1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
33 #include "tree-dump.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
48 #include "graphite-ppl.h"
50 #include "graphite-poly.h"
51 #include "graphite-scop-detection.h"
53 /* The type of the analyzed basic block. */
55 typedef enum gbb_type
{
57 GBB_LOOP_SING_EXIT_HEADER
,
58 GBB_LOOP_MULT_EXIT_HEADER
,
65 /* Detect the type of BB. Loop headers are only marked, if they are
66 new. This means their loop_father is different to LAST_LOOP.
67 Otherwise they are treated like any other bb and their type can be
71 get_bb_type (basic_block bb
, struct loop
*last_loop
)
73 VEC (basic_block
, heap
) *dom
;
75 struct loop
*loop
= bb
->loop_father
;
77 /* Check, if we entry into a new loop. */
78 if (loop
!= last_loop
)
80 if (single_exit (loop
) != NULL
)
81 return GBB_LOOP_SING_EXIT_HEADER
;
82 else if (loop
->num
!= 0)
83 return GBB_LOOP_MULT_EXIT_HEADER
;
85 return GBB_COND_HEADER
;
88 dom
= get_dominated_by (CDI_DOMINATORS
, bb
);
89 nb_dom
= VEC_length (basic_block
, dom
);
90 VEC_free (basic_block
, heap
, dom
);
95 nb_suc
= VEC_length (edge
, bb
->succs
);
97 if (nb_dom
== 1 && nb_suc
== 1)
100 return GBB_COND_HEADER
;
103 /* A SCoP detection region, defined using bbs as borders.
105 All control flow touching this region, comes in passing basic_block
106 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
107 edges for the borders we are able to represent also regions that do
108 not have a single entry or exit edge.
110 But as they have a single entry basic_block and a single exit
111 basic_block, we are able to generate for every sd_region a single
119 / \ This region contains: {3, 4, 5, 6, 7, 8}
127 typedef struct sd_region_p
129 /* The entry bb dominates all bbs in the sd_region. It is part of
133 /* The exit bb postdominates all bbs in the sd_region, but is not
134 part of the region. */
138 DEF_VEC_O(sd_region
);
139 DEF_VEC_ALLOC_O(sd_region
, heap
);
142 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
145 move_sd_regions (VEC (sd_region
, heap
) **source
,
146 VEC (sd_region
, heap
) **target
)
151 FOR_EACH_VEC_ELT (sd_region
, *source
, i
, s
)
152 VEC_safe_push (sd_region
, heap
, *target
, s
);
154 VEC_free (sd_region
, heap
, *source
);
157 /* Something like "n * m" is not allowed. */
160 graphite_can_represent_init (tree e
)
162 switch (TREE_CODE (e
))
164 case POLYNOMIAL_CHREC
:
165 return graphite_can_represent_init (CHREC_LEFT (e
))
166 && graphite_can_represent_init (CHREC_RIGHT (e
));
169 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
170 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
171 && host_integerp (TREE_OPERAND (e
, 1), 0);
173 return graphite_can_represent_init (TREE_OPERAND (e
, 1))
174 && host_integerp (TREE_OPERAND (e
, 0), 0);
177 case POINTER_PLUS_EXPR
:
179 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
180 && graphite_can_represent_init (TREE_OPERAND (e
, 1));
185 case NON_LVALUE_EXPR
:
186 return graphite_can_represent_init (TREE_OPERAND (e
, 0));
195 /* Return true when SCEV can be represented in the polyhedral model.
197 An expression can be represented, if it can be expressed as an
198 affine expression. For loops (i, j) and parameters (m, n) all
199 affine expressions are of the form:
201 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
203 1 i + 20 j + (-2) m + 25
205 Something like "i * n" or "n * m" is not allowed. */
208 graphite_can_represent_scev (tree scev
)
210 if (chrec_contains_undetermined (scev
))
213 switch (TREE_CODE (scev
))
217 return graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
218 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
221 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 0)))
222 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 1)))
223 && !(chrec_contains_symbols (TREE_OPERAND (scev
, 0))
224 && chrec_contains_symbols (TREE_OPERAND (scev
, 1)))
225 && graphite_can_represent_init (scev
)
226 && graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
227 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
229 case POLYNOMIAL_CHREC
:
230 /* Check for constant strides. With a non constant stride of
231 'n' we would have a value of 'iv * n'. Also check that the
232 initial value can represented: for example 'n * m' cannot be
234 if (!evolution_function_right_is_integer_cst (scev
)
235 || !graphite_can_represent_init (scev
))
242 /* Only affine functions can be represented. */
243 if (!scev_is_linear_expression (scev
))
250 /* Return true when EXPR can be represented in the polyhedral model.
252 This means an expression can be represented, if it is linear with
253 respect to the loops and the strides are non parametric.
254 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
255 entry of the region we analyse. */
258 graphite_can_represent_expr (basic_block scop_entry
, loop_p loop
,
261 tree scev
= analyze_scalar_evolution (loop
, expr
);
263 scev
= instantiate_scev (scop_entry
, loop
, scev
);
265 return graphite_can_represent_scev (scev
);
268 /* Return true if the data references of STMT can be represented by
272 stmt_has_simple_data_refs_p (loop_p outermost_loop
, gimple stmt
)
278 VEC (data_reference_p
, heap
) *drs
= VEC_alloc (data_reference_p
, heap
, 5);
280 graphite_find_data_references_in_stmt (outermost_loop
, stmt
, &drs
);
282 FOR_EACH_VEC_ELT (data_reference_p
, drs
, j
, dr
)
283 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
284 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr
, i
)))
291 free_data_refs (drs
);
295 /* Return true only when STMT is simple enough for being handled by
296 Graphite. This depends on SCOP_ENTRY, as the parameters are
297 initialized relatively to this basic block, the linear functions
298 are initialized to OUTERMOST_LOOP and BB is the place where we try
299 to evaluate the STMT. */
302 stmt_simple_for_scop_p (basic_block scop_entry
, loop_p outermost_loop
,
303 gimple stmt
, basic_block bb
)
305 loop_p loop
= bb
->loop_father
;
307 gcc_assert (scop_entry
);
309 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
310 Calls have side-effects, except those to const or pure
312 if (gimple_has_volatile_ops (stmt
)
313 || (gimple_code (stmt
) == GIMPLE_CALL
314 && !(gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
)))
315 || (gimple_code (stmt
) == GIMPLE_ASM
))
318 if (is_gimple_debug (stmt
))
321 if (!stmt_has_simple_data_refs_p (outermost_loop
, stmt
))
324 switch (gimple_code (stmt
))
334 enum tree_code code
= gimple_cond_code (stmt
);
336 /* We can handle all binary comparisons. Inequalities are
337 also supported as they can be represented with union of
339 if (!(code
== LT_EXPR
347 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, op_iter
, SSA_OP_ALL_USES
)
348 if (!graphite_can_represent_expr (scop_entry
, loop
, op
)
349 /* We can not handle REAL_TYPE. Failed for pr39260. */
350 || TREE_CODE (TREE_TYPE (op
)) == REAL_TYPE
)
361 /* These nodes cut a new scope. */
368 /* Returns the statement of BB that contains a harmful operation: that
369 can be a function call with side effects, the induction variables
370 are not linear with respect to SCOP_ENTRY, etc. The current open
371 scop should end before this statement. The evaluation is limited using
372 OUTERMOST_LOOP as outermost loop that may change. */
375 harmful_stmt_in_bb (basic_block scop_entry
, loop_p outer_loop
, basic_block bb
)
377 gimple_stmt_iterator gsi
;
379 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
380 if (!stmt_simple_for_scop_p (scop_entry
, outer_loop
, gsi_stmt (gsi
), bb
))
381 return gsi_stmt (gsi
);
386 /* Return true if LOOP can be represented in the polyhedral
387 representation. This is evaluated taking SCOP_ENTRY and
388 OUTERMOST_LOOP in mind. */
391 graphite_can_represent_loop (basic_block scop_entry
, loop_p loop
)
393 tree niter
= number_of_latch_executions (loop
);
395 /* Number of iterations unknown. */
396 if (chrec_contains_undetermined (niter
))
399 /* Number of iterations not affine. */
400 if (!graphite_can_represent_expr (scop_entry
, loop
, niter
))
406 /* Store information needed by scopdet_* functions. */
410 /* Exit of the open scop would stop if the current BB is harmful. */
413 /* Where the next scop would start if the current BB is harmful. */
416 /* The bb or one of its children contains open loop exits. That means
417 loop exit nodes that are not surrounded by a loop dominated by bb. */
420 /* The bb or one of its children contains only structures we can handle. */
424 static struct scopdet_info
build_scops_1 (basic_block
, loop_p
,
425 VEC (sd_region
, heap
) **, loop_p
);
427 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
428 to SCOPS. TYPE is the gbb_type of BB. */
430 static struct scopdet_info
431 scopdet_basic_block_info (basic_block bb
, loop_p outermost_loop
,
432 VEC (sd_region
, heap
) **scops
, gbb_type type
)
434 loop_p loop
= bb
->loop_father
;
435 struct scopdet_info result
;
438 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
439 basic_block entry_block
= ENTRY_BLOCK_PTR
;
440 stmt
= harmful_stmt_in_bb (entry_block
, outermost_loop
, bb
);
441 result
.difficult
= (stmt
!= NULL
);
448 result
.exits
= false;
450 /* Mark bbs terminating a SESE region difficult, if they start
452 if (!single_succ_p (bb
))
453 result
.difficult
= true;
455 result
.exit
= single_succ (bb
);
460 result
.next
= single_succ (bb
);
461 result
.exits
= false;
462 result
.exit
= single_succ (bb
);
465 case GBB_LOOP_SING_EXIT_HEADER
:
467 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
468 struct scopdet_info sinfo
;
469 edge exit_e
= single_exit (loop
);
471 sinfo
= build_scops_1 (bb
, outermost_loop
, ®ions
, loop
);
473 if (!graphite_can_represent_loop (entry_block
, loop
))
474 result
.difficult
= true;
476 result
.difficult
|= sinfo
.difficult
;
478 /* Try again with another loop level. */
480 && loop_depth (outermost_loop
) + 1 == loop_depth (loop
))
482 outermost_loop
= loop
;
484 VEC_free (sd_region
, heap
, regions
);
485 regions
= VEC_alloc (sd_region
, heap
, 3);
487 sinfo
= scopdet_basic_block_info (bb
, outermost_loop
, scops
, type
);
490 result
.difficult
= true;
493 move_sd_regions (®ions
, scops
);
497 open_scop
.entry
= bb
;
498 open_scop
.exit
= exit_e
->dest
;
499 VEC_safe_push (sd_region
, heap
, *scops
, &open_scop
);
500 VEC_free (sd_region
, heap
, regions
);
505 result
.exit
= exit_e
->dest
;
506 result
.next
= exit_e
->dest
;
508 /* If we do not dominate result.next, remove it. It's either
509 the EXIT_BLOCK_PTR, or another bb dominates it and will
510 call the scop detection for this bb. */
511 if (!dominated_by_p (CDI_DOMINATORS
, result
.next
, bb
))
514 if (exit_e
->src
->loop_father
!= loop
)
517 result
.exits
= false;
519 if (result
.difficult
)
520 move_sd_regions (®ions
, scops
);
522 VEC_free (sd_region
, heap
, regions
);
528 case GBB_LOOP_MULT_EXIT_HEADER
:
530 /* XXX: For now we just do not join loops with multiple exits. If the
531 exits lead to the same bb it may be possible to join the loop. */
532 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
533 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
536 build_scops_1 (bb
, loop
, ®ions
, loop
);
538 /* Scan the code dominated by this loop. This means all bbs, that are
539 are dominated by a bb in this loop, but are not part of this loop.
542 - The loop exit destination is dominated by the exit sources.
544 TODO: We miss here the more complex cases:
545 - The exit destinations are dominated by another bb inside
547 - The loop dominates bbs, that are not exit destinations. */
548 FOR_EACH_VEC_ELT (edge
, exits
, i
, e
)
549 if (e
->src
->loop_father
== loop
550 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
))
552 if (loop_outer (outermost_loop
))
553 outermost_loop
= loop_outer (outermost_loop
);
555 /* Pass loop_outer to recognize e->dest as loop header in
557 if (e
->dest
->loop_father
->header
== e
->dest
)
558 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
559 loop_outer (e
->dest
->loop_father
));
561 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
562 e
->dest
->loop_father
);
567 result
.difficult
= true;
568 result
.exits
= false;
569 move_sd_regions (®ions
, scops
);
570 VEC_free (edge
, heap
, exits
);
573 case GBB_COND_HEADER
:
575 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
576 struct scopdet_info sinfo
;
577 VEC (basic_block
, heap
) *dominated
;
580 basic_block last_exit
= NULL
;
582 result
.exits
= false;
584 /* First check the successors of BB, and check if it is
585 possible to join the different branches. */
586 FOR_EACH_VEC_ELT (edge
, bb
->succs
, i
, e
)
588 /* Ignore loop exits. They will be handled after the loop
590 if (loop_exits_to_bb_p (loop
, e
->dest
))
596 /* Do not follow edges that lead to the end of the
597 conditions block. For example, in
607 the edge from 0 => 6. Only check if all paths lead to
610 if (!single_pred_p (e
->dest
))
612 /* Check, if edge leads directly to the end of this
617 if (e
->dest
!= last_exit
)
618 result
.difficult
= true;
623 if (!dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
625 result
.difficult
= true;
629 sinfo
= build_scops_1 (e
->dest
, outermost_loop
, ®ions
, loop
);
631 result
.exits
|= sinfo
.exits
;
632 result
.difficult
|= sinfo
.difficult
;
634 /* Checks, if all branches end at the same point.
635 If that is true, the condition stays joinable.
636 Have a look at the example above. */
640 last_exit
= sinfo
.exit
;
642 if (sinfo
.exit
!= last_exit
)
643 result
.difficult
= true;
646 result
.difficult
= true;
650 result
.difficult
= true;
652 /* Join the branches of the condition if possible. */
653 if (!result
.exits
&& !result
.difficult
)
655 /* Only return a next pointer if we dominate this pointer.
656 Otherwise it will be handled by the bb dominating it. */
657 if (dominated_by_p (CDI_DOMINATORS
, last_exit
, bb
)
659 result
.next
= last_exit
;
663 result
.exit
= last_exit
;
665 VEC_free (sd_region
, heap
, regions
);
669 /* Scan remaining bbs dominated by BB. */
670 dominated
= get_dominated_by (CDI_DOMINATORS
, bb
);
672 FOR_EACH_VEC_ELT (basic_block
, dominated
, i
, dom_bb
)
674 /* Ignore loop exits: they will be handled after the loop body. */
675 if (loop_depth (find_common_loop (loop
, dom_bb
->loop_father
))
682 /* Ignore the bbs processed above. */
683 if (single_pred_p (dom_bb
) && single_pred (dom_bb
) == bb
)
686 if (loop_depth (loop
) > loop_depth (dom_bb
->loop_father
))
687 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
,
690 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
, loop
);
692 result
.exits
|= sinfo
.exits
;
693 result
.difficult
= true;
697 VEC_free (basic_block
, heap
, dominated
);
700 move_sd_regions (®ions
, scops
);
712 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
713 SCOPS. The analyse if a sd_region can be handled is based on the value
714 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
715 is the loop in which CURRENT is handled.
717 TODO: These functions got a little bit big. They definitely should be cleaned
720 static struct scopdet_info
721 build_scops_1 (basic_block current
, loop_p outermost_loop
,
722 VEC (sd_region
, heap
) **scops
, loop_p loop
)
724 bool in_scop
= false;
726 struct scopdet_info sinfo
;
728 /* Initialize result. */
729 struct scopdet_info result
;
730 result
.exits
= false;
731 result
.difficult
= false;
734 open_scop
.entry
= NULL
;
735 open_scop
.exit
= NULL
;
738 /* Loop over the dominance tree. If we meet a difficult bb, close
739 the current SCoP. Loop and condition header start a new layer,
740 and can only be added if all bbs in deeper layers are simple. */
741 while (current
!= NULL
)
743 sinfo
= scopdet_basic_block_info (current
, outermost_loop
, scops
,
744 get_bb_type (current
, loop
));
746 if (!in_scop
&& !(sinfo
.exits
|| sinfo
.difficult
))
748 open_scop
.entry
= current
;
749 open_scop
.exit
= NULL
;
752 else if (in_scop
&& (sinfo
.exits
|| sinfo
.difficult
))
754 open_scop
.exit
= current
;
755 VEC_safe_push (sd_region
, heap
, *scops
, &open_scop
);
759 result
.difficult
|= sinfo
.difficult
;
760 result
.exits
|= sinfo
.exits
;
762 current
= sinfo
.next
;
765 /* Try to close open_scop, if we are still in an open SCoP. */
768 open_scop
.exit
= sinfo
.exit
;
769 gcc_assert (open_scop
.exit
);
770 VEC_safe_push (sd_region
, heap
, *scops
, &open_scop
);
773 result
.exit
= sinfo
.exit
;
777 /* Checks if a bb is contained in REGION. */
780 bb_in_sd_region (basic_block bb
, sd_region
*region
)
782 return bb_in_region (bb
, region
->entry
, region
->exit
);
785 /* Returns the single entry edge of REGION, if it does not exits NULL. */
788 find_single_entry_edge (sd_region
*region
)
794 FOR_EACH_EDGE (e
, ei
, region
->entry
->preds
)
795 if (!bb_in_sd_region (e
->src
, region
))
810 /* Returns the single exit edge of REGION, if it does not exits NULL. */
813 find_single_exit_edge (sd_region
*region
)
819 FOR_EACH_EDGE (e
, ei
, region
->exit
->preds
)
820 if (bb_in_sd_region (e
->src
, region
))
835 /* Create a single entry edge for REGION. */
838 create_single_entry_edge (sd_region
*region
)
840 if (find_single_entry_edge (region
))
843 /* There are multiple predecessors for bb_3
856 There are two edges (1->3, 2->3), that point from outside into the region,
857 and another one (5->3), a loop latch, lead to bb_3.
865 | |\ (3.0 -> 3.1) = single entry edge
874 If the loop is part of the SCoP, we have to redirect the loop latches.
880 | | (3.0 -> 3.1) = entry edge
889 if (region
->entry
->loop_father
->header
!= region
->entry
890 || dominated_by_p (CDI_DOMINATORS
,
891 loop_latch_edge (region
->entry
->loop_father
)->src
,
894 edge forwarder
= split_block_after_labels (region
->entry
);
895 region
->entry
= forwarder
->dest
;
898 /* This case is never executed, as the loop headers seem always to have a
899 single edge pointing from outside into the loop. */
902 gcc_checking_assert (find_single_entry_edge (region
));
905 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
908 sd_region_without_exit (edge e
)
910 sd_region
*r
= (sd_region
*) e
->aux
;
913 return r
->exit
== NULL
;
918 /* Create a single exit edge for REGION. */
921 create_single_exit_edge (sd_region
*region
)
925 edge forwarder
= NULL
;
928 /* We create a forwarder bb (5) for all edges leaving this region
929 (3->5, 4->5). All other edges leading to the same bb, are moved
930 to a new bb (6). If these edges where part of another region (2->5)
931 we update the region->exit pointer, of this region.
933 To identify which edge belongs to which region we depend on the e->aux
934 pointer in every edge. It points to the region of the edge or to NULL,
935 if the edge is not part of any region.
937 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
938 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
943 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
944 | | \/ 3->5 no region, 4->5 no region,
946 \| / 5->6 region->exit = 6
949 Now there is only a single exit edge (5->6). */
952 forwarder
= make_forwarder_block (exit
, &sd_region_without_exit
, NULL
);
954 /* Unmark the edges, that are no longer exit edges. */
955 FOR_EACH_EDGE (e
, ei
, forwarder
->src
->preds
)
959 /* Mark the new exit edge. */
960 single_succ_edge (forwarder
->src
)->aux
= region
;
962 /* Update the exit bb of all regions, where exit edges lead to
964 FOR_EACH_EDGE (e
, ei
, forwarder
->dest
->preds
)
966 ((sd_region
*) e
->aux
)->exit
= forwarder
->dest
;
968 gcc_checking_assert (find_single_exit_edge (region
));
971 /* Unmark the exit edges of all REGIONS.
972 See comment in "create_single_exit_edge". */
975 unmark_exit_edges (VEC (sd_region
, heap
) *regions
)
982 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
983 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
988 /* Mark the exit edges of all REGIONS.
989 See comment in "create_single_exit_edge". */
992 mark_exit_edges (VEC (sd_region
, heap
) *regions
)
999 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1000 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
1001 if (bb_in_sd_region (e
->src
, s
))
1005 /* Create for all scop regions a single entry and a single exit edge. */
1008 create_sese_edges (VEC (sd_region
, heap
) *regions
)
1013 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1014 create_single_entry_edge (s
);
1016 mark_exit_edges (regions
);
1018 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1019 /* Don't handle multiple edges exiting the function. */
1020 if (!find_single_exit_edge (s
)
1021 && s
->exit
!= EXIT_BLOCK_PTR
)
1022 create_single_exit_edge (s
);
1024 unmark_exit_edges (regions
);
1026 fix_loop_structure (NULL
);
1028 #ifdef ENABLE_CHECKING
1029 verify_loop_structure ();
1030 verify_dominators (CDI_DOMINATORS
);
1035 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1038 build_graphite_scops (VEC (sd_region
, heap
) *regions
,
1039 VEC (scop_p
, heap
) **scops
)
1044 FOR_EACH_VEC_ELT (sd_region
, regions
, i
, s
)
1046 edge entry
= find_single_entry_edge (s
);
1047 edge exit
= find_single_exit_edge (s
);
1053 scop
= new_scop (new_sese (entry
, exit
));
1054 VEC_safe_push (scop_p
, heap
, *scops
, scop
);
1056 /* Are there overlapping SCoPs? */
1057 #ifdef ENABLE_CHECKING
1062 FOR_EACH_VEC_ELT (sd_region
, regions
, j
, s2
)
1064 gcc_assert (!bb_in_sd_region (s
->entry
, s2
));
1070 /* Returns true when BB contains only close phi nodes. */
1073 contains_only_close_phi_nodes (basic_block bb
)
1075 gimple_stmt_iterator gsi
;
1077 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1078 if (gimple_code (gsi_stmt (gsi
)) != GIMPLE_LABEL
)
1084 /* Print statistics for SCOP to FILE. */
1087 print_graphite_scop_statistics (FILE* file
, scop_p scop
)
1092 long n_conditions
= 0;
1096 long n_p_conditions
= 0;
1102 gimple_stmt_iterator psi
;
1103 loop_p loop
= bb
->loop_father
;
1105 if (!bb_in_sese_p (bb
, SCOP_REGION (scop
)))
1109 n_p_bbs
+= bb
->count
;
1111 if (VEC_length (edge
, bb
->succs
) > 1)
1114 n_p_conditions
+= bb
->count
;
1117 for (psi
= gsi_start_bb (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1120 n_p_stmts
+= bb
->count
;
1123 if (loop
->header
== bb
&& loop_in_sese_p (loop
, SCOP_REGION (scop
)))
1126 n_p_loops
+= bb
->count
;
1131 fprintf (file
, "\nBefore limit_scops SCoP statistics (");
1132 fprintf (file
, "BBS:%ld, ", n_bbs
);
1133 fprintf (file
, "LOOPS:%ld, ", n_loops
);
1134 fprintf (file
, "CONDITIONS:%ld, ", n_conditions
);
1135 fprintf (file
, "STMTS:%ld)\n", n_stmts
);
1136 fprintf (file
, "\nBefore limit_scops SCoP profiling statistics (");
1137 fprintf (file
, "BBS:%ld, ", n_p_bbs
);
1138 fprintf (file
, "LOOPS:%ld, ", n_p_loops
);
1139 fprintf (file
, "CONDITIONS:%ld, ", n_p_conditions
);
1140 fprintf (file
, "STMTS:%ld)\n", n_p_stmts
);
1143 /* Print statistics for SCOPS to FILE. */
1146 print_graphite_statistics (FILE* file
, VEC (scop_p
, heap
) *scops
)
1151 FOR_EACH_VEC_ELT (scop_p
, scops
, i
, scop
)
1152 print_graphite_scop_statistics (file
, scop
);
1155 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1165 * SCoP frontier, as this line is not surrounded by any loop. *
1169 This is necessary as scalar evolution and parameter detection need a
1170 outermost loop to initialize parameters correctly.
1172 TODO: FIX scalar evolution and parameter detection to allow more flexible
1176 limit_scops (VEC (scop_p
, heap
) **scops
)
1178 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
1183 FOR_EACH_VEC_ELT (scop_p
, *scops
, i
, scop
)
1187 sese region
= SCOP_REGION (scop
);
1188 build_sese_loop_nests (region
);
1190 FOR_EACH_VEC_ELT (loop_p
, SESE_LOOP_NEST (region
), j
, loop
)
1191 if (!loop_in_sese_p (loop_outer (loop
), region
)
1192 && single_exit (loop
))
1194 sd_region open_scop
;
1195 open_scop
.entry
= loop
->header
;
1196 open_scop
.exit
= single_exit (loop
)->dest
;
1198 /* This is a hack on top of the limit_scops hack. The
1199 limit_scops hack should disappear all together. */
1200 if (single_succ_p (open_scop
.exit
)
1201 && contains_only_close_phi_nodes (open_scop
.exit
))
1202 open_scop
.exit
= single_succ_edge (open_scop
.exit
)->dest
;
1204 VEC_safe_push (sd_region
, heap
, regions
, &open_scop
);
1208 free_scops (*scops
);
1209 *scops
= VEC_alloc (scop_p
, heap
, 3);
1211 create_sese_edges (regions
);
1212 build_graphite_scops (regions
, scops
);
1213 VEC_free (sd_region
, heap
, regions
);
1216 /* Transforms LOOP to the canonical loop closed SSA form. */
1219 canonicalize_loop_closed_ssa (loop_p loop
)
1221 edge e
= single_exit (loop
);
1224 if (!e
|| e
->flags
& EDGE_ABNORMAL
)
1229 if (VEC_length (edge
, bb
->preds
) == 1)
1230 split_block_after_labels (bb
);
1233 gimple_stmt_iterator psi
;
1234 basic_block close
= split_edge (e
);
1236 e
= single_succ_edge (close
);
1238 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1240 gimple phi
= gsi_stmt (psi
);
1243 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1244 if (gimple_phi_arg_edge (phi
, i
) == e
)
1246 tree res
, arg
= gimple_phi_arg_def (phi
, i
);
1247 use_operand_p use_p
;
1250 if (TREE_CODE (arg
) != SSA_NAME
)
1253 close_phi
= create_phi_node (arg
, close
);
1254 res
= create_new_def_for (gimple_phi_result (close_phi
),
1256 gimple_phi_result_ptr (close_phi
));
1257 add_phi_arg (close_phi
, arg
,
1258 gimple_phi_arg_edge (close_phi
, 0),
1260 use_p
= gimple_phi_arg_imm_use_ptr (phi
, i
);
1261 replace_exp (use_p
, res
);
1268 /* Converts the current loop closed SSA form to a canonical form
1269 expected by the Graphite code generation.
1271 The loop closed SSA form has the following invariant: a variable
1272 defined in a loop that is used outside the loop appears only in the
1273 phi nodes in the destination of the loop exit. These phi nodes are
1274 called close phi nodes.
1276 The canonical loop closed SSA form contains the extra invariants:
1278 - when the loop contains only one exit, the close phi nodes contain
1279 only one argument. That implies that the basic block that contains
1280 the close phi nodes has only one predecessor, that is a basic block
1283 - the basic block containing the close phi nodes does not contain
1288 canonicalize_loop_closed_ssa_form (void)
1293 #ifdef ENABLE_CHECKING
1294 verify_loop_closed_ssa (true);
1297 FOR_EACH_LOOP (li
, loop
, 0)
1298 canonicalize_loop_closed_ssa (loop
);
1300 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1301 update_ssa (TODO_update_ssa
);
1303 #ifdef ENABLE_CHECKING
1304 verify_loop_closed_ssa (true);
1308 /* Find Static Control Parts (SCoP) in the current function and pushes
1312 build_scops (VEC (scop_p
, heap
) **scops
)
1314 struct loop
*loop
= current_loops
->tree_root
;
1315 VEC (sd_region
, heap
) *regions
= VEC_alloc (sd_region
, heap
, 3);
1317 canonicalize_loop_closed_ssa_form ();
1318 build_scops_1 (single_succ (ENTRY_BLOCK_PTR
), ENTRY_BLOCK_PTR
->loop_father
,
1320 create_sese_edges (regions
);
1321 build_graphite_scops (regions
, scops
);
1323 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1324 print_graphite_statistics (dump_file
, *scops
);
1326 limit_scops (scops
);
1327 VEC_free (sd_region
, heap
, regions
);
1329 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1330 fprintf (dump_file
, "\nnumber of SCoPs: %d\n",
1331 VEC_length (scop_p
, *scops
));
1334 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1335 different colors. If there are not enough colors, paint the
1336 remaining SCoPs in gray.
1339 - "*" after the node number denotes the entry of a SCoP,
1340 - "#" after the node number denotes the exit of a SCoP,
1341 - "()" around the node number denotes the entry or the
1342 exit nodes of the SCOP. These are not part of SCoP. */
1345 dot_all_scops_1 (FILE *file
, VEC (scop_p
, heap
) *scops
)
1354 /* Disable debugging while printing graph. */
1355 int tmp_dump_flags
= dump_flags
;
1358 fprintf (file
, "digraph all {\n");
1362 int part_of_scop
= false;
1364 /* Use HTML for every bb label. So we are able to print bbs
1365 which are part of two different SCoPs, with two different
1366 background colors. */
1367 fprintf (file
, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1369 fprintf (file
, "CELLSPACING=\"0\">\n");
1371 /* Select color for SCoP. */
1372 FOR_EACH_VEC_ELT (scop_p
, scops
, i
, scop
)
1374 sese region
= SCOP_REGION (scop
);
1375 if (bb_in_sese_p (bb
, region
)
1376 || (SESE_EXIT_BB (region
) == bb
)
1377 || (SESE_ENTRY_BB (region
) == bb
))
1390 case 3: /* purple */
1393 case 4: /* orange */
1396 case 5: /* yellow */
1436 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color
);
1438 if (!bb_in_sese_p (bb
, region
))
1439 fprintf (file
, " (");
1441 if (bb
== SESE_ENTRY_BB (region
)
1442 && bb
== SESE_EXIT_BB (region
))
1443 fprintf (file
, " %d*# ", bb
->index
);
1444 else if (bb
== SESE_ENTRY_BB (region
))
1445 fprintf (file
, " %d* ", bb
->index
);
1446 else if (bb
== SESE_EXIT_BB (region
))
1447 fprintf (file
, " %d# ", bb
->index
);
1449 fprintf (file
, " %d ", bb
->index
);
1451 if (!bb_in_sese_p (bb
,region
))
1452 fprintf (file
, ")");
1454 fprintf (file
, "</TD></TR>\n");
1455 part_of_scop
= true;
1461 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1462 fprintf (file
, " %d </TD></TR>\n", bb
->index
);
1464 fprintf (file
, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1469 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1470 fprintf (file
, "%d -> %d;\n", bb
->index
, e
->dest
->index
);
1473 fputs ("}\n\n", file
);
1475 /* Enable debugging again. */
1476 dump_flags
= tmp_dump_flags
;
1479 /* Display all SCoPs using dotty. */
1482 dot_all_scops (VEC (scop_p
, heap
) *scops
)
1484 /* When debugging, enable the following code. This cannot be used
1485 in production compilers because it calls "system". */
1488 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1489 gcc_assert (stream
);
1491 dot_all_scops_1 (stream
, scops
);
1494 x
= system ("dotty /tmp/allscops.dot &");
1496 dot_all_scops_1 (stderr
, scops
);
1500 /* Display all SCoPs using dotty. */
1503 dot_scop (scop_p scop
)
1505 VEC (scop_p
, heap
) *scops
= NULL
;
1508 VEC_safe_push (scop_p
, heap
, scops
, scop
);
1510 /* When debugging, enable the following code. This cannot be used
1511 in production compilers because it calls "system". */
1515 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1516 gcc_assert (stream
);
1518 dot_all_scops_1 (stream
, scops
);
1520 x
= system ("dotty /tmp/allscops.dot &");
1523 dot_all_scops_1 (stderr
, scops
);
1526 VEC_free (scop_p
, heap
, scops
);