index.html (5.4): Recommend against -I options for finding the ext headers.
[official-gcc.git] / gcc / tree.c
blob945f3a15eca873884ff82a2aaaa5afab71c083b7
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
55 /* Objects allocated on this obstack last forever. */
57 struct obstack permanent_obstack;
59 /* Statistics-gathering stuff. */
60 typedef enum
62 d_kind,
63 t_kind,
64 b_kind,
65 s_kind,
66 r_kind,
67 e_kind,
68 c_kind,
69 id_kind,
70 perm_list_kind,
71 temp_list_kind,
72 vec_kind,
73 x_kind,
74 lang_decl,
75 lang_type,
76 all_kinds
77 } tree_node_kind;
79 int tree_node_counts[(int) all_kinds];
80 int tree_node_sizes[(int) all_kinds];
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "random kinds",
95 "lang_decl kinds",
96 "lang_type kinds"
99 /* Unique id for next decl created. */
100 static int next_decl_uid;
101 /* Unique id for next type created. */
102 static int next_type_uid = 1;
104 /* Since we cannot rehash a type after it is in the table, we have to
105 keep the hash code. */
107 struct type_hash
109 unsigned long hash;
110 tree type;
113 /* Initial size of the hash table (rounded to next prime). */
114 #define TYPE_HASH_INITIAL_SIZE 1000
116 /* Now here is the hash table. When recording a type, it is added to
117 the slot whose index is the hash code. Note that the hash table is
118 used for several kinds of types (function types, array types and
119 array index range types, for now). While all these live in the
120 same table, they are completely independent, and the hash code is
121 computed differently for each of these. */
123 htab_t type_hash_table;
125 static void set_type_quals PARAMS ((tree, int));
126 static void append_random_chars PARAMS ((char *));
127 static int type_hash_eq PARAMS ((const void *, const void *));
128 static unsigned int type_hash_hash PARAMS ((const void *));
129 static void print_type_hash_statistics PARAMS((void));
130 static void finish_vector_type PARAMS((tree));
131 static tree make_vector PARAMS ((enum machine_mode, tree, int));
132 static int type_hash_marked_p PARAMS ((const void *));
133 static void type_hash_mark PARAMS ((const void *));
134 static int mark_tree_hashtable_entry PARAMS((void **, void *));
136 tree global_trees[TI_MAX];
137 tree integer_types[itk_none];
139 /* Init the principal obstacks. */
141 void
142 init_obstacks ()
144 gcc_obstack_init (&permanent_obstack);
146 /* Initialize the hash table of types. */
147 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
148 type_hash_eq, 0);
149 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
150 type_hash_mark);
151 ggc_add_tree_root (global_trees, TI_MAX);
152 ggc_add_tree_root (integer_types, itk_none);
156 /* Allocate SIZE bytes in the permanent obstack
157 and return a pointer to them. */
159 char *
160 permalloc (size)
161 int size;
163 return (char *) obstack_alloc (&permanent_obstack, size);
166 /* Allocate NELEM items of SIZE bytes in the permanent obstack
167 and return a pointer to them. The storage is cleared before
168 returning the value. */
170 char *
171 perm_calloc (nelem, size)
172 int nelem;
173 long size;
175 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
176 memset (rval, 0, nelem * size);
177 return rval;
180 /* The name of the object as the assembler will see it (but before any
181 translations made by ASM_OUTPUT_LABELREF). Often this is the same
182 as DECL_NAME. It is an IDENTIFIER_NODE. */
183 tree
184 decl_assembler_name (decl)
185 tree decl;
187 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
188 (*lang_hooks.set_decl_assembler_name) (decl);
189 return DECL_CHECK (decl)->decl.assembler_name;
192 /* Compute the number of bytes occupied by 'node'. This routine only
193 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
194 size_t
195 tree_size (node)
196 tree node;
198 enum tree_code code = TREE_CODE (node);
200 switch (TREE_CODE_CLASS (code))
202 case 'd': /* A decl node */
203 return sizeof (struct tree_decl);
205 case 't': /* a type node */
206 return sizeof (struct tree_type);
208 case 'b': /* a lexical block node */
209 return sizeof (struct tree_block);
211 case 'r': /* a reference */
212 case 'e': /* an expression */
213 case 's': /* an expression with side effects */
214 case '<': /* a comparison expression */
215 case '1': /* a unary arithmetic expression */
216 case '2': /* a binary arithmetic expression */
217 return (sizeof (struct tree_exp)
218 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
220 case 'c': /* a constant */
221 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
222 words is machine-dependent due to varying length of HOST_WIDE_INT,
223 which might be wider than a pointer (e.g., long long). Similarly
224 for REAL_CST, since the number of words is machine-dependent due
225 to varying size and alignment of `double'. */
226 if (code == INTEGER_CST)
227 return sizeof (struct tree_int_cst);
228 else if (code == REAL_CST)
229 return sizeof (struct tree_real_cst);
230 else
231 return (sizeof (struct tree_common)
232 + TREE_CODE_LENGTH (code) * sizeof (char *));
234 case 'x': /* something random, like an identifier. */
236 size_t length;
237 length = (sizeof (struct tree_common)
238 + TREE_CODE_LENGTH (code) * sizeof (char *));
239 if (code == TREE_VEC)
240 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
241 return length;
244 default:
245 abort ();
249 /* Return a newly allocated node of code CODE.
250 For decl and type nodes, some other fields are initialized.
251 The rest of the node is initialized to zero.
253 Achoo! I got a code in the node. */
255 tree
256 make_node (code)
257 enum tree_code code;
259 tree t;
260 int type = TREE_CODE_CLASS (code);
261 size_t length;
262 #ifdef GATHER_STATISTICS
263 tree_node_kind kind;
264 #endif
265 struct tree_common ttmp;
267 /* We can't allocate a TREE_VEC without knowing how many elements
268 it will have. */
269 if (code == TREE_VEC)
270 abort ();
272 TREE_SET_CODE ((tree)&ttmp, code);
273 length = tree_size ((tree)&ttmp);
275 #ifdef GATHER_STATISTICS
276 switch (type)
278 case 'd': /* A decl node */
279 kind = d_kind;
280 break;
282 case 't': /* a type node */
283 kind = t_kind;
284 break;
286 case 'b': /* a lexical block */
287 kind = b_kind;
288 break;
290 case 's': /* an expression with side effects */
291 kind = s_kind;
292 break;
294 case 'r': /* a reference */
295 kind = r_kind;
296 break;
298 case 'e': /* an expression */
299 case '<': /* a comparison expression */
300 case '1': /* a unary arithmetic expression */
301 case '2': /* a binary arithmetic expression */
302 kind = e_kind;
303 break;
305 case 'c': /* a constant */
306 kind = c_kind;
307 break;
309 case 'x': /* something random, like an identifier. */
310 if (code == IDENTIFIER_NODE)
311 kind = id_kind;
312 else if (code == TREE_VEC)
313 kind = vec_kind;
314 else
315 kind = x_kind;
316 break;
318 default:
319 abort ();
322 tree_node_counts[(int) kind]++;
323 tree_node_sizes[(int) kind] += length;
324 #endif
326 t = ggc_alloc_tree (length);
328 memset ((PTR) t, 0, length);
330 TREE_SET_CODE (t, code);
332 switch (type)
334 case 's':
335 TREE_SIDE_EFFECTS (t) = 1;
336 TREE_TYPE (t) = void_type_node;
337 break;
339 case 'd':
340 if (code != FUNCTION_DECL)
341 DECL_ALIGN (t) = 1;
342 DECL_USER_ALIGN (t) = 0;
343 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
344 DECL_SOURCE_LINE (t) = lineno;
345 DECL_SOURCE_FILE (t) =
346 (input_filename) ? input_filename : "<built-in>";
347 DECL_UID (t) = next_decl_uid++;
349 /* We have not yet computed the alias set for this declaration. */
350 DECL_POINTER_ALIAS_SET (t) = -1;
351 break;
353 case 't':
354 TYPE_UID (t) = next_type_uid++;
355 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
356 TYPE_USER_ALIGN (t) = 0;
357 TYPE_MAIN_VARIANT (t) = t;
359 /* Default to no attributes for type, but let target change that. */
360 TYPE_ATTRIBUTES (t) = NULL_TREE;
361 (*targetm.set_default_type_attributes) (t);
363 /* We have not yet computed the alias set for this type. */
364 TYPE_ALIAS_SET (t) = -1;
365 break;
367 case 'c':
368 TREE_CONSTANT (t) = 1;
369 break;
371 case 'e':
372 switch (code)
374 case INIT_EXPR:
375 case MODIFY_EXPR:
376 case VA_ARG_EXPR:
377 case RTL_EXPR:
378 case PREDECREMENT_EXPR:
379 case PREINCREMENT_EXPR:
380 case POSTDECREMENT_EXPR:
381 case POSTINCREMENT_EXPR:
382 /* All of these have side-effects, no matter what their
383 operands are. */
384 TREE_SIDE_EFFECTS (t) = 1;
385 break;
387 default:
388 break;
390 break;
393 return t;
396 /* Return a new node with the same contents as NODE except that its
397 TREE_CHAIN is zero and it has a fresh uid. */
399 tree
400 copy_node (node)
401 tree node;
403 tree t;
404 enum tree_code code = TREE_CODE (node);
405 size_t length;
407 length = tree_size (node);
408 t = ggc_alloc_tree (length);
409 memcpy (t, node, length);
411 TREE_CHAIN (t) = 0;
412 TREE_ASM_WRITTEN (t) = 0;
414 if (TREE_CODE_CLASS (code) == 'd')
415 DECL_UID (t) = next_decl_uid++;
416 else if (TREE_CODE_CLASS (code) == 't')
418 TYPE_UID (t) = next_type_uid++;
419 /* The following is so that the debug code for
420 the copy is different from the original type.
421 The two statements usually duplicate each other
422 (because they clear fields of the same union),
423 but the optimizer should catch that. */
424 TYPE_SYMTAB_POINTER (t) = 0;
425 TYPE_SYMTAB_ADDRESS (t) = 0;
428 return t;
431 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
432 For example, this can copy a list made of TREE_LIST nodes. */
434 tree
435 copy_list (list)
436 tree list;
438 tree head;
439 tree prev, next;
441 if (list == 0)
442 return 0;
444 head = prev = copy_node (list);
445 next = TREE_CHAIN (list);
446 while (next)
448 TREE_CHAIN (prev) = copy_node (next);
449 prev = TREE_CHAIN (prev);
450 next = TREE_CHAIN (next);
452 return head;
456 /* Return a newly constructed INTEGER_CST node whose constant value
457 is specified by the two ints LOW and HI.
458 The TREE_TYPE is set to `int'.
460 This function should be used via the `build_int_2' macro. */
462 tree
463 build_int_2_wide (low, hi)
464 unsigned HOST_WIDE_INT low;
465 HOST_WIDE_INT hi;
467 tree t = make_node (INTEGER_CST);
469 TREE_INT_CST_LOW (t) = low;
470 TREE_INT_CST_HIGH (t) = hi;
471 TREE_TYPE (t) = integer_type_node;
472 return t;
475 /* Return a new VECTOR_CST node whose type is TYPE and whose values
476 are in a list pointed by VALS. */
478 tree
479 build_vector (type, vals)
480 tree type, vals;
482 tree v = make_node (VECTOR_CST);
483 int over1 = 0, over2 = 0;
484 tree link;
486 TREE_VECTOR_CST_ELTS (v) = vals;
487 TREE_TYPE (v) = type;
489 /* Iterate through elements and check for overflow. */
490 for (link = vals; link; link = TREE_CHAIN (link))
492 tree value = TREE_VALUE (link);
494 over1 |= TREE_OVERFLOW (value);
495 over2 |= TREE_CONSTANT_OVERFLOW (value);
498 TREE_OVERFLOW (v) = over1;
499 TREE_CONSTANT_OVERFLOW (v) = over2;
501 return v;
504 /* Return a new REAL_CST node whose type is TYPE and value is D. */
506 tree
507 build_real (type, d)
508 tree type;
509 REAL_VALUE_TYPE d;
511 tree v;
512 int overflow = 0;
514 /* Check for valid float value for this type on this target machine;
515 if not, can print error message and store a valid value in D. */
516 #ifdef CHECK_FLOAT_VALUE
517 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
518 #endif
520 v = make_node (REAL_CST);
521 TREE_TYPE (v) = type;
522 TREE_REAL_CST (v) = d;
523 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
524 return v;
527 /* Return a new REAL_CST node whose type is TYPE
528 and whose value is the integer value of the INTEGER_CST node I. */
530 REAL_VALUE_TYPE
531 real_value_from_int_cst (type, i)
532 tree type ATTRIBUTE_UNUSED, i;
534 REAL_VALUE_TYPE d;
536 /* Clear all bits of the real value type so that we can later do
537 bitwise comparisons to see if two values are the same. */
538 memset ((char *) &d, 0, sizeof d);
540 if (! TREE_UNSIGNED (TREE_TYPE (i)))
541 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
542 TYPE_MODE (type));
543 else
544 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
545 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
546 return d;
549 /* Given a tree representing an integer constant I, return a tree
550 representing the same value as a floating-point constant of type TYPE. */
552 tree
553 build_real_from_int_cst (type, i)
554 tree type;
555 tree i;
557 tree v;
558 int overflow = TREE_OVERFLOW (i);
559 REAL_VALUE_TYPE d;
561 v = make_node (REAL_CST);
562 TREE_TYPE (v) = type;
564 d = real_value_from_int_cst (type, i);
566 /* Check for valid float value for this type on this target machine. */
567 #ifdef CHECK_FLOAT_VALUE
568 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
569 #endif
571 TREE_REAL_CST (v) = d;
572 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
573 return v;
576 /* Return a newly constructed STRING_CST node whose value is
577 the LEN characters at STR.
578 The TREE_TYPE is not initialized. */
580 tree
581 build_string (len, str)
582 int len;
583 const char *str;
585 tree s = make_node (STRING_CST);
587 TREE_STRING_LENGTH (s) = len;
588 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
590 return s;
593 /* Return a newly constructed COMPLEX_CST node whose value is
594 specified by the real and imaginary parts REAL and IMAG.
595 Both REAL and IMAG should be constant nodes. TYPE, if specified,
596 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
598 tree
599 build_complex (type, real, imag)
600 tree type;
601 tree real, imag;
603 tree t = make_node (COMPLEX_CST);
605 TREE_REALPART (t) = real;
606 TREE_IMAGPART (t) = imag;
607 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
608 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
609 TREE_CONSTANT_OVERFLOW (t)
610 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
611 return t;
614 /* Build a newly constructed TREE_VEC node of length LEN. */
616 tree
617 make_tree_vec (len)
618 int len;
620 tree t;
621 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
623 #ifdef GATHER_STATISTICS
624 tree_node_counts[(int) vec_kind]++;
625 tree_node_sizes[(int) vec_kind] += length;
626 #endif
628 t = ggc_alloc_tree (length);
630 memset ((PTR) t, 0, length);
631 TREE_SET_CODE (t, TREE_VEC);
632 TREE_VEC_LENGTH (t) = len;
634 return t;
637 /* Return 1 if EXPR is the integer constant zero or a complex constant
638 of zero. */
641 integer_zerop (expr)
642 tree expr;
644 STRIP_NOPS (expr);
646 return ((TREE_CODE (expr) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr)
648 && TREE_INT_CST_LOW (expr) == 0
649 && TREE_INT_CST_HIGH (expr) == 0)
650 || (TREE_CODE (expr) == COMPLEX_CST
651 && integer_zerop (TREE_REALPART (expr))
652 && integer_zerop (TREE_IMAGPART (expr))));
655 /* Return 1 if EXPR is the integer constant one or the corresponding
656 complex constant. */
659 integer_onep (expr)
660 tree expr;
662 STRIP_NOPS (expr);
664 return ((TREE_CODE (expr) == INTEGER_CST
665 && ! TREE_CONSTANT_OVERFLOW (expr)
666 && TREE_INT_CST_LOW (expr) == 1
667 && TREE_INT_CST_HIGH (expr) == 0)
668 || (TREE_CODE (expr) == COMPLEX_CST
669 && integer_onep (TREE_REALPART (expr))
670 && integer_zerop (TREE_IMAGPART (expr))));
673 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
674 it contains. Likewise for the corresponding complex constant. */
677 integer_all_onesp (expr)
678 tree expr;
680 int prec;
681 int uns;
683 STRIP_NOPS (expr);
685 if (TREE_CODE (expr) == COMPLEX_CST
686 && integer_all_onesp (TREE_REALPART (expr))
687 && integer_zerop (TREE_IMAGPART (expr)))
688 return 1;
690 else if (TREE_CODE (expr) != INTEGER_CST
691 || TREE_CONSTANT_OVERFLOW (expr))
692 return 0;
694 uns = TREE_UNSIGNED (TREE_TYPE (expr));
695 if (!uns)
696 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
697 && TREE_INT_CST_HIGH (expr) == -1);
699 /* Note that using TYPE_PRECISION here is wrong. We care about the
700 actual bits, not the (arbitrary) range of the type. */
701 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
702 if (prec >= HOST_BITS_PER_WIDE_INT)
704 HOST_WIDE_INT high_value;
705 int shift_amount;
707 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
709 if (shift_amount > HOST_BITS_PER_WIDE_INT)
710 /* Can not handle precisions greater than twice the host int size. */
711 abort ();
712 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
713 /* Shifting by the host word size is undefined according to the ANSI
714 standard, so we must handle this as a special case. */
715 high_value = -1;
716 else
717 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
719 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
720 && TREE_INT_CST_HIGH (expr) == high_value);
722 else
723 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
726 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
727 one bit on). */
730 integer_pow2p (expr)
731 tree expr;
733 int prec;
734 HOST_WIDE_INT high, low;
736 STRIP_NOPS (expr);
738 if (TREE_CODE (expr) == COMPLEX_CST
739 && integer_pow2p (TREE_REALPART (expr))
740 && integer_zerop (TREE_IMAGPART (expr)))
741 return 1;
743 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
744 return 0;
746 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
747 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
748 high = TREE_INT_CST_HIGH (expr);
749 low = TREE_INT_CST_LOW (expr);
751 /* First clear all bits that are beyond the type's precision in case
752 we've been sign extended. */
754 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
756 else if (prec > HOST_BITS_PER_WIDE_INT)
757 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
758 else
760 high = 0;
761 if (prec < HOST_BITS_PER_WIDE_INT)
762 low &= ~((HOST_WIDE_INT) (-1) << prec);
765 if (high == 0 && low == 0)
766 return 0;
768 return ((high == 0 && (low & (low - 1)) == 0)
769 || (low == 0 && (high & (high - 1)) == 0));
772 /* Return the power of two represented by a tree node known to be a
773 power of two. */
776 tree_log2 (expr)
777 tree expr;
779 int prec;
780 HOST_WIDE_INT high, low;
782 STRIP_NOPS (expr);
784 if (TREE_CODE (expr) == COMPLEX_CST)
785 return tree_log2 (TREE_REALPART (expr));
787 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
788 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
790 high = TREE_INT_CST_HIGH (expr);
791 low = TREE_INT_CST_LOW (expr);
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
796 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
798 else if (prec > HOST_BITS_PER_WIDE_INT)
799 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
800 else
802 high = 0;
803 if (prec < HOST_BITS_PER_WIDE_INT)
804 low &= ~((HOST_WIDE_INT) (-1) << prec);
807 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
808 : exact_log2 (low));
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
815 tree_floor_log2 (expr)
816 tree expr;
818 int prec;
819 HOST_WIDE_INT high, low;
821 STRIP_NOPS (expr);
823 if (TREE_CODE (expr) == COMPLEX_CST)
824 return tree_log2 (TREE_REALPART (expr));
826 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
827 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
829 high = TREE_INT_CST_HIGH (expr);
830 low = TREE_INT_CST_LOW (expr);
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
836 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
838 else if (prec > HOST_BITS_PER_WIDE_INT)
839 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
840 else
842 high = 0;
843 if (prec < HOST_BITS_PER_WIDE_INT)
844 low &= ~((HOST_WIDE_INT) (-1) << prec);
847 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
848 : floor_log2 (low));
851 /* Return 1 if EXPR is the real constant zero. */
854 real_zerop (expr)
855 tree expr;
857 STRIP_NOPS (expr);
859 return ((TREE_CODE (expr) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
862 || (TREE_CODE (expr) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr))
864 && real_zerop (TREE_IMAGPART (expr))));
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
870 real_onep (expr)
871 tree expr;
873 STRIP_NOPS (expr);
875 return ((TREE_CODE (expr) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
878 || (TREE_CODE (expr) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr))
880 && real_zerop (TREE_IMAGPART (expr))));
883 /* Return 1 if EXPR is the real constant two. */
886 real_twop (expr)
887 tree expr;
889 STRIP_NOPS (expr);
891 return ((TREE_CODE (expr) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
894 || (TREE_CODE (expr) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr))
896 && real_zerop (TREE_IMAGPART (expr))));
899 /* Nonzero if EXP is a constant or a cast of a constant. */
902 really_constant_p (exp)
903 tree exp;
905 /* This is not quite the same as STRIP_NOPS. It does more. */
906 while (TREE_CODE (exp) == NOP_EXPR
907 || TREE_CODE (exp) == CONVERT_EXPR
908 || TREE_CODE (exp) == NON_LVALUE_EXPR)
909 exp = TREE_OPERAND (exp, 0);
910 return TREE_CONSTANT (exp);
913 /* Return first list element whose TREE_VALUE is ELEM.
914 Return 0 if ELEM is not in LIST. */
916 tree
917 value_member (elem, list)
918 tree elem, list;
920 while (list)
922 if (elem == TREE_VALUE (list))
923 return list;
924 list = TREE_CHAIN (list);
926 return NULL_TREE;
929 /* Return first list element whose TREE_PURPOSE is ELEM.
930 Return 0 if ELEM is not in LIST. */
932 tree
933 purpose_member (elem, list)
934 tree elem, list;
936 while (list)
938 if (elem == TREE_PURPOSE (list))
939 return list;
940 list = TREE_CHAIN (list);
942 return NULL_TREE;
945 /* Return first list element whose BINFO_TYPE is ELEM.
946 Return 0 if ELEM is not in LIST. */
948 tree
949 binfo_member (elem, list)
950 tree elem, list;
952 while (list)
954 if (elem == BINFO_TYPE (list))
955 return list;
956 list = TREE_CHAIN (list);
958 return NULL_TREE;
961 /* Return nonzero if ELEM is part of the chain CHAIN. */
964 chain_member (elem, chain)
965 tree elem, chain;
967 while (chain)
969 if (elem == chain)
970 return 1;
971 chain = TREE_CHAIN (chain);
974 return 0;
977 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
978 chain CHAIN. This and the next function are currently unused, but
979 are retained for completeness. */
982 chain_member_value (elem, chain)
983 tree elem, chain;
985 while (chain)
987 if (elem == TREE_VALUE (chain))
988 return 1;
989 chain = TREE_CHAIN (chain);
992 return 0;
995 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
996 for any piece of chain CHAIN. */
999 chain_member_purpose (elem, chain)
1000 tree elem, chain;
1002 while (chain)
1004 if (elem == TREE_PURPOSE (chain))
1005 return 1;
1006 chain = TREE_CHAIN (chain);
1009 return 0;
1012 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1013 We expect a null pointer to mark the end of the chain.
1014 This is the Lisp primitive `length'. */
1017 list_length (t)
1018 tree t;
1020 tree tail;
1021 int len = 0;
1023 for (tail = t; tail; tail = TREE_CHAIN (tail))
1024 len++;
1026 return len;
1029 /* Returns the number of FIELD_DECLs in TYPE. */
1032 fields_length (type)
1033 tree type;
1035 tree t = TYPE_FIELDS (type);
1036 int count = 0;
1038 for (; t; t = TREE_CHAIN (t))
1039 if (TREE_CODE (t) == FIELD_DECL)
1040 ++count;
1042 return count;
1045 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1046 by modifying the last node in chain 1 to point to chain 2.
1047 This is the Lisp primitive `nconc'. */
1049 tree
1050 chainon (op1, op2)
1051 tree op1, op2;
1054 if (op1)
1056 tree t1;
1057 #ifdef ENABLE_TREE_CHECKING
1058 tree t2;
1059 #endif
1061 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1063 TREE_CHAIN (t1) = op2;
1064 #ifdef ENABLE_TREE_CHECKING
1065 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1066 if (t2 == t1)
1067 abort (); /* Circularity created. */
1068 #endif
1069 return op1;
1071 else
1072 return op2;
1075 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1077 tree
1078 tree_last (chain)
1079 tree chain;
1081 tree next;
1082 if (chain)
1083 while ((next = TREE_CHAIN (chain)))
1084 chain = next;
1085 return chain;
1088 /* Reverse the order of elements in the chain T,
1089 and return the new head of the chain (old last element). */
1091 tree
1092 nreverse (t)
1093 tree t;
1095 tree prev = 0, decl, next;
1096 for (decl = t; decl; decl = next)
1098 next = TREE_CHAIN (decl);
1099 TREE_CHAIN (decl) = prev;
1100 prev = decl;
1102 return prev;
1105 /* Given a chain CHAIN of tree nodes,
1106 construct and return a list of those nodes. */
1108 tree
1109 listify (chain)
1110 tree chain;
1112 tree result = NULL_TREE;
1113 tree in_tail = chain;
1114 tree out_tail = NULL_TREE;
1116 while (in_tail)
1118 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1119 if (out_tail)
1120 TREE_CHAIN (out_tail) = next;
1121 else
1122 result = next;
1123 out_tail = next;
1124 in_tail = TREE_CHAIN (in_tail);
1127 return result;
1130 /* Return a newly created TREE_LIST node whose
1131 purpose and value fields are PARM and VALUE. */
1133 tree
1134 build_tree_list (parm, value)
1135 tree parm, value;
1137 tree t = make_node (TREE_LIST);
1138 TREE_PURPOSE (t) = parm;
1139 TREE_VALUE (t) = value;
1140 return t;
1143 /* Return a newly created TREE_LIST node whose
1144 purpose and value fields are PARM and VALUE
1145 and whose TREE_CHAIN is CHAIN. */
1147 tree
1148 tree_cons (purpose, value, chain)
1149 tree purpose, value, chain;
1151 tree node;
1153 node = ggc_alloc_tree (sizeof (struct tree_list));
1155 memset (node, 0, sizeof (struct tree_common));
1157 #ifdef GATHER_STATISTICS
1158 tree_node_counts[(int) x_kind]++;
1159 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1160 #endif
1162 TREE_SET_CODE (node, TREE_LIST);
1163 TREE_CHAIN (node) = chain;
1164 TREE_PURPOSE (node) = purpose;
1165 TREE_VALUE (node) = value;
1166 return node;
1170 /* Return the size nominally occupied by an object of type TYPE
1171 when it resides in memory. The value is measured in units of bytes,
1172 and its data type is that normally used for type sizes
1173 (which is the first type created by make_signed_type or
1174 make_unsigned_type). */
1176 tree
1177 size_in_bytes (type)
1178 tree type;
1180 tree t;
1182 if (type == error_mark_node)
1183 return integer_zero_node;
1185 type = TYPE_MAIN_VARIANT (type);
1186 t = TYPE_SIZE_UNIT (type);
1188 if (t == 0)
1190 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1191 return size_zero_node;
1194 if (TREE_CODE (t) == INTEGER_CST)
1195 force_fit_type (t, 0);
1197 return t;
1200 /* Return the size of TYPE (in bytes) as a wide integer
1201 or return -1 if the size can vary or is larger than an integer. */
1203 HOST_WIDE_INT
1204 int_size_in_bytes (type)
1205 tree type;
1207 tree t;
1209 if (type == error_mark_node)
1210 return 0;
1212 type = TYPE_MAIN_VARIANT (type);
1213 t = TYPE_SIZE_UNIT (type);
1214 if (t == 0
1215 || TREE_CODE (t) != INTEGER_CST
1216 || TREE_OVERFLOW (t)
1217 || TREE_INT_CST_HIGH (t) != 0
1218 /* If the result would appear negative, it's too big to represent. */
1219 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1220 return -1;
1222 return TREE_INT_CST_LOW (t);
1225 /* Return the bit position of FIELD, in bits from the start of the record.
1226 This is a tree of type bitsizetype. */
1228 tree
1229 bit_position (field)
1230 tree field;
1233 return bit_from_pos (DECL_FIELD_OFFSET (field),
1234 DECL_FIELD_BIT_OFFSET (field));
1237 /* Likewise, but return as an integer. Abort if it cannot be represented
1238 in that way (since it could be a signed value, we don't have the option
1239 of returning -1 like int_size_in_byte can. */
1241 HOST_WIDE_INT
1242 int_bit_position (field)
1243 tree field;
1245 return tree_low_cst (bit_position (field), 0);
1248 /* Return the byte position of FIELD, in bytes from the start of the record.
1249 This is a tree of type sizetype. */
1251 tree
1252 byte_position (field)
1253 tree field;
1255 return byte_from_pos (DECL_FIELD_OFFSET (field),
1256 DECL_FIELD_BIT_OFFSET (field));
1259 /* Likewise, but return as an integer. Abort if it cannot be represented
1260 in that way (since it could be a signed value, we don't have the option
1261 of returning -1 like int_size_in_byte can. */
1263 HOST_WIDE_INT
1264 int_byte_position (field)
1265 tree field;
1267 return tree_low_cst (byte_position (field), 0);
1270 /* Return the strictest alignment, in bits, that T is known to have. */
1272 unsigned int
1273 expr_align (t)
1274 tree t;
1276 unsigned int align0, align1;
1278 switch (TREE_CODE (t))
1280 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1281 /* If we have conversions, we know that the alignment of the
1282 object must meet each of the alignments of the types. */
1283 align0 = expr_align (TREE_OPERAND (t, 0));
1284 align1 = TYPE_ALIGN (TREE_TYPE (t));
1285 return MAX (align0, align1);
1287 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1288 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1289 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1290 /* These don't change the alignment of an object. */
1291 return expr_align (TREE_OPERAND (t, 0));
1293 case COND_EXPR:
1294 /* The best we can do is say that the alignment is the least aligned
1295 of the two arms. */
1296 align0 = expr_align (TREE_OPERAND (t, 1));
1297 align1 = expr_align (TREE_OPERAND (t, 2));
1298 return MIN (align0, align1);
1300 case LABEL_DECL: case CONST_DECL:
1301 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1302 if (DECL_ALIGN (t) != 0)
1303 return DECL_ALIGN (t);
1304 break;
1306 case FUNCTION_DECL:
1307 return FUNCTION_BOUNDARY;
1309 default:
1310 break;
1313 /* Otherwise take the alignment from that of the type. */
1314 return TYPE_ALIGN (TREE_TYPE (t));
1317 /* Return, as a tree node, the number of elements for TYPE (which is an
1318 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1320 tree
1321 array_type_nelts (type)
1322 tree type;
1324 tree index_type, min, max;
1326 /* If they did it with unspecified bounds, then we should have already
1327 given an error about it before we got here. */
1328 if (! TYPE_DOMAIN (type))
1329 return error_mark_node;
1331 index_type = TYPE_DOMAIN (type);
1332 min = TYPE_MIN_VALUE (index_type);
1333 max = TYPE_MAX_VALUE (index_type);
1335 return (integer_zerop (min)
1336 ? max
1337 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1340 /* Return nonzero if arg is static -- a reference to an object in
1341 static storage. This is not the same as the C meaning of `static'. */
1344 staticp (arg)
1345 tree arg;
1347 switch (TREE_CODE (arg))
1349 case FUNCTION_DECL:
1350 /* Nested functions aren't static, since taking their address
1351 involves a trampoline. */
1352 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1353 && ! DECL_NON_ADDR_CONST_P (arg);
1355 case VAR_DECL:
1356 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1357 && ! DECL_NON_ADDR_CONST_P (arg);
1359 case CONSTRUCTOR:
1360 return TREE_STATIC (arg);
1362 case LABEL_DECL:
1363 case STRING_CST:
1364 return 1;
1366 /* If we are referencing a bitfield, we can't evaluate an
1367 ADDR_EXPR at compile time and so it isn't a constant. */
1368 case COMPONENT_REF:
1369 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1370 && staticp (TREE_OPERAND (arg, 0)));
1372 case BIT_FIELD_REF:
1373 return 0;
1375 #if 0
1376 /* This case is technically correct, but results in setting
1377 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1378 compile time. */
1379 case INDIRECT_REF:
1380 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1381 #endif
1383 case ARRAY_REF:
1384 case ARRAY_RANGE_REF:
1385 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1386 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1387 return staticp (TREE_OPERAND (arg, 0));
1389 default:
1390 if ((unsigned int) TREE_CODE (arg)
1391 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1392 return (*lang_hooks.staticp) (arg);
1393 else
1394 return 0;
1398 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1399 Do this to any expression which may be used in more than one place,
1400 but must be evaluated only once.
1402 Normally, expand_expr would reevaluate the expression each time.
1403 Calling save_expr produces something that is evaluated and recorded
1404 the first time expand_expr is called on it. Subsequent calls to
1405 expand_expr just reuse the recorded value.
1407 The call to expand_expr that generates code that actually computes
1408 the value is the first call *at compile time*. Subsequent calls
1409 *at compile time* generate code to use the saved value.
1410 This produces correct result provided that *at run time* control
1411 always flows through the insns made by the first expand_expr
1412 before reaching the other places where the save_expr was evaluated.
1413 You, the caller of save_expr, must make sure this is so.
1415 Constants, and certain read-only nodes, are returned with no
1416 SAVE_EXPR because that is safe. Expressions containing placeholders
1417 are not touched; see tree.def for an explanation of what these
1418 are used for. */
1420 tree
1421 save_expr (expr)
1422 tree expr;
1424 tree t = fold (expr);
1425 tree inner;
1427 /* We don't care about whether this can be used as an lvalue in this
1428 context. */
1429 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1430 t = TREE_OPERAND (t, 0);
1432 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1433 a constant, it will be more efficient to not make another SAVE_EXPR since
1434 it will allow better simplification and GCSE will be able to merge the
1435 computations if they actualy occur. */
1436 for (inner = t;
1437 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1438 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1439 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1440 inner = TREE_OPERAND (inner, 0))
1443 /* If the tree evaluates to a constant, then we don't want to hide that
1444 fact (i.e. this allows further folding, and direct checks for constants).
1445 However, a read-only object that has side effects cannot be bypassed.
1446 Since it is no problem to reevaluate literals, we just return the
1447 literal node. */
1448 if (TREE_CONSTANT (inner)
1449 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1450 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1451 return t;
1453 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1454 it means that the size or offset of some field of an object depends on
1455 the value within another field.
1457 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1458 and some variable since it would then need to be both evaluated once and
1459 evaluated more than once. Front-ends must assure this case cannot
1460 happen by surrounding any such subexpressions in their own SAVE_EXPR
1461 and forcing evaluation at the proper time. */
1462 if (contains_placeholder_p (t))
1463 return t;
1465 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1467 /* This expression might be placed ahead of a jump to ensure that the
1468 value was computed on both sides of the jump. So make sure it isn't
1469 eliminated as dead. */
1470 TREE_SIDE_EFFECTS (t) = 1;
1471 TREE_READONLY (t) = 1;
1472 return t;
1475 /* Arrange for an expression to be expanded multiple independent
1476 times. This is useful for cleanup actions, as the backend can
1477 expand them multiple times in different places. */
1479 tree
1480 unsave_expr (expr)
1481 tree expr;
1483 tree t;
1485 /* If this is already protected, no sense in protecting it again. */
1486 if (TREE_CODE (expr) == UNSAVE_EXPR)
1487 return expr;
1489 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1490 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1491 return t;
1494 /* Returns the index of the first non-tree operand for CODE, or the number
1495 of operands if all are trees. */
1498 first_rtl_op (code)
1499 enum tree_code code;
1501 switch (code)
1503 case SAVE_EXPR:
1504 return 2;
1505 case GOTO_SUBROUTINE_EXPR:
1506 case RTL_EXPR:
1507 return 0;
1508 case WITH_CLEANUP_EXPR:
1509 return 2;
1510 case METHOD_CALL_EXPR:
1511 return 3;
1512 default:
1513 return TREE_CODE_LENGTH (code);
1517 /* Perform any modifications to EXPR required when it is unsaved. Does
1518 not recurse into EXPR's subtrees. */
1520 void
1521 unsave_expr_1 (expr)
1522 tree expr;
1524 switch (TREE_CODE (expr))
1526 case SAVE_EXPR:
1527 if (! SAVE_EXPR_PERSISTENT_P (expr))
1528 SAVE_EXPR_RTL (expr) = 0;
1529 break;
1531 case TARGET_EXPR:
1532 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1533 It's OK for this to happen if it was part of a subtree that
1534 isn't immediately expanded, such as operand 2 of another
1535 TARGET_EXPR. */
1536 if (TREE_OPERAND (expr, 1))
1537 break;
1539 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1540 TREE_OPERAND (expr, 3) = NULL_TREE;
1541 break;
1543 case RTL_EXPR:
1544 /* I don't yet know how to emit a sequence multiple times. */
1545 if (RTL_EXPR_SEQUENCE (expr) != 0)
1546 abort ();
1547 break;
1549 default:
1550 break;
1554 /* Default lang hook for "unsave_expr_now". */
1556 tree
1557 lhd_unsave_expr_now (expr)
1558 tree expr;
1560 enum tree_code code;
1562 /* There's nothing to do for NULL_TREE. */
1563 if (expr == 0)
1564 return expr;
1566 unsave_expr_1 (expr);
1568 code = TREE_CODE (expr);
1569 switch (TREE_CODE_CLASS (code))
1571 case 'c': /* a constant */
1572 case 't': /* a type node */
1573 case 'd': /* A decl node */
1574 case 'b': /* A block node */
1575 break;
1577 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1578 if (code == TREE_LIST)
1580 lhd_unsave_expr_now (TREE_VALUE (expr));
1581 lhd_unsave_expr_now (TREE_CHAIN (expr));
1583 break;
1585 case 'e': /* an expression */
1586 case 'r': /* a reference */
1587 case 's': /* an expression with side effects */
1588 case '<': /* a comparison expression */
1589 case '2': /* a binary arithmetic expression */
1590 case '1': /* a unary arithmetic expression */
1592 int i;
1594 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1595 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1597 break;
1599 default:
1600 abort ();
1603 return expr;
1606 /* Return 0 if it is safe to evaluate EXPR multiple times,
1607 return 1 if it is safe if EXPR is unsaved afterward, or
1608 return 2 if it is completely unsafe.
1610 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1611 an expression tree, so that it safe to unsave them and the surrounding
1612 context will be correct.
1614 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1615 occasionally across the whole of a function. It is therefore only
1616 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1617 below the UNSAVE_EXPR.
1619 RTL_EXPRs consume their rtl during evaluation. It is therefore
1620 never possible to unsave them. */
1623 unsafe_for_reeval (expr)
1624 tree expr;
1626 int unsafeness = 0;
1627 enum tree_code code;
1628 int i, tmp;
1629 tree exp;
1630 int first_rtl;
1632 if (expr == NULL_TREE)
1633 return 1;
1635 code = TREE_CODE (expr);
1636 first_rtl = first_rtl_op (code);
1638 switch (code)
1640 case SAVE_EXPR:
1641 case RTL_EXPR:
1642 return 2;
1644 case TREE_LIST:
1645 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1647 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1648 unsafeness = MAX (tmp, unsafeness);
1651 return unsafeness;
1653 case CALL_EXPR:
1654 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1655 return MAX (tmp, 1);
1657 case TARGET_EXPR:
1658 unsafeness = 1;
1659 break;
1661 default:
1662 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1663 if (tmp >= 0)
1664 return tmp;
1665 break;
1668 switch (TREE_CODE_CLASS (code))
1670 case 'c': /* a constant */
1671 case 't': /* a type node */
1672 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1673 case 'd': /* A decl node */
1674 case 'b': /* A block node */
1675 return 0;
1677 case 'e': /* an expression */
1678 case 'r': /* a reference */
1679 case 's': /* an expression with side effects */
1680 case '<': /* a comparison expression */
1681 case '2': /* a binary arithmetic expression */
1682 case '1': /* a unary arithmetic expression */
1683 for (i = first_rtl - 1; i >= 0; i--)
1685 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1686 unsafeness = MAX (tmp, unsafeness);
1689 return unsafeness;
1691 default:
1692 return 2;
1696 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1697 or offset that depends on a field within a record. */
1700 contains_placeholder_p (exp)
1701 tree exp;
1703 enum tree_code code;
1704 int result;
1706 if (!exp)
1707 return 0;
1709 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1710 in it since it is supplying a value for it. */
1711 code = TREE_CODE (exp);
1712 if (code == WITH_RECORD_EXPR)
1713 return 0;
1714 else if (code == PLACEHOLDER_EXPR)
1715 return 1;
1717 switch (TREE_CODE_CLASS (code))
1719 case 'r':
1720 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1721 position computations since they will be converted into a
1722 WITH_RECORD_EXPR involving the reference, which will assume
1723 here will be valid. */
1724 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1726 case 'x':
1727 if (code == TREE_LIST)
1728 return (contains_placeholder_p (TREE_VALUE (exp))
1729 || (TREE_CHAIN (exp) != 0
1730 && contains_placeholder_p (TREE_CHAIN (exp))));
1731 break;
1733 case '1':
1734 case '2': case '<':
1735 case 'e':
1736 switch (code)
1738 case COMPOUND_EXPR:
1739 /* Ignoring the first operand isn't quite right, but works best. */
1740 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1742 case RTL_EXPR:
1743 case CONSTRUCTOR:
1744 return 0;
1746 case COND_EXPR:
1747 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1748 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1749 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1751 case SAVE_EXPR:
1752 /* If we already know this doesn't have a placeholder, don't
1753 check again. */
1754 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1755 return 0;
1757 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1758 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1759 if (result)
1760 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1762 return result;
1764 case CALL_EXPR:
1765 return (TREE_OPERAND (exp, 1) != 0
1766 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1768 default:
1769 break;
1772 switch (TREE_CODE_LENGTH (code))
1774 case 1:
1775 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1776 case 2:
1777 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1778 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1779 default:
1780 return 0;
1783 default:
1784 return 0;
1786 return 0;
1789 /* Return 1 if EXP contains any expressions that produce cleanups for an
1790 outer scope to deal with. Used by fold. */
1793 has_cleanups (exp)
1794 tree exp;
1796 int i, nops, cmp;
1798 if (! TREE_SIDE_EFFECTS (exp))
1799 return 0;
1801 switch (TREE_CODE (exp))
1803 case TARGET_EXPR:
1804 case GOTO_SUBROUTINE_EXPR:
1805 case WITH_CLEANUP_EXPR:
1806 return 1;
1808 case CLEANUP_POINT_EXPR:
1809 return 0;
1811 case CALL_EXPR:
1812 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1814 cmp = has_cleanups (TREE_VALUE (exp));
1815 if (cmp)
1816 return cmp;
1818 return 0;
1820 default:
1821 break;
1824 /* This general rule works for most tree codes. All exceptions should be
1825 handled above. If this is a language-specific tree code, we can't
1826 trust what might be in the operand, so say we don't know
1827 the situation. */
1828 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1829 return -1;
1831 nops = first_rtl_op (TREE_CODE (exp));
1832 for (i = 0; i < nops; i++)
1833 if (TREE_OPERAND (exp, i) != 0)
1835 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1836 if (type == 'e' || type == '<' || type == '1' || type == '2'
1837 || type == 'r' || type == 's')
1839 cmp = has_cleanups (TREE_OPERAND (exp, i));
1840 if (cmp)
1841 return cmp;
1845 return 0;
1848 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1849 return a tree with all occurrences of references to F in a
1850 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1851 contains only arithmetic expressions or a CALL_EXPR with a
1852 PLACEHOLDER_EXPR occurring only in its arglist. */
1854 tree
1855 substitute_in_expr (exp, f, r)
1856 tree exp;
1857 tree f;
1858 tree r;
1860 enum tree_code code = TREE_CODE (exp);
1861 tree op0, op1, op2;
1862 tree new;
1863 tree inner;
1865 switch (TREE_CODE_CLASS (code))
1867 case 'c':
1868 case 'd':
1869 return exp;
1871 case 'x':
1872 if (code == PLACEHOLDER_EXPR)
1873 return exp;
1874 else if (code == TREE_LIST)
1876 op0 = (TREE_CHAIN (exp) == 0
1877 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1878 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1879 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1880 return exp;
1882 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1885 abort ();
1887 case '1':
1888 case '2':
1889 case '<':
1890 case 'e':
1891 switch (TREE_CODE_LENGTH (code))
1893 case 1:
1894 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1895 if (op0 == TREE_OPERAND (exp, 0))
1896 return exp;
1898 if (code == NON_LVALUE_EXPR)
1899 return op0;
1901 new = fold (build1 (code, TREE_TYPE (exp), op0));
1902 break;
1904 case 2:
1905 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1906 could, but we don't support it. */
1907 if (code == RTL_EXPR)
1908 return exp;
1909 else if (code == CONSTRUCTOR)
1910 abort ();
1912 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1913 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1914 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1915 return exp;
1917 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1918 break;
1920 case 3:
1921 /* It cannot be that anything inside a SAVE_EXPR contains a
1922 PLACEHOLDER_EXPR. */
1923 if (code == SAVE_EXPR)
1924 return exp;
1926 else if (code == CALL_EXPR)
1928 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1929 if (op1 == TREE_OPERAND (exp, 1))
1930 return exp;
1932 return build (code, TREE_TYPE (exp),
1933 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1936 else if (code != COND_EXPR)
1937 abort ();
1939 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1940 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1941 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1942 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1943 && op2 == TREE_OPERAND (exp, 2))
1944 return exp;
1946 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1947 break;
1949 default:
1950 abort ();
1953 break;
1955 case 'r':
1956 switch (code)
1958 case COMPONENT_REF:
1959 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1960 and it is the right field, replace it with R. */
1961 for (inner = TREE_OPERAND (exp, 0);
1962 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1963 inner = TREE_OPERAND (inner, 0))
1965 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1966 && TREE_OPERAND (exp, 1) == f)
1967 return r;
1969 /* If this expression hasn't been completed let, leave it
1970 alone. */
1971 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1972 && TREE_TYPE (inner) == 0)
1973 return exp;
1975 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1976 if (op0 == TREE_OPERAND (exp, 0))
1977 return exp;
1979 new = fold (build (code, TREE_TYPE (exp), op0,
1980 TREE_OPERAND (exp, 1)));
1981 break;
1983 case BIT_FIELD_REF:
1984 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1985 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1986 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1987 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1988 && op2 == TREE_OPERAND (exp, 2))
1989 return exp;
1991 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1992 break;
1994 case INDIRECT_REF:
1995 case BUFFER_REF:
1996 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1997 if (op0 == TREE_OPERAND (exp, 0))
1998 return exp;
2000 new = fold (build1 (code, TREE_TYPE (exp), op0));
2001 break;
2003 default:
2004 abort ();
2006 break;
2008 default:
2009 abort ();
2012 TREE_READONLY (new) = TREE_READONLY (exp);
2013 return new;
2016 /* Stabilize a reference so that we can use it any number of times
2017 without causing its operands to be evaluated more than once.
2018 Returns the stabilized reference. This works by means of save_expr,
2019 so see the caveats in the comments about save_expr.
2021 Also allows conversion expressions whose operands are references.
2022 Any other kind of expression is returned unchanged. */
2024 tree
2025 stabilize_reference (ref)
2026 tree ref;
2028 tree result;
2029 enum tree_code code = TREE_CODE (ref);
2031 switch (code)
2033 case VAR_DECL:
2034 case PARM_DECL:
2035 case RESULT_DECL:
2036 /* No action is needed in this case. */
2037 return ref;
2039 case NOP_EXPR:
2040 case CONVERT_EXPR:
2041 case FLOAT_EXPR:
2042 case FIX_TRUNC_EXPR:
2043 case FIX_FLOOR_EXPR:
2044 case FIX_ROUND_EXPR:
2045 case FIX_CEIL_EXPR:
2046 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2047 break;
2049 case INDIRECT_REF:
2050 result = build_nt (INDIRECT_REF,
2051 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2052 break;
2054 case COMPONENT_REF:
2055 result = build_nt (COMPONENT_REF,
2056 stabilize_reference (TREE_OPERAND (ref, 0)),
2057 TREE_OPERAND (ref, 1));
2058 break;
2060 case BIT_FIELD_REF:
2061 result = build_nt (BIT_FIELD_REF,
2062 stabilize_reference (TREE_OPERAND (ref, 0)),
2063 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2064 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2065 break;
2067 case ARRAY_REF:
2068 result = build_nt (ARRAY_REF,
2069 stabilize_reference (TREE_OPERAND (ref, 0)),
2070 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2071 break;
2073 case ARRAY_RANGE_REF:
2074 result = build_nt (ARRAY_RANGE_REF,
2075 stabilize_reference (TREE_OPERAND (ref, 0)),
2076 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2077 break;
2079 case COMPOUND_EXPR:
2080 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2081 it wouldn't be ignored. This matters when dealing with
2082 volatiles. */
2083 return stabilize_reference_1 (ref);
2085 case RTL_EXPR:
2086 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2087 save_expr (build1 (ADDR_EXPR,
2088 build_pointer_type (TREE_TYPE (ref)),
2089 ref)));
2090 break;
2092 /* If arg isn't a kind of lvalue we recognize, make no change.
2093 Caller should recognize the error for an invalid lvalue. */
2094 default:
2095 return ref;
2097 case ERROR_MARK:
2098 return error_mark_node;
2101 TREE_TYPE (result) = TREE_TYPE (ref);
2102 TREE_READONLY (result) = TREE_READONLY (ref);
2103 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2104 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2106 return result;
2109 /* Subroutine of stabilize_reference; this is called for subtrees of
2110 references. Any expression with side-effects must be put in a SAVE_EXPR
2111 to ensure that it is only evaluated once.
2113 We don't put SAVE_EXPR nodes around everything, because assigning very
2114 simple expressions to temporaries causes us to miss good opportunities
2115 for optimizations. Among other things, the opportunity to fold in the
2116 addition of a constant into an addressing mode often gets lost, e.g.
2117 "y[i+1] += x;". In general, we take the approach that we should not make
2118 an assignment unless we are forced into it - i.e., that any non-side effect
2119 operator should be allowed, and that cse should take care of coalescing
2120 multiple utterances of the same expression should that prove fruitful. */
2122 tree
2123 stabilize_reference_1 (e)
2124 tree e;
2126 tree result;
2127 enum tree_code code = TREE_CODE (e);
2129 /* We cannot ignore const expressions because it might be a reference
2130 to a const array but whose index contains side-effects. But we can
2131 ignore things that are actual constant or that already have been
2132 handled by this function. */
2134 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2135 return e;
2137 switch (TREE_CODE_CLASS (code))
2139 case 'x':
2140 case 't':
2141 case 'd':
2142 case 'b':
2143 case '<':
2144 case 's':
2145 case 'e':
2146 case 'r':
2147 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2148 so that it will only be evaluated once. */
2149 /* The reference (r) and comparison (<) classes could be handled as
2150 below, but it is generally faster to only evaluate them once. */
2151 if (TREE_SIDE_EFFECTS (e))
2152 return save_expr (e);
2153 return e;
2155 case 'c':
2156 /* Constants need no processing. In fact, we should never reach
2157 here. */
2158 return e;
2160 case '2':
2161 /* Division is slow and tends to be compiled with jumps,
2162 especially the division by powers of 2 that is often
2163 found inside of an array reference. So do it just once. */
2164 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2165 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2166 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2167 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2168 return save_expr (e);
2169 /* Recursively stabilize each operand. */
2170 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2171 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2172 break;
2174 case '1':
2175 /* Recursively stabilize each operand. */
2176 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2177 break;
2179 default:
2180 abort ();
2183 TREE_TYPE (result) = TREE_TYPE (e);
2184 TREE_READONLY (result) = TREE_READONLY (e);
2185 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2186 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2188 return result;
2191 /* Low-level constructors for expressions. */
2193 /* Build an expression of code CODE, data type TYPE,
2194 and operands as specified by the arguments ARG1 and following arguments.
2195 Expressions and reference nodes can be created this way.
2196 Constants, decls, types and misc nodes cannot be. */
2198 tree
2199 build VPARAMS ((enum tree_code code, tree tt, ...))
2201 tree t;
2202 int length;
2203 int i;
2204 int fro;
2205 int constant;
2207 VA_OPEN (p, tt);
2208 VA_FIXEDARG (p, enum tree_code, code);
2209 VA_FIXEDARG (p, tree, tt);
2211 t = make_node (code);
2212 length = TREE_CODE_LENGTH (code);
2213 TREE_TYPE (t) = tt;
2215 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2216 result based on those same flags for the arguments. But if the
2217 arguments aren't really even `tree' expressions, we shouldn't be trying
2218 to do this. */
2219 fro = first_rtl_op (code);
2221 /* Expressions without side effects may be constant if their
2222 arguments are as well. */
2223 constant = (TREE_CODE_CLASS (code) == '<'
2224 || TREE_CODE_CLASS (code) == '1'
2225 || TREE_CODE_CLASS (code) == '2'
2226 || TREE_CODE_CLASS (code) == 'c');
2228 if (length == 2)
2230 /* This is equivalent to the loop below, but faster. */
2231 tree arg0 = va_arg (p, tree);
2232 tree arg1 = va_arg (p, tree);
2234 TREE_OPERAND (t, 0) = arg0;
2235 TREE_OPERAND (t, 1) = arg1;
2236 TREE_READONLY (t) = 1;
2237 if (arg0 && fro > 0)
2239 if (TREE_SIDE_EFFECTS (arg0))
2240 TREE_SIDE_EFFECTS (t) = 1;
2241 if (!TREE_READONLY (arg0))
2242 TREE_READONLY (t) = 0;
2243 if (!TREE_CONSTANT (arg0))
2244 constant = 0;
2247 if (arg1 && fro > 1)
2249 if (TREE_SIDE_EFFECTS (arg1))
2250 TREE_SIDE_EFFECTS (t) = 1;
2251 if (!TREE_READONLY (arg1))
2252 TREE_READONLY (t) = 0;
2253 if (!TREE_CONSTANT (arg1))
2254 constant = 0;
2257 else if (length == 1)
2259 tree arg0 = va_arg (p, tree);
2261 /* The only one-operand cases we handle here are those with side-effects.
2262 Others are handled with build1. So don't bother checked if the
2263 arg has side-effects since we'll already have set it.
2265 ??? This really should use build1 too. */
2266 if (TREE_CODE_CLASS (code) != 's')
2267 abort ();
2268 TREE_OPERAND (t, 0) = arg0;
2270 else
2272 for (i = 0; i < length; i++)
2274 tree operand = va_arg (p, tree);
2276 TREE_OPERAND (t, i) = operand;
2277 if (operand && fro > i)
2279 if (TREE_SIDE_EFFECTS (operand))
2280 TREE_SIDE_EFFECTS (t) = 1;
2281 if (!TREE_CONSTANT (operand))
2282 constant = 0;
2286 VA_CLOSE (p);
2288 TREE_CONSTANT (t) = constant;
2289 return t;
2292 /* Same as above, but only builds for unary operators.
2293 Saves lions share of calls to `build'; cuts down use
2294 of varargs, which is expensive for RISC machines. */
2296 tree
2297 build1 (code, type, node)
2298 enum tree_code code;
2299 tree type;
2300 tree node;
2302 int length;
2303 #ifdef GATHER_STATISTICS
2304 tree_node_kind kind;
2305 #endif
2306 tree t;
2308 #ifdef GATHER_STATISTICS
2309 if (TREE_CODE_CLASS (code) == 'r')
2310 kind = r_kind;
2311 else
2312 kind = e_kind;
2313 #endif
2315 #ifdef ENABLE_CHECKING
2316 if (TREE_CODE_CLASS (code) == '2'
2317 || TREE_CODE_CLASS (code) == '<'
2318 || TREE_CODE_LENGTH (code) != 1)
2319 abort ();
2320 #endif /* ENABLE_CHECKING */
2322 length = sizeof (struct tree_exp);
2324 t = ggc_alloc_tree (length);
2326 memset ((PTR) t, 0, sizeof (struct tree_common));
2328 #ifdef GATHER_STATISTICS
2329 tree_node_counts[(int) kind]++;
2330 tree_node_sizes[(int) kind] += length;
2331 #endif
2333 TREE_SET_CODE (t, code);
2335 TREE_TYPE (t) = type;
2336 TREE_COMPLEXITY (t) = 0;
2337 TREE_OPERAND (t, 0) = node;
2338 if (node && first_rtl_op (code) != 0)
2340 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2341 TREE_READONLY (t) = TREE_READONLY (node);
2344 switch (code)
2346 case INIT_EXPR:
2347 case MODIFY_EXPR:
2348 case VA_ARG_EXPR:
2349 case RTL_EXPR:
2350 case PREDECREMENT_EXPR:
2351 case PREINCREMENT_EXPR:
2352 case POSTDECREMENT_EXPR:
2353 case POSTINCREMENT_EXPR:
2354 /* All of these have side-effects, no matter what their
2355 operands are. */
2356 TREE_SIDE_EFFECTS (t) = 1;
2357 TREE_READONLY (t) = 0;
2358 break;
2360 case INDIRECT_REF:
2361 /* Whether a dereference is readonly has nothing to do with whether
2362 its operand is readonly. */
2363 TREE_READONLY (t) = 0;
2364 break;
2366 default:
2367 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2368 TREE_CONSTANT (t) = 1;
2369 break;
2372 return t;
2375 /* Similar except don't specify the TREE_TYPE
2376 and leave the TREE_SIDE_EFFECTS as 0.
2377 It is permissible for arguments to be null,
2378 or even garbage if their values do not matter. */
2380 tree
2381 build_nt VPARAMS ((enum tree_code code, ...))
2383 tree t;
2384 int length;
2385 int i;
2387 VA_OPEN (p, code);
2388 VA_FIXEDARG (p, enum tree_code, code);
2390 t = make_node (code);
2391 length = TREE_CODE_LENGTH (code);
2393 for (i = 0; i < length; i++)
2394 TREE_OPERAND (t, i) = va_arg (p, tree);
2396 VA_CLOSE (p);
2397 return t;
2400 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2401 We do NOT enter this node in any sort of symbol table.
2403 layout_decl is used to set up the decl's storage layout.
2404 Other slots are initialized to 0 or null pointers. */
2406 tree
2407 build_decl (code, name, type)
2408 enum tree_code code;
2409 tree name, type;
2411 tree t;
2413 t = make_node (code);
2415 /* if (type == error_mark_node)
2416 type = integer_type_node; */
2417 /* That is not done, deliberately, so that having error_mark_node
2418 as the type can suppress useless errors in the use of this variable. */
2420 DECL_NAME (t) = name;
2421 TREE_TYPE (t) = type;
2423 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2424 layout_decl (t, 0);
2425 else if (code == FUNCTION_DECL)
2426 DECL_MODE (t) = FUNCTION_MODE;
2428 return t;
2431 /* BLOCK nodes are used to represent the structure of binding contours
2432 and declarations, once those contours have been exited and their contents
2433 compiled. This information is used for outputting debugging info. */
2435 tree
2436 build_block (vars, tags, subblocks, supercontext, chain)
2437 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2439 tree block = make_node (BLOCK);
2441 BLOCK_VARS (block) = vars;
2442 BLOCK_SUBBLOCKS (block) = subblocks;
2443 BLOCK_SUPERCONTEXT (block) = supercontext;
2444 BLOCK_CHAIN (block) = chain;
2445 return block;
2448 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2449 location where an expression or an identifier were encountered. It
2450 is necessary for languages where the frontend parser will handle
2451 recursively more than one file (Java is one of them). */
2453 tree
2454 build_expr_wfl (node, file, line, col)
2455 tree node;
2456 const char *file;
2457 int line, col;
2459 static const char *last_file = 0;
2460 static tree last_filenode = NULL_TREE;
2461 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2463 EXPR_WFL_NODE (wfl) = node;
2464 EXPR_WFL_SET_LINECOL (wfl, line, col);
2465 if (file != last_file)
2467 last_file = file;
2468 last_filenode = file ? get_identifier (file) : NULL_TREE;
2471 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2472 if (node)
2474 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2475 TREE_TYPE (wfl) = TREE_TYPE (node);
2478 return wfl;
2481 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2482 is ATTRIBUTE. */
2484 tree
2485 build_decl_attribute_variant (ddecl, attribute)
2486 tree ddecl, attribute;
2488 DECL_ATTRIBUTES (ddecl) = attribute;
2489 return ddecl;
2492 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2493 is ATTRIBUTE.
2495 Record such modified types already made so we don't make duplicates. */
2497 tree
2498 build_type_attribute_variant (ttype, attribute)
2499 tree ttype, attribute;
2501 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2503 unsigned int hashcode;
2504 tree ntype;
2506 ntype = copy_node (ttype);
2508 TYPE_POINTER_TO (ntype) = 0;
2509 TYPE_REFERENCE_TO (ntype) = 0;
2510 TYPE_ATTRIBUTES (ntype) = attribute;
2512 /* Create a new main variant of TYPE. */
2513 TYPE_MAIN_VARIANT (ntype) = ntype;
2514 TYPE_NEXT_VARIANT (ntype) = 0;
2515 set_type_quals (ntype, TYPE_UNQUALIFIED);
2517 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2518 + TYPE_HASH (TREE_TYPE (ntype))
2519 + attribute_hash_list (attribute));
2521 switch (TREE_CODE (ntype))
2523 case FUNCTION_TYPE:
2524 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2525 break;
2526 case ARRAY_TYPE:
2527 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2528 break;
2529 case INTEGER_TYPE:
2530 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2531 break;
2532 case REAL_TYPE:
2533 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2534 break;
2535 default:
2536 break;
2539 ntype = type_hash_canon (hashcode, ntype);
2540 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2543 return ttype;
2546 /* Default value of targetm.comp_type_attributes that always returns 1. */
2549 default_comp_type_attributes (type1, type2)
2550 tree type1 ATTRIBUTE_UNUSED;
2551 tree type2 ATTRIBUTE_UNUSED;
2553 return 1;
2556 /* Default version of targetm.set_default_type_attributes that always does
2557 nothing. */
2559 void
2560 default_set_default_type_attributes (type)
2561 tree type ATTRIBUTE_UNUSED;
2565 /* Default version of targetm.insert_attributes that always does nothing. */
2566 void
2567 default_insert_attributes (decl, attr_ptr)
2568 tree decl ATTRIBUTE_UNUSED;
2569 tree *attr_ptr ATTRIBUTE_UNUSED;
2573 /* Default value of targetm.function_attribute_inlinable_p that always
2574 returns false. */
2575 bool
2576 default_function_attribute_inlinable_p (fndecl)
2577 tree fndecl ATTRIBUTE_UNUSED;
2579 /* By default, functions with machine attributes cannot be inlined. */
2580 return false;
2583 /* Default value of targetm.ms_bitfield_layout_p that always returns
2584 false. */
2585 bool
2586 default_ms_bitfield_layout_p (record)
2587 tree record ATTRIBUTE_UNUSED;
2589 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2590 return false;
2593 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2594 or zero if not.
2596 We try both `text' and `__text__', ATTR may be either one. */
2597 /* ??? It might be a reasonable simplification to require ATTR to be only
2598 `text'. One might then also require attribute lists to be stored in
2599 their canonicalized form. */
2602 is_attribute_p (attr, ident)
2603 const char *attr;
2604 tree ident;
2606 int ident_len, attr_len;
2607 const char *p;
2609 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2610 return 0;
2612 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2613 return 1;
2615 p = IDENTIFIER_POINTER (ident);
2616 ident_len = strlen (p);
2617 attr_len = strlen (attr);
2619 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2620 if (attr[0] == '_')
2622 if (attr[1] != '_'
2623 || attr[attr_len - 2] != '_'
2624 || attr[attr_len - 1] != '_')
2625 abort ();
2626 if (ident_len == attr_len - 4
2627 && strncmp (attr + 2, p, attr_len - 4) == 0)
2628 return 1;
2630 else
2632 if (ident_len == attr_len + 4
2633 && p[0] == '_' && p[1] == '_'
2634 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2635 && strncmp (attr, p + 2, attr_len) == 0)
2636 return 1;
2639 return 0;
2642 /* Given an attribute name and a list of attributes, return a pointer to the
2643 attribute's list element if the attribute is part of the list, or NULL_TREE
2644 if not found. If the attribute appears more than once, this only
2645 returns the first occurrence; the TREE_CHAIN of the return value should
2646 be passed back in if further occurrences are wanted. */
2648 tree
2649 lookup_attribute (attr_name, list)
2650 const char *attr_name;
2651 tree list;
2653 tree l;
2655 for (l = list; l; l = TREE_CHAIN (l))
2657 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2658 abort ();
2659 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2660 return l;
2663 return NULL_TREE;
2666 /* Return an attribute list that is the union of a1 and a2. */
2668 tree
2669 merge_attributes (a1, a2)
2670 tree a1, a2;
2672 tree attributes;
2674 /* Either one unset? Take the set one. */
2676 if ((attributes = a1) == 0)
2677 attributes = a2;
2679 /* One that completely contains the other? Take it. */
2681 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2683 if (attribute_list_contained (a2, a1))
2684 attributes = a2;
2685 else
2687 /* Pick the longest list, and hang on the other list. */
2689 if (list_length (a1) < list_length (a2))
2690 attributes = a2, a2 = a1;
2692 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2694 tree a;
2695 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2696 attributes);
2697 a != NULL_TREE;
2698 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2699 TREE_CHAIN (a)))
2701 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2702 break;
2704 if (a == NULL_TREE)
2706 a1 = copy_node (a2);
2707 TREE_CHAIN (a1) = attributes;
2708 attributes = a1;
2713 return attributes;
2716 /* Given types T1 and T2, merge their attributes and return
2717 the result. */
2719 tree
2720 merge_type_attributes (t1, t2)
2721 tree t1, t2;
2723 return merge_attributes (TYPE_ATTRIBUTES (t1),
2724 TYPE_ATTRIBUTES (t2));
2727 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2728 the result. */
2730 tree
2731 merge_decl_attributes (olddecl, newdecl)
2732 tree olddecl, newdecl;
2734 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2735 DECL_ATTRIBUTES (newdecl));
2738 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2740 /* Specialization of merge_decl_attributes for various Windows targets.
2742 This handles the following situation:
2744 __declspec (dllimport) int foo;
2745 int foo;
2747 The second instance of `foo' nullifies the dllimport. */
2749 tree
2750 merge_dllimport_decl_attributes (old, new)
2751 tree old;
2752 tree new;
2754 tree a;
2755 int delete_dllimport_p;
2757 old = DECL_ATTRIBUTES (old);
2758 new = DECL_ATTRIBUTES (new);
2760 /* What we need to do here is remove from `old' dllimport if it doesn't
2761 appear in `new'. dllimport behaves like extern: if a declaration is
2762 marked dllimport and a definition appears later, then the object
2763 is not dllimport'd. */
2764 if (lookup_attribute ("dllimport", old) != NULL_TREE
2765 && lookup_attribute ("dllimport", new) == NULL_TREE)
2766 delete_dllimport_p = 1;
2767 else
2768 delete_dllimport_p = 0;
2770 a = merge_attributes (old, new);
2772 if (delete_dllimport_p)
2774 tree prev, t;
2776 /* Scan the list for dllimport and delete it. */
2777 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2779 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2781 if (prev == NULL_TREE)
2782 a = TREE_CHAIN (a);
2783 else
2784 TREE_CHAIN (prev) = TREE_CHAIN (t);
2785 break;
2790 return a;
2793 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2795 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2796 of the various TYPE_QUAL values. */
2798 static void
2799 set_type_quals (type, type_quals)
2800 tree type;
2801 int type_quals;
2803 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2804 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2805 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2808 /* Return a version of the TYPE, qualified as indicated by the
2809 TYPE_QUALS, if one exists. If no qualified version exists yet,
2810 return NULL_TREE. */
2812 tree
2813 get_qualified_type (type, type_quals)
2814 tree type;
2815 int type_quals;
2817 tree t;
2819 /* Search the chain of variants to see if there is already one there just
2820 like the one we need to have. If so, use that existing one. We must
2821 preserve the TYPE_NAME, since there is code that depends on this. */
2822 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2823 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2824 return t;
2826 return NULL_TREE;
2829 /* Like get_qualified_type, but creates the type if it does not
2830 exist. This function never returns NULL_TREE. */
2832 tree
2833 build_qualified_type (type, type_quals)
2834 tree type;
2835 int type_quals;
2837 tree t;
2839 /* See if we already have the appropriate qualified variant. */
2840 t = get_qualified_type (type, type_quals);
2842 /* If not, build it. */
2843 if (!t)
2845 t = build_type_copy (type);
2846 set_type_quals (t, type_quals);
2849 return t;
2852 /* Create a new variant of TYPE, equivalent but distinct.
2853 This is so the caller can modify it. */
2855 tree
2856 build_type_copy (type)
2857 tree type;
2859 tree t, m = TYPE_MAIN_VARIANT (type);
2861 t = copy_node (type);
2863 TYPE_POINTER_TO (t) = 0;
2864 TYPE_REFERENCE_TO (t) = 0;
2866 /* Add this type to the chain of variants of TYPE. */
2867 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2868 TYPE_NEXT_VARIANT (m) = t;
2870 return t;
2873 /* Hashing of types so that we don't make duplicates.
2874 The entry point is `type_hash_canon'. */
2876 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2877 with types in the TREE_VALUE slots), by adding the hash codes
2878 of the individual types. */
2880 unsigned int
2881 type_hash_list (list)
2882 tree list;
2884 unsigned int hashcode;
2885 tree tail;
2887 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2888 hashcode += TYPE_HASH (TREE_VALUE (tail));
2890 return hashcode;
2893 /* These are the Hashtable callback functions. */
2895 /* Returns true if the types are equal. */
2897 static int
2898 type_hash_eq (va, vb)
2899 const void *va;
2900 const void *vb;
2902 const struct type_hash *a = va, *b = vb;
2903 if (a->hash == b->hash
2904 && TREE_CODE (a->type) == TREE_CODE (b->type)
2905 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2906 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2907 TYPE_ATTRIBUTES (b->type))
2908 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2909 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2910 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2911 TYPE_MAX_VALUE (b->type)))
2912 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2913 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2914 TYPE_MIN_VALUE (b->type)))
2915 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2916 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2917 || (TYPE_DOMAIN (a->type)
2918 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2919 && TYPE_DOMAIN (b->type)
2920 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2921 && type_list_equal (TYPE_DOMAIN (a->type),
2922 TYPE_DOMAIN (b->type)))))
2923 return 1;
2924 return 0;
2927 /* Return the cached hash value. */
2929 static unsigned int
2930 type_hash_hash (item)
2931 const void *item;
2933 return ((const struct type_hash *) item)->hash;
2936 /* Look in the type hash table for a type isomorphic to TYPE.
2937 If one is found, return it. Otherwise return 0. */
2939 tree
2940 type_hash_lookup (hashcode, type)
2941 unsigned int hashcode;
2942 tree type;
2944 struct type_hash *h, in;
2946 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2947 must call that routine before comparing TYPE_ALIGNs. */
2948 layout_type (type);
2950 in.hash = hashcode;
2951 in.type = type;
2953 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2954 if (h)
2955 return h->type;
2956 return NULL_TREE;
2959 /* Add an entry to the type-hash-table
2960 for a type TYPE whose hash code is HASHCODE. */
2962 void
2963 type_hash_add (hashcode, type)
2964 unsigned int hashcode;
2965 tree type;
2967 struct type_hash *h;
2968 void **loc;
2970 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2971 h->hash = hashcode;
2972 h->type = type;
2973 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2974 *(struct type_hash **) loc = h;
2977 /* Given TYPE, and HASHCODE its hash code, return the canonical
2978 object for an identical type if one already exists.
2979 Otherwise, return TYPE, and record it as the canonical object
2980 if it is a permanent object.
2982 To use this function, first create a type of the sort you want.
2983 Then compute its hash code from the fields of the type that
2984 make it different from other similar types.
2985 Then call this function and use the value.
2986 This function frees the type you pass in if it is a duplicate. */
2988 /* Set to 1 to debug without canonicalization. Never set by program. */
2989 int debug_no_type_hash = 0;
2991 tree
2992 type_hash_canon (hashcode, type)
2993 unsigned int hashcode;
2994 tree type;
2996 tree t1;
2998 if (debug_no_type_hash)
2999 return type;
3001 /* See if the type is in the hash table already. If so, return it.
3002 Otherwise, add the type. */
3003 t1 = type_hash_lookup (hashcode, type);
3004 if (t1 != 0)
3006 #ifdef GATHER_STATISTICS
3007 tree_node_counts[(int) t_kind]--;
3008 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3009 #endif
3010 return t1;
3012 else
3014 type_hash_add (hashcode, type);
3015 return type;
3019 /* See if the data pointed to by the type hash table is marked. We consider
3020 it marked if the type is marked or if a debug type number or symbol
3021 table entry has been made for the type. This reduces the amount of
3022 debugging output and eliminates that dependency of the debug output on
3023 the number of garbage collections. */
3025 static int
3026 type_hash_marked_p (p)
3027 const void *p;
3029 tree type = ((struct type_hash *) p)->type;
3031 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3034 /* Mark the entry in the type hash table the type it points to is marked.
3035 Also mark the type in case we are considering this entry "marked" by
3036 virtue of TYPE_SYMTAB_POINTER being set. */
3038 static void
3039 type_hash_mark (p)
3040 const void *p;
3042 ggc_mark (p);
3043 ggc_mark_tree (((struct type_hash *) p)->type);
3046 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3047 `tree**') for GC. */
3049 static int
3050 mark_tree_hashtable_entry (entry, data)
3051 void **entry;
3052 void *data ATTRIBUTE_UNUSED;
3054 ggc_mark_tree ((tree) *entry);
3055 return 1;
3058 /* Mark ARG (which is really a htab_t whose slots are trees) for
3059 GC. */
3061 void
3062 mark_tree_hashtable (arg)
3063 void *arg;
3065 htab_t t = *(htab_t *) arg;
3066 htab_traverse (t, mark_tree_hashtable_entry, 0);
3069 static void
3070 print_type_hash_statistics ()
3072 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3073 (long) htab_size (type_hash_table),
3074 (long) htab_elements (type_hash_table),
3075 htab_collisions (type_hash_table));
3078 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3079 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3080 by adding the hash codes of the individual attributes. */
3082 unsigned int
3083 attribute_hash_list (list)
3084 tree list;
3086 unsigned int hashcode;
3087 tree tail;
3089 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3090 /* ??? Do we want to add in TREE_VALUE too? */
3091 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3092 return hashcode;
3095 /* Given two lists of attributes, return true if list l2 is
3096 equivalent to l1. */
3099 attribute_list_equal (l1, l2)
3100 tree l1, l2;
3102 return attribute_list_contained (l1, l2)
3103 && attribute_list_contained (l2, l1);
3106 /* Given two lists of attributes, return true if list L2 is
3107 completely contained within L1. */
3108 /* ??? This would be faster if attribute names were stored in a canonicalized
3109 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3110 must be used to show these elements are equivalent (which they are). */
3111 /* ??? It's not clear that attributes with arguments will always be handled
3112 correctly. */
3115 attribute_list_contained (l1, l2)
3116 tree l1, l2;
3118 tree t1, t2;
3120 /* First check the obvious, maybe the lists are identical. */
3121 if (l1 == l2)
3122 return 1;
3124 /* Maybe the lists are similar. */
3125 for (t1 = l1, t2 = l2;
3126 t1 != 0 && t2 != 0
3127 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3128 && TREE_VALUE (t1) == TREE_VALUE (t2);
3129 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3131 /* Maybe the lists are equal. */
3132 if (t1 == 0 && t2 == 0)
3133 return 1;
3135 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3137 tree attr;
3138 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3139 attr != NULL_TREE;
3140 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3141 TREE_CHAIN (attr)))
3143 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3144 break;
3147 if (attr == 0)
3148 return 0;
3150 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3151 return 0;
3154 return 1;
3157 /* Given two lists of types
3158 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3159 return 1 if the lists contain the same types in the same order.
3160 Also, the TREE_PURPOSEs must match. */
3163 type_list_equal (l1, l2)
3164 tree l1, l2;
3166 tree t1, t2;
3168 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3169 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3170 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3171 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3172 && (TREE_TYPE (TREE_PURPOSE (t1))
3173 == TREE_TYPE (TREE_PURPOSE (t2))))))
3174 return 0;
3176 return t1 == t2;
3179 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3180 given by TYPE. If the argument list accepts variable arguments,
3181 then this function counts only the ordinary arguments. */
3184 type_num_arguments (type)
3185 tree type;
3187 int i = 0;
3188 tree t;
3190 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3191 /* If the function does not take a variable number of arguments,
3192 the last element in the list will have type `void'. */
3193 if (VOID_TYPE_P (TREE_VALUE (t)))
3194 break;
3195 else
3196 ++i;
3198 return i;
3201 /* Nonzero if integer constants T1 and T2
3202 represent the same constant value. */
3205 tree_int_cst_equal (t1, t2)
3206 tree t1, t2;
3208 if (t1 == t2)
3209 return 1;
3211 if (t1 == 0 || t2 == 0)
3212 return 0;
3214 if (TREE_CODE (t1) == INTEGER_CST
3215 && TREE_CODE (t2) == INTEGER_CST
3216 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3217 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3218 return 1;
3220 return 0;
3223 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3224 The precise way of comparison depends on their data type. */
3227 tree_int_cst_lt (t1, t2)
3228 tree t1, t2;
3230 if (t1 == t2)
3231 return 0;
3233 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3235 int t1_sgn = tree_int_cst_sgn (t1);
3236 int t2_sgn = tree_int_cst_sgn (t2);
3238 if (t1_sgn < t2_sgn)
3239 return 1;
3240 else if (t1_sgn > t2_sgn)
3241 return 0;
3242 /* Otherwise, both are non-negative, so we compare them as
3243 unsigned just in case one of them would overflow a signed
3244 type. */
3246 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3247 return INT_CST_LT (t1, t2);
3249 return INT_CST_LT_UNSIGNED (t1, t2);
3252 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3255 tree_int_cst_compare (t1, t2)
3256 tree t1;
3257 tree t2;
3259 if (tree_int_cst_lt (t1, t2))
3260 return -1;
3261 else if (tree_int_cst_lt (t2, t1))
3262 return 1;
3263 else
3264 return 0;
3267 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3268 the host. If POS is zero, the value can be represented in a single
3269 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3270 be represented in a single unsigned HOST_WIDE_INT. */
3273 host_integerp (t, pos)
3274 tree t;
3275 int pos;
3277 return (TREE_CODE (t) == INTEGER_CST
3278 && ! TREE_OVERFLOW (t)
3279 && ((TREE_INT_CST_HIGH (t) == 0
3280 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3281 || (! pos && TREE_INT_CST_HIGH (t) == -1
3282 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3283 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3284 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3287 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3288 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3289 be positive. Abort if we cannot satisfy the above conditions. */
3291 HOST_WIDE_INT
3292 tree_low_cst (t, pos)
3293 tree t;
3294 int pos;
3296 if (host_integerp (t, pos))
3297 return TREE_INT_CST_LOW (t);
3298 else
3299 abort ();
3302 /* Return the most significant bit of the integer constant T. */
3305 tree_int_cst_msb (t)
3306 tree t;
3308 int prec;
3309 HOST_WIDE_INT h;
3310 unsigned HOST_WIDE_INT l;
3312 /* Note that using TYPE_PRECISION here is wrong. We care about the
3313 actual bits, not the (arbitrary) range of the type. */
3314 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3315 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3316 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3317 return (l & 1) == 1;
3320 /* Return an indication of the sign of the integer constant T.
3321 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3322 Note that -1 will never be returned it T's type is unsigned. */
3325 tree_int_cst_sgn (t)
3326 tree t;
3328 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3329 return 0;
3330 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3331 return 1;
3332 else if (TREE_INT_CST_HIGH (t) < 0)
3333 return -1;
3334 else
3335 return 1;
3338 /* Compare two constructor-element-type constants. Return 1 if the lists
3339 are known to be equal; otherwise return 0. */
3342 simple_cst_list_equal (l1, l2)
3343 tree l1, l2;
3345 while (l1 != NULL_TREE && l2 != NULL_TREE)
3347 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3348 return 0;
3350 l1 = TREE_CHAIN (l1);
3351 l2 = TREE_CHAIN (l2);
3354 return l1 == l2;
3357 /* Return truthvalue of whether T1 is the same tree structure as T2.
3358 Return 1 if they are the same.
3359 Return 0 if they are understandably different.
3360 Return -1 if either contains tree structure not understood by
3361 this function. */
3364 simple_cst_equal (t1, t2)
3365 tree t1, t2;
3367 enum tree_code code1, code2;
3368 int cmp;
3369 int i;
3371 if (t1 == t2)
3372 return 1;
3373 if (t1 == 0 || t2 == 0)
3374 return 0;
3376 code1 = TREE_CODE (t1);
3377 code2 = TREE_CODE (t2);
3379 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3381 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3382 || code2 == NON_LVALUE_EXPR)
3383 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3384 else
3385 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3388 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3389 || code2 == NON_LVALUE_EXPR)
3390 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3392 if (code1 != code2)
3393 return 0;
3395 switch (code1)
3397 case INTEGER_CST:
3398 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3399 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3401 case REAL_CST:
3402 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3404 case STRING_CST:
3405 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3406 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3407 TREE_STRING_LENGTH (t1)));
3409 case CONSTRUCTOR:
3410 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3411 return 1;
3412 else
3413 abort ();
3415 case SAVE_EXPR:
3416 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3418 case CALL_EXPR:
3419 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3420 if (cmp <= 0)
3421 return cmp;
3422 return
3423 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3425 case TARGET_EXPR:
3426 /* Special case: if either target is an unallocated VAR_DECL,
3427 it means that it's going to be unified with whatever the
3428 TARGET_EXPR is really supposed to initialize, so treat it
3429 as being equivalent to anything. */
3430 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3431 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3432 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3433 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3434 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3435 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3436 cmp = 1;
3437 else
3438 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3440 if (cmp <= 0)
3441 return cmp;
3443 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3445 case WITH_CLEANUP_EXPR:
3446 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3447 if (cmp <= 0)
3448 return cmp;
3450 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3452 case COMPONENT_REF:
3453 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3454 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3456 return 0;
3458 case VAR_DECL:
3459 case PARM_DECL:
3460 case CONST_DECL:
3461 case FUNCTION_DECL:
3462 return 0;
3464 default:
3465 break;
3468 /* This general rule works for most tree codes. All exceptions should be
3469 handled above. If this is a language-specific tree code, we can't
3470 trust what might be in the operand, so say we don't know
3471 the situation. */
3472 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3473 return -1;
3475 switch (TREE_CODE_CLASS (code1))
3477 case '1':
3478 case '2':
3479 case '<':
3480 case 'e':
3481 case 'r':
3482 case 's':
3483 cmp = 1;
3484 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3486 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3487 if (cmp <= 0)
3488 return cmp;
3491 return cmp;
3493 default:
3494 return -1;
3498 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3499 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3500 than U, respectively. */
3503 compare_tree_int (t, u)
3504 tree t;
3505 unsigned HOST_WIDE_INT u;
3507 if (tree_int_cst_sgn (t) < 0)
3508 return -1;
3509 else if (TREE_INT_CST_HIGH (t) != 0)
3510 return 1;
3511 else if (TREE_INT_CST_LOW (t) == u)
3512 return 0;
3513 else if (TREE_INT_CST_LOW (t) < u)
3514 return -1;
3515 else
3516 return 1;
3519 /* Constructors for pointer, array and function types.
3520 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3521 constructed by language-dependent code, not here.) */
3523 /* Construct, lay out and return the type of pointers to TO_TYPE.
3524 If such a type has already been constructed, reuse it. */
3526 tree
3527 build_pointer_type (to_type)
3528 tree to_type;
3530 tree t = TYPE_POINTER_TO (to_type);
3532 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3534 if (t != 0)
3535 return t;
3537 /* We need a new one. */
3538 t = make_node (POINTER_TYPE);
3540 TREE_TYPE (t) = to_type;
3542 /* Record this type as the pointer to TO_TYPE. */
3543 TYPE_POINTER_TO (to_type) = t;
3545 /* Lay out the type. This function has many callers that are concerned
3546 with expression-construction, and this simplifies them all.
3547 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3548 layout_type (t);
3550 return t;
3553 /* Build the node for the type of references-to-TO_TYPE. */
3555 tree
3556 build_reference_type (to_type)
3557 tree to_type;
3559 tree t = TYPE_REFERENCE_TO (to_type);
3561 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3563 if (t)
3564 return t;
3566 /* We need a new one. */
3567 t = make_node (REFERENCE_TYPE);
3569 TREE_TYPE (t) = to_type;
3571 /* Record this type as the pointer to TO_TYPE. */
3572 TYPE_REFERENCE_TO (to_type) = t;
3574 layout_type (t);
3576 return t;
3579 /* Build a type that is compatible with t but has no cv quals anywhere
3580 in its type, thus
3582 const char *const *const * -> char ***. */
3584 tree
3585 build_type_no_quals (t)
3586 tree t;
3588 switch (TREE_CODE (t))
3590 case POINTER_TYPE:
3591 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3592 case REFERENCE_TYPE:
3593 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3594 default:
3595 return TYPE_MAIN_VARIANT (t);
3599 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3600 MAXVAL should be the maximum value in the domain
3601 (one less than the length of the array).
3603 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3604 We don't enforce this limit, that is up to caller (e.g. language front end).
3605 The limit exists because the result is a signed type and we don't handle
3606 sizes that use more than one HOST_WIDE_INT. */
3608 tree
3609 build_index_type (maxval)
3610 tree maxval;
3612 tree itype = make_node (INTEGER_TYPE);
3614 TREE_TYPE (itype) = sizetype;
3615 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3616 TYPE_MIN_VALUE (itype) = size_zero_node;
3617 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3618 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3619 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3620 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3621 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3622 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3624 if (host_integerp (maxval, 1))
3625 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3626 else
3627 return itype;
3630 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3631 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3632 low bound LOWVAL and high bound HIGHVAL.
3633 if TYPE==NULL_TREE, sizetype is used. */
3635 tree
3636 build_range_type (type, lowval, highval)
3637 tree type, lowval, highval;
3639 tree itype = make_node (INTEGER_TYPE);
3641 TREE_TYPE (itype) = type;
3642 if (type == NULL_TREE)
3643 type = sizetype;
3645 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3646 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3648 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3649 TYPE_MODE (itype) = TYPE_MODE (type);
3650 TYPE_SIZE (itype) = TYPE_SIZE (type);
3651 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3652 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3653 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3655 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3656 return type_hash_canon (tree_low_cst (highval, 0)
3657 - tree_low_cst (lowval, 0),
3658 itype);
3659 else
3660 return itype;
3663 /* Just like build_index_type, but takes lowval and highval instead
3664 of just highval (maxval). */
3666 tree
3667 build_index_2_type (lowval, highval)
3668 tree lowval, highval;
3670 return build_range_type (sizetype, lowval, highval);
3673 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3674 Needed because when index types are not hashed, equal index types
3675 built at different times appear distinct, even though structurally,
3676 they are not. */
3679 index_type_equal (itype1, itype2)
3680 tree itype1, itype2;
3682 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3683 return 0;
3685 if (TREE_CODE (itype1) == INTEGER_TYPE)
3687 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3688 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3689 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3690 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3691 return 0;
3693 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3694 TYPE_MIN_VALUE (itype2))
3695 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3696 TYPE_MAX_VALUE (itype2)))
3697 return 1;
3700 return 0;
3703 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3704 and number of elements specified by the range of values of INDEX_TYPE.
3705 If such a type has already been constructed, reuse it. */
3707 tree
3708 build_array_type (elt_type, index_type)
3709 tree elt_type, index_type;
3711 tree t;
3712 unsigned int hashcode;
3714 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3716 error ("arrays of functions are not meaningful");
3717 elt_type = integer_type_node;
3720 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3721 build_pointer_type (elt_type);
3723 /* Allocate the array after the pointer type,
3724 in case we free it in type_hash_canon. */
3725 t = make_node (ARRAY_TYPE);
3726 TREE_TYPE (t) = elt_type;
3727 TYPE_DOMAIN (t) = index_type;
3729 if (index_type == 0)
3731 return t;
3734 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3735 t = type_hash_canon (hashcode, t);
3737 if (!COMPLETE_TYPE_P (t))
3738 layout_type (t);
3739 return t;
3742 /* Return the TYPE of the elements comprising
3743 the innermost dimension of ARRAY. */
3745 tree
3746 get_inner_array_type (array)
3747 tree array;
3749 tree type = TREE_TYPE (array);
3751 while (TREE_CODE (type) == ARRAY_TYPE)
3752 type = TREE_TYPE (type);
3754 return type;
3757 /* Construct, lay out and return
3758 the type of functions returning type VALUE_TYPE
3759 given arguments of types ARG_TYPES.
3760 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3761 are data type nodes for the arguments of the function.
3762 If such a type has already been constructed, reuse it. */
3764 tree
3765 build_function_type (value_type, arg_types)
3766 tree value_type, arg_types;
3768 tree t;
3769 unsigned int hashcode;
3771 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3773 error ("function return type cannot be function");
3774 value_type = integer_type_node;
3777 /* Make a node of the sort we want. */
3778 t = make_node (FUNCTION_TYPE);
3779 TREE_TYPE (t) = value_type;
3780 TYPE_ARG_TYPES (t) = arg_types;
3782 /* If we already have such a type, use the old one and free this one. */
3783 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3784 t = type_hash_canon (hashcode, t);
3786 if (!COMPLETE_TYPE_P (t))
3787 layout_type (t);
3788 return t;
3791 /* Construct, lay out and return the type of methods belonging to class
3792 BASETYPE and whose arguments and values are described by TYPE.
3793 If that type exists already, reuse it.
3794 TYPE must be a FUNCTION_TYPE node. */
3796 tree
3797 build_method_type (basetype, type)
3798 tree basetype, type;
3800 tree t;
3801 unsigned int hashcode;
3803 /* Make a node of the sort we want. */
3804 t = make_node (METHOD_TYPE);
3806 if (TREE_CODE (type) != FUNCTION_TYPE)
3807 abort ();
3809 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3810 TREE_TYPE (t) = TREE_TYPE (type);
3812 /* The actual arglist for this function includes a "hidden" argument
3813 which is "this". Put it into the list of argument types. */
3815 TYPE_ARG_TYPES (t)
3816 = tree_cons (NULL_TREE,
3817 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3819 /* If we already have such a type, use the old one and free this one. */
3820 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3821 t = type_hash_canon (hashcode, t);
3823 if (!COMPLETE_TYPE_P (t))
3824 layout_type (t);
3826 return t;
3829 /* Construct, lay out and return the type of offsets to a value
3830 of type TYPE, within an object of type BASETYPE.
3831 If a suitable offset type exists already, reuse it. */
3833 tree
3834 build_offset_type (basetype, type)
3835 tree basetype, type;
3837 tree t;
3838 unsigned int hashcode;
3840 /* Make a node of the sort we want. */
3841 t = make_node (OFFSET_TYPE);
3843 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3844 TREE_TYPE (t) = type;
3846 /* If we already have such a type, use the old one and free this one. */
3847 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3848 t = type_hash_canon (hashcode, t);
3850 if (!COMPLETE_TYPE_P (t))
3851 layout_type (t);
3853 return t;
3856 /* Create a complex type whose components are COMPONENT_TYPE. */
3858 tree
3859 build_complex_type (component_type)
3860 tree component_type;
3862 tree t;
3863 unsigned int hashcode;
3865 /* Make a node of the sort we want. */
3866 t = make_node (COMPLEX_TYPE);
3868 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3869 set_type_quals (t, TYPE_QUALS (component_type));
3871 /* If we already have such a type, use the old one and free this one. */
3872 hashcode = TYPE_HASH (component_type);
3873 t = type_hash_canon (hashcode, t);
3875 if (!COMPLETE_TYPE_P (t))
3876 layout_type (t);
3878 /* If we are writing Dwarf2 output we need to create a name,
3879 since complex is a fundamental type. */
3880 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3881 && ! TYPE_NAME (t))
3883 const char *name;
3884 if (component_type == char_type_node)
3885 name = "complex char";
3886 else if (component_type == signed_char_type_node)
3887 name = "complex signed char";
3888 else if (component_type == unsigned_char_type_node)
3889 name = "complex unsigned char";
3890 else if (component_type == short_integer_type_node)
3891 name = "complex short int";
3892 else if (component_type == short_unsigned_type_node)
3893 name = "complex short unsigned int";
3894 else if (component_type == integer_type_node)
3895 name = "complex int";
3896 else if (component_type == unsigned_type_node)
3897 name = "complex unsigned int";
3898 else if (component_type == long_integer_type_node)
3899 name = "complex long int";
3900 else if (component_type == long_unsigned_type_node)
3901 name = "complex long unsigned int";
3902 else if (component_type == long_long_integer_type_node)
3903 name = "complex long long int";
3904 else if (component_type == long_long_unsigned_type_node)
3905 name = "complex long long unsigned int";
3906 else
3907 name = 0;
3909 if (name != 0)
3910 TYPE_NAME (t) = get_identifier (name);
3913 return t;
3916 /* Return OP, stripped of any conversions to wider types as much as is safe.
3917 Converting the value back to OP's type makes a value equivalent to OP.
3919 If FOR_TYPE is nonzero, we return a value which, if converted to
3920 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3922 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3923 narrowest type that can hold the value, even if they don't exactly fit.
3924 Otherwise, bit-field references are changed to a narrower type
3925 only if they can be fetched directly from memory in that type.
3927 OP must have integer, real or enumeral type. Pointers are not allowed!
3929 There are some cases where the obvious value we could return
3930 would regenerate to OP if converted to OP's type,
3931 but would not extend like OP to wider types.
3932 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3933 For example, if OP is (unsigned short)(signed char)-1,
3934 we avoid returning (signed char)-1 if FOR_TYPE is int,
3935 even though extending that to an unsigned short would regenerate OP,
3936 since the result of extending (signed char)-1 to (int)
3937 is different from (int) OP. */
3939 tree
3940 get_unwidened (op, for_type)
3941 tree op;
3942 tree for_type;
3944 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3945 tree type = TREE_TYPE (op);
3946 unsigned final_prec
3947 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3948 int uns
3949 = (for_type != 0 && for_type != type
3950 && final_prec > TYPE_PRECISION (type)
3951 && TREE_UNSIGNED (type));
3952 tree win = op;
3954 while (TREE_CODE (op) == NOP_EXPR)
3956 int bitschange
3957 = TYPE_PRECISION (TREE_TYPE (op))
3958 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3960 /* Truncations are many-one so cannot be removed.
3961 Unless we are later going to truncate down even farther. */
3962 if (bitschange < 0
3963 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3964 break;
3966 /* See what's inside this conversion. If we decide to strip it,
3967 we will set WIN. */
3968 op = TREE_OPERAND (op, 0);
3970 /* If we have not stripped any zero-extensions (uns is 0),
3971 we can strip any kind of extension.
3972 If we have previously stripped a zero-extension,
3973 only zero-extensions can safely be stripped.
3974 Any extension can be stripped if the bits it would produce
3975 are all going to be discarded later by truncating to FOR_TYPE. */
3977 if (bitschange > 0)
3979 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3980 win = op;
3981 /* TREE_UNSIGNED says whether this is a zero-extension.
3982 Let's avoid computing it if it does not affect WIN
3983 and if UNS will not be needed again. */
3984 if ((uns || TREE_CODE (op) == NOP_EXPR)
3985 && TREE_UNSIGNED (TREE_TYPE (op)))
3987 uns = 1;
3988 win = op;
3993 if (TREE_CODE (op) == COMPONENT_REF
3994 /* Since type_for_size always gives an integer type. */
3995 && TREE_CODE (type) != REAL_TYPE
3996 /* Don't crash if field not laid out yet. */
3997 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3998 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4000 unsigned int innerprec
4001 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4002 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4003 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4005 /* We can get this structure field in the narrowest type it fits in.
4006 If FOR_TYPE is 0, do this only for a field that matches the
4007 narrower type exactly and is aligned for it
4008 The resulting extension to its nominal type (a fullword type)
4009 must fit the same conditions as for other extensions. */
4011 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4012 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4013 && (! uns || final_prec <= innerprec || unsignedp)
4014 && type != 0)
4016 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4017 TREE_OPERAND (op, 1));
4018 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4019 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4023 return win;
4026 /* Return OP or a simpler expression for a narrower value
4027 which can be sign-extended or zero-extended to give back OP.
4028 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4029 or 0 if the value should be sign-extended. */
4031 tree
4032 get_narrower (op, unsignedp_ptr)
4033 tree op;
4034 int *unsignedp_ptr;
4036 int uns = 0;
4037 int first = 1;
4038 tree win = op;
4040 while (TREE_CODE (op) == NOP_EXPR)
4042 int bitschange
4043 = (TYPE_PRECISION (TREE_TYPE (op))
4044 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4046 /* Truncations are many-one so cannot be removed. */
4047 if (bitschange < 0)
4048 break;
4050 /* See what's inside this conversion. If we decide to strip it,
4051 we will set WIN. */
4052 op = TREE_OPERAND (op, 0);
4054 if (bitschange > 0)
4056 /* An extension: the outermost one can be stripped,
4057 but remember whether it is zero or sign extension. */
4058 if (first)
4059 uns = TREE_UNSIGNED (TREE_TYPE (op));
4060 /* Otherwise, if a sign extension has been stripped,
4061 only sign extensions can now be stripped;
4062 if a zero extension has been stripped, only zero-extensions. */
4063 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4064 break;
4065 first = 0;
4067 else /* bitschange == 0 */
4069 /* A change in nominal type can always be stripped, but we must
4070 preserve the unsignedness. */
4071 if (first)
4072 uns = TREE_UNSIGNED (TREE_TYPE (op));
4073 first = 0;
4076 win = op;
4079 if (TREE_CODE (op) == COMPONENT_REF
4080 /* Since type_for_size always gives an integer type. */
4081 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4082 /* Ensure field is laid out already. */
4083 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4085 unsigned HOST_WIDE_INT innerprec
4086 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4087 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4088 TREE_UNSIGNED (op));
4090 /* We can get this structure field in a narrower type that fits it,
4091 but the resulting extension to its nominal type (a fullword type)
4092 must satisfy the same conditions as for other extensions.
4094 Do this only for fields that are aligned (not bit-fields),
4095 because when bit-field insns will be used there is no
4096 advantage in doing this. */
4098 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4099 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4100 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4101 && type != 0)
4103 if (first)
4104 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4105 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4106 TREE_OPERAND (op, 1));
4107 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4108 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4111 *unsignedp_ptr = uns;
4112 return win;
4115 /* Nonzero if integer constant C has a value that is permissible
4116 for type TYPE (an INTEGER_TYPE). */
4119 int_fits_type_p (c, type)
4120 tree c, type;
4122 /* If the bounds of the type are integers, we can check ourselves.
4123 If not, but this type is a subtype, try checking against that.
4124 Otherwise, use force_fit_type, which checks against the precision. */
4125 if (TYPE_MAX_VALUE (type) != NULL_TREE
4126 && TYPE_MIN_VALUE (type) != NULL_TREE
4127 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4128 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4130 if (TREE_UNSIGNED (type))
4131 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4132 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4133 /* Negative ints never fit unsigned types. */
4134 && ! (TREE_INT_CST_HIGH (c) < 0
4135 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4136 else
4137 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4138 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4139 /* Unsigned ints with top bit set never fit signed types. */
4140 && ! (TREE_INT_CST_HIGH (c) < 0
4141 && TREE_UNSIGNED (TREE_TYPE (c))));
4143 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4144 return int_fits_type_p (c, TREE_TYPE (type));
4145 else
4147 c = copy_node (c);
4148 TREE_TYPE (c) = type;
4149 return !force_fit_type (c, 0);
4153 /* Given a DECL or TYPE, return the scope in which it was declared, or
4154 NULL_TREE if there is no containing scope. */
4156 tree
4157 get_containing_scope (t)
4158 tree t;
4160 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4163 /* Return the innermost context enclosing DECL that is
4164 a FUNCTION_DECL, or zero if none. */
4166 tree
4167 decl_function_context (decl)
4168 tree decl;
4170 tree context;
4172 if (TREE_CODE (decl) == ERROR_MARK)
4173 return 0;
4175 if (TREE_CODE (decl) == SAVE_EXPR)
4176 context = SAVE_EXPR_CONTEXT (decl);
4178 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4179 where we look up the function at runtime. Such functions always take
4180 a first argument of type 'pointer to real context'.
4182 C++ should really be fixed to use DECL_CONTEXT for the real context,
4183 and use something else for the "virtual context". */
4184 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4185 context
4186 = TYPE_MAIN_VARIANT
4187 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4188 else
4189 context = DECL_CONTEXT (decl);
4191 while (context && TREE_CODE (context) != FUNCTION_DECL)
4193 if (TREE_CODE (context) == BLOCK)
4194 context = BLOCK_SUPERCONTEXT (context);
4195 else
4196 context = get_containing_scope (context);
4199 return context;
4202 /* Return the innermost context enclosing DECL that is
4203 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4204 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4206 tree
4207 decl_type_context (decl)
4208 tree decl;
4210 tree context = DECL_CONTEXT (decl);
4212 while (context)
4214 if (TREE_CODE (context) == RECORD_TYPE
4215 || TREE_CODE (context) == UNION_TYPE
4216 || TREE_CODE (context) == QUAL_UNION_TYPE)
4217 return context;
4219 if (TREE_CODE (context) == TYPE_DECL
4220 || TREE_CODE (context) == FUNCTION_DECL)
4221 context = DECL_CONTEXT (context);
4223 else if (TREE_CODE (context) == BLOCK)
4224 context = BLOCK_SUPERCONTEXT (context);
4226 else
4227 /* Unhandled CONTEXT!? */
4228 abort ();
4230 return NULL_TREE;
4233 /* CALL is a CALL_EXPR. Return the declaration for the function
4234 called, or NULL_TREE if the called function cannot be
4235 determined. */
4237 tree
4238 get_callee_fndecl (call)
4239 tree call;
4241 tree addr;
4243 /* It's invalid to call this function with anything but a
4244 CALL_EXPR. */
4245 if (TREE_CODE (call) != CALL_EXPR)
4246 abort ();
4248 /* The first operand to the CALL is the address of the function
4249 called. */
4250 addr = TREE_OPERAND (call, 0);
4252 STRIP_NOPS (addr);
4254 /* If this is a readonly function pointer, extract its initial value. */
4255 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4256 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4257 && DECL_INITIAL (addr))
4258 addr = DECL_INITIAL (addr);
4260 /* If the address is just `&f' for some function `f', then we know
4261 that `f' is being called. */
4262 if (TREE_CODE (addr) == ADDR_EXPR
4263 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4264 return TREE_OPERAND (addr, 0);
4266 /* We couldn't figure out what was being called. */
4267 return NULL_TREE;
4270 /* Print debugging information about the obstack O, named STR. */
4272 void
4273 print_obstack_statistics (str, o)
4274 const char *str;
4275 struct obstack *o;
4277 struct _obstack_chunk *chunk = o->chunk;
4278 int n_chunks = 1;
4279 int n_alloc = 0;
4281 n_alloc += o->next_free - chunk->contents;
4282 chunk = chunk->prev;
4283 while (chunk)
4285 n_chunks += 1;
4286 n_alloc += chunk->limit - &chunk->contents[0];
4287 chunk = chunk->prev;
4289 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4290 str, n_alloc, n_chunks);
4293 /* Print debugging information about tree nodes generated during the compile,
4294 and any language-specific information. */
4296 void
4297 dump_tree_statistics ()
4299 #ifdef GATHER_STATISTICS
4300 int i;
4301 int total_nodes, total_bytes;
4302 #endif
4304 fprintf (stderr, "\n??? tree nodes created\n\n");
4305 #ifdef GATHER_STATISTICS
4306 fprintf (stderr, "Kind Nodes Bytes\n");
4307 fprintf (stderr, "-------------------------------------\n");
4308 total_nodes = total_bytes = 0;
4309 for (i = 0; i < (int) all_kinds; i++)
4311 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4312 tree_node_counts[i], tree_node_sizes[i]);
4313 total_nodes += tree_node_counts[i];
4314 total_bytes += tree_node_sizes[i];
4316 fprintf (stderr, "-------------------------------------\n");
4317 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4318 fprintf (stderr, "-------------------------------------\n");
4319 #else
4320 fprintf (stderr, "(No per-node statistics)\n");
4321 #endif
4322 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4323 print_type_hash_statistics ();
4324 (*lang_hooks.print_statistics) ();
4327 #define FILE_FUNCTION_PREFIX_LEN 9
4329 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4331 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4332 clashes in cases where we can't reliably choose a unique name.
4334 Derived from mkstemp.c in libiberty. */
4336 static void
4337 append_random_chars (template)
4338 char *template;
4340 static const char letters[]
4341 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4342 static unsigned HOST_WIDE_INT value;
4343 unsigned HOST_WIDE_INT v;
4345 if (! value)
4347 struct stat st;
4349 /* VALUE should be unique for each file and must not change between
4350 compiles since this can cause bootstrap comparison errors. */
4352 if (stat (main_input_filename, &st) < 0)
4354 /* This can happen when preprocessed text is shipped between
4355 machines, e.g. with bug reports. Assume that uniqueness
4356 isn't actually an issue. */
4357 value = 1;
4359 else
4361 /* In VMS, ino is an array, so we have to use both values. We
4362 conditionalize that. */
4363 #ifdef VMS
4364 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4365 #else
4366 #define INO_TO_INT(INO) INO
4367 #endif
4368 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4372 template += strlen (template);
4374 v = value;
4376 /* Fill in the random bits. */
4377 template[0] = letters[v % 62];
4378 v /= 62;
4379 template[1] = letters[v % 62];
4380 v /= 62;
4381 template[2] = letters[v % 62];
4382 v /= 62;
4383 template[3] = letters[v % 62];
4384 v /= 62;
4385 template[4] = letters[v % 62];
4386 v /= 62;
4387 template[5] = letters[v % 62];
4389 template[6] = '\0';
4392 /* P is a string that will be used in a symbol. Mask out any characters
4393 that are not valid in that context. */
4395 void
4396 clean_symbol_name (p)
4397 char *p;
4399 for (; *p; p++)
4400 if (! (ISALNUM (*p)
4401 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4402 || *p == '$'
4403 #endif
4404 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4405 || *p == '.'
4406 #endif
4408 *p = '_';
4411 /* Generate a name for a function unique to this translation unit.
4412 TYPE is some string to identify the purpose of this function to the
4413 linker or collect2. */
4415 tree
4416 get_file_function_name_long (type)
4417 const char *type;
4419 char *buf;
4420 const char *p;
4421 char *q;
4423 if (first_global_object_name)
4424 p = first_global_object_name;
4425 else
4427 /* We don't have anything that we know to be unique to this translation
4428 unit, so use what we do have and throw in some randomness. */
4430 const char *name = weak_global_object_name;
4431 const char *file = main_input_filename;
4433 if (! name)
4434 name = "";
4435 if (! file)
4436 file = input_filename;
4438 q = (char *) alloca (7 + strlen (name) + strlen (file));
4440 sprintf (q, "%s%s", name, file);
4441 append_random_chars (q);
4442 p = q;
4445 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4446 + strlen (type));
4448 /* Set up the name of the file-level functions we may need.
4449 Use a global object (which is already required to be unique over
4450 the program) rather than the file name (which imposes extra
4451 constraints). */
4452 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4454 /* Don't need to pull weird characters out of global names. */
4455 if (p != first_global_object_name)
4456 clean_symbol_name (buf + 11);
4458 return get_identifier (buf);
4461 /* If KIND=='I', return a suitable global initializer (constructor) name.
4462 If KIND=='D', return a suitable global clean-up (destructor) name. */
4464 tree
4465 get_file_function_name (kind)
4466 int kind;
4468 char p[2];
4470 p[0] = kind;
4471 p[1] = 0;
4473 return get_file_function_name_long (p);
4476 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4477 The result is placed in BUFFER (which has length BIT_SIZE),
4478 with one bit in each char ('\000' or '\001').
4480 If the constructor is constant, NULL_TREE is returned.
4481 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4483 tree
4484 get_set_constructor_bits (init, buffer, bit_size)
4485 tree init;
4486 char *buffer;
4487 int bit_size;
4489 int i;
4490 tree vals;
4491 HOST_WIDE_INT domain_min
4492 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4493 tree non_const_bits = NULL_TREE;
4495 for (i = 0; i < bit_size; i++)
4496 buffer[i] = 0;
4498 for (vals = TREE_OPERAND (init, 1);
4499 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4501 if (!host_integerp (TREE_VALUE (vals), 0)
4502 || (TREE_PURPOSE (vals) != NULL_TREE
4503 && !host_integerp (TREE_PURPOSE (vals), 0)))
4504 non_const_bits
4505 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4506 else if (TREE_PURPOSE (vals) != NULL_TREE)
4508 /* Set a range of bits to ones. */
4509 HOST_WIDE_INT lo_index
4510 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4511 HOST_WIDE_INT hi_index
4512 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4514 if (lo_index < 0 || lo_index >= bit_size
4515 || hi_index < 0 || hi_index >= bit_size)
4516 abort ();
4517 for (; lo_index <= hi_index; lo_index++)
4518 buffer[lo_index] = 1;
4520 else
4522 /* Set a single bit to one. */
4523 HOST_WIDE_INT index
4524 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4525 if (index < 0 || index >= bit_size)
4527 error ("invalid initializer for bit string");
4528 return NULL_TREE;
4530 buffer[index] = 1;
4533 return non_const_bits;
4536 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4537 The result is placed in BUFFER (which is an array of bytes).
4538 If the constructor is constant, NULL_TREE is returned.
4539 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4541 tree
4542 get_set_constructor_bytes (init, buffer, wd_size)
4543 tree init;
4544 unsigned char *buffer;
4545 int wd_size;
4547 int i;
4548 int set_word_size = BITS_PER_UNIT;
4549 int bit_size = wd_size * set_word_size;
4550 int bit_pos = 0;
4551 unsigned char *bytep = buffer;
4552 char *bit_buffer = (char *) alloca (bit_size);
4553 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4555 for (i = 0; i < wd_size; i++)
4556 buffer[i] = 0;
4558 for (i = 0; i < bit_size; i++)
4560 if (bit_buffer[i])
4562 if (BYTES_BIG_ENDIAN)
4563 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4564 else
4565 *bytep |= 1 << bit_pos;
4567 bit_pos++;
4568 if (bit_pos >= set_word_size)
4569 bit_pos = 0, bytep++;
4571 return non_const_bits;
4574 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4575 /* Complain that the tree code of NODE does not match the expected CODE.
4576 FILE, LINE, and FUNCTION are of the caller. */
4578 void
4579 tree_check_failed (node, code, file, line, function)
4580 const tree node;
4581 enum tree_code code;
4582 const char *file;
4583 int line;
4584 const char *function;
4586 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4587 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4588 function, trim_filename (file), line);
4591 /* Similar to above, except that we check for a class of tree
4592 code, given in CL. */
4594 void
4595 tree_class_check_failed (node, cl, file, line, function)
4596 const tree node;
4597 int cl;
4598 const char *file;
4599 int line;
4600 const char *function;
4602 internal_error
4603 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4604 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4605 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4608 #endif /* ENABLE_TREE_CHECKING */
4610 /* For a new vector type node T, build the information necessary for
4611 debuggint output. */
4613 static void
4614 finish_vector_type (t)
4615 tree t;
4617 layout_type (t);
4620 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4621 tree array = build_array_type (TREE_TYPE (t),
4622 build_index_type (index));
4623 tree rt = make_node (RECORD_TYPE);
4625 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4626 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4627 layout_type (rt);
4628 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4629 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4630 the representation type, and we want to find that die when looking up
4631 the vector type. This is most easily achieved by making the TYPE_UID
4632 numbers equal. */
4633 TYPE_UID (rt) = TYPE_UID (t);
4637 /* Create nodes for all integer types (and error_mark_node) using the sizes
4638 of C datatypes. The caller should call set_sizetype soon after calling
4639 this function to select one of the types as sizetype. */
4641 void
4642 build_common_tree_nodes (signed_char)
4643 int signed_char;
4645 error_mark_node = make_node (ERROR_MARK);
4646 TREE_TYPE (error_mark_node) = error_mark_node;
4648 initialize_sizetypes ();
4650 /* Define both `signed char' and `unsigned char'. */
4651 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4652 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4654 /* Define `char', which is like either `signed char' or `unsigned char'
4655 but not the same as either. */
4656 char_type_node
4657 = (signed_char
4658 ? make_signed_type (CHAR_TYPE_SIZE)
4659 : make_unsigned_type (CHAR_TYPE_SIZE));
4661 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4662 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4663 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4664 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4665 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4666 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4667 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4668 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4670 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4671 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4672 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4673 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4674 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4676 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4677 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4678 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4679 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4680 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4683 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4684 It will create several other common tree nodes. */
4686 void
4687 build_common_tree_nodes_2 (short_double)
4688 int short_double;
4690 /* Define these next since types below may used them. */
4691 integer_zero_node = build_int_2 (0, 0);
4692 integer_one_node = build_int_2 (1, 0);
4693 integer_minus_one_node = build_int_2 (-1, -1);
4695 size_zero_node = size_int (0);
4696 size_one_node = size_int (1);
4697 bitsize_zero_node = bitsize_int (0);
4698 bitsize_one_node = bitsize_int (1);
4699 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4701 void_type_node = make_node (VOID_TYPE);
4702 layout_type (void_type_node);
4704 /* We are not going to have real types in C with less than byte alignment,
4705 so we might as well not have any types that claim to have it. */
4706 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4707 TYPE_USER_ALIGN (void_type_node) = 0;
4709 null_pointer_node = build_int_2 (0, 0);
4710 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4711 layout_type (TREE_TYPE (null_pointer_node));
4713 ptr_type_node = build_pointer_type (void_type_node);
4714 const_ptr_type_node
4715 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4717 float_type_node = make_node (REAL_TYPE);
4718 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4719 layout_type (float_type_node);
4721 double_type_node = make_node (REAL_TYPE);
4722 if (short_double)
4723 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4724 else
4725 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4726 layout_type (double_type_node);
4728 long_double_type_node = make_node (REAL_TYPE);
4729 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4730 layout_type (long_double_type_node);
4732 complex_integer_type_node = make_node (COMPLEX_TYPE);
4733 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4734 layout_type (complex_integer_type_node);
4736 complex_float_type_node = make_node (COMPLEX_TYPE);
4737 TREE_TYPE (complex_float_type_node) = float_type_node;
4738 layout_type (complex_float_type_node);
4740 complex_double_type_node = make_node (COMPLEX_TYPE);
4741 TREE_TYPE (complex_double_type_node) = double_type_node;
4742 layout_type (complex_double_type_node);
4744 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4745 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4746 layout_type (complex_long_double_type_node);
4749 tree t;
4750 BUILD_VA_LIST_TYPE (t);
4752 /* Many back-ends define record types without seting TYPE_NAME.
4753 If we copied the record type here, we'd keep the original
4754 record type without a name. This breaks name mangling. So,
4755 don't copy record types and let c_common_nodes_and_builtins()
4756 declare the type to be __builtin_va_list. */
4757 if (TREE_CODE (t) != RECORD_TYPE)
4758 t = build_type_copy (t);
4760 va_list_type_node = t;
4763 unsigned_V4SI_type_node
4764 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4765 unsigned_V2SI_type_node
4766 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4767 unsigned_V2DI_type_node
4768 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4769 unsigned_V4HI_type_node
4770 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4771 unsigned_V8QI_type_node
4772 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4773 unsigned_V8HI_type_node
4774 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4775 unsigned_V16QI_type_node
4776 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4778 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4779 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4780 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4781 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4782 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4783 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4784 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4785 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4786 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4787 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4788 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4791 /* Returns a vector tree node given a vector mode, the inner type, and
4792 the signness. */
4794 static tree
4795 make_vector (mode, innertype, unsignedp)
4796 enum machine_mode mode;
4797 tree innertype;
4798 int unsignedp;
4800 tree t;
4802 t = make_node (VECTOR_TYPE);
4803 TREE_TYPE (t) = innertype;
4804 TYPE_MODE (t) = mode;
4805 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4806 finish_vector_type (t);
4808 return t;
4811 /* Given an initializer INIT, return TRUE if INIT is zero or some
4812 aggregate of zeros. Otherwise return FALSE. */
4814 bool
4815 initializer_zerop (init)
4816 tree init;
4818 STRIP_NOPS (init);
4820 switch (TREE_CODE (init))
4822 case INTEGER_CST:
4823 return integer_zerop (init);
4824 case REAL_CST:
4825 return real_zerop (init)
4826 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4827 case COMPLEX_CST:
4828 return integer_zerop (init)
4829 || (real_zerop (init)
4830 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4831 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4832 case CONSTRUCTOR:
4834 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4836 tree aggr_init = TREE_OPERAND (init, 1);
4838 while (aggr_init)
4840 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4841 return false;
4842 aggr_init = TREE_CHAIN (aggr_init);
4844 return true;
4846 return false;
4848 default:
4849 return false;