_Is_Static_Coextension
(N
);
13649 end Mark_Allocator
;
13651 procedure Mark_Allocators
is new Traverse_Proc
(Mark_Allocator
);
13653 -- Start of processing Mark_Coextensions
13656 case Nkind
(Context_Nod
) is
13658 -- Comment here ???
13660 when N_Assignment_Statement
=>
13661 Is_Dynamic
:= Nkind
(Expression
(Context_Nod
)) = N_Allocator
;
13663 -- An allocator that is a component of a returned aggregate
13664 -- must be dynamic.
13666 when N_Simple_Return_Statement
=>
13668 Expr
: constant Node_Id
:= Expression
(Context_Nod
);
13671 Nkind
(Expr
) = N_Allocator
13673 (Nkind
(Expr
) = N_Qualified_Expression
13674 and then Nkind
(Expression
(Expr
)) = N_Aggregate
);
13677 -- An alloctor within an object declaration in an extended return
13678 -- statement is of necessity dynamic.
13680 when N_Object_Declaration
=>
13681 Is_Dynamic
:= Nkind
(Root_Nod
) = N_Allocator
13683 Nkind
(Parent
(Context_Nod
)) = N_Extended_Return_Statement
;
13685 -- This routine should not be called for constructs which may not
13686 -- contain coextensions.
13689 raise Program_Error
;
13692 Mark_Allocators
(Root_Nod
);
13693 end Mark_Coextensions
;
13695 ----------------------
13696 -- Needs_One_Actual --
13697 ----------------------
13699 function Needs_One_Actual
(E
: Entity_Id
) return Boolean is
13700 Formal
: Entity_Id
;
13703 -- Ada 2005 or later, and formals present
13705 if Ada_Version
>= Ada_2005
and then Present
(First_Formal
(E
)) then
13706 Formal
:= Next_Formal
(First_Formal
(E
));
13707 while Present
(Formal
) loop
13708 if No
(Default_Value
(Formal
)) then
13712 Next_Formal
(Formal
);
13717 -- Ada 83/95 or no formals
13722 end Needs_One_Actual
;
13724 ------------------------
13725 -- New_Copy_List_Tree --
13726 ------------------------
13728 function New_Copy_List_Tree
(List
: List_Id
) return List_Id
is
13733 if List
= No_List
then
13740 while Present
(E
) loop
13741 Append
(New_Copy_Tree
(E
), NL
);
13747 end New_Copy_List_Tree
;
13749 --------------------------------------------------
13750 -- New_Copy_Tree Auxiliary Data and Subprograms --
13751 --------------------------------------------------
13753 use Atree
.Unchecked_Access
;
13754 use Atree_Private_Part
;
13756 -- Our approach here requires a two pass traversal of the tree. The
13757 -- first pass visits all nodes that eventually will be copied looking
13758 -- for defining Itypes. If any defining Itypes are found, then they are
13759 -- copied, and an entry is added to the replacement map. In the second
13760 -- phase, the tree is copied, using the replacement map to replace any
13761 -- Itype references within the copied tree.
13763 -- The following hash tables are used if the Map supplied has more
13764 -- than hash threshold entries to speed up access to the map. If
13765 -- there are fewer entries, then the map is searched sequentially
13766 -- (because setting up a hash table for only a few entries takes
13767 -- more time than it saves.
13769 function New_Copy_Hash
(E
: Entity_Id
) return NCT_Header_Num
;
13770 -- Hash function used for hash operations
13772 -------------------
13773 -- New_Copy_Hash --
13774 -------------------
13776 function New_Copy_Hash
(E
: Entity_Id
) return NCT_Header_Num
is
13778 return Nat
(E
) mod (NCT_Header_Num
'Last + 1);
13785 -- The hash table NCT_Assoc associates old entities in the table
13786 -- with their corresponding new entities (i.e. the pairs of entries
13787 -- presented in the original Map argument are Key-Element pairs).
13789 package NCT_Assoc
is new Simple_HTable
(
13790 Header_Num
=> NCT_Header_Num
,
13791 Element
=> Entity_Id
,
13792 No_Element
=> Empty
,
13794 Hash
=> New_Copy_Hash
,
13795 Equal
=> Types
."=");
13797 ---------------------
13798 -- NCT_Itype_Assoc --
13799 ---------------------
13801 -- The hash table NCT_Itype_Assoc contains entries only for those
13802 -- old nodes which have a non-empty Associated_Node_For_Itype set.
13803 -- The key is the associated node, and the element is the new node
13804 -- itself (NOT the associated node for the new node).
13806 package NCT_Itype_Assoc
is new Simple_HTable
(
13807 Header_Num
=> NCT_Header_Num
,
13808 Element
=> Entity_Id
,
13809 No_Element
=> Empty
,
13811 Hash
=> New_Copy_Hash
,
13812 Equal
=> Types
."=");
13814 -------------------
13815 -- New_Copy_Tree --
13816 -------------------
13818 function New_Copy_Tree
13820 Map
: Elist_Id
:= No_Elist
;
13821 New_Sloc
: Source_Ptr
:= No_Location
;
13822 New_Scope
: Entity_Id
:= Empty
) return Node_Id
13824 Actual_Map
: Elist_Id
:= Map
;
13825 -- This is the actual map for the copy. It is initialized with the
13826 -- given elements, and then enlarged as required for Itypes that are
13827 -- copied during the first phase of the copy operation. The visit
13828 -- procedures add elements to this map as Itypes are encountered.
13829 -- The reason we cannot use Map directly, is that it may well be
13830 -- (and normally is) initialized to No_Elist, and if we have mapped
13831 -- entities, we have to reset it to point to a real Elist.
13833 function Assoc
(N
: Node_Or_Entity_Id
) return Node_Id
;
13834 -- Called during second phase to map entities into their corresponding
13835 -- copies using Actual_Map. If the argument is not an entity, or is not
13836 -- in Actual_Map, then it is returned unchanged.
13838 procedure Build_NCT_Hash_Tables
;
13839 -- Builds hash tables (number of elements >= threshold value)
13841 function Copy_Elist_With_Replacement
13842 (Old_Elist
: Elist_Id
) return Elist_Id
;
13843 -- Called during second phase to copy element list doing replacements
13845 procedure Copy_Itype_With_Replacement
(New_Itype
: Entity_Id
);
13846 -- Called during the second phase to process a copied Itype. The actual
13847 -- copy happened during the first phase (so that we could make the entry
13848 -- in the mapping), but we still have to deal with the descendents of
13849 -- the copied Itype and copy them where necessary.
13851 function Copy_List_With_Replacement
(Old_List
: List_Id
) return List_Id
;
13852 -- Called during second phase to copy list doing replacements
13854 function Copy_Node_With_Replacement
(Old_Node
: Node_Id
) return Node_Id
;
13855 -- Called during second phase to copy node doing replacements
13857 procedure Visit_Elist
(E
: Elist_Id
);
13858 -- Called during first phase to visit all elements of an Elist
13860 procedure Visit_Field
(F
: Union_Id
; N
: Node_Id
);
13861 -- Visit a single field, recursing to call Visit_Node or Visit_List
13862 -- if the field is a syntactic descendent of the current node (i.e.
13863 -- its parent is Node N).
13865 procedure Visit_Itype
(Old_Itype
: Entity_Id
);
13866 -- Called during first phase to visit subsidiary fields of a defining
13867 -- Itype, and also create a copy and make an entry in the replacement
13868 -- map for the new copy.
13870 procedure Visit_List
(L
: List_Id
);
13871 -- Called during first phase to visit all elements of a List
13873 procedure Visit_Node
(N
: Node_Or_Entity_Id
);
13874 -- Called during first phase to visit a node and all its subtrees
13880 function Assoc
(N
: Node_Or_Entity_Id
) return Node_Id
is
13885 if not Has_Extension
(N
) or else No
(Actual_Map
) then
13888 elsif NCT_Hash_Tables_Used
then
13889 Ent
:= NCT_Assoc
.Get
(Entity_Id
(N
));
13891 if Present
(Ent
) then
13897 -- No hash table used, do serial search
13900 E
:= First_Elmt
(Actual_Map
);
13901 while Present
(E
) loop
13902 if Node
(E
) = N
then
13903 return Node
(Next_Elmt
(E
));
13905 E
:= Next_Elmt
(Next_Elmt
(E
));
13913 ---------------------------
13914 -- Build_NCT_Hash_Tables --
13915 ---------------------------
13917 procedure Build_NCT_Hash_Tables
is
13921 if NCT_Hash_Table_Setup
then
13923 NCT_Itype_Assoc
.Reset
;
13926 Elmt
:= First_Elmt
(Actual_Map
);
13927 while Present
(Elmt
) loop
13928 Ent
:= Node
(Elmt
);
13930 -- Get new entity, and associate old and new
13933 NCT_Assoc
.Set
(Ent
, Node
(Elmt
));
13935 if Is_Type
(Ent
) then
13937 Anode
: constant Entity_Id
:=
13938 Associated_Node_For_Itype
(Ent
);
13941 if Present
(Anode
) then
13943 -- Enter a link between the associated node of the
13944 -- old Itype and the new Itype, for updating later
13945 -- when node is copied.
13947 NCT_Itype_Assoc
.Set
(Anode
, Node
(Elmt
));
13955 NCT_Hash_Tables_Used
:= True;
13956 NCT_Hash_Table_Setup
:= True;
13957 end Build_NCT_Hash_Tables
;
13959 ---------------------------------
13960 -- Copy_Elist_With_Replacement --
13961 ---------------------------------
13963 function Copy_Elist_With_Replacement
13964 (Old_Elist
: Elist_Id
) return Elist_Id
13967 New_Elist
: Elist_Id
;
13970 if No
(Old_Elist
) then
13974 New_Elist
:= New_Elmt_List
;
13976 M
:= First_Elmt
(Old_Elist
);
13977 while Present
(M
) loop
13978 Append_Elmt
(Copy_Node_With_Replacement
(Node
(M
)), New_Elist
);
13984 end Copy_Elist_With_Replacement
;
13986 ---------------------------------
13987 -- Copy_Itype_With_Replacement --
13988 ---------------------------------
13990 -- This routine exactly parallels its phase one analog Visit_Itype,
13992 procedure Copy_Itype_With_Replacement
(New_Itype
: Entity_Id
) is
13994 -- Translate Next_Entity, Scope and Etype fields, in case they
13995 -- reference entities that have been mapped into copies.
13997 Set_Next_Entity
(New_Itype
, Assoc
(Next_Entity
(New_Itype
)));
13998 Set_Etype
(New_Itype
, Assoc
(Etype
(New_Itype
)));
14000 if Present
(New_Scope
) then
14001 Set_Scope
(New_Itype
, New_Scope
);
14003 Set_Scope
(New_Itype
, Assoc
(Scope
(New_Itype
)));
14006 -- Copy referenced fields
14008 if Is_Discrete_Type
(New_Itype
) then
14009 Set_Scalar_Range
(New_Itype
,
14010 Copy_Node_With_Replacement
(Scalar_Range
(New_Itype
)));
14012 elsif Has_Discriminants
(Base_Type
(New_Itype
)) then
14013 Set_Discriminant_Constraint
(New_Itype
,
14014 Copy_Elist_With_Replacement
14015 (Discriminant_Constraint
(New_Itype
)));
14017 elsif Is_Array_Type
(New_Itype
) then
14018 if Present
(First_Index
(New_Itype
)) then
14019 Set_First_Index
(New_Itype
,
14020 First
(Copy_List_With_Replacement
14021 (List_Containing
(First_Index
(New_Itype
)))));
14024 if Is_Packed
(New_Itype
) then
14025 Set_Packed_Array_Impl_Type
(New_Itype
,
14026 Copy_Node_With_Replacement
14027 (Packed_Array_Impl_Type
(New_Itype
)));
14030 end Copy_Itype_With_Replacement
;
14032 --------------------------------
14033 -- Copy_List_With_Replacement --
14034 --------------------------------
14036 function Copy_List_With_Replacement
14037 (Old_List
: List_Id
) return List_Id
14039 New_List
: List_Id
;
14043 if Old_List
= No_List
then
14047 New_List
:= Empty_List
;
14049 E
:= First
(Old_List
);
14050 while Present
(E
) loop
14051 Append
(Copy_Node_With_Replacement
(E
), New_List
);
14057 end Copy_List_With_Replacement
;
14059 --------------------------------
14060 -- Copy_Node_With_Replacement --
14061 --------------------------------
14063 function Copy_Node_With_Replacement
14064 (Old_Node
: Node_Id
) return Node_Id
14066 New_Node
: Node_Id
;
14068 procedure Adjust_Named_Associations
14069 (Old_Node
: Node_Id
;
14070 New_Node
: Node_Id
);
14071 -- If a call node has named associations, these are chained through
14072 -- the First_Named_Actual, Next_Named_Actual links. These must be
14073 -- propagated separately to the new parameter list, because these
14074 -- are not syntactic fields.
14076 function Copy_Field_With_Replacement
14077 (Field
: Union_Id
) return Union_Id
;
14078 -- Given Field, which is a field of Old_Node, return a copy of it
14079 -- if it is a syntactic field (i.e. its parent is Node), setting
14080 -- the parent of the copy to poit to New_Node. Otherwise returns
14081 -- the field (possibly mapped if it is an entity).
14083 -------------------------------
14084 -- Adjust_Named_Associations --
14085 -------------------------------
14087 procedure Adjust_Named_Associations
14088 (Old_Node
: Node_Id
;
14089 New_Node
: Node_Id
)
14094 Old_Next
: Node_Id
;
14095 New_Next
: Node_Id
;
14098 Old_E
:= First
(Parameter_Associations
(Old_Node
));
14099 New_E
:= First
(Parameter_Associations
(New_Node
));
14100 while Present
(Old_E
) loop
14101 if Nkind
(Old_E
) = N_Parameter_Association
14102 and then Present
(Next_Named_Actual
(Old_E
))
14104 if First_Named_Actual
(Old_Node
)
14105 = Explicit_Actual_Parameter
(Old_E
)
14107 Set_First_Named_Actual
14108 (New_Node
, Explicit_Actual_Parameter
(New_E
));
14111 -- Now scan parameter list from the beginning,to locate
14112 -- next named actual, which can be out of order.
14114 Old_Next
:= First
(Parameter_Associations
(Old_Node
));
14115 New_Next
:= First
(Parameter_Associations
(New_Node
));
14117 while Nkind
(Old_Next
) /= N_Parameter_Association
14118 or else Explicit_Actual_Parameter
(Old_Next
)
14119 /= Next_Named_Actual
(Old_E
)
14125 Set_Next_Named_Actual
14126 (New_E
, Explicit_Actual_Parameter
(New_Next
));
14132 end Adjust_Named_Associations
;
14134 ---------------------------------
14135 -- Copy_Field_With_Replacement --
14136 ---------------------------------
14138 function Copy_Field_With_Replacement
14139 (Field
: Union_Id
) return Union_Id
14142 if Field
= Union_Id
(Empty
) then
14145 elsif Field
in Node_Range
then
14147 Old_N
: constant Node_Id
:= Node_Id
(Field
);
14151 -- If syntactic field, as indicated by the parent pointer
14152 -- being set, then copy the referenced node recursively.
14154 if Parent
(Old_N
) = Old_Node
then
14155 New_N
:= Copy_Node_With_Replacement
(Old_N
);
14157 if New_N
/= Old_N
then
14158 Set_Parent
(New_N
, New_Node
);
14161 -- For semantic fields, update possible entity reference
14162 -- from the replacement map.
14165 New_N
:= Assoc
(Old_N
);
14168 return Union_Id
(New_N
);
14171 elsif Field
in List_Range
then
14173 Old_L
: constant List_Id
:= List_Id
(Field
);
14177 -- If syntactic field, as indicated by the parent pointer,
14178 -- then recursively copy the entire referenced list.
14180 if Parent
(Old_L
) = Old_Node
then
14181 New_L
:= Copy_List_With_Replacement
(Old_L
);
14182 Set_Parent
(New_L
, New_Node
);
14184 -- For semantic list, just returned unchanged
14190 return Union_Id
(New_L
);
14193 -- Anything other than a list or a node is returned unchanged
14198 end Copy_Field_With_Replacement
;
14200 -- Start of processing for Copy_Node_With_Replacement
14203 if Old_Node
<= Empty_Or_Error
then
14206 elsif Has_Extension
(Old_Node
) then
14207 return Assoc
(Old_Node
);
14210 New_Node
:= New_Copy
(Old_Node
);
14212 -- If the node we are copying is the associated node of a
14213 -- previously copied Itype, then adjust the associated node
14214 -- of the copy of that Itype accordingly.
14216 if Present
(Actual_Map
) then
14222 -- Case of hash table used
14224 if NCT_Hash_Tables_Used
then
14225 Ent
:= NCT_Itype_Assoc
.Get
(Old_Node
);
14227 if Present
(Ent
) then
14228 Set_Associated_Node_For_Itype
(Ent
, New_Node
);
14231 -- Case of no hash table used
14234 E
:= First_Elmt
(Actual_Map
);
14235 while Present
(E
) loop
14236 if Is_Itype
(Node
(E
))
14238 Old_Node
= Associated_Node_For_Itype
(Node
(E
))
14240 Set_Associated_Node_For_Itype
14241 (Node
(Next_Elmt
(E
)), New_Node
);
14244 E
:= Next_Elmt
(Next_Elmt
(E
));
14250 -- Recursively copy descendents
14253 (New_Node
, Copy_Field_With_Replacement
(Field1
(New_Node
)));
14255 (New_Node
, Copy_Field_With_Replacement
(Field2
(New_Node
)));
14257 (New_Node
, Copy_Field_With_Replacement
(Field3
(New_Node
)));
14259 (New_Node
, Copy_Field_With_Replacement
(Field4
(New_Node
)));
14261 (New_Node
, Copy_Field_With_Replacement
(Field5
(New_Node
)));
14263 -- Adjust Sloc of new node if necessary
14265 if New_Sloc
/= No_Location
then
14266 Set_Sloc
(New_Node
, New_Sloc
);
14268 -- If we adjust the Sloc, then we are essentially making
14269 -- a completely new node, so the Comes_From_Source flag
14270 -- should be reset to the proper default value.
14272 Nodes
.Table
(New_Node
).Comes_From_Source
:=
14273 Default_Node
.Comes_From_Source
;
14276 -- If the node is call and has named associations,
14277 -- set the corresponding links in the copy.
14279 if (Nkind
(Old_Node
) = N_Function_Call
14280 or else Nkind
(Old_Node
) = N_Entry_Call_Statement
14282 Nkind
(Old_Node
) = N_Procedure_Call_Statement
)
14283 and then Present
(First_Named_Actual
(Old_Node
))
14285 Adjust_Named_Associations
(Old_Node
, New_Node
);
14288 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
14289 -- The replacement mechanism applies to entities, and is not used
14290 -- here. Eventually we may need a more general graph-copying
14291 -- routine. For now, do a sequential search to find desired node.
14293 if Nkind
(Old_Node
) = N_Handled_Sequence_Of_Statements
14294 and then Present
(First_Real_Statement
(Old_Node
))
14297 Old_F
: constant Node_Id
:= First_Real_Statement
(Old_Node
);
14301 N1
:= First
(Statements
(Old_Node
));
14302 N2
:= First
(Statements
(New_Node
));
14304 while N1
/= Old_F
loop
14309 Set_First_Real_Statement
(New_Node
, N2
);
14314 -- All done, return copied node
14317 end Copy_Node_With_Replacement
;
14323 procedure Visit_Elist
(E
: Elist_Id
) is
14326 if Present
(E
) then
14327 Elmt
:= First_Elmt
(E
);
14329 while Elmt
/= No_Elmt
loop
14330 Visit_Node
(Node
(Elmt
));
14340 procedure Visit_Field
(F
: Union_Id
; N
: Node_Id
) is
14342 if F
= Union_Id
(Empty
) then
14345 elsif F
in Node_Range
then
14347 -- Copy node if it is syntactic, i.e. its parent pointer is
14348 -- set to point to the field that referenced it (certain
14349 -- Itypes will also meet this criterion, which is fine, since
14350 -- these are clearly Itypes that do need to be copied, since
14351 -- we are copying their parent.)
14353 if Parent
(Node_Id
(F
)) = N
then
14354 Visit_Node
(Node_Id
(F
));
14357 -- Another case, if we are pointing to an Itype, then we want
14358 -- to copy it if its associated node is somewhere in the tree
14361 -- Note: the exclusion of self-referential copies is just an
14362 -- optimization, since the search of the already copied list
14363 -- would catch it, but it is a common case (Etype pointing
14364 -- to itself for an Itype that is a base type).
14366 elsif Has_Extension
(Node_Id
(F
))
14367 and then Is_Itype
(Entity_Id
(F
))
14368 and then Node_Id
(F
) /= N
14374 P
:= Associated_Node_For_Itype
(Node_Id
(F
));
14375 while Present
(P
) loop
14377 Visit_Node
(Node_Id
(F
));
14384 -- An Itype whose parent is not being copied definitely
14385 -- should NOT be copied, since it does not belong in any
14386 -- sense to the copied subtree.
14392 elsif F
in List_Range
and then Parent
(List_Id
(F
)) = N
then
14393 Visit_List
(List_Id
(F
));
14402 procedure Visit_Itype
(Old_Itype
: Entity_Id
) is
14403 New_Itype
: Entity_Id
;
14408 -- Itypes that describe the designated type of access to subprograms
14409 -- have the structure of subprogram declarations, with signatures,
14410 -- etc. Either we duplicate the signatures completely, or choose to
14411 -- share such itypes, which is fine because their elaboration will
14412 -- have no side effects.
14414 if Ekind
(Old_Itype
) = E_Subprogram_Type
then
14418 New_Itype
:= New_Copy
(Old_Itype
);
14420 -- The new Itype has all the attributes of the old one, and
14421 -- we just copy the contents of the entity. However, the back-end
14422 -- needs different names for debugging purposes, so we create a
14423 -- new internal name for it in all cases.
14425 Set_Chars
(New_Itype
, New_Internal_Name
('T'));
14427 -- If our associated node is an entity that has already been copied,
14428 -- then set the associated node of the copy to point to the right
14429 -- copy. If we have copied an Itype that is itself the associated
14430 -- node of some previously copied Itype, then we set the right
14431 -- pointer in the other direction.
14433 if Present
(Actual_Map
) then
14435 -- Case of hash tables used
14437 if NCT_Hash_Tables_Used
then
14439 Ent
:= NCT_Assoc
.Get
(Associated_Node_For_Itype
(Old_Itype
));
14441 if Present
(Ent
) then
14442 Set_Associated_Node_For_Itype
(New_Itype
, Ent
);
14445 Ent
:= NCT_Itype_Assoc
.Get
(Old_Itype
);
14446 if Present
(Ent
) then
14447 Set_Associated_Node_For_Itype
(Ent
, New_Itype
);
14449 -- If the hash table has no association for this Itype and
14450 -- its associated node, enter one now.
14453 NCT_Itype_Assoc
.Set
14454 (Associated_Node_For_Itype
(Old_Itype
), New_Itype
);
14457 -- Case of hash tables not used
14460 E
:= First_Elmt
(Actual_Map
);
14461 while Present
(E
) loop
14462 if Associated_Node_For_Itype
(Old_Itype
) = Node
(E
) then
14463 Set_Associated_Node_For_Itype
14464 (New_Itype
, Node
(Next_Elmt
(E
)));
14467 if Is_Type
(Node
(E
))
14468 and then Old_Itype
= Associated_Node_For_Itype
(Node
(E
))
14470 Set_Associated_Node_For_Itype
14471 (Node
(Next_Elmt
(E
)), New_Itype
);
14474 E
:= Next_Elmt
(Next_Elmt
(E
));
14479 if Present
(Freeze_Node
(New_Itype
)) then
14480 Set_Is_Frozen
(New_Itype
, False);
14481 Set_Freeze_Node
(New_Itype
, Empty
);
14484 -- Add new association to map
14486 if No
(Actual_Map
) then
14487 Actual_Map
:= New_Elmt_List
;
14490 Append_Elmt
(Old_Itype
, Actual_Map
);
14491 Append_Elmt
(New_Itype
, Actual_Map
);
14493 if NCT_Hash_Tables_Used
then
14494 NCT_Assoc
.Set
(Old_Itype
, New_Itype
);
14497 NCT_Table_Entries
:= NCT_Table_Entries
+ 1;
14499 if NCT_Table_Entries
> NCT_Hash_Threshold
then
14500 Build_NCT_Hash_Tables
;
14504 -- If a record subtype is simply copied, the entity list will be
14505 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
14507 if Ekind_In
(Old_Itype
, E_Record_Subtype
, E_Class_Wide_Subtype
) then
14508 Set_Cloned_Subtype
(New_Itype
, Old_Itype
);
14511 -- Visit descendents that eventually get copied
14513 Visit_Field
(Union_Id
(Etype
(Old_Itype
)), Old_Itype
);
14515 if Is_Discrete_Type
(Old_Itype
) then
14516 Visit_Field
(Union_Id
(Scalar_Range
(Old_Itype
)), Old_Itype
);
14518 elsif Has_Discriminants
(Base_Type
(Old_Itype
)) then
14519 -- ??? This should involve call to Visit_Field
14520 Visit_Elist
(Discriminant_Constraint
(Old_Itype
));
14522 elsif Is_Array_Type
(Old_Itype
) then
14523 if Present
(First_Index
(Old_Itype
)) then
14524 Visit_Field
(Union_Id
(List_Containing
14525 (First_Index
(Old_Itype
))),
14529 if Is_Packed
(Old_Itype
) then
14530 Visit_Field
(Union_Id
(Packed_Array_Impl_Type
(Old_Itype
)),
14540 procedure Visit_List
(L
: List_Id
) is
14543 if L
/= No_List
then
14546 while Present
(N
) loop
14557 procedure Visit_Node
(N
: Node_Or_Entity_Id
) is
14559 -- Start of processing for Visit_Node
14562 -- Handle case of an Itype, which must be copied
14564 if Has_Extension
(N
) and then Is_Itype
(N
) then
14566 -- Nothing to do if already in the list. This can happen with an
14567 -- Itype entity that appears more than once in the tree.
14568 -- Note that we do not want to visit descendents in this case.
14570 -- Test for already in list when hash table is used
14572 if NCT_Hash_Tables_Used
then
14573 if Present
(NCT_Assoc
.Get
(Entity_Id
(N
))) then
14577 -- Test for already in list when hash table not used
14583 if Present
(Actual_Map
) then
14584 E
:= First_Elmt
(Actual_Map
);
14585 while Present
(E
) loop
14586 if Node
(E
) = N
then
14589 E
:= Next_Elmt
(Next_Elmt
(E
));
14599 -- Visit descendents
14601 Visit_Field
(Field1
(N
), N
);
14602 Visit_Field
(Field2
(N
), N
);
14603 Visit_Field
(Field3
(N
), N
);
14604 Visit_Field
(Field4
(N
), N
);
14605 Visit_Field
(Field5
(N
), N
);
14608 -- Start of processing for New_Copy_Tree
14613 -- See if we should use hash table
14615 if No
(Actual_Map
) then
14616 NCT_Hash_Tables_Used
:= False;
14623 NCT_Table_Entries
:= 0;
14625 Elmt
:= First_Elmt
(Actual_Map
);
14626 while Present
(Elmt
) loop
14627 NCT_Table_Entries
:= NCT_Table_Entries
+ 1;
14632 if NCT_Table_Entries
> NCT_Hash_Threshold
then
14633 Build_NCT_Hash_Tables
;
14635 NCT_Hash_Tables_Used
:= False;
14640 -- Hash table set up if required, now start phase one by visiting
14641 -- top node (we will recursively visit the descendents).
14643 Visit_Node
(Source
);
14645 -- Now the second phase of the copy can start. First we process
14646 -- all the mapped entities, copying their descendents.
14648 if Present
(Actual_Map
) then
14651 New_Itype
: Entity_Id
;
14653 Elmt
:= First_Elmt
(Actual_Map
);
14654 while Present
(Elmt
) loop
14656 New_Itype
:= Node
(Elmt
);
14657 Copy_Itype_With_Replacement
(New_Itype
);
14663 -- Now we can copy the actual tree
14665 return Copy_Node_With_Replacement
(Source
);
14668 -------------------------
14669 -- New_External_Entity --
14670 -------------------------
14672 function New_External_Entity
14673 (Kind
: Entity_Kind
;
14674 Scope_Id
: Entity_Id
;
14675 Sloc_Value
: Source_Ptr
;
14676 Related_Id
: Entity_Id
;
14677 Suffix
: Character;
14678 Suffix_Index
: Nat
:= 0;
14679 Prefix
: Character := ' ') return Entity_Id
14681 N
: constant Entity_Id
:=
14682 Make_Defining_Identifier
(Sloc_Value
,
14684 (Chars
(Related_Id
), Suffix
, Suffix_Index
, Prefix
));
14687 Set_Ekind
(N
, Kind
);
14688 Set_Is_Internal
(N
, True);
14689 Append_Entity
(N
, Scope_Id
);
14690 Set_Public_Status
(N
);
14692 if Kind
in Type_Kind
then
14693 Init_Size_Align
(N
);
14697 end New_External_Entity
;
14699 -------------------------
14700 -- New_Internal_Entity --
14701 -------------------------
14703 function New_Internal_Entity
14704 (Kind
: Entity_Kind
;
14705 Scope_Id
: Entity_Id
;
14706 Sloc_Value
: Source_Ptr
;
14707 Id_Char
: Character) return Entity_Id
14709 N
: constant Entity_Id
:= Make_Temporary
(Sloc_Value
, Id_Char
);
14712 Set_Ekind
(N
, Kind
);
14713 Set_Is_Internal
(N
, True);
14714 Append_Entity
(N
, Scope_Id
);
14716 if Kind
in Type_Kind
then
14717 Init_Size_Align
(N
);
14721 end New_Internal_Entity
;
14727 function Next_Actual
(Actual_Id
: Node_Id
) return Node_Id
is
14731 -- If we are pointing at a positional parameter, it is a member of a
14732 -- node list (the list of parameters), and the next parameter is the
14733 -- next node on the list, unless we hit a parameter association, then
14734 -- we shift to using the chain whose head is the First_Named_Actual in
14735 -- the parent, and then is threaded using the Next_Named_Actual of the
14736 -- Parameter_Association. All this fiddling is because the original node
14737 -- list is in the textual call order, and what we need is the
14738 -- declaration order.
14740 if Is_List_Member
(Actual_Id
) then
14741 N
:= Next
(Actual_Id
);
14743 if Nkind
(N
) = N_Parameter_Association
then
14744 return First_Named_Actual
(Parent
(Actual_Id
));
14750 return Next_Named_Actual
(Parent
(Actual_Id
));
14754 procedure Next_Actual
(Actual_Id
: in out Node_Id
) is
14756 Actual_Id
:= Next_Actual
(Actual_Id
);
14759 -----------------------
14760 -- Normalize_Actuals --
14761 -----------------------
14763 -- Chain actuals according to formals of subprogram. If there are no named
14764 -- associations, the chain is simply the list of Parameter Associations,
14765 -- since the order is the same as the declaration order. If there are named
14766 -- associations, then the First_Named_Actual field in the N_Function_Call
14767 -- or N_Procedure_Call_Statement node points to the Parameter_Association
14768 -- node for the parameter that comes first in declaration order. The
14769 -- remaining named parameters are then chained in declaration order using
14770 -- Next_Named_Actual.
14772 -- This routine also verifies that the number of actuals is compatible with
14773 -- the number and default values of formals, but performs no type checking
14774 -- (type checking is done by the caller).
14776 -- If the matching succeeds, Success is set to True and the caller proceeds
14777 -- with type-checking. If the match is unsuccessful, then Success is set to
14778 -- False, and the caller attempts a different interpretation, if there is
14781 -- If the flag Report is on, the call is not overloaded, and a failure to
14782 -- match can be reported here, rather than in the caller.
14784 procedure Normalize_Actuals
14788 Success
: out Boolean)
14790 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
14791 Actual
: Node_Id
:= Empty
;
14792 Formal
: Entity_Id
;
14793 Last
: Node_Id
:= Empty
;
14794 First_Named
: Node_Id
:= Empty
;
14797 Formals_To_Match
: Integer := 0;
14798 Actuals_To_Match
: Integer := 0;
14800 procedure Chain
(A
: Node_Id
);
14801 -- Add named actual at the proper place in the list, using the
14802 -- Next_Named_Actual link.
14804 function Reporting
return Boolean;
14805 -- Determines if an error is to be reported. To report an error, we
14806 -- need Report to be True, and also we do not report errors caused
14807 -- by calls to init procs that occur within other init procs. Such
14808 -- errors must always be cascaded errors, since if all the types are
14809 -- declared correctly, the compiler will certainly build decent calls.
14815 procedure Chain
(A
: Node_Id
) is
14819 -- Call node points to first actual in list
14821 Set_First_Named_Actual
(N
, Explicit_Actual_Parameter
(A
));
14824 Set_Next_Named_Actual
(Last
, Explicit_Actual_Parameter
(A
));
14828 Set_Next_Named_Actual
(Last
, Empty
);
14835 function Reporting
return Boolean is
14840 elsif not Within_Init_Proc
then
14843 elsif Is_Init_Proc
(Entity
(Name
(N
))) then
14851 -- Start of processing for Normalize_Actuals
14854 if Is_Access_Type
(S
) then
14856 -- The name in the call is a function call that returns an access
14857 -- to subprogram. The designated type has the list of formals.
14859 Formal
:= First_Formal
(Designated_Type
(S
));
14861 Formal
:= First_Formal
(S
);
14864 while Present
(Formal
) loop
14865 Formals_To_Match
:= Formals_To_Match
+ 1;
14866 Next_Formal
(Formal
);
14869 -- Find if there is a named association, and verify that no positional
14870 -- associations appear after named ones.
14872 if Present
(Actuals
) then
14873 Actual
:= First
(Actuals
);
14876 while Present
(Actual
)
14877 and then Nkind
(Actual
) /= N_Parameter_Association
14879 Actuals_To_Match
:= Actuals_To_Match
+ 1;
14883 if No
(Actual
) and Actuals_To_Match
= Formals_To_Match
then
14885 -- Most common case: positional notation, no defaults
14890 elsif Actuals_To_Match
> Formals_To_Match
then
14892 -- Too many actuals: will not work
14895 if Is_Entity_Name
(Name
(N
)) then
14896 Error_Msg_N
("too many arguments in call to&", Name
(N
));
14898 Error_Msg_N
("too many arguments in call", N
);
14906 First_Named
:= Actual
;
14908 while Present
(Actual
) loop
14909 if Nkind
(Actual
) /= N_Parameter_Association
then
14911 ("positional parameters not allowed after named ones", Actual
);
14916 Actuals_To_Match
:= Actuals_To_Match
+ 1;
14922 if Present
(Actuals
) then
14923 Actual
:= First
(Actuals
);
14926 Formal
:= First_Formal
(S
);
14927 while Present
(Formal
) loop
14929 -- Match the formals in order. If the corresponding actual is
14930 -- positional, nothing to do. Else scan the list of named actuals
14931 -- to find the one with the right name.
14933 if Present
(Actual
)
14934 and then Nkind
(Actual
) /= N_Parameter_Association
14937 Actuals_To_Match
:= Actuals_To_Match
- 1;
14938 Formals_To_Match
:= Formals_To_Match
- 1;
14941 -- For named parameters, search the list of actuals to find
14942 -- one that matches the next formal name.
14944 Actual
:= First_Named
;
14946 while Present
(Actual
) loop
14947 if Chars
(Selector_Name
(Actual
)) = Chars
(Formal
) then
14950 Actuals_To_Match
:= Actuals_To_Match
- 1;
14951 Formals_To_Match
:= Formals_To_Match
- 1;
14959 if Ekind
(Formal
) /= E_In_Parameter
14960 or else No
(Default_Value
(Formal
))
14963 if (Comes_From_Source
(S
)
14964 or else Sloc
(S
) = Standard_Location
)
14965 and then Is_Overloadable
(S
)
14969 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
14971 N_Parameter_Association
)
14972 and then Ekind
(S
) /= E_Function
14974 Set_Etype
(N
, Etype
(S
));
14977 Error_Msg_Name_1
:= Chars
(S
);
14978 Error_Msg_Sloc
:= Sloc
(S
);
14980 ("missing argument for parameter & "
14981 & "in call to % declared #", N
, Formal
);
14984 elsif Is_Overloadable
(S
) then
14985 Error_Msg_Name_1
:= Chars
(S
);
14987 -- Point to type derivation that generated the
14990 Error_Msg_Sloc
:= Sloc
(Parent
(S
));
14993 ("missing argument for parameter & "
14994 & "in call to % (inherited) #", N
, Formal
);
14998 ("missing argument for parameter &", N
, Formal
);
15006 Formals_To_Match
:= Formals_To_Match
- 1;
15011 Next_Formal
(Formal
);
15014 if Formals_To_Match
= 0 and then Actuals_To_Match
= 0 then
15021 -- Find some superfluous named actual that did not get
15022 -- attached to the list of associations.
15024 Actual
:= First
(Actuals
);
15025 while Present
(Actual
) loop
15026 if Nkind
(Actual
) = N_Parameter_Association
15027 and then Actual
/= Last
15028 and then No
(Next_Named_Actual
(Actual
))
15030 Error_Msg_N
("unmatched actual & in call",
15031 Selector_Name
(Actual
));
15042 end Normalize_Actuals
;
15044 --------------------------------
15045 -- Note_Possible_Modification --
15046 --------------------------------
15048 procedure Note_Possible_Modification
(N
: Node_Id
; Sure
: Boolean) is
15049 Modification_Comes_From_Source
: constant Boolean :=
15050 Comes_From_Source
(Parent
(N
));
15056 -- Loop to find referenced entity, if there is one
15062 if Is_Entity_Name
(Exp
) then
15063 Ent
:= Entity
(Exp
);
15065 -- If the entity is missing, it is an undeclared identifier,
15066 -- and there is nothing to annotate.
15072 elsif Nkind
(Exp
) = N_Explicit_Dereference
then
15074 P
: constant Node_Id
:= Prefix
(Exp
);
15077 -- In formal verification mode, keep track of all reads and
15078 -- writes through explicit dereferences.
15080 if GNATprove_Mode
then
15081 SPARK_Specific
.Generate_Dereference
(N
, 'm');
15084 if Nkind
(P
) = N_Selected_Component
15085 and then Present
(Entry_Formal
(Entity
(Selector_Name
(P
))))
15087 -- Case of a reference to an entry formal
15089 Ent
:= Entry_Formal
(Entity
(Selector_Name
(P
)));
15091 elsif Nkind
(P
) = N_Identifier
15092 and then Nkind
(Parent
(Entity
(P
))) = N_Object_Declaration
15093 and then Present
(Expression
(Parent
(Entity
(P
))))
15094 and then Nkind
(Expression
(Parent
(Entity
(P
)))) =
15097 -- Case of a reference to a value on which side effects have
15100 Exp
:= Prefix
(Expression
(Parent
(Entity
(P
))));
15108 elsif Nkind_In
(Exp
, N_Type_Conversion
,
15109 N_Unchecked_Type_Conversion
)
15111 Exp
:= Expression
(Exp
);
15114 elsif Nkind_In
(Exp
, N_Slice
,
15115 N_Indexed_Component
,
15116 N_Selected_Component
)
15118 -- Special check, if the prefix is an access type, then return
15119 -- since we are modifying the thing pointed to, not the prefix.
15120 -- When we are expanding, most usually the prefix is replaced
15121 -- by an explicit dereference, and this test is not needed, but
15122 -- in some cases (notably -gnatc mode and generics) when we do
15123 -- not do full expansion, we need this special test.
15125 if Is_Access_Type
(Etype
(Prefix
(Exp
))) then
15128 -- Otherwise go to prefix and keep going
15131 Exp
:= Prefix
(Exp
);
15135 -- All other cases, not a modification
15141 -- Now look for entity being referenced
15143 if Present
(Ent
) then
15144 if Is_Object
(Ent
) then
15145 if Comes_From_Source
(Exp
)
15146 or else Modification_Comes_From_Source
15148 -- Give warning if pragma unmodified given and we are
15149 -- sure this is a modification.
15151 if Has_Pragma_Unmodified
(Ent
) and then Sure
then
15152 Error_Msg_NE
("??pragma Unmodified given for &!", N
, Ent
);
15155 Set_Never_Set_In_Source
(Ent
, False);
15158 Set_Is_True_Constant
(Ent
, False);
15159 Set_Current_Value
(Ent
, Empty
);
15160 Set_Is_Known_Null
(Ent
, False);
15162 if not Can_Never_Be_Null
(Ent
) then
15163 Set_Is_Known_Non_Null
(Ent
, False);
15166 -- Follow renaming chain
15168 if (Ekind
(Ent
) = E_Variable
or else Ekind
(Ent
) = E_Constant
)
15169 and then Present
(Renamed_Object
(Ent
))
15171 Exp
:= Renamed_Object
(Ent
);
15173 -- If the entity is the loop variable in an iteration over
15174 -- a container, retrieve container expression to indicate
15175 -- possible modificastion.
15177 if Present
(Related_Expression
(Ent
))
15178 and then Nkind
(Parent
(Related_Expression
(Ent
))) =
15179 N_Iterator_Specification
15181 Exp
:= Original_Node
(Related_Expression
(Ent
));
15186 -- The expression may be the renaming of a subcomponent of an
15187 -- array or container. The assignment to the subcomponent is
15188 -- a modification of the container.
15190 elsif Comes_From_Source
(Original_Node
(Exp
))
15191 and then Nkind_In
(Original_Node
(Exp
), N_Selected_Component
,
15192 N_Indexed_Component
)
15194 Exp
:= Prefix
(Original_Node
(Exp
));
15198 -- Generate a reference only if the assignment comes from
15199 -- source. This excludes, for example, calls to a dispatching
15200 -- assignment operation when the left-hand side is tagged. In
15201 -- GNATprove mode, we need those references also on generated
15202 -- code, as these are used to compute the local effects of
15205 if Modification_Comes_From_Source
or GNATprove_Mode
then
15206 Generate_Reference
(Ent
, Exp
, 'm');
15208 -- If the target of the assignment is the bound variable
15209 -- in an iterator, indicate that the corresponding array
15210 -- or container is also modified.
15212 if Ada_Version
>= Ada_2012
15213 and then Nkind
(Parent
(Ent
)) = N_Iterator_Specification
15216 Domain
: constant Node_Id
:= Name
(Parent
(Ent
));
15219 -- TBD : in the full version of the construct, the
15220 -- domain of iteration can be given by an expression.
15222 if Is_Entity_Name
(Domain
) then
15223 Generate_Reference
(Entity
(Domain
), Exp
, 'm');
15224 Set_Is_True_Constant
(Entity
(Domain
), False);
15225 Set_Never_Set_In_Source
(Entity
(Domain
), False);
15231 Check_Nested_Access
(Ent
);
15236 -- If we are sure this is a modification from source, and we know
15237 -- this modifies a constant, then give an appropriate warning.
15239 if Overlays_Constant
(Ent
)
15240 and then (Modification_Comes_From_Source
and Sure
)
15243 A
: constant Node_Id
:= Address_Clause
(Ent
);
15245 if Present
(A
) then
15247 Exp
: constant Node_Id
:= Expression
(A
);
15249 if Nkind
(Exp
) = N_Attribute_Reference
15250 and then Attribute_Name
(Exp
) = Name_Address
15251 and then Is_Entity_Name
(Prefix
(Exp
))
15253 Error_Msg_Sloc
:= Sloc
(A
);
15255 ("constant& may be modified via address "
15256 & "clause#??", N
, Entity
(Prefix
(Exp
)));
15269 end Note_Possible_Modification
;
15271 -------------------------
15272 -- Object_Access_Level --
15273 -------------------------
15275 -- Returns the static accessibility level of the view denoted by Obj. Note
15276 -- that the value returned is the result of a call to Scope_Depth. Only
15277 -- scope depths associated with dynamic scopes can actually be returned.
15278 -- Since only relative levels matter for accessibility checking, the fact
15279 -- that the distance between successive levels of accessibility is not
15280 -- always one is immaterial (invariant: if level(E2) is deeper than
15281 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
15283 function Object_Access_Level
(Obj
: Node_Id
) return Uint
is
15284 function Is_Interface_Conversion
(N
: Node_Id
) return Boolean;
15285 -- Determine whether N is a construct of the form
15286 -- Some_Type (Operand._tag'Address)
15287 -- This construct appears in the context of dispatching calls.
15289 function Reference_To
(Obj
: Node_Id
) return Node_Id
;
15290 -- An explicit dereference is created when removing side-effects from
15291 -- expressions for constraint checking purposes. In this case a local
15292 -- access type is created for it. The correct access level is that of
15293 -- the original source node. We detect this case by noting that the
15294 -- prefix of the dereference is created by an object declaration whose
15295 -- initial expression is a reference.
15297 -----------------------------
15298 -- Is_Interface_Conversion --
15299 -----------------------------
15301 function Is_Interface_Conversion
(N
: Node_Id
) return Boolean is
15303 return Nkind
(N
) = N_Unchecked_Type_Conversion
15304 and then Nkind
(Expression
(N
)) = N_Attribute_Reference
15305 and then Attribute_Name
(Expression
(N
)) = Name_Address
;
15306 end Is_Interface_Conversion
;
15312 function Reference_To
(Obj
: Node_Id
) return Node_Id
is
15313 Pref
: constant Node_Id
:= Prefix
(Obj
);
15315 if Is_Entity_Name
(Pref
)
15316 and then Nkind
(Parent
(Entity
(Pref
))) = N_Object_Declaration
15317 and then Present
(Expression
(Parent
(Entity
(Pref
))))
15318 and then Nkind
(Expression
(Parent
(Entity
(Pref
)))) = N_Reference
15320 return (Prefix
(Expression
(Parent
(Entity
(Pref
)))));
15330 -- Start of processing for Object_Access_Level
15333 if Nkind
(Obj
) = N_Defining_Identifier
15334 or else Is_Entity_Name
(Obj
)
15336 if Nkind
(Obj
) = N_Defining_Identifier
then
15342 if Is_Prival
(E
) then
15343 E
:= Prival_Link
(E
);
15346 -- If E is a type then it denotes a current instance. For this case
15347 -- we add one to the normal accessibility level of the type to ensure
15348 -- that current instances are treated as always being deeper than
15349 -- than the level of any visible named access type (see 3.10.2(21)).
15351 if Is_Type
(E
) then
15352 return Type_Access_Level
(E
) + 1;
15354 elsif Present
(Renamed_Object
(E
)) then
15355 return Object_Access_Level
(Renamed_Object
(E
));
15357 -- Similarly, if E is a component of the current instance of a
15358 -- protected type, any instance of it is assumed to be at a deeper
15359 -- level than the type. For a protected object (whose type is an
15360 -- anonymous protected type) its components are at the same level
15361 -- as the type itself.
15363 elsif not Is_Overloadable
(E
)
15364 and then Ekind
(Scope
(E
)) = E_Protected_Type
15365 and then Comes_From_Source
(Scope
(E
))
15367 return Type_Access_Level
(Scope
(E
)) + 1;
15370 -- Aliased formals take their access level from the point of call.
15371 -- This is smaller than the level of the subprogram itself.
15373 if Is_Formal
(E
) and then Is_Aliased
(E
) then
15374 return Type_Access_Level
(Etype
(E
));
15377 return Scope_Depth
(Enclosing_Dynamic_Scope
(E
));
15381 elsif Nkind
(Obj
) = N_Selected_Component
then
15382 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
15383 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
15385 return Object_Access_Level
(Prefix
(Obj
));
15388 elsif Nkind
(Obj
) = N_Indexed_Component
then
15389 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
15390 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
15392 return Object_Access_Level
(Prefix
(Obj
));
15395 elsif Nkind
(Obj
) = N_Explicit_Dereference
then
15397 -- If the prefix is a selected access discriminant then we make a
15398 -- recursive call on the prefix, which will in turn check the level
15399 -- of the prefix object of the selected discriminant.
15401 -- In Ada 2012, if the discriminant has implicit dereference and
15402 -- the context is a selected component, treat this as an object of
15403 -- unknown scope (see below). This is necessary in compile-only mode;
15404 -- otherwise expansion will already have transformed the prefix into
15407 if Nkind
(Prefix
(Obj
)) = N_Selected_Component
15408 and then Ekind
(Etype
(Prefix
(Obj
))) = E_Anonymous_Access_Type
15410 Ekind
(Entity
(Selector_Name
(Prefix
(Obj
)))) = E_Discriminant
15412 (not Has_Implicit_Dereference
15413 (Entity
(Selector_Name
(Prefix
(Obj
))))
15414 or else Nkind
(Parent
(Obj
)) /= N_Selected_Component
)
15416 return Object_Access_Level
(Prefix
(Obj
));
15418 -- Detect an interface conversion in the context of a dispatching
15419 -- call. Use the original form of the conversion to find the access
15420 -- level of the operand.
15422 elsif Is_Interface
(Etype
(Obj
))
15423 and then Is_Interface_Conversion
(Prefix
(Obj
))
15424 and then Nkind
(Original_Node
(Obj
)) = N_Type_Conversion
15426 return Object_Access_Level
(Original_Node
(Obj
));
15428 elsif not Comes_From_Source
(Obj
) then
15430 Ref
: constant Node_Id
:= Reference_To
(Obj
);
15432 if Present
(Ref
) then
15433 return Object_Access_Level
(Ref
);
15435 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
15440 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
15443 elsif Nkind_In
(Obj
, N_Type_Conversion
, N_Unchecked_Type_Conversion
) then
15444 return Object_Access_Level
(Expression
(Obj
));
15446 elsif Nkind
(Obj
) = N_Function_Call
then
15448 -- Function results are objects, so we get either the access level of
15449 -- the function or, in the case of an indirect call, the level of the
15450 -- access-to-subprogram type. (This code is used for Ada 95, but it
15451 -- looks wrong, because it seems that we should be checking the level
15452 -- of the call itself, even for Ada 95. However, using the Ada 2005
15453 -- version of the code causes regressions in several tests that are
15454 -- compiled with -gnat95. ???)
15456 if Ada_Version
< Ada_2005
then
15457 if Is_Entity_Name
(Name
(Obj
)) then
15458 return Subprogram_Access_Level
(Entity
(Name
(Obj
)));
15460 return Type_Access_Level
(Etype
(Prefix
(Name
(Obj
))));
15463 -- For Ada 2005, the level of the result object of a function call is
15464 -- defined to be the level of the call's innermost enclosing master.
15465 -- We determine that by querying the depth of the innermost enclosing
15469 Return_Master_Scope_Depth_Of_Call
: declare
15471 function Innermost_Master_Scope_Depth
15472 (N
: Node_Id
) return Uint
;
15473 -- Returns the scope depth of the given node's innermost
15474 -- enclosing dynamic scope (effectively the accessibility
15475 -- level of the innermost enclosing master).
15477 ----------------------------------
15478 -- Innermost_Master_Scope_Depth --
15479 ----------------------------------
15481 function Innermost_Master_Scope_Depth
15482 (N
: Node_Id
) return Uint
15484 Node_Par
: Node_Id
:= Parent
(N
);
15487 -- Locate the nearest enclosing node (by traversing Parents)
15488 -- that Defining_Entity can be applied to, and return the
15489 -- depth of that entity's nearest enclosing dynamic scope.
15491 while Present
(Node_Par
) loop
15492 case Nkind
(Node_Par
) is
15493 when N_Component_Declaration |
15494 N_Entry_Declaration |
15495 N_Formal_Object_Declaration |
15496 N_Formal_Type_Declaration |
15497 N_Full_Type_Declaration |
15498 N_Incomplete_Type_Declaration |
15499 N_Loop_Parameter_Specification |
15500 N_Object_Declaration |
15501 N_Protected_Type_Declaration |
15502 N_Private_Extension_Declaration |
15503 N_Private_Type_Declaration |
15504 N_Subtype_Declaration |
15505 N_Function_Specification |
15506 N_Procedure_Specification |
15507 N_Task_Type_Declaration |
15509 N_Generic_Instantiation |
15511 N_Implicit_Label_Declaration |
15512 N_Package_Declaration |
15513 N_Single_Task_Declaration |
15514 N_Subprogram_Declaration |
15515 N_Generic_Declaration |
15516 N_Renaming_Declaration |
15517 N_Block_Statement |
15518 N_Formal_Subprogram_Declaration |
15519 N_Abstract_Subprogram_Declaration |
15521 N_Exception_Declaration |
15522 N_Formal_Package_Declaration |
15523 N_Number_Declaration |
15524 N_Package_Specification |
15525 N_Parameter_Specification |
15526 N_Single_Protected_Declaration |
15530 (Nearest_Dynamic_Scope
15531 (Defining_Entity
(Node_Par
)));
15537 Node_Par
:= Parent
(Node_Par
);
15540 pragma Assert
(False);
15542 -- Should never reach the following return
15544 return Scope_Depth
(Current_Scope
) + 1;
15545 end Innermost_Master_Scope_Depth
;
15547 -- Start of processing for Return_Master_Scope_Depth_Of_Call
15550 return Innermost_Master_Scope_Depth
(Obj
);
15551 end Return_Master_Scope_Depth_Of_Call
;
15554 -- For convenience we handle qualified expressions, even though they
15555 -- aren't technically object names.
15557 elsif Nkind
(Obj
) = N_Qualified_Expression
then
15558 return Object_Access_Level
(Expression
(Obj
));
15560 -- Ditto for aggregates. They have the level of the temporary that
15561 -- will hold their value.
15563 elsif Nkind
(Obj
) = N_Aggregate
then
15564 return Object_Access_Level
(Current_Scope
);
15566 -- Otherwise return the scope level of Standard. (If there are cases
15567 -- that fall through to this point they will be treated as having
15568 -- global accessibility for now. ???)
15571 return Scope_Depth
(Standard_Standard
);
15573 end Object_Access_Level
;
15575 --------------------------
15576 -- Original_Aspect_Name --
15577 --------------------------
15579 function Original_Aspect_Name
(N
: Node_Id
) return Name_Id
is
15584 pragma Assert
(Nkind_In
(N
, N_Aspect_Specification
, N_Pragma
));
15587 if Is_Rewrite_Substitution
(Pras
)
15588 and then Nkind
(Original_Node
(Pras
)) = N_Pragma
15590 Pras
:= Original_Node
(Pras
);
15593 -- Case where we came from aspect specication
15595 if Nkind
(Pras
) = N_Pragma
and then From_Aspect_Specification
(Pras
) then
15596 Pras
:= Corresponding_Aspect
(Pras
);
15599 -- Get name from aspect or pragma
15601 if Nkind
(Pras
) = N_Pragma
then
15602 Name
:= Pragma_Name
(Pras
);
15604 Name
:= Chars
(Identifier
(Pras
));
15607 -- Deal with 'Class
15609 if Class_Present
(Pras
) then
15612 -- Names that need converting to special _xxx form
15620 Name
:= Name_uPost
;
15622 when Name_Invariant
=>
15623 Name
:= Name_uInvariant
;
15625 when Name_Type_Invariant |
15626 Name_Type_Invariant_Class
=>
15627 Name
:= Name_uType_Invariant
;
15629 -- Nothing to do for other cases (e.g. a Check that derived
15630 -- from Pre_Class and has the flag set). Also we do nothing
15631 -- if the name is already in special _xxx form.
15639 end Original_Aspect_Name
;
15641 --------------------------------------
15642 -- Original_Corresponding_Operation --
15643 --------------------------------------
15645 function Original_Corresponding_Operation
(S
: Entity_Id
) return Entity_Id
15647 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
15650 -- If S is an inherited primitive S2 the original corresponding
15651 -- operation of S is the original corresponding operation of S2
15653 if Present
(Alias
(S
))
15654 and then Find_Dispatching_Type
(Alias
(S
)) /= Typ
15656 return Original_Corresponding_Operation
(Alias
(S
));
15658 -- If S overrides an inherited subprogram S2 the original corresponding
15659 -- operation of S is the original corresponding operation of S2
15661 elsif Present
(Overridden_Operation
(S
)) then
15662 return Original_Corresponding_Operation
(Overridden_Operation
(S
));
15664 -- otherwise it is S itself
15669 end Original_Corresponding_Operation
;
15671 ----------------------
15672 -- Policy_In_Effect --
15673 ----------------------
15675 function Policy_In_Effect
(Policy
: Name_Id
) return Name_Id
is
15676 function Policy_In_List
(List
: Node_Id
) return Name_Id
;
15677 -- Determine the the mode of a policy in a N_Pragma list
15679 --------------------
15680 -- Policy_In_List --
15681 --------------------
15683 function Policy_In_List
(List
: Node_Id
) return Name_Id
is
15690 while Present
(Prag
) loop
15691 Arg
:= First
(Pragma_Argument_Associations
(Prag
));
15692 Expr
:= Get_Pragma_Arg
(Arg
);
15694 -- The current Check_Policy pragma matches the requested policy,
15695 -- return the second argument which denotes the policy identifier.
15697 if Chars
(Expr
) = Policy
then
15698 return Chars
(Get_Pragma_Arg
(Next
(Arg
)));
15701 Prag
:= Next_Pragma
(Prag
);
15705 end Policy_In_List
;
15711 -- Start of processing for Policy_In_Effect
15714 if not Is_Valid_Assertion_Kind
(Policy
) then
15715 raise Program_Error
;
15718 -- Inspect all policy pragmas that appear within scopes (if any)
15720 Kind
:= Policy_In_List
(Check_Policy_List
);
15722 -- Inspect all configuration policy pragmas (if any)
15724 if Kind
= No_Name
then
15725 Kind
:= Policy_In_List
(Check_Policy_List_Config
);
15728 -- The context lacks policy pragmas, determine the mode based on whether
15729 -- assertions are enabled at the configuration level. This ensures that
15730 -- the policy is preserved when analyzing generics.
15732 if Kind
= No_Name
then
15733 if Assertions_Enabled_Config
then
15734 Kind
:= Name_Check
;
15736 Kind
:= Name_Ignore
;
15741 end Policy_In_Effect
;
15743 ----------------------------------
15744 -- Predicate_Tests_On_Arguments --
15745 ----------------------------------
15747 function Predicate_Tests_On_Arguments
(Subp
: Entity_Id
) return Boolean is
15749 -- Always test predicates on indirect call
15751 if Ekind
(Subp
) = E_Subprogram_Type
then
15754 -- Do not test predicates on call to generated default Finalize, since
15755 -- we are not interested in whether something we are finalizing (and
15756 -- typically destroying) satisfies its predicates.
15758 elsif Chars
(Subp
) = Name_Finalize
15759 and then not Comes_From_Source
(Subp
)
15763 -- Do not test predicates on any internally generated routines
15765 elsif Is_Internal_Name
(Chars
(Subp
)) then
15768 -- Do not test predicates on call to Init_Proc, since if needed the
15769 -- predicate test will occur at some other point.
15771 elsif Is_Init_Proc
(Subp
) then
15774 -- Do not test predicates on call to predicate function, since this
15775 -- would cause infinite recursion.
15777 elsif Ekind
(Subp
) = E_Function
15778 and then (Is_Predicate_Function
(Subp
)
15780 Is_Predicate_Function_M
(Subp
))
15784 -- For now, no other exceptions
15789 end Predicate_Tests_On_Arguments
;
15791 -----------------------
15792 -- Private_Component --
15793 -----------------------
15795 function Private_Component
(Type_Id
: Entity_Id
) return Entity_Id
is
15796 Ancestor
: constant Entity_Id
:= Base_Type
(Type_Id
);
15798 function Trace_Components
15800 Check
: Boolean) return Entity_Id
;
15801 -- Recursive function that does the work, and checks against circular
15802 -- definition for each subcomponent type.
15804 ----------------------
15805 -- Trace_Components --
15806 ----------------------
15808 function Trace_Components
15810 Check
: Boolean) return Entity_Id
15812 Btype
: constant Entity_Id
:= Base_Type
(T
);
15813 Component
: Entity_Id
;
15815 Candidate
: Entity_Id
:= Empty
;
15818 if Check
and then Btype
= Ancestor
then
15819 Error_Msg_N
("circular type definition", Type_Id
);
15823 if Is_Private_Type
(Btype
) and then not Is_Generic_Type
(Btype
) then
15824 if Present
(Full_View
(Btype
))
15825 and then Is_Record_Type
(Full_View
(Btype
))
15826 and then not Is_Frozen
(Btype
)
15828 -- To indicate that the ancestor depends on a private type, the
15829 -- current Btype is sufficient. However, to check for circular
15830 -- definition we must recurse on the full view.
15832 Candidate
:= Trace_Components
(Full_View
(Btype
), True);
15834 if Candidate
= Any_Type
then
15844 elsif Is_Array_Type
(Btype
) then
15845 return Trace_Components
(Component_Type
(Btype
), True);
15847 elsif Is_Record_Type
(Btype
) then
15848 Component
:= First_Entity
(Btype
);
15849 while Present
(Component
)
15850 and then Comes_From_Source
(Component
)
15852 -- Skip anonymous types generated by constrained components
15854 if not Is_Type
(Component
) then
15855 P
:= Trace_Components
(Etype
(Component
), True);
15857 if Present
(P
) then
15858 if P
= Any_Type
then
15866 Next_Entity
(Component
);
15874 end Trace_Components
;
15876 -- Start of processing for Private_Component
15879 return Trace_Components
(Type_Id
, False);
15880 end Private_Component
;
15882 ---------------------------
15883 -- Primitive_Names_Match --
15884 ---------------------------
15886 function Primitive_Names_Match
(E1
, E2
: Entity_Id
) return Boolean is
15888 function Non_Internal_Name
(E
: Entity_Id
) return Name_Id
;
15889 -- Given an internal name, returns the corresponding non-internal name
15891 ------------------------
15892 -- Non_Internal_Name --
15893 ------------------------
15895 function Non_Internal_Name
(E
: Entity_Id
) return Name_Id
is
15897 Get_Name_String
(Chars
(E
));
15898 Name_Len
:= Name_Len
- 1;
15900 end Non_Internal_Name
;
15902 -- Start of processing for Primitive_Names_Match
15905 pragma Assert
(Present
(E1
) and then Present
(E2
));
15907 return Chars
(E1
) = Chars
(E2
)
15909 (not Is_Internal_Name
(Chars
(E1
))
15910 and then Is_Internal_Name
(Chars
(E2
))
15911 and then Non_Internal_Name
(E2
) = Chars
(E1
))
15913 (not Is_Internal_Name
(Chars
(E2
))
15914 and then Is_Internal_Name
(Chars
(E1
))
15915 and then Non_Internal_Name
(E1
) = Chars
(E2
))
15917 (Is_Predefined_Dispatching_Operation
(E1
)
15918 and then Is_Predefined_Dispatching_Operation
(E2
)
15919 and then Same_TSS
(E1
, E2
))
15921 (Is_Init_Proc
(E1
) and then Is_Init_Proc
(E2
));
15922 end Primitive_Names_Match
;
15924 -----------------------
15925 -- Process_End_Label --
15926 -----------------------
15928 procedure Process_End_Label
15937 Label_Ref
: Boolean;
15938 -- Set True if reference to end label itself is required
15941 -- Gets set to the operator symbol or identifier that references the
15942 -- entity Ent. For the child unit case, this is the identifier from the
15943 -- designator. For other cases, this is simply Endl.
15945 procedure Generate_Parent_Ref
(N
: Node_Id
; E
: Entity_Id
);
15946 -- N is an identifier node that appears as a parent unit reference in
15947 -- the case where Ent is a child unit. This procedure generates an
15948 -- appropriate cross-reference entry. E is the corresponding entity.
15950 -------------------------
15951 -- Generate_Parent_Ref --
15952 -------------------------
15954 procedure Generate_Parent_Ref
(N
: Node_Id
; E
: Entity_Id
) is
15956 -- If names do not match, something weird, skip reference
15958 if Chars
(E
) = Chars
(N
) then
15960 -- Generate the reference. We do NOT consider this as a reference
15961 -- for unreferenced symbol purposes.
15963 Generate_Reference
(E
, N
, 'r', Set_Ref
=> False, Force
=> True);
15965 if Style_Check
then
15966 Style
.Check_Identifier
(N
, E
);
15969 end Generate_Parent_Ref
;
15971 -- Start of processing for Process_End_Label
15974 -- If no node, ignore. This happens in some error situations, and
15975 -- also for some internally generated structures where no end label
15976 -- references are required in any case.
15982 -- Nothing to do if no End_Label, happens for internally generated
15983 -- constructs where we don't want an end label reference anyway. Also
15984 -- nothing to do if Endl is a string literal, which means there was
15985 -- some prior error (bad operator symbol)
15987 Endl
:= End_Label
(N
);
15989 if No
(Endl
) or else Nkind
(Endl
) = N_String_Literal
then
15993 -- Reference node is not in extended main source unit
15995 if not In_Extended_Main_Source_Unit
(N
) then
15997 -- Generally we do not collect references except for the extended
15998 -- main source unit. The one exception is the 'e' entry for a
15999 -- package spec, where it is useful for a client to have the
16000 -- ending information to define scopes.
16006 Label_Ref
:= False;
16008 -- For this case, we can ignore any parent references, but we
16009 -- need the package name itself for the 'e' entry.
16011 if Nkind
(Endl
) = N_Designator
then
16012 Endl
:= Identifier
(Endl
);
16016 -- Reference is in extended main source unit
16021 -- For designator, generate references for the parent entries
16023 if Nkind
(Endl
) = N_Designator
then
16025 -- Generate references for the prefix if the END line comes from
16026 -- source (otherwise we do not need these references) We climb the
16027 -- scope stack to find the expected entities.
16029 if Comes_From_Source
(Endl
) then
16030 Nam
:= Name
(Endl
);
16031 Scop
:= Current_Scope
;
16032 while Nkind
(Nam
) = N_Selected_Component
loop
16033 Scop
:= Scope
(Scop
);
16034 exit when No
(Scop
);
16035 Generate_Parent_Ref
(Selector_Name
(Nam
), Scop
);
16036 Nam
:= Prefix
(Nam
);
16039 if Present
(Scop
) then
16040 Generate_Parent_Ref
(Nam
, Scope
(Scop
));
16044 Endl
:= Identifier
(Endl
);
16048 -- If the end label is not for the given entity, then either we have
16049 -- some previous error, or this is a generic instantiation for which
16050 -- we do not need to make a cross-reference in this case anyway. In
16051 -- either case we simply ignore the call.
16053 if Chars
(Ent
) /= Chars
(Endl
) then
16057 -- If label was really there, then generate a normal reference and then
16058 -- adjust the location in the end label to point past the name (which
16059 -- should almost always be the semicolon).
16061 Loc
:= Sloc
(Endl
);
16063 if Comes_From_Source
(Endl
) then
16065 -- If a label reference is required, then do the style check and
16066 -- generate an l-type cross-reference entry for the label
16069 if Style_Check
then
16070 Style
.Check_Identifier
(Endl
, Ent
);
16073 Generate_Reference
(Ent
, Endl
, 'l', Set_Ref
=> False);
16076 -- Set the location to point past the label (normally this will
16077 -- mean the semicolon immediately following the label). This is
16078 -- done for the sake of the 'e' or 't' entry generated below.
16080 Get_Decoded_Name_String
(Chars
(Endl
));
16081 Set_Sloc
(Endl
, Sloc
(Endl
) + Source_Ptr
(Name_Len
));
16084 -- In SPARK mode, no missing label is allowed for packages and
16085 -- subprogram bodies. Detect those cases by testing whether
16086 -- Process_End_Label was called for a body (Typ = 't') or a package.
16088 if Restriction_Check_Required
(SPARK_05
)
16089 and then (Typ
= 't' or else Ekind
(Ent
) = E_Package
)
16091 Error_Msg_Node_1
:= Endl
;
16092 Check_SPARK_05_Restriction
16093 ("`END &` required", Endl
, Force
=> True);
16097 -- Now generate the e/t reference
16099 Generate_Reference
(Ent
, Endl
, Typ
, Set_Ref
=> False, Force
=> True);
16101 -- Restore Sloc, in case modified above, since we have an identifier
16102 -- and the normal Sloc should be left set in the tree.
16104 Set_Sloc
(Endl
, Loc
);
16105 end Process_End_Label
;
16111 function Referenced
(Id
: Entity_Id
; Expr
: Node_Id
) return Boolean is
16112 Seen
: Boolean := False;
16114 function Is_Reference
(N
: Node_Id
) return Traverse_Result
;
16115 -- Determine whether node N denotes a reference to Id. If this is the
16116 -- case, set global flag Seen to True and stop the traversal.
16122 function Is_Reference
(N
: Node_Id
) return Traverse_Result
is
16124 if Is_Entity_Name
(N
)
16125 and then Present
(Entity
(N
))
16126 and then Entity
(N
) = Id
16135 procedure Inspect_Expression
is new Traverse_Proc
(Is_Reference
);
16137 -- Start of processing for Referenced
16140 Inspect_Expression
(Expr
);
16144 ------------------------------------
16145 -- References_Generic_Formal_Type --
16146 ------------------------------------
16148 function References_Generic_Formal_Type
(N
: Node_Id
) return Boolean is
16150 function Process
(N
: Node_Id
) return Traverse_Result
;
16151 -- Process one node in search for generic formal type
16157 function Process
(N
: Node_Id
) return Traverse_Result
is
16159 if Nkind
(N
) in N_Has_Entity
then
16161 E
: constant Entity_Id
:= Entity
(N
);
16163 if Present
(E
) then
16164 if Is_Generic_Type
(E
) then
16166 elsif Present
(Etype
(E
))
16167 and then Is_Generic_Type
(Etype
(E
))
16178 function Traverse
is new Traverse_Func
(Process
);
16179 -- Traverse tree to look for generic type
16182 if Inside_A_Generic
then
16183 return Traverse
(N
) = Abandon
;
16187 end References_Generic_Formal_Type
;
16189 --------------------
16190 -- Remove_Homonym --
16191 --------------------
16193 procedure Remove_Homonym
(E
: Entity_Id
) is
16194 Prev
: Entity_Id
:= Empty
;
16198 if E
= Current_Entity
(E
) then
16199 if Present
(Homonym
(E
)) then
16200 Set_Current_Entity
(Homonym
(E
));
16202 Set_Name_Entity_Id
(Chars
(E
), Empty
);
16206 H
:= Current_Entity
(E
);
16207 while Present
(H
) and then H
/= E
loop
16212 -- If E is not on the homonym chain, nothing to do
16214 if Present
(H
) then
16215 Set_Homonym
(Prev
, Homonym
(E
));
16218 end Remove_Homonym
;
16220 ---------------------
16221 -- Rep_To_Pos_Flag --
16222 ---------------------
16224 function Rep_To_Pos_Flag
(E
: Entity_Id
; Loc
: Source_Ptr
) return Node_Id
is
16226 return New_Occurrence_Of
16227 (Boolean_Literals
(not Range_Checks_Suppressed
(E
)), Loc
);
16228 end Rep_To_Pos_Flag
;
16230 --------------------
16231 -- Require_Entity --
16232 --------------------
16234 procedure Require_Entity
(N
: Node_Id
) is
16236 if Is_Entity_Name
(N
) and then No
(Entity
(N
)) then
16237 if Total_Errors_Detected
/= 0 then
16238 Set_Entity
(N
, Any_Id
);
16240 raise Program_Error
;
16243 end Require_Entity
;
16245 -------------------------------
16246 -- Requires_State_Refinement --
16247 -------------------------------
16249 function Requires_State_Refinement
16250 (Spec_Id
: Entity_Id
;
16251 Body_Id
: Entity_Id
) return Boolean
16253 function Mode_Is_Off
(Prag
: Node_Id
) return Boolean;
16254 -- Given pragma SPARK_Mode, determine whether the mode is Off
16260 function Mode_Is_Off
(Prag
: Node_Id
) return Boolean is
16264 -- The default SPARK mode is On
16270 Mode
:= Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(Prag
)));
16272 -- Then the pragma lacks an argument, the default mode is On
16277 return Chars
(Mode
) = Name_Off
;
16281 -- Start of processing for Requires_State_Refinement
16284 -- A package that does not define at least one abstract state cannot
16285 -- possibly require refinement.
16287 if No
(Abstract_States
(Spec_Id
)) then
16290 -- The package instroduces a single null state which does not merit
16293 elsif Has_Null_Abstract_State
(Spec_Id
) then
16296 -- Check whether the package body is subject to pragma SPARK_Mode. If
16297 -- it is and the mode is Off, the package body is considered to be in
16298 -- regular Ada and does not require refinement.
16300 elsif Mode_Is_Off
(SPARK_Pragma
(Body_Id
)) then
16303 -- The body's SPARK_Mode may be inherited from a similar pragma that
16304 -- appears in the private declarations of the spec. The pragma we are
16305 -- interested appears as the second entry in SPARK_Pragma.
16307 elsif Present
(SPARK_Pragma
(Spec_Id
))
16308 and then Mode_Is_Off
(Next_Pragma
(SPARK_Pragma
(Spec_Id
)))
16312 -- The spec defines at least one abstract state and the body has no way
16313 -- of circumventing the refinement.
16318 end Requires_State_Refinement
;
16320 ------------------------------
16321 -- Requires_Transient_Scope --
16322 ------------------------------
16324 -- A transient scope is required when variable-sized temporaries are
16325 -- allocated in the primary or secondary stack, or when finalization
16326 -- actions must be generated before the next instruction.
16328 function Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
16329 Typ
: constant Entity_Id
:= Underlying_Type
(Id
);
16331 -- Start of processing for Requires_Transient_Scope
16334 -- This is a private type which is not completed yet. This can only
16335 -- happen in a default expression (of a formal parameter or of a
16336 -- record component). Do not expand transient scope in this case
16341 -- Do not expand transient scope for non-existent procedure return
16343 elsif Typ
= Standard_Void_Type
then
16346 -- Elementary types do not require a transient scope
16348 elsif Is_Elementary_Type
(Typ
) then
16351 -- Generally, indefinite subtypes require a transient scope, since the
16352 -- back end cannot generate temporaries, since this is not a valid type
16353 -- for declaring an object. It might be possible to relax this in the
16354 -- future, e.g. by declaring the maximum possible space for the type.
16356 elsif Is_Indefinite_Subtype
(Typ
) then
16359 -- Functions returning tagged types may dispatch on result so their
16360 -- returned value is allocated on the secondary stack. Controlled
16361 -- type temporaries need finalization.
16363 elsif Is_Tagged_Type
(Typ
)
16364 or else Has_Controlled_Component
(Typ
)
16366 return not Is_Value_Type
(Typ
);
16370 elsif Is_Record_Type
(Typ
) then
16374 Comp
:= First_Entity
(Typ
);
16375 while Present
(Comp
) loop
16376 if Ekind
(Comp
) = E_Component
16377 and then Requires_Transient_Scope
(Etype
(Comp
))
16381 Next_Entity
(Comp
);
16388 -- String literal types never require transient scope
16390 elsif Ekind
(Typ
) = E_String_Literal_Subtype
then
16393 -- Array type. Note that we already know that this is a constrained
16394 -- array, since unconstrained arrays will fail the indefinite test.
16396 elsif Is_Array_Type
(Typ
) then
16398 -- If component type requires a transient scope, the array does too
16400 if Requires_Transient_Scope
(Component_Type
(Typ
)) then
16403 -- Otherwise, we only need a transient scope if the size depends on
16404 -- the value of one or more discriminants.
16407 return Size_Depends_On_Discriminant
(Typ
);
16410 -- All other cases do not require a transient scope
16415 end Requires_Transient_Scope
;
16417 --------------------------
16418 -- Reset_Analyzed_Flags --
16419 --------------------------
16421 procedure Reset_Analyzed_Flags
(N
: Node_Id
) is
16423 function Clear_Analyzed
(N
: Node_Id
) return Traverse_Result
;
16424 -- Function used to reset Analyzed flags in tree. Note that we do
16425 -- not reset Analyzed flags in entities, since there is no need to
16426 -- reanalyze entities, and indeed, it is wrong to do so, since it
16427 -- can result in generating auxiliary stuff more than once.
16429 --------------------
16430 -- Clear_Analyzed --
16431 --------------------
16433 function Clear_Analyzed
(N
: Node_Id
) return Traverse_Result
is
16435 if not Has_Extension
(N
) then
16436 Set_Analyzed
(N
, False);
16440 end Clear_Analyzed
;
16442 procedure Reset_Analyzed
is new Traverse_Proc
(Clear_Analyzed
);
16444 -- Start of processing for Reset_Analyzed_Flags
16447 Reset_Analyzed
(N
);
16448 end Reset_Analyzed_Flags
;
16450 ------------------------
16451 -- Restore_SPARK_Mode --
16452 ------------------------
16454 procedure Restore_SPARK_Mode
(Mode
: SPARK_Mode_Type
) is
16456 SPARK_Mode
:= Mode
;
16457 end Restore_SPARK_Mode
;
16459 --------------------------------
16460 -- Returns_Unconstrained_Type --
16461 --------------------------------
16463 function Returns_Unconstrained_Type
(Subp
: Entity_Id
) return Boolean is
16465 return Ekind
(Subp
) = E_Function
16466 and then not Is_Scalar_Type
(Etype
(Subp
))
16467 and then not Is_Access_Type
(Etype
(Subp
))
16468 and then not Is_Constrained
(Etype
(Subp
));
16469 end Returns_Unconstrained_Type
;
16471 ----------------------------
16472 -- Root_Type_Of_Full_View --
16473 ----------------------------
16475 function Root_Type_Of_Full_View
(T
: Entity_Id
) return Entity_Id
is
16476 Rtyp
: constant Entity_Id
:= Root_Type
(T
);
16479 -- The root type of the full view may itself be a private type. Keep
16480 -- looking for the ultimate derivation parent.
16482 if Is_Private_Type
(Rtyp
) and then Present
(Full_View
(Rtyp
)) then
16483 return Root_Type_Of_Full_View
(Full_View
(Rtyp
));
16487 end Root_Type_Of_Full_View
;
16489 ---------------------------
16490 -- Safe_To_Capture_Value --
16491 ---------------------------
16493 function Safe_To_Capture_Value
16496 Cond
: Boolean := False) return Boolean
16499 -- The only entities for which we track constant values are variables
16500 -- which are not renamings, constants, out parameters, and in out
16501 -- parameters, so check if we have this case.
16503 -- Note: it may seem odd to track constant values for constants, but in
16504 -- fact this routine is used for other purposes than simply capturing
16505 -- the value. In particular, the setting of Known[_Non]_Null.
16507 if (Ekind
(Ent
) = E_Variable
and then No
(Renamed_Object
(Ent
)))
16509 Ekind_In
(Ent
, E_Constant
, E_Out_Parameter
, E_In_Out_Parameter
)
16513 -- For conditionals, we also allow loop parameters and all formals,
16514 -- including in parameters.
16516 elsif Cond
and then Ekind_In
(Ent
, E_Loop_Parameter
, E_In_Parameter
) then
16519 -- For all other cases, not just unsafe, but impossible to capture
16520 -- Current_Value, since the above are the only entities which have
16521 -- Current_Value fields.
16527 -- Skip if volatile or aliased, since funny things might be going on in
16528 -- these cases which we cannot necessarily track. Also skip any variable
16529 -- for which an address clause is given, or whose address is taken. Also
16530 -- never capture value of library level variables (an attempt to do so
16531 -- can occur in the case of package elaboration code).
16533 if Treat_As_Volatile
(Ent
)
16534 or else Is_Aliased
(Ent
)
16535 or else Present
(Address_Clause
(Ent
))
16536 or else Address_Taken
(Ent
)
16537 or else (Is_Library_Level_Entity
(Ent
)
16538 and then Ekind
(Ent
) = E_Variable
)
16543 -- OK, all above conditions are met. We also require that the scope of
16544 -- the reference be the same as the scope of the entity, not counting
16545 -- packages and blocks and loops.
16548 E_Scope
: constant Entity_Id
:= Scope
(Ent
);
16549 R_Scope
: Entity_Id
;
16552 R_Scope
:= Current_Scope
;
16553 while R_Scope
/= Standard_Standard
loop
16554 exit when R_Scope
= E_Scope
;
16556 if not Ekind_In
(R_Scope
, E_Package
, E_Block
, E_Loop
) then
16559 R_Scope
:= Scope
(R_Scope
);
16564 -- We also require that the reference does not appear in a context
16565 -- where it is not sure to be executed (i.e. a conditional context
16566 -- or an exception handler). We skip this if Cond is True, since the
16567 -- capturing of values from conditional tests handles this ok.
16580 -- Seems dubious that case expressions are not handled here ???
16583 while Present
(P
) loop
16584 if Nkind
(P
) = N_If_Statement
16585 or else Nkind
(P
) = N_Case_Statement
16586 or else (Nkind
(P
) in N_Short_Circuit
16587 and then Desc
= Right_Opnd
(P
))
16588 or else (Nkind
(P
) = N_If_Expression
16589 and then Desc
/= First
(Expressions
(P
)))
16590 or else Nkind
(P
) = N_Exception_Handler
16591 or else Nkind
(P
) = N_Selective_Accept
16592 or else Nkind
(P
) = N_Conditional_Entry_Call
16593 or else Nkind
(P
) = N_Timed_Entry_Call
16594 or else Nkind
(P
) = N_Asynchronous_Select
16602 -- A special Ada 2012 case: the original node may be part
16603 -- of the else_actions of a conditional expression, in which
16604 -- case it might not have been expanded yet, and appears in
16605 -- a non-syntactic list of actions. In that case it is clearly
16606 -- not safe to save a value.
16609 and then Is_List_Member
(Desc
)
16610 and then No
(Parent
(List_Containing
(Desc
)))
16618 -- OK, looks safe to set value
16621 end Safe_To_Capture_Value
;
16627 function Same_Name
(N1
, N2
: Node_Id
) return Boolean is
16628 K1
: constant Node_Kind
:= Nkind
(N1
);
16629 K2
: constant Node_Kind
:= Nkind
(N2
);
16632 if (K1
= N_Identifier
or else K1
= N_Defining_Identifier
)
16633 and then (K2
= N_Identifier
or else K2
= N_Defining_Identifier
)
16635 return Chars
(N1
) = Chars
(N2
);
16637 elsif (K1
= N_Selected_Component
or else K1
= N_Expanded_Name
)
16638 and then (K2
= N_Selected_Component
or else K2
= N_Expanded_Name
)
16640 return Same_Name
(Selector_Name
(N1
), Selector_Name
(N2
))
16641 and then Same_Name
(Prefix
(N1
), Prefix
(N2
));
16652 function Same_Object
(Node1
, Node2
: Node_Id
) return Boolean is
16653 N1
: constant Node_Id
:= Original_Node
(Node1
);
16654 N2
: constant Node_Id
:= Original_Node
(Node2
);
16655 -- We do the tests on original nodes, since we are most interested
16656 -- in the original source, not any expansion that got in the way.
16658 K1
: constant Node_Kind
:= Nkind
(N1
);
16659 K2
: constant Node_Kind
:= Nkind
(N2
);
16662 -- First case, both are entities with same entity
16664 if K1
in N_Has_Entity
and then K2
in N_Has_Entity
then
16666 EN1
: constant Entity_Id
:= Entity
(N1
);
16667 EN2
: constant Entity_Id
:= Entity
(N2
);
16669 if Present
(EN1
) and then Present
(EN2
)
16670 and then (Ekind_In
(EN1
, E_Variable
, E_Constant
)
16671 or else Is_Formal
(EN1
))
16679 -- Second case, selected component with same selector, same record
16681 if K1
= N_Selected_Component
16682 and then K2
= N_Selected_Component
16683 and then Chars
(Selector_Name
(N1
)) = Chars
(Selector_Name
(N2
))
16685 return Same_Object
(Prefix
(N1
), Prefix
(N2
));
16687 -- Third case, indexed component with same subscripts, same array
16689 elsif K1
= N_Indexed_Component
16690 and then K2
= N_Indexed_Component
16691 and then Same_Object
(Prefix
(N1
), Prefix
(N2
))
16696 E1
:= First
(Expressions
(N1
));
16697 E2
:= First
(Expressions
(N2
));
16698 while Present
(E1
) loop
16699 if not Same_Value
(E1
, E2
) then
16710 -- Fourth case, slice of same array with same bounds
16713 and then K2
= N_Slice
16714 and then Nkind
(Discrete_Range
(N1
)) = N_Range
16715 and then Nkind
(Discrete_Range
(N2
)) = N_Range
16716 and then Same_Value
(Low_Bound
(Discrete_Range
(N1
)),
16717 Low_Bound
(Discrete_Range
(N2
)))
16718 and then Same_Value
(High_Bound
(Discrete_Range
(N1
)),
16719 High_Bound
(Discrete_Range
(N2
)))
16721 return Same_Name
(Prefix
(N1
), Prefix
(N2
));
16723 -- All other cases, not clearly the same object
16734 function Same_Type
(T1
, T2
: Entity_Id
) return Boolean is
16739 elsif not Is_Constrained
(T1
)
16740 and then not Is_Constrained
(T2
)
16741 and then Base_Type
(T1
) = Base_Type
(T2
)
16745 -- For now don't bother with case of identical constraints, to be
16746 -- fiddled with later on perhaps (this is only used for optimization
16747 -- purposes, so it is not critical to do a best possible job)
16758 function Same_Value
(Node1
, Node2
: Node_Id
) return Boolean is
16760 if Compile_Time_Known_Value
(Node1
)
16761 and then Compile_Time_Known_Value
(Node2
)
16762 and then Expr_Value
(Node1
) = Expr_Value
(Node2
)
16765 elsif Same_Object
(Node1
, Node2
) then
16772 -----------------------------
16773 -- Save_SPARK_Mode_And_Set --
16774 -----------------------------
16776 procedure Save_SPARK_Mode_And_Set
16777 (Context
: Entity_Id
;
16778 Mode
: out SPARK_Mode_Type
)
16781 -- Save the current mode in effect
16783 Mode
:= SPARK_Mode
;
16785 -- Do not consider illegal or partially decorated constructs
16787 if Ekind
(Context
) = E_Void
or else Error_Posted
(Context
) then
16790 elsif Present
(SPARK_Pragma
(Context
)) then
16791 SPARK_Mode
:= Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Context
));
16793 end Save_SPARK_Mode_And_Set
;
16795 -------------------------
16796 -- Scalar_Part_Present --
16797 -------------------------
16799 function Scalar_Part_Present
(T
: Entity_Id
) return Boolean is
16803 if Is_Scalar_Type
(T
) then
16806 elsif Is_Array_Type
(T
) then
16807 return Scalar_Part_Present
(Component_Type
(T
));
16809 elsif Is_Record_Type
(T
) or else Has_Discriminants
(T
) then
16810 C
:= First_Component_Or_Discriminant
(T
);
16811 while Present
(C
) loop
16812 if Scalar_Part_Present
(Etype
(C
)) then
16815 Next_Component_Or_Discriminant
(C
);
16821 end Scalar_Part_Present
;
16823 ------------------------
16824 -- Scope_Is_Transient --
16825 ------------------------
16827 function Scope_Is_Transient
return Boolean is
16829 return Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Transient
;
16830 end Scope_Is_Transient
;
16836 function Scope_Within
(Scope1
, Scope2
: Entity_Id
) return Boolean is
16841 while Scop
/= Standard_Standard
loop
16842 Scop
:= Scope
(Scop
);
16844 if Scop
= Scope2
then
16852 --------------------------
16853 -- Scope_Within_Or_Same --
16854 --------------------------
16856 function Scope_Within_Or_Same
(Scope1
, Scope2
: Entity_Id
) return Boolean is
16861 while Scop
/= Standard_Standard
loop
16862 if Scop
= Scope2
then
16865 Scop
:= Scope
(Scop
);
16870 end Scope_Within_Or_Same
;
16872 --------------------
16873 -- Set_Convention --
16874 --------------------
16876 procedure Set_Convention
(E
: Entity_Id
; Val
: Snames
.Convention_Id
) is
16878 Basic_Set_Convention
(E
, Val
);
16881 and then Is_Access_Subprogram_Type
(Base_Type
(E
))
16882 and then Has_Foreign_Convention
(E
)
16884 Set_Can_Use_Internal_Rep
(E
, False);
16887 -- If E is an object or component, and the type of E is an anonymous
16888 -- access type with no convention set, then also set the convention of
16889 -- the anonymous access type. We do not do this for anonymous protected
16890 -- types, since protected types always have the default convention.
16892 if Present
(Etype
(E
))
16893 and then (Is_Object
(E
)
16894 or else Ekind
(E
) = E_Component
16896 -- Allow E_Void (happens for pragma Convention appearing
16897 -- in the middle of a record applying to a component)
16899 or else Ekind
(E
) = E_Void
)
16902 Typ
: constant Entity_Id
:= Etype
(E
);
16905 if Ekind_In
(Typ
, E_Anonymous_Access_Type
,
16906 E_Anonymous_Access_Subprogram_Type
)
16907 and then not Has_Convention_Pragma
(Typ
)
16909 Basic_Set_Convention
(Typ
, Val
);
16910 Set_Has_Convention_Pragma
(Typ
);
16912 -- And for the access subprogram type, deal similarly with the
16913 -- designated E_Subprogram_Type if it is also internal (which
16916 if Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
then
16918 Dtype
: constant Entity_Id
:= Designated_Type
(Typ
);
16920 if Ekind
(Dtype
) = E_Subprogram_Type
16921 and then Is_Itype
(Dtype
)
16922 and then not Has_Convention_Pragma
(Dtype
)
16924 Basic_Set_Convention
(Dtype
, Val
);
16925 Set_Has_Convention_Pragma
(Dtype
);
16932 end Set_Convention
;
16934 ------------------------
16935 -- Set_Current_Entity --
16936 ------------------------
16938 -- The given entity is to be set as the currently visible definition of its
16939 -- associated name (i.e. the Node_Id associated with its name). All we have
16940 -- to do is to get the name from the identifier, and then set the
16941 -- associated Node_Id to point to the given entity.
16943 procedure Set_Current_Entity
(E
: Entity_Id
) is
16945 Set_Name_Entity_Id
(Chars
(E
), E
);
16946 end Set_Current_Entity
;
16948 ---------------------------
16949 -- Set_Debug_Info_Needed --
16950 ---------------------------
16952 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
16954 procedure Set_Debug_Info_Needed_If_Not_Set
(E
: Entity_Id
);
16955 pragma Inline
(Set_Debug_Info_Needed_If_Not_Set
);
16956 -- Used to set debug info in a related node if not set already
16958 --------------------------------------
16959 -- Set_Debug_Info_Needed_If_Not_Set --
16960 --------------------------------------
16962 procedure Set_Debug_Info_Needed_If_Not_Set
(E
: Entity_Id
) is
16964 if Present
(E
) and then not Needs_Debug_Info
(E
) then
16965 Set_Debug_Info_Needed
(E
);
16967 -- For a private type, indicate that the full view also needs
16968 -- debug information.
16971 and then Is_Private_Type
(E
)
16972 and then Present
(Full_View
(E
))
16974 Set_Debug_Info_Needed
(Full_View
(E
));
16977 end Set_Debug_Info_Needed_If_Not_Set
;
16979 -- Start of processing for Set_Debug_Info_Needed
16982 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
16983 -- indicates that Debug_Info_Needed is never required for the entity.
16984 -- Nothing to do if entity comes from a predefined file. Library files
16985 -- are compiled without debug information, but inlined bodies of these
16986 -- routines may appear in user code, and debug information on them ends
16987 -- up complicating debugging the user code.
16990 or else Debug_Info_Off
(T
)
16994 elsif In_Inlined_Body
16995 and then Is_Predefined_File_Name
16996 (Unit_File_Name
(Get_Source_Unit
(Sloc
(T
))))
16998 Set_Needs_Debug_Info
(T
, False);
17001 -- Set flag in entity itself. Note that we will go through the following
17002 -- circuitry even if the flag is already set on T. That's intentional,
17003 -- it makes sure that the flag will be set in subsidiary entities.
17005 Set_Needs_Debug_Info
(T
);
17007 -- Set flag on subsidiary entities if not set already
17009 if Is_Object
(T
) then
17010 Set_Debug_Info_Needed_If_Not_Set
(Etype
(T
));
17012 elsif Is_Type
(T
) then
17013 Set_Debug_Info_Needed_If_Not_Set
(Etype
(T
));
17015 if Is_Record_Type
(T
) then
17017 Ent
: Entity_Id
:= First_Entity
(T
);
17019 while Present
(Ent
) loop
17020 Set_Debug_Info_Needed_If_Not_Set
(Ent
);
17025 -- For a class wide subtype, we also need debug information
17026 -- for the equivalent type.
17028 if Ekind
(T
) = E_Class_Wide_Subtype
then
17029 Set_Debug_Info_Needed_If_Not_Set
(Equivalent_Type
(T
));
17032 elsif Is_Array_Type
(T
) then
17033 Set_Debug_Info_Needed_If_Not_Set
(Component_Type
(T
));
17036 Indx
: Node_Id
:= First_Index
(T
);
17038 while Present
(Indx
) loop
17039 Set_Debug_Info_Needed_If_Not_Set
(Etype
(Indx
));
17040 Indx
:= Next_Index
(Indx
);
17044 -- For a packed array type, we also need debug information for
17045 -- the type used to represent the packed array. Conversely, we
17046 -- also need it for the former if we need it for the latter.
17048 if Is_Packed
(T
) then
17049 Set_Debug_Info_Needed_If_Not_Set
(Packed_Array_Impl_Type
(T
));
17052 if Is_Packed_Array_Impl_Type
(T
) then
17053 Set_Debug_Info_Needed_If_Not_Set
(Original_Array_Type
(T
));
17056 elsif Is_Access_Type
(T
) then
17057 Set_Debug_Info_Needed_If_Not_Set
(Directly_Designated_Type
(T
));
17059 elsif Is_Private_Type
(T
) then
17060 Set_Debug_Info_Needed_If_Not_Set
(Full_View
(T
));
17062 elsif Is_Protected_Type
(T
) then
17063 Set_Debug_Info_Needed_If_Not_Set
(Corresponding_Record_Type
(T
));
17065 elsif Is_Scalar_Type
(T
) then
17067 -- If the subrange bounds are materialized by dedicated constant
17068 -- objects, also include them in the debug info to make sure the
17069 -- debugger can properly use them.
17071 if Present
(Scalar_Range
(T
))
17072 and then Nkind
(Scalar_Range
(T
)) = N_Range
17075 Low_Bnd
: constant Node_Id
:= Type_Low_Bound
(T
);
17076 High_Bnd
: constant Node_Id
:= Type_High_Bound
(T
);
17079 if Is_Entity_Name
(Low_Bnd
) then
17080 Set_Debug_Info_Needed_If_Not_Set
(Entity
(Low_Bnd
));
17083 if Is_Entity_Name
(High_Bnd
) then
17084 Set_Debug_Info_Needed_If_Not_Set
(Entity
(High_Bnd
));
17090 end Set_Debug_Info_Needed
;
17092 ----------------------------
17093 -- Set_Entity_With_Checks --
17094 ----------------------------
17096 procedure Set_Entity_With_Checks
(N
: Node_Id
; Val
: Entity_Id
) is
17097 Val_Actual
: Entity_Id
;
17099 Post_Node
: Node_Id
;
17102 -- Unconditionally set the entity
17104 Set_Entity
(N
, Val
);
17106 -- The node to post on is the selector in the case of an expanded name,
17107 -- and otherwise the node itself.
17109 if Nkind
(N
) = N_Expanded_Name
then
17110 Post_Node
:= Selector_Name
(N
);
17115 -- Check for violation of No_Fixed_IO
17117 if Restriction_Check_Required
(No_Fixed_IO
)
17119 ((RTU_Loaded
(Ada_Text_IO
)
17120 and then (Is_RTE
(Val
, RE_Decimal_IO
)
17122 Is_RTE
(Val
, RE_Fixed_IO
)))
17125 (RTU_Loaded
(Ada_Wide_Text_IO
)
17126 and then (Is_RTE
(Val
, RO_WT_Decimal_IO
)
17128 Is_RTE
(Val
, RO_WT_Fixed_IO
)))
17131 (RTU_Loaded
(Ada_Wide_Wide_Text_IO
)
17132 and then (Is_RTE
(Val
, RO_WW_Decimal_IO
)
17134 Is_RTE
(Val
, RO_WW_Fixed_IO
))))
17136 -- A special extra check, don't complain about a reference from within
17137 -- the Ada.Interrupts package itself!
17139 and then not In_Same_Extended_Unit
(N
, Val
)
17141 Check_Restriction
(No_Fixed_IO
, Post_Node
);
17144 -- Remaining checks are only done on source nodes. Note that we test
17145 -- for violation of No_Fixed_IO even on non-source nodes, because the
17146 -- cases for checking violations of this restriction are instantiations
17147 -- where the reference in the instance has Comes_From_Source False.
17149 if not Comes_From_Source
(N
) then
17153 -- Check for violation of No_Abort_Statements, which is triggered by
17154 -- call to Ada.Task_Identification.Abort_Task.
17156 if Restriction_Check_Required
(No_Abort_Statements
)
17157 and then (Is_RTE
(Val
, RE_Abort_Task
))
17159 -- A special extra check, don't complain about a reference from within
17160 -- the Ada.Task_Identification package itself!
17162 and then not In_Same_Extended_Unit
(N
, Val
)
17164 Check_Restriction
(No_Abort_Statements
, Post_Node
);
17167 if Val
= Standard_Long_Long_Integer
then
17168 Check_Restriction
(No_Long_Long_Integers
, Post_Node
);
17171 -- Check for violation of No_Dynamic_Attachment
17173 if Restriction_Check_Required
(No_Dynamic_Attachment
)
17174 and then RTU_Loaded
(Ada_Interrupts
)
17175 and then (Is_RTE
(Val
, RE_Is_Reserved
) or else
17176 Is_RTE
(Val
, RE_Is_Attached
) or else
17177 Is_RTE
(Val
, RE_Current_Handler
) or else
17178 Is_RTE
(Val
, RE_Attach_Handler
) or else
17179 Is_RTE
(Val
, RE_Exchange_Handler
) or else
17180 Is_RTE
(Val
, RE_Detach_Handler
) or else
17181 Is_RTE
(Val
, RE_Reference
))
17183 -- A special extra check, don't complain about a reference from within
17184 -- the Ada.Interrupts package itself!
17186 and then not In_Same_Extended_Unit
(N
, Val
)
17188 Check_Restriction
(No_Dynamic_Attachment
, Post_Node
);
17191 -- Check for No_Implementation_Identifiers
17193 if Restriction_Check_Required
(No_Implementation_Identifiers
) then
17195 -- We have an implementation defined entity if it is marked as
17196 -- implementation defined, or is defined in a package marked as
17197 -- implementation defined. However, library packages themselves
17198 -- are excluded (we don't want to flag Interfaces itself, just
17199 -- the entities within it).
17201 if (Is_Implementation_Defined
(Val
)
17203 (Present
(Scope
(Val
))
17204 and then Is_Implementation_Defined
(Scope
(Val
))))
17205 and then not (Ekind_In
(Val
, E_Package
, E_Generic_Package
)
17206 and then Is_Library_Level_Entity
(Val
))
17208 Check_Restriction
(No_Implementation_Identifiers
, Post_Node
);
17212 -- Do the style check
17215 and then not Suppress_Style_Checks
(Val
)
17216 and then not In_Instance
17218 if Nkind
(N
) = N_Identifier
then
17220 elsif Nkind
(N
) = N_Expanded_Name
then
17221 Nod
:= Selector_Name
(N
);
17226 -- A special situation arises for derived operations, where we want
17227 -- to do the check against the parent (since the Sloc of the derived
17228 -- operation points to the derived type declaration itself).
17231 while not Comes_From_Source
(Val_Actual
)
17232 and then Nkind
(Val_Actual
) in N_Entity
17233 and then (Ekind
(Val_Actual
) = E_Enumeration_Literal
17234 or else Is_Subprogram_Or_Generic_Subprogram
(Val_Actual
))
17235 and then Present
(Alias
(Val_Actual
))
17237 Val_Actual
:= Alias
(Val_Actual
);
17240 -- Renaming declarations for generic actuals do not come from source,
17241 -- and have a different name from that of the entity they rename, so
17242 -- there is no style check to perform here.
17244 if Chars
(Nod
) = Chars
(Val_Actual
) then
17245 Style
.Check_Identifier
(Nod
, Val_Actual
);
17249 Set_Entity
(N
, Val
);
17250 end Set_Entity_With_Checks
;
17252 -------------------------
17253 -- Set_Is_Ghost_Entity --
17254 -------------------------
17256 procedure Set_Is_Ghost_Entity
(Id
: Entity_Id
) is
17257 Policy
: constant Name_Id
:= Policy_In_Effect
(Name_Ghost
);
17260 if Policy
= Name_Check
then
17261 Set_Is_Checked_Ghost_Entity
(Id
);
17263 elsif Policy
= Name_Ignore
then
17264 Set_Is_Ignored_Ghost_Entity
(Id
);
17266 end Set_Is_Ghost_Entity
;
17268 ------------------------
17269 -- Set_Name_Entity_Id --
17270 ------------------------
17272 procedure Set_Name_Entity_Id
(Id
: Name_Id
; Val
: Entity_Id
) is
17274 Set_Name_Table_Info
(Id
, Int
(Val
));
17275 end Set_Name_Entity_Id
;
17277 ---------------------
17278 -- Set_Next_Actual --
17279 ---------------------
17281 procedure Set_Next_Actual
(Ass1_Id
: Node_Id
; Ass2_Id
: Node_Id
) is
17283 if Nkind
(Parent
(Ass1_Id
)) = N_Parameter_Association
then
17284 Set_First_Named_Actual
(Parent
(Ass1_Id
), Ass2_Id
);
17286 end Set_Next_Actual
;
17288 ----------------------------------
17289 -- Set_Optimize_Alignment_Flags --
17290 ----------------------------------
17292 procedure Set_Optimize_Alignment_Flags
(E
: Entity_Id
) is
17294 if Optimize_Alignment
= 'S' then
17295 Set_Optimize_Alignment_Space
(E
);
17296 elsif Optimize_Alignment
= 'T' then
17297 Set_Optimize_Alignment_Time
(E
);
17299 end Set_Optimize_Alignment_Flags
;
17301 -----------------------
17302 -- Set_Public_Status --
17303 -----------------------
17305 procedure Set_Public_Status
(Id
: Entity_Id
) is
17306 S
: constant Entity_Id
:= Current_Scope
;
17308 function Within_HSS_Or_If
(E
: Entity_Id
) return Boolean;
17309 -- Determines if E is defined within handled statement sequence or
17310 -- an if statement, returns True if so, False otherwise.
17312 ----------------------
17313 -- Within_HSS_Or_If --
17314 ----------------------
17316 function Within_HSS_Or_If
(E
: Entity_Id
) return Boolean is
17319 N
:= Declaration_Node
(E
);
17326 elsif Nkind_In
(N
, N_Handled_Sequence_Of_Statements
,
17332 end Within_HSS_Or_If
;
17334 -- Start of processing for Set_Public_Status
17337 -- Everything in the scope of Standard is public
17339 if S
= Standard_Standard
then
17340 Set_Is_Public
(Id
);
17342 -- Entity is definitely not public if enclosing scope is not public
17344 elsif not Is_Public
(S
) then
17347 -- An object or function declaration that occurs in a handled sequence
17348 -- of statements or within an if statement is the declaration for a
17349 -- temporary object or local subprogram generated by the expander. It
17350 -- never needs to be made public and furthermore, making it public can
17351 -- cause back end problems.
17353 elsif Nkind_In
(Parent
(Id
), N_Object_Declaration
,
17354 N_Function_Specification
)
17355 and then Within_HSS_Or_If
(Id
)
17359 -- Entities in public packages or records are public
17361 elsif Ekind
(S
) = E_Package
or Is_Record_Type
(S
) then
17362 Set_Is_Public
(Id
);
17364 -- The bounds of an entry family declaration can generate object
17365 -- declarations that are visible to the back-end, e.g. in the
17366 -- the declaration of a composite type that contains tasks.
17368 elsif Is_Concurrent_Type
(S
)
17369 and then not Has_Completion
(S
)
17370 and then Nkind
(Parent
(Id
)) = N_Object_Declaration
17372 Set_Is_Public
(Id
);
17374 end Set_Public_Status
;
17376 -----------------------------
17377 -- Set_Referenced_Modified --
17378 -----------------------------
17380 procedure Set_Referenced_Modified
(N
: Node_Id
; Out_Param
: Boolean) is
17384 -- Deal with indexed or selected component where prefix is modified
17386 if Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
17387 Pref
:= Prefix
(N
);
17389 -- If prefix is access type, then it is the designated object that is
17390 -- being modified, which means we have no entity to set the flag on.
17392 if No
(Etype
(Pref
)) or else Is_Access_Type
(Etype
(Pref
)) then
17395 -- Otherwise chase the prefix
17398 Set_Referenced_Modified
(Pref
, Out_Param
);
17401 -- Otherwise see if we have an entity name (only other case to process)
17403 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
17404 Set_Referenced_As_LHS
(Entity
(N
), not Out_Param
);
17405 Set_Referenced_As_Out_Parameter
(Entity
(N
), Out_Param
);
17407 end Set_Referenced_Modified
;
17409 ----------------------------
17410 -- Set_Scope_Is_Transient --
17411 ----------------------------
17413 procedure Set_Scope_Is_Transient
(V
: Boolean := True) is
17415 Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Transient
:= V
;
17416 end Set_Scope_Is_Transient
;
17418 -------------------
17419 -- Set_Size_Info --
17420 -------------------
17422 procedure Set_Size_Info
(T1
, T2
: Entity_Id
) is
17424 -- We copy Esize, but not RM_Size, since in general RM_Size is
17425 -- subtype specific and does not get inherited by all subtypes.
17427 Set_Esize
(T1
, Esize
(T2
));
17428 Set_Has_Biased_Representation
(T1
, Has_Biased_Representation
(T2
));
17430 if Is_Discrete_Or_Fixed_Point_Type
(T1
)
17432 Is_Discrete_Or_Fixed_Point_Type
(T2
)
17434 Set_Is_Unsigned_Type
(T1
, Is_Unsigned_Type
(T2
));
17437 Set_Alignment
(T1
, Alignment
(T2
));
17440 --------------------
17441 -- Static_Boolean --
17442 --------------------
17444 function Static_Boolean
(N
: Node_Id
) return Uint
is
17446 Analyze_And_Resolve
(N
, Standard_Boolean
);
17449 or else Error_Posted
(N
)
17450 or else Etype
(N
) = Any_Type
17455 if Is_OK_Static_Expression
(N
) then
17456 if not Raises_Constraint_Error
(N
) then
17457 return Expr_Value
(N
);
17462 elsif Etype
(N
) = Any_Type
then
17466 Flag_Non_Static_Expr
17467 ("static boolean expression required here", N
);
17470 end Static_Boolean
;
17472 --------------------
17473 -- Static_Integer --
17474 --------------------
17476 function Static_Integer
(N
: Node_Id
) return Uint
is
17478 Analyze_And_Resolve
(N
, Any_Integer
);
17481 or else Error_Posted
(N
)
17482 or else Etype
(N
) = Any_Type
17487 if Is_OK_Static_Expression
(N
) then
17488 if not Raises_Constraint_Error
(N
) then
17489 return Expr_Value
(N
);
17494 elsif Etype
(N
) = Any_Type
then
17498 Flag_Non_Static_Expr
17499 ("static integer expression required here", N
);
17502 end Static_Integer
;
17504 --------------------------
17505 -- Statically_Different --
17506 --------------------------
17508 function Statically_Different
(E1
, E2
: Node_Id
) return Boolean is
17509 R1
: constant Node_Id
:= Get_Referenced_Object
(E1
);
17510 R2
: constant Node_Id
:= Get_Referenced_Object
(E2
);
17512 return Is_Entity_Name
(R1
)
17513 and then Is_Entity_Name
(R2
)
17514 and then Entity
(R1
) /= Entity
(R2
)
17515 and then not Is_Formal
(Entity
(R1
))
17516 and then not Is_Formal
(Entity
(R2
));
17517 end Statically_Different
;
17519 --------------------------------------
17520 -- Subject_To_Loop_Entry_Attributes --
17521 --------------------------------------
17523 function Subject_To_Loop_Entry_Attributes
(N
: Node_Id
) return Boolean is
17529 -- The expansion mechanism transform a loop subject to at least one
17530 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
17531 -- the conditional part.
17533 if Nkind_In
(Stmt
, N_Block_Statement
, N_If_Statement
)
17534 and then Nkind
(Original_Node
(N
)) = N_Loop_Statement
17536 Stmt
:= Original_Node
(N
);
17540 Nkind
(Stmt
) = N_Loop_Statement
17541 and then Present
(Identifier
(Stmt
))
17542 and then Present
(Entity
(Identifier
(Stmt
)))
17543 and then Has_Loop_Entry_Attributes
(Entity
(Identifier
(Stmt
)));
17544 end Subject_To_Loop_Entry_Attributes
;
17546 -----------------------------
17547 -- Subprogram_Access_Level --
17548 -----------------------------
17550 function Subprogram_Access_Level
(Subp
: Entity_Id
) return Uint
is
17552 if Present
(Alias
(Subp
)) then
17553 return Subprogram_Access_Level
(Alias
(Subp
));
17555 return Scope_Depth
(Enclosing_Dynamic_Scope
(Subp
));
17557 end Subprogram_Access_Level
;
17559 -------------------------------
17560 -- Support_Atomic_Primitives --
17561 -------------------------------
17563 function Support_Atomic_Primitives
(Typ
: Entity_Id
) return Boolean is
17567 -- Verify the alignment of Typ is known
17569 if not Known_Alignment
(Typ
) then
17573 if Known_Static_Esize
(Typ
) then
17574 Size
:= UI_To_Int
(Esize
(Typ
));
17576 -- If the Esize (Object_Size) is unknown at compile time, look at the
17577 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
17579 elsif Known_Static_RM_Size
(Typ
) then
17580 Size
:= UI_To_Int
(RM_Size
(Typ
));
17582 -- Otherwise, the size is considered to be unknown.
17588 -- Check that the size of the component is 8, 16, 32 or 64 bits and that
17589 -- Typ is properly aligned.
17592 when 8 |
16 |
32 |
64 =>
17593 return Size
= UI_To_Int
(Alignment
(Typ
)) * 8;
17597 end Support_Atomic_Primitives
;
17603 procedure Trace_Scope
(N
: Node_Id
; E
: Entity_Id
; Msg
: String) is
17605 if Debug_Flag_W
then
17606 for J
in 0 .. Scope_Stack
.Last
loop
17611 Write_Name
(Chars
(E
));
17612 Write_Str
(" from ");
17613 Write_Location
(Sloc
(N
));
17618 -----------------------
17619 -- Transfer_Entities --
17620 -----------------------
17622 procedure Transfer_Entities
(From
: Entity_Id
; To
: Entity_Id
) is
17623 procedure Set_Public_Status_Of
(Id
: Entity_Id
);
17624 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
17625 -- Set_Public_Status. If successfull and Id denotes a record type, set
17626 -- the Is_Public attribute of its fields.
17628 --------------------------
17629 -- Set_Public_Status_Of --
17630 --------------------------
17632 procedure Set_Public_Status_Of
(Id
: Entity_Id
) is
17636 if not Is_Public
(Id
) then
17637 Set_Public_Status
(Id
);
17639 -- When the input entity is a public record type, ensure that all
17640 -- its internal fields are also exposed to the linker. The fields
17641 -- of a class-wide type are never made public.
17644 and then Is_Record_Type
(Id
)
17645 and then not Is_Class_Wide_Type
(Id
)
17647 Field
:= First_Entity
(Id
);
17648 while Present
(Field
) loop
17649 Set_Is_Public
(Field
);
17650 Next_Entity
(Field
);
17654 end Set_Public_Status_Of
;
17658 Full_Id
: Entity_Id
;
17661 -- Start of processing for Transfer_Entities
17664 Id
:= First_Entity
(From
);
17666 if Present
(Id
) then
17668 -- Merge the entity chain of the source scope with that of the
17669 -- destination scope.
17671 if Present
(Last_Entity
(To
)) then
17672 Set_Next_Entity
(Last_Entity
(To
), Id
);
17674 Set_First_Entity
(To
, Id
);
17677 Set_Last_Entity
(To
, Last_Entity
(From
));
17679 -- Inspect the entities of the source scope and update their Scope
17682 while Present
(Id
) loop
17683 Set_Scope
(Id
, To
);
17684 Set_Public_Status_Of
(Id
);
17686 -- Handle an internally generated full view for a private type
17688 if Is_Private_Type
(Id
)
17689 and then Present
(Full_View
(Id
))
17690 and then Is_Itype
(Full_View
(Id
))
17692 Full_Id
:= Full_View
(Id
);
17694 Set_Scope
(Full_Id
, To
);
17695 Set_Public_Status_Of
(Full_Id
);
17701 Set_First_Entity
(From
, Empty
);
17702 Set_Last_Entity
(From
, Empty
);
17704 end Transfer_Entities
;
17706 -----------------------
17707 -- Type_Access_Level --
17708 -----------------------
17710 function Type_Access_Level
(Typ
: Entity_Id
) return Uint
is
17714 Btyp
:= Base_Type
(Typ
);
17716 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
17717 -- simply use the level where the type is declared. This is true for
17718 -- stand-alone object declarations, and for anonymous access types
17719 -- associated with components the level is the same as that of the
17720 -- enclosing composite type. However, special treatment is needed for
17721 -- the cases of access parameters, return objects of an anonymous access
17722 -- type, and, in Ada 95, access discriminants of limited types.
17724 if Is_Access_Type
(Btyp
) then
17725 if Ekind
(Btyp
) = E_Anonymous_Access_Type
then
17727 -- If the type is a nonlocal anonymous access type (such as for
17728 -- an access parameter) we treat it as being declared at the
17729 -- library level to ensure that names such as X.all'access don't
17730 -- fail static accessibility checks.
17732 if not Is_Local_Anonymous_Access
(Typ
) then
17733 return Scope_Depth
(Standard_Standard
);
17735 -- If this is a return object, the accessibility level is that of
17736 -- the result subtype of the enclosing function. The test here is
17737 -- little complicated, because we have to account for extended
17738 -- return statements that have been rewritten as blocks, in which
17739 -- case we have to find and the Is_Return_Object attribute of the
17740 -- itype's associated object. It would be nice to find a way to
17741 -- simplify this test, but it doesn't seem worthwhile to add a new
17742 -- flag just for purposes of this test. ???
17744 elsif Ekind
(Scope
(Btyp
)) = E_Return_Statement
17747 and then Nkind
(Associated_Node_For_Itype
(Btyp
)) =
17748 N_Object_Declaration
17749 and then Is_Return_Object
17750 (Defining_Identifier
17751 (Associated_Node_For_Itype
(Btyp
))))
17757 Scop
:= Scope
(Scope
(Btyp
));
17758 while Present
(Scop
) loop
17759 exit when Ekind
(Scop
) = E_Function
;
17760 Scop
:= Scope
(Scop
);
17763 -- Treat the return object's type as having the level of the
17764 -- function's result subtype (as per RM05-6.5(5.3/2)).
17766 return Type_Access_Level
(Etype
(Scop
));
17771 Btyp
:= Root_Type
(Btyp
);
17773 -- The accessibility level of anonymous access types associated with
17774 -- discriminants is that of the current instance of the type, and
17775 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
17777 -- AI-402: access discriminants have accessibility based on the
17778 -- object rather than the type in Ada 2005, so the above paragraph
17781 -- ??? Needs completion with rules from AI-416
17783 if Ada_Version
<= Ada_95
17784 and then Ekind
(Typ
) = E_Anonymous_Access_Type
17785 and then Present
(Associated_Node_For_Itype
(Typ
))
17786 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
17787 N_Discriminant_Specification
17789 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
)) + 1;
17793 -- Return library level for a generic formal type. This is done because
17794 -- RM(10.3.2) says that "The statically deeper relationship does not
17795 -- apply to ... a descendant of a generic formal type". Rather than
17796 -- checking at each point where a static accessibility check is
17797 -- performed to see if we are dealing with a formal type, this rule is
17798 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
17799 -- return extreme values for a formal type; Deepest_Type_Access_Level
17800 -- returns Int'Last. By calling the appropriate function from among the
17801 -- two, we ensure that the static accessibility check will pass if we
17802 -- happen to run into a formal type. More specifically, we should call
17803 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
17804 -- call occurs as part of a static accessibility check and the error
17805 -- case is the case where the type's level is too shallow (as opposed
17808 if Is_Generic_Type
(Root_Type
(Btyp
)) then
17809 return Scope_Depth
(Standard_Standard
);
17812 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
));
17813 end Type_Access_Level
;
17815 ------------------------------------
17816 -- Type_Without_Stream_Operation --
17817 ------------------------------------
17819 function Type_Without_Stream_Operation
17821 Op
: TSS_Name_Type
:= TSS_Null
) return Entity_Id
17823 BT
: constant Entity_Id
:= Base_Type
(T
);
17824 Op_Missing
: Boolean;
17827 if not Restriction_Active
(No_Default_Stream_Attributes
) then
17831 if Is_Elementary_Type
(T
) then
17832 if Op
= TSS_Null
then
17834 No
(TSS
(BT
, TSS_Stream_Read
))
17835 or else No
(TSS
(BT
, TSS_Stream_Write
));
17838 Op_Missing
:= No
(TSS
(BT
, Op
));
17847 elsif Is_Array_Type
(T
) then
17848 return Type_Without_Stream_Operation
(Component_Type
(T
), Op
);
17850 elsif Is_Record_Type
(T
) then
17856 Comp
:= First_Component
(T
);
17857 while Present
(Comp
) loop
17858 C_Typ
:= Type_Without_Stream_Operation
(Etype
(Comp
), Op
);
17860 if Present
(C_Typ
) then
17864 Next_Component
(Comp
);
17870 elsif Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
17871 return Type_Without_Stream_Operation
(Full_View
(T
), Op
);
17875 end Type_Without_Stream_Operation
;
17877 ----------------------------
17878 -- Unique_Defining_Entity --
17879 ----------------------------
17881 function Unique_Defining_Entity
(N
: Node_Id
) return Entity_Id
is
17883 return Unique_Entity
(Defining_Entity
(N
));
17884 end Unique_Defining_Entity
;
17886 -------------------
17887 -- Unique_Entity --
17888 -------------------
17890 function Unique_Entity
(E
: Entity_Id
) return Entity_Id
is
17891 U
: Entity_Id
:= E
;
17897 if Present
(Full_View
(E
)) then
17898 U
:= Full_View
(E
);
17902 if Present
(Full_View
(E
)) then
17903 U
:= Full_View
(E
);
17906 when E_Package_Body
=>
17909 if Nkind
(P
) = N_Defining_Program_Unit_Name
then
17913 U
:= Corresponding_Spec
(P
);
17915 when E_Subprogram_Body
=>
17918 if Nkind
(P
) = N_Defining_Program_Unit_Name
then
17924 if Nkind
(P
) = N_Subprogram_Body_Stub
then
17925 if Present
(Library_Unit
(P
)) then
17927 -- Get to the function or procedure (generic) entity through
17928 -- the body entity.
17931 Unique_Entity
(Defining_Entity
(Get_Body_From_Stub
(P
)));
17934 U
:= Corresponding_Spec
(P
);
17937 when Formal_Kind
=>
17938 if Present
(Spec_Entity
(E
)) then
17939 U
:= Spec_Entity
(E
);
17953 function Unique_Name
(E
: Entity_Id
) return String is
17955 -- Names of E_Subprogram_Body or E_Package_Body entities are not
17956 -- reliable, as they may not include the overloading suffix. Instead,
17957 -- when looking for the name of E or one of its enclosing scope, we get
17958 -- the name of the corresponding Unique_Entity.
17960 function Get_Scoped_Name
(E
: Entity_Id
) return String;
17961 -- Return the name of E prefixed by all the names of the scopes to which
17962 -- E belongs, except for Standard.
17964 ---------------------
17965 -- Get_Scoped_Name --
17966 ---------------------
17968 function Get_Scoped_Name
(E
: Entity_Id
) return String is
17969 Name
: constant String := Get_Name_String
(Chars
(E
));
17971 if Has_Fully_Qualified_Name
(E
)
17972 or else Scope
(E
) = Standard_Standard
17976 return Get_Scoped_Name
(Unique_Entity
(Scope
(E
))) & "__" & Name
;
17978 end Get_Scoped_Name
;
17980 -- Start of processing for Unique_Name
17983 if E
= Standard_Standard
then
17984 return Get_Name_String
(Name_Standard
);
17986 elsif Scope
(E
) = Standard_Standard
17987 and then not (Ekind
(E
) = E_Package
or else Is_Subprogram
(E
))
17989 return Get_Name_String
(Name_Standard
) & "__" &
17990 Get_Name_String
(Chars
(E
));
17992 elsif Ekind
(E
) = E_Enumeration_Literal
then
17993 return Unique_Name
(Etype
(E
)) & "__" & Get_Name_String
(Chars
(E
));
17996 return Get_Scoped_Name
(Unique_Entity
(E
));
18000 ---------------------
18001 -- Unit_Is_Visible --
18002 ---------------------
18004 function Unit_Is_Visible
(U
: Entity_Id
) return Boolean is
18005 Curr
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
18006 Curr_Entity
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
18008 function Unit_In_Parent_Context
(Par_Unit
: Node_Id
) return Boolean;
18009 -- For a child unit, check whether unit appears in a with_clause
18012 function Unit_In_Context
(Comp_Unit
: Node_Id
) return Boolean;
18013 -- Scan the context clause of one compilation unit looking for a
18014 -- with_clause for the unit in question.
18016 ----------------------------
18017 -- Unit_In_Parent_Context --
18018 ----------------------------
18020 function Unit_In_Parent_Context
(Par_Unit
: Node_Id
) return Boolean is
18022 if Unit_In_Context
(Par_Unit
) then
18025 elsif Is_Child_Unit
(Defining_Entity
(Unit
(Par_Unit
))) then
18026 return Unit_In_Parent_Context
(Parent_Spec
(Unit
(Par_Unit
)));
18031 end Unit_In_Parent_Context
;
18033 ---------------------
18034 -- Unit_In_Context --
18035 ---------------------
18037 function Unit_In_Context
(Comp_Unit
: Node_Id
) return Boolean is
18041 Clause
:= First
(Context_Items
(Comp_Unit
));
18042 while Present
(Clause
) loop
18043 if Nkind
(Clause
) = N_With_Clause
then
18044 if Library_Unit
(Clause
) = U
then
18047 -- The with_clause may denote a renaming of the unit we are
18048 -- looking for, eg. Text_IO which renames Ada.Text_IO.
18051 Renamed_Entity
(Entity
(Name
(Clause
))) =
18052 Defining_Entity
(Unit
(U
))
18062 end Unit_In_Context
;
18064 -- Start of processing for Unit_Is_Visible
18067 -- The currrent unit is directly visible
18072 elsif Unit_In_Context
(Curr
) then
18075 -- If the current unit is a body, check the context of the spec
18077 elsif Nkind
(Unit
(Curr
)) = N_Package_Body
18079 (Nkind
(Unit
(Curr
)) = N_Subprogram_Body
18080 and then not Acts_As_Spec
(Unit
(Curr
)))
18082 if Unit_In_Context
(Library_Unit
(Curr
)) then
18087 -- If the spec is a child unit, examine the parents
18089 if Is_Child_Unit
(Curr_Entity
) then
18090 if Nkind
(Unit
(Curr
)) in N_Unit_Body
then
18092 Unit_In_Parent_Context
18093 (Parent_Spec
(Unit
(Library_Unit
(Curr
))));
18095 return Unit_In_Parent_Context
(Parent_Spec
(Unit
(Curr
)));
18101 end Unit_Is_Visible
;
18103 ------------------------------
18104 -- Universal_Interpretation --
18105 ------------------------------
18107 function Universal_Interpretation
(Opnd
: Node_Id
) return Entity_Id
is
18108 Index
: Interp_Index
;
18112 -- The argument may be a formal parameter of an operator or subprogram
18113 -- with multiple interpretations, or else an expression for an actual.
18115 if Nkind
(Opnd
) = N_Defining_Identifier
18116 or else not Is_Overloaded
(Opnd
)
18118 if Etype
(Opnd
) = Universal_Integer
18119 or else Etype
(Opnd
) = Universal_Real
18121 return Etype
(Opnd
);
18127 Get_First_Interp
(Opnd
, Index
, It
);
18128 while Present
(It
.Typ
) loop
18129 if It
.Typ
= Universal_Integer
18130 or else It
.Typ
= Universal_Real
18135 Get_Next_Interp
(Index
, It
);
18140 end Universal_Interpretation
;
18146 function Unqualify
(Expr
: Node_Id
) return Node_Id
is
18148 -- Recurse to handle unlikely case of multiple levels of qualification
18150 if Nkind
(Expr
) = N_Qualified_Expression
then
18151 return Unqualify
(Expression
(Expr
));
18153 -- Normal case, not a qualified expression
18160 -----------------------
18161 -- Visible_Ancestors --
18162 -----------------------
18164 function Visible_Ancestors
(Typ
: Entity_Id
) return Elist_Id
is
18170 pragma Assert
(Is_Record_Type
(Typ
) and then Is_Tagged_Type
(Typ
));
18172 -- Collect all the parents and progenitors of Typ. If the full-view of
18173 -- private parents and progenitors is available then it is used to
18174 -- generate the list of visible ancestors; otherwise their partial
18175 -- view is added to the resulting list.
18180 Use_Full_View
=> True);
18184 Ifaces_List
=> List_2
,
18185 Exclude_Parents
=> True,
18186 Use_Full_View
=> True);
18188 -- Join the two lists. Avoid duplications because an interface may
18189 -- simultaneously be parent and progenitor of a type.
18191 Elmt
:= First_Elmt
(List_2
);
18192 while Present
(Elmt
) loop
18193 Append_Unique_Elmt
(Node
(Elmt
), List_1
);
18198 end Visible_Ancestors
;
18200 ------------------------
18201 -- Within_Ghost_Scope --
18202 ------------------------
18204 function Within_Ghost_Scope
18205 (Id
: Entity_Id
:= Current_Scope
) return Boolean
18210 -- Climb the scope stack looking for a Ghost scope
18213 while Present
(S
) and then S
/= Standard_Standard
loop
18214 if Is_Ghost_Entity
(S
) then
18222 end Within_Ghost_Scope
;
18224 ----------------------
18225 -- Within_Init_Proc --
18226 ----------------------
18228 function Within_Init_Proc
return Boolean is
18232 S
:= Current_Scope
;
18233 while not Is_Overloadable
(S
) loop
18234 if S
= Standard_Standard
then
18241 return Is_Init_Proc
(S
);
18242 end Within_Init_Proc
;
18248 function Within_Scope
(E
: Entity_Id
; S
: Entity_Id
) return Boolean is
18255 elsif SE
= Standard_Standard
then
18267 procedure Wrong_Type
(Expr
: Node_Id
; Expected_Type
: Entity_Id
) is
18268 Found_Type
: constant Entity_Id
:= First_Subtype
(Etype
(Expr
));
18269 Expec_Type
: constant Entity_Id
:= First_Subtype
(Expected_Type
);
18271 Matching_Field
: Entity_Id
;
18272 -- Entity to give a more precise suggestion on how to write a one-
18273 -- element positional aggregate.
18275 function Has_One_Matching_Field
return Boolean;
18276 -- Determines if Expec_Type is a record type with a single component or
18277 -- discriminant whose type matches the found type or is one dimensional
18278 -- array whose component type matches the found type. In the case of
18279 -- one discriminant, we ignore the variant parts. That's not accurate,
18280 -- but good enough for the warning.
18282 ----------------------------
18283 -- Has_One_Matching_Field --
18284 ----------------------------
18286 function Has_One_Matching_Field
return Boolean is
18290 Matching_Field
:= Empty
;
18292 if Is_Array_Type
(Expec_Type
)
18293 and then Number_Dimensions
(Expec_Type
) = 1
18294 and then Covers
(Etype
(Component_Type
(Expec_Type
)), Found_Type
)
18296 -- Use type name if available. This excludes multidimensional
18297 -- arrays and anonymous arrays.
18299 if Comes_From_Source
(Expec_Type
) then
18300 Matching_Field
:= Expec_Type
;
18302 -- For an assignment, use name of target
18304 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
18305 and then Is_Entity_Name
(Name
(Parent
(Expr
)))
18307 Matching_Field
:= Entity
(Name
(Parent
(Expr
)));
18312 elsif not Is_Record_Type
(Expec_Type
) then
18316 E
:= First_Entity
(Expec_Type
);
18321 elsif not Ekind_In
(E
, E_Discriminant
, E_Component
)
18322 or else Nam_In
(Chars
(E
), Name_uTag
, Name_uParent
)
18331 if not Covers
(Etype
(E
), Found_Type
) then
18334 elsif Present
(Next_Entity
(E
))
18335 and then (Ekind
(E
) = E_Component
18336 or else Ekind
(Next_Entity
(E
)) = E_Discriminant
)
18341 Matching_Field
:= E
;
18345 end Has_One_Matching_Field
;
18347 -- Start of processing for Wrong_Type
18350 -- Don't output message if either type is Any_Type, or if a message
18351 -- has already been posted for this node. We need to do the latter
18352 -- check explicitly (it is ordinarily done in Errout), because we
18353 -- are using ! to force the output of the error messages.
18355 if Expec_Type
= Any_Type
18356 or else Found_Type
= Any_Type
18357 or else Error_Posted
(Expr
)
18361 -- If one of the types is a Taft-Amendment type and the other it its
18362 -- completion, it must be an illegal use of a TAT in the spec, for
18363 -- which an error was already emitted. Avoid cascaded errors.
18365 elsif Is_Incomplete_Type
(Expec_Type
)
18366 and then Has_Completion_In_Body
(Expec_Type
)
18367 and then Full_View
(Expec_Type
) = Etype
(Expr
)
18371 elsif Is_Incomplete_Type
(Etype
(Expr
))
18372 and then Has_Completion_In_Body
(Etype
(Expr
))
18373 and then Full_View
(Etype
(Expr
)) = Expec_Type
18377 -- In an instance, there is an ongoing problem with completion of
18378 -- type derived from private types. Their structure is what Gigi
18379 -- expects, but the Etype is the parent type rather than the
18380 -- derived private type itself. Do not flag error in this case. The
18381 -- private completion is an entity without a parent, like an Itype.
18382 -- Similarly, full and partial views may be incorrect in the instance.
18383 -- There is no simple way to insure that it is consistent ???
18385 -- A similar view discrepancy can happen in an inlined body, for the
18386 -- same reason: inserted body may be outside of the original package
18387 -- and only partial views are visible at the point of insertion.
18389 elsif In_Instance
or else In_Inlined_Body
then
18390 if Etype
(Etype
(Expr
)) = Etype
(Expected_Type
)
18392 (Has_Private_Declaration
(Expected_Type
)
18393 or else Has_Private_Declaration
(Etype
(Expr
)))
18394 and then No
(Parent
(Expected_Type
))
18398 elsif Nkind
(Parent
(Expr
)) = N_Qualified_Expression
18399 and then Entity
(Subtype_Mark
(Parent
(Expr
))) = Expected_Type
18403 elsif Is_Private_Type
(Expected_Type
)
18404 and then Present
(Full_View
(Expected_Type
))
18405 and then Covers
(Full_View
(Expected_Type
), Etype
(Expr
))
18411 -- An interesting special check. If the expression is parenthesized
18412 -- and its type corresponds to the type of the sole component of the
18413 -- expected record type, or to the component type of the expected one
18414 -- dimensional array type, then assume we have a bad aggregate attempt.
18416 if Nkind
(Expr
) in N_Subexpr
18417 and then Paren_Count
(Expr
) /= 0
18418 and then Has_One_Matching_Field
18420 Error_Msg_N
("positional aggregate cannot have one component", Expr
);
18421 if Present
(Matching_Field
) then
18422 if Is_Array_Type
(Expec_Type
) then
18424 ("\write instead `&''First ='> ...`", Expr
, Matching_Field
);
18428 ("\write instead `& ='> ...`", Expr
, Matching_Field
);
18432 -- Another special check, if we are looking for a pool-specific access
18433 -- type and we found an E_Access_Attribute_Type, then we have the case
18434 -- of an Access attribute being used in a context which needs a pool-
18435 -- specific type, which is never allowed. The one extra check we make
18436 -- is that the expected designated type covers the Found_Type.
18438 elsif Is_Access_Type
(Expec_Type
)
18439 and then Ekind
(Found_Type
) = E_Access_Attribute_Type
18440 and then Ekind
(Base_Type
(Expec_Type
)) /= E_General_Access_Type
18441 and then Ekind
(Base_Type
(Expec_Type
)) /= E_Anonymous_Access_Type
18443 (Designated_Type
(Expec_Type
), Designated_Type
(Found_Type
))
18445 Error_Msg_N
-- CODEFIX
18446 ("result must be general access type!", Expr
);
18447 Error_Msg_NE
-- CODEFIX
18448 ("add ALL to }!", Expr
, Expec_Type
);
18450 -- Another special check, if the expected type is an integer type,
18451 -- but the expression is of type System.Address, and the parent is
18452 -- an addition or subtraction operation whose left operand is the
18453 -- expression in question and whose right operand is of an integral
18454 -- type, then this is an attempt at address arithmetic, so give
18455 -- appropriate message.
18457 elsif Is_Integer_Type
(Expec_Type
)
18458 and then Is_RTE
(Found_Type
, RE_Address
)
18459 and then Nkind_In
(Parent
(Expr
), N_Op_Add
, N_Op_Subtract
)
18460 and then Expr
= Left_Opnd
(Parent
(Expr
))
18461 and then Is_Integer_Type
(Etype
(Right_Opnd
(Parent
(Expr
))))
18464 ("address arithmetic not predefined in package System",
18467 ("\possible missing with/use of System.Storage_Elements",
18471 -- If the expected type is an anonymous access type, as for access
18472 -- parameters and discriminants, the error is on the designated types.
18474 elsif Ekind
(Expec_Type
) = E_Anonymous_Access_Type
then
18475 if Comes_From_Source
(Expec_Type
) then
18476 Error_Msg_NE
("expected}!", Expr
, Expec_Type
);
18479 ("expected an access type with designated}",
18480 Expr
, Designated_Type
(Expec_Type
));
18483 if Is_Access_Type
(Found_Type
)
18484 and then not Comes_From_Source
(Found_Type
)
18487 ("\\found an access type with designated}!",
18488 Expr
, Designated_Type
(Found_Type
));
18490 if From_Limited_With
(Found_Type
) then
18491 Error_Msg_NE
("\\found incomplete}!", Expr
, Found_Type
);
18492 Error_Msg_Qual_Level
:= 99;
18493 Error_Msg_NE
-- CODEFIX
18494 ("\\missing `WITH &;", Expr
, Scope
(Found_Type
));
18495 Error_Msg_Qual_Level
:= 0;
18497 Error_Msg_NE
("found}!", Expr
, Found_Type
);
18501 -- Normal case of one type found, some other type expected
18504 -- If the names of the two types are the same, see if some number
18505 -- of levels of qualification will help. Don't try more than three
18506 -- levels, and if we get to standard, it's no use (and probably
18507 -- represents an error in the compiler) Also do not bother with
18508 -- internal scope names.
18511 Expec_Scope
: Entity_Id
;
18512 Found_Scope
: Entity_Id
;
18515 Expec_Scope
:= Expec_Type
;
18516 Found_Scope
:= Found_Type
;
18518 for Levels
in Int
range 0 .. 3 loop
18519 if Chars
(Expec_Scope
) /= Chars
(Found_Scope
) then
18520 Error_Msg_Qual_Level
:= Levels
;
18524 Expec_Scope
:= Scope
(Expec_Scope
);
18525 Found_Scope
:= Scope
(Found_Scope
);
18527 exit when Expec_Scope
= Standard_Standard
18528 or else Found_Scope
= Standard_Standard
18529 or else not Comes_From_Source
(Expec_Scope
)
18530 or else not Comes_From_Source
(Found_Scope
);
18534 if Is_Record_Type
(Expec_Type
)
18535 and then Present
(Corresponding_Remote_Type
(Expec_Type
))
18537 Error_Msg_NE
("expected}!", Expr
,
18538 Corresponding_Remote_Type
(Expec_Type
));
18540 Error_Msg_NE
("expected}!", Expr
, Expec_Type
);
18543 if Is_Entity_Name
(Expr
)
18544 and then Is_Package_Or_Generic_Package
(Entity
(Expr
))
18546 Error_Msg_N
("\\found package name!", Expr
);
18548 elsif Is_Entity_Name
(Expr
)
18549 and then Ekind_In
(Entity
(Expr
), E_Procedure
, E_Generic_Procedure
)
18551 if Ekind
(Expec_Type
) = E_Access_Subprogram_Type
then
18553 ("found procedure name, possibly missing Access attribute!",
18557 ("\\found procedure name instead of function!", Expr
);
18560 elsif Nkind
(Expr
) = N_Function_Call
18561 and then Ekind
(Expec_Type
) = E_Access_Subprogram_Type
18562 and then Etype
(Designated_Type
(Expec_Type
)) = Etype
(Expr
)
18563 and then No
(Parameter_Associations
(Expr
))
18566 ("found function name, possibly missing Access attribute!",
18569 -- Catch common error: a prefix or infix operator which is not
18570 -- directly visible because the type isn't.
18572 elsif Nkind
(Expr
) in N_Op
18573 and then Is_Overloaded
(Expr
)
18574 and then not Is_Immediately_Visible
(Expec_Type
)
18575 and then not Is_Potentially_Use_Visible
(Expec_Type
)
18576 and then not In_Use
(Expec_Type
)
18577 and then Has_Compatible_Type
(Right_Opnd
(Expr
), Expec_Type
)
18580 ("operator of the type is not directly visible!", Expr
);
18582 elsif Ekind
(Found_Type
) = E_Void
18583 and then Present
(Parent
(Found_Type
))
18584 and then Nkind
(Parent
(Found_Type
)) = N_Full_Type_Declaration
18586 Error_Msg_NE
("\\found premature usage of}!", Expr
, Found_Type
);
18589 Error_Msg_NE
("\\found}!", Expr
, Found_Type
);
18592 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
18593 -- of the same modular type, and (M1 and M2) = 0 was intended.
18595 if Expec_Type
= Standard_Boolean
18596 and then Is_Modular_Integer_Type
(Found_Type
)
18597 and then Nkind_In
(Parent
(Expr
), N_Op_And
, N_Op_Or
, N_Op_Xor
)
18598 and then Nkind
(Right_Opnd
(Parent
(Expr
))) in N_Op_Compare
18601 Op
: constant Node_Id
:= Right_Opnd
(Parent
(Expr
));
18602 L
: constant Node_Id
:= Left_Opnd
(Op
);
18603 R
: constant Node_Id
:= Right_Opnd
(Op
);
18606 -- The case for the message is when the left operand of the
18607 -- comparison is the same modular type, or when it is an
18608 -- integer literal (or other universal integer expression),
18609 -- which would have been typed as the modular type if the
18610 -- parens had been there.
18612 if (Etype
(L
) = Found_Type
18614 Etype
(L
) = Universal_Integer
)
18615 and then Is_Integer_Type
(Etype
(R
))
18618 ("\\possible missing parens for modular operation", Expr
);
18623 -- Reset error message qualification indication
18625 Error_Msg_Qual_Level
:= 0;