1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Aggr
; use Exp_Aggr
;
32 with Exp_Atag
; use Exp_Atag
;
33 with Exp_Ch4
; use Exp_Ch4
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Ch11
; use Exp_Ch11
;
38 with Exp_Dbug
; use Exp_Dbug
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Dist
; use Exp_Dist
;
41 with Exp_Smem
; use Exp_Smem
;
42 with Exp_Strm
; use Exp_Strm
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Freeze
; use Freeze
;
46 with Namet
; use Namet
;
47 with Nlists
; use Nlists
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Attr
; use Sem_Attr
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch3
; use Sem_Ch3
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Disp
; use Sem_Disp
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Mech
; use Sem_Mech
;
64 with Sem_Res
; use Sem_Res
;
65 with Sem_SCIL
; use Sem_SCIL
;
66 with Sem_Type
; use Sem_Type
;
67 with Sem_Util
; use Sem_Util
;
68 with Sinfo
; use Sinfo
;
69 with Stand
; use Stand
;
70 with Snames
; use Snames
;
71 with Targparm
; use Targparm
;
72 with Tbuild
; use Tbuild
;
73 with Ttypes
; use Ttypes
;
74 with Validsw
; use Validsw
;
76 package body Exp_Ch3
is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
83 -- This is used when freezing a record type. It attempts to construct
84 -- more restrictive subtypes for discriminants so that the max size of
85 -- the record can be calculated more accurately. See the body of this
86 -- procedure for details.
88 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
89 -- Build initialization procedure for given array type. Nod is a node
90 -- used for attachment of any actions required in its construction.
91 -- It also supplies the source location used for the procedure.
93 function Build_Array_Invariant_Proc
95 Nod
: Node_Id
) return Node_Id
;
96 -- If the component of type of array type has invariants, build procedure
97 -- that checks invariant on all components of the array. Ada 2012 specifies
98 -- that an invariant on some type T must be applied to in-out parameters
99 -- and return values that include a part of type T. If the array type has
100 -- an otherwise specified invariant, the component check procedure is
101 -- called from within the user-specified invariant. Otherwise this becomes
102 -- the invariant procedure for the array type.
104 function Build_Record_Invariant_Proc
106 Nod
: Node_Id
) return Node_Id
;
107 -- Ditto for record types.
109 function Build_Discriminant_Formals
111 Use_Dl
: Boolean) return List_Id
;
112 -- This function uses the discriminants of a type to build a list of
113 -- formal parameters, used in Build_Init_Procedure among other places.
114 -- If the flag Use_Dl is set, the list is built using the already
115 -- defined discriminals of the type, as is the case for concurrent
116 -- types with discriminants. Otherwise new identifiers are created,
117 -- with the source names of the discriminants.
119 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
;
120 -- This function builds a static aggregate that can serve as the initial
121 -- value for an array type whose bounds are static, and whose component
122 -- type is a composite type that has a static equivalent aggregate.
123 -- The equivalent array aggregate is used both for object initialization
124 -- and for component initialization, when used in the following function.
126 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
;
127 -- This function builds a static aggregate that can serve as the initial
128 -- value for a record type whose components are scalar and initialized
129 -- with compile-time values, or arrays with similar initialization or
130 -- defaults. When possible, initialization of an object of the type can
131 -- be achieved by using a copy of the aggregate as an initial value, thus
132 -- removing the implicit call that would otherwise constitute elaboration
135 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
);
136 -- Build record initialization procedure. N is the type declaration
137 -- node, and Rec_Ent is the corresponding entity for the record type.
139 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
140 -- Build assignment procedure for one-dimensional arrays of controlled
141 -- types. Other array and slice assignments are expanded in-line, but
142 -- the code expansion for controlled components (when control actions
143 -- are active) can lead to very large blocks that GCC3 handles poorly.
145 procedure Build_Untagged_Equality
(Typ
: Entity_Id
);
146 -- AI05-0123: Equality on untagged records composes. This procedure
147 -- builds the equality routine for an untagged record that has components
148 -- of a record type that has user-defined primitive equality operations.
149 -- The resulting operation is a TSS subprogram.
151 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
152 -- Create An Equality function for the untagged variant record Typ and
153 -- attach it to the TSS list
155 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
156 -- Check that if a limited extension has a parent with user-defined stream
157 -- attributes, and does not itself have user-defined stream-attributes,
158 -- then any limited component of the extension also has the corresponding
159 -- user-defined stream attributes.
161 procedure Clean_Task_Names
163 Proc_Id
: Entity_Id
);
164 -- If an initialization procedure includes calls to generate names
165 -- for task subcomponents, indicate that secondary stack cleanup is
166 -- needed after an initialization. Typ is the component type, and Proc_Id
167 -- the initialization procedure for the enclosing composite type.
169 procedure Expand_Freeze_Array_Type
(N
: Node_Id
);
170 -- Freeze an array type. Deals with building the initialization procedure,
171 -- creating the packed array type for a packed array and also with the
172 -- creation of the controlling procedures for the controlled case. The
173 -- argument N is the N_Freeze_Entity node for the type.
175 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
);
176 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
177 -- of finalizing controlled derivations from the class-wide's root type.
179 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
);
180 -- Freeze enumeration type with non-standard representation. Builds the
181 -- array and function needed to convert between enumeration pos and
182 -- enumeration representation values. N is the N_Freeze_Entity node
185 procedure Expand_Freeze_Record_Type
(N
: Node_Id
);
186 -- Freeze record type. Builds all necessary discriminant checking
187 -- and other ancillary functions, and builds dispatch tables where
188 -- needed. The argument N is the N_Freeze_Entity node. This processing
189 -- applies only to E_Record_Type entities, not to class wide types,
190 -- record subtypes, or private types.
192 procedure Expand_Tagged_Root
(T
: Entity_Id
);
193 -- Add a field _Tag at the beginning of the record. This field carries
194 -- the value of the access to the Dispatch table. This procedure is only
195 -- called on root type, the _Tag field being inherited by the descendants.
197 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
198 -- Treat user-defined stream operations as renaming_as_body if the
199 -- subprogram they rename is not frozen when the type is frozen.
201 procedure Insert_Component_Invariant_Checks
205 -- If a composite type has invariants and also has components with defined
206 -- invariants. the component invariant procedure is inserted into the user-
207 -- defined invariant procedure and added to the checks to be performed.
209 procedure Initialization_Warning
(E
: Entity_Id
);
210 -- If static elaboration of the package is requested, indicate
211 -- when a type does meet the conditions for static initialization. If
212 -- E is a type, it has components that have no static initialization.
213 -- if E is an entity, its initial expression is not compile-time known.
215 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
216 -- This function builds the list of formals for an initialization routine.
217 -- The first formal is always _Init with the given type. For task value
218 -- record types and types containing tasks, three additional formals are
221 -- _Master : Master_Id
222 -- _Chain : in out Activation_Chain
223 -- _Task_Name : String
225 -- The caller must append additional entries for discriminants if required.
227 function In_Runtime
(E
: Entity_Id
) return Boolean;
228 -- Check if E is defined in the RTL (in a child of Ada or System). Used
229 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
231 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean;
232 -- Returns true if Prim is a user defined equality function
234 function Make_Eq_Body
236 Eq_Name
: Name_Id
) return Node_Id
;
237 -- Build the body of a primitive equality operation for a tagged record
238 -- type, or in Ada 2012 for any record type that has components with a
239 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
241 function Make_Eq_Case
244 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
;
245 -- Building block for variant record equality. Defined to share the code
246 -- between the tagged and untagged case. Given a Component_List node CL,
247 -- it generates an 'if' followed by a 'case' statement that compares all
248 -- components of local temporaries named X and Y (that are declared as
249 -- formals at some upper level). E provides the Sloc to be used for the
252 -- IF E is an unchecked_union, Discrs is the list of formals created for
253 -- the inferred discriminants of one operand. These formals are used in
254 -- the generated case statements for each variant of the unchecked union.
258 L
: List_Id
) return Node_Id
;
259 -- Building block for variant record equality. Defined to share the code
260 -- between the tagged and untagged case. Given the list of components
261 -- (or discriminants) L, it generates a return statement that compares all
262 -- components of local temporaries named X and Y (that are declared as
263 -- formals at some upper level). E provides the Sloc to be used for the
266 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
;
267 -- Search for a renaming of the inequality dispatching primitive of
268 -- this tagged type. If found then build and return the corresponding
269 -- rename-as-body inequality subprogram; otherwise return Empty.
271 procedure Make_Predefined_Primitive_Specs
272 (Tag_Typ
: Entity_Id
;
273 Predef_List
: out List_Id
;
274 Renamed_Eq
: out Entity_Id
);
275 -- Create a list with the specs of the predefined primitive operations.
276 -- For tagged types that are interfaces all these primitives are defined
279 -- The following entries are present for all tagged types, and provide
280 -- the results of the corresponding attribute applied to the object.
281 -- Dispatching is required in general, since the result of the attribute
282 -- will vary with the actual object subtype.
284 -- _size provides result of 'Size attribute
285 -- typSR provides result of 'Read attribute
286 -- typSW provides result of 'Write attribute
287 -- typSI provides result of 'Input attribute
288 -- typSO provides result of 'Output attribute
290 -- The following entries are additionally present for non-limited tagged
291 -- types, and implement additional dispatching operations for predefined
294 -- _equality implements "=" operator
295 -- _assign implements assignment operation
296 -- typDF implements deep finalization
297 -- typDA implements deep adjust
299 -- The latter two are empty procedures unless the type contains some
300 -- controlled components that require finalization actions (the deep
301 -- in the name refers to the fact that the action applies to components).
303 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
304 -- returns the value Empty, or else the defining unit name for the
305 -- predefined equality function in the case where the type has a primitive
306 -- operation that is a renaming of predefined equality (but only if there
307 -- is also an overriding user-defined equality function). The returned
308 -- Renamed_Eq will be passed to the corresponding parameter of
309 -- Predefined_Primitive_Bodies.
311 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
312 -- returns True if there are representation clauses for type T that are not
313 -- inherited. If the result is false, the init_proc and the discriminant
314 -- checking functions of the parent can be reused by a derived type.
316 procedure Make_Controlling_Function_Wrappers
317 (Tag_Typ
: Entity_Id
;
318 Decl_List
: out List_Id
;
319 Body_List
: out List_Id
);
320 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
321 -- associated with inherited functions with controlling results which
322 -- are not overridden. The body of each wrapper function consists solely
323 -- of a return statement whose expression is an extension aggregate
324 -- invoking the inherited subprogram's parent subprogram and extended
325 -- with a null association list.
327 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
;
328 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
329 -- null procedures inherited from an interface type that have not been
330 -- overridden. Only one null procedure will be created for a given set of
331 -- inherited null procedures with homographic profiles.
333 function Predef_Spec_Or_Body
338 Ret_Type
: Entity_Id
:= Empty
;
339 For_Body
: Boolean := False) return Node_Id
;
340 -- This function generates the appropriate expansion for a predefined
341 -- primitive operation specified by its name, parameter profile and
342 -- return type (Empty means this is a procedure). If For_Body is false,
343 -- then the returned node is a subprogram declaration. If For_Body is
344 -- true, then the returned node is a empty subprogram body containing
345 -- no declarations and no statements.
347 function Predef_Stream_Attr_Spec
350 Name
: TSS_Name_Type
;
351 For_Body
: Boolean := False) return Node_Id
;
352 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
353 -- input and output attribute whose specs are constructed in Exp_Strm.
355 function Predef_Deep_Spec
358 Name
: TSS_Name_Type
;
359 For_Body
: Boolean := False) return Node_Id
;
360 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
361 -- and _deep_finalize
363 function Predefined_Primitive_Bodies
364 (Tag_Typ
: Entity_Id
;
365 Renamed_Eq
: Entity_Id
) return List_Id
;
366 -- Create the bodies of the predefined primitives that are described in
367 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
368 -- the defining unit name of the type's predefined equality as returned
369 -- by Make_Predefined_Primitive_Specs.
371 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
372 -- Freeze entities of all predefined primitive operations. This is needed
373 -- because the bodies of these operations do not normally do any freezing.
375 function Stream_Operation_OK
377 Operation
: TSS_Name_Type
) return Boolean;
378 -- Check whether the named stream operation must be emitted for a given
379 -- type. The rules for inheritance of stream attributes by type extensions
380 -- are enforced by this function. Furthermore, various restrictions prevent
381 -- the generation of these operations, as a useful optimization or for
382 -- certification purposes and to save unnecessary generated code.
384 --------------------------
385 -- Adjust_Discriminants --
386 --------------------------
388 -- This procedure attempts to define subtypes for discriminants that are
389 -- more restrictive than those declared. Such a replacement is possible if
390 -- we can demonstrate that values outside the restricted range would cause
391 -- constraint errors in any case. The advantage of restricting the
392 -- discriminant types in this way is that the maximum size of the variant
393 -- record can be calculated more conservatively.
395 -- An example of a situation in which we can perform this type of
396 -- restriction is the following:
398 -- subtype B is range 1 .. 10;
399 -- type Q is array (B range <>) of Integer;
401 -- type V (N : Natural) is record
405 -- In this situation, we can restrict the upper bound of N to 10, since
406 -- any larger value would cause a constraint error in any case.
408 -- There are many situations in which such restriction is possible, but
409 -- for now, we just look for cases like the above, where the component
410 -- in question is a one dimensional array whose upper bound is one of
411 -- the record discriminants. Also the component must not be part of
412 -- any variant part, since then the component does not always exist.
414 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
415 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
432 Comp
:= First_Component
(Rtype
);
433 while Present
(Comp
) loop
435 -- If our parent is a variant, quit, we do not look at components
436 -- that are in variant parts, because they may not always exist.
438 P
:= Parent
(Comp
); -- component declaration
439 P
:= Parent
(P
); -- component list
441 exit when Nkind
(Parent
(P
)) = N_Variant
;
443 -- We are looking for a one dimensional array type
445 Ctyp
:= Etype
(Comp
);
447 if not Is_Array_Type
(Ctyp
) or else Number_Dimensions
(Ctyp
) > 1 then
451 -- The lower bound must be constant, and the upper bound is a
452 -- discriminant (which is a discriminant of the current record).
454 Ityp
:= Etype
(First_Index
(Ctyp
));
455 Lo
:= Type_Low_Bound
(Ityp
);
456 Hi
:= Type_High_Bound
(Ityp
);
458 if not Compile_Time_Known_Value
(Lo
)
459 or else Nkind
(Hi
) /= N_Identifier
460 or else No
(Entity
(Hi
))
461 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
466 -- We have an array with appropriate bounds
468 Loval
:= Expr_Value
(Lo
);
469 Discr
:= Entity
(Hi
);
470 Dtyp
:= Etype
(Discr
);
472 -- See if the discriminant has a known upper bound
474 Dhi
:= Type_High_Bound
(Dtyp
);
476 if not Compile_Time_Known_Value
(Dhi
) then
480 Dhiv
:= Expr_Value
(Dhi
);
482 -- See if base type of component array has known upper bound
484 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
486 if not Compile_Time_Known_Value
(Ahi
) then
490 Ahiv
:= Expr_Value
(Ahi
);
492 -- The condition for doing the restriction is that the high bound
493 -- of the discriminant is greater than the low bound of the array,
494 -- and is also greater than the high bound of the base type index.
496 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
498 -- We can reset the upper bound of the discriminant type to
499 -- whichever is larger, the low bound of the component, or
500 -- the high bound of the base type array index.
502 -- We build a subtype that is declared as
504 -- subtype Tnn is discr_type range discr_type'First .. max;
506 -- And insert this declaration into the tree. The type of the
507 -- discriminant is then reset to this more restricted subtype.
509 Tnn
:= Make_Temporary
(Loc
, 'T');
511 Insert_Action
(Declaration_Node
(Rtype
),
512 Make_Subtype_Declaration
(Loc
,
513 Defining_Identifier
=> Tnn
,
514 Subtype_Indication
=>
515 Make_Subtype_Indication
(Loc
,
516 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
518 Make_Range_Constraint
(Loc
,
522 Make_Attribute_Reference
(Loc
,
523 Attribute_Name
=> Name_First
,
524 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
526 Make_Integer_Literal
(Loc
,
527 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
529 Set_Etype
(Discr
, Tnn
);
533 Next_Component
(Comp
);
535 end Adjust_Discriminants
;
537 ---------------------------
538 -- Build_Array_Init_Proc --
539 ---------------------------
541 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
542 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
543 Body_Stmts
: List_Id
;
544 Has_Default_Init
: Boolean;
545 Index_List
: List_Id
;
549 function Init_Component
return List_Id
;
550 -- Create one statement to initialize one array component, designated
551 -- by a full set of indexes.
553 function Init_One_Dimension
(N
: Int
) return List_Id
;
554 -- Create loop to initialize one dimension of the array. The single
555 -- statement in the loop body initializes the inner dimensions if any,
556 -- or else the single component. Note that this procedure is called
557 -- recursively, with N being the dimension to be initialized. A call
558 -- with N greater than the number of dimensions simply generates the
559 -- component initialization, terminating the recursion.
565 function Init_Component
return List_Id
is
570 Make_Indexed_Component
(Loc
,
571 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
572 Expressions
=> Index_List
);
574 if Has_Default_Aspect
(A_Type
) then
575 Set_Assignment_OK
(Comp
);
577 Make_Assignment_Statement
(Loc
,
580 Convert_To
(Comp_Type
,
581 Default_Aspect_Component_Value
(First_Subtype
(A_Type
)))));
583 elsif Needs_Simple_Initialization
(Comp_Type
) then
584 Set_Assignment_OK
(Comp
);
586 Make_Assignment_Statement
(Loc
,
590 (Comp_Type
, Nod
, Component_Size
(A_Type
))));
593 Clean_Task_Names
(Comp_Type
, Proc_Id
);
595 Build_Initialization_Call
596 (Loc
, Comp
, Comp_Type
,
597 In_Init_Proc
=> True,
598 Enclos_Type
=> A_Type
);
602 ------------------------
603 -- Init_One_Dimension --
604 ------------------------
606 function Init_One_Dimension
(N
: Int
) return List_Id
is
610 -- If the component does not need initializing, then there is nothing
611 -- to do here, so we return a null body. This occurs when generating
612 -- the dummy Init_Proc needed for Initialize_Scalars processing.
614 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
615 and then not Needs_Simple_Initialization
(Comp_Type
)
616 and then not Has_Task
(Comp_Type
)
617 and then not Has_Default_Aspect
(A_Type
)
619 return New_List
(Make_Null_Statement
(Loc
));
621 -- If all dimensions dealt with, we simply initialize the component
623 elsif N
> Number_Dimensions
(A_Type
) then
624 return Init_Component
;
626 -- Here we generate the required loop
630 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
632 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
635 Make_Implicit_Loop_Statement
(Nod
,
638 Make_Iteration_Scheme
(Loc
,
639 Loop_Parameter_Specification
=>
640 Make_Loop_Parameter_Specification
(Loc
,
641 Defining_Identifier
=> Index
,
642 Discrete_Subtype_Definition
=>
643 Make_Attribute_Reference
(Loc
,
645 Make_Identifier
(Loc
, Name_uInit
),
646 Attribute_Name
=> Name_Range
,
647 Expressions
=> New_List
(
648 Make_Integer_Literal
(Loc
, N
))))),
649 Statements
=> Init_One_Dimension
(N
+ 1)));
651 end Init_One_Dimension
;
653 -- Start of processing for Build_Array_Init_Proc
656 -- The init proc is created when analyzing the freeze node for the type,
657 -- but it properly belongs with the array type declaration. However, if
658 -- the freeze node is for a subtype of a type declared in another unit
659 -- it seems preferable to use the freeze node as the source location of
660 -- the init proc. In any case this is preferable for gcov usage, and
661 -- the Sloc is not otherwise used by the compiler.
663 if In_Open_Scopes
(Scope
(A_Type
)) then
664 Loc
:= Sloc
(A_Type
);
669 -- Nothing to generate in the following cases:
671 -- 1. Initialization is suppressed for the type
672 -- 2. The type is a value type, in the CIL sense.
673 -- 3. The type has CIL/JVM convention.
674 -- 4. An initialization already exists for the base type
676 if Initialization_Suppressed
(A_Type
)
677 or else Is_Value_Type
(Comp_Type
)
678 or else Convention
(A_Type
) = Convention_CIL
679 or else Convention
(A_Type
) = Convention_Java
680 or else Present
(Base_Init_Proc
(A_Type
))
685 Index_List
:= New_List
;
687 -- We need an initialization procedure if any of the following is true:
689 -- 1. The component type has an initialization procedure
690 -- 2. The component type needs simple initialization
691 -- 3. Tasks are present
692 -- 4. The type is marked as a public entity
693 -- 5. The array type has a Default_Component_Value aspect
695 -- The reason for the public entity test is to deal properly with the
696 -- Initialize_Scalars pragma. This pragma can be set in the client and
697 -- not in the declaring package, this means the client will make a call
698 -- to the initialization procedure (because one of conditions 1-3 must
699 -- apply in this case), and we must generate a procedure (even if it is
700 -- null) to satisfy the call in this case.
702 -- Exception: do not build an array init_proc for a type whose root
703 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
704 -- is no place to put the code, and in any case we handle initialization
705 -- of such types (in the Initialize_Scalars case, that's the only time
706 -- the issue arises) in a special manner anyway which does not need an
709 Has_Default_Init
:= Has_Non_Null_Base_Init_Proc
(Comp_Type
)
710 or else Needs_Simple_Initialization
(Comp_Type
)
711 or else Has_Task
(Comp_Type
)
712 or else Has_Default_Aspect
(A_Type
);
715 or else (not Restriction_Active
(No_Initialize_Scalars
)
716 and then Is_Public
(A_Type
)
717 and then not Is_Standard_String_Type
(A_Type
))
720 Make_Defining_Identifier
(Loc
,
721 Chars
=> Make_Init_Proc_Name
(A_Type
));
723 -- If No_Default_Initialization restriction is active, then we don't
724 -- want to build an init_proc, but we need to mark that an init_proc
725 -- would be needed if this restriction was not active (so that we can
726 -- detect attempts to call it), so set a dummy init_proc in place.
727 -- This is only done though when actual default initialization is
728 -- needed (and not done when only Is_Public is True), since otherwise
729 -- objects such as arrays of scalars could be wrongly flagged as
730 -- violating the restriction.
732 if Restriction_Active
(No_Default_Initialization
) then
733 if Has_Default_Init
then
734 Set_Init_Proc
(A_Type
, Proc_Id
);
740 Body_Stmts
:= Init_One_Dimension
(1);
743 Make_Subprogram_Body
(Loc
,
745 Make_Procedure_Specification
(Loc
,
746 Defining_Unit_Name
=> Proc_Id
,
747 Parameter_Specifications
=> Init_Formals
(A_Type
)),
748 Declarations
=> New_List
,
749 Handled_Statement_Sequence
=>
750 Make_Handled_Sequence_Of_Statements
(Loc
,
751 Statements
=> Body_Stmts
)));
753 Set_Ekind
(Proc_Id
, E_Procedure
);
754 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
755 Set_Is_Internal
(Proc_Id
);
756 Set_Has_Completion
(Proc_Id
);
758 if not Debug_Generated_Code
then
759 Set_Debug_Info_Off
(Proc_Id
);
762 -- Set inlined unless controlled stuff or tasks around, in which
763 -- case we do not want to inline, because nested stuff may cause
764 -- difficulties in inter-unit inlining, and furthermore there is
765 -- in any case no point in inlining such complex init procs.
767 if not Has_Task
(Proc_Id
)
768 and then not Needs_Finalization
(Proc_Id
)
770 Set_Is_Inlined
(Proc_Id
);
773 -- Associate Init_Proc with type, and determine if the procedure
774 -- is null (happens because of the Initialize_Scalars pragma case,
775 -- where we have to generate a null procedure in case it is called
776 -- by a client with Initialize_Scalars set). Such procedures have
777 -- to be generated, but do not have to be called, so we mark them
778 -- as null to suppress the call.
780 Set_Init_Proc
(A_Type
, Proc_Id
);
782 if List_Length
(Body_Stmts
) = 1
784 -- We must skip SCIL nodes because they may have been added to this
785 -- list by Insert_Actions.
787 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
789 Set_Is_Null_Init_Proc
(Proc_Id
);
792 -- Try to build a static aggregate to statically initialize
793 -- objects of the type. This can only be done for constrained
794 -- one-dimensional arrays with static bounds.
796 Set_Static_Initialization
798 Build_Equivalent_Array_Aggregate
(First_Subtype
(A_Type
)));
801 end Build_Array_Init_Proc
;
803 --------------------------------
804 -- Build_Array_Invariant_Proc --
805 --------------------------------
807 function Build_Array_Invariant_Proc
809 Nod
: Node_Id
) return Node_Id
811 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
813 Object_Name
: constant Name_Id
:= New_Internal_Name
('I');
814 -- Name for argument of invariant procedure
816 Object_Entity
: constant Node_Id
:=
817 Make_Defining_Identifier
(Loc
, Object_Name
);
818 -- The procedure declaration entity for the argument
820 Body_Stmts
: List_Id
;
821 Index_List
: List_Id
;
825 function Build_Component_Invariant_Call
return Node_Id
;
826 -- Create one statement to verify invariant on one array component,
827 -- designated by a full set of indexes.
829 function Check_One_Dimension
(N
: Int
) return List_Id
;
830 -- Create loop to check on one dimension of the array. The single
831 -- statement in the loop body checks the inner dimensions if any, or
832 -- else a single component. This procedure is called recursively, with
833 -- N being the dimension to be initialized. A call with N greater than
834 -- the number of dimensions generates the component initialization
835 -- and terminates the recursion.
837 ------------------------------------
838 -- Build_Component_Invariant_Call --
839 ------------------------------------
841 function Build_Component_Invariant_Call
return Node_Id
is
845 Make_Indexed_Component
(Loc
,
846 Prefix
=> New_Occurrence_Of
(Object_Entity
, Loc
),
847 Expressions
=> Index_List
);
849 Make_Procedure_Call_Statement
(Loc
,
852 (Invariant_Procedure
(Component_Type
(A_Type
)), Loc
),
853 Parameter_Associations
=> New_List
(Comp
));
854 end Build_Component_Invariant_Call
;
856 -------------------------
857 -- Check_One_Dimension --
858 -------------------------
860 function Check_One_Dimension
(N
: Int
) return List_Id
is
864 -- If all dimensions dealt with, we simply check invariant of the
867 if N
> Number_Dimensions
(A_Type
) then
868 return New_List
(Build_Component_Invariant_Call
);
870 -- Else generate one loop and recurse
874 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
876 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
879 Make_Implicit_Loop_Statement
(Nod
,
882 Make_Iteration_Scheme
(Loc
,
883 Loop_Parameter_Specification
=>
884 Make_Loop_Parameter_Specification
(Loc
,
885 Defining_Identifier
=> Index
,
886 Discrete_Subtype_Definition
=>
887 Make_Attribute_Reference
(Loc
,
889 New_Occurrence_Of
(Object_Entity
, Loc
),
890 Attribute_Name
=> Name_Range
,
891 Expressions
=> New_List
(
892 Make_Integer_Literal
(Loc
, N
))))),
893 Statements
=> Check_One_Dimension
(N
+ 1)));
895 end Check_One_Dimension
;
897 -- Start of processing for Build_Array_Invariant_Proc
900 Index_List
:= New_List
;
903 Make_Defining_Identifier
(Loc
,
904 Chars
=> New_External_Name
(Chars
(A_Type
), "CInvariant"));
906 Body_Stmts
:= Check_One_Dimension
(1);
909 Make_Subprogram_Body
(Loc
,
911 Make_Procedure_Specification
(Loc
,
912 Defining_Unit_Name
=> Proc_Id
,
913 Parameter_Specifications
=> New_List
(
914 Make_Parameter_Specification
(Loc
,
915 Defining_Identifier
=> Object_Entity
,
916 Parameter_Type
=> New_Occurrence_Of
(A_Type
, Loc
)))),
918 Declarations
=> Empty_List
,
919 Handled_Statement_Sequence
=>
920 Make_Handled_Sequence_Of_Statements
(Loc
,
921 Statements
=> Body_Stmts
));
923 Set_Ekind
(Proc_Id
, E_Procedure
);
924 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
925 Set_Is_Internal
(Proc_Id
);
926 Set_Has_Completion
(Proc_Id
);
928 if not Debug_Generated_Code
then
929 Set_Debug_Info_Off
(Proc_Id
);
933 end Build_Array_Invariant_Proc
;
935 --------------------------------
936 -- Build_Discr_Checking_Funcs --
937 --------------------------------
939 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
942 Enclosing_Func_Id
: Entity_Id
;
947 function Build_Case_Statement
948 (Case_Id
: Entity_Id
;
949 Variant
: Node_Id
) return Node_Id
;
950 -- Build a case statement containing only two alternatives. The first
951 -- alternative corresponds exactly to the discrete choices given on the
952 -- variant with contains the components that we are generating the
953 -- checks for. If the discriminant is one of these return False. The
954 -- second alternative is an OTHERS choice that will return True
955 -- indicating the discriminant did not match.
957 function Build_Dcheck_Function
958 (Case_Id
: Entity_Id
;
959 Variant
: Node_Id
) return Entity_Id
;
960 -- Build the discriminant checking function for a given variant
962 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
963 -- Builds the discriminant checking function for each variant of the
964 -- given variant part of the record type.
966 --------------------------
967 -- Build_Case_Statement --
968 --------------------------
970 function Build_Case_Statement
971 (Case_Id
: Entity_Id
;
972 Variant
: Node_Id
) return Node_Id
974 Alt_List
: constant List_Id
:= New_List
;
975 Actuals_List
: List_Id
;
977 Case_Alt_Node
: Node_Id
;
979 Choice_List
: List_Id
;
981 Return_Node
: Node_Id
;
984 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
986 -- Replace the discriminant which controls the variant with the name
987 -- of the formal of the checking function.
989 Set_Expression
(Case_Node
, Make_Identifier
(Loc
, Chars
(Case_Id
)));
991 Choice
:= First
(Discrete_Choices
(Variant
));
993 if Nkind
(Choice
) = N_Others_Choice
then
994 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
996 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
999 if not Is_Empty_List
(Choice_List
) then
1000 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
1001 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
1003 -- In case this is a nested variant, we need to return the result
1004 -- of the discriminant checking function for the immediately
1005 -- enclosing variant.
1007 if Present
(Enclosing_Func_Id
) then
1008 Actuals_List
:= New_List
;
1010 D
:= First_Discriminant
(Rec_Id
);
1011 while Present
(D
) loop
1012 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
1013 Next_Discriminant
(D
);
1017 Make_Simple_Return_Statement
(Loc
,
1019 Make_Function_Call
(Loc
,
1021 New_Occurrence_Of
(Enclosing_Func_Id
, Loc
),
1022 Parameter_Associations
=>
1027 Make_Simple_Return_Statement
(Loc
,
1029 New_Occurrence_Of
(Standard_False
, Loc
));
1032 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
1033 Append
(Case_Alt_Node
, Alt_List
);
1036 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
1037 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
1038 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
1041 Make_Simple_Return_Statement
(Loc
,
1043 New_Occurrence_Of
(Standard_True
, Loc
));
1045 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
1046 Append
(Case_Alt_Node
, Alt_List
);
1048 Set_Alternatives
(Case_Node
, Alt_List
);
1050 end Build_Case_Statement
;
1052 ---------------------------
1053 -- Build_Dcheck_Function --
1054 ---------------------------
1056 function Build_Dcheck_Function
1057 (Case_Id
: Entity_Id
;
1058 Variant
: Node_Id
) return Entity_Id
1060 Body_Node
: Node_Id
;
1061 Func_Id
: Entity_Id
;
1062 Parameter_List
: List_Id
;
1063 Spec_Node
: Node_Id
;
1066 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1067 Sequence
:= Sequence
+ 1;
1070 Make_Defining_Identifier
(Loc
,
1071 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
1072 Set_Is_Discriminant_Check_Function
(Func_Id
);
1074 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
1075 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
1077 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
1079 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
1080 Set_Result_Definition
(Spec_Node
,
1081 New_Occurrence_Of
(Standard_Boolean
, Loc
));
1082 Set_Specification
(Body_Node
, Spec_Node
);
1083 Set_Declarations
(Body_Node
, New_List
);
1085 Set_Handled_Statement_Sequence
(Body_Node
,
1086 Make_Handled_Sequence_Of_Statements
(Loc
,
1087 Statements
=> New_List
(
1088 Build_Case_Statement
(Case_Id
, Variant
))));
1090 Set_Ekind
(Func_Id
, E_Function
);
1091 Set_Mechanism
(Func_Id
, Default_Mechanism
);
1092 Set_Is_Inlined
(Func_Id
, True);
1093 Set_Is_Pure
(Func_Id
, True);
1094 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
1095 Set_Is_Internal
(Func_Id
, True);
1097 if not Debug_Generated_Code
then
1098 Set_Debug_Info_Off
(Func_Id
);
1101 Analyze
(Body_Node
);
1103 Append_Freeze_Action
(Rec_Id
, Body_Node
);
1104 Set_Dcheck_Function
(Variant
, Func_Id
);
1106 end Build_Dcheck_Function
;
1108 ----------------------------
1109 -- Build_Dcheck_Functions --
1110 ----------------------------
1112 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
1113 Component_List_Node
: Node_Id
;
1115 Discr_Name
: Entity_Id
;
1116 Func_Id
: Entity_Id
;
1118 Saved_Enclosing_Func_Id
: Entity_Id
;
1121 -- Build the discriminant-checking function for each variant, and
1122 -- label all components of that variant with the function's name.
1123 -- We only Generate a discriminant-checking function when the
1124 -- variant is not empty, to prevent the creation of dead code.
1125 -- The exception to that is when Frontend_Layout_On_Target is set,
1126 -- because the variant record size function generated in package
1127 -- Layout needs to generate calls to all discriminant-checking
1128 -- functions, including those for empty variants.
1130 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
1131 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
1133 while Present
(Variant
) loop
1134 Component_List_Node
:= Component_List
(Variant
);
1136 if not Null_Present
(Component_List_Node
)
1137 or else Frontend_Layout_On_Target
1139 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
1141 First_Non_Pragma
(Component_Items
(Component_List_Node
));
1143 while Present
(Decl
) loop
1144 Set_Discriminant_Checking_Func
1145 (Defining_Identifier
(Decl
), Func_Id
);
1147 Next_Non_Pragma
(Decl
);
1150 if Present
(Variant_Part
(Component_List_Node
)) then
1151 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
1152 Enclosing_Func_Id
:= Func_Id
;
1153 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
1154 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
1158 Next_Non_Pragma
(Variant
);
1160 end Build_Dcheck_Functions
;
1162 -- Start of processing for Build_Discr_Checking_Funcs
1165 -- Only build if not done already
1167 if not Discr_Check_Funcs_Built
(N
) then
1168 Type_Def
:= Type_Definition
(N
);
1170 if Nkind
(Type_Def
) = N_Record_Definition
then
1171 if No
(Component_List
(Type_Def
)) then -- null record.
1174 V
:= Variant_Part
(Component_List
(Type_Def
));
1177 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
1178 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
1182 (Component_List
(Record_Extension_Part
(Type_Def
)));
1186 Rec_Id
:= Defining_Identifier
(N
);
1188 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
1190 Enclosing_Func_Id
:= Empty
;
1191 Build_Dcheck_Functions
(V
);
1194 Set_Discr_Check_Funcs_Built
(N
);
1196 end Build_Discr_Checking_Funcs
;
1198 --------------------------------
1199 -- Build_Discriminant_Formals --
1200 --------------------------------
1202 function Build_Discriminant_Formals
1203 (Rec_Id
: Entity_Id
;
1204 Use_Dl
: Boolean) return List_Id
1206 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1207 Parameter_List
: constant List_Id
:= New_List
;
1210 Formal_Type
: Entity_Id
;
1211 Param_Spec_Node
: Node_Id
;
1214 if Has_Discriminants
(Rec_Id
) then
1215 D
:= First_Discriminant
(Rec_Id
);
1216 while Present
(D
) loop
1220 Formal
:= Discriminal
(D
);
1221 Formal_Type
:= Etype
(Formal
);
1223 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1224 Formal_Type
:= Etype
(D
);
1228 Make_Parameter_Specification
(Loc
,
1229 Defining_Identifier
=> Formal
,
1231 New_Occurrence_Of
(Formal_Type
, Loc
));
1232 Append
(Param_Spec_Node
, Parameter_List
);
1233 Next_Discriminant
(D
);
1237 return Parameter_List
;
1238 end Build_Discriminant_Formals
;
1240 --------------------------------------
1241 -- Build_Equivalent_Array_Aggregate --
1242 --------------------------------------
1244 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
is
1245 Loc
: constant Source_Ptr
:= Sloc
(T
);
1246 Comp_Type
: constant Entity_Id
:= Component_Type
(T
);
1247 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(T
));
1248 Proc
: constant Entity_Id
:= Base_Init_Proc
(T
);
1254 if not Is_Constrained
(T
)
1255 or else Number_Dimensions
(T
) > 1
1258 Initialization_Warning
(T
);
1262 Lo
:= Type_Low_Bound
(Index_Type
);
1263 Hi
:= Type_High_Bound
(Index_Type
);
1265 if not Compile_Time_Known_Value
(Lo
)
1266 or else not Compile_Time_Known_Value
(Hi
)
1268 Initialization_Warning
(T
);
1272 if Is_Record_Type
(Comp_Type
)
1273 and then Present
(Base_Init_Proc
(Comp_Type
))
1275 Expr
:= Static_Initialization
(Base_Init_Proc
(Comp_Type
));
1278 Initialization_Warning
(T
);
1283 Initialization_Warning
(T
);
1287 Aggr
:= Make_Aggregate
(Loc
, No_List
, New_List
);
1288 Set_Etype
(Aggr
, T
);
1289 Set_Aggregate_Bounds
(Aggr
,
1291 Low_Bound
=> New_Copy
(Lo
),
1292 High_Bound
=> New_Copy
(Hi
)));
1293 Set_Parent
(Aggr
, Parent
(Proc
));
1295 Append_To
(Component_Associations
(Aggr
),
1296 Make_Component_Association
(Loc
,
1300 Low_Bound
=> New_Copy
(Lo
),
1301 High_Bound
=> New_Copy
(Hi
))),
1302 Expression
=> Expr
));
1304 if Static_Array_Aggregate
(Aggr
) then
1307 Initialization_Warning
(T
);
1310 end Build_Equivalent_Array_Aggregate
;
1312 ---------------------------------------
1313 -- Build_Equivalent_Record_Aggregate --
1314 ---------------------------------------
1316 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
is
1319 Comp_Type
: Entity_Id
;
1321 -- Start of processing for Build_Equivalent_Record_Aggregate
1324 if not Is_Record_Type
(T
)
1325 or else Has_Discriminants
(T
)
1326 or else Is_Limited_Type
(T
)
1327 or else Has_Non_Standard_Rep
(T
)
1329 Initialization_Warning
(T
);
1333 Comp
:= First_Component
(T
);
1335 -- A null record needs no warning
1341 while Present
(Comp
) loop
1343 -- Array components are acceptable if initialized by a positional
1344 -- aggregate with static components.
1346 if Is_Array_Type
(Etype
(Comp
)) then
1347 Comp_Type
:= Component_Type
(Etype
(Comp
));
1349 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1350 or else No
(Expression
(Parent
(Comp
)))
1351 or else Nkind
(Expression
(Parent
(Comp
))) /= N_Aggregate
1353 Initialization_Warning
(T
);
1356 elsif Is_Scalar_Type
(Component_Type
(Etype
(Comp
)))
1358 (not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1360 not Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
)))
1362 Initialization_Warning
(T
);
1366 not Static_Array_Aggregate
(Expression
(Parent
(Comp
)))
1368 Initialization_Warning
(T
);
1372 elsif Is_Scalar_Type
(Etype
(Comp
)) then
1373 Comp_Type
:= Etype
(Comp
);
1375 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1376 or else No
(Expression
(Parent
(Comp
)))
1377 or else not Compile_Time_Known_Value
(Expression
(Parent
(Comp
)))
1378 or else not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1380 Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
))
1382 Initialization_Warning
(T
);
1386 -- For now, other types are excluded
1389 Initialization_Warning
(T
);
1393 Next_Component
(Comp
);
1396 -- All components have static initialization. Build positional aggregate
1397 -- from the given expressions or defaults.
1399 Agg
:= Make_Aggregate
(Sloc
(T
), New_List
, New_List
);
1400 Set_Parent
(Agg
, Parent
(T
));
1402 Comp
:= First_Component
(T
);
1403 while Present
(Comp
) loop
1405 (New_Copy_Tree
(Expression
(Parent
(Comp
))), Expressions
(Agg
));
1406 Next_Component
(Comp
);
1409 Analyze_And_Resolve
(Agg
, T
);
1411 end Build_Equivalent_Record_Aggregate
;
1413 -------------------------------
1414 -- Build_Initialization_Call --
1415 -------------------------------
1417 -- References to a discriminant inside the record type declaration can
1418 -- appear either in the subtype_indication to constrain a record or an
1419 -- array, or as part of a larger expression given for the initial value
1420 -- of a component. In both of these cases N appears in the record
1421 -- initialization procedure and needs to be replaced by the formal
1422 -- parameter of the initialization procedure which corresponds to that
1425 -- In the example below, references to discriminants D1 and D2 in proc_1
1426 -- are replaced by references to formals with the same name
1429 -- A similar replacement is done for calls to any record initialization
1430 -- procedure for any components that are themselves of a record type.
1432 -- type R (D1, D2 : Integer) is record
1433 -- X : Integer := F * D1;
1434 -- Y : Integer := F * D2;
1437 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1441 -- Out_2.X := F * D1;
1442 -- Out_2.Y := F * D2;
1445 function Build_Initialization_Call
1449 In_Init_Proc
: Boolean := False;
1450 Enclos_Type
: Entity_Id
:= Empty
;
1451 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1452 With_Default_Init
: Boolean := False;
1453 Constructor_Ref
: Node_Id
:= Empty
) return List_Id
1455 Res
: constant List_Id
:= New_List
;
1461 First_Arg
: Node_Id
;
1462 Full_Init_Type
: Entity_Id
;
1463 Full_Type
: Entity_Id
;
1464 Init_Type
: Entity_Id
;
1468 pragma Assert
(Constructor_Ref
= Empty
1469 or else Is_CPP_Constructor_Call
(Constructor_Ref
));
1471 if No
(Constructor_Ref
) then
1472 Proc
:= Base_Init_Proc
(Typ
);
1474 Proc
:= Base_Init_Proc
(Typ
, Entity
(Name
(Constructor_Ref
)));
1477 pragma Assert
(Present
(Proc
));
1478 Init_Type
:= Etype
(First_Formal
(Proc
));
1479 Full_Init_Type
:= Underlying_Type
(Init_Type
);
1481 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1482 -- is active (in which case we make the call anyway, since in the
1483 -- actual compiled client it may be non null).
1484 -- Also nothing to do for value types.
1486 if (Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
)
1487 or else Is_Value_Type
(Typ
)
1489 (Is_Array_Type
(Typ
) and then Is_Value_Type
(Component_Type
(Typ
)))
1496 -- Use the [underlying] full view when dealing with a private type. This
1497 -- may require several steps depending on derivations.
1500 if Is_Private_Type
(Full_Type
) then
1501 if Present
(Full_View
(Full_Type
)) then
1502 Full_Type
:= Full_View
(Full_Type
);
1504 elsif Present
(Underlying_Full_View
(Full_Type
)) then
1505 Full_Type
:= Underlying_Full_View
(Full_Type
);
1507 -- When a private type acts as a generic actual and lacks a full
1508 -- view, use the base type.
1510 elsif Is_Generic_Actual_Type
(Full_Type
) then
1511 Full_Type
:= Base_Type
(Full_Type
);
1513 -- The loop has recovered the [underlying] full view, stop the
1520 -- The type is not private, nothing to do
1527 -- If Typ is derived, the procedure is the initialization procedure for
1528 -- the root type. Wrap the argument in an conversion to make it type
1529 -- honest. Actually it isn't quite type honest, because there can be
1530 -- conflicts of views in the private type case. That is why we set
1531 -- Conversion_OK in the conversion node.
1533 if (Is_Record_Type
(Typ
)
1534 or else Is_Array_Type
(Typ
)
1535 or else Is_Private_Type
(Typ
))
1536 and then Init_Type
/= Base_Type
(Typ
)
1538 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1539 Set_Etype
(First_Arg
, Init_Type
);
1542 First_Arg
:= Id_Ref
;
1545 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1547 -- In the tasks case, add _Master as the value of the _Master parameter
1548 -- and _Chain as the value of the _Chain parameter. At the outer level,
1549 -- these will be variables holding the corresponding values obtained
1550 -- from GNARL. At inner levels, they will be the parameters passed down
1551 -- through the outer routines.
1553 if Has_Task
(Full_Type
) then
1554 if Restriction_Active
(No_Task_Hierarchy
) then
1556 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1558 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1561 -- Add _Chain (not done for sequential elaboration policy, see
1562 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1564 if Partition_Elaboration_Policy
/= 'S' then
1565 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1568 -- Ada 2005 (AI-287): In case of default initialized components
1569 -- with tasks, we generate a null string actual parameter.
1570 -- This is just a workaround that must be improved later???
1572 if With_Default_Init
then
1574 Make_String_Literal
(Loc
,
1579 Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
, In_Init_Proc
);
1580 Decl
:= Last
(Decls
);
1583 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1584 Append_List
(Decls
, Res
);
1592 -- Add discriminant values if discriminants are present
1594 if Has_Discriminants
(Full_Init_Type
) then
1595 Discr
:= First_Discriminant
(Full_Init_Type
);
1597 while Present
(Discr
) loop
1599 -- If this is a discriminated concurrent type, the init_proc
1600 -- for the corresponding record is being called. Use that type
1601 -- directly to find the discriminant value, to handle properly
1602 -- intervening renamed discriminants.
1605 T
: Entity_Id
:= Full_Type
;
1608 if Is_Protected_Type
(T
) then
1609 T
:= Corresponding_Record_Type
(T
);
1613 Get_Discriminant_Value
(
1616 Discriminant_Constraint
(Full_Type
));
1619 -- If the target has access discriminants, and is constrained by
1620 -- an access to the enclosing construct, i.e. a current instance,
1621 -- replace the reference to the type by a reference to the object.
1623 if Nkind
(Arg
) = N_Attribute_Reference
1624 and then Is_Access_Type
(Etype
(Arg
))
1625 and then Is_Entity_Name
(Prefix
(Arg
))
1626 and then Is_Type
(Entity
(Prefix
(Arg
)))
1629 Make_Attribute_Reference
(Loc
,
1630 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1631 Attribute_Name
=> Name_Unrestricted_Access
);
1633 elsif In_Init_Proc
then
1635 -- Replace any possible references to the discriminant in the
1636 -- call to the record initialization procedure with references
1637 -- to the appropriate formal parameter.
1639 if Nkind
(Arg
) = N_Identifier
1640 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1642 Arg
:= New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
);
1644 -- Otherwise make a copy of the default expression. Note that
1645 -- we use the current Sloc for this, because we do not want the
1646 -- call to appear to be at the declaration point. Within the
1647 -- expression, replace discriminants with their discriminals.
1651 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1655 if Is_Constrained
(Full_Type
) then
1656 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1658 -- The constraints come from the discriminant default exps,
1659 -- they must be reevaluated, so we use New_Copy_Tree but we
1660 -- ensure the proper Sloc (for any embedded calls).
1662 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1666 -- Ada 2005 (AI-287): In case of default initialized components,
1667 -- if the component is constrained with a discriminant of the
1668 -- enclosing type, we need to generate the corresponding selected
1669 -- component node to access the discriminant value. In other cases
1670 -- this is not required, either because we are inside the init
1671 -- proc and we use the corresponding formal, or else because the
1672 -- component is constrained by an expression.
1674 if With_Default_Init
1675 and then Nkind
(Id_Ref
) = N_Selected_Component
1676 and then Nkind
(Arg
) = N_Identifier
1677 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1680 Make_Selected_Component
(Loc
,
1681 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1682 Selector_Name
=> Arg
));
1684 Append_To
(Args
, Arg
);
1687 Next_Discriminant
(Discr
);
1691 -- If this is a call to initialize the parent component of a derived
1692 -- tagged type, indicate that the tag should not be set in the parent.
1694 if Is_Tagged_Type
(Full_Init_Type
)
1695 and then not Is_CPP_Class
(Full_Init_Type
)
1696 and then Nkind
(Id_Ref
) = N_Selected_Component
1697 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1699 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1701 elsif Present
(Constructor_Ref
) then
1702 Append_List_To
(Args
,
1703 New_Copy_List
(Parameter_Associations
(Constructor_Ref
)));
1707 Make_Procedure_Call_Statement
(Loc
,
1708 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1709 Parameter_Associations
=> Args
));
1711 if Needs_Finalization
(Typ
)
1712 and then Nkind
(Id_Ref
) = N_Selected_Component
1714 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1717 (Obj_Ref
=> New_Copy_Tree
(First_Arg
),
1725 when RE_Not_Available
=>
1727 end Build_Initialization_Call
;
1729 ----------------------------
1730 -- Build_Record_Init_Proc --
1731 ----------------------------
1733 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
) is
1734 Decls
: constant List_Id
:= New_List
;
1735 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1736 Loc
: constant Source_Ptr
:= Sloc
(Rec_Ent
);
1738 Proc_Id
: Entity_Id
;
1739 Rec_Type
: Entity_Id
;
1740 Set_Tag
: Entity_Id
:= Empty
;
1742 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1743 -- Build an assignment statement which assigns the default expression
1744 -- to its corresponding record component if defined. The left hand side
1745 -- of the assignment is marked Assignment_OK so that initialization of
1746 -- limited private records works correctly. This routine may also build
1747 -- an adjustment call if the component is controlled.
1749 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1750 -- If the record has discriminants, add assignment statements to
1751 -- Statement_List to initialize the discriminant values from the
1752 -- arguments of the initialization procedure.
1754 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1755 -- Build a list representing a sequence of statements which initialize
1756 -- components of the given component list. This may involve building
1757 -- case statements for the variant parts. Append any locally declared
1758 -- objects on list Decls.
1760 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
1761 -- Given an untagged type-derivation that declares discriminants, e.g.
1763 -- type R (R1, R2 : Integer) is record ... end record;
1764 -- type D (D1 : Integer) is new R (1, D1);
1766 -- we make the _init_proc of D be
1768 -- procedure _init_proc (X : D; D1 : Integer) is
1770 -- _init_proc (R (X), 1, D1);
1773 -- This function builds the call statement in this _init_proc.
1775 procedure Build_CPP_Init_Procedure
;
1776 -- Build the tree corresponding to the procedure specification and body
1777 -- of the IC procedure that initializes the C++ part of the dispatch
1778 -- table of an Ada tagged type that is a derivation of a CPP type.
1779 -- Install it as the CPP_Init TSS.
1781 procedure Build_Init_Procedure
;
1782 -- Build the tree corresponding to the procedure specification and body
1783 -- of the initialization procedure and install it as the _init TSS.
1785 procedure Build_Offset_To_Top_Functions
;
1786 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1787 -- and body of Offset_To_Top, a function used in conjuction with types
1788 -- having secondary dispatch tables.
1790 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1791 -- Add range checks to components of discriminated records. S is a
1792 -- subtype indication of a record component. Check_List is a list
1793 -- to which the check actions are appended.
1795 function Component_Needs_Simple_Initialization
1796 (T
: Entity_Id
) return Boolean;
1797 -- Determine if a component needs simple initialization, given its type
1798 -- T. This routine is the same as Needs_Simple_Initialization except for
1799 -- components of type Tag and Interface_Tag. These two access types do
1800 -- not require initialization since they are explicitly initialized by
1803 function Parent_Subtype_Renaming_Discrims
return Boolean;
1804 -- Returns True for base types N that rename discriminants, else False
1806 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1807 -- Determine whether a record initialization procedure needs to be
1808 -- generated for the given record type.
1810 ----------------------
1811 -- Build_Assignment --
1812 ----------------------
1814 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1815 N_Loc
: constant Source_Ptr
:= Sloc
(N
);
1816 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1818 Kind
: Node_Kind
:= Nkind
(N
);
1824 Make_Selected_Component
(N_Loc
,
1825 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1826 Selector_Name
=> New_Occurrence_Of
(Id
, N_Loc
));
1827 Set_Assignment_OK
(Lhs
);
1829 -- Case of an access attribute applied to the current instance.
1830 -- Replace the reference to the type by a reference to the actual
1831 -- object. (Note that this handles the case of the top level of
1832 -- the expression being given by such an attribute, but does not
1833 -- cover uses nested within an initial value expression. Nested
1834 -- uses are unlikely to occur in practice, but are theoretically
1835 -- possible.) It is not clear how to handle them without fully
1836 -- traversing the expression. ???
1838 if Kind
= N_Attribute_Reference
1839 and then Nam_In
(Attribute_Name
(N
), Name_Unchecked_Access
,
1840 Name_Unrestricted_Access
)
1841 and then Is_Entity_Name
(Prefix
(N
))
1842 and then Is_Type
(Entity
(Prefix
(N
)))
1843 and then Entity
(Prefix
(N
)) = Rec_Type
1846 Make_Attribute_Reference
(N_Loc
,
1848 Make_Identifier
(N_Loc
, Name_uInit
),
1849 Attribute_Name
=> Name_Unrestricted_Access
);
1852 -- Take a copy of Exp to ensure that later copies of this component
1853 -- declaration in derived types see the original tree, not a node
1854 -- rewritten during expansion of the init_proc. If the copy contains
1855 -- itypes, the scope of the new itypes is the init_proc being built.
1857 Exp
:= New_Copy_Tree
(Exp
, New_Scope
=> Proc_Id
);
1860 Make_Assignment_Statement
(Loc
,
1862 Expression
=> Exp
));
1864 Set_No_Ctrl_Actions
(First
(Res
));
1866 -- Adjust the tag if tagged (because of possible view conversions).
1867 -- Suppress the tag adjustment when VM_Target because VM tags are
1868 -- represented implicitly in objects.
1870 if Is_Tagged_Type
(Typ
) and then Tagged_Type_Expansion
then
1872 Make_Assignment_Statement
(N_Loc
,
1874 Make_Selected_Component
(N_Loc
,
1876 New_Copy_Tree
(Lhs
, New_Scope
=> Proc_Id
),
1878 New_Occurrence_Of
(First_Tag_Component
(Typ
), N_Loc
)),
1881 Unchecked_Convert_To
(RTE
(RE_Tag
),
1885 (Access_Disp_Table
(Underlying_Type
(Typ
)))),
1889 -- Adjust the component if controlled except if it is an aggregate
1890 -- that will be expanded inline.
1892 if Kind
= N_Qualified_Expression
then
1893 Kind
:= Nkind
(Expression
(N
));
1896 if Needs_Finalization
(Typ
)
1897 and then not (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
))
1898 and then not Is_Limited_View
(Typ
)
1902 (Obj_Ref
=> New_Copy_Tree
(Lhs
),
1903 Typ
=> Etype
(Id
)));
1909 when RE_Not_Available
=>
1911 end Build_Assignment
;
1913 ------------------------------------
1914 -- Build_Discriminant_Assignments --
1915 ------------------------------------
1917 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1918 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1923 if Has_Discriminants
(Rec_Type
)
1924 and then not Is_Unchecked_Union
(Rec_Type
)
1926 D
:= First_Discriminant
(Rec_Type
);
1927 while Present
(D
) loop
1929 -- Don't generate the assignment for discriminants in derived
1930 -- tagged types if the discriminant is a renaming of some
1931 -- ancestor discriminant. This initialization will be done
1932 -- when initializing the _parent field of the derived record.
1935 and then Present
(Corresponding_Discriminant
(D
))
1941 Append_List_To
(Statement_List
,
1942 Build_Assignment
(D
,
1943 New_Occurrence_Of
(Discriminal
(D
), D_Loc
)));
1946 Next_Discriminant
(D
);
1949 end Build_Discriminant_Assignments
;
1951 --------------------------
1952 -- Build_Init_Call_Thru --
1953 --------------------------
1955 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
1956 Parent_Proc
: constant Entity_Id
:=
1957 Base_Init_Proc
(Etype
(Rec_Type
));
1959 Parent_Type
: constant Entity_Id
:=
1960 Etype
(First_Formal
(Parent_Proc
));
1962 Uparent_Type
: constant Entity_Id
:=
1963 Underlying_Type
(Parent_Type
);
1965 First_Discr_Param
: Node_Id
;
1969 First_Arg
: Node_Id
;
1970 Parent_Discr
: Entity_Id
;
1974 -- First argument (_Init) is the object to be initialized.
1975 -- ??? not sure where to get a reasonable Loc for First_Arg
1978 OK_Convert_To
(Parent_Type
,
1980 (Defining_Identifier
(First
(Parameters
)), Loc
));
1982 Set_Etype
(First_Arg
, Parent_Type
);
1984 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1986 -- In the tasks case,
1987 -- add _Master as the value of the _Master parameter
1988 -- add _Chain as the value of the _Chain parameter.
1989 -- add _Task_Name as the value of the _Task_Name parameter.
1990 -- At the outer level, these will be variables holding the
1991 -- corresponding values obtained from GNARL or the expander.
1993 -- At inner levels, they will be the parameters passed down through
1994 -- the outer routines.
1996 First_Discr_Param
:= Next
(First
(Parameters
));
1998 if Has_Task
(Rec_Type
) then
1999 if Restriction_Active
(No_Task_Hierarchy
) then
2001 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
2003 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
2006 -- Add _Chain (not done for sequential elaboration policy, see
2007 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
2009 if Partition_Elaboration_Policy
/= 'S' then
2010 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
2013 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
2014 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
2017 -- Append discriminant values
2019 if Has_Discriminants
(Uparent_Type
) then
2020 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
2022 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
2023 while Present
(Parent_Discr
) loop
2025 -- Get the initial value for this discriminant
2026 -- ??? needs to be cleaned up to use parent_Discr_Constr
2030 Discr
: Entity_Id
:=
2031 First_Stored_Discriminant
(Uparent_Type
);
2033 Discr_Value
: Elmt_Id
:=
2034 First_Elmt
(Stored_Constraint
(Rec_Type
));
2037 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
2038 Next_Stored_Discriminant
(Discr
);
2039 Next_Elmt
(Discr_Value
);
2042 Arg
:= Node
(Discr_Value
);
2045 -- Append it to the list
2047 if Nkind
(Arg
) = N_Identifier
2048 and then Ekind
(Entity
(Arg
)) = E_Discriminant
2051 New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
));
2053 -- Case of access discriminants. We replace the reference
2054 -- to the type by a reference to the actual object.
2056 -- Is above comment right??? Use of New_Copy below seems mighty
2060 Append_To
(Args
, New_Copy
(Arg
));
2063 Next_Discriminant
(Parent_Discr
);
2069 Make_Procedure_Call_Statement
(Loc
,
2071 New_Occurrence_Of
(Parent_Proc
, Loc
),
2072 Parameter_Associations
=> Args
));
2075 end Build_Init_Call_Thru
;
2077 -----------------------------------
2078 -- Build_Offset_To_Top_Functions --
2079 -----------------------------------
2081 procedure Build_Offset_To_Top_Functions
is
2083 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
);
2085 -- function Fxx (O : Address) return Storage_Offset is
2086 -- type Acc is access all <Typ>;
2088 -- return Acc!(O).Iface_Comp'Position;
2091 ----------------------------------
2092 -- Build_Offset_To_Top_Function --
2093 ----------------------------------
2095 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
) is
2096 Body_Node
: Node_Id
;
2097 Func_Id
: Entity_Id
;
2098 Spec_Node
: Node_Id
;
2099 Acc_Type
: Entity_Id
;
2102 Func_Id
:= Make_Temporary
(Loc
, 'F');
2103 Set_DT_Offset_To_Top_Func
(Iface_Comp
, Func_Id
);
2106 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2108 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
2109 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
2110 Set_Parameter_Specifications
(Spec_Node
, New_List
(
2111 Make_Parameter_Specification
(Loc
,
2112 Defining_Identifier
=>
2113 Make_Defining_Identifier
(Loc
, Name_uO
),
2116 New_Occurrence_Of
(RTE
(RE_Address
), Loc
))));
2117 Set_Result_Definition
(Spec_Node
,
2118 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
2121 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2123 -- return O.Iface_Comp'Position;
2126 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2127 Set_Specification
(Body_Node
, Spec_Node
);
2129 Acc_Type
:= Make_Temporary
(Loc
, 'T');
2130 Set_Declarations
(Body_Node
, New_List
(
2131 Make_Full_Type_Declaration
(Loc
,
2132 Defining_Identifier
=> Acc_Type
,
2134 Make_Access_To_Object_Definition
(Loc
,
2135 All_Present
=> True,
2136 Null_Exclusion_Present
=> False,
2137 Constant_Present
=> False,
2138 Subtype_Indication
=>
2139 New_Occurrence_Of
(Rec_Type
, Loc
)))));
2141 Set_Handled_Statement_Sequence
(Body_Node
,
2142 Make_Handled_Sequence_Of_Statements
(Loc
,
2143 Statements
=> New_List
(
2144 Make_Simple_Return_Statement
(Loc
,
2146 Make_Attribute_Reference
(Loc
,
2148 Make_Selected_Component
(Loc
,
2150 Unchecked_Convert_To
(Acc_Type
,
2151 Make_Identifier
(Loc
, Name_uO
)),
2153 New_Occurrence_Of
(Iface_Comp
, Loc
)),
2154 Attribute_Name
=> Name_Position
)))));
2156 Set_Ekind
(Func_Id
, E_Function
);
2157 Set_Mechanism
(Func_Id
, Default_Mechanism
);
2158 Set_Is_Internal
(Func_Id
, True);
2160 if not Debug_Generated_Code
then
2161 Set_Debug_Info_Off
(Func_Id
);
2164 Analyze
(Body_Node
);
2166 Append_Freeze_Action
(Rec_Type
, Body_Node
);
2167 end Build_Offset_To_Top_Function
;
2171 Iface_Comp
: Node_Id
;
2172 Iface_Comp_Elmt
: Elmt_Id
;
2173 Ifaces_Comp_List
: Elist_Id
;
2175 -- Start of processing for Build_Offset_To_Top_Functions
2178 -- Offset_To_Top_Functions are built only for derivations of types
2179 -- with discriminants that cover interface types.
2180 -- Nothing is needed either in case of virtual machines, since
2181 -- interfaces are handled directly by the VM.
2183 if not Is_Tagged_Type
(Rec_Type
)
2184 or else Etype
(Rec_Type
) = Rec_Type
2185 or else not Has_Discriminants
(Etype
(Rec_Type
))
2186 or else not Tagged_Type_Expansion
2191 Collect_Interface_Components
(Rec_Type
, Ifaces_Comp_List
);
2193 -- For each interface type with secondary dispatch table we generate
2194 -- the Offset_To_Top_Functions (required to displace the pointer in
2195 -- interface conversions)
2197 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
2198 while Present
(Iface_Comp_Elmt
) loop
2199 Iface_Comp
:= Node
(Iface_Comp_Elmt
);
2200 pragma Assert
(Is_Interface
(Related_Type
(Iface_Comp
)));
2202 -- If the interface is a parent of Rec_Type it shares the primary
2203 -- dispatch table and hence there is no need to build the function
2205 if not Is_Ancestor
(Related_Type
(Iface_Comp
), Rec_Type
,
2206 Use_Full_View
=> True)
2208 Build_Offset_To_Top_Function
(Iface_Comp
);
2211 Next_Elmt
(Iface_Comp_Elmt
);
2213 end Build_Offset_To_Top_Functions
;
2215 ------------------------------
2216 -- Build_CPP_Init_Procedure --
2217 ------------------------------
2219 procedure Build_CPP_Init_Procedure
is
2220 Body_Node
: Node_Id
;
2221 Body_Stmts
: List_Id
;
2222 Flag_Id
: Entity_Id
;
2223 Handled_Stmt_Node
: Node_Id
;
2224 Init_Tags_List
: List_Id
;
2225 Proc_Id
: Entity_Id
;
2226 Proc_Spec_Node
: Node_Id
;
2229 -- Check cases requiring no IC routine
2231 if not Is_CPP_Class
(Root_Type
(Rec_Type
))
2232 or else Is_CPP_Class
(Rec_Type
)
2233 or else CPP_Num_Prims
(Rec_Type
) = 0
2234 or else not Tagged_Type_Expansion
2235 or else No_Run_Time_Mode
2242 -- Flag : Boolean := False;
2244 -- procedure Typ_IC is
2247 -- Copy C++ dispatch table slots from parent
2248 -- Update C++ slots of overridden primitives
2252 Flag_Id
:= Make_Temporary
(Loc
, 'F');
2254 Append_Freeze_Action
(Rec_Type
,
2255 Make_Object_Declaration
(Loc
,
2256 Defining_Identifier
=> Flag_Id
,
2257 Object_Definition
=>
2258 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2260 New_Occurrence_Of
(Standard_True
, Loc
)));
2262 Body_Stmts
:= New_List
;
2263 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2265 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2268 Make_Defining_Identifier
(Loc
,
2269 Chars
=> Make_TSS_Name
(Rec_Type
, TSS_CPP_Init_Proc
));
2271 Set_Ekind
(Proc_Id
, E_Procedure
);
2272 Set_Is_Internal
(Proc_Id
);
2274 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2276 Set_Parameter_Specifications
(Proc_Spec_Node
, New_List
);
2277 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2278 Set_Declarations
(Body_Node
, New_List
);
2280 Init_Tags_List
:= Build_Inherit_CPP_Prims
(Rec_Type
);
2282 Append_To
(Init_Tags_List
,
2283 Make_Assignment_Statement
(Loc
,
2285 New_Occurrence_Of
(Flag_Id
, Loc
),
2287 New_Occurrence_Of
(Standard_False
, Loc
)));
2289 Append_To
(Body_Stmts
,
2290 Make_If_Statement
(Loc
,
2291 Condition
=> New_Occurrence_Of
(Flag_Id
, Loc
),
2292 Then_Statements
=> Init_Tags_List
));
2294 Handled_Stmt_Node
:=
2295 New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2296 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2297 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2298 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2300 if not Debug_Generated_Code
then
2301 Set_Debug_Info_Off
(Proc_Id
);
2304 -- Associate CPP_Init_Proc with type
2306 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2307 end Build_CPP_Init_Procedure
;
2309 --------------------------
2310 -- Build_Init_Procedure --
2311 --------------------------
2313 procedure Build_Init_Procedure
is
2314 Body_Stmts
: List_Id
;
2315 Body_Node
: Node_Id
;
2316 Handled_Stmt_Node
: Node_Id
;
2317 Init_Tags_List
: List_Id
;
2318 Parameters
: List_Id
;
2319 Proc_Spec_Node
: Node_Id
;
2320 Record_Extension_Node
: Node_Id
;
2323 Body_Stmts
:= New_List
;
2324 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2325 Set_Ekind
(Proc_Id
, E_Procedure
);
2327 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2328 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2330 Parameters
:= Init_Formals
(Rec_Type
);
2331 Append_List_To
(Parameters
,
2332 Build_Discriminant_Formals
(Rec_Type
, True));
2334 -- For tagged types, we add a flag to indicate whether the routine
2335 -- is called to initialize a parent component in the init_proc of
2336 -- a type extension. If the flag is false, we do not set the tag
2337 -- because it has been set already in the extension.
2339 if Is_Tagged_Type
(Rec_Type
) then
2340 Set_Tag
:= Make_Temporary
(Loc
, 'P');
2342 Append_To
(Parameters
,
2343 Make_Parameter_Specification
(Loc
,
2344 Defining_Identifier
=> Set_Tag
,
2346 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2348 New_Occurrence_Of
(Standard_True
, Loc
)));
2351 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
2352 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2353 Set_Declarations
(Body_Node
, Decls
);
2355 -- N is a Derived_Type_Definition that renames the parameters of the
2356 -- ancestor type. We initialize it by expanding our discriminants and
2357 -- call the ancestor _init_proc with a type-converted object.
2359 if Parent_Subtype_Renaming_Discrims
then
2360 Append_List_To
(Body_Stmts
, Build_Init_Call_Thru
(Parameters
));
2362 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
2363 Build_Discriminant_Assignments
(Body_Stmts
);
2365 if not Null_Present
(Type_Definition
(N
)) then
2366 Append_List_To
(Body_Stmts
,
2367 Build_Init_Statements
(Component_List
(Type_Definition
(N
))));
2370 -- N is a Derived_Type_Definition with a possible non-empty
2371 -- extension. The initialization of a type extension consists in the
2372 -- initialization of the components in the extension.
2375 Build_Discriminant_Assignments
(Body_Stmts
);
2377 Record_Extension_Node
:=
2378 Record_Extension_Part
(Type_Definition
(N
));
2380 if not Null_Present
(Record_Extension_Node
) then
2382 Stmts
: constant List_Id
:=
2383 Build_Init_Statements
(
2384 Component_List
(Record_Extension_Node
));
2387 -- The parent field must be initialized first because the
2388 -- offset of the new discriminants may depend on it. This is
2389 -- not needed if the parent is an interface type because in
2390 -- such case the initialization of the _parent field was not
2393 if not Is_Interface
(Etype
(Rec_Ent
))
2394 and then Nkind
(First
(Stmts
)) = N_Procedure_Call_Statement
2395 and then Is_Init_Proc
(Name
(First
(Stmts
)))
2397 Prepend_To
(Body_Stmts
, Remove_Head
(Stmts
));
2400 Append_List_To
(Body_Stmts
, Stmts
);
2405 -- Add here the assignment to instantiate the Tag
2407 -- The assignment corresponds to the code:
2409 -- _Init._Tag := Typ'Tag;
2411 -- Suppress the tag assignment when VM_Target because VM tags are
2412 -- represented implicitly in objects. It is also suppressed in case
2413 -- of CPP_Class types because in this case the tag is initialized in
2416 if Is_Tagged_Type
(Rec_Type
)
2417 and then Tagged_Type_Expansion
2418 and then not No_Run_Time_Mode
2420 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2421 -- the actual object and invoke the IP of the parent (in this
2422 -- order). The tag must be initialized before the call to the IP
2423 -- of the parent and the assignments to other components because
2424 -- the initial value of the components may depend on the tag (eg.
2425 -- through a dispatching operation on an access to the current
2426 -- type). The tag assignment is not done when initializing the
2427 -- parent component of a type extension, because in that case the
2428 -- tag is set in the extension.
2430 if not Is_CPP_Class
(Root_Type
(Rec_Type
)) then
2432 -- Initialize the primary tag component
2434 Init_Tags_List
:= New_List
(
2435 Make_Assignment_Statement
(Loc
,
2437 Make_Selected_Component
(Loc
,
2438 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2441 (First_Tag_Component
(Rec_Type
), Loc
)),
2445 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2447 -- Ada 2005 (AI-251): Initialize the secondary tags components
2448 -- located at fixed positions (tags whose position depends on
2449 -- variable size components are initialized later ---see below)
2451 if Ada_Version
>= Ada_2005
2452 and then not Is_Interface
(Rec_Type
)
2453 and then Has_Interfaces
(Rec_Type
)
2457 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2458 Stmts_List
=> Init_Tags_List
,
2459 Fixed_Comps
=> True,
2460 Variable_Comps
=> False);
2463 Prepend_To
(Body_Stmts
,
2464 Make_If_Statement
(Loc
,
2465 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2466 Then_Statements
=> Init_Tags_List
));
2468 -- Case 2: CPP type. The imported C++ constructor takes care of
2469 -- tags initialization. No action needed here because the IP
2470 -- is built by Set_CPP_Constructors; in this case the IP is a
2471 -- wrapper that invokes the C++ constructor and copies the C++
2472 -- tags locally. Done to inherit the C++ slots in Ada derivations
2475 elsif Is_CPP_Class
(Rec_Type
) then
2476 pragma Assert
(False);
2479 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2480 -- type derivations. Derivations of imported C++ classes add a
2481 -- complication, because we cannot inhibit tag setting in the
2482 -- constructor for the parent. Hence we initialize the tag after
2483 -- the call to the parent IP (that is, in reverse order compared
2484 -- with pure Ada hierarchies ---see comment on case 1).
2487 -- Initialize the primary tag
2489 Init_Tags_List
:= New_List
(
2490 Make_Assignment_Statement
(Loc
,
2492 Make_Selected_Component
(Loc
,
2493 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2496 (First_Tag_Component
(Rec_Type
), Loc
)),
2500 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2502 -- Ada 2005 (AI-251): Initialize the secondary tags components
2503 -- located at fixed positions (tags whose position depends on
2504 -- variable size components are initialized later ---see below)
2506 if Ada_Version
>= Ada_2005
2507 and then not Is_Interface
(Rec_Type
)
2508 and then Has_Interfaces
(Rec_Type
)
2512 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2513 Stmts_List
=> Init_Tags_List
,
2514 Fixed_Comps
=> True,
2515 Variable_Comps
=> False);
2518 -- Initialize the tag component after invocation of parent IP.
2521 -- parent_IP(_init.parent); // Invokes the C++ constructor
2522 -- [ typIC; ] // Inherit C++ slots from parent
2529 -- Search for the call to the IP of the parent. We assume
2530 -- that the first init_proc call is for the parent.
2532 Ins_Nod
:= First
(Body_Stmts
);
2533 while Present
(Next
(Ins_Nod
))
2534 and then (Nkind
(Ins_Nod
) /= N_Procedure_Call_Statement
2535 or else not Is_Init_Proc
(Name
(Ins_Nod
)))
2540 -- The IC routine copies the inherited slots of the C+ part
2541 -- of the dispatch table from the parent and updates the
2542 -- overridden C++ slots.
2544 if CPP_Num_Prims
(Rec_Type
) > 0 then
2546 Init_DT
: Entity_Id
;
2550 Init_DT
:= CPP_Init_Proc
(Rec_Type
);
2551 pragma Assert
(Present
(Init_DT
));
2554 Make_Procedure_Call_Statement
(Loc
,
2555 New_Occurrence_Of
(Init_DT
, Loc
));
2556 Insert_After
(Ins_Nod
, New_Nod
);
2558 -- Update location of init tag statements
2564 Insert_List_After
(Ins_Nod
, Init_Tags_List
);
2568 -- Ada 2005 (AI-251): Initialize the secondary tag components
2569 -- located at variable positions. We delay the generation of this
2570 -- code until here because the value of the attribute 'Position
2571 -- applied to variable size components of the parent type that
2572 -- depend on discriminants is only safely read at runtime after
2573 -- the parent components have been initialized.
2575 if Ada_Version
>= Ada_2005
2576 and then not Is_Interface
(Rec_Type
)
2577 and then Has_Interfaces
(Rec_Type
)
2578 and then Has_Discriminants
(Etype
(Rec_Type
))
2579 and then Is_Variable_Size_Record
(Etype
(Rec_Type
))
2581 Init_Tags_List
:= New_List
;
2585 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2586 Stmts_List
=> Init_Tags_List
,
2587 Fixed_Comps
=> False,
2588 Variable_Comps
=> True);
2590 if Is_Non_Empty_List
(Init_Tags_List
) then
2591 Append_List_To
(Body_Stmts
, Init_Tags_List
);
2596 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2597 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2600 -- Deep_Finalize (_init, C1, ..., CN);
2604 and then Needs_Finalization
(Rec_Type
)
2605 and then not Is_Abstract_Type
(Rec_Type
)
2606 and then not Restriction_Active
(No_Exception_Propagation
)
2613 -- Create a local version of Deep_Finalize which has indication
2614 -- of partial initialization state.
2616 DF_Id
:= Make_Temporary
(Loc
, 'F');
2618 Append_To
(Decls
, Make_Local_Deep_Finalize
(Rec_Type
, DF_Id
));
2621 Make_Procedure_Call_Statement
(Loc
,
2622 Name
=> New_Occurrence_Of
(DF_Id
, Loc
),
2623 Parameter_Associations
=> New_List
(
2624 Make_Identifier
(Loc
, Name_uInit
),
2625 New_Occurrence_Of
(Standard_False
, Loc
)));
2627 -- Do not emit warnings related to the elaboration order when a
2628 -- controlled object is declared before the body of Finalize is
2631 Set_No_Elaboration_Check
(DF_Call
);
2633 Set_Exception_Handlers
(Handled_Stmt_Node
, New_List
(
2634 Make_Exception_Handler
(Loc
,
2635 Exception_Choices
=> New_List
(
2636 Make_Others_Choice
(Loc
)),
2637 Statements
=> New_List
(
2639 Make_Raise_Statement
(Loc
)))));
2642 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2645 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2647 if not Debug_Generated_Code
then
2648 Set_Debug_Info_Off
(Proc_Id
);
2651 -- Associate Init_Proc with type, and determine if the procedure
2652 -- is null (happens because of the Initialize_Scalars pragma case,
2653 -- where we have to generate a null procedure in case it is called
2654 -- by a client with Initialize_Scalars set). Such procedures have
2655 -- to be generated, but do not have to be called, so we mark them
2656 -- as null to suppress the call.
2658 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2660 if List_Length
(Body_Stmts
) = 1
2662 -- We must skip SCIL nodes because they may have been added to this
2663 -- list by Insert_Actions.
2665 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
2666 and then VM_Target
= No_VM
2668 -- Even though the init proc may be null at this time it might get
2669 -- some stuff added to it later by the VM backend.
2671 Set_Is_Null_Init_Proc
(Proc_Id
);
2673 end Build_Init_Procedure
;
2675 ---------------------------
2676 -- Build_Init_Statements --
2677 ---------------------------
2679 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
2680 Checks
: constant List_Id
:= New_List
;
2681 Actions
: List_Id
:= No_List
;
2682 Counter_Id
: Entity_Id
:= Empty
;
2683 Comp_Loc
: Source_Ptr
;
2687 Parent_Stmts
: List_Id
;
2691 procedure Increment_Counter
(Loc
: Source_Ptr
);
2692 -- Generate an "increment by one" statement for the current counter
2693 -- and append it to the list Stmts.
2695 procedure Make_Counter
(Loc
: Source_Ptr
);
2696 -- Create a new counter for the current component list. The routine
2697 -- creates a new defining Id, adds an object declaration and sets
2698 -- the Id generator for the next variant.
2700 -----------------------
2701 -- Increment_Counter --
2702 -----------------------
2704 procedure Increment_Counter
(Loc
: Source_Ptr
) is
2707 -- Counter := Counter + 1;
2710 Make_Assignment_Statement
(Loc
,
2711 Name
=> New_Occurrence_Of
(Counter_Id
, Loc
),
2714 Left_Opnd
=> New_Occurrence_Of
(Counter_Id
, Loc
),
2715 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
2716 end Increment_Counter
;
2722 procedure Make_Counter
(Loc
: Source_Ptr
) is
2724 -- Increment the Id generator
2726 Counter
:= Counter
+ 1;
2728 -- Create the entity and declaration
2731 Make_Defining_Identifier
(Loc
,
2732 Chars
=> New_External_Name
('C', Counter
));
2735 -- Cnn : Integer := 0;
2738 Make_Object_Declaration
(Loc
,
2739 Defining_Identifier
=> Counter_Id
,
2740 Object_Definition
=>
2741 New_Occurrence_Of
(Standard_Integer
, Loc
),
2743 Make_Integer_Literal
(Loc
, 0)));
2746 -- Start of processing for Build_Init_Statements
2749 if Null_Present
(Comp_List
) then
2750 return New_List
(Make_Null_Statement
(Loc
));
2753 Parent_Stmts
:= New_List
;
2756 -- Loop through visible declarations of task types and protected
2757 -- types moving any expanded code from the spec to the body of the
2760 if Is_Task_Record_Type
(Rec_Type
)
2761 or else Is_Protected_Record_Type
(Rec_Type
)
2764 Decl
: constant Node_Id
:=
2765 Parent
(Corresponding_Concurrent_Type
(Rec_Type
));
2771 if Is_Task_Record_Type
(Rec_Type
) then
2772 Def
:= Task_Definition
(Decl
);
2774 Def
:= Protected_Definition
(Decl
);
2777 if Present
(Def
) then
2778 N1
:= First
(Visible_Declarations
(Def
));
2779 while Present
(N1
) loop
2783 if Nkind
(N2
) in N_Statement_Other_Than_Procedure_Call
2784 or else Nkind
(N2
) in N_Raise_xxx_Error
2785 or else Nkind
(N2
) = N_Procedure_Call_Statement
2788 New_Copy_Tree
(N2
, New_Scope
=> Proc_Id
));
2789 Rewrite
(N2
, Make_Null_Statement
(Sloc
(N2
)));
2797 -- Loop through components, skipping pragmas, in 2 steps. The first
2798 -- step deals with regular components. The second step deals with
2799 -- components that have per object constraints and no explicit
2804 -- First pass : regular components
2806 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2807 while Present
(Decl
) loop
2808 Comp_Loc
:= Sloc
(Decl
);
2810 (Subtype_Indication
(Component_Definition
(Decl
)), Checks
);
2812 Id
:= Defining_Identifier
(Decl
);
2815 -- Leave any processing of per-object constrained component for
2818 if Has_Access_Constraint
(Id
) and then No
(Expression
(Decl
)) then
2821 -- Regular component cases
2824 -- In the context of the init proc, references to discriminants
2825 -- resolve to denote the discriminals: this is where we can
2826 -- freeze discriminant dependent component subtypes.
2828 if not Is_Frozen
(Typ
) then
2829 Append_List_To
(Stmts
, Freeze_Entity
(Typ
, N
));
2832 -- Explicit initialization
2834 if Present
(Expression
(Decl
)) then
2835 if Is_CPP_Constructor_Call
(Expression
(Decl
)) then
2837 Build_Initialization_Call
2840 Make_Selected_Component
(Comp_Loc
,
2842 Make_Identifier
(Comp_Loc
, Name_uInit
),
2844 New_Occurrence_Of
(Id
, Comp_Loc
)),
2846 In_Init_Proc
=> True,
2847 Enclos_Type
=> Rec_Type
,
2848 Discr_Map
=> Discr_Map
,
2849 Constructor_Ref
=> Expression
(Decl
));
2851 Actions
:= Build_Assignment
(Id
, Expression
(Decl
));
2854 -- CPU, Dispatching_Domain, Priority and Size components are
2855 -- filled with the corresponding rep item expression of the
2856 -- concurrent type (if any).
2858 elsif Ekind
(Scope
(Id
)) = E_Record_Type
2859 and then Present
(Corresponding_Concurrent_Type
(Scope
(Id
)))
2860 and then Nam_In
(Chars
(Id
), Name_uCPU
,
2861 Name_uDispatching_Domain
,
2870 if Chars
(Id
) = Name_uCPU
then
2873 elsif Chars
(Id
) = Name_uDispatching_Domain
then
2874 Nam
:= Name_Dispatching_Domain
;
2876 elsif Chars
(Id
) = Name_uPriority
then
2877 Nam
:= Name_Priority
;
2880 -- Get the Rep Item (aspect specification, attribute
2881 -- definition clause or pragma) of the corresponding
2886 (Corresponding_Concurrent_Type
(Scope
(Id
)),
2888 Check_Parents
=> False);
2890 if Present
(Ritem
) then
2894 if Nkind
(Ritem
) = N_Pragma
then
2895 Exp
:= First
(Pragma_Argument_Associations
(Ritem
));
2897 if Nkind
(Exp
) = N_Pragma_Argument_Association
then
2898 Exp
:= Expression
(Exp
);
2901 -- Conversion for Priority expression
2903 if Nam
= Name_Priority
then
2904 if Pragma_Name
(Ritem
) = Name_Priority
2905 and then not GNAT_Mode
2907 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2910 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2914 -- Aspect/Attribute definition clause case
2917 Exp
:= Expression
(Ritem
);
2919 -- Conversion for Priority expression
2921 if Nam
= Name_Priority
then
2922 if Chars
(Ritem
) = Name_Priority
2923 and then not GNAT_Mode
2925 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2928 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2933 -- Conversion for Dispatching_Domain value
2935 if Nam
= Name_Dispatching_Domain
then
2937 Unchecked_Convert_To
2938 (RTE
(RE_Dispatching_Domain_Access
), Exp
);
2941 Actions
:= Build_Assignment
(Id
, Exp
);
2943 -- Nothing needed if no Rep Item
2950 -- Composite component with its own Init_Proc
2952 elsif not Is_Interface
(Typ
)
2953 and then Has_Non_Null_Base_Init_Proc
(Typ
)
2956 Build_Initialization_Call
2958 Make_Selected_Component
(Comp_Loc
,
2960 Make_Identifier
(Comp_Loc
, Name_uInit
),
2961 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
2963 In_Init_Proc
=> True,
2964 Enclos_Type
=> Rec_Type
,
2965 Discr_Map
=> Discr_Map
);
2967 Clean_Task_Names
(Typ
, Proc_Id
);
2969 -- Simple initialization
2971 elsif Component_Needs_Simple_Initialization
(Typ
) then
2974 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
)));
2976 -- Nothing needed for this case
2982 if Present
(Checks
) then
2983 if Chars
(Id
) = Name_uParent
then
2984 Append_List_To
(Parent_Stmts
, Checks
);
2986 Append_List_To
(Stmts
, Checks
);
2990 if Present
(Actions
) then
2991 if Chars
(Id
) = Name_uParent
then
2992 Append_List_To
(Parent_Stmts
, Actions
);
2995 Append_List_To
(Stmts
, Actions
);
2997 -- Preserve initialization state in the current counter
2999 if Needs_Finalization
(Typ
) then
3000 if No
(Counter_Id
) then
3001 Make_Counter
(Comp_Loc
);
3004 Increment_Counter
(Comp_Loc
);
3010 Next_Non_Pragma
(Decl
);
3013 -- The parent field must be initialized first because variable
3014 -- size components of the parent affect the location of all the
3017 Prepend_List_To
(Stmts
, Parent_Stmts
);
3019 -- Set up tasks and protected object support. This needs to be done
3020 -- before any component with a per-object access discriminant
3021 -- constraint, or any variant part (which may contain such
3022 -- components) is initialized, because the initialization of these
3023 -- components may reference the enclosing concurrent object.
3025 -- For a task record type, add the task create call and calls to bind
3026 -- any interrupt (signal) entries.
3028 if Is_Task_Record_Type
(Rec_Type
) then
3030 -- In the case of the restricted run time the ATCB has already
3031 -- been preallocated.
3033 if Restricted_Profile
then
3035 Make_Assignment_Statement
(Loc
,
3037 Make_Selected_Component
(Loc
,
3038 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
3039 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
3041 Make_Attribute_Reference
(Loc
,
3043 Make_Selected_Component
(Loc
,
3044 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
3045 Selector_Name
=> Make_Identifier
(Loc
, Name_uATCB
)),
3046 Attribute_Name
=> Name_Unchecked_Access
)));
3049 Append_To
(Stmts
, Make_Task_Create_Call
(Rec_Type
));
3052 Task_Type
: constant Entity_Id
:=
3053 Corresponding_Concurrent_Type
(Rec_Type
);
3054 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
3055 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
3056 Decl_Loc
: Source_Ptr
;
3061 if Present
(Task_Def
) then
3062 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
3063 while Present
(Vis_Decl
) loop
3064 Decl_Loc
:= Sloc
(Vis_Decl
);
3066 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
3067 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
3070 Ent
:= Entity
(Name
(Vis_Decl
));
3072 if Ekind
(Ent
) = E_Entry
then
3074 Make_Procedure_Call_Statement
(Decl_Loc
,
3076 New_Occurrence_Of
(RTE
(
3077 RE_Bind_Interrupt_To_Entry
), Decl_Loc
),
3078 Parameter_Associations
=> New_List
(
3079 Make_Selected_Component
(Decl_Loc
,
3081 Make_Identifier
(Decl_Loc
, Name_uInit
),
3084 (Decl_Loc
, Name_uTask_Id
)),
3085 Entry_Index_Expression
3086 (Decl_Loc
, Ent
, Empty
, Task_Type
),
3087 Expression
(Vis_Decl
))));
3098 -- For a protected type, add statements generated by
3099 -- Make_Initialize_Protection.
3101 if Is_Protected_Record_Type
(Rec_Type
) then
3102 Append_List_To
(Stmts
,
3103 Make_Initialize_Protection
(Rec_Type
));
3106 -- Second pass: components with per-object constraints
3109 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
3110 while Present
(Decl
) loop
3111 Comp_Loc
:= Sloc
(Decl
);
3112 Id
:= Defining_Identifier
(Decl
);
3115 if Has_Access_Constraint
(Id
)
3116 and then No
(Expression
(Decl
))
3118 if Has_Non_Null_Base_Init_Proc
(Typ
) then
3119 Append_List_To
(Stmts
,
3120 Build_Initialization_Call
(Comp_Loc
,
3121 Make_Selected_Component
(Comp_Loc
,
3123 Make_Identifier
(Comp_Loc
, Name_uInit
),
3124 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
3126 In_Init_Proc
=> True,
3127 Enclos_Type
=> Rec_Type
,
3128 Discr_Map
=> Discr_Map
));
3130 Clean_Task_Names
(Typ
, Proc_Id
);
3132 -- Preserve initialization state in the current counter
3134 if Needs_Finalization
(Typ
) then
3135 if No
(Counter_Id
) then
3136 Make_Counter
(Comp_Loc
);
3139 Increment_Counter
(Comp_Loc
);
3142 elsif Component_Needs_Simple_Initialization
(Typ
) then
3143 Append_List_To
(Stmts
,
3145 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
))));
3149 Next_Non_Pragma
(Decl
);
3153 -- Process the variant part
3155 if Present
(Variant_Part
(Comp_List
)) then
3157 Variant_Alts
: constant List_Id
:= New_List
;
3158 Var_Loc
: Source_Ptr
;
3163 First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
3164 while Present
(Variant
) loop
3165 Var_Loc
:= Sloc
(Variant
);
3166 Append_To
(Variant_Alts
,
3167 Make_Case_Statement_Alternative
(Var_Loc
,
3169 New_Copy_List
(Discrete_Choices
(Variant
)),
3171 Build_Init_Statements
(Component_List
(Variant
))));
3172 Next_Non_Pragma
(Variant
);
3175 -- The expression of the case statement which is a reference
3176 -- to one of the discriminants is replaced by the appropriate
3177 -- formal parameter of the initialization procedure.
3180 Make_Case_Statement
(Var_Loc
,
3182 New_Occurrence_Of
(Discriminal
(
3183 Entity
(Name
(Variant_Part
(Comp_List
)))), Var_Loc
),
3184 Alternatives
=> Variant_Alts
));
3188 -- If no initializations when generated for component declarations
3189 -- corresponding to this Stmts, append a null statement to Stmts to
3190 -- to make it a valid Ada tree.
3192 if Is_Empty_List
(Stmts
) then
3193 Append
(Make_Null_Statement
(Loc
), Stmts
);
3199 when RE_Not_Available
=>
3201 end Build_Init_Statements
;
3203 -------------------------
3204 -- Build_Record_Checks --
3205 -------------------------
3207 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
3208 Subtype_Mark_Id
: Entity_Id
;
3210 procedure Constrain_Array
3212 Check_List
: List_Id
);
3213 -- Apply a list of index constraints to an unconstrained array type.
3214 -- The first parameter is the entity for the resulting subtype.
3215 -- Check_List is a list to which the check actions are appended.
3217 ---------------------
3218 -- Constrain_Array --
3219 ---------------------
3221 procedure Constrain_Array
3223 Check_List
: List_Id
)
3225 C
: constant Node_Id
:= Constraint
(SI
);
3226 Number_Of_Constraints
: Nat
:= 0;
3230 procedure Constrain_Index
3233 Check_List
: List_Id
);
3234 -- Process an index constraint in a constrained array declaration.
3235 -- The constraint can be either a subtype name or a range with or
3236 -- without an explicit subtype mark. Index is the corresponding
3237 -- index of the unconstrained array. S is the range expression.
3238 -- Check_List is a list to which the check actions are appended.
3240 ---------------------
3241 -- Constrain_Index --
3242 ---------------------
3244 procedure Constrain_Index
3247 Check_List
: List_Id
)
3249 T
: constant Entity_Id
:= Etype
(Index
);
3252 if Nkind
(S
) = N_Range
then
3253 Process_Range_Expr_In_Decl
(S
, T
, Check_List
=> Check_List
);
3255 end Constrain_Index
;
3257 -- Start of processing for Constrain_Array
3260 T
:= Entity
(Subtype_Mark
(SI
));
3262 if Is_Access_Type
(T
) then
3263 T
:= Designated_Type
(T
);
3266 S
:= First
(Constraints
(C
));
3268 while Present
(S
) loop
3269 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
3273 -- In either case, the index constraint must provide a discrete
3274 -- range for each index of the array type and the type of each
3275 -- discrete range must be the same as that of the corresponding
3276 -- index. (RM 3.6.1)
3278 S
:= First
(Constraints
(C
));
3279 Index
:= First_Index
(T
);
3282 -- Apply constraints to each index type
3284 for J
in 1 .. Number_Of_Constraints
loop
3285 Constrain_Index
(Index
, S
, Check_List
);
3289 end Constrain_Array
;
3291 -- Start of processing for Build_Record_Checks
3294 if Nkind
(S
) = N_Subtype_Indication
then
3295 Find_Type
(Subtype_Mark
(S
));
3296 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
3298 -- Remaining processing depends on type
3300 case Ekind
(Subtype_Mark_Id
) is
3303 Constrain_Array
(S
, Check_List
);
3309 end Build_Record_Checks
;
3311 -------------------------------------------
3312 -- Component_Needs_Simple_Initialization --
3313 -------------------------------------------
3315 function Component_Needs_Simple_Initialization
3316 (T
: Entity_Id
) return Boolean
3320 Needs_Simple_Initialization
(T
)
3321 and then not Is_RTE
(T
, RE_Tag
)
3323 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3325 and then not Is_RTE
(T
, RE_Interface_Tag
);
3326 end Component_Needs_Simple_Initialization
;
3328 --------------------------------------
3329 -- Parent_Subtype_Renaming_Discrims --
3330 --------------------------------------
3332 function Parent_Subtype_Renaming_Discrims
return Boolean is
3337 if Base_Type
(Rec_Ent
) /= Rec_Ent
then
3341 if Etype
(Rec_Ent
) = Rec_Ent
3342 or else not Has_Discriminants
(Rec_Ent
)
3343 or else Is_Constrained
(Rec_Ent
)
3344 or else Is_Tagged_Type
(Rec_Ent
)
3349 -- If there are no explicit stored discriminants we have inherited
3350 -- the root type discriminants so far, so no renamings occurred.
3352 if First_Discriminant
(Rec_Ent
) =
3353 First_Stored_Discriminant
(Rec_Ent
)
3358 -- Check if we have done some trivial renaming of the parent
3359 -- discriminants, i.e. something like
3361 -- type DT (X1, X2: int) is new PT (X1, X2);
3363 De
:= First_Discriminant
(Rec_Ent
);
3364 Dp
:= First_Discriminant
(Etype
(Rec_Ent
));
3365 while Present
(De
) loop
3366 pragma Assert
(Present
(Dp
));
3368 if Corresponding_Discriminant
(De
) /= Dp
then
3372 Next_Discriminant
(De
);
3373 Next_Discriminant
(Dp
);
3376 return Present
(Dp
);
3377 end Parent_Subtype_Renaming_Discrims
;
3379 ------------------------
3380 -- Requires_Init_Proc --
3381 ------------------------
3383 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
3384 Comp_Decl
: Node_Id
;
3389 -- Definitely do not need one if specifically suppressed
3391 if Initialization_Suppressed
(Rec_Id
) then
3395 -- If it is a type derived from a type with unknown discriminants,
3396 -- we cannot build an initialization procedure for it.
3398 if Has_Unknown_Discriminants
(Rec_Id
)
3399 or else Has_Unknown_Discriminants
(Etype
(Rec_Id
))
3404 -- Otherwise we need to generate an initialization procedure if
3405 -- Is_CPP_Class is False and at least one of the following applies:
3407 -- 1. Discriminants are present, since they need to be initialized
3408 -- with the appropriate discriminant constraint expressions.
3409 -- However, the discriminant of an unchecked union does not
3410 -- count, since the discriminant is not present.
3412 -- 2. The type is a tagged type, since the implicit Tag component
3413 -- needs to be initialized with a pointer to the dispatch table.
3415 -- 3. The type contains tasks
3417 -- 4. One or more components has an initial value
3419 -- 5. One or more components is for a type which itself requires
3420 -- an initialization procedure.
3422 -- 6. One or more components is a type that requires simple
3423 -- initialization (see Needs_Simple_Initialization), except
3424 -- that types Tag and Interface_Tag are excluded, since fields
3425 -- of these types are initialized by other means.
3427 -- 7. The type is the record type built for a task type (since at
3428 -- the very least, Create_Task must be called)
3430 -- 8. The type is the record type built for a protected type (since
3431 -- at least Initialize_Protection must be called)
3433 -- 9. The type is marked as a public entity. The reason we add this
3434 -- case (even if none of the above apply) is to properly handle
3435 -- Initialize_Scalars. If a package is compiled without an IS
3436 -- pragma, and the client is compiled with an IS pragma, then
3437 -- the client will think an initialization procedure is present
3438 -- and call it, when in fact no such procedure is required, but
3439 -- since the call is generated, there had better be a routine
3440 -- at the other end of the call, even if it does nothing).
3442 -- Note: the reason we exclude the CPP_Class case is because in this
3443 -- case the initialization is performed by the C++ constructors, and
3444 -- the IP is built by Set_CPP_Constructors.
3446 if Is_CPP_Class
(Rec_Id
) then
3449 elsif Is_Interface
(Rec_Id
) then
3452 elsif (Has_Discriminants
(Rec_Id
)
3453 and then not Is_Unchecked_Union
(Rec_Id
))
3454 or else Is_Tagged_Type
(Rec_Id
)
3455 or else Is_Concurrent_Record_Type
(Rec_Id
)
3456 or else Has_Task
(Rec_Id
)
3461 Id
:= First_Component
(Rec_Id
);
3462 while Present
(Id
) loop
3463 Comp_Decl
:= Parent
(Id
);
3466 if Present
(Expression
(Comp_Decl
))
3467 or else Has_Non_Null_Base_Init_Proc
(Typ
)
3468 or else Component_Needs_Simple_Initialization
(Typ
)
3473 Next_Component
(Id
);
3476 -- As explained above, a record initialization procedure is needed
3477 -- for public types in case Initialize_Scalars applies to a client.
3478 -- However, such a procedure is not needed in the case where either
3479 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3480 -- applies. No_Initialize_Scalars excludes the possibility of using
3481 -- Initialize_Scalars in any partition, and No_Default_Initialization
3482 -- implies that no initialization should ever be done for objects of
3483 -- the type, so is incompatible with Initialize_Scalars.
3485 if not Restriction_Active
(No_Initialize_Scalars
)
3486 and then not Restriction_Active
(No_Default_Initialization
)
3487 and then Is_Public
(Rec_Id
)
3493 end Requires_Init_Proc
;
3495 -- Start of processing for Build_Record_Init_Proc
3498 -- Check for value type, which means no initialization required
3500 Rec_Type
:= Defining_Identifier
(N
);
3502 if Is_Value_Type
(Rec_Type
) then
3506 -- This may be full declaration of a private type, in which case
3507 -- the visible entity is a record, and the private entity has been
3508 -- exchanged with it in the private part of the current package.
3509 -- The initialization procedure is built for the record type, which
3510 -- is retrievable from the private entity.
3512 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
3513 Rec_Type
:= Underlying_Type
(Rec_Type
);
3516 -- If we have a variant record with restriction No_Implicit_Conditionals
3517 -- in effect, then we skip building the procedure. This is safe because
3518 -- if we can see the restriction, so can any caller, calls to initialize
3519 -- such records are not allowed for variant records if this restriction
3522 if Has_Variant_Part
(Rec_Type
)
3523 and then Restriction_Active
(No_Implicit_Conditionals
)
3528 -- If there are discriminants, build the discriminant map to replace
3529 -- discriminants by their discriminals in complex bound expressions.
3530 -- These only arise for the corresponding records of synchronized types.
3532 if Is_Concurrent_Record_Type
(Rec_Type
)
3533 and then Has_Discriminants
(Rec_Type
)
3538 Disc
:= First_Discriminant
(Rec_Type
);
3539 while Present
(Disc
) loop
3540 Append_Elmt
(Disc
, Discr_Map
);
3541 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
3542 Next_Discriminant
(Disc
);
3547 -- Derived types that have no type extension can use the initialization
3548 -- procedure of their parent and do not need a procedure of their own.
3549 -- This is only correct if there are no representation clauses for the
3550 -- type or its parent, and if the parent has in fact been frozen so
3551 -- that its initialization procedure exists.
3553 if Is_Derived_Type
(Rec_Type
)
3554 and then not Is_Tagged_Type
(Rec_Type
)
3555 and then not Is_Unchecked_Union
(Rec_Type
)
3556 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
3557 and then not Parent_Subtype_Renaming_Discrims
3558 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
3560 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
3562 -- Otherwise if we need an initialization procedure, then build one,
3563 -- mark it as public and inlinable and as having a completion.
3565 elsif Requires_Init_Proc
(Rec_Type
)
3566 or else Is_Unchecked_Union
(Rec_Type
)
3569 Make_Defining_Identifier
(Loc
,
3570 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
3572 -- If No_Default_Initialization restriction is active, then we don't
3573 -- want to build an init_proc, but we need to mark that an init_proc
3574 -- would be needed if this restriction was not active (so that we can
3575 -- detect attempts to call it), so set a dummy init_proc in place.
3577 if Restriction_Active
(No_Default_Initialization
) then
3578 Set_Init_Proc
(Rec_Type
, Proc_Id
);
3582 Build_Offset_To_Top_Functions
;
3583 Build_CPP_Init_Procedure
;
3584 Build_Init_Procedure
;
3585 Set_Is_Public
(Proc_Id
, Is_Public
(Rec_Ent
));
3587 -- The initialization of protected records is not worth inlining.
3588 -- In addition, when compiled for another unit for inlining purposes,
3589 -- it may make reference to entities that have not been elaborated
3590 -- yet. The initialization of controlled records contains a nested
3591 -- clean-up procedure that makes it impractical to inline as well,
3592 -- and leads to undefined symbols if inlined in a different unit.
3593 -- Similar considerations apply to task types.
3595 if not Is_Concurrent_Type
(Rec_Type
)
3596 and then not Has_Task
(Rec_Type
)
3597 and then not Needs_Finalization
(Rec_Type
)
3599 Set_Is_Inlined
(Proc_Id
);
3602 Set_Is_Internal
(Proc_Id
);
3603 Set_Has_Completion
(Proc_Id
);
3605 if not Debug_Generated_Code
then
3606 Set_Debug_Info_Off
(Proc_Id
);
3610 Agg
: constant Node_Id
:=
3611 Build_Equivalent_Record_Aggregate
(Rec_Type
);
3613 procedure Collect_Itypes
(Comp
: Node_Id
);
3614 -- Generate references to itypes in the aggregate, because
3615 -- the first use of the aggregate may be in a nested scope.
3617 --------------------
3618 -- Collect_Itypes --
3619 --------------------
3621 procedure Collect_Itypes
(Comp
: Node_Id
) is
3624 Typ
: constant Entity_Id
:= Etype
(Comp
);
3627 if Is_Array_Type
(Typ
) and then Is_Itype
(Typ
) then
3628 Ref
:= Make_Itype_Reference
(Loc
);
3629 Set_Itype
(Ref
, Typ
);
3630 Append_Freeze_Action
(Rec_Type
, Ref
);
3632 Ref
:= Make_Itype_Reference
(Loc
);
3633 Set_Itype
(Ref
, Etype
(First_Index
(Typ
)));
3634 Append_Freeze_Action
(Rec_Type
, Ref
);
3636 Sub_Aggr
:= First
(Expressions
(Comp
));
3638 -- Recurse on nested arrays
3640 while Present
(Sub_Aggr
) loop
3641 Collect_Itypes
(Sub_Aggr
);
3648 -- If there is a static initialization aggregate for the type,
3649 -- generate itype references for the types of its (sub)components,
3650 -- to prevent out-of-scope errors in the resulting tree.
3651 -- The aggregate may have been rewritten as a Raise node, in which
3652 -- case there are no relevant itypes.
3654 if Present
(Agg
) and then Nkind
(Agg
) = N_Aggregate
then
3655 Set_Static_Initialization
(Proc_Id
, Agg
);
3660 Comp
:= First
(Component_Associations
(Agg
));
3661 while Present
(Comp
) loop
3662 Collect_Itypes
(Expression
(Comp
));
3669 end Build_Record_Init_Proc
;
3671 --------------------------------
3672 -- Build_Record_Invariant_Proc --
3673 --------------------------------
3675 function Build_Record_Invariant_Proc
3676 (R_Type
: Entity_Id
;
3677 Nod
: Node_Id
) return Node_Id
3679 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
3681 Object_Name
: constant Name_Id
:= New_Internal_Name
('I');
3682 -- Name for argument of invariant procedure
3684 Object_Entity
: constant Node_Id
:=
3685 Make_Defining_Identifier
(Loc
, Object_Name
);
3686 -- The procedure declaration entity for the argument
3688 Invariant_Found
: Boolean;
3689 -- Set if any component needs an invariant check.
3691 Proc_Id
: Entity_Id
;
3692 Proc_Body
: Node_Id
;
3696 function Build_Invariant_Checks
(Comp_List
: Node_Id
) return List_Id
;
3697 -- Recursive procedure that generates a list of checks for components
3698 -- that need it, and recurses through variant parts when present.
3700 function Build_Component_Invariant_Call
(Comp
: Entity_Id
)
3702 -- Build call to invariant procedure for a record component.
3704 ------------------------------------
3705 -- Build_Component_Invariant_Call --
3706 ------------------------------------
3708 function Build_Component_Invariant_Call
(Comp
: Entity_Id
)
3716 Invariant_Found
:= True;
3717 Typ
:= Etype
(Comp
);
3720 Make_Selected_Component
(Loc
,
3721 Prefix
=> New_Occurrence_Of
(Object_Entity
, Loc
),
3722 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
));
3724 if Is_Access_Type
(Typ
) then
3726 -- If the access component designates a type with an invariant,
3727 -- the check applies to the designated object. The access type
3728 -- itself may have an invariant, in which case it applies to the
3729 -- access value directly.
3731 -- Note: we are assuming that invariants will not occur on both
3732 -- the access type and the type that it designates. This is not
3733 -- really justified but it is hard to imagine that this case will
3734 -- ever cause trouble ???
3736 if not (Has_Invariants
(Typ
)) then
3737 Sel_Comp
:= Make_Explicit_Dereference
(Loc
, Sel_Comp
);
3738 Typ
:= Designated_Type
(Typ
);
3742 -- The aspect is type-specific, so retrieve it from the base type
3745 Make_Procedure_Call_Statement
(Loc
,
3747 New_Occurrence_Of
(Invariant_Procedure
(Base_Type
(Typ
)), Loc
),
3748 Parameter_Associations
=> New_List
(Sel_Comp
));
3750 if Is_Access_Type
(Etype
(Comp
)) then
3752 Make_If_Statement
(Loc
,
3755 Left_Opnd
=> Make_Null
(Loc
),
3757 Make_Selected_Component
(Loc
,
3758 Prefix
=> New_Occurrence_Of
(Object_Entity
, Loc
),
3759 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
))),
3760 Then_Statements
=> New_List
(Call
));
3764 end Build_Component_Invariant_Call
;
3766 ----------------------------
3767 -- Build_Invariant_Checks --
3768 ----------------------------
3770 function Build_Invariant_Checks
(Comp_List
: Node_Id
) return List_Id
is
3777 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
3778 while Present
(Decl
) loop
3779 if Nkind
(Decl
) = N_Component_Declaration
then
3780 Id
:= Defining_Identifier
(Decl
);
3782 if Has_Invariants
(Etype
(Id
))
3783 and then In_Open_Scopes
(Scope
(R_Type
))
3785 if Has_Unchecked_Union
(R_Type
) then
3787 ("invariants cannot be checked on components of "
3788 & "unchecked_union type&?", Decl
, R_Type
);
3792 Append_To
(Stmts
, Build_Component_Invariant_Call
(Id
));
3795 elsif Is_Access_Type
(Etype
(Id
))
3796 and then not Is_Access_Constant
(Etype
(Id
))
3797 and then Has_Invariants
(Designated_Type
(Etype
(Id
)))
3798 and then In_Open_Scopes
(Scope
(Designated_Type
(Etype
(Id
))))
3800 Append_To
(Stmts
, Build_Component_Invariant_Call
(Id
));
3807 if Present
(Variant_Part
(Comp_List
)) then
3809 Variant_Alts
: constant List_Id
:= New_List
;
3810 Var_Loc
: Source_Ptr
;
3812 Variant_Stmts
: List_Id
;
3816 First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
3817 while Present
(Variant
) loop
3819 Build_Invariant_Checks
(Component_List
(Variant
));
3820 Var_Loc
:= Sloc
(Variant
);
3821 Append_To
(Variant_Alts
,
3822 Make_Case_Statement_Alternative
(Var_Loc
,
3824 New_Copy_List
(Discrete_Choices
(Variant
)),
3825 Statements
=> Variant_Stmts
));
3827 Next_Non_Pragma
(Variant
);
3830 -- The expression in the case statement is the reference to
3831 -- the discriminant of the target object.
3834 Make_Case_Statement
(Var_Loc
,
3836 Make_Selected_Component
(Var_Loc
,
3837 Prefix
=> New_Occurrence_Of
(Object_Entity
, Var_Loc
),
3838 Selector_Name
=> New_Occurrence_Of
3840 (Name
(Variant_Part
(Comp_List
))), Var_Loc
)),
3841 Alternatives
=> Variant_Alts
));
3846 end Build_Invariant_Checks
;
3848 -- Start of processing for Build_Record_Invariant_Proc
3851 Invariant_Found
:= False;
3852 Type_Def
:= Type_Definition
(Parent
(R_Type
));
3854 if Nkind
(Type_Def
) = N_Record_Definition
3855 and then not Null_Present
(Type_Def
)
3857 Stmts
:= Build_Invariant_Checks
(Component_List
(Type_Def
));
3862 if not Invariant_Found
then
3866 -- The name of the invariant procedure reflects the fact that the
3867 -- checks correspond to invariants on the component types. The
3868 -- record type itself may have invariants that will create a separate
3869 -- procedure whose name carries the Invariant suffix.
3872 Make_Defining_Identifier
(Loc
,
3873 Chars
=> New_External_Name
(Chars
(R_Type
), "CInvariant"));
3876 Make_Subprogram_Body
(Loc
,
3878 Make_Procedure_Specification
(Loc
,
3879 Defining_Unit_Name
=> Proc_Id
,
3880 Parameter_Specifications
=> New_List
(
3881 Make_Parameter_Specification
(Loc
,
3882 Defining_Identifier
=> Object_Entity
,
3883 Parameter_Type
=> New_Occurrence_Of
(R_Type
, Loc
)))),
3885 Declarations
=> Empty_List
,
3886 Handled_Statement_Sequence
=>
3887 Make_Handled_Sequence_Of_Statements
(Loc
,
3888 Statements
=> Stmts
));
3890 Set_Ekind
(Proc_Id
, E_Procedure
);
3891 Set_Is_Public
(Proc_Id
, Is_Public
(R_Type
));
3892 Set_Is_Internal
(Proc_Id
);
3893 Set_Has_Completion
(Proc_Id
);
3896 -- Insert_After (Nod, Proc_Body);
3897 -- Analyze (Proc_Body);
3898 end Build_Record_Invariant_Proc
;
3900 ----------------------------
3901 -- Build_Slice_Assignment --
3902 ----------------------------
3904 -- Generates the following subprogram:
3907 -- (Source, Target : Array_Type,
3908 -- Left_Lo, Left_Hi : Index;
3909 -- Right_Lo, Right_Hi : Index;
3917 -- if Left_Hi < Left_Lo then
3930 -- Target (Li1) := Source (Ri1);
3933 -- exit when Li1 = Left_Lo;
3934 -- Li1 := Index'pred (Li1);
3935 -- Ri1 := Index'pred (Ri1);
3937 -- exit when Li1 = Left_Hi;
3938 -- Li1 := Index'succ (Li1);
3939 -- Ri1 := Index'succ (Ri1);
3944 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
3945 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3946 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
3948 Larray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
3949 Rarray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3950 Left_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3951 Left_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3952 Right_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3953 Right_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3954 Rev
: constant Entity_Id
:= Make_Temporary
(Loc
, 'D');
3955 -- Formal parameters of procedure
3957 Proc_Name
: constant Entity_Id
:=
3958 Make_Defining_Identifier
(Loc
,
3959 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
3961 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3962 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3963 -- Subscripts for left and right sides
3970 -- Build declarations for indexes
3975 Make_Object_Declaration
(Loc
,
3976 Defining_Identifier
=> Lnn
,
3977 Object_Definition
=>
3978 New_Occurrence_Of
(Index
, Loc
)));
3981 Make_Object_Declaration
(Loc
,
3982 Defining_Identifier
=> Rnn
,
3983 Object_Definition
=>
3984 New_Occurrence_Of
(Index
, Loc
)));
3988 -- Build test for empty slice case
3991 Make_If_Statement
(Loc
,
3994 Left_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
),
3995 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
)),
3996 Then_Statements
=> New_List
(Make_Simple_Return_Statement
(Loc
))));
3998 -- Build initializations for indexes
4001 F_Init
: constant List_Id
:= New_List
;
4002 B_Init
: constant List_Id
:= New_List
;
4006 Make_Assignment_Statement
(Loc
,
4007 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4008 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
4011 Make_Assignment_Statement
(Loc
,
4012 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4013 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
4016 Make_Assignment_Statement
(Loc
,
4017 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4018 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
4021 Make_Assignment_Statement
(Loc
,
4022 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4023 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
4026 Make_If_Statement
(Loc
,
4027 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
4028 Then_Statements
=> B_Init
,
4029 Else_Statements
=> F_Init
));
4032 -- Now construct the assignment statement
4035 Make_Loop_Statement
(Loc
,
4036 Statements
=> New_List
(
4037 Make_Assignment_Statement
(Loc
,
4039 Make_Indexed_Component
(Loc
,
4040 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
4041 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
4043 Make_Indexed_Component
(Loc
,
4044 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
4045 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
4046 End_Label
=> Empty
);
4048 -- Build the exit condition and increment/decrement statements
4051 F_Ass
: constant List_Id
:= New_List
;
4052 B_Ass
: constant List_Id
:= New_List
;
4056 Make_Exit_Statement
(Loc
,
4059 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4060 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
4063 Make_Assignment_Statement
(Loc
,
4064 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4066 Make_Attribute_Reference
(Loc
,
4068 New_Occurrence_Of
(Index
, Loc
),
4069 Attribute_Name
=> Name_Succ
,
4070 Expressions
=> New_List
(
4071 New_Occurrence_Of
(Lnn
, Loc
)))));
4074 Make_Assignment_Statement
(Loc
,
4075 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4077 Make_Attribute_Reference
(Loc
,
4079 New_Occurrence_Of
(Index
, Loc
),
4080 Attribute_Name
=> Name_Succ
,
4081 Expressions
=> New_List
(
4082 New_Occurrence_Of
(Rnn
, Loc
)))));
4085 Make_Exit_Statement
(Loc
,
4088 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4089 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
4092 Make_Assignment_Statement
(Loc
,
4093 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4095 Make_Attribute_Reference
(Loc
,
4097 New_Occurrence_Of
(Index
, Loc
),
4098 Attribute_Name
=> Name_Pred
,
4099 Expressions
=> New_List
(
4100 New_Occurrence_Of
(Lnn
, Loc
)))));
4103 Make_Assignment_Statement
(Loc
,
4104 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4106 Make_Attribute_Reference
(Loc
,
4108 New_Occurrence_Of
(Index
, Loc
),
4109 Attribute_Name
=> Name_Pred
,
4110 Expressions
=> New_List
(
4111 New_Occurrence_Of
(Rnn
, Loc
)))));
4113 Append_To
(Statements
(Loops
),
4114 Make_If_Statement
(Loc
,
4115 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
4116 Then_Statements
=> B_Ass
,
4117 Else_Statements
=> F_Ass
));
4120 Append_To
(Stats
, Loops
);
4124 Formals
: List_Id
:= New_List
;
4127 Formals
:= New_List
(
4128 Make_Parameter_Specification
(Loc
,
4129 Defining_Identifier
=> Larray
,
4130 Out_Present
=> True,
4132 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
4134 Make_Parameter_Specification
(Loc
,
4135 Defining_Identifier
=> Rarray
,
4137 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
4139 Make_Parameter_Specification
(Loc
,
4140 Defining_Identifier
=> Left_Lo
,
4142 New_Occurrence_Of
(Index
, Loc
)),
4144 Make_Parameter_Specification
(Loc
,
4145 Defining_Identifier
=> Left_Hi
,
4147 New_Occurrence_Of
(Index
, Loc
)),
4149 Make_Parameter_Specification
(Loc
,
4150 Defining_Identifier
=> Right_Lo
,
4152 New_Occurrence_Of
(Index
, Loc
)),
4154 Make_Parameter_Specification
(Loc
,
4155 Defining_Identifier
=> Right_Hi
,
4157 New_Occurrence_Of
(Index
, Loc
)));
4160 Make_Parameter_Specification
(Loc
,
4161 Defining_Identifier
=> Rev
,
4163 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
4166 Make_Procedure_Specification
(Loc
,
4167 Defining_Unit_Name
=> Proc_Name
,
4168 Parameter_Specifications
=> Formals
);
4171 Make_Subprogram_Body
(Loc
,
4172 Specification
=> Spec
,
4173 Declarations
=> Decls
,
4174 Handled_Statement_Sequence
=>
4175 Make_Handled_Sequence_Of_Statements
(Loc
,
4176 Statements
=> Stats
)));
4179 Set_TSS
(Typ
, Proc_Name
);
4180 Set_Is_Pure
(Proc_Name
);
4181 end Build_Slice_Assignment
;
4183 -----------------------------
4184 -- Build_Untagged_Equality --
4185 -----------------------------
4187 procedure Build_Untagged_Equality
(Typ
: Entity_Id
) is
4195 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
;
4196 -- Check whether the type T has a user-defined primitive equality. If so
4197 -- return it, else return Empty. If true for a component of Typ, we have
4198 -- to build the primitive equality for it.
4200 ---------------------
4201 -- User_Defined_Eq --
4202 ---------------------
4204 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
is
4209 Op
:= TSS
(T
, TSS_Composite_Equality
);
4211 if Present
(Op
) then
4215 Prim
:= First_Elmt
(Collect_Primitive_Operations
(T
));
4216 while Present
(Prim
) loop
4219 if Chars
(Op
) = Name_Op_Eq
4220 and then Etype
(Op
) = Standard_Boolean
4221 and then Etype
(First_Formal
(Op
)) = T
4222 and then Etype
(Next_Formal
(First_Formal
(Op
))) = T
4231 end User_Defined_Eq
;
4233 -- Start of processing for Build_Untagged_Equality
4236 -- If a record component has a primitive equality operation, we must
4237 -- build the corresponding one for the current type.
4240 Comp
:= First_Component
(Typ
);
4241 while Present
(Comp
) loop
4242 if Is_Record_Type
(Etype
(Comp
))
4243 and then Present
(User_Defined_Eq
(Etype
(Comp
)))
4248 Next_Component
(Comp
);
4251 -- If there is a user-defined equality for the type, we do not create
4252 -- the implicit one.
4254 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
4256 while Present
(Prim
) loop
4257 if Chars
(Node
(Prim
)) = Name_Op_Eq
4258 and then Comes_From_Source
(Node
(Prim
))
4260 -- Don't we also need to check formal types and return type as in
4261 -- User_Defined_Eq above???
4264 Eq_Op
:= Node
(Prim
);
4272 -- If the type is derived, inherit the operation, if present, from the
4273 -- parent type. It may have been declared after the type derivation. If
4274 -- the parent type itself is derived, it may have inherited an operation
4275 -- that has itself been overridden, so update its alias and related
4276 -- flags. Ditto for inequality.
4278 if No
(Eq_Op
) and then Is_Derived_Type
(Typ
) then
4279 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Etype
(Typ
)));
4280 while Present
(Prim
) loop
4281 if Chars
(Node
(Prim
)) = Name_Op_Eq
then
4282 Copy_TSS
(Node
(Prim
), Typ
);
4286 Op
: constant Entity_Id
:= User_Defined_Eq
(Typ
);
4287 Eq_Op
: constant Entity_Id
:= Node
(Prim
);
4288 NE_Op
: constant Entity_Id
:= Next_Entity
(Eq_Op
);
4291 if Present
(Op
) then
4292 Set_Alias
(Op
, Eq_Op
);
4293 Set_Is_Abstract_Subprogram
4294 (Op
, Is_Abstract_Subprogram
(Eq_Op
));
4296 if Chars
(Next_Entity
(Op
)) = Name_Op_Ne
then
4297 Set_Is_Abstract_Subprogram
4298 (Next_Entity
(Op
), Is_Abstract_Subprogram
(NE_Op
));
4310 -- If not inherited and not user-defined, build body as for a type with
4311 -- tagged components.
4315 Make_Eq_Body
(Typ
, Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4316 Op
:= Defining_Entity
(Decl
);
4320 if Is_Library_Level_Entity
(Typ
) then
4324 end Build_Untagged_Equality
;
4326 -----------------------------------
4327 -- Build_Variant_Record_Equality --
4328 -----------------------------------
4332 -- function _Equality (X, Y : T) return Boolean is
4334 -- -- Compare discriminants
4336 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4340 -- -- Compare components
4342 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4346 -- -- Compare variant part
4350 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4355 -- if X.Cn /= Y.Cn or else ... then
4363 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
4364 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4366 F
: constant Entity_Id
:=
4367 Make_Defining_Identifier
(Loc
,
4368 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4370 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_X
);
4371 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_Y
);
4373 Def
: constant Node_Id
:= Parent
(Typ
);
4374 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
4375 Stmts
: constant List_Id
:= New_List
;
4376 Pspecs
: constant List_Id
:= New_List
;
4379 -- If we have a variant record with restriction No_Implicit_Conditionals
4380 -- in effect, then we skip building the procedure. This is safe because
4381 -- if we can see the restriction, so can any caller, calls to equality
4382 -- test routines are not allowed for variant records if this restriction
4385 if Restriction_Active
(No_Implicit_Conditionals
) then
4389 -- Derived Unchecked_Union types no longer inherit the equality function
4392 if Is_Derived_Type
(Typ
)
4393 and then not Is_Unchecked_Union
(Typ
)
4394 and then not Has_New_Non_Standard_Rep
(Typ
)
4397 Parent_Eq
: constant Entity_Id
:=
4398 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
4400 if Present
(Parent_Eq
) then
4401 Copy_TSS
(Parent_Eq
, Typ
);
4408 Make_Subprogram_Body
(Loc
,
4410 Make_Function_Specification
(Loc
,
4411 Defining_Unit_Name
=> F
,
4412 Parameter_Specifications
=> Pspecs
,
4413 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
4414 Declarations
=> New_List
,
4415 Handled_Statement_Sequence
=>
4416 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stmts
)));
4419 Make_Parameter_Specification
(Loc
,
4420 Defining_Identifier
=> X
,
4421 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
4424 Make_Parameter_Specification
(Loc
,
4425 Defining_Identifier
=> Y
,
4426 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
4428 -- Unchecked_Unions require additional machinery to support equality.
4429 -- Two extra parameters (A and B) are added to the equality function
4430 -- parameter list for each discriminant of the type, in order to
4431 -- capture the inferred values of the discriminants in equality calls.
4432 -- The names of the parameters match the names of the corresponding
4433 -- discriminant, with an added suffix.
4435 if Is_Unchecked_Union
(Typ
) then
4438 Discr_Type
: Entity_Id
;
4440 New_Discrs
: Elist_Id
;
4443 New_Discrs
:= New_Elmt_List
;
4445 Discr
:= First_Discriminant
(Typ
);
4446 while Present
(Discr
) loop
4447 Discr_Type
:= Etype
(Discr
);
4448 A
:= Make_Defining_Identifier
(Loc
,
4449 Chars
=> New_External_Name
(Chars
(Discr
), 'A'));
4451 B
:= Make_Defining_Identifier
(Loc
,
4452 Chars
=> New_External_Name
(Chars
(Discr
), 'B'));
4454 -- Add new parameters to the parameter list
4457 Make_Parameter_Specification
(Loc
,
4458 Defining_Identifier
=> A
,
4460 New_Occurrence_Of
(Discr_Type
, Loc
)));
4463 Make_Parameter_Specification
(Loc
,
4464 Defining_Identifier
=> B
,
4466 New_Occurrence_Of
(Discr_Type
, Loc
)));
4468 Append_Elmt
(A
, New_Discrs
);
4470 -- Generate the following code to compare each of the inferred
4478 Make_If_Statement
(Loc
,
4481 Left_Opnd
=> New_Occurrence_Of
(A
, Loc
),
4482 Right_Opnd
=> New_Occurrence_Of
(B
, Loc
)),
4483 Then_Statements
=> New_List
(
4484 Make_Simple_Return_Statement
(Loc
,
4486 New_Occurrence_Of
(Standard_False
, Loc
)))));
4487 Next_Discriminant
(Discr
);
4490 -- Generate component-by-component comparison. Note that we must
4491 -- propagate the inferred discriminants formals to act as
4492 -- the case statement switch. Their value is added when an
4493 -- equality call on unchecked unions is expanded.
4495 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
, New_Discrs
));
4498 -- Normal case (not unchecked union)
4502 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
4503 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
4507 Make_Simple_Return_Statement
(Loc
,
4508 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4513 if not Debug_Generated_Code
then
4514 Set_Debug_Info_Off
(F
);
4516 end Build_Variant_Record_Equality
;
4518 -----------------------------
4519 -- Check_Stream_Attributes --
4520 -----------------------------
4522 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
4524 Par_Read
: constant Boolean :=
4525 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
4526 and then not Has_Specified_Stream_Read
(Typ
);
4527 Par_Write
: constant Boolean :=
4528 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
4529 and then not Has_Specified_Stream_Write
(Typ
);
4531 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
4532 -- Check that Comp has a user-specified Nam stream attribute
4538 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
4540 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
4541 Error_Msg_Name_1
:= Nam
;
4543 ("|component& in limited extension must have% attribute", Comp
);
4547 -- Start of processing for Check_Stream_Attributes
4550 if Par_Read
or else Par_Write
then
4551 Comp
:= First_Component
(Typ
);
4552 while Present
(Comp
) loop
4553 if Comes_From_Source
(Comp
)
4554 and then Original_Record_Component
(Comp
) = Comp
4555 and then Is_Limited_Type
(Etype
(Comp
))
4558 Check_Attr
(Name_Read
, TSS_Stream_Read
);
4562 Check_Attr
(Name_Write
, TSS_Stream_Write
);
4566 Next_Component
(Comp
);
4569 end Check_Stream_Attributes
;
4571 -----------------------------
4572 -- Expand_Record_Extension --
4573 -----------------------------
4575 -- Add a field _parent at the beginning of the record extension. This is
4576 -- used to implement inheritance. Here are some examples of expansion:
4578 -- 1. no discriminants
4579 -- type T2 is new T1 with null record;
4581 -- type T2 is new T1 with record
4585 -- 2. renamed discriminants
4586 -- type T2 (B, C : Int) is new T1 (A => B) with record
4587 -- _Parent : T1 (A => B);
4591 -- 3. inherited discriminants
4592 -- type T2 is new T1 with record -- discriminant A inherited
4593 -- _Parent : T1 (A);
4597 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
4598 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
4599 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4600 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
4601 Par_Subtype
: Entity_Id
;
4602 Comp_List
: Node_Id
;
4603 Comp_Decl
: Node_Id
;
4606 List_Constr
: constant List_Id
:= New_List
;
4609 -- Expand_Record_Extension is called directly from the semantics, so
4610 -- we must check to see whether expansion is active before proceeding,
4611 -- because this affects the visibility of selected components in bodies
4614 if not Expander_Active
then
4618 -- This may be a derivation of an untagged private type whose full
4619 -- view is tagged, in which case the Derived_Type_Definition has no
4620 -- extension part. Build an empty one now.
4622 if No
(Rec_Ext_Part
) then
4624 Make_Record_Definition
(Loc
,
4626 Component_List
=> Empty
,
4627 Null_Present
=> True);
4629 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
4630 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
4633 Comp_List
:= Component_List
(Rec_Ext_Part
);
4635 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
4637 -- If the derived type inherits its discriminants the type of the
4638 -- _parent field must be constrained by the inherited discriminants
4640 if Has_Discriminants
(T
)
4641 and then Nkind
(Indic
) /= N_Subtype_Indication
4642 and then not Is_Constrained
(Entity
(Indic
))
4644 D
:= First_Discriminant
(T
);
4645 while Present
(D
) loop
4646 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
4647 Next_Discriminant
(D
);
4652 Make_Subtype_Indication
(Loc
,
4653 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Indic
), Loc
),
4655 Make_Index_Or_Discriminant_Constraint
(Loc
,
4656 Constraints
=> List_Constr
)),
4659 -- Otherwise the original subtype_indication is just what is needed
4662 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
4665 Set_Parent_Subtype
(T
, Par_Subtype
);
4668 Make_Component_Declaration
(Loc
,
4669 Defining_Identifier
=> Parent_N
,
4670 Component_Definition
=>
4671 Make_Component_Definition
(Loc
,
4672 Aliased_Present
=> False,
4673 Subtype_Indication
=> New_Occurrence_Of
(Par_Subtype
, Loc
)));
4675 if Null_Present
(Rec_Ext_Part
) then
4676 Set_Component_List
(Rec_Ext_Part
,
4677 Make_Component_List
(Loc
,
4678 Component_Items
=> New_List
(Comp_Decl
),
4679 Variant_Part
=> Empty
,
4680 Null_Present
=> False));
4681 Set_Null_Present
(Rec_Ext_Part
, False);
4683 elsif Null_Present
(Comp_List
)
4684 or else Is_Empty_List
(Component_Items
(Comp_List
))
4686 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
4687 Set_Null_Present
(Comp_List
, False);
4690 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
4693 Analyze
(Comp_Decl
);
4694 end Expand_Record_Extension
;
4696 ------------------------------------
4697 -- Expand_N_Full_Type_Declaration --
4698 ------------------------------------
4700 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
4701 procedure Build_Master
(Ptr_Typ
: Entity_Id
);
4702 -- Create the master associated with Ptr_Typ
4708 procedure Build_Master
(Ptr_Typ
: Entity_Id
) is
4709 Desig_Typ
: Entity_Id
:= Designated_Type
(Ptr_Typ
);
4712 -- If the designated type is an incomplete view coming from a
4713 -- limited-with'ed package, we need to use the nonlimited view in
4714 -- case it has tasks.
4716 if Ekind
(Desig_Typ
) in Incomplete_Kind
4717 and then Present
(Non_Limited_View
(Desig_Typ
))
4719 Desig_Typ
:= Non_Limited_View
(Desig_Typ
);
4722 -- Anonymous access types are created for the components of the
4723 -- record parameter for an entry declaration. No master is created
4726 if Comes_From_Source
(N
) and then Has_Task
(Desig_Typ
) then
4727 Build_Master_Entity
(Ptr_Typ
);
4728 Build_Master_Renaming
(Ptr_Typ
);
4730 -- Create a class-wide master because a Master_Id must be generated
4731 -- for access-to-limited-class-wide types whose root may be extended
4732 -- with task components.
4734 -- Note: This code covers access-to-limited-interfaces because they
4735 -- can be used to reference tasks implementing them.
4737 elsif Is_Limited_Class_Wide_Type
(Desig_Typ
)
4738 and then Tasking_Allowed
4740 -- Do not create a class-wide master for types whose convention is
4741 -- Java since these types cannot embed Ada tasks anyway. Note that
4742 -- the following test cannot catch the following case:
4744 -- package java.lang.Object is
4745 -- type Typ is tagged limited private;
4746 -- type Ref is access all Typ'Class;
4748 -- type Typ is tagged limited ...;
4749 -- pragma Convention (Typ, Java)
4752 -- Because the convention appears after we have done the
4753 -- processing for type Ref.
4755 and then Convention
(Desig_Typ
) /= Convention_Java
4756 and then Convention
(Desig_Typ
) /= Convention_CIL
4758 Build_Class_Wide_Master
(Ptr_Typ
);
4762 -- Local declarations
4764 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4765 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
4769 -- Start of processing for Expand_N_Full_Type_Declaration
4772 if Is_Access_Type
(Def_Id
) then
4773 Build_Master
(Def_Id
);
4775 if Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
4776 Expand_Access_Protected_Subprogram_Type
(N
);
4779 -- Array of anonymous access-to-task pointers
4781 elsif Ada_Version
>= Ada_2005
4782 and then Is_Array_Type
(Def_Id
)
4783 and then Is_Access_Type
(Component_Type
(Def_Id
))
4784 and then Ekind
(Component_Type
(Def_Id
)) = E_Anonymous_Access_Type
4786 Build_Master
(Component_Type
(Def_Id
));
4788 elsif Has_Task
(Def_Id
) then
4789 Expand_Previous_Access_Type
(Def_Id
);
4791 -- Check the components of a record type or array of records for
4792 -- anonymous access-to-task pointers.
4794 elsif Ada_Version
>= Ada_2005
4795 and then (Is_Record_Type
(Def_Id
)
4797 (Is_Array_Type
(Def_Id
)
4798 and then Is_Record_Type
(Component_Type
(Def_Id
))))
4807 if Is_Array_Type
(Def_Id
) then
4808 Comp
:= First_Entity
(Component_Type
(Def_Id
));
4810 Comp
:= First_Entity
(Def_Id
);
4813 -- Examine all components looking for anonymous access-to-task
4817 while Present
(Comp
) loop
4818 Typ
:= Etype
(Comp
);
4820 if Ekind
(Typ
) = E_Anonymous_Access_Type
4821 and then Has_Task
(Available_View
(Designated_Type
(Typ
)))
4822 and then No
(Master_Id
(Typ
))
4824 -- Ensure that the record or array type have a _master
4827 Build_Master_Entity
(Def_Id
);
4828 Build_Master_Renaming
(Typ
);
4829 M_Id
:= Master_Id
(Typ
);
4833 -- Reuse the same master to service any additional types
4836 Set_Master_Id
(Typ
, M_Id
);
4845 Par_Id
:= Etype
(B_Id
);
4847 -- The parent type is private then we need to inherit any TSS operations
4848 -- from the full view.
4850 if Ekind
(Par_Id
) in Private_Kind
4851 and then Present
(Full_View
(Par_Id
))
4853 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
4856 if Nkind
(Type_Definition
(Original_Node
(N
))) =
4857 N_Derived_Type_Definition
4858 and then not Is_Tagged_Type
(Def_Id
)
4859 and then Present
(Freeze_Node
(Par_Id
))
4860 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
4862 Ensure_Freeze_Node
(B_Id
);
4863 FN
:= Freeze_Node
(B_Id
);
4865 if No
(TSS_Elist
(FN
)) then
4866 Set_TSS_Elist
(FN
, New_Elmt_List
);
4870 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
4874 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
4875 while Present
(Elmt
) loop
4876 if Chars
(Node
(Elmt
)) /= Name_uInit
then
4877 Append_Elmt
(Node
(Elmt
), T_E
);
4883 -- If the derived type itself is private with a full view, then
4884 -- associate the full view with the inherited TSS_Elist as well.
4886 if Ekind
(B_Id
) in Private_Kind
4887 and then Present
(Full_View
(B_Id
))
4889 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
4891 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
4895 end Expand_N_Full_Type_Declaration
;
4897 ---------------------------------
4898 -- Expand_N_Object_Declaration --
4899 ---------------------------------
4901 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
4902 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4903 Expr
: constant Node_Id
:= Expression
(N
);
4904 Loc
: constant Source_Ptr
:= Sloc
(N
);
4905 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
4906 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
4907 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
4910 function Build_Equivalent_Aggregate
return Boolean;
4911 -- If the object has a constrained discriminated type and no initial
4912 -- value, it may be possible to build an equivalent aggregate instead,
4913 -- and prevent an actual call to the initialization procedure.
4915 procedure Default_Initialize_Object
(After
: Node_Id
);
4916 -- Generate all default initialization actions for object Def_Id. Any
4917 -- new code is inserted after node After.
4919 function Rewrite_As_Renaming
return Boolean;
4920 -- Indicate whether to rewrite a declaration with initialization into an
4921 -- object renaming declaration (see below).
4923 --------------------------------
4924 -- Build_Equivalent_Aggregate --
4925 --------------------------------
4927 function Build_Equivalent_Aggregate
return Boolean is
4931 Full_Type
: Entity_Id
;
4936 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
4937 Full_Type
:= Full_View
(Typ
);
4940 -- Only perform this transformation if Elaboration_Code is forbidden
4941 -- or undesirable, and if this is a global entity of a constrained
4944 -- If Initialize_Scalars might be active this transformation cannot
4945 -- be performed either, because it will lead to different semantics
4946 -- or because elaboration code will in fact be created.
4948 if Ekind
(Full_Type
) /= E_Record_Subtype
4949 or else not Has_Discriminants
(Full_Type
)
4950 or else not Is_Constrained
(Full_Type
)
4951 or else Is_Controlled
(Full_Type
)
4952 or else Is_Limited_Type
(Full_Type
)
4953 or else not Restriction_Active
(No_Initialize_Scalars
)
4958 if Ekind
(Current_Scope
) = E_Package
4960 (Restriction_Active
(No_Elaboration_Code
)
4961 or else Is_Preelaborated
(Current_Scope
))
4963 -- Building a static aggregate is possible if the discriminants
4964 -- have static values and the other components have static
4965 -- defaults or none.
4967 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
4968 while Present
(Discr
) loop
4969 if not Is_OK_Static_Expression
(Node
(Discr
)) then
4976 -- Check that initialized components are OK, and that non-
4977 -- initialized components do not require a call to their own
4978 -- initialization procedure.
4980 Comp
:= First_Component
(Full_Type
);
4981 while Present
(Comp
) loop
4982 if Ekind
(Comp
) = E_Component
4983 and then Present
(Expression
(Parent
(Comp
)))
4985 not Is_OK_Static_Expression
(Expression
(Parent
(Comp
)))
4989 elsif Has_Non_Null_Base_Init_Proc
(Etype
(Comp
)) then
4994 Next_Component
(Comp
);
4997 -- Everything is static, assemble the aggregate, discriminant
5001 Make_Aggregate
(Loc
,
5002 Expressions
=> New_List
,
5003 Component_Associations
=> New_List
);
5005 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
5006 while Present
(Discr
) loop
5007 Append_To
(Expressions
(Aggr
), New_Copy
(Node
(Discr
)));
5011 -- Now collect values of initialized components
5013 Comp
:= First_Component
(Full_Type
);
5014 while Present
(Comp
) loop
5015 if Ekind
(Comp
) = E_Component
5016 and then Present
(Expression
(Parent
(Comp
)))
5018 Append_To
(Component_Associations
(Aggr
),
5019 Make_Component_Association
(Loc
,
5020 Choices
=> New_List
(New_Occurrence_Of
(Comp
, Loc
)),
5021 Expression
=> New_Copy_Tree
5022 (Expression
(Parent
(Comp
)))));
5025 Next_Component
(Comp
);
5028 -- Finally, box-initialize remaining components
5030 Append_To
(Component_Associations
(Aggr
),
5031 Make_Component_Association
(Loc
,
5032 Choices
=> New_List
(Make_Others_Choice
(Loc
)),
5033 Expression
=> Empty
));
5034 Set_Box_Present
(Last
(Component_Associations
(Aggr
)));
5035 Set_Expression
(N
, Aggr
);
5037 if Typ
/= Full_Type
then
5038 Analyze_And_Resolve
(Aggr
, Full_View
(Base_Type
(Full_Type
)));
5039 Rewrite
(Aggr
, Unchecked_Convert_To
(Typ
, Aggr
));
5040 Analyze_And_Resolve
(Aggr
, Typ
);
5042 Analyze_And_Resolve
(Aggr
, Full_Type
);
5050 end Build_Equivalent_Aggregate
;
5052 -------------------------------
5053 -- Default_Initialize_Object --
5054 -------------------------------
5056 procedure Default_Initialize_Object
(After
: Node_Id
) is
5057 function New_Object_Reference
return Node_Id
;
5058 -- Return a new reference to Def_Id with attributes Assignment_OK and
5059 -- Must_Not_Freeze already set.
5061 --------------------------
5062 -- New_Object_Reference --
5063 --------------------------
5065 function New_Object_Reference
return Node_Id
is
5066 Obj_Ref
: constant Node_Id
:= New_Occurrence_Of
(Def_Id
, Loc
);
5069 -- The call to the type init proc or [Deep_]Finalize must not
5070 -- freeze the related object as the call is internally generated.
5071 -- This way legal rep clauses that apply to the object will not be
5072 -- flagged. Note that the initialization call may be removed if
5073 -- pragma Import is encountered or moved to the freeze actions of
5074 -- the object because of an address clause.
5076 Set_Assignment_OK
(Obj_Ref
);
5077 Set_Must_Not_Freeze
(Obj_Ref
);
5080 end New_Object_Reference
;
5086 Abrt_Id
: Entity_Id
;
5087 Abrt_Stmts
: List_Id
;
5088 Aggr_Init
: Node_Id
;
5089 Comp_Init
: List_Id
:= No_List
;
5091 Fin_Stmts
: List_Id
:= No_List
;
5092 Obj_Init
: Node_Id
:= Empty
;
5096 -- This variable captures a dummy internal entity, see the comment
5097 -- associated with its use.
5099 -- Start of processing for Default_Initialize_Object
5102 -- Default initialization is suppressed for objects that are already
5103 -- known to be imported (i.e. whose declaration specifies the Import
5104 -- aspect). Note that for objects with a pragma Import, we generate
5105 -- initialization here, and then remove it downstream when processing
5106 -- the pragma. It is also suppressed for variables for which a pragma
5107 -- Suppress_Initialization has been explicitly given
5109 if Is_Imported
(Def_Id
) or else Suppress_Initialization
(Def_Id
) then
5113 -- Step 1: Initialize the object
5115 if Needs_Finalization
(Typ
) and then not No_Initialization
(N
) then
5118 (Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
5122 -- Step 2: Initialize the components of the object
5124 -- Do not initialize the components if their initialization is
5125 -- prohibited or the type represents a value type in a .NET VM.
5127 if Has_Non_Null_Base_Init_Proc
(Typ
)
5128 and then not No_Initialization
(N
)
5129 and then not Initialization_Suppressed
(Typ
)
5130 and then not Is_Value_Type
(Typ
)
5132 -- Do not initialize the components if No_Default_Initialization
5133 -- applies as the the actual restriction check will occur later
5134 -- when the object is frozen as it is not known yet whether the
5135 -- object is imported or not.
5137 if not Restriction_Active
(No_Default_Initialization
) then
5139 -- If the values of the components are compile-time known, use
5140 -- their prebuilt aggregate form directly.
5142 Aggr_Init
:= Static_Initialization
(Base_Init_Proc
(Typ
));
5144 if Present
(Aggr_Init
) then
5146 (N
, New_Copy_Tree
(Aggr_Init
, New_Scope
=> Current_Scope
));
5148 -- If type has discriminants, try to build an equivalent
5149 -- aggregate using discriminant values from the declaration.
5150 -- This is a useful optimization, in particular if restriction
5151 -- No_Elaboration_Code is active.
5153 elsif Build_Equivalent_Aggregate
then
5156 -- Otherwise invoke the type init proc
5159 Obj_Ref
:= New_Object_Reference
;
5161 if Comes_From_Source
(Def_Id
) then
5162 Initialization_Warning
(Obj_Ref
);
5165 Comp_Init
:= Build_Initialization_Call
(Loc
, Obj_Ref
, Typ
);
5169 -- Provide a default value if the object needs simple initialization
5170 -- and does not already have an initial value. A generated temporary
5171 -- do not require initialization because it will be assigned later.
5173 elsif Needs_Simple_Initialization
5174 (Typ
, Initialize_Scalars
5175 and then No
(Following_Address_Clause
(N
)))
5176 and then not Is_Internal
(Def_Id
)
5177 and then not Has_Init_Expression
(N
)
5179 Set_No_Initialization
(N
, False);
5180 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Def_Id
)));
5181 Analyze_And_Resolve
(Expression
(N
), Typ
);
5184 -- Step 3: Add partial finalization and abort actions, generate:
5186 -- Type_Init_Proc (Obj);
5188 -- Deep_Initialize (Obj);
5191 -- Deep_Finalize (Obj, Self => False);
5195 -- Step 3a: Build the finalization block (if applicable)
5197 -- The finalization block is required when both the object and its
5198 -- controlled components are to be initialized. The block finalizes
5199 -- the components if the object initialization fails.
5201 if Has_Controlled_Component
(Typ
)
5202 and then Present
(Comp_Init
)
5203 and then Present
(Obj_Init
)
5204 and then not Restriction_Active
(No_Exception_Propagation
)
5207 -- Type_Init_Proc (Obj);
5209 Fin_Stmts
:= Comp_Init
;
5213 -- Deep_Initialize (Obj);
5216 -- Deep_Finalize (Obj, Self => False);
5222 (Obj_Ref
=> New_Object_Reference
,
5226 if Present
(Fin_Call
) then
5228 -- Do not emit warnings related to the elaboration order when a
5229 -- controlled object is declared before the body of Finalize is
5232 Set_No_Elaboration_Check
(Fin_Call
);
5234 Append_To
(Fin_Stmts
,
5235 Make_Block_Statement
(Loc
,
5236 Declarations
=> No_List
,
5238 Handled_Statement_Sequence
=>
5239 Make_Handled_Sequence_Of_Statements
(Loc
,
5240 Statements
=> New_List
(Obj_Init
),
5242 Exception_Handlers
=> New_List
(
5243 Make_Exception_Handler
(Loc
,
5244 Exception_Choices
=> New_List
(
5245 Make_Others_Choice
(Loc
)),
5247 Statements
=> New_List
(
5249 Make_Raise_Statement
(Loc
)))))));
5252 -- Finalization is not required, the initialization calls are passed
5253 -- to the abort block building circuitry, generate:
5255 -- Type_Init_Proc (Obj);
5256 -- Deep_Initialize (Obj);
5259 if Present
(Comp_Init
) then
5260 Fin_Stmts
:= Comp_Init
;
5263 if Present
(Obj_Init
) then
5264 if No
(Fin_Stmts
) then
5265 Fin_Stmts
:= New_List
;
5268 Append_To
(Fin_Stmts
, Obj_Init
);
5272 -- Step 3b: Build the abort block (if applicable)
5274 -- The abort block is required when aborts are allowed in order to
5275 -- protect both initialization calls.
5277 if Present
(Comp_Init
) and then Present
(Obj_Init
) then
5278 if Abort_Allowed
then
5284 (Fin_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
5289 -- <finalization statements>
5291 -- Abort_Undefer_Direct;
5295 Make_Handled_Sequence_Of_Statements
(Loc
,
5296 Statements
=> Fin_Stmts
,
5298 New_Occurrence_Of
(RTE
(RE_Abort_Undefer_Direct
), Loc
));
5301 Make_Block_Statement
(Loc
,
5302 Declarations
=> No_List
,
5303 Handled_Statement_Sequence
=> Abrt_HSS
);
5305 Add_Block_Identifier
(Abrt_Blk
, Abrt_Id
);
5306 Expand_At_End_Handler
(Abrt_HSS
, Abrt_Id
);
5308 Abrt_Stmts
:= New_List
(Abrt_Blk
);
5310 -- Abort is not required
5313 -- Generate a dummy entity to ensure that the internal symbols
5314 -- are in sync when a unit is compiled with and without aborts.
5315 -- The entity is a block with proper scope and type.
5317 Dummy
:= New_Internal_Entity
(E_Block
, Current_Scope
, Loc
, 'B');
5318 Set_Etype
(Dummy
, Standard_Void_Type
);
5319 Abrt_Stmts
:= Fin_Stmts
;
5322 -- No initialization calls present
5325 Abrt_Stmts
:= Fin_Stmts
;
5328 -- Step 4: Insert the whole initialization sequence into the tree
5330 Insert_Actions_After
(After
, Abrt_Stmts
);
5331 end Default_Initialize_Object
;
5333 -------------------------
5334 -- Rewrite_As_Renaming --
5335 -------------------------
5337 function Rewrite_As_Renaming
return Boolean is
5339 return not Aliased_Present
(N
)
5340 and then Is_Entity_Name
(Expr_Q
)
5341 and then Ekind
(Entity
(Expr_Q
)) = E_Variable
5342 and then OK_To_Rename
(Entity
(Expr_Q
))
5343 and then Is_Entity_Name
(Obj_Def
);
5344 end Rewrite_As_Renaming
;
5348 Next_N
: constant Node_Id
:= Next
(N
);
5351 Init_After
: Node_Id
:= N
;
5352 -- Node after which the initialization actions are to be inserted. This
5353 -- is normally N, except for the case of a shared passive variable, in
5354 -- which case the init proc call must be inserted only after the bodies
5355 -- of the shared variable procedures have been seen.
5357 Tag_Assign
: Node_Id
;
5359 -- Start of processing for Expand_N_Object_Declaration
5362 -- Don't do anything for deferred constants. All proper actions will be
5363 -- expanded during the full declaration.
5365 if No
(Expr
) and Constant_Present
(N
) then
5369 -- The type of the object cannot be abstract. This is diagnosed at the
5370 -- point the object is frozen, which happens after the declaration is
5371 -- fully expanded, so simply return now.
5373 if Is_Abstract_Type
(Typ
) then
5377 -- First we do special processing for objects of a tagged type where
5378 -- this is the point at which the type is frozen. The creation of the
5379 -- dispatch table and the initialization procedure have to be deferred
5380 -- to this point, since we reference previously declared primitive
5383 -- Force construction of dispatch tables of library level tagged types
5385 if Tagged_Type_Expansion
5386 and then Static_Dispatch_Tables
5387 and then Is_Library_Level_Entity
(Def_Id
)
5388 and then Is_Library_Level_Tagged_Type
(Base_Typ
)
5389 and then Ekind_In
(Base_Typ
, E_Record_Type
,
5392 and then not Has_Dispatch_Table
(Base_Typ
)
5395 New_Nodes
: List_Id
:= No_List
;
5398 if Is_Concurrent_Type
(Base_Typ
) then
5399 New_Nodes
:= Make_DT
(Corresponding_Record_Type
(Base_Typ
), N
);
5401 New_Nodes
:= Make_DT
(Base_Typ
, N
);
5404 if not Is_Empty_List
(New_Nodes
) then
5405 Insert_List_Before
(N
, New_Nodes
);
5410 -- Make shared memory routines for shared passive variable
5412 if Is_Shared_Passive
(Def_Id
) then
5413 Init_After
:= Make_Shared_Var_Procs
(N
);
5416 -- If tasks being declared, make sure we have an activation chain
5417 -- defined for the tasks (has no effect if we already have one), and
5418 -- also that a Master variable is established and that the appropriate
5419 -- enclosing construct is established as a task master.
5421 if Has_Task
(Typ
) then
5422 Build_Activation_Chain_Entity
(N
);
5423 Build_Master_Entity
(Def_Id
);
5426 -- Default initialization required, and no expression present
5430 -- If we have a type with a variant part, the initialization proc
5431 -- will contain implicit tests of the discriminant values, which
5432 -- counts as a violation of the restriction No_Implicit_Conditionals.
5434 if Has_Variant_Part
(Typ
) then
5439 Check_Restriction
(Msg
, No_Implicit_Conditionals
, Obj_Def
);
5443 ("\initialization of variant record tests discriminants",
5450 -- For the default initialization case, if we have a private type
5451 -- with invariants, and invariant checks are enabled, then insert an
5452 -- invariant check after the object declaration. Note that it is OK
5453 -- to clobber the object with an invalid value since if the exception
5454 -- is raised, then the object will go out of scope. In the case where
5455 -- an array object is initialized with an aggregate, the expression
5456 -- is removed. Check flag Has_Init_Expression to avoid generating a
5457 -- junk invariant check and flag No_Initialization to avoid checking
5458 -- an uninitialized object such as a compiler temporary used for an
5461 if Has_Invariants
(Base_Typ
)
5462 and then Present
(Invariant_Procedure
(Base_Typ
))
5463 and then not Has_Init_Expression
(N
)
5464 and then not No_Initialization
(N
)
5466 -- If entity has an address clause or aspect, make invariant
5467 -- call into a freeze action for the explicit freeze node for
5468 -- object. Otherwise insert invariant check after declaration.
5470 if Present
(Following_Address_Clause
(N
))
5471 or else Has_Aspect
(Def_Id
, Aspect_Address
)
5473 Ensure_Freeze_Node
(Def_Id
);
5474 Set_Has_Delayed_Freeze
(Def_Id
);
5475 Set_Is_Frozen
(Def_Id
, False);
5476 Append_Freeze_Action
(Def_Id
,
5477 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
5481 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
5485 Default_Initialize_Object
(Init_After
);
5487 -- Generate attribute for Persistent_BSS if needed
5489 if Persistent_BSS_Mode
5490 and then Comes_From_Source
(N
)
5491 and then Is_Potentially_Persistent_Type
(Typ
)
5492 and then not Has_Init_Expression
(N
)
5493 and then Is_Library_Level_Entity
(Def_Id
)
5499 Make_Linker_Section_Pragma
5500 (Def_Id
, Sloc
(N
), ".persistent.bss");
5501 Insert_After
(N
, Prag
);
5506 -- If access type, then we know it is null if not initialized
5508 if Is_Access_Type
(Typ
) then
5509 Set_Is_Known_Null
(Def_Id
);
5512 -- Explicit initialization present
5515 -- Obtain actual expression from qualified expression
5517 if Nkind
(Expr
) = N_Qualified_Expression
then
5518 Expr_Q
:= Expression
(Expr
);
5523 -- When we have the appropriate type of aggregate in the expression
5524 -- (it has been determined during analysis of the aggregate by
5525 -- setting the delay flag), let's perform in place assignment and
5526 -- thus avoid creating a temporary.
5528 if Is_Delayed_Aggregate
(Expr_Q
) then
5529 Convert_Aggr_In_Object_Decl
(N
);
5531 -- Ada 2005 (AI-318-02): If the initialization expression is a call
5532 -- to a build-in-place function, then access to the declared object
5533 -- must be passed to the function. Currently we limit such functions
5534 -- to those with constrained limited result subtypes, but eventually
5535 -- plan to expand the allowed forms of functions that are treated as
5538 elsif Ada_Version
>= Ada_2005
5539 and then Is_Build_In_Place_Function_Call
(Expr_Q
)
5541 Make_Build_In_Place_Call_In_Object_Declaration
(N
, Expr_Q
);
5543 -- The previous call expands the expression initializing the
5544 -- built-in-place object into further code that will be analyzed
5545 -- later. No further expansion needed here.
5549 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
5550 -- class-wide interface object to ensure that we copy the full
5551 -- object, unless we are targetting a VM where interfaces are handled
5552 -- by VM itself. Note that if the root type of Typ is an ancestor of
5553 -- Expr's type, both types share the same dispatch table and there is
5554 -- no need to displace the pointer.
5556 elsif Is_Interface
(Typ
)
5558 -- Avoid never-ending recursion because if Equivalent_Type is set
5559 -- then we've done it already and must not do it again.
5562 (Nkind
(Obj_Def
) = N_Identifier
5563 and then Present
(Equivalent_Type
(Entity
(Obj_Def
))))
5565 pragma Assert
(Is_Class_Wide_Type
(Typ
));
5567 -- If the object is a return object of an inherently limited type,
5568 -- which implies build-in-place treatment, bypass the special
5569 -- treatment of class-wide interface initialization below. In this
5570 -- case, the expansion of the return statement will take care of
5571 -- creating the object (via allocator) and initializing it.
5573 if Is_Return_Object
(Def_Id
) and then Is_Limited_View
(Typ
) then
5576 elsif Tagged_Type_Expansion
then
5578 Iface
: constant Entity_Id
:= Root_Type
(Typ
);
5579 Expr_N
: Node_Id
:= Expr
;
5580 Expr_Typ
: Entity_Id
;
5586 -- If the original node of the expression was a conversion
5587 -- to this specific class-wide interface type then restore
5588 -- the original node because we must copy the object before
5589 -- displacing the pointer to reference the secondary tag
5590 -- component. This code must be kept synchronized with the
5591 -- expansion done by routine Expand_Interface_Conversion
5593 if not Comes_From_Source
(Expr_N
)
5594 and then Nkind
(Expr_N
) = N_Explicit_Dereference
5595 and then Nkind
(Original_Node
(Expr_N
)) = N_Type_Conversion
5596 and then Etype
(Original_Node
(Expr_N
)) = Typ
5598 Rewrite
(Expr_N
, Original_Node
(Expression
(N
)));
5601 -- Avoid expansion of redundant interface conversion
5603 if Is_Interface
(Etype
(Expr_N
))
5604 and then Nkind
(Expr_N
) = N_Type_Conversion
5605 and then Etype
(Expr_N
) = Typ
5607 Expr_N
:= Expression
(Expr_N
);
5608 Set_Expression
(N
, Expr_N
);
5611 Obj_Id
:= Make_Temporary
(Loc
, 'D', Expr_N
);
5612 Expr_Typ
:= Base_Type
(Etype
(Expr_N
));
5614 if Is_Class_Wide_Type
(Expr_Typ
) then
5615 Expr_Typ
:= Root_Type
(Expr_Typ
);
5619 -- CW : I'Class := Obj;
5622 -- type Ityp is not null access I'Class;
5623 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
5625 if Comes_From_Source
(Expr_N
)
5626 and then Nkind
(Expr_N
) = N_Identifier
5627 and then not Is_Interface
(Expr_Typ
)
5628 and then Interface_Present_In_Ancestor
(Expr_Typ
, Typ
)
5629 and then (Expr_Typ
= Etype
(Expr_Typ
)
5631 Is_Variable_Size_Record
(Etype
(Expr_Typ
)))
5636 Make_Object_Declaration
(Loc
,
5637 Defining_Identifier
=> Obj_Id
,
5638 Object_Definition
=>
5639 New_Occurrence_Of
(Expr_Typ
, Loc
),
5640 Expression
=> Relocate_Node
(Expr_N
)));
5642 -- Statically reference the tag associated with the
5646 Make_Selected_Component
(Loc
,
5647 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
5650 (Find_Interface_Tag
(Expr_Typ
, Iface
), Loc
));
5653 -- IW : I'Class := Obj;
5655 -- type Equiv_Record is record ... end record;
5656 -- implicit subtype CW is <Class_Wide_Subtype>;
5657 -- Tmp : CW := CW!(Obj);
5658 -- type Ityp is not null access I'Class;
5659 -- IW : I'Class renames
5660 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
5663 -- Generate the equivalent record type and update the
5664 -- subtype indication to reference it.
5666 Expand_Subtype_From_Expr
5669 Subtype_Indic
=> Obj_Def
,
5672 if not Is_Interface
(Etype
(Expr_N
)) then
5673 New_Expr
:= Relocate_Node
(Expr_N
);
5675 -- For interface types we use 'Address which displaces
5676 -- the pointer to the base of the object (if required)
5680 Unchecked_Convert_To
(Etype
(Obj_Def
),
5681 Make_Explicit_Dereference
(Loc
,
5682 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
5683 Make_Attribute_Reference
(Loc
,
5684 Prefix
=> Relocate_Node
(Expr_N
),
5685 Attribute_Name
=> Name_Address
))));
5690 if not Is_Limited_Record
(Expr_Typ
) then
5692 Make_Object_Declaration
(Loc
,
5693 Defining_Identifier
=> Obj_Id
,
5694 Object_Definition
=>
5695 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
5696 Expression
=> New_Expr
));
5698 -- Rename limited type object since they cannot be copied
5699 -- This case occurs when the initialization expression
5700 -- has been previously expanded into a temporary object.
5702 else pragma Assert
(not Comes_From_Source
(Expr_Q
));
5704 Make_Object_Renaming_Declaration
(Loc
,
5705 Defining_Identifier
=> Obj_Id
,
5707 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
5709 Unchecked_Convert_To
5710 (Etype
(Obj_Def
), New_Expr
)));
5713 -- Dynamically reference the tag associated with the
5717 Make_Function_Call
(Loc
,
5718 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
5719 Parameter_Associations
=> New_List
(
5720 Make_Attribute_Reference
(Loc
,
5721 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
5722 Attribute_Name
=> Name_Address
),
5724 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
5729 Make_Object_Renaming_Declaration
(Loc
,
5730 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
5731 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
5733 Convert_Tag_To_Interface
(Typ
, Tag_Comp
)));
5735 -- If the original entity comes from source, then mark the
5736 -- new entity as needing debug information, even though it's
5737 -- defined by a generated renaming that does not come from
5738 -- source, so that Materialize_Entity will be set on the
5739 -- entity when Debug_Renaming_Declaration is called during
5742 if Comes_From_Source
(Def_Id
) then
5743 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
5746 Analyze
(N
, Suppress
=> All_Checks
);
5748 -- Replace internal identifier of rewritten node by the
5749 -- identifier found in the sources. We also have to exchange
5750 -- entities containing their defining identifiers to ensure
5751 -- the correct replacement of the object declaration by this
5752 -- object renaming declaration because these identifiers
5753 -- were previously added by Enter_Name to the current scope.
5754 -- We must preserve the homonym chain of the source entity
5755 -- as well. We must also preserve the kind of the entity,
5756 -- which may be a constant. Preserve entity chain because
5757 -- itypes may have been generated already, and the full
5758 -- chain must be preserved for final freezing. Finally,
5759 -- preserve Comes_From_Source setting, so that debugging
5760 -- and cross-referencing information is properly kept, and
5761 -- preserve source location, to prevent spurious errors when
5762 -- entities are declared (they must have their own Sloc).
5765 New_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5766 Next_Temp
: constant Entity_Id
:= Next_Entity
(New_Id
);
5767 S_Flag
: constant Boolean :=
5768 Comes_From_Source
(Def_Id
);
5771 Set_Next_Entity
(New_Id
, Next_Entity
(Def_Id
));
5772 Set_Next_Entity
(Def_Id
, Next_Temp
);
5774 Set_Chars
(Defining_Identifier
(N
), Chars
(Def_Id
));
5775 Set_Homonym
(Defining_Identifier
(N
), Homonym
(Def_Id
));
5776 Set_Ekind
(Defining_Identifier
(N
), Ekind
(Def_Id
));
5777 Set_Sloc
(Defining_Identifier
(N
), Sloc
(Def_Id
));
5779 Set_Comes_From_Source
(Def_Id
, False);
5780 Exchange_Entities
(Defining_Identifier
(N
), Def_Id
);
5781 Set_Comes_From_Source
(Def_Id
, S_Flag
);
5788 -- Common case of explicit object initialization
5791 -- In most cases, we must check that the initial value meets any
5792 -- constraint imposed by the declared type. However, there is one
5793 -- very important exception to this rule. If the entity has an
5794 -- unconstrained nominal subtype, then it acquired its constraints
5795 -- from the expression in the first place, and not only does this
5796 -- mean that the constraint check is not needed, but an attempt to
5797 -- perform the constraint check can cause order of elaboration
5800 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
5802 -- If this is an allocator for an aggregate that has been
5803 -- allocated in place, delay checks until assignments are
5804 -- made, because the discriminants are not initialized.
5806 if Nkind
(Expr
) = N_Allocator
and then No_Initialization
(Expr
)
5810 -- Otherwise apply a constraint check now if no prev error
5812 elsif Nkind
(Expr
) /= N_Error
then
5813 Apply_Constraint_Check
(Expr
, Typ
);
5815 -- Deal with possible range check
5817 if Do_Range_Check
(Expr
) then
5819 -- If assignment checks are suppressed, turn off flag
5821 if Suppress_Assignment_Checks
(N
) then
5822 Set_Do_Range_Check
(Expr
, False);
5824 -- Otherwise generate the range check
5827 Generate_Range_Check
5828 (Expr
, Typ
, CE_Range_Check_Failed
);
5834 -- If the type is controlled and not inherently limited, then
5835 -- the target is adjusted after the copy and attached to the
5836 -- finalization list. However, no adjustment is done in the case
5837 -- where the object was initialized by a call to a function whose
5838 -- result is built in place, since no copy occurred. (Eventually
5839 -- we plan to support in-place function results for some cases
5840 -- of nonlimited types. ???) Similarly, no adjustment is required
5841 -- if we are going to rewrite the object declaration into a
5842 -- renaming declaration.
5844 if Needs_Finalization
(Typ
)
5845 and then not Is_Limited_View
(Typ
)
5846 and then not Rewrite_As_Renaming
5848 Insert_Action_After
(Init_After
,
5850 Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
5854 -- For tagged types, when an init value is given, the tag has to
5855 -- be re-initialized separately in order to avoid the propagation
5856 -- of a wrong tag coming from a view conversion unless the type
5857 -- is class wide (in this case the tag comes from the init value).
5858 -- Suppress the tag assignment when VM_Target because VM tags are
5859 -- represented implicitly in objects. Ditto for types that are
5860 -- CPP_CLASS, and for initializations that are aggregates, because
5861 -- they have to have the right tag.
5863 -- The re-assignment of the tag has to be done even if the object
5864 -- is a constant. The assignment must be analyzed after the
5865 -- declaration. If an address clause follows, this is handled as
5866 -- part of the freeze actions for the object, otherwise insert
5867 -- tag assignment here.
5869 Tag_Assign
:= Make_Tag_Assignment
(N
);
5871 if Present
(Tag_Assign
) then
5872 if Present
(Following_Address_Clause
(N
)) then
5873 Ensure_Freeze_Node
(Def_Id
);
5876 Insert_Action_After
(Init_After
, Tag_Assign
);
5879 -- Handle C++ constructor calls. Note that we do not check that
5880 -- Typ is a tagged type since the equivalent Ada type of a C++
5881 -- class that has no virtual methods is an untagged limited
5884 elsif Is_CPP_Constructor_Call
(Expr
) then
5886 -- The call to the initialization procedure does NOT freeze the
5887 -- object being initialized.
5889 Id_Ref
:= New_Occurrence_Of
(Def_Id
, Loc
);
5890 Set_Must_Not_Freeze
(Id_Ref
);
5891 Set_Assignment_OK
(Id_Ref
);
5893 Insert_Actions_After
(Init_After
,
5894 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
,
5895 Constructor_Ref
=> Expr
));
5897 -- We remove here the original call to the constructor
5898 -- to avoid its management in the backend
5900 Set_Expression
(N
, Empty
);
5903 -- Handle initialization of limited tagged types
5905 elsif Is_Tagged_Type
(Typ
)
5906 and then Is_Class_Wide_Type
(Typ
)
5907 and then Is_Limited_Record
(Typ
)
5909 -- Given that the type is limited we cannot perform a copy. If
5910 -- Expr_Q is the reference to a variable we mark the variable
5911 -- as OK_To_Rename to expand this declaration into a renaming
5912 -- declaration (see bellow).
5914 if Is_Entity_Name
(Expr_Q
) then
5915 Set_OK_To_Rename
(Entity
(Expr_Q
));
5917 -- If we cannot convert the expression into a renaming we must
5918 -- consider it an internal error because the backend does not
5919 -- have support to handle it.
5922 pragma Assert
(False);
5923 raise Program_Error
;
5926 -- For discrete types, set the Is_Known_Valid flag if the
5927 -- initializing value is known to be valid. Only do this for
5928 -- source assignments, since otherwise we can end up turning
5929 -- on the known valid flag prematurely from inserted code.
5931 elsif Comes_From_Source
(N
)
5932 and then Is_Discrete_Type
(Typ
)
5933 and then Expr_Known_Valid
(Expr
)
5935 Set_Is_Known_Valid
(Def_Id
);
5937 elsif Is_Access_Type
(Typ
) then
5939 -- For access types set the Is_Known_Non_Null flag if the
5940 -- initializing value is known to be non-null. We can also set
5941 -- Can_Never_Be_Null if this is a constant.
5943 if Known_Non_Null
(Expr
) then
5944 Set_Is_Known_Non_Null
(Def_Id
, True);
5946 if Constant_Present
(N
) then
5947 Set_Can_Never_Be_Null
(Def_Id
);
5952 -- If validity checking on copies, validate initial expression.
5953 -- But skip this if declaration is for a generic type, since it
5954 -- makes no sense to validate generic types. Not clear if this
5955 -- can happen for legal programs, but it definitely can arise
5956 -- from previous instantiation errors.
5958 if Validity_Checks_On
5959 and then Validity_Check_Copies
5960 and then not Is_Generic_Type
(Etype
(Def_Id
))
5962 Ensure_Valid
(Expr
);
5963 Set_Is_Known_Valid
(Def_Id
);
5967 -- Cases where the back end cannot handle the initialization directly
5968 -- In such cases, we expand an assignment that will be appropriately
5969 -- handled by Expand_N_Assignment_Statement.
5971 -- The exclusion of the unconstrained case is wrong, but for now it
5972 -- is too much trouble ???
5974 if (Is_Possibly_Unaligned_Slice
(Expr
)
5975 or else (Is_Possibly_Unaligned_Object
(Expr
)
5976 and then not Represented_As_Scalar
(Etype
(Expr
))))
5977 and then not (Is_Array_Type
(Etype
(Expr
))
5978 and then not Is_Constrained
(Etype
(Expr
)))
5981 Stat
: constant Node_Id
:=
5982 Make_Assignment_Statement
(Loc
,
5983 Name
=> New_Occurrence_Of
(Def_Id
, Loc
),
5984 Expression
=> Relocate_Node
(Expr
));
5986 Set_Expression
(N
, Empty
);
5987 Set_No_Initialization
(N
);
5988 Set_Assignment_OK
(Name
(Stat
));
5989 Set_No_Ctrl_Actions
(Stat
);
5990 Insert_After_And_Analyze
(Init_After
, Stat
);
5994 -- Final transformation, if the initializing expression is an entity
5995 -- for a variable with OK_To_Rename set, then we transform:
6001 -- X : typ renames expr
6003 -- provided that X is not aliased. The aliased case has to be
6004 -- excluded in general because Expr will not be aliased in general.
6006 if Rewrite_As_Renaming
then
6008 Make_Object_Renaming_Declaration
(Loc
,
6009 Defining_Identifier
=> Defining_Identifier
(N
),
6010 Subtype_Mark
=> Obj_Def
,
6013 -- We do not analyze this renaming declaration, because all its
6014 -- components have already been analyzed, and if we were to go
6015 -- ahead and analyze it, we would in effect be trying to generate
6016 -- another declaration of X, which won't do.
6018 Set_Renamed_Object
(Defining_Identifier
(N
), Expr_Q
);
6021 -- We do need to deal with debug issues for this renaming
6023 -- First, if entity comes from source, then mark it as needing
6024 -- debug information, even though it is defined by a generated
6025 -- renaming that does not come from source.
6027 if Comes_From_Source
(Defining_Identifier
(N
)) then
6028 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
6031 -- Now call the routine to generate debug info for the renaming
6034 Decl
: constant Node_Id
:= Debug_Renaming_Declaration
(N
);
6036 if Present
(Decl
) then
6037 Insert_Action
(N
, Decl
);
6043 if Nkind
(N
) = N_Object_Declaration
6044 and then Nkind
(Obj_Def
) = N_Access_Definition
6045 and then not Is_Local_Anonymous_Access
(Etype
(Def_Id
))
6047 -- An Ada 2012 stand-alone object of an anonymous access type
6050 Loc
: constant Source_Ptr
:= Sloc
(N
);
6052 Level
: constant Entity_Id
:=
6053 Make_Defining_Identifier
(Sloc
(N
),
6055 New_External_Name
(Chars
(Def_Id
), Suffix
=> "L"));
6057 Level_Expr
: Node_Id
;
6058 Level_Decl
: Node_Id
;
6061 Set_Ekind
(Level
, Ekind
(Def_Id
));
6062 Set_Etype
(Level
, Standard_Natural
);
6063 Set_Scope
(Level
, Scope
(Def_Id
));
6067 -- Set accessibility level of null
6070 Make_Integer_Literal
(Loc
, Scope_Depth
(Standard_Standard
));
6073 Level_Expr
:= Dynamic_Accessibility_Level
(Expr
);
6077 Make_Object_Declaration
(Loc
,
6078 Defining_Identifier
=> Level
,
6079 Object_Definition
=>
6080 New_Occurrence_Of
(Standard_Natural
, Loc
),
6081 Expression
=> Level_Expr
,
6082 Constant_Present
=> Constant_Present
(N
),
6083 Has_Init_Expression
=> True);
6085 Insert_Action_After
(Init_After
, Level_Decl
);
6087 Set_Extra_Accessibility
(Def_Id
, Level
);
6091 -- At this point the object is fully initialized by either invoking the
6092 -- related type init proc, routine [Deep_]Initialize or performing in-
6093 -- place assingments for an array object. If the related type is subject
6094 -- to pragma Default_Initial_Condition, add a runtime check to verify
6095 -- the assumption of the pragma. Generate:
6097 -- <Base_Typ>Default_Init_Cond (<Base_Typ> (Def_Id));
6099 -- Note that the check is generated for source objects only
6101 if Comes_From_Source
(Def_Id
)
6102 and then (Has_Default_Init_Cond
(Base_Typ
)
6104 Has_Inherited_Default_Init_Cond
(Base_Typ
))
6107 DIC_Call
: constant Node_Id
:=
6108 Build_Default_Init_Cond_Call
(Loc
, Def_Id
, Base_Typ
);
6110 if Present
(Next_N
) then
6111 Insert_Before_And_Analyze
(Next_N
, DIC_Call
);
6113 -- The object declaration is the last node in a declarative or a
6117 Append_To
(List_Containing
(N
), DIC_Call
);
6123 -- Exception on library entity not available
6126 when RE_Not_Available
=>
6128 end Expand_N_Object_Declaration
;
6130 ---------------------------------
6131 -- Expand_N_Subtype_Indication --
6132 ---------------------------------
6134 -- Add a check on the range of the subtype. The static case is partially
6135 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
6136 -- to check here for the static case in order to avoid generating
6137 -- extraneous expanded code. Also deal with validity checking.
6139 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
6140 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
6141 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
6144 if Nkind
(Constraint
(N
)) = N_Range_Constraint
then
6145 Validity_Check_Range
(Range_Expression
(Constraint
(N
)));
6148 if Nkind_In
(Parent
(N
), N_Constrained_Array_Definition
, N_Slice
) then
6149 Apply_Range_Check
(Ran
, Typ
);
6151 end Expand_N_Subtype_Indication
;
6153 ---------------------------
6154 -- Expand_N_Variant_Part --
6155 ---------------------------
6157 -- Note: this procedure no longer has any effect. It used to be that we
6158 -- would replace the choices in the last variant by a when others, and
6159 -- also expanded static predicates in variant choices here, but both of
6160 -- those activities were being done too early, since we can't check the
6161 -- choices until the statically predicated subtypes are frozen, which can
6162 -- happen as late as the free point of the record, and we can't change the
6163 -- last choice to an others before checking the choices, which is now done
6164 -- at the freeze point of the record.
6166 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
6169 end Expand_N_Variant_Part
;
6171 ---------------------------------
6172 -- Expand_Previous_Access_Type --
6173 ---------------------------------
6175 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
6176 Ptr_Typ
: Entity_Id
;
6179 -- Find all access types in the current scope whose designated type is
6180 -- Def_Id and build master renamings for them.
6182 Ptr_Typ
:= First_Entity
(Current_Scope
);
6183 while Present
(Ptr_Typ
) loop
6184 if Is_Access_Type
(Ptr_Typ
)
6185 and then Designated_Type
(Ptr_Typ
) = Def_Id
6186 and then No
(Master_Id
(Ptr_Typ
))
6188 -- Ensure that the designated type has a master
6190 Build_Master_Entity
(Def_Id
);
6192 -- Private and incomplete types complicate the insertion of master
6193 -- renamings because the access type may precede the full view of
6194 -- the designated type. For this reason, the master renamings are
6195 -- inserted relative to the designated type.
6197 Build_Master_Renaming
(Ptr_Typ
, Ins_Nod
=> Parent
(Def_Id
));
6200 Next_Entity
(Ptr_Typ
);
6202 end Expand_Previous_Access_Type
;
6204 ------------------------
6205 -- Expand_Tagged_Root --
6206 ------------------------
6208 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
6209 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
6210 Comp_List
: Node_Id
;
6211 Comp_Decl
: Node_Id
;
6212 Sloc_N
: Source_Ptr
;
6215 if Null_Present
(Def
) then
6216 Set_Component_List
(Def
,
6217 Make_Component_List
(Sloc
(Def
),
6218 Component_Items
=> Empty_List
,
6219 Variant_Part
=> Empty
,
6220 Null_Present
=> True));
6223 Comp_List
:= Component_List
(Def
);
6225 if Null_Present
(Comp_List
)
6226 or else Is_Empty_List
(Component_Items
(Comp_List
))
6228 Sloc_N
:= Sloc
(Comp_List
);
6230 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
6234 Make_Component_Declaration
(Sloc_N
,
6235 Defining_Identifier
=> First_Tag_Component
(T
),
6236 Component_Definition
=>
6237 Make_Component_Definition
(Sloc_N
,
6238 Aliased_Present
=> False,
6239 Subtype_Indication
=> New_Occurrence_Of
(RTE
(RE_Tag
), Sloc_N
)));
6241 if Null_Present
(Comp_List
)
6242 or else Is_Empty_List
(Component_Items
(Comp_List
))
6244 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
6245 Set_Null_Present
(Comp_List
, False);
6248 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
6251 -- We don't Analyze the whole expansion because the tag component has
6252 -- already been analyzed previously. Here we just insure that the tree
6253 -- is coherent with the semantic decoration
6255 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
6258 when RE_Not_Available
=>
6260 end Expand_Tagged_Root
;
6262 ----------------------
6263 -- Clean_Task_Names --
6264 ----------------------
6266 procedure Clean_Task_Names
6268 Proc_Id
: Entity_Id
)
6272 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
6273 and then not Global_Discard_Names
6274 and then Tagged_Type_Expansion
6276 Set_Uses_Sec_Stack
(Proc_Id
);
6278 end Clean_Task_Names
;
6280 ------------------------------
6281 -- Expand_Freeze_Array_Type --
6282 ------------------------------
6284 procedure Expand_Freeze_Array_Type
(N
: Node_Id
) is
6285 Typ
: constant Entity_Id
:= Entity
(N
);
6286 Comp_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
6287 Base
: constant Entity_Id
:= Base_Type
(Typ
);
6290 if not Is_Bit_Packed_Array
(Typ
) then
6292 -- If the component contains tasks, so does the array type. This may
6293 -- not be indicated in the array type because the component may have
6294 -- been a private type at the point of definition. Same if component
6295 -- type is controlled or contains protected objects.
6297 Set_Has_Task
(Base
, Has_Task
(Comp_Typ
));
6298 Set_Has_Protected
(Base
, Has_Protected
(Comp_Typ
));
6299 Set_Has_Controlled_Component
6300 (Base
, Has_Controlled_Component
6303 Is_Controlled
(Comp_Typ
));
6305 if No
(Init_Proc
(Base
)) then
6307 -- If this is an anonymous array created for a declaration with
6308 -- an initial value, its init_proc will never be called. The
6309 -- initial value itself may have been expanded into assignments,
6310 -- in which case the object declaration is carries the
6311 -- No_Initialization flag.
6314 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
6315 N_Object_Declaration
6317 (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
6318 or else No_Initialization
(Associated_Node_For_Itype
(Base
)))
6322 -- We do not need an init proc for string or wide [wide] string,
6323 -- since the only time these need initialization in normalize or
6324 -- initialize scalars mode, and these types are treated specially
6325 -- and do not need initialization procedures.
6327 elsif Is_Standard_String_Type
(Base
) then
6330 -- Otherwise we have to build an init proc for the subtype
6333 Build_Array_Init_Proc
(Base
, N
);
6338 if Has_Controlled_Component
(Base
) then
6339 Build_Controlling_Procs
(Base
);
6341 if not Is_Limited_Type
(Comp_Typ
)
6342 and then Number_Dimensions
(Typ
) = 1
6344 Build_Slice_Assignment
(Typ
);
6348 -- Create a finalization master to service the anonymous access
6349 -- components of the array.
6351 if Ekind
(Comp_Typ
) = E_Anonymous_Access_Type
6352 and then Needs_Finalization
(Designated_Type
(Comp_Typ
))
6354 Build_Finalization_Master
6356 Ins_Node
=> Parent
(Typ
),
6357 Encl_Scope
=> Scope
(Typ
));
6361 -- For packed case, default initialization, except if the component type
6362 -- is itself a packed structure with an initialization procedure, or
6363 -- initialize/normalize scalars active, and we have a base type, or the
6364 -- type is public, because in that case a client might specify
6365 -- Normalize_Scalars and there better be a public Init_Proc for it.
6367 elsif (Present
(Init_Proc
(Component_Type
(Base
)))
6368 and then No
(Base_Init_Proc
(Base
)))
6369 or else (Init_Or_Norm_Scalars
and then Base
= Typ
)
6370 or else Is_Public
(Typ
)
6372 Build_Array_Init_Proc
(Base
, N
);
6375 if Has_Invariants
(Component_Type
(Base
))
6377 and then In_Open_Scopes
(Scope
(Component_Type
(Base
)))
6379 -- Generate component invariant checking procedure. This is only
6380 -- relevant if the array type is within the scope of the component
6381 -- type. Otherwise an array object can only be built using the public
6382 -- subprograms for the component type, and calls to those will have
6383 -- invariant checks. The invariant procedure is only generated for
6384 -- a base type, not a subtype.
6386 Insert_Component_Invariant_Checks
6387 (N
, Base
, Build_Array_Invariant_Proc
(Base
, N
));
6389 end Expand_Freeze_Array_Type
;
6391 -----------------------------------
6392 -- Expand_Freeze_Class_Wide_Type --
6393 -----------------------------------
6395 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
) is
6396 Typ
: constant Entity_Id
:= Entity
(N
);
6397 Root
: constant Entity_Id
:= Root_Type
(Typ
);
6399 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean;
6400 -- Given a type, determine whether it is derived from a C or C++ root
6402 ---------------------
6403 -- Is_C_Derivation --
6404 ---------------------
6406 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean is
6407 T
: Entity_Id
:= Typ
;
6412 or else Convention
(T
) = Convention_C
6413 or else Convention
(T
) = Convention_CPP
6418 exit when T
= Etype
(T
);
6424 end Is_C_Derivation
;
6426 -- Start of processing for Expand_Freeze_Class_Wide_Type
6429 -- Certain run-time configurations and targets do not provide support
6430 -- for controlled types.
6432 if Restriction_Active
(No_Finalization
) then
6435 -- Do not create TSS routine Finalize_Address when dispatching calls are
6436 -- disabled since the core of the routine is a dispatching call.
6438 elsif Restriction_Active
(No_Dispatching_Calls
) then
6441 -- Do not create TSS routine Finalize_Address for concurrent class-wide
6442 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
6443 -- non-Ada side will handle their destruction.
6445 elsif Is_Concurrent_Type
(Root
)
6446 or else Is_C_Derivation
(Root
)
6447 or else Convention
(Typ
) = Convention_CIL
6448 or else Convention
(Typ
) = Convention_CPP
6449 or else Convention
(Typ
) = Convention_Java
6453 -- Do not create TSS routine Finalize_Address for .NET/JVM because these
6454 -- targets do not support address arithmetic and unchecked conversions.
6456 elsif VM_Target
/= No_VM
then
6459 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
6460 -- mode since the routine contains an Unchecked_Conversion.
6462 elsif CodePeer_Mode
then
6466 -- Create the body of TSS primitive Finalize_Address. This automatically
6467 -- sets the TSS entry for the class-wide type.
6469 Make_Finalize_Address_Body
(Typ
);
6470 end Expand_Freeze_Class_Wide_Type
;
6472 ------------------------------------
6473 -- Expand_Freeze_Enumeration_Type --
6474 ------------------------------------
6476 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
) is
6477 Typ
: constant Entity_Id
:= Entity
(N
);
6478 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
6485 Is_Contiguous
: Boolean;
6490 pragma Warnings
(Off
, Func
);
6493 -- Various optimizations possible if given representation is contiguous
6495 Is_Contiguous
:= True;
6497 Ent
:= First_Literal
(Typ
);
6498 Last_Repval
:= Enumeration_Rep
(Ent
);
6501 while Present
(Ent
) loop
6502 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
6503 Is_Contiguous
:= False;
6506 Last_Repval
:= Enumeration_Rep
(Ent
);
6512 if Is_Contiguous
then
6513 Set_Has_Contiguous_Rep
(Typ
);
6514 Ent
:= First_Literal
(Typ
);
6516 Lst
:= New_List
(New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
6519 -- Build list of literal references
6524 Ent
:= First_Literal
(Typ
);
6525 while Present
(Ent
) loop
6526 Append_To
(Lst
, New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
6532 -- Now build an array declaration
6534 -- typA : array (Natural range 0 .. num - 1) of ctype :=
6535 -- (v, v, v, v, v, ....)
6537 -- where ctype is the corresponding integer type. If the representation
6538 -- is contiguous, we only keep the first literal, which provides the
6539 -- offset for Pos_To_Rep computations.
6542 Make_Defining_Identifier
(Loc
,
6543 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
6545 Append_Freeze_Action
(Typ
,
6546 Make_Object_Declaration
(Loc
,
6547 Defining_Identifier
=> Arr
,
6548 Constant_Present
=> True,
6550 Object_Definition
=>
6551 Make_Constrained_Array_Definition
(Loc
,
6552 Discrete_Subtype_Definitions
=> New_List
(
6553 Make_Subtype_Indication
(Loc
,
6554 Subtype_Mark
=> New_Occurrence_Of
(Standard_Natural
, Loc
),
6556 Make_Range_Constraint
(Loc
,
6560 Make_Integer_Literal
(Loc
, 0),
6562 Make_Integer_Literal
(Loc
, Num
- 1))))),
6564 Component_Definition
=>
6565 Make_Component_Definition
(Loc
,
6566 Aliased_Present
=> False,
6567 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))),
6570 Make_Aggregate
(Loc
,
6571 Expressions
=> Lst
)));
6573 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
6575 -- Now we build the function that converts representation values to
6576 -- position values. This function has the form:
6578 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
6581 -- when enum-lit'Enum_Rep => return posval;
6582 -- when enum-lit'Enum_Rep => return posval;
6585 -- [raise Constraint_Error when F "invalid data"]
6590 -- Note: the F parameter determines whether the others case (no valid
6591 -- representation) raises Constraint_Error or returns a unique value
6592 -- of minus one. The latter case is used, e.g. in 'Valid code.
6594 -- Note: the reason we use Enum_Rep values in the case here is to avoid
6595 -- the code generator making inappropriate assumptions about the range
6596 -- of the values in the case where the value is invalid. ityp is a
6597 -- signed or unsigned integer type of appropriate width.
6599 -- Note: if exceptions are not supported, then we suppress the raise
6600 -- and return -1 unconditionally (this is an erroneous program in any
6601 -- case and there is no obligation to raise Constraint_Error here). We
6602 -- also do this if pragma Restrictions (No_Exceptions) is active.
6604 -- Is this right??? What about No_Exception_Propagation???
6606 -- Representations are signed
6608 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
6610 -- The underlying type is signed. Reset the Is_Unsigned_Type
6611 -- explicitly, because it might have been inherited from
6614 Set_Is_Unsigned_Type
(Typ
, False);
6616 if Esize
(Typ
) <= Standard_Integer_Size
then
6617 Ityp
:= Standard_Integer
;
6619 Ityp
:= Universal_Integer
;
6622 -- Representations are unsigned
6625 if Esize
(Typ
) <= Standard_Integer_Size
then
6626 Ityp
:= RTE
(RE_Unsigned
);
6628 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
6632 -- The body of the function is a case statement. First collect case
6633 -- alternatives, or optimize the contiguous case.
6637 -- If representation is contiguous, Pos is computed by subtracting
6638 -- the representation of the first literal.
6640 if Is_Contiguous
then
6641 Ent
:= First_Literal
(Typ
);
6643 if Enumeration_Rep
(Ent
) = Last_Repval
then
6645 -- Another special case: for a single literal, Pos is zero
6647 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
6651 Convert_To
(Standard_Integer
,
6652 Make_Op_Subtract
(Loc
,
6654 Unchecked_Convert_To
6655 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
6657 Make_Integer_Literal
(Loc
,
6658 Intval
=> Enumeration_Rep
(First_Literal
(Typ
)))));
6662 Make_Case_Statement_Alternative
(Loc
,
6663 Discrete_Choices
=> New_List
(
6664 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
6666 Make_Integer_Literal
(Loc
,
6667 Intval
=> Enumeration_Rep
(Ent
)),
6669 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
6671 Statements
=> New_List
(
6672 Make_Simple_Return_Statement
(Loc
,
6673 Expression
=> Pos_Expr
))));
6676 Ent
:= First_Literal
(Typ
);
6677 while Present
(Ent
) loop
6679 Make_Case_Statement_Alternative
(Loc
,
6680 Discrete_Choices
=> New_List
(
6681 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
6682 Intval
=> Enumeration_Rep
(Ent
))),
6684 Statements
=> New_List
(
6685 Make_Simple_Return_Statement
(Loc
,
6687 Make_Integer_Literal
(Loc
,
6688 Intval
=> Enumeration_Pos
(Ent
))))));
6694 -- In normal mode, add the others clause with the test
6696 if not No_Exception_Handlers_Set
then
6698 Make_Case_Statement_Alternative
(Loc
,
6699 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
6700 Statements
=> New_List
(
6701 Make_Raise_Constraint_Error
(Loc
,
6702 Condition
=> Make_Identifier
(Loc
, Name_uF
),
6703 Reason
=> CE_Invalid_Data
),
6704 Make_Simple_Return_Statement
(Loc
,
6706 Make_Integer_Literal
(Loc
, -1)))));
6708 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
6709 -- active then return -1 (we cannot usefully raise Constraint_Error in
6710 -- this case). See description above for further details.
6714 Make_Case_Statement_Alternative
(Loc
,
6715 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
6716 Statements
=> New_List
(
6717 Make_Simple_Return_Statement
(Loc
,
6719 Make_Integer_Literal
(Loc
, -1)))));
6722 -- Now we can build the function body
6725 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
6728 Make_Subprogram_Body
(Loc
,
6730 Make_Function_Specification
(Loc
,
6731 Defining_Unit_Name
=> Fent
,
6732 Parameter_Specifications
=> New_List
(
6733 Make_Parameter_Specification
(Loc
,
6734 Defining_Identifier
=>
6735 Make_Defining_Identifier
(Loc
, Name_uA
),
6736 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
6737 Make_Parameter_Specification
(Loc
,
6738 Defining_Identifier
=>
6739 Make_Defining_Identifier
(Loc
, Name_uF
),
6741 New_Occurrence_Of
(Standard_Boolean
, Loc
))),
6743 Result_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
)),
6745 Declarations
=> Empty_List
,
6747 Handled_Statement_Sequence
=>
6748 Make_Handled_Sequence_Of_Statements
(Loc
,
6749 Statements
=> New_List
(
6750 Make_Case_Statement
(Loc
,
6752 Unchecked_Convert_To
6753 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
6754 Alternatives
=> Lst
))));
6756 Set_TSS
(Typ
, Fent
);
6758 -- Set Pure flag (it will be reset if the current context is not Pure).
6759 -- We also pretend there was a pragma Pure_Function so that for purposes
6760 -- of optimization and constant-folding, we will consider the function
6761 -- Pure even if we are not in a Pure context).
6764 Set_Has_Pragma_Pure_Function
(Fent
);
6766 -- Unless we are in -gnatD mode, where we are debugging generated code,
6767 -- this is an internal entity for which we don't need debug info.
6769 if not Debug_Generated_Code
then
6770 Set_Debug_Info_Off
(Fent
);
6774 when RE_Not_Available
=>
6776 end Expand_Freeze_Enumeration_Type
;
6778 -------------------------------
6779 -- Expand_Freeze_Record_Type --
6780 -------------------------------
6782 procedure Expand_Freeze_Record_Type
(N
: Node_Id
) is
6783 Def_Id
: constant Node_Id
:= Entity
(N
);
6784 Type_Decl
: constant Node_Id
:= Parent
(Def_Id
);
6786 Comp_Typ
: Entity_Id
;
6788 Predef_List
: List_Id
;
6790 Renamed_Eq
: Node_Id
:= Empty
;
6791 -- Defining unit name for the predefined equality function in the case
6792 -- where the type has a primitive operation that is a renaming of
6793 -- predefined equality (but only if there is also an overriding
6794 -- user-defined equality function). Used to pass this entity from
6795 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
6797 Wrapper_Decl_List
: List_Id
:= No_List
;
6798 Wrapper_Body_List
: List_Id
:= No_List
;
6800 -- Start of processing for Expand_Freeze_Record_Type
6803 -- Build discriminant checking functions if not a derived type (for
6804 -- derived types that are not tagged types, always use the discriminant
6805 -- checking functions of the parent type). However, for untagged types
6806 -- the derivation may have taken place before the parent was frozen, so
6807 -- we copy explicitly the discriminant checking functions from the
6808 -- parent into the components of the derived type.
6810 if not Is_Derived_Type
(Def_Id
)
6811 or else Has_New_Non_Standard_Rep
(Def_Id
)
6812 or else Is_Tagged_Type
(Def_Id
)
6814 Build_Discr_Checking_Funcs
(Type_Decl
);
6816 elsif Is_Derived_Type
(Def_Id
)
6817 and then not Is_Tagged_Type
(Def_Id
)
6819 -- If we have a derived Unchecked_Union, we do not inherit the
6820 -- discriminant checking functions from the parent type since the
6821 -- discriminants are non existent.
6823 and then not Is_Unchecked_Union
(Def_Id
)
6824 and then Has_Discriminants
(Def_Id
)
6827 Old_Comp
: Entity_Id
;
6831 First_Component
(Base_Type
(Underlying_Type
(Etype
(Def_Id
))));
6832 Comp
:= First_Component
(Def_Id
);
6833 while Present
(Comp
) loop
6834 if Ekind
(Comp
) = E_Component
6835 and then Chars
(Comp
) = Chars
(Old_Comp
)
6837 Set_Discriminant_Checking_Func
(Comp
,
6838 Discriminant_Checking_Func
(Old_Comp
));
6841 Next_Component
(Old_Comp
);
6842 Next_Component
(Comp
);
6847 if Is_Derived_Type
(Def_Id
)
6848 and then Is_Limited_Type
(Def_Id
)
6849 and then Is_Tagged_Type
(Def_Id
)
6851 Check_Stream_Attributes
(Def_Id
);
6854 -- Update task, protected, and controlled component flags, because some
6855 -- of the component types may have been private at the point of the
6856 -- record declaration. Detect anonymous access-to-controlled components.
6860 Comp
:= First_Component
(Def_Id
);
6861 while Present
(Comp
) loop
6862 Comp_Typ
:= Etype
(Comp
);
6864 if Has_Task
(Comp_Typ
) then
6865 Set_Has_Task
(Def_Id
);
6868 if Has_Protected
(Comp_Typ
) then
6869 Set_Has_Protected
(Def_Id
);
6872 -- Do not set Has_Controlled_Component on a class-wide equivalent
6873 -- type. See Make_CW_Equivalent_Type.
6875 if not Is_Class_Wide_Equivalent_Type
(Def_Id
)
6876 and then (Has_Controlled_Component
(Comp_Typ
)
6877 or else (Chars
(Comp
) /= Name_uParent
6878 and then Is_Controlled
(Comp_Typ
)))
6880 Set_Has_Controlled_Component
(Def_Id
);
6883 -- Non-self-referential anonymous access-to-controlled component
6885 if Ekind
(Comp_Typ
) = E_Anonymous_Access_Type
6886 and then Needs_Finalization
(Designated_Type
(Comp_Typ
))
6887 and then Designated_Type
(Comp_Typ
) /= Def_Id
6892 Next_Component
(Comp
);
6895 -- Handle constructors of untagged CPP_Class types
6897 if not Is_Tagged_Type
(Def_Id
) and then Is_CPP_Class
(Def_Id
) then
6898 Set_CPP_Constructors
(Def_Id
);
6901 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
6902 -- for regular tagged types as well as for Ada types deriving from a C++
6903 -- Class, but not for tagged types directly corresponding to C++ classes
6904 -- In the later case we assume that it is created in the C++ side and we
6907 if Is_Tagged_Type
(Def_Id
) then
6909 -- Add the _Tag component
6911 if Underlying_Type
(Etype
(Def_Id
)) = Def_Id
then
6912 Expand_Tagged_Root
(Def_Id
);
6915 if Is_CPP_Class
(Def_Id
) then
6916 Set_All_DT_Position
(Def_Id
);
6918 -- Create the tag entities with a minimum decoration
6920 if Tagged_Type_Expansion
then
6921 Append_Freeze_Actions
(Def_Id
, Make_Tags
(Def_Id
));
6924 Set_CPP_Constructors
(Def_Id
);
6927 if not Building_Static_DT
(Def_Id
) then
6929 -- Usually inherited primitives are not delayed but the first
6930 -- Ada extension of a CPP_Class is an exception since the
6931 -- address of the inherited subprogram has to be inserted in
6932 -- the new Ada Dispatch Table and this is a freezing action.
6934 -- Similarly, if this is an inherited operation whose parent is
6935 -- not frozen yet, it is not in the DT of the parent, and we
6936 -- generate an explicit freeze node for the inherited operation
6937 -- so it is properly inserted in the DT of the current type.
6944 Elmt
:= First_Elmt
(Primitive_Operations
(Def_Id
));
6945 while Present
(Elmt
) loop
6946 Subp
:= Node
(Elmt
);
6948 if Present
(Alias
(Subp
)) then
6949 if Is_CPP_Class
(Etype
(Def_Id
)) then
6950 Set_Has_Delayed_Freeze
(Subp
);
6952 elsif Has_Delayed_Freeze
(Alias
(Subp
))
6953 and then not Is_Frozen
(Alias
(Subp
))
6955 Set_Is_Frozen
(Subp
, False);
6956 Set_Has_Delayed_Freeze
(Subp
);
6965 -- Unfreeze momentarily the type to add the predefined primitives
6966 -- operations. The reason we unfreeze is so that these predefined
6967 -- operations will indeed end up as primitive operations (which
6968 -- must be before the freeze point).
6970 Set_Is_Frozen
(Def_Id
, False);
6972 -- Do not add the spec of predefined primitives in case of
6973 -- CPP tagged type derivations that have convention CPP.
6975 if Is_CPP_Class
(Root_Type
(Def_Id
))
6976 and then Convention
(Def_Id
) = Convention_CPP
6980 -- Do not add the spec of predefined primitives in case of
6981 -- CIL and Java tagged types
6983 elsif Convention
(Def_Id
) = Convention_CIL
6984 or else Convention
(Def_Id
) = Convention_Java
6988 -- Do not add the spec of the predefined primitives if we are
6989 -- compiling under restriction No_Dispatching_Calls.
6991 elsif not Restriction_Active
(No_Dispatching_Calls
) then
6992 Make_Predefined_Primitive_Specs
6993 (Def_Id
, Predef_List
, Renamed_Eq
);
6994 Insert_List_Before_And_Analyze
(N
, Predef_List
);
6997 -- Ada 2005 (AI-391): For a nonabstract null extension, create
6998 -- wrapper functions for each nonoverridden inherited function
6999 -- with a controlling result of the type. The wrapper for such
7000 -- a function returns an extension aggregate that invokes the
7003 if Ada_Version
>= Ada_2005
7004 and then not Is_Abstract_Type
(Def_Id
)
7005 and then Is_Null_Extension
(Def_Id
)
7007 Make_Controlling_Function_Wrappers
7008 (Def_Id
, Wrapper_Decl_List
, Wrapper_Body_List
);
7009 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
7012 -- Ada 2005 (AI-251): For a nonabstract type extension, build
7013 -- null procedure declarations for each set of homographic null
7014 -- procedures that are inherited from interface types but not
7015 -- overridden. This is done to ensure that the dispatch table
7016 -- entry associated with such null primitives are properly filled.
7018 if Ada_Version
>= Ada_2005
7019 and then Etype
(Def_Id
) /= Def_Id
7020 and then not Is_Abstract_Type
(Def_Id
)
7021 and then Has_Interfaces
(Def_Id
)
7023 Insert_Actions
(N
, Make_Null_Procedure_Specs
(Def_Id
));
7026 Set_Is_Frozen
(Def_Id
);
7027 if not Is_Derived_Type
(Def_Id
)
7028 or else Is_Tagged_Type
(Etype
(Def_Id
))
7030 Set_All_DT_Position
(Def_Id
);
7032 -- If this is a type derived from an untagged private type whose
7033 -- full view is tagged, the type is marked tagged for layout
7034 -- reasons, but it has no dispatch table.
7036 elsif Is_Derived_Type
(Def_Id
)
7037 and then Is_Private_Type
(Etype
(Def_Id
))
7038 and then not Is_Tagged_Type
(Etype
(Def_Id
))
7043 -- Create and decorate the tags. Suppress their creation when
7044 -- VM_Target because the dispatching mechanism is handled
7045 -- internally by the VMs.
7047 if Tagged_Type_Expansion
then
7048 Append_Freeze_Actions
(Def_Id
, Make_Tags
(Def_Id
));
7050 -- Generate dispatch table of locally defined tagged type.
7051 -- Dispatch tables of library level tagged types are built
7052 -- later (see Analyze_Declarations).
7054 if not Building_Static_DT
(Def_Id
) then
7055 Append_Freeze_Actions
(Def_Id
, Make_DT
(Def_Id
));
7058 elsif VM_Target
/= No_VM
then
7059 Append_Freeze_Actions
(Def_Id
, Make_VM_TSD
(Def_Id
));
7062 -- If the type has unknown discriminants, propagate dispatching
7063 -- information to its underlying record view, which does not get
7064 -- its own dispatch table.
7066 if Is_Derived_Type
(Def_Id
)
7067 and then Has_Unknown_Discriminants
(Def_Id
)
7068 and then Present
(Underlying_Record_View
(Def_Id
))
7071 Rep
: constant Entity_Id
:= Underlying_Record_View
(Def_Id
);
7073 Set_Access_Disp_Table
7074 (Rep
, Access_Disp_Table
(Def_Id
));
7075 Set_Dispatch_Table_Wrappers
7076 (Rep
, Dispatch_Table_Wrappers
(Def_Id
));
7077 Set_Direct_Primitive_Operations
7078 (Rep
, Direct_Primitive_Operations
(Def_Id
));
7082 -- Make sure that the primitives Initialize, Adjust and Finalize
7083 -- are Frozen before other TSS subprograms. We don't want them
7086 if Is_Controlled
(Def_Id
) then
7087 if not Is_Limited_Type
(Def_Id
) then
7088 Append_Freeze_Actions
(Def_Id
,
7090 (Find_Prim_Op
(Def_Id
, Name_Adjust
), Def_Id
));
7093 Append_Freeze_Actions
(Def_Id
,
7095 (Find_Prim_Op
(Def_Id
, Name_Initialize
), Def_Id
));
7097 Append_Freeze_Actions
(Def_Id
,
7099 (Find_Prim_Op
(Def_Id
, Name_Finalize
), Def_Id
));
7102 -- Freeze rest of primitive operations. There is no need to handle
7103 -- the predefined primitives if we are compiling under restriction
7104 -- No_Dispatching_Calls.
7106 if not Restriction_Active
(No_Dispatching_Calls
) then
7107 Append_Freeze_Actions
7108 (Def_Id
, Predefined_Primitive_Freeze
(Def_Id
));
7112 -- In the untagged case, ever since Ada 83 an equality function must
7113 -- be provided for variant records that are not unchecked unions.
7114 -- In Ada 2012 the equality function composes, and thus must be built
7115 -- explicitly just as for tagged records.
7117 elsif Has_Discriminants
(Def_Id
)
7118 and then not Is_Limited_Type
(Def_Id
)
7121 Comps
: constant Node_Id
:=
7122 Component_List
(Type_Definition
(Type_Decl
));
7125 and then Present
(Variant_Part
(Comps
))
7127 Build_Variant_Record_Equality
(Def_Id
);
7131 -- Otherwise create primitive equality operation (AI05-0123)
7133 -- This is done unconditionally to ensure that tools can be linked
7134 -- properly with user programs compiled with older language versions.
7135 -- In addition, this is needed because "=" composes for bounded strings
7136 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
7138 elsif Comes_From_Source
(Def_Id
)
7139 and then Convention
(Def_Id
) = Convention_Ada
7140 and then not Is_Limited_Type
(Def_Id
)
7142 Build_Untagged_Equality
(Def_Id
);
7145 -- Before building the record initialization procedure, if we are
7146 -- dealing with a concurrent record value type, then we must go through
7147 -- the discriminants, exchanging discriminals between the concurrent
7148 -- type and the concurrent record value type. See the section "Handling
7149 -- of Discriminants" in the Einfo spec for details.
7151 if Is_Concurrent_Record_Type
(Def_Id
)
7152 and then Has_Discriminants
(Def_Id
)
7155 Ctyp
: constant Entity_Id
:=
7156 Corresponding_Concurrent_Type
(Def_Id
);
7157 Conc_Discr
: Entity_Id
;
7158 Rec_Discr
: Entity_Id
;
7162 Conc_Discr
:= First_Discriminant
(Ctyp
);
7163 Rec_Discr
:= First_Discriminant
(Def_Id
);
7164 while Present
(Conc_Discr
) loop
7165 Temp
:= Discriminal
(Conc_Discr
);
7166 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
7167 Set_Discriminal
(Rec_Discr
, Temp
);
7169 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
7170 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
7172 Next_Discriminant
(Conc_Discr
);
7173 Next_Discriminant
(Rec_Discr
);
7178 if Has_Controlled_Component
(Def_Id
) then
7179 Build_Controlling_Procs
(Def_Id
);
7182 Adjust_Discriminants
(Def_Id
);
7184 if Tagged_Type_Expansion
or else not Is_Interface
(Def_Id
) then
7186 -- Do not need init for interfaces on e.g. CIL since they're
7187 -- abstract. Helps operation of peverify (the PE Verify tool).
7189 Build_Record_Init_Proc
(Type_Decl
, Def_Id
);
7192 -- For tagged type that are not interfaces, build bodies of primitive
7193 -- operations. Note: do this after building the record initialization
7194 -- procedure, since the primitive operations may need the initialization
7195 -- routine. There is no need to add predefined primitives of interfaces
7196 -- because all their predefined primitives are abstract.
7198 if Is_Tagged_Type
(Def_Id
) and then not Is_Interface
(Def_Id
) then
7200 -- Do not add the body of predefined primitives in case of CPP tagged
7201 -- type derivations that have convention CPP.
7203 if Is_CPP_Class
(Root_Type
(Def_Id
))
7204 and then Convention
(Def_Id
) = Convention_CPP
7208 -- Do not add the body of predefined primitives in case of CIL and
7209 -- Java tagged types.
7211 elsif Convention
(Def_Id
) = Convention_CIL
7212 or else Convention
(Def_Id
) = Convention_Java
7216 -- Do not add the body of the predefined primitives if we are
7217 -- compiling under restriction No_Dispatching_Calls or if we are
7218 -- compiling a CPP tagged type.
7220 elsif not Restriction_Active
(No_Dispatching_Calls
) then
7222 -- Create the body of TSS primitive Finalize_Address. This must
7223 -- be done before the bodies of all predefined primitives are
7224 -- created. If Def_Id is limited, Stream_Input and Stream_Read
7225 -- may produce build-in-place allocations and for those the
7226 -- expander needs Finalize_Address.
7228 Make_Finalize_Address_Body
(Def_Id
);
7229 Predef_List
:= Predefined_Primitive_Bodies
(Def_Id
, Renamed_Eq
);
7230 Append_Freeze_Actions
(Def_Id
, Predef_List
);
7233 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
7234 -- inherited functions, then add their bodies to the freeze actions.
7236 if Present
(Wrapper_Body_List
) then
7237 Append_Freeze_Actions
(Def_Id
, Wrapper_Body_List
);
7240 -- Create extra formals for the primitive operations of the type.
7241 -- This must be done before analyzing the body of the initialization
7242 -- procedure, because a self-referential type might call one of these
7243 -- primitives in the body of the init_proc itself.
7250 Elmt
:= First_Elmt
(Primitive_Operations
(Def_Id
));
7251 while Present
(Elmt
) loop
7252 Subp
:= Node
(Elmt
);
7253 if not Has_Foreign_Convention
(Subp
)
7254 and then not Is_Predefined_Dispatching_Operation
(Subp
)
7256 Create_Extra_Formals
(Subp
);
7264 -- Create a heterogeneous finalization master to service the anonymous
7265 -- access-to-controlled components of the record type.
7269 Encl_Scope
: constant Entity_Id
:= Scope
(Def_Id
);
7270 Ins_Node
: constant Node_Id
:= Parent
(Def_Id
);
7271 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
7272 Fin_Mas_Id
: Entity_Id
;
7274 Attributes_Set
: Boolean := False;
7275 Master_Built
: Boolean := False;
7276 -- Two flags which control the creation and initialization of a
7277 -- common heterogeneous master.
7280 Comp
:= First_Component
(Def_Id
);
7281 while Present
(Comp
) loop
7282 Comp_Typ
:= Etype
(Comp
);
7284 -- A non-self-referential anonymous access-to-controlled
7287 if Ekind
(Comp_Typ
) = E_Anonymous_Access_Type
7288 and then Needs_Finalization
(Designated_Type
(Comp_Typ
))
7289 and then Designated_Type
(Comp_Typ
) /= Def_Id
7291 if VM_Target
= No_VM
then
7293 -- Build a homogeneous master for the first anonymous
7294 -- access-to-controlled component. This master may be
7295 -- converted into a heterogeneous collection if more
7296 -- components are to follow.
7298 if not Master_Built
then
7299 Master_Built
:= True;
7301 -- All anonymous access-to-controlled types allocate
7302 -- on the global pool. Note that the finalization
7303 -- master and the associated storage pool must be set
7304 -- on the root type (both are "root type only").
7306 Set_Associated_Storage_Pool
7307 (Root_Type
(Comp_Typ
), RTE
(RE_Global_Pool_Object
));
7309 Build_Finalization_Master
7310 (Typ
=> Root_Type
(Comp_Typ
),
7311 Ins_Node
=> Ins_Node
,
7312 Encl_Scope
=> Encl_Scope
);
7314 Fin_Mas_Id
:= Finalization_Master
(Comp_Typ
);
7316 -- Subsequent anonymous access-to-controlled components
7317 -- reuse the available master.
7320 -- All anonymous access-to-controlled types allocate
7321 -- on the global pool. Note that both the finalization
7322 -- master and the associated storage pool must be set
7323 -- on the root type (both are "root type only").
7325 Set_Associated_Storage_Pool
7326 (Root_Type
(Comp_Typ
), RTE
(RE_Global_Pool_Object
));
7328 -- Shared the master among multiple components
7330 Set_Finalization_Master
7331 (Root_Type
(Comp_Typ
), Fin_Mas_Id
);
7333 -- Convert the master into a heterogeneous collection.
7335 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
7337 if not Attributes_Set
then
7338 Attributes_Set
:= True;
7340 Insert_Action
(Ins_Node
,
7341 Make_Procedure_Call_Statement
(Loc
,
7344 (RTE
(RE_Set_Is_Heterogeneous
), Loc
),
7345 Parameter_Associations
=> New_List
(
7346 New_Occurrence_Of
(Fin_Mas_Id
, Loc
))));
7350 -- Since .NET/JVM targets do not support heterogeneous
7351 -- masters, each component must have its own master.
7354 Build_Finalization_Master
7356 Ins_Node
=> Ins_Node
,
7357 Encl_Scope
=> Encl_Scope
);
7361 Next_Component
(Comp
);
7366 -- Check whether individual components have a defined invariant, and add
7367 -- the corresponding component invariant checks.
7369 -- Do not create an invariant procedure for some internally generated
7370 -- subtypes, in particular those created for objects of a class-wide
7371 -- type. Such types may have components to which invariant apply, but
7372 -- the corresponding checks will be applied when an object of the parent
7373 -- type is constructed.
7375 -- Such objects will show up in a class-wide postcondition, and the
7376 -- invariant will be checked, if necessary, upon return from the
7377 -- enclosing subprogram.
7379 if not Is_Class_Wide_Equivalent_Type
(Def_Id
) then
7380 Insert_Component_Invariant_Checks
7381 (N
, Def_Id
, Build_Record_Invariant_Proc
(Def_Id
, N
));
7383 end Expand_Freeze_Record_Type
;
7385 ------------------------------
7386 -- Freeze_Stream_Operations --
7387 ------------------------------
7389 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
7390 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
7395 Stream_Op
: Entity_Id
;
7398 -- Primitive operations of tagged types are frozen when the dispatch
7399 -- table is constructed.
7401 if not Comes_From_Source
(Typ
) or else Is_Tagged_Type
(Typ
) then
7405 for J
in Names
'Range loop
7406 Stream_Op
:= TSS
(Typ
, Names
(J
));
7408 if Present
(Stream_Op
)
7409 and then Is_Subprogram
(Stream_Op
)
7410 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
7411 N_Subprogram_Declaration
7412 and then not Is_Frozen
(Stream_Op
)
7414 Append_Freeze_Actions
(Typ
, Freeze_Entity
(Stream_Op
, N
));
7417 end Freeze_Stream_Operations
;
7423 -- Full type declarations are expanded at the point at which the type is
7424 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
7425 -- declarations generated by the freezing (e.g. the procedure generated
7426 -- for initialization) are chained in the Actions field list of the freeze
7427 -- node using Append_Freeze_Actions.
7429 function Freeze_Type
(N
: Node_Id
) return Boolean is
7430 Def_Id
: constant Entity_Id
:= Entity
(N
);
7431 RACW_Seen
: Boolean := False;
7432 Result
: Boolean := False;
7435 -- Process associated access types needing special processing
7437 if Present
(Access_Types_To_Process
(N
)) then
7439 E
: Elmt_Id
:= First_Elmt
(Access_Types_To_Process
(N
));
7442 while Present
(E
) loop
7443 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
7444 Validate_RACW_Primitives
(Node
(E
));
7452 -- If there are RACWs designating this type, make stubs now
7455 Remote_Types_Tagged_Full_View_Encountered
(Def_Id
);
7459 -- Freeze processing for record types
7461 if Is_Record_Type
(Def_Id
) then
7462 if Ekind
(Def_Id
) = E_Record_Type
then
7463 Expand_Freeze_Record_Type
(N
);
7464 elsif Is_Class_Wide_Type
(Def_Id
) then
7465 Expand_Freeze_Class_Wide_Type
(N
);
7468 -- Freeze processing for array types
7470 elsif Is_Array_Type
(Def_Id
) then
7471 Expand_Freeze_Array_Type
(N
);
7473 -- Freeze processing for access types
7475 -- For pool-specific access types, find out the pool object used for
7476 -- this type, needs actual expansion of it in some cases. Here are the
7477 -- different cases :
7479 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7480 -- ---> don't use any storage pool
7482 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7484 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7486 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7487 -- ---> Storage Pool is the specified one
7489 -- See GNAT Pool packages in the Run-Time for more details
7491 elsif Ekind_In
(Def_Id
, E_Access_Type
, E_General_Access_Type
) then
7493 Loc
: constant Source_Ptr
:= Sloc
(N
);
7494 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
7495 Pool_Object
: Entity_Id
;
7497 Freeze_Action_Typ
: Entity_Id
;
7502 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7503 -- ---> don't use any storage pool
7505 if No_Pool_Assigned
(Def_Id
) then
7510 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7512 -- Def_Id__Pool : Stack_Bounded_Pool
7513 -- (Expr, DT'Size, DT'Alignment);
7515 elsif Has_Storage_Size_Clause
(Def_Id
) then
7521 -- For unconstrained composite types we give a size of zero
7522 -- so that the pool knows that it needs a special algorithm
7523 -- for variable size object allocation.
7525 if Is_Composite_Type
(Desig_Type
)
7526 and then not Is_Constrained
(Desig_Type
)
7528 DT_Size
:= Make_Integer_Literal
(Loc
, 0);
7529 DT_Align
:= Make_Integer_Literal
(Loc
, Maximum_Alignment
);
7533 Make_Attribute_Reference
(Loc
,
7534 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
7535 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
7538 Make_Attribute_Reference
(Loc
,
7539 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
7540 Attribute_Name
=> Name_Alignment
);
7544 Make_Defining_Identifier
(Loc
,
7545 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
7547 -- We put the code associated with the pools in the entity
7548 -- that has the later freeze node, usually the access type
7549 -- but it can also be the designated_type; because the pool
7550 -- code requires both those types to be frozen
7552 if Is_Frozen
(Desig_Type
)
7553 and then (No
(Freeze_Node
(Desig_Type
))
7554 or else Analyzed
(Freeze_Node
(Desig_Type
)))
7556 Freeze_Action_Typ
:= Def_Id
;
7558 -- A Taft amendment type cannot get the freeze actions
7559 -- since the full view is not there.
7561 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
7562 and then No
(Full_View
(Desig_Type
))
7564 Freeze_Action_Typ
:= Def_Id
;
7567 Freeze_Action_Typ
:= Desig_Type
;
7570 Append_Freeze_Action
(Freeze_Action_Typ
,
7571 Make_Object_Declaration
(Loc
,
7572 Defining_Identifier
=> Pool_Object
,
7573 Object_Definition
=>
7574 Make_Subtype_Indication
(Loc
,
7577 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
7580 Make_Index_Or_Discriminant_Constraint
(Loc
,
7581 Constraints
=> New_List
(
7583 -- First discriminant is the Pool Size
7586 Storage_Size_Variable
(Def_Id
), Loc
),
7588 -- Second discriminant is the element size
7592 -- Third discriminant is the alignment
7597 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
7601 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7602 -- ---> Storage Pool is the specified one
7604 -- When compiling in Ada 2012 mode, ensure that the accessibility
7605 -- level of the subpool access type is not deeper than that of the
7606 -- pool_with_subpools.
7608 elsif Ada_Version
>= Ada_2012
7609 and then Present
(Associated_Storage_Pool
(Def_Id
))
7611 -- Omit this check on .NET/JVM where pools are not supported
7613 and then VM_Target
= No_VM
7615 -- Omit this check for the case of a configurable run-time that
7616 -- does not provide package System.Storage_Pools.Subpools.
7618 and then RTE_Available
(RE_Root_Storage_Pool_With_Subpools
)
7621 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
7622 Pool
: constant Entity_Id
:=
7623 Associated_Storage_Pool
(Def_Id
);
7624 RSPWS
: constant Entity_Id
:=
7625 RTE
(RE_Root_Storage_Pool_With_Subpools
);
7628 -- It is known that the accessibility level of the access
7629 -- type is deeper than that of the pool.
7631 if Type_Access_Level
(Def_Id
) > Object_Access_Level
(Pool
)
7632 and then not Accessibility_Checks_Suppressed
(Def_Id
)
7633 and then not Accessibility_Checks_Suppressed
(Pool
)
7635 -- Static case: the pool is known to be a descendant of
7636 -- Root_Storage_Pool_With_Subpools.
7638 if Is_Ancestor
(RSPWS
, Etype
(Pool
)) then
7640 ("??subpool access type has deeper accessibility "
7641 & "level than pool", Def_Id
);
7643 Append_Freeze_Action
(Def_Id
,
7644 Make_Raise_Program_Error
(Loc
,
7645 Reason
=> PE_Accessibility_Check_Failed
));
7647 -- Dynamic case: when the pool is of a class-wide type,
7648 -- it may or may not support subpools depending on the
7649 -- path of derivation. Generate:
7651 -- if Def_Id in RSPWS'Class then
7652 -- raise Program_Error;
7655 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
7656 Append_Freeze_Action
(Def_Id
,
7657 Make_If_Statement
(Loc
,
7660 Left_Opnd
=> New_Occurrence_Of
(Pool
, Loc
),
7663 (Class_Wide_Type
(RSPWS
), Loc
)),
7665 Then_Statements
=> New_List
(
7666 Make_Raise_Program_Error
(Loc
,
7667 Reason
=> PE_Accessibility_Check_Failed
))));
7673 -- For access-to-controlled types (including class-wide types and
7674 -- Taft-amendment types, which potentially have controlled
7675 -- components), expand the list controller object that will store
7676 -- the dynamically allocated objects. Don't do this transformation
7677 -- for expander-generated access types, but do it for types that
7678 -- are the full view of types derived from other private types.
7679 -- Also suppress the list controller in the case of a designated
7680 -- type with convention Java, since this is used when binding to
7681 -- Java API specs, where there's no equivalent of a finalization
7682 -- list and we don't want to pull in the finalization support if
7685 if not Comes_From_Source
(Def_Id
)
7686 and then not Has_Private_Declaration
(Def_Id
)
7690 -- An exception is made for types defined in the run-time because
7691 -- Ada.Tags.Tag itself is such a type and cannot afford this
7692 -- unnecessary overhead that would generates a loop in the
7693 -- expansion scheme. Another exception is if Restrictions
7694 -- (No_Finalization) is active, since then we know nothing is
7697 elsif Restriction_Active
(No_Finalization
)
7698 or else In_Runtime
(Def_Id
)
7702 -- Assume that incomplete and private types are always completed
7703 -- by a controlled full view.
7705 elsif Needs_Finalization
(Desig_Type
)
7707 (Is_Incomplete_Or_Private_Type
(Desig_Type
)
7708 and then No
(Full_View
(Desig_Type
)))
7710 (Is_Array_Type
(Desig_Type
)
7711 and then Needs_Finalization
(Component_Type
(Desig_Type
)))
7713 Build_Finalization_Master
(Def_Id
);
7717 -- Freeze processing for enumeration types
7719 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
7721 -- We only have something to do if we have a non-standard
7722 -- representation (i.e. at least one literal whose pos value
7723 -- is not the same as its representation)
7725 if Has_Non_Standard_Rep
(Def_Id
) then
7726 Expand_Freeze_Enumeration_Type
(N
);
7729 -- Private types that are completed by a derivation from a private
7730 -- type have an internally generated full view, that needs to be
7731 -- frozen. This must be done explicitly because the two views share
7732 -- the freeze node, and the underlying full view is not visible when
7733 -- the freeze node is analyzed.
7735 elsif Is_Private_Type
(Def_Id
)
7736 and then Is_Derived_Type
(Def_Id
)
7737 and then Present
(Full_View
(Def_Id
))
7738 and then Is_Itype
(Full_View
(Def_Id
))
7739 and then Has_Private_Declaration
(Full_View
(Def_Id
))
7740 and then Freeze_Node
(Full_View
(Def_Id
)) = N
7742 Set_Entity
(N
, Full_View
(Def_Id
));
7743 Result
:= Freeze_Type
(N
);
7744 Set_Entity
(N
, Def_Id
);
7746 -- All other types require no expander action. There are such cases
7747 -- (e.g. task types and protected types). In such cases, the freeze
7748 -- nodes are there for use by Gigi.
7752 Freeze_Stream_Operations
(N
, Def_Id
);
7756 when RE_Not_Available
=>
7760 -------------------------
7761 -- Get_Simple_Init_Val --
7762 -------------------------
7764 function Get_Simple_Init_Val
7767 Size
: Uint
:= No_Uint
) return Node_Id
7769 Loc
: constant Source_Ptr
:= Sloc
(N
);
7775 -- This is the size to be used for computation of the appropriate
7776 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7778 IV_Attribute
: constant Boolean :=
7779 Nkind
(N
) = N_Attribute_Reference
7780 and then Attribute_Name
(N
) = Name_Invalid_Value
;
7784 -- These are the values computed by the procedure Check_Subtype_Bounds
7786 procedure Check_Subtype_Bounds
;
7787 -- This procedure examines the subtype T, and its ancestor subtypes and
7788 -- derived types to determine the best known information about the
7789 -- bounds of the subtype. After the call Lo_Bound is set either to
7790 -- No_Uint if no information can be determined, or to a value which
7791 -- represents a known low bound, i.e. a valid value of the subtype can
7792 -- not be less than this value. Hi_Bound is similarly set to a known
7793 -- high bound (valid value cannot be greater than this).
7795 --------------------------
7796 -- Check_Subtype_Bounds --
7797 --------------------------
7799 procedure Check_Subtype_Bounds
is
7808 Lo_Bound
:= No_Uint
;
7809 Hi_Bound
:= No_Uint
;
7811 -- Loop to climb ancestor subtypes and derived types
7815 if not Is_Discrete_Type
(ST1
) then
7819 Lo
:= Type_Low_Bound
(ST1
);
7820 Hi
:= Type_High_Bound
(ST1
);
7822 if Compile_Time_Known_Value
(Lo
) then
7823 Loval
:= Expr_Value
(Lo
);
7825 if Lo_Bound
= No_Uint
or else Lo_Bound
< Loval
then
7830 if Compile_Time_Known_Value
(Hi
) then
7831 Hival
:= Expr_Value
(Hi
);
7833 if Hi_Bound
= No_Uint
or else Hi_Bound
> Hival
then
7838 ST2
:= Ancestor_Subtype
(ST1
);
7844 exit when ST1
= ST2
;
7847 end Check_Subtype_Bounds
;
7849 -- Start of processing for Get_Simple_Init_Val
7852 -- For a private type, we should always have an underlying type (because
7853 -- this was already checked in Needs_Simple_Initialization). What we do
7854 -- is to get the value for the underlying type and then do an unchecked
7855 -- conversion to the private type.
7857 if Is_Private_Type
(T
) then
7858 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), N
, Size
);
7860 -- A special case, if the underlying value is null, then qualify it
7861 -- with the underlying type, so that the null is properly typed.
7862 -- Similarly, if it is an aggregate it must be qualified, because an
7863 -- unchecked conversion does not provide a context for it.
7865 if Nkind_In
(Val
, N_Null
, N_Aggregate
) then
7867 Make_Qualified_Expression
(Loc
,
7869 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
7873 Result
:= Unchecked_Convert_To
(T
, Val
);
7875 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7877 if Nkind
(Result
) = N_Unchecked_Type_Conversion
7878 and then Is_Scalar_Type
(Underlying_Type
(T
))
7880 Set_No_Truncation
(Result
);
7885 -- Scalars with Default_Value aspect. The first subtype may now be
7886 -- private, so retrieve value from underlying type.
7888 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
7889 if Is_Private_Type
(First_Subtype
(T
)) then
7890 return Unchecked_Convert_To
(T
,
7891 Default_Aspect_Value
(Full_View
(First_Subtype
(T
))));
7894 Convert_To
(T
, Default_Aspect_Value
(First_Subtype
(T
)));
7897 -- Otherwise, for scalars, we must have normalize/initialize scalars
7898 -- case, or if the node N is an 'Invalid_Value attribute node.
7900 elsif Is_Scalar_Type
(T
) then
7901 pragma Assert
(Init_Or_Norm_Scalars
or IV_Attribute
);
7903 -- Compute size of object. If it is given by the caller, we can use
7904 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7905 -- we know this covers all cases correctly.
7907 if Size
= No_Uint
or else Size
<= Uint_0
then
7908 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(T
));
7910 Size_To_Use
:= Size
;
7913 -- Maximum size to use is 64 bits, since we will create values of
7914 -- type Unsigned_64 and the range must fit this type.
7916 if Size_To_Use
/= No_Uint
and then Size_To_Use
> Uint_64
then
7917 Size_To_Use
:= Uint_64
;
7920 -- Check known bounds of subtype
7922 Check_Subtype_Bounds
;
7924 -- Processing for Normalize_Scalars case
7926 if Normalize_Scalars
and then not IV_Attribute
then
7928 -- If zero is invalid, it is a convenient value to use that is
7929 -- for sure an appropriate invalid value in all situations.
7931 if Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7932 Val
:= Make_Integer_Literal
(Loc
, 0);
7934 -- Cases where all one bits is the appropriate invalid value
7936 -- For modular types, all 1 bits is either invalid or valid. If
7937 -- it is valid, then there is nothing that can be done since there
7938 -- are no invalid values (we ruled out zero already).
7940 -- For signed integer types that have no negative values, either
7941 -- there is room for negative values, or there is not. If there
7942 -- is, then all 1-bits may be interpreted as minus one, which is
7943 -- certainly invalid. Alternatively it is treated as the largest
7944 -- positive value, in which case the observation for modular types
7947 -- For float types, all 1-bits is a NaN (not a number), which is
7948 -- certainly an appropriately invalid value.
7950 elsif Is_Unsigned_Type
(T
)
7951 or else Is_Floating_Point_Type
(T
)
7952 or else Is_Enumeration_Type
(T
)
7954 Val
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
7956 -- Resolve as Unsigned_64, because the largest number we can
7957 -- generate is out of range of universal integer.
7959 Analyze_And_Resolve
(Val
, RTE
(RE_Unsigned_64
));
7961 -- Case of signed types
7965 Signed_Size
: constant Uint
:=
7966 UI_Min
(Uint_63
, Size_To_Use
- 1);
7969 -- Normally we like to use the most negative number. The one
7970 -- exception is when this number is in the known subtype
7971 -- range and the largest positive number is not in the known
7974 -- For this exceptional case, use largest positive value
7976 if Lo_Bound
/= No_Uint
and then Hi_Bound
/= No_Uint
7977 and then Lo_Bound
<= (-(2 ** Signed_Size
))
7978 and then Hi_Bound
< 2 ** Signed_Size
7980 Val
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
7982 -- Normal case of largest negative value
7985 Val
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
7990 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7993 -- For float types, use float values from System.Scalar_Values
7995 if Is_Floating_Point_Type
(T
) then
7996 if Root_Type
(T
) = Standard_Short_Float
then
7997 Val_RE
:= RE_IS_Isf
;
7998 elsif Root_Type
(T
) = Standard_Float
then
7999 Val_RE
:= RE_IS_Ifl
;
8000 elsif Root_Type
(T
) = Standard_Long_Float
then
8001 Val_RE
:= RE_IS_Ilf
;
8002 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
8003 Val_RE
:= RE_IS_Ill
;
8006 -- If zero is invalid, use zero values from System.Scalar_Values
8008 elsif Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
8009 if Size_To_Use
<= 8 then
8010 Val_RE
:= RE_IS_Iz1
;
8011 elsif Size_To_Use
<= 16 then
8012 Val_RE
:= RE_IS_Iz2
;
8013 elsif Size_To_Use
<= 32 then
8014 Val_RE
:= RE_IS_Iz4
;
8016 Val_RE
:= RE_IS_Iz8
;
8019 -- For unsigned, use unsigned values from System.Scalar_Values
8021 elsif Is_Unsigned_Type
(T
) then
8022 if Size_To_Use
<= 8 then
8023 Val_RE
:= RE_IS_Iu1
;
8024 elsif Size_To_Use
<= 16 then
8025 Val_RE
:= RE_IS_Iu2
;
8026 elsif Size_To_Use
<= 32 then
8027 Val_RE
:= RE_IS_Iu4
;
8029 Val_RE
:= RE_IS_Iu8
;
8032 -- For signed, use signed values from System.Scalar_Values
8035 if Size_To_Use
<= 8 then
8036 Val_RE
:= RE_IS_Is1
;
8037 elsif Size_To_Use
<= 16 then
8038 Val_RE
:= RE_IS_Is2
;
8039 elsif Size_To_Use
<= 32 then
8040 Val_RE
:= RE_IS_Is4
;
8042 Val_RE
:= RE_IS_Is8
;
8046 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
8049 -- The final expression is obtained by doing an unchecked conversion
8050 -- of this result to the base type of the required subtype. Use the
8051 -- base type to prevent the unchecked conversion from chopping bits,
8052 -- and then we set Kill_Range_Check to preserve the "bad" value.
8054 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
8056 -- Ensure result is not truncated, since we want the "bad" bits, and
8057 -- also kill range check on result.
8059 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
8060 Set_No_Truncation
(Result
);
8061 Set_Kill_Range_Check
(Result
, True);
8066 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
8068 elsif Is_Standard_String_Type
(T
) then
8069 pragma Assert
(Init_Or_Norm_Scalars
);
8072 Make_Aggregate
(Loc
,
8073 Component_Associations
=> New_List
(
8074 Make_Component_Association
(Loc
,
8075 Choices
=> New_List
(
8076 Make_Others_Choice
(Loc
)),
8079 (Component_Type
(T
), N
, Esize
(Root_Type
(T
))))));
8081 -- Access type is initialized to null
8083 elsif Is_Access_Type
(T
) then
8084 return Make_Null
(Loc
);
8086 -- No other possibilities should arise, since we should only be calling
8087 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
8088 -- indicating one of the above cases held.
8091 raise Program_Error
;
8095 when RE_Not_Available
=>
8097 end Get_Simple_Init_Val
;
8099 ------------------------------
8100 -- Has_New_Non_Standard_Rep --
8101 ------------------------------
8103 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
8105 if not Is_Derived_Type
(T
) then
8106 return Has_Non_Standard_Rep
(T
)
8107 or else Has_Non_Standard_Rep
(Root_Type
(T
));
8109 -- If Has_Non_Standard_Rep is not set on the derived type, the
8110 -- representation is fully inherited.
8112 elsif not Has_Non_Standard_Rep
(T
) then
8116 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
8118 -- May need a more precise check here: the First_Rep_Item may be a
8119 -- stream attribute, which does not affect the representation of the
8123 end Has_New_Non_Standard_Rep
;
8129 function In_Runtime
(E
: Entity_Id
) return Boolean is
8134 while Scope
(S1
) /= Standard_Standard
loop
8138 return Is_RTU
(S1
, System
) or else Is_RTU
(S1
, Ada
);
8141 ---------------------------------------
8142 -- Insert_Component_Invariant_Checks --
8143 ---------------------------------------
8145 procedure Insert_Component_Invariant_Checks
8150 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8151 Proc_Id
: Entity_Id
;
8154 if Present
(Proc
) then
8155 Proc_Id
:= Defining_Entity
(Proc
);
8157 if not Has_Invariants
(Typ
) then
8158 Set_Has_Invariants
(Typ
);
8159 Set_Is_Invariant_Procedure
(Proc_Id
);
8160 Set_Invariant_Procedure
(Typ
, Proc_Id
);
8161 Insert_After
(N
, Proc
);
8166 -- Find already created invariant subprogram, insert body of
8167 -- component invariant proc in its body, and add call after
8172 Inv_Id
: constant Entity_Id
:= Invariant_Procedure
(Typ
);
8173 Call
: constant Node_Id
:=
8174 Make_Procedure_Call_Statement
(Sloc
(N
),
8175 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
8176 Parameter_Associations
=>
8178 (New_Occurrence_Of
(First_Formal
(Inv_Id
), Loc
)));
8181 -- The invariant body has not been analyzed yet, so we do a
8182 -- sequential search forward, and retrieve it by name.
8185 while Present
(Bod
) loop
8186 exit when Nkind
(Bod
) = N_Subprogram_Body
8187 and then Chars
(Defining_Entity
(Bod
)) = Chars
(Inv_Id
);
8191 -- If the body is not found, it is the case of an invariant
8192 -- appearing on a full declaration in a private part, in
8193 -- which case the type has been frozen but the invariant
8194 -- procedure for the composite type not created yet. Create
8198 Build_Invariant_Procedure
(Typ
, Parent
(Current_Scope
));
8199 Bod
:= Unit_Declaration_Node
8200 (Corresponding_Body
(Unit_Declaration_Node
(Inv_Id
)));
8203 Append_To
(Declarations
(Bod
), Proc
);
8204 Append_To
(Statements
(Handled_Statement_Sequence
(Bod
)), Call
);
8210 end Insert_Component_Invariant_Checks
;
8212 ----------------------------
8213 -- Initialization_Warning --
8214 ----------------------------
8216 procedure Initialization_Warning
(E
: Entity_Id
) is
8217 Warning_Needed
: Boolean;
8220 Warning_Needed
:= False;
8222 if Ekind
(Current_Scope
) = E_Package
8223 and then Static_Elaboration_Desired
(Current_Scope
)
8226 if Is_Record_Type
(E
) then
8227 if Has_Discriminants
(E
)
8228 or else Is_Limited_Type
(E
)
8229 or else Has_Non_Standard_Rep
(E
)
8231 Warning_Needed
:= True;
8234 -- Verify that at least one component has an initialization
8235 -- expression. No need for a warning on a type if all its
8236 -- components have no initialization.
8242 Comp
:= First_Component
(E
);
8243 while Present
(Comp
) loop
8244 if Ekind
(Comp
) = E_Discriminant
8246 (Nkind
(Parent
(Comp
)) = N_Component_Declaration
8247 and then Present
(Expression
(Parent
(Comp
))))
8249 Warning_Needed
:= True;
8253 Next_Component
(Comp
);
8258 if Warning_Needed
then
8260 ("Objects of the type cannot be initialized statically "
8261 & "by default??", Parent
(E
));
8266 Error_Msg_N
("Object cannot be initialized statically??", E
);
8269 end Initialization_Warning
;
8275 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
8276 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8280 -- First parameter is always _Init : in out typ. Note that we need this
8281 -- to be in/out because in the case of the task record value, there
8282 -- are default record fields (_Priority, _Size, -Task_Info) that may
8283 -- be referenced in the generated initialization routine.
8285 Formals
:= New_List
(
8286 Make_Parameter_Specification
(Loc
,
8287 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_uInit
),
8289 Out_Present
=> True,
8290 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
8292 -- For task record value, or type that contains tasks, add two more
8293 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
8294 -- We also add these parameters for the task record type case.
8297 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
8300 Make_Parameter_Specification
(Loc
,
8301 Defining_Identifier
=>
8302 Make_Defining_Identifier
(Loc
, Name_uMaster
),
8304 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
)));
8306 -- Add _Chain (not done for sequential elaboration policy, see
8307 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
8309 if Partition_Elaboration_Policy
/= 'S' then
8311 Make_Parameter_Specification
(Loc
,
8312 Defining_Identifier
=>
8313 Make_Defining_Identifier
(Loc
, Name_uChain
),
8315 Out_Present
=> True,
8317 New_Occurrence_Of
(RTE
(RE_Activation_Chain
), Loc
)));
8321 Make_Parameter_Specification
(Loc
,
8322 Defining_Identifier
=>
8323 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
8325 Parameter_Type
=> New_Occurrence_Of
(Standard_String
, Loc
)));
8331 when RE_Not_Available
=>
8335 -------------------------
8336 -- Init_Secondary_Tags --
8337 -------------------------
8339 procedure Init_Secondary_Tags
8342 Stmts_List
: List_Id
;
8343 Fixed_Comps
: Boolean := True;
8344 Variable_Comps
: Boolean := True)
8346 Loc
: constant Source_Ptr
:= Sloc
(Target
);
8348 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
8349 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8351 procedure Initialize_Tag
8354 Tag_Comp
: Entity_Id
;
8355 Iface_Tag
: Node_Id
);
8356 -- Initialize the tag of the secondary dispatch table of Typ associated
8357 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8358 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
8359 -- of Typ CPP tagged type we generate code to inherit the contents of
8360 -- the dispatch table directly from the ancestor.
8362 --------------------
8363 -- Initialize_Tag --
8364 --------------------
8366 procedure Initialize_Tag
8369 Tag_Comp
: Entity_Id
;
8370 Iface_Tag
: Node_Id
)
8372 Comp_Typ
: Entity_Id
;
8373 Offset_To_Top_Comp
: Entity_Id
:= Empty
;
8376 -- Initialize pointer to secondary DT associated with the interface
8378 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
8379 Append_To
(Stmts_List
,
8380 Make_Assignment_Statement
(Loc
,
8382 Make_Selected_Component
(Loc
,
8383 Prefix
=> New_Copy_Tree
(Target
),
8384 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
8386 New_Occurrence_Of
(Iface_Tag
, Loc
)));
8389 Comp_Typ
:= Scope
(Tag_Comp
);
8391 -- Initialize the entries of the table of interfaces. We generate a
8392 -- different call when the parent of the type has variable size
8395 if Comp_Typ
/= Etype
(Comp_Typ
)
8396 and then Is_Variable_Size_Record
(Etype
(Comp_Typ
))
8397 and then Chars
(Tag_Comp
) /= Name_uTag
8399 pragma Assert
(Present
(DT_Offset_To_Top_Func
(Tag_Comp
)));
8401 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
8402 -- configurable run-time environment.
8404 if not RTE_Available
(RE_Set_Dynamic_Offset_To_Top
) then
8406 ("variable size record with interface types", Typ
);
8411 -- Set_Dynamic_Offset_To_Top
8413 -- Interface_T => Iface'Tag,
8414 -- Offset_Value => n,
8415 -- Offset_Func => Fn'Address)
8417 Append_To
(Stmts_List
,
8418 Make_Procedure_Call_Statement
(Loc
,
8420 New_Occurrence_Of
(RTE
(RE_Set_Dynamic_Offset_To_Top
), Loc
),
8421 Parameter_Associations
=> New_List
(
8422 Make_Attribute_Reference
(Loc
,
8423 Prefix
=> New_Copy_Tree
(Target
),
8424 Attribute_Name
=> Name_Address
),
8426 Unchecked_Convert_To
(RTE
(RE_Tag
),
8428 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
8431 Unchecked_Convert_To
8432 (RTE
(RE_Storage_Offset
),
8433 Make_Attribute_Reference
(Loc
,
8435 Make_Selected_Component
(Loc
,
8436 Prefix
=> New_Copy_Tree
(Target
),
8438 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8439 Attribute_Name
=> Name_Position
)),
8441 Unchecked_Convert_To
(RTE
(RE_Offset_To_Top_Function_Ptr
),
8442 Make_Attribute_Reference
(Loc
,
8443 Prefix
=> New_Occurrence_Of
8444 (DT_Offset_To_Top_Func
(Tag_Comp
), Loc
),
8445 Attribute_Name
=> Name_Address
)))));
8447 -- In this case the next component stores the value of the offset
8450 Offset_To_Top_Comp
:= Next_Entity
(Tag_Comp
);
8451 pragma Assert
(Present
(Offset_To_Top_Comp
));
8453 Append_To
(Stmts_List
,
8454 Make_Assignment_Statement
(Loc
,
8456 Make_Selected_Component
(Loc
,
8457 Prefix
=> New_Copy_Tree
(Target
),
8459 New_Occurrence_Of
(Offset_To_Top_Comp
, Loc
)),
8462 Make_Attribute_Reference
(Loc
,
8464 Make_Selected_Component
(Loc
,
8465 Prefix
=> New_Copy_Tree
(Target
),
8466 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
8467 Attribute_Name
=> Name_Position
)));
8469 -- Normal case: No discriminants in the parent type
8472 -- Don't need to set any value if this interface shares the
8473 -- primary dispatch table.
8475 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
8476 Append_To
(Stmts_List
,
8477 Build_Set_Static_Offset_To_Top
(Loc
,
8478 Iface_Tag
=> New_Occurrence_Of
(Iface_Tag
, Loc
),
8480 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
8481 Make_Attribute_Reference
(Loc
,
8483 Make_Selected_Component
(Loc
,
8484 Prefix
=> New_Copy_Tree
(Target
),
8486 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8487 Attribute_Name
=> Name_Position
))));
8491 -- Register_Interface_Offset
8493 -- Interface_T => Iface'Tag,
8494 -- Is_Constant => True,
8495 -- Offset_Value => n,
8496 -- Offset_Func => null);
8498 if RTE_Available
(RE_Register_Interface_Offset
) then
8499 Append_To
(Stmts_List
,
8500 Make_Procedure_Call_Statement
(Loc
,
8503 (RTE
(RE_Register_Interface_Offset
), Loc
),
8504 Parameter_Associations
=> New_List
(
8505 Make_Attribute_Reference
(Loc
,
8506 Prefix
=> New_Copy_Tree
(Target
),
8507 Attribute_Name
=> Name_Address
),
8509 Unchecked_Convert_To
(RTE
(RE_Tag
),
8511 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))), Loc
)),
8513 New_Occurrence_Of
(Standard_True
, Loc
),
8515 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
8516 Make_Attribute_Reference
(Loc
,
8518 Make_Selected_Component
(Loc
,
8519 Prefix
=> New_Copy_Tree
(Target
),
8521 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8522 Attribute_Name
=> Name_Position
)),
8531 Full_Typ
: Entity_Id
;
8532 Ifaces_List
: Elist_Id
;
8533 Ifaces_Comp_List
: Elist_Id
;
8534 Ifaces_Tag_List
: Elist_Id
;
8535 Iface_Elmt
: Elmt_Id
;
8536 Iface_Comp_Elmt
: Elmt_Id
;
8537 Iface_Tag_Elmt
: Elmt_Id
;
8539 In_Variable_Pos
: Boolean;
8541 -- Start of processing for Init_Secondary_Tags
8544 -- Handle private types
8546 if Present
(Full_View
(Typ
)) then
8547 Full_Typ
:= Full_View
(Typ
);
8552 Collect_Interfaces_Info
8553 (Full_Typ
, Ifaces_List
, Ifaces_Comp_List
, Ifaces_Tag_List
);
8555 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
8556 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
8557 Iface_Tag_Elmt
:= First_Elmt
(Ifaces_Tag_List
);
8558 while Present
(Iface_Elmt
) loop
8559 Tag_Comp
:= Node
(Iface_Comp_Elmt
);
8561 -- Check if parent of record type has variable size components
8563 In_Variable_Pos
:= Scope
(Tag_Comp
) /= Etype
(Scope
(Tag_Comp
))
8564 and then Is_Variable_Size_Record
(Etype
(Scope
(Tag_Comp
)));
8566 -- If we are compiling under the CPP full ABI compatibility mode and
8567 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8568 -- initialize the secondary tag components from tags that reference
8569 -- secondary tables filled with copy of parent slots.
8571 if Is_CPP_Class
(Root_Type
(Full_Typ
)) then
8573 -- Reject interface components located at variable offset in
8574 -- C++ derivations. This is currently unsupported.
8576 if not Fixed_Comps
and then In_Variable_Pos
then
8578 -- Locate the first dynamic component of the record. Done to
8579 -- improve the text of the warning.
8583 Comp_Typ
: Entity_Id
;
8586 Comp
:= First_Entity
(Typ
);
8587 while Present
(Comp
) loop
8588 Comp_Typ
:= Etype
(Comp
);
8590 if Ekind
(Comp
) /= E_Discriminant
8591 and then not Is_Tag
(Comp
)
8594 (Is_Record_Type
(Comp_Typ
)
8596 Is_Variable_Size_Record
(Base_Type
(Comp_Typ
)))
8598 (Is_Array_Type
(Comp_Typ
)
8599 and then Is_Variable_Size_Array
(Comp_Typ
));
8605 pragma Assert
(Present
(Comp
));
8606 Error_Msg_Node_2
:= Comp
;
8608 ("parent type & with dynamic component & cannot be parent"
8609 & " of 'C'P'P derivation if new interfaces are present",
8610 Typ
, Scope
(Original_Record_Component
(Comp
)));
8613 Sloc
(Scope
(Original_Record_Component
(Comp
)));
8615 ("type derived from 'C'P'P type & defined #",
8616 Typ
, Scope
(Original_Record_Component
(Comp
)));
8618 -- Avoid duplicated warnings
8623 -- Initialize secondary tags
8626 Append_To
(Stmts_List
,
8627 Make_Assignment_Statement
(Loc
,
8629 Make_Selected_Component
(Loc
,
8630 Prefix
=> New_Copy_Tree
(Target
),
8632 New_Occurrence_Of
(Node
(Iface_Comp_Elmt
), Loc
)),
8634 New_Occurrence_Of
(Node
(Iface_Tag_Elmt
), Loc
)));
8637 -- Otherwise generate code to initialize the tag
8640 if (In_Variable_Pos
and then Variable_Comps
)
8641 or else (not In_Variable_Pos
and then Fixed_Comps
)
8643 Initialize_Tag
(Full_Typ
,
8644 Iface
=> Node
(Iface_Elmt
),
8645 Tag_Comp
=> Tag_Comp
,
8646 Iface_Tag
=> Node
(Iface_Tag_Elmt
));
8650 Next_Elmt
(Iface_Elmt
);
8651 Next_Elmt
(Iface_Comp_Elmt
);
8652 Next_Elmt
(Iface_Tag_Elmt
);
8654 end Init_Secondary_Tags
;
8656 ------------------------
8657 -- Is_User_Defined_Eq --
8658 ------------------------
8660 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean is
8662 return Chars
(Prim
) = Name_Op_Eq
8663 and then Etype
(First_Formal
(Prim
)) =
8664 Etype
(Next_Formal
(First_Formal
(Prim
)))
8665 and then Base_Type
(Etype
(Prim
)) = Standard_Boolean
;
8666 end Is_User_Defined_Equality
;
8668 ----------------------------------------
8669 -- Make_Controlling_Function_Wrappers --
8670 ----------------------------------------
8672 procedure Make_Controlling_Function_Wrappers
8673 (Tag_Typ
: Entity_Id
;
8674 Decl_List
: out List_Id
;
8675 Body_List
: out List_Id
)
8677 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8678 Prim_Elmt
: Elmt_Id
;
8680 Actual_List
: List_Id
;
8681 Formal_List
: List_Id
;
8683 Par_Formal
: Entity_Id
;
8684 Formal_Node
: Node_Id
;
8685 Func_Body
: Node_Id
;
8686 Func_Decl
: Node_Id
;
8687 Func_Spec
: Node_Id
;
8688 Return_Stmt
: Node_Id
;
8691 Decl_List
:= New_List
;
8692 Body_List
:= New_List
;
8694 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8696 while Present
(Prim_Elmt
) loop
8697 Subp
:= Node
(Prim_Elmt
);
8699 -- If a primitive function with a controlling result of the type has
8700 -- not been overridden by the user, then we must create a wrapper
8701 -- function here that effectively overrides it and invokes the
8702 -- (non-abstract) parent function. This can only occur for a null
8703 -- extension. Note that functions with anonymous controlling access
8704 -- results don't qualify and must be overridden. We also exclude
8705 -- Input attributes, since each type will have its own version of
8706 -- Input constructed by the expander. The test for Comes_From_Source
8707 -- is needed to distinguish inherited operations from renamings
8708 -- (which also have Alias set). We exclude internal entities with
8709 -- Interface_Alias to avoid generating duplicated wrappers since
8710 -- the primitive which covers the interface is also available in
8711 -- the list of primitive operations.
8713 -- The function may be abstract, or require_Overriding may be set
8714 -- for it, because tests for null extensions may already have reset
8715 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8716 -- set, functions that need wrappers are recognized by having an
8717 -- alias that returns the parent type.
8719 if Comes_From_Source
(Subp
)
8720 or else No
(Alias
(Subp
))
8721 or else Present
(Interface_Alias
(Subp
))
8722 or else Ekind
(Subp
) /= E_Function
8723 or else not Has_Controlling_Result
(Subp
)
8724 or else Is_Access_Type
(Etype
(Subp
))
8725 or else Is_Abstract_Subprogram
(Alias
(Subp
))
8726 or else Is_TSS
(Subp
, TSS_Stream_Input
)
8730 elsif Is_Abstract_Subprogram
(Subp
)
8731 or else Requires_Overriding
(Subp
)
8733 (Is_Null_Extension
(Etype
(Subp
))
8734 and then Etype
(Alias
(Subp
)) /= Etype
(Subp
))
8736 Formal_List
:= No_List
;
8737 Formal
:= First_Formal
(Subp
);
8739 if Present
(Formal
) then
8740 Formal_List
:= New_List
;
8742 while Present
(Formal
) loop
8744 (Make_Parameter_Specification
8746 Defining_Identifier
=>
8747 Make_Defining_Identifier
(Sloc
(Formal
),
8748 Chars
=> Chars
(Formal
)),
8749 In_Present
=> In_Present
(Parent
(Formal
)),
8750 Out_Present
=> Out_Present
(Parent
(Formal
)),
8751 Null_Exclusion_Present
=>
8752 Null_Exclusion_Present
(Parent
(Formal
)),
8754 New_Occurrence_Of
(Etype
(Formal
), Loc
),
8756 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
8759 Next_Formal
(Formal
);
8764 Make_Function_Specification
(Loc
,
8765 Defining_Unit_Name
=>
8766 Make_Defining_Identifier
(Loc
,
8767 Chars
=> Chars
(Subp
)),
8768 Parameter_Specifications
=> Formal_List
,
8769 Result_Definition
=>
8770 New_Occurrence_Of
(Etype
(Subp
), Loc
));
8772 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Func_Spec
);
8773 Append_To
(Decl_List
, Func_Decl
);
8775 -- Build a wrapper body that calls the parent function. The body
8776 -- contains a single return statement that returns an extension
8777 -- aggregate whose ancestor part is a call to the parent function,
8778 -- passing the formals as actuals (with any controlling arguments
8779 -- converted to the types of the corresponding formals of the
8780 -- parent function, which might be anonymous access types), and
8781 -- having a null extension.
8783 Formal
:= First_Formal
(Subp
);
8784 Par_Formal
:= First_Formal
(Alias
(Subp
));
8785 Formal_Node
:= First
(Formal_List
);
8787 if Present
(Formal
) then
8788 Actual_List
:= New_List
;
8790 Actual_List
:= No_List
;
8793 while Present
(Formal
) loop
8794 if Is_Controlling_Formal
(Formal
) then
8795 Append_To
(Actual_List
,
8796 Make_Type_Conversion
(Loc
,
8798 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
8801 (Defining_Identifier
(Formal_Node
), Loc
)));
8806 (Defining_Identifier
(Formal_Node
), Loc
));
8809 Next_Formal
(Formal
);
8810 Next_Formal
(Par_Formal
);
8815 Make_Simple_Return_Statement
(Loc
,
8817 Make_Extension_Aggregate
(Loc
,
8819 Make_Function_Call
(Loc
,
8821 New_Occurrence_Of
(Alias
(Subp
), Loc
),
8822 Parameter_Associations
=> Actual_List
),
8823 Null_Record_Present
=> True));
8826 Make_Subprogram_Body
(Loc
,
8827 Specification
=> New_Copy_Tree
(Func_Spec
),
8828 Declarations
=> Empty_List
,
8829 Handled_Statement_Sequence
=>
8830 Make_Handled_Sequence_Of_Statements
(Loc
,
8831 Statements
=> New_List
(Return_Stmt
)));
8833 Set_Defining_Unit_Name
8834 (Specification
(Func_Body
),
8835 Make_Defining_Identifier
(Loc
, Chars
(Subp
)));
8837 Append_To
(Body_List
, Func_Body
);
8839 -- Replace the inherited function with the wrapper function in the
8840 -- primitive operations list. We add the minimum decoration needed
8841 -- to override interface primitives.
8843 Set_Ekind
(Defining_Unit_Name
(Func_Spec
), E_Function
);
8845 Override_Dispatching_Operation
8846 (Tag_Typ
, Subp
, New_Op
=> Defining_Unit_Name
(Func_Spec
),
8847 Is_Wrapper
=> True);
8851 Next_Elmt
(Prim_Elmt
);
8853 end Make_Controlling_Function_Wrappers
;
8859 function Make_Eq_Body
8861 Eq_Name
: Name_Id
) return Node_Id
8863 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Typ
));
8865 Def
: constant Node_Id
:= Parent
(Typ
);
8866 Stmts
: constant List_Id
:= New_List
;
8867 Variant_Case
: Boolean := Has_Discriminants
(Typ
);
8868 Comps
: Node_Id
:= Empty
;
8869 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
8873 Predef_Spec_Or_Body
(Loc
,
8876 Profile
=> New_List
(
8877 Make_Parameter_Specification
(Loc
,
8878 Defining_Identifier
=>
8879 Make_Defining_Identifier
(Loc
, Name_X
),
8880 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
8882 Make_Parameter_Specification
(Loc
,
8883 Defining_Identifier
=>
8884 Make_Defining_Identifier
(Loc
, Name_Y
),
8885 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8887 Ret_Type
=> Standard_Boolean
,
8890 if Variant_Case
then
8891 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
8892 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
8895 if Present
(Typ_Def
) then
8896 Comps
:= Component_List
(Typ_Def
);
8900 Present
(Comps
) and then Present
(Variant_Part
(Comps
));
8903 if Variant_Case
then
8905 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
8906 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
8908 Make_Simple_Return_Statement
(Loc
,
8909 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
8913 Make_Simple_Return_Statement
(Loc
,
8915 Expand_Record_Equality
8918 Lhs
=> Make_Identifier
(Loc
, Name_X
),
8919 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
8920 Bodies
=> Declarations
(Decl
))));
8923 Set_Handled_Statement_Sequence
8924 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
8932 -- <Make_Eq_If shared components>
8935 -- when V1 => <Make_Eq_Case> on subcomponents
8937 -- when Vn => <Make_Eq_Case> on subcomponents
8940 function Make_Eq_Case
8943 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
8945 Loc
: constant Source_Ptr
:= Sloc
(E
);
8946 Result
: constant List_Id
:= New_List
;
8950 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
;
8951 -- Given the discriminant that controls a given variant of an unchecked
8952 -- union, find the formal of the equality function that carries the
8953 -- inferred value of the discriminant.
8955 function External_Name
(E
: Entity_Id
) return Name_Id
;
8956 -- The value of a given discriminant is conveyed in the corresponding
8957 -- formal parameter of the equality routine. The name of this formal
8958 -- parameter carries a one-character suffix which is removed here.
8960 --------------------------
8961 -- Corresponding_Formal --
8962 --------------------------
8964 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
is
8965 Discr
: constant Entity_Id
:= Entity
(Name
(Variant_Part
(C
)));
8969 Elm
:= First_Elmt
(Discrs
);
8970 while Present
(Elm
) loop
8971 if Chars
(Discr
) = External_Name
(Node
(Elm
)) then
8978 -- A formal of the proper name must be found
8980 raise Program_Error
;
8981 end Corresponding_Formal
;
8987 function External_Name
(E
: Entity_Id
) return Name_Id
is
8989 Get_Name_String
(Chars
(E
));
8990 Name_Len
:= Name_Len
- 1;
8994 -- Start of processing for Make_Eq_Case
8997 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
8999 if No
(Variant_Part
(CL
)) then
9003 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
9005 if No
(Variant
) then
9009 Alt_List
:= New_List
;
9010 while Present
(Variant
) loop
9011 Append_To
(Alt_List
,
9012 Make_Case_Statement_Alternative
(Loc
,
9013 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
9015 Make_Eq_Case
(E
, Component_List
(Variant
), Discrs
)));
9016 Next_Non_Pragma
(Variant
);
9019 -- If we have an Unchecked_Union, use one of the parameters of the
9020 -- enclosing equality routine that captures the discriminant, to use
9021 -- as the expression in the generated case statement.
9023 if Is_Unchecked_Union
(E
) then
9025 Make_Case_Statement
(Loc
,
9027 New_Occurrence_Of
(Corresponding_Formal
(CL
), Loc
),
9028 Alternatives
=> Alt_List
));
9032 Make_Case_Statement
(Loc
,
9034 Make_Selected_Component
(Loc
,
9035 Prefix
=> Make_Identifier
(Loc
, Name_X
),
9036 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
9037 Alternatives
=> Alt_List
));
9058 -- or a null statement if the list L is empty
9062 L
: List_Id
) return Node_Id
9064 Loc
: constant Source_Ptr
:= Sloc
(E
);
9066 Field_Name
: Name_Id
;
9071 return Make_Null_Statement
(Loc
);
9076 C
:= First_Non_Pragma
(L
);
9077 while Present
(C
) loop
9078 Field_Name
:= Chars
(Defining_Identifier
(C
));
9080 -- The tags must not be compared: they are not part of the value.
9081 -- Ditto for parent interfaces because their equality operator is
9084 -- Note also that in the following, we use Make_Identifier for
9085 -- the component names. Use of New_Occurrence_Of to identify the
9086 -- components would be incorrect because the wrong entities for
9087 -- discriminants could be picked up in the private type case.
9089 if Field_Name
= Name_uParent
9090 and then Is_Interface
(Etype
(Defining_Identifier
(C
)))
9094 elsif Field_Name
/= Name_uTag
then
9095 Evolve_Or_Else
(Cond
,
9098 Make_Selected_Component
(Loc
,
9099 Prefix
=> Make_Identifier
(Loc
, Name_X
),
9100 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
)),
9103 Make_Selected_Component
(Loc
,
9104 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
9105 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
))));
9108 Next_Non_Pragma
(C
);
9112 return Make_Null_Statement
(Loc
);
9116 Make_Implicit_If_Statement
(E
,
9118 Then_Statements
=> New_List
(
9119 Make_Simple_Return_Statement
(Loc
,
9120 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
9129 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
is
9131 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean;
9132 -- Returns true if Prim is a renaming of an unresolved predefined
9133 -- inequality operation.
9135 --------------------------------
9136 -- Is_Predefined_Neq_Renaming --
9137 --------------------------------
9139 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean is
9141 return Chars
(Prim
) /= Name_Op_Ne
9142 and then Present
(Alias
(Prim
))
9143 and then Comes_From_Source
(Prim
)
9144 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
9145 and then Chars
(Alias
(Prim
)) = Name_Op_Ne
;
9146 end Is_Predefined_Neq_Renaming
;
9150 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Tag_Typ
));
9151 Stmts
: constant List_Id
:= New_List
;
9153 Eq_Prim
: Entity_Id
;
9154 Left_Op
: Entity_Id
;
9155 Renaming_Prim
: Entity_Id
;
9156 Right_Op
: Entity_Id
;
9159 -- Start of processing for Make_Neq_Body
9162 -- For a call on a renaming of a dispatching subprogram that is
9163 -- overridden, if the overriding occurred before the renaming, then
9164 -- the body executed is that of the overriding declaration, even if the
9165 -- overriding declaration is not visible at the place of the renaming;
9166 -- otherwise, the inherited or predefined subprogram is called, see
9169 -- Stage 1: Search for a renaming of the inequality primitive and also
9170 -- search for an overriding of the equality primitive located before the
9171 -- renaming declaration.
9179 Renaming_Prim
:= Empty
;
9181 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9182 while Present
(Elmt
) loop
9183 Prim
:= Node
(Elmt
);
9185 if Is_User_Defined_Equality
(Prim
) and then No
(Alias
(Prim
)) then
9186 if No
(Renaming_Prim
) then
9187 pragma Assert
(No
(Eq_Prim
));
9191 elsif Is_Predefined_Neq_Renaming
(Prim
) then
9192 Renaming_Prim
:= Prim
;
9199 -- No further action needed if no renaming was found
9201 if No
(Renaming_Prim
) then
9205 -- Stage 2: Replace the renaming declaration by a subprogram declaration
9206 -- (required to add its body)
9208 Decl
:= Parent
(Parent
(Renaming_Prim
));
9210 Make_Subprogram_Declaration
(Loc
,
9211 Specification
=> Specification
(Decl
)));
9212 Set_Analyzed
(Decl
);
9214 -- Remove the decoration of intrinsic renaming subprogram
9216 Set_Is_Intrinsic_Subprogram
(Renaming_Prim
, False);
9217 Set_Convention
(Renaming_Prim
, Convention_Ada
);
9218 Set_Alias
(Renaming_Prim
, Empty
);
9219 Set_Has_Completion
(Renaming_Prim
, False);
9221 -- Stage 3: Build the corresponding body
9223 Left_Op
:= First_Formal
(Renaming_Prim
);
9224 Right_Op
:= Next_Formal
(Left_Op
);
9227 Predef_Spec_Or_Body
(Loc
,
9229 Name
=> Chars
(Renaming_Prim
),
9230 Profile
=> New_List
(
9231 Make_Parameter_Specification
(Loc
,
9232 Defining_Identifier
=>
9233 Make_Defining_Identifier
(Loc
, Chars
(Left_Op
)),
9234 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9236 Make_Parameter_Specification
(Loc
,
9237 Defining_Identifier
=>
9238 Make_Defining_Identifier
(Loc
, Chars
(Right_Op
)),
9239 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9241 Ret_Type
=> Standard_Boolean
,
9244 -- If the overriding of the equality primitive occurred before the
9245 -- renaming, then generate:
9247 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9249 -- return not Oeq (X, Y);
9252 if Present
(Eq_Prim
) then
9255 -- Otherwise build a nested subprogram which performs the predefined
9256 -- evaluation of the equality operator. That is, generate:
9258 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9259 -- function Oeq (X : Y) return Boolean is
9261 -- <<body of default implementation>>
9264 -- return not Oeq (X, Y);
9269 Local_Subp
: Node_Id
;
9271 Local_Subp
:= Make_Eq_Body
(Tag_Typ
, Name_Op_Eq
);
9272 Set_Declarations
(Decl
, New_List
(Local_Subp
));
9273 Target
:= Defining_Entity
(Local_Subp
);
9278 Make_Simple_Return_Statement
(Loc
,
9281 Make_Function_Call
(Loc
,
9282 Name
=> New_Occurrence_Of
(Target
, Loc
),
9283 Parameter_Associations
=> New_List
(
9284 Make_Identifier
(Loc
, Chars
(Left_Op
)),
9285 Make_Identifier
(Loc
, Chars
(Right_Op
)))))));
9287 Set_Handled_Statement_Sequence
9288 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
9292 -------------------------------
9293 -- Make_Null_Procedure_Specs --
9294 -------------------------------
9296 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
is
9297 Decl_List
: constant List_Id
:= New_List
;
9298 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9300 Formal_List
: List_Id
;
9301 New_Param_Spec
: Node_Id
;
9302 Parent_Subp
: Entity_Id
;
9303 Prim_Elmt
: Elmt_Id
;
9307 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9308 while Present
(Prim_Elmt
) loop
9309 Subp
:= Node
(Prim_Elmt
);
9311 -- If a null procedure inherited from an interface has not been
9312 -- overridden, then we build a null procedure declaration to
9313 -- override the inherited procedure.
9315 Parent_Subp
:= Alias
(Subp
);
9317 if Present
(Parent_Subp
)
9318 and then Is_Null_Interface_Primitive
(Parent_Subp
)
9320 Formal_List
:= No_List
;
9321 Formal
:= First_Formal
(Subp
);
9323 if Present
(Formal
) then
9324 Formal_List
:= New_List
;
9326 while Present
(Formal
) loop
9328 -- Copy the parameter spec including default expressions
9331 New_Copy_Tree
(Parent
(Formal
), New_Sloc
=> Loc
);
9333 -- Generate a new defining identifier for the new formal.
9334 -- required because New_Copy_Tree does not duplicate
9335 -- semantic fields (except itypes).
9337 Set_Defining_Identifier
(New_Param_Spec
,
9338 Make_Defining_Identifier
(Sloc
(Formal
),
9339 Chars
=> Chars
(Formal
)));
9341 -- For controlling arguments we must change their
9342 -- parameter type to reference the tagged type (instead
9343 -- of the interface type)
9345 if Is_Controlling_Formal
(Formal
) then
9346 if Nkind
(Parameter_Type
(Parent
(Formal
))) = N_Identifier
9348 Set_Parameter_Type
(New_Param_Spec
,
9349 New_Occurrence_Of
(Tag_Typ
, Loc
));
9352 (Nkind
(Parameter_Type
(Parent
(Formal
))) =
9353 N_Access_Definition
);
9354 Set_Subtype_Mark
(Parameter_Type
(New_Param_Spec
),
9355 New_Occurrence_Of
(Tag_Typ
, Loc
));
9359 Append
(New_Param_Spec
, Formal_List
);
9361 Next_Formal
(Formal
);
9365 Append_To
(Decl_List
,
9366 Make_Subprogram_Declaration
(Loc
,
9367 Make_Procedure_Specification
(Loc
,
9368 Defining_Unit_Name
=>
9369 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
9370 Parameter_Specifications
=> Formal_List
,
9371 Null_Present
=> True)));
9374 Next_Elmt
(Prim_Elmt
);
9378 end Make_Null_Procedure_Specs
;
9380 -------------------------------------
9381 -- Make_Predefined_Primitive_Specs --
9382 -------------------------------------
9384 procedure Make_Predefined_Primitive_Specs
9385 (Tag_Typ
: Entity_Id
;
9386 Predef_List
: out List_Id
;
9387 Renamed_Eq
: out Entity_Id
)
9389 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
9390 -- Returns true if Prim is a renaming of an unresolved predefined
9391 -- equality operation.
9393 -------------------------------
9394 -- Is_Predefined_Eq_Renaming --
9395 -------------------------------
9397 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
9399 return Chars
(Prim
) /= Name_Op_Eq
9400 and then Present
(Alias
(Prim
))
9401 and then Comes_From_Source
(Prim
)
9402 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
9403 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
9404 end Is_Predefined_Eq_Renaming
;
9408 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9409 Res
: constant List_Id
:= New_List
;
9410 Eq_Name
: Name_Id
:= Name_Op_Eq
;
9411 Eq_Needed
: Boolean;
9415 Has_Predef_Eq_Renaming
: Boolean := False;
9416 -- Set to True if Tag_Typ has a primitive that renames the predefined
9417 -- equality operator. Used to implement (RM 8-5-4(8)).
9419 -- Start of processing for Make_Predefined_Primitive_Specs
9422 Renamed_Eq
:= Empty
;
9426 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
9429 Profile
=> New_List
(
9430 Make_Parameter_Specification
(Loc
,
9431 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9432 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9434 Ret_Type
=> Standard_Long_Long_Integer
));
9436 -- Specs for dispatching stream attributes
9439 Stream_Op_TSS_Names
:
9440 constant array (Integer range <>) of TSS_Name_Type
:=
9447 for Op
in Stream_Op_TSS_Names
'Range loop
9448 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
9450 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
9451 Stream_Op_TSS_Names
(Op
)));
9456 -- Spec of "=" is expanded if the type is not limited and if a user
9457 -- defined "=" was not already declared for the non-full view of a
9458 -- private extension
9460 if not Is_Limited_Type
(Tag_Typ
) then
9462 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9463 while Present
(Prim
) loop
9465 -- If a primitive is encountered that renames the predefined
9466 -- equality operator before reaching any explicit equality
9467 -- primitive, then we still need to create a predefined equality
9468 -- function, because calls to it can occur via the renaming. A
9469 -- new name is created for the equality to avoid conflicting with
9470 -- any user-defined equality. (Note that this doesn't account for
9471 -- renamings of equality nested within subpackages???)
9473 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
9474 Has_Predef_Eq_Renaming
:= True;
9475 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
9477 -- User-defined equality
9479 elsif Is_User_Defined_Equality
(Node
(Prim
)) then
9480 if No
(Alias
(Node
(Prim
)))
9481 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
9482 N_Subprogram_Renaming_Declaration
9487 -- If the parent is not an interface type and has an abstract
9488 -- equality function, the inherited equality is abstract as
9489 -- well, and no body can be created for it.
9491 elsif not Is_Interface
(Etype
(Tag_Typ
))
9492 and then Present
(Alias
(Node
(Prim
)))
9493 and then Is_Abstract_Subprogram
(Alias
(Node
(Prim
)))
9498 -- If the type has an equality function corresponding with
9499 -- a primitive defined in an interface type, the inherited
9500 -- equality is abstract as well, and no body can be created
9503 elsif Present
(Alias
(Node
(Prim
)))
9504 and then Comes_From_Source
(Ultimate_Alias
(Node
(Prim
)))
9507 (Find_Dispatching_Type
(Ultimate_Alias
(Node
(Prim
))))
9517 -- If a renaming of predefined equality was found but there was no
9518 -- user-defined equality (so Eq_Needed is still true), then set the
9519 -- name back to Name_Op_Eq. But in the case where a user-defined
9520 -- equality was located after such a renaming, then the predefined
9521 -- equality function is still needed, so Eq_Needed must be set back
9524 if Eq_Name
/= Name_Op_Eq
then
9526 Eq_Name
:= Name_Op_Eq
;
9533 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
9536 Profile
=> New_List
(
9537 Make_Parameter_Specification
(Loc
,
9538 Defining_Identifier
=>
9539 Make_Defining_Identifier
(Loc
, Name_X
),
9540 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9542 Make_Parameter_Specification
(Loc
,
9543 Defining_Identifier
=>
9544 Make_Defining_Identifier
(Loc
, Name_Y
),
9545 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9546 Ret_Type
=> Standard_Boolean
);
9547 Append_To
(Res
, Eq_Spec
);
9549 if Has_Predef_Eq_Renaming
then
9550 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
9552 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9553 while Present
(Prim
) loop
9555 -- Any renamings of equality that appeared before an
9556 -- overriding equality must be updated to refer to the
9557 -- entity for the predefined equality, otherwise calls via
9558 -- the renaming would get incorrectly resolved to call the
9559 -- user-defined equality function.
9561 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
9562 Set_Alias
(Node
(Prim
), Renamed_Eq
);
9564 -- Exit upon encountering a user-defined equality
9566 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
9567 and then No
(Alias
(Node
(Prim
)))
9577 -- Spec for dispatching assignment
9579 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
9581 Name
=> Name_uAssign
,
9582 Profile
=> New_List
(
9583 Make_Parameter_Specification
(Loc
,
9584 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9585 Out_Present
=> True,
9586 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9588 Make_Parameter_Specification
(Loc
,
9589 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
9590 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)))));
9593 -- Ada 2005: Generate declarations for the following primitive
9594 -- operations for limited interfaces and synchronized types that
9595 -- implement a limited interface.
9597 -- Disp_Asynchronous_Select
9598 -- Disp_Conditional_Select
9599 -- Disp_Get_Prim_Op_Kind
9602 -- Disp_Timed_Select
9604 -- Disable the generation of these bodies if No_Dispatching_Calls,
9605 -- Ravenscar or ZFP is active.
9607 if Ada_Version
>= Ada_2005
9608 and then not Restriction_Active
(No_Dispatching_Calls
)
9609 and then not Restriction_Active
(No_Select_Statements
)
9610 and then RTE_Available
(RE_Select_Specific_Data
)
9612 -- These primitives are defined abstract in interface types
9614 if Is_Interface
(Tag_Typ
)
9615 and then Is_Limited_Record
(Tag_Typ
)
9618 Make_Abstract_Subprogram_Declaration
(Loc
,
9620 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
9623 Make_Abstract_Subprogram_Declaration
(Loc
,
9625 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
9628 Make_Abstract_Subprogram_Declaration
(Loc
,
9630 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
9633 Make_Abstract_Subprogram_Declaration
(Loc
,
9635 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
9638 Make_Abstract_Subprogram_Declaration
(Loc
,
9640 Make_Disp_Requeue_Spec
(Tag_Typ
)));
9643 Make_Abstract_Subprogram_Declaration
(Loc
,
9645 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
9647 -- If ancestor is an interface type, declare non-abstract primitives
9648 -- to override the abstract primitives of the interface type.
9650 -- In VM targets we define these primitives in all root tagged types
9651 -- that are not interface types. Done because in VM targets we don't
9652 -- have secondary dispatch tables and any derivation of Tag_Typ may
9653 -- cover limited interfaces (which always have these primitives since
9654 -- they may be ancestors of synchronized interface types).
9656 elsif (not Is_Interface
(Tag_Typ
)
9657 and then Is_Interface
(Etype
(Tag_Typ
))
9658 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
9660 (Is_Concurrent_Record_Type
(Tag_Typ
)
9661 and then Has_Interfaces
(Tag_Typ
))
9663 (not Tagged_Type_Expansion
9664 and then not Is_Interface
(Tag_Typ
)
9665 and then Tag_Typ
= Root_Type
(Tag_Typ
))
9668 Make_Subprogram_Declaration
(Loc
,
9670 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
9673 Make_Subprogram_Declaration
(Loc
,
9675 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
9678 Make_Subprogram_Declaration
(Loc
,
9680 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
9683 Make_Subprogram_Declaration
(Loc
,
9685 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
9688 Make_Subprogram_Declaration
(Loc
,
9690 Make_Disp_Requeue_Spec
(Tag_Typ
)));
9693 Make_Subprogram_Declaration
(Loc
,
9695 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
9699 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9700 -- regardless of whether they are controlled or may contain controlled
9703 -- Do not generate the routines if finalization is disabled
9705 if Restriction_Active
(No_Finalization
) then
9708 -- Finalization is not available for CIL value types
9710 elsif Is_Value_Type
(Tag_Typ
) then
9714 if not Is_Limited_Type
(Tag_Typ
) then
9715 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
9718 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
9722 end Make_Predefined_Primitive_Specs
;
9724 -------------------------
9725 -- Make_Tag_Assignment --
9726 -------------------------
9728 function Make_Tag_Assignment
(N
: Node_Id
) return Node_Id
is
9729 Loc
: constant Source_Ptr
:= Sloc
(N
);
9730 Def_If
: constant Entity_Id
:= Defining_Identifier
(N
);
9731 Expr
: constant Node_Id
:= Expression
(N
);
9732 Typ
: constant Entity_Id
:= Etype
(Def_If
);
9733 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Typ
);
9737 if Is_Tagged_Type
(Typ
)
9738 and then not Is_Class_Wide_Type
(Typ
)
9739 and then not Is_CPP_Class
(Typ
)
9740 and then Tagged_Type_Expansion
9741 and then Nkind
(Expr
) /= N_Aggregate
9742 and then (Nkind
(Expr
) /= N_Qualified_Expression
9743 or else Nkind
(Expression
(Expr
)) /= N_Aggregate
)
9746 Make_Selected_Component
(Loc
,
9747 Prefix
=> New_Occurrence_Of
(Def_If
, Loc
),
9749 New_Occurrence_Of
(First_Tag_Component
(Full_Typ
), Loc
));
9750 Set_Assignment_OK
(New_Ref
);
9753 Make_Assignment_Statement
(Loc
,
9756 Unchecked_Convert_To
(RTE
(RE_Tag
),
9757 New_Occurrence_Of
(Node
9758 (First_Elmt
(Access_Disp_Table
(Full_Typ
))), Loc
)));
9762 end Make_Tag_Assignment
;
9764 ---------------------------------
9765 -- Needs_Simple_Initialization --
9766 ---------------------------------
9768 function Needs_Simple_Initialization
9770 Consider_IS
: Boolean := True) return Boolean
9772 Consider_IS_NS
: constant Boolean :=
9773 Normalize_Scalars
or (Initialize_Scalars
and Consider_IS
);
9776 -- Never need initialization if it is suppressed
9778 if Initialization_Suppressed
(T
) then
9782 -- Check for private type, in which case test applies to the underlying
9783 -- type of the private type.
9785 if Is_Private_Type
(T
) then
9787 RT
: constant Entity_Id
:= Underlying_Type
(T
);
9789 if Present
(RT
) then
9790 return Needs_Simple_Initialization
(RT
);
9796 -- Scalar type with Default_Value aspect requires initialization
9798 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
9801 -- Cases needing simple initialization are access types, and, if pragma
9802 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9805 elsif Is_Access_Type
(T
)
9806 or else (Consider_IS_NS
and then (Is_Scalar_Type
(T
)))
9810 -- If Initialize/Normalize_Scalars is in effect, string objects also
9811 -- need initialization, unless they are created in the course of
9812 -- expanding an aggregate (since in the latter case they will be
9813 -- filled with appropriate initializing values before they are used).
9815 elsif Consider_IS_NS
9816 and then Is_Standard_String_Type
(T
)
9819 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
9826 end Needs_Simple_Initialization
;
9828 ----------------------
9829 -- Predef_Deep_Spec --
9830 ----------------------
9832 function Predef_Deep_Spec
9834 Tag_Typ
: Entity_Id
;
9835 Name
: TSS_Name_Type
;
9836 For_Body
: Boolean := False) return Node_Id
9841 -- V : in out Tag_Typ
9843 Formals
:= New_List
(
9844 Make_Parameter_Specification
(Loc
,
9845 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
9847 Out_Present
=> True,
9848 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)));
9850 -- F : Boolean := True
9852 if Name
= TSS_Deep_Adjust
9853 or else Name
= TSS_Deep_Finalize
9856 Make_Parameter_Specification
(Loc
,
9857 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_F
),
9858 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
9859 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
9863 Predef_Spec_Or_Body
(Loc
,
9864 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9867 For_Body
=> For_Body
);
9870 when RE_Not_Available
=>
9872 end Predef_Deep_Spec
;
9874 -------------------------
9875 -- Predef_Spec_Or_Body --
9876 -------------------------
9878 function Predef_Spec_Or_Body
9880 Tag_Typ
: Entity_Id
;
9883 Ret_Type
: Entity_Id
:= Empty
;
9884 For_Body
: Boolean := False) return Node_Id
9886 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
9890 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
9892 -- The internal flag is set to mark these declarations because they have
9893 -- specific properties. First, they are primitives even if they are not
9894 -- defined in the type scope (the freezing point is not necessarily in
9895 -- the same scope). Second, the predefined equality can be overridden by
9896 -- a user-defined equality, no body will be generated in this case.
9898 Set_Is_Internal
(Id
);
9900 if not Debug_Generated_Code
then
9901 Set_Debug_Info_Off
(Id
);
9904 if No
(Ret_Type
) then
9906 Make_Procedure_Specification
(Loc
,
9907 Defining_Unit_Name
=> Id
,
9908 Parameter_Specifications
=> Profile
);
9911 Make_Function_Specification
(Loc
,
9912 Defining_Unit_Name
=> Id
,
9913 Parameter_Specifications
=> Profile
,
9914 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
9917 if Is_Interface
(Tag_Typ
) then
9918 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9920 -- If body case, return empty subprogram body. Note that this is ill-
9921 -- formed, because there is not even a null statement, and certainly not
9922 -- a return in the function case. The caller is expected to do surgery
9923 -- on the body to add the appropriate stuff.
9926 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
9928 -- For the case of an Input attribute predefined for an abstract type,
9929 -- generate an abstract specification. This will never be called, but we
9930 -- need the slot allocated in the dispatching table so that attributes
9931 -- typ'Class'Input and typ'Class'Output will work properly.
9933 elsif Is_TSS
(Name
, TSS_Stream_Input
)
9934 and then Is_Abstract_Type
(Tag_Typ
)
9936 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9938 -- Normal spec case, where we return a subprogram declaration
9941 return Make_Subprogram_Declaration
(Loc
, Spec
);
9943 end Predef_Spec_Or_Body
;
9945 -----------------------------
9946 -- Predef_Stream_Attr_Spec --
9947 -----------------------------
9949 function Predef_Stream_Attr_Spec
9951 Tag_Typ
: Entity_Id
;
9952 Name
: TSS_Name_Type
;
9953 For_Body
: Boolean := False) return Node_Id
9955 Ret_Type
: Entity_Id
;
9958 if Name
= TSS_Stream_Input
then
9959 Ret_Type
:= Tag_Typ
;
9967 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9969 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
9970 Ret_Type
=> Ret_Type
,
9971 For_Body
=> For_Body
);
9972 end Predef_Stream_Attr_Spec
;
9974 ---------------------------------
9975 -- Predefined_Primitive_Bodies --
9976 ---------------------------------
9978 function Predefined_Primitive_Bodies
9979 (Tag_Typ
: Entity_Id
;
9980 Renamed_Eq
: Entity_Id
) return List_Id
9982 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9983 Res
: constant List_Id
:= New_List
;
9986 Eq_Needed
: Boolean;
9990 pragma Warnings
(Off
, Ent
);
9993 pragma Assert
(not Is_Interface
(Tag_Typ
));
9995 -- See if we have a predefined "=" operator
9997 if Present
(Renamed_Eq
) then
9999 Eq_Name
:= Chars
(Renamed_Eq
);
10001 -- If the parent is an interface type then it has defined all the
10002 -- predefined primitives abstract and we need to check if the type
10003 -- has some user defined "=" function which matches the profile of
10004 -- the Ada predefined equality operator to avoid generating it.
10006 elsif Is_Interface
(Etype
(Tag_Typ
)) then
10008 Eq_Name
:= Name_Op_Eq
;
10010 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
10011 while Present
(Prim
) loop
10012 if Chars
(Node
(Prim
)) = Name_Op_Eq
10013 and then not Is_Internal
(Node
(Prim
))
10014 and then Present
(First_Entity
(Node
(Prim
)))
10016 -- The predefined equality primitive must have exactly two
10017 -- formals whose type is this tagged type
10019 and then Present
(Last_Entity
(Node
(Prim
)))
10020 and then Next_Entity
(First_Entity
(Node
(Prim
)))
10021 = Last_Entity
(Node
(Prim
))
10022 and then Etype
(First_Entity
(Node
(Prim
))) = Tag_Typ
10023 and then Etype
(Last_Entity
(Node
(Prim
))) = Tag_Typ
10025 Eq_Needed
:= False;
10026 Eq_Name
:= No_Name
;
10034 Eq_Needed
:= False;
10035 Eq_Name
:= No_Name
;
10037 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
10038 while Present
(Prim
) loop
10039 if Chars
(Node
(Prim
)) = Name_Op_Eq
10040 and then Is_Internal
(Node
(Prim
))
10043 Eq_Name
:= Name_Op_Eq
;
10053 Decl
:= Predef_Spec_Or_Body
(Loc
,
10054 Tag_Typ
=> Tag_Typ
,
10055 Name
=> Name_uSize
,
10056 Profile
=> New_List
(
10057 Make_Parameter_Specification
(Loc
,
10058 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
10059 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
10061 Ret_Type
=> Standard_Long_Long_Integer
,
10064 Set_Handled_Statement_Sequence
(Decl
,
10065 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
10066 Make_Simple_Return_Statement
(Loc
,
10068 Make_Attribute_Reference
(Loc
,
10069 Prefix
=> Make_Identifier
(Loc
, Name_X
),
10070 Attribute_Name
=> Name_Size
)))));
10072 Append_To
(Res
, Decl
);
10074 -- Bodies for Dispatching stream IO routines. We need these only for
10075 -- non-limited types (in the limited case there is no dispatching).
10076 -- We also skip them if dispatching or finalization are not available
10077 -- or if stream operations are prohibited by restriction No_Streams or
10078 -- from use of pragma/aspect No_Tagged_Streams.
10080 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
10081 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
10083 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
10084 Append_To
(Res
, Decl
);
10087 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
10088 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
10090 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
10091 Append_To
(Res
, Decl
);
10094 -- Skip body of _Input for the abstract case, since the corresponding
10095 -- spec is abstract (see Predef_Spec_Or_Body).
10097 if not Is_Abstract_Type
(Tag_Typ
)
10098 and then Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
10099 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
10101 Build_Record_Or_Elementary_Input_Function
10102 (Loc
, Tag_Typ
, Decl
, Ent
);
10103 Append_To
(Res
, Decl
);
10106 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
10107 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
10109 Build_Record_Or_Elementary_Output_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
10110 Append_To
(Res
, Decl
);
10113 -- Ada 2005: Generate bodies for the following primitive operations for
10114 -- limited interfaces and synchronized types that implement a limited
10117 -- disp_asynchronous_select
10118 -- disp_conditional_select
10119 -- disp_get_prim_op_kind
10120 -- disp_get_task_id
10121 -- disp_timed_select
10123 -- The interface versions will have null bodies
10125 -- Disable the generation of these bodies if No_Dispatching_Calls,
10126 -- Ravenscar or ZFP is active.
10128 -- In VM targets we define these primitives in all root tagged types
10129 -- that are not interface types. Done because in VM targets we don't
10130 -- have secondary dispatch tables and any derivation of Tag_Typ may
10131 -- cover limited interfaces (which always have these primitives since
10132 -- they may be ancestors of synchronized interface types).
10134 if Ada_Version
>= Ada_2005
10135 and then not Is_Interface
(Tag_Typ
)
10137 ((Is_Interface
(Etype
(Tag_Typ
))
10138 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
10140 (Is_Concurrent_Record_Type
(Tag_Typ
)
10141 and then Has_Interfaces
(Tag_Typ
))
10143 (not Tagged_Type_Expansion
10144 and then Tag_Typ
= Root_Type
(Tag_Typ
)))
10145 and then not Restriction_Active
(No_Dispatching_Calls
)
10146 and then not Restriction_Active
(No_Select_Statements
)
10147 and then RTE_Available
(RE_Select_Specific_Data
)
10149 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
10150 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
10151 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
10152 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
10153 Append_To
(Res
, Make_Disp_Requeue_Body
(Tag_Typ
));
10154 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
10157 if not Is_Limited_Type
(Tag_Typ
) and then not Is_Interface
(Tag_Typ
) then
10159 -- Body for equality
10162 Decl
:= Make_Eq_Body
(Tag_Typ
, Eq_Name
);
10163 Append_To
(Res
, Decl
);
10166 -- Body for inequality (if required)
10168 Decl
:= Make_Neq_Body
(Tag_Typ
);
10170 if Present
(Decl
) then
10171 Append_To
(Res
, Decl
);
10174 -- Body for dispatching assignment
10177 Predef_Spec_Or_Body
(Loc
,
10178 Tag_Typ
=> Tag_Typ
,
10179 Name
=> Name_uAssign
,
10180 Profile
=> New_List
(
10181 Make_Parameter_Specification
(Loc
,
10182 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
10183 Out_Present
=> True,
10184 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
10186 Make_Parameter_Specification
(Loc
,
10187 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
10188 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
10191 Set_Handled_Statement_Sequence
(Decl
,
10192 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
10193 Make_Assignment_Statement
(Loc
,
10194 Name
=> Make_Identifier
(Loc
, Name_X
),
10195 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
10197 Append_To
(Res
, Decl
);
10200 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
10201 -- tagged types which do not contain controlled components.
10203 -- Do not generate the routines if finalization is disabled
10205 if Restriction_Active
(No_Finalization
) then
10208 elsif not Has_Controlled_Component
(Tag_Typ
) then
10209 if not Is_Limited_Type
(Tag_Typ
) then
10210 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
10212 if Is_Controlled
(Tag_Typ
) then
10213 Set_Handled_Statement_Sequence
(Decl
,
10214 Make_Handled_Sequence_Of_Statements
(Loc
,
10215 Statements
=> New_List
(
10217 Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
10218 Typ
=> Tag_Typ
))));
10221 Set_Handled_Statement_Sequence
(Decl
,
10222 Make_Handled_Sequence_Of_Statements
(Loc
,
10223 Statements
=> New_List
(
10224 Make_Null_Statement
(Loc
))));
10227 Append_To
(Res
, Decl
);
10230 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
10232 if Is_Controlled
(Tag_Typ
) then
10233 Set_Handled_Statement_Sequence
(Decl
,
10234 Make_Handled_Sequence_Of_Statements
(Loc
,
10235 Statements
=> New_List
(
10237 (Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
10238 Typ
=> Tag_Typ
))));
10241 Set_Handled_Statement_Sequence
(Decl
,
10242 Make_Handled_Sequence_Of_Statements
(Loc
,
10243 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
10246 Append_To
(Res
, Decl
);
10250 end Predefined_Primitive_Bodies
;
10252 ---------------------------------
10253 -- Predefined_Primitive_Freeze --
10254 ---------------------------------
10256 function Predefined_Primitive_Freeze
10257 (Tag_Typ
: Entity_Id
) return List_Id
10259 Res
: constant List_Id
:= New_List
;
10264 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
10265 while Present
(Prim
) loop
10266 if Is_Predefined_Dispatching_Operation
(Node
(Prim
)) then
10267 Frnodes
:= Freeze_Entity
(Node
(Prim
), Tag_Typ
);
10269 if Present
(Frnodes
) then
10270 Append_List_To
(Res
, Frnodes
);
10278 end Predefined_Primitive_Freeze
;
10280 -------------------------
10281 -- Stream_Operation_OK --
10282 -------------------------
10284 function Stream_Operation_OK
10286 Operation
: TSS_Name_Type
) return Boolean
10288 Has_Predefined_Or_Specified_Stream_Attribute
: Boolean := False;
10291 -- Special case of a limited type extension: a default implementation
10292 -- of the stream attributes Read or Write exists if that attribute
10293 -- has been specified or is available for an ancestor type; a default
10294 -- implementation of the attribute Output (resp. Input) exists if the
10295 -- attribute has been specified or Write (resp. Read) is available for
10296 -- an ancestor type. The last condition only applies under Ada 2005.
10298 if Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
10299 if Operation
= TSS_Stream_Read
then
10300 Has_Predefined_Or_Specified_Stream_Attribute
:=
10301 Has_Specified_Stream_Read
(Typ
);
10303 elsif Operation
= TSS_Stream_Write
then
10304 Has_Predefined_Or_Specified_Stream_Attribute
:=
10305 Has_Specified_Stream_Write
(Typ
);
10307 elsif Operation
= TSS_Stream_Input
then
10308 Has_Predefined_Or_Specified_Stream_Attribute
:=
10309 Has_Specified_Stream_Input
(Typ
)
10311 (Ada_Version
>= Ada_2005
10312 and then Stream_Operation_OK
(Typ
, TSS_Stream_Read
));
10314 elsif Operation
= TSS_Stream_Output
then
10315 Has_Predefined_Or_Specified_Stream_Attribute
:=
10316 Has_Specified_Stream_Output
(Typ
)
10318 (Ada_Version
>= Ada_2005
10319 and then Stream_Operation_OK
(Typ
, TSS_Stream_Write
));
10322 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
10324 if not Has_Predefined_Or_Specified_Stream_Attribute
10325 and then Is_Derived_Type
(Typ
)
10326 and then (Operation
= TSS_Stream_Read
10327 or else Operation
= TSS_Stream_Write
)
10329 Has_Predefined_Or_Specified_Stream_Attribute
:=
10331 (Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
10335 -- If the type is not limited, or else is limited but the attribute is
10336 -- explicitly specified or is predefined for the type, then return True,
10337 -- unless other conditions prevail, such as restrictions prohibiting
10338 -- streams or dispatching operations. We also return True for limited
10339 -- interfaces, because they may be extended by nonlimited types and
10340 -- permit inheritance in this case (addresses cases where an abstract
10341 -- extension doesn't get 'Input declared, as per comments below, but
10342 -- 'Class'Input must still be allowed). Note that attempts to apply
10343 -- stream attributes to a limited interface or its class-wide type
10344 -- (or limited extensions thereof) will still get properly rejected
10345 -- by Check_Stream_Attribute.
10347 -- We exclude the Input operation from being a predefined subprogram in
10348 -- the case where the associated type is an abstract extension, because
10349 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
10350 -- we don't want an abstract version created because types derived from
10351 -- the abstract type may not even have Input available (for example if
10352 -- derived from a private view of the abstract type that doesn't have
10353 -- a visible Input), but a VM such as .NET or the Java VM can treat the
10354 -- operation as inherited anyway, and we don't want an abstract function
10355 -- to be (implicitly) inherited in that case because it can lead to a VM
10358 -- Do not generate stream routines for type Finalization_Master because
10359 -- a master may never appear in types and therefore cannot be read or
10363 (not Is_Limited_Type
(Typ
)
10364 or else Is_Interface
(Typ
)
10365 or else Has_Predefined_Or_Specified_Stream_Attribute
)
10367 (Operation
/= TSS_Stream_Input
10368 or else not Is_Abstract_Type
(Typ
)
10369 or else not Is_Derived_Type
(Typ
))
10370 and then not Has_Unknown_Discriminants
(Typ
)
10372 (Is_Interface
(Typ
)
10374 (Is_Task_Interface
(Typ
)
10375 or else Is_Protected_Interface
(Typ
)
10376 or else Is_Synchronized_Interface
(Typ
)))
10377 and then not Restriction_Active
(No_Streams
)
10378 and then not Restriction_Active
(No_Dispatch
)
10379 and then No
(No_Tagged_Streams_Pragma
(Typ
))
10380 and then not No_Run_Time_Mode
10381 and then RTE_Available
(RE_Tag
)
10382 and then No
(Type_Without_Stream_Operation
(Typ
))
10383 and then RTE_Available
(RE_Root_Stream_Type
)
10384 and then not Is_RTE
(Typ
, RE_Finalization_Master
);
10385 end Stream_Operation_OK
;