* sv.po: Update.
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob2d9c1233ea92b32e3c44e32c53862f12cdff06c9
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
102 References:
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "output.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
125 #include "timevar.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "toplev.h"
135 #include "dbgcnt.h"
138 /* Possible lattice values. */
139 typedef enum
141 UNINITIALIZED,
142 UNDEFINED,
143 CONSTANT,
144 VARYING
145 } ccp_lattice_t;
147 struct prop_value_d {
148 /* Lattice value. */
149 ccp_lattice_t lattice_val;
151 /* Propagated value. */
152 tree value;
154 /* Mask that applies to the propagated value during CCP. For
155 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 double_int mask;
159 typedef struct prop_value_d prop_value_t;
161 /* Array of propagated constant values. After propagation,
162 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
163 the constant is held in an SSA name representing a memory store
164 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
165 memory reference used to store (i.e., the LHS of the assignment
166 doing the store). */
167 static prop_value_t *const_val;
169 static void canonicalize_float_value (prop_value_t *);
170 static bool ccp_fold_stmt (gimple_stmt_iterator *);
171 static tree fold_ctor_reference (tree type, tree ctor,
172 unsigned HOST_WIDE_INT offset,
173 unsigned HOST_WIDE_INT size);
175 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
177 static void
178 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
180 switch (val.lattice_val)
182 case UNINITIALIZED:
183 fprintf (outf, "%sUNINITIALIZED", prefix);
184 break;
185 case UNDEFINED:
186 fprintf (outf, "%sUNDEFINED", prefix);
187 break;
188 case VARYING:
189 fprintf (outf, "%sVARYING", prefix);
190 break;
191 case CONSTANT:
192 fprintf (outf, "%sCONSTANT ", prefix);
193 if (TREE_CODE (val.value) != INTEGER_CST
194 || double_int_zero_p (val.mask))
195 print_generic_expr (outf, val.value, dump_flags);
196 else
198 double_int cval = double_int_and_not (tree_to_double_int (val.value),
199 val.mask);
200 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
201 prefix, cval.high, cval.low);
202 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
203 val.mask.high, val.mask.low);
205 break;
206 default:
207 gcc_unreachable ();
212 /* Print lattice value VAL to stderr. */
214 void debug_lattice_value (prop_value_t val);
216 DEBUG_FUNCTION void
217 debug_lattice_value (prop_value_t val)
219 dump_lattice_value (stderr, "", val);
220 fprintf (stderr, "\n");
224 /* Compute a default value for variable VAR and store it in the
225 CONST_VAL array. The following rules are used to get default
226 values:
228 1- Global and static variables that are declared constant are
229 considered CONSTANT.
231 2- Any other value is considered UNDEFINED. This is useful when
232 considering PHI nodes. PHI arguments that are undefined do not
233 change the constant value of the PHI node, which allows for more
234 constants to be propagated.
236 3- Variables defined by statements other than assignments and PHI
237 nodes are considered VARYING.
239 4- Initial values of variables that are not GIMPLE registers are
240 considered VARYING. */
242 static prop_value_t
243 get_default_value (tree var)
245 tree sym = SSA_NAME_VAR (var);
246 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
247 gimple stmt;
249 stmt = SSA_NAME_DEF_STMT (var);
251 if (gimple_nop_p (stmt))
253 /* Variables defined by an empty statement are those used
254 before being initialized. If VAR is a local variable, we
255 can assume initially that it is UNDEFINED, otherwise we must
256 consider it VARYING. */
257 if (is_gimple_reg (sym)
258 && TREE_CODE (sym) == VAR_DECL)
259 val.lattice_val = UNDEFINED;
260 else
262 val.lattice_val = VARYING;
263 val.mask = double_int_minus_one;
266 else if (is_gimple_assign (stmt)
267 /* Value-returning GIMPLE_CALL statements assign to
268 a variable, and are treated similarly to GIMPLE_ASSIGN. */
269 || (is_gimple_call (stmt)
270 && gimple_call_lhs (stmt) != NULL_TREE)
271 || gimple_code (stmt) == GIMPLE_PHI)
273 tree cst;
274 if (gimple_assign_single_p (stmt)
275 && DECL_P (gimple_assign_rhs1 (stmt))
276 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
278 val.lattice_val = CONSTANT;
279 val.value = cst;
281 else
282 /* Any other variable defined by an assignment or a PHI node
283 is considered UNDEFINED. */
284 val.lattice_val = UNDEFINED;
286 else
288 /* Otherwise, VAR will never take on a constant value. */
289 val.lattice_val = VARYING;
290 val.mask = double_int_minus_one;
293 return val;
297 /* Get the constant value associated with variable VAR. */
299 static inline prop_value_t *
300 get_value (tree var)
302 prop_value_t *val;
304 if (const_val == NULL)
305 return NULL;
307 val = &const_val[SSA_NAME_VERSION (var)];
308 if (val->lattice_val == UNINITIALIZED)
309 *val = get_default_value (var);
311 canonicalize_float_value (val);
313 return val;
316 /* Return the constant tree value associated with VAR. */
318 static inline tree
319 get_constant_value (tree var)
321 prop_value_t *val;
322 if (TREE_CODE (var) != SSA_NAME)
324 if (is_gimple_min_invariant (var))
325 return var;
326 return NULL_TREE;
328 val = get_value (var);
329 if (val
330 && val->lattice_val == CONSTANT
331 && (TREE_CODE (val->value) != INTEGER_CST
332 || double_int_zero_p (val->mask)))
333 return val->value;
334 return NULL_TREE;
337 /* Sets the value associated with VAR to VARYING. */
339 static inline void
340 set_value_varying (tree var)
342 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
344 val->lattice_val = VARYING;
345 val->value = NULL_TREE;
346 val->mask = double_int_minus_one;
349 /* For float types, modify the value of VAL to make ccp work correctly
350 for non-standard values (-0, NaN):
352 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
353 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
354 This is to fix the following problem (see PR 29921): Suppose we have
356 x = 0.0 * y
358 and we set value of y to NaN. This causes value of x to be set to NaN.
359 When we later determine that y is in fact VARYING, fold uses the fact
360 that HONOR_NANS is false, and we try to change the value of x to 0,
361 causing an ICE. With HONOR_NANS being false, the real appearance of
362 NaN would cause undefined behavior, though, so claiming that y (and x)
363 are UNDEFINED initially is correct. */
365 static void
366 canonicalize_float_value (prop_value_t *val)
368 enum machine_mode mode;
369 tree type;
370 REAL_VALUE_TYPE d;
372 if (val->lattice_val != CONSTANT
373 || TREE_CODE (val->value) != REAL_CST)
374 return;
376 d = TREE_REAL_CST (val->value);
377 type = TREE_TYPE (val->value);
378 mode = TYPE_MODE (type);
380 if (!HONOR_SIGNED_ZEROS (mode)
381 && REAL_VALUE_MINUS_ZERO (d))
383 val->value = build_real (type, dconst0);
384 return;
387 if (!HONOR_NANS (mode)
388 && REAL_VALUE_ISNAN (d))
390 val->lattice_val = UNDEFINED;
391 val->value = NULL;
392 return;
396 /* Return whether the lattice transition is valid. */
398 static bool
399 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
401 /* Lattice transitions must always be monotonically increasing in
402 value. */
403 if (old_val.lattice_val < new_val.lattice_val)
404 return true;
406 if (old_val.lattice_val != new_val.lattice_val)
407 return false;
409 if (!old_val.value && !new_val.value)
410 return true;
412 /* Now both lattice values are CONSTANT. */
414 /* Allow transitioning from &x to &x & ~3. */
415 if (TREE_CODE (old_val.value) != INTEGER_CST
416 && TREE_CODE (new_val.value) == INTEGER_CST)
417 return true;
419 /* Bit-lattices have to agree in the still valid bits. */
420 if (TREE_CODE (old_val.value) == INTEGER_CST
421 && TREE_CODE (new_val.value) == INTEGER_CST)
422 return double_int_equal_p
423 (double_int_and_not (tree_to_double_int (old_val.value),
424 new_val.mask),
425 double_int_and_not (tree_to_double_int (new_val.value),
426 new_val.mask));
428 /* Otherwise constant values have to agree. */
429 return operand_equal_p (old_val.value, new_val.value, 0);
432 /* Set the value for variable VAR to NEW_VAL. Return true if the new
433 value is different from VAR's previous value. */
435 static bool
436 set_lattice_value (tree var, prop_value_t new_val)
438 /* We can deal with old UNINITIALIZED values just fine here. */
439 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
441 canonicalize_float_value (&new_val);
443 /* We have to be careful to not go up the bitwise lattice
444 represented by the mask.
445 ??? This doesn't seem to be the best place to enforce this. */
446 if (new_val.lattice_val == CONSTANT
447 && old_val->lattice_val == CONSTANT
448 && TREE_CODE (new_val.value) == INTEGER_CST
449 && TREE_CODE (old_val->value) == INTEGER_CST)
451 double_int diff;
452 diff = double_int_xor (tree_to_double_int (new_val.value),
453 tree_to_double_int (old_val->value));
454 new_val.mask = double_int_ior (new_val.mask,
455 double_int_ior (old_val->mask, diff));
458 gcc_assert (valid_lattice_transition (*old_val, new_val));
460 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
461 caller that this was a non-transition. */
462 if (old_val->lattice_val != new_val.lattice_val
463 || (new_val.lattice_val == CONSTANT
464 && TREE_CODE (new_val.value) == INTEGER_CST
465 && (TREE_CODE (old_val->value) != INTEGER_CST
466 || !double_int_equal_p (new_val.mask, old_val->mask))))
468 /* ??? We would like to delay creation of INTEGER_CSTs from
469 partially constants here. */
471 if (dump_file && (dump_flags & TDF_DETAILS))
473 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
474 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
477 *old_val = new_val;
479 gcc_assert (new_val.lattice_val != UNINITIALIZED);
480 return true;
483 return false;
486 static prop_value_t get_value_for_expr (tree, bool);
487 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
488 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
489 tree, double_int, double_int,
490 tree, double_int, double_int);
492 /* Return a double_int that can be used for bitwise simplifications
493 from VAL. */
495 static double_int
496 value_to_double_int (prop_value_t val)
498 if (val.value
499 && TREE_CODE (val.value) == INTEGER_CST)
500 return tree_to_double_int (val.value);
501 else
502 return double_int_zero;
505 /* Return the value for the address expression EXPR based on alignment
506 information. */
508 static prop_value_t
509 get_value_from_alignment (tree expr)
511 prop_value_t val;
512 HOST_WIDE_INT bitsize, bitpos;
513 tree base, offset;
514 enum machine_mode mode;
515 int align;
517 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
519 base = get_inner_reference (TREE_OPERAND (expr, 0),
520 &bitsize, &bitpos, &offset,
521 &mode, &align, &align, false);
522 if (TREE_CODE (base) == MEM_REF)
523 val = bit_value_binop (PLUS_EXPR, TREE_TYPE (expr),
524 TREE_OPERAND (base, 0), TREE_OPERAND (base, 1));
525 else if (base
526 && ((align = get_object_alignment (base, BIGGEST_ALIGNMENT))
527 > BITS_PER_UNIT))
529 val.lattice_val = CONSTANT;
530 /* We assume pointers are zero-extended. */
531 val.mask = double_int_and_not
532 (double_int_mask (TYPE_PRECISION (TREE_TYPE (expr))),
533 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
534 val.value = build_int_cst (TREE_TYPE (expr), 0);
536 else
538 val.lattice_val = VARYING;
539 val.mask = double_int_minus_one;
540 val.value = NULL_TREE;
542 if (bitpos != 0)
544 double_int value, mask;
545 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
546 TREE_TYPE (expr), value_to_double_int (val), val.mask,
547 TREE_TYPE (expr),
548 shwi_to_double_int (bitpos / BITS_PER_UNIT),
549 double_int_zero);
550 val.lattice_val = double_int_minus_one_p (mask) ? VARYING : CONSTANT;
551 val.mask = mask;
552 if (val.lattice_val == CONSTANT)
553 val.value = double_int_to_tree (TREE_TYPE (expr), value);
554 else
555 val.value = NULL_TREE;
557 /* ??? We should handle i * 4 and more complex expressions from
558 the offset, possibly by just expanding get_value_for_expr. */
559 if (offset != NULL_TREE)
561 double_int value, mask;
562 prop_value_t oval = get_value_for_expr (offset, true);
563 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
564 TREE_TYPE (expr), value_to_double_int (val), val.mask,
565 TREE_TYPE (expr), value_to_double_int (oval),
566 oval.mask);
567 val.mask = mask;
568 if (double_int_minus_one_p (mask))
570 val.lattice_val = VARYING;
571 val.value = NULL_TREE;
573 else
575 val.lattice_val = CONSTANT;
576 val.value = double_int_to_tree (TREE_TYPE (expr), value);
580 return val;
583 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
584 return constant bits extracted from alignment information for
585 invariant addresses. */
587 static prop_value_t
588 get_value_for_expr (tree expr, bool for_bits_p)
590 prop_value_t val;
592 if (TREE_CODE (expr) == SSA_NAME)
594 val = *get_value (expr);
595 if (for_bits_p
596 && val.lattice_val == CONSTANT
597 && TREE_CODE (val.value) == ADDR_EXPR)
598 val = get_value_from_alignment (val.value);
600 else if (is_gimple_min_invariant (expr)
601 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
603 val.lattice_val = CONSTANT;
604 val.value = expr;
605 val.mask = double_int_zero;
606 canonicalize_float_value (&val);
608 else if (TREE_CODE (expr) == ADDR_EXPR)
609 val = get_value_from_alignment (expr);
610 else
612 val.lattice_val = VARYING;
613 val.mask = double_int_minus_one;
614 val.value = NULL_TREE;
616 return val;
619 /* Return the likely CCP lattice value for STMT.
621 If STMT has no operands, then return CONSTANT.
623 Else if undefinedness of operands of STMT cause its value to be
624 undefined, then return UNDEFINED.
626 Else if any operands of STMT are constants, then return CONSTANT.
628 Else return VARYING. */
630 static ccp_lattice_t
631 likely_value (gimple stmt)
633 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
634 tree use;
635 ssa_op_iter iter;
636 unsigned i;
638 enum gimple_code code = gimple_code (stmt);
640 /* This function appears to be called only for assignments, calls,
641 conditionals, and switches, due to the logic in visit_stmt. */
642 gcc_assert (code == GIMPLE_ASSIGN
643 || code == GIMPLE_CALL
644 || code == GIMPLE_COND
645 || code == GIMPLE_SWITCH);
647 /* If the statement has volatile operands, it won't fold to a
648 constant value. */
649 if (gimple_has_volatile_ops (stmt))
650 return VARYING;
652 /* Arrive here for more complex cases. */
653 has_constant_operand = false;
654 has_undefined_operand = false;
655 all_undefined_operands = true;
656 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
658 prop_value_t *val = get_value (use);
660 if (val->lattice_val == UNDEFINED)
661 has_undefined_operand = true;
662 else
663 all_undefined_operands = false;
665 if (val->lattice_val == CONSTANT)
666 has_constant_operand = true;
669 /* There may be constants in regular rhs operands. For calls we
670 have to ignore lhs, fndecl and static chain, otherwise only
671 the lhs. */
672 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
673 i < gimple_num_ops (stmt); ++i)
675 tree op = gimple_op (stmt, i);
676 if (!op || TREE_CODE (op) == SSA_NAME)
677 continue;
678 if (is_gimple_min_invariant (op))
679 has_constant_operand = true;
682 if (has_constant_operand)
683 all_undefined_operands = false;
685 /* If the operation combines operands like COMPLEX_EXPR make sure to
686 not mark the result UNDEFINED if only one part of the result is
687 undefined. */
688 if (has_undefined_operand && all_undefined_operands)
689 return UNDEFINED;
690 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
692 switch (gimple_assign_rhs_code (stmt))
694 /* Unary operators are handled with all_undefined_operands. */
695 case PLUS_EXPR:
696 case MINUS_EXPR:
697 case POINTER_PLUS_EXPR:
698 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
699 Not bitwise operators, one VARYING operand may specify the
700 result completely. Not logical operators for the same reason.
701 Not COMPLEX_EXPR as one VARYING operand makes the result partly
702 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
703 the undefined operand may be promoted. */
704 return UNDEFINED;
706 default:
710 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
711 fall back to VARYING even if there were CONSTANT operands. */
712 if (has_undefined_operand)
713 return VARYING;
715 /* We do not consider virtual operands here -- load from read-only
716 memory may have only VARYING virtual operands, but still be
717 constant. */
718 if (has_constant_operand
719 || gimple_references_memory_p (stmt))
720 return CONSTANT;
722 return VARYING;
725 /* Returns true if STMT cannot be constant. */
727 static bool
728 surely_varying_stmt_p (gimple stmt)
730 /* If the statement has operands that we cannot handle, it cannot be
731 constant. */
732 if (gimple_has_volatile_ops (stmt))
733 return true;
735 /* If it is a call and does not return a value or is not a
736 builtin and not an indirect call, it is varying. */
737 if (is_gimple_call (stmt))
739 tree fndecl;
740 if (!gimple_call_lhs (stmt)
741 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
742 && !DECL_BUILT_IN (fndecl)))
743 return true;
746 /* Any other store operation is not interesting. */
747 else if (gimple_vdef (stmt))
748 return true;
750 /* Anything other than assignments and conditional jumps are not
751 interesting for CCP. */
752 if (gimple_code (stmt) != GIMPLE_ASSIGN
753 && gimple_code (stmt) != GIMPLE_COND
754 && gimple_code (stmt) != GIMPLE_SWITCH
755 && gimple_code (stmt) != GIMPLE_CALL)
756 return true;
758 return false;
761 /* Initialize local data structures for CCP. */
763 static void
764 ccp_initialize (void)
766 basic_block bb;
768 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
770 /* Initialize simulation flags for PHI nodes and statements. */
771 FOR_EACH_BB (bb)
773 gimple_stmt_iterator i;
775 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
777 gimple stmt = gsi_stmt (i);
778 bool is_varying;
780 /* If the statement is a control insn, then we do not
781 want to avoid simulating the statement once. Failure
782 to do so means that those edges will never get added. */
783 if (stmt_ends_bb_p (stmt))
784 is_varying = false;
785 else
786 is_varying = surely_varying_stmt_p (stmt);
788 if (is_varying)
790 tree def;
791 ssa_op_iter iter;
793 /* If the statement will not produce a constant, mark
794 all its outputs VARYING. */
795 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
796 set_value_varying (def);
798 prop_set_simulate_again (stmt, !is_varying);
802 /* Now process PHI nodes. We never clear the simulate_again flag on
803 phi nodes, since we do not know which edges are executable yet,
804 except for phi nodes for virtual operands when we do not do store ccp. */
805 FOR_EACH_BB (bb)
807 gimple_stmt_iterator i;
809 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
811 gimple phi = gsi_stmt (i);
813 if (!is_gimple_reg (gimple_phi_result (phi)))
814 prop_set_simulate_again (phi, false);
815 else
816 prop_set_simulate_again (phi, true);
821 /* Debug count support. Reset the values of ssa names
822 VARYING when the total number ssa names analyzed is
823 beyond the debug count specified. */
825 static void
826 do_dbg_cnt (void)
828 unsigned i;
829 for (i = 0; i < num_ssa_names; i++)
831 if (!dbg_cnt (ccp))
833 const_val[i].lattice_val = VARYING;
834 const_val[i].mask = double_int_minus_one;
835 const_val[i].value = NULL_TREE;
841 /* Do final substitution of propagated values, cleanup the flowgraph and
842 free allocated storage.
844 Return TRUE when something was optimized. */
846 static bool
847 ccp_finalize (void)
849 bool something_changed;
850 unsigned i;
852 do_dbg_cnt ();
854 /* Derive alignment and misalignment information from partially
855 constant pointers in the lattice. */
856 for (i = 1; i < num_ssa_names; ++i)
858 tree name = ssa_name (i);
859 prop_value_t *val;
860 struct ptr_info_def *pi;
861 unsigned int tem, align;
863 if (!name
864 || !POINTER_TYPE_P (TREE_TYPE (name)))
865 continue;
867 val = get_value (name);
868 if (val->lattice_val != CONSTANT
869 || TREE_CODE (val->value) != INTEGER_CST)
870 continue;
872 /* Trailing constant bits specify the alignment, trailing value
873 bits the misalignment. */
874 tem = val->mask.low;
875 align = (tem & -tem);
876 if (align == 1)
877 continue;
879 pi = get_ptr_info (name);
880 pi->align = align;
881 pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
884 /* Perform substitutions based on the known constant values. */
885 something_changed = substitute_and_fold (get_constant_value,
886 ccp_fold_stmt, true);
888 free (const_val);
889 const_val = NULL;
890 return something_changed;;
894 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
895 in VAL1.
897 any M UNDEFINED = any
898 any M VARYING = VARYING
899 Ci M Cj = Ci if (i == j)
900 Ci M Cj = VARYING if (i != j)
903 static void
904 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
906 if (val1->lattice_val == UNDEFINED)
908 /* UNDEFINED M any = any */
909 *val1 = *val2;
911 else if (val2->lattice_val == UNDEFINED)
913 /* any M UNDEFINED = any
914 Nothing to do. VAL1 already contains the value we want. */
917 else if (val1->lattice_val == VARYING
918 || val2->lattice_val == VARYING)
920 /* any M VARYING = VARYING. */
921 val1->lattice_val = VARYING;
922 val1->mask = double_int_minus_one;
923 val1->value = NULL_TREE;
925 else if (val1->lattice_val == CONSTANT
926 && val2->lattice_val == CONSTANT
927 && TREE_CODE (val1->value) == INTEGER_CST
928 && TREE_CODE (val2->value) == INTEGER_CST)
930 /* Ci M Cj = Ci if (i == j)
931 Ci M Cj = VARYING if (i != j)
933 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
934 drop to varying. */
935 val1->mask
936 = double_int_ior (double_int_ior (val1->mask,
937 val2->mask),
938 double_int_xor (tree_to_double_int (val1->value),
939 tree_to_double_int (val2->value)));
940 if (double_int_minus_one_p (val1->mask))
942 val1->lattice_val = VARYING;
943 val1->value = NULL_TREE;
946 else if (val1->lattice_val == CONSTANT
947 && val2->lattice_val == CONSTANT
948 && simple_cst_equal (val1->value, val2->value) == 1)
950 /* Ci M Cj = Ci if (i == j)
951 Ci M Cj = VARYING if (i != j)
953 VAL1 already contains the value we want for equivalent values. */
955 else if (val1->lattice_val == CONSTANT
956 && val2->lattice_val == CONSTANT
957 && (TREE_CODE (val1->value) == ADDR_EXPR
958 || TREE_CODE (val2->value) == ADDR_EXPR))
960 /* When not equal addresses are involved try meeting for
961 alignment. */
962 prop_value_t tem = *val2;
963 if (TREE_CODE (val1->value) == ADDR_EXPR)
964 *val1 = get_value_for_expr (val1->value, true);
965 if (TREE_CODE (val2->value) == ADDR_EXPR)
966 tem = get_value_for_expr (val2->value, true);
967 ccp_lattice_meet (val1, &tem);
969 else
971 /* Any other combination is VARYING. */
972 val1->lattice_val = VARYING;
973 val1->mask = double_int_minus_one;
974 val1->value = NULL_TREE;
979 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
980 lattice values to determine PHI_NODE's lattice value. The value of a
981 PHI node is determined calling ccp_lattice_meet with all the arguments
982 of the PHI node that are incoming via executable edges. */
984 static enum ssa_prop_result
985 ccp_visit_phi_node (gimple phi)
987 unsigned i;
988 prop_value_t *old_val, new_val;
990 if (dump_file && (dump_flags & TDF_DETAILS))
992 fprintf (dump_file, "\nVisiting PHI node: ");
993 print_gimple_stmt (dump_file, phi, 0, dump_flags);
996 old_val = get_value (gimple_phi_result (phi));
997 switch (old_val->lattice_val)
999 case VARYING:
1000 return SSA_PROP_VARYING;
1002 case CONSTANT:
1003 new_val = *old_val;
1004 break;
1006 case UNDEFINED:
1007 new_val.lattice_val = UNDEFINED;
1008 new_val.value = NULL_TREE;
1009 break;
1011 default:
1012 gcc_unreachable ();
1015 for (i = 0; i < gimple_phi_num_args (phi); i++)
1017 /* Compute the meet operator over all the PHI arguments flowing
1018 through executable edges. */
1019 edge e = gimple_phi_arg_edge (phi, i);
1021 if (dump_file && (dump_flags & TDF_DETAILS))
1023 fprintf (dump_file,
1024 "\n Argument #%d (%d -> %d %sexecutable)\n",
1025 i, e->src->index, e->dest->index,
1026 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1029 /* If the incoming edge is executable, Compute the meet operator for
1030 the existing value of the PHI node and the current PHI argument. */
1031 if (e->flags & EDGE_EXECUTABLE)
1033 tree arg = gimple_phi_arg (phi, i)->def;
1034 prop_value_t arg_val = get_value_for_expr (arg, false);
1036 ccp_lattice_meet (&new_val, &arg_val);
1038 if (dump_file && (dump_flags & TDF_DETAILS))
1040 fprintf (dump_file, "\t");
1041 print_generic_expr (dump_file, arg, dump_flags);
1042 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1043 fprintf (dump_file, "\n");
1046 if (new_val.lattice_val == VARYING)
1047 break;
1051 if (dump_file && (dump_flags & TDF_DETAILS))
1053 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1054 fprintf (dump_file, "\n\n");
1057 /* Make the transition to the new value. */
1058 if (set_lattice_value (gimple_phi_result (phi), new_val))
1060 if (new_val.lattice_val == VARYING)
1061 return SSA_PROP_VARYING;
1062 else
1063 return SSA_PROP_INTERESTING;
1065 else
1066 return SSA_PROP_NOT_INTERESTING;
1069 /* Return the constant value for OP or OP otherwise. */
1071 static tree
1072 valueize_op (tree op)
1074 if (TREE_CODE (op) == SSA_NAME)
1076 tree tem = get_constant_value (op);
1077 if (tem)
1078 return tem;
1080 return op;
1083 /* CCP specific front-end to the non-destructive constant folding
1084 routines.
1086 Attempt to simplify the RHS of STMT knowing that one or more
1087 operands are constants.
1089 If simplification is possible, return the simplified RHS,
1090 otherwise return the original RHS or NULL_TREE. */
1092 static tree
1093 ccp_fold (gimple stmt)
1095 location_t loc = gimple_location (stmt);
1096 switch (gimple_code (stmt))
1098 case GIMPLE_ASSIGN:
1100 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1102 switch (get_gimple_rhs_class (subcode))
1104 case GIMPLE_SINGLE_RHS:
1106 tree rhs = gimple_assign_rhs1 (stmt);
1107 enum tree_code_class kind = TREE_CODE_CLASS (subcode);
1109 if (TREE_CODE (rhs) == SSA_NAME)
1111 /* If the RHS is an SSA_NAME, return its known constant value,
1112 if any. */
1113 return get_constant_value (rhs);
1115 /* Handle propagating invariant addresses into address operations.
1116 The folding we do here matches that in tree-ssa-forwprop.c. */
1117 else if (TREE_CODE (rhs) == ADDR_EXPR)
1119 tree *base;
1120 base = &TREE_OPERAND (rhs, 0);
1121 while (handled_component_p (*base))
1122 base = &TREE_OPERAND (*base, 0);
1123 if (TREE_CODE (*base) == MEM_REF
1124 && TREE_CODE (TREE_OPERAND (*base, 0)) == SSA_NAME)
1126 tree val = get_constant_value (TREE_OPERAND (*base, 0));
1127 if (val
1128 && TREE_CODE (val) == ADDR_EXPR)
1130 tree ret, save = *base;
1131 tree new_base;
1132 new_base = fold_build2 (MEM_REF, TREE_TYPE (*base),
1133 unshare_expr (val),
1134 TREE_OPERAND (*base, 1));
1135 /* We need to return a new tree, not modify the IL
1136 or share parts of it. So play some tricks to
1137 avoid manually building it. */
1138 *base = new_base;
1139 ret = unshare_expr (rhs);
1140 recompute_tree_invariant_for_addr_expr (ret);
1141 *base = save;
1142 return ret;
1146 else if (TREE_CODE (rhs) == CONSTRUCTOR
1147 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
1148 && (CONSTRUCTOR_NELTS (rhs)
1149 == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
1151 unsigned i;
1152 tree val, list;
1154 list = NULL_TREE;
1155 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
1157 val = valueize_op (val);
1158 if (TREE_CODE (val) == INTEGER_CST
1159 || TREE_CODE (val) == REAL_CST
1160 || TREE_CODE (val) == FIXED_CST)
1161 list = tree_cons (NULL_TREE, val, list);
1162 else
1163 return NULL_TREE;
1166 return build_vector (TREE_TYPE (rhs), nreverse (list));
1169 if (kind == tcc_reference)
1171 if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
1172 || TREE_CODE (rhs) == REALPART_EXPR
1173 || TREE_CODE (rhs) == IMAGPART_EXPR)
1174 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1176 tree val = get_constant_value (TREE_OPERAND (rhs, 0));
1177 if (val)
1178 return fold_unary_loc (EXPR_LOCATION (rhs),
1179 TREE_CODE (rhs),
1180 TREE_TYPE (rhs), val);
1182 else if (TREE_CODE (rhs) == MEM_REF
1183 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1185 tree val = get_constant_value (TREE_OPERAND (rhs, 0));
1186 if (val
1187 && TREE_CODE (val) == ADDR_EXPR)
1189 tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
1190 unshare_expr (val),
1191 TREE_OPERAND (rhs, 1));
1192 if (tem)
1193 rhs = tem;
1196 return fold_const_aggregate_ref (rhs);
1198 else if (kind == tcc_declaration)
1199 return get_symbol_constant_value (rhs);
1200 return rhs;
1203 case GIMPLE_UNARY_RHS:
1205 /* Handle unary operators that can appear in GIMPLE form.
1206 Note that we know the single operand must be a constant,
1207 so this should almost always return a simplified RHS. */
1208 tree lhs = gimple_assign_lhs (stmt);
1209 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1211 /* Conversions are useless for CCP purposes if they are
1212 value-preserving. Thus the restrictions that
1213 useless_type_conversion_p places for pointer type conversions
1214 do not apply here. Substitution later will only substitute to
1215 allowed places. */
1216 if (CONVERT_EXPR_CODE_P (subcode)
1217 && POINTER_TYPE_P (TREE_TYPE (lhs))
1218 && POINTER_TYPE_P (TREE_TYPE (op0)))
1220 tree tem;
1221 /* Try to re-construct array references on-the-fly. */
1222 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1223 TREE_TYPE (op0))
1224 && ((tem = maybe_fold_offset_to_address
1225 (loc,
1226 op0, integer_zero_node, TREE_TYPE (lhs)))
1227 != NULL_TREE))
1228 return tem;
1229 return op0;
1232 return
1233 fold_unary_ignore_overflow_loc (loc, subcode,
1234 gimple_expr_type (stmt), op0);
1237 case GIMPLE_BINARY_RHS:
1239 /* Handle binary operators that can appear in GIMPLE form. */
1240 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1241 tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
1243 /* Translate &x + CST into an invariant form suitable for
1244 further propagation. */
1245 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1246 && TREE_CODE (op0) == ADDR_EXPR
1247 && TREE_CODE (op1) == INTEGER_CST)
1249 tree off = fold_convert (ptr_type_node, op1);
1250 return build_fold_addr_expr
1251 (fold_build2 (MEM_REF,
1252 TREE_TYPE (TREE_TYPE (op0)),
1253 unshare_expr (op0), off));
1256 return fold_binary_loc (loc, subcode,
1257 gimple_expr_type (stmt), op0, op1);
1260 case GIMPLE_TERNARY_RHS:
1262 /* Handle ternary operators that can appear in GIMPLE form. */
1263 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1264 tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
1265 tree op2 = valueize_op (gimple_assign_rhs3 (stmt));
1267 return fold_ternary_loc (loc, subcode,
1268 gimple_expr_type (stmt), op0, op1, op2);
1271 default:
1272 gcc_unreachable ();
1275 break;
1277 case GIMPLE_CALL:
1279 tree fn = valueize_op (gimple_call_fn (stmt));
1280 if (TREE_CODE (fn) == ADDR_EXPR
1281 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
1282 && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
1284 tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
1285 tree call, retval;
1286 unsigned i;
1287 for (i = 0; i < gimple_call_num_args (stmt); ++i)
1288 args[i] = valueize_op (gimple_call_arg (stmt, i));
1289 call = build_call_array_loc (loc,
1290 gimple_call_return_type (stmt),
1291 fn, gimple_call_num_args (stmt), args);
1292 retval = fold_call_expr (EXPR_LOCATION (call), call, false);
1293 if (retval)
1294 /* fold_call_expr wraps the result inside a NOP_EXPR. */
1295 STRIP_NOPS (retval);
1296 return retval;
1298 return NULL_TREE;
1301 case GIMPLE_COND:
1303 /* Handle comparison operators that can appear in GIMPLE form. */
1304 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1305 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1306 enum tree_code code = gimple_cond_code (stmt);
1307 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1310 case GIMPLE_SWITCH:
1312 /* Return the constant switch index. */
1313 return valueize_op (gimple_switch_index (stmt));
1316 default:
1317 gcc_unreachable ();
1321 /* See if we can find constructor defining value of BASE.
1322 When we know the consructor with constant offset (such as
1323 base is array[40] and we do know constructor of array), then
1324 BIT_OFFSET is adjusted accordingly.
1326 As a special case, return error_mark_node when constructor
1327 is not explicitly available, but it is known to be zero
1328 such as 'static const int a;'. */
1329 static tree
1330 get_base_constructor (tree base, HOST_WIDE_INT *bit_offset)
1332 HOST_WIDE_INT bit_offset2, size, max_size;
1333 if (TREE_CODE (base) == MEM_REF)
1335 if (!integer_zerop (TREE_OPERAND (base, 1)))
1337 if (!host_integerp (TREE_OPERAND (base, 1), 0))
1338 return NULL_TREE;
1339 *bit_offset += (mem_ref_offset (base).low
1340 * BITS_PER_UNIT);
1343 base = get_constant_value (TREE_OPERAND (base, 0));
1344 if (!base || TREE_CODE (base) != ADDR_EXPR)
1345 return NULL_TREE;
1346 base = TREE_OPERAND (base, 0);
1349 /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
1350 DECL_INITIAL. If BASE is a nested reference into another
1351 ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
1352 the inner reference. */
1353 switch (TREE_CODE (base))
1355 case VAR_DECL:
1356 if (!const_value_known_p (base))
1357 return NULL_TREE;
1359 /* Fallthru. */
1360 case CONST_DECL:
1361 if (!DECL_INITIAL (base)
1362 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1363 return error_mark_node;
1364 return DECL_INITIAL (base);
1366 break;
1368 case ARRAY_REF:
1369 case COMPONENT_REF:
1370 base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
1371 if (max_size == -1 || size != max_size)
1372 return NULL_TREE;
1373 *bit_offset += bit_offset2;
1374 return get_base_constructor (base, bit_offset);
1375 break;
1377 case STRING_CST:
1378 case CONSTRUCTOR:
1379 return base;
1380 break;
1382 default:
1383 return NULL_TREE;
1387 /* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
1388 to the memory at bit OFFSET.
1390 We do only simple job of folding byte accesses. */
1392 static tree
1393 fold_string_cst_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
1394 unsigned HOST_WIDE_INT size)
1396 if (INTEGRAL_TYPE_P (type)
1397 && (TYPE_MODE (type)
1398 == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
1399 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
1400 == MODE_INT)
1401 && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
1402 && size == BITS_PER_UNIT
1403 && !(offset % BITS_PER_UNIT))
1405 offset /= BITS_PER_UNIT;
1406 if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
1407 return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
1408 [offset]));
1409 /* Folding
1410 const char a[20]="hello";
1411 return a[10];
1413 might lead to offset greater than string length. In this case we
1414 know value is either initialized to 0 or out of bounds. Return 0
1415 in both cases. */
1416 return build_zero_cst (type);
1418 return NULL_TREE;
1421 /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
1422 SIZE to the memory at bit OFFSET. */
1424 static tree
1425 fold_array_ctor_reference (tree type, tree ctor,
1426 unsigned HOST_WIDE_INT offset,
1427 unsigned HOST_WIDE_INT size)
1429 unsigned HOST_WIDE_INT cnt;
1430 tree cfield, cval;
1431 double_int low_bound, elt_size;
1432 double_int index, max_index;
1433 double_int access_index;
1434 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
1435 HOST_WIDE_INT inner_offset;
1437 /* Compute low bound and elt size. */
1438 if (domain_type && TYPE_MIN_VALUE (domain_type))
1440 /* Static constructors for variably sized objects makes no sense. */
1441 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
1442 low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
1444 else
1445 low_bound = double_int_zero;
1446 /* Static constructors for variably sized objects makes no sense. */
1447 gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
1448 == INTEGER_CST);
1449 elt_size =
1450 tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
1453 /* We can handle only constantly sized accesses that are known to not
1454 be larger than size of array element. */
1455 if (!TYPE_SIZE_UNIT (type)
1456 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1457 || double_int_cmp (elt_size,
1458 tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0)
1459 return NULL_TREE;
1461 /* Compute the array index we look for. */
1462 access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT),
1463 elt_size, TRUNC_DIV_EXPR);
1464 access_index = double_int_add (access_index, low_bound);
1466 /* And offset within the access. */
1467 inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT);
1469 /* See if the array field is large enough to span whole access. We do not
1470 care to fold accesses spanning multiple array indexes. */
1471 if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT)
1472 return NULL_TREE;
1474 index = double_int_sub (low_bound, double_int_one);
1475 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
1477 /* Array constructor might explicitely set index, or specify range
1478 or leave index NULL meaning that it is next index after previous
1479 one. */
1480 if (cfield)
1482 if (TREE_CODE (cfield) == INTEGER_CST)
1483 max_index = index = tree_to_double_int (cfield);
1484 else
1486 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
1487 index = tree_to_double_int (TREE_OPERAND (cfield, 0));
1488 max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
1491 else
1492 max_index = index = double_int_add (index, double_int_one);
1494 /* Do we have match? */
1495 if (double_int_cmp (access_index, index, 1) >= 0
1496 && double_int_cmp (access_index, max_index, 1) <= 0)
1497 return fold_ctor_reference (type, cval, inner_offset, size);
1499 /* When memory is not explicitely mentioned in constructor,
1500 it is 0 (or out of range). */
1501 return build_zero_cst (type);
1504 /* CTOR is CONSTRUCTOR of an aggregate or vector.
1505 Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
1507 static tree
1508 fold_nonarray_ctor_reference (tree type, tree ctor,
1509 unsigned HOST_WIDE_INT offset,
1510 unsigned HOST_WIDE_INT size)
1512 unsigned HOST_WIDE_INT cnt;
1513 tree cfield, cval;
1515 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
1516 cval)
1518 tree byte_offset = DECL_FIELD_OFFSET (cfield);
1519 tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
1520 tree field_size = DECL_SIZE (cfield);
1521 double_int bitoffset;
1522 double_int byte_offset_cst = tree_to_double_int (byte_offset);
1523 double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT);
1524 double_int bitoffset_end;
1526 /* Variable sized objects in static constructors makes no sense,
1527 but field_size can be NULL for flexible array members. */
1528 gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
1529 && TREE_CODE (byte_offset) == INTEGER_CST
1530 && (field_size != NULL_TREE
1531 ? TREE_CODE (field_size) == INTEGER_CST
1532 : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
1534 /* Compute bit offset of the field. */
1535 bitoffset = double_int_add (tree_to_double_int (field_offset),
1536 double_int_mul (byte_offset_cst,
1537 bits_per_unit_cst));
1538 /* Compute bit offset where the field ends. */
1539 if (field_size != NULL_TREE)
1540 bitoffset_end = double_int_add (bitoffset,
1541 tree_to_double_int (field_size));
1542 else
1543 bitoffset_end = double_int_zero;
1545 /* Is OFFSET in the range (BITOFFSET, BITOFFSET_END)? */
1546 if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) >= 0
1547 && (field_size == NULL_TREE
1548 || double_int_cmp (uhwi_to_double_int (offset),
1549 bitoffset_end, 0) < 0))
1551 double_int access_end = double_int_add (uhwi_to_double_int (offset),
1552 uhwi_to_double_int (size));
1553 double_int inner_offset = double_int_sub (uhwi_to_double_int (offset),
1554 bitoffset);
1555 /* We do have overlap. Now see if field is large enough to
1556 cover the access. Give up for accesses spanning multiple
1557 fields. */
1558 if (double_int_cmp (access_end, bitoffset_end, 0) > 0)
1559 return NULL_TREE;
1560 return fold_ctor_reference (type, cval,
1561 double_int_to_uhwi (inner_offset), size);
1564 /* When memory is not explicitely mentioned in constructor, it is 0. */
1565 return build_zero_cst (type);
1568 /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
1569 to the memory at bit OFFSET. */
1571 static tree
1572 fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
1573 unsigned HOST_WIDE_INT size)
1575 tree ret;
1577 /* We found the field with exact match. */
1578 if (useless_type_conversion_p (type, TREE_TYPE (ctor))
1579 && !offset)
1580 return canonicalize_constructor_val (ctor);
1582 /* We are at the end of walk, see if we can view convert the
1583 result. */
1584 if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
1585 /* VIEW_CONVERT_EXPR is defined only for matching sizes. */
1586 && operand_equal_p (TYPE_SIZE (type),
1587 TYPE_SIZE (TREE_TYPE (ctor)), 0))
1589 ret = canonicalize_constructor_val (ctor);
1590 ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
1591 if (ret)
1592 STRIP_NOPS (ret);
1593 return ret;
1595 if (TREE_CODE (ctor) == STRING_CST)
1596 return fold_string_cst_ctor_reference (type, ctor, offset, size);
1597 if (TREE_CODE (ctor) == CONSTRUCTOR)
1600 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
1601 return fold_array_ctor_reference (type, ctor, offset, size);
1602 else
1603 return fold_nonarray_ctor_reference (type, ctor, offset, size);
1606 return NULL_TREE;
1609 /* Return the tree representing the element referenced by T if T is an
1610 ARRAY_REF or COMPONENT_REF into constant aggregates. Return
1611 NULL_TREE otherwise. */
1613 tree
1614 fold_const_aggregate_ref (tree t)
1616 tree ctor, idx, base;
1617 HOST_WIDE_INT offset, size, max_size;
1618 tree tem;
1620 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
1621 return get_symbol_constant_value (t);
1623 tem = fold_read_from_constant_string (t);
1624 if (tem)
1625 return tem;
1627 switch (TREE_CODE (t))
1629 case ARRAY_REF:
1630 case ARRAY_RANGE_REF:
1631 /* Constant indexes are handled well by get_base_constructor.
1632 Only special case variable offsets.
1633 FIXME: This code can't handle nested references with variable indexes
1634 (they will be handled only by iteration of ccp). Perhaps we can bring
1635 get_ref_base_and_extent here and make it use get_constant_value. */
1636 if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
1637 && (idx = get_constant_value (TREE_OPERAND (t, 1)))
1638 && host_integerp (idx, 0))
1640 tree low_bound, unit_size;
1642 /* If the resulting bit-offset is constant, track it. */
1643 if ((low_bound = array_ref_low_bound (t),
1644 host_integerp (low_bound, 0))
1645 && (unit_size = array_ref_element_size (t),
1646 host_integerp (unit_size, 1)))
1648 offset = TREE_INT_CST_LOW (idx);
1649 offset -= TREE_INT_CST_LOW (low_bound);
1650 offset *= TREE_INT_CST_LOW (unit_size);
1651 offset *= BITS_PER_UNIT;
1653 base = TREE_OPERAND (t, 0);
1654 ctor = get_base_constructor (base, &offset);
1655 /* Empty constructor. Always fold to 0. */
1656 if (ctor == error_mark_node)
1657 return build_zero_cst (TREE_TYPE (t));
1658 /* Out of bound array access. Value is undefined, but don't fold. */
1659 if (offset < 0)
1660 return NULL_TREE;
1661 /* We can not determine ctor. */
1662 if (!ctor)
1663 return NULL_TREE;
1664 return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
1665 TREE_INT_CST_LOW (unit_size)
1666 * BITS_PER_UNIT);
1669 /* Fallthru. */
1671 case COMPONENT_REF:
1672 case BIT_FIELD_REF:
1673 case TARGET_MEM_REF:
1674 case MEM_REF:
1675 base = get_ref_base_and_extent (t, &offset, &size, &max_size);
1676 ctor = get_base_constructor (base, &offset);
1678 /* Empty constructor. Always fold to 0. */
1679 if (ctor == error_mark_node)
1680 return build_zero_cst (TREE_TYPE (t));
1681 /* We do not know precise address. */
1682 if (max_size == -1 || max_size != size)
1683 return NULL_TREE;
1684 /* We can not determine ctor. */
1685 if (!ctor)
1686 return NULL_TREE;
1688 /* Out of bound array access. Value is undefined, but don't fold. */
1689 if (offset < 0)
1690 return NULL_TREE;
1692 return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size);
1694 case REALPART_EXPR:
1695 case IMAGPART_EXPR:
1697 tree c = fold_const_aggregate_ref (TREE_OPERAND (t, 0));
1698 if (c && TREE_CODE (c) == COMPLEX_CST)
1699 return fold_build1_loc (EXPR_LOCATION (t),
1700 TREE_CODE (t), TREE_TYPE (t), c);
1701 break;
1704 default:
1705 break;
1708 return NULL_TREE;
1711 /* Apply the operation CODE in type TYPE to the value, mask pair
1712 RVAL and RMASK representing a value of type RTYPE and set
1713 the value, mask pair *VAL and *MASK to the result. */
1715 static void
1716 bit_value_unop_1 (enum tree_code code, tree type,
1717 double_int *val, double_int *mask,
1718 tree rtype, double_int rval, double_int rmask)
1720 switch (code)
1722 case BIT_NOT_EXPR:
1723 *mask = rmask;
1724 *val = double_int_not (rval);
1725 break;
1727 case NEGATE_EXPR:
1729 double_int temv, temm;
1730 /* Return ~rval + 1. */
1731 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1732 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1733 type, temv, temm,
1734 type, double_int_one, double_int_zero);
1735 break;
1738 CASE_CONVERT:
1740 bool uns;
1742 /* First extend mask and value according to the original type. */
1743 uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
1744 ? 0 : TYPE_UNSIGNED (rtype));
1745 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1746 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1748 /* Then extend mask and value according to the target type. */
1749 uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1750 ? 0 : TYPE_UNSIGNED (type));
1751 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1752 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1753 break;
1756 default:
1757 *mask = double_int_minus_one;
1758 break;
1762 /* Apply the operation CODE in type TYPE to the value, mask pairs
1763 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1764 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1766 static void
1767 bit_value_binop_1 (enum tree_code code, tree type,
1768 double_int *val, double_int *mask,
1769 tree r1type, double_int r1val, double_int r1mask,
1770 tree r2type, double_int r2val, double_int r2mask)
1772 bool uns = (TREE_CODE (type) == INTEGER_TYPE
1773 && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
1774 /* Assume we'll get a constant result. Use an initial varying value,
1775 we fall back to varying in the end if necessary. */
1776 *mask = double_int_minus_one;
1777 switch (code)
1779 case BIT_AND_EXPR:
1780 /* The mask is constant where there is a known not
1781 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1782 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1783 double_int_and (double_int_ior (r1val, r1mask),
1784 double_int_ior (r2val, r2mask)));
1785 *val = double_int_and (r1val, r2val);
1786 break;
1788 case BIT_IOR_EXPR:
1789 /* The mask is constant where there is a known
1790 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1791 *mask = double_int_and_not
1792 (double_int_ior (r1mask, r2mask),
1793 double_int_ior (double_int_and_not (r1val, r1mask),
1794 double_int_and_not (r2val, r2mask)));
1795 *val = double_int_ior (r1val, r2val);
1796 break;
1798 case BIT_XOR_EXPR:
1799 /* m1 | m2 */
1800 *mask = double_int_ior (r1mask, r2mask);
1801 *val = double_int_xor (r1val, r2val);
1802 break;
1804 case LROTATE_EXPR:
1805 case RROTATE_EXPR:
1806 if (double_int_zero_p (r2mask))
1808 HOST_WIDE_INT shift = r2val.low;
1809 if (code == RROTATE_EXPR)
1810 shift = -shift;
1811 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1812 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1814 break;
1816 case LSHIFT_EXPR:
1817 case RSHIFT_EXPR:
1818 /* ??? We can handle partially known shift counts if we know
1819 its sign. That way we can tell that (x << (y | 8)) & 255
1820 is zero. */
1821 if (double_int_zero_p (r2mask))
1823 HOST_WIDE_INT shift = r2val.low;
1824 if (code == RSHIFT_EXPR)
1825 shift = -shift;
1826 /* We need to know if we are doing a left or a right shift
1827 to properly shift in zeros for left shift and unsigned
1828 right shifts and the sign bit for signed right shifts.
1829 For signed right shifts we shift in varying in case
1830 the sign bit was varying. */
1831 if (shift > 0)
1833 *mask = double_int_lshift (r1mask, shift,
1834 TYPE_PRECISION (type), false);
1835 *val = double_int_lshift (r1val, shift,
1836 TYPE_PRECISION (type), false);
1838 else if (shift < 0)
1840 shift = -shift;
1841 *mask = double_int_rshift (r1mask, shift,
1842 TYPE_PRECISION (type), !uns);
1843 *val = double_int_rshift (r1val, shift,
1844 TYPE_PRECISION (type), !uns);
1846 else
1848 *mask = r1mask;
1849 *val = r1val;
1852 break;
1854 case PLUS_EXPR:
1855 case POINTER_PLUS_EXPR:
1857 double_int lo, hi;
1858 /* Do the addition with unknown bits set to zero, to give carry-ins of
1859 zero wherever possible. */
1860 lo = double_int_add (double_int_and_not (r1val, r1mask),
1861 double_int_and_not (r2val, r2mask));
1862 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1863 /* Do the addition with unknown bits set to one, to give carry-ins of
1864 one wherever possible. */
1865 hi = double_int_add (double_int_ior (r1val, r1mask),
1866 double_int_ior (r2val, r2mask));
1867 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1868 /* Each bit in the result is known if (a) the corresponding bits in
1869 both inputs are known, and (b) the carry-in to that bit position
1870 is known. We can check condition (b) by seeing if we got the same
1871 result with minimised carries as with maximised carries. */
1872 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1873 double_int_xor (lo, hi));
1874 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1875 /* It shouldn't matter whether we choose lo or hi here. */
1876 *val = lo;
1877 break;
1880 case MINUS_EXPR:
1882 double_int temv, temm;
1883 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1884 r2type, r2val, r2mask);
1885 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1886 r1type, r1val, r1mask,
1887 r2type, temv, temm);
1888 break;
1891 case MULT_EXPR:
1893 /* Just track trailing zeros in both operands and transfer
1894 them to the other. */
1895 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1896 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1897 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1899 *mask = double_int_zero;
1900 *val = double_int_zero;
1902 else if (r1tz + r2tz > 0)
1904 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1905 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1906 *val = double_int_zero;
1908 break;
1911 case EQ_EXPR:
1912 case NE_EXPR:
1914 double_int m = double_int_ior (r1mask, r2mask);
1915 if (!double_int_equal_p (double_int_and_not (r1val, m),
1916 double_int_and_not (r2val, m)))
1918 *mask = double_int_zero;
1919 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1921 else
1923 /* We know the result of a comparison is always one or zero. */
1924 *mask = double_int_one;
1925 *val = double_int_zero;
1927 break;
1930 case GE_EXPR:
1931 case GT_EXPR:
1933 double_int tem = r1val;
1934 r1val = r2val;
1935 r2val = tem;
1936 tem = r1mask;
1937 r1mask = r2mask;
1938 r2mask = tem;
1939 code = swap_tree_comparison (code);
1941 /* Fallthru. */
1942 case LT_EXPR:
1943 case LE_EXPR:
1945 int minmax, maxmin;
1946 /* If the most significant bits are not known we know nothing. */
1947 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1948 break;
1950 /* If we know the most significant bits we know the values
1951 value ranges by means of treating varying bits as zero
1952 or one. Do a cross comparison of the max/min pairs. */
1953 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1954 double_int_and_not (r2val, r2mask), uns);
1955 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1956 double_int_ior (r2val, r2mask), uns);
1957 if (maxmin < 0) /* r1 is less than r2. */
1959 *mask = double_int_zero;
1960 *val = double_int_one;
1962 else if (minmax > 0) /* r1 is not less or equal to r2. */
1964 *mask = double_int_zero;
1965 *val = double_int_zero;
1967 else if (maxmin == minmax) /* r1 and r2 are equal. */
1969 /* This probably should never happen as we'd have
1970 folded the thing during fully constant value folding. */
1971 *mask = double_int_zero;
1972 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1974 else
1976 /* We know the result of a comparison is always one or zero. */
1977 *mask = double_int_one;
1978 *val = double_int_zero;
1980 break;
1983 default:;
1987 /* Return the propagation value when applying the operation CODE to
1988 the value RHS yielding type TYPE. */
1990 static prop_value_t
1991 bit_value_unop (enum tree_code code, tree type, tree rhs)
1993 prop_value_t rval = get_value_for_expr (rhs, true);
1994 double_int value, mask;
1995 prop_value_t val;
1996 gcc_assert ((rval.lattice_val == CONSTANT
1997 && TREE_CODE (rval.value) == INTEGER_CST)
1998 || double_int_minus_one_p (rval.mask));
1999 bit_value_unop_1 (code, type, &value, &mask,
2000 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
2001 if (!double_int_minus_one_p (mask))
2003 val.lattice_val = CONSTANT;
2004 val.mask = mask;
2005 /* ??? Delay building trees here. */
2006 val.value = double_int_to_tree (type, value);
2008 else
2010 val.lattice_val = VARYING;
2011 val.value = NULL_TREE;
2012 val.mask = double_int_minus_one;
2014 return val;
2017 /* Return the propagation value when applying the operation CODE to
2018 the values RHS1 and RHS2 yielding type TYPE. */
2020 static prop_value_t
2021 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
2023 prop_value_t r1val = get_value_for_expr (rhs1, true);
2024 prop_value_t r2val = get_value_for_expr (rhs2, true);
2025 double_int value, mask;
2026 prop_value_t val;
2027 gcc_assert ((r1val.lattice_val == CONSTANT
2028 && TREE_CODE (r1val.value) == INTEGER_CST)
2029 || double_int_minus_one_p (r1val.mask));
2030 gcc_assert ((r2val.lattice_val == CONSTANT
2031 && TREE_CODE (r2val.value) == INTEGER_CST)
2032 || double_int_minus_one_p (r2val.mask));
2033 bit_value_binop_1 (code, type, &value, &mask,
2034 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
2035 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
2036 if (!double_int_minus_one_p (mask))
2038 val.lattice_val = CONSTANT;
2039 val.mask = mask;
2040 /* ??? Delay building trees here. */
2041 val.value = double_int_to_tree (type, value);
2043 else
2045 val.lattice_val = VARYING;
2046 val.value = NULL_TREE;
2047 val.mask = double_int_minus_one;
2049 return val;
2052 /* Evaluate statement STMT.
2053 Valid only for assignments, calls, conditionals, and switches. */
2055 static prop_value_t
2056 evaluate_stmt (gimple stmt)
2058 prop_value_t val;
2059 tree simplified = NULL_TREE;
2060 ccp_lattice_t likelyvalue = likely_value (stmt);
2061 bool is_constant = false;
2063 if (dump_file && (dump_flags & TDF_DETAILS))
2065 fprintf (dump_file, "which is likely ");
2066 switch (likelyvalue)
2068 case CONSTANT:
2069 fprintf (dump_file, "CONSTANT");
2070 break;
2071 case UNDEFINED:
2072 fprintf (dump_file, "UNDEFINED");
2073 break;
2074 case VARYING:
2075 fprintf (dump_file, "VARYING");
2076 break;
2077 default:;
2079 fprintf (dump_file, "\n");
2082 /* If the statement is likely to have a CONSTANT result, then try
2083 to fold the statement to determine the constant value. */
2084 /* FIXME. This is the only place that we call ccp_fold.
2085 Since likely_value never returns CONSTANT for calls, we will
2086 not attempt to fold them, including builtins that may profit. */
2087 if (likelyvalue == CONSTANT)
2089 fold_defer_overflow_warnings ();
2090 simplified = ccp_fold (stmt);
2091 is_constant = simplified && is_gimple_min_invariant (simplified);
2092 fold_undefer_overflow_warnings (is_constant, stmt, 0);
2093 if (is_constant)
2095 /* The statement produced a constant value. */
2096 val.lattice_val = CONSTANT;
2097 val.value = simplified;
2098 val.mask = double_int_zero;
2101 /* If the statement is likely to have a VARYING result, then do not
2102 bother folding the statement. */
2103 else if (likelyvalue == VARYING)
2105 enum gimple_code code = gimple_code (stmt);
2106 if (code == GIMPLE_ASSIGN)
2108 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2110 /* Other cases cannot satisfy is_gimple_min_invariant
2111 without folding. */
2112 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
2113 simplified = gimple_assign_rhs1 (stmt);
2115 else if (code == GIMPLE_SWITCH)
2116 simplified = gimple_switch_index (stmt);
2117 else
2118 /* These cannot satisfy is_gimple_min_invariant without folding. */
2119 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
2120 is_constant = simplified && is_gimple_min_invariant (simplified);
2121 if (is_constant)
2123 /* The statement produced a constant value. */
2124 val.lattice_val = CONSTANT;
2125 val.value = simplified;
2126 val.mask = double_int_zero;
2130 /* Resort to simplification for bitwise tracking. */
2131 if (flag_tree_bit_ccp
2132 && likelyvalue == CONSTANT
2133 && !is_constant)
2135 enum gimple_code code = gimple_code (stmt);
2136 tree fndecl;
2137 val.lattice_val = VARYING;
2138 val.value = NULL_TREE;
2139 val.mask = double_int_minus_one;
2140 if (code == GIMPLE_ASSIGN)
2142 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2143 tree rhs1 = gimple_assign_rhs1 (stmt);
2144 switch (get_gimple_rhs_class (subcode))
2146 case GIMPLE_SINGLE_RHS:
2147 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2148 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2149 val = get_value_for_expr (rhs1, true);
2150 break;
2152 case GIMPLE_UNARY_RHS:
2153 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2154 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2155 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
2156 || POINTER_TYPE_P (gimple_expr_type (stmt))))
2157 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
2158 break;
2160 case GIMPLE_BINARY_RHS:
2161 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2162 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2164 tree rhs2 = gimple_assign_rhs2 (stmt);
2165 val = bit_value_binop (subcode,
2166 TREE_TYPE (rhs1), rhs1, rhs2);
2168 break;
2170 default:;
2173 else if (code == GIMPLE_COND)
2175 enum tree_code code = gimple_cond_code (stmt);
2176 tree rhs1 = gimple_cond_lhs (stmt);
2177 tree rhs2 = gimple_cond_rhs (stmt);
2178 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2179 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2180 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
2182 else if (code == GIMPLE_CALL
2183 && (fndecl = gimple_call_fndecl (stmt))
2184 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2186 switch (DECL_FUNCTION_CODE (fndecl))
2188 case BUILT_IN_MALLOC:
2189 case BUILT_IN_REALLOC:
2190 case BUILT_IN_CALLOC:
2191 val.lattice_val = CONSTANT;
2192 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2193 val.mask = shwi_to_double_int
2194 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
2195 / BITS_PER_UNIT - 1));
2196 break;
2198 case BUILT_IN_ALLOCA:
2199 val.lattice_val = CONSTANT;
2200 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2201 val.mask = shwi_to_double_int
2202 (~(((HOST_WIDE_INT) BIGGEST_ALIGNMENT)
2203 / BITS_PER_UNIT - 1));
2204 break;
2206 default:;
2209 is_constant = (val.lattice_val == CONSTANT);
2212 if (!is_constant)
2214 /* The statement produced a nonconstant value. If the statement
2215 had UNDEFINED operands, then the result of the statement
2216 should be UNDEFINED. Otherwise, the statement is VARYING. */
2217 if (likelyvalue == UNDEFINED)
2219 val.lattice_val = likelyvalue;
2220 val.mask = double_int_zero;
2222 else
2224 val.lattice_val = VARYING;
2225 val.mask = double_int_minus_one;
2228 val.value = NULL_TREE;
2231 return val;
2234 /* Fold the stmt at *GSI with CCP specific information that propagating
2235 and regular folding does not catch. */
2237 static bool
2238 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2240 gimple stmt = gsi_stmt (*gsi);
2242 switch (gimple_code (stmt))
2244 case GIMPLE_COND:
2246 prop_value_t val;
2247 /* Statement evaluation will handle type mismatches in constants
2248 more gracefully than the final propagation. This allows us to
2249 fold more conditionals here. */
2250 val = evaluate_stmt (stmt);
2251 if (val.lattice_val != CONSTANT
2252 || !double_int_zero_p (val.mask))
2253 return false;
2255 if (dump_file)
2257 fprintf (dump_file, "Folding predicate ");
2258 print_gimple_expr (dump_file, stmt, 0, 0);
2259 fprintf (dump_file, " to ");
2260 print_generic_expr (dump_file, val.value, 0);
2261 fprintf (dump_file, "\n");
2264 if (integer_zerop (val.value))
2265 gimple_cond_make_false (stmt);
2266 else
2267 gimple_cond_make_true (stmt);
2269 return true;
2272 case GIMPLE_CALL:
2274 tree lhs = gimple_call_lhs (stmt);
2275 tree val;
2276 tree argt;
2277 tree callee;
2278 bool changed = false;
2279 unsigned i;
2281 /* If the call was folded into a constant make sure it goes
2282 away even if we cannot propagate into all uses because of
2283 type issues. */
2284 if (lhs
2285 && TREE_CODE (lhs) == SSA_NAME
2286 && (val = get_constant_value (lhs)))
2288 tree new_rhs = unshare_expr (val);
2289 bool res;
2290 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2291 TREE_TYPE (new_rhs)))
2292 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2293 res = update_call_from_tree (gsi, new_rhs);
2294 gcc_assert (res);
2295 return true;
2298 /* Propagate into the call arguments. Compared to replace_uses_in
2299 this can use the argument slot types for type verification
2300 instead of the current argument type. We also can safely
2301 drop qualifiers here as we are dealing with constants anyway. */
2302 argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))));
2303 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2304 ++i, argt = TREE_CHAIN (argt))
2306 tree arg = gimple_call_arg (stmt, i);
2307 if (TREE_CODE (arg) == SSA_NAME
2308 && (val = get_constant_value (arg))
2309 && useless_type_conversion_p
2310 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2311 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2313 gimple_call_set_arg (stmt, i, unshare_expr (val));
2314 changed = true;
2318 callee = gimple_call_fn (stmt);
2319 if (TREE_CODE (callee) == OBJ_TYPE_REF
2320 && TREE_CODE (OBJ_TYPE_REF_EXPR (callee)) == SSA_NAME)
2322 tree expr = OBJ_TYPE_REF_EXPR (callee);
2323 OBJ_TYPE_REF_EXPR (callee) = valueize_op (expr);
2324 if (TREE_CODE (OBJ_TYPE_REF_EXPR (callee)) == ADDR_EXPR)
2326 tree t;
2327 t = gimple_fold_obj_type_ref (callee, NULL_TREE);
2328 if (t)
2330 gimple_call_set_fn (stmt, t);
2331 changed = true;
2334 OBJ_TYPE_REF_EXPR (callee) = expr;
2337 return changed;
2340 case GIMPLE_ASSIGN:
2342 tree lhs = gimple_assign_lhs (stmt);
2343 tree val;
2345 /* If we have a load that turned out to be constant replace it
2346 as we cannot propagate into all uses in all cases. */
2347 if (gimple_assign_single_p (stmt)
2348 && TREE_CODE (lhs) == SSA_NAME
2349 && (val = get_constant_value (lhs)))
2351 tree rhs = unshare_expr (val);
2352 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2353 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2354 gimple_assign_set_rhs_from_tree (gsi, rhs);
2355 return true;
2358 return false;
2361 default:
2362 return false;
2366 /* Visit the assignment statement STMT. Set the value of its LHS to the
2367 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2368 creates virtual definitions, set the value of each new name to that
2369 of the RHS (if we can derive a constant out of the RHS).
2370 Value-returning call statements also perform an assignment, and
2371 are handled here. */
2373 static enum ssa_prop_result
2374 visit_assignment (gimple stmt, tree *output_p)
2376 prop_value_t val;
2377 enum ssa_prop_result retval;
2379 tree lhs = gimple_get_lhs (stmt);
2381 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2382 || gimple_call_lhs (stmt) != NULL_TREE);
2384 if (gimple_assign_single_p (stmt)
2385 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2386 /* For a simple copy operation, we copy the lattice values. */
2387 val = *get_value (gimple_assign_rhs1 (stmt));
2388 else
2389 /* Evaluate the statement, which could be
2390 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2391 val = evaluate_stmt (stmt);
2393 retval = SSA_PROP_NOT_INTERESTING;
2395 /* Set the lattice value of the statement's output. */
2396 if (TREE_CODE (lhs) == SSA_NAME)
2398 /* If STMT is an assignment to an SSA_NAME, we only have one
2399 value to set. */
2400 if (set_lattice_value (lhs, val))
2402 *output_p = lhs;
2403 if (val.lattice_val == VARYING)
2404 retval = SSA_PROP_VARYING;
2405 else
2406 retval = SSA_PROP_INTERESTING;
2410 return retval;
2414 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2415 if it can determine which edge will be taken. Otherwise, return
2416 SSA_PROP_VARYING. */
2418 static enum ssa_prop_result
2419 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2421 prop_value_t val;
2422 basic_block block;
2424 block = gimple_bb (stmt);
2425 val = evaluate_stmt (stmt);
2426 if (val.lattice_val != CONSTANT
2427 || !double_int_zero_p (val.mask))
2428 return SSA_PROP_VARYING;
2430 /* Find which edge out of the conditional block will be taken and add it
2431 to the worklist. If no single edge can be determined statically,
2432 return SSA_PROP_VARYING to feed all the outgoing edges to the
2433 propagation engine. */
2434 *taken_edge_p = find_taken_edge (block, val.value);
2435 if (*taken_edge_p)
2436 return SSA_PROP_INTERESTING;
2437 else
2438 return SSA_PROP_VARYING;
2442 /* Evaluate statement STMT. If the statement produces an output value and
2443 its evaluation changes the lattice value of its output, return
2444 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2445 output value.
2447 If STMT is a conditional branch and we can determine its truth
2448 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2449 value, return SSA_PROP_VARYING. */
2451 static enum ssa_prop_result
2452 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2454 tree def;
2455 ssa_op_iter iter;
2457 if (dump_file && (dump_flags & TDF_DETAILS))
2459 fprintf (dump_file, "\nVisiting statement:\n");
2460 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2463 switch (gimple_code (stmt))
2465 case GIMPLE_ASSIGN:
2466 /* If the statement is an assignment that produces a single
2467 output value, evaluate its RHS to see if the lattice value of
2468 its output has changed. */
2469 return visit_assignment (stmt, output_p);
2471 case GIMPLE_CALL:
2472 /* A value-returning call also performs an assignment. */
2473 if (gimple_call_lhs (stmt) != NULL_TREE)
2474 return visit_assignment (stmt, output_p);
2475 break;
2477 case GIMPLE_COND:
2478 case GIMPLE_SWITCH:
2479 /* If STMT is a conditional branch, see if we can determine
2480 which branch will be taken. */
2481 /* FIXME. It appears that we should be able to optimize
2482 computed GOTOs here as well. */
2483 return visit_cond_stmt (stmt, taken_edge_p);
2485 default:
2486 break;
2489 /* Any other kind of statement is not interesting for constant
2490 propagation and, therefore, not worth simulating. */
2491 if (dump_file && (dump_flags & TDF_DETAILS))
2492 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2494 /* Definitions made by statements other than assignments to
2495 SSA_NAMEs represent unknown modifications to their outputs.
2496 Mark them VARYING. */
2497 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2499 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2500 set_lattice_value (def, v);
2503 return SSA_PROP_VARYING;
2507 /* Main entry point for SSA Conditional Constant Propagation. */
2509 static unsigned int
2510 do_ssa_ccp (void)
2512 ccp_initialize ();
2513 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2514 if (ccp_finalize ())
2515 return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2516 else
2517 return 0;
2521 static bool
2522 gate_ccp (void)
2524 return flag_tree_ccp != 0;
2528 struct gimple_opt_pass pass_ccp =
2531 GIMPLE_PASS,
2532 "ccp", /* name */
2533 gate_ccp, /* gate */
2534 do_ssa_ccp, /* execute */
2535 NULL, /* sub */
2536 NULL, /* next */
2537 0, /* static_pass_number */
2538 TV_TREE_CCP, /* tv_id */
2539 PROP_cfg | PROP_ssa, /* properties_required */
2540 0, /* properties_provided */
2541 0, /* properties_destroyed */
2542 0, /* todo_flags_start */
2543 TODO_dump_func | TODO_verify_ssa
2544 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2550 /* Try to optimize out __builtin_stack_restore. Optimize it out
2551 if there is another __builtin_stack_restore in the same basic
2552 block and no calls or ASM_EXPRs are in between, or if this block's
2553 only outgoing edge is to EXIT_BLOCK and there are no calls or
2554 ASM_EXPRs after this __builtin_stack_restore. */
2556 static tree
2557 optimize_stack_restore (gimple_stmt_iterator i)
2559 tree callee;
2560 gimple stmt;
2562 basic_block bb = gsi_bb (i);
2563 gimple call = gsi_stmt (i);
2565 if (gimple_code (call) != GIMPLE_CALL
2566 || gimple_call_num_args (call) != 1
2567 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2568 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2569 return NULL_TREE;
2571 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2573 stmt = gsi_stmt (i);
2574 if (gimple_code (stmt) == GIMPLE_ASM)
2575 return NULL_TREE;
2576 if (gimple_code (stmt) != GIMPLE_CALL)
2577 continue;
2579 callee = gimple_call_fndecl (stmt);
2580 if (!callee
2581 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2582 /* All regular builtins are ok, just obviously not alloca. */
2583 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA)
2584 return NULL_TREE;
2586 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2587 goto second_stack_restore;
2590 if (!gsi_end_p (i))
2591 return NULL_TREE;
2593 /* Allow one successor of the exit block, or zero successors. */
2594 switch (EDGE_COUNT (bb->succs))
2596 case 0:
2597 break;
2598 case 1:
2599 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2600 return NULL_TREE;
2601 break;
2602 default:
2603 return NULL_TREE;
2605 second_stack_restore:
2607 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2608 If there are multiple uses, then the last one should remove the call.
2609 In any case, whether the call to __builtin_stack_save can be removed
2610 or not is irrelevant to removing the call to __builtin_stack_restore. */
2611 if (has_single_use (gimple_call_arg (call, 0)))
2613 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2614 if (is_gimple_call (stack_save))
2616 callee = gimple_call_fndecl (stack_save);
2617 if (callee
2618 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2619 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2621 gimple_stmt_iterator stack_save_gsi;
2622 tree rhs;
2624 stack_save_gsi = gsi_for_stmt (stack_save);
2625 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2626 update_call_from_tree (&stack_save_gsi, rhs);
2631 /* No effect, so the statement will be deleted. */
2632 return integer_zero_node;
2635 /* If va_list type is a simple pointer and nothing special is needed,
2636 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2637 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2638 pointer assignment. */
2640 static tree
2641 optimize_stdarg_builtin (gimple call)
2643 tree callee, lhs, rhs, cfun_va_list;
2644 bool va_list_simple_ptr;
2645 location_t loc = gimple_location (call);
2647 if (gimple_code (call) != GIMPLE_CALL)
2648 return NULL_TREE;
2650 callee = gimple_call_fndecl (call);
2652 cfun_va_list = targetm.fn_abi_va_list (callee);
2653 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2654 && (TREE_TYPE (cfun_va_list) == void_type_node
2655 || TREE_TYPE (cfun_va_list) == char_type_node);
2657 switch (DECL_FUNCTION_CODE (callee))
2659 case BUILT_IN_VA_START:
2660 if (!va_list_simple_ptr
2661 || targetm.expand_builtin_va_start != NULL
2662 || built_in_decls[BUILT_IN_NEXT_ARG] == NULL)
2663 return NULL_TREE;
2665 if (gimple_call_num_args (call) != 2)
2666 return NULL_TREE;
2668 lhs = gimple_call_arg (call, 0);
2669 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2670 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2671 != TYPE_MAIN_VARIANT (cfun_va_list))
2672 return NULL_TREE;
2674 lhs = build_fold_indirect_ref_loc (loc, lhs);
2675 rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG],
2676 1, integer_zero_node);
2677 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2678 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2680 case BUILT_IN_VA_COPY:
2681 if (!va_list_simple_ptr)
2682 return NULL_TREE;
2684 if (gimple_call_num_args (call) != 2)
2685 return NULL_TREE;
2687 lhs = gimple_call_arg (call, 0);
2688 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2689 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2690 != TYPE_MAIN_VARIANT (cfun_va_list))
2691 return NULL_TREE;
2693 lhs = build_fold_indirect_ref_loc (loc, lhs);
2694 rhs = gimple_call_arg (call, 1);
2695 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2696 != TYPE_MAIN_VARIANT (cfun_va_list))
2697 return NULL_TREE;
2699 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2700 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2702 case BUILT_IN_VA_END:
2703 /* No effect, so the statement will be deleted. */
2704 return integer_zero_node;
2706 default:
2707 gcc_unreachable ();
2711 /* A simple pass that attempts to fold all builtin functions. This pass
2712 is run after we've propagated as many constants as we can. */
2714 static unsigned int
2715 execute_fold_all_builtins (void)
2717 bool cfg_changed = false;
2718 basic_block bb;
2719 unsigned int todoflags = 0;
2721 FOR_EACH_BB (bb)
2723 gimple_stmt_iterator i;
2724 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2726 gimple stmt, old_stmt;
2727 tree callee, result;
2728 enum built_in_function fcode;
2730 stmt = gsi_stmt (i);
2732 if (gimple_code (stmt) != GIMPLE_CALL)
2734 gsi_next (&i);
2735 continue;
2737 callee = gimple_call_fndecl (stmt);
2738 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2740 gsi_next (&i);
2741 continue;
2743 fcode = DECL_FUNCTION_CODE (callee);
2745 result = gimple_fold_builtin (stmt);
2747 if (result)
2748 gimple_remove_stmt_histograms (cfun, stmt);
2750 if (!result)
2751 switch (DECL_FUNCTION_CODE (callee))
2753 case BUILT_IN_CONSTANT_P:
2754 /* Resolve __builtin_constant_p. If it hasn't been
2755 folded to integer_one_node by now, it's fairly
2756 certain that the value simply isn't constant. */
2757 result = integer_zero_node;
2758 break;
2760 case BUILT_IN_STACK_RESTORE:
2761 result = optimize_stack_restore (i);
2762 if (result)
2763 break;
2764 gsi_next (&i);
2765 continue;
2767 case BUILT_IN_VA_START:
2768 case BUILT_IN_VA_END:
2769 case BUILT_IN_VA_COPY:
2770 /* These shouldn't be folded before pass_stdarg. */
2771 result = optimize_stdarg_builtin (stmt);
2772 if (result)
2773 break;
2774 /* FALLTHRU */
2776 default:
2777 gsi_next (&i);
2778 continue;
2781 if (dump_file && (dump_flags & TDF_DETAILS))
2783 fprintf (dump_file, "Simplified\n ");
2784 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2787 old_stmt = stmt;
2788 if (!update_call_from_tree (&i, result))
2790 gimplify_and_update_call_from_tree (&i, result);
2791 todoflags |= TODO_update_address_taken;
2794 stmt = gsi_stmt (i);
2795 update_stmt (stmt);
2797 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2798 && gimple_purge_dead_eh_edges (bb))
2799 cfg_changed = true;
2801 if (dump_file && (dump_flags & TDF_DETAILS))
2803 fprintf (dump_file, "to\n ");
2804 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2805 fprintf (dump_file, "\n");
2808 /* Retry the same statement if it changed into another
2809 builtin, there might be new opportunities now. */
2810 if (gimple_code (stmt) != GIMPLE_CALL)
2812 gsi_next (&i);
2813 continue;
2815 callee = gimple_call_fndecl (stmt);
2816 if (!callee
2817 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2818 || DECL_FUNCTION_CODE (callee) == fcode)
2819 gsi_next (&i);
2823 /* Delete unreachable blocks. */
2824 if (cfg_changed)
2825 todoflags |= TODO_cleanup_cfg;
2827 return todoflags;
2831 struct gimple_opt_pass pass_fold_builtins =
2834 GIMPLE_PASS,
2835 "fab", /* name */
2836 NULL, /* gate */
2837 execute_fold_all_builtins, /* execute */
2838 NULL, /* sub */
2839 NULL, /* next */
2840 0, /* static_pass_number */
2841 TV_NONE, /* tv_id */
2842 PROP_cfg | PROP_ssa, /* properties_required */
2843 0, /* properties_provided */
2844 0, /* properties_destroyed */
2845 0, /* todo_flags_start */
2846 TODO_dump_func
2847 | TODO_verify_ssa
2848 | TODO_update_ssa /* todo_flags_finish */