1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
30 #include "diagnostic-core.h"
32 #include "ggc-internal.h"
36 #include "plugin-api.h"
37 #include "hard-reg-set.h"
45 #include "basic-block.h"
47 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
48 file open. Prefer either to valloc. */
50 # undef HAVE_MMAP_DEV_ZERO
54 #ifdef HAVE_MMAP_DEV_ZERO
59 #define USING_MALLOC_PAGE_GROUPS
62 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
63 && defined(USING_MMAP)
64 # define USING_MADVISE
69 This garbage-collecting allocator allocates objects on one of a set
70 of pages. Each page can allocate objects of a single size only;
71 available sizes are powers of two starting at four bytes. The size
72 of an allocation request is rounded up to the next power of two
73 (`order'), and satisfied from the appropriate page.
75 Each page is recorded in a page-entry, which also maintains an
76 in-use bitmap of object positions on the page. This allows the
77 allocation state of a particular object to be flipped without
78 touching the page itself.
80 Each page-entry also has a context depth, which is used to track
81 pushing and popping of allocation contexts. Only objects allocated
82 in the current (highest-numbered) context may be collected.
84 Page entries are arranged in an array of singly-linked lists. The
85 array is indexed by the allocation size, in bits, of the pages on
86 it; i.e. all pages on a list allocate objects of the same size.
87 Pages are ordered on the list such that all non-full pages precede
88 all full pages, with non-full pages arranged in order of decreasing
91 Empty pages (of all orders) are kept on a single page cache list,
92 and are considered first when new pages are required; they are
93 deallocated at the start of the next collection if they haven't
94 been recycled by then. */
96 /* Define GGC_DEBUG_LEVEL to print debugging information.
97 0: No debugging output.
98 1: GC statistics only.
99 2: Page-entry allocations/deallocations as well.
100 3: Object allocations as well.
101 4: Object marks as well. */
102 #define GGC_DEBUG_LEVEL (0)
104 #ifndef HOST_BITS_PER_PTR
105 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
109 /* A two-level tree is used to look up the page-entry for a given
110 pointer. Two chunks of the pointer's bits are extracted to index
111 the first and second levels of the tree, as follows:
115 msb +----------------+----+------+------+ lsb
121 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
122 pages are aligned on system page boundaries. The next most
123 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
124 index values in the lookup table, respectively.
126 For 32-bit architectures and the settings below, there are no
127 leftover bits. For architectures with wider pointers, the lookup
128 tree points to a list of pages, which must be scanned to find the
131 #define PAGE_L1_BITS (8)
132 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
133 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
134 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
136 #define LOOKUP_L1(p) \
137 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
139 #define LOOKUP_L2(p) \
140 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
142 /* The number of objects per allocation page, for objects on a page of
143 the indicated ORDER. */
144 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
146 /* The number of objects in P. */
147 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
149 /* The size of an object on a page of the indicated ORDER. */
150 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
152 /* For speed, we avoid doing a general integer divide to locate the
153 offset in the allocation bitmap, by precalculating numbers M, S
154 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
155 within the page which is evenly divisible by the object size Z. */
156 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
157 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
158 #define OFFSET_TO_BIT(OFFSET, ORDER) \
159 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
161 /* We use this structure to determine the alignment required for
162 allocations. For power-of-two sized allocations, that's not a
163 problem, but it does matter for odd-sized allocations.
164 We do not care about alignment for floating-point types. */
166 struct max_alignment
{
174 /* The biggest alignment required. */
176 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
179 /* The number of extra orders, not corresponding to power-of-two sized
182 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
184 #define RTL_SIZE(NSLOTS) \
185 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
187 #define TREE_EXP_SIZE(OPS) \
188 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
190 /* The Ith entry is the maximum size of an object to be stored in the
191 Ith extra order. Adding a new entry to this array is the *only*
192 thing you need to do to add a new special allocation size. */
194 static const size_t extra_order_size_table
[] = {
195 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
196 There are a lot of structures with these sizes and explicitly
197 listing them risks orders being dropped because they changed size. */
209 sizeof (struct tree_decl_non_common
),
210 sizeof (struct tree_field_decl
),
211 sizeof (struct tree_parm_decl
),
212 sizeof (struct tree_var_decl
),
213 sizeof (struct tree_type_non_common
),
214 sizeof (struct function
),
215 sizeof (struct basic_block_def
),
216 sizeof (struct cgraph_node
),
217 sizeof (struct loop
),
220 /* The total number of orders. */
222 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
224 /* Compute the smallest nonnegative number which when added to X gives
227 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
229 /* Compute the smallest multiple of F that is >= X. */
231 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
233 /* Round X to next multiple of the page size */
235 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
237 /* The Ith entry is the number of objects on a page or order I. */
239 static unsigned objects_per_page_table
[NUM_ORDERS
];
241 /* The Ith entry is the size of an object on a page of order I. */
243 static size_t object_size_table
[NUM_ORDERS
];
245 /* The Ith entry is a pair of numbers (mult, shift) such that
246 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
247 for all k evenly divisible by OBJECT_SIZE(I). */
254 inverse_table
[NUM_ORDERS
];
256 /* A page_entry records the status of an allocation page. This
257 structure is dynamically sized to fit the bitmap in_use_p. */
258 typedef struct page_entry
260 /* The next page-entry with objects of the same size, or NULL if
261 this is the last page-entry. */
262 struct page_entry
*next
;
264 /* The previous page-entry with objects of the same size, or NULL if
265 this is the first page-entry. The PREV pointer exists solely to
266 keep the cost of ggc_free manageable. */
267 struct page_entry
*prev
;
269 /* The number of bytes allocated. (This will always be a multiple
270 of the host system page size.) */
273 /* The address at which the memory is allocated. */
276 #ifdef USING_MALLOC_PAGE_GROUPS
277 /* Back pointer to the page group this page came from. */
278 struct page_group
*group
;
281 /* This is the index in the by_depth varray where this page table
283 unsigned long index_by_depth
;
285 /* Context depth of this page. */
286 unsigned short context_depth
;
288 /* The number of free objects remaining on this page. */
289 unsigned short num_free_objects
;
291 /* A likely candidate for the bit position of a free object for the
292 next allocation from this page. */
293 unsigned short next_bit_hint
;
295 /* The lg of size of objects allocated from this page. */
298 /* Discarded page? */
301 /* A bit vector indicating whether or not objects are in use. The
302 Nth bit is one if the Nth object on this page is allocated. This
303 array is dynamically sized. */
304 unsigned long in_use_p
[1];
307 #ifdef USING_MALLOC_PAGE_GROUPS
308 /* A page_group describes a large allocation from malloc, from which
309 we parcel out aligned pages. */
310 typedef struct page_group
312 /* A linked list of all extant page groups. */
313 struct page_group
*next
;
315 /* The address we received from malloc. */
318 /* The size of the block. */
321 /* A bitmask of pages in use. */
326 #if HOST_BITS_PER_PTR <= 32
328 /* On 32-bit hosts, we use a two level page table, as pictured above. */
329 typedef page_entry
**page_table
[PAGE_L1_SIZE
];
333 /* On 64-bit hosts, we use the same two level page tables plus a linked
334 list that disambiguates the top 32-bits. There will almost always be
335 exactly one entry in the list. */
336 typedef struct page_table_chain
338 struct page_table_chain
*next
;
340 page_entry
**table
[PAGE_L1_SIZE
];
348 finalizer (void *addr
, void (*f
)(void *)) : m_addr (addr
), m_function (f
) {}
350 void *addr () const { return m_addr
; }
352 void call () const { m_function (m_addr
); }
356 void (*m_function
)(void *);
362 vec_finalizer (uintptr_t addr
, void (*f
)(void *), size_t s
, size_t n
) :
363 m_addr (addr
), m_function (f
), m_object_size (s
), m_n_objects (n
) {}
367 for (size_t i
= 0; i
< m_n_objects
; i
++)
368 m_function (reinterpret_cast<void *> (m_addr
+ (i
* m_object_size
)));
371 void *addr () const { return reinterpret_cast<void *> (m_addr
); }
375 void (*m_function
)(void *);
376 size_t m_object_size
;
380 #ifdef ENABLE_GC_ALWAYS_COLLECT
381 /* List of free objects to be verified as actually free on the
386 struct free_object
*next
;
390 /* The rest of the global variables. */
391 static struct ggc_globals
393 /* The Nth element in this array is a page with objects of size 2^N.
394 If there are any pages with free objects, they will be at the
395 head of the list. NULL if there are no page-entries for this
397 page_entry
*pages
[NUM_ORDERS
];
399 /* The Nth element in this array is the last page with objects of
400 size 2^N. NULL if there are no page-entries for this object
402 page_entry
*page_tails
[NUM_ORDERS
];
404 /* Lookup table for associating allocation pages with object addresses. */
407 /* The system's page size. */
411 /* Bytes currently allocated. */
414 /* Bytes currently allocated at the end of the last collection. */
415 size_t allocated_last_gc
;
417 /* Total amount of memory mapped. */
420 /* Bit N set if any allocations have been done at context depth N. */
421 unsigned long context_depth_allocations
;
423 /* Bit N set if any collections have been done at context depth N. */
424 unsigned long context_depth_collections
;
426 /* The current depth in the context stack. */
427 unsigned short context_depth
;
429 /* A file descriptor open to /dev/zero for reading. */
430 #if defined (HAVE_MMAP_DEV_ZERO)
434 /* A cache of free system pages. */
435 page_entry
*free_pages
;
437 #ifdef USING_MALLOC_PAGE_GROUPS
438 page_group
*page_groups
;
441 /* The file descriptor for debugging output. */
444 /* Current number of elements in use in depth below. */
445 unsigned int depth_in_use
;
447 /* Maximum number of elements that can be used before resizing. */
448 unsigned int depth_max
;
450 /* Each element of this array is an index in by_depth where the given
451 depth starts. This structure is indexed by that given depth we
452 are interested in. */
455 /* Current number of elements in use in by_depth below. */
456 unsigned int by_depth_in_use
;
458 /* Maximum number of elements that can be used before resizing. */
459 unsigned int by_depth_max
;
461 /* Each element of this array is a pointer to a page_entry, all
462 page_entries can be found in here by increasing depth.
463 index_by_depth in the page_entry is the index into this data
464 structure where that page_entry can be found. This is used to
465 speed up finding all page_entries at a particular depth. */
466 page_entry
**by_depth
;
468 /* Each element is a pointer to the saved in_use_p bits, if any,
469 zero otherwise. We allocate them all together, to enable a
470 better runtime data access pattern. */
471 unsigned long **save_in_use
;
473 /* Finalizers for single objects. */
474 vec
<finalizer
> finalizers
;
476 /* Finalizers for vectors of objects. */
477 vec
<vec_finalizer
> vec_finalizers
;
479 #ifdef ENABLE_GC_ALWAYS_COLLECT
480 /* List of free objects to be verified as actually free on the
482 struct free_object
*free_object_list
;
487 /* Total GC-allocated memory. */
488 unsigned long long total_allocated
;
489 /* Total overhead for GC-allocated memory. */
490 unsigned long long total_overhead
;
492 /* Total allocations and overhead for sizes less than 32, 64 and 128.
493 These sizes are interesting because they are typical cache line
496 unsigned long long total_allocated_under32
;
497 unsigned long long total_overhead_under32
;
499 unsigned long long total_allocated_under64
;
500 unsigned long long total_overhead_under64
;
502 unsigned long long total_allocated_under128
;
503 unsigned long long total_overhead_under128
;
505 /* The allocations for each of the allocation orders. */
506 unsigned long long total_allocated_per_order
[NUM_ORDERS
];
508 /* The overhead for each of the allocation orders. */
509 unsigned long long total_overhead_per_order
[NUM_ORDERS
];
513 /* True if a gc is currently taking place. */
515 static bool in_gc
= false;
517 /* The size in bytes required to maintain a bitmap for the objects
519 #define BITMAP_SIZE(Num_objects) \
520 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
522 /* Allocate pages in chunks of this size, to throttle calls to memory
523 allocation routines. The first page is used, the rest go onto the
524 free list. This cannot be larger than HOST_BITS_PER_INT for the
525 in_use bitmask for page_group. Hosts that need a different value
526 can override this by defining GGC_QUIRE_SIZE explicitly. */
527 #ifndef GGC_QUIRE_SIZE
529 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
531 # define GGC_QUIRE_SIZE 16
535 /* Initial guess as to how many page table entries we might need. */
536 #define INITIAL_PTE_COUNT 128
538 static int ggc_allocated_p (const void *);
539 static page_entry
*lookup_page_table_entry (const void *);
540 static void set_page_table_entry (void *, page_entry
*);
542 static char *alloc_anon (char *, size_t, bool check
);
544 #ifdef USING_MALLOC_PAGE_GROUPS
545 static size_t page_group_index (char *, char *);
546 static void set_page_group_in_use (page_group
*, char *);
547 static void clear_page_group_in_use (page_group
*, char *);
549 static struct page_entry
* alloc_page (unsigned);
550 static void free_page (struct page_entry
*);
551 static void release_pages (void);
552 static void clear_marks (void);
553 static void sweep_pages (void);
554 static void ggc_recalculate_in_use_p (page_entry
*);
555 static void compute_inverse (unsigned);
556 static inline void adjust_depth (void);
557 static void move_ptes_to_front (int, int);
559 void debug_print_page_list (int);
560 static void push_depth (unsigned int);
561 static void push_by_depth (page_entry
*, unsigned long *);
563 /* Push an entry onto G.depth. */
566 push_depth (unsigned int i
)
568 if (G
.depth_in_use
>= G
.depth_max
)
571 G
.depth
= XRESIZEVEC (unsigned int, G
.depth
, G
.depth_max
);
573 G
.depth
[G
.depth_in_use
++] = i
;
576 /* Push an entry onto G.by_depth and G.save_in_use. */
579 push_by_depth (page_entry
*p
, unsigned long *s
)
581 if (G
.by_depth_in_use
>= G
.by_depth_max
)
584 G
.by_depth
= XRESIZEVEC (page_entry
*, G
.by_depth
, G
.by_depth_max
);
585 G
.save_in_use
= XRESIZEVEC (unsigned long *, G
.save_in_use
,
588 G
.by_depth
[G
.by_depth_in_use
] = p
;
589 G
.save_in_use
[G
.by_depth_in_use
++] = s
;
592 #if (GCC_VERSION < 3001)
593 #define prefetch(X) ((void) X)
595 #define prefetch(X) __builtin_prefetch (X)
598 #define save_in_use_p_i(__i) \
600 #define save_in_use_p(__p) \
601 (save_in_use_p_i (__p->index_by_depth))
603 /* Returns nonzero if P was allocated in GC'able memory. */
606 ggc_allocated_p (const void *p
)
611 #if HOST_BITS_PER_PTR <= 32
614 page_table table
= G
.lookup
;
615 uintptr_t high_bits
= (uintptr_t) p
& ~ (uintptr_t) 0xffffffff;
620 if (table
->high_bits
== high_bits
)
624 base
= &table
->table
[0];
627 /* Extract the level 1 and 2 indices. */
631 return base
[L1
] && base
[L1
][L2
];
634 /* Traverse the page table and find the entry for a page.
635 Die (probably) if the object wasn't allocated via GC. */
637 static inline page_entry
*
638 lookup_page_table_entry (const void *p
)
643 #if HOST_BITS_PER_PTR <= 32
646 page_table table
= G
.lookup
;
647 uintptr_t high_bits
= (uintptr_t) p
& ~ (uintptr_t) 0xffffffff;
648 while (table
->high_bits
!= high_bits
)
650 base
= &table
->table
[0];
653 /* Extract the level 1 and 2 indices. */
660 /* Set the page table entry for a page. */
663 set_page_table_entry (void *p
, page_entry
*entry
)
668 #if HOST_BITS_PER_PTR <= 32
672 uintptr_t high_bits
= (uintptr_t) p
& ~ (uintptr_t) 0xffffffff;
673 for (table
= G
.lookup
; table
; table
= table
->next
)
674 if (table
->high_bits
== high_bits
)
677 /* Not found -- allocate a new table. */
678 table
= XCNEW (struct page_table_chain
);
679 table
->next
= G
.lookup
;
680 table
->high_bits
= high_bits
;
683 base
= &table
->table
[0];
686 /* Extract the level 1 and 2 indices. */
690 if (base
[L1
] == NULL
)
691 base
[L1
] = XCNEWVEC (page_entry
*, PAGE_L2_SIZE
);
693 base
[L1
][L2
] = entry
;
696 /* Prints the page-entry for object size ORDER, for debugging. */
699 debug_print_page_list (int order
)
702 printf ("Head=%p, Tail=%p:\n", (void *) G
.pages
[order
],
703 (void *) G
.page_tails
[order
]);
707 printf ("%p(%1d|%3d) -> ", (void *) p
, p
->context_depth
,
708 p
->num_free_objects
);
716 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
717 (if non-null). The ifdef structure here is intended to cause a
718 compile error unless exactly one of the HAVE_* is defined. */
721 alloc_anon (char *pref ATTRIBUTE_UNUSED
, size_t size
, bool check
)
723 #ifdef HAVE_MMAP_ANON
724 char *page
= (char *) mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
725 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
727 #ifdef HAVE_MMAP_DEV_ZERO
728 char *page
= (char *) mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
729 MAP_PRIVATE
, G
.dev_zero_fd
, 0);
732 if (page
== (char *) MAP_FAILED
)
736 perror ("virtual memory exhausted");
737 exit (FATAL_EXIT_CODE
);
740 /* Remember that we allocated this memory. */
741 G
.bytes_mapped
+= size
;
743 /* Pretend we don't have access to the allocated pages. We'll enable
744 access to smaller pieces of the area in ggc_internal_alloc. Discard the
745 handle to avoid handle leak. */
746 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page
, size
));
751 #ifdef USING_MALLOC_PAGE_GROUPS
752 /* Compute the index for this page into the page group. */
755 page_group_index (char *allocation
, char *page
)
757 return (size_t) (page
- allocation
) >> G
.lg_pagesize
;
760 /* Set and clear the in_use bit for this page in the page group. */
763 set_page_group_in_use (page_group
*group
, char *page
)
765 group
->in_use
|= 1 << page_group_index (group
->allocation
, page
);
769 clear_page_group_in_use (page_group
*group
, char *page
)
771 group
->in_use
&= ~(1 << page_group_index (group
->allocation
, page
));
775 /* Allocate a new page for allocating objects of size 2^ORDER,
776 and return an entry for it. The entry is not added to the
777 appropriate page_table list. */
779 static inline struct page_entry
*
780 alloc_page (unsigned order
)
782 struct page_entry
*entry
, *p
, **pp
;
786 size_t page_entry_size
;
788 #ifdef USING_MALLOC_PAGE_GROUPS
792 num_objects
= OBJECTS_PER_PAGE (order
);
793 bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
794 page_entry_size
= sizeof (page_entry
) - sizeof (long) + bitmap_size
;
795 entry_size
= num_objects
* OBJECT_SIZE (order
);
796 if (entry_size
< G
.pagesize
)
797 entry_size
= G
.pagesize
;
798 entry_size
= PAGE_ALIGN (entry_size
);
803 /* Check the list of free pages for one we can use. */
804 for (pp
= &G
.free_pages
, p
= *pp
; p
; pp
= &p
->next
, p
= *pp
)
805 if (p
->bytes
== entry_size
)
811 G
.bytes_mapped
+= p
->bytes
;
812 p
->discarded
= false;
814 /* Recycle the allocated memory from this page ... */
818 #ifdef USING_MALLOC_PAGE_GROUPS
822 /* ... and, if possible, the page entry itself. */
823 if (p
->order
== order
)
826 memset (entry
, 0, page_entry_size
);
832 else if (entry_size
== G
.pagesize
)
834 /* We want just one page. Allocate a bunch of them and put the
835 extras on the freelist. (Can only do this optimization with
836 mmap for backing store.) */
837 struct page_entry
*e
, *f
= G
.free_pages
;
838 int i
, entries
= GGC_QUIRE_SIZE
;
840 page
= alloc_anon (NULL
, G
.pagesize
* GGC_QUIRE_SIZE
, false);
843 page
= alloc_anon (NULL
, G
.pagesize
, true);
847 /* This loop counts down so that the chain will be in ascending
849 for (i
= entries
- 1; i
>= 1; i
--)
851 e
= XCNEWVAR (struct page_entry
, page_entry_size
);
853 e
->bytes
= G
.pagesize
;
854 e
->page
= page
+ (i
<< G
.lg_pagesize
);
862 page
= alloc_anon (NULL
, entry_size
, true);
864 #ifdef USING_MALLOC_PAGE_GROUPS
867 /* Allocate a large block of memory and serve out the aligned
868 pages therein. This results in much less memory wastage
869 than the traditional implementation of valloc. */
871 char *allocation
, *a
, *enda
;
872 size_t alloc_size
, head_slop
, tail_slop
;
873 int multiple_pages
= (entry_size
== G
.pagesize
);
876 alloc_size
= GGC_QUIRE_SIZE
* G
.pagesize
;
878 alloc_size
= entry_size
+ G
.pagesize
- 1;
879 allocation
= XNEWVEC (char, alloc_size
);
881 page
= (char *) (((uintptr_t) allocation
+ G
.pagesize
- 1) & -G
.pagesize
);
882 head_slop
= page
- allocation
;
884 tail_slop
= ((size_t) allocation
+ alloc_size
) & (G
.pagesize
- 1);
886 tail_slop
= alloc_size
- entry_size
- head_slop
;
887 enda
= allocation
+ alloc_size
- tail_slop
;
889 /* We allocated N pages, which are likely not aligned, leaving
890 us with N-1 usable pages. We plan to place the page_group
891 structure somewhere in the slop. */
892 if (head_slop
>= sizeof (page_group
))
893 group
= (page_group
*)page
- 1;
896 /* We magically got an aligned allocation. Too bad, we have
897 to waste a page anyway. */
901 tail_slop
+= G
.pagesize
;
903 gcc_assert (tail_slop
>= sizeof (page_group
));
904 group
= (page_group
*)enda
;
905 tail_slop
-= sizeof (page_group
);
908 /* Remember that we allocated this memory. */
909 group
->next
= G
.page_groups
;
910 group
->allocation
= allocation
;
911 group
->alloc_size
= alloc_size
;
913 G
.page_groups
= group
;
914 G
.bytes_mapped
+= alloc_size
;
916 /* If we allocated multiple pages, put the rest on the free list. */
919 struct page_entry
*e
, *f
= G
.free_pages
;
920 for (a
= enda
- G
.pagesize
; a
!= page
; a
-= G
.pagesize
)
922 e
= XCNEWVAR (struct page_entry
, page_entry_size
);
924 e
->bytes
= G
.pagesize
;
936 entry
= XCNEWVAR (struct page_entry
, page_entry_size
);
938 entry
->bytes
= entry_size
;
940 entry
->context_depth
= G
.context_depth
;
941 entry
->order
= order
;
942 entry
->num_free_objects
= num_objects
;
943 entry
->next_bit_hint
= 1;
945 G
.context_depth_allocations
|= (unsigned long)1 << G
.context_depth
;
947 #ifdef USING_MALLOC_PAGE_GROUPS
948 entry
->group
= group
;
949 set_page_group_in_use (group
, page
);
952 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
953 increment the hint. */
954 entry
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
955 = (unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
);
957 set_page_table_entry (page
, entry
);
959 if (GGC_DEBUG_LEVEL
>= 2)
960 fprintf (G
.debug_file
,
961 "Allocating page at %p, object size=%lu, data %p-%p\n",
962 (void *) entry
, (unsigned long) OBJECT_SIZE (order
), page
,
963 page
+ entry_size
- 1);
968 /* Adjust the size of G.depth so that no index greater than the one
969 used by the top of the G.by_depth is used. */
976 if (G
.by_depth_in_use
)
978 top
= G
.by_depth
[G
.by_depth_in_use
-1];
980 /* Peel back indices in depth that index into by_depth, so that
981 as new elements are added to by_depth, we note the indices
982 of those elements, if they are for new context depths. */
983 while (G
.depth_in_use
> (size_t)top
->context_depth
+1)
988 /* For a page that is no longer needed, put it on the free page list. */
991 free_page (page_entry
*entry
)
993 if (GGC_DEBUG_LEVEL
>= 2)
994 fprintf (G
.debug_file
,
995 "Deallocating page at %p, data %p-%p\n", (void *) entry
,
996 entry
->page
, entry
->page
+ entry
->bytes
- 1);
998 /* Mark the page as inaccessible. Discard the handle to avoid handle
1000 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry
->page
, entry
->bytes
));
1002 set_page_table_entry (entry
->page
, NULL
);
1004 #ifdef USING_MALLOC_PAGE_GROUPS
1005 clear_page_group_in_use (entry
->group
, entry
->page
);
1008 if (G
.by_depth_in_use
> 1)
1010 page_entry
*top
= G
.by_depth
[G
.by_depth_in_use
-1];
1011 int i
= entry
->index_by_depth
;
1013 /* We cannot free a page from a context deeper than the current
1015 gcc_assert (entry
->context_depth
== top
->context_depth
);
1017 /* Put top element into freed slot. */
1018 G
.by_depth
[i
] = top
;
1019 G
.save_in_use
[i
] = G
.save_in_use
[G
.by_depth_in_use
-1];
1020 top
->index_by_depth
= i
;
1022 --G
.by_depth_in_use
;
1026 entry
->next
= G
.free_pages
;
1027 G
.free_pages
= entry
;
1030 /* Release the free page cache to the system. */
1033 release_pages (void)
1035 #ifdef USING_MADVISE
1036 page_entry
*p
, *start_p
;
1040 page_entry
*next
, *prev
, *newprev
;
1041 size_t free_unit
= (GGC_QUIRE_SIZE
/2) * G
.pagesize
;
1043 /* First free larger continuous areas to the OS.
1044 This allows other allocators to grab these areas if needed.
1045 This is only done on larger chunks to avoid fragmentation.
1046 This does not always work because the free_pages list is only
1047 approximately sorted. */
1058 while (p
&& p
->page
== start
+ len
)
1062 mapped_len
+= p
->bytes
;
1066 if (len
>= free_unit
)
1068 while (start_p
!= p
)
1070 next
= start_p
->next
;
1074 munmap (start
, len
);
1079 G
.bytes_mapped
-= mapped_len
;
1085 /* Now give back the fragmented pages to the OS, but keep the address
1086 space to reuse it next time. */
1088 for (p
= G
.free_pages
; p
; )
1099 while (p
&& p
->page
== start
+ len
)
1104 /* Give the page back to the kernel, but don't free the mapping.
1105 This avoids fragmentation in the virtual memory map of the
1106 process. Next time we can reuse it by just touching it. */
1107 madvise (start
, len
, MADV_DONTNEED
);
1108 /* Don't count those pages as mapped to not touch the garbage collector
1110 G
.bytes_mapped
-= len
;
1111 while (start_p
!= p
)
1113 start_p
->discarded
= true;
1114 start_p
= start_p
->next
;
1118 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1119 page_entry
*p
, *next
;
1123 /* Gather up adjacent pages so they are unmapped together. */
1134 while (p
&& p
->page
== start
+ len
)
1142 munmap (start
, len
);
1143 G
.bytes_mapped
-= len
;
1146 G
.free_pages
= NULL
;
1148 #ifdef USING_MALLOC_PAGE_GROUPS
1149 page_entry
**pp
, *p
;
1150 page_group
**gp
, *g
;
1152 /* Remove all pages from free page groups from the list. */
1154 while ((p
= *pp
) != NULL
)
1155 if (p
->group
->in_use
== 0)
1163 /* Remove all free page groups, and release the storage. */
1164 gp
= &G
.page_groups
;
1165 while ((g
= *gp
) != NULL
)
1169 G
.bytes_mapped
-= g
->alloc_size
;
1170 free (g
->allocation
);
1177 /* This table provides a fast way to determine ceil(log_2(size)) for
1178 allocation requests. The minimum allocation size is eight bytes. */
1179 #define NUM_SIZE_LOOKUP 512
1180 static unsigned char size_lookup
[NUM_SIZE_LOOKUP
] =
1182 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1183 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1185 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1186 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1187 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1188 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1189 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1190 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1192 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1193 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1194 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1195 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1196 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1197 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1198 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1204 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1205 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1206 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1208 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1209 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1211 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1212 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1213 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1216 /* For a given size of memory requested for allocation, return the
1217 actual size that is going to be allocated, as well as the size
1221 ggc_round_alloc_size_1 (size_t requested_size
,
1223 size_t *alloced_size
)
1225 size_t order
, object_size
;
1227 if (requested_size
< NUM_SIZE_LOOKUP
)
1229 order
= size_lookup
[requested_size
];
1230 object_size
= OBJECT_SIZE (order
);
1235 while (requested_size
> (object_size
= OBJECT_SIZE (order
)))
1240 *size_order
= order
;
1242 *alloced_size
= object_size
;
1245 /* For a given size of memory requested for allocation, return the
1246 actual size that is going to be allocated. */
1249 ggc_round_alloc_size (size_t requested_size
)
1253 ggc_round_alloc_size_1 (requested_size
, NULL
, &size
);
1257 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1260 ggc_internal_alloc (size_t size
, void (*f
)(void *), size_t s
, size_t n
1263 size_t order
, word
, bit
, object_offset
, object_size
;
1264 struct page_entry
*entry
;
1267 ggc_round_alloc_size_1 (size
, &order
, &object_size
);
1269 /* If there are non-full pages for this size allocation, they are at
1270 the head of the list. */
1271 entry
= G
.pages
[order
];
1273 /* If there is no page for this object size, or all pages in this
1274 context are full, allocate a new page. */
1275 if (entry
== NULL
|| entry
->num_free_objects
== 0)
1277 struct page_entry
*new_entry
;
1278 new_entry
= alloc_page (order
);
1280 new_entry
->index_by_depth
= G
.by_depth_in_use
;
1281 push_by_depth (new_entry
, 0);
1283 /* We can skip context depths, if we do, make sure we go all the
1284 way to the new depth. */
1285 while (new_entry
->context_depth
>= G
.depth_in_use
)
1286 push_depth (G
.by_depth_in_use
-1);
1288 /* If this is the only entry, it's also the tail. If it is not
1289 the only entry, then we must update the PREV pointer of the
1290 ENTRY (G.pages[order]) to point to our new page entry. */
1292 G
.page_tails
[order
] = new_entry
;
1294 entry
->prev
= new_entry
;
1296 /* Put new pages at the head of the page list. By definition the
1297 entry at the head of the list always has a NULL pointer. */
1298 new_entry
->next
= entry
;
1299 new_entry
->prev
= NULL
;
1301 G
.pages
[order
] = new_entry
;
1303 /* For a new page, we know the word and bit positions (in the
1304 in_use bitmap) of the first available object -- they're zero. */
1305 new_entry
->next_bit_hint
= 1;
1312 /* First try to use the hint left from the previous allocation
1313 to locate a clear bit in the in-use bitmap. We've made sure
1314 that the one-past-the-end bit is always set, so if the hint
1315 has run over, this test will fail. */
1316 unsigned hint
= entry
->next_bit_hint
;
1317 word
= hint
/ HOST_BITS_PER_LONG
;
1318 bit
= hint
% HOST_BITS_PER_LONG
;
1320 /* If the hint didn't work, scan the bitmap from the beginning. */
1321 if ((entry
->in_use_p
[word
] >> bit
) & 1)
1324 while (~entry
->in_use_p
[word
] == 0)
1327 #if GCC_VERSION >= 3004
1328 bit
= __builtin_ctzl (~entry
->in_use_p
[word
]);
1330 while ((entry
->in_use_p
[word
] >> bit
) & 1)
1334 hint
= word
* HOST_BITS_PER_LONG
+ bit
;
1337 /* Next time, try the next bit. */
1338 entry
->next_bit_hint
= hint
+ 1;
1340 object_offset
= hint
* object_size
;
1343 /* Set the in-use bit. */
1344 entry
->in_use_p
[word
] |= ((unsigned long) 1 << bit
);
1346 /* Keep a running total of the number of free objects. If this page
1347 fills up, we may have to move it to the end of the list if the
1348 next page isn't full. If the next page is full, all subsequent
1349 pages are full, so there's no need to move it. */
1350 if (--entry
->num_free_objects
== 0
1351 && entry
->next
!= NULL
1352 && entry
->next
->num_free_objects
> 0)
1354 /* We have a new head for the list. */
1355 G
.pages
[order
] = entry
->next
;
1357 /* We are moving ENTRY to the end of the page table list.
1358 The new page at the head of the list will have NULL in
1359 its PREV field and ENTRY will have NULL in its NEXT field. */
1360 entry
->next
->prev
= NULL
;
1363 /* Append ENTRY to the tail of the list. */
1364 entry
->prev
= G
.page_tails
[order
];
1365 G
.page_tails
[order
]->next
= entry
;
1366 G
.page_tails
[order
] = entry
;
1369 /* Calculate the object's address. */
1370 result
= entry
->page
+ object_offset
;
1371 if (GATHER_STATISTICS
)
1372 ggc_record_overhead (OBJECT_SIZE (order
), OBJECT_SIZE (order
) - size
,
1373 result FINAL_PASS_MEM_STAT
);
1375 #ifdef ENABLE_GC_CHECKING
1376 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1377 exact same semantics in presence of memory bugs, regardless of
1378 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1379 handle to avoid handle leak. */
1380 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result
, object_size
));
1382 /* `Poison' the entire allocated object, including any padding at
1384 memset (result
, 0xaf, object_size
);
1386 /* Make the bytes after the end of the object unaccessible. Discard the
1387 handle to avoid handle leak. */
1388 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result
+ size
,
1389 object_size
- size
));
1392 /* Tell Valgrind that the memory is there, but its content isn't
1393 defined. The bytes at the end of the object are still marked
1395 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result
, size
));
1397 /* Keep track of how many bytes are being allocated. This
1398 information is used in deciding when to collect. */
1399 G
.allocated
+= object_size
;
1401 /* For timevar statistics. */
1402 timevar_ggc_mem_total
+= object_size
;
1405 G
.finalizers
.safe_push (finalizer (result
, f
));
1407 G
.vec_finalizers
.safe_push
1408 (vec_finalizer (reinterpret_cast<uintptr_t> (result
), f
, s
, n
));
1410 if (GATHER_STATISTICS
)
1412 size_t overhead
= object_size
- size
;
1414 G
.stats
.total_overhead
+= overhead
;
1415 G
.stats
.total_allocated
+= object_size
;
1416 G
.stats
.total_overhead_per_order
[order
] += overhead
;
1417 G
.stats
.total_allocated_per_order
[order
] += object_size
;
1421 G
.stats
.total_overhead_under32
+= overhead
;
1422 G
.stats
.total_allocated_under32
+= object_size
;
1426 G
.stats
.total_overhead_under64
+= overhead
;
1427 G
.stats
.total_allocated_under64
+= object_size
;
1431 G
.stats
.total_overhead_under128
+= overhead
;
1432 G
.stats
.total_allocated_under128
+= object_size
;
1436 if (GGC_DEBUG_LEVEL
>= 3)
1437 fprintf (G
.debug_file
,
1438 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1439 (unsigned long) size
, (unsigned long) object_size
, result
,
1445 /* Mark function for strings. */
1448 gt_ggc_m_S (const void *p
)
1453 unsigned long offset
;
1455 if (!p
|| !ggc_allocated_p (p
))
1458 /* Look up the page on which the object is alloced. . */
1459 entry
= lookup_page_table_entry (p
);
1462 /* Calculate the index of the object on the page; this is its bit
1463 position in the in_use_p bitmap. Note that because a char* might
1464 point to the middle of an object, we need special code here to
1465 make sure P points to the start of an object. */
1466 offset
= ((const char *) p
- entry
->page
) % object_size_table
[entry
->order
];
1469 /* Here we've seen a char* which does not point to the beginning
1470 of an allocated object. We assume it points to the middle of
1472 gcc_assert (offset
== offsetof (struct tree_string
, str
));
1473 p
= ((const char *) p
) - offset
;
1474 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p
));
1478 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1479 word
= bit
/ HOST_BITS_PER_LONG
;
1480 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1482 /* If the bit was previously set, skip it. */
1483 if (entry
->in_use_p
[word
] & mask
)
1486 /* Otherwise set it, and decrement the free object count. */
1487 entry
->in_use_p
[word
] |= mask
;
1488 entry
->num_free_objects
-= 1;
1490 if (GGC_DEBUG_LEVEL
>= 4)
1491 fprintf (G
.debug_file
, "Marking %p\n", p
);
1497 /* User-callable entry points for marking string X. */
1500 gt_ggc_mx (const char *& x
)
1506 gt_ggc_mx (unsigned char *& x
)
1512 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED
)
1516 /* If P is not marked, marks it and return false. Otherwise return true.
1517 P must have been allocated by the GC allocator; it mustn't point to
1518 static objects, stack variables, or memory allocated with malloc. */
1521 ggc_set_mark (const void *p
)
1527 /* Look up the page on which the object is alloced. If the object
1528 wasn't allocated by the collector, we'll probably die. */
1529 entry
= lookup_page_table_entry (p
);
1532 /* Calculate the index of the object on the page; this is its bit
1533 position in the in_use_p bitmap. */
1534 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1535 word
= bit
/ HOST_BITS_PER_LONG
;
1536 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1538 /* If the bit was previously set, skip it. */
1539 if (entry
->in_use_p
[word
] & mask
)
1542 /* Otherwise set it, and decrement the free object count. */
1543 entry
->in_use_p
[word
] |= mask
;
1544 entry
->num_free_objects
-= 1;
1546 if (GGC_DEBUG_LEVEL
>= 4)
1547 fprintf (G
.debug_file
, "Marking %p\n", p
);
1552 /* Return 1 if P has been marked, zero otherwise.
1553 P must have been allocated by the GC allocator; it mustn't point to
1554 static objects, stack variables, or memory allocated with malloc. */
1557 ggc_marked_p (const void *p
)
1563 /* Look up the page on which the object is alloced. If the object
1564 wasn't allocated by the collector, we'll probably die. */
1565 entry
= lookup_page_table_entry (p
);
1568 /* Calculate the index of the object on the page; this is its bit
1569 position in the in_use_p bitmap. */
1570 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1571 word
= bit
/ HOST_BITS_PER_LONG
;
1572 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1574 return (entry
->in_use_p
[word
] & mask
) != 0;
1577 /* Return the size of the gc-able object P. */
1580 ggc_get_size (const void *p
)
1582 page_entry
*pe
= lookup_page_table_entry (p
);
1583 return OBJECT_SIZE (pe
->order
);
1586 /* Release the memory for object P. */
1594 page_entry
*pe
= lookup_page_table_entry (p
);
1595 size_t order
= pe
->order
;
1596 size_t size
= OBJECT_SIZE (order
);
1598 if (GATHER_STATISTICS
)
1599 ggc_free_overhead (p
);
1601 if (GGC_DEBUG_LEVEL
>= 3)
1602 fprintf (G
.debug_file
,
1603 "Freeing object, actual size=%lu, at %p on %p\n",
1604 (unsigned long) size
, p
, (void *) pe
);
1606 #ifdef ENABLE_GC_CHECKING
1607 /* Poison the data, to indicate the data is garbage. */
1608 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p
, size
));
1609 memset (p
, 0xa5, size
);
1611 /* Let valgrind know the object is free. */
1612 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p
, size
));
1614 #ifdef ENABLE_GC_ALWAYS_COLLECT
1615 /* In the completely-anal-checking mode, we do *not* immediately free
1616 the data, but instead verify that the data is *actually* not
1617 reachable the next time we collect. */
1619 struct free_object
*fo
= XNEW (struct free_object
);
1621 fo
->next
= G
.free_object_list
;
1622 G
.free_object_list
= fo
;
1626 unsigned int bit_offset
, word
, bit
;
1628 G
.allocated
-= size
;
1630 /* Mark the object not-in-use. */
1631 bit_offset
= OFFSET_TO_BIT (((const char *) p
) - pe
->page
, order
);
1632 word
= bit_offset
/ HOST_BITS_PER_LONG
;
1633 bit
= bit_offset
% HOST_BITS_PER_LONG
;
1634 pe
->in_use_p
[word
] &= ~(1UL << bit
);
1636 if (pe
->num_free_objects
++ == 0)
1640 /* If the page is completely full, then it's supposed to
1641 be after all pages that aren't. Since we've freed one
1642 object from a page that was full, we need to move the
1643 page to the head of the list.
1645 PE is the node we want to move. Q is the previous node
1646 and P is the next node in the list. */
1648 if (q
&& q
->num_free_objects
== 0)
1654 /* If PE was at the end of the list, then Q becomes the
1655 new end of the list. If PE was not the end of the
1656 list, then we need to update the PREV field for P. */
1658 G
.page_tails
[order
] = q
;
1662 /* Move PE to the head of the list. */
1663 pe
->next
= G
.pages
[order
];
1665 G
.pages
[order
]->prev
= pe
;
1666 G
.pages
[order
] = pe
;
1669 /* Reset the hint bit to point to the only free object. */
1670 pe
->next_bit_hint
= bit_offset
;
1676 /* Subroutine of init_ggc which computes the pair of numbers used to
1677 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1679 This algorithm is taken from Granlund and Montgomery's paper
1680 "Division by Invariant Integers using Multiplication"
1681 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1685 compute_inverse (unsigned order
)
1690 size
= OBJECT_SIZE (order
);
1692 while (size
% 2 == 0)
1699 while (inv
* size
!= 1)
1700 inv
= inv
* (2 - inv
*size
);
1702 DIV_MULT (order
) = inv
;
1703 DIV_SHIFT (order
) = e
;
1706 /* Initialize the ggc-mmap allocator. */
1710 static bool init_p
= false;
1717 G
.pagesize
= getpagesize ();
1718 G
.lg_pagesize
= exact_log2 (G
.pagesize
);
1720 #ifdef HAVE_MMAP_DEV_ZERO
1721 G
.dev_zero_fd
= open ("/dev/zero", O_RDONLY
);
1722 if (G
.dev_zero_fd
== -1)
1723 internal_error ("open /dev/zero: %m");
1727 G
.debug_file
= fopen ("ggc-mmap.debug", "w");
1729 G
.debug_file
= stdout
;
1733 /* StunOS has an amazing off-by-one error for the first mmap allocation
1734 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1735 believe, is an unaligned page allocation, which would cause us to
1736 hork badly if we tried to use it. */
1738 char *p
= alloc_anon (NULL
, G
.pagesize
, true);
1739 struct page_entry
*e
;
1740 if ((uintptr_t)p
& (G
.pagesize
- 1))
1742 /* How losing. Discard this one and try another. If we still
1743 can't get something useful, give up. */
1745 p
= alloc_anon (NULL
, G
.pagesize
, true);
1746 gcc_assert (!((uintptr_t)p
& (G
.pagesize
- 1)));
1749 /* We have a good page, might as well hold onto it... */
1750 e
= XCNEW (struct page_entry
);
1751 e
->bytes
= G
.pagesize
;
1753 e
->next
= G
.free_pages
;
1758 /* Initialize the object size table. */
1759 for (order
= 0; order
< HOST_BITS_PER_PTR
; ++order
)
1760 object_size_table
[order
] = (size_t) 1 << order
;
1761 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1763 size_t s
= extra_order_size_table
[order
- HOST_BITS_PER_PTR
];
1765 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1766 so that we're sure of getting aligned memory. */
1767 s
= ROUND_UP (s
, MAX_ALIGNMENT
);
1768 object_size_table
[order
] = s
;
1771 /* Initialize the objects-per-page and inverse tables. */
1772 for (order
= 0; order
< NUM_ORDERS
; ++order
)
1774 objects_per_page_table
[order
] = G
.pagesize
/ OBJECT_SIZE (order
);
1775 if (objects_per_page_table
[order
] == 0)
1776 objects_per_page_table
[order
] = 1;
1777 compute_inverse (order
);
1780 /* Reset the size_lookup array to put appropriately sized objects in
1781 the special orders. All objects bigger than the previous power
1782 of two, but no greater than the special size, should go in the
1784 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1789 i
= OBJECT_SIZE (order
);
1790 if (i
>= NUM_SIZE_LOOKUP
)
1793 for (o
= size_lookup
[i
]; o
== size_lookup
[i
]; --i
)
1794 size_lookup
[i
] = order
;
1799 G
.depth
= XNEWVEC (unsigned int, G
.depth_max
);
1801 G
.by_depth_in_use
= 0;
1802 G
.by_depth_max
= INITIAL_PTE_COUNT
;
1803 G
.by_depth
= XNEWVEC (page_entry
*, G
.by_depth_max
);
1804 G
.save_in_use
= XNEWVEC (unsigned long *, G
.by_depth_max
);
1807 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1808 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1811 ggc_recalculate_in_use_p (page_entry
*p
)
1816 /* Because the past-the-end bit in in_use_p is always set, we
1817 pretend there is one additional object. */
1818 num_objects
= OBJECTS_IN_PAGE (p
) + 1;
1820 /* Reset the free object count. */
1821 p
->num_free_objects
= num_objects
;
1823 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1825 i
< CEIL (BITMAP_SIZE (num_objects
),
1826 sizeof (*p
->in_use_p
));
1831 /* Something is in use if it is marked, or if it was in use in a
1832 context further down the context stack. */
1833 p
->in_use_p
[i
] |= save_in_use_p (p
)[i
];
1835 /* Decrement the free object count for every object allocated. */
1836 for (j
= p
->in_use_p
[i
]; j
; j
>>= 1)
1837 p
->num_free_objects
-= (j
& 1);
1840 gcc_assert (p
->num_free_objects
< num_objects
);
1843 /* Unmark all objects. */
1850 for (order
= 2; order
< NUM_ORDERS
; order
++)
1854 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1856 size_t num_objects
= OBJECTS_IN_PAGE (p
);
1857 size_t bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
1859 /* The data should be page-aligned. */
1860 gcc_assert (!((uintptr_t) p
->page
& (G
.pagesize
- 1)));
1862 /* Pages that aren't in the topmost context are not collected;
1863 nevertheless, we need their in-use bit vectors to store GC
1864 marks. So, back them up first. */
1865 if (p
->context_depth
< G
.context_depth
)
1867 if (! save_in_use_p (p
))
1868 save_in_use_p (p
) = XNEWVAR (unsigned long, bitmap_size
);
1869 memcpy (save_in_use_p (p
), p
->in_use_p
, bitmap_size
);
1872 /* Reset reset the number of free objects and clear the
1873 in-use bits. These will be adjusted by mark_obj. */
1874 p
->num_free_objects
= num_objects
;
1875 memset (p
->in_use_p
, 0, bitmap_size
);
1877 /* Make sure the one-past-the-end bit is always set. */
1878 p
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
1879 = ((unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
));
1884 /* Check if any blocks with a registered finalizer have become unmarked. If so
1885 run the finalizer and unregister it because the block is about to be freed.
1886 Note that no garantee is made about what order finalizers will run in so
1887 touching other objects in gc memory is extremely unwise. */
1890 ggc_handle_finalizers ()
1892 if (G
.context_depth
!= 0)
1895 unsigned length
= G
.finalizers
.length ();
1896 for (unsigned int i
= 0; i
< length
;)
1898 finalizer
&f
= G
.finalizers
[i
];
1899 if (!ggc_marked_p (f
.addr ()))
1902 G
.finalizers
.unordered_remove (i
);
1910 length
= G
.vec_finalizers
.length ();
1911 for (unsigned int i
= 0; i
< length
;)
1913 vec_finalizer
&f
= G
.vec_finalizers
[i
];
1914 if (!ggc_marked_p (f
.addr ()))
1917 G
.vec_finalizers
.unordered_remove (i
);
1925 /* Free all empty pages. Partially empty pages need no attention
1926 because the `mark' bit doubles as an `unused' bit. */
1933 for (order
= 2; order
< NUM_ORDERS
; order
++)
1935 /* The last page-entry to consider, regardless of entries
1936 placed at the end of the list. */
1937 page_entry
* const last
= G
.page_tails
[order
];
1940 size_t live_objects
;
1941 page_entry
*p
, *previous
;
1951 page_entry
*next
= p
->next
;
1953 /* Loop until all entries have been examined. */
1956 num_objects
= OBJECTS_IN_PAGE (p
);
1958 /* Add all live objects on this page to the count of
1959 allocated memory. */
1960 live_objects
= num_objects
- p
->num_free_objects
;
1962 G
.allocated
+= OBJECT_SIZE (order
) * live_objects
;
1964 /* Only objects on pages in the topmost context should get
1966 if (p
->context_depth
< G
.context_depth
)
1969 /* Remove the page if it's empty. */
1970 else if (live_objects
== 0)
1972 /* If P was the first page in the list, then NEXT
1973 becomes the new first page in the list, otherwise
1974 splice P out of the forward pointers. */
1976 G
.pages
[order
] = next
;
1978 previous
->next
= next
;
1980 /* Splice P out of the back pointers too. */
1982 next
->prev
= previous
;
1984 /* Are we removing the last element? */
1985 if (p
== G
.page_tails
[order
])
1986 G
.page_tails
[order
] = previous
;
1991 /* If the page is full, move it to the end. */
1992 else if (p
->num_free_objects
== 0)
1994 /* Don't move it if it's already at the end. */
1995 if (p
!= G
.page_tails
[order
])
1997 /* Move p to the end of the list. */
1999 p
->prev
= G
.page_tails
[order
];
2000 G
.page_tails
[order
]->next
= p
;
2002 /* Update the tail pointer... */
2003 G
.page_tails
[order
] = p
;
2005 /* ... and the head pointer, if necessary. */
2007 G
.pages
[order
] = next
;
2009 previous
->next
= next
;
2011 /* And update the backpointer in NEXT if necessary. */
2013 next
->prev
= previous
;
2019 /* If we've fallen through to here, it's a page in the
2020 topmost context that is neither full nor empty. Such a
2021 page must precede pages at lesser context depth in the
2022 list, so move it to the head. */
2023 else if (p
!= G
.pages
[order
])
2025 previous
->next
= p
->next
;
2027 /* Update the backchain in the next node if it exists. */
2029 p
->next
->prev
= previous
;
2031 /* Move P to the head of the list. */
2032 p
->next
= G
.pages
[order
];
2034 G
.pages
[order
]->prev
= p
;
2036 /* Update the head pointer. */
2039 /* Are we moving the last element? */
2040 if (G
.page_tails
[order
] == p
)
2041 G
.page_tails
[order
] = previous
;
2050 /* Now, restore the in_use_p vectors for any pages from contexts
2051 other than the current one. */
2052 for (p
= G
.pages
[order
]; p
; p
= p
->next
)
2053 if (p
->context_depth
!= G
.context_depth
)
2054 ggc_recalculate_in_use_p (p
);
2058 #ifdef ENABLE_GC_CHECKING
2059 /* Clobber all free objects. */
2066 for (order
= 2; order
< NUM_ORDERS
; order
++)
2068 size_t size
= OBJECT_SIZE (order
);
2071 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
2076 if (p
->context_depth
!= G
.context_depth
)
2077 /* Since we don't do any collection for pages in pushed
2078 contexts, there's no need to do any poisoning. And
2079 besides, the IN_USE_P array isn't valid until we pop
2083 num_objects
= OBJECTS_IN_PAGE (p
);
2084 for (i
= 0; i
< num_objects
; i
++)
2087 word
= i
/ HOST_BITS_PER_LONG
;
2088 bit
= i
% HOST_BITS_PER_LONG
;
2089 if (((p
->in_use_p
[word
] >> bit
) & 1) == 0)
2091 char *object
= p
->page
+ i
* size
;
2093 /* Keep poison-by-write when we expect to use Valgrind,
2094 so the exact same memory semantics is kept, in case
2095 there are memory errors. We override this request
2097 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object
,
2099 memset (object
, 0xa5, size
);
2101 /* Drop the handle to avoid handle leak. */
2102 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object
, size
));
2109 #define poison_pages()
2112 #ifdef ENABLE_GC_ALWAYS_COLLECT
2113 /* Validate that the reportedly free objects actually are. */
2116 validate_free_objects (void)
2118 struct free_object
*f
, *next
, *still_free
= NULL
;
2120 for (f
= G
.free_object_list
; f
; f
= next
)
2122 page_entry
*pe
= lookup_page_table_entry (f
->object
);
2125 bit
= OFFSET_TO_BIT ((char *)f
->object
- pe
->page
, pe
->order
);
2126 word
= bit
/ HOST_BITS_PER_LONG
;
2127 bit
= bit
% HOST_BITS_PER_LONG
;
2130 /* Make certain it isn't visible from any root. Notice that we
2131 do this check before sweep_pages merges save_in_use_p. */
2132 gcc_assert (!(pe
->in_use_p
[word
] & (1UL << bit
)));
2134 /* If the object comes from an outer context, then retain the
2135 free_object entry, so that we can verify that the address
2136 isn't live on the stack in some outer context. */
2137 if (pe
->context_depth
!= G
.context_depth
)
2139 f
->next
= still_free
;
2146 G
.free_object_list
= still_free
;
2149 #define validate_free_objects()
2152 /* Top level mark-and-sweep routine. */
2157 /* Avoid frequent unnecessary work by skipping collection if the
2158 total allocations haven't expanded much since the last
2160 float allocated_last_gc
=
2161 MAX (G
.allocated_last_gc
, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE
) * 1024);
2163 float min_expand
= allocated_last_gc
* PARAM_VALUE (GGC_MIN_EXPAND
) / 100;
2164 if (G
.allocated
< allocated_last_gc
+ min_expand
&& !ggc_force_collect
)
2167 timevar_push (TV_GC
);
2169 fprintf (stderr
, " {GC %luk -> ", (unsigned long) G
.allocated
/ 1024);
2170 if (GGC_DEBUG_LEVEL
>= 2)
2171 fprintf (G
.debug_file
, "BEGIN COLLECTING\n");
2173 /* Zero the total allocated bytes. This will be recalculated in the
2177 /* Release the pages we freed the last time we collected, but didn't
2178 reuse in the interim. */
2181 /* Indicate that we've seen collections at this context depth. */
2182 G
.context_depth_collections
= ((unsigned long)1 << (G
.context_depth
+ 1)) - 1;
2184 invoke_plugin_callbacks (PLUGIN_GGC_START
, NULL
);
2189 ggc_handle_finalizers ();
2191 if (GATHER_STATISTICS
)
2192 ggc_prune_overhead_list ();
2195 validate_free_objects ();
2199 G
.allocated_last_gc
= G
.allocated
;
2201 invoke_plugin_callbacks (PLUGIN_GGC_END
, NULL
);
2203 timevar_pop (TV_GC
);
2206 fprintf (stderr
, "%luk}", (unsigned long) G
.allocated
/ 1024);
2207 if (GGC_DEBUG_LEVEL
>= 2)
2208 fprintf (G
.debug_file
, "END COLLECTING\n");
2211 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2212 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2218 #ifndef ENABLE_CHECKING
2219 G
.allocated_last_gc
= MAX (G
.allocated_last_gc
,
2225 fprintf (stderr
, " {GC start %luk} ", (unsigned long) G
.allocated
/ 1024);
2228 /* Print allocation statistics. */
2229 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2231 : ((x) < 1024*1024*10 \
2233 : (x) / (1024*1024))))
2234 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2237 ggc_print_statistics (void)
2239 struct ggc_statistics stats
;
2241 size_t total_overhead
= 0;
2243 /* Clear the statistics. */
2244 memset (&stats
, 0, sizeof (stats
));
2246 /* Make sure collection will really occur. */
2247 G
.allocated_last_gc
= 0;
2249 /* Collect and print the statistics common across collectors. */
2250 ggc_print_common_statistics (stderr
, &stats
);
2252 /* Release free pages so that we will not count the bytes allocated
2253 there as part of the total allocated memory. */
2256 /* Collect some information about the various sizes of
2259 "Memory still allocated at the end of the compilation process\n");
2260 fprintf (stderr
, "%-8s %10s %10s %10s\n",
2261 "Size", "Allocated", "Used", "Overhead");
2262 for (i
= 0; i
< NUM_ORDERS
; ++i
)
2269 /* Skip empty entries. */
2273 overhead
= allocated
= in_use
= 0;
2275 /* Figure out the total number of bytes allocated for objects of
2276 this size, and how many of them are actually in use. Also figure
2277 out how much memory the page table is using. */
2278 for (p
= G
.pages
[i
]; p
; p
= p
->next
)
2280 allocated
+= p
->bytes
;
2282 (OBJECTS_IN_PAGE (p
) - p
->num_free_objects
) * OBJECT_SIZE (i
);
2284 overhead
+= (sizeof (page_entry
) - sizeof (long)
2285 + BITMAP_SIZE (OBJECTS_IN_PAGE (p
) + 1));
2287 fprintf (stderr
, "%-8lu %10lu%c %10lu%c %10lu%c\n",
2288 (unsigned long) OBJECT_SIZE (i
),
2289 SCALE (allocated
), STAT_LABEL (allocated
),
2290 SCALE (in_use
), STAT_LABEL (in_use
),
2291 SCALE (overhead
), STAT_LABEL (overhead
));
2292 total_overhead
+= overhead
;
2294 fprintf (stderr
, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total",
2295 SCALE (G
.bytes_mapped
), STAT_LABEL (G
.bytes_mapped
),
2296 SCALE (G
.allocated
), STAT_LABEL (G
.allocated
),
2297 SCALE (total_overhead
), STAT_LABEL (total_overhead
));
2299 if (GATHER_STATISTICS
)
2301 fprintf (stderr
, "\nTotal allocations and overheads during "
2302 "the compilation process\n");
2304 fprintf (stderr
, "Total Overhead: %10"
2305 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_overhead
);
2306 fprintf (stderr
, "Total Allocated: %10"
2307 HOST_LONG_LONG_FORMAT
"d\n",
2308 G
.stats
.total_allocated
);
2310 fprintf (stderr
, "Total Overhead under 32B: %10"
2311 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_overhead_under32
);
2312 fprintf (stderr
, "Total Allocated under 32B: %10"
2313 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_allocated_under32
);
2314 fprintf (stderr
, "Total Overhead under 64B: %10"
2315 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_overhead_under64
);
2316 fprintf (stderr
, "Total Allocated under 64B: %10"
2317 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_allocated_under64
);
2318 fprintf (stderr
, "Total Overhead under 128B: %10"
2319 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_overhead_under128
);
2320 fprintf (stderr
, "Total Allocated under 128B: %10"
2321 HOST_LONG_LONG_FORMAT
"d\n", G
.stats
.total_allocated_under128
);
2323 for (i
= 0; i
< NUM_ORDERS
; i
++)
2324 if (G
.stats
.total_allocated_per_order
[i
])
2326 fprintf (stderr
, "Total Overhead page size %9lu: %10"
2327 HOST_LONG_LONG_FORMAT
"d\n",
2328 (unsigned long) OBJECT_SIZE (i
),
2329 G
.stats
.total_overhead_per_order
[i
]);
2330 fprintf (stderr
, "Total Allocated page size %9lu: %10"
2331 HOST_LONG_LONG_FORMAT
"d\n",
2332 (unsigned long) OBJECT_SIZE (i
),
2333 G
.stats
.total_allocated_per_order
[i
]);
2338 struct ggc_pch_ondisk
2340 unsigned totals
[NUM_ORDERS
];
2345 struct ggc_pch_ondisk d
;
2346 uintptr_t base
[NUM_ORDERS
];
2347 size_t written
[NUM_ORDERS
];
2350 struct ggc_pch_data
*
2353 return XCNEW (struct ggc_pch_data
);
2357 ggc_pch_count_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2358 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2362 if (size
< NUM_SIZE_LOOKUP
)
2363 order
= size_lookup
[size
];
2367 while (size
> OBJECT_SIZE (order
))
2371 d
->d
.totals
[order
]++;
2375 ggc_pch_total_size (struct ggc_pch_data
*d
)
2380 for (i
= 0; i
< NUM_ORDERS
; i
++)
2381 a
+= PAGE_ALIGN (d
->d
.totals
[i
] * OBJECT_SIZE (i
));
2386 ggc_pch_this_base (struct ggc_pch_data
*d
, void *base
)
2388 uintptr_t a
= (uintptr_t) base
;
2391 for (i
= 0; i
< NUM_ORDERS
; i
++)
2394 a
+= PAGE_ALIGN (d
->d
.totals
[i
] * OBJECT_SIZE (i
));
2400 ggc_pch_alloc_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2401 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2406 if (size
< NUM_SIZE_LOOKUP
)
2407 order
= size_lookup
[size
];
2411 while (size
> OBJECT_SIZE (order
))
2415 result
= (char *) d
->base
[order
];
2416 d
->base
[order
] += OBJECT_SIZE (order
);
2421 ggc_pch_prepare_write (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2422 FILE *f ATTRIBUTE_UNUSED
)
2424 /* Nothing to do. */
2428 ggc_pch_write_object (struct ggc_pch_data
*d
,
2429 FILE *f
, void *x
, void *newx ATTRIBUTE_UNUSED
,
2430 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2433 static const char emptyBytes
[256] = { 0 };
2435 if (size
< NUM_SIZE_LOOKUP
)
2436 order
= size_lookup
[size
];
2440 while (size
> OBJECT_SIZE (order
))
2444 if (fwrite (x
, size
, 1, f
) != 1)
2445 fatal_error (input_location
, "can%'t write PCH file: %m");
2447 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2448 object out to OBJECT_SIZE(order). This happens for strings. */
2450 if (size
!= OBJECT_SIZE (order
))
2452 unsigned padding
= OBJECT_SIZE (order
) - size
;
2454 /* To speed small writes, we use a nulled-out array that's larger
2455 than most padding requests as the source for our null bytes. This
2456 permits us to do the padding with fwrite() rather than fseek(), and
2457 limits the chance the OS may try to flush any outstanding writes. */
2458 if (padding
<= sizeof (emptyBytes
))
2460 if (fwrite (emptyBytes
, 1, padding
, f
) != padding
)
2461 fatal_error (input_location
, "can%'t write PCH file");
2465 /* Larger than our buffer? Just default to fseek. */
2466 if (fseek (f
, padding
, SEEK_CUR
) != 0)
2467 fatal_error (input_location
, "can%'t write PCH file");
2471 d
->written
[order
]++;
2472 if (d
->written
[order
] == d
->d
.totals
[order
]
2473 && fseek (f
, ROUND_UP_VALUE (d
->d
.totals
[order
] * OBJECT_SIZE (order
),
2476 fatal_error (input_location
, "can%'t write PCH file: %m");
2480 ggc_pch_finish (struct ggc_pch_data
*d
, FILE *f
)
2482 if (fwrite (&d
->d
, sizeof (d
->d
), 1, f
) != 1)
2483 fatal_error (input_location
, "can%'t write PCH file: %m");
2487 /* Move the PCH PTE entries just added to the end of by_depth, to the
2491 move_ptes_to_front (int count_old_page_tables
, int count_new_page_tables
)
2495 /* First, we swap the new entries to the front of the varrays. */
2496 page_entry
**new_by_depth
;
2497 unsigned long **new_save_in_use
;
2499 new_by_depth
= XNEWVEC (page_entry
*, G
.by_depth_max
);
2500 new_save_in_use
= XNEWVEC (unsigned long *, G
.by_depth_max
);
2502 memcpy (&new_by_depth
[0],
2503 &G
.by_depth
[count_old_page_tables
],
2504 count_new_page_tables
* sizeof (void *));
2505 memcpy (&new_by_depth
[count_new_page_tables
],
2507 count_old_page_tables
* sizeof (void *));
2508 memcpy (&new_save_in_use
[0],
2509 &G
.save_in_use
[count_old_page_tables
],
2510 count_new_page_tables
* sizeof (void *));
2511 memcpy (&new_save_in_use
[count_new_page_tables
],
2513 count_old_page_tables
* sizeof (void *));
2516 free (G
.save_in_use
);
2518 G
.by_depth
= new_by_depth
;
2519 G
.save_in_use
= new_save_in_use
;
2521 /* Now update all the index_by_depth fields. */
2522 for (i
= G
.by_depth_in_use
; i
> 0; --i
)
2524 page_entry
*p
= G
.by_depth
[i
-1];
2525 p
->index_by_depth
= i
-1;
2528 /* And last, we update the depth pointers in G.depth. The first
2529 entry is already 0, and context 0 entries always start at index
2530 0, so there is nothing to update in the first slot. We need a
2531 second slot, only if we have old ptes, and if we do, they start
2532 at index count_new_page_tables. */
2533 if (count_old_page_tables
)
2534 push_depth (count_new_page_tables
);
2538 ggc_pch_read (FILE *f
, void *addr
)
2540 struct ggc_pch_ondisk d
;
2542 char *offs
= (char *) addr
;
2543 unsigned long count_old_page_tables
;
2544 unsigned long count_new_page_tables
;
2546 count_old_page_tables
= G
.by_depth_in_use
;
2548 /* We've just read in a PCH file. So, every object that used to be
2549 allocated is now free. */
2551 #ifdef ENABLE_GC_CHECKING
2554 /* Since we free all the allocated objects, the free list becomes
2555 useless. Validate it now, which will also clear it. */
2556 validate_free_objects ();
2558 /* No object read from a PCH file should ever be freed. So, set the
2559 context depth to 1, and set the depth of all the currently-allocated
2560 pages to be 1 too. PCH pages will have depth 0. */
2561 gcc_assert (!G
.context_depth
);
2562 G
.context_depth
= 1;
2563 for (i
= 0; i
< NUM_ORDERS
; i
++)
2566 for (p
= G
.pages
[i
]; p
!= NULL
; p
= p
->next
)
2567 p
->context_depth
= G
.context_depth
;
2570 /* Allocate the appropriate page-table entries for the pages read from
2572 if (fread (&d
, sizeof (d
), 1, f
) != 1)
2573 fatal_error (input_location
, "can%'t read PCH file: %m");
2575 for (i
= 0; i
< NUM_ORDERS
; i
++)
2577 struct page_entry
*entry
;
2583 if (d
.totals
[i
] == 0)
2586 bytes
= PAGE_ALIGN (d
.totals
[i
] * OBJECT_SIZE (i
));
2587 num_objs
= bytes
/ OBJECT_SIZE (i
);
2588 entry
= XCNEWVAR (struct page_entry
, (sizeof (struct page_entry
)
2590 + BITMAP_SIZE (num_objs
+ 1)));
2591 entry
->bytes
= bytes
;
2593 entry
->context_depth
= 0;
2595 entry
->num_free_objects
= 0;
2599 j
+ HOST_BITS_PER_LONG
<= num_objs
+ 1;
2600 j
+= HOST_BITS_PER_LONG
)
2601 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
] = -1;
2602 for (; j
< num_objs
+ 1; j
++)
2603 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
]
2604 |= 1L << (j
% HOST_BITS_PER_LONG
);
2606 for (pte
= entry
->page
;
2607 pte
< entry
->page
+ entry
->bytes
;
2609 set_page_table_entry (pte
, entry
);
2611 if (G
.page_tails
[i
] != NULL
)
2612 G
.page_tails
[i
]->next
= entry
;
2615 G
.page_tails
[i
] = entry
;
2617 /* We start off by just adding all the new information to the
2618 end of the varrays, later, we will move the new information
2619 to the front of the varrays, as the PCH page tables are at
2621 push_by_depth (entry
, 0);
2624 /* Now, we update the various data structures that speed page table
2626 count_new_page_tables
= G
.by_depth_in_use
- count_old_page_tables
;
2628 move_ptes_to_front (count_old_page_tables
, count_new_page_tables
);
2630 /* Update the statistics. */
2631 G
.allocated
= G
.allocated_last_gc
= offs
- (char *)addr
;