Daily bump.
[official-gcc.git] / gcc / regclass.c
blob1b6ec9a4b6a539bcd2b132479bb58dce4e1bc322
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "reload.h"
36 #include "real.h"
37 #include "toplev.h"
38 #include "output.h"
40 #ifndef REGISTER_MOVE_COST
41 #define REGISTER_MOVE_COST(x, y) 2
42 #endif
44 static void init_reg_sets_1 PROTO((void));
45 static void init_reg_modes PROTO((void));
47 /* If we have auto-increment or auto-decrement and we can have secondary
48 reloads, we are not allowed to use classes requiring secondary
49 reloads for pseudos auto-incremented since reload can't handle it. */
51 #ifdef AUTO_INC_DEC
52 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
53 #define FORBIDDEN_INC_DEC_CLASSES
54 #endif
55 #endif
57 /* Register tables used by many passes. */
59 /* Indexed by hard register number, contains 1 for registers
60 that are fixed use (stack pointer, pc, frame pointer, etc.).
61 These are the registers that cannot be used to allocate
62 a pseudo reg for general use. */
64 char fixed_regs[FIRST_PSEUDO_REGISTER];
66 /* Same info as a HARD_REG_SET. */
68 HARD_REG_SET fixed_reg_set;
70 /* Data for initializing the above. */
72 static char initial_fixed_regs[] = FIXED_REGISTERS;
74 /* Indexed by hard register number, contains 1 for registers
75 that are fixed use or are clobbered by function calls.
76 These are the registers that cannot be used to allocate
77 a pseudo reg whose life crosses calls unless we are able
78 to save/restore them across the calls. */
80 char call_used_regs[FIRST_PSEUDO_REGISTER];
82 /* Same info as a HARD_REG_SET. */
84 HARD_REG_SET call_used_reg_set;
86 /* HARD_REG_SET of registers we want to avoid caller saving. */
87 HARD_REG_SET losing_caller_save_reg_set;
89 /* Data for initializing the above. */
91 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
93 /* Indexed by hard register number, contains 1 for registers that are
94 fixed use or call used registers that cannot hold quantities across
95 calls even if we are willing to save and restore them. call fixed
96 registers are a subset of call used registers. */
98 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
100 /* The same info as a HARD_REG_SET. */
102 HARD_REG_SET call_fixed_reg_set;
104 /* Number of non-fixed registers. */
106 int n_non_fixed_regs;
108 /* Indexed by hard register number, contains 1 for registers
109 that are being used for global register decls.
110 These must be exempt from ordinary flow analysis
111 and are also considered fixed. */
113 char global_regs[FIRST_PSEUDO_REGISTER];
115 /* Table of register numbers in the order in which to try to use them. */
116 #ifdef REG_ALLOC_ORDER
117 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
118 #endif
120 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
122 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
124 /* The same information, but as an array of unsigned ints. We copy from
125 these unsigned ints to the table above. We do this so the tm.h files
126 do not have to be aware of the wordsize for machines with <= 64 regs. */
128 #define N_REG_INTS \
129 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
131 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
132 = REG_CLASS_CONTENTS;
134 /* For each reg class, number of regs it contains. */
136 int reg_class_size[N_REG_CLASSES];
138 /* For each reg class, table listing all the containing classes. */
140 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
142 /* For each reg class, table listing all the classes contained in it. */
144 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
146 /* For each pair of reg classes,
147 a largest reg class contained in their union. */
149 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
151 /* For each pair of reg classes,
152 the smallest reg class containing their union. */
154 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
156 /* Array containing all of the register names */
158 char *reg_names[] = REGISTER_NAMES;
160 /* For each hard register, the widest mode object that it can contain.
161 This will be a MODE_INT mode if the register can hold integers. Otherwise
162 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
163 register. */
165 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
167 /* Maximum cost of moving from a register in one class to a register in
168 another class. Based on REGISTER_MOVE_COST. */
170 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
172 /* Similar, but here we don't have to move if the first index is a subset
173 of the second so in that case the cost is zero. */
175 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
177 #ifdef FORBIDDEN_INC_DEC_CLASSES
179 /* These are the classes that regs which are auto-incremented or decremented
180 cannot be put in. */
182 static int forbidden_inc_dec_class[N_REG_CLASSES];
184 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
185 context. */
187 static char *in_inc_dec;
189 #endif /* FORBIDDEN_INC_DEC_CLASSES */
191 #ifdef HAVE_SECONDARY_RELOADS
193 /* Sample MEM values for use by memory_move_secondary_cost. */
195 static rtx top_of_stack[MAX_MACHINE_MODE];
197 #endif /* HAVE_SECONDARY_RELOADS */
199 /* Linked list of reg_info structures allocated for reg_n_info array.
200 Grouping all of the allocated structures together in one lump
201 means only one call to bzero to clear them, rather than n smaller
202 calls. */
203 struct reg_info_data {
204 struct reg_info_data *next; /* next set of reg_info structures */
205 size_t min_index; /* minimum index # */
206 size_t max_index; /* maximum index # */
207 char used_p; /* non-zero if this has been used previously */
208 reg_info data[1]; /* beginning of the reg_info data */
211 static struct reg_info_data *reg_info_head;
214 /* Function called only once to initialize the above data on reg usage.
215 Once this is done, various switches may override. */
217 void
218 init_reg_sets ()
220 register int i, j;
222 /* First copy the register information from the initial int form into
223 the regsets. */
225 for (i = 0; i < N_REG_CLASSES; i++)
227 CLEAR_HARD_REG_SET (reg_class_contents[i]);
229 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
230 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
231 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
232 SET_HARD_REG_BIT (reg_class_contents[i], j);
235 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
236 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
237 bzero (global_regs, sizeof global_regs);
239 /* Do any additional initialization regsets may need */
240 INIT_ONCE_REG_SET ();
243 /* After switches have been processed, which perhaps alter
244 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
246 static void
247 init_reg_sets_1 ()
249 register unsigned int i, j;
251 /* This macro allows the fixed or call-used registers
252 and the register classes to depend on target flags. */
254 #ifdef CONDITIONAL_REGISTER_USAGE
255 CONDITIONAL_REGISTER_USAGE;
256 #endif
258 /* Compute number of hard regs in each class. */
260 bzero ((char *) reg_class_size, sizeof reg_class_size);
261 for (i = 0; i < N_REG_CLASSES; i++)
262 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
263 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
264 reg_class_size[i]++;
266 /* Initialize the table of subunions.
267 reg_class_subunion[I][J] gets the largest-numbered reg-class
268 that is contained in the union of classes I and J. */
270 for (i = 0; i < N_REG_CLASSES; i++)
272 for (j = 0; j < N_REG_CLASSES; j++)
274 #ifdef HARD_REG_SET
275 register /* Declare it register if it's a scalar. */
276 #endif
277 HARD_REG_SET c;
278 register int k;
280 COPY_HARD_REG_SET (c, reg_class_contents[i]);
281 IOR_HARD_REG_SET (c, reg_class_contents[j]);
282 for (k = 0; k < N_REG_CLASSES; k++)
284 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
285 subclass1);
286 continue;
288 subclass1:
289 /* keep the largest subclass */ /* SPEE 900308 */
290 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
291 reg_class_contents[(int) reg_class_subunion[i][j]],
292 subclass2);
293 reg_class_subunion[i][j] = (enum reg_class) k;
294 subclass2:
300 /* Initialize the table of superunions.
301 reg_class_superunion[I][J] gets the smallest-numbered reg-class
302 containing the union of classes I and J. */
304 for (i = 0; i < N_REG_CLASSES; i++)
306 for (j = 0; j < N_REG_CLASSES; j++)
308 #ifdef HARD_REG_SET
309 register /* Declare it register if it's a scalar. */
310 #endif
311 HARD_REG_SET c;
312 register int k;
314 COPY_HARD_REG_SET (c, reg_class_contents[i]);
315 IOR_HARD_REG_SET (c, reg_class_contents[j]);
316 for (k = 0; k < N_REG_CLASSES; k++)
317 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
319 superclass:
320 reg_class_superunion[i][j] = (enum reg_class) k;
324 /* Initialize the tables of subclasses and superclasses of each reg class.
325 First clear the whole table, then add the elements as they are found. */
327 for (i = 0; i < N_REG_CLASSES; i++)
329 for (j = 0; j < N_REG_CLASSES; j++)
331 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
332 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
336 for (i = 0; i < N_REG_CLASSES; i++)
338 if (i == (int) NO_REGS)
339 continue;
341 for (j = i + 1; j < N_REG_CLASSES; j++)
343 enum reg_class *p;
345 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
346 subclass);
347 continue;
348 subclass:
349 /* Reg class I is a subclass of J.
350 Add J to the table of superclasses of I. */
351 p = &reg_class_superclasses[i][0];
352 while (*p != LIM_REG_CLASSES) p++;
353 *p = (enum reg_class) j;
354 /* Add I to the table of superclasses of J. */
355 p = &reg_class_subclasses[j][0];
356 while (*p != LIM_REG_CLASSES) p++;
357 *p = (enum reg_class) i;
361 /* Initialize "constant" tables. */
363 CLEAR_HARD_REG_SET (fixed_reg_set);
364 CLEAR_HARD_REG_SET (call_used_reg_set);
365 CLEAR_HARD_REG_SET (call_fixed_reg_set);
367 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
369 n_non_fixed_regs = 0;
371 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
373 if (fixed_regs[i])
374 SET_HARD_REG_BIT (fixed_reg_set, i);
375 else
376 n_non_fixed_regs++;
378 if (call_used_regs[i])
379 SET_HARD_REG_BIT (call_used_reg_set, i);
380 if (call_fixed_regs[i])
381 SET_HARD_REG_BIT (call_fixed_reg_set, i);
382 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
383 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
386 /* Initialize the move cost table. Find every subset of each class
387 and take the maximum cost of moving any subset to any other. */
389 for (i = 0; i < N_REG_CLASSES; i++)
390 for (j = 0; j < N_REG_CLASSES; j++)
392 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
393 enum reg_class *p1, *p2;
395 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
396 if (*p2 != i)
397 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
399 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
401 if (*p1 != j)
402 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
404 for (p2 = &reg_class_subclasses[j][0];
405 *p2 != LIM_REG_CLASSES; p2++)
406 if (*p1 != *p2)
407 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
410 move_cost[i][j] = cost;
412 if (reg_class_subset_p (i, j))
413 cost = 0;
415 may_move_cost[i][j] = cost;
419 /* Compute the table of register modes.
420 These values are used to record death information for individual registers
421 (as opposed to a multi-register mode). */
423 static void
424 init_reg_modes ()
426 register int i;
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
430 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
432 /* If we couldn't find a valid mode, just use the previous mode.
433 ??? One situation in which we need to do this is on the mips where
434 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
435 to use DF mode for the even registers and VOIDmode for the odd
436 (for the cpu models where the odd ones are inaccessible). */
437 if (reg_raw_mode[i] == VOIDmode)
438 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
442 /* Finish initializing the register sets and
443 initialize the register modes. */
445 void
446 init_regs ()
448 /* This finishes what was started by init_reg_sets, but couldn't be done
449 until after register usage was specified. */
450 init_reg_sets_1 ();
452 init_reg_modes ();
454 #ifdef HAVE_SECONDARY_RELOADS
456 /* Make some fake stack-frame MEM references for use in
457 memory_move_secondary_cost. */
458 int i;
459 for (i = 0; i < MAX_MACHINE_MODE; i++)
460 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
462 #endif
465 #ifdef HAVE_SECONDARY_RELOADS
467 /* Compute extra cost of moving registers to/from memory due to reloads.
468 Only needed if secondary reloads are required for memory moves. */
471 memory_move_secondary_cost (mode, class, in)
472 enum machine_mode mode;
473 enum reg_class class;
474 int in;
476 enum reg_class altclass;
477 int partial_cost = 0;
478 /* We need a memory reference to feed to SECONDARY... macros. */
479 rtx mem = top_of_stack[(int) mode];
481 if (in)
483 #ifdef SECONDARY_INPUT_RELOAD_CLASS
484 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
485 #else
486 altclass = NO_REGS;
487 #endif
489 else
491 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
492 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
493 #else
494 altclass = NO_REGS;
495 #endif
498 if (altclass == NO_REGS)
499 return 0;
501 if (in)
502 partial_cost = REGISTER_MOVE_COST (altclass, class);
503 else
504 partial_cost = REGISTER_MOVE_COST (class, altclass);
506 if (class == altclass)
507 /* This isn't simply a copy-to-temporary situation. Can't guess
508 what it is, so MEMORY_MOVE_COST really ought not to be calling
509 here in that case.
511 I'm tempted to put in an abort here, but returning this will
512 probably only give poor estimates, which is what we would've
513 had before this code anyways. */
514 return partial_cost;
516 /* Check if the secondary reload register will also need a
517 secondary reload. */
518 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
520 #endif
522 /* Return a machine mode that is legitimate for hard reg REGNO and large
523 enough to save nregs. If we can't find one, return VOIDmode. */
525 enum machine_mode
526 choose_hard_reg_mode (regno, nregs)
527 int regno;
528 int nregs;
530 enum machine_mode found_mode = VOIDmode, mode;
532 /* We first look for the largest integer mode that can be validly
533 held in REGNO. If none, we look for the largest floating-point mode.
534 If we still didn't find a valid mode, try CCmode. */
536 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
537 mode != VOIDmode;
538 mode = GET_MODE_WIDER_MODE (mode))
539 if (HARD_REGNO_NREGS (regno, mode) == nregs
540 && HARD_REGNO_MODE_OK (regno, mode))
541 found_mode = mode;
543 if (found_mode != VOIDmode)
544 return found_mode;
546 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
547 mode != VOIDmode;
548 mode = GET_MODE_WIDER_MODE (mode))
549 if (HARD_REGNO_NREGS (regno, mode) == nregs
550 && HARD_REGNO_MODE_OK (regno, mode))
551 found_mode = mode;
553 if (found_mode != VOIDmode)
554 return found_mode;
556 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
557 && HARD_REGNO_MODE_OK (regno, CCmode))
558 return CCmode;
560 /* We can't find a mode valid for this register. */
561 return VOIDmode;
564 /* Specify the usage characteristics of the register named NAME.
565 It should be a fixed register if FIXED and a
566 call-used register if CALL_USED. */
568 void
569 fix_register (name, fixed, call_used)
570 char *name;
571 int fixed, call_used;
573 int i;
575 /* Decode the name and update the primary form of
576 the register info. */
578 if ((i = decode_reg_name (name)) >= 0)
580 if ((i == STACK_POINTER_REGNUM
581 #ifdef HARD_FRAME_POINTER_REGNUM
582 || i == HARD_FRAME_POINTER_REGNUM
583 #else
584 || i == FRAME_POINTER_REGNUM
585 #endif
587 && (fixed == 0 || call_used == 0))
589 static char* what_option[2][2] = {
590 { "call-saved", "call-used" },
591 { "no-such-option", "fixed" }};
593 error ("can't use '%s' as a %s register", name,
594 what_option[fixed][call_used]);
596 else
598 fixed_regs[i] = fixed;
599 call_used_regs[i] = call_used;
602 else
604 warning ("unknown register name: %s", name);
608 /* Mark register number I as global. */
610 void
611 globalize_reg (i)
612 int i;
614 if (global_regs[i])
616 warning ("register used for two global register variables");
617 return;
620 if (call_used_regs[i] && ! fixed_regs[i])
621 warning ("call-clobbered register used for global register variable");
623 global_regs[i] = 1;
625 /* If already fixed, nothing else to do. */
626 if (fixed_regs[i])
627 return;
629 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
630 n_non_fixed_regs--;
632 SET_HARD_REG_BIT (fixed_reg_set, i);
633 SET_HARD_REG_BIT (call_used_reg_set, i);
634 SET_HARD_REG_BIT (call_fixed_reg_set, i);
637 /* Now the data and code for the `regclass' pass, which happens
638 just before local-alloc. */
640 /* The `costs' struct records the cost of using a hard register of each class
641 and of using memory for each pseudo. We use this data to set up
642 register class preferences. */
644 struct costs
646 int cost[N_REG_CLASSES];
647 int mem_cost;
650 /* Record the cost of each class for each pseudo. */
652 static struct costs *costs;
654 /* Initialized once, and used to initialize cost values for each insn. */
656 static struct costs init_cost;
658 /* Record the same data by operand number, accumulated for each alternative
659 in an insn. The contribution to a pseudo is that of the minimum-cost
660 alternative. */
662 static struct costs op_costs[MAX_RECOG_OPERANDS];
664 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
665 This is available after `regclass' is run. */
667 static char *prefclass;
669 /* altclass[R] is a register class that we should use for allocating
670 pseudo number R if no register in the preferred class is available.
671 If no register in this class is available, memory is preferred.
673 It might appear to be more general to have a bitmask of classes here,
674 but since it is recommended that there be a class corresponding to the
675 union of most major pair of classes, that generality is not required.
677 This is available after `regclass' is run. */
679 static char *altclass;
681 /* Allocated buffers for prefclass and altclass. */
682 static char *prefclass_buffer;
683 static char *altclass_buffer;
685 /* Record the depth of loops that we are in. */
687 static int loop_depth;
689 /* Account for the fact that insns within a loop are executed very commonly,
690 but don't keep doing this as loops go too deep. */
692 static int loop_cost;
694 static rtx scan_one_insn PROTO((rtx, int));
695 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
696 const char **, rtx));
697 static int copy_cost PROTO((rtx, enum machine_mode,
698 enum reg_class, int));
699 static void record_address_regs PROTO((rtx, enum reg_class, int));
700 #ifdef FORBIDDEN_INC_DEC_CLASSES
701 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
702 #endif
703 static void reg_scan_mark_refs PROTO((rtx, rtx, int, int));
705 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
706 This function is sometimes called before the info has been computed.
707 When that happens, just return GENERAL_REGS, which is innocuous. */
709 enum reg_class
710 reg_preferred_class (regno)
711 int regno;
713 if (prefclass == 0)
714 return GENERAL_REGS;
715 return (enum reg_class) prefclass[regno];
718 enum reg_class
719 reg_alternate_class (regno)
720 int regno;
722 if (prefclass == 0)
723 return ALL_REGS;
725 return (enum reg_class) altclass[regno];
728 /* Initialize some global data for this pass. */
730 void
731 regclass_init ()
733 int i;
735 init_cost.mem_cost = 10000;
736 for (i = 0; i < N_REG_CLASSES; i++)
737 init_cost.cost[i] = 10000;
739 /* This prevents dump_flow_info from losing if called
740 before regclass is run. */
741 prefclass = 0;
744 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
745 time it would save code to put a certain register in a certain class.
746 PASS, when nonzero, inhibits some optimizations which need only be done
747 once.
748 Return the last insn processed, so that the scan can be continued from
749 there. */
751 static rtx
752 scan_one_insn (insn, pass)
753 rtx insn;
754 int pass;
756 enum rtx_code code = GET_CODE (insn);
757 enum rtx_code pat_code;
758 const char *constraints[MAX_RECOG_OPERANDS];
759 enum machine_mode modes[MAX_RECOG_OPERANDS];
760 rtx set, note;
761 int i, j;
763 /* Show that an insn inside a loop is likely to be executed three
764 times more than insns outside a loop. This is much more aggressive
765 than the assumptions made elsewhere and is being tried as an
766 experiment. */
768 if (code == NOTE)
770 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
771 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
772 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
773 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
775 return insn;
778 if (GET_RTX_CLASS (code) != 'i')
779 return insn;
781 pat_code = GET_CODE (PATTERN (insn));
782 if (pat_code == USE
783 || pat_code == CLOBBER
784 || pat_code == ASM_INPUT
785 || pat_code == ADDR_VEC
786 || pat_code == ADDR_DIFF_VEC)
787 return insn;
789 set = single_set (insn);
790 extract_insn (insn);
792 for (i = 0; i < recog_n_operands; i++)
794 constraints[i] = recog_constraints[i];
795 modes[i] = recog_operand_mode[i];
798 /* If this insn loads a parameter from its stack slot, then
799 it represents a savings, rather than a cost, if the
800 parameter is stored in memory. Record this fact. */
802 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
803 && GET_CODE (SET_SRC (set)) == MEM
804 && (note = find_reg_note (insn, REG_EQUIV,
805 NULL_RTX)) != 0
806 && GET_CODE (XEXP (note, 0)) == MEM)
808 costs[REGNO (SET_DEST (set))].mem_cost
809 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
810 GENERAL_REGS, 1)
811 * loop_cost);
812 record_address_regs (XEXP (SET_SRC (set), 0),
813 BASE_REG_CLASS, loop_cost * 2);
814 return insn;
817 /* Improve handling of two-address insns such as
818 (set X (ashift CONST Y)) where CONST must be made to
819 match X. Change it into two insns: (set X CONST)
820 (set X (ashift X Y)). If we left this for reloading, it
821 would probably get three insns because X and Y might go
822 in the same place. This prevents X and Y from receiving
823 the same hard reg.
825 We can only do this if the modes of operands 0 and 1
826 (which might not be the same) are tieable and we only need
827 do this during our first pass. */
829 if (pass == 0 && optimize
830 && recog_n_operands >= 3
831 && recog_constraints[1][0] == '0'
832 && recog_constraints[1][1] == 0
833 && CONSTANT_P (recog_operand[1])
834 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
835 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
836 && GET_CODE (recog_operand[0]) == REG
837 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
838 recog_operand_mode[1]))
840 rtx previnsn = prev_real_insn (insn);
841 rtx dest
842 = gen_lowpart (recog_operand_mode[1],
843 recog_operand[0]);
844 rtx newinsn
845 = emit_insn_before (gen_move_insn (dest,
846 recog_operand[1]),
847 insn);
849 /* If this insn was the start of a basic block,
850 include the new insn in that block.
851 We need not check for code_label here;
852 while a basic block can start with a code_label,
853 INSN could not be at the beginning of that block. */
854 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
856 int b;
857 for (b = 0; b < n_basic_blocks; b++)
858 if (insn == BLOCK_HEAD (b))
859 BLOCK_HEAD (b) = newinsn;
862 /* This makes one more setting of new insns's dest. */
863 REG_N_SETS (REGNO (recog_operand[0]))++;
865 *recog_operand_loc[1] = recog_operand[0];
866 for (i = recog_n_dups - 1; i >= 0; i--)
867 if (recog_dup_num[i] == 1)
868 *recog_dup_loc[i] = recog_operand[0];
870 return PREV_INSN (newinsn);
873 /* If we get here, we are set up to record the costs of all the
874 operands for this insn. Start by initializing the costs.
875 Then handle any address registers. Finally record the desired
876 classes for any pseudos, doing it twice if some pair of
877 operands are commutative. */
879 for (i = 0; i < recog_n_operands; i++)
881 op_costs[i] = init_cost;
883 if (GET_CODE (recog_operand[i]) == SUBREG)
884 recog_operand[i] = SUBREG_REG (recog_operand[i]);
886 if (GET_CODE (recog_operand[i]) == MEM)
887 record_address_regs (XEXP (recog_operand[i], 0),
888 BASE_REG_CLASS, loop_cost * 2);
889 else if (constraints[i][0] == 'p')
890 record_address_regs (recog_operand[i],
891 BASE_REG_CLASS, loop_cost * 2);
894 /* Check for commutative in a separate loop so everything will
895 have been initialized. We must do this even if one operand
896 is a constant--see addsi3 in m68k.md. */
898 for (i = 0; i < recog_n_operands - 1; i++)
899 if (constraints[i][0] == '%')
901 const char *xconstraints[MAX_RECOG_OPERANDS];
902 int j;
904 /* Handle commutative operands by swapping the constraints.
905 We assume the modes are the same. */
907 for (j = 0; j < recog_n_operands; j++)
908 xconstraints[j] = constraints[j];
910 xconstraints[i] = constraints[i+1];
911 xconstraints[i+1] = constraints[i];
912 record_reg_classes (recog_n_alternatives, recog_n_operands,
913 recog_operand, modes, xconstraints,
914 insn);
917 record_reg_classes (recog_n_alternatives, recog_n_operands, recog_operand,
918 modes, constraints, insn);
920 /* Now add the cost for each operand to the total costs for
921 its register. */
923 for (i = 0; i < recog_n_operands; i++)
924 if (GET_CODE (recog_operand[i]) == REG
925 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
927 int regno = REGNO (recog_operand[i]);
928 struct costs *p = &costs[regno], *q = &op_costs[i];
930 p->mem_cost += q->mem_cost * loop_cost;
931 for (j = 0; j < N_REG_CLASSES; j++)
932 p->cost[j] += q->cost[j] * loop_cost;
935 return insn;
938 /* This is a pass of the compiler that scans all instructions
939 and calculates the preferred class for each pseudo-register.
940 This information can be accessed later by calling `reg_preferred_class'.
941 This pass comes just before local register allocation. */
943 void
944 regclass (f, nregs)
945 rtx f;
946 int nregs;
948 #ifdef REGISTER_CONSTRAINTS
949 register rtx insn;
950 register int i;
951 int pass;
953 init_recog ();
955 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
957 #ifdef FORBIDDEN_INC_DEC_CLASSES
959 in_inc_dec = (char *) alloca (nregs);
961 /* Initialize information about which register classes can be used for
962 pseudos that are auto-incremented or auto-decremented. It would
963 seem better to put this in init_reg_sets, but we need to be able
964 to allocate rtx, which we can't do that early. */
966 for (i = 0; i < N_REG_CLASSES; i++)
968 rtx r = gen_rtx_REG (VOIDmode, 0);
969 enum machine_mode m;
970 register int j;
972 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
973 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
975 REGNO (r) = j;
977 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
978 m = (enum machine_mode) ((int) m + 1))
979 if (HARD_REGNO_MODE_OK (j, m))
981 PUT_MODE (r, m);
983 /* If a register is not directly suitable for an
984 auto-increment or decrement addressing mode and
985 requires secondary reloads, disallow its class from
986 being used in such addresses. */
988 if ((0
989 #ifdef SECONDARY_RELOAD_CLASS
990 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
991 != NO_REGS)
992 #else
993 #ifdef SECONDARY_INPUT_RELOAD_CLASS
994 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
995 != NO_REGS)
996 #endif
997 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
998 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
999 != NO_REGS)
1000 #endif
1001 #endif
1003 && ! auto_inc_dec_reg_p (r, m))
1004 forbidden_inc_dec_class[i] = 1;
1008 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1010 /* Normally we scan the insns once and determine the best class to use for
1011 each register. However, if -fexpensive_optimizations are on, we do so
1012 twice, the second time using the tentative best classes to guide the
1013 selection. */
1015 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1017 /* Zero out our accumulation of the cost of each class for each reg. */
1019 bzero ((char *) costs, nregs * sizeof (struct costs));
1021 #ifdef FORBIDDEN_INC_DEC_CLASSES
1022 bzero (in_inc_dec, nregs);
1023 #endif
1025 loop_depth = 0, loop_cost = 1;
1027 /* Scan the instructions and record each time it would
1028 save code to put a certain register in a certain class. */
1030 for (insn = f; insn; insn = NEXT_INSN (insn))
1032 insn = scan_one_insn (insn, pass);
1035 /* Now for each register look at how desirable each class is
1036 and find which class is preferred. Store that in
1037 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
1038 class any of whose registers is better than memory. */
1040 if (pass == 0)
1042 prefclass = prefclass_buffer;
1043 altclass = altclass_buffer;
1046 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1048 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1049 enum reg_class best = ALL_REGS, alt = NO_REGS;
1050 /* This is an enum reg_class, but we call it an int
1051 to save lots of casts. */
1052 register int class;
1053 register struct costs *p = &costs[i];
1055 for (class = (int) ALL_REGS - 1; class > 0; class--)
1057 /* Ignore classes that are too small for this operand or
1058 invalid for a operand that was auto-incremented. */
1059 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1060 > reg_class_size[class]
1061 #ifdef FORBIDDEN_INC_DEC_CLASSES
1062 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1063 #endif
1066 else if (p->cost[class] < best_cost)
1068 best_cost = p->cost[class];
1069 best = (enum reg_class) class;
1071 else if (p->cost[class] == best_cost)
1072 best = reg_class_subunion[(int)best][class];
1075 /* Record the alternate register class; i.e., a class for which
1076 every register in it is better than using memory. If adding a
1077 class would make a smaller class (i.e., no union of just those
1078 classes exists), skip that class. The major unions of classes
1079 should be provided as a register class. Don't do this if we
1080 will be doing it again later. */
1082 if (pass == 1 || ! flag_expensive_optimizations)
1083 for (class = 0; class < N_REG_CLASSES; class++)
1084 if (p->cost[class] < p->mem_cost
1085 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1086 > reg_class_size[(int) alt])
1087 #ifdef FORBIDDEN_INC_DEC_CLASSES
1088 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1089 #endif
1091 alt = reg_class_subunion[(int) alt][class];
1093 /* If we don't add any classes, nothing to try. */
1094 if (alt == best)
1095 alt = NO_REGS;
1097 /* We cast to (int) because (char) hits bugs in some compilers. */
1098 prefclass[i] = (int) best;
1099 altclass[i] = (int) alt;
1102 #endif /* REGISTER_CONSTRAINTS */
1104 free (costs);
1107 #ifdef REGISTER_CONSTRAINTS
1109 /* Record the cost of using memory or registers of various classes for
1110 the operands in INSN.
1112 N_ALTS is the number of alternatives.
1114 N_OPS is the number of operands.
1116 OPS is an array of the operands.
1118 MODES are the modes of the operands, in case any are VOIDmode.
1120 CONSTRAINTS are the constraints to use for the operands. This array
1121 is modified by this procedure.
1123 This procedure works alternative by alternative. For each alternative
1124 we assume that we will be able to allocate all pseudos to their ideal
1125 register class and calculate the cost of using that alternative. Then
1126 we compute for each operand that is a pseudo-register, the cost of
1127 having the pseudo allocated to each register class and using it in that
1128 alternative. To this cost is added the cost of the alternative.
1130 The cost of each class for this insn is its lowest cost among all the
1131 alternatives. */
1133 static void
1134 record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
1135 int n_alts;
1136 int n_ops;
1137 rtx *ops;
1138 enum machine_mode *modes;
1139 const char **constraints;
1140 rtx insn;
1142 int alt;
1143 int i, j;
1144 rtx set;
1146 /* Process each alternative, each time minimizing an operand's cost with
1147 the cost for each operand in that alternative. */
1149 for (alt = 0; alt < n_alts; alt++)
1151 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1152 int alt_fail = 0;
1153 int alt_cost = 0;
1154 enum reg_class classes[MAX_RECOG_OPERANDS];
1155 int class;
1157 for (i = 0; i < n_ops; i++)
1159 const char *p = constraints[i];
1160 rtx op = ops[i];
1161 enum machine_mode mode = modes[i];
1162 int allows_addr = 0;
1163 int allows_mem = 0;
1164 int win = 0;
1165 unsigned char c;
1167 /* Initially show we know nothing about the register class. */
1168 classes[i] = NO_REGS;
1170 /* If this operand has no constraints at all, we can conclude
1171 nothing about it since anything is valid. */
1173 if (*p == 0)
1175 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1176 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1178 continue;
1181 /* If this alternative is only relevant when this operand
1182 matches a previous operand, we do different things depending
1183 on whether this operand is a pseudo-reg or not. We must process
1184 any modifiers for the operand before we can make this test. */
1186 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1187 p++;
1189 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1191 j = p[0] - '0';
1192 classes[i] = classes[j];
1194 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1196 /* If this matches the other operand, we have no added
1197 cost and we win. */
1198 if (rtx_equal_p (ops[j], op))
1199 win = 1;
1201 /* If we can put the other operand into a register, add to
1202 the cost of this alternative the cost to copy this
1203 operand to the register used for the other operand. */
1205 else if (classes[j] != NO_REGS)
1206 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1208 else if (GET_CODE (ops[j]) != REG
1209 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1211 /* This op is a pseudo but the one it matches is not. */
1213 /* If we can't put the other operand into a register, this
1214 alternative can't be used. */
1216 if (classes[j] == NO_REGS)
1217 alt_fail = 1;
1219 /* Otherwise, add to the cost of this alternative the cost
1220 to copy the other operand to the register used for this
1221 operand. */
1223 else
1224 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1226 else
1228 /* The costs of this operand are the same as that of the
1229 other operand. However, if we cannot tie them, this
1230 alternative needs to do a copy, which is one
1231 instruction. */
1233 this_op_costs[i] = this_op_costs[j];
1234 if (REGNO (ops[i]) != REGNO (ops[j])
1235 && ! find_reg_note (insn, REG_DEAD, op))
1236 alt_cost += 2;
1238 /* This is in place of ordinary cost computation
1239 for this operand, so skip to the end of the
1240 alternative (should be just one character). */
1241 while (*p && *p++ != ',')
1244 constraints[i] = p;
1245 continue;
1249 /* Scan all the constraint letters. See if the operand matches
1250 any of the constraints. Collect the valid register classes
1251 and see if this operand accepts memory. */
1253 while (*p && (c = *p++) != ',')
1254 switch (c)
1256 case '*':
1257 /* Ignore the next letter for this pass. */
1258 p++;
1259 break;
1261 case '?':
1262 alt_cost += 2;
1263 case '!': case '#': case '&':
1264 case '0': case '1': case '2': case '3': case '4':
1265 case '5': case '6': case '7': case '8': case '9':
1266 break;
1268 case 'p':
1269 allows_addr = 1;
1270 win = address_operand (op, GET_MODE (op));
1271 /* We know this operand is an address, so we want it to be
1272 allocated to a register that can be the base of an
1273 address, ie BASE_REG_CLASS. */
1274 classes[i]
1275 = reg_class_subunion[(int) classes[i]]
1276 [(int) BASE_REG_CLASS];
1277 break;
1279 case 'm': case 'o': case 'V':
1280 /* It doesn't seem worth distinguishing between offsettable
1281 and non-offsettable addresses here. */
1282 allows_mem = 1;
1283 if (GET_CODE (op) == MEM)
1284 win = 1;
1285 break;
1287 case '<':
1288 if (GET_CODE (op) == MEM
1289 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1290 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1291 win = 1;
1292 break;
1294 case '>':
1295 if (GET_CODE (op) == MEM
1296 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1297 || GET_CODE (XEXP (op, 0)) == POST_INC))
1298 win = 1;
1299 break;
1301 case 'E':
1302 #ifndef REAL_ARITHMETIC
1303 /* Match any floating double constant, but only if
1304 we can examine the bits of it reliably. */
1305 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1306 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1307 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1308 break;
1309 #endif
1310 if (GET_CODE (op) == CONST_DOUBLE)
1311 win = 1;
1312 break;
1314 case 'F':
1315 if (GET_CODE (op) == CONST_DOUBLE)
1316 win = 1;
1317 break;
1319 case 'G':
1320 case 'H':
1321 if (GET_CODE (op) == CONST_DOUBLE
1322 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1323 win = 1;
1324 break;
1326 case 's':
1327 if (GET_CODE (op) == CONST_INT
1328 || (GET_CODE (op) == CONST_DOUBLE
1329 && GET_MODE (op) == VOIDmode))
1330 break;
1331 case 'i':
1332 if (CONSTANT_P (op)
1333 #ifdef LEGITIMATE_PIC_OPERAND_P
1334 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1335 #endif
1337 win = 1;
1338 break;
1340 case 'n':
1341 if (GET_CODE (op) == CONST_INT
1342 || (GET_CODE (op) == CONST_DOUBLE
1343 && GET_MODE (op) == VOIDmode))
1344 win = 1;
1345 break;
1347 case 'I':
1348 case 'J':
1349 case 'K':
1350 case 'L':
1351 case 'M':
1352 case 'N':
1353 case 'O':
1354 case 'P':
1355 if (GET_CODE (op) == CONST_INT
1356 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1357 win = 1;
1358 break;
1360 case 'X':
1361 win = 1;
1362 break;
1364 #ifdef EXTRA_CONSTRAINT
1365 case 'Q':
1366 case 'R':
1367 case 'S':
1368 case 'T':
1369 case 'U':
1370 if (EXTRA_CONSTRAINT (op, c))
1371 win = 1;
1372 break;
1373 #endif
1375 case 'g':
1376 if (GET_CODE (op) == MEM
1377 || (CONSTANT_P (op)
1378 #ifdef LEGITIMATE_PIC_OPERAND_P
1379 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1380 #endif
1382 win = 1;
1383 allows_mem = 1;
1384 case 'r':
1385 classes[i]
1386 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1387 break;
1389 default:
1390 classes[i]
1391 = reg_class_subunion[(int) classes[i]]
1392 [(int) REG_CLASS_FROM_LETTER (c)];
1395 constraints[i] = p;
1397 /* How we account for this operand now depends on whether it is a
1398 pseudo register or not. If it is, we first check if any
1399 register classes are valid. If not, we ignore this alternative,
1400 since we want to assume that all pseudos get allocated for
1401 register preferencing. If some register class is valid, compute
1402 the costs of moving the pseudo into that class. */
1404 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1406 if (classes[i] == NO_REGS)
1408 /* We must always fail if the operand is a REG, but
1409 we did not find a suitable class.
1411 Otherwise we may perform an uninitialized read
1412 from this_op_costs after the `continue' statement
1413 below. */
1414 alt_fail = 1;
1416 else
1418 struct costs *pp = &this_op_costs[i];
1420 for (class = 0; class < N_REG_CLASSES; class++)
1421 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1423 /* If the alternative actually allows memory, make things
1424 a bit cheaper since we won't need an extra insn to
1425 load it. */
1427 pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1428 - allows_mem);
1430 /* If we have assigned a class to this register in our
1431 first pass, add a cost to this alternative corresponding
1432 to what we would add if this register were not in the
1433 appropriate class. */
1435 if (prefclass)
1436 alt_cost
1437 += may_move_cost[(unsigned char)prefclass[REGNO (op)]][(int) classes[i]];
1441 /* Otherwise, if this alternative wins, either because we
1442 have already determined that or if we have a hard register of
1443 the proper class, there is no cost for this alternative. */
1445 else if (win
1446 || (GET_CODE (op) == REG
1447 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1450 /* If registers are valid, the cost of this alternative includes
1451 copying the object to and/or from a register. */
1453 else if (classes[i] != NO_REGS)
1455 if (recog_op_type[i] != OP_OUT)
1456 alt_cost += copy_cost (op, mode, classes[i], 1);
1458 if (recog_op_type[i] != OP_IN)
1459 alt_cost += copy_cost (op, mode, classes[i], 0);
1462 /* The only other way this alternative can be used is if this is a
1463 constant that could be placed into memory. */
1465 else if (CONSTANT_P (op) && (allows_addr || allows_mem))
1466 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1467 else
1468 alt_fail = 1;
1471 if (alt_fail)
1472 continue;
1474 /* Finally, update the costs with the information we've calculated
1475 about this alternative. */
1477 for (i = 0; i < n_ops; i++)
1478 if (GET_CODE (ops[i]) == REG
1479 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1481 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1482 int scale = 1 + (recog_op_type[i] == OP_INOUT);
1484 pp->mem_cost = MIN (pp->mem_cost,
1485 (qq->mem_cost + alt_cost) * scale);
1487 for (class = 0; class < N_REG_CLASSES; class++)
1488 pp->cost[class] = MIN (pp->cost[class],
1489 (qq->cost[class] + alt_cost) * scale);
1493 /* If this insn is a single set copying operand 1 to operand 0
1494 and one is a pseudo with the other a hard reg that is in its
1495 own register class, set the cost of that register class to -1. */
1497 if ((set = single_set (insn)) != 0
1498 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1499 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1500 for (i = 0; i <= 1; i++)
1501 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1503 int regno = REGNO (ops[!i]);
1504 enum machine_mode mode = GET_MODE (ops[!i]);
1505 int class;
1506 int nr;
1508 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1509 && (reg_class_size[(unsigned char)prefclass[regno]]
1510 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1511 op_costs[i].cost[(unsigned char)prefclass[regno]] = -1;
1512 else if (regno < FIRST_PSEUDO_REGISTER)
1513 for (class = 0; class < N_REG_CLASSES; class++)
1514 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1515 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1517 if (reg_class_size[class] == 1)
1518 op_costs[i].cost[class] = -1;
1519 else
1521 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1523 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1524 break;
1527 if (nr == HARD_REGNO_NREGS(regno,mode))
1528 op_costs[i].cost[class] = -1;
1534 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1535 TO_P is zero) a register of class CLASS in mode MODE.
1537 X must not be a pseudo. */
1539 static int
1540 copy_cost (x, mode, class, to_p)
1541 rtx x;
1542 enum machine_mode mode;
1543 enum reg_class class;
1544 int to_p;
1546 #ifdef HAVE_SECONDARY_RELOADS
1547 enum reg_class secondary_class = NO_REGS;
1548 #endif
1550 /* If X is a SCRATCH, there is actually nothing to move since we are
1551 assuming optimal allocation. */
1553 if (GET_CODE (x) == SCRATCH)
1554 return 0;
1556 /* Get the class we will actually use for a reload. */
1557 class = PREFERRED_RELOAD_CLASS (x, class);
1559 #ifdef HAVE_SECONDARY_RELOADS
1560 /* If we need a secondary reload (we assume here that we are using
1561 the secondary reload as an intermediate, not a scratch register), the
1562 cost is that to load the input into the intermediate register, then
1563 to copy them. We use a special value of TO_P to avoid recursion. */
1565 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1566 if (to_p == 1)
1567 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1568 #endif
1570 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1571 if (! to_p)
1572 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1573 #endif
1575 if (secondary_class != NO_REGS)
1576 return (move_cost[(int) secondary_class][(int) class]
1577 + copy_cost (x, mode, secondary_class, 2));
1578 #endif /* HAVE_SECONDARY_RELOADS */
1580 /* For memory, use the memory move cost, for (hard) registers, use the
1581 cost to move between the register classes, and use 2 for everything
1582 else (constants). */
1584 if (GET_CODE (x) == MEM || class == NO_REGS)
1585 return MEMORY_MOVE_COST (mode, class, to_p);
1587 else if (GET_CODE (x) == REG)
1588 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1590 else
1591 /* If this is a constant, we may eventually want to call rtx_cost here. */
1592 return 2;
1595 /* Record the pseudo registers we must reload into hard registers
1596 in a subexpression of a memory address, X.
1598 CLASS is the class that the register needs to be in and is either
1599 BASE_REG_CLASS or INDEX_REG_CLASS.
1601 SCALE is twice the amount to multiply the cost by (it is twice so we
1602 can represent half-cost adjustments). */
1604 static void
1605 record_address_regs (x, class, scale)
1606 rtx x;
1607 enum reg_class class;
1608 int scale;
1610 register enum rtx_code code = GET_CODE (x);
1612 switch (code)
1614 case CONST_INT:
1615 case CONST:
1616 case CC0:
1617 case PC:
1618 case SYMBOL_REF:
1619 case LABEL_REF:
1620 return;
1622 case PLUS:
1623 /* When we have an address that is a sum,
1624 we must determine whether registers are "base" or "index" regs.
1625 If there is a sum of two registers, we must choose one to be
1626 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1627 to make a good choice most of the time. We only need to do this
1628 on machines that can have two registers in an address and where
1629 the base and index register classes are different.
1631 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1632 that seems bogus since it should only be set when we are sure
1633 the register is being used as a pointer. */
1636 rtx arg0 = XEXP (x, 0);
1637 rtx arg1 = XEXP (x, 1);
1638 register enum rtx_code code0 = GET_CODE (arg0);
1639 register enum rtx_code code1 = GET_CODE (arg1);
1641 /* Look inside subregs. */
1642 if (code0 == SUBREG)
1643 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1644 if (code1 == SUBREG)
1645 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1647 /* If this machine only allows one register per address, it must
1648 be in the first operand. */
1650 if (MAX_REGS_PER_ADDRESS == 1)
1651 record_address_regs (arg0, class, scale);
1653 /* If index and base registers are the same on this machine, just
1654 record registers in any non-constant operands. We assume here,
1655 as well as in the tests below, that all addresses are in
1656 canonical form. */
1658 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1660 record_address_regs (arg0, class, scale);
1661 if (! CONSTANT_P (arg1))
1662 record_address_regs (arg1, class, scale);
1665 /* If the second operand is a constant integer, it doesn't change
1666 what class the first operand must be. */
1668 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1669 record_address_regs (arg0, class, scale);
1671 /* If the second operand is a symbolic constant, the first operand
1672 must be an index register. */
1674 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1675 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1677 /* If both operands are registers but one is already a hard register
1678 of index or base class, give the other the class that the hard
1679 register is not. */
1681 #ifdef REG_OK_FOR_BASE_P
1682 else if (code0 == REG && code1 == REG
1683 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1684 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1685 record_address_regs (arg1,
1686 REG_OK_FOR_BASE_P (arg0)
1687 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1688 scale);
1689 else if (code0 == REG && code1 == REG
1690 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1691 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1692 record_address_regs (arg0,
1693 REG_OK_FOR_BASE_P (arg1)
1694 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1695 scale);
1696 #endif
1698 /* If one operand is known to be a pointer, it must be the base
1699 with the other operand the index. Likewise if the other operand
1700 is a MULT. */
1702 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1703 || code1 == MULT)
1705 record_address_regs (arg0, BASE_REG_CLASS, scale);
1706 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1708 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1709 || code0 == MULT)
1711 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1712 record_address_regs (arg1, BASE_REG_CLASS, scale);
1715 /* Otherwise, count equal chances that each might be a base
1716 or index register. This case should be rare. */
1718 else
1720 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1721 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1722 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1723 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1726 break;
1728 case POST_INC:
1729 case PRE_INC:
1730 case POST_DEC:
1731 case PRE_DEC:
1732 /* Double the importance of a pseudo register that is incremented
1733 or decremented, since it would take two extra insns
1734 if it ends up in the wrong place. If the operand is a pseudo,
1735 show it is being used in an INC_DEC context. */
1737 #ifdef FORBIDDEN_INC_DEC_CLASSES
1738 if (GET_CODE (XEXP (x, 0)) == REG
1739 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1740 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1741 #endif
1743 record_address_regs (XEXP (x, 0), class, 2 * scale);
1744 break;
1746 case REG:
1748 register struct costs *pp = &costs[REGNO (x)];
1749 register int i;
1751 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1753 for (i = 0; i < N_REG_CLASSES; i++)
1754 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1756 break;
1758 default:
1760 register char *fmt = GET_RTX_FORMAT (code);
1761 register int i;
1762 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1763 if (fmt[i] == 'e')
1764 record_address_regs (XEXP (x, i), class, scale);
1769 #ifdef FORBIDDEN_INC_DEC_CLASSES
1771 /* Return 1 if REG is valid as an auto-increment memory reference
1772 to an object of MODE. */
1774 static int
1775 auto_inc_dec_reg_p (reg, mode)
1776 rtx reg;
1777 enum machine_mode mode;
1779 if (HAVE_POST_INCREMENT
1780 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1781 return 1;
1783 if (HAVE_POST_DECREMENT
1784 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1785 return 1;
1787 if (HAVE_PRE_INCREMENT
1788 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1789 return 1;
1791 if (HAVE_PRE_DECREMENT
1792 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1793 return 1;
1795 return 0;
1797 #endif
1799 #endif /* REGISTER_CONSTRAINTS */
1801 static short *renumber = (short *)0;
1802 static size_t regno_allocated = 0;
1804 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1805 reg_scan and flow_analysis that are indexed by the register number. If
1806 NEW_P is non zero, initialize all of the registers, otherwise only
1807 initialize the new registers allocated. The same table is kept from
1808 function to function, only reallocating it when we need more room. If
1809 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1811 void
1812 allocate_reg_info (num_regs, new_p, renumber_p)
1813 size_t num_regs;
1814 int new_p;
1815 int renumber_p;
1817 size_t size_info;
1818 size_t size_renumber;
1819 size_t min = (new_p) ? 0 : reg_n_max;
1820 struct reg_info_data *reg_data;
1821 struct reg_info_data *reg_next;
1823 if (num_regs > regno_allocated)
1825 size_t old_allocated = regno_allocated;
1827 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1828 size_renumber = regno_allocated * sizeof (short);
1830 if (!reg_n_info)
1832 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1833 renumber = (short *) xmalloc (size_renumber);
1834 prefclass_buffer = (char *) xmalloc (regno_allocated);
1835 altclass_buffer = (char *) xmalloc (regno_allocated);
1838 else
1840 VARRAY_GROW (reg_n_info, regno_allocated);
1842 if (new_p) /* if we're zapping everything, no need to realloc */
1844 free ((char *)renumber);
1845 free ((char *)prefclass_buffer);
1846 free ((char *)altclass_buffer);
1847 renumber = (short *) xmalloc (size_renumber);
1848 prefclass_buffer = (char *) xmalloc (regno_allocated);
1849 altclass_buffer = (char *) xmalloc (regno_allocated);
1852 else
1854 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1855 prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1856 regno_allocated);
1858 altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1859 regno_allocated);
1863 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1864 + sizeof (struct reg_info_data) - sizeof (reg_info);
1865 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1866 reg_data->min_index = old_allocated;
1867 reg_data->max_index = regno_allocated - 1;
1868 reg_data->next = reg_info_head;
1869 reg_info_head = reg_data;
1872 reg_n_max = num_regs;
1873 if (min < num_regs)
1875 /* Loop through each of the segments allocated for the actual
1876 reg_info pages, and set up the pointers, zero the pages, etc. */
1877 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1879 size_t min_index = reg_data->min_index;
1880 size_t max_index = reg_data->max_index;
1882 reg_next = reg_data->next;
1883 if (min <= max_index)
1885 size_t max = max_index;
1886 size_t local_min = min - min_index;
1887 size_t i;
1889 if (min < min_index)
1890 local_min = 0;
1891 if (!reg_data->used_p) /* page just allocated with calloc */
1892 reg_data->used_p = 1; /* no need to zero */
1893 else
1894 bzero ((char *) &reg_data->data[local_min],
1895 sizeof (reg_info) * (max - min_index - local_min + 1));
1897 for (i = min_index+local_min; i <= max; i++)
1899 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1900 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1901 renumber[i] = -1;
1902 prefclass_buffer[i] = (char) NO_REGS;
1903 altclass_buffer[i] = (char) NO_REGS;
1909 /* If {pref,alt}class have already been allocated, update the pointers to
1910 the newly realloced ones. */
1911 if (prefclass)
1913 prefclass = prefclass_buffer;
1914 altclass = altclass_buffer;
1917 if (renumber_p)
1918 reg_renumber = renumber;
1920 /* Tell the regset code about the new number of registers */
1921 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1924 /* Free up the space allocated by allocate_reg_info. */
1925 void
1926 free_reg_info ()
1928 if (reg_n_info)
1930 struct reg_info_data *reg_data;
1931 struct reg_info_data *reg_next;
1933 VARRAY_FREE (reg_n_info);
1934 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1936 reg_next = reg_data->next;
1937 free ((char *)reg_data);
1940 free (prefclass_buffer);
1941 free (altclass_buffer);
1942 prefclass_buffer = (char *)0;
1943 altclass_buffer = (char *)0;
1944 reg_info_head = (struct reg_info_data *)0;
1945 renumber = (short *)0;
1947 regno_allocated = 0;
1948 reg_n_max = 0;
1951 /* This is the `regscan' pass of the compiler, run just before cse
1952 and again just before loop.
1954 It finds the first and last use of each pseudo-register
1955 and records them in the vectors regno_first_uid, regno_last_uid
1956 and counts the number of sets in the vector reg_n_sets.
1958 REPEAT is nonzero the second time this is called. */
1960 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1961 Always at least 3, since the combiner could put that many together
1962 and we want this to remain correct for all the remaining passes. */
1964 int max_parallel;
1966 void
1967 reg_scan (f, nregs, repeat)
1968 rtx f;
1969 int nregs;
1970 int repeat;
1972 register rtx insn;
1974 allocate_reg_info (nregs, TRUE, FALSE);
1975 max_parallel = 3;
1977 for (insn = f; insn; insn = NEXT_INSN (insn))
1978 if (GET_CODE (insn) == INSN
1979 || GET_CODE (insn) == CALL_INSN
1980 || GET_CODE (insn) == JUMP_INSN)
1982 if (GET_CODE (PATTERN (insn)) == PARALLEL
1983 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1984 max_parallel = XVECLEN (PATTERN (insn), 0);
1985 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
1987 if (REG_NOTES (insn))
1988 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
1992 /* Update 'regscan' information by looking at the insns
1993 from FIRST to LAST. Some new REGs have been created,
1994 and any REG with number greater than OLD_MAX_REGNO is
1995 such a REG. We only update information for those. */
1997 void
1998 reg_scan_update(first, last, old_max_regno)
1999 rtx first;
2000 rtx last;
2001 int old_max_regno;
2003 register rtx insn;
2005 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2007 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2008 if (GET_CODE (insn) == INSN
2009 || GET_CODE (insn) == CALL_INSN
2010 || GET_CODE (insn) == JUMP_INSN)
2012 if (GET_CODE (PATTERN (insn)) == PARALLEL
2013 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2014 max_parallel = XVECLEN (PATTERN (insn), 0);
2015 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2017 if (REG_NOTES (insn))
2018 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2022 /* X is the expression to scan. INSN is the insn it appears in.
2023 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2024 We should only record information for REGs with numbers
2025 greater than or equal to MIN_REGNO. */
2027 static void
2028 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2029 rtx x;
2030 rtx insn;
2031 int note_flag;
2032 int min_regno;
2034 register enum rtx_code code;
2035 register rtx dest;
2036 register rtx note;
2038 code = GET_CODE (x);
2039 switch (code)
2041 case CONST:
2042 case CONST_INT:
2043 case CONST_DOUBLE:
2044 case CC0:
2045 case PC:
2046 case SYMBOL_REF:
2047 case LABEL_REF:
2048 case ADDR_VEC:
2049 case ADDR_DIFF_VEC:
2050 return;
2052 case REG:
2054 register int regno = REGNO (x);
2056 if (regno >= min_regno)
2058 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2059 if (!note_flag)
2060 REGNO_LAST_UID (regno) = INSN_UID (insn);
2061 if (REGNO_FIRST_UID (regno) == 0)
2062 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2065 break;
2067 case EXPR_LIST:
2068 if (XEXP (x, 0))
2069 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2070 if (XEXP (x, 1))
2071 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2072 break;
2074 case INSN_LIST:
2075 if (XEXP (x, 1))
2076 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2077 break;
2079 case SET:
2080 /* Count a set of the destination if it is a register. */
2081 for (dest = SET_DEST (x);
2082 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2083 || GET_CODE (dest) == ZERO_EXTEND;
2084 dest = XEXP (dest, 0))
2087 if (GET_CODE (dest) == REG
2088 && REGNO (dest) >= min_regno)
2089 REG_N_SETS (REGNO (dest))++;
2091 /* If this is setting a pseudo from another pseudo or the sum of a
2092 pseudo and a constant integer and the other pseudo is known to be
2093 a pointer, set the destination to be a pointer as well.
2095 Likewise if it is setting the destination from an address or from a
2096 value equivalent to an address or to the sum of an address and
2097 something else.
2099 But don't do any of this if the pseudo corresponds to a user
2100 variable since it should have already been set as a pointer based
2101 on the type. */
2103 if (GET_CODE (SET_DEST (x)) == REG
2104 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2105 && REGNO (SET_DEST (x)) >= min_regno
2106 /* If the destination pseudo is set more than once, then other
2107 sets might not be to a pointer value (consider access to a
2108 union in two threads of control in the presense of global
2109 optimizations). So only set REGNO_POINTER_FLAG on the destination
2110 pseudo if this is the only set of that pseudo. */
2111 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2112 && ! REG_USERVAR_P (SET_DEST (x))
2113 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2114 && ((GET_CODE (SET_SRC (x)) == REG
2115 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2116 || ((GET_CODE (SET_SRC (x)) == PLUS
2117 || GET_CODE (SET_SRC (x)) == LO_SUM)
2118 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2119 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2120 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2121 || GET_CODE (SET_SRC (x)) == CONST
2122 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2123 || GET_CODE (SET_SRC (x)) == LABEL_REF
2124 || (GET_CODE (SET_SRC (x)) == HIGH
2125 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2126 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2127 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2128 || ((GET_CODE (SET_SRC (x)) == PLUS
2129 || GET_CODE (SET_SRC (x)) == LO_SUM)
2130 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2131 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2132 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2133 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2134 && (GET_CODE (XEXP (note, 0)) == CONST
2135 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2136 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2137 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2139 /* ... fall through ... */
2141 default:
2143 register char *fmt = GET_RTX_FORMAT (code);
2144 register int i;
2145 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2147 if (fmt[i] == 'e')
2148 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2149 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2151 register int j;
2152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2153 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2160 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2161 is also in C2. */
2164 reg_class_subset_p (c1, c2)
2165 register enum reg_class c1;
2166 register enum reg_class c2;
2168 if (c1 == c2) return 1;
2170 if (c2 == ALL_REGS)
2171 win:
2172 return 1;
2173 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2174 reg_class_contents[(int)c2],
2175 win);
2176 return 0;
2179 /* Return nonzero if there is a register that is in both C1 and C2. */
2182 reg_classes_intersect_p (c1, c2)
2183 register enum reg_class c1;
2184 register enum reg_class c2;
2186 #ifdef HARD_REG_SET
2187 register
2188 #endif
2189 HARD_REG_SET c;
2191 if (c1 == c2) return 1;
2193 if (c1 == ALL_REGS || c2 == ALL_REGS)
2194 return 1;
2196 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2197 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2199 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2200 return 1;
2202 lose:
2203 return 0;
2206 /* Release any memory allocated by register sets. */
2208 void
2209 regset_release_memory ()
2211 bitmap_release_memory ();