index.html (5.4): Recommend against -I options for finding the ext headers.
[official-gcc.git] / gcc / combine.c
blob7a5604fc56c36d423adb6b4c50691e4c553baeb8
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 /* We'd like to catch as many invalid transformations here as
428 possible. Unfortunately, there are way too many mode changes
429 that are perfectly valid, so we'd waste too much effort for
430 little gain doing the checks here. Focus on catching invalid
431 transformations involving integer constants. */
432 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433 && GET_CODE (newval) == CONST_INT)
435 /* Sanity check that we're replacing oldval with a CONST_INT
436 that is a valid sign-extension for the original mode. */
437 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438 GET_MODE (oldval)))
439 abort ();
441 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442 CONST_INT is not valid, because after the replacement, the
443 original mode would be gone. Unfortunately, we can't tell
444 when do_SUBST is called to replace the operand thereof, so we
445 perform this test on oldval instead, checking whether an
446 invalid replacement took place before we got here. */
447 if ((GET_CODE (oldval) == SUBREG
448 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449 || (GET_CODE (oldval) == ZERO_EXTEND
450 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451 abort ();
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
464 buf->next = undobuf.undos, undobuf.undos = buf;
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
473 static void
474 do_SUBST_INT (into, newval)
475 unsigned int *into, newval;
477 struct undo *buf;
478 unsigned int oldval = *into;
480 if (oldval == newval)
481 return;
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
542 init_reg_last_arrays ();
544 init_recog_no_volatile ();
546 /* Compute maximum uid value so uid_cuid can be allocated. */
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
560 nonzero_sign_valid = 0;
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
573 label_tick = 1;
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
579 setup_incoming_promotions ();
581 refresh_blocks = sbitmap_alloc (n_basic_blocks);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
591 if (INSN_P (insn))
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
609 nonzero_sign_valid = 1;
611 /* Now scan all the insns in forward order. */
613 this_basic_block = -1;
614 label_tick = 1;
615 last_call_cuid = 0;
616 mem_last_set = 0;
617 init_reg_last_arrays ();
618 setup_incoming_promotions ();
620 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
622 next = 0;
624 /* If INSN starts a new basic block, update our basic block number. */
625 if (this_basic_block + 1 < n_basic_blocks
626 && BLOCK_HEAD (this_basic_block + 1) == insn)
627 this_basic_block++;
629 if (GET_CODE (insn) == CODE_LABEL)
630 label_tick++;
632 else if (INSN_P (insn))
634 /* See if we know about function return values before this
635 insn based upon SUBREG flags. */
636 check_promoted_subreg (insn, PATTERN (insn));
638 /* Try this insn with each insn it links back to. */
640 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641 if ((next = try_combine (insn, XEXP (links, 0),
642 NULL_RTX, &new_direct_jump_p)) != 0)
643 goto retry;
645 /* Try each sequence of three linked insns ending with this one. */
647 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
649 rtx link = XEXP (links, 0);
651 /* If the linked insn has been replaced by a note, then there
652 is no point in pursuing this chain any further. */
653 if (GET_CODE (link) == NOTE)
654 continue;
656 for (nextlinks = LOG_LINKS (link);
657 nextlinks;
658 nextlinks = XEXP (nextlinks, 1))
659 if ((next = try_combine (insn, link,
660 XEXP (nextlinks, 0),
661 &new_direct_jump_p)) != 0)
662 goto retry;
665 #ifdef HAVE_cc0
666 /* Try to combine a jump insn that uses CC0
667 with a preceding insn that sets CC0, and maybe with its
668 logical predecessor as well.
669 This is how we make decrement-and-branch insns.
670 We need this special code because data flow connections
671 via CC0 do not get entered in LOG_LINKS. */
673 if (GET_CODE (insn) == JUMP_INSN
674 && (prev = prev_nonnote_insn (insn)) != 0
675 && GET_CODE (prev) == INSN
676 && sets_cc0_p (PATTERN (prev)))
678 if ((next = try_combine (insn, prev,
679 NULL_RTX, &new_direct_jump_p)) != 0)
680 goto retry;
682 for (nextlinks = LOG_LINKS (prev); nextlinks;
683 nextlinks = XEXP (nextlinks, 1))
684 if ((next = try_combine (insn, prev,
685 XEXP (nextlinks, 0),
686 &new_direct_jump_p)) != 0)
687 goto retry;
690 /* Do the same for an insn that explicitly references CC0. */
691 if (GET_CODE (insn) == INSN
692 && (prev = prev_nonnote_insn (insn)) != 0
693 && GET_CODE (prev) == INSN
694 && sets_cc0_p (PATTERN (prev))
695 && GET_CODE (PATTERN (insn)) == SET
696 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
698 if ((next = try_combine (insn, prev,
699 NULL_RTX, &new_direct_jump_p)) != 0)
700 goto retry;
702 for (nextlinks = LOG_LINKS (prev); nextlinks;
703 nextlinks = XEXP (nextlinks, 1))
704 if ((next = try_combine (insn, prev,
705 XEXP (nextlinks, 0),
706 &new_direct_jump_p)) != 0)
707 goto retry;
710 /* Finally, see if any of the insns that this insn links to
711 explicitly references CC0. If so, try this insn, that insn,
712 and its predecessor if it sets CC0. */
713 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
714 if (GET_CODE (XEXP (links, 0)) == INSN
715 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
716 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
717 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
718 && GET_CODE (prev) == INSN
719 && sets_cc0_p (PATTERN (prev))
720 && (next = try_combine (insn, XEXP (links, 0),
721 prev, &new_direct_jump_p)) != 0)
722 goto retry;
723 #endif
725 /* Try combining an insn with two different insns whose results it
726 uses. */
727 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
728 for (nextlinks = XEXP (links, 1); nextlinks;
729 nextlinks = XEXP (nextlinks, 1))
730 if ((next = try_combine (insn, XEXP (links, 0),
731 XEXP (nextlinks, 0),
732 &new_direct_jump_p)) != 0)
733 goto retry;
735 if (GET_CODE (insn) != NOTE)
736 record_dead_and_set_regs (insn);
738 retry:
742 clear_bb_flags ();
744 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, this_basic_block,
745 BASIC_BLOCK (this_basic_block)->flags |= BB_DIRTY);
746 new_direct_jump_p |= purge_all_dead_edges (0);
747 delete_noop_moves (f);
749 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
750 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
751 | PROP_KILL_DEAD_CODE);
753 /* Clean up. */
754 sbitmap_free (refresh_blocks);
755 free (reg_nonzero_bits);
756 free (reg_sign_bit_copies);
757 free (reg_last_death);
758 free (reg_last_set);
759 free (reg_last_set_value);
760 free (reg_last_set_table_tick);
761 free (reg_last_set_label);
762 free (reg_last_set_invalid);
763 free (reg_last_set_mode);
764 free (reg_last_set_nonzero_bits);
765 free (reg_last_set_sign_bit_copies);
766 free (uid_cuid);
769 struct undo *undo, *next;
770 for (undo = undobuf.frees; undo; undo = next)
772 next = undo->next;
773 free (undo);
775 undobuf.frees = 0;
778 total_attempts += combine_attempts;
779 total_merges += combine_merges;
780 total_extras += combine_extras;
781 total_successes += combine_successes;
783 nonzero_sign_valid = 0;
785 /* Make recognizer allow volatile MEMs again. */
786 init_recog ();
788 return new_direct_jump_p;
791 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
793 static void
794 init_reg_last_arrays ()
796 unsigned int nregs = combine_max_regno;
798 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
800 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
801 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
802 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
803 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
804 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
805 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
806 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
809 /* Set up any promoted values for incoming argument registers. */
811 static void
812 setup_incoming_promotions ()
814 #ifdef PROMOTE_FUNCTION_ARGS
815 unsigned int regno;
816 rtx reg;
817 enum machine_mode mode;
818 int unsignedp;
819 rtx first = get_insns ();
821 #ifndef OUTGOING_REGNO
822 #define OUTGOING_REGNO(N) N
823 #endif
824 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
825 /* Check whether this register can hold an incoming pointer
826 argument. FUNCTION_ARG_REGNO_P tests outgoing register
827 numbers, so translate if necessary due to register windows. */
828 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
829 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
831 record_value_for_reg
832 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
833 : SIGN_EXTEND),
834 GET_MODE (reg),
835 gen_rtx_CLOBBER (mode, const0_rtx)));
837 #endif
840 /* Called via note_stores. If X is a pseudo that is narrower than
841 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
843 If we are setting only a portion of X and we can't figure out what
844 portion, assume all bits will be used since we don't know what will
845 be happening.
847 Similarly, set how many bits of X are known to be copies of the sign bit
848 at all locations in the function. This is the smallest number implied
849 by any set of X. */
851 static void
852 set_nonzero_bits_and_sign_copies (x, set, data)
853 rtx x;
854 rtx set;
855 void *data ATTRIBUTE_UNUSED;
857 unsigned int num;
859 if (GET_CODE (x) == REG
860 && REGNO (x) >= FIRST_PSEUDO_REGISTER
861 /* If this register is undefined at the start of the file, we can't
862 say what its contents were. */
863 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
864 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
866 if (set == 0 || GET_CODE (set) == CLOBBER)
868 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
869 reg_sign_bit_copies[REGNO (x)] = 1;
870 return;
873 /* If this is a complex assignment, see if we can convert it into a
874 simple assignment. */
875 set = expand_field_assignment (set);
877 /* If this is a simple assignment, or we have a paradoxical SUBREG,
878 set what we know about X. */
880 if (SET_DEST (set) == x
881 || (GET_CODE (SET_DEST (set)) == SUBREG
882 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
883 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
884 && SUBREG_REG (SET_DEST (set)) == x))
886 rtx src = SET_SRC (set);
888 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
889 /* If X is narrower than a word and SRC is a non-negative
890 constant that would appear negative in the mode of X,
891 sign-extend it for use in reg_nonzero_bits because some
892 machines (maybe most) will actually do the sign-extension
893 and this is the conservative approach.
895 ??? For 2.5, try to tighten up the MD files in this regard
896 instead of this kludge. */
898 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
899 && GET_CODE (src) == CONST_INT
900 && INTVAL (src) > 0
901 && 0 != (INTVAL (src)
902 & ((HOST_WIDE_INT) 1
903 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
904 src = GEN_INT (INTVAL (src)
905 | ((HOST_WIDE_INT) (-1)
906 << GET_MODE_BITSIZE (GET_MODE (x))));
907 #endif
909 /* Don't call nonzero_bits if it cannot change anything. */
910 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
911 reg_nonzero_bits[REGNO (x)]
912 |= nonzero_bits (src, nonzero_bits_mode);
913 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
914 if (reg_sign_bit_copies[REGNO (x)] == 0
915 || reg_sign_bit_copies[REGNO (x)] > num)
916 reg_sign_bit_copies[REGNO (x)] = num;
918 else
920 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
921 reg_sign_bit_copies[REGNO (x)] = 1;
926 /* See if INSN can be combined into I3. PRED and SUCC are optionally
927 insns that were previously combined into I3 or that will be combined
928 into the merger of INSN and I3.
930 Return 0 if the combination is not allowed for any reason.
932 If the combination is allowed, *PDEST will be set to the single
933 destination of INSN and *PSRC to the single source, and this function
934 will return 1. */
936 static int
937 can_combine_p (insn, i3, pred, succ, pdest, psrc)
938 rtx insn;
939 rtx i3;
940 rtx pred ATTRIBUTE_UNUSED;
941 rtx succ;
942 rtx *pdest, *psrc;
944 int i;
945 rtx set = 0, src, dest;
946 rtx p;
947 #ifdef AUTO_INC_DEC
948 rtx link;
949 #endif
950 int all_adjacent = (succ ? (next_active_insn (insn) == succ
951 && next_active_insn (succ) == i3)
952 : next_active_insn (insn) == i3);
954 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
955 or a PARALLEL consisting of such a SET and CLOBBERs.
957 If INSN has CLOBBER parallel parts, ignore them for our processing.
958 By definition, these happen during the execution of the insn. When it
959 is merged with another insn, all bets are off. If they are, in fact,
960 needed and aren't also supplied in I3, they may be added by
961 recog_for_combine. Otherwise, it won't match.
963 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
964 note.
966 Get the source and destination of INSN. If more than one, can't
967 combine. */
969 if (GET_CODE (PATTERN (insn)) == SET)
970 set = PATTERN (insn);
971 else if (GET_CODE (PATTERN (insn)) == PARALLEL
972 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
974 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
976 rtx elt = XVECEXP (PATTERN (insn), 0, i);
978 switch (GET_CODE (elt))
980 /* This is important to combine floating point insns
981 for the SH4 port. */
982 case USE:
983 /* Combining an isolated USE doesn't make sense.
984 We depend here on combinable_i3pat to reject them. */
985 /* The code below this loop only verifies that the inputs of
986 the SET in INSN do not change. We call reg_set_between_p
987 to verify that the REG in the USE does not change between
988 I3 and INSN.
989 If the USE in INSN was for a pseudo register, the matching
990 insn pattern will likely match any register; combining this
991 with any other USE would only be safe if we knew that the
992 used registers have identical values, or if there was
993 something to tell them apart, e.g. different modes. For
994 now, we forgo such complicated tests and simply disallow
995 combining of USES of pseudo registers with any other USE. */
996 if (GET_CODE (XEXP (elt, 0)) == REG
997 && GET_CODE (PATTERN (i3)) == PARALLEL)
999 rtx i3pat = PATTERN (i3);
1000 int i = XVECLEN (i3pat, 0) - 1;
1001 unsigned int regno = REGNO (XEXP (elt, 0));
1005 rtx i3elt = XVECEXP (i3pat, 0, i);
1007 if (GET_CODE (i3elt) == USE
1008 && GET_CODE (XEXP (i3elt, 0)) == REG
1009 && (REGNO (XEXP (i3elt, 0)) == regno
1010 ? reg_set_between_p (XEXP (elt, 0),
1011 PREV_INSN (insn), i3)
1012 : regno >= FIRST_PSEUDO_REGISTER))
1013 return 0;
1015 while (--i >= 0);
1017 break;
1019 /* We can ignore CLOBBERs. */
1020 case CLOBBER:
1021 break;
1023 case SET:
1024 /* Ignore SETs whose result isn't used but not those that
1025 have side-effects. */
1026 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1027 && ! side_effects_p (elt))
1028 break;
1030 /* If we have already found a SET, this is a second one and
1031 so we cannot combine with this insn. */
1032 if (set)
1033 return 0;
1035 set = elt;
1036 break;
1038 default:
1039 /* Anything else means we can't combine. */
1040 return 0;
1044 if (set == 0
1045 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1046 so don't do anything with it. */
1047 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1048 return 0;
1050 else
1051 return 0;
1053 if (set == 0)
1054 return 0;
1056 set = expand_field_assignment (set);
1057 src = SET_SRC (set), dest = SET_DEST (set);
1059 /* Don't eliminate a store in the stack pointer. */
1060 if (dest == stack_pointer_rtx
1061 /* If we couldn't eliminate a field assignment, we can't combine. */
1062 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1063 /* Don't combine with an insn that sets a register to itself if it has
1064 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1065 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1066 /* Can't merge an ASM_OPERANDS. */
1067 || GET_CODE (src) == ASM_OPERANDS
1068 /* Can't merge a function call. */
1069 || GET_CODE (src) == CALL
1070 /* Don't eliminate a function call argument. */
1071 || (GET_CODE (i3) == CALL_INSN
1072 && (find_reg_fusage (i3, USE, dest)
1073 || (GET_CODE (dest) == REG
1074 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1075 && global_regs[REGNO (dest)])))
1076 /* Don't substitute into an incremented register. */
1077 || FIND_REG_INC_NOTE (i3, dest)
1078 || (succ && FIND_REG_INC_NOTE (succ, dest))
1079 #if 0
1080 /* Don't combine the end of a libcall into anything. */
1081 /* ??? This gives worse code, and appears to be unnecessary, since no
1082 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1083 use REG_RETVAL notes for noconflict blocks, but other code here
1084 makes sure that those insns don't disappear. */
1085 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1086 #endif
1087 /* Make sure that DEST is not used after SUCC but before I3. */
1088 || (succ && ! all_adjacent
1089 && reg_used_between_p (dest, succ, i3))
1090 /* Make sure that the value that is to be substituted for the register
1091 does not use any registers whose values alter in between. However,
1092 If the insns are adjacent, a use can't cross a set even though we
1093 think it might (this can happen for a sequence of insns each setting
1094 the same destination; reg_last_set of that register might point to
1095 a NOTE). If INSN has a REG_EQUIV note, the register is always
1096 equivalent to the memory so the substitution is valid even if there
1097 are intervening stores. Also, don't move a volatile asm or
1098 UNSPEC_VOLATILE across any other insns. */
1099 || (! all_adjacent
1100 && (((GET_CODE (src) != MEM
1101 || ! find_reg_note (insn, REG_EQUIV, src))
1102 && use_crosses_set_p (src, INSN_CUID (insn)))
1103 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1104 || GET_CODE (src) == UNSPEC_VOLATILE))
1105 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1106 better register allocation by not doing the combine. */
1107 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1108 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1109 /* Don't combine across a CALL_INSN, because that would possibly
1110 change whether the life span of some REGs crosses calls or not,
1111 and it is a pain to update that information.
1112 Exception: if source is a constant, moving it later can't hurt.
1113 Accept that special case, because it helps -fforce-addr a lot. */
1114 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1115 return 0;
1117 /* DEST must either be a REG or CC0. */
1118 if (GET_CODE (dest) == REG)
1120 /* If register alignment is being enforced for multi-word items in all
1121 cases except for parameters, it is possible to have a register copy
1122 insn referencing a hard register that is not allowed to contain the
1123 mode being copied and which would not be valid as an operand of most
1124 insns. Eliminate this problem by not combining with such an insn.
1126 Also, on some machines we don't want to extend the life of a hard
1127 register. */
1129 if (GET_CODE (src) == REG
1130 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1131 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1132 /* Don't extend the life of a hard register unless it is
1133 user variable (if we have few registers) or it can't
1134 fit into the desired register (meaning something special
1135 is going on).
1136 Also avoid substituting a return register into I3, because
1137 reload can't handle a conflict with constraints of other
1138 inputs. */
1139 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1140 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1141 return 0;
1143 else if (GET_CODE (dest) != CC0)
1144 return 0;
1146 /* Don't substitute for a register intended as a clobberable operand.
1147 Similarly, don't substitute an expression containing a register that
1148 will be clobbered in I3. */
1149 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1150 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1151 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1152 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1153 src)
1154 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1155 return 0;
1157 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1158 or not), reject, unless nothing volatile comes between it and I3 */
1160 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1162 /* Make sure succ doesn't contain a volatile reference. */
1163 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1164 return 0;
1166 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1167 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1168 return 0;
1171 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1172 to be an explicit register variable, and was chosen for a reason. */
1174 if (GET_CODE (src) == ASM_OPERANDS
1175 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1176 return 0;
1178 /* If there are any volatile insns between INSN and I3, reject, because
1179 they might affect machine state. */
1181 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1182 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1183 return 0;
1185 /* If INSN or I2 contains an autoincrement or autodecrement,
1186 make sure that register is not used between there and I3,
1187 and not already used in I3 either.
1188 Also insist that I3 not be a jump; if it were one
1189 and the incremented register were spilled, we would lose. */
1191 #ifdef AUTO_INC_DEC
1192 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1193 if (REG_NOTE_KIND (link) == REG_INC
1194 && (GET_CODE (i3) == JUMP_INSN
1195 || reg_used_between_p (XEXP (link, 0), insn, i3)
1196 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1197 return 0;
1198 #endif
1200 #ifdef HAVE_cc0
1201 /* Don't combine an insn that follows a CC0-setting insn.
1202 An insn that uses CC0 must not be separated from the one that sets it.
1203 We do, however, allow I2 to follow a CC0-setting insn if that insn
1204 is passed as I1; in that case it will be deleted also.
1205 We also allow combining in this case if all the insns are adjacent
1206 because that would leave the two CC0 insns adjacent as well.
1207 It would be more logical to test whether CC0 occurs inside I1 or I2,
1208 but that would be much slower, and this ought to be equivalent. */
1210 p = prev_nonnote_insn (insn);
1211 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1212 && ! all_adjacent)
1213 return 0;
1214 #endif
1216 /* If we get here, we have passed all the tests and the combination is
1217 to be allowed. */
1219 *pdest = dest;
1220 *psrc = src;
1222 return 1;
1225 /* Check if PAT is an insn - or a part of it - used to set up an
1226 argument for a function in a hard register. */
1228 static int
1229 sets_function_arg_p (pat)
1230 rtx pat;
1232 int i;
1233 rtx inner_dest;
1235 switch (GET_CODE (pat))
1237 case INSN:
1238 return sets_function_arg_p (PATTERN (pat));
1240 case PARALLEL:
1241 for (i = XVECLEN (pat, 0); --i >= 0;)
1242 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1243 return 1;
1245 break;
1247 case SET:
1248 inner_dest = SET_DEST (pat);
1249 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1250 || GET_CODE (inner_dest) == SUBREG
1251 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1252 inner_dest = XEXP (inner_dest, 0);
1254 return (GET_CODE (inner_dest) == REG
1255 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1256 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1258 default:
1259 break;
1262 return 0;
1265 /* LOC is the location within I3 that contains its pattern or the component
1266 of a PARALLEL of the pattern. We validate that it is valid for combining.
1268 One problem is if I3 modifies its output, as opposed to replacing it
1269 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1270 so would produce an insn that is not equivalent to the original insns.
1272 Consider:
1274 (set (reg:DI 101) (reg:DI 100))
1275 (set (subreg:SI (reg:DI 101) 0) <foo>)
1277 This is NOT equivalent to:
1279 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1280 (set (reg:DI 101) (reg:DI 100))])
1282 Not only does this modify 100 (in which case it might still be valid
1283 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1285 We can also run into a problem if I2 sets a register that I1
1286 uses and I1 gets directly substituted into I3 (not via I2). In that
1287 case, we would be getting the wrong value of I2DEST into I3, so we
1288 must reject the combination. This case occurs when I2 and I1 both
1289 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1290 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1291 of a SET must prevent combination from occurring.
1293 Before doing the above check, we first try to expand a field assignment
1294 into a set of logical operations.
1296 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1297 we place a register that is both set and used within I3. If more than one
1298 such register is detected, we fail.
1300 Return 1 if the combination is valid, zero otherwise. */
1302 static int
1303 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1304 rtx i3;
1305 rtx *loc;
1306 rtx i2dest;
1307 rtx i1dest;
1308 int i1_not_in_src;
1309 rtx *pi3dest_killed;
1311 rtx x = *loc;
1313 if (GET_CODE (x) == SET)
1315 rtx set = expand_field_assignment (x);
1316 rtx dest = SET_DEST (set);
1317 rtx src = SET_SRC (set);
1318 rtx inner_dest = dest;
1320 #if 0
1321 rtx inner_src = src;
1322 #endif
1324 SUBST (*loc, set);
1326 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1327 || GET_CODE (inner_dest) == SUBREG
1328 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1329 inner_dest = XEXP (inner_dest, 0);
1331 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1332 was added. */
1333 #if 0
1334 while (GET_CODE (inner_src) == STRICT_LOW_PART
1335 || GET_CODE (inner_src) == SUBREG
1336 || GET_CODE (inner_src) == ZERO_EXTRACT)
1337 inner_src = XEXP (inner_src, 0);
1339 /* If it is better that two different modes keep two different pseudos,
1340 avoid combining them. This avoids producing the following pattern
1341 on a 386:
1342 (set (subreg:SI (reg/v:QI 21) 0)
1343 (lshiftrt:SI (reg/v:SI 20)
1344 (const_int 24)))
1345 If that were made, reload could not handle the pair of
1346 reg 20/21, since it would try to get any GENERAL_REGS
1347 but some of them don't handle QImode. */
1349 if (rtx_equal_p (inner_src, i2dest)
1350 && GET_CODE (inner_dest) == REG
1351 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1352 return 0;
1353 #endif
1355 /* Check for the case where I3 modifies its output, as
1356 discussed above. */
1357 if ((inner_dest != dest
1358 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1359 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1361 /* This is the same test done in can_combine_p except we can't test
1362 all_adjacent; we don't have to, since this instruction will stay
1363 in place, thus we are not considering increasing the lifetime of
1364 INNER_DEST.
1366 Also, if this insn sets a function argument, combining it with
1367 something that might need a spill could clobber a previous
1368 function argument; the all_adjacent test in can_combine_p also
1369 checks this; here, we do a more specific test for this case. */
1371 || (GET_CODE (inner_dest) == REG
1372 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1373 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1374 GET_MODE (inner_dest))))
1375 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1376 return 0;
1378 /* If DEST is used in I3, it is being killed in this insn,
1379 so record that for later.
1380 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1381 STACK_POINTER_REGNUM, since these are always considered to be
1382 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1383 if (pi3dest_killed && GET_CODE (dest) == REG
1384 && reg_referenced_p (dest, PATTERN (i3))
1385 && REGNO (dest) != FRAME_POINTER_REGNUM
1386 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1387 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1388 #endif
1389 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1390 && (REGNO (dest) != ARG_POINTER_REGNUM
1391 || ! fixed_regs [REGNO (dest)])
1392 #endif
1393 && REGNO (dest) != STACK_POINTER_REGNUM)
1395 if (*pi3dest_killed)
1396 return 0;
1398 *pi3dest_killed = dest;
1402 else if (GET_CODE (x) == PARALLEL)
1404 int i;
1406 for (i = 0; i < XVECLEN (x, 0); i++)
1407 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1408 i1_not_in_src, pi3dest_killed))
1409 return 0;
1412 return 1;
1415 /* Return 1 if X is an arithmetic expression that contains a multiplication
1416 and division. We don't count multiplications by powers of two here. */
1418 static int
1419 contains_muldiv (x)
1420 rtx x;
1422 switch (GET_CODE (x))
1424 case MOD: case DIV: case UMOD: case UDIV:
1425 return 1;
1427 case MULT:
1428 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1429 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1430 default:
1431 switch (GET_RTX_CLASS (GET_CODE (x)))
1433 case 'c': case '<': case '2':
1434 return contains_muldiv (XEXP (x, 0))
1435 || contains_muldiv (XEXP (x, 1));
1437 case '1':
1438 return contains_muldiv (XEXP (x, 0));
1440 default:
1441 return 0;
1446 /* Determine whether INSN can be used in a combination. Return nonzero if
1447 not. This is used in try_combine to detect early some cases where we
1448 can't perform combinations. */
1450 static int
1451 cant_combine_insn_p (insn)
1452 rtx insn;
1454 rtx set;
1455 rtx src, dest;
1457 /* If this isn't really an insn, we can't do anything.
1458 This can occur when flow deletes an insn that it has merged into an
1459 auto-increment address. */
1460 if (! INSN_P (insn))
1461 return 1;
1463 /* Never combine loads and stores involving hard regs that are likely
1464 to be spilled. The register allocator can usually handle such
1465 reg-reg moves by tying. If we allow the combiner to make
1466 substitutions of likely-spilled regs, we may abort in reload.
1467 As an exception, we allow combinations involving fixed regs; these are
1468 not available to the register allocator so there's no risk involved. */
1470 set = single_set (insn);
1471 if (! set)
1472 return 0;
1473 src = SET_SRC (set);
1474 dest = SET_DEST (set);
1475 if (GET_CODE (src) == SUBREG)
1476 src = SUBREG_REG (src);
1477 if (GET_CODE (dest) == SUBREG)
1478 dest = SUBREG_REG (dest);
1479 if (REG_P (src) && REG_P (dest)
1480 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1481 && ! fixed_regs[REGNO (src)]
1482 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1483 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1484 && ! fixed_regs[REGNO (dest)]
1485 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1486 return 1;
1488 return 0;
1491 /* Try to combine the insns I1 and I2 into I3.
1492 Here I1 and I2 appear earlier than I3.
1493 I1 can be zero; then we combine just I2 into I3.
1495 If we are combining three insns and the resulting insn is not recognized,
1496 try splitting it into two insns. If that happens, I2 and I3 are retained
1497 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1498 are pseudo-deleted.
1500 Return 0 if the combination does not work. Then nothing is changed.
1501 If we did the combination, return the insn at which combine should
1502 resume scanning.
1504 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1505 new direct jump instruction. */
1507 static rtx
1508 try_combine (i3, i2, i1, new_direct_jump_p)
1509 rtx i3, i2, i1;
1510 int *new_direct_jump_p;
1512 /* New patterns for I3 and I2, respectively. */
1513 rtx newpat, newi2pat = 0;
1514 int substed_i2 = 0, substed_i1 = 0;
1515 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1516 int added_sets_1, added_sets_2;
1517 /* Total number of SETs to put into I3. */
1518 int total_sets;
1519 /* Nonzero is I2's body now appears in I3. */
1520 int i2_is_used;
1521 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1522 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1523 /* Contains I3 if the destination of I3 is used in its source, which means
1524 that the old life of I3 is being killed. If that usage is placed into
1525 I2 and not in I3, a REG_DEAD note must be made. */
1526 rtx i3dest_killed = 0;
1527 /* SET_DEST and SET_SRC of I2 and I1. */
1528 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1529 /* PATTERN (I2), or a copy of it in certain cases. */
1530 rtx i2pat;
1531 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1532 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1533 int i1_feeds_i3 = 0;
1534 /* Notes that must be added to REG_NOTES in I3 and I2. */
1535 rtx new_i3_notes, new_i2_notes;
1536 /* Notes that we substituted I3 into I2 instead of the normal case. */
1537 int i3_subst_into_i2 = 0;
1538 /* Notes that I1, I2 or I3 is a MULT operation. */
1539 int have_mult = 0;
1541 int maxreg;
1542 rtx temp;
1543 rtx link;
1544 int i;
1546 /* Exit early if one of the insns involved can't be used for
1547 combinations. */
1548 if (cant_combine_insn_p (i3)
1549 || cant_combine_insn_p (i2)
1550 || (i1 && cant_combine_insn_p (i1))
1551 /* We also can't do anything if I3 has a
1552 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1553 libcall. */
1554 #if 0
1555 /* ??? This gives worse code, and appears to be unnecessary, since no
1556 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1557 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1558 #endif
1560 return 0;
1562 combine_attempts++;
1563 undobuf.other_insn = 0;
1565 /* Reset the hard register usage information. */
1566 CLEAR_HARD_REG_SET (newpat_used_regs);
1568 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1569 code below, set I1 to be the earlier of the two insns. */
1570 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1571 temp = i1, i1 = i2, i2 = temp;
1573 added_links_insn = 0;
1575 /* First check for one important special-case that the code below will
1576 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1577 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1578 we may be able to replace that destination with the destination of I3.
1579 This occurs in the common code where we compute both a quotient and
1580 remainder into a structure, in which case we want to do the computation
1581 directly into the structure to avoid register-register copies.
1583 Note that this case handles both multiple sets in I2 and also
1584 cases where I2 has a number of CLOBBER or PARALLELs.
1586 We make very conservative checks below and only try to handle the
1587 most common cases of this. For example, we only handle the case
1588 where I2 and I3 are adjacent to avoid making difficult register
1589 usage tests. */
1591 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1592 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1593 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1594 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1595 && GET_CODE (PATTERN (i2)) == PARALLEL
1596 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1597 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1598 below would need to check what is inside (and reg_overlap_mentioned_p
1599 doesn't support those codes anyway). Don't allow those destinations;
1600 the resulting insn isn't likely to be recognized anyway. */
1601 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1602 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1603 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1604 SET_DEST (PATTERN (i3)))
1605 && next_real_insn (i2) == i3)
1607 rtx p2 = PATTERN (i2);
1609 /* Make sure that the destination of I3,
1610 which we are going to substitute into one output of I2,
1611 is not used within another output of I2. We must avoid making this:
1612 (parallel [(set (mem (reg 69)) ...)
1613 (set (reg 69) ...)])
1614 which is not well-defined as to order of actions.
1615 (Besides, reload can't handle output reloads for this.)
1617 The problem can also happen if the dest of I3 is a memory ref,
1618 if another dest in I2 is an indirect memory ref. */
1619 for (i = 0; i < XVECLEN (p2, 0); i++)
1620 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1621 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1622 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1623 SET_DEST (XVECEXP (p2, 0, i))))
1624 break;
1626 if (i == XVECLEN (p2, 0))
1627 for (i = 0; i < XVECLEN (p2, 0); i++)
1628 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1629 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1630 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1632 combine_merges++;
1634 subst_insn = i3;
1635 subst_low_cuid = INSN_CUID (i2);
1637 added_sets_2 = added_sets_1 = 0;
1638 i2dest = SET_SRC (PATTERN (i3));
1640 /* Replace the dest in I2 with our dest and make the resulting
1641 insn the new pattern for I3. Then skip to where we
1642 validate the pattern. Everything was set up above. */
1643 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1644 SET_DEST (PATTERN (i3)));
1646 newpat = p2;
1647 i3_subst_into_i2 = 1;
1648 goto validate_replacement;
1652 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1653 one of those words to another constant, merge them by making a new
1654 constant. */
1655 if (i1 == 0
1656 && (temp = single_set (i2)) != 0
1657 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1658 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1659 && GET_CODE (SET_DEST (temp)) == REG
1660 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1661 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1662 && GET_CODE (PATTERN (i3)) == SET
1663 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1664 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1665 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1666 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1667 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1669 HOST_WIDE_INT lo, hi;
1671 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1672 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1673 else
1675 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1676 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1679 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1681 /* We don't handle the case of the target word being wider
1682 than a host wide int. */
1683 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1684 abort ();
1686 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1687 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1688 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1690 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1691 hi = INTVAL (SET_SRC (PATTERN (i3)));
1692 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1694 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1695 >> (HOST_BITS_PER_WIDE_INT - 1));
1697 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1698 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1699 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1700 (INTVAL (SET_SRC (PATTERN (i3)))));
1701 if (hi == sign)
1702 hi = lo < 0 ? -1 : 0;
1704 else
1705 /* We don't handle the case of the higher word not fitting
1706 entirely in either hi or lo. */
1707 abort ();
1709 combine_merges++;
1710 subst_insn = i3;
1711 subst_low_cuid = INSN_CUID (i2);
1712 added_sets_2 = added_sets_1 = 0;
1713 i2dest = SET_DEST (temp);
1715 SUBST (SET_SRC (temp),
1716 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1718 newpat = PATTERN (i2);
1719 goto validate_replacement;
1722 #ifndef HAVE_cc0
1723 /* If we have no I1 and I2 looks like:
1724 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1725 (set Y OP)])
1726 make up a dummy I1 that is
1727 (set Y OP)
1728 and change I2 to be
1729 (set (reg:CC X) (compare:CC Y (const_int 0)))
1731 (We can ignore any trailing CLOBBERs.)
1733 This undoes a previous combination and allows us to match a branch-and-
1734 decrement insn. */
1736 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1737 && XVECLEN (PATTERN (i2), 0) >= 2
1738 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1739 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1740 == MODE_CC)
1741 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1742 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1743 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1744 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1745 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1746 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1748 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1749 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1750 break;
1752 if (i == 1)
1754 /* We make I1 with the same INSN_UID as I2. This gives it
1755 the same INSN_CUID for value tracking. Our fake I1 will
1756 never appear in the insn stream so giving it the same INSN_UID
1757 as I2 will not cause a problem. */
1759 subst_prev_insn = i1
1760 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1761 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1762 NULL_RTX);
1764 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1765 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1766 SET_DEST (PATTERN (i1)));
1769 #endif
1771 /* Verify that I2 and I1 are valid for combining. */
1772 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1773 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1775 undo_all ();
1776 return 0;
1779 /* Record whether I2DEST is used in I2SRC and similarly for the other
1780 cases. Knowing this will help in register status updating below. */
1781 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1782 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1783 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1785 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1786 in I2SRC. */
1787 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1789 /* Ensure that I3's pattern can be the destination of combines. */
1790 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1791 i1 && i2dest_in_i1src && i1_feeds_i3,
1792 &i3dest_killed))
1794 undo_all ();
1795 return 0;
1798 /* See if any of the insns is a MULT operation. Unless one is, we will
1799 reject a combination that is, since it must be slower. Be conservative
1800 here. */
1801 if (GET_CODE (i2src) == MULT
1802 || (i1 != 0 && GET_CODE (i1src) == MULT)
1803 || (GET_CODE (PATTERN (i3)) == SET
1804 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1805 have_mult = 1;
1807 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1808 We used to do this EXCEPT in one case: I3 has a post-inc in an
1809 output operand. However, that exception can give rise to insns like
1810 mov r3,(r3)+
1811 which is a famous insn on the PDP-11 where the value of r3 used as the
1812 source was model-dependent. Avoid this sort of thing. */
1814 #if 0
1815 if (!(GET_CODE (PATTERN (i3)) == SET
1816 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1817 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1818 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1819 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1820 /* It's not the exception. */
1821 #endif
1822 #ifdef AUTO_INC_DEC
1823 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1824 if (REG_NOTE_KIND (link) == REG_INC
1825 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1826 || (i1 != 0
1827 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1829 undo_all ();
1830 return 0;
1832 #endif
1834 /* See if the SETs in I1 or I2 need to be kept around in the merged
1835 instruction: whenever the value set there is still needed past I3.
1836 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1838 For the SET in I1, we have two cases: If I1 and I2 independently
1839 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1840 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1841 in I1 needs to be kept around unless I1DEST dies or is set in either
1842 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1843 I1DEST. If so, we know I1 feeds into I2. */
1845 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1847 added_sets_1
1848 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1849 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1851 /* If the set in I2 needs to be kept around, we must make a copy of
1852 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1853 PATTERN (I2), we are only substituting for the original I1DEST, not into
1854 an already-substituted copy. This also prevents making self-referential
1855 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1856 I2DEST. */
1858 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1859 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1860 : PATTERN (i2));
1862 if (added_sets_2)
1863 i2pat = copy_rtx (i2pat);
1865 combine_merges++;
1867 /* Substitute in the latest insn for the regs set by the earlier ones. */
1869 maxreg = max_reg_num ();
1871 subst_insn = i3;
1873 /* It is possible that the source of I2 or I1 may be performing an
1874 unneeded operation, such as a ZERO_EXTEND of something that is known
1875 to have the high part zero. Handle that case by letting subst look at
1876 the innermost one of them.
1878 Another way to do this would be to have a function that tries to
1879 simplify a single insn instead of merging two or more insns. We don't
1880 do this because of the potential of infinite loops and because
1881 of the potential extra memory required. However, doing it the way
1882 we are is a bit of a kludge and doesn't catch all cases.
1884 But only do this if -fexpensive-optimizations since it slows things down
1885 and doesn't usually win. */
1887 if (flag_expensive_optimizations)
1889 /* Pass pc_rtx so no substitutions are done, just simplifications.
1890 The cases that we are interested in here do not involve the few
1891 cases were is_replaced is checked. */
1892 if (i1)
1894 subst_low_cuid = INSN_CUID (i1);
1895 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1897 else
1899 subst_low_cuid = INSN_CUID (i2);
1900 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1904 #ifndef HAVE_cc0
1905 /* Many machines that don't use CC0 have insns that can both perform an
1906 arithmetic operation and set the condition code. These operations will
1907 be represented as a PARALLEL with the first element of the vector
1908 being a COMPARE of an arithmetic operation with the constant zero.
1909 The second element of the vector will set some pseudo to the result
1910 of the same arithmetic operation. If we simplify the COMPARE, we won't
1911 match such a pattern and so will generate an extra insn. Here we test
1912 for this case, where both the comparison and the operation result are
1913 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1914 I2SRC. Later we will make the PARALLEL that contains I2. */
1916 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1917 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1918 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1919 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1921 #ifdef EXTRA_CC_MODES
1922 rtx *cc_use;
1923 enum machine_mode compare_mode;
1924 #endif
1926 newpat = PATTERN (i3);
1927 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1929 i2_is_used = 1;
1931 #ifdef EXTRA_CC_MODES
1932 /* See if a COMPARE with the operand we substituted in should be done
1933 with the mode that is currently being used. If not, do the same
1934 processing we do in `subst' for a SET; namely, if the destination
1935 is used only once, try to replace it with a register of the proper
1936 mode and also replace the COMPARE. */
1937 if (undobuf.other_insn == 0
1938 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1939 &undobuf.other_insn))
1940 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1941 i2src, const0_rtx))
1942 != GET_MODE (SET_DEST (newpat))))
1944 unsigned int regno = REGNO (SET_DEST (newpat));
1945 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1947 if (regno < FIRST_PSEUDO_REGISTER
1948 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1949 && ! REG_USERVAR_P (SET_DEST (newpat))))
1951 if (regno >= FIRST_PSEUDO_REGISTER)
1952 SUBST (regno_reg_rtx[regno], new_dest);
1954 SUBST (SET_DEST (newpat), new_dest);
1955 SUBST (XEXP (*cc_use, 0), new_dest);
1956 SUBST (SET_SRC (newpat),
1957 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1959 else
1960 undobuf.other_insn = 0;
1962 #endif
1964 else
1965 #endif
1967 n_occurrences = 0; /* `subst' counts here */
1969 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1970 need to make a unique copy of I2SRC each time we substitute it
1971 to avoid self-referential rtl. */
1973 subst_low_cuid = INSN_CUID (i2);
1974 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1975 ! i1_feeds_i3 && i1dest_in_i1src);
1976 substed_i2 = 1;
1978 /* Record whether i2's body now appears within i3's body. */
1979 i2_is_used = n_occurrences;
1982 /* If we already got a failure, don't try to do more. Otherwise,
1983 try to substitute in I1 if we have it. */
1985 if (i1 && GET_CODE (newpat) != CLOBBER)
1987 /* Before we can do this substitution, we must redo the test done
1988 above (see detailed comments there) that ensures that I1DEST
1989 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1991 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1992 0, (rtx*) 0))
1994 undo_all ();
1995 return 0;
1998 n_occurrences = 0;
1999 subst_low_cuid = INSN_CUID (i1);
2000 newpat = subst (newpat, i1dest, i1src, 0, 0);
2001 substed_i1 = 1;
2004 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2005 to count all the ways that I2SRC and I1SRC can be used. */
2006 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2007 && i2_is_used + added_sets_2 > 1)
2008 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2009 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2010 > 1))
2011 /* Fail if we tried to make a new register (we used to abort, but there's
2012 really no reason to). */
2013 || max_reg_num () != maxreg
2014 /* Fail if we couldn't do something and have a CLOBBER. */
2015 || GET_CODE (newpat) == CLOBBER
2016 /* Fail if this new pattern is a MULT and we didn't have one before
2017 at the outer level. */
2018 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2019 && ! have_mult))
2021 undo_all ();
2022 return 0;
2025 /* If the actions of the earlier insns must be kept
2026 in addition to substituting them into the latest one,
2027 we must make a new PARALLEL for the latest insn
2028 to hold additional the SETs. */
2030 if (added_sets_1 || added_sets_2)
2032 combine_extras++;
2034 if (GET_CODE (newpat) == PARALLEL)
2036 rtvec old = XVEC (newpat, 0);
2037 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2038 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2039 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2040 sizeof (old->elem[0]) * old->num_elem);
2042 else
2044 rtx old = newpat;
2045 total_sets = 1 + added_sets_1 + added_sets_2;
2046 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2047 XVECEXP (newpat, 0, 0) = old;
2050 if (added_sets_1)
2051 XVECEXP (newpat, 0, --total_sets)
2052 = (GET_CODE (PATTERN (i1)) == PARALLEL
2053 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2055 if (added_sets_2)
2057 /* If there is no I1, use I2's body as is. We used to also not do
2058 the subst call below if I2 was substituted into I3,
2059 but that could lose a simplification. */
2060 if (i1 == 0)
2061 XVECEXP (newpat, 0, --total_sets) = i2pat;
2062 else
2063 /* See comment where i2pat is assigned. */
2064 XVECEXP (newpat, 0, --total_sets)
2065 = subst (i2pat, i1dest, i1src, 0, 0);
2069 /* We come here when we are replacing a destination in I2 with the
2070 destination of I3. */
2071 validate_replacement:
2073 /* Note which hard regs this insn has as inputs. */
2074 mark_used_regs_combine (newpat);
2076 /* Is the result of combination a valid instruction? */
2077 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2079 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2080 the second SET's destination is a register that is unused. In that case,
2081 we just need the first SET. This can occur when simplifying a divmod
2082 insn. We *must* test for this case here because the code below that
2083 splits two independent SETs doesn't handle this case correctly when it
2084 updates the register status. Also check the case where the first
2085 SET's destination is unused. That would not cause incorrect code, but
2086 does cause an unneeded insn to remain. */
2088 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2089 && XVECLEN (newpat, 0) == 2
2090 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2091 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2092 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2093 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2094 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2095 && asm_noperands (newpat) < 0)
2097 newpat = XVECEXP (newpat, 0, 0);
2098 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2101 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2102 && XVECLEN (newpat, 0) == 2
2103 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2104 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2105 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2106 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2107 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2108 && asm_noperands (newpat) < 0)
2110 newpat = XVECEXP (newpat, 0, 1);
2111 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2114 /* If we were combining three insns and the result is a simple SET
2115 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2116 insns. There are two ways to do this. It can be split using a
2117 machine-specific method (like when you have an addition of a large
2118 constant) or by combine in the function find_split_point. */
2120 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2121 && asm_noperands (newpat) < 0)
2123 rtx m_split, *split;
2124 rtx ni2dest = i2dest;
2126 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2127 use I2DEST as a scratch register will help. In the latter case,
2128 convert I2DEST to the mode of the source of NEWPAT if we can. */
2130 m_split = split_insns (newpat, i3);
2132 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2133 inputs of NEWPAT. */
2135 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2136 possible to try that as a scratch reg. This would require adding
2137 more code to make it work though. */
2139 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2141 /* If I2DEST is a hard register or the only use of a pseudo,
2142 we can change its mode. */
2143 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2144 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2145 && GET_CODE (i2dest) == REG
2146 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2147 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2148 && ! REG_USERVAR_P (i2dest))))
2149 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2150 REGNO (i2dest));
2152 m_split = split_insns (gen_rtx_PARALLEL
2153 (VOIDmode,
2154 gen_rtvec (2, newpat,
2155 gen_rtx_CLOBBER (VOIDmode,
2156 ni2dest))),
2157 i3);
2158 /* If the split with the mode-changed register didn't work, try
2159 the original register. */
2160 if (! m_split && ni2dest != i2dest)
2162 ni2dest = i2dest;
2163 m_split = split_insns (gen_rtx_PARALLEL
2164 (VOIDmode,
2165 gen_rtvec (2, newpat,
2166 gen_rtx_CLOBBER (VOIDmode,
2167 i2dest))),
2168 i3);
2172 /* If we've split a jump pattern, we'll wind up with a sequence even
2173 with one instruction. We can handle that below, so extract it. */
2174 if (m_split && GET_CODE (m_split) == SEQUENCE
2175 && XVECLEN (m_split, 0) == 1)
2176 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2178 if (m_split && GET_CODE (m_split) != SEQUENCE)
2180 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2181 if (insn_code_number >= 0)
2182 newpat = m_split;
2184 else if (m_split && GET_CODE (m_split) == SEQUENCE
2185 && XVECLEN (m_split, 0) == 2
2186 && (next_real_insn (i2) == i3
2187 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2188 INSN_CUID (i2))))
2190 rtx i2set, i3set;
2191 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2192 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2194 i3set = single_set (XVECEXP (m_split, 0, 1));
2195 i2set = single_set (XVECEXP (m_split, 0, 0));
2197 /* In case we changed the mode of I2DEST, replace it in the
2198 pseudo-register table here. We can't do it above in case this
2199 code doesn't get executed and we do a split the other way. */
2201 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2202 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2204 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2206 /* If I2 or I3 has multiple SETs, we won't know how to track
2207 register status, so don't use these insns. If I2's destination
2208 is used between I2 and I3, we also can't use these insns. */
2210 if (i2_code_number >= 0 && i2set && i3set
2211 && (next_real_insn (i2) == i3
2212 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2213 insn_code_number = recog_for_combine (&newi3pat, i3,
2214 &new_i3_notes);
2215 if (insn_code_number >= 0)
2216 newpat = newi3pat;
2218 /* It is possible that both insns now set the destination of I3.
2219 If so, we must show an extra use of it. */
2221 if (insn_code_number >= 0)
2223 rtx new_i3_dest = SET_DEST (i3set);
2224 rtx new_i2_dest = SET_DEST (i2set);
2226 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2227 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2228 || GET_CODE (new_i3_dest) == SUBREG)
2229 new_i3_dest = XEXP (new_i3_dest, 0);
2231 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2232 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2233 || GET_CODE (new_i2_dest) == SUBREG)
2234 new_i2_dest = XEXP (new_i2_dest, 0);
2236 if (GET_CODE (new_i3_dest) == REG
2237 && GET_CODE (new_i2_dest) == REG
2238 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2239 REG_N_SETS (REGNO (new_i2_dest))++;
2243 /* If we can split it and use I2DEST, go ahead and see if that
2244 helps things be recognized. Verify that none of the registers
2245 are set between I2 and I3. */
2246 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2247 #ifdef HAVE_cc0
2248 && GET_CODE (i2dest) == REG
2249 #endif
2250 /* We need I2DEST in the proper mode. If it is a hard register
2251 or the only use of a pseudo, we can change its mode. */
2252 && (GET_MODE (*split) == GET_MODE (i2dest)
2253 || GET_MODE (*split) == VOIDmode
2254 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2255 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2256 && ! REG_USERVAR_P (i2dest)))
2257 && (next_real_insn (i2) == i3
2258 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2259 /* We can't overwrite I2DEST if its value is still used by
2260 NEWPAT. */
2261 && ! reg_referenced_p (i2dest, newpat))
2263 rtx newdest = i2dest;
2264 enum rtx_code split_code = GET_CODE (*split);
2265 enum machine_mode split_mode = GET_MODE (*split);
2267 /* Get NEWDEST as a register in the proper mode. We have already
2268 validated that we can do this. */
2269 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2271 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2273 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2274 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2277 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2278 an ASHIFT. This can occur if it was inside a PLUS and hence
2279 appeared to be a memory address. This is a kludge. */
2280 if (split_code == MULT
2281 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2282 && INTVAL (XEXP (*split, 1)) > 0
2283 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2285 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2286 XEXP (*split, 0), GEN_INT (i)));
2287 /* Update split_code because we may not have a multiply
2288 anymore. */
2289 split_code = GET_CODE (*split);
2292 #ifdef INSN_SCHEDULING
2293 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2294 be written as a ZERO_EXTEND. */
2295 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2296 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2297 SUBREG_REG (*split)));
2298 #endif
2300 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2301 SUBST (*split, newdest);
2302 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2304 /* If the split point was a MULT and we didn't have one before,
2305 don't use one now. */
2306 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2307 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2311 /* Check for a case where we loaded from memory in a narrow mode and
2312 then sign extended it, but we need both registers. In that case,
2313 we have a PARALLEL with both loads from the same memory location.
2314 We can split this into a load from memory followed by a register-register
2315 copy. This saves at least one insn, more if register allocation can
2316 eliminate the copy.
2318 We cannot do this if the destination of the second assignment is
2319 a register that we have already assumed is zero-extended. Similarly
2320 for a SUBREG of such a register. */
2322 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2323 && GET_CODE (newpat) == PARALLEL
2324 && XVECLEN (newpat, 0) == 2
2325 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2326 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2327 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2328 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2329 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2330 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2331 INSN_CUID (i2))
2332 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2333 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2334 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2335 (GET_CODE (temp) == REG
2336 && reg_nonzero_bits[REGNO (temp)] != 0
2337 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2338 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2339 && (reg_nonzero_bits[REGNO (temp)]
2340 != GET_MODE_MASK (word_mode))))
2341 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2342 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2343 (GET_CODE (temp) == REG
2344 && reg_nonzero_bits[REGNO (temp)] != 0
2345 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2346 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2347 && (reg_nonzero_bits[REGNO (temp)]
2348 != GET_MODE_MASK (word_mode)))))
2349 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2350 SET_SRC (XVECEXP (newpat, 0, 1)))
2351 && ! find_reg_note (i3, REG_UNUSED,
2352 SET_DEST (XVECEXP (newpat, 0, 0))))
2354 rtx ni2dest;
2356 newi2pat = XVECEXP (newpat, 0, 0);
2357 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2358 newpat = XVECEXP (newpat, 0, 1);
2359 SUBST (SET_SRC (newpat),
2360 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2361 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2363 if (i2_code_number >= 0)
2364 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2366 if (insn_code_number >= 0)
2368 rtx insn;
2369 rtx link;
2371 /* If we will be able to accept this, we have made a change to the
2372 destination of I3. This can invalidate a LOG_LINKS pointing
2373 to I3. No other part of combine.c makes such a transformation.
2375 The new I3 will have a destination that was previously the
2376 destination of I1 or I2 and which was used in i2 or I3. Call
2377 distribute_links to make a LOG_LINK from the next use of
2378 that destination. */
2380 PATTERN (i3) = newpat;
2381 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2383 /* I3 now uses what used to be its destination and which is
2384 now I2's destination. That means we need a LOG_LINK from
2385 I3 to I2. But we used to have one, so we still will.
2387 However, some later insn might be using I2's dest and have
2388 a LOG_LINK pointing at I3. We must remove this link.
2389 The simplest way to remove the link is to point it at I1,
2390 which we know will be a NOTE. */
2392 for (insn = NEXT_INSN (i3);
2393 insn && (this_basic_block == n_basic_blocks - 1
2394 || insn != BLOCK_HEAD (this_basic_block + 1));
2395 insn = NEXT_INSN (insn))
2397 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2399 for (link = LOG_LINKS (insn); link;
2400 link = XEXP (link, 1))
2401 if (XEXP (link, 0) == i3)
2402 XEXP (link, 0) = i1;
2404 break;
2410 /* Similarly, check for a case where we have a PARALLEL of two independent
2411 SETs but we started with three insns. In this case, we can do the sets
2412 as two separate insns. This case occurs when some SET allows two
2413 other insns to combine, but the destination of that SET is still live. */
2415 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2416 && GET_CODE (newpat) == PARALLEL
2417 && XVECLEN (newpat, 0) == 2
2418 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2421 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2422 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2423 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2424 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2425 INSN_CUID (i2))
2426 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2427 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2428 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2429 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2430 XVECEXP (newpat, 0, 0))
2431 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2432 XVECEXP (newpat, 0, 1))
2433 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2434 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2436 /* Normally, it doesn't matter which of the two is done first,
2437 but it does if one references cc0. In that case, it has to
2438 be first. */
2439 #ifdef HAVE_cc0
2440 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2442 newi2pat = XVECEXP (newpat, 0, 0);
2443 newpat = XVECEXP (newpat, 0, 1);
2445 else
2446 #endif
2448 newi2pat = XVECEXP (newpat, 0, 1);
2449 newpat = XVECEXP (newpat, 0, 0);
2452 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2454 if (i2_code_number >= 0)
2455 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2458 /* If it still isn't recognized, fail and change things back the way they
2459 were. */
2460 if ((insn_code_number < 0
2461 /* Is the result a reasonable ASM_OPERANDS? */
2462 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2464 undo_all ();
2465 return 0;
2468 /* If we had to change another insn, make sure it is valid also. */
2469 if (undobuf.other_insn)
2471 rtx other_pat = PATTERN (undobuf.other_insn);
2472 rtx new_other_notes;
2473 rtx note, next;
2475 CLEAR_HARD_REG_SET (newpat_used_regs);
2477 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2478 &new_other_notes);
2480 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2482 undo_all ();
2483 return 0;
2486 PATTERN (undobuf.other_insn) = other_pat;
2488 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2489 are still valid. Then add any non-duplicate notes added by
2490 recog_for_combine. */
2491 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2493 next = XEXP (note, 1);
2495 if (REG_NOTE_KIND (note) == REG_UNUSED
2496 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2498 if (GET_CODE (XEXP (note, 0)) == REG)
2499 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2501 remove_note (undobuf.other_insn, note);
2505 for (note = new_other_notes; note; note = XEXP (note, 1))
2506 if (GET_CODE (XEXP (note, 0)) == REG)
2507 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2509 distribute_notes (new_other_notes, undobuf.other_insn,
2510 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2512 #ifdef HAVE_cc0
2513 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2514 they are adjacent to each other or not. */
2516 rtx p = prev_nonnote_insn (i3);
2517 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2518 && sets_cc0_p (newi2pat))
2520 undo_all ();
2521 return 0;
2524 #endif
2526 /* We now know that we can do this combination. Merge the insns and
2527 update the status of registers and LOG_LINKS. */
2530 rtx i3notes, i2notes, i1notes = 0;
2531 rtx i3links, i2links, i1links = 0;
2532 rtx midnotes = 0;
2533 unsigned int regno;
2534 /* Compute which registers we expect to eliminate. newi2pat may be setting
2535 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2536 same as i3dest, in which case newi2pat may be setting i1dest. */
2537 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2538 || i2dest_in_i2src || i2dest_in_i1src
2539 ? 0 : i2dest);
2540 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2541 || (newi2pat && reg_set_p (i1dest, newi2pat))
2542 ? 0 : i1dest);
2544 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2545 clear them. */
2546 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2547 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2548 if (i1)
2549 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2551 /* Ensure that we do not have something that should not be shared but
2552 occurs multiple times in the new insns. Check this by first
2553 resetting all the `used' flags and then copying anything is shared. */
2555 reset_used_flags (i3notes);
2556 reset_used_flags (i2notes);
2557 reset_used_flags (i1notes);
2558 reset_used_flags (newpat);
2559 reset_used_flags (newi2pat);
2560 if (undobuf.other_insn)
2561 reset_used_flags (PATTERN (undobuf.other_insn));
2563 i3notes = copy_rtx_if_shared (i3notes);
2564 i2notes = copy_rtx_if_shared (i2notes);
2565 i1notes = copy_rtx_if_shared (i1notes);
2566 newpat = copy_rtx_if_shared (newpat);
2567 newi2pat = copy_rtx_if_shared (newi2pat);
2568 if (undobuf.other_insn)
2569 reset_used_flags (PATTERN (undobuf.other_insn));
2571 INSN_CODE (i3) = insn_code_number;
2572 PATTERN (i3) = newpat;
2574 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2576 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2578 reset_used_flags (call_usage);
2579 call_usage = copy_rtx (call_usage);
2581 if (substed_i2)
2582 replace_rtx (call_usage, i2dest, i2src);
2584 if (substed_i1)
2585 replace_rtx (call_usage, i1dest, i1src);
2587 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2590 if (undobuf.other_insn)
2591 INSN_CODE (undobuf.other_insn) = other_code_number;
2593 /* We had one special case above where I2 had more than one set and
2594 we replaced a destination of one of those sets with the destination
2595 of I3. In that case, we have to update LOG_LINKS of insns later
2596 in this basic block. Note that this (expensive) case is rare.
2598 Also, in this case, we must pretend that all REG_NOTEs for I2
2599 actually came from I3, so that REG_UNUSED notes from I2 will be
2600 properly handled. */
2602 if (i3_subst_into_i2)
2604 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2605 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2606 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2607 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2608 && ! find_reg_note (i2, REG_UNUSED,
2609 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2610 for (temp = NEXT_INSN (i2);
2611 temp && (this_basic_block == n_basic_blocks - 1
2612 || BLOCK_HEAD (this_basic_block) != temp);
2613 temp = NEXT_INSN (temp))
2614 if (temp != i3 && INSN_P (temp))
2615 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2616 if (XEXP (link, 0) == i2)
2617 XEXP (link, 0) = i3;
2619 if (i3notes)
2621 rtx link = i3notes;
2622 while (XEXP (link, 1))
2623 link = XEXP (link, 1);
2624 XEXP (link, 1) = i2notes;
2626 else
2627 i3notes = i2notes;
2628 i2notes = 0;
2631 LOG_LINKS (i3) = 0;
2632 REG_NOTES (i3) = 0;
2633 LOG_LINKS (i2) = 0;
2634 REG_NOTES (i2) = 0;
2636 if (newi2pat)
2638 INSN_CODE (i2) = i2_code_number;
2639 PATTERN (i2) = newi2pat;
2641 else
2643 PUT_CODE (i2, NOTE);
2644 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2645 NOTE_SOURCE_FILE (i2) = 0;
2648 if (i1)
2650 LOG_LINKS (i1) = 0;
2651 REG_NOTES (i1) = 0;
2652 PUT_CODE (i1, NOTE);
2653 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2654 NOTE_SOURCE_FILE (i1) = 0;
2657 /* Get death notes for everything that is now used in either I3 or
2658 I2 and used to die in a previous insn. If we built two new
2659 patterns, move from I1 to I2 then I2 to I3 so that we get the
2660 proper movement on registers that I2 modifies. */
2662 if (newi2pat)
2664 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2665 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2667 else
2668 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2669 i3, &midnotes);
2671 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2672 if (i3notes)
2673 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2675 if (i2notes)
2676 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2677 elim_i2, elim_i1);
2678 if (i1notes)
2679 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2680 elim_i2, elim_i1);
2681 if (midnotes)
2682 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2683 elim_i2, elim_i1);
2685 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2686 know these are REG_UNUSED and want them to go to the desired insn,
2687 so we always pass it as i3. We have not counted the notes in
2688 reg_n_deaths yet, so we need to do so now. */
2690 if (newi2pat && new_i2_notes)
2692 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2693 if (GET_CODE (XEXP (temp, 0)) == REG)
2694 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2696 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2699 if (new_i3_notes)
2701 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2702 if (GET_CODE (XEXP (temp, 0)) == REG)
2703 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2705 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2708 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2709 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2710 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2711 in that case, it might delete I2. Similarly for I2 and I1.
2712 Show an additional death due to the REG_DEAD note we make here. If
2713 we discard it in distribute_notes, we will decrement it again. */
2715 if (i3dest_killed)
2717 if (GET_CODE (i3dest_killed) == REG)
2718 REG_N_DEATHS (REGNO (i3dest_killed))++;
2720 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2721 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2722 NULL_RTX),
2723 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2724 else
2725 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2726 NULL_RTX),
2727 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2728 elim_i2, elim_i1);
2731 if (i2dest_in_i2src)
2733 if (GET_CODE (i2dest) == REG)
2734 REG_N_DEATHS (REGNO (i2dest))++;
2736 if (newi2pat && reg_set_p (i2dest, newi2pat))
2737 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2738 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2739 else
2740 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2741 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2742 NULL_RTX, NULL_RTX);
2745 if (i1dest_in_i1src)
2747 if (GET_CODE (i1dest) == REG)
2748 REG_N_DEATHS (REGNO (i1dest))++;
2750 if (newi2pat && reg_set_p (i1dest, newi2pat))
2751 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2752 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2753 else
2754 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2755 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2756 NULL_RTX, NULL_RTX);
2759 distribute_links (i3links);
2760 distribute_links (i2links);
2761 distribute_links (i1links);
2763 if (GET_CODE (i2dest) == REG)
2765 rtx link;
2766 rtx i2_insn = 0, i2_val = 0, set;
2768 /* The insn that used to set this register doesn't exist, and
2769 this life of the register may not exist either. See if one of
2770 I3's links points to an insn that sets I2DEST. If it does,
2771 that is now the last known value for I2DEST. If we don't update
2772 this and I2 set the register to a value that depended on its old
2773 contents, we will get confused. If this insn is used, thing
2774 will be set correctly in combine_instructions. */
2776 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2777 if ((set = single_set (XEXP (link, 0))) != 0
2778 && rtx_equal_p (i2dest, SET_DEST (set)))
2779 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2781 record_value_for_reg (i2dest, i2_insn, i2_val);
2783 /* If the reg formerly set in I2 died only once and that was in I3,
2784 zero its use count so it won't make `reload' do any work. */
2785 if (! added_sets_2
2786 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2787 && ! i2dest_in_i2src)
2789 regno = REGNO (i2dest);
2790 REG_N_SETS (regno)--;
2794 if (i1 && GET_CODE (i1dest) == REG)
2796 rtx link;
2797 rtx i1_insn = 0, i1_val = 0, set;
2799 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2800 if ((set = single_set (XEXP (link, 0))) != 0
2801 && rtx_equal_p (i1dest, SET_DEST (set)))
2802 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2804 record_value_for_reg (i1dest, i1_insn, i1_val);
2806 regno = REGNO (i1dest);
2807 if (! added_sets_1 && ! i1dest_in_i1src)
2808 REG_N_SETS (regno)--;
2811 /* Update reg_nonzero_bits et al for any changes that may have been made
2812 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2813 important. Because newi2pat can affect nonzero_bits of newpat */
2814 if (newi2pat)
2815 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2816 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2818 /* Set new_direct_jump_p if a new return or simple jump instruction
2819 has been created.
2821 If I3 is now an unconditional jump, ensure that it has a
2822 BARRIER following it since it may have initially been a
2823 conditional jump. It may also be the last nonnote insn. */
2825 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2827 *new_direct_jump_p = 1;
2829 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2830 || GET_CODE (temp) != BARRIER)
2831 emit_barrier_after (i3);
2833 /* An NOOP jump does not need barrier, but it does need cleaning up
2834 of CFG. */
2835 if (GET_CODE (newpat) == SET
2836 && SET_SRC (newpat) == pc_rtx
2837 && SET_DEST (newpat) == pc_rtx)
2838 *new_direct_jump_p = 1;
2841 combine_successes++;
2842 undo_commit ();
2844 /* Clear this here, so that subsequent get_last_value calls are not
2845 affected. */
2846 subst_prev_insn = NULL_RTX;
2848 if (added_links_insn
2849 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2850 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2851 return added_links_insn;
2852 else
2853 return newi2pat ? i2 : i3;
2856 /* Undo all the modifications recorded in undobuf. */
2858 static void
2859 undo_all ()
2861 struct undo *undo, *next;
2863 for (undo = undobuf.undos; undo; undo = next)
2865 next = undo->next;
2866 if (undo->is_int)
2867 *undo->where.i = undo->old_contents.i;
2868 else
2869 *undo->where.r = undo->old_contents.r;
2871 undo->next = undobuf.frees;
2872 undobuf.frees = undo;
2875 undobuf.undos = 0;
2877 /* Clear this here, so that subsequent get_last_value calls are not
2878 affected. */
2879 subst_prev_insn = NULL_RTX;
2882 /* We've committed to accepting the changes we made. Move all
2883 of the undos to the free list. */
2885 static void
2886 undo_commit ()
2888 struct undo *undo, *next;
2890 for (undo = undobuf.undos; undo; undo = next)
2892 next = undo->next;
2893 undo->next = undobuf.frees;
2894 undobuf.frees = undo;
2896 undobuf.undos = 0;
2900 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2901 where we have an arithmetic expression and return that point. LOC will
2902 be inside INSN.
2904 try_combine will call this function to see if an insn can be split into
2905 two insns. */
2907 static rtx *
2908 find_split_point (loc, insn)
2909 rtx *loc;
2910 rtx insn;
2912 rtx x = *loc;
2913 enum rtx_code code = GET_CODE (x);
2914 rtx *split;
2915 unsigned HOST_WIDE_INT len = 0;
2916 HOST_WIDE_INT pos = 0;
2917 int unsignedp = 0;
2918 rtx inner = NULL_RTX;
2920 /* First special-case some codes. */
2921 switch (code)
2923 case SUBREG:
2924 #ifdef INSN_SCHEDULING
2925 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2926 point. */
2927 if (GET_CODE (SUBREG_REG (x)) == MEM)
2928 return loc;
2929 #endif
2930 return find_split_point (&SUBREG_REG (x), insn);
2932 case MEM:
2933 #ifdef HAVE_lo_sum
2934 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2935 using LO_SUM and HIGH. */
2936 if (GET_CODE (XEXP (x, 0)) == CONST
2937 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2939 SUBST (XEXP (x, 0),
2940 gen_rtx_LO_SUM (Pmode,
2941 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2942 XEXP (x, 0)));
2943 return &XEXP (XEXP (x, 0), 0);
2945 #endif
2947 /* If we have a PLUS whose second operand is a constant and the
2948 address is not valid, perhaps will can split it up using
2949 the machine-specific way to split large constants. We use
2950 the first pseudo-reg (one of the virtual regs) as a placeholder;
2951 it will not remain in the result. */
2952 if (GET_CODE (XEXP (x, 0)) == PLUS
2953 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2954 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2956 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2957 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2958 subst_insn);
2960 /* This should have produced two insns, each of which sets our
2961 placeholder. If the source of the second is a valid address,
2962 we can make put both sources together and make a split point
2963 in the middle. */
2965 if (seq && XVECLEN (seq, 0) == 2
2966 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2967 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2968 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2969 && ! reg_mentioned_p (reg,
2970 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2971 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2972 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2973 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2974 && memory_address_p (GET_MODE (x),
2975 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2977 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2978 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2980 /* Replace the placeholder in SRC2 with SRC1. If we can
2981 find where in SRC2 it was placed, that can become our
2982 split point and we can replace this address with SRC2.
2983 Just try two obvious places. */
2985 src2 = replace_rtx (src2, reg, src1);
2986 split = 0;
2987 if (XEXP (src2, 0) == src1)
2988 split = &XEXP (src2, 0);
2989 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2990 && XEXP (XEXP (src2, 0), 0) == src1)
2991 split = &XEXP (XEXP (src2, 0), 0);
2993 if (split)
2995 SUBST (XEXP (x, 0), src2);
2996 return split;
3000 /* If that didn't work, perhaps the first operand is complex and
3001 needs to be computed separately, so make a split point there.
3002 This will occur on machines that just support REG + CONST
3003 and have a constant moved through some previous computation. */
3005 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3006 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3007 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3008 == 'o')))
3009 return &XEXP (XEXP (x, 0), 0);
3011 break;
3013 case SET:
3014 #ifdef HAVE_cc0
3015 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3016 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3017 we need to put the operand into a register. So split at that
3018 point. */
3020 if (SET_DEST (x) == cc0_rtx
3021 && GET_CODE (SET_SRC (x)) != COMPARE
3022 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3023 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3024 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3025 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3026 return &SET_SRC (x);
3027 #endif
3029 /* See if we can split SET_SRC as it stands. */
3030 split = find_split_point (&SET_SRC (x), insn);
3031 if (split && split != &SET_SRC (x))
3032 return split;
3034 /* See if we can split SET_DEST as it stands. */
3035 split = find_split_point (&SET_DEST (x), insn);
3036 if (split && split != &SET_DEST (x))
3037 return split;
3039 /* See if this is a bitfield assignment with everything constant. If
3040 so, this is an IOR of an AND, so split it into that. */
3041 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3042 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3043 <= HOST_BITS_PER_WIDE_INT)
3044 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3045 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3046 && GET_CODE (SET_SRC (x)) == CONST_INT
3047 && ((INTVAL (XEXP (SET_DEST (x), 1))
3048 + INTVAL (XEXP (SET_DEST (x), 2)))
3049 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3050 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3052 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3053 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3054 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3055 rtx dest = XEXP (SET_DEST (x), 0);
3056 enum machine_mode mode = GET_MODE (dest);
3057 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3059 if (BITS_BIG_ENDIAN)
3060 pos = GET_MODE_BITSIZE (mode) - len - pos;
3062 if (src == mask)
3063 SUBST (SET_SRC (x),
3064 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3065 else
3066 SUBST (SET_SRC (x),
3067 gen_binary (IOR, mode,
3068 gen_binary (AND, mode, dest,
3069 gen_int_mode (~(mask << pos),
3070 mode)),
3071 GEN_INT (src << pos)));
3073 SUBST (SET_DEST (x), dest);
3075 split = find_split_point (&SET_SRC (x), insn);
3076 if (split && split != &SET_SRC (x))
3077 return split;
3080 /* Otherwise, see if this is an operation that we can split into two.
3081 If so, try to split that. */
3082 code = GET_CODE (SET_SRC (x));
3084 switch (code)
3086 case AND:
3087 /* If we are AND'ing with a large constant that is only a single
3088 bit and the result is only being used in a context where we
3089 need to know if it is zero or non-zero, replace it with a bit
3090 extraction. This will avoid the large constant, which might
3091 have taken more than one insn to make. If the constant were
3092 not a valid argument to the AND but took only one insn to make,
3093 this is no worse, but if it took more than one insn, it will
3094 be better. */
3096 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3097 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3098 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3099 && GET_CODE (SET_DEST (x)) == REG
3100 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3101 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3102 && XEXP (*split, 0) == SET_DEST (x)
3103 && XEXP (*split, 1) == const0_rtx)
3105 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3106 XEXP (SET_SRC (x), 0),
3107 pos, NULL_RTX, 1, 1, 0, 0);
3108 if (extraction != 0)
3110 SUBST (SET_SRC (x), extraction);
3111 return find_split_point (loc, insn);
3114 break;
3116 case NE:
3117 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3118 is known to be on, this can be converted into a NEG of a shift. */
3119 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3120 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3121 && 1 <= (pos = exact_log2
3122 (nonzero_bits (XEXP (SET_SRC (x), 0),
3123 GET_MODE (XEXP (SET_SRC (x), 0))))))
3125 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3127 SUBST (SET_SRC (x),
3128 gen_rtx_NEG (mode,
3129 gen_rtx_LSHIFTRT (mode,
3130 XEXP (SET_SRC (x), 0),
3131 GEN_INT (pos))));
3133 split = find_split_point (&SET_SRC (x), insn);
3134 if (split && split != &SET_SRC (x))
3135 return split;
3137 break;
3139 case SIGN_EXTEND:
3140 inner = XEXP (SET_SRC (x), 0);
3142 /* We can't optimize if either mode is a partial integer
3143 mode as we don't know how many bits are significant
3144 in those modes. */
3145 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3146 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3147 break;
3149 pos = 0;
3150 len = GET_MODE_BITSIZE (GET_MODE (inner));
3151 unsignedp = 0;
3152 break;
3154 case SIGN_EXTRACT:
3155 case ZERO_EXTRACT:
3156 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3157 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3159 inner = XEXP (SET_SRC (x), 0);
3160 len = INTVAL (XEXP (SET_SRC (x), 1));
3161 pos = INTVAL (XEXP (SET_SRC (x), 2));
3163 if (BITS_BIG_ENDIAN)
3164 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3165 unsignedp = (code == ZERO_EXTRACT);
3167 break;
3169 default:
3170 break;
3173 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3175 enum machine_mode mode = GET_MODE (SET_SRC (x));
3177 /* For unsigned, we have a choice of a shift followed by an
3178 AND or two shifts. Use two shifts for field sizes where the
3179 constant might be too large. We assume here that we can
3180 always at least get 8-bit constants in an AND insn, which is
3181 true for every current RISC. */
3183 if (unsignedp && len <= 8)
3185 SUBST (SET_SRC (x),
3186 gen_rtx_AND (mode,
3187 gen_rtx_LSHIFTRT
3188 (mode, gen_lowpart_for_combine (mode, inner),
3189 GEN_INT (pos)),
3190 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3192 split = find_split_point (&SET_SRC (x), insn);
3193 if (split && split != &SET_SRC (x))
3194 return split;
3196 else
3198 SUBST (SET_SRC (x),
3199 gen_rtx_fmt_ee
3200 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3201 gen_rtx_ASHIFT (mode,
3202 gen_lowpart_for_combine (mode, inner),
3203 GEN_INT (GET_MODE_BITSIZE (mode)
3204 - len - pos)),
3205 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3207 split = find_split_point (&SET_SRC (x), insn);
3208 if (split && split != &SET_SRC (x))
3209 return split;
3213 /* See if this is a simple operation with a constant as the second
3214 operand. It might be that this constant is out of range and hence
3215 could be used as a split point. */
3216 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3217 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3218 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3219 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3220 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3221 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3222 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3223 == 'o'))))
3224 return &XEXP (SET_SRC (x), 1);
3226 /* Finally, see if this is a simple operation with its first operand
3227 not in a register. The operation might require this operand in a
3228 register, so return it as a split point. We can always do this
3229 because if the first operand were another operation, we would have
3230 already found it as a split point. */
3231 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3232 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3233 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3234 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3235 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3236 return &XEXP (SET_SRC (x), 0);
3238 return 0;
3240 case AND:
3241 case IOR:
3242 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3243 it is better to write this as (not (ior A B)) so we can split it.
3244 Similarly for IOR. */
3245 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3247 SUBST (*loc,
3248 gen_rtx_NOT (GET_MODE (x),
3249 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3250 GET_MODE (x),
3251 XEXP (XEXP (x, 0), 0),
3252 XEXP (XEXP (x, 1), 0))));
3253 return find_split_point (loc, insn);
3256 /* Many RISC machines have a large set of logical insns. If the
3257 second operand is a NOT, put it first so we will try to split the
3258 other operand first. */
3259 if (GET_CODE (XEXP (x, 1)) == NOT)
3261 rtx tem = XEXP (x, 0);
3262 SUBST (XEXP (x, 0), XEXP (x, 1));
3263 SUBST (XEXP (x, 1), tem);
3265 break;
3267 default:
3268 break;
3271 /* Otherwise, select our actions depending on our rtx class. */
3272 switch (GET_RTX_CLASS (code))
3274 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3275 case '3':
3276 split = find_split_point (&XEXP (x, 2), insn);
3277 if (split)
3278 return split;
3279 /* ... fall through ... */
3280 case '2':
3281 case 'c':
3282 case '<':
3283 split = find_split_point (&XEXP (x, 1), insn);
3284 if (split)
3285 return split;
3286 /* ... fall through ... */
3287 case '1':
3288 /* Some machines have (and (shift ...) ...) insns. If X is not
3289 an AND, but XEXP (X, 0) is, use it as our split point. */
3290 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3291 return &XEXP (x, 0);
3293 split = find_split_point (&XEXP (x, 0), insn);
3294 if (split)
3295 return split;
3296 return loc;
3299 /* Otherwise, we don't have a split point. */
3300 return 0;
3303 /* Throughout X, replace FROM with TO, and return the result.
3304 The result is TO if X is FROM;
3305 otherwise the result is X, but its contents may have been modified.
3306 If they were modified, a record was made in undobuf so that
3307 undo_all will (among other things) return X to its original state.
3309 If the number of changes necessary is too much to record to undo,
3310 the excess changes are not made, so the result is invalid.
3311 The changes already made can still be undone.
3312 undobuf.num_undo is incremented for such changes, so by testing that
3313 the caller can tell whether the result is valid.
3315 `n_occurrences' is incremented each time FROM is replaced.
3317 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3319 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3320 by copying if `n_occurrences' is non-zero. */
3322 static rtx
3323 subst (x, from, to, in_dest, unique_copy)
3324 rtx x, from, to;
3325 int in_dest;
3326 int unique_copy;
3328 enum rtx_code code = GET_CODE (x);
3329 enum machine_mode op0_mode = VOIDmode;
3330 const char *fmt;
3331 int len, i;
3332 rtx new;
3334 /* Two expressions are equal if they are identical copies of a shared
3335 RTX or if they are both registers with the same register number
3336 and mode. */
3338 #define COMBINE_RTX_EQUAL_P(X,Y) \
3339 ((X) == (Y) \
3340 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3341 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3343 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3345 n_occurrences++;
3346 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3349 /* If X and FROM are the same register but different modes, they will
3350 not have been seen as equal above. However, flow.c will make a
3351 LOG_LINKS entry for that case. If we do nothing, we will try to
3352 rerecognize our original insn and, when it succeeds, we will
3353 delete the feeding insn, which is incorrect.
3355 So force this insn not to match in this (rare) case. */
3356 if (! in_dest && code == REG && GET_CODE (from) == REG
3357 && REGNO (x) == REGNO (from))
3358 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3360 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3361 of which may contain things that can be combined. */
3362 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3363 return x;
3365 /* It is possible to have a subexpression appear twice in the insn.
3366 Suppose that FROM is a register that appears within TO.
3367 Then, after that subexpression has been scanned once by `subst',
3368 the second time it is scanned, TO may be found. If we were
3369 to scan TO here, we would find FROM within it and create a
3370 self-referent rtl structure which is completely wrong. */
3371 if (COMBINE_RTX_EQUAL_P (x, to))
3372 return to;
3374 /* Parallel asm_operands need special attention because all of the
3375 inputs are shared across the arms. Furthermore, unsharing the
3376 rtl results in recognition failures. Failure to handle this case
3377 specially can result in circular rtl.
3379 Solve this by doing a normal pass across the first entry of the
3380 parallel, and only processing the SET_DESTs of the subsequent
3381 entries. Ug. */
3383 if (code == PARALLEL
3384 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3385 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3387 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3389 /* If this substitution failed, this whole thing fails. */
3390 if (GET_CODE (new) == CLOBBER
3391 && XEXP (new, 0) == const0_rtx)
3392 return new;
3394 SUBST (XVECEXP (x, 0, 0), new);
3396 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3398 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3400 if (GET_CODE (dest) != REG
3401 && GET_CODE (dest) != CC0
3402 && GET_CODE (dest) != PC)
3404 new = subst (dest, from, to, 0, unique_copy);
3406 /* If this substitution failed, this whole thing fails. */
3407 if (GET_CODE (new) == CLOBBER
3408 && XEXP (new, 0) == const0_rtx)
3409 return new;
3411 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3415 else
3417 len = GET_RTX_LENGTH (code);
3418 fmt = GET_RTX_FORMAT (code);
3420 /* We don't need to process a SET_DEST that is a register, CC0,
3421 or PC, so set up to skip this common case. All other cases
3422 where we want to suppress replacing something inside a
3423 SET_SRC are handled via the IN_DEST operand. */
3424 if (code == SET
3425 && (GET_CODE (SET_DEST (x)) == REG
3426 || GET_CODE (SET_DEST (x)) == CC0
3427 || GET_CODE (SET_DEST (x)) == PC))
3428 fmt = "ie";
3430 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3431 constant. */
3432 if (fmt[0] == 'e')
3433 op0_mode = GET_MODE (XEXP (x, 0));
3435 for (i = 0; i < len; i++)
3437 if (fmt[i] == 'E')
3439 int j;
3440 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3442 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3444 new = (unique_copy && n_occurrences
3445 ? copy_rtx (to) : to);
3446 n_occurrences++;
3448 else
3450 new = subst (XVECEXP (x, i, j), from, to, 0,
3451 unique_copy);
3453 /* If this substitution failed, this whole thing
3454 fails. */
3455 if (GET_CODE (new) == CLOBBER
3456 && XEXP (new, 0) == const0_rtx)
3457 return new;
3460 SUBST (XVECEXP (x, i, j), new);
3463 else if (fmt[i] == 'e')
3465 /* If this is a register being set, ignore it. */
3466 new = XEXP (x, i);
3467 if (in_dest
3468 && (code == SUBREG || code == STRICT_LOW_PART
3469 || code == ZERO_EXTRACT)
3470 && i == 0
3471 && GET_CODE (new) == REG)
3474 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3476 /* In general, don't install a subreg involving two
3477 modes not tieable. It can worsen register
3478 allocation, and can even make invalid reload
3479 insns, since the reg inside may need to be copied
3480 from in the outside mode, and that may be invalid
3481 if it is an fp reg copied in integer mode.
3483 We allow two exceptions to this: It is valid if
3484 it is inside another SUBREG and the mode of that
3485 SUBREG and the mode of the inside of TO is
3486 tieable and it is valid if X is a SET that copies
3487 FROM to CC0. */
3489 if (GET_CODE (to) == SUBREG
3490 && ! MODES_TIEABLE_P (GET_MODE (to),
3491 GET_MODE (SUBREG_REG (to)))
3492 && ! (code == SUBREG
3493 && MODES_TIEABLE_P (GET_MODE (x),
3494 GET_MODE (SUBREG_REG (to))))
3495 #ifdef HAVE_cc0
3496 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3497 #endif
3499 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3501 #ifdef CLASS_CANNOT_CHANGE_MODE
3502 if (code == SUBREG
3503 && GET_CODE (to) == REG
3504 && REGNO (to) < FIRST_PSEUDO_REGISTER
3505 && (TEST_HARD_REG_BIT
3506 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3507 REGNO (to)))
3508 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3509 GET_MODE (x)))
3510 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3511 #endif
3513 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3514 n_occurrences++;
3516 else
3517 /* If we are in a SET_DEST, suppress most cases unless we
3518 have gone inside a MEM, in which case we want to
3519 simplify the address. We assume here that things that
3520 are actually part of the destination have their inner
3521 parts in the first expression. This is true for SUBREG,
3522 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3523 things aside from REG and MEM that should appear in a
3524 SET_DEST. */
3525 new = subst (XEXP (x, i), from, to,
3526 (((in_dest
3527 && (code == SUBREG || code == STRICT_LOW_PART
3528 || code == ZERO_EXTRACT))
3529 || code == SET)
3530 && i == 0), unique_copy);
3532 /* If we found that we will have to reject this combination,
3533 indicate that by returning the CLOBBER ourselves, rather than
3534 an expression containing it. This will speed things up as
3535 well as prevent accidents where two CLOBBERs are considered
3536 to be equal, thus producing an incorrect simplification. */
3538 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3539 return new;
3541 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3543 if (VECTOR_MODE_P (GET_MODE (x)))
3544 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3546 x = simplify_subreg (GET_MODE (x), new,
3547 GET_MODE (SUBREG_REG (x)),
3548 SUBREG_BYTE (x));
3549 if (! x)
3550 abort ();
3552 else if (GET_CODE (new) == CONST_INT
3553 && GET_CODE (x) == ZERO_EXTEND)
3555 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3556 new, GET_MODE (XEXP (x, 0)));
3557 if (! x)
3558 abort ();
3560 else
3561 SUBST (XEXP (x, i), new);
3566 /* Try to simplify X. If the simplification changed the code, it is likely
3567 that further simplification will help, so loop, but limit the number
3568 of repetitions that will be performed. */
3570 for (i = 0; i < 4; i++)
3572 /* If X is sufficiently simple, don't bother trying to do anything
3573 with it. */
3574 if (code != CONST_INT && code != REG && code != CLOBBER)
3575 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3577 if (GET_CODE (x) == code)
3578 break;
3580 code = GET_CODE (x);
3582 /* We no longer know the original mode of operand 0 since we
3583 have changed the form of X) */
3584 op0_mode = VOIDmode;
3587 return x;
3590 /* Simplify X, a piece of RTL. We just operate on the expression at the
3591 outer level; call `subst' to simplify recursively. Return the new
3592 expression.
3594 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3595 will be the iteration even if an expression with a code different from
3596 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3598 static rtx
3599 combine_simplify_rtx (x, op0_mode, last, in_dest)
3600 rtx x;
3601 enum machine_mode op0_mode;
3602 int last;
3603 int in_dest;
3605 enum rtx_code code = GET_CODE (x);
3606 enum machine_mode mode = GET_MODE (x);
3607 rtx temp;
3608 rtx reversed;
3609 int i;
3611 /* If this is a commutative operation, put a constant last and a complex
3612 expression first. We don't need to do this for comparisons here. */
3613 if (GET_RTX_CLASS (code) == 'c'
3614 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3616 temp = XEXP (x, 0);
3617 SUBST (XEXP (x, 0), XEXP (x, 1));
3618 SUBST (XEXP (x, 1), temp);
3621 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3622 sign extension of a PLUS with a constant, reverse the order of the sign
3623 extension and the addition. Note that this not the same as the original
3624 code, but overflow is undefined for signed values. Also note that the
3625 PLUS will have been partially moved "inside" the sign-extension, so that
3626 the first operand of X will really look like:
3627 (ashiftrt (plus (ashift A C4) C5) C4).
3628 We convert this to
3629 (plus (ashiftrt (ashift A C4) C2) C4)
3630 and replace the first operand of X with that expression. Later parts
3631 of this function may simplify the expression further.
3633 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3634 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3635 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3637 We do this to simplify address expressions. */
3639 if ((code == PLUS || code == MINUS || code == MULT)
3640 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3641 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3642 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3643 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3644 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3645 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3646 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3647 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3648 XEXP (XEXP (XEXP (x, 0), 0), 1),
3649 XEXP (XEXP (x, 0), 1))) != 0)
3651 rtx new
3652 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3653 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3654 INTVAL (XEXP (XEXP (x, 0), 1)));
3656 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3657 INTVAL (XEXP (XEXP (x, 0), 1)));
3659 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3662 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3663 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3664 things. Check for cases where both arms are testing the same
3665 condition.
3667 Don't do anything if all operands are very simple. */
3669 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3670 || GET_RTX_CLASS (code) == '<')
3671 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3672 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3673 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3674 == 'o')))
3675 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3676 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3677 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3678 == 'o')))))
3679 || (GET_RTX_CLASS (code) == '1'
3680 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3681 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3682 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3683 == 'o'))))))
3685 rtx cond, true_rtx, false_rtx;
3687 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3688 if (cond != 0
3689 /* If everything is a comparison, what we have is highly unlikely
3690 to be simpler, so don't use it. */
3691 && ! (GET_RTX_CLASS (code) == '<'
3692 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3693 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3695 rtx cop1 = const0_rtx;
3696 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3698 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3699 return x;
3701 /* Simplify the alternative arms; this may collapse the true and
3702 false arms to store-flag values. */
3703 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3704 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3706 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3707 is unlikely to be simpler. */
3708 if (general_operand (true_rtx, VOIDmode)
3709 && general_operand (false_rtx, VOIDmode))
3711 /* Restarting if we generate a store-flag expression will cause
3712 us to loop. Just drop through in this case. */
3714 /* If the result values are STORE_FLAG_VALUE and zero, we can
3715 just make the comparison operation. */
3716 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3717 x = gen_binary (cond_code, mode, cond, cop1);
3718 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3719 && reverse_condition (cond_code) != UNKNOWN)
3720 x = gen_binary (reverse_condition (cond_code),
3721 mode, cond, cop1);
3723 /* Likewise, we can make the negate of a comparison operation
3724 if the result values are - STORE_FLAG_VALUE and zero. */
3725 else if (GET_CODE (true_rtx) == CONST_INT
3726 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3727 && false_rtx == const0_rtx)
3728 x = simplify_gen_unary (NEG, mode,
3729 gen_binary (cond_code, mode, cond,
3730 cop1),
3731 mode);
3732 else if (GET_CODE (false_rtx) == CONST_INT
3733 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3734 && true_rtx == const0_rtx)
3735 x = simplify_gen_unary (NEG, mode,
3736 gen_binary (reverse_condition
3737 (cond_code),
3738 mode, cond, cop1),
3739 mode);
3740 else
3741 return gen_rtx_IF_THEN_ELSE (mode,
3742 gen_binary (cond_code, VOIDmode,
3743 cond, cop1),
3744 true_rtx, false_rtx);
3746 code = GET_CODE (x);
3747 op0_mode = VOIDmode;
3752 /* Try to fold this expression in case we have constants that weren't
3753 present before. */
3754 temp = 0;
3755 switch (GET_RTX_CLASS (code))
3757 case '1':
3758 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3759 break;
3760 case '<':
3762 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3763 if (cmp_mode == VOIDmode)
3765 cmp_mode = GET_MODE (XEXP (x, 1));
3766 if (cmp_mode == VOIDmode)
3767 cmp_mode = op0_mode;
3769 temp = simplify_relational_operation (code, cmp_mode,
3770 XEXP (x, 0), XEXP (x, 1));
3772 #ifdef FLOAT_STORE_FLAG_VALUE
3773 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3775 if (temp == const0_rtx)
3776 temp = CONST0_RTX (mode);
3777 else
3778 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3779 mode);
3781 #endif
3782 break;
3783 case 'c':
3784 case '2':
3785 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3786 break;
3787 case 'b':
3788 case '3':
3789 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3790 XEXP (x, 1), XEXP (x, 2));
3791 break;
3794 if (temp)
3796 x = temp;
3797 code = GET_CODE (temp);
3798 op0_mode = VOIDmode;
3799 mode = GET_MODE (temp);
3802 /* First see if we can apply the inverse distributive law. */
3803 if (code == PLUS || code == MINUS
3804 || code == AND || code == IOR || code == XOR)
3806 x = apply_distributive_law (x);
3807 code = GET_CODE (x);
3808 op0_mode = VOIDmode;
3811 /* If CODE is an associative operation not otherwise handled, see if we
3812 can associate some operands. This can win if they are constants or
3813 if they are logically related (i.e. (a & b) & a). */
3814 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3815 || code == AND || code == IOR || code == XOR
3816 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3817 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3818 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3820 if (GET_CODE (XEXP (x, 0)) == code)
3822 rtx other = XEXP (XEXP (x, 0), 0);
3823 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3824 rtx inner_op1 = XEXP (x, 1);
3825 rtx inner;
3827 /* Make sure we pass the constant operand if any as the second
3828 one if this is a commutative operation. */
3829 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3831 rtx tem = inner_op0;
3832 inner_op0 = inner_op1;
3833 inner_op1 = tem;
3835 inner = simplify_binary_operation (code == MINUS ? PLUS
3836 : code == DIV ? MULT
3837 : code,
3838 mode, inner_op0, inner_op1);
3840 /* For commutative operations, try the other pair if that one
3841 didn't simplify. */
3842 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3844 other = XEXP (XEXP (x, 0), 1);
3845 inner = simplify_binary_operation (code, mode,
3846 XEXP (XEXP (x, 0), 0),
3847 XEXP (x, 1));
3850 if (inner)
3851 return gen_binary (code, mode, other, inner);
3855 /* A little bit of algebraic simplification here. */
3856 switch (code)
3858 case MEM:
3859 /* Ensure that our address has any ASHIFTs converted to MULT in case
3860 address-recognizing predicates are called later. */
3861 temp = make_compound_operation (XEXP (x, 0), MEM);
3862 SUBST (XEXP (x, 0), temp);
3863 break;
3865 case SUBREG:
3866 if (op0_mode == VOIDmode)
3867 op0_mode = GET_MODE (SUBREG_REG (x));
3869 /* simplify_subreg can't use gen_lowpart_for_combine. */
3870 if (CONSTANT_P (SUBREG_REG (x))
3871 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3872 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3874 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3875 break;
3877 rtx temp;
3878 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3879 SUBREG_BYTE (x));
3880 if (temp)
3881 return temp;
3884 /* Don't change the mode of the MEM if that would change the meaning
3885 of the address. */
3886 if (GET_CODE (SUBREG_REG (x)) == MEM
3887 && (MEM_VOLATILE_P (SUBREG_REG (x))
3888 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3889 return gen_rtx_CLOBBER (mode, const0_rtx);
3891 /* Note that we cannot do any narrowing for non-constants since
3892 we might have been counting on using the fact that some bits were
3893 zero. We now do this in the SET. */
3895 break;
3897 case NOT:
3898 /* (not (plus X -1)) can become (neg X). */
3899 if (GET_CODE (XEXP (x, 0)) == PLUS
3900 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3901 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3903 /* Similarly, (not (neg X)) is (plus X -1). */
3904 if (GET_CODE (XEXP (x, 0)) == NEG)
3905 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3907 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3908 if (GET_CODE (XEXP (x, 0)) == XOR
3909 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3910 && (temp = simplify_unary_operation (NOT, mode,
3911 XEXP (XEXP (x, 0), 1),
3912 mode)) != 0)
3913 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3915 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3916 other than 1, but that is not valid. We could do a similar
3917 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3918 but this doesn't seem common enough to bother with. */
3919 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3920 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3921 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3922 const1_rtx, mode),
3923 XEXP (XEXP (x, 0), 1));
3925 if (GET_CODE (XEXP (x, 0)) == SUBREG
3926 && subreg_lowpart_p (XEXP (x, 0))
3927 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3928 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3929 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3930 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3932 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3934 x = gen_rtx_ROTATE (inner_mode,
3935 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3936 inner_mode),
3937 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3938 return gen_lowpart_for_combine (mode, x);
3941 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3942 reversing the comparison code if valid. */
3943 if (STORE_FLAG_VALUE == -1
3944 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3945 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3946 XEXP (XEXP (x, 0), 1))))
3947 return reversed;
3949 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3950 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3951 perform the above simplification. */
3953 if (STORE_FLAG_VALUE == -1
3954 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3955 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3956 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3957 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3959 /* Apply De Morgan's laws to reduce number of patterns for machines
3960 with negating logical insns (and-not, nand, etc.). If result has
3961 only one NOT, put it first, since that is how the patterns are
3962 coded. */
3964 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3966 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3967 enum machine_mode op_mode;
3969 op_mode = GET_MODE (in1);
3970 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3972 op_mode = GET_MODE (in2);
3973 if (op_mode == VOIDmode)
3974 op_mode = mode;
3975 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3977 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3979 rtx tem = in2;
3980 in2 = in1; in1 = tem;
3983 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3984 mode, in1, in2);
3986 break;
3988 case NEG:
3989 /* (neg (plus X 1)) can become (not X). */
3990 if (GET_CODE (XEXP (x, 0)) == PLUS
3991 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3992 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3994 /* Similarly, (neg (not X)) is (plus X 1). */
3995 if (GET_CODE (XEXP (x, 0)) == NOT)
3996 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3998 /* (neg (minus X Y)) can become (minus Y X). This transformation
3999 isn't safe for modes with signed zeros, since if X and Y are
4000 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4001 mode is towards +infinity (or -infinity) then the two expressions
4002 will be rounded differently. */
4003 if (GET_CODE (XEXP (x, 0)) == MINUS
4004 && !HONOR_SIGNED_ZEROS (mode)
4005 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4006 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4007 XEXP (XEXP (x, 0), 0));
4009 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4010 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4011 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4012 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4014 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4015 if we can then eliminate the NEG (e.g.,
4016 if the operand is a constant). */
4018 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4020 temp = simplify_unary_operation (NEG, mode,
4021 XEXP (XEXP (x, 0), 0), mode);
4022 if (temp)
4023 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4026 temp = expand_compound_operation (XEXP (x, 0));
4028 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4029 replaced by (lshiftrt X C). This will convert
4030 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4032 if (GET_CODE (temp) == ASHIFTRT
4033 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4034 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4035 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4036 INTVAL (XEXP (temp, 1)));
4038 /* If X has only a single bit that might be nonzero, say, bit I, convert
4039 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4040 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4041 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4042 or a SUBREG of one since we'd be making the expression more
4043 complex if it was just a register. */
4045 if (GET_CODE (temp) != REG
4046 && ! (GET_CODE (temp) == SUBREG
4047 && GET_CODE (SUBREG_REG (temp)) == REG)
4048 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4050 rtx temp1 = simplify_shift_const
4051 (NULL_RTX, ASHIFTRT, mode,
4052 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4053 GET_MODE_BITSIZE (mode) - 1 - i),
4054 GET_MODE_BITSIZE (mode) - 1 - i);
4056 /* If all we did was surround TEMP with the two shifts, we
4057 haven't improved anything, so don't use it. Otherwise,
4058 we are better off with TEMP1. */
4059 if (GET_CODE (temp1) != ASHIFTRT
4060 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4061 || XEXP (XEXP (temp1, 0), 0) != temp)
4062 return temp1;
4064 break;
4066 case TRUNCATE:
4067 /* We can't handle truncation to a partial integer mode here
4068 because we don't know the real bitsize of the partial
4069 integer mode. */
4070 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4071 break;
4073 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4074 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4075 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4076 SUBST (XEXP (x, 0),
4077 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4078 GET_MODE_MASK (mode), NULL_RTX, 0));
4080 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4081 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4082 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4083 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4084 return XEXP (XEXP (x, 0), 0);
4086 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4087 (OP:SI foo:SI) if OP is NEG or ABS. */
4088 if ((GET_CODE (XEXP (x, 0)) == ABS
4089 || GET_CODE (XEXP (x, 0)) == NEG)
4090 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4091 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4092 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4093 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4094 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4096 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4097 (truncate:SI x). */
4098 if (GET_CODE (XEXP (x, 0)) == SUBREG
4099 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4100 && subreg_lowpart_p (XEXP (x, 0)))
4101 return SUBREG_REG (XEXP (x, 0));
4103 /* If we know that the value is already truncated, we can
4104 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4105 is nonzero for the corresponding modes. But don't do this
4106 for an (LSHIFTRT (MULT ...)) since this will cause problems
4107 with the umulXi3_highpart patterns. */
4108 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4109 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4110 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4111 >= GET_MODE_BITSIZE (mode) + 1
4112 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4113 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4114 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4116 /* A truncate of a comparison can be replaced with a subreg if
4117 STORE_FLAG_VALUE permits. This is like the previous test,
4118 but it works even if the comparison is done in a mode larger
4119 than HOST_BITS_PER_WIDE_INT. */
4120 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4121 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4122 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4123 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4125 /* Similarly, a truncate of a register whose value is a
4126 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4127 permits. */
4128 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4129 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4130 && (temp = get_last_value (XEXP (x, 0)))
4131 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4132 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4134 break;
4136 case FLOAT_TRUNCATE:
4137 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4138 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4139 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4140 return XEXP (XEXP (x, 0), 0);
4142 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4143 (OP:SF foo:SF) if OP is NEG or ABS. */
4144 if ((GET_CODE (XEXP (x, 0)) == ABS
4145 || GET_CODE (XEXP (x, 0)) == NEG)
4146 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4147 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4148 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4149 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4151 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4152 is (float_truncate:SF x). */
4153 if (GET_CODE (XEXP (x, 0)) == SUBREG
4154 && subreg_lowpart_p (XEXP (x, 0))
4155 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4156 return SUBREG_REG (XEXP (x, 0));
4157 break;
4159 #ifdef HAVE_cc0
4160 case COMPARE:
4161 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4162 using cc0, in which case we want to leave it as a COMPARE
4163 so we can distinguish it from a register-register-copy. */
4164 if (XEXP (x, 1) == const0_rtx)
4165 return XEXP (x, 0);
4167 /* x - 0 is the same as x unless x's mode has signed zeros and
4168 allows rounding towards -infinity. Under those conditions,
4169 0 - 0 is -0. */
4170 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4171 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4172 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4173 return XEXP (x, 0);
4174 break;
4175 #endif
4177 case CONST:
4178 /* (const (const X)) can become (const X). Do it this way rather than
4179 returning the inner CONST since CONST can be shared with a
4180 REG_EQUAL note. */
4181 if (GET_CODE (XEXP (x, 0)) == CONST)
4182 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4183 break;
4185 #ifdef HAVE_lo_sum
4186 case LO_SUM:
4187 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4188 can add in an offset. find_split_point will split this address up
4189 again if it doesn't match. */
4190 if (GET_CODE (XEXP (x, 0)) == HIGH
4191 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4192 return XEXP (x, 1);
4193 break;
4194 #endif
4196 case PLUS:
4197 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4198 outermost. That's because that's the way indexed addresses are
4199 supposed to appear. This code used to check many more cases, but
4200 they are now checked elsewhere. */
4201 if (GET_CODE (XEXP (x, 0)) == PLUS
4202 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4203 return gen_binary (PLUS, mode,
4204 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4205 XEXP (x, 1)),
4206 XEXP (XEXP (x, 0), 1));
4208 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4209 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4210 bit-field and can be replaced by either a sign_extend or a
4211 sign_extract. The `and' may be a zero_extend and the two
4212 <c>, -<c> constants may be reversed. */
4213 if (GET_CODE (XEXP (x, 0)) == XOR
4214 && GET_CODE (XEXP (x, 1)) == CONST_INT
4215 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4216 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4217 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4218 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4219 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4220 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4221 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4222 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4223 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4224 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4225 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4226 == (unsigned int) i + 1))))
4227 return simplify_shift_const
4228 (NULL_RTX, ASHIFTRT, mode,
4229 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4230 XEXP (XEXP (XEXP (x, 0), 0), 0),
4231 GET_MODE_BITSIZE (mode) - (i + 1)),
4232 GET_MODE_BITSIZE (mode) - (i + 1));
4234 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4235 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4236 is 1. This produces better code than the alternative immediately
4237 below. */
4238 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4239 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4240 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4241 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4242 XEXP (XEXP (x, 0), 0),
4243 XEXP (XEXP (x, 0), 1))))
4244 return
4245 simplify_gen_unary (NEG, mode, reversed, mode);
4247 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4248 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4249 the bitsize of the mode - 1. This allows simplification of
4250 "a = (b & 8) == 0;" */
4251 if (XEXP (x, 1) == constm1_rtx
4252 && GET_CODE (XEXP (x, 0)) != REG
4253 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4254 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4255 && nonzero_bits (XEXP (x, 0), mode) == 1)
4256 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4257 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4258 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4259 GET_MODE_BITSIZE (mode) - 1),
4260 GET_MODE_BITSIZE (mode) - 1);
4262 /* If we are adding two things that have no bits in common, convert
4263 the addition into an IOR. This will often be further simplified,
4264 for example in cases like ((a & 1) + (a & 2)), which can
4265 become a & 3. */
4267 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4268 && (nonzero_bits (XEXP (x, 0), mode)
4269 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4271 /* Try to simplify the expression further. */
4272 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4273 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4275 /* If we could, great. If not, do not go ahead with the IOR
4276 replacement, since PLUS appears in many special purpose
4277 address arithmetic instructions. */
4278 if (GET_CODE (temp) != CLOBBER && temp != tor)
4279 return temp;
4281 break;
4283 case MINUS:
4284 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4285 by reversing the comparison code if valid. */
4286 if (STORE_FLAG_VALUE == 1
4287 && XEXP (x, 0) == const1_rtx
4288 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4289 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4290 XEXP (XEXP (x, 1), 0),
4291 XEXP (XEXP (x, 1), 1))))
4292 return reversed;
4294 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4295 (and <foo> (const_int pow2-1)) */
4296 if (GET_CODE (XEXP (x, 1)) == AND
4297 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4298 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4299 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4300 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4301 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4303 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4304 integers. */
4305 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4306 return gen_binary (MINUS, mode,
4307 gen_binary (MINUS, mode, XEXP (x, 0),
4308 XEXP (XEXP (x, 1), 0)),
4309 XEXP (XEXP (x, 1), 1));
4310 break;
4312 case MULT:
4313 /* If we have (mult (plus A B) C), apply the distributive law and then
4314 the inverse distributive law to see if things simplify. This
4315 occurs mostly in addresses, often when unrolling loops. */
4317 if (GET_CODE (XEXP (x, 0)) == PLUS)
4319 x = apply_distributive_law
4320 (gen_binary (PLUS, mode,
4321 gen_binary (MULT, mode,
4322 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4323 gen_binary (MULT, mode,
4324 XEXP (XEXP (x, 0), 1),
4325 copy_rtx (XEXP (x, 1)))));
4327 if (GET_CODE (x) != MULT)
4328 return x;
4330 /* Try simplify a*(b/c) as (a*b)/c. */
4331 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4332 && GET_CODE (XEXP (x, 0)) == DIV)
4334 rtx tem = simplify_binary_operation (MULT, mode,
4335 XEXP (XEXP (x, 0), 0),
4336 XEXP (x, 1));
4337 if (tem)
4338 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4340 break;
4342 case UDIV:
4343 /* If this is a divide by a power of two, treat it as a shift if
4344 its first operand is a shift. */
4345 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4346 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4347 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4348 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4349 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4350 || GET_CODE (XEXP (x, 0)) == ROTATE
4351 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4352 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4353 break;
4355 case EQ: case NE:
4356 case GT: case GTU: case GE: case GEU:
4357 case LT: case LTU: case LE: case LEU:
4358 case UNEQ: case LTGT:
4359 case UNGT: case UNGE:
4360 case UNLT: case UNLE:
4361 case UNORDERED: case ORDERED:
4362 /* If the first operand is a condition code, we can't do anything
4363 with it. */
4364 if (GET_CODE (XEXP (x, 0)) == COMPARE
4365 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4366 #ifdef HAVE_cc0
4367 && XEXP (x, 0) != cc0_rtx
4368 #endif
4371 rtx op0 = XEXP (x, 0);
4372 rtx op1 = XEXP (x, 1);
4373 enum rtx_code new_code;
4375 if (GET_CODE (op0) == COMPARE)
4376 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4378 /* Simplify our comparison, if possible. */
4379 new_code = simplify_comparison (code, &op0, &op1);
4381 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4382 if only the low-order bit is possibly nonzero in X (such as when
4383 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4384 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4385 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4386 (plus X 1).
4388 Remove any ZERO_EXTRACT we made when thinking this was a
4389 comparison. It may now be simpler to use, e.g., an AND. If a
4390 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4391 the call to make_compound_operation in the SET case. */
4393 if (STORE_FLAG_VALUE == 1
4394 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4395 && op1 == const0_rtx
4396 && mode == GET_MODE (op0)
4397 && nonzero_bits (op0, mode) == 1)
4398 return gen_lowpart_for_combine (mode,
4399 expand_compound_operation (op0));
4401 else if (STORE_FLAG_VALUE == 1
4402 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4403 && op1 == const0_rtx
4404 && mode == GET_MODE (op0)
4405 && (num_sign_bit_copies (op0, mode)
4406 == GET_MODE_BITSIZE (mode)))
4408 op0 = expand_compound_operation (op0);
4409 return simplify_gen_unary (NEG, mode,
4410 gen_lowpart_for_combine (mode, op0),
4411 mode);
4414 else if (STORE_FLAG_VALUE == 1
4415 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4416 && op1 == const0_rtx
4417 && mode == GET_MODE (op0)
4418 && nonzero_bits (op0, mode) == 1)
4420 op0 = expand_compound_operation (op0);
4421 return gen_binary (XOR, mode,
4422 gen_lowpart_for_combine (mode, op0),
4423 const1_rtx);
4426 else if (STORE_FLAG_VALUE == 1
4427 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4428 && op1 == const0_rtx
4429 && mode == GET_MODE (op0)
4430 && (num_sign_bit_copies (op0, mode)
4431 == GET_MODE_BITSIZE (mode)))
4433 op0 = expand_compound_operation (op0);
4434 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4437 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4438 those above. */
4439 if (STORE_FLAG_VALUE == -1
4440 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4441 && op1 == const0_rtx
4442 && (num_sign_bit_copies (op0, mode)
4443 == GET_MODE_BITSIZE (mode)))
4444 return gen_lowpart_for_combine (mode,
4445 expand_compound_operation (op0));
4447 else if (STORE_FLAG_VALUE == -1
4448 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4449 && op1 == const0_rtx
4450 && mode == GET_MODE (op0)
4451 && nonzero_bits (op0, mode) == 1)
4453 op0 = expand_compound_operation (op0);
4454 return simplify_gen_unary (NEG, mode,
4455 gen_lowpart_for_combine (mode, op0),
4456 mode);
4459 else if (STORE_FLAG_VALUE == -1
4460 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4461 && op1 == const0_rtx
4462 && mode == GET_MODE (op0)
4463 && (num_sign_bit_copies (op0, mode)
4464 == GET_MODE_BITSIZE (mode)))
4466 op0 = expand_compound_operation (op0);
4467 return simplify_gen_unary (NOT, mode,
4468 gen_lowpart_for_combine (mode, op0),
4469 mode);
4472 /* If X is 0/1, (eq X 0) is X-1. */
4473 else if (STORE_FLAG_VALUE == -1
4474 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4475 && op1 == const0_rtx
4476 && mode == GET_MODE (op0)
4477 && nonzero_bits (op0, mode) == 1)
4479 op0 = expand_compound_operation (op0);
4480 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4483 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4484 one bit that might be nonzero, we can convert (ne x 0) to
4485 (ashift x c) where C puts the bit in the sign bit. Remove any
4486 AND with STORE_FLAG_VALUE when we are done, since we are only
4487 going to test the sign bit. */
4488 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4489 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4490 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4491 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4492 && op1 == const0_rtx
4493 && mode == GET_MODE (op0)
4494 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4496 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4497 expand_compound_operation (op0),
4498 GET_MODE_BITSIZE (mode) - 1 - i);
4499 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4500 return XEXP (x, 0);
4501 else
4502 return x;
4505 /* If the code changed, return a whole new comparison. */
4506 if (new_code != code)
4507 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4509 /* Otherwise, keep this operation, but maybe change its operands.
4510 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4511 SUBST (XEXP (x, 0), op0);
4512 SUBST (XEXP (x, 1), op1);
4514 break;
4516 case IF_THEN_ELSE:
4517 return simplify_if_then_else (x);
4519 case ZERO_EXTRACT:
4520 case SIGN_EXTRACT:
4521 case ZERO_EXTEND:
4522 case SIGN_EXTEND:
4523 /* If we are processing SET_DEST, we are done. */
4524 if (in_dest)
4525 return x;
4527 return expand_compound_operation (x);
4529 case SET:
4530 return simplify_set (x);
4532 case AND:
4533 case IOR:
4534 case XOR:
4535 return simplify_logical (x, last);
4537 case ABS:
4538 /* (abs (neg <foo>)) -> (abs <foo>) */
4539 if (GET_CODE (XEXP (x, 0)) == NEG)
4540 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4542 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4543 do nothing. */
4544 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4545 break;
4547 /* If operand is something known to be positive, ignore the ABS. */
4548 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4549 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4550 <= HOST_BITS_PER_WIDE_INT)
4551 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4552 & ((HOST_WIDE_INT) 1
4553 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4554 == 0)))
4555 return XEXP (x, 0);
4557 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4558 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4559 return gen_rtx_NEG (mode, XEXP (x, 0));
4561 break;
4563 case FFS:
4564 /* (ffs (*_extend <X>)) = (ffs <X>) */
4565 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4566 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4567 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4568 break;
4570 case FLOAT:
4571 /* (float (sign_extend <X>)) = (float <X>). */
4572 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4573 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4574 break;
4576 case ASHIFT:
4577 case LSHIFTRT:
4578 case ASHIFTRT:
4579 case ROTATE:
4580 case ROTATERT:
4581 /* If this is a shift by a constant amount, simplify it. */
4582 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4583 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4584 INTVAL (XEXP (x, 1)));
4586 #ifdef SHIFT_COUNT_TRUNCATED
4587 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4588 SUBST (XEXP (x, 1),
4589 force_to_mode (XEXP (x, 1), GET_MODE (x),
4590 ((HOST_WIDE_INT) 1
4591 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4592 - 1,
4593 NULL_RTX, 0));
4594 #endif
4596 break;
4598 case VEC_SELECT:
4600 rtx op0 = XEXP (x, 0);
4601 rtx op1 = XEXP (x, 1);
4602 int len;
4604 if (GET_CODE (op1) != PARALLEL)
4605 abort ();
4606 len = XVECLEN (op1, 0);
4607 if (len == 1
4608 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4609 && GET_CODE (op0) == VEC_CONCAT)
4611 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4613 /* Try to find the element in the VEC_CONCAT. */
4614 for (;;)
4616 if (GET_MODE (op0) == GET_MODE (x))
4617 return op0;
4618 if (GET_CODE (op0) == VEC_CONCAT)
4620 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4621 if (op0_size < offset)
4622 op0 = XEXP (op0, 0);
4623 else
4625 offset -= op0_size;
4626 op0 = XEXP (op0, 1);
4629 else
4630 break;
4635 break;
4637 default:
4638 break;
4641 return x;
4644 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4646 static rtx
4647 simplify_if_then_else (x)
4648 rtx x;
4650 enum machine_mode mode = GET_MODE (x);
4651 rtx cond = XEXP (x, 0);
4652 rtx true_rtx = XEXP (x, 1);
4653 rtx false_rtx = XEXP (x, 2);
4654 enum rtx_code true_code = GET_CODE (cond);
4655 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4656 rtx temp;
4657 int i;
4658 enum rtx_code false_code;
4659 rtx reversed;
4661 /* Simplify storing of the truth value. */
4662 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4663 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4665 /* Also when the truth value has to be reversed. */
4666 if (comparison_p
4667 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4668 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4669 XEXP (cond, 1))))
4670 return reversed;
4672 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4673 in it is being compared against certain values. Get the true and false
4674 comparisons and see if that says anything about the value of each arm. */
4676 if (comparison_p
4677 && ((false_code = combine_reversed_comparison_code (cond))
4678 != UNKNOWN)
4679 && GET_CODE (XEXP (cond, 0)) == REG)
4681 HOST_WIDE_INT nzb;
4682 rtx from = XEXP (cond, 0);
4683 rtx true_val = XEXP (cond, 1);
4684 rtx false_val = true_val;
4685 int swapped = 0;
4687 /* If FALSE_CODE is EQ, swap the codes and arms. */
4689 if (false_code == EQ)
4691 swapped = 1, true_code = EQ, false_code = NE;
4692 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4695 /* If we are comparing against zero and the expression being tested has
4696 only a single bit that might be nonzero, that is its value when it is
4697 not equal to zero. Similarly if it is known to be -1 or 0. */
4699 if (true_code == EQ && true_val == const0_rtx
4700 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4701 false_code = EQ, false_val = GEN_INT (nzb);
4702 else if (true_code == EQ && true_val == const0_rtx
4703 && (num_sign_bit_copies (from, GET_MODE (from))
4704 == GET_MODE_BITSIZE (GET_MODE (from))))
4705 false_code = EQ, false_val = constm1_rtx;
4707 /* Now simplify an arm if we know the value of the register in the
4708 branch and it is used in the arm. Be careful due to the potential
4709 of locally-shared RTL. */
4711 if (reg_mentioned_p (from, true_rtx))
4712 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4713 from, true_val),
4714 pc_rtx, pc_rtx, 0, 0);
4715 if (reg_mentioned_p (from, false_rtx))
4716 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4717 from, false_val),
4718 pc_rtx, pc_rtx, 0, 0);
4720 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4721 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4723 true_rtx = XEXP (x, 1);
4724 false_rtx = XEXP (x, 2);
4725 true_code = GET_CODE (cond);
4728 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4729 reversed, do so to avoid needing two sets of patterns for
4730 subtract-and-branch insns. Similarly if we have a constant in the true
4731 arm, the false arm is the same as the first operand of the comparison, or
4732 the false arm is more complicated than the true arm. */
4734 if (comparison_p
4735 && combine_reversed_comparison_code (cond) != UNKNOWN
4736 && (true_rtx == pc_rtx
4737 || (CONSTANT_P (true_rtx)
4738 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4739 || true_rtx == const0_rtx
4740 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4741 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4742 || (GET_CODE (true_rtx) == SUBREG
4743 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4744 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4745 || reg_mentioned_p (true_rtx, false_rtx)
4746 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4748 true_code = reversed_comparison_code (cond, NULL);
4749 SUBST (XEXP (x, 0),
4750 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4751 XEXP (cond, 1)));
4753 SUBST (XEXP (x, 1), false_rtx);
4754 SUBST (XEXP (x, 2), true_rtx);
4756 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4757 cond = XEXP (x, 0);
4759 /* It is possible that the conditional has been simplified out. */
4760 true_code = GET_CODE (cond);
4761 comparison_p = GET_RTX_CLASS (true_code) == '<';
4764 /* If the two arms are identical, we don't need the comparison. */
4766 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4767 return true_rtx;
4769 /* Convert a == b ? b : a to "a". */
4770 if (true_code == EQ && ! side_effects_p (cond)
4771 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4772 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4773 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4774 return false_rtx;
4775 else if (true_code == NE && ! side_effects_p (cond)
4776 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4777 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4778 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4779 return true_rtx;
4781 /* Look for cases where we have (abs x) or (neg (abs X)). */
4783 if (GET_MODE_CLASS (mode) == MODE_INT
4784 && GET_CODE (false_rtx) == NEG
4785 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4786 && comparison_p
4787 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4788 && ! side_effects_p (true_rtx))
4789 switch (true_code)
4791 case GT:
4792 case GE:
4793 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4794 case LT:
4795 case LE:
4796 return
4797 simplify_gen_unary (NEG, mode,
4798 simplify_gen_unary (ABS, mode, true_rtx, mode),
4799 mode);
4800 default:
4801 break;
4804 /* Look for MIN or MAX. */
4806 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4807 && comparison_p
4808 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4809 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4810 && ! side_effects_p (cond))
4811 switch (true_code)
4813 case GE:
4814 case GT:
4815 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4816 case LE:
4817 case LT:
4818 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4819 case GEU:
4820 case GTU:
4821 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4822 case LEU:
4823 case LTU:
4824 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4825 default:
4826 break;
4829 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4830 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4831 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4832 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4833 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4834 neither 1 or -1, but it isn't worth checking for. */
4836 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4837 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4839 rtx t = make_compound_operation (true_rtx, SET);
4840 rtx f = make_compound_operation (false_rtx, SET);
4841 rtx cond_op0 = XEXP (cond, 0);
4842 rtx cond_op1 = XEXP (cond, 1);
4843 enum rtx_code op = NIL, extend_op = NIL;
4844 enum machine_mode m = mode;
4845 rtx z = 0, c1 = NULL_RTX;
4847 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4848 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4849 || GET_CODE (t) == ASHIFT
4850 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4851 && rtx_equal_p (XEXP (t, 0), f))
4852 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4854 /* If an identity-zero op is commutative, check whether there
4855 would be a match if we swapped the operands. */
4856 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4857 || GET_CODE (t) == XOR)
4858 && rtx_equal_p (XEXP (t, 1), f))
4859 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4860 else if (GET_CODE (t) == SIGN_EXTEND
4861 && (GET_CODE (XEXP (t, 0)) == PLUS
4862 || GET_CODE (XEXP (t, 0)) == MINUS
4863 || GET_CODE (XEXP (t, 0)) == IOR
4864 || GET_CODE (XEXP (t, 0)) == XOR
4865 || GET_CODE (XEXP (t, 0)) == ASHIFT
4866 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4867 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4868 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4869 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4870 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4871 && (num_sign_bit_copies (f, GET_MODE (f))
4872 > (GET_MODE_BITSIZE (mode)
4873 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4875 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4876 extend_op = SIGN_EXTEND;
4877 m = GET_MODE (XEXP (t, 0));
4879 else if (GET_CODE (t) == SIGN_EXTEND
4880 && (GET_CODE (XEXP (t, 0)) == PLUS
4881 || GET_CODE (XEXP (t, 0)) == IOR
4882 || GET_CODE (XEXP (t, 0)) == XOR)
4883 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4884 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4885 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4886 && (num_sign_bit_copies (f, GET_MODE (f))
4887 > (GET_MODE_BITSIZE (mode)
4888 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4890 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4891 extend_op = SIGN_EXTEND;
4892 m = GET_MODE (XEXP (t, 0));
4894 else if (GET_CODE (t) == ZERO_EXTEND
4895 && (GET_CODE (XEXP (t, 0)) == PLUS
4896 || GET_CODE (XEXP (t, 0)) == MINUS
4897 || GET_CODE (XEXP (t, 0)) == IOR
4898 || GET_CODE (XEXP (t, 0)) == XOR
4899 || GET_CODE (XEXP (t, 0)) == ASHIFT
4900 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4901 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4902 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4903 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4904 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4905 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4906 && ((nonzero_bits (f, GET_MODE (f))
4907 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4908 == 0))
4910 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4911 extend_op = ZERO_EXTEND;
4912 m = GET_MODE (XEXP (t, 0));
4914 else if (GET_CODE (t) == ZERO_EXTEND
4915 && (GET_CODE (XEXP (t, 0)) == PLUS
4916 || GET_CODE (XEXP (t, 0)) == IOR
4917 || GET_CODE (XEXP (t, 0)) == XOR)
4918 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4919 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4920 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4921 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4922 && ((nonzero_bits (f, GET_MODE (f))
4923 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4924 == 0))
4926 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4927 extend_op = ZERO_EXTEND;
4928 m = GET_MODE (XEXP (t, 0));
4931 if (z)
4933 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4934 pc_rtx, pc_rtx, 0, 0);
4935 temp = gen_binary (MULT, m, temp,
4936 gen_binary (MULT, m, c1, const_true_rtx));
4937 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4938 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4940 if (extend_op != NIL)
4941 temp = simplify_gen_unary (extend_op, mode, temp, m);
4943 return temp;
4947 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4948 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4949 negation of a single bit, we can convert this operation to a shift. We
4950 can actually do this more generally, but it doesn't seem worth it. */
4952 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4953 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4954 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4955 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4956 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4957 == GET_MODE_BITSIZE (mode))
4958 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4959 return
4960 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4961 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4963 return x;
4966 /* Simplify X, a SET expression. Return the new expression. */
4968 static rtx
4969 simplify_set (x)
4970 rtx x;
4972 rtx src = SET_SRC (x);
4973 rtx dest = SET_DEST (x);
4974 enum machine_mode mode
4975 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4976 rtx other_insn;
4977 rtx *cc_use;
4979 /* (set (pc) (return)) gets written as (return). */
4980 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4981 return src;
4983 /* Now that we know for sure which bits of SRC we are using, see if we can
4984 simplify the expression for the object knowing that we only need the
4985 low-order bits. */
4987 if (GET_MODE_CLASS (mode) == MODE_INT)
4989 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4990 SUBST (SET_SRC (x), src);
4993 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4994 the comparison result and try to simplify it unless we already have used
4995 undobuf.other_insn. */
4996 if ((GET_CODE (src) == COMPARE
4997 #ifdef HAVE_cc0
4998 || dest == cc0_rtx
4999 #endif
5001 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5002 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5003 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5004 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5006 enum rtx_code old_code = GET_CODE (*cc_use);
5007 enum rtx_code new_code;
5008 rtx op0, op1;
5009 int other_changed = 0;
5010 enum machine_mode compare_mode = GET_MODE (dest);
5012 if (GET_CODE (src) == COMPARE)
5013 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5014 else
5015 op0 = src, op1 = const0_rtx;
5017 /* Simplify our comparison, if possible. */
5018 new_code = simplify_comparison (old_code, &op0, &op1);
5020 #ifdef EXTRA_CC_MODES
5021 /* If this machine has CC modes other than CCmode, check to see if we
5022 need to use a different CC mode here. */
5023 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5024 #endif /* EXTRA_CC_MODES */
5026 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5027 /* If the mode changed, we have to change SET_DEST, the mode in the
5028 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5029 a hard register, just build new versions with the proper mode. If it
5030 is a pseudo, we lose unless it is only time we set the pseudo, in
5031 which case we can safely change its mode. */
5032 if (compare_mode != GET_MODE (dest))
5034 unsigned int regno = REGNO (dest);
5035 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5037 if (regno < FIRST_PSEUDO_REGISTER
5038 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5040 if (regno >= FIRST_PSEUDO_REGISTER)
5041 SUBST (regno_reg_rtx[regno], new_dest);
5043 SUBST (SET_DEST (x), new_dest);
5044 SUBST (XEXP (*cc_use, 0), new_dest);
5045 other_changed = 1;
5047 dest = new_dest;
5050 #endif
5052 /* If the code changed, we have to build a new comparison in
5053 undobuf.other_insn. */
5054 if (new_code != old_code)
5056 unsigned HOST_WIDE_INT mask;
5058 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5059 dest, const0_rtx));
5061 /* If the only change we made was to change an EQ into an NE or
5062 vice versa, OP0 has only one bit that might be nonzero, and OP1
5063 is zero, check if changing the user of the condition code will
5064 produce a valid insn. If it won't, we can keep the original code
5065 in that insn by surrounding our operation with an XOR. */
5067 if (((old_code == NE && new_code == EQ)
5068 || (old_code == EQ && new_code == NE))
5069 && ! other_changed && op1 == const0_rtx
5070 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5071 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5073 rtx pat = PATTERN (other_insn), note = 0;
5075 if ((recog_for_combine (&pat, other_insn, &note) < 0
5076 && ! check_asm_operands (pat)))
5078 PUT_CODE (*cc_use, old_code);
5079 other_insn = 0;
5081 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5085 other_changed = 1;
5088 if (other_changed)
5089 undobuf.other_insn = other_insn;
5091 #ifdef HAVE_cc0
5092 /* If we are now comparing against zero, change our source if
5093 needed. If we do not use cc0, we always have a COMPARE. */
5094 if (op1 == const0_rtx && dest == cc0_rtx)
5096 SUBST (SET_SRC (x), op0);
5097 src = op0;
5099 else
5100 #endif
5102 /* Otherwise, if we didn't previously have a COMPARE in the
5103 correct mode, we need one. */
5104 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5106 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5107 src = SET_SRC (x);
5109 else
5111 /* Otherwise, update the COMPARE if needed. */
5112 SUBST (XEXP (src, 0), op0);
5113 SUBST (XEXP (src, 1), op1);
5116 else
5118 /* Get SET_SRC in a form where we have placed back any
5119 compound expressions. Then do the checks below. */
5120 src = make_compound_operation (src, SET);
5121 SUBST (SET_SRC (x), src);
5124 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5125 and X being a REG or (subreg (reg)), we may be able to convert this to
5126 (set (subreg:m2 x) (op)).
5128 We can always do this if M1 is narrower than M2 because that means that
5129 we only care about the low bits of the result.
5131 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5132 perform a narrower operation than requested since the high-order bits will
5133 be undefined. On machine where it is defined, this transformation is safe
5134 as long as M1 and M2 have the same number of words. */
5136 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5137 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5138 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5139 / UNITS_PER_WORD)
5140 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5141 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5142 #ifndef WORD_REGISTER_OPERATIONS
5143 && (GET_MODE_SIZE (GET_MODE (src))
5144 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5145 #endif
5146 #ifdef CLASS_CANNOT_CHANGE_MODE
5147 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5148 && (TEST_HARD_REG_BIT
5149 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5150 REGNO (dest)))
5151 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5152 GET_MODE (SUBREG_REG (src))))
5153 #endif
5154 && (GET_CODE (dest) == REG
5155 || (GET_CODE (dest) == SUBREG
5156 && GET_CODE (SUBREG_REG (dest)) == REG)))
5158 SUBST (SET_DEST (x),
5159 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5160 dest));
5161 SUBST (SET_SRC (x), SUBREG_REG (src));
5163 src = SET_SRC (x), dest = SET_DEST (x);
5166 #ifdef LOAD_EXTEND_OP
5167 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5168 would require a paradoxical subreg. Replace the subreg with a
5169 zero_extend to avoid the reload that would otherwise be required. */
5171 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5172 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5173 && SUBREG_BYTE (src) == 0
5174 && (GET_MODE_SIZE (GET_MODE (src))
5175 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5176 && GET_CODE (SUBREG_REG (src)) == MEM)
5178 SUBST (SET_SRC (x),
5179 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5180 GET_MODE (src), SUBREG_REG (src)));
5182 src = SET_SRC (x);
5184 #endif
5186 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5187 are comparing an item known to be 0 or -1 against 0, use a logical
5188 operation instead. Check for one of the arms being an IOR of the other
5189 arm with some value. We compute three terms to be IOR'ed together. In
5190 practice, at most two will be nonzero. Then we do the IOR's. */
5192 if (GET_CODE (dest) != PC
5193 && GET_CODE (src) == IF_THEN_ELSE
5194 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5195 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5196 && XEXP (XEXP (src, 0), 1) == const0_rtx
5197 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5198 #ifdef HAVE_conditional_move
5199 && ! can_conditionally_move_p (GET_MODE (src))
5200 #endif
5201 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5202 GET_MODE (XEXP (XEXP (src, 0), 0)))
5203 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5204 && ! side_effects_p (src))
5206 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5207 ? XEXP (src, 1) : XEXP (src, 2));
5208 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5209 ? XEXP (src, 2) : XEXP (src, 1));
5210 rtx term1 = const0_rtx, term2, term3;
5212 if (GET_CODE (true_rtx) == IOR
5213 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5214 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5215 else if (GET_CODE (true_rtx) == IOR
5216 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5217 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5218 else if (GET_CODE (false_rtx) == IOR
5219 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5220 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5221 else if (GET_CODE (false_rtx) == IOR
5222 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5223 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5225 term2 = gen_binary (AND, GET_MODE (src),
5226 XEXP (XEXP (src, 0), 0), true_rtx);
5227 term3 = gen_binary (AND, GET_MODE (src),
5228 simplify_gen_unary (NOT, GET_MODE (src),
5229 XEXP (XEXP (src, 0), 0),
5230 GET_MODE (src)),
5231 false_rtx);
5233 SUBST (SET_SRC (x),
5234 gen_binary (IOR, GET_MODE (src),
5235 gen_binary (IOR, GET_MODE (src), term1, term2),
5236 term3));
5238 src = SET_SRC (x);
5241 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5242 whole thing fail. */
5243 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5244 return src;
5245 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5246 return dest;
5247 else
5248 /* Convert this into a field assignment operation, if possible. */
5249 return make_field_assignment (x);
5252 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5253 result. LAST is nonzero if this is the last retry. */
5255 static rtx
5256 simplify_logical (x, last)
5257 rtx x;
5258 int last;
5260 enum machine_mode mode = GET_MODE (x);
5261 rtx op0 = XEXP (x, 0);
5262 rtx op1 = XEXP (x, 1);
5263 rtx reversed;
5265 switch (GET_CODE (x))
5267 case AND:
5268 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5269 insn (and may simplify more). */
5270 if (GET_CODE (op0) == XOR
5271 && rtx_equal_p (XEXP (op0, 0), op1)
5272 && ! side_effects_p (op1))
5273 x = gen_binary (AND, mode,
5274 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5275 op1);
5277 if (GET_CODE (op0) == XOR
5278 && rtx_equal_p (XEXP (op0, 1), op1)
5279 && ! side_effects_p (op1))
5280 x = gen_binary (AND, mode,
5281 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5282 op1);
5284 /* Similarly for (~(A ^ B)) & A. */
5285 if (GET_CODE (op0) == NOT
5286 && GET_CODE (XEXP (op0, 0)) == XOR
5287 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5288 && ! side_effects_p (op1))
5289 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5291 if (GET_CODE (op0) == NOT
5292 && GET_CODE (XEXP (op0, 0)) == XOR
5293 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5294 && ! side_effects_p (op1))
5295 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5297 /* We can call simplify_and_const_int only if we don't lose
5298 any (sign) bits when converting INTVAL (op1) to
5299 "unsigned HOST_WIDE_INT". */
5300 if (GET_CODE (op1) == CONST_INT
5301 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5302 || INTVAL (op1) > 0))
5304 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5306 /* If we have (ior (and (X C1) C2)) and the next restart would be
5307 the last, simplify this by making C1 as small as possible
5308 and then exit. */
5309 if (last
5310 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5311 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5312 && GET_CODE (op1) == CONST_INT)
5313 return gen_binary (IOR, mode,
5314 gen_binary (AND, mode, XEXP (op0, 0),
5315 GEN_INT (INTVAL (XEXP (op0, 1))
5316 & ~INTVAL (op1))), op1);
5318 if (GET_CODE (x) != AND)
5319 return x;
5321 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5322 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5323 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5326 /* Convert (A | B) & A to A. */
5327 if (GET_CODE (op0) == IOR
5328 && (rtx_equal_p (XEXP (op0, 0), op1)
5329 || rtx_equal_p (XEXP (op0, 1), op1))
5330 && ! side_effects_p (XEXP (op0, 0))
5331 && ! side_effects_p (XEXP (op0, 1)))
5332 return op1;
5334 /* In the following group of tests (and those in case IOR below),
5335 we start with some combination of logical operations and apply
5336 the distributive law followed by the inverse distributive law.
5337 Most of the time, this results in no change. However, if some of
5338 the operands are the same or inverses of each other, simplifications
5339 will result.
5341 For example, (and (ior A B) (not B)) can occur as the result of
5342 expanding a bit field assignment. When we apply the distributive
5343 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5344 which then simplifies to (and (A (not B))).
5346 If we have (and (ior A B) C), apply the distributive law and then
5347 the inverse distributive law to see if things simplify. */
5349 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5351 x = apply_distributive_law
5352 (gen_binary (GET_CODE (op0), mode,
5353 gen_binary (AND, mode, XEXP (op0, 0), op1),
5354 gen_binary (AND, mode, XEXP (op0, 1),
5355 copy_rtx (op1))));
5356 if (GET_CODE (x) != AND)
5357 return x;
5360 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5361 return apply_distributive_law
5362 (gen_binary (GET_CODE (op1), mode,
5363 gen_binary (AND, mode, XEXP (op1, 0), op0),
5364 gen_binary (AND, mode, XEXP (op1, 1),
5365 copy_rtx (op0))));
5367 /* Similarly, taking advantage of the fact that
5368 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5370 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5371 return apply_distributive_law
5372 (gen_binary (XOR, mode,
5373 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5374 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5375 XEXP (op1, 1))));
5377 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5378 return apply_distributive_law
5379 (gen_binary (XOR, mode,
5380 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5381 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5382 break;
5384 case IOR:
5385 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5386 if (GET_CODE (op1) == CONST_INT
5387 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5388 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5389 return op1;
5391 /* Convert (A & B) | A to A. */
5392 if (GET_CODE (op0) == AND
5393 && (rtx_equal_p (XEXP (op0, 0), op1)
5394 || rtx_equal_p (XEXP (op0, 1), op1))
5395 && ! side_effects_p (XEXP (op0, 0))
5396 && ! side_effects_p (XEXP (op0, 1)))
5397 return op1;
5399 /* If we have (ior (and A B) C), apply the distributive law and then
5400 the inverse distributive law to see if things simplify. */
5402 if (GET_CODE (op0) == AND)
5404 x = apply_distributive_law
5405 (gen_binary (AND, mode,
5406 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5407 gen_binary (IOR, mode, XEXP (op0, 1),
5408 copy_rtx (op1))));
5410 if (GET_CODE (x) != IOR)
5411 return x;
5414 if (GET_CODE (op1) == AND)
5416 x = apply_distributive_law
5417 (gen_binary (AND, mode,
5418 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5419 gen_binary (IOR, mode, XEXP (op1, 1),
5420 copy_rtx (op0))));
5422 if (GET_CODE (x) != IOR)
5423 return x;
5426 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5427 mode size to (rotate A CX). */
5429 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5430 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5431 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5432 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5433 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5434 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5435 == GET_MODE_BITSIZE (mode)))
5436 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5437 (GET_CODE (op0) == ASHIFT
5438 ? XEXP (op0, 1) : XEXP (op1, 1)));
5440 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5441 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5442 does not affect any of the bits in OP1, it can really be done
5443 as a PLUS and we can associate. We do this by seeing if OP1
5444 can be safely shifted left C bits. */
5445 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5446 && GET_CODE (XEXP (op0, 0)) == PLUS
5447 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5448 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5449 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5451 int count = INTVAL (XEXP (op0, 1));
5452 HOST_WIDE_INT mask = INTVAL (op1) << count;
5454 if (mask >> count == INTVAL (op1)
5455 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5457 SUBST (XEXP (XEXP (op0, 0), 1),
5458 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5459 return op0;
5462 break;
5464 case XOR:
5465 /* If we are XORing two things that have no bits in common,
5466 convert them into an IOR. This helps to detect rotation encoded
5467 using those methods and possibly other simplifications. */
5469 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5470 && (nonzero_bits (op0, mode)
5471 & nonzero_bits (op1, mode)) == 0)
5472 return (gen_binary (IOR, mode, op0, op1));
5474 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5475 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5476 (NOT y). */
5478 int num_negated = 0;
5480 if (GET_CODE (op0) == NOT)
5481 num_negated++, op0 = XEXP (op0, 0);
5482 if (GET_CODE (op1) == NOT)
5483 num_negated++, op1 = XEXP (op1, 0);
5485 if (num_negated == 2)
5487 SUBST (XEXP (x, 0), op0);
5488 SUBST (XEXP (x, 1), op1);
5490 else if (num_negated == 1)
5491 return
5492 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5493 mode);
5496 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5497 correspond to a machine insn or result in further simplifications
5498 if B is a constant. */
5500 if (GET_CODE (op0) == AND
5501 && rtx_equal_p (XEXP (op0, 1), op1)
5502 && ! side_effects_p (op1))
5503 return gen_binary (AND, mode,
5504 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5505 op1);
5507 else if (GET_CODE (op0) == AND
5508 && rtx_equal_p (XEXP (op0, 0), op1)
5509 && ! side_effects_p (op1))
5510 return gen_binary (AND, mode,
5511 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5512 op1);
5514 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5515 comparison if STORE_FLAG_VALUE is 1. */
5516 if (STORE_FLAG_VALUE == 1
5517 && op1 == const1_rtx
5518 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5519 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5520 XEXP (op0, 1))))
5521 return reversed;
5523 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5524 is (lt foo (const_int 0)), so we can perform the above
5525 simplification if STORE_FLAG_VALUE is 1. */
5527 if (STORE_FLAG_VALUE == 1
5528 && op1 == const1_rtx
5529 && GET_CODE (op0) == LSHIFTRT
5530 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5531 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5532 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5534 /* (xor (comparison foo bar) (const_int sign-bit))
5535 when STORE_FLAG_VALUE is the sign bit. */
5536 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5537 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5538 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5539 && op1 == const_true_rtx
5540 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5541 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5542 XEXP (op0, 1))))
5543 return reversed;
5545 break;
5547 default:
5548 abort ();
5551 return x;
5554 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5555 operations" because they can be replaced with two more basic operations.
5556 ZERO_EXTEND is also considered "compound" because it can be replaced with
5557 an AND operation, which is simpler, though only one operation.
5559 The function expand_compound_operation is called with an rtx expression
5560 and will convert it to the appropriate shifts and AND operations,
5561 simplifying at each stage.
5563 The function make_compound_operation is called to convert an expression
5564 consisting of shifts and ANDs into the equivalent compound expression.
5565 It is the inverse of this function, loosely speaking. */
5567 static rtx
5568 expand_compound_operation (x)
5569 rtx x;
5571 unsigned HOST_WIDE_INT pos = 0, len;
5572 int unsignedp = 0;
5573 unsigned int modewidth;
5574 rtx tem;
5576 switch (GET_CODE (x))
5578 case ZERO_EXTEND:
5579 unsignedp = 1;
5580 case SIGN_EXTEND:
5581 /* We can't necessarily use a const_int for a multiword mode;
5582 it depends on implicitly extending the value.
5583 Since we don't know the right way to extend it,
5584 we can't tell whether the implicit way is right.
5586 Even for a mode that is no wider than a const_int,
5587 we can't win, because we need to sign extend one of its bits through
5588 the rest of it, and we don't know which bit. */
5589 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5590 return x;
5592 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5593 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5594 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5595 reloaded. If not for that, MEM's would very rarely be safe.
5597 Reject MODEs bigger than a word, because we might not be able
5598 to reference a two-register group starting with an arbitrary register
5599 (and currently gen_lowpart might crash for a SUBREG). */
5601 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5602 return x;
5604 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5605 /* If the inner object has VOIDmode (the only way this can happen
5606 is if it is an ASM_OPERANDS), we can't do anything since we don't
5607 know how much masking to do. */
5608 if (len == 0)
5609 return x;
5611 break;
5613 case ZERO_EXTRACT:
5614 unsignedp = 1;
5615 case SIGN_EXTRACT:
5616 /* If the operand is a CLOBBER, just return it. */
5617 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5618 return XEXP (x, 0);
5620 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5621 || GET_CODE (XEXP (x, 2)) != CONST_INT
5622 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5623 return x;
5625 len = INTVAL (XEXP (x, 1));
5626 pos = INTVAL (XEXP (x, 2));
5628 /* If this goes outside the object being extracted, replace the object
5629 with a (use (mem ...)) construct that only combine understands
5630 and is used only for this purpose. */
5631 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5632 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5634 if (BITS_BIG_ENDIAN)
5635 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5637 break;
5639 default:
5640 return x;
5642 /* Convert sign extension to zero extension, if we know that the high
5643 bit is not set, as this is easier to optimize. It will be converted
5644 back to cheaper alternative in make_extraction. */
5645 if (GET_CODE (x) == SIGN_EXTEND
5646 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5647 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5648 & ~(((unsigned HOST_WIDE_INT)
5649 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5650 >> 1))
5651 == 0)))
5653 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5654 return expand_compound_operation (temp);
5657 /* We can optimize some special cases of ZERO_EXTEND. */
5658 if (GET_CODE (x) == ZERO_EXTEND)
5660 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5661 know that the last value didn't have any inappropriate bits
5662 set. */
5663 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5664 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5665 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5666 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5667 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5668 return XEXP (XEXP (x, 0), 0);
5670 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5671 if (GET_CODE (XEXP (x, 0)) == SUBREG
5672 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5673 && subreg_lowpart_p (XEXP (x, 0))
5674 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5675 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5676 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5677 return SUBREG_REG (XEXP (x, 0));
5679 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5680 is a comparison and STORE_FLAG_VALUE permits. This is like
5681 the first case, but it works even when GET_MODE (x) is larger
5682 than HOST_WIDE_INT. */
5683 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5684 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5685 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5686 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5687 <= HOST_BITS_PER_WIDE_INT)
5688 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5689 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5690 return XEXP (XEXP (x, 0), 0);
5692 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5693 if (GET_CODE (XEXP (x, 0)) == SUBREG
5694 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5695 && subreg_lowpart_p (XEXP (x, 0))
5696 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5697 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5698 <= HOST_BITS_PER_WIDE_INT)
5699 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5700 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5701 return SUBREG_REG (XEXP (x, 0));
5705 /* If we reach here, we want to return a pair of shifts. The inner
5706 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5707 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5708 logical depending on the value of UNSIGNEDP.
5710 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5711 converted into an AND of a shift.
5713 We must check for the case where the left shift would have a negative
5714 count. This can happen in a case like (x >> 31) & 255 on machines
5715 that can't shift by a constant. On those machines, we would first
5716 combine the shift with the AND to produce a variable-position
5717 extraction. Then the constant of 31 would be substituted in to produce
5718 a such a position. */
5720 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5721 if (modewidth + len >= pos)
5722 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5723 GET_MODE (x),
5724 simplify_shift_const (NULL_RTX, ASHIFT,
5725 GET_MODE (x),
5726 XEXP (x, 0),
5727 modewidth - pos - len),
5728 modewidth - len);
5730 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5731 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5732 simplify_shift_const (NULL_RTX, LSHIFTRT,
5733 GET_MODE (x),
5734 XEXP (x, 0), pos),
5735 ((HOST_WIDE_INT) 1 << len) - 1);
5736 else
5737 /* Any other cases we can't handle. */
5738 return x;
5740 /* If we couldn't do this for some reason, return the original
5741 expression. */
5742 if (GET_CODE (tem) == CLOBBER)
5743 return x;
5745 return tem;
5748 /* X is a SET which contains an assignment of one object into
5749 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5750 or certain SUBREGS). If possible, convert it into a series of
5751 logical operations.
5753 We half-heartedly support variable positions, but do not at all
5754 support variable lengths. */
5756 static rtx
5757 expand_field_assignment (x)
5758 rtx x;
5760 rtx inner;
5761 rtx pos; /* Always counts from low bit. */
5762 int len;
5763 rtx mask;
5764 enum machine_mode compute_mode;
5766 /* Loop until we find something we can't simplify. */
5767 while (1)
5769 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5770 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5772 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5773 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5774 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5776 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5777 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5779 inner = XEXP (SET_DEST (x), 0);
5780 len = INTVAL (XEXP (SET_DEST (x), 1));
5781 pos = XEXP (SET_DEST (x), 2);
5783 /* If the position is constant and spans the width of INNER,
5784 surround INNER with a USE to indicate this. */
5785 if (GET_CODE (pos) == CONST_INT
5786 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5787 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5789 if (BITS_BIG_ENDIAN)
5791 if (GET_CODE (pos) == CONST_INT)
5792 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5793 - INTVAL (pos));
5794 else if (GET_CODE (pos) == MINUS
5795 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5796 && (INTVAL (XEXP (pos, 1))
5797 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5798 /* If position is ADJUST - X, new position is X. */
5799 pos = XEXP (pos, 0);
5800 else
5801 pos = gen_binary (MINUS, GET_MODE (pos),
5802 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5803 - len),
5804 pos);
5808 /* A SUBREG between two modes that occupy the same numbers of words
5809 can be done by moving the SUBREG to the source. */
5810 else if (GET_CODE (SET_DEST (x)) == SUBREG
5811 /* We need SUBREGs to compute nonzero_bits properly. */
5812 && nonzero_sign_valid
5813 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5814 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5815 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5816 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5818 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5819 gen_lowpart_for_combine
5820 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5821 SET_SRC (x)));
5822 continue;
5824 else
5825 break;
5827 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5828 inner = SUBREG_REG (inner);
5830 compute_mode = GET_MODE (inner);
5832 /* Don't attempt bitwise arithmetic on non-integral modes. */
5833 if (! INTEGRAL_MODE_P (compute_mode))
5835 enum machine_mode imode;
5837 /* Something is probably seriously wrong if this matches. */
5838 if (! FLOAT_MODE_P (compute_mode))
5839 break;
5841 /* Try to find an integral mode to pun with. */
5842 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5843 if (imode == BLKmode)
5844 break;
5846 compute_mode = imode;
5847 inner = gen_lowpart_for_combine (imode, inner);
5850 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5851 if (len < HOST_BITS_PER_WIDE_INT)
5852 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5853 else
5854 break;
5856 /* Now compute the equivalent expression. Make a copy of INNER
5857 for the SET_DEST in case it is a MEM into which we will substitute;
5858 we don't want shared RTL in that case. */
5859 x = gen_rtx_SET
5860 (VOIDmode, copy_rtx (inner),
5861 gen_binary (IOR, compute_mode,
5862 gen_binary (AND, compute_mode,
5863 simplify_gen_unary (NOT, compute_mode,
5864 gen_binary (ASHIFT,
5865 compute_mode,
5866 mask, pos),
5867 compute_mode),
5868 inner),
5869 gen_binary (ASHIFT, compute_mode,
5870 gen_binary (AND, compute_mode,
5871 gen_lowpart_for_combine
5872 (compute_mode, SET_SRC (x)),
5873 mask),
5874 pos)));
5877 return x;
5880 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5881 it is an RTX that represents a variable starting position; otherwise,
5882 POS is the (constant) starting bit position (counted from the LSB).
5884 INNER may be a USE. This will occur when we started with a bitfield
5885 that went outside the boundary of the object in memory, which is
5886 allowed on most machines. To isolate this case, we produce a USE
5887 whose mode is wide enough and surround the MEM with it. The only
5888 code that understands the USE is this routine. If it is not removed,
5889 it will cause the resulting insn not to match.
5891 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5892 signed reference.
5894 IN_DEST is non-zero if this is a reference in the destination of a
5895 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5896 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5897 be used.
5899 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5900 ZERO_EXTRACT should be built even for bits starting at bit 0.
5902 MODE is the desired mode of the result (if IN_DEST == 0).
5904 The result is an RTX for the extraction or NULL_RTX if the target
5905 can't handle it. */
5907 static rtx
5908 make_extraction (mode, inner, pos, pos_rtx, len,
5909 unsignedp, in_dest, in_compare)
5910 enum machine_mode mode;
5911 rtx inner;
5912 HOST_WIDE_INT pos;
5913 rtx pos_rtx;
5914 unsigned HOST_WIDE_INT len;
5915 int unsignedp;
5916 int in_dest, in_compare;
5918 /* This mode describes the size of the storage area
5919 to fetch the overall value from. Within that, we
5920 ignore the POS lowest bits, etc. */
5921 enum machine_mode is_mode = GET_MODE (inner);
5922 enum machine_mode inner_mode;
5923 enum machine_mode wanted_inner_mode = byte_mode;
5924 enum machine_mode wanted_inner_reg_mode = word_mode;
5925 enum machine_mode pos_mode = word_mode;
5926 enum machine_mode extraction_mode = word_mode;
5927 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5928 int spans_byte = 0;
5929 rtx new = 0;
5930 rtx orig_pos_rtx = pos_rtx;
5931 HOST_WIDE_INT orig_pos;
5933 /* Get some information about INNER and get the innermost object. */
5934 if (GET_CODE (inner) == USE)
5935 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5936 /* We don't need to adjust the position because we set up the USE
5937 to pretend that it was a full-word object. */
5938 spans_byte = 1, inner = XEXP (inner, 0);
5939 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5941 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5942 consider just the QI as the memory to extract from.
5943 The subreg adds or removes high bits; its mode is
5944 irrelevant to the meaning of this extraction,
5945 since POS and LEN count from the lsb. */
5946 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5947 is_mode = GET_MODE (SUBREG_REG (inner));
5948 inner = SUBREG_REG (inner);
5951 inner_mode = GET_MODE (inner);
5953 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5954 pos = INTVAL (pos_rtx), pos_rtx = 0;
5956 /* See if this can be done without an extraction. We never can if the
5957 width of the field is not the same as that of some integer mode. For
5958 registers, we can only avoid the extraction if the position is at the
5959 low-order bit and this is either not in the destination or we have the
5960 appropriate STRICT_LOW_PART operation available.
5962 For MEM, we can avoid an extract if the field starts on an appropriate
5963 boundary and we can change the mode of the memory reference. However,
5964 we cannot directly access the MEM if we have a USE and the underlying
5965 MEM is not TMODE. This combination means that MEM was being used in a
5966 context where bits outside its mode were being referenced; that is only
5967 valid in bit-field insns. */
5969 if (tmode != BLKmode
5970 && ! (spans_byte && inner_mode != tmode)
5971 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5972 && GET_CODE (inner) != MEM
5973 && (! in_dest
5974 || (GET_CODE (inner) == REG
5975 && have_insn_for (STRICT_LOW_PART, tmode))))
5976 || (GET_CODE (inner) == MEM && pos_rtx == 0
5977 && (pos
5978 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5979 : BITS_PER_UNIT)) == 0
5980 /* We can't do this if we are widening INNER_MODE (it
5981 may not be aligned, for one thing). */
5982 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5983 && (inner_mode == tmode
5984 || (! mode_dependent_address_p (XEXP (inner, 0))
5985 && ! MEM_VOLATILE_P (inner))))))
5987 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5988 field. If the original and current mode are the same, we need not
5989 adjust the offset. Otherwise, we do if bytes big endian.
5991 If INNER is not a MEM, get a piece consisting of just the field
5992 of interest (in this case POS % BITS_PER_WORD must be 0). */
5994 if (GET_CODE (inner) == MEM)
5996 HOST_WIDE_INT offset;
5998 /* POS counts from lsb, but make OFFSET count in memory order. */
5999 if (BYTES_BIG_ENDIAN)
6000 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6001 else
6002 offset = pos / BITS_PER_UNIT;
6004 new = adjust_address_nv (inner, tmode, offset);
6006 else if (GET_CODE (inner) == REG)
6008 /* We can't call gen_lowpart_for_combine here since we always want
6009 a SUBREG and it would sometimes return a new hard register. */
6010 if (tmode != inner_mode)
6012 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6014 if (WORDS_BIG_ENDIAN
6015 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6016 final_word = ((GET_MODE_SIZE (inner_mode)
6017 - GET_MODE_SIZE (tmode))
6018 / UNITS_PER_WORD) - final_word;
6020 final_word *= UNITS_PER_WORD;
6021 if (BYTES_BIG_ENDIAN &&
6022 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6023 final_word += (GET_MODE_SIZE (inner_mode)
6024 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6026 new = gen_rtx_SUBREG (tmode, inner, final_word);
6028 else
6029 new = inner;
6031 else
6032 new = force_to_mode (inner, tmode,
6033 len >= HOST_BITS_PER_WIDE_INT
6034 ? ~(unsigned HOST_WIDE_INT) 0
6035 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6036 NULL_RTX, 0);
6038 /* If this extraction is going into the destination of a SET,
6039 make a STRICT_LOW_PART unless we made a MEM. */
6041 if (in_dest)
6042 return (GET_CODE (new) == MEM ? new
6043 : (GET_CODE (new) != SUBREG
6044 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6045 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6047 if (mode == tmode)
6048 return new;
6050 if (GET_CODE (new) == CONST_INT)
6051 return gen_int_mode (INTVAL (new), mode);
6053 /* If we know that no extraneous bits are set, and that the high
6054 bit is not set, convert the extraction to the cheaper of
6055 sign and zero extension, that are equivalent in these cases. */
6056 if (flag_expensive_optimizations
6057 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6058 && ((nonzero_bits (new, tmode)
6059 & ~(((unsigned HOST_WIDE_INT)
6060 GET_MODE_MASK (tmode))
6061 >> 1))
6062 == 0)))
6064 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6065 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6067 /* Prefer ZERO_EXTENSION, since it gives more information to
6068 backends. */
6069 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6070 return temp;
6071 return temp1;
6074 /* Otherwise, sign- or zero-extend unless we already are in the
6075 proper mode. */
6077 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6078 mode, new));
6081 /* Unless this is a COMPARE or we have a funny memory reference,
6082 don't do anything with zero-extending field extracts starting at
6083 the low-order bit since they are simple AND operations. */
6084 if (pos_rtx == 0 && pos == 0 && ! in_dest
6085 && ! in_compare && ! spans_byte && unsignedp)
6086 return 0;
6088 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6089 we would be spanning bytes or if the position is not a constant and the
6090 length is not 1. In all other cases, we would only be going outside
6091 our object in cases when an original shift would have been
6092 undefined. */
6093 if (! spans_byte && GET_CODE (inner) == MEM
6094 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6095 || (pos_rtx != 0 && len != 1)))
6096 return 0;
6098 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6099 and the mode for the result. */
6100 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6102 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6103 pos_mode = mode_for_extraction (EP_insv, 2);
6104 extraction_mode = mode_for_extraction (EP_insv, 3);
6107 if (! in_dest && unsignedp
6108 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6110 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6111 pos_mode = mode_for_extraction (EP_extzv, 3);
6112 extraction_mode = mode_for_extraction (EP_extzv, 0);
6115 if (! in_dest && ! unsignedp
6116 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6118 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6119 pos_mode = mode_for_extraction (EP_extv, 3);
6120 extraction_mode = mode_for_extraction (EP_extv, 0);
6123 /* Never narrow an object, since that might not be safe. */
6125 if (mode != VOIDmode
6126 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6127 extraction_mode = mode;
6129 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6130 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6131 pos_mode = GET_MODE (pos_rtx);
6133 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6134 if we have to change the mode of memory and cannot, the desired mode is
6135 EXTRACTION_MODE. */
6136 if (GET_CODE (inner) != MEM)
6137 wanted_inner_mode = wanted_inner_reg_mode;
6138 else if (inner_mode != wanted_inner_mode
6139 && (mode_dependent_address_p (XEXP (inner, 0))
6140 || MEM_VOLATILE_P (inner)))
6141 wanted_inner_mode = extraction_mode;
6143 orig_pos = pos;
6145 if (BITS_BIG_ENDIAN)
6147 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6148 BITS_BIG_ENDIAN style. If position is constant, compute new
6149 position. Otherwise, build subtraction.
6150 Note that POS is relative to the mode of the original argument.
6151 If it's a MEM we need to recompute POS relative to that.
6152 However, if we're extracting from (or inserting into) a register,
6153 we want to recompute POS relative to wanted_inner_mode. */
6154 int width = (GET_CODE (inner) == MEM
6155 ? GET_MODE_BITSIZE (is_mode)
6156 : GET_MODE_BITSIZE (wanted_inner_mode));
6158 if (pos_rtx == 0)
6159 pos = width - len - pos;
6160 else
6161 pos_rtx
6162 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6163 /* POS may be less than 0 now, but we check for that below.
6164 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6167 /* If INNER has a wider mode, make it smaller. If this is a constant
6168 extract, try to adjust the byte to point to the byte containing
6169 the value. */
6170 if (wanted_inner_mode != VOIDmode
6171 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6172 && ((GET_CODE (inner) == MEM
6173 && (inner_mode == wanted_inner_mode
6174 || (! mode_dependent_address_p (XEXP (inner, 0))
6175 && ! MEM_VOLATILE_P (inner))))))
6177 int offset = 0;
6179 /* The computations below will be correct if the machine is big
6180 endian in both bits and bytes or little endian in bits and bytes.
6181 If it is mixed, we must adjust. */
6183 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6184 adjust OFFSET to compensate. */
6185 if (BYTES_BIG_ENDIAN
6186 && ! spans_byte
6187 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6188 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6190 /* If this is a constant position, we can move to the desired byte. */
6191 if (pos_rtx == 0)
6193 offset += pos / BITS_PER_UNIT;
6194 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6197 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6198 && ! spans_byte
6199 && is_mode != wanted_inner_mode)
6200 offset = (GET_MODE_SIZE (is_mode)
6201 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6203 if (offset != 0 || inner_mode != wanted_inner_mode)
6204 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6207 /* If INNER is not memory, we can always get it into the proper mode. If we
6208 are changing its mode, POS must be a constant and smaller than the size
6209 of the new mode. */
6210 else if (GET_CODE (inner) != MEM)
6212 if (GET_MODE (inner) != wanted_inner_mode
6213 && (pos_rtx != 0
6214 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6215 return 0;
6217 inner = force_to_mode (inner, wanted_inner_mode,
6218 pos_rtx
6219 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6220 ? ~(unsigned HOST_WIDE_INT) 0
6221 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6222 << orig_pos),
6223 NULL_RTX, 0);
6226 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6227 have to zero extend. Otherwise, we can just use a SUBREG. */
6228 if (pos_rtx != 0
6229 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6231 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6233 /* If we know that no extraneous bits are set, and that the high
6234 bit is not set, convert extraction to cheaper one - either
6235 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6236 cases. */
6237 if (flag_expensive_optimizations
6238 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6239 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6240 & ~(((unsigned HOST_WIDE_INT)
6241 GET_MODE_MASK (GET_MODE (pos_rtx)))
6242 >> 1))
6243 == 0)))
6245 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6247 /* Prefer ZERO_EXTENSION, since it gives more information to
6248 backends. */
6249 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6250 temp = temp1;
6252 pos_rtx = temp;
6254 else if (pos_rtx != 0
6255 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6256 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6258 /* Make POS_RTX unless we already have it and it is correct. If we don't
6259 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6260 be a CONST_INT. */
6261 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6262 pos_rtx = orig_pos_rtx;
6264 else if (pos_rtx == 0)
6265 pos_rtx = GEN_INT (pos);
6267 /* Make the required operation. See if we can use existing rtx. */
6268 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6269 extraction_mode, inner, GEN_INT (len), pos_rtx);
6270 if (! in_dest)
6271 new = gen_lowpart_for_combine (mode, new);
6273 return new;
6276 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6277 with any other operations in X. Return X without that shift if so. */
6279 static rtx
6280 extract_left_shift (x, count)
6281 rtx x;
6282 int count;
6284 enum rtx_code code = GET_CODE (x);
6285 enum machine_mode mode = GET_MODE (x);
6286 rtx tem;
6288 switch (code)
6290 case ASHIFT:
6291 /* This is the shift itself. If it is wide enough, we will return
6292 either the value being shifted if the shift count is equal to
6293 COUNT or a shift for the difference. */
6294 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6295 && INTVAL (XEXP (x, 1)) >= count)
6296 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6297 INTVAL (XEXP (x, 1)) - count);
6298 break;
6300 case NEG: case NOT:
6301 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6302 return simplify_gen_unary (code, mode, tem, mode);
6304 break;
6306 case PLUS: case IOR: case XOR: case AND:
6307 /* If we can safely shift this constant and we find the inner shift,
6308 make a new operation. */
6309 if (GET_CODE (XEXP (x,1)) == CONST_INT
6310 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6311 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6312 return gen_binary (code, mode, tem,
6313 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6315 break;
6317 default:
6318 break;
6321 return 0;
6324 /* Look at the expression rooted at X. Look for expressions
6325 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6326 Form these expressions.
6328 Return the new rtx, usually just X.
6330 Also, for machines like the VAX that don't have logical shift insns,
6331 try to convert logical to arithmetic shift operations in cases where
6332 they are equivalent. This undoes the canonicalizations to logical
6333 shifts done elsewhere.
6335 We try, as much as possible, to re-use rtl expressions to save memory.
6337 IN_CODE says what kind of expression we are processing. Normally, it is
6338 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6339 being kludges), it is MEM. When processing the arguments of a comparison
6340 or a COMPARE against zero, it is COMPARE. */
6342 static rtx
6343 make_compound_operation (x, in_code)
6344 rtx x;
6345 enum rtx_code in_code;
6347 enum rtx_code code = GET_CODE (x);
6348 enum machine_mode mode = GET_MODE (x);
6349 int mode_width = GET_MODE_BITSIZE (mode);
6350 rtx rhs, lhs;
6351 enum rtx_code next_code;
6352 int i;
6353 rtx new = 0;
6354 rtx tem;
6355 const char *fmt;
6357 /* Select the code to be used in recursive calls. Once we are inside an
6358 address, we stay there. If we have a comparison, set to COMPARE,
6359 but once inside, go back to our default of SET. */
6361 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6362 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6363 && XEXP (x, 1) == const0_rtx) ? COMPARE
6364 : in_code == COMPARE ? SET : in_code);
6366 /* Process depending on the code of this operation. If NEW is set
6367 non-zero, it will be returned. */
6369 switch (code)
6371 case ASHIFT:
6372 /* Convert shifts by constants into multiplications if inside
6373 an address. */
6374 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6375 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6376 && INTVAL (XEXP (x, 1)) >= 0)
6378 new = make_compound_operation (XEXP (x, 0), next_code);
6379 new = gen_rtx_MULT (mode, new,
6380 GEN_INT ((HOST_WIDE_INT) 1
6381 << INTVAL (XEXP (x, 1))));
6383 break;
6385 case AND:
6386 /* If the second operand is not a constant, we can't do anything
6387 with it. */
6388 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6389 break;
6391 /* If the constant is a power of two minus one and the first operand
6392 is a logical right shift, make an extraction. */
6393 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6394 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6396 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6397 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6398 0, in_code == COMPARE);
6401 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6402 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6403 && subreg_lowpart_p (XEXP (x, 0))
6404 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6405 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6407 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6408 next_code);
6409 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6410 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6411 0, in_code == COMPARE);
6413 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6414 else if ((GET_CODE (XEXP (x, 0)) == XOR
6415 || GET_CODE (XEXP (x, 0)) == IOR)
6416 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6417 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6418 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6420 /* Apply the distributive law, and then try to make extractions. */
6421 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6422 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6423 XEXP (x, 1)),
6424 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6425 XEXP (x, 1)));
6426 new = make_compound_operation (new, in_code);
6429 /* If we are have (and (rotate X C) M) and C is larger than the number
6430 of bits in M, this is an extraction. */
6432 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6433 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6434 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6435 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6437 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6438 new = make_extraction (mode, new,
6439 (GET_MODE_BITSIZE (mode)
6440 - INTVAL (XEXP (XEXP (x, 0), 1))),
6441 NULL_RTX, i, 1, 0, in_code == COMPARE);
6444 /* On machines without logical shifts, if the operand of the AND is
6445 a logical shift and our mask turns off all the propagated sign
6446 bits, we can replace the logical shift with an arithmetic shift. */
6447 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6448 && !have_insn_for (LSHIFTRT, mode)
6449 && have_insn_for (ASHIFTRT, mode)
6450 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6451 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6452 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6453 && mode_width <= HOST_BITS_PER_WIDE_INT)
6455 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6457 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6458 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6459 SUBST (XEXP (x, 0),
6460 gen_rtx_ASHIFTRT (mode,
6461 make_compound_operation
6462 (XEXP (XEXP (x, 0), 0), next_code),
6463 XEXP (XEXP (x, 0), 1)));
6466 /* If the constant is one less than a power of two, this might be
6467 representable by an extraction even if no shift is present.
6468 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6469 we are in a COMPARE. */
6470 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6471 new = make_extraction (mode,
6472 make_compound_operation (XEXP (x, 0),
6473 next_code),
6474 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6476 /* If we are in a comparison and this is an AND with a power of two,
6477 convert this into the appropriate bit extract. */
6478 else if (in_code == COMPARE
6479 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6480 new = make_extraction (mode,
6481 make_compound_operation (XEXP (x, 0),
6482 next_code),
6483 i, NULL_RTX, 1, 1, 0, 1);
6485 break;
6487 case LSHIFTRT:
6488 /* If the sign bit is known to be zero, replace this with an
6489 arithmetic shift. */
6490 if (have_insn_for (ASHIFTRT, mode)
6491 && ! have_insn_for (LSHIFTRT, mode)
6492 && mode_width <= HOST_BITS_PER_WIDE_INT
6493 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6495 new = gen_rtx_ASHIFTRT (mode,
6496 make_compound_operation (XEXP (x, 0),
6497 next_code),
6498 XEXP (x, 1));
6499 break;
6502 /* ... fall through ... */
6504 case ASHIFTRT:
6505 lhs = XEXP (x, 0);
6506 rhs = XEXP (x, 1);
6508 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6509 this is a SIGN_EXTRACT. */
6510 if (GET_CODE (rhs) == CONST_INT
6511 && GET_CODE (lhs) == ASHIFT
6512 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6513 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6515 new = make_compound_operation (XEXP (lhs, 0), next_code);
6516 new = make_extraction (mode, new,
6517 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6518 NULL_RTX, mode_width - INTVAL (rhs),
6519 code == LSHIFTRT, 0, in_code == COMPARE);
6520 break;
6523 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6524 If so, try to merge the shifts into a SIGN_EXTEND. We could
6525 also do this for some cases of SIGN_EXTRACT, but it doesn't
6526 seem worth the effort; the case checked for occurs on Alpha. */
6528 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6529 && ! (GET_CODE (lhs) == SUBREG
6530 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6531 && GET_CODE (rhs) == CONST_INT
6532 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6533 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6534 new = make_extraction (mode, make_compound_operation (new, next_code),
6535 0, NULL_RTX, mode_width - INTVAL (rhs),
6536 code == LSHIFTRT, 0, in_code == COMPARE);
6538 break;
6540 case SUBREG:
6541 /* Call ourselves recursively on the inner expression. If we are
6542 narrowing the object and it has a different RTL code from
6543 what it originally did, do this SUBREG as a force_to_mode. */
6545 tem = make_compound_operation (SUBREG_REG (x), in_code);
6546 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6547 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6548 && subreg_lowpart_p (x))
6550 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6551 NULL_RTX, 0);
6553 /* If we have something other than a SUBREG, we might have
6554 done an expansion, so rerun ourselves. */
6555 if (GET_CODE (newer) != SUBREG)
6556 newer = make_compound_operation (newer, in_code);
6558 return newer;
6561 /* If this is a paradoxical subreg, and the new code is a sign or
6562 zero extension, omit the subreg and widen the extension. If it
6563 is a regular subreg, we can still get rid of the subreg by not
6564 widening so much, or in fact removing the extension entirely. */
6565 if ((GET_CODE (tem) == SIGN_EXTEND
6566 || GET_CODE (tem) == ZERO_EXTEND)
6567 && subreg_lowpart_p (x))
6569 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6570 || (GET_MODE_SIZE (mode) >
6571 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6572 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6573 else
6574 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6575 return tem;
6577 break;
6579 default:
6580 break;
6583 if (new)
6585 x = gen_lowpart_for_combine (mode, new);
6586 code = GET_CODE (x);
6589 /* Now recursively process each operand of this operation. */
6590 fmt = GET_RTX_FORMAT (code);
6591 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6592 if (fmt[i] == 'e')
6594 new = make_compound_operation (XEXP (x, i), next_code);
6595 SUBST (XEXP (x, i), new);
6598 return x;
6601 /* Given M see if it is a value that would select a field of bits
6602 within an item, but not the entire word. Return -1 if not.
6603 Otherwise, return the starting position of the field, where 0 is the
6604 low-order bit.
6606 *PLEN is set to the length of the field. */
6608 static int
6609 get_pos_from_mask (m, plen)
6610 unsigned HOST_WIDE_INT m;
6611 unsigned HOST_WIDE_INT *plen;
6613 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6614 int pos = exact_log2 (m & -m);
6615 int len;
6617 if (pos < 0)
6618 return -1;
6620 /* Now shift off the low-order zero bits and see if we have a power of
6621 two minus 1. */
6622 len = exact_log2 ((m >> pos) + 1);
6624 if (len <= 0)
6625 return -1;
6627 *plen = len;
6628 return pos;
6631 /* See if X can be simplified knowing that we will only refer to it in
6632 MODE and will only refer to those bits that are nonzero in MASK.
6633 If other bits are being computed or if masking operations are done
6634 that select a superset of the bits in MASK, they can sometimes be
6635 ignored.
6637 Return a possibly simplified expression, but always convert X to
6638 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6640 Also, if REG is non-zero and X is a register equal in value to REG,
6641 replace X with REG.
6643 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6644 are all off in X. This is used when X will be complemented, by either
6645 NOT, NEG, or XOR. */
6647 static rtx
6648 force_to_mode (x, mode, mask, reg, just_select)
6649 rtx x;
6650 enum machine_mode mode;
6651 unsigned HOST_WIDE_INT mask;
6652 rtx reg;
6653 int just_select;
6655 enum rtx_code code = GET_CODE (x);
6656 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6657 enum machine_mode op_mode;
6658 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6659 rtx op0, op1, temp;
6661 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6662 code below will do the wrong thing since the mode of such an
6663 expression is VOIDmode.
6665 Also do nothing if X is a CLOBBER; this can happen if X was
6666 the return value from a call to gen_lowpart_for_combine. */
6667 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6668 return x;
6670 /* We want to perform the operation is its present mode unless we know
6671 that the operation is valid in MODE, in which case we do the operation
6672 in MODE. */
6673 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6674 && have_insn_for (code, mode))
6675 ? mode : GET_MODE (x));
6677 /* It is not valid to do a right-shift in a narrower mode
6678 than the one it came in with. */
6679 if ((code == LSHIFTRT || code == ASHIFTRT)
6680 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6681 op_mode = GET_MODE (x);
6683 /* Truncate MASK to fit OP_MODE. */
6684 if (op_mode)
6685 mask &= GET_MODE_MASK (op_mode);
6687 /* When we have an arithmetic operation, or a shift whose count we
6688 do not know, we need to assume that all bit the up to the highest-order
6689 bit in MASK will be needed. This is how we form such a mask. */
6690 if (op_mode)
6691 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6692 ? GET_MODE_MASK (op_mode)
6693 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6694 - 1));
6695 else
6696 fuller_mask = ~(HOST_WIDE_INT) 0;
6698 /* Determine what bits of X are guaranteed to be (non)zero. */
6699 nonzero = nonzero_bits (x, mode);
6701 /* If none of the bits in X are needed, return a zero. */
6702 if (! just_select && (nonzero & mask) == 0)
6703 return const0_rtx;
6705 /* If X is a CONST_INT, return a new one. Do this here since the
6706 test below will fail. */
6707 if (GET_CODE (x) == CONST_INT)
6709 HOST_WIDE_INT cval = INTVAL (x) & mask;
6710 int width = GET_MODE_BITSIZE (mode);
6712 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6713 number, sign extend it. */
6714 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6715 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6716 cval |= (HOST_WIDE_INT) -1 << width;
6718 return GEN_INT (cval);
6721 /* If X is narrower than MODE and we want all the bits in X's mode, just
6722 get X in the proper mode. */
6723 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6724 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6725 return gen_lowpart_for_combine (mode, x);
6727 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6728 MASK are already known to be zero in X, we need not do anything. */
6729 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6730 return x;
6732 switch (code)
6734 case CLOBBER:
6735 /* If X is a (clobber (const_int)), return it since we know we are
6736 generating something that won't match. */
6737 return x;
6739 case USE:
6740 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6741 spanned the boundary of the MEM. If we are now masking so it is
6742 within that boundary, we don't need the USE any more. */
6743 if (! BITS_BIG_ENDIAN
6744 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6745 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6746 break;
6748 case SIGN_EXTEND:
6749 case ZERO_EXTEND:
6750 case ZERO_EXTRACT:
6751 case SIGN_EXTRACT:
6752 x = expand_compound_operation (x);
6753 if (GET_CODE (x) != code)
6754 return force_to_mode (x, mode, mask, reg, next_select);
6755 break;
6757 case REG:
6758 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6759 || rtx_equal_p (reg, get_last_value (x))))
6760 x = reg;
6761 break;
6763 case SUBREG:
6764 if (subreg_lowpart_p (x)
6765 /* We can ignore the effect of this SUBREG if it narrows the mode or
6766 if the constant masks to zero all the bits the mode doesn't
6767 have. */
6768 && ((GET_MODE_SIZE (GET_MODE (x))
6769 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6770 || (0 == (mask
6771 & GET_MODE_MASK (GET_MODE (x))
6772 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6773 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6774 break;
6776 case AND:
6777 /* If this is an AND with a constant, convert it into an AND
6778 whose constant is the AND of that constant with MASK. If it
6779 remains an AND of MASK, delete it since it is redundant. */
6781 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6783 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6784 mask & INTVAL (XEXP (x, 1)));
6786 /* If X is still an AND, see if it is an AND with a mask that
6787 is just some low-order bits. If so, and it is MASK, we don't
6788 need it. */
6790 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6791 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6792 == (HOST_WIDE_INT) mask))
6793 x = XEXP (x, 0);
6795 /* If it remains an AND, try making another AND with the bits
6796 in the mode mask that aren't in MASK turned on. If the
6797 constant in the AND is wide enough, this might make a
6798 cheaper constant. */
6800 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6801 && GET_MODE_MASK (GET_MODE (x)) != mask
6802 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6804 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6805 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6806 int width = GET_MODE_BITSIZE (GET_MODE (x));
6807 rtx y;
6809 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6810 number, sign extend it. */
6811 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6812 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6813 cval |= (HOST_WIDE_INT) -1 << width;
6815 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6816 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6817 x = y;
6820 break;
6823 goto binop;
6825 case PLUS:
6826 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6827 low-order bits (as in an alignment operation) and FOO is already
6828 aligned to that boundary, mask C1 to that boundary as well.
6829 This may eliminate that PLUS and, later, the AND. */
6832 unsigned int width = GET_MODE_BITSIZE (mode);
6833 unsigned HOST_WIDE_INT smask = mask;
6835 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6836 number, sign extend it. */
6838 if (width < HOST_BITS_PER_WIDE_INT
6839 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6840 smask |= (HOST_WIDE_INT) -1 << width;
6842 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6843 && exact_log2 (- smask) >= 0
6844 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6845 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6846 return force_to_mode (plus_constant (XEXP (x, 0),
6847 (INTVAL (XEXP (x, 1)) & smask)),
6848 mode, smask, reg, next_select);
6851 /* ... fall through ... */
6853 case MULT:
6854 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6855 most significant bit in MASK since carries from those bits will
6856 affect the bits we are interested in. */
6857 mask = fuller_mask;
6858 goto binop;
6860 case MINUS:
6861 /* If X is (minus C Y) where C's least set bit is larger than any bit
6862 in the mask, then we may replace with (neg Y). */
6863 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6864 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6865 & -INTVAL (XEXP (x, 0))))
6866 > mask))
6868 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6869 GET_MODE (x));
6870 return force_to_mode (x, mode, mask, reg, next_select);
6873 /* Similarly, if C contains every bit in the mask, then we may
6874 replace with (not Y). */
6875 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6876 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6877 == INTVAL (XEXP (x, 0))))
6879 x = simplify_gen_unary (NOT, GET_MODE (x),
6880 XEXP (x, 1), GET_MODE (x));
6881 return force_to_mode (x, mode, mask, reg, next_select);
6884 mask = fuller_mask;
6885 goto binop;
6887 case IOR:
6888 case XOR:
6889 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6890 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6891 operation which may be a bitfield extraction. Ensure that the
6892 constant we form is not wider than the mode of X. */
6894 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6895 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6896 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6897 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6898 && GET_CODE (XEXP (x, 1)) == CONST_INT
6899 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6900 + floor_log2 (INTVAL (XEXP (x, 1))))
6901 < GET_MODE_BITSIZE (GET_MODE (x)))
6902 && (INTVAL (XEXP (x, 1))
6903 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6905 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6906 << INTVAL (XEXP (XEXP (x, 0), 1)));
6907 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6908 XEXP (XEXP (x, 0), 0), temp);
6909 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6910 XEXP (XEXP (x, 0), 1));
6911 return force_to_mode (x, mode, mask, reg, next_select);
6914 binop:
6915 /* For most binary operations, just propagate into the operation and
6916 change the mode if we have an operation of that mode. */
6918 op0 = gen_lowpart_for_combine (op_mode,
6919 force_to_mode (XEXP (x, 0), mode, mask,
6920 reg, next_select));
6921 op1 = gen_lowpart_for_combine (op_mode,
6922 force_to_mode (XEXP (x, 1), mode, mask,
6923 reg, next_select));
6925 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6926 MASK since OP1 might have been sign-extended but we never want
6927 to turn on extra bits, since combine might have previously relied
6928 on them being off. */
6929 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6930 && (INTVAL (op1) & mask) != 0)
6931 op1 = GEN_INT (INTVAL (op1) & mask);
6933 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6934 x = gen_binary (code, op_mode, op0, op1);
6935 break;
6937 case ASHIFT:
6938 /* For left shifts, do the same, but just for the first operand.
6939 However, we cannot do anything with shifts where we cannot
6940 guarantee that the counts are smaller than the size of the mode
6941 because such a count will have a different meaning in a
6942 wider mode. */
6944 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6945 && INTVAL (XEXP (x, 1)) >= 0
6946 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6947 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6948 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6949 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6950 break;
6952 /* If the shift count is a constant and we can do arithmetic in
6953 the mode of the shift, refine which bits we need. Otherwise, use the
6954 conservative form of the mask. */
6955 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6956 && INTVAL (XEXP (x, 1)) >= 0
6957 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6958 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6959 mask >>= INTVAL (XEXP (x, 1));
6960 else
6961 mask = fuller_mask;
6963 op0 = gen_lowpart_for_combine (op_mode,
6964 force_to_mode (XEXP (x, 0), op_mode,
6965 mask, reg, next_select));
6967 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6968 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6969 break;
6971 case LSHIFTRT:
6972 /* Here we can only do something if the shift count is a constant,
6973 this shift constant is valid for the host, and we can do arithmetic
6974 in OP_MODE. */
6976 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6977 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6978 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6980 rtx inner = XEXP (x, 0);
6981 unsigned HOST_WIDE_INT inner_mask;
6983 /* Select the mask of the bits we need for the shift operand. */
6984 inner_mask = mask << INTVAL (XEXP (x, 1));
6986 /* We can only change the mode of the shift if we can do arithmetic
6987 in the mode of the shift and INNER_MASK is no wider than the
6988 width of OP_MODE. */
6989 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6990 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6991 op_mode = GET_MODE (x);
6993 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6995 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6996 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6999 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7000 shift and AND produces only copies of the sign bit (C2 is one less
7001 than a power of two), we can do this with just a shift. */
7003 if (GET_CODE (x) == LSHIFTRT
7004 && GET_CODE (XEXP (x, 1)) == CONST_INT
7005 /* The shift puts one of the sign bit copies in the least significant
7006 bit. */
7007 && ((INTVAL (XEXP (x, 1))
7008 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7009 >= GET_MODE_BITSIZE (GET_MODE (x)))
7010 && exact_log2 (mask + 1) >= 0
7011 /* Number of bits left after the shift must be more than the mask
7012 needs. */
7013 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7014 <= GET_MODE_BITSIZE (GET_MODE (x)))
7015 /* Must be more sign bit copies than the mask needs. */
7016 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7017 >= exact_log2 (mask + 1)))
7018 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7019 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7020 - exact_log2 (mask + 1)));
7022 goto shiftrt;
7024 case ASHIFTRT:
7025 /* If we are just looking for the sign bit, we don't need this shift at
7026 all, even if it has a variable count. */
7027 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7028 && (mask == ((unsigned HOST_WIDE_INT) 1
7029 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7030 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7032 /* If this is a shift by a constant, get a mask that contains those bits
7033 that are not copies of the sign bit. We then have two cases: If
7034 MASK only includes those bits, this can be a logical shift, which may
7035 allow simplifications. If MASK is a single-bit field not within
7036 those bits, we are requesting a copy of the sign bit and hence can
7037 shift the sign bit to the appropriate location. */
7039 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7040 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7042 int i = -1;
7044 /* If the considered data is wider than HOST_WIDE_INT, we can't
7045 represent a mask for all its bits in a single scalar.
7046 But we only care about the lower bits, so calculate these. */
7048 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7050 nonzero = ~(HOST_WIDE_INT) 0;
7052 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7053 is the number of bits a full-width mask would have set.
7054 We need only shift if these are fewer than nonzero can
7055 hold. If not, we must keep all bits set in nonzero. */
7057 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7058 < HOST_BITS_PER_WIDE_INT)
7059 nonzero >>= INTVAL (XEXP (x, 1))
7060 + HOST_BITS_PER_WIDE_INT
7061 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7063 else
7065 nonzero = GET_MODE_MASK (GET_MODE (x));
7066 nonzero >>= INTVAL (XEXP (x, 1));
7069 if ((mask & ~nonzero) == 0
7070 || (i = exact_log2 (mask)) >= 0)
7072 x = simplify_shift_const
7073 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7074 i < 0 ? INTVAL (XEXP (x, 1))
7075 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7077 if (GET_CODE (x) != ASHIFTRT)
7078 return force_to_mode (x, mode, mask, reg, next_select);
7082 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7083 even if the shift count isn't a constant. */
7084 if (mask == 1)
7085 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7087 shiftrt:
7089 /* If this is a zero- or sign-extension operation that just affects bits
7090 we don't care about, remove it. Be sure the call above returned
7091 something that is still a shift. */
7093 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7094 && GET_CODE (XEXP (x, 1)) == CONST_INT
7095 && INTVAL (XEXP (x, 1)) >= 0
7096 && (INTVAL (XEXP (x, 1))
7097 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7098 && GET_CODE (XEXP (x, 0)) == ASHIFT
7099 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7100 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7101 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7102 reg, next_select);
7104 break;
7106 case ROTATE:
7107 case ROTATERT:
7108 /* If the shift count is constant and we can do computations
7109 in the mode of X, compute where the bits we care about are.
7110 Otherwise, we can't do anything. Don't change the mode of
7111 the shift or propagate MODE into the shift, though. */
7112 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7113 && INTVAL (XEXP (x, 1)) >= 0)
7115 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7116 GET_MODE (x), GEN_INT (mask),
7117 XEXP (x, 1));
7118 if (temp && GET_CODE(temp) == CONST_INT)
7119 SUBST (XEXP (x, 0),
7120 force_to_mode (XEXP (x, 0), GET_MODE (x),
7121 INTVAL (temp), reg, next_select));
7123 break;
7125 case NEG:
7126 /* If we just want the low-order bit, the NEG isn't needed since it
7127 won't change the low-order bit. */
7128 if (mask == 1)
7129 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7131 /* We need any bits less significant than the most significant bit in
7132 MASK since carries from those bits will affect the bits we are
7133 interested in. */
7134 mask = fuller_mask;
7135 goto unop;
7137 case NOT:
7138 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7139 same as the XOR case above. Ensure that the constant we form is not
7140 wider than the mode of X. */
7142 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7143 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7144 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7145 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7146 < GET_MODE_BITSIZE (GET_MODE (x)))
7147 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7149 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7150 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7151 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7153 return force_to_mode (x, mode, mask, reg, next_select);
7156 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7157 use the full mask inside the NOT. */
7158 mask = fuller_mask;
7160 unop:
7161 op0 = gen_lowpart_for_combine (op_mode,
7162 force_to_mode (XEXP (x, 0), mode, mask,
7163 reg, next_select));
7164 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7165 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7166 break;
7168 case NE:
7169 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7170 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7171 which is equal to STORE_FLAG_VALUE. */
7172 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7173 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7174 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7175 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7177 break;
7179 case IF_THEN_ELSE:
7180 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7181 written in a narrower mode. We play it safe and do not do so. */
7183 SUBST (XEXP (x, 1),
7184 gen_lowpart_for_combine (GET_MODE (x),
7185 force_to_mode (XEXP (x, 1), mode,
7186 mask, reg, next_select)));
7187 SUBST (XEXP (x, 2),
7188 gen_lowpart_for_combine (GET_MODE (x),
7189 force_to_mode (XEXP (x, 2), mode,
7190 mask, reg,next_select)));
7191 break;
7193 default:
7194 break;
7197 /* Ensure we return a value of the proper mode. */
7198 return gen_lowpart_for_combine (mode, x);
7201 /* Return nonzero if X is an expression that has one of two values depending on
7202 whether some other value is zero or nonzero. In that case, we return the
7203 value that is being tested, *PTRUE is set to the value if the rtx being
7204 returned has a nonzero value, and *PFALSE is set to the other alternative.
7206 If we return zero, we set *PTRUE and *PFALSE to X. */
7208 static rtx
7209 if_then_else_cond (x, ptrue, pfalse)
7210 rtx x;
7211 rtx *ptrue, *pfalse;
7213 enum machine_mode mode = GET_MODE (x);
7214 enum rtx_code code = GET_CODE (x);
7215 rtx cond0, cond1, true0, true1, false0, false1;
7216 unsigned HOST_WIDE_INT nz;
7218 /* If we are comparing a value against zero, we are done. */
7219 if ((code == NE || code == EQ)
7220 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7222 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7223 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7224 return XEXP (x, 0);
7227 /* If this is a unary operation whose operand has one of two values, apply
7228 our opcode to compute those values. */
7229 else if (GET_RTX_CLASS (code) == '1'
7230 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7232 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7233 *pfalse = simplify_gen_unary (code, mode, false0,
7234 GET_MODE (XEXP (x, 0)));
7235 return cond0;
7238 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7239 make can't possibly match and would suppress other optimizations. */
7240 else if (code == COMPARE)
7243 /* If this is a binary operation, see if either side has only one of two
7244 values. If either one does or if both do and they are conditional on
7245 the same value, compute the new true and false values. */
7246 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7247 || GET_RTX_CLASS (code) == '<')
7249 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7250 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7252 if ((cond0 != 0 || cond1 != 0)
7253 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7255 /* If if_then_else_cond returned zero, then true/false are the
7256 same rtl. We must copy one of them to prevent invalid rtl
7257 sharing. */
7258 if (cond0 == 0)
7259 true0 = copy_rtx (true0);
7260 else if (cond1 == 0)
7261 true1 = copy_rtx (true1);
7263 *ptrue = gen_binary (code, mode, true0, true1);
7264 *pfalse = gen_binary (code, mode, false0, false1);
7265 return cond0 ? cond0 : cond1;
7268 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7269 operands is zero when the other is non-zero, and vice-versa,
7270 and STORE_FLAG_VALUE is 1 or -1. */
7272 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7273 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7274 || code == UMAX)
7275 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7277 rtx op0 = XEXP (XEXP (x, 0), 1);
7278 rtx op1 = XEXP (XEXP (x, 1), 1);
7280 cond0 = XEXP (XEXP (x, 0), 0);
7281 cond1 = XEXP (XEXP (x, 1), 0);
7283 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7284 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7285 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7286 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7287 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7288 || ((swap_condition (GET_CODE (cond0))
7289 == combine_reversed_comparison_code (cond1))
7290 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7291 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7292 && ! side_effects_p (x))
7294 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7295 *pfalse = gen_binary (MULT, mode,
7296 (code == MINUS
7297 ? simplify_gen_unary (NEG, mode, op1,
7298 mode)
7299 : op1),
7300 const_true_rtx);
7301 return cond0;
7305 /* Similarly for MULT, AND and UMIN, except that for these the result
7306 is always zero. */
7307 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7308 && (code == MULT || code == AND || code == UMIN)
7309 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7311 cond0 = XEXP (XEXP (x, 0), 0);
7312 cond1 = XEXP (XEXP (x, 1), 0);
7314 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7315 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7316 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7317 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7318 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7319 || ((swap_condition (GET_CODE (cond0))
7320 == combine_reversed_comparison_code (cond1))
7321 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7322 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7323 && ! side_effects_p (x))
7325 *ptrue = *pfalse = const0_rtx;
7326 return cond0;
7331 else if (code == IF_THEN_ELSE)
7333 /* If we have IF_THEN_ELSE already, extract the condition and
7334 canonicalize it if it is NE or EQ. */
7335 cond0 = XEXP (x, 0);
7336 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7337 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7338 return XEXP (cond0, 0);
7339 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7341 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7342 return XEXP (cond0, 0);
7344 else
7345 return cond0;
7348 /* If X is a SUBREG, we can narrow both the true and false values
7349 if the inner expression, if there is a condition. */
7350 else if (code == SUBREG
7351 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7352 &true0, &false0)))
7354 *ptrue = simplify_gen_subreg (mode, true0,
7355 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7356 *pfalse = simplify_gen_subreg (mode, false0,
7357 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7359 return cond0;
7362 /* If X is a constant, this isn't special and will cause confusions
7363 if we treat it as such. Likewise if it is equivalent to a constant. */
7364 else if (CONSTANT_P (x)
7365 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7368 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7369 will be least confusing to the rest of the compiler. */
7370 else if (mode == BImode)
7372 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7373 return x;
7376 /* If X is known to be either 0 or -1, those are the true and
7377 false values when testing X. */
7378 else if (x == constm1_rtx || x == const0_rtx
7379 || (mode != VOIDmode
7380 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7382 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7383 return x;
7386 /* Likewise for 0 or a single bit. */
7387 else if (mode != VOIDmode
7388 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7389 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7391 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7392 return x;
7395 /* Otherwise fail; show no condition with true and false values the same. */
7396 *ptrue = *pfalse = x;
7397 return 0;
7400 /* Return the value of expression X given the fact that condition COND
7401 is known to be true when applied to REG as its first operand and VAL
7402 as its second. X is known to not be shared and so can be modified in
7403 place.
7405 We only handle the simplest cases, and specifically those cases that
7406 arise with IF_THEN_ELSE expressions. */
7408 static rtx
7409 known_cond (x, cond, reg, val)
7410 rtx x;
7411 enum rtx_code cond;
7412 rtx reg, val;
7414 enum rtx_code code = GET_CODE (x);
7415 rtx temp;
7416 const char *fmt;
7417 int i, j;
7419 if (side_effects_p (x))
7420 return x;
7422 /* If either operand of the condition is a floating point value,
7423 then we have to avoid collapsing an EQ comparison. */
7424 if (cond == EQ
7425 && rtx_equal_p (x, reg)
7426 && ! FLOAT_MODE_P (GET_MODE (x))
7427 && ! FLOAT_MODE_P (GET_MODE (val)))
7428 return val;
7430 if (cond == UNEQ && rtx_equal_p (x, reg))
7431 return val;
7433 /* If X is (abs REG) and we know something about REG's relationship
7434 with zero, we may be able to simplify this. */
7436 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7437 switch (cond)
7439 case GE: case GT: case EQ:
7440 return XEXP (x, 0);
7441 case LT: case LE:
7442 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7443 XEXP (x, 0),
7444 GET_MODE (XEXP (x, 0)));
7445 default:
7446 break;
7449 /* The only other cases we handle are MIN, MAX, and comparisons if the
7450 operands are the same as REG and VAL. */
7452 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7454 if (rtx_equal_p (XEXP (x, 0), val))
7455 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7457 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7459 if (GET_RTX_CLASS (code) == '<')
7461 if (comparison_dominates_p (cond, code))
7462 return const_true_rtx;
7464 code = combine_reversed_comparison_code (x);
7465 if (code != UNKNOWN
7466 && comparison_dominates_p (cond, code))
7467 return const0_rtx;
7468 else
7469 return x;
7471 else if (code == SMAX || code == SMIN
7472 || code == UMIN || code == UMAX)
7474 int unsignedp = (code == UMIN || code == UMAX);
7476 /* Do not reverse the condition when it is NE or EQ.
7477 This is because we cannot conclude anything about
7478 the value of 'SMAX (x, y)' when x is not equal to y,
7479 but we can when x equals y. */
7480 if ((code == SMAX || code == UMAX)
7481 && ! (cond == EQ || cond == NE))
7482 cond = reverse_condition (cond);
7484 switch (cond)
7486 case GE: case GT:
7487 return unsignedp ? x : XEXP (x, 1);
7488 case LE: case LT:
7489 return unsignedp ? x : XEXP (x, 0);
7490 case GEU: case GTU:
7491 return unsignedp ? XEXP (x, 1) : x;
7492 case LEU: case LTU:
7493 return unsignedp ? XEXP (x, 0) : x;
7494 default:
7495 break;
7500 else if (code == SUBREG)
7502 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7503 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7505 if (SUBREG_REG (x) != r)
7507 /* We must simplify subreg here, before we lose track of the
7508 original inner_mode. */
7509 new = simplify_subreg (GET_MODE (x), r,
7510 inner_mode, SUBREG_BYTE (x));
7511 if (new)
7512 return new;
7513 else
7514 SUBST (SUBREG_REG (x), r);
7517 return x;
7519 /* We don't have to handle SIGN_EXTEND here, because even in the
7520 case of replacing something with a modeless CONST_INT, a
7521 CONST_INT is already (supposed to be) a valid sign extension for
7522 its narrower mode, which implies it's already properly
7523 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7524 story is different. */
7525 else if (code == ZERO_EXTEND)
7527 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7528 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7530 if (XEXP (x, 0) != r)
7532 /* We must simplify the zero_extend here, before we lose
7533 track of the original inner_mode. */
7534 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7535 r, inner_mode);
7536 if (new)
7537 return new;
7538 else
7539 SUBST (XEXP (x, 0), r);
7542 return x;
7545 fmt = GET_RTX_FORMAT (code);
7546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7548 if (fmt[i] == 'e')
7549 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7550 else if (fmt[i] == 'E')
7551 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7552 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7553 cond, reg, val));
7556 return x;
7559 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7560 assignment as a field assignment. */
7562 static int
7563 rtx_equal_for_field_assignment_p (x, y)
7564 rtx x;
7565 rtx y;
7567 if (x == y || rtx_equal_p (x, y))
7568 return 1;
7570 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7571 return 0;
7573 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7574 Note that all SUBREGs of MEM are paradoxical; otherwise they
7575 would have been rewritten. */
7576 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7577 && GET_CODE (SUBREG_REG (y)) == MEM
7578 && rtx_equal_p (SUBREG_REG (y),
7579 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7580 return 1;
7582 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7583 && GET_CODE (SUBREG_REG (x)) == MEM
7584 && rtx_equal_p (SUBREG_REG (x),
7585 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7586 return 1;
7588 /* We used to see if get_last_value of X and Y were the same but that's
7589 not correct. In one direction, we'll cause the assignment to have
7590 the wrong destination and in the case, we'll import a register into this
7591 insn that might have already have been dead. So fail if none of the
7592 above cases are true. */
7593 return 0;
7596 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7597 Return that assignment if so.
7599 We only handle the most common cases. */
7601 static rtx
7602 make_field_assignment (x)
7603 rtx x;
7605 rtx dest = SET_DEST (x);
7606 rtx src = SET_SRC (x);
7607 rtx assign;
7608 rtx rhs, lhs;
7609 HOST_WIDE_INT c1;
7610 HOST_WIDE_INT pos;
7611 unsigned HOST_WIDE_INT len;
7612 rtx other;
7613 enum machine_mode mode;
7615 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7616 a clear of a one-bit field. We will have changed it to
7617 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7618 for a SUBREG. */
7620 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7621 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7622 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7623 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7625 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7626 1, 1, 1, 0);
7627 if (assign != 0)
7628 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7629 return x;
7632 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7633 && subreg_lowpart_p (XEXP (src, 0))
7634 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7635 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7636 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7637 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7638 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7640 assign = make_extraction (VOIDmode, dest, 0,
7641 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7642 1, 1, 1, 0);
7643 if (assign != 0)
7644 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7645 return x;
7648 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7649 one-bit field. */
7650 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7651 && XEXP (XEXP (src, 0), 0) == const1_rtx
7652 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7654 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7655 1, 1, 1, 0);
7656 if (assign != 0)
7657 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7658 return x;
7661 /* The other case we handle is assignments into a constant-position
7662 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7663 a mask that has all one bits except for a group of zero bits and
7664 OTHER is known to have zeros where C1 has ones, this is such an
7665 assignment. Compute the position and length from C1. Shift OTHER
7666 to the appropriate position, force it to the required mode, and
7667 make the extraction. Check for the AND in both operands. */
7669 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7670 return x;
7672 rhs = expand_compound_operation (XEXP (src, 0));
7673 lhs = expand_compound_operation (XEXP (src, 1));
7675 if (GET_CODE (rhs) == AND
7676 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7677 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7678 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7679 else if (GET_CODE (lhs) == AND
7680 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7681 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7682 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7683 else
7684 return x;
7686 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7687 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7688 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7689 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7690 return x;
7692 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7693 if (assign == 0)
7694 return x;
7696 /* The mode to use for the source is the mode of the assignment, or of
7697 what is inside a possible STRICT_LOW_PART. */
7698 mode = (GET_CODE (assign) == STRICT_LOW_PART
7699 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7701 /* Shift OTHER right POS places and make it the source, restricting it
7702 to the proper length and mode. */
7704 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7705 GET_MODE (src), other, pos),
7706 mode,
7707 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7708 ? ~(unsigned HOST_WIDE_INT) 0
7709 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7710 dest, 0);
7712 return gen_rtx_SET (VOIDmode, assign, src);
7715 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7716 if so. */
7718 static rtx
7719 apply_distributive_law (x)
7720 rtx x;
7722 enum rtx_code code = GET_CODE (x);
7723 rtx lhs, rhs, other;
7724 rtx tem;
7725 enum rtx_code inner_code;
7727 /* Distributivity is not true for floating point.
7728 It can change the value. So don't do it.
7729 -- rms and moshier@world.std.com. */
7730 if (FLOAT_MODE_P (GET_MODE (x)))
7731 return x;
7733 /* The outer operation can only be one of the following: */
7734 if (code != IOR && code != AND && code != XOR
7735 && code != PLUS && code != MINUS)
7736 return x;
7738 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7740 /* If either operand is a primitive we can't do anything, so get out
7741 fast. */
7742 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7743 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7744 return x;
7746 lhs = expand_compound_operation (lhs);
7747 rhs = expand_compound_operation (rhs);
7748 inner_code = GET_CODE (lhs);
7749 if (inner_code != GET_CODE (rhs))
7750 return x;
7752 /* See if the inner and outer operations distribute. */
7753 switch (inner_code)
7755 case LSHIFTRT:
7756 case ASHIFTRT:
7757 case AND:
7758 case IOR:
7759 /* These all distribute except over PLUS. */
7760 if (code == PLUS || code == MINUS)
7761 return x;
7762 break;
7764 case MULT:
7765 if (code != PLUS && code != MINUS)
7766 return x;
7767 break;
7769 case ASHIFT:
7770 /* This is also a multiply, so it distributes over everything. */
7771 break;
7773 case SUBREG:
7774 /* Non-paradoxical SUBREGs distributes over all operations, provided
7775 the inner modes and byte offsets are the same, this is an extraction
7776 of a low-order part, we don't convert an fp operation to int or
7777 vice versa, and we would not be converting a single-word
7778 operation into a multi-word operation. The latter test is not
7779 required, but it prevents generating unneeded multi-word operations.
7780 Some of the previous tests are redundant given the latter test, but
7781 are retained because they are required for correctness.
7783 We produce the result slightly differently in this case. */
7785 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7786 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7787 || ! subreg_lowpart_p (lhs)
7788 || (GET_MODE_CLASS (GET_MODE (lhs))
7789 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7790 || (GET_MODE_SIZE (GET_MODE (lhs))
7791 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7792 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7793 return x;
7795 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7796 SUBREG_REG (lhs), SUBREG_REG (rhs));
7797 return gen_lowpart_for_combine (GET_MODE (x), tem);
7799 default:
7800 return x;
7803 /* Set LHS and RHS to the inner operands (A and B in the example
7804 above) and set OTHER to the common operand (C in the example).
7805 These is only one way to do this unless the inner operation is
7806 commutative. */
7807 if (GET_RTX_CLASS (inner_code) == 'c'
7808 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7809 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7810 else if (GET_RTX_CLASS (inner_code) == 'c'
7811 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7812 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7813 else if (GET_RTX_CLASS (inner_code) == 'c'
7814 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7815 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7816 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7817 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7818 else
7819 return x;
7821 /* Form the new inner operation, seeing if it simplifies first. */
7822 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7824 /* There is one exception to the general way of distributing:
7825 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7826 if (code == XOR && inner_code == IOR)
7828 inner_code = AND;
7829 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7832 /* We may be able to continuing distributing the result, so call
7833 ourselves recursively on the inner operation before forming the
7834 outer operation, which we return. */
7835 return gen_binary (inner_code, GET_MODE (x),
7836 apply_distributive_law (tem), other);
7839 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7840 in MODE.
7842 Return an equivalent form, if different from X. Otherwise, return X. If
7843 X is zero, we are to always construct the equivalent form. */
7845 static rtx
7846 simplify_and_const_int (x, mode, varop, constop)
7847 rtx x;
7848 enum machine_mode mode;
7849 rtx varop;
7850 unsigned HOST_WIDE_INT constop;
7852 unsigned HOST_WIDE_INT nonzero;
7853 int i;
7855 /* Simplify VAROP knowing that we will be only looking at some of the
7856 bits in it.
7858 Note by passing in CONSTOP, we guarantee that the bits not set in
7859 CONSTOP are not significant and will never be examined. We must
7860 ensure that is the case by explicitly masking out those bits
7861 before returning. */
7862 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7864 /* If VAROP is a CLOBBER, we will fail so return it. */
7865 if (GET_CODE (varop) == CLOBBER)
7866 return varop;
7868 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7869 to VAROP and return the new constant. */
7870 if (GET_CODE (varop) == CONST_INT)
7871 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7873 /* See what bits may be nonzero in VAROP. Unlike the general case of
7874 a call to nonzero_bits, here we don't care about bits outside
7875 MODE. */
7877 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7879 /* Turn off all bits in the constant that are known to already be zero.
7880 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7881 which is tested below. */
7883 constop &= nonzero;
7885 /* If we don't have any bits left, return zero. */
7886 if (constop == 0)
7887 return const0_rtx;
7889 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7890 a power of two, we can replace this with an ASHIFT. */
7891 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7892 && (i = exact_log2 (constop)) >= 0)
7893 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7895 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7896 or XOR, then try to apply the distributive law. This may eliminate
7897 operations if either branch can be simplified because of the AND.
7898 It may also make some cases more complex, but those cases probably
7899 won't match a pattern either with or without this. */
7901 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7902 return
7903 gen_lowpart_for_combine
7904 (mode,
7905 apply_distributive_law
7906 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7907 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7908 XEXP (varop, 0), constop),
7909 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7910 XEXP (varop, 1), constop))));
7912 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7913 the AND and see if one of the operands simplifies to zero. If so, we
7914 may eliminate it. */
7916 if (GET_CODE (varop) == PLUS
7917 && exact_log2 (constop + 1) >= 0)
7919 rtx o0, o1;
7921 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7922 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7923 if (o0 == const0_rtx)
7924 return o1;
7925 if (o1 == const0_rtx)
7926 return o0;
7929 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7930 if we already had one (just check for the simplest cases). */
7931 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7932 && GET_MODE (XEXP (x, 0)) == mode
7933 && SUBREG_REG (XEXP (x, 0)) == varop)
7934 varop = XEXP (x, 0);
7935 else
7936 varop = gen_lowpart_for_combine (mode, varop);
7938 /* If we can't make the SUBREG, try to return what we were given. */
7939 if (GET_CODE (varop) == CLOBBER)
7940 return x ? x : varop;
7942 /* If we are only masking insignificant bits, return VAROP. */
7943 if (constop == nonzero)
7944 x = varop;
7945 else
7947 /* Otherwise, return an AND. */
7948 constop = trunc_int_for_mode (constop, mode);
7949 /* See how much, if any, of X we can use. */
7950 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7951 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7953 else
7955 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7956 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7957 SUBST (XEXP (x, 1), GEN_INT (constop));
7959 SUBST (XEXP (x, 0), varop);
7963 return x;
7966 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7967 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7968 is less useful. We can't allow both, because that results in exponential
7969 run time recursion. There is a nullstone testcase that triggered
7970 this. This macro avoids accidental uses of num_sign_bit_copies. */
7971 #define num_sign_bit_copies()
7973 /* Given an expression, X, compute which bits in X can be non-zero.
7974 We don't care about bits outside of those defined in MODE.
7976 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7977 a shift, AND, or zero_extract, we can do better. */
7979 static unsigned HOST_WIDE_INT
7980 nonzero_bits (x, mode)
7981 rtx x;
7982 enum machine_mode mode;
7984 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7985 unsigned HOST_WIDE_INT inner_nz;
7986 enum rtx_code code;
7987 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7988 rtx tem;
7990 /* For floating-point values, assume all bits are needed. */
7991 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7992 return nonzero;
7994 /* If X is wider than MODE, use its mode instead. */
7995 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7997 mode = GET_MODE (x);
7998 nonzero = GET_MODE_MASK (mode);
7999 mode_width = GET_MODE_BITSIZE (mode);
8002 if (mode_width > HOST_BITS_PER_WIDE_INT)
8003 /* Our only callers in this case look for single bit values. So
8004 just return the mode mask. Those tests will then be false. */
8005 return nonzero;
8007 #ifndef WORD_REGISTER_OPERATIONS
8008 /* If MODE is wider than X, but both are a single word for both the host
8009 and target machines, we can compute this from which bits of the
8010 object might be nonzero in its own mode, taking into account the fact
8011 that on many CISC machines, accessing an object in a wider mode
8012 causes the high-order bits to become undefined. So they are
8013 not known to be zero. */
8015 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8016 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8017 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8018 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8020 nonzero &= nonzero_bits (x, GET_MODE (x));
8021 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8022 return nonzero;
8024 #endif
8026 code = GET_CODE (x);
8027 switch (code)
8029 case REG:
8030 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8031 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8032 all the bits above ptr_mode are known to be zero. */
8033 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8034 && REG_POINTER (x))
8035 nonzero &= GET_MODE_MASK (ptr_mode);
8036 #endif
8038 /* Include declared information about alignment of pointers. */
8039 /* ??? We don't properly preserve REG_POINTER changes across
8040 pointer-to-integer casts, so we can't trust it except for
8041 things that we know must be pointers. See execute/960116-1.c. */
8042 if ((x == stack_pointer_rtx
8043 || x == frame_pointer_rtx
8044 || x == arg_pointer_rtx)
8045 && REGNO_POINTER_ALIGN (REGNO (x)))
8047 unsigned HOST_WIDE_INT alignment
8048 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8050 #ifdef PUSH_ROUNDING
8051 /* If PUSH_ROUNDING is defined, it is possible for the
8052 stack to be momentarily aligned only to that amount,
8053 so we pick the least alignment. */
8054 if (x == stack_pointer_rtx && PUSH_ARGS)
8055 alignment = MIN (PUSH_ROUNDING (1), alignment);
8056 #endif
8058 nonzero &= ~(alignment - 1);
8061 /* If X is a register whose nonzero bits value is current, use it.
8062 Otherwise, if X is a register whose value we can find, use that
8063 value. Otherwise, use the previously-computed global nonzero bits
8064 for this register. */
8066 if (reg_last_set_value[REGNO (x)] != 0
8067 && (reg_last_set_mode[REGNO (x)] == mode
8068 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8069 && GET_MODE_CLASS (mode) == MODE_INT))
8070 && (reg_last_set_label[REGNO (x)] == label_tick
8071 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8072 && REG_N_SETS (REGNO (x)) == 1
8073 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8074 REGNO (x))))
8075 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8076 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8078 tem = get_last_value (x);
8080 if (tem)
8082 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8083 /* If X is narrower than MODE and TEM is a non-negative
8084 constant that would appear negative in the mode of X,
8085 sign-extend it for use in reg_nonzero_bits because some
8086 machines (maybe most) will actually do the sign-extension
8087 and this is the conservative approach.
8089 ??? For 2.5, try to tighten up the MD files in this regard
8090 instead of this kludge. */
8092 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8093 && GET_CODE (tem) == CONST_INT
8094 && INTVAL (tem) > 0
8095 && 0 != (INTVAL (tem)
8096 & ((HOST_WIDE_INT) 1
8097 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8098 tem = GEN_INT (INTVAL (tem)
8099 | ((HOST_WIDE_INT) (-1)
8100 << GET_MODE_BITSIZE (GET_MODE (x))));
8101 #endif
8102 return nonzero_bits (tem, mode) & nonzero;
8104 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8106 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8108 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8109 /* We don't know anything about the upper bits. */
8110 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8111 return nonzero & mask;
8113 else
8114 return nonzero;
8116 case CONST_INT:
8117 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8118 /* If X is negative in MODE, sign-extend the value. */
8119 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8120 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8121 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8122 #endif
8124 return INTVAL (x);
8126 case MEM:
8127 #ifdef LOAD_EXTEND_OP
8128 /* In many, if not most, RISC machines, reading a byte from memory
8129 zeros the rest of the register. Noticing that fact saves a lot
8130 of extra zero-extends. */
8131 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8132 nonzero &= GET_MODE_MASK (GET_MODE (x));
8133 #endif
8134 break;
8136 case EQ: case NE:
8137 case UNEQ: case LTGT:
8138 case GT: case GTU: case UNGT:
8139 case LT: case LTU: case UNLT:
8140 case GE: case GEU: case UNGE:
8141 case LE: case LEU: case UNLE:
8142 case UNORDERED: case ORDERED:
8144 /* If this produces an integer result, we know which bits are set.
8145 Code here used to clear bits outside the mode of X, but that is
8146 now done above. */
8148 if (GET_MODE_CLASS (mode) == MODE_INT
8149 && mode_width <= HOST_BITS_PER_WIDE_INT)
8150 nonzero = STORE_FLAG_VALUE;
8151 break;
8153 case NEG:
8154 #if 0
8155 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8156 and num_sign_bit_copies. */
8157 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8158 == GET_MODE_BITSIZE (GET_MODE (x)))
8159 nonzero = 1;
8160 #endif
8162 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8163 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8164 break;
8166 case ABS:
8167 #if 0
8168 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8169 and num_sign_bit_copies. */
8170 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8171 == GET_MODE_BITSIZE (GET_MODE (x)))
8172 nonzero = 1;
8173 #endif
8174 break;
8176 case TRUNCATE:
8177 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8178 break;
8180 case ZERO_EXTEND:
8181 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8182 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8183 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8184 break;
8186 case SIGN_EXTEND:
8187 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8188 Otherwise, show all the bits in the outer mode but not the inner
8189 may be non-zero. */
8190 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8191 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8193 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8194 if (inner_nz
8195 & (((HOST_WIDE_INT) 1
8196 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8197 inner_nz |= (GET_MODE_MASK (mode)
8198 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8201 nonzero &= inner_nz;
8202 break;
8204 case AND:
8205 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8206 & nonzero_bits (XEXP (x, 1), mode));
8207 break;
8209 case XOR: case IOR:
8210 case UMIN: case UMAX: case SMIN: case SMAX:
8212 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8214 /* Don't call nonzero_bits for the second time if it cannot change
8215 anything. */
8216 if ((nonzero & nonzero0) != nonzero)
8217 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8219 break;
8221 case PLUS: case MINUS:
8222 case MULT:
8223 case DIV: case UDIV:
8224 case MOD: case UMOD:
8225 /* We can apply the rules of arithmetic to compute the number of
8226 high- and low-order zero bits of these operations. We start by
8227 computing the width (position of the highest-order non-zero bit)
8228 and the number of low-order zero bits for each value. */
8230 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8231 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8232 int width0 = floor_log2 (nz0) + 1;
8233 int width1 = floor_log2 (nz1) + 1;
8234 int low0 = floor_log2 (nz0 & -nz0);
8235 int low1 = floor_log2 (nz1 & -nz1);
8236 HOST_WIDE_INT op0_maybe_minusp
8237 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8238 HOST_WIDE_INT op1_maybe_minusp
8239 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8240 unsigned int result_width = mode_width;
8241 int result_low = 0;
8243 switch (code)
8245 case PLUS:
8246 result_width = MAX (width0, width1) + 1;
8247 result_low = MIN (low0, low1);
8248 break;
8249 case MINUS:
8250 result_low = MIN (low0, low1);
8251 break;
8252 case MULT:
8253 result_width = width0 + width1;
8254 result_low = low0 + low1;
8255 break;
8256 case DIV:
8257 if (width1 == 0)
8258 break;
8259 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8260 result_width = width0;
8261 break;
8262 case UDIV:
8263 if (width1 == 0)
8264 break;
8265 result_width = width0;
8266 break;
8267 case MOD:
8268 if (width1 == 0)
8269 break;
8270 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8271 result_width = MIN (width0, width1);
8272 result_low = MIN (low0, low1);
8273 break;
8274 case UMOD:
8275 if (width1 == 0)
8276 break;
8277 result_width = MIN (width0, width1);
8278 result_low = MIN (low0, low1);
8279 break;
8280 default:
8281 abort ();
8284 if (result_width < mode_width)
8285 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8287 if (result_low > 0)
8288 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8290 #ifdef POINTERS_EXTEND_UNSIGNED
8291 /* If pointers extend unsigned and this is an addition or subtraction
8292 to a pointer in Pmode, all the bits above ptr_mode are known to be
8293 zero. */
8294 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8295 && (code == PLUS || code == MINUS)
8296 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8297 nonzero &= GET_MODE_MASK (ptr_mode);
8298 #endif
8300 break;
8302 case ZERO_EXTRACT:
8303 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8304 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8305 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8306 break;
8308 case SUBREG:
8309 /* If this is a SUBREG formed for a promoted variable that has
8310 been zero-extended, we know that at least the high-order bits
8311 are zero, though others might be too. */
8313 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8314 nonzero = (GET_MODE_MASK (GET_MODE (x))
8315 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8317 /* If the inner mode is a single word for both the host and target
8318 machines, we can compute this from which bits of the inner
8319 object might be nonzero. */
8320 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8321 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8322 <= HOST_BITS_PER_WIDE_INT))
8324 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8326 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8327 /* If this is a typical RISC machine, we only have to worry
8328 about the way loads are extended. */
8329 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8330 ? (((nonzero
8331 & (((unsigned HOST_WIDE_INT) 1
8332 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8333 != 0))
8334 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8335 #endif
8337 /* On many CISC machines, accessing an object in a wider mode
8338 causes the high-order bits to become undefined. So they are
8339 not known to be zero. */
8340 if (GET_MODE_SIZE (GET_MODE (x))
8341 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8342 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8343 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8346 break;
8348 case ASHIFTRT:
8349 case LSHIFTRT:
8350 case ASHIFT:
8351 case ROTATE:
8352 /* The nonzero bits are in two classes: any bits within MODE
8353 that aren't in GET_MODE (x) are always significant. The rest of the
8354 nonzero bits are those that are significant in the operand of
8355 the shift when shifted the appropriate number of bits. This
8356 shows that high-order bits are cleared by the right shift and
8357 low-order bits by left shifts. */
8358 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8359 && INTVAL (XEXP (x, 1)) >= 0
8360 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8362 enum machine_mode inner_mode = GET_MODE (x);
8363 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8364 int count = INTVAL (XEXP (x, 1));
8365 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8366 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8367 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8368 unsigned HOST_WIDE_INT outer = 0;
8370 if (mode_width > width)
8371 outer = (op_nonzero & nonzero & ~mode_mask);
8373 if (code == LSHIFTRT)
8374 inner >>= count;
8375 else if (code == ASHIFTRT)
8377 inner >>= count;
8379 /* If the sign bit may have been nonzero before the shift, we
8380 need to mark all the places it could have been copied to
8381 by the shift as possibly nonzero. */
8382 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8383 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8385 else if (code == ASHIFT)
8386 inner <<= count;
8387 else
8388 inner = ((inner << (count % width)
8389 | (inner >> (width - (count % width)))) & mode_mask);
8391 nonzero &= (outer | inner);
8393 break;
8395 case FFS:
8396 /* This is at most the number of bits in the mode. */
8397 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8398 break;
8400 case IF_THEN_ELSE:
8401 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8402 | nonzero_bits (XEXP (x, 2), mode));
8403 break;
8405 default:
8406 break;
8409 return nonzero;
8412 /* See the macro definition above. */
8413 #undef num_sign_bit_copies
8415 /* Return the number of bits at the high-order end of X that are known to
8416 be equal to the sign bit. X will be used in mode MODE; if MODE is
8417 VOIDmode, X will be used in its own mode. The returned value will always
8418 be between 1 and the number of bits in MODE. */
8420 static unsigned int
8421 num_sign_bit_copies (x, mode)
8422 rtx x;
8423 enum machine_mode mode;
8425 enum rtx_code code = GET_CODE (x);
8426 unsigned int bitwidth;
8427 int num0, num1, result;
8428 unsigned HOST_WIDE_INT nonzero;
8429 rtx tem;
8431 /* If we weren't given a mode, use the mode of X. If the mode is still
8432 VOIDmode, we don't know anything. Likewise if one of the modes is
8433 floating-point. */
8435 if (mode == VOIDmode)
8436 mode = GET_MODE (x);
8438 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8439 return 1;
8441 bitwidth = GET_MODE_BITSIZE (mode);
8443 /* For a smaller object, just ignore the high bits. */
8444 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8446 num0 = num_sign_bit_copies (x, GET_MODE (x));
8447 return MAX (1,
8448 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8451 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8453 #ifndef WORD_REGISTER_OPERATIONS
8454 /* If this machine does not do all register operations on the entire
8455 register and MODE is wider than the mode of X, we can say nothing
8456 at all about the high-order bits. */
8457 return 1;
8458 #else
8459 /* Likewise on machines that do, if the mode of the object is smaller
8460 than a word and loads of that size don't sign extend, we can say
8461 nothing about the high order bits. */
8462 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8463 #ifdef LOAD_EXTEND_OP
8464 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8465 #endif
8467 return 1;
8468 #endif
8471 switch (code)
8473 case REG:
8475 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8476 /* If pointers extend signed and this is a pointer in Pmode, say that
8477 all the bits above ptr_mode are known to be sign bit copies. */
8478 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8479 && REG_POINTER (x))
8480 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8481 #endif
8483 if (reg_last_set_value[REGNO (x)] != 0
8484 && reg_last_set_mode[REGNO (x)] == mode
8485 && (reg_last_set_label[REGNO (x)] == label_tick
8486 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8487 && REG_N_SETS (REGNO (x)) == 1
8488 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8489 REGNO (x))))
8490 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8491 return reg_last_set_sign_bit_copies[REGNO (x)];
8493 tem = get_last_value (x);
8494 if (tem != 0)
8495 return num_sign_bit_copies (tem, mode);
8497 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8498 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8499 return reg_sign_bit_copies[REGNO (x)];
8500 break;
8502 case MEM:
8503 #ifdef LOAD_EXTEND_OP
8504 /* Some RISC machines sign-extend all loads of smaller than a word. */
8505 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8506 return MAX (1, ((int) bitwidth
8507 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8508 #endif
8509 break;
8511 case CONST_INT:
8512 /* If the constant is negative, take its 1's complement and remask.
8513 Then see how many zero bits we have. */
8514 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8515 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8516 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8517 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8519 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8521 case SUBREG:
8522 /* If this is a SUBREG for a promoted object that is sign-extended
8523 and we are looking at it in a wider mode, we know that at least the
8524 high-order bits are known to be sign bit copies. */
8526 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8528 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8529 return MAX ((int) bitwidth
8530 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8531 num0);
8534 /* For a smaller object, just ignore the high bits. */
8535 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8537 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8538 return MAX (1, (num0
8539 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8540 - bitwidth)));
8543 #ifdef WORD_REGISTER_OPERATIONS
8544 #ifdef LOAD_EXTEND_OP
8545 /* For paradoxical SUBREGs on machines where all register operations
8546 affect the entire register, just look inside. Note that we are
8547 passing MODE to the recursive call, so the number of sign bit copies
8548 will remain relative to that mode, not the inner mode. */
8550 /* This works only if loads sign extend. Otherwise, if we get a
8551 reload for the inner part, it may be loaded from the stack, and
8552 then we lose all sign bit copies that existed before the store
8553 to the stack. */
8555 if ((GET_MODE_SIZE (GET_MODE (x))
8556 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8557 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8558 return num_sign_bit_copies (SUBREG_REG (x), mode);
8559 #endif
8560 #endif
8561 break;
8563 case SIGN_EXTRACT:
8564 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8565 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8566 break;
8568 case SIGN_EXTEND:
8569 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8570 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8572 case TRUNCATE:
8573 /* For a smaller object, just ignore the high bits. */
8574 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8575 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8576 - bitwidth)));
8578 case NOT:
8579 return num_sign_bit_copies (XEXP (x, 0), mode);
8581 case ROTATE: case ROTATERT:
8582 /* If we are rotating left by a number of bits less than the number
8583 of sign bit copies, we can just subtract that amount from the
8584 number. */
8585 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8586 && INTVAL (XEXP (x, 1)) >= 0
8587 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8589 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8590 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8591 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8593 break;
8595 case NEG:
8596 /* In general, this subtracts one sign bit copy. But if the value
8597 is known to be positive, the number of sign bit copies is the
8598 same as that of the input. Finally, if the input has just one bit
8599 that might be nonzero, all the bits are copies of the sign bit. */
8600 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8601 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8602 return num0 > 1 ? num0 - 1 : 1;
8604 nonzero = nonzero_bits (XEXP (x, 0), mode);
8605 if (nonzero == 1)
8606 return bitwidth;
8608 if (num0 > 1
8609 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8610 num0--;
8612 return num0;
8614 case IOR: case AND: case XOR:
8615 case SMIN: case SMAX: case UMIN: case UMAX:
8616 /* Logical operations will preserve the number of sign-bit copies.
8617 MIN and MAX operations always return one of the operands. */
8618 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8619 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8620 return MIN (num0, num1);
8622 case PLUS: case MINUS:
8623 /* For addition and subtraction, we can have a 1-bit carry. However,
8624 if we are subtracting 1 from a positive number, there will not
8625 be such a carry. Furthermore, if the positive number is known to
8626 be 0 or 1, we know the result is either -1 or 0. */
8628 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8629 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8631 nonzero = nonzero_bits (XEXP (x, 0), mode);
8632 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8633 return (nonzero == 1 || nonzero == 0 ? bitwidth
8634 : bitwidth - floor_log2 (nonzero) - 1);
8637 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8638 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8639 result = MAX (1, MIN (num0, num1) - 1);
8641 #ifdef POINTERS_EXTEND_UNSIGNED
8642 /* If pointers extend signed and this is an addition or subtraction
8643 to a pointer in Pmode, all the bits above ptr_mode are known to be
8644 sign bit copies. */
8645 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8646 && (code == PLUS || code == MINUS)
8647 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8648 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8649 - GET_MODE_BITSIZE (ptr_mode) + 1),
8650 result);
8651 #endif
8652 return result;
8654 case MULT:
8655 /* The number of bits of the product is the sum of the number of
8656 bits of both terms. However, unless one of the terms if known
8657 to be positive, we must allow for an additional bit since negating
8658 a negative number can remove one sign bit copy. */
8660 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8661 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8663 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8664 if (result > 0
8665 && (bitwidth > HOST_BITS_PER_WIDE_INT
8666 || (((nonzero_bits (XEXP (x, 0), mode)
8667 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8668 && ((nonzero_bits (XEXP (x, 1), mode)
8669 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8670 result--;
8672 return MAX (1, result);
8674 case UDIV:
8675 /* The result must be <= the first operand. If the first operand
8676 has the high bit set, we know nothing about the number of sign
8677 bit copies. */
8678 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8679 return 1;
8680 else if ((nonzero_bits (XEXP (x, 0), mode)
8681 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8682 return 1;
8683 else
8684 return num_sign_bit_copies (XEXP (x, 0), mode);
8686 case UMOD:
8687 /* The result must be <= the second operand. */
8688 return num_sign_bit_copies (XEXP (x, 1), mode);
8690 case DIV:
8691 /* Similar to unsigned division, except that we have to worry about
8692 the case where the divisor is negative, in which case we have
8693 to add 1. */
8694 result = num_sign_bit_copies (XEXP (x, 0), mode);
8695 if (result > 1
8696 && (bitwidth > HOST_BITS_PER_WIDE_INT
8697 || (nonzero_bits (XEXP (x, 1), mode)
8698 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8699 result--;
8701 return result;
8703 case MOD:
8704 result = num_sign_bit_copies (XEXP (x, 1), mode);
8705 if (result > 1
8706 && (bitwidth > HOST_BITS_PER_WIDE_INT
8707 || (nonzero_bits (XEXP (x, 1), mode)
8708 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8709 result--;
8711 return result;
8713 case ASHIFTRT:
8714 /* Shifts by a constant add to the number of bits equal to the
8715 sign bit. */
8716 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8717 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8718 && INTVAL (XEXP (x, 1)) > 0)
8719 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8721 return num0;
8723 case ASHIFT:
8724 /* Left shifts destroy copies. */
8725 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8726 || INTVAL (XEXP (x, 1)) < 0
8727 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8728 return 1;
8730 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8731 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8733 case IF_THEN_ELSE:
8734 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8735 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8736 return MIN (num0, num1);
8738 case EQ: case NE: case GE: case GT: case LE: case LT:
8739 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8740 case GEU: case GTU: case LEU: case LTU:
8741 case UNORDERED: case ORDERED:
8742 /* If the constant is negative, take its 1's complement and remask.
8743 Then see how many zero bits we have. */
8744 nonzero = STORE_FLAG_VALUE;
8745 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8746 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8747 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8749 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8750 break;
8752 default:
8753 break;
8756 /* If we haven't been able to figure it out by one of the above rules,
8757 see if some of the high-order bits are known to be zero. If so,
8758 count those bits and return one less than that amount. If we can't
8759 safely compute the mask for this mode, always return BITWIDTH. */
8761 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8762 return 1;
8764 nonzero = nonzero_bits (x, mode);
8765 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8766 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8769 /* Return the number of "extended" bits there are in X, when interpreted
8770 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8771 unsigned quantities, this is the number of high-order zero bits.
8772 For signed quantities, this is the number of copies of the sign bit
8773 minus 1. In both case, this function returns the number of "spare"
8774 bits. For example, if two quantities for which this function returns
8775 at least 1 are added, the addition is known not to overflow.
8777 This function will always return 0 unless called during combine, which
8778 implies that it must be called from a define_split. */
8780 unsigned int
8781 extended_count (x, mode, unsignedp)
8782 rtx x;
8783 enum machine_mode mode;
8784 int unsignedp;
8786 if (nonzero_sign_valid == 0)
8787 return 0;
8789 return (unsignedp
8790 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8791 ? (GET_MODE_BITSIZE (mode) - 1
8792 - floor_log2 (nonzero_bits (x, mode)))
8793 : 0)
8794 : num_sign_bit_copies (x, mode) - 1);
8797 /* This function is called from `simplify_shift_const' to merge two
8798 outer operations. Specifically, we have already found that we need
8799 to perform operation *POP0 with constant *PCONST0 at the outermost
8800 position. We would now like to also perform OP1 with constant CONST1
8801 (with *POP0 being done last).
8803 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8804 the resulting operation. *PCOMP_P is set to 1 if we would need to
8805 complement the innermost operand, otherwise it is unchanged.
8807 MODE is the mode in which the operation will be done. No bits outside
8808 the width of this mode matter. It is assumed that the width of this mode
8809 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8811 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8812 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8813 result is simply *PCONST0.
8815 If the resulting operation cannot be expressed as one operation, we
8816 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8818 static int
8819 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8820 enum rtx_code *pop0;
8821 HOST_WIDE_INT *pconst0;
8822 enum rtx_code op1;
8823 HOST_WIDE_INT const1;
8824 enum machine_mode mode;
8825 int *pcomp_p;
8827 enum rtx_code op0 = *pop0;
8828 HOST_WIDE_INT const0 = *pconst0;
8830 const0 &= GET_MODE_MASK (mode);
8831 const1 &= GET_MODE_MASK (mode);
8833 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8834 if (op0 == AND)
8835 const1 &= const0;
8837 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8838 if OP0 is SET. */
8840 if (op1 == NIL || op0 == SET)
8841 return 1;
8843 else if (op0 == NIL)
8844 op0 = op1, const0 = const1;
8846 else if (op0 == op1)
8848 switch (op0)
8850 case AND:
8851 const0 &= const1;
8852 break;
8853 case IOR:
8854 const0 |= const1;
8855 break;
8856 case XOR:
8857 const0 ^= const1;
8858 break;
8859 case PLUS:
8860 const0 += const1;
8861 break;
8862 case NEG:
8863 op0 = NIL;
8864 break;
8865 default:
8866 break;
8870 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8871 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8872 return 0;
8874 /* If the two constants aren't the same, we can't do anything. The
8875 remaining six cases can all be done. */
8876 else if (const0 != const1)
8877 return 0;
8879 else
8880 switch (op0)
8882 case IOR:
8883 if (op1 == AND)
8884 /* (a & b) | b == b */
8885 op0 = SET;
8886 else /* op1 == XOR */
8887 /* (a ^ b) | b == a | b */
8889 break;
8891 case XOR:
8892 if (op1 == AND)
8893 /* (a & b) ^ b == (~a) & b */
8894 op0 = AND, *pcomp_p = 1;
8895 else /* op1 == IOR */
8896 /* (a | b) ^ b == a & ~b */
8897 op0 = AND, *pconst0 = ~const0;
8898 break;
8900 case AND:
8901 if (op1 == IOR)
8902 /* (a | b) & b == b */
8903 op0 = SET;
8904 else /* op1 == XOR */
8905 /* (a ^ b) & b) == (~a) & b */
8906 *pcomp_p = 1;
8907 break;
8908 default:
8909 break;
8912 /* Check for NO-OP cases. */
8913 const0 &= GET_MODE_MASK (mode);
8914 if (const0 == 0
8915 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8916 op0 = NIL;
8917 else if (const0 == 0 && op0 == AND)
8918 op0 = SET;
8919 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8920 && op0 == AND)
8921 op0 = NIL;
8923 /* ??? Slightly redundant with the above mask, but not entirely.
8924 Moving this above means we'd have to sign-extend the mode mask
8925 for the final test. */
8926 const0 = trunc_int_for_mode (const0, mode);
8928 *pop0 = op0;
8929 *pconst0 = const0;
8931 return 1;
8934 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8935 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8936 that we started with.
8938 The shift is normally computed in the widest mode we find in VAROP, as
8939 long as it isn't a different number of words than RESULT_MODE. Exceptions
8940 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8942 static rtx
8943 simplify_shift_const (x, code, result_mode, varop, orig_count)
8944 rtx x;
8945 enum rtx_code code;
8946 enum machine_mode result_mode;
8947 rtx varop;
8948 int orig_count;
8950 enum rtx_code orig_code = code;
8951 unsigned int count;
8952 int signed_count;
8953 enum machine_mode mode = result_mode;
8954 enum machine_mode shift_mode, tmode;
8955 unsigned int mode_words
8956 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8957 /* We form (outer_op (code varop count) (outer_const)). */
8958 enum rtx_code outer_op = NIL;
8959 HOST_WIDE_INT outer_const = 0;
8960 rtx const_rtx;
8961 int complement_p = 0;
8962 rtx new;
8964 /* Make sure and truncate the "natural" shift on the way in. We don't
8965 want to do this inside the loop as it makes it more difficult to
8966 combine shifts. */
8967 #ifdef SHIFT_COUNT_TRUNCATED
8968 if (SHIFT_COUNT_TRUNCATED)
8969 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8970 #endif
8972 /* If we were given an invalid count, don't do anything except exactly
8973 what was requested. */
8975 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8977 if (x)
8978 return x;
8980 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8983 count = orig_count;
8985 /* Unless one of the branches of the `if' in this loop does a `continue',
8986 we will `break' the loop after the `if'. */
8988 while (count != 0)
8990 /* If we have an operand of (clobber (const_int 0)), just return that
8991 value. */
8992 if (GET_CODE (varop) == CLOBBER)
8993 return varop;
8995 /* If we discovered we had to complement VAROP, leave. Making a NOT
8996 here would cause an infinite loop. */
8997 if (complement_p)
8998 break;
9000 /* Convert ROTATERT to ROTATE. */
9001 if (code == ROTATERT)
9002 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
9004 /* We need to determine what mode we will do the shift in. If the
9005 shift is a right shift or a ROTATE, we must always do it in the mode
9006 it was originally done in. Otherwise, we can do it in MODE, the
9007 widest mode encountered. */
9008 shift_mode
9009 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9010 ? result_mode : mode);
9012 /* Handle cases where the count is greater than the size of the mode
9013 minus 1. For ASHIFT, use the size minus one as the count (this can
9014 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9015 take the count modulo the size. For other shifts, the result is
9016 zero.
9018 Since these shifts are being produced by the compiler by combining
9019 multiple operations, each of which are defined, we know what the
9020 result is supposed to be. */
9022 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9024 if (code == ASHIFTRT)
9025 count = GET_MODE_BITSIZE (shift_mode) - 1;
9026 else if (code == ROTATE || code == ROTATERT)
9027 count %= GET_MODE_BITSIZE (shift_mode);
9028 else
9030 /* We can't simply return zero because there may be an
9031 outer op. */
9032 varop = const0_rtx;
9033 count = 0;
9034 break;
9038 /* An arithmetic right shift of a quantity known to be -1 or 0
9039 is a no-op. */
9040 if (code == ASHIFTRT
9041 && (num_sign_bit_copies (varop, shift_mode)
9042 == GET_MODE_BITSIZE (shift_mode)))
9044 count = 0;
9045 break;
9048 /* If we are doing an arithmetic right shift and discarding all but
9049 the sign bit copies, this is equivalent to doing a shift by the
9050 bitsize minus one. Convert it into that shift because it will often
9051 allow other simplifications. */
9053 if (code == ASHIFTRT
9054 && (count + num_sign_bit_copies (varop, shift_mode)
9055 >= GET_MODE_BITSIZE (shift_mode)))
9056 count = GET_MODE_BITSIZE (shift_mode) - 1;
9058 /* We simplify the tests below and elsewhere by converting
9059 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9060 `make_compound_operation' will convert it to an ASHIFTRT for
9061 those machines (such as VAX) that don't have an LSHIFTRT. */
9062 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9063 && code == ASHIFTRT
9064 && ((nonzero_bits (varop, shift_mode)
9065 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9066 == 0))
9067 code = LSHIFTRT;
9069 switch (GET_CODE (varop))
9071 case SIGN_EXTEND:
9072 case ZERO_EXTEND:
9073 case SIGN_EXTRACT:
9074 case ZERO_EXTRACT:
9075 new = expand_compound_operation (varop);
9076 if (new != varop)
9078 varop = new;
9079 continue;
9081 break;
9083 case MEM:
9084 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9085 minus the width of a smaller mode, we can do this with a
9086 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9087 if ((code == ASHIFTRT || code == LSHIFTRT)
9088 && ! mode_dependent_address_p (XEXP (varop, 0))
9089 && ! MEM_VOLATILE_P (varop)
9090 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9091 MODE_INT, 1)) != BLKmode)
9093 new = adjust_address_nv (varop, tmode,
9094 BYTES_BIG_ENDIAN ? 0
9095 : count / BITS_PER_UNIT);
9097 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9098 : ZERO_EXTEND, mode, new);
9099 count = 0;
9100 continue;
9102 break;
9104 case USE:
9105 /* Similar to the case above, except that we can only do this if
9106 the resulting mode is the same as that of the underlying
9107 MEM and adjust the address depending on the *bits* endianness
9108 because of the way that bit-field extract insns are defined. */
9109 if ((code == ASHIFTRT || code == LSHIFTRT)
9110 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9111 MODE_INT, 1)) != BLKmode
9112 && tmode == GET_MODE (XEXP (varop, 0)))
9114 if (BITS_BIG_ENDIAN)
9115 new = XEXP (varop, 0);
9116 else
9118 new = copy_rtx (XEXP (varop, 0));
9119 SUBST (XEXP (new, 0),
9120 plus_constant (XEXP (new, 0),
9121 count / BITS_PER_UNIT));
9124 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9125 : ZERO_EXTEND, mode, new);
9126 count = 0;
9127 continue;
9129 break;
9131 case SUBREG:
9132 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9133 the same number of words as what we've seen so far. Then store
9134 the widest mode in MODE. */
9135 if (subreg_lowpart_p (varop)
9136 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9137 > GET_MODE_SIZE (GET_MODE (varop)))
9138 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9139 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9140 == mode_words))
9142 varop = SUBREG_REG (varop);
9143 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9144 mode = GET_MODE (varop);
9145 continue;
9147 break;
9149 case MULT:
9150 /* Some machines use MULT instead of ASHIFT because MULT
9151 is cheaper. But it is still better on those machines to
9152 merge two shifts into one. */
9153 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9154 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9156 varop
9157 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9158 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9159 continue;
9161 break;
9163 case UDIV:
9164 /* Similar, for when divides are cheaper. */
9165 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9166 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9168 varop
9169 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9170 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9171 continue;
9173 break;
9175 case ASHIFTRT:
9176 /* If we are extracting just the sign bit of an arithmetic
9177 right shift, that shift is not needed. However, the sign
9178 bit of a wider mode may be different from what would be
9179 interpreted as the sign bit in a narrower mode, so, if
9180 the result is narrower, don't discard the shift. */
9181 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9182 && (GET_MODE_BITSIZE (result_mode)
9183 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9185 varop = XEXP (varop, 0);
9186 continue;
9189 /* ... fall through ... */
9191 case LSHIFTRT:
9192 case ASHIFT:
9193 case ROTATE:
9194 /* Here we have two nested shifts. The result is usually the
9195 AND of a new shift with a mask. We compute the result below. */
9196 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9197 && INTVAL (XEXP (varop, 1)) >= 0
9198 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9199 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9200 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9202 enum rtx_code first_code = GET_CODE (varop);
9203 unsigned int first_count = INTVAL (XEXP (varop, 1));
9204 unsigned HOST_WIDE_INT mask;
9205 rtx mask_rtx;
9207 /* We have one common special case. We can't do any merging if
9208 the inner code is an ASHIFTRT of a smaller mode. However, if
9209 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9210 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9211 we can convert it to
9212 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9213 This simplifies certain SIGN_EXTEND operations. */
9214 if (code == ASHIFT && first_code == ASHIFTRT
9215 && (GET_MODE_BITSIZE (result_mode)
9216 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9218 /* C3 has the low-order C1 bits zero. */
9220 mask = (GET_MODE_MASK (mode)
9221 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9223 varop = simplify_and_const_int (NULL_RTX, result_mode,
9224 XEXP (varop, 0), mask);
9225 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9226 varop, count);
9227 count = first_count;
9228 code = ASHIFTRT;
9229 continue;
9232 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9233 than C1 high-order bits equal to the sign bit, we can convert
9234 this to either an ASHIFT or an ASHIFTRT depending on the
9235 two counts.
9237 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9239 if (code == ASHIFTRT && first_code == ASHIFT
9240 && GET_MODE (varop) == shift_mode
9241 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9242 > first_count))
9244 varop = XEXP (varop, 0);
9246 signed_count = count - first_count;
9247 if (signed_count < 0)
9248 count = -signed_count, code = ASHIFT;
9249 else
9250 count = signed_count;
9252 continue;
9255 /* There are some cases we can't do. If CODE is ASHIFTRT,
9256 we can only do this if FIRST_CODE is also ASHIFTRT.
9258 We can't do the case when CODE is ROTATE and FIRST_CODE is
9259 ASHIFTRT.
9261 If the mode of this shift is not the mode of the outer shift,
9262 we can't do this if either shift is a right shift or ROTATE.
9264 Finally, we can't do any of these if the mode is too wide
9265 unless the codes are the same.
9267 Handle the case where the shift codes are the same
9268 first. */
9270 if (code == first_code)
9272 if (GET_MODE (varop) != result_mode
9273 && (code == ASHIFTRT || code == LSHIFTRT
9274 || code == ROTATE))
9275 break;
9277 count += first_count;
9278 varop = XEXP (varop, 0);
9279 continue;
9282 if (code == ASHIFTRT
9283 || (code == ROTATE && first_code == ASHIFTRT)
9284 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9285 || (GET_MODE (varop) != result_mode
9286 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9287 || first_code == ROTATE
9288 || code == ROTATE)))
9289 break;
9291 /* To compute the mask to apply after the shift, shift the
9292 nonzero bits of the inner shift the same way the
9293 outer shift will. */
9295 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9297 mask_rtx
9298 = simplify_binary_operation (code, result_mode, mask_rtx,
9299 GEN_INT (count));
9301 /* Give up if we can't compute an outer operation to use. */
9302 if (mask_rtx == 0
9303 || GET_CODE (mask_rtx) != CONST_INT
9304 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9305 INTVAL (mask_rtx),
9306 result_mode, &complement_p))
9307 break;
9309 /* If the shifts are in the same direction, we add the
9310 counts. Otherwise, we subtract them. */
9311 signed_count = count;
9312 if ((code == ASHIFTRT || code == LSHIFTRT)
9313 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9314 signed_count += first_count;
9315 else
9316 signed_count -= first_count;
9318 /* If COUNT is positive, the new shift is usually CODE,
9319 except for the two exceptions below, in which case it is
9320 FIRST_CODE. If the count is negative, FIRST_CODE should
9321 always be used */
9322 if (signed_count > 0
9323 && ((first_code == ROTATE && code == ASHIFT)
9324 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9325 code = first_code, count = signed_count;
9326 else if (signed_count < 0)
9327 code = first_code, count = -signed_count;
9328 else
9329 count = signed_count;
9331 varop = XEXP (varop, 0);
9332 continue;
9335 /* If we have (A << B << C) for any shift, we can convert this to
9336 (A << C << B). This wins if A is a constant. Only try this if
9337 B is not a constant. */
9339 else if (GET_CODE (varop) == code
9340 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9341 && 0 != (new
9342 = simplify_binary_operation (code, mode,
9343 XEXP (varop, 0),
9344 GEN_INT (count))))
9346 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9347 count = 0;
9348 continue;
9350 break;
9352 case NOT:
9353 /* Make this fit the case below. */
9354 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9355 GEN_INT (GET_MODE_MASK (mode)));
9356 continue;
9358 case IOR:
9359 case AND:
9360 case XOR:
9361 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9362 with C the size of VAROP - 1 and the shift is logical if
9363 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9364 we have an (le X 0) operation. If we have an arithmetic shift
9365 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9366 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9368 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9369 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9370 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9371 && (code == LSHIFTRT || code == ASHIFTRT)
9372 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9373 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9375 count = 0;
9376 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9377 const0_rtx);
9379 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9380 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9382 continue;
9385 /* If we have (shift (logical)), move the logical to the outside
9386 to allow it to possibly combine with another logical and the
9387 shift to combine with another shift. This also canonicalizes to
9388 what a ZERO_EXTRACT looks like. Also, some machines have
9389 (and (shift)) insns. */
9391 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9392 && (new = simplify_binary_operation (code, result_mode,
9393 XEXP (varop, 1),
9394 GEN_INT (count))) != 0
9395 && GET_CODE (new) == CONST_INT
9396 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9397 INTVAL (new), result_mode, &complement_p))
9399 varop = XEXP (varop, 0);
9400 continue;
9403 /* If we can't do that, try to simplify the shift in each arm of the
9404 logical expression, make a new logical expression, and apply
9405 the inverse distributive law. */
9407 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9408 XEXP (varop, 0), count);
9409 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9410 XEXP (varop, 1), count);
9412 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9413 varop = apply_distributive_law (varop);
9415 count = 0;
9417 break;
9419 case EQ:
9420 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9421 says that the sign bit can be tested, FOO has mode MODE, C is
9422 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9423 that may be nonzero. */
9424 if (code == LSHIFTRT
9425 && XEXP (varop, 1) == const0_rtx
9426 && GET_MODE (XEXP (varop, 0)) == result_mode
9427 && count == GET_MODE_BITSIZE (result_mode) - 1
9428 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9429 && ((STORE_FLAG_VALUE
9430 & ((HOST_WIDE_INT) 1
9431 < (GET_MODE_BITSIZE (result_mode) - 1))))
9432 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9433 && merge_outer_ops (&outer_op, &outer_const, XOR,
9434 (HOST_WIDE_INT) 1, result_mode,
9435 &complement_p))
9437 varop = XEXP (varop, 0);
9438 count = 0;
9439 continue;
9441 break;
9443 case NEG:
9444 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9445 than the number of bits in the mode is equivalent to A. */
9446 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9447 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9449 varop = XEXP (varop, 0);
9450 count = 0;
9451 continue;
9454 /* NEG commutes with ASHIFT since it is multiplication. Move the
9455 NEG outside to allow shifts to combine. */
9456 if (code == ASHIFT
9457 && merge_outer_ops (&outer_op, &outer_const, NEG,
9458 (HOST_WIDE_INT) 0, result_mode,
9459 &complement_p))
9461 varop = XEXP (varop, 0);
9462 continue;
9464 break;
9466 case PLUS:
9467 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9468 is one less than the number of bits in the mode is
9469 equivalent to (xor A 1). */
9470 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9471 && XEXP (varop, 1) == constm1_rtx
9472 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9473 && merge_outer_ops (&outer_op, &outer_const, XOR,
9474 (HOST_WIDE_INT) 1, result_mode,
9475 &complement_p))
9477 count = 0;
9478 varop = XEXP (varop, 0);
9479 continue;
9482 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9483 that might be nonzero in BAR are those being shifted out and those
9484 bits are known zero in FOO, we can replace the PLUS with FOO.
9485 Similarly in the other operand order. This code occurs when
9486 we are computing the size of a variable-size array. */
9488 if ((code == ASHIFTRT || code == LSHIFTRT)
9489 && count < HOST_BITS_PER_WIDE_INT
9490 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9491 && (nonzero_bits (XEXP (varop, 1), result_mode)
9492 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9494 varop = XEXP (varop, 0);
9495 continue;
9497 else if ((code == ASHIFTRT || code == LSHIFTRT)
9498 && count < HOST_BITS_PER_WIDE_INT
9499 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9500 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9501 >> count)
9502 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9503 & nonzero_bits (XEXP (varop, 1),
9504 result_mode)))
9506 varop = XEXP (varop, 1);
9507 continue;
9510 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9511 if (code == ASHIFT
9512 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9513 && (new = simplify_binary_operation (ASHIFT, result_mode,
9514 XEXP (varop, 1),
9515 GEN_INT (count))) != 0
9516 && GET_CODE (new) == CONST_INT
9517 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9518 INTVAL (new), result_mode, &complement_p))
9520 varop = XEXP (varop, 0);
9521 continue;
9523 break;
9525 case MINUS:
9526 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9527 with C the size of VAROP - 1 and the shift is logical if
9528 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9529 we have a (gt X 0) operation. If the shift is arithmetic with
9530 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9531 we have a (neg (gt X 0)) operation. */
9533 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9534 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9535 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9536 && (code == LSHIFTRT || code == ASHIFTRT)
9537 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9538 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9539 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9541 count = 0;
9542 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9543 const0_rtx);
9545 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9546 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9548 continue;
9550 break;
9552 case TRUNCATE:
9553 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9554 if the truncate does not affect the value. */
9555 if (code == LSHIFTRT
9556 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9557 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9558 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9559 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9560 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9562 rtx varop_inner = XEXP (varop, 0);
9564 varop_inner
9565 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9566 XEXP (varop_inner, 0),
9567 GEN_INT
9568 (count + INTVAL (XEXP (varop_inner, 1))));
9569 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9570 count = 0;
9571 continue;
9573 break;
9575 default:
9576 break;
9579 break;
9582 /* We need to determine what mode to do the shift in. If the shift is
9583 a right shift or ROTATE, we must always do it in the mode it was
9584 originally done in. Otherwise, we can do it in MODE, the widest mode
9585 encountered. The code we care about is that of the shift that will
9586 actually be done, not the shift that was originally requested. */
9587 shift_mode
9588 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9589 ? result_mode : mode);
9591 /* We have now finished analyzing the shift. The result should be
9592 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9593 OUTER_OP is non-NIL, it is an operation that needs to be applied
9594 to the result of the shift. OUTER_CONST is the relevant constant,
9595 but we must turn off all bits turned off in the shift.
9597 If we were passed a value for X, see if we can use any pieces of
9598 it. If not, make new rtx. */
9600 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9601 && GET_CODE (XEXP (x, 1)) == CONST_INT
9602 && INTVAL (XEXP (x, 1)) == count)
9603 const_rtx = XEXP (x, 1);
9604 else
9605 const_rtx = GEN_INT (count);
9607 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9608 && GET_MODE (XEXP (x, 0)) == shift_mode
9609 && SUBREG_REG (XEXP (x, 0)) == varop)
9610 varop = XEXP (x, 0);
9611 else if (GET_MODE (varop) != shift_mode)
9612 varop = gen_lowpart_for_combine (shift_mode, varop);
9614 /* If we can't make the SUBREG, try to return what we were given. */
9615 if (GET_CODE (varop) == CLOBBER)
9616 return x ? x : varop;
9618 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9619 if (new != 0)
9620 x = new;
9621 else
9622 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9624 /* If we have an outer operation and we just made a shift, it is
9625 possible that we could have simplified the shift were it not
9626 for the outer operation. So try to do the simplification
9627 recursively. */
9629 if (outer_op != NIL && GET_CODE (x) == code
9630 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9631 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9632 INTVAL (XEXP (x, 1)));
9634 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9635 turn off all the bits that the shift would have turned off. */
9636 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9637 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9638 GET_MODE_MASK (result_mode) >> orig_count);
9640 /* Do the remainder of the processing in RESULT_MODE. */
9641 x = gen_lowpart_for_combine (result_mode, x);
9643 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9644 operation. */
9645 if (complement_p)
9646 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9648 if (outer_op != NIL)
9650 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9651 outer_const = trunc_int_for_mode (outer_const, result_mode);
9653 if (outer_op == AND)
9654 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9655 else if (outer_op == SET)
9656 /* This means that we have determined that the result is
9657 equivalent to a constant. This should be rare. */
9658 x = GEN_INT (outer_const);
9659 else if (GET_RTX_CLASS (outer_op) == '1')
9660 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9661 else
9662 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9665 return x;
9668 /* Like recog, but we receive the address of a pointer to a new pattern.
9669 We try to match the rtx that the pointer points to.
9670 If that fails, we may try to modify or replace the pattern,
9671 storing the replacement into the same pointer object.
9673 Modifications include deletion or addition of CLOBBERs.
9675 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9676 the CLOBBERs are placed.
9678 The value is the final insn code from the pattern ultimately matched,
9679 or -1. */
9681 static int
9682 recog_for_combine (pnewpat, insn, pnotes)
9683 rtx *pnewpat;
9684 rtx insn;
9685 rtx *pnotes;
9687 rtx pat = *pnewpat;
9688 int insn_code_number;
9689 int num_clobbers_to_add = 0;
9690 int i;
9691 rtx notes = 0;
9692 rtx dummy_insn;
9694 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9695 we use to indicate that something didn't match. If we find such a
9696 thing, force rejection. */
9697 if (GET_CODE (pat) == PARALLEL)
9698 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9699 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9700 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9701 return -1;
9703 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9704 instruction for pattern recognition. */
9705 dummy_insn = shallow_copy_rtx (insn);
9706 PATTERN (dummy_insn) = pat;
9707 REG_NOTES (dummy_insn) = 0;
9709 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9711 /* If it isn't, there is the possibility that we previously had an insn
9712 that clobbered some register as a side effect, but the combined
9713 insn doesn't need to do that. So try once more without the clobbers
9714 unless this represents an ASM insn. */
9716 if (insn_code_number < 0 && ! check_asm_operands (pat)
9717 && GET_CODE (pat) == PARALLEL)
9719 int pos;
9721 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9722 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9724 if (i != pos)
9725 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9726 pos++;
9729 SUBST_INT (XVECLEN (pat, 0), pos);
9731 if (pos == 1)
9732 pat = XVECEXP (pat, 0, 0);
9734 PATTERN (dummy_insn) = pat;
9735 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9738 /* Recognize all noop sets, these will be killed by followup pass. */
9739 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9740 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9742 /* If we had any clobbers to add, make a new pattern than contains
9743 them. Then check to make sure that all of them are dead. */
9744 if (num_clobbers_to_add)
9746 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9747 rtvec_alloc (GET_CODE (pat) == PARALLEL
9748 ? (XVECLEN (pat, 0)
9749 + num_clobbers_to_add)
9750 : num_clobbers_to_add + 1));
9752 if (GET_CODE (pat) == PARALLEL)
9753 for (i = 0; i < XVECLEN (pat, 0); i++)
9754 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9755 else
9756 XVECEXP (newpat, 0, 0) = pat;
9758 add_clobbers (newpat, insn_code_number);
9760 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9761 i < XVECLEN (newpat, 0); i++)
9763 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9764 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9765 return -1;
9766 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9767 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9769 pat = newpat;
9772 *pnewpat = pat;
9773 *pnotes = notes;
9775 return insn_code_number;
9778 /* Like gen_lowpart but for use by combine. In combine it is not possible
9779 to create any new pseudoregs. However, it is safe to create
9780 invalid memory addresses, because combine will try to recognize
9781 them and all they will do is make the combine attempt fail.
9783 If for some reason this cannot do its job, an rtx
9784 (clobber (const_int 0)) is returned.
9785 An insn containing that will not be recognized. */
9787 #undef gen_lowpart
9789 static rtx
9790 gen_lowpart_for_combine (mode, x)
9791 enum machine_mode mode;
9792 rtx x;
9794 rtx result;
9796 if (GET_MODE (x) == mode)
9797 return x;
9799 /* We can only support MODE being wider than a word if X is a
9800 constant integer or has a mode the same size. */
9802 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9803 && ! ((GET_MODE (x) == VOIDmode
9804 && (GET_CODE (x) == CONST_INT
9805 || GET_CODE (x) == CONST_DOUBLE))
9806 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9807 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9809 /* simplify_gen_subreg does not know how to handle the case where we try
9810 to convert an integer constant to a vector.
9811 ??? We could try to teach it to generate CONST_VECTORs. */
9812 if (GET_MODE (x) == VOIDmode && VECTOR_MODE_P (mode))
9813 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9815 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9816 won't know what to do. So we will strip off the SUBREG here and
9817 process normally. */
9818 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9820 x = SUBREG_REG (x);
9821 if (GET_MODE (x) == mode)
9822 return x;
9825 result = gen_lowpart_common (mode, x);
9826 #ifdef CLASS_CANNOT_CHANGE_MODE
9827 if (result != 0
9828 && GET_CODE (result) == SUBREG
9829 && GET_CODE (SUBREG_REG (result)) == REG
9830 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9831 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9832 GET_MODE (SUBREG_REG (result))))
9833 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9834 #endif
9836 if (result)
9837 return result;
9839 if (GET_CODE (x) == MEM)
9841 int offset = 0;
9843 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9844 address. */
9845 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9846 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9848 /* If we want to refer to something bigger than the original memref,
9849 generate a perverse subreg instead. That will force a reload
9850 of the original memref X. */
9851 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9852 return gen_rtx_SUBREG (mode, x, 0);
9854 if (WORDS_BIG_ENDIAN)
9855 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9856 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9858 if (BYTES_BIG_ENDIAN)
9860 /* Adjust the address so that the address-after-the-data is
9861 unchanged. */
9862 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9863 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9866 return adjust_address_nv (x, mode, offset);
9869 /* If X is a comparison operator, rewrite it in a new mode. This
9870 probably won't match, but may allow further simplifications. */
9871 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9872 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9874 /* If we couldn't simplify X any other way, just enclose it in a
9875 SUBREG. Normally, this SUBREG won't match, but some patterns may
9876 include an explicit SUBREG or we may simplify it further in combine. */
9877 else
9879 int offset = 0;
9880 rtx res;
9882 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9883 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9884 if (res)
9885 return res;
9886 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9890 /* These routines make binary and unary operations by first seeing if they
9891 fold; if not, a new expression is allocated. */
9893 static rtx
9894 gen_binary (code, mode, op0, op1)
9895 enum rtx_code code;
9896 enum machine_mode mode;
9897 rtx op0, op1;
9899 rtx result;
9900 rtx tem;
9902 if (GET_RTX_CLASS (code) == 'c'
9903 && swap_commutative_operands_p (op0, op1))
9904 tem = op0, op0 = op1, op1 = tem;
9906 if (GET_RTX_CLASS (code) == '<')
9908 enum machine_mode op_mode = GET_MODE (op0);
9910 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9911 just (REL_OP X Y). */
9912 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9914 op1 = XEXP (op0, 1);
9915 op0 = XEXP (op0, 0);
9916 op_mode = GET_MODE (op0);
9919 if (op_mode == VOIDmode)
9920 op_mode = GET_MODE (op1);
9921 result = simplify_relational_operation (code, op_mode, op0, op1);
9923 else
9924 result = simplify_binary_operation (code, mode, op0, op1);
9926 if (result)
9927 return result;
9929 /* Put complex operands first and constants second. */
9930 if (GET_RTX_CLASS (code) == 'c'
9931 && swap_commutative_operands_p (op0, op1))
9932 return gen_rtx_fmt_ee (code, mode, op1, op0);
9934 /* If we are turning off bits already known off in OP0, we need not do
9935 an AND. */
9936 else if (code == AND && GET_CODE (op1) == CONST_INT
9937 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9938 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9939 return op0;
9941 return gen_rtx_fmt_ee (code, mode, op0, op1);
9944 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9945 comparison code that will be tested.
9947 The result is a possibly different comparison code to use. *POP0 and
9948 *POP1 may be updated.
9950 It is possible that we might detect that a comparison is either always
9951 true or always false. However, we do not perform general constant
9952 folding in combine, so this knowledge isn't useful. Such tautologies
9953 should have been detected earlier. Hence we ignore all such cases. */
9955 static enum rtx_code
9956 simplify_comparison (code, pop0, pop1)
9957 enum rtx_code code;
9958 rtx *pop0;
9959 rtx *pop1;
9961 rtx op0 = *pop0;
9962 rtx op1 = *pop1;
9963 rtx tem, tem1;
9964 int i;
9965 enum machine_mode mode, tmode;
9967 /* Try a few ways of applying the same transformation to both operands. */
9968 while (1)
9970 #ifndef WORD_REGISTER_OPERATIONS
9971 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9972 so check specially. */
9973 if (code != GTU && code != GEU && code != LTU && code != LEU
9974 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9975 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9976 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9977 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9978 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9979 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9980 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9981 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9982 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9983 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9984 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9985 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9986 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9987 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9988 && (INTVAL (XEXP (op0, 1))
9989 == (GET_MODE_BITSIZE (GET_MODE (op0))
9990 - (GET_MODE_BITSIZE
9991 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9993 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9994 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9996 #endif
9998 /* If both operands are the same constant shift, see if we can ignore the
9999 shift. We can if the shift is a rotate or if the bits shifted out of
10000 this shift are known to be zero for both inputs and if the type of
10001 comparison is compatible with the shift. */
10002 if (GET_CODE (op0) == GET_CODE (op1)
10003 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10004 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10005 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10006 && (code != GT && code != LT && code != GE && code != LE))
10007 || (GET_CODE (op0) == ASHIFTRT
10008 && (code != GTU && code != LTU
10009 && code != GEU && code != LEU)))
10010 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10011 && INTVAL (XEXP (op0, 1)) >= 0
10012 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10013 && XEXP (op0, 1) == XEXP (op1, 1))
10015 enum machine_mode mode = GET_MODE (op0);
10016 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10017 int shift_count = INTVAL (XEXP (op0, 1));
10019 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10020 mask &= (mask >> shift_count) << shift_count;
10021 else if (GET_CODE (op0) == ASHIFT)
10022 mask = (mask & (mask << shift_count)) >> shift_count;
10024 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10025 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10026 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10027 else
10028 break;
10031 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10032 SUBREGs are of the same mode, and, in both cases, the AND would
10033 be redundant if the comparison was done in the narrower mode,
10034 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10035 and the operand's possibly nonzero bits are 0xffffff01; in that case
10036 if we only care about QImode, we don't need the AND). This case
10037 occurs if the output mode of an scc insn is not SImode and
10038 STORE_FLAG_VALUE == 1 (e.g., the 386).
10040 Similarly, check for a case where the AND's are ZERO_EXTEND
10041 operations from some narrower mode even though a SUBREG is not
10042 present. */
10044 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10045 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10046 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10048 rtx inner_op0 = XEXP (op0, 0);
10049 rtx inner_op1 = XEXP (op1, 0);
10050 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10051 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10052 int changed = 0;
10054 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10055 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10056 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10057 && (GET_MODE (SUBREG_REG (inner_op0))
10058 == GET_MODE (SUBREG_REG (inner_op1)))
10059 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10060 <= HOST_BITS_PER_WIDE_INT)
10061 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10062 GET_MODE (SUBREG_REG (inner_op0)))))
10063 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10064 GET_MODE (SUBREG_REG (inner_op1))))))
10066 op0 = SUBREG_REG (inner_op0);
10067 op1 = SUBREG_REG (inner_op1);
10069 /* The resulting comparison is always unsigned since we masked
10070 off the original sign bit. */
10071 code = unsigned_condition (code);
10073 changed = 1;
10076 else if (c0 == c1)
10077 for (tmode = GET_CLASS_NARROWEST_MODE
10078 (GET_MODE_CLASS (GET_MODE (op0)));
10079 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10080 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10082 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10083 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10084 code = unsigned_condition (code);
10085 changed = 1;
10086 break;
10089 if (! changed)
10090 break;
10093 /* If both operands are NOT, we can strip off the outer operation
10094 and adjust the comparison code for swapped operands; similarly for
10095 NEG, except that this must be an equality comparison. */
10096 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10097 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10098 && (code == EQ || code == NE)))
10099 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10101 else
10102 break;
10105 /* If the first operand is a constant, swap the operands and adjust the
10106 comparison code appropriately, but don't do this if the second operand
10107 is already a constant integer. */
10108 if (swap_commutative_operands_p (op0, op1))
10110 tem = op0, op0 = op1, op1 = tem;
10111 code = swap_condition (code);
10114 /* We now enter a loop during which we will try to simplify the comparison.
10115 For the most part, we only are concerned with comparisons with zero,
10116 but some things may really be comparisons with zero but not start
10117 out looking that way. */
10119 while (GET_CODE (op1) == CONST_INT)
10121 enum machine_mode mode = GET_MODE (op0);
10122 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10123 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10124 int equality_comparison_p;
10125 int sign_bit_comparison_p;
10126 int unsigned_comparison_p;
10127 HOST_WIDE_INT const_op;
10129 /* We only want to handle integral modes. This catches VOIDmode,
10130 CCmode, and the floating-point modes. An exception is that we
10131 can handle VOIDmode if OP0 is a COMPARE or a comparison
10132 operation. */
10134 if (GET_MODE_CLASS (mode) != MODE_INT
10135 && ! (mode == VOIDmode
10136 && (GET_CODE (op0) == COMPARE
10137 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10138 break;
10140 /* Get the constant we are comparing against and turn off all bits
10141 not on in our mode. */
10142 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10143 op1 = GEN_INT (const_op);
10145 /* If we are comparing against a constant power of two and the value
10146 being compared can only have that single bit nonzero (e.g., it was
10147 `and'ed with that bit), we can replace this with a comparison
10148 with zero. */
10149 if (const_op
10150 && (code == EQ || code == NE || code == GE || code == GEU
10151 || code == LT || code == LTU)
10152 && mode_width <= HOST_BITS_PER_WIDE_INT
10153 && exact_log2 (const_op) >= 0
10154 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10156 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10157 op1 = const0_rtx, const_op = 0;
10160 /* Similarly, if we are comparing a value known to be either -1 or
10161 0 with -1, change it to the opposite comparison against zero. */
10163 if (const_op == -1
10164 && (code == EQ || code == NE || code == GT || code == LE
10165 || code == GEU || code == LTU)
10166 && num_sign_bit_copies (op0, mode) == mode_width)
10168 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10169 op1 = const0_rtx, const_op = 0;
10172 /* Do some canonicalizations based on the comparison code. We prefer
10173 comparisons against zero and then prefer equality comparisons.
10174 If we can reduce the size of a constant, we will do that too. */
10176 switch (code)
10178 case LT:
10179 /* < C is equivalent to <= (C - 1) */
10180 if (const_op > 0)
10182 const_op -= 1;
10183 op1 = GEN_INT (const_op);
10184 code = LE;
10185 /* ... fall through to LE case below. */
10187 else
10188 break;
10190 case LE:
10191 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10192 if (const_op < 0)
10194 const_op += 1;
10195 op1 = GEN_INT (const_op);
10196 code = LT;
10199 /* If we are doing a <= 0 comparison on a value known to have
10200 a zero sign bit, we can replace this with == 0. */
10201 else if (const_op == 0
10202 && mode_width <= HOST_BITS_PER_WIDE_INT
10203 && (nonzero_bits (op0, mode)
10204 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10205 code = EQ;
10206 break;
10208 case GE:
10209 /* >= C is equivalent to > (C - 1). */
10210 if (const_op > 0)
10212 const_op -= 1;
10213 op1 = GEN_INT (const_op);
10214 code = GT;
10215 /* ... fall through to GT below. */
10217 else
10218 break;
10220 case GT:
10221 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10222 if (const_op < 0)
10224 const_op += 1;
10225 op1 = GEN_INT (const_op);
10226 code = GE;
10229 /* If we are doing a > 0 comparison on a value known to have
10230 a zero sign bit, we can replace this with != 0. */
10231 else if (const_op == 0
10232 && mode_width <= HOST_BITS_PER_WIDE_INT
10233 && (nonzero_bits (op0, mode)
10234 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10235 code = NE;
10236 break;
10238 case LTU:
10239 /* < C is equivalent to <= (C - 1). */
10240 if (const_op > 0)
10242 const_op -= 1;
10243 op1 = GEN_INT (const_op);
10244 code = LEU;
10245 /* ... fall through ... */
10248 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10249 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10250 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10252 const_op = 0, op1 = const0_rtx;
10253 code = GE;
10254 break;
10256 else
10257 break;
10259 case LEU:
10260 /* unsigned <= 0 is equivalent to == 0 */
10261 if (const_op == 0)
10262 code = EQ;
10264 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10265 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10266 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10268 const_op = 0, op1 = const0_rtx;
10269 code = GE;
10271 break;
10273 case GEU:
10274 /* >= C is equivalent to < (C - 1). */
10275 if (const_op > 1)
10277 const_op -= 1;
10278 op1 = GEN_INT (const_op);
10279 code = GTU;
10280 /* ... fall through ... */
10283 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10284 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10285 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10287 const_op = 0, op1 = const0_rtx;
10288 code = LT;
10289 break;
10291 else
10292 break;
10294 case GTU:
10295 /* unsigned > 0 is equivalent to != 0 */
10296 if (const_op == 0)
10297 code = NE;
10299 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10300 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10301 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10303 const_op = 0, op1 = const0_rtx;
10304 code = LT;
10306 break;
10308 default:
10309 break;
10312 /* Compute some predicates to simplify code below. */
10314 equality_comparison_p = (code == EQ || code == NE);
10315 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10316 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10317 || code == GEU);
10319 /* If this is a sign bit comparison and we can do arithmetic in
10320 MODE, say that we will only be needing the sign bit of OP0. */
10321 if (sign_bit_comparison_p
10322 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10323 op0 = force_to_mode (op0, mode,
10324 ((HOST_WIDE_INT) 1
10325 << (GET_MODE_BITSIZE (mode) - 1)),
10326 NULL_RTX, 0);
10328 /* Now try cases based on the opcode of OP0. If none of the cases
10329 does a "continue", we exit this loop immediately after the
10330 switch. */
10332 switch (GET_CODE (op0))
10334 case ZERO_EXTRACT:
10335 /* If we are extracting a single bit from a variable position in
10336 a constant that has only a single bit set and are comparing it
10337 with zero, we can convert this into an equality comparison
10338 between the position and the location of the single bit. */
10340 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10341 && XEXP (op0, 1) == const1_rtx
10342 && equality_comparison_p && const_op == 0
10343 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10345 if (BITS_BIG_ENDIAN)
10347 enum machine_mode new_mode
10348 = mode_for_extraction (EP_extzv, 1);
10349 if (new_mode == MAX_MACHINE_MODE)
10350 i = BITS_PER_WORD - 1 - i;
10351 else
10353 mode = new_mode;
10354 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10358 op0 = XEXP (op0, 2);
10359 op1 = GEN_INT (i);
10360 const_op = i;
10362 /* Result is nonzero iff shift count is equal to I. */
10363 code = reverse_condition (code);
10364 continue;
10367 /* ... fall through ... */
10369 case SIGN_EXTRACT:
10370 tem = expand_compound_operation (op0);
10371 if (tem != op0)
10373 op0 = tem;
10374 continue;
10376 break;
10378 case NOT:
10379 /* If testing for equality, we can take the NOT of the constant. */
10380 if (equality_comparison_p
10381 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10383 op0 = XEXP (op0, 0);
10384 op1 = tem;
10385 continue;
10388 /* If just looking at the sign bit, reverse the sense of the
10389 comparison. */
10390 if (sign_bit_comparison_p)
10392 op0 = XEXP (op0, 0);
10393 code = (code == GE ? LT : GE);
10394 continue;
10396 break;
10398 case NEG:
10399 /* If testing for equality, we can take the NEG of the constant. */
10400 if (equality_comparison_p
10401 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10403 op0 = XEXP (op0, 0);
10404 op1 = tem;
10405 continue;
10408 /* The remaining cases only apply to comparisons with zero. */
10409 if (const_op != 0)
10410 break;
10412 /* When X is ABS or is known positive,
10413 (neg X) is < 0 if and only if X != 0. */
10415 if (sign_bit_comparison_p
10416 && (GET_CODE (XEXP (op0, 0)) == ABS
10417 || (mode_width <= HOST_BITS_PER_WIDE_INT
10418 && (nonzero_bits (XEXP (op0, 0), mode)
10419 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10421 op0 = XEXP (op0, 0);
10422 code = (code == LT ? NE : EQ);
10423 continue;
10426 /* If we have NEG of something whose two high-order bits are the
10427 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10428 if (num_sign_bit_copies (op0, mode) >= 2)
10430 op0 = XEXP (op0, 0);
10431 code = swap_condition (code);
10432 continue;
10434 break;
10436 case ROTATE:
10437 /* If we are testing equality and our count is a constant, we
10438 can perform the inverse operation on our RHS. */
10439 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10440 && (tem = simplify_binary_operation (ROTATERT, mode,
10441 op1, XEXP (op0, 1))) != 0)
10443 op0 = XEXP (op0, 0);
10444 op1 = tem;
10445 continue;
10448 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10449 a particular bit. Convert it to an AND of a constant of that
10450 bit. This will be converted into a ZERO_EXTRACT. */
10451 if (const_op == 0 && sign_bit_comparison_p
10452 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10453 && mode_width <= HOST_BITS_PER_WIDE_INT)
10455 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10456 ((HOST_WIDE_INT) 1
10457 << (mode_width - 1
10458 - INTVAL (XEXP (op0, 1)))));
10459 code = (code == LT ? NE : EQ);
10460 continue;
10463 /* Fall through. */
10465 case ABS:
10466 /* ABS is ignorable inside an equality comparison with zero. */
10467 if (const_op == 0 && equality_comparison_p)
10469 op0 = XEXP (op0, 0);
10470 continue;
10472 break;
10474 case SIGN_EXTEND:
10475 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10476 to (compare FOO CONST) if CONST fits in FOO's mode and we
10477 are either testing inequality or have an unsigned comparison
10478 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10479 if (! unsigned_comparison_p
10480 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10481 <= HOST_BITS_PER_WIDE_INT)
10482 && ((unsigned HOST_WIDE_INT) const_op
10483 < (((unsigned HOST_WIDE_INT) 1
10484 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10486 op0 = XEXP (op0, 0);
10487 continue;
10489 break;
10491 case SUBREG:
10492 /* Check for the case where we are comparing A - C1 with C2,
10493 both constants are smaller than 1/2 the maximum positive
10494 value in MODE, and the comparison is equality or unsigned.
10495 In that case, if A is either zero-extended to MODE or has
10496 sufficient sign bits so that the high-order bit in MODE
10497 is a copy of the sign in the inner mode, we can prove that it is
10498 safe to do the operation in the wider mode. This simplifies
10499 many range checks. */
10501 if (mode_width <= HOST_BITS_PER_WIDE_INT
10502 && subreg_lowpart_p (op0)
10503 && GET_CODE (SUBREG_REG (op0)) == PLUS
10504 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10505 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10506 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10507 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10508 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10509 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10510 GET_MODE (SUBREG_REG (op0)))
10511 & ~GET_MODE_MASK (mode))
10512 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10513 GET_MODE (SUBREG_REG (op0)))
10514 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10515 - GET_MODE_BITSIZE (mode)))))
10517 op0 = SUBREG_REG (op0);
10518 continue;
10521 /* If the inner mode is narrower and we are extracting the low part,
10522 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10523 if (subreg_lowpart_p (op0)
10524 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10525 /* Fall through */ ;
10526 else
10527 break;
10529 /* ... fall through ... */
10531 case ZERO_EXTEND:
10532 if ((unsigned_comparison_p || equality_comparison_p)
10533 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10534 <= HOST_BITS_PER_WIDE_INT)
10535 && ((unsigned HOST_WIDE_INT) const_op
10536 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10538 op0 = XEXP (op0, 0);
10539 continue;
10541 break;
10543 case PLUS:
10544 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10545 this for equality comparisons due to pathological cases involving
10546 overflows. */
10547 if (equality_comparison_p
10548 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10549 op1, XEXP (op0, 1))))
10551 op0 = XEXP (op0, 0);
10552 op1 = tem;
10553 continue;
10556 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10557 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10558 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10560 op0 = XEXP (XEXP (op0, 0), 0);
10561 code = (code == LT ? EQ : NE);
10562 continue;
10564 break;
10566 case MINUS:
10567 /* We used to optimize signed comparisons against zero, but that
10568 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10569 arrive here as equality comparisons, or (GEU, LTU) are
10570 optimized away. No need to special-case them. */
10572 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10573 (eq B (minus A C)), whichever simplifies. We can only do
10574 this for equality comparisons due to pathological cases involving
10575 overflows. */
10576 if (equality_comparison_p
10577 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10578 XEXP (op0, 1), op1)))
10580 op0 = XEXP (op0, 0);
10581 op1 = tem;
10582 continue;
10585 if (equality_comparison_p
10586 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10587 XEXP (op0, 0), op1)))
10589 op0 = XEXP (op0, 1);
10590 op1 = tem;
10591 continue;
10594 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10595 of bits in X minus 1, is one iff X > 0. */
10596 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10597 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10598 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10599 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10601 op0 = XEXP (op0, 1);
10602 code = (code == GE ? LE : GT);
10603 continue;
10605 break;
10607 case XOR:
10608 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10609 if C is zero or B is a constant. */
10610 if (equality_comparison_p
10611 && 0 != (tem = simplify_binary_operation (XOR, mode,
10612 XEXP (op0, 1), op1)))
10614 op0 = XEXP (op0, 0);
10615 op1 = tem;
10616 continue;
10618 break;
10620 case EQ: case NE:
10621 case UNEQ: case LTGT:
10622 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10623 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10624 case UNORDERED: case ORDERED:
10625 /* We can't do anything if OP0 is a condition code value, rather
10626 than an actual data value. */
10627 if (const_op != 0
10628 #ifdef HAVE_cc0
10629 || XEXP (op0, 0) == cc0_rtx
10630 #endif
10631 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10632 break;
10634 /* Get the two operands being compared. */
10635 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10636 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10637 else
10638 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10640 /* Check for the cases where we simply want the result of the
10641 earlier test or the opposite of that result. */
10642 if (code == NE || code == EQ
10643 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10644 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10645 && (STORE_FLAG_VALUE
10646 & (((HOST_WIDE_INT) 1
10647 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10648 && (code == LT || code == GE)))
10650 enum rtx_code new_code;
10651 if (code == LT || code == NE)
10652 new_code = GET_CODE (op0);
10653 else
10654 new_code = combine_reversed_comparison_code (op0);
10656 if (new_code != UNKNOWN)
10658 code = new_code;
10659 op0 = tem;
10660 op1 = tem1;
10661 continue;
10664 break;
10666 case IOR:
10667 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10668 iff X <= 0. */
10669 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10670 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10671 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10673 op0 = XEXP (op0, 1);
10674 code = (code == GE ? GT : LE);
10675 continue;
10677 break;
10679 case AND:
10680 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10681 will be converted to a ZERO_EXTRACT later. */
10682 if (const_op == 0 && equality_comparison_p
10683 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10684 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10686 op0 = simplify_and_const_int
10687 (op0, mode, gen_rtx_LSHIFTRT (mode,
10688 XEXP (op0, 1),
10689 XEXP (XEXP (op0, 0), 1)),
10690 (HOST_WIDE_INT) 1);
10691 continue;
10694 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10695 zero and X is a comparison and C1 and C2 describe only bits set
10696 in STORE_FLAG_VALUE, we can compare with X. */
10697 if (const_op == 0 && equality_comparison_p
10698 && mode_width <= HOST_BITS_PER_WIDE_INT
10699 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10700 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10701 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10702 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10703 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10705 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10706 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10707 if ((~STORE_FLAG_VALUE & mask) == 0
10708 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10709 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10710 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10712 op0 = XEXP (XEXP (op0, 0), 0);
10713 continue;
10717 /* If we are doing an equality comparison of an AND of a bit equal
10718 to the sign bit, replace this with a LT or GE comparison of
10719 the underlying value. */
10720 if (equality_comparison_p
10721 && const_op == 0
10722 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10723 && mode_width <= HOST_BITS_PER_WIDE_INT
10724 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10725 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10727 op0 = XEXP (op0, 0);
10728 code = (code == EQ ? GE : LT);
10729 continue;
10732 /* If this AND operation is really a ZERO_EXTEND from a narrower
10733 mode, the constant fits within that mode, and this is either an
10734 equality or unsigned comparison, try to do this comparison in
10735 the narrower mode. */
10736 if ((equality_comparison_p || unsigned_comparison_p)
10737 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10738 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10739 & GET_MODE_MASK (mode))
10740 + 1)) >= 0
10741 && const_op >> i == 0
10742 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10744 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10745 continue;
10748 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10749 in both M1 and M2 and the SUBREG is either paradoxical or
10750 represents the low part, permute the SUBREG and the AND and
10751 try again. */
10752 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10753 && (0
10754 #ifdef WORD_REGISTER_OPERATIONS
10755 || ((mode_width
10756 > (GET_MODE_BITSIZE
10757 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10758 && mode_width <= BITS_PER_WORD)
10759 #endif
10760 || ((mode_width
10761 <= (GET_MODE_BITSIZE
10762 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10763 && subreg_lowpart_p (XEXP (op0, 0))))
10764 #ifndef WORD_REGISTER_OPERATIONS
10765 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10766 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10767 As originally written the upper bits have a defined value
10768 due to the AND operation. However, if we commute the AND
10769 inside the SUBREG then they no longer have defined values
10770 and the meaning of the code has been changed. */
10771 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10772 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10773 #endif
10774 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10775 && mode_width <= HOST_BITS_PER_WIDE_INT
10776 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10777 <= HOST_BITS_PER_WIDE_INT)
10778 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10779 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10780 & INTVAL (XEXP (op0, 1)))
10781 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10782 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10783 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10787 = gen_lowpart_for_combine
10788 (mode,
10789 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10790 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10791 continue;
10794 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10795 (eq (and (lshiftrt X) 1) 0). */
10796 if (const_op == 0 && equality_comparison_p
10797 && XEXP (op0, 1) == const1_rtx
10798 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10799 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10801 op0 = simplify_and_const_int
10802 (op0, mode,
10803 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10804 XEXP (XEXP (op0, 0), 1)),
10805 (HOST_WIDE_INT) 1);
10806 code = (code == NE ? EQ : NE);
10807 continue;
10809 break;
10811 case ASHIFT:
10812 /* If we have (compare (ashift FOO N) (const_int C)) and
10813 the high order N bits of FOO (N+1 if an inequality comparison)
10814 are known to be zero, we can do this by comparing FOO with C
10815 shifted right N bits so long as the low-order N bits of C are
10816 zero. */
10817 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10818 && INTVAL (XEXP (op0, 1)) >= 0
10819 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10820 < HOST_BITS_PER_WIDE_INT)
10821 && ((const_op
10822 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10823 && mode_width <= HOST_BITS_PER_WIDE_INT
10824 && (nonzero_bits (XEXP (op0, 0), mode)
10825 & ~(mask >> (INTVAL (XEXP (op0, 1))
10826 + ! equality_comparison_p))) == 0)
10828 /* We must perform a logical shift, not an arithmetic one,
10829 as we want the top N bits of C to be zero. */
10830 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10832 temp >>= INTVAL (XEXP (op0, 1));
10833 op1 = gen_int_mode (temp, mode);
10834 op0 = XEXP (op0, 0);
10835 continue;
10838 /* If we are doing a sign bit comparison, it means we are testing
10839 a particular bit. Convert it to the appropriate AND. */
10840 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10841 && mode_width <= HOST_BITS_PER_WIDE_INT)
10843 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10844 ((HOST_WIDE_INT) 1
10845 << (mode_width - 1
10846 - INTVAL (XEXP (op0, 1)))));
10847 code = (code == LT ? NE : EQ);
10848 continue;
10851 /* If this an equality comparison with zero and we are shifting
10852 the low bit to the sign bit, we can convert this to an AND of the
10853 low-order bit. */
10854 if (const_op == 0 && equality_comparison_p
10855 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10856 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10858 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10859 (HOST_WIDE_INT) 1);
10860 continue;
10862 break;
10864 case ASHIFTRT:
10865 /* If this is an equality comparison with zero, we can do this
10866 as a logical shift, which might be much simpler. */
10867 if (equality_comparison_p && const_op == 0
10868 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10870 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10871 XEXP (op0, 0),
10872 INTVAL (XEXP (op0, 1)));
10873 continue;
10876 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10877 do the comparison in a narrower mode. */
10878 if (! unsigned_comparison_p
10879 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10880 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10881 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10882 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10883 MODE_INT, 1)) != BLKmode
10884 && (((unsigned HOST_WIDE_INT) const_op
10885 + (GET_MODE_MASK (tmode) >> 1) + 1)
10886 <= GET_MODE_MASK (tmode)))
10888 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10889 continue;
10892 /* Likewise if OP0 is a PLUS of a sign extension with a
10893 constant, which is usually represented with the PLUS
10894 between the shifts. */
10895 if (! unsigned_comparison_p
10896 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10897 && GET_CODE (XEXP (op0, 0)) == PLUS
10898 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10899 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10900 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10901 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10902 MODE_INT, 1)) != BLKmode
10903 && (((unsigned HOST_WIDE_INT) const_op
10904 + (GET_MODE_MASK (tmode) >> 1) + 1)
10905 <= GET_MODE_MASK (tmode)))
10907 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10908 rtx add_const = XEXP (XEXP (op0, 0), 1);
10909 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10910 XEXP (op0, 1));
10912 op0 = gen_binary (PLUS, tmode,
10913 gen_lowpart_for_combine (tmode, inner),
10914 new_const);
10915 continue;
10918 /* ... fall through ... */
10919 case LSHIFTRT:
10920 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10921 the low order N bits of FOO are known to be zero, we can do this
10922 by comparing FOO with C shifted left N bits so long as no
10923 overflow occurs. */
10924 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10925 && INTVAL (XEXP (op0, 1)) >= 0
10926 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10927 && mode_width <= HOST_BITS_PER_WIDE_INT
10928 && (nonzero_bits (XEXP (op0, 0), mode)
10929 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10930 && (((unsigned HOST_WIDE_INT) const_op
10931 + (GET_CODE (op0) != LSHIFTRT
10932 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10933 + 1)
10934 : 0))
10935 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10937 /* If the shift was logical, then we must make the condition
10938 unsigned. */
10939 if (GET_CODE (op0) == LSHIFTRT)
10940 code = unsigned_condition (code);
10942 const_op <<= INTVAL (XEXP (op0, 1));
10943 op1 = GEN_INT (const_op);
10944 op0 = XEXP (op0, 0);
10945 continue;
10948 /* If we are using this shift to extract just the sign bit, we
10949 can replace this with an LT or GE comparison. */
10950 if (const_op == 0
10951 && (equality_comparison_p || sign_bit_comparison_p)
10952 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10953 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10955 op0 = XEXP (op0, 0);
10956 code = (code == NE || code == GT ? LT : GE);
10957 continue;
10959 break;
10961 default:
10962 break;
10965 break;
10968 /* Now make any compound operations involved in this comparison. Then,
10969 check for an outmost SUBREG on OP0 that is not doing anything or is
10970 paradoxical. The latter transformation must only be performed when
10971 it is known that the "extra" bits will be the same in op0 and op1 or
10972 that they don't matter. There are three cases to consider:
10974 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10975 care bits and we can assume they have any convenient value. So
10976 making the transformation is safe.
10978 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10979 In this case the upper bits of op0 are undefined. We should not make
10980 the simplification in that case as we do not know the contents of
10981 those bits.
10983 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10984 NIL. In that case we know those bits are zeros or ones. We must
10985 also be sure that they are the same as the upper bits of op1.
10987 We can never remove a SUBREG for a non-equality comparison because
10988 the sign bit is in a different place in the underlying object. */
10990 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10991 op1 = make_compound_operation (op1, SET);
10993 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10994 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
10995 implemented. */
10996 && GET_CODE (SUBREG_REG (op0)) == REG
10997 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10998 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10999 && (code == NE || code == EQ))
11001 if (GET_MODE_SIZE (GET_MODE (op0))
11002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11004 op0 = SUBREG_REG (op0);
11005 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11007 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11008 <= HOST_BITS_PER_WIDE_INT)
11009 && (nonzero_bits (SUBREG_REG (op0),
11010 GET_MODE (SUBREG_REG (op0)))
11011 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11013 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11015 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11016 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11017 op0 = SUBREG_REG (op0), op1 = tem;
11021 /* We now do the opposite procedure: Some machines don't have compare
11022 insns in all modes. If OP0's mode is an integer mode smaller than a
11023 word and we can't do a compare in that mode, see if there is a larger
11024 mode for which we can do the compare. There are a number of cases in
11025 which we can use the wider mode. */
11027 mode = GET_MODE (op0);
11028 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11029 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11030 && ! have_insn_for (COMPARE, mode))
11031 for (tmode = GET_MODE_WIDER_MODE (mode);
11032 (tmode != VOIDmode
11033 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11034 tmode = GET_MODE_WIDER_MODE (tmode))
11035 if (have_insn_for (COMPARE, tmode))
11037 int zero_extended;
11039 /* If the only nonzero bits in OP0 and OP1 are those in the
11040 narrower mode and this is an equality or unsigned comparison,
11041 we can use the wider mode. Similarly for sign-extended
11042 values, in which case it is true for all comparisons. */
11043 zero_extended = ((code == EQ || code == NE
11044 || code == GEU || code == GTU
11045 || code == LEU || code == LTU)
11046 && (nonzero_bits (op0, tmode)
11047 & ~GET_MODE_MASK (mode)) == 0
11048 && ((GET_CODE (op1) == CONST_INT
11049 || (nonzero_bits (op1, tmode)
11050 & ~GET_MODE_MASK (mode)) == 0)));
11052 if (zero_extended
11053 || ((num_sign_bit_copies (op0, tmode)
11054 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11055 && (num_sign_bit_copies (op1, tmode)
11056 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11058 /* If OP0 is an AND and we don't have an AND in MODE either,
11059 make a new AND in the proper mode. */
11060 if (GET_CODE (op0) == AND
11061 && !have_insn_for (AND, mode))
11062 op0 = gen_binary (AND, tmode,
11063 gen_lowpart_for_combine (tmode,
11064 XEXP (op0, 0)),
11065 gen_lowpart_for_combine (tmode,
11066 XEXP (op0, 1)));
11068 op0 = gen_lowpart_for_combine (tmode, op0);
11069 if (zero_extended && GET_CODE (op1) == CONST_INT)
11070 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11071 op1 = gen_lowpart_for_combine (tmode, op1);
11072 break;
11075 /* If this is a test for negative, we can make an explicit
11076 test of the sign bit. */
11078 if (op1 == const0_rtx && (code == LT || code == GE)
11079 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11081 op0 = gen_binary (AND, tmode,
11082 gen_lowpart_for_combine (tmode, op0),
11083 GEN_INT ((HOST_WIDE_INT) 1
11084 << (GET_MODE_BITSIZE (mode) - 1)));
11085 code = (code == LT) ? NE : EQ;
11086 break;
11090 #ifdef CANONICALIZE_COMPARISON
11091 /* If this machine only supports a subset of valid comparisons, see if we
11092 can convert an unsupported one into a supported one. */
11093 CANONICALIZE_COMPARISON (code, op0, op1);
11094 #endif
11096 *pop0 = op0;
11097 *pop1 = op1;
11099 return code;
11102 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11103 searching backward. */
11104 static enum rtx_code
11105 combine_reversed_comparison_code (exp)
11106 rtx exp;
11108 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11109 rtx x;
11111 if (code1 != UNKNOWN
11112 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11113 return code1;
11114 /* Otherwise try and find where the condition codes were last set and
11115 use that. */
11116 x = get_last_value (XEXP (exp, 0));
11117 if (!x || GET_CODE (x) != COMPARE)
11118 return UNKNOWN;
11119 return reversed_comparison_code_parts (GET_CODE (exp),
11120 XEXP (x, 0), XEXP (x, 1), NULL);
11122 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11123 Return NULL_RTX in case we fail to do the reversal. */
11124 static rtx
11125 reversed_comparison (exp, mode, op0, op1)
11126 rtx exp, op0, op1;
11127 enum machine_mode mode;
11129 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11130 if (reversed_code == UNKNOWN)
11131 return NULL_RTX;
11132 else
11133 return gen_binary (reversed_code, mode, op0, op1);
11136 /* Utility function for following routine. Called when X is part of a value
11137 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11138 for each register mentioned. Similar to mention_regs in cse.c */
11140 static void
11141 update_table_tick (x)
11142 rtx x;
11144 enum rtx_code code = GET_CODE (x);
11145 const char *fmt = GET_RTX_FORMAT (code);
11146 int i;
11148 if (code == REG)
11150 unsigned int regno = REGNO (x);
11151 unsigned int endregno
11152 = regno + (regno < FIRST_PSEUDO_REGISTER
11153 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11154 unsigned int r;
11156 for (r = regno; r < endregno; r++)
11157 reg_last_set_table_tick[r] = label_tick;
11159 return;
11162 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11163 /* Note that we can't have an "E" in values stored; see
11164 get_last_value_validate. */
11165 if (fmt[i] == 'e')
11166 update_table_tick (XEXP (x, i));
11169 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11170 are saying that the register is clobbered and we no longer know its
11171 value. If INSN is zero, don't update reg_last_set; this is only permitted
11172 with VALUE also zero and is used to invalidate the register. */
11174 static void
11175 record_value_for_reg (reg, insn, value)
11176 rtx reg;
11177 rtx insn;
11178 rtx value;
11180 unsigned int regno = REGNO (reg);
11181 unsigned int endregno
11182 = regno + (regno < FIRST_PSEUDO_REGISTER
11183 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11184 unsigned int i;
11186 /* If VALUE contains REG and we have a previous value for REG, substitute
11187 the previous value. */
11188 if (value && insn && reg_overlap_mentioned_p (reg, value))
11190 rtx tem;
11192 /* Set things up so get_last_value is allowed to see anything set up to
11193 our insn. */
11194 subst_low_cuid = INSN_CUID (insn);
11195 tem = get_last_value (reg);
11197 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11198 it isn't going to be useful and will take a lot of time to process,
11199 so just use the CLOBBER. */
11201 if (tem)
11203 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11204 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11205 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11206 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11207 tem = XEXP (tem, 0);
11209 value = replace_rtx (copy_rtx (value), reg, tem);
11213 /* For each register modified, show we don't know its value, that
11214 we don't know about its bitwise content, that its value has been
11215 updated, and that we don't know the location of the death of the
11216 register. */
11217 for (i = regno; i < endregno; i++)
11219 if (insn)
11220 reg_last_set[i] = insn;
11222 reg_last_set_value[i] = 0;
11223 reg_last_set_mode[i] = 0;
11224 reg_last_set_nonzero_bits[i] = 0;
11225 reg_last_set_sign_bit_copies[i] = 0;
11226 reg_last_death[i] = 0;
11229 /* Mark registers that are being referenced in this value. */
11230 if (value)
11231 update_table_tick (value);
11233 /* Now update the status of each register being set.
11234 If someone is using this register in this block, set this register
11235 to invalid since we will get confused between the two lives in this
11236 basic block. This makes using this register always invalid. In cse, we
11237 scan the table to invalidate all entries using this register, but this
11238 is too much work for us. */
11240 for (i = regno; i < endregno; i++)
11242 reg_last_set_label[i] = label_tick;
11243 if (value && reg_last_set_table_tick[i] == label_tick)
11244 reg_last_set_invalid[i] = 1;
11245 else
11246 reg_last_set_invalid[i] = 0;
11249 /* The value being assigned might refer to X (like in "x++;"). In that
11250 case, we must replace it with (clobber (const_int 0)) to prevent
11251 infinite loops. */
11252 if (value && ! get_last_value_validate (&value, insn,
11253 reg_last_set_label[regno], 0))
11255 value = copy_rtx (value);
11256 if (! get_last_value_validate (&value, insn,
11257 reg_last_set_label[regno], 1))
11258 value = 0;
11261 /* For the main register being modified, update the value, the mode, the
11262 nonzero bits, and the number of sign bit copies. */
11264 reg_last_set_value[regno] = value;
11266 if (value)
11268 enum machine_mode mode = GET_MODE (reg);
11269 subst_low_cuid = INSN_CUID (insn);
11270 reg_last_set_mode[regno] = mode;
11271 if (GET_MODE_CLASS (mode) == MODE_INT
11272 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11273 mode = nonzero_bits_mode;
11274 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11275 reg_last_set_sign_bit_copies[regno]
11276 = num_sign_bit_copies (value, GET_MODE (reg));
11280 /* Called via note_stores from record_dead_and_set_regs to handle one
11281 SET or CLOBBER in an insn. DATA is the instruction in which the
11282 set is occurring. */
11284 static void
11285 record_dead_and_set_regs_1 (dest, setter, data)
11286 rtx dest, setter;
11287 void *data;
11289 rtx record_dead_insn = (rtx) data;
11291 if (GET_CODE (dest) == SUBREG)
11292 dest = SUBREG_REG (dest);
11294 if (GET_CODE (dest) == REG)
11296 /* If we are setting the whole register, we know its value. Otherwise
11297 show that we don't know the value. We can handle SUBREG in
11298 some cases. */
11299 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11300 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11301 else if (GET_CODE (setter) == SET
11302 && GET_CODE (SET_DEST (setter)) == SUBREG
11303 && SUBREG_REG (SET_DEST (setter)) == dest
11304 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11305 && subreg_lowpart_p (SET_DEST (setter)))
11306 record_value_for_reg (dest, record_dead_insn,
11307 gen_lowpart_for_combine (GET_MODE (dest),
11308 SET_SRC (setter)));
11309 else
11310 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11312 else if (GET_CODE (dest) == MEM
11313 /* Ignore pushes, they clobber nothing. */
11314 && ! push_operand (dest, GET_MODE (dest)))
11315 mem_last_set = INSN_CUID (record_dead_insn);
11318 /* Update the records of when each REG was most recently set or killed
11319 for the things done by INSN. This is the last thing done in processing
11320 INSN in the combiner loop.
11322 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11323 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11324 and also the similar information mem_last_set (which insn most recently
11325 modified memory) and last_call_cuid (which insn was the most recent
11326 subroutine call). */
11328 static void
11329 record_dead_and_set_regs (insn)
11330 rtx insn;
11332 rtx link;
11333 unsigned int i;
11335 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11337 if (REG_NOTE_KIND (link) == REG_DEAD
11338 && GET_CODE (XEXP (link, 0)) == REG)
11340 unsigned int regno = REGNO (XEXP (link, 0));
11341 unsigned int endregno
11342 = regno + (regno < FIRST_PSEUDO_REGISTER
11343 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11344 : 1);
11346 for (i = regno; i < endregno; i++)
11347 reg_last_death[i] = insn;
11349 else if (REG_NOTE_KIND (link) == REG_INC)
11350 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11353 if (GET_CODE (insn) == CALL_INSN)
11355 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11356 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11358 reg_last_set_value[i] = 0;
11359 reg_last_set_mode[i] = 0;
11360 reg_last_set_nonzero_bits[i] = 0;
11361 reg_last_set_sign_bit_copies[i] = 0;
11362 reg_last_death[i] = 0;
11365 last_call_cuid = mem_last_set = INSN_CUID (insn);
11367 /* Don't bother recording what this insn does. It might set the
11368 return value register, but we can't combine into a call
11369 pattern anyway, so there's no point trying (and it may cause
11370 a crash, if e.g. we wind up asking for last_set_value of a
11371 SUBREG of the return value register). */
11372 return;
11375 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11378 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11379 register present in the SUBREG, so for each such SUBREG go back and
11380 adjust nonzero and sign bit information of the registers that are
11381 known to have some zero/sign bits set.
11383 This is needed because when combine blows the SUBREGs away, the
11384 information on zero/sign bits is lost and further combines can be
11385 missed because of that. */
11387 static void
11388 record_promoted_value (insn, subreg)
11389 rtx insn;
11390 rtx subreg;
11392 rtx links, set;
11393 unsigned int regno = REGNO (SUBREG_REG (subreg));
11394 enum machine_mode mode = GET_MODE (subreg);
11396 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11397 return;
11399 for (links = LOG_LINKS (insn); links;)
11401 insn = XEXP (links, 0);
11402 set = single_set (insn);
11404 if (! set || GET_CODE (SET_DEST (set)) != REG
11405 || REGNO (SET_DEST (set)) != regno
11406 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11408 links = XEXP (links, 1);
11409 continue;
11412 if (reg_last_set[regno] == insn)
11414 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11415 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11418 if (GET_CODE (SET_SRC (set)) == REG)
11420 regno = REGNO (SET_SRC (set));
11421 links = LOG_LINKS (insn);
11423 else
11424 break;
11428 /* Scan X for promoted SUBREGs. For each one found,
11429 note what it implies to the registers used in it. */
11431 static void
11432 check_promoted_subreg (insn, x)
11433 rtx insn;
11434 rtx x;
11436 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11437 && GET_CODE (SUBREG_REG (x)) == REG)
11438 record_promoted_value (insn, x);
11439 else
11441 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11442 int i, j;
11444 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11445 switch (format[i])
11447 case 'e':
11448 check_promoted_subreg (insn, XEXP (x, i));
11449 break;
11450 case 'V':
11451 case 'E':
11452 if (XVEC (x, i) != 0)
11453 for (j = 0; j < XVECLEN (x, i); j++)
11454 check_promoted_subreg (insn, XVECEXP (x, i, j));
11455 break;
11460 /* Utility routine for the following function. Verify that all the registers
11461 mentioned in *LOC are valid when *LOC was part of a value set when
11462 label_tick == TICK. Return 0 if some are not.
11464 If REPLACE is non-zero, replace the invalid reference with
11465 (clobber (const_int 0)) and return 1. This replacement is useful because
11466 we often can get useful information about the form of a value (e.g., if
11467 it was produced by a shift that always produces -1 or 0) even though
11468 we don't know exactly what registers it was produced from. */
11470 static int
11471 get_last_value_validate (loc, insn, tick, replace)
11472 rtx *loc;
11473 rtx insn;
11474 int tick;
11475 int replace;
11477 rtx x = *loc;
11478 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11479 int len = GET_RTX_LENGTH (GET_CODE (x));
11480 int i;
11482 if (GET_CODE (x) == REG)
11484 unsigned int regno = REGNO (x);
11485 unsigned int endregno
11486 = regno + (regno < FIRST_PSEUDO_REGISTER
11487 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11488 unsigned int j;
11490 for (j = regno; j < endregno; j++)
11491 if (reg_last_set_invalid[j]
11492 /* If this is a pseudo-register that was only set once and not
11493 live at the beginning of the function, it is always valid. */
11494 || (! (regno >= FIRST_PSEUDO_REGISTER
11495 && REG_N_SETS (regno) == 1
11496 && (! REGNO_REG_SET_P
11497 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11498 && reg_last_set_label[j] > tick))
11500 if (replace)
11501 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11502 return replace;
11505 return 1;
11507 /* If this is a memory reference, make sure that there were
11508 no stores after it that might have clobbered the value. We don't
11509 have alias info, so we assume any store invalidates it. */
11510 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11511 && INSN_CUID (insn) <= mem_last_set)
11513 if (replace)
11514 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11515 return replace;
11518 for (i = 0; i < len; i++)
11519 if ((fmt[i] == 'e'
11520 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11521 /* Don't bother with these. They shouldn't occur anyway. */
11522 || fmt[i] == 'E')
11523 return 0;
11525 /* If we haven't found a reason for it to be invalid, it is valid. */
11526 return 1;
11529 /* Get the last value assigned to X, if known. Some registers
11530 in the value may be replaced with (clobber (const_int 0)) if their value
11531 is known longer known reliably. */
11533 static rtx
11534 get_last_value (x)
11535 rtx x;
11537 unsigned int regno;
11538 rtx value;
11540 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11541 then convert it to the desired mode. If this is a paradoxical SUBREG,
11542 we cannot predict what values the "extra" bits might have. */
11543 if (GET_CODE (x) == SUBREG
11544 && subreg_lowpart_p (x)
11545 && (GET_MODE_SIZE (GET_MODE (x))
11546 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11547 && (value = get_last_value (SUBREG_REG (x))) != 0)
11548 return gen_lowpart_for_combine (GET_MODE (x), value);
11550 if (GET_CODE (x) != REG)
11551 return 0;
11553 regno = REGNO (x);
11554 value = reg_last_set_value[regno];
11556 /* If we don't have a value, or if it isn't for this basic block and
11557 it's either a hard register, set more than once, or it's a live
11558 at the beginning of the function, return 0.
11560 Because if it's not live at the beginning of the function then the reg
11561 is always set before being used (is never used without being set).
11562 And, if it's set only once, and it's always set before use, then all
11563 uses must have the same last value, even if it's not from this basic
11564 block. */
11566 if (value == 0
11567 || (reg_last_set_label[regno] != label_tick
11568 && (regno < FIRST_PSEUDO_REGISTER
11569 || REG_N_SETS (regno) != 1
11570 || (REGNO_REG_SET_P
11571 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11572 return 0;
11574 /* If the value was set in a later insn than the ones we are processing,
11575 we can't use it even if the register was only set once. */
11576 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11577 return 0;
11579 /* If the value has all its registers valid, return it. */
11580 if (get_last_value_validate (&value, reg_last_set[regno],
11581 reg_last_set_label[regno], 0))
11582 return value;
11584 /* Otherwise, make a copy and replace any invalid register with
11585 (clobber (const_int 0)). If that fails for some reason, return 0. */
11587 value = copy_rtx (value);
11588 if (get_last_value_validate (&value, reg_last_set[regno],
11589 reg_last_set_label[regno], 1))
11590 return value;
11592 return 0;
11595 /* Return nonzero if expression X refers to a REG or to memory
11596 that is set in an instruction more recent than FROM_CUID. */
11598 static int
11599 use_crosses_set_p (x, from_cuid)
11600 rtx x;
11601 int from_cuid;
11603 const char *fmt;
11604 int i;
11605 enum rtx_code code = GET_CODE (x);
11607 if (code == REG)
11609 unsigned int regno = REGNO (x);
11610 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11611 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11613 #ifdef PUSH_ROUNDING
11614 /* Don't allow uses of the stack pointer to be moved,
11615 because we don't know whether the move crosses a push insn. */
11616 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11617 return 1;
11618 #endif
11619 for (; regno < endreg; regno++)
11620 if (reg_last_set[regno]
11621 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11622 return 1;
11623 return 0;
11626 if (code == MEM && mem_last_set > from_cuid)
11627 return 1;
11629 fmt = GET_RTX_FORMAT (code);
11631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11633 if (fmt[i] == 'E')
11635 int j;
11636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11637 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11638 return 1;
11640 else if (fmt[i] == 'e'
11641 && use_crosses_set_p (XEXP (x, i), from_cuid))
11642 return 1;
11644 return 0;
11647 /* Define three variables used for communication between the following
11648 routines. */
11650 static unsigned int reg_dead_regno, reg_dead_endregno;
11651 static int reg_dead_flag;
11653 /* Function called via note_stores from reg_dead_at_p.
11655 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11656 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11658 static void
11659 reg_dead_at_p_1 (dest, x, data)
11660 rtx dest;
11661 rtx x;
11662 void *data ATTRIBUTE_UNUSED;
11664 unsigned int regno, endregno;
11666 if (GET_CODE (dest) != REG)
11667 return;
11669 regno = REGNO (dest);
11670 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11671 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11673 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11674 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11677 /* Return non-zero if REG is known to be dead at INSN.
11679 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11680 referencing REG, it is dead. If we hit a SET referencing REG, it is
11681 live. Otherwise, see if it is live or dead at the start of the basic
11682 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11683 must be assumed to be always live. */
11685 static int
11686 reg_dead_at_p (reg, insn)
11687 rtx reg;
11688 rtx insn;
11690 int block;
11691 unsigned int i;
11693 /* Set variables for reg_dead_at_p_1. */
11694 reg_dead_regno = REGNO (reg);
11695 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11696 ? HARD_REGNO_NREGS (reg_dead_regno,
11697 GET_MODE (reg))
11698 : 1);
11700 reg_dead_flag = 0;
11702 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11703 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11705 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11706 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11707 return 0;
11710 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11711 beginning of function. */
11712 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11713 insn = prev_nonnote_insn (insn))
11715 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11716 if (reg_dead_flag)
11717 return reg_dead_flag == 1 ? 1 : 0;
11719 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11720 return 1;
11723 /* Get the basic block number that we were in. */
11724 if (insn == 0)
11725 block = 0;
11726 else
11728 for (block = 0; block < n_basic_blocks; block++)
11729 if (insn == BLOCK_HEAD (block))
11730 break;
11732 if (block == n_basic_blocks)
11733 return 0;
11736 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11737 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11738 return 0;
11740 return 1;
11743 /* Note hard registers in X that are used. This code is similar to
11744 that in flow.c, but much simpler since we don't care about pseudos. */
11746 static void
11747 mark_used_regs_combine (x)
11748 rtx x;
11750 RTX_CODE code = GET_CODE (x);
11751 unsigned int regno;
11752 int i;
11754 switch (code)
11756 case LABEL_REF:
11757 case SYMBOL_REF:
11758 case CONST_INT:
11759 case CONST:
11760 case CONST_DOUBLE:
11761 case CONST_VECTOR:
11762 case PC:
11763 case ADDR_VEC:
11764 case ADDR_DIFF_VEC:
11765 case ASM_INPUT:
11766 #ifdef HAVE_cc0
11767 /* CC0 must die in the insn after it is set, so we don't need to take
11768 special note of it here. */
11769 case CC0:
11770 #endif
11771 return;
11773 case CLOBBER:
11774 /* If we are clobbering a MEM, mark any hard registers inside the
11775 address as used. */
11776 if (GET_CODE (XEXP (x, 0)) == MEM)
11777 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11778 return;
11780 case REG:
11781 regno = REGNO (x);
11782 /* A hard reg in a wide mode may really be multiple registers.
11783 If so, mark all of them just like the first. */
11784 if (regno < FIRST_PSEUDO_REGISTER)
11786 unsigned int endregno, r;
11788 /* None of this applies to the stack, frame or arg pointers */
11789 if (regno == STACK_POINTER_REGNUM
11790 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11791 || regno == HARD_FRAME_POINTER_REGNUM
11792 #endif
11793 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11794 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11795 #endif
11796 || regno == FRAME_POINTER_REGNUM)
11797 return;
11799 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11800 for (r = regno; r < endregno; r++)
11801 SET_HARD_REG_BIT (newpat_used_regs, r);
11803 return;
11805 case SET:
11807 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11808 the address. */
11809 rtx testreg = SET_DEST (x);
11811 while (GET_CODE (testreg) == SUBREG
11812 || GET_CODE (testreg) == ZERO_EXTRACT
11813 || GET_CODE (testreg) == SIGN_EXTRACT
11814 || GET_CODE (testreg) == STRICT_LOW_PART)
11815 testreg = XEXP (testreg, 0);
11817 if (GET_CODE (testreg) == MEM)
11818 mark_used_regs_combine (XEXP (testreg, 0));
11820 mark_used_regs_combine (SET_SRC (x));
11822 return;
11824 default:
11825 break;
11828 /* Recursively scan the operands of this expression. */
11831 const char *fmt = GET_RTX_FORMAT (code);
11833 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11835 if (fmt[i] == 'e')
11836 mark_used_regs_combine (XEXP (x, i));
11837 else if (fmt[i] == 'E')
11839 int j;
11841 for (j = 0; j < XVECLEN (x, i); j++)
11842 mark_used_regs_combine (XVECEXP (x, i, j));
11848 /* Remove register number REGNO from the dead registers list of INSN.
11850 Return the note used to record the death, if there was one. */
11853 remove_death (regno, insn)
11854 unsigned int regno;
11855 rtx insn;
11857 rtx note = find_regno_note (insn, REG_DEAD, regno);
11859 if (note)
11861 REG_N_DEATHS (regno)--;
11862 remove_note (insn, note);
11865 return note;
11868 /* For each register (hardware or pseudo) used within expression X, if its
11869 death is in an instruction with cuid between FROM_CUID (inclusive) and
11870 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11871 list headed by PNOTES.
11873 That said, don't move registers killed by maybe_kill_insn.
11875 This is done when X is being merged by combination into TO_INSN. These
11876 notes will then be distributed as needed. */
11878 static void
11879 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11880 rtx x;
11881 rtx maybe_kill_insn;
11882 int from_cuid;
11883 rtx to_insn;
11884 rtx *pnotes;
11886 const char *fmt;
11887 int len, i;
11888 enum rtx_code code = GET_CODE (x);
11890 if (code == REG)
11892 unsigned int regno = REGNO (x);
11893 rtx where_dead = reg_last_death[regno];
11894 rtx before_dead, after_dead;
11896 /* Don't move the register if it gets killed in between from and to */
11897 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11898 && ! reg_referenced_p (x, maybe_kill_insn))
11899 return;
11901 /* WHERE_DEAD could be a USE insn made by combine, so first we
11902 make sure that we have insns with valid INSN_CUID values. */
11903 before_dead = where_dead;
11904 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11905 before_dead = PREV_INSN (before_dead);
11907 after_dead = where_dead;
11908 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11909 after_dead = NEXT_INSN (after_dead);
11911 if (before_dead && after_dead
11912 && INSN_CUID (before_dead) >= from_cuid
11913 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11914 || (where_dead != after_dead
11915 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11917 rtx note = remove_death (regno, where_dead);
11919 /* It is possible for the call above to return 0. This can occur
11920 when reg_last_death points to I2 or I1 that we combined with.
11921 In that case make a new note.
11923 We must also check for the case where X is a hard register
11924 and NOTE is a death note for a range of hard registers
11925 including X. In that case, we must put REG_DEAD notes for
11926 the remaining registers in place of NOTE. */
11928 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11929 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11930 > GET_MODE_SIZE (GET_MODE (x))))
11932 unsigned int deadregno = REGNO (XEXP (note, 0));
11933 unsigned int deadend
11934 = (deadregno + HARD_REGNO_NREGS (deadregno,
11935 GET_MODE (XEXP (note, 0))));
11936 unsigned int ourend
11937 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11938 unsigned int i;
11940 for (i = deadregno; i < deadend; i++)
11941 if (i < regno || i >= ourend)
11942 REG_NOTES (where_dead)
11943 = gen_rtx_EXPR_LIST (REG_DEAD,
11944 gen_rtx_REG (reg_raw_mode[i], i),
11945 REG_NOTES (where_dead));
11948 /* If we didn't find any note, or if we found a REG_DEAD note that
11949 covers only part of the given reg, and we have a multi-reg hard
11950 register, then to be safe we must check for REG_DEAD notes
11951 for each register other than the first. They could have
11952 their own REG_DEAD notes lying around. */
11953 else if ((note == 0
11954 || (note != 0
11955 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11956 < GET_MODE_SIZE (GET_MODE (x)))))
11957 && regno < FIRST_PSEUDO_REGISTER
11958 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11960 unsigned int ourend
11961 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11962 unsigned int i, offset;
11963 rtx oldnotes = 0;
11965 if (note)
11966 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11967 else
11968 offset = 1;
11970 for (i = regno + offset; i < ourend; i++)
11971 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11972 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11975 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11977 XEXP (note, 1) = *pnotes;
11978 *pnotes = note;
11980 else
11981 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11983 REG_N_DEATHS (regno)++;
11986 return;
11989 else if (GET_CODE (x) == SET)
11991 rtx dest = SET_DEST (x);
11993 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11995 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11996 that accesses one word of a multi-word item, some
11997 piece of everything register in the expression is used by
11998 this insn, so remove any old death. */
11999 /* ??? So why do we test for equality of the sizes? */
12001 if (GET_CODE (dest) == ZERO_EXTRACT
12002 || GET_CODE (dest) == STRICT_LOW_PART
12003 || (GET_CODE (dest) == SUBREG
12004 && (((GET_MODE_SIZE (GET_MODE (dest))
12005 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12006 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12007 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12009 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12010 return;
12013 /* If this is some other SUBREG, we know it replaces the entire
12014 value, so use that as the destination. */
12015 if (GET_CODE (dest) == SUBREG)
12016 dest = SUBREG_REG (dest);
12018 /* If this is a MEM, adjust deaths of anything used in the address.
12019 For a REG (the only other possibility), the entire value is
12020 being replaced so the old value is not used in this insn. */
12022 if (GET_CODE (dest) == MEM)
12023 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12024 to_insn, pnotes);
12025 return;
12028 else if (GET_CODE (x) == CLOBBER)
12029 return;
12031 len = GET_RTX_LENGTH (code);
12032 fmt = GET_RTX_FORMAT (code);
12034 for (i = 0; i < len; i++)
12036 if (fmt[i] == 'E')
12038 int j;
12039 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12040 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12041 to_insn, pnotes);
12043 else if (fmt[i] == 'e')
12044 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12048 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12049 pattern of an insn. X must be a REG. */
12051 static int
12052 reg_bitfield_target_p (x, body)
12053 rtx x;
12054 rtx body;
12056 int i;
12058 if (GET_CODE (body) == SET)
12060 rtx dest = SET_DEST (body);
12061 rtx target;
12062 unsigned int regno, tregno, endregno, endtregno;
12064 if (GET_CODE (dest) == ZERO_EXTRACT)
12065 target = XEXP (dest, 0);
12066 else if (GET_CODE (dest) == STRICT_LOW_PART)
12067 target = SUBREG_REG (XEXP (dest, 0));
12068 else
12069 return 0;
12071 if (GET_CODE (target) == SUBREG)
12072 target = SUBREG_REG (target);
12074 if (GET_CODE (target) != REG)
12075 return 0;
12077 tregno = REGNO (target), regno = REGNO (x);
12078 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12079 return target == x;
12081 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12082 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12084 return endregno > tregno && regno < endtregno;
12087 else if (GET_CODE (body) == PARALLEL)
12088 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12089 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12090 return 1;
12092 return 0;
12095 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12096 as appropriate. I3 and I2 are the insns resulting from the combination
12097 insns including FROM (I2 may be zero).
12099 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12100 not need REG_DEAD notes because they are being substituted for. This
12101 saves searching in the most common cases.
12103 Each note in the list is either ignored or placed on some insns, depending
12104 on the type of note. */
12106 static void
12107 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12108 rtx notes;
12109 rtx from_insn;
12110 rtx i3, i2;
12111 rtx elim_i2, elim_i1;
12113 rtx note, next_note;
12114 rtx tem;
12116 for (note = notes; note; note = next_note)
12118 rtx place = 0, place2 = 0;
12120 /* If this NOTE references a pseudo register, ensure it references
12121 the latest copy of that register. */
12122 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12123 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12124 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12126 next_note = XEXP (note, 1);
12127 switch (REG_NOTE_KIND (note))
12129 case REG_BR_PROB:
12130 case REG_BR_PRED:
12131 case REG_EXEC_COUNT:
12132 /* Doesn't matter much where we put this, as long as it's somewhere.
12133 It is preferable to keep these notes on branches, which is most
12134 likely to be i3. */
12135 place = i3;
12136 break;
12138 case REG_VTABLE_REF:
12139 /* ??? Should remain with *a particular* memory load. Given the
12140 nature of vtable data, the last insn seems relatively safe. */
12141 place = i3;
12142 break;
12144 case REG_NON_LOCAL_GOTO:
12145 if (GET_CODE (i3) == JUMP_INSN)
12146 place = i3;
12147 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12148 place = i2;
12149 else
12150 abort ();
12151 break;
12153 case REG_EH_REGION:
12154 /* These notes must remain with the call or trapping instruction. */
12155 if (GET_CODE (i3) == CALL_INSN)
12156 place = i3;
12157 else if (i2 && GET_CODE (i2) == CALL_INSN)
12158 place = i2;
12159 else if (flag_non_call_exceptions)
12161 if (may_trap_p (i3))
12162 place = i3;
12163 else if (i2 && may_trap_p (i2))
12164 place = i2;
12165 /* ??? Otherwise assume we've combined things such that we
12166 can now prove that the instructions can't trap. Drop the
12167 note in this case. */
12169 else
12170 abort ();
12171 break;
12173 case REG_NORETURN:
12174 case REG_SETJMP:
12175 /* These notes must remain with the call. It should not be
12176 possible for both I2 and I3 to be a call. */
12177 if (GET_CODE (i3) == CALL_INSN)
12178 place = i3;
12179 else if (i2 && GET_CODE (i2) == CALL_INSN)
12180 place = i2;
12181 else
12182 abort ();
12183 break;
12185 case REG_UNUSED:
12186 /* Any clobbers for i3 may still exist, and so we must process
12187 REG_UNUSED notes from that insn.
12189 Any clobbers from i2 or i1 can only exist if they were added by
12190 recog_for_combine. In that case, recog_for_combine created the
12191 necessary REG_UNUSED notes. Trying to keep any original
12192 REG_UNUSED notes from these insns can cause incorrect output
12193 if it is for the same register as the original i3 dest.
12194 In that case, we will notice that the register is set in i3,
12195 and then add a REG_UNUSED note for the destination of i3, which
12196 is wrong. However, it is possible to have REG_UNUSED notes from
12197 i2 or i1 for register which were both used and clobbered, so
12198 we keep notes from i2 or i1 if they will turn into REG_DEAD
12199 notes. */
12201 /* If this register is set or clobbered in I3, put the note there
12202 unless there is one already. */
12203 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12205 if (from_insn != i3)
12206 break;
12208 if (! (GET_CODE (XEXP (note, 0)) == REG
12209 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12210 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12211 place = i3;
12213 /* Otherwise, if this register is used by I3, then this register
12214 now dies here, so we must put a REG_DEAD note here unless there
12215 is one already. */
12216 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12217 && ! (GET_CODE (XEXP (note, 0)) == REG
12218 ? find_regno_note (i3, REG_DEAD,
12219 REGNO (XEXP (note, 0)))
12220 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12222 PUT_REG_NOTE_KIND (note, REG_DEAD);
12223 place = i3;
12225 break;
12227 case REG_EQUAL:
12228 case REG_EQUIV:
12229 case REG_NOALIAS:
12230 /* These notes say something about results of an insn. We can
12231 only support them if they used to be on I3 in which case they
12232 remain on I3. Otherwise they are ignored.
12234 If the note refers to an expression that is not a constant, we
12235 must also ignore the note since we cannot tell whether the
12236 equivalence is still true. It might be possible to do
12237 slightly better than this (we only have a problem if I2DEST
12238 or I1DEST is present in the expression), but it doesn't
12239 seem worth the trouble. */
12241 if (from_insn == i3
12242 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12243 place = i3;
12244 break;
12246 case REG_INC:
12247 case REG_NO_CONFLICT:
12248 /* These notes say something about how a register is used. They must
12249 be present on any use of the register in I2 or I3. */
12250 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12251 place = i3;
12253 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12255 if (place)
12256 place2 = i2;
12257 else
12258 place = i2;
12260 break;
12262 case REG_LABEL:
12263 /* This can show up in several ways -- either directly in the
12264 pattern, or hidden off in the constant pool with (or without?)
12265 a REG_EQUAL note. */
12266 /* ??? Ignore the without-reg_equal-note problem for now. */
12267 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12268 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12269 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12270 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12271 place = i3;
12273 if (i2
12274 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12275 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12276 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12277 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12279 if (place)
12280 place2 = i2;
12281 else
12282 place = i2;
12285 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12286 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12287 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12289 if (JUMP_LABEL (place) != XEXP (note, 0))
12290 abort ();
12291 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12292 LABEL_NUSES (JUMP_LABEL (place))--;
12293 place = 0;
12295 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12297 if (JUMP_LABEL (place2) != XEXP (note, 0))
12298 abort ();
12299 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12300 LABEL_NUSES (JUMP_LABEL (place2))--;
12301 place2 = 0;
12303 break;
12305 case REG_NONNEG:
12306 case REG_WAS_0:
12307 /* These notes say something about the value of a register prior
12308 to the execution of an insn. It is too much trouble to see
12309 if the note is still correct in all situations. It is better
12310 to simply delete it. */
12311 break;
12313 case REG_RETVAL:
12314 /* If the insn previously containing this note still exists,
12315 put it back where it was. Otherwise move it to the previous
12316 insn. Adjust the corresponding REG_LIBCALL note. */
12317 if (GET_CODE (from_insn) != NOTE)
12318 place = from_insn;
12319 else
12321 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12322 place = prev_real_insn (from_insn);
12323 if (tem && place)
12324 XEXP (tem, 0) = place;
12325 /* If we're deleting the last remaining instruction of a
12326 libcall sequence, don't add the notes. */
12327 else if (XEXP (note, 0) == from_insn)
12328 tem = place = 0;
12330 break;
12332 case REG_LIBCALL:
12333 /* This is handled similarly to REG_RETVAL. */
12334 if (GET_CODE (from_insn) != NOTE)
12335 place = from_insn;
12336 else
12338 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12339 place = next_real_insn (from_insn);
12340 if (tem && place)
12341 XEXP (tem, 0) = place;
12342 /* If we're deleting the last remaining instruction of a
12343 libcall sequence, don't add the notes. */
12344 else if (XEXP (note, 0) == from_insn)
12345 tem = place = 0;
12347 break;
12349 case REG_DEAD:
12350 /* If the register is used as an input in I3, it dies there.
12351 Similarly for I2, if it is non-zero and adjacent to I3.
12353 If the register is not used as an input in either I3 or I2
12354 and it is not one of the registers we were supposed to eliminate,
12355 there are two possibilities. We might have a non-adjacent I2
12356 or we might have somehow eliminated an additional register
12357 from a computation. For example, we might have had A & B where
12358 we discover that B will always be zero. In this case we will
12359 eliminate the reference to A.
12361 In both cases, we must search to see if we can find a previous
12362 use of A and put the death note there. */
12364 if (from_insn
12365 && GET_CODE (from_insn) == CALL_INSN
12366 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12367 place = from_insn;
12368 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12369 place = i3;
12370 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12371 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12372 place = i2;
12374 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12375 || rtx_equal_p (XEXP (note, 0), elim_i1))
12376 break;
12378 if (place == 0)
12380 basic_block bb = BASIC_BLOCK (this_basic_block);
12382 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12384 if (! INSN_P (tem))
12386 if (tem == bb->head)
12387 break;
12388 continue;
12391 /* If the register is being set at TEM, see if that is all
12392 TEM is doing. If so, delete TEM. Otherwise, make this
12393 into a REG_UNUSED note instead. */
12394 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12396 rtx set = single_set (tem);
12397 rtx inner_dest = 0;
12398 #ifdef HAVE_cc0
12399 rtx cc0_setter = NULL_RTX;
12400 #endif
12402 if (set != 0)
12403 for (inner_dest = SET_DEST (set);
12404 (GET_CODE (inner_dest) == STRICT_LOW_PART
12405 || GET_CODE (inner_dest) == SUBREG
12406 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12407 inner_dest = XEXP (inner_dest, 0))
12410 /* Verify that it was the set, and not a clobber that
12411 modified the register.
12413 CC0 targets must be careful to maintain setter/user
12414 pairs. If we cannot delete the setter due to side
12415 effects, mark the user with an UNUSED note instead
12416 of deleting it. */
12418 if (set != 0 && ! side_effects_p (SET_SRC (set))
12419 && rtx_equal_p (XEXP (note, 0), inner_dest)
12420 #ifdef HAVE_cc0
12421 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12422 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12423 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12424 #endif
12427 /* Move the notes and links of TEM elsewhere.
12428 This might delete other dead insns recursively.
12429 First set the pattern to something that won't use
12430 any register. */
12432 PATTERN (tem) = pc_rtx;
12434 distribute_notes (REG_NOTES (tem), tem, tem,
12435 NULL_RTX, NULL_RTX, NULL_RTX);
12436 distribute_links (LOG_LINKS (tem));
12438 PUT_CODE (tem, NOTE);
12439 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12440 NOTE_SOURCE_FILE (tem) = 0;
12442 #ifdef HAVE_cc0
12443 /* Delete the setter too. */
12444 if (cc0_setter)
12446 PATTERN (cc0_setter) = pc_rtx;
12448 distribute_notes (REG_NOTES (cc0_setter),
12449 cc0_setter, cc0_setter,
12450 NULL_RTX, NULL_RTX, NULL_RTX);
12451 distribute_links (LOG_LINKS (cc0_setter));
12453 PUT_CODE (cc0_setter, NOTE);
12454 NOTE_LINE_NUMBER (cc0_setter)
12455 = NOTE_INSN_DELETED;
12456 NOTE_SOURCE_FILE (cc0_setter) = 0;
12458 #endif
12460 /* If the register is both set and used here, put the
12461 REG_DEAD note here, but place a REG_UNUSED note
12462 here too unless there already is one. */
12463 else if (reg_referenced_p (XEXP (note, 0),
12464 PATTERN (tem)))
12466 place = tem;
12468 if (! find_regno_note (tem, REG_UNUSED,
12469 REGNO (XEXP (note, 0))))
12470 REG_NOTES (tem)
12471 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12472 REG_NOTES (tem));
12474 else
12476 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12478 /* If there isn't already a REG_UNUSED note, put one
12479 here. */
12480 if (! find_regno_note (tem, REG_UNUSED,
12481 REGNO (XEXP (note, 0))))
12482 place = tem;
12483 break;
12486 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12487 || (GET_CODE (tem) == CALL_INSN
12488 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12490 place = tem;
12492 /* If we are doing a 3->2 combination, and we have a
12493 register which formerly died in i3 and was not used
12494 by i2, which now no longer dies in i3 and is used in
12495 i2 but does not die in i2, and place is between i2
12496 and i3, then we may need to move a link from place to
12497 i2. */
12498 if (i2 && INSN_UID (place) <= max_uid_cuid
12499 && INSN_CUID (place) > INSN_CUID (i2)
12500 && from_insn
12501 && INSN_CUID (from_insn) > INSN_CUID (i2)
12502 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12504 rtx links = LOG_LINKS (place);
12505 LOG_LINKS (place) = 0;
12506 distribute_links (links);
12508 break;
12511 if (tem == bb->head)
12512 break;
12515 /* We haven't found an insn for the death note and it
12516 is still a REG_DEAD note, but we have hit the beginning
12517 of the block. If the existing life info says the reg
12518 was dead, there's nothing left to do. Otherwise, we'll
12519 need to do a global life update after combine. */
12520 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12521 && REGNO_REG_SET_P (bb->global_live_at_start,
12522 REGNO (XEXP (note, 0))))
12524 SET_BIT (refresh_blocks, this_basic_block);
12525 need_refresh = 1;
12529 /* If the register is set or already dead at PLACE, we needn't do
12530 anything with this note if it is still a REG_DEAD note.
12531 We can here if it is set at all, not if is it totally replace,
12532 which is what `dead_or_set_p' checks, so also check for it being
12533 set partially. */
12535 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12537 unsigned int regno = REGNO (XEXP (note, 0));
12539 /* Similarly, if the instruction on which we want to place
12540 the note is a noop, we'll need do a global live update
12541 after we remove them in delete_noop_moves. */
12542 if (noop_move_p (place))
12544 SET_BIT (refresh_blocks, this_basic_block);
12545 need_refresh = 1;
12548 if (dead_or_set_p (place, XEXP (note, 0))
12549 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12551 /* Unless the register previously died in PLACE, clear
12552 reg_last_death. [I no longer understand why this is
12553 being done.] */
12554 if (reg_last_death[regno] != place)
12555 reg_last_death[regno] = 0;
12556 place = 0;
12558 else
12559 reg_last_death[regno] = place;
12561 /* If this is a death note for a hard reg that is occupying
12562 multiple registers, ensure that we are still using all
12563 parts of the object. If we find a piece of the object
12564 that is unused, we must arrange for an appropriate REG_DEAD
12565 note to be added for it. However, we can't just emit a USE
12566 and tag the note to it, since the register might actually
12567 be dead; so we recourse, and the recursive call then finds
12568 the previous insn that used this register. */
12570 if (place && regno < FIRST_PSEUDO_REGISTER
12571 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12573 unsigned int endregno
12574 = regno + HARD_REGNO_NREGS (regno,
12575 GET_MODE (XEXP (note, 0)));
12576 int all_used = 1;
12577 unsigned int i;
12579 for (i = regno; i < endregno; i++)
12580 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12581 && ! find_regno_fusage (place, USE, i))
12582 || dead_or_set_regno_p (place, i))
12583 all_used = 0;
12585 if (! all_used)
12587 /* Put only REG_DEAD notes for pieces that are
12588 not already dead or set. */
12590 for (i = regno; i < endregno;
12591 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12593 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12594 basic_block bb = BASIC_BLOCK (this_basic_block);
12596 if (! dead_or_set_p (place, piece)
12597 && ! reg_bitfield_target_p (piece,
12598 PATTERN (place)))
12600 rtx new_note
12601 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12603 distribute_notes (new_note, place, place,
12604 NULL_RTX, NULL_RTX, NULL_RTX);
12606 else if (! refers_to_regno_p (i, i + 1,
12607 PATTERN (place), 0)
12608 && ! find_regno_fusage (place, USE, i))
12609 for (tem = PREV_INSN (place); ;
12610 tem = PREV_INSN (tem))
12612 if (! INSN_P (tem))
12614 if (tem == bb->head)
12616 SET_BIT (refresh_blocks,
12617 this_basic_block);
12618 need_refresh = 1;
12619 break;
12621 continue;
12623 if (dead_or_set_p (tem, piece)
12624 || reg_bitfield_target_p (piece,
12625 PATTERN (tem)))
12627 REG_NOTES (tem)
12628 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12629 REG_NOTES (tem));
12630 break;
12636 place = 0;
12640 break;
12642 default:
12643 /* Any other notes should not be present at this point in the
12644 compilation. */
12645 abort ();
12648 if (place)
12650 XEXP (note, 1) = REG_NOTES (place);
12651 REG_NOTES (place) = note;
12653 else if ((REG_NOTE_KIND (note) == REG_DEAD
12654 || REG_NOTE_KIND (note) == REG_UNUSED)
12655 && GET_CODE (XEXP (note, 0)) == REG)
12656 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12658 if (place2)
12660 if ((REG_NOTE_KIND (note) == REG_DEAD
12661 || REG_NOTE_KIND (note) == REG_UNUSED)
12662 && GET_CODE (XEXP (note, 0)) == REG)
12663 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12665 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12666 REG_NOTE_KIND (note),
12667 XEXP (note, 0),
12668 REG_NOTES (place2));
12673 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12674 I3, I2, and I1 to new locations. This is also called in one case to
12675 add a link pointing at I3 when I3's destination is changed. */
12677 static void
12678 distribute_links (links)
12679 rtx links;
12681 rtx link, next_link;
12683 for (link = links; link; link = next_link)
12685 rtx place = 0;
12686 rtx insn;
12687 rtx set, reg;
12689 next_link = XEXP (link, 1);
12691 /* If the insn that this link points to is a NOTE or isn't a single
12692 set, ignore it. In the latter case, it isn't clear what we
12693 can do other than ignore the link, since we can't tell which
12694 register it was for. Such links wouldn't be used by combine
12695 anyway.
12697 It is not possible for the destination of the target of the link to
12698 have been changed by combine. The only potential of this is if we
12699 replace I3, I2, and I1 by I3 and I2. But in that case the
12700 destination of I2 also remains unchanged. */
12702 if (GET_CODE (XEXP (link, 0)) == NOTE
12703 || (set = single_set (XEXP (link, 0))) == 0)
12704 continue;
12706 reg = SET_DEST (set);
12707 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12708 || GET_CODE (reg) == SIGN_EXTRACT
12709 || GET_CODE (reg) == STRICT_LOW_PART)
12710 reg = XEXP (reg, 0);
12712 /* A LOG_LINK is defined as being placed on the first insn that uses
12713 a register and points to the insn that sets the register. Start
12714 searching at the next insn after the target of the link and stop
12715 when we reach a set of the register or the end of the basic block.
12717 Note that this correctly handles the link that used to point from
12718 I3 to I2. Also note that not much searching is typically done here
12719 since most links don't point very far away. */
12721 for (insn = NEXT_INSN (XEXP (link, 0));
12722 (insn && (this_basic_block == n_basic_blocks - 1
12723 || BLOCK_HEAD (this_basic_block + 1) != insn));
12724 insn = NEXT_INSN (insn))
12725 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12727 if (reg_referenced_p (reg, PATTERN (insn)))
12728 place = insn;
12729 break;
12731 else if (GET_CODE (insn) == CALL_INSN
12732 && find_reg_fusage (insn, USE, reg))
12734 place = insn;
12735 break;
12738 /* If we found a place to put the link, place it there unless there
12739 is already a link to the same insn as LINK at that point. */
12741 if (place)
12743 rtx link2;
12745 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12746 if (XEXP (link2, 0) == XEXP (link, 0))
12747 break;
12749 if (link2 == 0)
12751 XEXP (link, 1) = LOG_LINKS (place);
12752 LOG_LINKS (place) = link;
12754 /* Set added_links_insn to the earliest insn we added a
12755 link to. */
12756 if (added_links_insn == 0
12757 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12758 added_links_insn = place;
12764 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12766 static int
12767 insn_cuid (insn)
12768 rtx insn;
12770 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12771 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12772 insn = NEXT_INSN (insn);
12774 if (INSN_UID (insn) > max_uid_cuid)
12775 abort ();
12777 return INSN_CUID (insn);
12780 void
12781 dump_combine_stats (file)
12782 FILE *file;
12784 fnotice
12785 (file,
12786 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12787 combine_attempts, combine_merges, combine_extras, combine_successes);
12790 void
12791 dump_combine_total_stats (file)
12792 FILE *file;
12794 fnotice
12795 (file,
12796 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12797 total_attempts, total_merges, total_extras, total_successes);