1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
53 #include "insn-config.h"
54 #include "insn-flags.h"
55 #include "insn-attr.h"
56 #include "insn-codes.h"
58 #include "conditions.h"
61 #include "hard-reg-set.h"
69 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
70 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
72 #if defined (USG) || !defined (HAVE_STAB_H)
73 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
78 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
80 #ifdef XCOFF_DEBUGGING_INFO
84 #ifdef DWARF_DEBUGGING_INFO
88 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
89 #include "dwarf2out.h"
92 #ifdef SDB_DEBUGGING_INFO
96 /* .stabd code for line number. */
101 /* .stabs code for included file name. */
106 #ifndef INT_TYPE_SIZE
107 #define INT_TYPE_SIZE BITS_PER_WORD
110 #ifndef LONG_TYPE_SIZE
111 #define LONG_TYPE_SIZE BITS_PER_WORD
114 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
115 null default for it to save conditionalization later. */
116 #ifndef CC_STATUS_INIT
117 #define CC_STATUS_INIT
120 /* How to start an assembler comment. */
121 #ifndef ASM_COMMENT_START
122 #define ASM_COMMENT_START ";#"
125 /* Is the given character a logical line separator for the assembler? */
126 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
127 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
130 #ifndef JUMP_TABLES_IN_TEXT_SECTION
131 #define JUMP_TABLES_IN_TEXT_SECTION 0
134 /* Last insn processed by final_scan_insn. */
135 static rtx debug_insn
= 0;
137 /* Line number of last NOTE. */
138 static int last_linenum
;
140 /* Highest line number in current block. */
141 static int high_block_linenum
;
143 /* Likewise for function. */
144 static int high_function_linenum
;
146 /* Filename of last NOTE. */
147 static char *last_filename
;
149 /* Number of basic blocks seen so far;
150 used if profile_block_flag is set. */
151 static int count_basic_blocks
;
153 /* Number of instrumented arcs when profile_arc_flag is set. */
154 extern int count_instrumented_arcs
;
156 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
158 /* Nonzero while outputting an `asm' with operands.
159 This means that inconsistencies are the user's fault, so don't abort.
160 The precise value is the insn being output, to pass to error_for_asm. */
161 static rtx this_is_asm_operands
;
163 /* Number of operands of this insn, for an `asm' with operands. */
164 static unsigned int insn_noperands
;
166 /* Compare optimization flag. */
168 static rtx last_ignored_compare
= 0;
170 /* Flag indicating this insn is the start of a new basic block. */
172 static int new_block
= 1;
174 /* All the symbol-blocks (levels of scoping) in the compilation
175 are assigned sequence numbers in order of appearance of the
176 beginnings of the symbol-blocks. Both final and dbxout do this,
177 and assume that they will both give the same number to each block.
178 Final uses these sequence numbers to generate assembler label names
179 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
180 Dbxout uses the sequence numbers to generate references to the same labels
181 from the dbx debugging information.
183 Sdb records this level at the beginning of each function,
184 in order to find the current level when recursing down declarations.
185 It outputs the block beginning and endings
186 at the point in the asm file where the blocks would begin and end. */
188 int next_block_index
;
190 /* Assign a unique number to each insn that is output.
191 This can be used to generate unique local labels. */
193 static int insn_counter
= 0;
196 /* This variable contains machine-dependent flags (defined in tm.h)
197 set and examined by output routines
198 that describe how to interpret the condition codes properly. */
202 /* During output of an insn, this contains a copy of cc_status
203 from before the insn. */
205 CC_STATUS cc_prev_status
;
208 /* Indexed by hardware reg number, is 1 if that register is ever
209 used in the current function.
211 In life_analysis, or in stupid_life_analysis, this is set
212 up to record the hard regs used explicitly. Reload adds
213 in the hard regs used for holding pseudo regs. Final uses
214 it to generate the code in the function prologue and epilogue
215 to save and restore registers as needed. */
217 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
219 /* Nonzero means current function must be given a frame pointer.
220 Set in stmt.c if anything is allocated on the stack there.
221 Set in reload1.c if anything is allocated on the stack there. */
223 int frame_pointer_needed
;
225 /* Assign unique numbers to labels generated for profiling. */
227 int profile_label_no
;
229 /* Length so far allocated in PENDING_BLOCKS. */
231 static int max_block_depth
;
233 /* Stack of sequence numbers of symbol-blocks of which we have seen the
234 beginning but not yet the end. Sequence numbers are assigned at
235 the beginning; this stack allows us to find the sequence number
236 of a block that is ending. */
238 static int *pending_blocks
;
240 /* Number of elements currently in use in PENDING_BLOCKS. */
242 static int block_depth
;
244 /* Nonzero if have enabled APP processing of our assembler output. */
248 /* If we are outputting an insn sequence, this contains the sequence rtx.
253 #ifdef ASSEMBLER_DIALECT
255 /* Number of the assembler dialect to use, starting at 0. */
256 static int dialect_number
;
259 /* Indexed by line number, nonzero if there is a note for that line. */
261 static char *line_note_exists
;
263 /* Linked list to hold line numbers for each basic block. */
266 struct bb_list
*next
; /* pointer to next basic block */
267 int line_num
; /* line number */
268 int file_label_num
; /* LPBC<n> label # for stored filename */
269 int func_label_num
; /* LPBC<n> label # for stored function name */
272 static struct bb_list
*bb_head
= 0; /* Head of basic block list */
273 static struct bb_list
**bb_tail
= &bb_head
; /* Ptr to store next bb ptr */
274 static int bb_file_label_num
= -1; /* Current label # for file */
275 static int bb_func_label_num
= -1; /* Current label # for func */
277 /* Linked list to hold the strings for each file and function name output. */
280 struct bb_str
*next
; /* pointer to next string */
281 const char *string
; /* string */
282 int label_num
; /* label number */
283 int length
; /* string length */
286 extern rtx peephole
PROTO((rtx
));
288 static struct bb_str
*sbb_head
= 0; /* Head of string list. */
289 static struct bb_str
**sbb_tail
= &sbb_head
; /* Ptr to store next bb str */
290 static int sbb_label_num
= 0; /* Last label used */
292 #ifdef HAVE_ATTR_length
293 static int asm_insn_count
PROTO((rtx
));
295 static void profile_function
PROTO((FILE *));
296 static void profile_after_prologue
PROTO((FILE *));
297 static void add_bb
PROTO((FILE *));
298 static int add_bb_string
PROTO((const char *, int));
299 static void output_source_line
PROTO((FILE *, rtx
));
300 static rtx walk_alter_subreg
PROTO((rtx
));
301 static void output_asm_name
PROTO((void));
302 static void output_operand
PROTO((rtx
, int));
303 #ifdef LEAF_REGISTERS
304 static void leaf_renumber_regs
PROTO((rtx
));
307 static int alter_cond
PROTO((rtx
));
310 extern char *getpwd ();
312 /* Initialize data in final at the beginning of a compilation. */
315 init_final (filename
)
318 next_block_index
= 2;
320 max_block_depth
= 20;
321 pending_blocks
= (int *) xmalloc (20 * sizeof *pending_blocks
);
324 #ifdef ASSEMBLER_DIALECT
325 dialect_number
= ASSEMBLER_DIALECT
;
329 /* Called at end of source file,
330 to output the block-profiling table for this entire compilation. */
334 const char *filename
;
338 if (profile_block_flag
|| profile_arc_flag
)
341 int align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
345 int long_bytes
= LONG_TYPE_SIZE
/ BITS_PER_UNIT
;
346 int pointer_bytes
= POINTER_SIZE
/ BITS_PER_UNIT
;
348 if (profile_block_flag
)
349 size
= long_bytes
* count_basic_blocks
;
351 size
= long_bytes
* count_instrumented_arcs
;
354 rounded
+= (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) - 1;
355 rounded
= (rounded
/ (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
356 * (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
));
360 /* Output the main header, of 11 words:
361 0: 1 if this file is initialized, else 0.
362 1: address of file name (LPBX1).
363 2: address of table of counts (LPBX2).
364 3: number of counts in the table.
365 4: always 0, for compatibility with Sun.
367 The following are GNU extensions:
369 5: address of table of start addrs of basic blocks (LPBX3).
370 6: Number of bytes in this header.
371 7: address of table of function names (LPBX4).
372 8: address of table of line numbers (LPBX5) or 0.
373 9: address of table of file names (LPBX6) or 0.
374 10: space reserved for basic block profiling. */
376 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
378 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 0);
380 assemble_integer (const0_rtx
, long_bytes
, 1);
382 /* address of filename */
383 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 1);
384 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
, 1);
386 /* address of count table */
387 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 2);
388 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
, 1);
390 /* count of the # of basic blocks or # of instrumented arcs */
391 if (profile_block_flag
)
392 assemble_integer (GEN_INT (count_basic_blocks
), long_bytes
, 1);
394 assemble_integer (GEN_INT (count_instrumented_arcs
), long_bytes
,
397 /* zero word (link field) */
398 assemble_integer (const0_rtx
, pointer_bytes
, 1);
400 /* address of basic block start address table */
401 if (profile_block_flag
)
403 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 3);
404 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
,
408 assemble_integer (const0_rtx
, pointer_bytes
, 1);
410 /* byte count for extended structure. */
411 assemble_integer (GEN_INT (11 * UNITS_PER_WORD
), long_bytes
, 1);
413 /* address of function name table */
414 if (profile_block_flag
)
416 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 4);
417 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
,
421 assemble_integer (const0_rtx
, pointer_bytes
, 1);
423 /* address of line number and filename tables if debugging. */
424 if (write_symbols
!= NO_DEBUG
&& profile_block_flag
)
426 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 5);
427 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
, 1);
428 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 6);
429 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
, 1);
433 assemble_integer (const0_rtx
, pointer_bytes
, 1);
434 assemble_integer (const0_rtx
, pointer_bytes
, 1);
437 /* space for extension ptr (link field) */
438 assemble_integer (const0_rtx
, UNITS_PER_WORD
, 1);
440 /* Output the file name changing the suffix to .d for Sun tcov
442 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 1);
444 char *cwd
= getpwd ();
445 int len
= strlen (filename
) + strlen (cwd
) + 1;
446 char *data_file
= (char *) alloca (len
+ 4);
448 strcpy (data_file
, cwd
);
449 strcat (data_file
, "/");
450 strcat (data_file
, filename
);
451 strip_off_ending (data_file
, len
);
452 if (profile_block_flag
)
453 strcat (data_file
, ".d");
455 strcat (data_file
, ".da");
456 assemble_string (data_file
, strlen (data_file
) + 1);
459 /* Make space for the table of counts. */
462 /* Realign data section. */
463 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
464 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 2);
466 assemble_zeros (size
);
470 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 2);
471 #ifdef ASM_OUTPUT_SHARED_LOCAL
472 if (flag_shared_data
)
473 ASM_OUTPUT_SHARED_LOCAL (asm_out_file
, name
, size
, rounded
);
476 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
477 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file
, NULL_TREE
, name
, size
,
480 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
481 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file
, name
, size
,
484 ASM_OUTPUT_LOCAL (asm_out_file
, name
, size
, rounded
);
489 /* Output any basic block strings */
490 if (profile_block_flag
)
492 readonly_data_section ();
495 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
496 for (sptr
= sbb_head
; sptr
!= 0; sptr
= sptr
->next
)
498 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBC",
500 assemble_string (sptr
->string
, sptr
->length
);
505 /* Output the table of addresses. */
506 if (profile_block_flag
)
508 /* Realign in new section */
509 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
510 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 3);
511 for (i
= 0; i
< count_basic_blocks
; i
++)
513 ASM_GENERATE_INTERNAL_LABEL (name
, "LPB", i
);
514 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
519 /* Output the table of function names. */
520 if (profile_block_flag
)
522 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 4);
523 for ((ptr
= bb_head
), (i
= 0); ptr
!= 0; (ptr
= ptr
->next
), i
++)
525 if (ptr
->func_label_num
>= 0)
527 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBC",
528 ptr
->func_label_num
);
529 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
533 assemble_integer (const0_rtx
, pointer_bytes
, 1);
536 for ( ; i
< count_basic_blocks
; i
++)
537 assemble_integer (const0_rtx
, pointer_bytes
, 1);
540 if (write_symbols
!= NO_DEBUG
&& profile_block_flag
)
542 /* Output the table of line numbers. */
543 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 5);
544 for ((ptr
= bb_head
), (i
= 0); ptr
!= 0; (ptr
= ptr
->next
), i
++)
545 assemble_integer (GEN_INT (ptr
->line_num
), long_bytes
, 1);
547 for ( ; i
< count_basic_blocks
; i
++)
548 assemble_integer (const0_rtx
, long_bytes
, 1);
550 /* Output the table of file names. */
551 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 6);
552 for ((ptr
= bb_head
), (i
= 0); ptr
!= 0; (ptr
= ptr
->next
), i
++)
554 if (ptr
->file_label_num
>= 0)
556 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBC",
557 ptr
->file_label_num
);
558 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
562 assemble_integer (const0_rtx
, pointer_bytes
, 1);
565 for ( ; i
< count_basic_blocks
; i
++)
566 assemble_integer (const0_rtx
, pointer_bytes
, 1);
569 /* End with the address of the table of addresses,
570 so we can find it easily, as the last word in the file's text. */
571 if (profile_block_flag
)
573 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 3);
574 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
,
580 /* Enable APP processing of subsequent output.
581 Used before the output from an `asm' statement. */
588 fputs (ASM_APP_ON
, asm_out_file
);
593 /* Disable APP processing of subsequent output.
594 Called from varasm.c before most kinds of output. */
601 fputs (ASM_APP_OFF
, asm_out_file
);
606 /* Return the number of slots filled in the current
607 delayed branch sequence (we don't count the insn needing the
608 delay slot). Zero if not in a delayed branch sequence. */
612 dbr_sequence_length ()
614 if (final_sequence
!= 0)
615 return XVECLEN (final_sequence
, 0) - 1;
621 /* The next two pages contain routines used to compute the length of an insn
622 and to shorten branches. */
624 /* Arrays for insn lengths, and addresses. The latter is referenced by
625 `insn_current_length'. */
627 static short *insn_lengths
;
630 /* Max uid for which the above arrays are valid. */
631 static int insn_lengths_max_uid
;
633 /* Address of insn being processed. Used by `insn_current_length'. */
634 int insn_current_address
;
636 /* Address of insn being processed in previous iteration. */
637 int insn_last_address
;
639 /* konwn invariant alignment of insn being processed. */
640 int insn_current_align
;
642 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
643 gives the next following alignment insn that increases the known
644 alignment, or NULL_RTX if there is no such insn.
645 For any alignment obtained this way, we can again index uid_align with
646 its uid to obtain the next following align that in turn increases the
647 alignment, till we reach NULL_RTX; the sequence obtained this way
648 for each insn we'll call the alignment chain of this insn in the following
651 struct label_alignment
{
656 static rtx
*uid_align
;
657 static int *uid_shuid
;
658 static struct label_alignment
*label_align
;
660 /* Indicate that branch shortening hasn't yet been done. */
679 insn_lengths_max_uid
= 0;
683 free (insn_addresses
);
693 /* Obtain the current length of an insn. If branch shortening has been done,
694 get its actual length. Otherwise, get its maximum length. */
697 get_attr_length (insn
)
700 #ifdef HAVE_ATTR_length
705 if (insn_lengths_max_uid
> INSN_UID (insn
))
706 return insn_lengths
[INSN_UID (insn
)];
708 switch (GET_CODE (insn
))
716 length
= insn_default_length (insn
);
720 body
= PATTERN (insn
);
721 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
723 /* Alignment is machine-dependent and should be handled by
727 length
= insn_default_length (insn
);
731 body
= PATTERN (insn
);
732 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
735 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
736 length
= asm_insn_count (body
) * insn_default_length (insn
);
737 else if (GET_CODE (body
) == SEQUENCE
)
738 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
739 length
+= get_attr_length (XVECEXP (body
, 0, i
));
741 length
= insn_default_length (insn
);
748 #ifdef ADJUST_INSN_LENGTH
749 ADJUST_INSN_LENGTH (insn
, length
);
752 #else /* not HAVE_ATTR_length */
754 #endif /* not HAVE_ATTR_length */
757 /* Code to handle alignment inside shorten_branches. */
759 /* Here is an explanation how the algorithm in align_fuzz can give
762 Call a sequence of instructions beginning with alignment point X
763 and continuing until the next alignment point `block X'. When `X'
764 is used in an expression, it means the alignment value of the
767 Call the distance between the start of the first insn of block X, and
768 the end of the last insn of block X `IX', for the `inner size of X'.
769 This is clearly the sum of the instruction lengths.
771 Likewise with the next alignment-delimited block following X, which we
774 Call the distance between the start of the first insn of block X, and
775 the start of the first insn of block Y `OX', for the `outer size of X'.
777 The estimated padding is then OX - IX.
779 OX can be safely estimated as
784 OX = round_up(IX, X) + Y - X
786 Clearly est(IX) >= real(IX), because that only depends on the
787 instruction lengths, and those being overestimated is a given.
789 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
790 we needn't worry about that when thinking about OX.
792 When X >= Y, the alignment provided by Y adds no uncertainty factor
793 for branch ranges starting before X, so we can just round what we have.
794 But when X < Y, we don't know anything about the, so to speak,
795 `middle bits', so we have to assume the worst when aligning up from an
796 address mod X to one mod Y, which is Y - X. */
799 #define LABEL_ALIGN(LABEL) 0
802 #ifndef LABEL_ALIGN_MAX_SKIP
803 #define LABEL_ALIGN_MAX_SKIP 0
807 #define LOOP_ALIGN(LABEL) 0
810 #ifndef LOOP_ALIGN_MAX_SKIP
811 #define LOOP_ALIGN_MAX_SKIP 0
814 #ifndef LABEL_ALIGN_AFTER_BARRIER
815 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
818 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
819 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
822 #ifndef ADDR_VEC_ALIGN
824 final_addr_vec_align (addr_vec
)
827 int align
= exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
))));
829 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
830 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
834 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
837 #ifndef INSN_LENGTH_ALIGNMENT
838 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
841 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
843 static int min_labelno
, max_labelno
;
845 #define LABEL_TO_ALIGNMENT(LABEL) \
846 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
848 #define LABEL_TO_MAX_SKIP(LABEL) \
849 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
851 /* For the benefit of port specific code do this also as a function. */
853 label_to_alignment (label
)
856 return LABEL_TO_ALIGNMENT (label
);
859 #ifdef HAVE_ATTR_length
860 /* The differences in addresses
861 between a branch and its target might grow or shrink depending on
862 the alignment the start insn of the range (the branch for a forward
863 branch or the label for a backward branch) starts out on; if these
864 differences are used naively, they can even oscillate infinitely.
865 We therefore want to compute a 'worst case' address difference that
866 is independent of the alignment the start insn of the range end
867 up on, and that is at least as large as the actual difference.
868 The function align_fuzz calculates the amount we have to add to the
869 naively computed difference, by traversing the part of the alignment
870 chain of the start insn of the range that is in front of the end insn
871 of the range, and considering for each alignment the maximum amount
872 that it might contribute to a size increase.
874 For casesi tables, we also want to know worst case minimum amounts of
875 address difference, in case a machine description wants to introduce
876 some common offset that is added to all offsets in a table.
877 For this purpose, align_fuzz with a growth argument of 0 comuptes the
878 appropriate adjustment. */
881 /* Compute the maximum delta by which the difference of the addresses of
882 START and END might grow / shrink due to a different address for start
883 which changes the size of alignment insns between START and END.
884 KNOWN_ALIGN_LOG is the alignment known for START.
885 GROWTH should be ~0 if the objective is to compute potential code size
886 increase, and 0 if the objective is to compute potential shrink.
887 The return value is undefined for any other value of GROWTH. */
889 align_fuzz (start
, end
, known_align_log
, growth
)
894 int uid
= INSN_UID (start
);
896 int known_align
= 1 << known_align_log
;
897 int end_shuid
= INSN_SHUID (end
);
900 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
902 int align_addr
, new_align
;
904 uid
= INSN_UID (align_label
);
905 align_addr
= insn_addresses
[uid
] - insn_lengths
[uid
];
906 if (uid_shuid
[uid
] > end_shuid
)
908 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
909 new_align
= 1 << known_align_log
;
910 if (new_align
< known_align
)
912 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
913 known_align
= new_align
;
918 /* Compute a worst-case reference address of a branch so that it
919 can be safely used in the presence of aligned labels. Since the
920 size of the branch itself is unknown, the size of the branch is
921 not included in the range. I.e. for a forward branch, the reference
922 address is the end address of the branch as known from the previous
923 branch shortening pass, minus a value to account for possible size
924 increase due to alignment. For a backward branch, it is the start
925 address of the branch as known from the current pass, plus a value
926 to account for possible size increase due to alignment.
927 NB.: Therefore, the maximum offset allowed for backward branches needs
928 to exclude the branch size. */
930 insn_current_reference_address (branch
)
934 rtx seq
= NEXT_INSN (PREV_INSN (branch
));
935 int seq_uid
= INSN_UID (seq
);
936 if (GET_CODE (branch
) != JUMP_INSN
)
937 /* This can happen for example on the PA; the objective is to know the
938 offset to address something in front of the start of the function.
939 Thus, we can treat it like a backward branch.
940 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
941 any alignment we'd encounter, so we skip the call to align_fuzz. */
942 return insn_current_address
;
943 dest
= JUMP_LABEL (branch
);
944 /* BRANCH has no proper alignment chain set, so use SEQ. */
945 if (INSN_SHUID (branch
) < INSN_SHUID (dest
))
947 /* Forward branch. */
948 return (insn_last_address
+ insn_lengths
[seq_uid
]
949 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
953 /* Backward branch. */
954 return (insn_current_address
955 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
958 #endif /* HAVE_ATTR_length */
960 /* Make a pass over all insns and compute their actual lengths by shortening
961 any branches of variable length if possible. */
963 /* Give a default value for the lowest address in a function. */
965 #ifndef FIRST_INSN_ADDRESS
966 #define FIRST_INSN_ADDRESS 0
969 /* shorten_branches might be called multiple times: for example, the SH
970 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
971 In order to do this, it needs proper length information, which it obtains
972 by calling shorten_branches. This cannot be collapsed with
973 shorten_branches itself into a single pass unless we also want to intergate
974 reorg.c, since the branch splitting exposes new instructions with delay
978 shorten_branches (first
)
986 #ifdef HAVE_ATTR_length
987 #define MAX_CODE_ALIGN 16
989 int something_changed
= 1;
990 char *varying_length
;
993 rtx align_tab
[MAX_CODE_ALIGN
];
995 /* In order to make sure that all instructions have valid length info,
996 we must split them before we compute the address/length info. */
998 for (insn
= NEXT_INSN (first
); insn
; insn
= NEXT_INSN (insn
))
999 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1002 /* Don't split the insn if it has been deleted. */
1003 if (! INSN_DELETED_P (old
))
1004 insn
= try_split (PATTERN (old
), old
, 1);
1005 /* When not optimizing, the old insn will be still left around
1006 with only the 'deleted' bit set. Transform it into a note
1007 to avoid confusion of subsequent processing. */
1008 if (INSN_DELETED_P (old
))
1010 PUT_CODE (old
, NOTE
);
1011 NOTE_LINE_NUMBER (old
) = NOTE_INSN_DELETED
;
1012 NOTE_SOURCE_FILE (old
) = 0;
1017 /* We must do some computations even when not actually shortening, in
1018 order to get the alignment information for the labels. */
1020 init_insn_lengths ();
1022 /* Compute maximum UID and allocate label_align / uid_shuid. */
1023 max_uid
= get_max_uid ();
1025 max_labelno
= max_label_num ();
1026 min_labelno
= get_first_label_num ();
1027 label_align
= (struct label_alignment
*) xmalloc (
1028 (max_labelno
- min_labelno
+ 1) * sizeof (struct label_alignment
));
1029 bzero ((char *) label_align
,
1030 (max_labelno
- min_labelno
+ 1) * sizeof (struct label_alignment
));
1032 uid_shuid
= (int *) xmalloc (max_uid
* sizeof *uid_shuid
);
1034 /* Initialize label_align and set up uid_shuid to be strictly
1035 monotonically rising with insn order. */
1036 /* We use max_log here to keep track of the maximum alignment we want to
1037 impose on the next CODE_LABEL (or the current one if we are processing
1038 the CODE_LABEL itself). */
1043 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
1047 INSN_SHUID (insn
) = i
++;
1048 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1050 /* reorg might make the first insn of a loop being run once only,
1051 and delete the label in front of it. Then we want to apply
1052 the loop alignment to the new label created by reorg, which
1053 is separated by the former loop start insn from the
1054 NOTE_INSN_LOOP_BEG. */
1056 else if (GET_CODE (insn
) == CODE_LABEL
)
1060 log
= LABEL_ALIGN (insn
);
1064 max_skip
= LABEL_ALIGN_MAX_SKIP
;
1066 next
= NEXT_INSN (insn
);
1067 /* ADDR_VECs only take room if read-only data goes into the text
1069 if (JUMP_TABLES_IN_TEXT_SECTION
1070 #if !defined(READONLY_DATA_SECTION)
1074 if (next
&& GET_CODE (next
) == JUMP_INSN
)
1076 rtx nextbody
= PATTERN (next
);
1077 if (GET_CODE (nextbody
) == ADDR_VEC
1078 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1080 log
= ADDR_VEC_ALIGN (next
);
1084 max_skip
= LABEL_ALIGN_MAX_SKIP
;
1088 LABEL_TO_ALIGNMENT (insn
) = max_log
;
1089 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
1093 else if (GET_CODE (insn
) == BARRIER
)
1097 for (label
= insn
; label
&& GET_RTX_CLASS (GET_CODE (label
)) != 'i';
1098 label
= NEXT_INSN (label
))
1099 if (GET_CODE (label
) == CODE_LABEL
)
1101 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1105 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
1110 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1111 sequences in order to handle reorg output efficiently. */
1112 else if (GET_CODE (insn
) == NOTE
1113 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
1117 for (label
= insn
; label
; label
= NEXT_INSN (label
))
1118 if (GET_CODE (label
) == CODE_LABEL
)
1120 log
= LOOP_ALIGN (insn
);
1124 max_skip
= LOOP_ALIGN_MAX_SKIP
;
1132 #ifdef HAVE_ATTR_length
1134 /* Allocate the rest of the arrays. */
1135 insn_lengths
= (short *) xmalloc (max_uid
* sizeof (short));
1136 insn_addresses
= (int *) xmalloc (max_uid
* sizeof (int));
1137 insn_lengths_max_uid
= max_uid
;
1138 /* Syntax errors can lead to labels being outside of the main insn stream.
1139 Initialize insn_addresses, so that we get reproducible results. */
1140 bzero ((char *)insn_addresses
, max_uid
* sizeof *insn_addresses
);
1141 uid_align
= (rtx
*) xmalloc (max_uid
* sizeof *uid_align
);
1143 varying_length
= (char *) xmalloc (max_uid
* sizeof (char));
1145 bzero (varying_length
, max_uid
);
1147 /* Initialize uid_align. We scan instructions
1148 from end to start, and keep in align_tab[n] the last seen insn
1149 that does an alignment of at least n+1, i.e. the successor
1150 in the alignment chain for an insn that does / has a known
1153 bzero ((char *) uid_align
, max_uid
* sizeof *uid_align
);
1155 for (i
= MAX_CODE_ALIGN
; --i
>= 0; )
1156 align_tab
[i
] = NULL_RTX
;
1157 seq
= get_last_insn ();
1158 for (; seq
; seq
= PREV_INSN (seq
))
1160 int uid
= INSN_UID (seq
);
1162 log
= (GET_CODE (seq
) == CODE_LABEL
? LABEL_TO_ALIGNMENT (seq
) : 0);
1163 uid_align
[uid
] = align_tab
[0];
1166 /* Found an alignment label. */
1167 uid_align
[uid
] = align_tab
[log
];
1168 for (i
= log
- 1; i
>= 0; i
--)
1172 #ifdef CASE_VECTOR_SHORTEN_MODE
1175 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1178 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1179 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1182 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1184 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1185 int len
, i
, min
, max
, insn_shuid
;
1187 addr_diff_vec_flags flags
;
1189 if (GET_CODE (insn
) != JUMP_INSN
1190 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1192 pat
= PATTERN (insn
);
1193 len
= XVECLEN (pat
, 1);
1196 min_align
= MAX_CODE_ALIGN
;
1197 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1199 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1200 int shuid
= INSN_SHUID (lab
);
1211 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1212 min_align
= LABEL_TO_ALIGNMENT (lab
);
1214 XEXP (pat
, 2) = gen_rtx_LABEL_REF (VOIDmode
, min_lab
);
1215 XEXP (pat
, 3) = gen_rtx_LABEL_REF (VOIDmode
, max_lab
);
1216 insn_shuid
= INSN_SHUID (insn
);
1217 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1218 flags
.min_align
= min_align
;
1219 flags
.base_after_vec
= rel
> insn_shuid
;
1220 flags
.min_after_vec
= min
> insn_shuid
;
1221 flags
.max_after_vec
= max
> insn_shuid
;
1222 flags
.min_after_base
= min
> rel
;
1223 flags
.max_after_base
= max
> rel
;
1224 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1227 #endif /* CASE_VECTOR_SHORTEN_MODE */
1230 /* Compute initial lengths, addresses, and varying flags for each insn. */
1231 for (insn_current_address
= FIRST_INSN_ADDRESS
, insn
= first
;
1233 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1235 uid
= INSN_UID (insn
);
1237 insn_lengths
[uid
] = 0;
1239 if (GET_CODE (insn
) == CODE_LABEL
)
1241 int log
= LABEL_TO_ALIGNMENT (insn
);
1244 int align
= 1 << log
;
1245 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1246 insn_lengths
[uid
] = new_address
- insn_current_address
;
1247 insn_current_address
= new_address
;
1251 insn_addresses
[uid
] = insn_current_address
;
1253 if (GET_CODE (insn
) == NOTE
|| GET_CODE (insn
) == BARRIER
1254 || GET_CODE (insn
) == CODE_LABEL
)
1256 if (INSN_DELETED_P (insn
))
1259 body
= PATTERN (insn
);
1260 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1262 /* This only takes room if read-only data goes into the text
1264 if (JUMP_TABLES_IN_TEXT_SECTION
1265 #if !defined(READONLY_DATA_SECTION)
1269 insn_lengths
[uid
] = (XVECLEN (body
,
1270 GET_CODE (body
) == ADDR_DIFF_VEC
)
1271 * GET_MODE_SIZE (GET_MODE (body
)));
1272 /* Alignment is handled by ADDR_VEC_ALIGN. */
1274 else if (asm_noperands (body
) >= 0)
1275 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1276 else if (GET_CODE (body
) == SEQUENCE
)
1279 int const_delay_slots
;
1281 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1283 const_delay_slots
= 0;
1285 /* Inside a delay slot sequence, we do not do any branch shortening
1286 if the shortening could change the number of delay slots
1288 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1290 rtx inner_insn
= XVECEXP (body
, 0, i
);
1291 int inner_uid
= INSN_UID (inner_insn
);
1294 if (asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1295 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1296 * insn_default_length (inner_insn
));
1298 inner_length
= insn_default_length (inner_insn
);
1300 insn_lengths
[inner_uid
] = inner_length
;
1301 if (const_delay_slots
)
1303 if ((varying_length
[inner_uid
]
1304 = insn_variable_length_p (inner_insn
)) != 0)
1305 varying_length
[uid
] = 1;
1306 insn_addresses
[inner_uid
] = (insn_current_address
+
1310 varying_length
[inner_uid
] = 0;
1311 insn_lengths
[uid
] += inner_length
;
1314 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1316 insn_lengths
[uid
] = insn_default_length (insn
);
1317 varying_length
[uid
] = insn_variable_length_p (insn
);
1320 /* If needed, do any adjustment. */
1321 #ifdef ADJUST_INSN_LENGTH
1322 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1323 if (insn_lengths
[uid
] < 0)
1324 fatal_insn ("Negative insn length", insn
);
1328 /* Now loop over all the insns finding varying length insns. For each,
1329 get the current insn length. If it has changed, reflect the change.
1330 When nothing changes for a full pass, we are done. */
1332 while (something_changed
)
1334 something_changed
= 0;
1335 insn_current_align
= MAX_CODE_ALIGN
- 1;
1336 for (insn_current_address
= FIRST_INSN_ADDRESS
, insn
= first
;
1338 insn
= NEXT_INSN (insn
))
1341 #ifdef ADJUST_INSN_LENGTH
1346 uid
= INSN_UID (insn
);
1348 if (GET_CODE (insn
) == CODE_LABEL
)
1350 int log
= LABEL_TO_ALIGNMENT (insn
);
1351 if (log
> insn_current_align
)
1353 int align
= 1 << log
;
1354 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1355 insn_lengths
[uid
] = new_address
- insn_current_address
;
1356 insn_current_align
= log
;
1357 insn_current_address
= new_address
;
1360 insn_lengths
[uid
] = 0;
1361 insn_addresses
[uid
] = insn_current_address
;
1365 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1366 if (length_align
< insn_current_align
)
1367 insn_current_align
= length_align
;
1369 insn_last_address
= insn_addresses
[uid
];
1370 insn_addresses
[uid
] = insn_current_address
;
1372 #ifdef CASE_VECTOR_SHORTEN_MODE
1373 if (optimize
&& GET_CODE (insn
) == JUMP_INSN
1374 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1376 rtx body
= PATTERN (insn
);
1377 int old_length
= insn_lengths
[uid
];
1378 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1379 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1380 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1381 addr_diff_vec_flags flags
= ADDR_DIFF_VEC_FLAGS (body
);
1382 int rel_addr
= insn_addresses
[INSN_UID (rel_lab
)];
1383 int min_addr
= insn_addresses
[INSN_UID (min_lab
)];
1384 int max_addr
= insn_addresses
[INSN_UID (max_lab
)];
1388 /* Try to find a known alignment for rel_lab. */
1389 for (prev
= rel_lab
;
1391 && ! insn_lengths
[INSN_UID (prev
)]
1392 && ! (varying_length
[INSN_UID (prev
)] & 1);
1393 prev
= PREV_INSN (prev
))
1394 if (varying_length
[INSN_UID (prev
)] & 2)
1396 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1400 /* See the comment on addr_diff_vec_flags in rtl.h for the
1401 meaning of the flags values. base: REL_LAB vec: INSN */
1402 /* Anything after INSN has still addresses from the last
1403 pass; adjust these so that they reflect our current
1404 estimate for this pass. */
1405 if (flags
.base_after_vec
)
1406 rel_addr
+= insn_current_address
- insn_last_address
;
1407 if (flags
.min_after_vec
)
1408 min_addr
+= insn_current_address
- insn_last_address
;
1409 if (flags
.max_after_vec
)
1410 max_addr
+= insn_current_address
- insn_last_address
;
1411 /* We want to know the worst case, i.e. lowest possible value
1412 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1413 its offset is positive, and we have to be wary of code shrink;
1414 otherwise, it is negative, and we have to be vary of code
1416 if (flags
.min_after_base
)
1418 /* If INSN is between REL_LAB and MIN_LAB, the size
1419 changes we are about to make can change the alignment
1420 within the observed offset, therefore we have to break
1421 it up into two parts that are independent. */
1422 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1424 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1425 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1428 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1432 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1434 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1435 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1438 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1440 /* Likewise, determine the highest lowest possible value
1441 for the offset of MAX_LAB. */
1442 if (flags
.max_after_base
)
1444 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1446 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1447 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1450 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1454 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1456 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1457 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1460 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1462 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1463 max_addr
- rel_addr
,
1465 if (JUMP_TABLES_IN_TEXT_SECTION
1466 #if !defined(READONLY_DATA_SECTION)
1472 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1473 insn_current_address
+= insn_lengths
[uid
];
1474 if (insn_lengths
[uid
] != old_length
)
1475 something_changed
= 1;
1480 #endif /* CASE_VECTOR_SHORTEN_MODE */
1482 if (! (varying_length
[uid
]))
1484 insn_current_address
+= insn_lengths
[uid
];
1487 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1491 body
= PATTERN (insn
);
1493 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1495 rtx inner_insn
= XVECEXP (body
, 0, i
);
1496 int inner_uid
= INSN_UID (inner_insn
);
1499 insn_addresses
[inner_uid
] = insn_current_address
;
1501 /* insn_current_length returns 0 for insns with a
1502 non-varying length. */
1503 if (! varying_length
[inner_uid
])
1504 inner_length
= insn_lengths
[inner_uid
];
1506 inner_length
= insn_current_length (inner_insn
);
1508 if (inner_length
!= insn_lengths
[inner_uid
])
1510 insn_lengths
[inner_uid
] = inner_length
;
1511 something_changed
= 1;
1513 insn_current_address
+= insn_lengths
[inner_uid
];
1514 new_length
+= inner_length
;
1519 new_length
= insn_current_length (insn
);
1520 insn_current_address
+= new_length
;
1523 #ifdef ADJUST_INSN_LENGTH
1524 /* If needed, do any adjustment. */
1525 tmp_length
= new_length
;
1526 ADJUST_INSN_LENGTH (insn
, new_length
);
1527 insn_current_address
+= (new_length
- tmp_length
);
1530 if (new_length
!= insn_lengths
[uid
])
1532 insn_lengths
[uid
] = new_length
;
1533 something_changed
= 1;
1536 /* For a non-optimizing compile, do only a single pass. */
1541 free (varying_length
);
1543 #endif /* HAVE_ATTR_length */
1546 #ifdef HAVE_ATTR_length
1547 /* Given the body of an INSN known to be generated by an ASM statement, return
1548 the number of machine instructions likely to be generated for this insn.
1549 This is used to compute its length. */
1552 asm_insn_count (body
)
1558 if (GET_CODE (body
) == ASM_INPUT
)
1559 template = XSTR (body
, 0);
1561 template = decode_asm_operands (body
, NULL_PTR
, NULL_PTR
,
1562 NULL_PTR
, NULL_PTR
);
1564 for ( ; *template; template++)
1565 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1572 /* Output assembler code for the start of a function,
1573 and initialize some of the variables in this file
1574 for the new function. The label for the function and associated
1575 assembler pseudo-ops have already been output in `assemble_start_function'.
1577 FIRST is the first insn of the rtl for the function being compiled.
1578 FILE is the file to write assembler code to.
1579 OPTIMIZE is nonzero if we should eliminate redundant
1580 test and compare insns. */
1583 final_start_function (first
, file
, optimize
)
1590 this_is_asm_operands
= 0;
1592 #ifdef NON_SAVING_SETJMP
1593 /* A function that calls setjmp should save and restore all the
1594 call-saved registers on a system where longjmp clobbers them. */
1595 if (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
1599 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1600 if (!call_used_regs
[i
])
1601 regs_ever_live
[i
] = 1;
1605 /* Initial line number is supposed to be output
1606 before the function's prologue and label
1607 so that the function's address will not appear to be
1608 in the last statement of the preceding function. */
1609 if (NOTE_LINE_NUMBER (first
) != NOTE_INSN_DELETED
)
1610 last_linenum
= high_block_linenum
= high_function_linenum
1611 = NOTE_LINE_NUMBER (first
);
1613 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1614 /* Output DWARF definition of the function. */
1615 if (dwarf2out_do_frame ())
1616 dwarf2out_begin_prologue ();
1619 /* For SDB and XCOFF, the function beginning must be marked between
1620 the function label and the prologue. We always need this, even when
1621 -g1 was used. Defer on MIPS systems so that parameter descriptions
1622 follow function entry. */
1623 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1624 if (write_symbols
== SDB_DEBUG
)
1625 sdbout_begin_function (last_linenum
);
1628 #ifdef XCOFF_DEBUGGING_INFO
1629 if (write_symbols
== XCOFF_DEBUG
)
1630 xcoffout_begin_function (file
, last_linenum
);
1633 /* But only output line number for other debug info types if -g2
1635 if (NOTE_LINE_NUMBER (first
) != NOTE_INSN_DELETED
)
1636 output_source_line (file
, first
);
1638 #ifdef LEAF_REG_REMAP
1639 if (current_function_uses_only_leaf_regs
)
1640 leaf_renumber_regs (first
);
1643 /* The Sun386i and perhaps other machines don't work right
1644 if the profiling code comes after the prologue. */
1645 #ifdef PROFILE_BEFORE_PROLOGUE
1647 profile_function (file
);
1648 #endif /* PROFILE_BEFORE_PROLOGUE */
1650 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1651 if (dwarf2out_do_frame ())
1652 dwarf2out_frame_debug (NULL_RTX
);
1655 #ifdef FUNCTION_PROLOGUE
1656 /* First output the function prologue: code to set up the stack frame. */
1657 FUNCTION_PROLOGUE (file
, get_frame_size ());
1660 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1661 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
1662 next_block_index
= 1;
1665 /* If the machine represents the prologue as RTL, the profiling code must
1666 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1667 #ifdef HAVE_prologue
1668 if (! HAVE_prologue
)
1670 profile_after_prologue (file
);
1674 /* If we are doing basic block profiling, remember a printable version
1675 of the function name. */
1676 if (profile_block_flag
)
1679 = add_bb_string ((*decl_printable_name
) (current_function_decl
, 2), FALSE
);
1684 profile_after_prologue (file
)
1687 #ifdef FUNCTION_BLOCK_PROFILER
1688 if (profile_block_flag
)
1690 FUNCTION_BLOCK_PROFILER (file
, count_basic_blocks
);
1692 #endif /* FUNCTION_BLOCK_PROFILER */
1694 #ifndef PROFILE_BEFORE_PROLOGUE
1696 profile_function (file
);
1697 #endif /* not PROFILE_BEFORE_PROLOGUE */
1701 profile_function (file
)
1704 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1705 #if defined(ASM_OUTPUT_REG_PUSH)
1706 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1707 int sval
= current_function_returns_struct
;
1709 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1710 int cxt
= current_function_needs_context
;
1712 #endif /* ASM_OUTPUT_REG_PUSH */
1715 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1716 ASM_OUTPUT_INTERNAL_LABEL (file
, "LP", profile_label_no
);
1717 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, 1);
1719 function_section (current_function_decl
);
1721 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1723 ASM_OUTPUT_REG_PUSH (file
, STRUCT_VALUE_INCOMING_REGNUM
);
1725 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1728 ASM_OUTPUT_REG_PUSH (file
, STRUCT_VALUE_REGNUM
);
1733 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1735 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1737 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1740 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1745 FUNCTION_PROFILER (file
, profile_label_no
);
1747 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1749 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1751 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1754 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1759 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1761 ASM_OUTPUT_REG_POP (file
, STRUCT_VALUE_INCOMING_REGNUM
);
1763 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1766 ASM_OUTPUT_REG_POP (file
, STRUCT_VALUE_REGNUM
);
1772 /* Output assembler code for the end of a function.
1773 For clarity, args are same as those of `final_start_function'
1774 even though not all of them are needed. */
1777 final_end_function (first
, file
, optimize
)
1784 fputs (ASM_APP_OFF
, file
);
1788 #ifdef SDB_DEBUGGING_INFO
1789 if (write_symbols
== SDB_DEBUG
)
1790 sdbout_end_function (high_function_linenum
);
1793 #ifdef DWARF_DEBUGGING_INFO
1794 if (write_symbols
== DWARF_DEBUG
)
1795 dwarfout_end_function ();
1798 #ifdef XCOFF_DEBUGGING_INFO
1799 if (write_symbols
== XCOFF_DEBUG
)
1800 xcoffout_end_function (file
, high_function_linenum
);
1803 #ifdef FUNCTION_EPILOGUE
1804 /* Finally, output the function epilogue:
1805 code to restore the stack frame and return to the caller. */
1806 FUNCTION_EPILOGUE (file
, get_frame_size ());
1809 #ifdef SDB_DEBUGGING_INFO
1810 if (write_symbols
== SDB_DEBUG
)
1811 sdbout_end_epilogue ();
1814 #ifdef DWARF_DEBUGGING_INFO
1815 if (write_symbols
== DWARF_DEBUG
)
1816 dwarfout_end_epilogue ();
1819 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1820 if (dwarf2out_do_frame ())
1821 dwarf2out_end_epilogue ();
1824 #ifdef XCOFF_DEBUGGING_INFO
1825 if (write_symbols
== XCOFF_DEBUG
)
1826 xcoffout_end_epilogue (file
);
1829 bb_func_label_num
= -1; /* not in function, nuke label # */
1831 /* If FUNCTION_EPILOGUE is not defined, then the function body
1832 itself contains return instructions wherever needed. */
1835 /* Add a block to the linked list that remembers the current line/file/function
1836 for basic block profiling. Emit the label in front of the basic block and
1837 the instructions that increment the count field. */
1843 struct bb_list
*ptr
= (struct bb_list
*) permalloc (sizeof (struct bb_list
));
1845 /* Add basic block to linked list. */
1847 ptr
->line_num
= last_linenum
;
1848 ptr
->file_label_num
= bb_file_label_num
;
1849 ptr
->func_label_num
= bb_func_label_num
;
1851 bb_tail
= &ptr
->next
;
1853 /* Enable the table of basic-block use counts
1854 to point at the code it applies to. */
1855 ASM_OUTPUT_INTERNAL_LABEL (file
, "LPB", count_basic_blocks
);
1857 /* Before first insn of this basic block, increment the
1858 count of times it was entered. */
1859 #ifdef BLOCK_PROFILER
1860 BLOCK_PROFILER (file
, count_basic_blocks
);
1867 count_basic_blocks
++;
1870 /* Add a string to be used for basic block profiling. */
1873 add_bb_string (string
, perm_p
)
1878 struct bb_str
*ptr
= 0;
1882 string
= "<unknown>";
1886 /* Allocate a new string if the current string isn't permanent. If
1887 the string is permanent search for the same string in other
1890 len
= strlen (string
) + 1;
1893 char *p
= (char *) permalloc (len
);
1894 bcopy (string
, p
, len
);
1898 for (ptr
= sbb_head
; ptr
!= (struct bb_str
*) 0; ptr
= ptr
->next
)
1899 if (ptr
->string
== string
)
1902 /* Allocate a new string block if we need to. */
1905 ptr
= (struct bb_str
*) permalloc (sizeof (*ptr
));
1908 ptr
->label_num
= sbb_label_num
++;
1909 ptr
->string
= string
;
1911 sbb_tail
= &ptr
->next
;
1914 return ptr
->label_num
;
1918 /* Output assembler code for some insns: all or part of a function.
1919 For description of args, see `final_start_function', above.
1921 PRESCAN is 1 if we are not really outputting,
1922 just scanning as if we were outputting.
1923 Prescanning deletes and rearranges insns just like ordinary output.
1924 PRESCAN is -2 if we are outputting after having prescanned.
1925 In this case, don't try to delete or rearrange insns
1926 because that has already been done.
1927 Prescanning is done only on certain machines. */
1930 final (first
, file
, optimize
, prescan
)
1940 last_ignored_compare
= 0;
1943 check_exception_handler_labels ();
1945 /* Make a map indicating which line numbers appear in this function.
1946 When producing SDB debugging info, delete troublesome line number
1947 notes from inlined functions in other files as well as duplicate
1948 line number notes. */
1949 #ifdef SDB_DEBUGGING_INFO
1950 if (write_symbols
== SDB_DEBUG
)
1953 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1954 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
1956 if ((RTX_INTEGRATED_P (insn
)
1957 && strcmp (NOTE_SOURCE_FILE (insn
), main_input_filename
) != 0)
1959 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1960 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)))
1962 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1963 NOTE_SOURCE_FILE (insn
) = 0;
1967 if (NOTE_LINE_NUMBER (insn
) > max_line
)
1968 max_line
= NOTE_LINE_NUMBER (insn
);
1974 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1975 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > max_line
)
1976 max_line
= NOTE_LINE_NUMBER (insn
);
1979 line_note_exists
= (char *) oballoc (max_line
+ 1);
1980 bzero (line_note_exists
, max_line
+ 1);
1982 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1984 if (INSN_UID (insn
) > max_uid
) /* find largest UID */
1985 max_uid
= INSN_UID (insn
);
1986 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
1987 line_note_exists
[NOTE_LINE_NUMBER (insn
)] = 1;
1989 /* If CC tracking across branches is enabled, record the insn which
1990 jumps to each branch only reached from one place. */
1991 if (optimize
&& GET_CODE (insn
) == JUMP_INSN
)
1993 rtx lab
= JUMP_LABEL (insn
);
1994 if (lab
&& LABEL_NUSES (lab
) == 1)
1996 LABEL_REFS (lab
) = insn
;
2002 /* Initialize insn_eh_region table if eh is being used. */
2004 init_insn_eh_region (first
, max_uid
);
2010 /* Output the insns. */
2011 for (insn
= NEXT_INSN (first
); insn
;)
2013 #ifdef HAVE_ATTR_length
2014 insn_current_address
= insn_addresses
[INSN_UID (insn
)];
2016 insn
= final_scan_insn (insn
, file
, optimize
, prescan
, 0);
2019 /* Do basic-block profiling here
2020 if the last insn was a conditional branch. */
2021 if (profile_block_flag
&& new_block
)
2024 free_insn_eh_region ();
2027 /* The final scan for one insn, INSN.
2028 Args are same as in `final', except that INSN
2029 is the insn being scanned.
2030 Value returned is the next insn to be scanned.
2032 NOPEEPHOLES is the flag to disallow peephole processing (currently
2033 used for within delayed branch sequence output). */
2036 final_scan_insn (insn
, file
, optimize
, prescan
, nopeepholes
)
2049 /* Ignore deleted insns. These can occur when we split insns (due to a
2050 template of "#") while not optimizing. */
2051 if (INSN_DELETED_P (insn
))
2052 return NEXT_INSN (insn
);
2054 switch (GET_CODE (insn
))
2060 /* Align the beginning of a loop, for higher speed
2061 on certain machines. */
2063 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
2064 break; /* This used to depend on optimize, but that was bogus. */
2065 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
2068 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EH_REGION_BEG
2069 && ! exceptions_via_longjmp
)
2071 ASM_OUTPUT_INTERNAL_LABEL (file
, "LEHB", NOTE_BLOCK_NUMBER (insn
));
2072 if (! flag_new_exceptions
)
2073 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn
));
2074 #ifdef ASM_OUTPUT_EH_REGION_BEG
2075 ASM_OUTPUT_EH_REGION_BEG (file
, NOTE_BLOCK_NUMBER (insn
));
2080 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EH_REGION_END
2081 && ! exceptions_via_longjmp
)
2083 ASM_OUTPUT_INTERNAL_LABEL (file
, "LEHE", NOTE_BLOCK_NUMBER (insn
));
2084 if (flag_new_exceptions
)
2085 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn
));
2086 #ifdef ASM_OUTPUT_EH_REGION_END
2087 ASM_OUTPUT_EH_REGION_END (file
, NOTE_BLOCK_NUMBER (insn
));
2092 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_PROLOGUE_END
)
2094 #ifdef FUNCTION_END_PROLOGUE
2095 FUNCTION_END_PROLOGUE (file
);
2097 profile_after_prologue (file
);
2101 #ifdef FUNCTION_BEGIN_EPILOGUE
2102 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
2104 FUNCTION_BEGIN_EPILOGUE (file
);
2109 if (write_symbols
== NO_DEBUG
)
2111 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2113 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2114 /* MIPS stabs require the parameter descriptions to be after the
2115 function entry point rather than before. */
2116 if (write_symbols
== SDB_DEBUG
)
2117 sdbout_begin_function (last_linenum
);
2120 #ifdef DWARF_DEBUGGING_INFO
2121 /* This outputs a marker where the function body starts, so it
2122 must be after the prologue. */
2123 if (write_symbols
== DWARF_DEBUG
)
2124 dwarfout_begin_function ();
2128 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED
)
2129 break; /* An insn that was "deleted" */
2132 fputs (ASM_APP_OFF
, file
);
2135 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
2136 && (debug_info_level
== DINFO_LEVEL_NORMAL
2137 || debug_info_level
== DINFO_LEVEL_VERBOSE
2138 || write_symbols
== DWARF_DEBUG
2139 || write_symbols
== DWARF2_DEBUG
))
2141 /* Beginning of a symbol-block. Assign it a sequence number
2142 and push the number onto the stack PENDING_BLOCKS. */
2144 if (block_depth
== max_block_depth
)
2146 /* PENDING_BLOCKS is full; make it longer. */
2147 max_block_depth
*= 2;
2149 = (int *) xrealloc (pending_blocks
,
2150 max_block_depth
* sizeof (int));
2152 pending_blocks
[block_depth
++] = next_block_index
;
2154 high_block_linenum
= last_linenum
;
2156 /* Output debugging info about the symbol-block beginning. */
2158 #ifdef SDB_DEBUGGING_INFO
2159 if (write_symbols
== SDB_DEBUG
)
2160 sdbout_begin_block (file
, last_linenum
, next_block_index
);
2162 #ifdef XCOFF_DEBUGGING_INFO
2163 if (write_symbols
== XCOFF_DEBUG
)
2164 xcoffout_begin_block (file
, last_linenum
, next_block_index
);
2166 #ifdef DBX_DEBUGGING_INFO
2167 if (write_symbols
== DBX_DEBUG
)
2168 ASM_OUTPUT_INTERNAL_LABEL (file
, "LBB", next_block_index
);
2170 #ifdef DWARF_DEBUGGING_INFO
2171 if (write_symbols
== DWARF_DEBUG
)
2172 dwarfout_begin_block (next_block_index
);
2174 #ifdef DWARF2_DEBUGGING_INFO
2175 if (write_symbols
== DWARF2_DEBUG
)
2176 dwarf2out_begin_block (next_block_index
);
2181 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
2182 && (debug_info_level
== DINFO_LEVEL_NORMAL
2183 || debug_info_level
== DINFO_LEVEL_VERBOSE
2184 || write_symbols
== DWARF_DEBUG
2185 || write_symbols
== DWARF2_DEBUG
))
2187 /* End of a symbol-block. Pop its sequence number off
2188 PENDING_BLOCKS and output debugging info based on that. */
2191 if (block_depth
< 0)
2194 #ifdef XCOFF_DEBUGGING_INFO
2195 if (write_symbols
== XCOFF_DEBUG
)
2196 xcoffout_end_block (file
, high_block_linenum
,
2197 pending_blocks
[block_depth
]);
2199 #ifdef DBX_DEBUGGING_INFO
2200 if (write_symbols
== DBX_DEBUG
)
2201 ASM_OUTPUT_INTERNAL_LABEL (file
, "LBE",
2202 pending_blocks
[block_depth
]);
2204 #ifdef SDB_DEBUGGING_INFO
2205 if (write_symbols
== SDB_DEBUG
)
2206 sdbout_end_block (file
, high_block_linenum
,
2207 pending_blocks
[block_depth
]);
2209 #ifdef DWARF_DEBUGGING_INFO
2210 if (write_symbols
== DWARF_DEBUG
)
2211 dwarfout_end_block (pending_blocks
[block_depth
]);
2213 #ifdef DWARF2_DEBUGGING_INFO
2214 if (write_symbols
== DWARF2_DEBUG
)
2215 dwarf2out_end_block (pending_blocks
[block_depth
]);
2218 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
2219 && (debug_info_level
== DINFO_LEVEL_NORMAL
2220 || debug_info_level
== DINFO_LEVEL_VERBOSE
))
2222 #ifdef DWARF_DEBUGGING_INFO
2223 if (write_symbols
== DWARF_DEBUG
)
2224 dwarfout_label (insn
);
2226 #ifdef DWARF2_DEBUGGING_INFO
2227 if (write_symbols
== DWARF2_DEBUG
)
2228 dwarf2out_label (insn
);
2231 else if (NOTE_LINE_NUMBER (insn
) > 0)
2232 /* This note is a line-number. */
2236 #if 0 /* This is what we used to do. */
2237 output_source_line (file
, insn
);
2241 /* If there is anything real after this note,
2242 output it. If another line note follows, omit this one. */
2243 for (note
= NEXT_INSN (insn
); note
; note
= NEXT_INSN (note
))
2245 if (GET_CODE (note
) != NOTE
&& GET_CODE (note
) != CODE_LABEL
)
2247 /* These types of notes can be significant
2248 so make sure the preceding line number stays. */
2249 else if (GET_CODE (note
) == NOTE
2250 && (NOTE_LINE_NUMBER (note
) == NOTE_INSN_BLOCK_BEG
2251 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_BLOCK_END
2252 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_FUNCTION_BEG
))
2254 else if (GET_CODE (note
) == NOTE
&& NOTE_LINE_NUMBER (note
) > 0)
2256 /* Another line note follows; we can delete this note
2257 if no intervening line numbers have notes elsewhere. */
2259 for (num
= NOTE_LINE_NUMBER (insn
) + 1;
2260 num
< NOTE_LINE_NUMBER (note
);
2262 if (line_note_exists
[num
])
2265 if (num
>= NOTE_LINE_NUMBER (note
))
2271 /* Output this line note
2272 if it is the first or the last line note in a row. */
2274 output_source_line (file
, insn
);
2279 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2280 /* If we push arguments, we need to check all insns for stack
2282 if (dwarf2out_do_frame ())
2283 dwarf2out_frame_debug (insn
);
2288 /* The target port might emit labels in the output function for
2289 some insn, e.g. sh.c output_branchy_insn. */
2290 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2292 int align
= LABEL_TO_ALIGNMENT (insn
);
2293 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2294 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2297 if (align
&& NEXT_INSN (insn
))
2298 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2299 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2301 ASM_OUTPUT_ALIGN (file
, align
);
2306 /* If this label is reached from only one place, set the condition
2307 codes from the instruction just before the branch. */
2309 /* Disabled because some insns set cc_status in the C output code
2310 and NOTICE_UPDATE_CC alone can set incorrect status. */
2311 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2313 rtx jump
= LABEL_REFS (insn
);
2314 rtx barrier
= prev_nonnote_insn (insn
);
2316 /* If the LABEL_REFS field of this label has been set to point
2317 at a branch, the predecessor of the branch is a regular
2318 insn, and that branch is the only way to reach this label,
2319 set the condition codes based on the branch and its
2321 if (barrier
&& GET_CODE (barrier
) == BARRIER
2322 && jump
&& GET_CODE (jump
) == JUMP_INSN
2323 && (prev
= prev_nonnote_insn (jump
))
2324 && GET_CODE (prev
) == INSN
)
2326 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
2327 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
2335 #ifdef FINAL_PRESCAN_LABEL
2336 FINAL_PRESCAN_INSN (insn
, NULL_PTR
, 0);
2339 #ifdef SDB_DEBUGGING_INFO
2340 if (write_symbols
== SDB_DEBUG
&& LABEL_NAME (insn
))
2341 sdbout_label (insn
);
2343 #ifdef DWARF_DEBUGGING_INFO
2344 if (write_symbols
== DWARF_DEBUG
&& LABEL_NAME (insn
))
2345 dwarfout_label (insn
);
2347 #ifdef DWARF2_DEBUGGING_INFO
2348 if (write_symbols
== DWARF2_DEBUG
&& LABEL_NAME (insn
))
2349 dwarf2out_label (insn
);
2353 fputs (ASM_APP_OFF
, file
);
2356 if (NEXT_INSN (insn
) != 0
2357 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
)
2359 rtx nextbody
= PATTERN (NEXT_INSN (insn
));
2361 /* If this label is followed by a jump-table,
2362 make sure we put the label in the read-only section. Also
2363 possibly write the label and jump table together. */
2365 if (GET_CODE (nextbody
) == ADDR_VEC
2366 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
2368 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2369 /* In this case, the case vector is being moved by the
2370 target, so don't output the label at all. Leave that
2371 to the back end macros. */
2373 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2375 readonly_data_section ();
2376 #ifdef READONLY_DATA_SECTION
2377 ASM_OUTPUT_ALIGN (file
,
2378 exact_log2 (BIGGEST_ALIGNMENT
2380 #endif /* READONLY_DATA_SECTION */
2383 function_section (current_function_decl
);
2385 #ifdef ASM_OUTPUT_CASE_LABEL
2386 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2389 ASM_OUTPUT_INTERNAL_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2396 ASM_OUTPUT_INTERNAL_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2401 register rtx body
= PATTERN (insn
);
2402 int insn_code_number
;
2403 const char *template;
2408 /* An INSN, JUMP_INSN or CALL_INSN.
2409 First check for special kinds that recog doesn't recognize. */
2411 if (GET_CODE (body
) == USE
/* These are just declarations */
2412 || GET_CODE (body
) == CLOBBER
)
2416 /* If there is a REG_CC_SETTER note on this insn, it means that
2417 the setting of the condition code was done in the delay slot
2418 of the insn that branched here. So recover the cc status
2419 from the insn that set it. */
2421 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2424 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2425 cc_prev_status
= cc_status
;
2429 /* Detect insns that are really jump-tables
2430 and output them as such. */
2432 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2434 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2435 register int vlen
, idx
;
2443 fputs (ASM_APP_OFF
, file
);
2447 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2448 if (GET_CODE (body
) == ADDR_VEC
)
2450 #ifdef ASM_OUTPUT_ADDR_VEC
2451 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2458 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2459 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2465 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2466 for (idx
= 0; idx
< vlen
; idx
++)
2468 if (GET_CODE (body
) == ADDR_VEC
)
2470 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2471 ASM_OUTPUT_ADDR_VEC_ELT
2472 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2479 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2480 ASM_OUTPUT_ADDR_DIFF_ELT
2483 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2484 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2490 #ifdef ASM_OUTPUT_CASE_END
2491 ASM_OUTPUT_CASE_END (file
,
2492 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2497 function_section (current_function_decl
);
2502 /* Do basic-block profiling when we reach a new block.
2503 Done here to avoid jump tables. */
2504 if (profile_block_flag
&& new_block
)
2507 if (GET_CODE (body
) == ASM_INPUT
)
2509 /* There's no telling what that did to the condition codes. */
2515 fputs (ASM_APP_ON
, file
);
2518 fprintf (asm_out_file
, "\t%s\n", XSTR (body
, 0));
2522 /* Detect `asm' construct with operands. */
2523 if (asm_noperands (body
) >= 0)
2525 unsigned int noperands
= asm_noperands (body
);
2526 rtx
*ops
= (rtx
*) alloca (noperands
* sizeof (rtx
));
2529 /* There's no telling what that did to the condition codes. */
2536 fputs (ASM_APP_ON
, file
);
2540 /* Get out the operand values. */
2541 string
= decode_asm_operands (body
, ops
, NULL_PTR
,
2542 NULL_PTR
, NULL_PTR
);
2543 /* Inhibit aborts on what would otherwise be compiler bugs. */
2544 insn_noperands
= noperands
;
2545 this_is_asm_operands
= insn
;
2547 /* Output the insn using them. */
2548 output_asm_insn (string
, ops
);
2549 this_is_asm_operands
= 0;
2553 if (prescan
<= 0 && app_on
)
2555 fputs (ASM_APP_OFF
, file
);
2559 if (GET_CODE (body
) == SEQUENCE
)
2561 /* A delayed-branch sequence */
2567 final_sequence
= body
;
2569 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2570 force the restoration of a comparison that was previously
2571 thought unnecessary. If that happens, cancel this sequence
2572 and cause that insn to be restored. */
2574 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, prescan
, 1);
2575 if (next
!= XVECEXP (body
, 0, 1))
2581 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2583 rtx insn
= XVECEXP (body
, 0, i
);
2584 rtx next
= NEXT_INSN (insn
);
2585 /* We loop in case any instruction in a delay slot gets
2588 insn
= final_scan_insn (insn
, file
, 0, prescan
, 1);
2589 while (insn
!= next
);
2591 #ifdef DBR_OUTPUT_SEQEND
2592 DBR_OUTPUT_SEQEND (file
);
2596 /* If the insn requiring the delay slot was a CALL_INSN, the
2597 insns in the delay slot are actually executed before the
2598 called function. Hence we don't preserve any CC-setting
2599 actions in these insns and the CC must be marked as being
2600 clobbered by the function. */
2601 if (GET_CODE (XVECEXP (body
, 0, 0)) == CALL_INSN
)
2606 /* Following a conditional branch sequence, we have a new basic
2608 if (profile_block_flag
)
2610 rtx insn
= XVECEXP (body
, 0, 0);
2611 rtx body
= PATTERN (insn
);
2613 if ((GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (body
) == SET
2614 && GET_CODE (SET_SRC (body
)) != LABEL_REF
)
2615 || (GET_CODE (insn
) == JUMP_INSN
2616 && GET_CODE (body
) == PARALLEL
2617 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
2618 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) != LABEL_REF
))
2624 /* We have a real machine instruction as rtl. */
2626 body
= PATTERN (insn
);
2629 set
= single_set(insn
);
2631 /* Check for redundant test and compare instructions
2632 (when the condition codes are already set up as desired).
2633 This is done only when optimizing; if not optimizing,
2634 it should be possible for the user to alter a variable
2635 with the debugger in between statements
2636 and the next statement should reexamine the variable
2637 to compute the condition codes. */
2642 rtx set
= single_set(insn
);
2646 && GET_CODE (SET_DEST (set
)) == CC0
2647 && insn
!= last_ignored_compare
)
2649 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2650 SET_SRC (set
) = alter_subreg (SET_SRC (set
));
2651 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2653 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2654 XEXP (SET_SRC (set
), 0)
2655 = alter_subreg (XEXP (SET_SRC (set
), 0));
2656 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2657 XEXP (SET_SRC (set
), 1)
2658 = alter_subreg (XEXP (SET_SRC (set
), 1));
2660 if ((cc_status
.value1
!= 0
2661 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2662 || (cc_status
.value2
!= 0
2663 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2665 /* Don't delete insn if it has an addressing side-effect. */
2666 if (! FIND_REG_INC_NOTE (insn
, 0)
2667 /* or if anything in it is volatile. */
2668 && ! volatile_refs_p (PATTERN (insn
)))
2670 /* We don't really delete the insn; just ignore it. */
2671 last_ignored_compare
= insn
;
2679 /* Following a conditional branch, we have a new basic block.
2680 But if we are inside a sequence, the new block starts after the
2681 last insn of the sequence. */
2682 if (profile_block_flag
&& final_sequence
== 0
2683 && ((GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (body
) == SET
2684 && GET_CODE (SET_SRC (body
)) != LABEL_REF
)
2685 || (GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (body
) == PARALLEL
2686 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
2687 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) != LABEL_REF
)))
2691 /* Don't bother outputting obvious no-ops, even without -O.
2692 This optimization is fast and doesn't interfere with debugging.
2693 Don't do this if the insn is in a delay slot, since this
2694 will cause an improper number of delay insns to be written. */
2695 if (final_sequence
== 0
2697 && GET_CODE (insn
) == INSN
&& GET_CODE (body
) == SET
2698 && GET_CODE (SET_SRC (body
)) == REG
2699 && GET_CODE (SET_DEST (body
)) == REG
2700 && REGNO (SET_SRC (body
)) == REGNO (SET_DEST (body
)))
2705 /* If this is a conditional branch, maybe modify it
2706 if the cc's are in a nonstandard state
2707 so that it accomplishes the same thing that it would
2708 do straightforwardly if the cc's were set up normally. */
2710 if (cc_status
.flags
!= 0
2711 && GET_CODE (insn
) == JUMP_INSN
2712 && GET_CODE (body
) == SET
2713 && SET_DEST (body
) == pc_rtx
2714 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2715 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body
), 0))) == '<'
2716 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
2717 /* This is done during prescan; it is not done again
2718 in final scan when prescan has been done. */
2721 /* This function may alter the contents of its argument
2722 and clear some of the cc_status.flags bits.
2723 It may also return 1 meaning condition now always true
2724 or -1 meaning condition now always false
2725 or 2 meaning condition nontrivial but altered. */
2726 register int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2727 /* If condition now has fixed value, replace the IF_THEN_ELSE
2728 with its then-operand or its else-operand. */
2730 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2732 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2734 /* The jump is now either unconditional or a no-op.
2735 If it has become a no-op, don't try to output it.
2736 (It would not be recognized.) */
2737 if (SET_SRC (body
) == pc_rtx
)
2739 PUT_CODE (insn
, NOTE
);
2740 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2741 NOTE_SOURCE_FILE (insn
) = 0;
2744 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2745 /* Replace (set (pc) (return)) with (return). */
2746 PATTERN (insn
) = body
= SET_SRC (body
);
2748 /* Rerecognize the instruction if it has changed. */
2750 INSN_CODE (insn
) = -1;
2753 /* Make same adjustments to instructions that examine the
2754 condition codes without jumping and instructions that
2755 handle conditional moves (if this machine has either one). */
2757 if (cc_status
.flags
!= 0
2760 rtx cond_rtx
, then_rtx
, else_rtx
;
2762 if (GET_CODE (insn
) != JUMP_INSN
2763 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2765 cond_rtx
= XEXP (SET_SRC (set
), 0);
2766 then_rtx
= XEXP (SET_SRC (set
), 1);
2767 else_rtx
= XEXP (SET_SRC (set
), 2);
2771 cond_rtx
= SET_SRC (set
);
2772 then_rtx
= const_true_rtx
;
2773 else_rtx
= const0_rtx
;
2776 switch (GET_CODE (cond_rtx
))
2789 register int result
;
2790 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2792 result
= alter_cond (cond_rtx
);
2794 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2795 else if (result
== -1)
2796 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2797 else if (result
== 2)
2798 INSN_CODE (insn
) = -1;
2799 if (SET_DEST (set
) == SET_SRC (set
))
2801 PUT_CODE (insn
, NOTE
);
2802 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2803 NOTE_SOURCE_FILE (insn
) = 0;
2815 /* Do machine-specific peephole optimizations if desired. */
2817 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2819 rtx next
= peephole (insn
);
2820 /* When peepholing, if there were notes within the peephole,
2821 emit them before the peephole. */
2822 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2824 rtx prev
= PREV_INSN (insn
);
2827 for (note
= NEXT_INSN (insn
); note
!= next
;
2828 note
= NEXT_INSN (note
))
2829 final_scan_insn (note
, file
, optimize
, prescan
, nopeepholes
);
2831 /* In case this is prescan, put the notes
2832 in proper position for later rescan. */
2833 note
= NEXT_INSN (insn
);
2834 PREV_INSN (note
) = prev
;
2835 NEXT_INSN (prev
) = note
;
2836 NEXT_INSN (PREV_INSN (next
)) = insn
;
2837 PREV_INSN (insn
) = PREV_INSN (next
);
2838 NEXT_INSN (insn
) = next
;
2839 PREV_INSN (next
) = insn
;
2842 /* PEEPHOLE might have changed this. */
2843 body
= PATTERN (insn
);
2846 /* Try to recognize the instruction.
2847 If successful, verify that the operands satisfy the
2848 constraints for the instruction. Crash if they don't,
2849 since `reload' should have changed them so that they do. */
2851 insn_code_number
= recog_memoized (insn
);
2852 extract_insn (insn
);
2853 cleanup_subreg_operands (insn
);
2855 #ifdef REGISTER_CONSTRAINTS
2856 if (! constrain_operands (1))
2857 fatal_insn_not_found (insn
);
2860 /* Some target machines need to prescan each insn before
2863 #ifdef FINAL_PRESCAN_INSN
2864 FINAL_PRESCAN_INSN (insn
, recog_operand
, recog_n_operands
);
2868 cc_prev_status
= cc_status
;
2870 /* Update `cc_status' for this instruction.
2871 The instruction's output routine may change it further.
2872 If the output routine for a jump insn needs to depend
2873 on the cc status, it should look at cc_prev_status. */
2875 NOTICE_UPDATE_CC (body
, insn
);
2880 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2881 /* If we push arguments, we want to know where the calls are. */
2882 if (GET_CODE (insn
) == CALL_INSN
&& dwarf2out_do_frame ())
2883 dwarf2out_frame_debug (insn
);
2886 /* If the proper template needs to be chosen by some C code,
2887 run that code and get the real template. */
2889 template = insn_template
[insn_code_number
];
2892 template = (*insn_outfun
[insn_code_number
]) (recog_operand
, insn
);
2894 /* If the C code returns 0, it means that it is a jump insn
2895 which follows a deleted test insn, and that test insn
2896 needs to be reinserted. */
2899 if (prev_nonnote_insn (insn
) != last_ignored_compare
)
2902 return prev_nonnote_insn (insn
);
2906 /* If the template is the string "#", it means that this insn must
2908 if (template[0] == '#' && template[1] == '\0')
2910 rtx
new = try_split (body
, insn
, 0);
2912 /* If we didn't split the insn, go away. */
2913 if (new == insn
&& PATTERN (new) == body
)
2914 fatal_insn ("Could not split insn", insn
);
2916 #ifdef HAVE_ATTR_length
2917 /* This instruction should have been split in shorten_branches,
2918 to ensure that we would have valid length info for the
2930 /* Output assembler code from the template. */
2932 output_asm_insn (template, recog_operand
);
2934 #if defined (DWARF2_UNWIND_INFO)
2935 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2936 /* If we push arguments, we need to check all insns for stack
2938 if (GET_CODE (insn
) == INSN
&& dwarf2out_do_frame ())
2939 dwarf2out_frame_debug (insn
);
2941 #if defined (HAVE_prologue)
2942 /* If this insn is part of the prologue, emit DWARF v2
2944 if (RTX_FRAME_RELATED_P (insn
) && dwarf2out_do_frame ())
2945 dwarf2out_frame_debug (insn
);
2951 /* It's not at all clear why we did this and doing so interferes
2952 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2955 /* Mark this insn as having been output. */
2956 INSN_DELETED_P (insn
) = 1;
2962 return NEXT_INSN (insn
);
2965 /* Output debugging info to the assembler file FILE
2966 based on the NOTE-insn INSN, assumed to be a line number. */
2969 output_source_line (file
, insn
)
2973 register char *filename
= NOTE_SOURCE_FILE (insn
);
2975 /* Remember filename for basic block profiling.
2976 Filenames are allocated on the permanent obstack
2977 or are passed in ARGV, so we don't have to save
2980 if (profile_block_flag
&& last_filename
!= filename
)
2981 bb_file_label_num
= add_bb_string (filename
, TRUE
);
2983 last_filename
= filename
;
2984 last_linenum
= NOTE_LINE_NUMBER (insn
);
2985 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2986 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2988 if (write_symbols
!= NO_DEBUG
)
2990 #ifdef SDB_DEBUGGING_INFO
2991 if (write_symbols
== SDB_DEBUG
2992 #if 0 /* People like having line numbers even in wrong file! */
2993 /* COFF can't handle multiple source files--lose, lose. */
2994 && !strcmp (filename
, main_input_filename
)
2996 /* COFF relative line numbers must be positive. */
2997 && last_linenum
> sdb_begin_function_line
)
2999 #ifdef ASM_OUTPUT_SOURCE_LINE
3000 ASM_OUTPUT_SOURCE_LINE (file
, last_linenum
);
3002 fprintf (file
, "\t.ln\t%d\n",
3003 ((sdb_begin_function_line
> -1)
3004 ? last_linenum
- sdb_begin_function_line
: 1));
3009 #if defined (DBX_DEBUGGING_INFO)
3010 if (write_symbols
== DBX_DEBUG
)
3011 dbxout_source_line (file
, filename
, NOTE_LINE_NUMBER (insn
));
3014 #if defined (XCOFF_DEBUGGING_INFO)
3015 if (write_symbols
== XCOFF_DEBUG
)
3016 xcoffout_source_line (file
, filename
, insn
);
3019 #ifdef DWARF_DEBUGGING_INFO
3020 if (write_symbols
== DWARF_DEBUG
)
3021 dwarfout_line (filename
, NOTE_LINE_NUMBER (insn
));
3024 #ifdef DWARF2_DEBUGGING_INFO
3025 if (write_symbols
== DWARF2_DEBUG
)
3026 dwarf2out_line (filename
, NOTE_LINE_NUMBER (insn
));
3032 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3033 directly to the desired hard register. */
3035 cleanup_subreg_operands (insn
)
3040 extract_insn (insn
);
3041 for (i
= 0; i
< recog_n_operands
; i
++)
3043 if (GET_CODE (recog_operand
[i
]) == SUBREG
)
3044 recog_operand
[i
] = alter_subreg (recog_operand
[i
]);
3045 else if (GET_CODE (recog_operand
[i
]) == PLUS
3046 || GET_CODE (recog_operand
[i
]) == MULT
)
3047 recog_operand
[i
] = walk_alter_subreg (recog_operand
[i
]);
3050 for (i
= 0; i
< recog_n_dups
; i
++)
3052 if (GET_CODE (*recog_dup_loc
[i
]) == SUBREG
)
3053 *recog_dup_loc
[i
] = alter_subreg (*recog_dup_loc
[i
]);
3054 else if (GET_CODE (*recog_dup_loc
[i
]) == PLUS
3055 || GET_CODE (*recog_dup_loc
[i
]) == MULT
)
3056 *recog_dup_loc
[i
] = walk_alter_subreg (*recog_dup_loc
[i
]);
3060 /* If X is a SUBREG, replace it with a REG or a MEM,
3061 based on the thing it is a subreg of. */
3067 register rtx y
= SUBREG_REG (x
);
3069 if (GET_CODE (y
) == SUBREG
)
3070 y
= alter_subreg (y
);
3072 /* If reload is operating, we may be replacing inside this SUBREG.
3073 Check for that and make a new one if so. */
3074 if (reload_in_progress
&& find_replacement (&SUBREG_REG (x
)) != 0)
3077 if (GET_CODE (y
) == REG
)
3079 /* If the word size is larger than the size of this register,
3080 adjust the register number to compensate. */
3081 /* ??? Note that this just catches stragglers created by/for
3082 integrate. It would be better if we either caught these
3083 earlier, or kept _all_ subregs until now and eliminate
3084 gen_lowpart and friends. */
3087 #ifdef ALTER_HARD_SUBREG
3088 REGNO (x
) = ALTER_HARD_SUBREG(GET_MODE (x
), SUBREG_WORD (x
),
3089 GET_MODE (y
), REGNO (y
));
3091 REGNO (x
) = REGNO (y
) + SUBREG_WORD (x
);
3093 /* This field has a different meaning for REGs and SUBREGs. Make sure
3097 else if (GET_CODE (y
) == MEM
)
3099 register int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
3100 if (BYTES_BIG_ENDIAN
)
3101 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
)))
3102 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (y
))));
3104 MEM_COPY_ATTRIBUTES (x
, y
);
3105 MEM_ALIAS_SET (x
) = MEM_ALIAS_SET (y
);
3106 XEXP (x
, 0) = plus_constant (XEXP (y
, 0), offset
);
3112 /* Do alter_subreg on all the SUBREGs contained in X. */
3115 walk_alter_subreg (x
)
3118 switch (GET_CODE (x
))
3122 XEXP (x
, 0) = walk_alter_subreg (XEXP (x
, 0));
3123 XEXP (x
, 1) = walk_alter_subreg (XEXP (x
, 1));
3127 XEXP (x
, 0) = walk_alter_subreg (XEXP (x
, 0));
3131 return alter_subreg (x
);
3142 /* Given BODY, the body of a jump instruction, alter the jump condition
3143 as required by the bits that are set in cc_status.flags.
3144 Not all of the bits there can be handled at this level in all cases.
3146 The value is normally 0.
3147 1 means that the condition has become always true.
3148 -1 means that the condition has become always false.
3149 2 means that COND has been altered. */
3157 if (cc_status
.flags
& CC_REVERSED
)
3160 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3163 if (cc_status
.flags
& CC_INVERTED
)
3166 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3169 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3170 switch (GET_CODE (cond
))
3175 /* Jump becomes unconditional. */
3181 /* Jump becomes no-op. */
3185 PUT_CODE (cond
, EQ
);
3190 PUT_CODE (cond
, NE
);
3198 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3199 switch (GET_CODE (cond
))
3203 /* Jump becomes unconditional. */
3208 /* Jump becomes no-op. */
3213 PUT_CODE (cond
, EQ
);
3219 PUT_CODE (cond
, NE
);
3227 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3228 switch (GET_CODE (cond
))
3231 /* Jump becomes unconditional. */
3235 PUT_CODE (cond
, EQ
);
3240 PUT_CODE (cond
, NE
);
3245 /* Jump becomes no-op. */
3252 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3253 switch (GET_CODE (cond
))
3259 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3264 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3269 if (cc_status
.flags
& CC_NOT_SIGNED
)
3270 /* The flags are valid if signed condition operators are converted
3272 switch (GET_CODE (cond
))
3275 PUT_CODE (cond
, LEU
);
3280 PUT_CODE (cond
, LTU
);
3285 PUT_CODE (cond
, GTU
);
3290 PUT_CODE (cond
, GEU
);
3302 /* Report inconsistency between the assembler template and the operands.
3303 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3306 output_operand_lossage (msgid
)
3309 if (this_is_asm_operands
)
3310 error_for_asm (this_is_asm_operands
, "invalid `asm': %s", _(msgid
));
3312 fatal ("Internal compiler error, output_operand_lossage `%s'", _(msgid
));
3315 /* Output of assembler code from a template, and its subroutines. */
3317 /* Output text from TEMPLATE to the assembler output file,
3318 obeying %-directions to substitute operands taken from
3319 the vector OPERANDS.
3321 %N (for N a digit) means print operand N in usual manner.
3322 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3323 and print the label name with no punctuation.
3324 %cN means require operand N to be a constant
3325 and print the constant expression with no punctuation.
3326 %aN means expect operand N to be a memory address
3327 (not a memory reference!) and print a reference
3329 %nN means expect operand N to be a constant
3330 and print a constant expression for minus the value
3331 of the operand, with no other punctuation. */
3336 if (flag_print_asm_name
)
3338 /* Annotate the assembly with a comment describing the pattern and
3339 alternative used. */
3342 register int num
= INSN_CODE (debug_insn
);
3343 fprintf (asm_out_file
, "\t%s %d\t%s",
3344 ASM_COMMENT_START
, INSN_UID (debug_insn
), insn_name
[num
]);
3345 if (insn_n_alternatives
[num
] > 1)
3346 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3347 #ifdef HAVE_ATTR_length
3348 fprintf (asm_out_file
, "\t[length = %d]", get_attr_length (debug_insn
));
3350 /* Clear this so only the first assembler insn
3351 of any rtl insn will get the special comment for -dp. */
3358 output_asm_insn (template, operands
)
3359 const char *template;
3362 register const char *p
;
3365 /* An insn may return a null string template
3366 in a case where no assembler code is needed. */
3371 putc ('\t', asm_out_file
);
3373 #ifdef ASM_OUTPUT_OPCODE
3374 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3382 putc (c
, asm_out_file
);
3383 #ifdef ASM_OUTPUT_OPCODE
3384 while ((c
= *p
) == '\t')
3386 putc (c
, asm_out_file
);
3389 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3393 #ifdef ASSEMBLER_DIALECT
3398 /* If we want the first dialect, do nothing. Otherwise, skip
3399 DIALECT_NUMBER of strings ending with '|'. */
3400 for (i
= 0; i
< dialect_number
; i
++)
3402 while (*p
&& *p
++ != '|')
3412 /* Skip to close brace. */
3413 while (*p
&& *p
++ != '}')
3422 /* %% outputs a single %. */
3426 putc (c
, asm_out_file
);
3428 /* %= outputs a number which is unique to each insn in the entire
3429 compilation. This is useful for making local labels that are
3430 referred to more than once in a given insn. */
3434 fprintf (asm_out_file
, "%d", insn_counter
);
3436 /* % followed by a letter and some digits
3437 outputs an operand in a special way depending on the letter.
3438 Letters `acln' are implemented directly.
3439 Other letters are passed to `output_operand' so that
3440 the PRINT_OPERAND macro can define them. */
3441 else if ((*p
>= 'a' && *p
<= 'z')
3442 || (*p
>= 'A' && *p
<= 'Z'))
3447 if (! (*p
>= '0' && *p
<= '9'))
3448 output_operand_lossage ("operand number missing after %-letter");
3449 else if (this_is_asm_operands
&& (c
< 0 || (unsigned int) c
>= insn_noperands
))
3450 output_operand_lossage ("operand number out of range");
3451 else if (letter
== 'l')
3452 output_asm_label (operands
[c
]);
3453 else if (letter
== 'a')
3454 output_address (operands
[c
]);
3455 else if (letter
== 'c')
3457 if (CONSTANT_ADDRESS_P (operands
[c
]))
3458 output_addr_const (asm_out_file
, operands
[c
]);
3460 output_operand (operands
[c
], 'c');
3462 else if (letter
== 'n')
3464 if (GET_CODE (operands
[c
]) == CONST_INT
)
3465 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3466 - INTVAL (operands
[c
]));
3469 putc ('-', asm_out_file
);
3470 output_addr_const (asm_out_file
, operands
[c
]);
3474 output_operand (operands
[c
], letter
);
3476 while ((c
= *p
) >= '0' && c
<= '9') p
++;
3478 /* % followed by a digit outputs an operand the default way. */
3479 else if (*p
>= '0' && *p
<= '9')
3482 if (this_is_asm_operands
&& (c
< 0 || (unsigned int) c
>= insn_noperands
))
3483 output_operand_lossage ("operand number out of range");
3485 output_operand (operands
[c
], 0);
3486 while ((c
= *p
) >= '0' && c
<= '9') p
++;
3488 /* % followed by punctuation: output something for that
3489 punctuation character alone, with no operand.
3490 The PRINT_OPERAND macro decides what is actually done. */
3491 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3492 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p
))
3493 output_operand (NULL_RTX
, *p
++);
3496 output_operand_lossage ("invalid %%-code");
3500 putc (c
, asm_out_file
);
3505 putc ('\n', asm_out_file
);
3508 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3511 output_asm_label (x
)
3516 if (GET_CODE (x
) == LABEL_REF
)
3517 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (XEXP (x
, 0)));
3518 else if (GET_CODE (x
) == CODE_LABEL
)
3519 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3521 output_operand_lossage ("`%l' operand isn't a label");
3523 assemble_name (asm_out_file
, buf
);
3526 /* Print operand X using machine-dependent assembler syntax.
3527 The macro PRINT_OPERAND is defined just to control this function.
3528 CODE is a non-digit that preceded the operand-number in the % spec,
3529 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3530 between the % and the digits.
3531 When CODE is a non-letter, X is 0.
3533 The meanings of the letters are machine-dependent and controlled
3534 by PRINT_OPERAND. */
3537 output_operand (x
, code
)
3541 if (x
&& GET_CODE (x
) == SUBREG
)
3542 x
= alter_subreg (x
);
3544 /* If X is a pseudo-register, abort now rather than writing trash to the
3547 if (x
&& GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
3550 PRINT_OPERAND (asm_out_file
, x
, code
);
3553 /* Print a memory reference operand for address X
3554 using machine-dependent assembler syntax.
3555 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3561 walk_alter_subreg (x
);
3562 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3565 /* Print an integer constant expression in assembler syntax.
3566 Addition and subtraction are the only arithmetic
3567 that may appear in these expressions. */
3570 output_addr_const (file
, x
)
3577 switch (GET_CODE (x
))
3587 assemble_name (file
, XSTR (x
, 0));
3591 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (XEXP (x
, 0)));
3592 assemble_name (file
, buf
);
3596 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3597 assemble_name (file
, buf
);
3601 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3605 /* This used to output parentheses around the expression,
3606 but that does not work on the 386 (either ATT or BSD assembler). */
3607 output_addr_const (file
, XEXP (x
, 0));
3611 if (GET_MODE (x
) == VOIDmode
)
3613 /* We can use %d if the number is one word and positive. */
3614 if (CONST_DOUBLE_HIGH (x
))
3615 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3616 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3617 else if (CONST_DOUBLE_LOW (x
) < 0)
3618 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3620 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3623 /* We can't handle floating point constants;
3624 PRINT_OPERAND must handle them. */
3625 output_operand_lossage ("floating constant misused");
3629 /* Some assemblers need integer constants to appear last (eg masm). */
3630 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3632 output_addr_const (file
, XEXP (x
, 1));
3633 if (INTVAL (XEXP (x
, 0)) >= 0)
3634 fprintf (file
, "+");
3635 output_addr_const (file
, XEXP (x
, 0));
3639 output_addr_const (file
, XEXP (x
, 0));
3640 if (INTVAL (XEXP (x
, 1)) >= 0)
3641 fprintf (file
, "+");
3642 output_addr_const (file
, XEXP (x
, 1));
3647 /* Avoid outputting things like x-x or x+5-x,
3648 since some assemblers can't handle that. */
3649 x
= simplify_subtraction (x
);
3650 if (GET_CODE (x
) != MINUS
)
3653 output_addr_const (file
, XEXP (x
, 0));
3654 fprintf (file
, "-");
3655 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3656 && INTVAL (XEXP (x
, 1)) < 0)
3658 fprintf (file
, ASM_OPEN_PAREN
);
3659 output_addr_const (file
, XEXP (x
, 1));
3660 fprintf (file
, ASM_CLOSE_PAREN
);
3663 output_addr_const (file
, XEXP (x
, 1));
3668 output_addr_const (file
, XEXP (x
, 0));
3672 output_operand_lossage ("invalid expression as operand");
3676 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3677 %R prints the value of REGISTER_PREFIX.
3678 %L prints the value of LOCAL_LABEL_PREFIX.
3679 %U prints the value of USER_LABEL_PREFIX.
3680 %I prints the value of IMMEDIATE_PREFIX.
3681 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3682 Also supported are %d, %x, %s, %e, %f, %g and %%.
3684 We handle alternate assembler dialects here, just like output_asm_insn. */
3687 asm_fprintf
VPROTO((FILE *file
, const char *p
, ...))
3689 #ifndef ANSI_PROTOTYPES
3697 VA_START (argptr
, p
);
3699 #ifndef ANSI_PROTOTYPES
3700 file
= va_arg (argptr
, FILE *);
3701 p
= va_arg (argptr
, const char *);
3709 #ifdef ASSEMBLER_DIALECT
3714 /* If we want the first dialect, do nothing. Otherwise, skip
3715 DIALECT_NUMBER of strings ending with '|'. */
3716 for (i
= 0; i
< dialect_number
; i
++)
3718 while (*p
&& *p
++ != '|')
3728 /* Skip to close brace. */
3729 while (*p
&& *p
++ != '}')
3740 while ((c
>= '0' && c
<= '9') || c
== '.')
3748 fprintf (file
, "%%");
3751 case 'd': case 'i': case 'u':
3752 case 'x': case 'p': case 'X':
3756 fprintf (file
, buf
, va_arg (argptr
, int));
3760 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3761 but we do not check for those cases. It means that the value
3762 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3764 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3766 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3776 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3783 fprintf (file
, buf
, va_arg (argptr
, long));
3791 fprintf (file
, buf
, va_arg (argptr
, double));
3797 fprintf (file
, buf
, va_arg (argptr
, char *));
3801 #ifdef ASM_OUTPUT_OPCODE
3802 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3807 #ifdef REGISTER_PREFIX
3808 fprintf (file
, "%s", REGISTER_PREFIX
);
3813 #ifdef IMMEDIATE_PREFIX
3814 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3819 #ifdef LOCAL_LABEL_PREFIX
3820 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3825 fputs (user_label_prefix
, file
);
3838 /* Split up a CONST_DOUBLE or integer constant rtx
3839 into two rtx's for single words,
3840 storing in *FIRST the word that comes first in memory in the target
3841 and in *SECOND the other. */
3844 split_double (value
, first
, second
)
3846 rtx
*first
, *second
;
3848 if (GET_CODE (value
) == CONST_INT
)
3850 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3852 /* In this case the CONST_INT holds both target words.
3853 Extract the bits from it into two word-sized pieces.
3854 Sign extend each half to HOST_WIDE_INT. */
3856 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3857 the shift below will cause a compiler warning, even though
3858 this code won't be executed. So put the shift amounts in
3859 variables to avoid the warning. */
3860 int rshift
= HOST_BITS_PER_WIDE_INT
- BITS_PER_WORD
;
3861 int lshift
= HOST_BITS_PER_WIDE_INT
- 2 * BITS_PER_WORD
;
3863 low
= GEN_INT ((INTVAL (value
) << rshift
) >> rshift
);
3864 high
= GEN_INT ((INTVAL (value
) << lshift
) >> rshift
);
3865 if (WORDS_BIG_ENDIAN
)
3878 /* The rule for using CONST_INT for a wider mode
3879 is that we regard the value as signed.
3880 So sign-extend it. */
3881 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3882 if (WORDS_BIG_ENDIAN
)
3894 else if (GET_CODE (value
) != CONST_DOUBLE
)
3896 if (WORDS_BIG_ENDIAN
)
3898 *first
= const0_rtx
;
3904 *second
= const0_rtx
;
3907 else if (GET_MODE (value
) == VOIDmode
3908 /* This is the old way we did CONST_DOUBLE integers. */
3909 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3911 /* In an integer, the words are defined as most and least significant.
3912 So order them by the target's convention. */
3913 if (WORDS_BIG_ENDIAN
)
3915 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3916 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3920 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3921 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3926 #ifdef REAL_ARITHMETIC
3927 REAL_VALUE_TYPE r
; long l
[2];
3928 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3930 /* Note, this converts the REAL_VALUE_TYPE to the target's
3931 format, splits up the floating point double and outputs
3932 exactly 32 bits of it into each of l[0] and l[1] --
3933 not necessarily BITS_PER_WORD bits. */
3934 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3936 /* If 32 bits is an entire word for the target, but not for the host,
3937 then sign-extend on the host so that the number will look the same
3938 way on the host that it would on the target. See for instance
3939 simplify_unary_operation. The #if is needed to avoid compiler
3942 #if HOST_BITS_PER_LONG > 32
3943 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3945 if (l
[0] & ((long) 1 << 31))
3946 l
[0] |= ((long) (-1) << 32);
3947 if (l
[1] & ((long) 1 << 31))
3948 l
[1] |= ((long) (-1) << 32);
3952 *first
= GEN_INT ((HOST_WIDE_INT
) l
[0]);
3953 *second
= GEN_INT ((HOST_WIDE_INT
) l
[1]);
3955 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
3956 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
3957 && ! flag_pretend_float
)
3961 #ifdef HOST_WORDS_BIG_ENDIAN
3968 /* Host and target agree => no need to swap. */
3969 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3970 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3974 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3975 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3977 #endif /* no REAL_ARITHMETIC */
3981 /* Return nonzero if this function has no function calls. */
3988 if (profile_flag
|| profile_block_flag
|| profile_arc_flag
)
3991 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3993 if (GET_CODE (insn
) == CALL_INSN
)
3995 if (GET_CODE (insn
) == INSN
3996 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3997 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
)
4000 for (insn
= current_function_epilogue_delay_list
; insn
; insn
= XEXP (insn
, 1))
4002 if (GET_CODE (XEXP (insn
, 0)) == CALL_INSN
)
4004 if (GET_CODE (XEXP (insn
, 0)) == INSN
4005 && GET_CODE (PATTERN (XEXP (insn
, 0))) == SEQUENCE
4006 && GET_CODE (XVECEXP (PATTERN (XEXP (insn
, 0)), 0, 0)) == CALL_INSN
)
4013 /* On some machines, a function with no call insns
4014 can run faster if it doesn't create its own register window.
4015 When output, the leaf function should use only the "output"
4016 registers. Ordinarily, the function would be compiled to use
4017 the "input" registers to find its arguments; it is a candidate
4018 for leaf treatment if it uses only the "input" registers.
4019 Leaf function treatment means renumbering so the function
4020 uses the "output" registers instead. */
4022 #ifdef LEAF_REGISTERS
4024 static char permitted_reg_in_leaf_functions
[] = LEAF_REGISTERS
;
4026 /* Return 1 if this function uses only the registers that can be
4027 safely renumbered. */
4030 only_leaf_regs_used ()
4034 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4035 if ((regs_ever_live
[i
] || global_regs
[i
])
4036 && ! permitted_reg_in_leaf_functions
[i
])
4039 if (current_function_uses_pic_offset_table
4040 && pic_offset_table_rtx
!= 0
4041 && GET_CODE (pic_offset_table_rtx
) == REG
4042 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4048 /* Scan all instructions and renumber all registers into those
4049 available in leaf functions. */
4052 leaf_renumber_regs (first
)
4057 /* Renumber only the actual patterns.
4058 The reg-notes can contain frame pointer refs,
4059 and renumbering them could crash, and should not be needed. */
4060 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4061 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
4062 leaf_renumber_regs_insn (PATTERN (insn
));
4063 for (insn
= current_function_epilogue_delay_list
; insn
; insn
= XEXP (insn
, 1))
4064 if (GET_RTX_CLASS (GET_CODE (XEXP (insn
, 0))) == 'i')
4065 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
4068 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4069 available in leaf functions. */
4072 leaf_renumber_regs_insn (in_rtx
)
4073 register rtx in_rtx
;
4076 register char *format_ptr
;
4081 /* Renumber all input-registers into output-registers.
4082 renumbered_regs would be 1 for an output-register;
4085 if (GET_CODE (in_rtx
) == REG
)
4089 /* Don't renumber the same reg twice. */
4093 newreg
= REGNO (in_rtx
);
4094 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4095 to reach here as part of a REG_NOTE. */
4096 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4101 newreg
= LEAF_REG_REMAP (newreg
);
4104 regs_ever_live
[REGNO (in_rtx
)] = 0;
4105 regs_ever_live
[newreg
] = 1;
4106 REGNO (in_rtx
) = newreg
;
4110 if (GET_RTX_CLASS (GET_CODE (in_rtx
)) == 'i')
4112 /* Inside a SEQUENCE, we find insns.
4113 Renumber just the patterns of these insns,
4114 just as we do for the top-level insns. */
4115 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4119 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4121 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4122 switch (*format_ptr
++)
4125 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4129 if (NULL
!= XVEC (in_rtx
, i
))
4131 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4132 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));