prev_cc0_setter can take a rtx_insn *
[official-gcc.git] / gcc / emit-rtl.c
blobad5c8b276bca53a86973da98d024eac15ed8d38e
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "hash-set.h"
41 #include "machmode.h"
42 #include "vec.h"
43 #include "double-int.h"
44 #include "input.h"
45 #include "alias.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "real.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "predict.h"
54 #include "hard-reg-set.h"
55 #include "function.h"
56 #include "cfgrtl.h"
57 #include "basic-block.h"
58 #include "tree-eh.h"
59 #include "tm_p.h"
60 #include "flags.h"
61 #include "stringpool.h"
62 #include "hashtab.h"
63 #include "statistics.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "bitmap.h"
76 #include "debug.h"
77 #include "langhooks.h"
78 #include "df.h"
79 #include "params.h"
80 #include "target.h"
81 #include "builtins.h"
82 #include "rtl-iter.h"
84 struct target_rtl default_target_rtl;
85 #if SWITCHABLE_TARGET
86 struct target_rtl *this_target_rtl = &default_target_rtl;
87 #endif
89 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
91 /* Commonly used modes. */
93 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
94 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
95 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
96 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
98 /* Datastructures maintained for currently processed function in RTL form. */
100 struct rtl_data x_rtl;
102 /* Indexed by pseudo register number, gives the rtx for that pseudo.
103 Allocated in parallel with regno_pointer_align.
104 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
105 with length attribute nested in top level structures. */
107 rtx * regno_reg_rtx;
109 /* This is *not* reset after each function. It gives each CODE_LABEL
110 in the entire compilation a unique label number. */
112 static GTY(()) int label_num = 1;
114 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
115 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
116 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
117 is set only for MODE_INT and MODE_VECTOR_INT modes. */
119 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
121 rtx const_true_rtx;
123 REAL_VALUE_TYPE dconst0;
124 REAL_VALUE_TYPE dconst1;
125 REAL_VALUE_TYPE dconst2;
126 REAL_VALUE_TYPE dconstm1;
127 REAL_VALUE_TYPE dconsthalf;
129 /* Record fixed-point constant 0 and 1. */
130 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
131 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
133 /* We make one copy of (const_int C) where C is in
134 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
135 to save space during the compilation and simplify comparisons of
136 integers. */
138 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
140 /* Standard pieces of rtx, to be substituted directly into things. */
141 rtx pc_rtx;
142 rtx ret_rtx;
143 rtx simple_return_rtx;
144 rtx cc0_rtx;
146 /* A hash table storing CONST_INTs whose absolute value is greater
147 than MAX_SAVED_CONST_INT. */
149 struct const_int_hasher : ggc_cache_hasher<rtx>
151 typedef HOST_WIDE_INT compare_type;
153 static hashval_t hash (rtx i);
154 static bool equal (rtx i, HOST_WIDE_INT h);
157 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
159 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, rtx y);
165 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
167 /* A hash table storing register attribute structures. */
168 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
174 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
176 /* A hash table storing all CONST_DOUBLEs. */
177 struct const_double_hasher : ggc_cache_hasher<rtx>
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
183 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
185 /* A hash table storing all CONST_FIXEDs. */
186 struct const_fixed_hasher : ggc_cache_hasher<rtx>
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
192 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
194 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196 #define first_label_num (crtl->emit.x_first_label_num)
198 static void set_used_decls (tree);
199 static void mark_label_nuses (rtx);
200 #if TARGET_SUPPORTS_WIDE_INT
201 static rtx lookup_const_wide_int (rtx);
202 #endif
203 static rtx lookup_const_double (rtx);
204 static rtx lookup_const_fixed (rtx);
205 static reg_attrs *get_reg_attrs (tree, int);
206 static rtx gen_const_vector (machine_mode, int);
207 static void copy_rtx_if_shared_1 (rtx *orig);
209 /* Probability of the conditional branch currently proceeded by try_split.
210 Set to -1 otherwise. */
211 int split_branch_probability = -1;
213 /* Returns a hash code for X (which is a really a CONST_INT). */
215 hashval_t
216 const_int_hasher::hash (rtx x)
218 return (hashval_t) INTVAL (x);
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
225 bool
226 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
228 return (INTVAL (x) == y);
231 #if TARGET_SUPPORTS_WIDE_INT
232 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
234 hashval_t
235 const_wide_int_hasher::hash (rtx x)
237 int i;
238 unsigned HOST_WIDE_INT hash = 0;
239 const_rtx xr = x;
241 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
242 hash += CONST_WIDE_INT_ELT (xr, i);
244 return (hashval_t) hash;
247 /* Returns nonzero if the value represented by X (which is really a
248 CONST_WIDE_INT) is the same as that given by Y (which is really a
249 CONST_WIDE_INT). */
251 bool
252 const_wide_int_hasher::equal (rtx x, rtx y)
254 int i;
255 const_rtx xr = x;
256 const_rtx yr = y;
257 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
258 return false;
260 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
261 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
262 return false;
264 return true;
266 #endif
268 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
269 hashval_t
270 const_double_hasher::hash (rtx x)
272 const_rtx const value = x;
273 hashval_t h;
275 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
276 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
277 else
279 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
280 /* MODE is used in the comparison, so it should be in the hash. */
281 h ^= GET_MODE (value);
283 return h;
286 /* Returns nonzero if the value represented by X (really a ...)
287 is the same as that represented by Y (really a ...) */
288 bool
289 const_double_hasher::equal (rtx x, rtx y)
291 const_rtx const a = x, b = y;
293 if (GET_MODE (a) != GET_MODE (b))
294 return 0;
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
296 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
297 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
298 else
299 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
300 CONST_DOUBLE_REAL_VALUE (b));
303 /* Returns a hash code for X (which is really a CONST_FIXED). */
305 hashval_t
306 const_fixed_hasher::hash (rtx x)
308 const_rtx const value = x;
309 hashval_t h;
311 h = fixed_hash (CONST_FIXED_VALUE (value));
312 /* MODE is used in the comparison, so it should be in the hash. */
313 h ^= GET_MODE (value);
314 return h;
317 /* Returns nonzero if the value represented by X is the same as that
318 represented by Y. */
320 bool
321 const_fixed_hasher::equal (rtx x, rtx y)
323 const_rtx const a = x, b = y;
325 if (GET_MODE (a) != GET_MODE (b))
326 return 0;
327 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
330 /* Return true if the given memory attributes are equal. */
332 bool
333 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
335 if (p == q)
336 return true;
337 if (!p || !q)
338 return false;
339 return (p->alias == q->alias
340 && p->offset_known_p == q->offset_known_p
341 && (!p->offset_known_p || p->offset == q->offset)
342 && p->size_known_p == q->size_known_p
343 && (!p->size_known_p || p->size == q->size)
344 && p->align == q->align
345 && p->addrspace == q->addrspace
346 && (p->expr == q->expr
347 || (p->expr != NULL_TREE && q->expr != NULL_TREE
348 && operand_equal_p (p->expr, q->expr, 0))));
351 /* Set MEM's memory attributes so that they are the same as ATTRS. */
353 static void
354 set_mem_attrs (rtx mem, mem_attrs *attrs)
356 /* If everything is the default, we can just clear the attributes. */
357 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
359 MEM_ATTRS (mem) = 0;
360 return;
363 if (!MEM_ATTRS (mem)
364 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
366 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
367 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
371 /* Returns a hash code for X (which is a really a reg_attrs *). */
373 hashval_t
374 reg_attr_hasher::hash (reg_attrs *x)
376 const reg_attrs *const p = x;
378 return ((p->offset * 1000) ^ (intptr_t) p->decl);
381 /* Returns nonzero if the value represented by X is the same as that given by
382 Y. */
384 bool
385 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
387 const reg_attrs *const p = x;
388 const reg_attrs *const q = y;
390 return (p->decl == q->decl && p->offset == q->offset);
392 /* Allocate a new reg_attrs structure and insert it into the hash table if
393 one identical to it is not already in the table. We are doing this for
394 MEM of mode MODE. */
396 static reg_attrs *
397 get_reg_attrs (tree decl, int offset)
399 reg_attrs attrs;
401 /* If everything is the default, we can just return zero. */
402 if (decl == 0 && offset == 0)
403 return 0;
405 attrs.decl = decl;
406 attrs.offset = offset;
408 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
409 if (*slot == 0)
411 *slot = ggc_alloc<reg_attrs> ();
412 memcpy (*slot, &attrs, sizeof (reg_attrs));
415 return *slot;
419 #if !HAVE_blockage
420 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
421 and to block register equivalences to be seen across this insn. */
424 gen_blockage (void)
426 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
427 MEM_VOLATILE_P (x) = true;
428 return x;
430 #endif
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
438 gen_raw_REG (machine_mode mode, int regno)
440 rtx x = gen_rtx_raw_REG (mode, regno);
441 ORIGINAL_REGNO (x) = regno;
442 return x;
445 /* There are some RTL codes that require special attention; the generation
446 functions do the raw handling. If you add to this list, modify
447 special_rtx in gengenrtl.c as well. */
449 rtx_expr_list *
450 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
452 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
453 expr_list));
456 rtx_insn_list *
457 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
459 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
460 insn_list));
463 rtx_insn *
464 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
465 basic_block bb, rtx pattern, int location, int code,
466 rtx reg_notes)
468 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
469 prev_insn, next_insn,
470 bb, pattern, location, code,
471 reg_notes));
475 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
477 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
478 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
480 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
481 if (const_true_rtx && arg == STORE_FLAG_VALUE)
482 return const_true_rtx;
483 #endif
485 /* Look up the CONST_INT in the hash table. */
486 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
487 INSERT);
488 if (*slot == 0)
489 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
491 return *slot;
495 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
497 return GEN_INT (trunc_int_for_mode (c, mode));
500 /* CONST_DOUBLEs might be created from pairs of integers, or from
501 REAL_VALUE_TYPEs. Also, their length is known only at run time,
502 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
504 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
505 hash table. If so, return its counterpart; otherwise add it
506 to the hash table and return it. */
507 static rtx
508 lookup_const_double (rtx real)
510 rtx *slot = const_double_htab->find_slot (real, INSERT);
511 if (*slot == 0)
512 *slot = real;
514 return *slot;
517 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
518 VALUE in mode MODE. */
520 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
522 rtx real = rtx_alloc (CONST_DOUBLE);
523 PUT_MODE (real, mode);
525 real->u.rv = value;
527 return lookup_const_double (real);
530 /* Determine whether FIXED, a CONST_FIXED, already exists in the
531 hash table. If so, return its counterpart; otherwise add it
532 to the hash table and return it. */
534 static rtx
535 lookup_const_fixed (rtx fixed)
537 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
538 if (*slot == 0)
539 *slot = fixed;
541 return *slot;
544 /* Return a CONST_FIXED rtx for a fixed-point value specified by
545 VALUE in mode MODE. */
548 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
550 rtx fixed = rtx_alloc (CONST_FIXED);
551 PUT_MODE (fixed, mode);
553 fixed->u.fv = value;
555 return lookup_const_fixed (fixed);
558 #if TARGET_SUPPORTS_WIDE_INT == 0
559 /* Constructs double_int from rtx CST. */
561 double_int
562 rtx_to_double_int (const_rtx cst)
564 double_int r;
566 if (CONST_INT_P (cst))
567 r = double_int::from_shwi (INTVAL (cst));
568 else if (CONST_DOUBLE_AS_INT_P (cst))
570 r.low = CONST_DOUBLE_LOW (cst);
571 r.high = CONST_DOUBLE_HIGH (cst);
573 else
574 gcc_unreachable ();
576 return r;
578 #endif
580 #if TARGET_SUPPORTS_WIDE_INT
581 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
582 If so, return its counterpart; otherwise add it to the hash table and
583 return it. */
585 static rtx
586 lookup_const_wide_int (rtx wint)
588 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
589 if (*slot == 0)
590 *slot = wint;
592 return *slot;
594 #endif
596 /* Return an rtx constant for V, given that the constant has mode MODE.
597 The returned rtx will be a CONST_INT if V fits, otherwise it will be
598 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
599 (if TARGET_SUPPORTS_WIDE_INT). */
602 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
604 unsigned int len = v.get_len ();
605 unsigned int prec = GET_MODE_PRECISION (mode);
607 /* Allow truncation but not extension since we do not know if the
608 number is signed or unsigned. */
609 gcc_assert (prec <= v.get_precision ());
611 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
612 return gen_int_mode (v.elt (0), mode);
614 #if TARGET_SUPPORTS_WIDE_INT
616 unsigned int i;
617 rtx value;
618 unsigned int blocks_needed
619 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
621 if (len > blocks_needed)
622 len = blocks_needed;
624 value = const_wide_int_alloc (len);
626 /* It is so tempting to just put the mode in here. Must control
627 myself ... */
628 PUT_MODE (value, VOIDmode);
629 CWI_PUT_NUM_ELEM (value, len);
631 for (i = 0; i < len; i++)
632 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
634 return lookup_const_wide_int (value);
636 #else
637 return immed_double_const (v.elt (0), v.elt (1), mode);
638 #endif
641 #if TARGET_SUPPORTS_WIDE_INT == 0
642 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
643 of ints: I0 is the low-order word and I1 is the high-order word.
644 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
645 implied upper bits are copies of the high bit of i1. The value
646 itself is neither signed nor unsigned. Do not use this routine for
647 non-integer modes; convert to REAL_VALUE_TYPE and use
648 CONST_DOUBLE_FROM_REAL_VALUE. */
651 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
653 rtx value;
654 unsigned int i;
656 /* There are the following cases (note that there are no modes with
657 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
659 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
660 gen_int_mode.
661 2) If the value of the integer fits into HOST_WIDE_INT anyway
662 (i.e., i1 consists only from copies of the sign bit, and sign
663 of i0 and i1 are the same), then we return a CONST_INT for i0.
664 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
665 if (mode != VOIDmode)
667 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
668 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
669 /* We can get a 0 for an error mark. */
670 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
671 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
672 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
674 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
675 return gen_int_mode (i0, mode);
678 /* If this integer fits in one word, return a CONST_INT. */
679 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
680 return GEN_INT (i0);
682 /* We use VOIDmode for integers. */
683 value = rtx_alloc (CONST_DOUBLE);
684 PUT_MODE (value, VOIDmode);
686 CONST_DOUBLE_LOW (value) = i0;
687 CONST_DOUBLE_HIGH (value) = i1;
689 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
690 XWINT (value, i) = 0;
692 return lookup_const_double (value);
694 #endif
697 gen_rtx_REG (machine_mode mode, unsigned int regno)
699 /* In case the MD file explicitly references the frame pointer, have
700 all such references point to the same frame pointer. This is
701 used during frame pointer elimination to distinguish the explicit
702 references to these registers from pseudos that happened to be
703 assigned to them.
705 If we have eliminated the frame pointer or arg pointer, we will
706 be using it as a normal register, for example as a spill
707 register. In such cases, we might be accessing it in a mode that
708 is not Pmode and therefore cannot use the pre-allocated rtx.
710 Also don't do this when we are making new REGs in reload, since
711 we don't want to get confused with the real pointers. */
713 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
715 if (regno == FRAME_POINTER_REGNUM
716 && (!reload_completed || frame_pointer_needed))
717 return frame_pointer_rtx;
719 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
720 && regno == HARD_FRAME_POINTER_REGNUM
721 && (!reload_completed || frame_pointer_needed))
722 return hard_frame_pointer_rtx;
723 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
724 if (regno == ARG_POINTER_REGNUM)
725 return arg_pointer_rtx;
726 #endif
727 #ifdef RETURN_ADDRESS_POINTER_REGNUM
728 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
729 return return_address_pointer_rtx;
730 #endif
731 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
732 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
733 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
734 return pic_offset_table_rtx;
735 if (regno == STACK_POINTER_REGNUM)
736 return stack_pointer_rtx;
739 #if 0
740 /* If the per-function register table has been set up, try to re-use
741 an existing entry in that table to avoid useless generation of RTL.
743 This code is disabled for now until we can fix the various backends
744 which depend on having non-shared hard registers in some cases. Long
745 term we want to re-enable this code as it can significantly cut down
746 on the amount of useless RTL that gets generated.
748 We'll also need to fix some code that runs after reload that wants to
749 set ORIGINAL_REGNO. */
751 if (cfun
752 && cfun->emit
753 && regno_reg_rtx
754 && regno < FIRST_PSEUDO_REGISTER
755 && reg_raw_mode[regno] == mode)
756 return regno_reg_rtx[regno];
757 #endif
759 return gen_raw_REG (mode, regno);
763 gen_rtx_MEM (machine_mode mode, rtx addr)
765 rtx rt = gen_rtx_raw_MEM (mode, addr);
767 /* This field is not cleared by the mere allocation of the rtx, so
768 we clear it here. */
769 MEM_ATTRS (rt) = 0;
771 return rt;
774 /* Generate a memory referring to non-trapping constant memory. */
777 gen_const_mem (machine_mode mode, rtx addr)
779 rtx mem = gen_rtx_MEM (mode, addr);
780 MEM_READONLY_P (mem) = 1;
781 MEM_NOTRAP_P (mem) = 1;
782 return mem;
785 /* Generate a MEM referring to fixed portions of the frame, e.g., register
786 save areas. */
789 gen_frame_mem (machine_mode mode, rtx addr)
791 rtx mem = gen_rtx_MEM (mode, addr);
792 MEM_NOTRAP_P (mem) = 1;
793 set_mem_alias_set (mem, get_frame_alias_set ());
794 return mem;
797 /* Generate a MEM referring to a temporary use of the stack, not part
798 of the fixed stack frame. For example, something which is pushed
799 by a target splitter. */
801 gen_tmp_stack_mem (machine_mode mode, rtx addr)
803 rtx mem = gen_rtx_MEM (mode, addr);
804 MEM_NOTRAP_P (mem) = 1;
805 if (!cfun->calls_alloca)
806 set_mem_alias_set (mem, get_frame_alias_set ());
807 return mem;
810 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
811 this construct would be valid, and false otherwise. */
813 bool
814 validate_subreg (machine_mode omode, machine_mode imode,
815 const_rtx reg, unsigned int offset)
817 unsigned int isize = GET_MODE_SIZE (imode);
818 unsigned int osize = GET_MODE_SIZE (omode);
820 /* All subregs must be aligned. */
821 if (offset % osize != 0)
822 return false;
824 /* The subreg offset cannot be outside the inner object. */
825 if (offset >= isize)
826 return false;
828 /* ??? This should not be here. Temporarily continue to allow word_mode
829 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
830 Generally, backends are doing something sketchy but it'll take time to
831 fix them all. */
832 if (omode == word_mode)
834 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
835 is the culprit here, and not the backends. */
836 else if (osize >= UNITS_PER_WORD && isize >= osize)
838 /* Allow component subregs of complex and vector. Though given the below
839 extraction rules, it's not always clear what that means. */
840 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
841 && GET_MODE_INNER (imode) == omode)
843 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
844 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
845 represent this. It's questionable if this ought to be represented at
846 all -- why can't this all be hidden in post-reload splitters that make
847 arbitrarily mode changes to the registers themselves. */
848 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
850 /* Subregs involving floating point modes are not allowed to
851 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
852 (subreg:SI (reg:DF) 0) isn't. */
853 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
855 if (! (isize == osize
856 /* LRA can use subreg to store a floating point value in
857 an integer mode. Although the floating point and the
858 integer modes need the same number of hard registers,
859 the size of floating point mode can be less than the
860 integer mode. LRA also uses subregs for a register
861 should be used in different mode in on insn. */
862 || lra_in_progress))
863 return false;
866 /* Paradoxical subregs must have offset zero. */
867 if (osize > isize)
868 return offset == 0;
870 /* This is a normal subreg. Verify that the offset is representable. */
872 /* For hard registers, we already have most of these rules collected in
873 subreg_offset_representable_p. */
874 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
876 unsigned int regno = REGNO (reg);
878 #ifdef CANNOT_CHANGE_MODE_CLASS
879 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
880 && GET_MODE_INNER (imode) == omode)
882 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
883 return false;
884 #endif
886 return subreg_offset_representable_p (regno, imode, offset, omode);
889 /* For pseudo registers, we want most of the same checks. Namely:
890 If the register no larger than a word, the subreg must be lowpart.
891 If the register is larger than a word, the subreg must be the lowpart
892 of a subword. A subreg does *not* perform arbitrary bit extraction.
893 Given that we've already checked mode/offset alignment, we only have
894 to check subword subregs here. */
895 if (osize < UNITS_PER_WORD
896 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
898 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
899 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
900 if (offset % UNITS_PER_WORD != low_off)
901 return false;
903 return true;
907 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
909 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
910 return gen_rtx_raw_SUBREG (mode, reg, offset);
913 /* Generate a SUBREG representing the least-significant part of REG if MODE
914 is smaller than mode of REG, otherwise paradoxical SUBREG. */
917 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
919 machine_mode inmode;
921 inmode = GET_MODE (reg);
922 if (inmode == VOIDmode)
923 inmode = mode;
924 return gen_rtx_SUBREG (mode, reg,
925 subreg_lowpart_offset (mode, inmode));
929 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
930 enum var_init_status status)
932 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
933 PAT_VAR_LOCATION_STATUS (x) = status;
934 return x;
938 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
940 rtvec
941 gen_rtvec (int n, ...)
943 int i;
944 rtvec rt_val;
945 va_list p;
947 va_start (p, n);
949 /* Don't allocate an empty rtvec... */
950 if (n == 0)
952 va_end (p);
953 return NULL_RTVEC;
956 rt_val = rtvec_alloc (n);
958 for (i = 0; i < n; i++)
959 rt_val->elem[i] = va_arg (p, rtx);
961 va_end (p);
962 return rt_val;
965 rtvec
966 gen_rtvec_v (int n, rtx *argp)
968 int i;
969 rtvec rt_val;
971 /* Don't allocate an empty rtvec... */
972 if (n == 0)
973 return NULL_RTVEC;
975 rt_val = rtvec_alloc (n);
977 for (i = 0; i < n; i++)
978 rt_val->elem[i] = *argp++;
980 return rt_val;
983 rtvec
984 gen_rtvec_v (int n, rtx_insn **argp)
986 int i;
987 rtvec rt_val;
989 /* Don't allocate an empty rtvec... */
990 if (n == 0)
991 return NULL_RTVEC;
993 rt_val = rtvec_alloc (n);
995 for (i = 0; i < n; i++)
996 rt_val->elem[i] = *argp++;
998 return rt_val;
1002 /* Return the number of bytes between the start of an OUTER_MODE
1003 in-memory value and the start of an INNER_MODE in-memory value,
1004 given that the former is a lowpart of the latter. It may be a
1005 paradoxical lowpart, in which case the offset will be negative
1006 on big-endian targets. */
1009 byte_lowpart_offset (machine_mode outer_mode,
1010 machine_mode inner_mode)
1012 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1013 return subreg_lowpart_offset (outer_mode, inner_mode);
1014 else
1015 return -subreg_lowpart_offset (inner_mode, outer_mode);
1018 /* Generate a REG rtx for a new pseudo register of mode MODE.
1019 This pseudo is assigned the next sequential register number. */
1022 gen_reg_rtx (machine_mode mode)
1024 rtx val;
1025 unsigned int align = GET_MODE_ALIGNMENT (mode);
1027 gcc_assert (can_create_pseudo_p ());
1029 /* If a virtual register with bigger mode alignment is generated,
1030 increase stack alignment estimation because it might be spilled
1031 to stack later. */
1032 if (SUPPORTS_STACK_ALIGNMENT
1033 && crtl->stack_alignment_estimated < align
1034 && !crtl->stack_realign_processed)
1036 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1037 if (crtl->stack_alignment_estimated < min_align)
1038 crtl->stack_alignment_estimated = min_align;
1041 if (generating_concat_p
1042 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1043 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1045 /* For complex modes, don't make a single pseudo.
1046 Instead, make a CONCAT of two pseudos.
1047 This allows noncontiguous allocation of the real and imaginary parts,
1048 which makes much better code. Besides, allocating DCmode
1049 pseudos overstrains reload on some machines like the 386. */
1050 rtx realpart, imagpart;
1051 machine_mode partmode = GET_MODE_INNER (mode);
1053 realpart = gen_reg_rtx (partmode);
1054 imagpart = gen_reg_rtx (partmode);
1055 return gen_rtx_CONCAT (mode, realpart, imagpart);
1058 /* Do not call gen_reg_rtx with uninitialized crtl. */
1059 gcc_assert (crtl->emit.regno_pointer_align_length);
1061 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1062 enough to have an element for this pseudo reg number. */
1064 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1066 int old_size = crtl->emit.regno_pointer_align_length;
1067 char *tmp;
1068 rtx *new1;
1070 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1071 memset (tmp + old_size, 0, old_size);
1072 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1074 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1075 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1076 regno_reg_rtx = new1;
1078 crtl->emit.regno_pointer_align_length = old_size * 2;
1081 val = gen_raw_REG (mode, reg_rtx_no);
1082 regno_reg_rtx[reg_rtx_no++] = val;
1083 return val;
1086 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1088 bool
1089 reg_is_parm_p (rtx reg)
1091 tree decl;
1093 gcc_assert (REG_P (reg));
1094 decl = REG_EXPR (reg);
1095 return (decl && TREE_CODE (decl) == PARM_DECL);
1098 /* Update NEW with the same attributes as REG, but with OFFSET added
1099 to the REG_OFFSET. */
1101 static void
1102 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1104 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1105 REG_OFFSET (reg) + offset);
1108 /* Generate a register with same attributes as REG, but with OFFSET
1109 added to the REG_OFFSET. */
1112 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1113 int offset)
1115 rtx new_rtx = gen_rtx_REG (mode, regno);
1117 update_reg_offset (new_rtx, reg, offset);
1118 return new_rtx;
1121 /* Generate a new pseudo-register with the same attributes as REG, but
1122 with OFFSET added to the REG_OFFSET. */
1125 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1127 rtx new_rtx = gen_reg_rtx (mode);
1129 update_reg_offset (new_rtx, reg, offset);
1130 return new_rtx;
1133 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1134 new register is a (possibly paradoxical) lowpart of the old one. */
1136 void
1137 adjust_reg_mode (rtx reg, machine_mode mode)
1139 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1140 PUT_MODE (reg, mode);
1143 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1144 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1146 void
1147 set_reg_attrs_from_value (rtx reg, rtx x)
1149 int offset;
1150 bool can_be_reg_pointer = true;
1152 /* Don't call mark_reg_pointer for incompatible pointer sign
1153 extension. */
1154 while (GET_CODE (x) == SIGN_EXTEND
1155 || GET_CODE (x) == ZERO_EXTEND
1156 || GET_CODE (x) == TRUNCATE
1157 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1159 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1160 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1161 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1162 can_be_reg_pointer = false;
1163 #endif
1164 x = XEXP (x, 0);
1167 /* Hard registers can be reused for multiple purposes within the same
1168 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1169 on them is wrong. */
1170 if (HARD_REGISTER_P (reg))
1171 return;
1173 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1174 if (MEM_P (x))
1176 if (MEM_OFFSET_KNOWN_P (x))
1177 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1178 MEM_OFFSET (x) + offset);
1179 if (can_be_reg_pointer && MEM_POINTER (x))
1180 mark_reg_pointer (reg, 0);
1182 else if (REG_P (x))
1184 if (REG_ATTRS (x))
1185 update_reg_offset (reg, x, offset);
1186 if (can_be_reg_pointer && REG_POINTER (x))
1187 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1191 /* Generate a REG rtx for a new pseudo register, copying the mode
1192 and attributes from X. */
1195 gen_reg_rtx_and_attrs (rtx x)
1197 rtx reg = gen_reg_rtx (GET_MODE (x));
1198 set_reg_attrs_from_value (reg, x);
1199 return reg;
1202 /* Set the register attributes for registers contained in PARM_RTX.
1203 Use needed values from memory attributes of MEM. */
1205 void
1206 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1208 if (REG_P (parm_rtx))
1209 set_reg_attrs_from_value (parm_rtx, mem);
1210 else if (GET_CODE (parm_rtx) == PARALLEL)
1212 /* Check for a NULL entry in the first slot, used to indicate that the
1213 parameter goes both on the stack and in registers. */
1214 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1215 for (; i < XVECLEN (parm_rtx, 0); i++)
1217 rtx x = XVECEXP (parm_rtx, 0, i);
1218 if (REG_P (XEXP (x, 0)))
1219 REG_ATTRS (XEXP (x, 0))
1220 = get_reg_attrs (MEM_EXPR (mem),
1221 INTVAL (XEXP (x, 1)));
1226 /* Set the REG_ATTRS for registers in value X, given that X represents
1227 decl T. */
1229 void
1230 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1232 if (GET_CODE (x) == SUBREG)
1234 gcc_assert (subreg_lowpart_p (x));
1235 x = SUBREG_REG (x);
1237 if (REG_P (x))
1238 REG_ATTRS (x)
1239 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1240 DECL_MODE (t)));
1241 if (GET_CODE (x) == CONCAT)
1243 if (REG_P (XEXP (x, 0)))
1244 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1245 if (REG_P (XEXP (x, 1)))
1246 REG_ATTRS (XEXP (x, 1))
1247 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1249 if (GET_CODE (x) == PARALLEL)
1251 int i, start;
1253 /* Check for a NULL entry, used to indicate that the parameter goes
1254 both on the stack and in registers. */
1255 if (XEXP (XVECEXP (x, 0, 0), 0))
1256 start = 0;
1257 else
1258 start = 1;
1260 for (i = start; i < XVECLEN (x, 0); i++)
1262 rtx y = XVECEXP (x, 0, i);
1263 if (REG_P (XEXP (y, 0)))
1264 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1269 /* Assign the RTX X to declaration T. */
1271 void
1272 set_decl_rtl (tree t, rtx x)
1274 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1275 if (x)
1276 set_reg_attrs_for_decl_rtl (t, x);
1279 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1280 if the ABI requires the parameter to be passed by reference. */
1282 void
1283 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1285 DECL_INCOMING_RTL (t) = x;
1286 if (x && !by_reference_p)
1287 set_reg_attrs_for_decl_rtl (t, x);
1290 /* Identify REG (which may be a CONCAT) as a user register. */
1292 void
1293 mark_user_reg (rtx reg)
1295 if (GET_CODE (reg) == CONCAT)
1297 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1298 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1300 else
1302 gcc_assert (REG_P (reg));
1303 REG_USERVAR_P (reg) = 1;
1307 /* Identify REG as a probable pointer register and show its alignment
1308 as ALIGN, if nonzero. */
1310 void
1311 mark_reg_pointer (rtx reg, int align)
1313 if (! REG_POINTER (reg))
1315 REG_POINTER (reg) = 1;
1317 if (align)
1318 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1320 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1321 /* We can no-longer be sure just how aligned this pointer is. */
1322 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1325 /* Return 1 plus largest pseudo reg number used in the current function. */
1328 max_reg_num (void)
1330 return reg_rtx_no;
1333 /* Return 1 + the largest label number used so far in the current function. */
1336 max_label_num (void)
1338 return label_num;
1341 /* Return first label number used in this function (if any were used). */
1344 get_first_label_num (void)
1346 return first_label_num;
1349 /* If the rtx for label was created during the expansion of a nested
1350 function, then first_label_num won't include this label number.
1351 Fix this now so that array indices work later. */
1353 void
1354 maybe_set_first_label_num (rtx x)
1356 if (CODE_LABEL_NUMBER (x) < first_label_num)
1357 first_label_num = CODE_LABEL_NUMBER (x);
1360 /* Return a value representing some low-order bits of X, where the number
1361 of low-order bits is given by MODE. Note that no conversion is done
1362 between floating-point and fixed-point values, rather, the bit
1363 representation is returned.
1365 This function handles the cases in common between gen_lowpart, below,
1366 and two variants in cse.c and combine.c. These are the cases that can
1367 be safely handled at all points in the compilation.
1369 If this is not a case we can handle, return 0. */
1372 gen_lowpart_common (machine_mode mode, rtx x)
1374 int msize = GET_MODE_SIZE (mode);
1375 int xsize;
1376 int offset = 0;
1377 machine_mode innermode;
1379 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1380 so we have to make one up. Yuk. */
1381 innermode = GET_MODE (x);
1382 if (CONST_INT_P (x)
1383 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1384 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1385 else if (innermode == VOIDmode)
1386 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1388 xsize = GET_MODE_SIZE (innermode);
1390 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1392 if (innermode == mode)
1393 return x;
1395 /* MODE must occupy no more words than the mode of X. */
1396 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1397 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1398 return 0;
1400 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1401 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1402 return 0;
1404 offset = subreg_lowpart_offset (mode, innermode);
1406 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1407 && (GET_MODE_CLASS (mode) == MODE_INT
1408 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1410 /* If we are getting the low-order part of something that has been
1411 sign- or zero-extended, we can either just use the object being
1412 extended or make a narrower extension. If we want an even smaller
1413 piece than the size of the object being extended, call ourselves
1414 recursively.
1416 This case is used mostly by combine and cse. */
1418 if (GET_MODE (XEXP (x, 0)) == mode)
1419 return XEXP (x, 0);
1420 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1421 return gen_lowpart_common (mode, XEXP (x, 0));
1422 else if (msize < xsize)
1423 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1425 else if (GET_CODE (x) == SUBREG || REG_P (x)
1426 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1427 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1428 return simplify_gen_subreg (mode, x, innermode, offset);
1430 /* Otherwise, we can't do this. */
1431 return 0;
1435 gen_highpart (machine_mode mode, rtx x)
1437 unsigned int msize = GET_MODE_SIZE (mode);
1438 rtx result;
1440 /* This case loses if X is a subreg. To catch bugs early,
1441 complain if an invalid MODE is used even in other cases. */
1442 gcc_assert (msize <= UNITS_PER_WORD
1443 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1445 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1446 subreg_highpart_offset (mode, GET_MODE (x)));
1447 gcc_assert (result);
1449 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1450 the target if we have a MEM. gen_highpart must return a valid operand,
1451 emitting code if necessary to do so. */
1452 if (MEM_P (result))
1454 result = validize_mem (result);
1455 gcc_assert (result);
1458 return result;
1461 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1462 be VOIDmode constant. */
1464 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1466 if (GET_MODE (exp) != VOIDmode)
1468 gcc_assert (GET_MODE (exp) == innermode);
1469 return gen_highpart (outermode, exp);
1471 return simplify_gen_subreg (outermode, exp, innermode,
1472 subreg_highpart_offset (outermode, innermode));
1475 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1477 unsigned int
1478 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1480 unsigned int offset = 0;
1481 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1483 if (difference > 0)
1485 if (WORDS_BIG_ENDIAN)
1486 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1487 if (BYTES_BIG_ENDIAN)
1488 offset += difference % UNITS_PER_WORD;
1491 return offset;
1494 /* Return offset in bytes to get OUTERMODE high part
1495 of the value in mode INNERMODE stored in memory in target format. */
1496 unsigned int
1497 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1499 unsigned int offset = 0;
1500 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1502 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1504 if (difference > 0)
1506 if (! WORDS_BIG_ENDIAN)
1507 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1508 if (! BYTES_BIG_ENDIAN)
1509 offset += difference % UNITS_PER_WORD;
1512 return offset;
1515 /* Return 1 iff X, assumed to be a SUBREG,
1516 refers to the least significant part of its containing reg.
1517 If X is not a SUBREG, always return 1 (it is its own low part!). */
1520 subreg_lowpart_p (const_rtx x)
1522 if (GET_CODE (x) != SUBREG)
1523 return 1;
1524 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1525 return 0;
1527 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1528 == SUBREG_BYTE (x));
1531 /* Return true if X is a paradoxical subreg, false otherwise. */
1532 bool
1533 paradoxical_subreg_p (const_rtx x)
1535 if (GET_CODE (x) != SUBREG)
1536 return false;
1537 return (GET_MODE_PRECISION (GET_MODE (x))
1538 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1541 /* Return subword OFFSET of operand OP.
1542 The word number, OFFSET, is interpreted as the word number starting
1543 at the low-order address. OFFSET 0 is the low-order word if not
1544 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1546 If we cannot extract the required word, we return zero. Otherwise,
1547 an rtx corresponding to the requested word will be returned.
1549 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1550 reload has completed, a valid address will always be returned. After
1551 reload, if a valid address cannot be returned, we return zero.
1553 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1554 it is the responsibility of the caller.
1556 MODE is the mode of OP in case it is a CONST_INT.
1558 ??? This is still rather broken for some cases. The problem for the
1559 moment is that all callers of this thing provide no 'goal mode' to
1560 tell us to work with. This exists because all callers were written
1561 in a word based SUBREG world.
1562 Now use of this function can be deprecated by simplify_subreg in most
1563 cases.
1567 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1569 if (mode == VOIDmode)
1570 mode = GET_MODE (op);
1572 gcc_assert (mode != VOIDmode);
1574 /* If OP is narrower than a word, fail. */
1575 if (mode != BLKmode
1576 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1577 return 0;
1579 /* If we want a word outside OP, return zero. */
1580 if (mode != BLKmode
1581 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1582 return const0_rtx;
1584 /* Form a new MEM at the requested address. */
1585 if (MEM_P (op))
1587 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1589 if (! validate_address)
1590 return new_rtx;
1592 else if (reload_completed)
1594 if (! strict_memory_address_addr_space_p (word_mode,
1595 XEXP (new_rtx, 0),
1596 MEM_ADDR_SPACE (op)))
1597 return 0;
1599 else
1600 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1603 /* Rest can be handled by simplify_subreg. */
1604 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1607 /* Similar to `operand_subword', but never return 0. If we can't
1608 extract the required subword, put OP into a register and try again.
1609 The second attempt must succeed. We always validate the address in
1610 this case.
1612 MODE is the mode of OP, in case it is CONST_INT. */
1615 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1617 rtx result = operand_subword (op, offset, 1, mode);
1619 if (result)
1620 return result;
1622 if (mode != BLKmode && mode != VOIDmode)
1624 /* If this is a register which can not be accessed by words, copy it
1625 to a pseudo register. */
1626 if (REG_P (op))
1627 op = copy_to_reg (op);
1628 else
1629 op = force_reg (mode, op);
1632 result = operand_subword (op, offset, 1, mode);
1633 gcc_assert (result);
1635 return result;
1638 /* Returns 1 if both MEM_EXPR can be considered equal
1639 and 0 otherwise. */
1642 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1644 if (expr1 == expr2)
1645 return 1;
1647 if (! expr1 || ! expr2)
1648 return 0;
1650 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1651 return 0;
1653 return operand_equal_p (expr1, expr2, 0);
1656 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1657 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1658 -1 if not known. */
1661 get_mem_align_offset (rtx mem, unsigned int align)
1663 tree expr;
1664 unsigned HOST_WIDE_INT offset;
1666 /* This function can't use
1667 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1668 || (MAX (MEM_ALIGN (mem),
1669 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1670 < align))
1671 return -1;
1672 else
1673 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1674 for two reasons:
1675 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1676 for <variable>. get_inner_reference doesn't handle it and
1677 even if it did, the alignment in that case needs to be determined
1678 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1679 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1680 isn't sufficiently aligned, the object it is in might be. */
1681 gcc_assert (MEM_P (mem));
1682 expr = MEM_EXPR (mem);
1683 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1684 return -1;
1686 offset = MEM_OFFSET (mem);
1687 if (DECL_P (expr))
1689 if (DECL_ALIGN (expr) < align)
1690 return -1;
1692 else if (INDIRECT_REF_P (expr))
1694 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1695 return -1;
1697 else if (TREE_CODE (expr) == COMPONENT_REF)
1699 while (1)
1701 tree inner = TREE_OPERAND (expr, 0);
1702 tree field = TREE_OPERAND (expr, 1);
1703 tree byte_offset = component_ref_field_offset (expr);
1704 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1706 if (!byte_offset
1707 || !tree_fits_uhwi_p (byte_offset)
1708 || !tree_fits_uhwi_p (bit_offset))
1709 return -1;
1711 offset += tree_to_uhwi (byte_offset);
1712 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1714 if (inner == NULL_TREE)
1716 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1717 < (unsigned int) align)
1718 return -1;
1719 break;
1721 else if (DECL_P (inner))
1723 if (DECL_ALIGN (inner) < align)
1724 return -1;
1725 break;
1727 else if (TREE_CODE (inner) != COMPONENT_REF)
1728 return -1;
1729 expr = inner;
1732 else
1733 return -1;
1735 return offset & ((align / BITS_PER_UNIT) - 1);
1738 /* Given REF (a MEM) and T, either the type of X or the expression
1739 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1740 if we are making a new object of this type. BITPOS is nonzero if
1741 there is an offset outstanding on T that will be applied later. */
1743 void
1744 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1745 HOST_WIDE_INT bitpos)
1747 HOST_WIDE_INT apply_bitpos = 0;
1748 tree type;
1749 struct mem_attrs attrs, *defattrs, *refattrs;
1750 addr_space_t as;
1752 /* It can happen that type_for_mode was given a mode for which there
1753 is no language-level type. In which case it returns NULL, which
1754 we can see here. */
1755 if (t == NULL_TREE)
1756 return;
1758 type = TYPE_P (t) ? t : TREE_TYPE (t);
1759 if (type == error_mark_node)
1760 return;
1762 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1763 wrong answer, as it assumes that DECL_RTL already has the right alias
1764 info. Callers should not set DECL_RTL until after the call to
1765 set_mem_attributes. */
1766 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1768 memset (&attrs, 0, sizeof (attrs));
1770 /* Get the alias set from the expression or type (perhaps using a
1771 front-end routine) and use it. */
1772 attrs.alias = get_alias_set (t);
1774 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1775 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1777 /* Default values from pre-existing memory attributes if present. */
1778 refattrs = MEM_ATTRS (ref);
1779 if (refattrs)
1781 /* ??? Can this ever happen? Calling this routine on a MEM that
1782 already carries memory attributes should probably be invalid. */
1783 attrs.expr = refattrs->expr;
1784 attrs.offset_known_p = refattrs->offset_known_p;
1785 attrs.offset = refattrs->offset;
1786 attrs.size_known_p = refattrs->size_known_p;
1787 attrs.size = refattrs->size;
1788 attrs.align = refattrs->align;
1791 /* Otherwise, default values from the mode of the MEM reference. */
1792 else
1794 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1795 gcc_assert (!defattrs->expr);
1796 gcc_assert (!defattrs->offset_known_p);
1798 /* Respect mode size. */
1799 attrs.size_known_p = defattrs->size_known_p;
1800 attrs.size = defattrs->size;
1801 /* ??? Is this really necessary? We probably should always get
1802 the size from the type below. */
1804 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1805 if T is an object, always compute the object alignment below. */
1806 if (TYPE_P (t))
1807 attrs.align = defattrs->align;
1808 else
1809 attrs.align = BITS_PER_UNIT;
1810 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1811 e.g. if the type carries an alignment attribute. Should we be
1812 able to simply always use TYPE_ALIGN? */
1815 /* We can set the alignment from the type if we are making an object,
1816 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1817 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1818 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1820 /* If the size is known, we can set that. */
1821 tree new_size = TYPE_SIZE_UNIT (type);
1823 /* The address-space is that of the type. */
1824 as = TYPE_ADDR_SPACE (type);
1826 /* If T is not a type, we may be able to deduce some more information about
1827 the expression. */
1828 if (! TYPE_P (t))
1830 tree base;
1832 if (TREE_THIS_VOLATILE (t))
1833 MEM_VOLATILE_P (ref) = 1;
1835 /* Now remove any conversions: they don't change what the underlying
1836 object is. Likewise for SAVE_EXPR. */
1837 while (CONVERT_EXPR_P (t)
1838 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1839 || TREE_CODE (t) == SAVE_EXPR)
1840 t = TREE_OPERAND (t, 0);
1842 /* Note whether this expression can trap. */
1843 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1845 base = get_base_address (t);
1846 if (base)
1848 if (DECL_P (base)
1849 && TREE_READONLY (base)
1850 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1851 && !TREE_THIS_VOLATILE (base))
1852 MEM_READONLY_P (ref) = 1;
1854 /* Mark static const strings readonly as well. */
1855 if (TREE_CODE (base) == STRING_CST
1856 && TREE_READONLY (base)
1857 && TREE_STATIC (base))
1858 MEM_READONLY_P (ref) = 1;
1860 /* Address-space information is on the base object. */
1861 if (TREE_CODE (base) == MEM_REF
1862 || TREE_CODE (base) == TARGET_MEM_REF)
1863 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1864 0))));
1865 else
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1869 /* If this expression uses it's parent's alias set, mark it such
1870 that we won't change it. */
1871 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1872 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1874 /* If this is a decl, set the attributes of the MEM from it. */
1875 if (DECL_P (t))
1877 attrs.expr = t;
1878 attrs.offset_known_p = true;
1879 attrs.offset = 0;
1880 apply_bitpos = bitpos;
1881 new_size = DECL_SIZE_UNIT (t);
1884 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1885 else if (CONSTANT_CLASS_P (t))
1888 /* If this is a field reference, record it. */
1889 else if (TREE_CODE (t) == COMPONENT_REF)
1891 attrs.expr = t;
1892 attrs.offset_known_p = true;
1893 attrs.offset = 0;
1894 apply_bitpos = bitpos;
1895 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1896 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1899 /* If this is an array reference, look for an outer field reference. */
1900 else if (TREE_CODE (t) == ARRAY_REF)
1902 tree off_tree = size_zero_node;
1903 /* We can't modify t, because we use it at the end of the
1904 function. */
1905 tree t2 = t;
1909 tree index = TREE_OPERAND (t2, 1);
1910 tree low_bound = array_ref_low_bound (t2);
1911 tree unit_size = array_ref_element_size (t2);
1913 /* We assume all arrays have sizes that are a multiple of a byte.
1914 First subtract the lower bound, if any, in the type of the
1915 index, then convert to sizetype and multiply by the size of
1916 the array element. */
1917 if (! integer_zerop (low_bound))
1918 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1919 index, low_bound);
1921 off_tree = size_binop (PLUS_EXPR,
1922 size_binop (MULT_EXPR,
1923 fold_convert (sizetype,
1924 index),
1925 unit_size),
1926 off_tree);
1927 t2 = TREE_OPERAND (t2, 0);
1929 while (TREE_CODE (t2) == ARRAY_REF);
1931 if (DECL_P (t2)
1932 || TREE_CODE (t2) == COMPONENT_REF)
1934 attrs.expr = t2;
1935 attrs.offset_known_p = false;
1936 if (tree_fits_uhwi_p (off_tree))
1938 attrs.offset_known_p = true;
1939 attrs.offset = tree_to_uhwi (off_tree);
1940 apply_bitpos = bitpos;
1943 /* Else do not record a MEM_EXPR. */
1946 /* If this is an indirect reference, record it. */
1947 else if (TREE_CODE (t) == MEM_REF
1948 || TREE_CODE (t) == TARGET_MEM_REF)
1950 attrs.expr = t;
1951 attrs.offset_known_p = true;
1952 attrs.offset = 0;
1953 apply_bitpos = bitpos;
1956 /* Compute the alignment. */
1957 unsigned int obj_align;
1958 unsigned HOST_WIDE_INT obj_bitpos;
1959 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1960 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1961 if (obj_bitpos != 0)
1962 obj_align = (obj_bitpos & -obj_bitpos);
1963 attrs.align = MAX (attrs.align, obj_align);
1966 if (tree_fits_uhwi_p (new_size))
1968 attrs.size_known_p = true;
1969 attrs.size = tree_to_uhwi (new_size);
1972 /* If we modified OFFSET based on T, then subtract the outstanding
1973 bit position offset. Similarly, increase the size of the accessed
1974 object to contain the negative offset. */
1975 if (apply_bitpos)
1977 gcc_assert (attrs.offset_known_p);
1978 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1979 if (attrs.size_known_p)
1980 attrs.size += apply_bitpos / BITS_PER_UNIT;
1983 /* Now set the attributes we computed above. */
1984 attrs.addrspace = as;
1985 set_mem_attrs (ref, &attrs);
1988 void
1989 set_mem_attributes (rtx ref, tree t, int objectp)
1991 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1994 /* Set the alias set of MEM to SET. */
1996 void
1997 set_mem_alias_set (rtx mem, alias_set_type set)
1999 struct mem_attrs attrs;
2001 /* If the new and old alias sets don't conflict, something is wrong. */
2002 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2003 attrs = *get_mem_attrs (mem);
2004 attrs.alias = set;
2005 set_mem_attrs (mem, &attrs);
2008 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2010 void
2011 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2013 struct mem_attrs attrs;
2015 attrs = *get_mem_attrs (mem);
2016 attrs.addrspace = addrspace;
2017 set_mem_attrs (mem, &attrs);
2020 /* Set the alignment of MEM to ALIGN bits. */
2022 void
2023 set_mem_align (rtx mem, unsigned int align)
2025 struct mem_attrs attrs;
2027 attrs = *get_mem_attrs (mem);
2028 attrs.align = align;
2029 set_mem_attrs (mem, &attrs);
2032 /* Set the expr for MEM to EXPR. */
2034 void
2035 set_mem_expr (rtx mem, tree expr)
2037 struct mem_attrs attrs;
2039 attrs = *get_mem_attrs (mem);
2040 attrs.expr = expr;
2041 set_mem_attrs (mem, &attrs);
2044 /* Set the offset of MEM to OFFSET. */
2046 void
2047 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2049 struct mem_attrs attrs;
2051 attrs = *get_mem_attrs (mem);
2052 attrs.offset_known_p = true;
2053 attrs.offset = offset;
2054 set_mem_attrs (mem, &attrs);
2057 /* Clear the offset of MEM. */
2059 void
2060 clear_mem_offset (rtx mem)
2062 struct mem_attrs attrs;
2064 attrs = *get_mem_attrs (mem);
2065 attrs.offset_known_p = false;
2066 set_mem_attrs (mem, &attrs);
2069 /* Set the size of MEM to SIZE. */
2071 void
2072 set_mem_size (rtx mem, HOST_WIDE_INT size)
2074 struct mem_attrs attrs;
2076 attrs = *get_mem_attrs (mem);
2077 attrs.size_known_p = true;
2078 attrs.size = size;
2079 set_mem_attrs (mem, &attrs);
2082 /* Clear the size of MEM. */
2084 void
2085 clear_mem_size (rtx mem)
2087 struct mem_attrs attrs;
2089 attrs = *get_mem_attrs (mem);
2090 attrs.size_known_p = false;
2091 set_mem_attrs (mem, &attrs);
2094 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2095 and its address changed to ADDR. (VOIDmode means don't change the mode.
2096 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2097 returned memory location is required to be valid. INPLACE is true if any
2098 changes can be made directly to MEMREF or false if MEMREF must be treated
2099 as immutable.
2101 The memory attributes are not changed. */
2103 static rtx
2104 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2105 bool inplace)
2107 addr_space_t as;
2108 rtx new_rtx;
2110 gcc_assert (MEM_P (memref));
2111 as = MEM_ADDR_SPACE (memref);
2112 if (mode == VOIDmode)
2113 mode = GET_MODE (memref);
2114 if (addr == 0)
2115 addr = XEXP (memref, 0);
2116 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2117 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2118 return memref;
2120 /* Don't validate address for LRA. LRA can make the address valid
2121 by itself in most efficient way. */
2122 if (validate && !lra_in_progress)
2124 if (reload_in_progress || reload_completed)
2125 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2126 else
2127 addr = memory_address_addr_space (mode, addr, as);
2130 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2131 return memref;
2133 if (inplace)
2135 XEXP (memref, 0) = addr;
2136 return memref;
2139 new_rtx = gen_rtx_MEM (mode, addr);
2140 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2141 return new_rtx;
2144 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2145 way we are changing MEMREF, so we only preserve the alias set. */
2148 change_address (rtx memref, machine_mode mode, rtx addr)
2150 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2151 machine_mode mmode = GET_MODE (new_rtx);
2152 struct mem_attrs attrs, *defattrs;
2154 attrs = *get_mem_attrs (memref);
2155 defattrs = mode_mem_attrs[(int) mmode];
2156 attrs.expr = NULL_TREE;
2157 attrs.offset_known_p = false;
2158 attrs.size_known_p = defattrs->size_known_p;
2159 attrs.size = defattrs->size;
2160 attrs.align = defattrs->align;
2162 /* If there are no changes, just return the original memory reference. */
2163 if (new_rtx == memref)
2165 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2166 return new_rtx;
2168 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2169 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2172 set_mem_attrs (new_rtx, &attrs);
2173 return new_rtx;
2176 /* Return a memory reference like MEMREF, but with its mode changed
2177 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2178 nonzero, the memory address is forced to be valid.
2179 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2180 and the caller is responsible for adjusting MEMREF base register.
2181 If ADJUST_OBJECT is zero, the underlying object associated with the
2182 memory reference is left unchanged and the caller is responsible for
2183 dealing with it. Otherwise, if the new memory reference is outside
2184 the underlying object, even partially, then the object is dropped.
2185 SIZE, if nonzero, is the size of an access in cases where MODE
2186 has no inherent size. */
2189 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2190 int validate, int adjust_address, int adjust_object,
2191 HOST_WIDE_INT size)
2193 rtx addr = XEXP (memref, 0);
2194 rtx new_rtx;
2195 machine_mode address_mode;
2196 int pbits;
2197 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2198 unsigned HOST_WIDE_INT max_align;
2199 #ifdef POINTERS_EXTEND_UNSIGNED
2200 machine_mode pointer_mode
2201 = targetm.addr_space.pointer_mode (attrs.addrspace);
2202 #endif
2204 /* VOIDmode means no mode change for change_address_1. */
2205 if (mode == VOIDmode)
2206 mode = GET_MODE (memref);
2208 /* Take the size of non-BLKmode accesses from the mode. */
2209 defattrs = mode_mem_attrs[(int) mode];
2210 if (defattrs->size_known_p)
2211 size = defattrs->size;
2213 /* If there are no changes, just return the original memory reference. */
2214 if (mode == GET_MODE (memref) && !offset
2215 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2216 && (!validate || memory_address_addr_space_p (mode, addr,
2217 attrs.addrspace)))
2218 return memref;
2220 /* ??? Prefer to create garbage instead of creating shared rtl.
2221 This may happen even if offset is nonzero -- consider
2222 (plus (plus reg reg) const_int) -- so do this always. */
2223 addr = copy_rtx (addr);
2225 /* Convert a possibly large offset to a signed value within the
2226 range of the target address space. */
2227 address_mode = get_address_mode (memref);
2228 pbits = GET_MODE_BITSIZE (address_mode);
2229 if (HOST_BITS_PER_WIDE_INT > pbits)
2231 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2232 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2233 >> shift);
2236 if (adjust_address)
2238 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2239 object, we can merge it into the LO_SUM. */
2240 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2241 && offset >= 0
2242 && (unsigned HOST_WIDE_INT) offset
2243 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2244 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2245 plus_constant (address_mode,
2246 XEXP (addr, 1), offset));
2247 #ifdef POINTERS_EXTEND_UNSIGNED
2248 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2249 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2250 the fact that pointers are not allowed to overflow. */
2251 else if (POINTERS_EXTEND_UNSIGNED > 0
2252 && GET_CODE (addr) == ZERO_EXTEND
2253 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2254 && trunc_int_for_mode (offset, pointer_mode) == offset)
2255 addr = gen_rtx_ZERO_EXTEND (address_mode,
2256 plus_constant (pointer_mode,
2257 XEXP (addr, 0), offset));
2258 #endif
2259 else
2260 addr = plus_constant (address_mode, addr, offset);
2263 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2265 /* If the address is a REG, change_address_1 rightfully returns memref,
2266 but this would destroy memref's MEM_ATTRS. */
2267 if (new_rtx == memref && offset != 0)
2268 new_rtx = copy_rtx (new_rtx);
2270 /* Conservatively drop the object if we don't know where we start from. */
2271 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2273 attrs.expr = NULL_TREE;
2274 attrs.alias = 0;
2277 /* Compute the new values of the memory attributes due to this adjustment.
2278 We add the offsets and update the alignment. */
2279 if (attrs.offset_known_p)
2281 attrs.offset += offset;
2283 /* Drop the object if the new left end is not within its bounds. */
2284 if (adjust_object && attrs.offset < 0)
2286 attrs.expr = NULL_TREE;
2287 attrs.alias = 0;
2291 /* Compute the new alignment by taking the MIN of the alignment and the
2292 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2293 if zero. */
2294 if (offset != 0)
2296 max_align = (offset & -offset) * BITS_PER_UNIT;
2297 attrs.align = MIN (attrs.align, max_align);
2300 if (size)
2302 /* Drop the object if the new right end is not within its bounds. */
2303 if (adjust_object && (offset + size) > attrs.size)
2305 attrs.expr = NULL_TREE;
2306 attrs.alias = 0;
2308 attrs.size_known_p = true;
2309 attrs.size = size;
2311 else if (attrs.size_known_p)
2313 gcc_assert (!adjust_object);
2314 attrs.size -= offset;
2315 /* ??? The store_by_pieces machinery generates negative sizes,
2316 so don't assert for that here. */
2319 set_mem_attrs (new_rtx, &attrs);
2321 return new_rtx;
2324 /* Return a memory reference like MEMREF, but with its mode changed
2325 to MODE and its address changed to ADDR, which is assumed to be
2326 MEMREF offset by OFFSET bytes. If VALIDATE is
2327 nonzero, the memory address is forced to be valid. */
2330 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2331 HOST_WIDE_INT offset, int validate)
2333 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2334 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2337 /* Return a memory reference like MEMREF, but whose address is changed by
2338 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2339 known to be in OFFSET (possibly 1). */
2342 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2344 rtx new_rtx, addr = XEXP (memref, 0);
2345 machine_mode address_mode;
2346 struct mem_attrs attrs, *defattrs;
2348 attrs = *get_mem_attrs (memref);
2349 address_mode = get_address_mode (memref);
2350 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2352 /* At this point we don't know _why_ the address is invalid. It
2353 could have secondary memory references, multiplies or anything.
2355 However, if we did go and rearrange things, we can wind up not
2356 being able to recognize the magic around pic_offset_table_rtx.
2357 This stuff is fragile, and is yet another example of why it is
2358 bad to expose PIC machinery too early. */
2359 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2360 attrs.addrspace)
2361 && GET_CODE (addr) == PLUS
2362 && XEXP (addr, 0) == pic_offset_table_rtx)
2364 addr = force_reg (GET_MODE (addr), addr);
2365 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2368 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2369 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2371 /* If there are no changes, just return the original memory reference. */
2372 if (new_rtx == memref)
2373 return new_rtx;
2375 /* Update the alignment to reflect the offset. Reset the offset, which
2376 we don't know. */
2377 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2378 attrs.offset_known_p = false;
2379 attrs.size_known_p = defattrs->size_known_p;
2380 attrs.size = defattrs->size;
2381 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2382 set_mem_attrs (new_rtx, &attrs);
2383 return new_rtx;
2386 /* Return a memory reference like MEMREF, but with its address changed to
2387 ADDR. The caller is asserting that the actual piece of memory pointed
2388 to is the same, just the form of the address is being changed, such as
2389 by putting something into a register. INPLACE is true if any changes
2390 can be made directly to MEMREF or false if MEMREF must be treated as
2391 immutable. */
2394 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2396 /* change_address_1 copies the memory attribute structure without change
2397 and that's exactly what we want here. */
2398 update_temp_slot_address (XEXP (memref, 0), addr);
2399 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2402 /* Likewise, but the reference is not required to be valid. */
2405 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2407 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2410 /* Return a memory reference like MEMREF, but with its mode widened to
2411 MODE and offset by OFFSET. This would be used by targets that e.g.
2412 cannot issue QImode memory operations and have to use SImode memory
2413 operations plus masking logic. */
2416 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2418 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2419 struct mem_attrs attrs;
2420 unsigned int size = GET_MODE_SIZE (mode);
2422 /* If there are no changes, just return the original memory reference. */
2423 if (new_rtx == memref)
2424 return new_rtx;
2426 attrs = *get_mem_attrs (new_rtx);
2428 /* If we don't know what offset we were at within the expression, then
2429 we can't know if we've overstepped the bounds. */
2430 if (! attrs.offset_known_p)
2431 attrs.expr = NULL_TREE;
2433 while (attrs.expr)
2435 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2437 tree field = TREE_OPERAND (attrs.expr, 1);
2438 tree offset = component_ref_field_offset (attrs.expr);
2440 if (! DECL_SIZE_UNIT (field))
2442 attrs.expr = NULL_TREE;
2443 break;
2446 /* Is the field at least as large as the access? If so, ok,
2447 otherwise strip back to the containing structure. */
2448 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2449 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2450 && attrs.offset >= 0)
2451 break;
2453 if (! tree_fits_uhwi_p (offset))
2455 attrs.expr = NULL_TREE;
2456 break;
2459 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2460 attrs.offset += tree_to_uhwi (offset);
2461 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2462 / BITS_PER_UNIT);
2464 /* Similarly for the decl. */
2465 else if (DECL_P (attrs.expr)
2466 && DECL_SIZE_UNIT (attrs.expr)
2467 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2468 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2469 && (! attrs.offset_known_p || attrs.offset >= 0))
2470 break;
2471 else
2473 /* The widened memory access overflows the expression, which means
2474 that it could alias another expression. Zap it. */
2475 attrs.expr = NULL_TREE;
2476 break;
2480 if (! attrs.expr)
2481 attrs.offset_known_p = false;
2483 /* The widened memory may alias other stuff, so zap the alias set. */
2484 /* ??? Maybe use get_alias_set on any remaining expression. */
2485 attrs.alias = 0;
2486 attrs.size_known_p = true;
2487 attrs.size = size;
2488 set_mem_attrs (new_rtx, &attrs);
2489 return new_rtx;
2492 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2493 static GTY(()) tree spill_slot_decl;
2495 tree
2496 get_spill_slot_decl (bool force_build_p)
2498 tree d = spill_slot_decl;
2499 rtx rd;
2500 struct mem_attrs attrs;
2502 if (d || !force_build_p)
2503 return d;
2505 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2506 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2507 DECL_ARTIFICIAL (d) = 1;
2508 DECL_IGNORED_P (d) = 1;
2509 TREE_USED (d) = 1;
2510 spill_slot_decl = d;
2512 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2513 MEM_NOTRAP_P (rd) = 1;
2514 attrs = *mode_mem_attrs[(int) BLKmode];
2515 attrs.alias = new_alias_set ();
2516 attrs.expr = d;
2517 set_mem_attrs (rd, &attrs);
2518 SET_DECL_RTL (d, rd);
2520 return d;
2523 /* Given MEM, a result from assign_stack_local, fill in the memory
2524 attributes as appropriate for a register allocator spill slot.
2525 These slots are not aliasable by other memory. We arrange for
2526 them all to use a single MEM_EXPR, so that the aliasing code can
2527 work properly in the case of shared spill slots. */
2529 void
2530 set_mem_attrs_for_spill (rtx mem)
2532 struct mem_attrs attrs;
2533 rtx addr;
2535 attrs = *get_mem_attrs (mem);
2536 attrs.expr = get_spill_slot_decl (true);
2537 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2538 attrs.addrspace = ADDR_SPACE_GENERIC;
2540 /* We expect the incoming memory to be of the form:
2541 (mem:MODE (plus (reg sfp) (const_int offset)))
2542 with perhaps the plus missing for offset = 0. */
2543 addr = XEXP (mem, 0);
2544 attrs.offset_known_p = true;
2545 attrs.offset = 0;
2546 if (GET_CODE (addr) == PLUS
2547 && CONST_INT_P (XEXP (addr, 1)))
2548 attrs.offset = INTVAL (XEXP (addr, 1));
2550 set_mem_attrs (mem, &attrs);
2551 MEM_NOTRAP_P (mem) = 1;
2554 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2556 rtx_code_label *
2557 gen_label_rtx (void)
2559 return as_a <rtx_code_label *> (
2560 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2561 NULL, label_num++, NULL));
2564 /* For procedure integration. */
2566 /* Install new pointers to the first and last insns in the chain.
2567 Also, set cur_insn_uid to one higher than the last in use.
2568 Used for an inline-procedure after copying the insn chain. */
2570 void
2571 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2573 rtx_insn *insn;
2575 set_first_insn (first);
2576 set_last_insn (last);
2577 cur_insn_uid = 0;
2579 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2581 int debug_count = 0;
2583 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2584 cur_debug_insn_uid = 0;
2586 for (insn = first; insn; insn = NEXT_INSN (insn))
2587 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2588 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2589 else
2591 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2592 if (DEBUG_INSN_P (insn))
2593 debug_count++;
2596 if (debug_count)
2597 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2598 else
2599 cur_debug_insn_uid++;
2601 else
2602 for (insn = first; insn; insn = NEXT_INSN (insn))
2603 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2605 cur_insn_uid++;
2608 /* Go through all the RTL insn bodies and copy any invalid shared
2609 structure. This routine should only be called once. */
2611 static void
2612 unshare_all_rtl_1 (rtx_insn *insn)
2614 /* Unshare just about everything else. */
2615 unshare_all_rtl_in_chain (insn);
2617 /* Make sure the addresses of stack slots found outside the insn chain
2618 (such as, in DECL_RTL of a variable) are not shared
2619 with the insn chain.
2621 This special care is necessary when the stack slot MEM does not
2622 actually appear in the insn chain. If it does appear, its address
2623 is unshared from all else at that point. */
2624 stack_slot_list = safe_as_a <rtx_expr_list *> (
2625 copy_rtx_if_shared (stack_slot_list));
2628 /* Go through all the RTL insn bodies and copy any invalid shared
2629 structure, again. This is a fairly expensive thing to do so it
2630 should be done sparingly. */
2632 void
2633 unshare_all_rtl_again (rtx_insn *insn)
2635 rtx_insn *p;
2636 tree decl;
2638 for (p = insn; p; p = NEXT_INSN (p))
2639 if (INSN_P (p))
2641 reset_used_flags (PATTERN (p));
2642 reset_used_flags (REG_NOTES (p));
2643 if (CALL_P (p))
2644 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2647 /* Make sure that virtual stack slots are not shared. */
2648 set_used_decls (DECL_INITIAL (cfun->decl));
2650 /* Make sure that virtual parameters are not shared. */
2651 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2652 set_used_flags (DECL_RTL (decl));
2654 reset_used_flags (stack_slot_list);
2656 unshare_all_rtl_1 (insn);
2659 unsigned int
2660 unshare_all_rtl (void)
2662 unshare_all_rtl_1 (get_insns ());
2663 return 0;
2667 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2668 Recursively does the same for subexpressions. */
2670 static void
2671 verify_rtx_sharing (rtx orig, rtx insn)
2673 rtx x = orig;
2674 int i;
2675 enum rtx_code code;
2676 const char *format_ptr;
2678 if (x == 0)
2679 return;
2681 code = GET_CODE (x);
2683 /* These types may be freely shared. */
2685 switch (code)
2687 case REG:
2688 case DEBUG_EXPR:
2689 case VALUE:
2690 CASE_CONST_ANY:
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 case CODE_LABEL:
2694 case PC:
2695 case CC0:
2696 case RETURN:
2697 case SIMPLE_RETURN:
2698 case SCRATCH:
2699 /* SCRATCH must be shared because they represent distinct values. */
2700 return;
2701 case CLOBBER:
2702 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2703 clobbers or clobbers of hard registers that originated as pseudos.
2704 This is needed to allow safe register renaming. */
2705 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2707 return;
2708 break;
2710 case CONST:
2711 if (shared_const_p (orig))
2712 return;
2713 break;
2715 case MEM:
2716 /* A MEM is allowed to be shared if its address is constant. */
2717 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2718 || reload_completed || reload_in_progress)
2719 return;
2721 break;
2723 default:
2724 break;
2727 /* This rtx may not be shared. If it has already been seen,
2728 replace it with a copy of itself. */
2729 #ifdef ENABLE_CHECKING
2730 if (RTX_FLAG (x, used))
2732 error ("invalid rtl sharing found in the insn");
2733 debug_rtx (insn);
2734 error ("shared rtx");
2735 debug_rtx (x);
2736 internal_error ("internal consistency failure");
2738 #endif
2739 gcc_assert (!RTX_FLAG (x, used));
2741 RTX_FLAG (x, used) = 1;
2743 /* Now scan the subexpressions recursively. */
2745 format_ptr = GET_RTX_FORMAT (code);
2747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2749 switch (*format_ptr++)
2751 case 'e':
2752 verify_rtx_sharing (XEXP (x, i), insn);
2753 break;
2755 case 'E':
2756 if (XVEC (x, i) != NULL)
2758 int j;
2759 int len = XVECLEN (x, i);
2761 for (j = 0; j < len; j++)
2763 /* We allow sharing of ASM_OPERANDS inside single
2764 instruction. */
2765 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2766 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2767 == ASM_OPERANDS))
2768 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2769 else
2770 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2773 break;
2776 return;
2779 /* Reset used-flags for INSN. */
2781 static void
2782 reset_insn_used_flags (rtx insn)
2784 gcc_assert (INSN_P (insn));
2785 reset_used_flags (PATTERN (insn));
2786 reset_used_flags (REG_NOTES (insn));
2787 if (CALL_P (insn))
2788 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2791 /* Go through all the RTL insn bodies and clear all the USED bits. */
2793 static void
2794 reset_all_used_flags (void)
2796 rtx_insn *p;
2798 for (p = get_insns (); p; p = NEXT_INSN (p))
2799 if (INSN_P (p))
2801 rtx pat = PATTERN (p);
2802 if (GET_CODE (pat) != SEQUENCE)
2803 reset_insn_used_flags (p);
2804 else
2806 gcc_assert (REG_NOTES (p) == NULL);
2807 for (int i = 0; i < XVECLEN (pat, 0); i++)
2809 rtx insn = XVECEXP (pat, 0, i);
2810 if (INSN_P (insn))
2811 reset_insn_used_flags (insn);
2817 /* Verify sharing in INSN. */
2819 static void
2820 verify_insn_sharing (rtx insn)
2822 gcc_assert (INSN_P (insn));
2823 reset_used_flags (PATTERN (insn));
2824 reset_used_flags (REG_NOTES (insn));
2825 if (CALL_P (insn))
2826 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2829 /* Go through all the RTL insn bodies and check that there is no unexpected
2830 sharing in between the subexpressions. */
2832 DEBUG_FUNCTION void
2833 verify_rtl_sharing (void)
2835 rtx_insn *p;
2837 timevar_push (TV_VERIFY_RTL_SHARING);
2839 reset_all_used_flags ();
2841 for (p = get_insns (); p; p = NEXT_INSN (p))
2842 if (INSN_P (p))
2844 rtx pat = PATTERN (p);
2845 if (GET_CODE (pat) != SEQUENCE)
2846 verify_insn_sharing (p);
2847 else
2848 for (int i = 0; i < XVECLEN (pat, 0); i++)
2850 rtx insn = XVECEXP (pat, 0, i);
2851 if (INSN_P (insn))
2852 verify_insn_sharing (insn);
2856 reset_all_used_flags ();
2858 timevar_pop (TV_VERIFY_RTL_SHARING);
2861 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2862 Assumes the mark bits are cleared at entry. */
2864 void
2865 unshare_all_rtl_in_chain (rtx_insn *insn)
2867 for (; insn; insn = NEXT_INSN (insn))
2868 if (INSN_P (insn))
2870 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2871 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2872 if (CALL_P (insn))
2873 CALL_INSN_FUNCTION_USAGE (insn)
2874 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2878 /* Go through all virtual stack slots of a function and mark them as
2879 shared. We never replace the DECL_RTLs themselves with a copy,
2880 but expressions mentioned into a DECL_RTL cannot be shared with
2881 expressions in the instruction stream.
2883 Note that reload may convert pseudo registers into memories in-place.
2884 Pseudo registers are always shared, but MEMs never are. Thus if we
2885 reset the used flags on MEMs in the instruction stream, we must set
2886 them again on MEMs that appear in DECL_RTLs. */
2888 static void
2889 set_used_decls (tree blk)
2891 tree t;
2893 /* Mark decls. */
2894 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2895 if (DECL_RTL_SET_P (t))
2896 set_used_flags (DECL_RTL (t));
2898 /* Now process sub-blocks. */
2899 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2900 set_used_decls (t);
2903 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2904 Recursively does the same for subexpressions. Uses
2905 copy_rtx_if_shared_1 to reduce stack space. */
2908 copy_rtx_if_shared (rtx orig)
2910 copy_rtx_if_shared_1 (&orig);
2911 return orig;
2914 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2915 use. Recursively does the same for subexpressions. */
2917 static void
2918 copy_rtx_if_shared_1 (rtx *orig1)
2920 rtx x;
2921 int i;
2922 enum rtx_code code;
2923 rtx *last_ptr;
2924 const char *format_ptr;
2925 int copied = 0;
2926 int length;
2928 /* Repeat is used to turn tail-recursion into iteration. */
2929 repeat:
2930 x = *orig1;
2932 if (x == 0)
2933 return;
2935 code = GET_CODE (x);
2937 /* These types may be freely shared. */
2939 switch (code)
2941 case REG:
2942 case DEBUG_EXPR:
2943 case VALUE:
2944 CASE_CONST_ANY:
2945 case SYMBOL_REF:
2946 case LABEL_REF:
2947 case CODE_LABEL:
2948 case PC:
2949 case CC0:
2950 case RETURN:
2951 case SIMPLE_RETURN:
2952 case SCRATCH:
2953 /* SCRATCH must be shared because they represent distinct values. */
2954 return;
2955 case CLOBBER:
2956 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2957 clobbers or clobbers of hard registers that originated as pseudos.
2958 This is needed to allow safe register renaming. */
2959 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2960 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2961 return;
2962 break;
2964 case CONST:
2965 if (shared_const_p (x))
2966 return;
2967 break;
2969 case DEBUG_INSN:
2970 case INSN:
2971 case JUMP_INSN:
2972 case CALL_INSN:
2973 case NOTE:
2974 case BARRIER:
2975 /* The chain of insns is not being copied. */
2976 return;
2978 default:
2979 break;
2982 /* This rtx may not be shared. If it has already been seen,
2983 replace it with a copy of itself. */
2985 if (RTX_FLAG (x, used))
2987 x = shallow_copy_rtx (x);
2988 copied = 1;
2990 RTX_FLAG (x, used) = 1;
2992 /* Now scan the subexpressions recursively.
2993 We can store any replaced subexpressions directly into X
2994 since we know X is not shared! Any vectors in X
2995 must be copied if X was copied. */
2997 format_ptr = GET_RTX_FORMAT (code);
2998 length = GET_RTX_LENGTH (code);
2999 last_ptr = NULL;
3001 for (i = 0; i < length; i++)
3003 switch (*format_ptr++)
3005 case 'e':
3006 if (last_ptr)
3007 copy_rtx_if_shared_1 (last_ptr);
3008 last_ptr = &XEXP (x, i);
3009 break;
3011 case 'E':
3012 if (XVEC (x, i) != NULL)
3014 int j;
3015 int len = XVECLEN (x, i);
3017 /* Copy the vector iff I copied the rtx and the length
3018 is nonzero. */
3019 if (copied && len > 0)
3020 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3022 /* Call recursively on all inside the vector. */
3023 for (j = 0; j < len; j++)
3025 if (last_ptr)
3026 copy_rtx_if_shared_1 (last_ptr);
3027 last_ptr = &XVECEXP (x, i, j);
3030 break;
3033 *orig1 = x;
3034 if (last_ptr)
3036 orig1 = last_ptr;
3037 goto repeat;
3039 return;
3042 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3044 static void
3045 mark_used_flags (rtx x, int flag)
3047 int i, j;
3048 enum rtx_code code;
3049 const char *format_ptr;
3050 int length;
3052 /* Repeat is used to turn tail-recursion into iteration. */
3053 repeat:
3054 if (x == 0)
3055 return;
3057 code = GET_CODE (x);
3059 /* These types may be freely shared so we needn't do any resetting
3060 for them. */
3062 switch (code)
3064 case REG:
3065 case DEBUG_EXPR:
3066 case VALUE:
3067 CASE_CONST_ANY:
3068 case SYMBOL_REF:
3069 case CODE_LABEL:
3070 case PC:
3071 case CC0:
3072 case RETURN:
3073 case SIMPLE_RETURN:
3074 return;
3076 case DEBUG_INSN:
3077 case INSN:
3078 case JUMP_INSN:
3079 case CALL_INSN:
3080 case NOTE:
3081 case LABEL_REF:
3082 case BARRIER:
3083 /* The chain of insns is not being copied. */
3084 return;
3086 default:
3087 break;
3090 RTX_FLAG (x, used) = flag;
3092 format_ptr = GET_RTX_FORMAT (code);
3093 length = GET_RTX_LENGTH (code);
3095 for (i = 0; i < length; i++)
3097 switch (*format_ptr++)
3099 case 'e':
3100 if (i == length-1)
3102 x = XEXP (x, i);
3103 goto repeat;
3105 mark_used_flags (XEXP (x, i), flag);
3106 break;
3108 case 'E':
3109 for (j = 0; j < XVECLEN (x, i); j++)
3110 mark_used_flags (XVECEXP (x, i, j), flag);
3111 break;
3116 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3117 to look for shared sub-parts. */
3119 void
3120 reset_used_flags (rtx x)
3122 mark_used_flags (x, 0);
3125 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3126 to look for shared sub-parts. */
3128 void
3129 set_used_flags (rtx x)
3131 mark_used_flags (x, 1);
3134 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3135 Return X or the rtx for the pseudo reg the value of X was copied into.
3136 OTHER must be valid as a SET_DEST. */
3139 make_safe_from (rtx x, rtx other)
3141 while (1)
3142 switch (GET_CODE (other))
3144 case SUBREG:
3145 other = SUBREG_REG (other);
3146 break;
3147 case STRICT_LOW_PART:
3148 case SIGN_EXTEND:
3149 case ZERO_EXTEND:
3150 other = XEXP (other, 0);
3151 break;
3152 default:
3153 goto done;
3155 done:
3156 if ((MEM_P (other)
3157 && ! CONSTANT_P (x)
3158 && !REG_P (x)
3159 && GET_CODE (x) != SUBREG)
3160 || (REG_P (other)
3161 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3162 || reg_mentioned_p (other, x))))
3164 rtx temp = gen_reg_rtx (GET_MODE (x));
3165 emit_move_insn (temp, x);
3166 return temp;
3168 return x;
3171 /* Emission of insns (adding them to the doubly-linked list). */
3173 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3175 rtx_insn *
3176 get_last_insn_anywhere (void)
3178 struct sequence_stack *seq;
3179 for (seq = get_current_sequence (); seq; seq = seq->next)
3180 if (seq->last != 0)
3181 return seq->last;
3182 return 0;
3185 /* Return the first nonnote insn emitted in current sequence or current
3186 function. This routine looks inside SEQUENCEs. */
3188 rtx_insn *
3189 get_first_nonnote_insn (void)
3191 rtx_insn *insn = get_insns ();
3193 if (insn)
3195 if (NOTE_P (insn))
3196 for (insn = next_insn (insn);
3197 insn && NOTE_P (insn);
3198 insn = next_insn (insn))
3199 continue;
3200 else
3202 if (NONJUMP_INSN_P (insn)
3203 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3204 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3208 return insn;
3211 /* Return the last nonnote insn emitted in current sequence or current
3212 function. This routine looks inside SEQUENCEs. */
3214 rtx_insn *
3215 get_last_nonnote_insn (void)
3217 rtx_insn *insn = get_last_insn ();
3219 if (insn)
3221 if (NOTE_P (insn))
3222 for (insn = previous_insn (insn);
3223 insn && NOTE_P (insn);
3224 insn = previous_insn (insn))
3225 continue;
3226 else
3228 if (NONJUMP_INSN_P (insn))
3229 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3230 insn = seq->insn (seq->len () - 1);
3234 return insn;
3237 /* Return the number of actual (non-debug) insns emitted in this
3238 function. */
3241 get_max_insn_count (void)
3243 int n = cur_insn_uid;
3245 /* The table size must be stable across -g, to avoid codegen
3246 differences due to debug insns, and not be affected by
3247 -fmin-insn-uid, to avoid excessive table size and to simplify
3248 debugging of -fcompare-debug failures. */
3249 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3250 n -= cur_debug_insn_uid;
3251 else
3252 n -= MIN_NONDEBUG_INSN_UID;
3254 return n;
3258 /* Return the next insn. If it is a SEQUENCE, return the first insn
3259 of the sequence. */
3261 rtx_insn *
3262 next_insn (rtx_insn *insn)
3264 if (insn)
3266 insn = NEXT_INSN (insn);
3267 if (insn && NONJUMP_INSN_P (insn)
3268 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3269 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3272 return insn;
3275 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3276 of the sequence. */
3278 rtx_insn *
3279 previous_insn (rtx_insn *insn)
3281 if (insn)
3283 insn = PREV_INSN (insn);
3284 if (insn && NONJUMP_INSN_P (insn))
3285 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3286 insn = seq->insn (seq->len () - 1);
3289 return insn;
3292 /* Return the next insn after INSN that is not a NOTE. This routine does not
3293 look inside SEQUENCEs. */
3295 rtx_insn *
3296 next_nonnote_insn (rtx uncast_insn)
3298 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3299 while (insn)
3301 insn = NEXT_INSN (insn);
3302 if (insn == 0 || !NOTE_P (insn))
3303 break;
3306 return insn;
3309 /* Return the next insn after INSN that is not a NOTE, but stop the
3310 search before we enter another basic block. This routine does not
3311 look inside SEQUENCEs. */
3313 rtx_insn *
3314 next_nonnote_insn_bb (rtx_insn *insn)
3316 while (insn)
3318 insn = NEXT_INSN (insn);
3319 if (insn == 0 || !NOTE_P (insn))
3320 break;
3321 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3322 return NULL;
3325 return insn;
3328 /* Return the previous insn before INSN that is not a NOTE. This routine does
3329 not look inside SEQUENCEs. */
3331 rtx_insn *
3332 prev_nonnote_insn (rtx uncast_insn)
3334 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3336 while (insn)
3338 insn = PREV_INSN (insn);
3339 if (insn == 0 || !NOTE_P (insn))
3340 break;
3343 return insn;
3346 /* Return the previous insn before INSN that is not a NOTE, but stop
3347 the search before we enter another basic block. This routine does
3348 not look inside SEQUENCEs. */
3350 rtx_insn *
3351 prev_nonnote_insn_bb (rtx uncast_insn)
3353 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3355 while (insn)
3357 insn = PREV_INSN (insn);
3358 if (insn == 0 || !NOTE_P (insn))
3359 break;
3360 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3361 return NULL;
3364 return insn;
3367 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3368 routine does not look inside SEQUENCEs. */
3370 rtx_insn *
3371 next_nondebug_insn (rtx uncast_insn)
3373 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3375 while (insn)
3377 insn = NEXT_INSN (insn);
3378 if (insn == 0 || !DEBUG_INSN_P (insn))
3379 break;
3382 return insn;
3385 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3386 This routine does not look inside SEQUENCEs. */
3388 rtx_insn *
3389 prev_nondebug_insn (rtx uncast_insn)
3391 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3393 while (insn)
3395 insn = PREV_INSN (insn);
3396 if (insn == 0 || !DEBUG_INSN_P (insn))
3397 break;
3400 return insn;
3403 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3404 This routine does not look inside SEQUENCEs. */
3406 rtx_insn *
3407 next_nonnote_nondebug_insn (rtx uncast_insn)
3409 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3411 while (insn)
3413 insn = NEXT_INSN (insn);
3414 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3415 break;
3418 return insn;
3421 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3422 This routine does not look inside SEQUENCEs. */
3424 rtx_insn *
3425 prev_nonnote_nondebug_insn (rtx uncast_insn)
3427 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3429 while (insn)
3431 insn = PREV_INSN (insn);
3432 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3433 break;
3436 return insn;
3439 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3440 or 0, if there is none. This routine does not look inside
3441 SEQUENCEs. */
3443 rtx_insn *
3444 next_real_insn (rtx uncast_insn)
3446 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3448 while (insn)
3450 insn = NEXT_INSN (insn);
3451 if (insn == 0 || INSN_P (insn))
3452 break;
3455 return insn;
3458 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3459 or 0, if there is none. This routine does not look inside
3460 SEQUENCEs. */
3462 rtx_insn *
3463 prev_real_insn (rtx uncast_insn)
3465 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3467 while (insn)
3469 insn = PREV_INSN (insn);
3470 if (insn == 0 || INSN_P (insn))
3471 break;
3474 return insn;
3477 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3478 This routine does not look inside SEQUENCEs. */
3480 rtx_call_insn *
3481 last_call_insn (void)
3483 rtx_insn *insn;
3485 for (insn = get_last_insn ();
3486 insn && !CALL_P (insn);
3487 insn = PREV_INSN (insn))
3490 return safe_as_a <rtx_call_insn *> (insn);
3493 /* Find the next insn after INSN that really does something. This routine
3494 does not look inside SEQUENCEs. After reload this also skips over
3495 standalone USE and CLOBBER insn. */
3498 active_insn_p (const_rtx insn)
3500 return (CALL_P (insn) || JUMP_P (insn)
3501 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3502 || (NONJUMP_INSN_P (insn)
3503 && (! reload_completed
3504 || (GET_CODE (PATTERN (insn)) != USE
3505 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3508 rtx_insn *
3509 next_active_insn (rtx uncast_insn)
3511 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3513 while (insn)
3515 insn = NEXT_INSN (insn);
3516 if (insn == 0 || active_insn_p (insn))
3517 break;
3520 return insn;
3523 /* Find the last insn before INSN that really does something. This routine
3524 does not look inside SEQUENCEs. After reload this also skips over
3525 standalone USE and CLOBBER insn. */
3527 rtx_insn *
3528 prev_active_insn (rtx uncast_insn)
3530 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3532 while (insn)
3534 insn = PREV_INSN (insn);
3535 if (insn == 0 || active_insn_p (insn))
3536 break;
3539 return insn;
3542 /* Return the next insn that uses CC0 after INSN, which is assumed to
3543 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3544 applied to the result of this function should yield INSN).
3546 Normally, this is simply the next insn. However, if a REG_CC_USER note
3547 is present, it contains the insn that uses CC0.
3549 Return 0 if we can't find the insn. */
3551 rtx_insn *
3552 next_cc0_user (rtx uncast_insn)
3554 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3556 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3558 if (note)
3559 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3561 insn = next_nonnote_insn (insn);
3562 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3563 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3565 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3566 return insn;
3568 return 0;
3571 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3572 note, it is the previous insn. */
3574 rtx_insn *
3575 prev_cc0_setter (rtx_insn *insn)
3577 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3579 if (note)
3580 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3582 insn = prev_nonnote_insn (insn);
3583 gcc_assert (sets_cc0_p (PATTERN (insn)));
3585 return insn;
3588 #ifdef AUTO_INC_DEC
3589 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3591 static int
3592 find_auto_inc (const_rtx x, const_rtx reg)
3594 subrtx_iterator::array_type array;
3595 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3597 const_rtx x = *iter;
3598 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3599 && rtx_equal_p (reg, XEXP (x, 0)))
3600 return true;
3602 return false;
3604 #endif
3606 /* Increment the label uses for all labels present in rtx. */
3608 static void
3609 mark_label_nuses (rtx x)
3611 enum rtx_code code;
3612 int i, j;
3613 const char *fmt;
3615 code = GET_CODE (x);
3616 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3617 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3619 fmt = GET_RTX_FORMAT (code);
3620 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3622 if (fmt[i] == 'e')
3623 mark_label_nuses (XEXP (x, i));
3624 else if (fmt[i] == 'E')
3625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3626 mark_label_nuses (XVECEXP (x, i, j));
3631 /* Try splitting insns that can be split for better scheduling.
3632 PAT is the pattern which might split.
3633 TRIAL is the insn providing PAT.
3634 LAST is nonzero if we should return the last insn of the sequence produced.
3636 If this routine succeeds in splitting, it returns the first or last
3637 replacement insn depending on the value of LAST. Otherwise, it
3638 returns TRIAL. If the insn to be returned can be split, it will be. */
3640 rtx_insn *
3641 try_split (rtx pat, rtx uncast_trial, int last)
3643 rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
3644 rtx_insn *before = PREV_INSN (trial);
3645 rtx_insn *after = NEXT_INSN (trial);
3646 rtx note;
3647 rtx_insn *seq, *tem;
3648 int probability;
3649 rtx_insn *insn_last, *insn;
3650 int njumps = 0;
3651 rtx call_insn = NULL_RTX;
3653 /* We're not good at redistributing frame information. */
3654 if (RTX_FRAME_RELATED_P (trial))
3655 return trial;
3657 if (any_condjump_p (trial)
3658 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3659 split_branch_probability = XINT (note, 0);
3660 probability = split_branch_probability;
3662 seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));
3664 split_branch_probability = -1;
3666 if (!seq)
3667 return trial;
3669 /* Avoid infinite loop if any insn of the result matches
3670 the original pattern. */
3671 insn_last = seq;
3672 while (1)
3674 if (INSN_P (insn_last)
3675 && rtx_equal_p (PATTERN (insn_last), pat))
3676 return trial;
3677 if (!NEXT_INSN (insn_last))
3678 break;
3679 insn_last = NEXT_INSN (insn_last);
3682 /* We will be adding the new sequence to the function. The splitters
3683 may have introduced invalid RTL sharing, so unshare the sequence now. */
3684 unshare_all_rtl_in_chain (seq);
3686 /* Mark labels and copy flags. */
3687 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3689 if (JUMP_P (insn))
3691 if (JUMP_P (trial))
3692 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3693 mark_jump_label (PATTERN (insn), insn, 0);
3694 njumps++;
3695 if (probability != -1
3696 && any_condjump_p (insn)
3697 && !find_reg_note (insn, REG_BR_PROB, 0))
3699 /* We can preserve the REG_BR_PROB notes only if exactly
3700 one jump is created, otherwise the machine description
3701 is responsible for this step using
3702 split_branch_probability variable. */
3703 gcc_assert (njumps == 1);
3704 add_int_reg_note (insn, REG_BR_PROB, probability);
3709 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3710 in SEQ and copy any additional information across. */
3711 if (CALL_P (trial))
3713 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3714 if (CALL_P (insn))
3716 rtx_insn *next;
3717 rtx *p;
3719 gcc_assert (call_insn == NULL_RTX);
3720 call_insn = insn;
3722 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3723 target may have explicitly specified. */
3724 p = &CALL_INSN_FUNCTION_USAGE (insn);
3725 while (*p)
3726 p = &XEXP (*p, 1);
3727 *p = CALL_INSN_FUNCTION_USAGE (trial);
3729 /* If the old call was a sibling call, the new one must
3730 be too. */
3731 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3733 /* If the new call is the last instruction in the sequence,
3734 it will effectively replace the old call in-situ. Otherwise
3735 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3736 so that it comes immediately after the new call. */
3737 if (NEXT_INSN (insn))
3738 for (next = NEXT_INSN (trial);
3739 next && NOTE_P (next);
3740 next = NEXT_INSN (next))
3741 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3743 remove_insn (next);
3744 add_insn_after (next, insn, NULL);
3745 break;
3750 /* Copy notes, particularly those related to the CFG. */
3751 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3753 switch (REG_NOTE_KIND (note))
3755 case REG_EH_REGION:
3756 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3757 break;
3759 case REG_NORETURN:
3760 case REG_SETJMP:
3761 case REG_TM:
3762 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3764 if (CALL_P (insn))
3765 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3767 break;
3769 case REG_NON_LOCAL_GOTO:
3770 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3772 if (JUMP_P (insn))
3773 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3775 break;
3777 #ifdef AUTO_INC_DEC
3778 case REG_INC:
3779 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3781 rtx reg = XEXP (note, 0);
3782 if (!FIND_REG_INC_NOTE (insn, reg)
3783 && find_auto_inc (PATTERN (insn), reg))
3784 add_reg_note (insn, REG_INC, reg);
3786 break;
3787 #endif
3789 case REG_ARGS_SIZE:
3790 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3791 break;
3793 case REG_CALL_DECL:
3794 gcc_assert (call_insn != NULL_RTX);
3795 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3796 break;
3798 default:
3799 break;
3803 /* If there are LABELS inside the split insns increment the
3804 usage count so we don't delete the label. */
3805 if (INSN_P (trial))
3807 insn = insn_last;
3808 while (insn != NULL_RTX)
3810 /* JUMP_P insns have already been "marked" above. */
3811 if (NONJUMP_INSN_P (insn))
3812 mark_label_nuses (PATTERN (insn));
3814 insn = PREV_INSN (insn);
3818 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3820 delete_insn (trial);
3822 /* Recursively call try_split for each new insn created; by the
3823 time control returns here that insn will be fully split, so
3824 set LAST and continue from the insn after the one returned.
3825 We can't use next_active_insn here since AFTER may be a note.
3826 Ignore deleted insns, which can be occur if not optimizing. */
3827 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3828 if (! tem->deleted () && INSN_P (tem))
3829 tem = try_split (PATTERN (tem), tem, 1);
3831 /* Return either the first or the last insn, depending on which was
3832 requested. */
3833 return last
3834 ? (after ? PREV_INSN (after) : get_last_insn ())
3835 : NEXT_INSN (before);
3838 /* Make and return an INSN rtx, initializing all its slots.
3839 Store PATTERN in the pattern slots. */
3841 rtx_insn *
3842 make_insn_raw (rtx pattern)
3844 rtx_insn *insn;
3846 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3848 INSN_UID (insn) = cur_insn_uid++;
3849 PATTERN (insn) = pattern;
3850 INSN_CODE (insn) = -1;
3851 REG_NOTES (insn) = NULL;
3852 INSN_LOCATION (insn) = curr_insn_location ();
3853 BLOCK_FOR_INSN (insn) = NULL;
3855 #ifdef ENABLE_RTL_CHECKING
3856 if (insn
3857 && INSN_P (insn)
3858 && (returnjump_p (insn)
3859 || (GET_CODE (insn) == SET
3860 && SET_DEST (insn) == pc_rtx)))
3862 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3863 debug_rtx (insn);
3865 #endif
3867 return insn;
3870 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3872 static rtx_insn *
3873 make_debug_insn_raw (rtx pattern)
3875 rtx_debug_insn *insn;
3877 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3878 INSN_UID (insn) = cur_debug_insn_uid++;
3879 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3880 INSN_UID (insn) = cur_insn_uid++;
3882 PATTERN (insn) = pattern;
3883 INSN_CODE (insn) = -1;
3884 REG_NOTES (insn) = NULL;
3885 INSN_LOCATION (insn) = curr_insn_location ();
3886 BLOCK_FOR_INSN (insn) = NULL;
3888 return insn;
3891 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3893 static rtx_insn *
3894 make_jump_insn_raw (rtx pattern)
3896 rtx_jump_insn *insn;
3898 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3899 INSN_UID (insn) = cur_insn_uid++;
3901 PATTERN (insn) = pattern;
3902 INSN_CODE (insn) = -1;
3903 REG_NOTES (insn) = NULL;
3904 JUMP_LABEL (insn) = NULL;
3905 INSN_LOCATION (insn) = curr_insn_location ();
3906 BLOCK_FOR_INSN (insn) = NULL;
3908 return insn;
3911 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3913 static rtx_insn *
3914 make_call_insn_raw (rtx pattern)
3916 rtx_call_insn *insn;
3918 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3919 INSN_UID (insn) = cur_insn_uid++;
3921 PATTERN (insn) = pattern;
3922 INSN_CODE (insn) = -1;
3923 REG_NOTES (insn) = NULL;
3924 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3925 INSN_LOCATION (insn) = curr_insn_location ();
3926 BLOCK_FOR_INSN (insn) = NULL;
3928 return insn;
3931 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3933 static rtx_note *
3934 make_note_raw (enum insn_note subtype)
3936 /* Some notes are never created this way at all. These notes are
3937 only created by patching out insns. */
3938 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3939 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3941 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3942 INSN_UID (note) = cur_insn_uid++;
3943 NOTE_KIND (note) = subtype;
3944 BLOCK_FOR_INSN (note) = NULL;
3945 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3946 return note;
3949 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3950 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3951 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3953 static inline void
3954 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3956 SET_PREV_INSN (insn) = prev;
3957 SET_NEXT_INSN (insn) = next;
3958 if (prev != NULL)
3960 SET_NEXT_INSN (prev) = insn;
3961 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3963 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3964 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3967 if (next != NULL)
3969 SET_PREV_INSN (next) = insn;
3970 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3972 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3973 SET_PREV_INSN (sequence->insn (0)) = insn;
3977 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3979 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3980 SET_PREV_INSN (sequence->insn (0)) = prev;
3981 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3985 /* Add INSN to the end of the doubly-linked list.
3986 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3988 void
3989 add_insn (rtx_insn *insn)
3991 rtx_insn *prev = get_last_insn ();
3992 link_insn_into_chain (insn, prev, NULL);
3993 if (NULL == get_insns ())
3994 set_first_insn (insn);
3995 set_last_insn (insn);
3998 /* Add INSN into the doubly-linked list after insn AFTER. */
4000 static void
4001 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4003 rtx_insn *next = NEXT_INSN (after);
4005 gcc_assert (!optimize || !after->deleted ());
4007 link_insn_into_chain (insn, after, next);
4009 if (next == NULL)
4011 struct sequence_stack *seq;
4013 for (seq = get_current_sequence (); seq; seq = seq->next)
4014 if (after == seq->last)
4016 seq->last = insn;
4017 break;
4022 /* Add INSN into the doubly-linked list before insn BEFORE. */
4024 static void
4025 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4027 rtx_insn *prev = PREV_INSN (before);
4029 gcc_assert (!optimize || !before->deleted ());
4031 link_insn_into_chain (insn, prev, before);
4033 if (prev == NULL)
4035 struct sequence_stack *seq;
4037 for (seq = get_current_sequence (); seq; seq = seq->next)
4038 if (before == seq->first)
4040 seq->first = insn;
4041 break;
4044 gcc_assert (seq);
4048 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4049 If BB is NULL, an attempt is made to infer the bb from before.
4051 This and the next function should be the only functions called
4052 to insert an insn once delay slots have been filled since only
4053 they know how to update a SEQUENCE. */
4055 void
4056 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4058 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4059 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4060 add_insn_after_nobb (insn, after);
4061 if (!BARRIER_P (after)
4062 && !BARRIER_P (insn)
4063 && (bb = BLOCK_FOR_INSN (after)))
4065 set_block_for_insn (insn, bb);
4066 if (INSN_P (insn))
4067 df_insn_rescan (insn);
4068 /* Should not happen as first in the BB is always
4069 either NOTE or LABEL. */
4070 if (BB_END (bb) == after
4071 /* Avoid clobbering of structure when creating new BB. */
4072 && !BARRIER_P (insn)
4073 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4074 BB_END (bb) = insn;
4078 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4079 If BB is NULL, an attempt is made to infer the bb from before.
4081 This and the previous function should be the only functions called
4082 to insert an insn once delay slots have been filled since only
4083 they know how to update a SEQUENCE. */
4085 void
4086 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4088 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4089 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4090 add_insn_before_nobb (insn, before);
4092 if (!bb
4093 && !BARRIER_P (before)
4094 && !BARRIER_P (insn))
4095 bb = BLOCK_FOR_INSN (before);
4097 if (bb)
4099 set_block_for_insn (insn, bb);
4100 if (INSN_P (insn))
4101 df_insn_rescan (insn);
4102 /* Should not happen as first in the BB is always either NOTE or
4103 LABEL. */
4104 gcc_assert (BB_HEAD (bb) != insn
4105 /* Avoid clobbering of structure when creating new BB. */
4106 || BARRIER_P (insn)
4107 || NOTE_INSN_BASIC_BLOCK_P (insn));
4111 /* Replace insn with an deleted instruction note. */
4113 void
4114 set_insn_deleted (rtx insn)
4116 if (INSN_P (insn))
4117 df_insn_delete (as_a <rtx_insn *> (insn));
4118 PUT_CODE (insn, NOTE);
4119 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4123 /* Unlink INSN from the insn chain.
4125 This function knows how to handle sequences.
4127 This function does not invalidate data flow information associated with
4128 INSN (i.e. does not call df_insn_delete). That makes this function
4129 usable for only disconnecting an insn from the chain, and re-emit it
4130 elsewhere later.
4132 To later insert INSN elsewhere in the insn chain via add_insn and
4133 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4134 the caller. Nullifying them here breaks many insn chain walks.
4136 To really delete an insn and related DF information, use delete_insn. */
4138 void
4139 remove_insn (rtx uncast_insn)
4141 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4142 rtx_insn *next = NEXT_INSN (insn);
4143 rtx_insn *prev = PREV_INSN (insn);
4144 basic_block bb;
4146 if (prev)
4148 SET_NEXT_INSN (prev) = next;
4149 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4151 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4152 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4155 else
4157 struct sequence_stack *seq;
4159 for (seq = get_current_sequence (); seq; seq = seq->next)
4160 if (insn == seq->first)
4162 seq->first = next;
4163 break;
4166 gcc_assert (seq);
4169 if (next)
4171 SET_PREV_INSN (next) = prev;
4172 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4174 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4175 SET_PREV_INSN (sequence->insn (0)) = prev;
4178 else
4180 struct sequence_stack *seq;
4182 for (seq = get_current_sequence (); seq; seq = seq->next)
4183 if (insn == seq->last)
4185 seq->last = prev;
4186 break;
4189 gcc_assert (seq);
4192 /* Fix up basic block boundaries, if necessary. */
4193 if (!BARRIER_P (insn)
4194 && (bb = BLOCK_FOR_INSN (insn)))
4196 if (BB_HEAD (bb) == insn)
4198 /* Never ever delete the basic block note without deleting whole
4199 basic block. */
4200 gcc_assert (!NOTE_P (insn));
4201 BB_HEAD (bb) = next;
4203 if (BB_END (bb) == insn)
4204 BB_END (bb) = prev;
4208 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4210 void
4211 add_function_usage_to (rtx call_insn, rtx call_fusage)
4213 gcc_assert (call_insn && CALL_P (call_insn));
4215 /* Put the register usage information on the CALL. If there is already
4216 some usage information, put ours at the end. */
4217 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4219 rtx link;
4221 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4222 link = XEXP (link, 1))
4225 XEXP (link, 1) = call_fusage;
4227 else
4228 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4231 /* Delete all insns made since FROM.
4232 FROM becomes the new last instruction. */
4234 void
4235 delete_insns_since (rtx_insn *from)
4237 if (from == 0)
4238 set_first_insn (0);
4239 else
4240 SET_NEXT_INSN (from) = 0;
4241 set_last_insn (from);
4244 /* This function is deprecated, please use sequences instead.
4246 Move a consecutive bunch of insns to a different place in the chain.
4247 The insns to be moved are those between FROM and TO.
4248 They are moved to a new position after the insn AFTER.
4249 AFTER must not be FROM or TO or any insn in between.
4251 This function does not know about SEQUENCEs and hence should not be
4252 called after delay-slot filling has been done. */
4254 void
4255 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4257 #ifdef ENABLE_CHECKING
4258 rtx_insn *x;
4259 for (x = from; x != to; x = NEXT_INSN (x))
4260 gcc_assert (after != x);
4261 gcc_assert (after != to);
4262 #endif
4264 /* Splice this bunch out of where it is now. */
4265 if (PREV_INSN (from))
4266 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4267 if (NEXT_INSN (to))
4268 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4269 if (get_last_insn () == to)
4270 set_last_insn (PREV_INSN (from));
4271 if (get_insns () == from)
4272 set_first_insn (NEXT_INSN (to));
4274 /* Make the new neighbors point to it and it to them. */
4275 if (NEXT_INSN (after))
4276 SET_PREV_INSN (NEXT_INSN (after)) = to;
4278 SET_NEXT_INSN (to) = NEXT_INSN (after);
4279 SET_PREV_INSN (from) = after;
4280 SET_NEXT_INSN (after) = from;
4281 if (after == get_last_insn ())
4282 set_last_insn (to);
4285 /* Same as function above, but take care to update BB boundaries. */
4286 void
4287 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4289 rtx_insn *prev = PREV_INSN (from);
4290 basic_block bb, bb2;
4292 reorder_insns_nobb (from, to, after);
4294 if (!BARRIER_P (after)
4295 && (bb = BLOCK_FOR_INSN (after)))
4297 rtx_insn *x;
4298 df_set_bb_dirty (bb);
4300 if (!BARRIER_P (from)
4301 && (bb2 = BLOCK_FOR_INSN (from)))
4303 if (BB_END (bb2) == to)
4304 BB_END (bb2) = prev;
4305 df_set_bb_dirty (bb2);
4308 if (BB_END (bb) == after)
4309 BB_END (bb) = to;
4311 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4312 if (!BARRIER_P (x))
4313 df_insn_change_bb (x, bb);
4318 /* Emit insn(s) of given code and pattern
4319 at a specified place within the doubly-linked list.
4321 All of the emit_foo global entry points accept an object
4322 X which is either an insn list or a PATTERN of a single
4323 instruction.
4325 There are thus a few canonical ways to generate code and
4326 emit it at a specific place in the instruction stream. For
4327 example, consider the instruction named SPOT and the fact that
4328 we would like to emit some instructions before SPOT. We might
4329 do it like this:
4331 start_sequence ();
4332 ... emit the new instructions ...
4333 insns_head = get_insns ();
4334 end_sequence ();
4336 emit_insn_before (insns_head, SPOT);
4338 It used to be common to generate SEQUENCE rtl instead, but that
4339 is a relic of the past which no longer occurs. The reason is that
4340 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4341 generated would almost certainly die right after it was created. */
4343 static rtx_insn *
4344 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4345 rtx_insn *(*make_raw) (rtx))
4347 rtx_insn *insn;
4349 gcc_assert (before);
4351 if (x == NULL_RTX)
4352 return safe_as_a <rtx_insn *> (last);
4354 switch (GET_CODE (x))
4356 case DEBUG_INSN:
4357 case INSN:
4358 case JUMP_INSN:
4359 case CALL_INSN:
4360 case CODE_LABEL:
4361 case BARRIER:
4362 case NOTE:
4363 insn = as_a <rtx_insn *> (x);
4364 while (insn)
4366 rtx_insn *next = NEXT_INSN (insn);
4367 add_insn_before (insn, before, bb);
4368 last = insn;
4369 insn = next;
4371 break;
4373 #ifdef ENABLE_RTL_CHECKING
4374 case SEQUENCE:
4375 gcc_unreachable ();
4376 break;
4377 #endif
4379 default:
4380 last = (*make_raw) (x);
4381 add_insn_before (last, before, bb);
4382 break;
4385 return safe_as_a <rtx_insn *> (last);
4388 /* Make X be output before the instruction BEFORE. */
4390 rtx_insn *
4391 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4393 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4396 /* Make an instruction with body X and code JUMP_INSN
4397 and output it before the instruction BEFORE. */
4399 rtx_insn *
4400 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4402 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4403 make_jump_insn_raw);
4406 /* Make an instruction with body X and code CALL_INSN
4407 and output it before the instruction BEFORE. */
4409 rtx_insn *
4410 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4412 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4413 make_call_insn_raw);
4416 /* Make an instruction with body X and code DEBUG_INSN
4417 and output it before the instruction BEFORE. */
4419 rtx_insn *
4420 emit_debug_insn_before_noloc (rtx x, rtx before)
4422 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4423 make_debug_insn_raw);
4426 /* Make an insn of code BARRIER
4427 and output it before the insn BEFORE. */
4429 rtx_barrier *
4430 emit_barrier_before (rtx before)
4432 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4434 INSN_UID (insn) = cur_insn_uid++;
4436 add_insn_before (insn, before, NULL);
4437 return insn;
4440 /* Emit the label LABEL before the insn BEFORE. */
4442 rtx_insn *
4443 emit_label_before (rtx label, rtx_insn *before)
4445 gcc_checking_assert (INSN_UID (label) == 0);
4446 INSN_UID (label) = cur_insn_uid++;
4447 add_insn_before (label, before, NULL);
4448 return as_a <rtx_insn *> (label);
4451 /* Helper for emit_insn_after, handles lists of instructions
4452 efficiently. */
4454 static rtx_insn *
4455 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4457 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4458 rtx_insn *last;
4459 rtx_insn *after_after;
4460 if (!bb && !BARRIER_P (after))
4461 bb = BLOCK_FOR_INSN (after);
4463 if (bb)
4465 df_set_bb_dirty (bb);
4466 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4467 if (!BARRIER_P (last))
4469 set_block_for_insn (last, bb);
4470 df_insn_rescan (last);
4472 if (!BARRIER_P (last))
4474 set_block_for_insn (last, bb);
4475 df_insn_rescan (last);
4477 if (BB_END (bb) == after)
4478 BB_END (bb) = last;
4480 else
4481 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4482 continue;
4484 after_after = NEXT_INSN (after);
4486 SET_NEXT_INSN (after) = first;
4487 SET_PREV_INSN (first) = after;
4488 SET_NEXT_INSN (last) = after_after;
4489 if (after_after)
4490 SET_PREV_INSN (after_after) = last;
4492 if (after == get_last_insn ())
4493 set_last_insn (last);
4495 return last;
4498 static rtx_insn *
4499 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4500 rtx_insn *(*make_raw)(rtx))
4502 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4503 rtx_insn *last = after;
4505 gcc_assert (after);
4507 if (x == NULL_RTX)
4508 return last;
4510 switch (GET_CODE (x))
4512 case DEBUG_INSN:
4513 case INSN:
4514 case JUMP_INSN:
4515 case CALL_INSN:
4516 case CODE_LABEL:
4517 case BARRIER:
4518 case NOTE:
4519 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4520 break;
4522 #ifdef ENABLE_RTL_CHECKING
4523 case SEQUENCE:
4524 gcc_unreachable ();
4525 break;
4526 #endif
4528 default:
4529 last = (*make_raw) (x);
4530 add_insn_after (last, after, bb);
4531 break;
4534 return last;
4537 /* Make X be output after the insn AFTER and set the BB of insn. If
4538 BB is NULL, an attempt is made to infer the BB from AFTER. */
4540 rtx_insn *
4541 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4543 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4547 /* Make an insn of code JUMP_INSN with body X
4548 and output it after the insn AFTER. */
4550 rtx_insn *
4551 emit_jump_insn_after_noloc (rtx x, rtx after)
4553 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4556 /* Make an instruction with body X and code CALL_INSN
4557 and output it after the instruction AFTER. */
4559 rtx_insn *
4560 emit_call_insn_after_noloc (rtx x, rtx after)
4562 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4565 /* Make an instruction with body X and code CALL_INSN
4566 and output it after the instruction AFTER. */
4568 rtx_insn *
4569 emit_debug_insn_after_noloc (rtx x, rtx after)
4571 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4574 /* Make an insn of code BARRIER
4575 and output it after the insn AFTER. */
4577 rtx_barrier *
4578 emit_barrier_after (rtx after)
4580 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4582 INSN_UID (insn) = cur_insn_uid++;
4584 add_insn_after (insn, after, NULL);
4585 return insn;
4588 /* Emit the label LABEL after the insn AFTER. */
4590 rtx_insn *
4591 emit_label_after (rtx label, rtx_insn *after)
4593 gcc_checking_assert (INSN_UID (label) == 0);
4594 INSN_UID (label) = cur_insn_uid++;
4595 add_insn_after (label, after, NULL);
4596 return as_a <rtx_insn *> (label);
4599 /* Notes require a bit of special handling: Some notes need to have their
4600 BLOCK_FOR_INSN set, others should never have it set, and some should
4601 have it set or clear depending on the context. */
4603 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4604 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4605 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4607 static bool
4608 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4610 switch (subtype)
4612 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4613 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4614 return true;
4616 /* Notes for var tracking and EH region markers can appear between or
4617 inside basic blocks. If the caller is emitting on the basic block
4618 boundary, do not set BLOCK_FOR_INSN on the new note. */
4619 case NOTE_INSN_VAR_LOCATION:
4620 case NOTE_INSN_CALL_ARG_LOCATION:
4621 case NOTE_INSN_EH_REGION_BEG:
4622 case NOTE_INSN_EH_REGION_END:
4623 return on_bb_boundary_p;
4625 /* Otherwise, BLOCK_FOR_INSN must be set. */
4626 default:
4627 return false;
4631 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4633 rtx_note *
4634 emit_note_after (enum insn_note subtype, rtx uncast_after)
4636 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4637 rtx_note *note = make_note_raw (subtype);
4638 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4639 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4641 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4642 add_insn_after_nobb (note, after);
4643 else
4644 add_insn_after (note, after, bb);
4645 return note;
4648 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4650 rtx_note *
4651 emit_note_before (enum insn_note subtype, rtx uncast_before)
4653 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4654 rtx_note *note = make_note_raw (subtype);
4655 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4656 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4658 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4659 add_insn_before_nobb (note, before);
4660 else
4661 add_insn_before (note, before, bb);
4662 return note;
4665 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4666 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4668 static rtx_insn *
4669 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4670 rtx_insn *(*make_raw) (rtx))
4672 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4673 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4675 if (pattern == NULL_RTX || !loc)
4676 return safe_as_a <rtx_insn *> (last);
4678 after = NEXT_INSN (after);
4679 while (1)
4681 if (active_insn_p (after) && !INSN_LOCATION (after))
4682 INSN_LOCATION (after) = loc;
4683 if (after == last)
4684 break;
4685 after = NEXT_INSN (after);
4687 return safe_as_a <rtx_insn *> (last);
4690 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4691 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4692 any DEBUG_INSNs. */
4694 static rtx_insn *
4695 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4696 rtx_insn *(*make_raw) (rtx))
4698 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4699 rtx_insn *prev = after;
4701 if (skip_debug_insns)
4702 while (DEBUG_INSN_P (prev))
4703 prev = PREV_INSN (prev);
4705 if (INSN_P (prev))
4706 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4707 make_raw);
4708 else
4709 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4712 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4713 rtx_insn *
4714 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4716 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4719 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4720 rtx_insn *
4721 emit_insn_after (rtx pattern, rtx after)
4723 return emit_pattern_after (pattern, after, true, make_insn_raw);
4726 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4727 rtx_insn *
4728 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4730 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4733 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4734 rtx_insn *
4735 emit_jump_insn_after (rtx pattern, rtx after)
4737 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4740 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4741 rtx_insn *
4742 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4744 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4747 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4748 rtx_insn *
4749 emit_call_insn_after (rtx pattern, rtx after)
4751 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4754 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4755 rtx_insn *
4756 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4758 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4761 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4762 rtx_insn *
4763 emit_debug_insn_after (rtx pattern, rtx after)
4765 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4768 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4769 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4770 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4771 CALL_INSN, etc. */
4773 static rtx_insn *
4774 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4775 rtx_insn *(*make_raw) (rtx))
4777 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4778 rtx_insn *first = PREV_INSN (before);
4779 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4780 insnp ? before : NULL_RTX,
4781 NULL, make_raw);
4783 if (pattern == NULL_RTX || !loc)
4784 return last;
4786 if (!first)
4787 first = get_insns ();
4788 else
4789 first = NEXT_INSN (first);
4790 while (1)
4792 if (active_insn_p (first) && !INSN_LOCATION (first))
4793 INSN_LOCATION (first) = loc;
4794 if (first == last)
4795 break;
4796 first = NEXT_INSN (first);
4798 return last;
4801 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4802 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4803 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4804 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4806 static rtx_insn *
4807 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4808 bool insnp, rtx_insn *(*make_raw) (rtx))
4810 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4811 rtx_insn *next = before;
4813 if (skip_debug_insns)
4814 while (DEBUG_INSN_P (next))
4815 next = PREV_INSN (next);
4817 if (INSN_P (next))
4818 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4819 insnp, make_raw);
4820 else
4821 return emit_pattern_before_noloc (pattern, before,
4822 insnp ? before : NULL_RTX,
4823 NULL, make_raw);
4826 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4827 rtx_insn *
4828 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4830 return emit_pattern_before_setloc (pattern, before, loc, true,
4831 make_insn_raw);
4834 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4835 rtx_insn *
4836 emit_insn_before (rtx pattern, rtx before)
4838 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4841 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4842 rtx_insn *
4843 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4845 return emit_pattern_before_setloc (pattern, before, loc, false,
4846 make_jump_insn_raw);
4849 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4850 rtx_insn *
4851 emit_jump_insn_before (rtx pattern, rtx before)
4853 return emit_pattern_before (pattern, before, true, false,
4854 make_jump_insn_raw);
4857 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4858 rtx_insn *
4859 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4861 return emit_pattern_before_setloc (pattern, before, loc, false,
4862 make_call_insn_raw);
4865 /* Like emit_call_insn_before_noloc,
4866 but set insn_location according to BEFORE. */
4867 rtx_insn *
4868 emit_call_insn_before (rtx pattern, rtx_insn *before)
4870 return emit_pattern_before (pattern, before, true, false,
4871 make_call_insn_raw);
4874 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4875 rtx_insn *
4876 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4878 return emit_pattern_before_setloc (pattern, before, loc, false,
4879 make_debug_insn_raw);
4882 /* Like emit_debug_insn_before_noloc,
4883 but set insn_location according to BEFORE. */
4884 rtx_insn *
4885 emit_debug_insn_before (rtx pattern, rtx before)
4887 return emit_pattern_before (pattern, before, false, false,
4888 make_debug_insn_raw);
4891 /* Take X and emit it at the end of the doubly-linked
4892 INSN list.
4894 Returns the last insn emitted. */
4896 rtx_insn *
4897 emit_insn (rtx x)
4899 rtx_insn *last = get_last_insn ();
4900 rtx_insn *insn;
4902 if (x == NULL_RTX)
4903 return last;
4905 switch (GET_CODE (x))
4907 case DEBUG_INSN:
4908 case INSN:
4909 case JUMP_INSN:
4910 case CALL_INSN:
4911 case CODE_LABEL:
4912 case BARRIER:
4913 case NOTE:
4914 insn = as_a <rtx_insn *> (x);
4915 while (insn)
4917 rtx_insn *next = NEXT_INSN (insn);
4918 add_insn (insn);
4919 last = insn;
4920 insn = next;
4922 break;
4924 #ifdef ENABLE_RTL_CHECKING
4925 case JUMP_TABLE_DATA:
4926 case SEQUENCE:
4927 gcc_unreachable ();
4928 break;
4929 #endif
4931 default:
4932 last = make_insn_raw (x);
4933 add_insn (last);
4934 break;
4937 return last;
4940 /* Make an insn of code DEBUG_INSN with pattern X
4941 and add it to the end of the doubly-linked list. */
4943 rtx_insn *
4944 emit_debug_insn (rtx x)
4946 rtx_insn *last = get_last_insn ();
4947 rtx_insn *insn;
4949 if (x == NULL_RTX)
4950 return last;
4952 switch (GET_CODE (x))
4954 case DEBUG_INSN:
4955 case INSN:
4956 case JUMP_INSN:
4957 case CALL_INSN:
4958 case CODE_LABEL:
4959 case BARRIER:
4960 case NOTE:
4961 insn = as_a <rtx_insn *> (x);
4962 while (insn)
4964 rtx_insn *next = NEXT_INSN (insn);
4965 add_insn (insn);
4966 last = insn;
4967 insn = next;
4969 break;
4971 #ifdef ENABLE_RTL_CHECKING
4972 case JUMP_TABLE_DATA:
4973 case SEQUENCE:
4974 gcc_unreachable ();
4975 break;
4976 #endif
4978 default:
4979 last = make_debug_insn_raw (x);
4980 add_insn (last);
4981 break;
4984 return last;
4987 /* Make an insn of code JUMP_INSN with pattern X
4988 and add it to the end of the doubly-linked list. */
4990 rtx_insn *
4991 emit_jump_insn (rtx x)
4993 rtx_insn *last = NULL;
4994 rtx_insn *insn;
4996 switch (GET_CODE (x))
4998 case DEBUG_INSN:
4999 case INSN:
5000 case JUMP_INSN:
5001 case CALL_INSN:
5002 case CODE_LABEL:
5003 case BARRIER:
5004 case NOTE:
5005 insn = as_a <rtx_insn *> (x);
5006 while (insn)
5008 rtx_insn *next = NEXT_INSN (insn);
5009 add_insn (insn);
5010 last = insn;
5011 insn = next;
5013 break;
5015 #ifdef ENABLE_RTL_CHECKING
5016 case JUMP_TABLE_DATA:
5017 case SEQUENCE:
5018 gcc_unreachable ();
5019 break;
5020 #endif
5022 default:
5023 last = make_jump_insn_raw (x);
5024 add_insn (last);
5025 break;
5028 return last;
5031 /* Make an insn of code CALL_INSN with pattern X
5032 and add it to the end of the doubly-linked list. */
5034 rtx_insn *
5035 emit_call_insn (rtx x)
5037 rtx_insn *insn;
5039 switch (GET_CODE (x))
5041 case DEBUG_INSN:
5042 case INSN:
5043 case JUMP_INSN:
5044 case CALL_INSN:
5045 case CODE_LABEL:
5046 case BARRIER:
5047 case NOTE:
5048 insn = emit_insn (x);
5049 break;
5051 #ifdef ENABLE_RTL_CHECKING
5052 case SEQUENCE:
5053 case JUMP_TABLE_DATA:
5054 gcc_unreachable ();
5055 break;
5056 #endif
5058 default:
5059 insn = make_call_insn_raw (x);
5060 add_insn (insn);
5061 break;
5064 return insn;
5067 /* Add the label LABEL to the end of the doubly-linked list. */
5069 rtx_insn *
5070 emit_label (rtx label)
5072 gcc_checking_assert (INSN_UID (label) == 0);
5073 INSN_UID (label) = cur_insn_uid++;
5074 add_insn (as_a <rtx_insn *> (label));
5075 return as_a <rtx_insn *> (label);
5078 /* Make an insn of code JUMP_TABLE_DATA
5079 and add it to the end of the doubly-linked list. */
5081 rtx_jump_table_data *
5082 emit_jump_table_data (rtx table)
5084 rtx_jump_table_data *jump_table_data =
5085 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5086 INSN_UID (jump_table_data) = cur_insn_uid++;
5087 PATTERN (jump_table_data) = table;
5088 BLOCK_FOR_INSN (jump_table_data) = NULL;
5089 add_insn (jump_table_data);
5090 return jump_table_data;
5093 /* Make an insn of code BARRIER
5094 and add it to the end of the doubly-linked list. */
5096 rtx_barrier *
5097 emit_barrier (void)
5099 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5100 INSN_UID (barrier) = cur_insn_uid++;
5101 add_insn (barrier);
5102 return barrier;
5105 /* Emit a copy of note ORIG. */
5107 rtx_note *
5108 emit_note_copy (rtx_note *orig)
5110 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5111 rtx_note *note = make_note_raw (kind);
5112 NOTE_DATA (note) = NOTE_DATA (orig);
5113 add_insn (note);
5114 return note;
5117 /* Make an insn of code NOTE or type NOTE_NO
5118 and add it to the end of the doubly-linked list. */
5120 rtx_note *
5121 emit_note (enum insn_note kind)
5123 rtx_note *note = make_note_raw (kind);
5124 add_insn (note);
5125 return note;
5128 /* Emit a clobber of lvalue X. */
5130 rtx_insn *
5131 emit_clobber (rtx x)
5133 /* CONCATs should not appear in the insn stream. */
5134 if (GET_CODE (x) == CONCAT)
5136 emit_clobber (XEXP (x, 0));
5137 return emit_clobber (XEXP (x, 1));
5139 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5142 /* Return a sequence of insns to clobber lvalue X. */
5144 rtx_insn *
5145 gen_clobber (rtx x)
5147 rtx_insn *seq;
5149 start_sequence ();
5150 emit_clobber (x);
5151 seq = get_insns ();
5152 end_sequence ();
5153 return seq;
5156 /* Emit a use of rvalue X. */
5158 rtx_insn *
5159 emit_use (rtx x)
5161 /* CONCATs should not appear in the insn stream. */
5162 if (GET_CODE (x) == CONCAT)
5164 emit_use (XEXP (x, 0));
5165 return emit_use (XEXP (x, 1));
5167 return emit_insn (gen_rtx_USE (VOIDmode, x));
5170 /* Return a sequence of insns to use rvalue X. */
5172 rtx_insn *
5173 gen_use (rtx x)
5175 rtx_insn *seq;
5177 start_sequence ();
5178 emit_use (x);
5179 seq = get_insns ();
5180 end_sequence ();
5181 return seq;
5184 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5185 Return the set in INSN that such notes describe, or NULL if the notes
5186 have no meaning for INSN. */
5189 set_for_reg_notes (rtx insn)
5191 rtx pat, reg;
5193 if (!INSN_P (insn))
5194 return NULL_RTX;
5196 pat = PATTERN (insn);
5197 if (GET_CODE (pat) == PARALLEL)
5199 /* We do not use single_set because that ignores SETs of unused
5200 registers. REG_EQUAL and REG_EQUIV notes really do require the
5201 PARALLEL to have a single SET. */
5202 if (multiple_sets (insn))
5203 return NULL_RTX;
5204 pat = XVECEXP (pat, 0, 0);
5207 if (GET_CODE (pat) != SET)
5208 return NULL_RTX;
5210 reg = SET_DEST (pat);
5212 /* Notes apply to the contents of a STRICT_LOW_PART. */
5213 if (GET_CODE (reg) == STRICT_LOW_PART)
5214 reg = XEXP (reg, 0);
5216 /* Check that we have a register. */
5217 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5218 return NULL_RTX;
5220 return pat;
5223 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5224 note of this type already exists, remove it first. */
5227 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5229 rtx note = find_reg_note (insn, kind, NULL_RTX);
5231 switch (kind)
5233 case REG_EQUAL:
5234 case REG_EQUIV:
5235 if (!set_for_reg_notes (insn))
5236 return NULL_RTX;
5238 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5239 It serves no useful purpose and breaks eliminate_regs. */
5240 if (GET_CODE (datum) == ASM_OPERANDS)
5241 return NULL_RTX;
5243 /* Notes with side effects are dangerous. Even if the side-effect
5244 initially mirrors one in PATTERN (INSN), later optimizations
5245 might alter the way that the final register value is calculated
5246 and so move or alter the side-effect in some way. The note would
5247 then no longer be a valid substitution for SET_SRC. */
5248 if (side_effects_p (datum))
5249 return NULL_RTX;
5250 break;
5252 default:
5253 break;
5256 if (note)
5257 XEXP (note, 0) = datum;
5258 else
5260 add_reg_note (insn, kind, datum);
5261 note = REG_NOTES (insn);
5264 switch (kind)
5266 case REG_EQUAL:
5267 case REG_EQUIV:
5268 df_notes_rescan (as_a <rtx_insn *> (insn));
5269 break;
5270 default:
5271 break;
5274 return note;
5277 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5279 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5281 rtx set = set_for_reg_notes (insn);
5283 if (set && SET_DEST (set) == dst)
5284 return set_unique_reg_note (insn, kind, datum);
5285 return NULL_RTX;
5288 /* Return an indication of which type of insn should have X as a body.
5289 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5291 static enum rtx_code
5292 classify_insn (rtx x)
5294 if (LABEL_P (x))
5295 return CODE_LABEL;
5296 if (GET_CODE (x) == CALL)
5297 return CALL_INSN;
5298 if (ANY_RETURN_P (x))
5299 return JUMP_INSN;
5300 if (GET_CODE (x) == SET)
5302 if (SET_DEST (x) == pc_rtx)
5303 return JUMP_INSN;
5304 else if (GET_CODE (SET_SRC (x)) == CALL)
5305 return CALL_INSN;
5306 else
5307 return INSN;
5309 if (GET_CODE (x) == PARALLEL)
5311 int j;
5312 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5313 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5314 return CALL_INSN;
5315 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5316 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5317 return JUMP_INSN;
5318 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5319 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5320 return CALL_INSN;
5322 return INSN;
5325 /* Emit the rtl pattern X as an appropriate kind of insn.
5326 If X is a label, it is simply added into the insn chain. */
5328 rtx_insn *
5329 emit (rtx x)
5331 enum rtx_code code = classify_insn (x);
5333 switch (code)
5335 case CODE_LABEL:
5336 return emit_label (x);
5337 case INSN:
5338 return emit_insn (x);
5339 case JUMP_INSN:
5341 rtx_insn *insn = emit_jump_insn (x);
5342 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5343 return emit_barrier ();
5344 return insn;
5346 case CALL_INSN:
5347 return emit_call_insn (x);
5348 case DEBUG_INSN:
5349 return emit_debug_insn (x);
5350 default:
5351 gcc_unreachable ();
5355 /* Space for free sequence stack entries. */
5356 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5358 /* Begin emitting insns to a sequence. If this sequence will contain
5359 something that might cause the compiler to pop arguments to function
5360 calls (because those pops have previously been deferred; see
5361 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5362 before calling this function. That will ensure that the deferred
5363 pops are not accidentally emitted in the middle of this sequence. */
5365 void
5366 start_sequence (void)
5368 struct sequence_stack *tem;
5370 if (free_sequence_stack != NULL)
5372 tem = free_sequence_stack;
5373 free_sequence_stack = tem->next;
5375 else
5376 tem = ggc_alloc<sequence_stack> ();
5378 tem->next = get_current_sequence ()->next;
5379 tem->first = get_insns ();
5380 tem->last = get_last_insn ();
5381 get_current_sequence ()->next = tem;
5383 set_first_insn (0);
5384 set_last_insn (0);
5387 /* Set up the insn chain starting with FIRST as the current sequence,
5388 saving the previously current one. See the documentation for
5389 start_sequence for more information about how to use this function. */
5391 void
5392 push_to_sequence (rtx_insn *first)
5394 rtx_insn *last;
5396 start_sequence ();
5398 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5401 set_first_insn (first);
5402 set_last_insn (last);
5405 /* Like push_to_sequence, but take the last insn as an argument to avoid
5406 looping through the list. */
5408 void
5409 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5411 start_sequence ();
5413 set_first_insn (first);
5414 set_last_insn (last);
5417 /* Set up the outer-level insn chain
5418 as the current sequence, saving the previously current one. */
5420 void
5421 push_topmost_sequence (void)
5423 struct sequence_stack *top;
5425 start_sequence ();
5427 top = get_topmost_sequence ();
5428 set_first_insn (top->first);
5429 set_last_insn (top->last);
5432 /* After emitting to the outer-level insn chain, update the outer-level
5433 insn chain, and restore the previous saved state. */
5435 void
5436 pop_topmost_sequence (void)
5438 struct sequence_stack *top;
5440 top = get_topmost_sequence ();
5441 top->first = get_insns ();
5442 top->last = get_last_insn ();
5444 end_sequence ();
5447 /* After emitting to a sequence, restore previous saved state.
5449 To get the contents of the sequence just made, you must call
5450 `get_insns' *before* calling here.
5452 If the compiler might have deferred popping arguments while
5453 generating this sequence, and this sequence will not be immediately
5454 inserted into the instruction stream, use do_pending_stack_adjust
5455 before calling get_insns. That will ensure that the deferred
5456 pops are inserted into this sequence, and not into some random
5457 location in the instruction stream. See INHIBIT_DEFER_POP for more
5458 information about deferred popping of arguments. */
5460 void
5461 end_sequence (void)
5463 struct sequence_stack *tem = get_current_sequence ()->next;
5465 set_first_insn (tem->first);
5466 set_last_insn (tem->last);
5467 get_current_sequence ()->next = tem->next;
5469 memset (tem, 0, sizeof (*tem));
5470 tem->next = free_sequence_stack;
5471 free_sequence_stack = tem;
5474 /* Return 1 if currently emitting into a sequence. */
5477 in_sequence_p (void)
5479 return get_current_sequence ()->next != 0;
5482 /* Put the various virtual registers into REGNO_REG_RTX. */
5484 static void
5485 init_virtual_regs (void)
5487 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5488 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5489 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5490 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5491 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5492 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5493 = virtual_preferred_stack_boundary_rtx;
5497 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5498 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5499 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5500 static int copy_insn_n_scratches;
5502 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5503 copied an ASM_OPERANDS.
5504 In that case, it is the original input-operand vector. */
5505 static rtvec orig_asm_operands_vector;
5507 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5508 copied an ASM_OPERANDS.
5509 In that case, it is the copied input-operand vector. */
5510 static rtvec copy_asm_operands_vector;
5512 /* Likewise for the constraints vector. */
5513 static rtvec orig_asm_constraints_vector;
5514 static rtvec copy_asm_constraints_vector;
5516 /* Recursively create a new copy of an rtx for copy_insn.
5517 This function differs from copy_rtx in that it handles SCRATCHes and
5518 ASM_OPERANDs properly.
5519 Normally, this function is not used directly; use copy_insn as front end.
5520 However, you could first copy an insn pattern with copy_insn and then use
5521 this function afterwards to properly copy any REG_NOTEs containing
5522 SCRATCHes. */
5525 copy_insn_1 (rtx orig)
5527 rtx copy;
5528 int i, j;
5529 RTX_CODE code;
5530 const char *format_ptr;
5532 if (orig == NULL)
5533 return NULL;
5535 code = GET_CODE (orig);
5537 switch (code)
5539 case REG:
5540 case DEBUG_EXPR:
5541 CASE_CONST_ANY:
5542 case SYMBOL_REF:
5543 case CODE_LABEL:
5544 case PC:
5545 case CC0:
5546 case RETURN:
5547 case SIMPLE_RETURN:
5548 return orig;
5549 case CLOBBER:
5550 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5551 clobbers or clobbers of hard registers that originated as pseudos.
5552 This is needed to allow safe register renaming. */
5553 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5554 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5555 return orig;
5556 break;
5558 case SCRATCH:
5559 for (i = 0; i < copy_insn_n_scratches; i++)
5560 if (copy_insn_scratch_in[i] == orig)
5561 return copy_insn_scratch_out[i];
5562 break;
5564 case CONST:
5565 if (shared_const_p (orig))
5566 return orig;
5567 break;
5569 /* A MEM with a constant address is not sharable. The problem is that
5570 the constant address may need to be reloaded. If the mem is shared,
5571 then reloading one copy of this mem will cause all copies to appear
5572 to have been reloaded. */
5574 default:
5575 break;
5578 /* Copy the various flags, fields, and other information. We assume
5579 that all fields need copying, and then clear the fields that should
5580 not be copied. That is the sensible default behavior, and forces
5581 us to explicitly document why we are *not* copying a flag. */
5582 copy = shallow_copy_rtx (orig);
5584 /* We do not copy the USED flag, which is used as a mark bit during
5585 walks over the RTL. */
5586 RTX_FLAG (copy, used) = 0;
5588 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5589 if (INSN_P (orig))
5591 RTX_FLAG (copy, jump) = 0;
5592 RTX_FLAG (copy, call) = 0;
5593 RTX_FLAG (copy, frame_related) = 0;
5596 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5598 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5599 switch (*format_ptr++)
5601 case 'e':
5602 if (XEXP (orig, i) != NULL)
5603 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5604 break;
5606 case 'E':
5607 case 'V':
5608 if (XVEC (orig, i) == orig_asm_constraints_vector)
5609 XVEC (copy, i) = copy_asm_constraints_vector;
5610 else if (XVEC (orig, i) == orig_asm_operands_vector)
5611 XVEC (copy, i) = copy_asm_operands_vector;
5612 else if (XVEC (orig, i) != NULL)
5614 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5615 for (j = 0; j < XVECLEN (copy, i); j++)
5616 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5618 break;
5620 case 't':
5621 case 'w':
5622 case 'i':
5623 case 's':
5624 case 'S':
5625 case 'u':
5626 case '0':
5627 /* These are left unchanged. */
5628 break;
5630 default:
5631 gcc_unreachable ();
5634 if (code == SCRATCH)
5636 i = copy_insn_n_scratches++;
5637 gcc_assert (i < MAX_RECOG_OPERANDS);
5638 copy_insn_scratch_in[i] = orig;
5639 copy_insn_scratch_out[i] = copy;
5641 else if (code == ASM_OPERANDS)
5643 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5644 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5645 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5646 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5649 return copy;
5652 /* Create a new copy of an rtx.
5653 This function differs from copy_rtx in that it handles SCRATCHes and
5654 ASM_OPERANDs properly.
5655 INSN doesn't really have to be a full INSN; it could be just the
5656 pattern. */
5658 copy_insn (rtx insn)
5660 copy_insn_n_scratches = 0;
5661 orig_asm_operands_vector = 0;
5662 orig_asm_constraints_vector = 0;
5663 copy_asm_operands_vector = 0;
5664 copy_asm_constraints_vector = 0;
5665 return copy_insn_1 (insn);
5668 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5669 on that assumption that INSN itself remains in its original place. */
5671 rtx_insn *
5672 copy_delay_slot_insn (rtx_insn *insn)
5674 /* Copy INSN with its rtx_code, all its notes, location etc. */
5675 insn = as_a <rtx_insn *> (copy_rtx (insn));
5676 INSN_UID (insn) = cur_insn_uid++;
5677 return insn;
5680 /* Initialize data structures and variables in this file
5681 before generating rtl for each function. */
5683 void
5684 init_emit (void)
5686 set_first_insn (NULL);
5687 set_last_insn (NULL);
5688 if (MIN_NONDEBUG_INSN_UID)
5689 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5690 else
5691 cur_insn_uid = 1;
5692 cur_debug_insn_uid = 1;
5693 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5694 first_label_num = label_num;
5695 get_current_sequence ()->next = NULL;
5697 /* Init the tables that describe all the pseudo regs. */
5699 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5701 crtl->emit.regno_pointer_align
5702 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5704 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5706 /* Put copies of all the hard registers into regno_reg_rtx. */
5707 memcpy (regno_reg_rtx,
5708 initial_regno_reg_rtx,
5709 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5711 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5712 init_virtual_regs ();
5714 /* Indicate that the virtual registers and stack locations are
5715 all pointers. */
5716 REG_POINTER (stack_pointer_rtx) = 1;
5717 REG_POINTER (frame_pointer_rtx) = 1;
5718 REG_POINTER (hard_frame_pointer_rtx) = 1;
5719 REG_POINTER (arg_pointer_rtx) = 1;
5721 REG_POINTER (virtual_incoming_args_rtx) = 1;
5722 REG_POINTER (virtual_stack_vars_rtx) = 1;
5723 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5724 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5725 REG_POINTER (virtual_cfa_rtx) = 1;
5727 #ifdef STACK_BOUNDARY
5728 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5729 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5730 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5731 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5733 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5734 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5735 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5736 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5737 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5738 #endif
5740 #ifdef INIT_EXPANDERS
5741 INIT_EXPANDERS;
5742 #endif
5745 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5747 static rtx
5748 gen_const_vector (machine_mode mode, int constant)
5750 rtx tem;
5751 rtvec v;
5752 int units, i;
5753 machine_mode inner;
5755 units = GET_MODE_NUNITS (mode);
5756 inner = GET_MODE_INNER (mode);
5758 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5760 v = rtvec_alloc (units);
5762 /* We need to call this function after we set the scalar const_tiny_rtx
5763 entries. */
5764 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5766 for (i = 0; i < units; ++i)
5767 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5769 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5770 return tem;
5773 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5774 all elements are zero, and the one vector when all elements are one. */
5776 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5778 machine_mode inner = GET_MODE_INNER (mode);
5779 int nunits = GET_MODE_NUNITS (mode);
5780 rtx x;
5781 int i;
5783 /* Check to see if all of the elements have the same value. */
5784 x = RTVEC_ELT (v, nunits - 1);
5785 for (i = nunits - 2; i >= 0; i--)
5786 if (RTVEC_ELT (v, i) != x)
5787 break;
5789 /* If the values are all the same, check to see if we can use one of the
5790 standard constant vectors. */
5791 if (i == -1)
5793 if (x == CONST0_RTX (inner))
5794 return CONST0_RTX (mode);
5795 else if (x == CONST1_RTX (inner))
5796 return CONST1_RTX (mode);
5797 else if (x == CONSTM1_RTX (inner))
5798 return CONSTM1_RTX (mode);
5801 return gen_rtx_raw_CONST_VECTOR (mode, v);
5804 /* Initialise global register information required by all functions. */
5806 void
5807 init_emit_regs (void)
5809 int i;
5810 machine_mode mode;
5811 mem_attrs *attrs;
5813 /* Reset register attributes */
5814 reg_attrs_htab->empty ();
5816 /* We need reg_raw_mode, so initialize the modes now. */
5817 init_reg_modes_target ();
5819 /* Assign register numbers to the globally defined register rtx. */
5820 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5821 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5822 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5823 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5824 virtual_incoming_args_rtx =
5825 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5826 virtual_stack_vars_rtx =
5827 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5828 virtual_stack_dynamic_rtx =
5829 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5830 virtual_outgoing_args_rtx =
5831 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5832 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5833 virtual_preferred_stack_boundary_rtx =
5834 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5836 /* Initialize RTL for commonly used hard registers. These are
5837 copied into regno_reg_rtx as we begin to compile each function. */
5838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5839 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5841 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5842 return_address_pointer_rtx
5843 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5844 #endif
5846 pic_offset_table_rtx = NULL_RTX;
5847 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5848 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5850 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5852 mode = (machine_mode) i;
5853 attrs = ggc_cleared_alloc<mem_attrs> ();
5854 attrs->align = BITS_PER_UNIT;
5855 attrs->addrspace = ADDR_SPACE_GENERIC;
5856 if (mode != BLKmode)
5858 attrs->size_known_p = true;
5859 attrs->size = GET_MODE_SIZE (mode);
5860 if (STRICT_ALIGNMENT)
5861 attrs->align = GET_MODE_ALIGNMENT (mode);
5863 mode_mem_attrs[i] = attrs;
5867 /* Initialize global machine_mode variables. */
5869 void
5870 init_derived_machine_modes (void)
5872 byte_mode = VOIDmode;
5873 word_mode = VOIDmode;
5875 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5876 mode != VOIDmode;
5877 mode = GET_MODE_WIDER_MODE (mode))
5879 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5880 && byte_mode == VOIDmode)
5881 byte_mode = mode;
5883 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5884 && word_mode == VOIDmode)
5885 word_mode = mode;
5888 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5891 /* Create some permanent unique rtl objects shared between all functions. */
5893 void
5894 init_emit_once (void)
5896 int i;
5897 machine_mode mode;
5898 machine_mode double_mode;
5900 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5901 CONST_FIXED, and memory attribute hash tables. */
5902 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5904 #if TARGET_SUPPORTS_WIDE_INT
5905 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5906 #endif
5907 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5909 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5911 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5913 #ifdef INIT_EXPANDERS
5914 /* This is to initialize {init|mark|free}_machine_status before the first
5915 call to push_function_context_to. This is needed by the Chill front
5916 end which calls push_function_context_to before the first call to
5917 init_function_start. */
5918 INIT_EXPANDERS;
5919 #endif
5921 /* Create the unique rtx's for certain rtx codes and operand values. */
5923 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5924 tries to use these variables. */
5925 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5926 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5927 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5929 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5930 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5931 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5932 else
5933 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5935 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5937 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5938 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5939 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5941 dconstm1 = dconst1;
5942 dconstm1.sign = 1;
5944 dconsthalf = dconst1;
5945 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5947 for (i = 0; i < 3; i++)
5949 const REAL_VALUE_TYPE *const r =
5950 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5952 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5953 mode != VOIDmode;
5954 mode = GET_MODE_WIDER_MODE (mode))
5955 const_tiny_rtx[i][(int) mode] =
5956 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5958 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5959 mode != VOIDmode;
5960 mode = GET_MODE_WIDER_MODE (mode))
5961 const_tiny_rtx[i][(int) mode] =
5962 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5964 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5967 mode != VOIDmode;
5968 mode = GET_MODE_WIDER_MODE (mode))
5969 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5971 for (mode = MIN_MODE_PARTIAL_INT;
5972 mode <= MAX_MODE_PARTIAL_INT;
5973 mode = (machine_mode)((int)(mode) + 1))
5974 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5977 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5979 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5980 mode != VOIDmode;
5981 mode = GET_MODE_WIDER_MODE (mode))
5982 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5984 for (mode = MIN_MODE_PARTIAL_INT;
5985 mode <= MAX_MODE_PARTIAL_INT;
5986 mode = (machine_mode)((int)(mode) + 1))
5987 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5989 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5990 mode != VOIDmode;
5991 mode = GET_MODE_WIDER_MODE (mode))
5993 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5994 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5997 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5998 mode != VOIDmode;
5999 mode = GET_MODE_WIDER_MODE (mode))
6001 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6002 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6005 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6006 mode != VOIDmode;
6007 mode = GET_MODE_WIDER_MODE (mode))
6009 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6010 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6011 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6014 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6015 mode != VOIDmode;
6016 mode = GET_MODE_WIDER_MODE (mode))
6018 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6019 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6022 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6023 mode != VOIDmode;
6024 mode = GET_MODE_WIDER_MODE (mode))
6026 FCONST0 (mode).data.high = 0;
6027 FCONST0 (mode).data.low = 0;
6028 FCONST0 (mode).mode = mode;
6029 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6030 FCONST0 (mode), mode);
6033 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6034 mode != VOIDmode;
6035 mode = GET_MODE_WIDER_MODE (mode))
6037 FCONST0 (mode).data.high = 0;
6038 FCONST0 (mode).data.low = 0;
6039 FCONST0 (mode).mode = mode;
6040 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6041 FCONST0 (mode), mode);
6044 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6045 mode != VOIDmode;
6046 mode = GET_MODE_WIDER_MODE (mode))
6048 FCONST0 (mode).data.high = 0;
6049 FCONST0 (mode).data.low = 0;
6050 FCONST0 (mode).mode = mode;
6051 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6052 FCONST0 (mode), mode);
6054 /* We store the value 1. */
6055 FCONST1 (mode).data.high = 0;
6056 FCONST1 (mode).data.low = 0;
6057 FCONST1 (mode).mode = mode;
6058 FCONST1 (mode).data
6059 = double_int_one.lshift (GET_MODE_FBIT (mode),
6060 HOST_BITS_PER_DOUBLE_INT,
6061 SIGNED_FIXED_POINT_MODE_P (mode));
6062 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6063 FCONST1 (mode), mode);
6066 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6067 mode != VOIDmode;
6068 mode = GET_MODE_WIDER_MODE (mode))
6070 FCONST0 (mode).data.high = 0;
6071 FCONST0 (mode).data.low = 0;
6072 FCONST0 (mode).mode = mode;
6073 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6074 FCONST0 (mode), mode);
6076 /* We store the value 1. */
6077 FCONST1 (mode).data.high = 0;
6078 FCONST1 (mode).data.low = 0;
6079 FCONST1 (mode).mode = mode;
6080 FCONST1 (mode).data
6081 = double_int_one.lshift (GET_MODE_FBIT (mode),
6082 HOST_BITS_PER_DOUBLE_INT,
6083 SIGNED_FIXED_POINT_MODE_P (mode));
6084 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6085 FCONST1 (mode), mode);
6088 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6089 mode != VOIDmode;
6090 mode = GET_MODE_WIDER_MODE (mode))
6092 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6095 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6096 mode != VOIDmode;
6097 mode = GET_MODE_WIDER_MODE (mode))
6099 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6102 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6103 mode != VOIDmode;
6104 mode = GET_MODE_WIDER_MODE (mode))
6106 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6107 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6110 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6111 mode != VOIDmode;
6112 mode = GET_MODE_WIDER_MODE (mode))
6114 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6115 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6118 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6119 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6120 const_tiny_rtx[0][i] = const0_rtx;
6122 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6123 if (STORE_FLAG_VALUE == 1)
6124 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6126 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6127 mode != VOIDmode;
6128 mode = GET_MODE_WIDER_MODE (mode))
6130 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6131 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6134 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6135 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6136 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6137 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6140 /* Produce exact duplicate of insn INSN after AFTER.
6141 Care updating of libcall regions if present. */
6143 rtx_insn *
6144 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6146 rtx_insn *new_rtx;
6147 rtx link;
6149 switch (GET_CODE (insn))
6151 case INSN:
6152 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6153 break;
6155 case JUMP_INSN:
6156 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6157 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6158 break;
6160 case DEBUG_INSN:
6161 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6162 break;
6164 case CALL_INSN:
6165 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6166 if (CALL_INSN_FUNCTION_USAGE (insn))
6167 CALL_INSN_FUNCTION_USAGE (new_rtx)
6168 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6169 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6170 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6171 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6172 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6173 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6174 break;
6176 default:
6177 gcc_unreachable ();
6180 /* Update LABEL_NUSES. */
6181 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6183 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6185 /* If the old insn is frame related, then so is the new one. This is
6186 primarily needed for IA-64 unwind info which marks epilogue insns,
6187 which may be duplicated by the basic block reordering code. */
6188 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6190 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6191 will make them. REG_LABEL_TARGETs are created there too, but are
6192 supposed to be sticky, so we copy them. */
6193 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6194 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6196 if (GET_CODE (link) == EXPR_LIST)
6197 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6198 copy_insn_1 (XEXP (link, 0)));
6199 else
6200 add_shallow_copy_of_reg_note (new_rtx, link);
6203 INSN_CODE (new_rtx) = INSN_CODE (insn);
6204 return new_rtx;
6207 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6209 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6211 if (hard_reg_clobbers[mode][regno])
6212 return hard_reg_clobbers[mode][regno];
6213 else
6214 return (hard_reg_clobbers[mode][regno] =
6215 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6218 location_t prologue_location;
6219 location_t epilogue_location;
6221 /* Hold current location information and last location information, so the
6222 datastructures are built lazily only when some instructions in given
6223 place are needed. */
6224 static location_t curr_location;
6226 /* Allocate insn location datastructure. */
6227 void
6228 insn_locations_init (void)
6230 prologue_location = epilogue_location = 0;
6231 curr_location = UNKNOWN_LOCATION;
6234 /* At the end of emit stage, clear current location. */
6235 void
6236 insn_locations_finalize (void)
6238 epilogue_location = curr_location;
6239 curr_location = UNKNOWN_LOCATION;
6242 /* Set current location. */
6243 void
6244 set_curr_insn_location (location_t location)
6246 curr_location = location;
6249 /* Get current location. */
6250 location_t
6251 curr_insn_location (void)
6253 return curr_location;
6256 /* Return lexical scope block insn belongs to. */
6257 tree
6258 insn_scope (const rtx_insn *insn)
6260 return LOCATION_BLOCK (INSN_LOCATION (insn));
6263 /* Return line number of the statement that produced this insn. */
6265 insn_line (const rtx_insn *insn)
6267 return LOCATION_LINE (INSN_LOCATION (insn));
6270 /* Return source file of the statement that produced this insn. */
6271 const char *
6272 insn_file (const rtx_insn *insn)
6274 return LOCATION_FILE (INSN_LOCATION (insn));
6277 /* Return expanded location of the statement that produced this insn. */
6278 expanded_location
6279 insn_location (const rtx_insn *insn)
6281 return expand_location (INSN_LOCATION (insn));
6284 /* Return true if memory model MODEL requires a pre-operation (release-style)
6285 barrier or a post-operation (acquire-style) barrier. While not universal,
6286 this function matches behavior of several targets. */
6288 bool
6289 need_atomic_barrier_p (enum memmodel model, bool pre)
6291 switch (model & MEMMODEL_MASK)
6293 case MEMMODEL_RELAXED:
6294 case MEMMODEL_CONSUME:
6295 return false;
6296 case MEMMODEL_RELEASE:
6297 return pre;
6298 case MEMMODEL_ACQUIRE:
6299 return !pre;
6300 case MEMMODEL_ACQ_REL:
6301 case MEMMODEL_SEQ_CST:
6302 return true;
6303 default:
6304 gcc_unreachable ();
6308 #include "gt-emit-rtl.h"