1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Ghost
; use Ghost
;
41 with Inline
; use Inline
;
42 with Itypes
; use Itypes
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Namet
; use Namet
;
46 with Nmake
; use Nmake
;
47 with Nlists
; use Nlists
;
49 with Output
; use Output
;
50 with Par_SCO
; use Par_SCO
;
51 with Restrict
; use Restrict
;
52 with Rident
; use Rident
;
53 with Rtsfind
; use Rtsfind
;
55 with Sem_Aux
; use Sem_Aux
;
56 with Sem_Aggr
; use Sem_Aggr
;
57 with Sem_Attr
; use Sem_Attr
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch4
; use Sem_Ch4
;
60 with Sem_Ch6
; use Sem_Ch6
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Elim
; use Sem_Elim
;
67 with Sem_Elab
; use Sem_Elab
;
68 with Sem_Eval
; use Sem_Eval
;
69 with Sem_Intr
; use Sem_Intr
;
70 with Sem_Util
; use Sem_Util
;
71 with Targparm
; use Targparm
;
72 with Sem_Type
; use Sem_Type
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Sinfo
; use Sinfo
;
75 with Sinfo
.CN
; use Sinfo
.CN
;
76 with Snames
; use Snames
;
77 with Stand
; use Stand
;
78 with Stringt
; use Stringt
;
79 with Style
; use Style
;
80 with Tbuild
; use Tbuild
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Res
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use
(N
: Node_Id
);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
152 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
175 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
210 function Operator_Kind
212 Is_Binary
: Boolean) return Node_Kind
;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
235 -- Ditto, for arithmetic unary operators
237 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
241 procedure Make_Call_Into_Operator
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
250 procedure Rewrite_Renamed_Operator
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
257 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
262 procedure Set_Slice_Subtype
(N
: Node_Id
);
263 -- Build subtype of array type, with the range specified by the slice
265 procedure Simplify_Type_Conversion
(N
: Node_Id
);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
270 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
280 procedure Ambiguous_Character
(C
: Node_Id
) is
284 if Nkind
(C
) = N_Character_Literal
then
285 Error_Msg_N
("ambiguous character literal", C
);
287 -- First the ones in Standard
289 Error_Msg_N
("\\possible interpretation: Character!", C
);
290 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
292 -- Include Wide_Wide_Character in Ada 2005 mode
294 if Ada_Version
>= Ada_2005
then
295 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
298 -- Now any other types that match
300 E
:= Current_Entity
(C
);
301 while Present
(E
) loop
302 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
306 end Ambiguous_Character
;
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
312 procedure Analyze_And_Resolve
(N
: Node_Id
) is
316 end Analyze_And_Resolve
;
318 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
322 end Analyze_And_Resolve
;
324 -- Versions with check(s) suppressed
326 procedure Analyze_And_Resolve
331 Scop
: constant Entity_Id
:= Current_Scope
;
334 if Suppress
= All_Checks
then
336 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
338 Scope_Suppress
.Suppress
:= (others => True);
339 Analyze_And_Resolve
(N
, Typ
);
340 Scope_Suppress
.Suppress
:= Sva
;
345 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
347 Scope_Suppress
.Suppress
(Suppress
) := True;
348 Analyze_And_Resolve
(N
, Typ
);
349 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
353 if Current_Scope
/= Scop
354 and then Scope_Is_Transient
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
362 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
365 end Analyze_And_Resolve
;
367 procedure Analyze_And_Resolve
371 Scop
: constant Entity_Id
:= Current_Scope
;
374 if Suppress
= All_Checks
then
376 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
378 Scope_Suppress
.Suppress
:= (others => True);
379 Analyze_And_Resolve
(N
);
380 Scope_Suppress
.Suppress
:= Sva
;
385 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
387 Scope_Suppress
.Suppress
(Suppress
) := True;
388 Analyze_And_Resolve
(N
);
389 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
393 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
394 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
397 end Analyze_And_Resolve
;
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
403 procedure Check_Discriminant_Use
(N
: Node_Id
) is
404 PN
: constant Node_Id
:= Parent
(N
);
405 Disc
: constant Entity_Id
:= Entity
(N
);
410 -- Any use in a spec-expression is legal
412 if In_Spec_Expression
then
415 elsif Nkind
(PN
) = N_Range
then
417 -- Discriminant cannot be used to constrain a scalar type
421 if Nkind
(P
) = N_Range_Constraint
422 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
423 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
425 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
427 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
445 if Ekind
(Current_Scope
) = E_Record_Type
446 and then Scope
(Disc
) = Current_Scope
448 (Nkind
(Parent
(P
)) = N_Subtype_Indication
450 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
451 N_Subtype_Declaration
)
452 and then Paren_Count
(N
) = 0)
455 ("discriminant must appear alone in component constraint", N
);
459 -- Detect a common error:
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
470 Check_Large
: declare
476 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
485 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
491 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
492 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
494 Minimum_Size
(T
, Biased
=> True) >=
495 RM_Size
(Standard_Positive
);
496 end Large_Storage_Type
;
498 -- Start of processing for Check_Large
501 -- Check that the Disc has a large range
503 if not Large_Storage_Type
(Etype
(Disc
)) then
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
511 if Is_Limited_Type
(Scope
(Disc
)) then
515 -- Check that it is the high bound
517 if N
/= High_Bound
(PN
)
518 or else No
(Discriminant_Default_Value
(Disc
))
523 -- Check the array allows a large range at this bound. First
528 if Nkind
(SI
) /= N_Subtype_Indication
then
532 T
:= Entity
(Subtype_Mark
(SI
));
534 if not Is_Array_Type
(T
) then
538 -- Next, find the dimension
540 TB
:= First_Index
(T
);
541 CB
:= First
(Constraints
(P
));
543 and then Present
(TB
)
544 and then Present
(CB
)
555 -- Now, check the dimension has a large range
557 if not Large_Storage_Type
(Etype
(TB
)) then
561 -- Warn about the danger
564 ("??creation of & object may raise Storage_Error!",
573 -- Legal case is in index or discriminant constraint
575 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
576 N_Discriminant_Association
)
578 if Paren_Count
(N
) > 0 then
580 ("discriminant in constraint must appear alone", N
);
582 elsif Nkind
(N
) = N_Expanded_Name
583 and then Comes_From_Source
(N
)
586 ("discriminant must appear alone as a direct name", N
);
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
597 while not Nkind_In
(P
, N_Component_Declaration
,
598 N_Subtype_Indication
,
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
611 if (Nkind
(P
) = N_Subtype_Indication
612 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
613 N_Derived_Type_Definition
)
614 and then D
= Constraint
(P
))
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
619 or else (Nkind
(P
) = N_Subtype_Indication
621 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
622 or else Nkind
(P
) = N_Entry_Declaration
623 or else Nkind
(D
) = N_Defining_Identifier
626 ("discriminant in constraint must appear alone", N
);
629 end Check_Discriminant_Use
;
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
635 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
637 if Is_Invisible_Operator
(N
, T
) then
638 Error_Msg_NE
-- CODEFIX
639 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
640 Error_Msg_N
-- CODEFIX
641 ("use clause would make operation legal!", N
);
643 end Check_For_Visible_Operator
;
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
649 procedure Check_Fully_Declared_Prefix
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
672 if Is_Entity_Name
(Pref
)
673 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
681 elsif Ada_Version
>= Ada_2005
682 and then Is_Entity_Name
(Pref
)
683 and then Is_Access_Type
(Etype
(Pref
))
684 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
686 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
690 Check_Fully_Declared
(Typ
, Parent
(Pref
));
692 end Check_Fully_Declared_Prefix
;
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
698 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
702 function Same_Argument_List
return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
710 function Same_Argument_List
return Boolean is
716 if not Is_Entity_Name
(Name
(N
)) then
719 Subp
:= Entity
(Name
(N
));
722 F
:= First_Formal
(Subp
);
723 A
:= First_Actual
(N
);
724 while Present
(F
) and then Present
(A
) loop
725 if not Is_Entity_Name
(A
) or else Entity
(A
) /= F
then
734 end Same_Argument_List
;
736 -- Start of processing for Check_Infinite_Recursion
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
743 if Is_List_Member
(N
)
744 and then List_Length
(List_Containing
(N
)) = 1
745 and then Same_Argument_List
748 P
: constant Node_Id
:= Parent
(N
);
750 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
751 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
752 and then Is_Empty_List
(Declarations
(Parent
(P
)))
754 Error_Msg_Warn
:= SPARK_Mode
/= On
;
755 Error_Msg_N
("!infinite recursion<<", N
);
756 Error_Msg_N
("\!Storage_Error [<<", N
);
758 Make_Raise_Storage_Error
(Sloc
(N
),
759 Reason
=> SE_Infinite_Recursion
));
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
784 exit when Nkind
(P
) = N_Subprogram_Body
;
786 -- If appearing in conditional, result is false
788 if Nkind_In
(P
, N_Or_Else
,
797 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
798 and then C
/= First
(Statements
(P
))
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
805 -- Furthermore, this corresponds to a common idiom:
807 -- function F (L : Thing) return Boolean is
809 -- raise Program_Error;
813 -- for generating a stub function
815 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
816 and then Same_Argument_List
818 exit when not Is_List_Member
(Parent
(N
));
820 -- OK, return statement is in a statement list, look for raise
826 -- Skip past N_Freeze_Entity nodes generated by expansion
828 Nod
:= Prev
(Parent
(N
));
830 and then Nkind
(Nod
) = N_Freeze_Entity
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
839 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
841 (Nkind
(Nod
) not in N_Raise_xxx_Error
842 or else Present
(Condition
(Nod
)));
853 Error_Msg_Warn
:= SPARK_Mode
/= On
;
854 Error_Msg_N
("!possible infinite recursion<<", N
);
855 Error_Msg_N
("\!??Storage_Error ]<<", N
);
858 end Check_Infinite_Recursion
;
860 -------------------------------
861 -- Check_Initialization_Call --
862 -------------------------------
864 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
865 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
867 function Uses_SS
(T
: Entity_Id
) return Boolean;
868 -- Check whether the creation of an object of the type will involve
869 -- use of the secondary stack. If T is a record type, this is true
870 -- if the expression for some component uses the secondary stack, e.g.
871 -- through a call to a function that returns an unconstrained value.
872 -- False if T is controlled, because cleanups occur elsewhere.
878 function Uses_SS
(T
: Entity_Id
) return Boolean is
881 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
884 -- Normally we want to use the underlying type, but if it's not set
885 -- then continue with T.
887 if not Present
(Full_Type
) then
891 if Is_Controlled
(Full_Type
) then
894 elsif Is_Array_Type
(Full_Type
) then
895 return Uses_SS
(Component_Type
(Full_Type
));
897 elsif Is_Record_Type
(Full_Type
) then
898 Comp
:= First_Component
(Full_Type
);
899 while Present
(Comp
) loop
900 if Ekind
(Comp
) = E_Component
901 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
903 -- The expression for a dynamic component may be rewritten
904 -- as a dereference, so retrieve original node.
906 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
908 -- Return True if the expression is a call to a function
909 -- (including an attribute function such as Image, or a
910 -- user-defined operator) with a result that requires a
913 if (Nkind
(Expr
) = N_Function_Call
914 or else Nkind
(Expr
) in N_Op
915 or else (Nkind
(Expr
) = N_Attribute_Reference
916 and then Present
(Expressions
(Expr
))))
917 and then Requires_Transient_Scope
(Etype
(Expr
))
921 elsif Uses_SS
(Etype
(Comp
)) then
926 Next_Component
(Comp
);
936 -- Start of processing for Check_Initialization_Call
939 -- Establish a transient scope if the type needs it
941 if Uses_SS
(Typ
) then
942 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
944 end Check_Initialization_Call
;
946 ---------------------------------------
947 -- Check_No_Direct_Boolean_Operators --
948 ---------------------------------------
950 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
952 if Scope
(Entity
(N
)) = Standard_Standard
953 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
955 -- Restriction only applies to original source code
957 if Comes_From_Source
(N
) then
958 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
962 -- Do style check (but skip if in instance, error is on template)
965 if not In_Instance
then
966 Check_Boolean_Operator
(N
);
969 end Check_No_Direct_Boolean_Operators
;
971 ------------------------------
972 -- Check_Parameterless_Call --
973 ------------------------------
975 procedure Check_Parameterless_Call
(N
: Node_Id
) is
978 function Prefix_Is_Access_Subp
return Boolean;
979 -- If the prefix is of an access_to_subprogram type, the node must be
980 -- rewritten as a call. Ditto if the prefix is overloaded and all its
981 -- interpretations are access to subprograms.
983 ---------------------------
984 -- Prefix_Is_Access_Subp --
985 ---------------------------
987 function Prefix_Is_Access_Subp
return Boolean is
992 -- If the context is an attribute reference that can apply to
993 -- functions, this is never a parameterless call (RM 4.1.4(6)).
995 if Nkind
(Parent
(N
)) = N_Attribute_Reference
996 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1003 if not Is_Overloaded
(N
) then
1005 Ekind
(Etype
(N
)) = E_Subprogram_Type
1006 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1008 Get_First_Interp
(N
, I
, It
);
1009 while Present
(It
.Typ
) loop
1010 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1011 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1016 Get_Next_Interp
(I
, It
);
1021 end Prefix_Is_Access_Subp
;
1023 -- Start of processing for Check_Parameterless_Call
1026 -- Defend against junk stuff if errors already detected
1028 if Total_Errors_Detected
/= 0 then
1029 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1031 elsif Nkind
(N
) in N_Has_Chars
1032 and then Chars
(N
) in Error_Name_Or_No_Name
1040 -- If the context expects a value, and the name is a procedure, this is
1041 -- most likely a missing 'Access. Don't try to resolve the parameterless
1042 -- call, error will be caught when the outer call is analyzed.
1044 if Is_Entity_Name
(N
)
1045 and then Ekind
(Entity
(N
)) = E_Procedure
1046 and then not Is_Overloaded
(N
)
1048 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1050 N_Procedure_Call_Statement
)
1055 -- Rewrite as call if overloadable entity that is (or could be, in the
1056 -- overloaded case) a function call. If we know for sure that the entity
1057 -- is an enumeration literal, we do not rewrite it.
1059 -- If the entity is the name of an operator, it cannot be a call because
1060 -- operators cannot have default parameters. In this case, this must be
1061 -- a string whose contents coincide with an operator name. Set the kind
1062 -- of the node appropriately.
1064 if (Is_Entity_Name
(N
)
1065 and then Nkind
(N
) /= N_Operator_Symbol
1066 and then Is_Overloadable
(Entity
(N
))
1067 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1068 or else Is_Overloaded
(N
)))
1070 -- Rewrite as call if it is an explicit dereference of an expression of
1071 -- a subprogram access type, and the subprogram type is not that of a
1072 -- procedure or entry.
1075 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1077 -- Rewrite as call if it is a selected component which is a function,
1078 -- this is the case of a call to a protected function (which may be
1079 -- overloaded with other protected operations).
1082 (Nkind
(N
) = N_Selected_Component
1083 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1085 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1087 and then Is_Overloaded
(Selector_Name
(N
)))))
1089 -- If one of the above three conditions is met, rewrite as call. Apply
1090 -- the rewriting only once.
1093 if Nkind
(Parent
(N
)) /= N_Function_Call
1094 or else N
/= Name
(Parent
(N
))
1097 -- This may be a prefixed call that was not fully analyzed, e.g.
1098 -- an actual in an instance.
1100 if Ada_Version
>= Ada_2005
1101 and then Nkind
(N
) = N_Selected_Component
1102 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1104 Analyze_Selected_Component
(N
);
1106 if Nkind
(N
) /= N_Selected_Component
then
1111 -- The node is the name of the parameterless call. Preserve its
1112 -- descendants, which may be complex expressions.
1114 Nam
:= Relocate_Node
(N
);
1116 -- If overloaded, overload set belongs to new copy
1118 Save_Interps
(N
, Nam
);
1120 -- Change node to parameterless function call (note that the
1121 -- Parameter_Associations associations field is left set to Empty,
1122 -- its normal default value since there are no parameters)
1124 Change_Node
(N
, N_Function_Call
);
1126 Set_Sloc
(N
, Sloc
(Nam
));
1130 elsif Nkind
(N
) = N_Parameter_Association
then
1131 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1133 elsif Nkind
(N
) = N_Operator_Symbol
then
1134 Change_Operator_Symbol_To_String_Literal
(N
);
1135 Set_Is_Overloaded
(N
, False);
1136 Set_Etype
(N
, Any_String
);
1138 end Check_Parameterless_Call
;
1140 --------------------------------
1141 -- Is_Atomic_Ref_With_Address --
1142 --------------------------------
1144 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean is
1145 Pref
: constant Node_Id
:= Prefix
(N
);
1148 if not Is_Entity_Name
(Pref
) then
1153 Pent
: constant Entity_Id
:= Entity
(Pref
);
1154 Ptyp
: constant Entity_Id
:= Etype
(Pent
);
1156 return not Is_Access_Type
(Ptyp
)
1157 and then (Is_Atomic
(Ptyp
) or else Is_Atomic
(Pent
))
1158 and then Present
(Address_Clause
(Pent
));
1161 end Is_Atomic_Ref_With_Address
;
1163 -----------------------------
1164 -- Is_Definite_Access_Type --
1165 -----------------------------
1167 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1168 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1170 return Ekind
(Btyp
) = E_Access_Type
1171 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1172 and then Comes_From_Source
(Btyp
));
1173 end Is_Definite_Access_Type
;
1175 ----------------------
1176 -- Is_Predefined_Op --
1177 ----------------------
1179 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1181 -- Predefined operators are intrinsic subprograms
1183 if not Is_Intrinsic_Subprogram
(Nam
) then
1187 -- A call to a back-end builtin is never a predefined operator
1189 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1193 return not Is_Generic_Instance
(Nam
)
1194 and then Chars
(Nam
) in Any_Operator_Name
1195 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1196 end Is_Predefined_Op
;
1198 -----------------------------
1199 -- Make_Call_Into_Operator --
1200 -----------------------------
1202 procedure Make_Call_Into_Operator
1207 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1208 Act1
: Node_Id
:= First_Actual
(N
);
1209 Act2
: Node_Id
:= Next_Actual
(Act1
);
1210 Error
: Boolean := False;
1211 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1212 Is_Binary
: constant Boolean := Present
(Act2
);
1214 Opnd_Type
: Entity_Id
;
1215 Orig_Type
: Entity_Id
:= Empty
;
1218 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1220 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1221 -- If the operand is not universal, and the operator is given by an
1222 -- expanded name, verify that the operand has an interpretation with a
1223 -- type defined in the given scope of the operator.
1225 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1226 -- Find a type of the given class in package Pack that contains the
1229 ---------------------------
1230 -- Operand_Type_In_Scope --
1231 ---------------------------
1233 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1234 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1239 if not Is_Overloaded
(Nod
) then
1240 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1243 Get_First_Interp
(Nod
, I
, It
);
1244 while Present
(It
.Typ
) loop
1245 if Scope
(Base_Type
(It
.Typ
)) = S
then
1249 Get_Next_Interp
(I
, It
);
1254 end Operand_Type_In_Scope
;
1260 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1263 function In_Decl
return Boolean;
1264 -- Verify that node is not part of the type declaration for the
1265 -- candidate type, which would otherwise be invisible.
1271 function In_Decl
return Boolean is
1272 Decl_Node
: constant Node_Id
:= Parent
(E
);
1278 if Etype
(E
) = Any_Type
then
1281 elsif No
(Decl_Node
) then
1286 and then Nkind
(N2
) /= N_Compilation_Unit
1288 if N2
= Decl_Node
then
1299 -- Start of processing for Type_In_P
1302 -- If the context type is declared in the prefix package, this is the
1303 -- desired base type.
1305 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1306 return Base_Type
(Typ
);
1309 E
:= First_Entity
(Pack
);
1310 while Present
(E
) loop
1311 if Test
(E
) and then not In_Decl
then
1322 -- Start of processing for Make_Call_Into_Operator
1325 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1330 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1331 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1332 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1333 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1334 Act1
:= Left_Opnd
(Op_Node
);
1335 Act2
:= Right_Opnd
(Op_Node
);
1340 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1341 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1342 Act1
:= Right_Opnd
(Op_Node
);
1345 -- If the operator is denoted by an expanded name, and the prefix is
1346 -- not Standard, but the operator is a predefined one whose scope is
1347 -- Standard, then this is an implicit_operator, inserted as an
1348 -- interpretation by the procedure of the same name. This procedure
1349 -- overestimates the presence of implicit operators, because it does
1350 -- not examine the type of the operands. Verify now that the operand
1351 -- type appears in the given scope. If right operand is universal,
1352 -- check the other operand. In the case of concatenation, either
1353 -- argument can be the component type, so check the type of the result.
1354 -- If both arguments are literals, look for a type of the right kind
1355 -- defined in the given scope. This elaborate nonsense is brought to
1356 -- you courtesy of b33302a. The type itself must be frozen, so we must
1357 -- find the type of the proper class in the given scope.
1359 -- A final wrinkle is the multiplication operator for fixed point types,
1360 -- which is defined in Standard only, and not in the scope of the
1361 -- fixed point type itself.
1363 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1364 Pack
:= Entity
(Prefix
(Name
(N
)));
1366 -- If this is a package renaming, get renamed entity, which will be
1367 -- the scope of the operands if operaton is type-correct.
1369 if Present
(Renamed_Entity
(Pack
)) then
1370 Pack
:= Renamed_Entity
(Pack
);
1373 -- If the entity being called is defined in the given package, it is
1374 -- a renaming of a predefined operator, and known to be legal.
1376 if Scope
(Entity
(Name
(N
))) = Pack
1377 and then Pack
/= Standard_Standard
1381 -- Visibility does not need to be checked in an instance: if the
1382 -- operator was not visible in the generic it has been diagnosed
1383 -- already, else there is an implicit copy of it in the instance.
1385 elsif In_Instance
then
1388 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1389 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1390 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1392 if Pack
/= Standard_Standard
then
1396 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1399 elsif Ada_Version
>= Ada_2005
1400 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1401 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1406 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1408 if Op_Name
= Name_Op_Concat
then
1409 Opnd_Type
:= Base_Type
(Typ
);
1411 elsif (Scope
(Opnd_Type
) = Standard_Standard
1413 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1415 and then not Comes_From_Source
(Opnd_Type
))
1417 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1420 if Scope
(Opnd_Type
) = Standard_Standard
then
1422 -- Verify that the scope contains a type that corresponds to
1423 -- the given literal. Optimize the case where Pack is Standard.
1425 if Pack
/= Standard_Standard
then
1427 if Opnd_Type
= Universal_Integer
then
1428 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1430 elsif Opnd_Type
= Universal_Real
then
1431 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1433 elsif Opnd_Type
= Any_String
then
1434 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1436 elsif Opnd_Type
= Any_Access
then
1437 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1439 elsif Opnd_Type
= Any_Composite
then
1440 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1442 if Present
(Orig_Type
) then
1443 if Has_Private_Component
(Orig_Type
) then
1446 Set_Etype
(Act1
, Orig_Type
);
1449 Set_Etype
(Act2
, Orig_Type
);
1458 Error
:= No
(Orig_Type
);
1461 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1462 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1472 elsif Scope
(Opnd_Type
) /= Pack
1473 and then Scope
(Op_Id
) /= Pack
1474 and then (No
(System_Aux_Id
)
1475 or else Scope
(Opnd_Type
) /= System_Aux_Id
1476 or else Pack
/= Scope
(System_Aux_Id
))
1478 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1481 Error
:= not Operand_Type_In_Scope
(Pack
);
1484 elsif Pack
= Standard_Standard
1485 and then not Operand_Type_In_Scope
(Standard_Standard
)
1492 Error_Msg_Node_2
:= Pack
;
1494 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1495 Set_Etype
(N
, Any_Type
);
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1504 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1505 and then Is_Numeric_Type
(Typ
)
1506 and then not Is_Universal_Numeric_Type
(Typ
)
1507 and then Scope
(Base_Type
(Typ
)) /= Pack
1508 and then not In_Instance
1510 if Is_Fixed_Point_Type
(Typ
)
1511 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1513 -- Already checked above
1517 -- Operator may be defined in an extension of System
1519 elsif Present
(System_Aux_Id
)
1520 and then Scope
(Opnd_Type
) = System_Aux_Id
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE
("expect }", N
, Typ
);
1533 Set_Chars
(Op_Node
, Op_Name
);
1535 if not Is_Private_Type
(Etype
(N
)) then
1536 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1538 Set_Etype
(Op_Node
, Etype
(N
));
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1548 and then Ekind
(Func
) = E_Function
1549 and then Is_Overloaded
(Act1
)
1551 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1552 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1555 Set_Entity
(Op_Node
, Op_Id
);
1556 Generate_Reference
(Op_Id
, N
, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1565 CS
: constant Boolean := Comes_From_Source
(N
);
1567 Rewrite
(N
, Op_Node
);
1568 Set_Comes_From_Source
(N
, CS
);
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type
(Typ
) then
1578 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1579 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
1580 Resolve_Intrinsic_Operator
(N
, Typ
);
1582 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
1583 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1592 -- If in ASIS_Mode, propagate operand types to original actuals of
1593 -- function call, which would otherwise not be fully resolved. If
1594 -- the call has already been constant-folded, nothing to do. We
1595 -- relocate the operand nodes rather than copy them, to preserve
1596 -- original_node pointers, given that the operands themselves may
1597 -- have been rewritten. If the call was itself a rewriting of an
1598 -- operator node, nothing to do.
1601 and then Nkind
(N
) in N_Op
1602 and then Nkind
(Original_Node
(N
)) = N_Function_Call
1606 R
: constant Node_Id
:= Right_Opnd
(N
);
1608 Old_First
: constant Node_Id
:=
1609 First
(Parameter_Associations
(Original_Node
(N
)));
1615 Old_Sec
:= Next
(Old_First
);
1617 -- If the original call has named associations, replace the
1618 -- explicit actual parameter in the association with the proper
1619 -- resolved operand.
1621 if Nkind
(Old_First
) = N_Parameter_Association
then
1622 if Chars
(Selector_Name
(Old_First
)) =
1623 Chars
(First_Entity
(Op_Id
))
1625 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1628 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1633 Rewrite
(Old_First
, Relocate_Node
(L
));
1636 if Nkind
(Old_Sec
) = N_Parameter_Association
then
1637 if Chars
(Selector_Name
(Old_Sec
)) =
1638 Chars
(First_Entity
(Op_Id
))
1640 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1643 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1648 Rewrite
(Old_Sec
, Relocate_Node
(R
));
1652 if Nkind
(Old_First
) = N_Parameter_Association
then
1653 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1656 Rewrite
(Old_First
, Relocate_Node
(R
));
1661 Set_Parent
(Original_Node
(N
), Parent
(N
));
1663 end Make_Call_Into_Operator
;
1669 function Operator_Kind
1671 Is_Binary
: Boolean) return Node_Kind
1676 -- Use CASE statement or array???
1679 if Op_Name
= Name_Op_And
then
1681 elsif Op_Name
= Name_Op_Or
then
1683 elsif Op_Name
= Name_Op_Xor
then
1685 elsif Op_Name
= Name_Op_Eq
then
1687 elsif Op_Name
= Name_Op_Ne
then
1689 elsif Op_Name
= Name_Op_Lt
then
1691 elsif Op_Name
= Name_Op_Le
then
1693 elsif Op_Name
= Name_Op_Gt
then
1695 elsif Op_Name
= Name_Op_Ge
then
1697 elsif Op_Name
= Name_Op_Add
then
1699 elsif Op_Name
= Name_Op_Subtract
then
1700 Kind
:= N_Op_Subtract
;
1701 elsif Op_Name
= Name_Op_Concat
then
1702 Kind
:= N_Op_Concat
;
1703 elsif Op_Name
= Name_Op_Multiply
then
1704 Kind
:= N_Op_Multiply
;
1705 elsif Op_Name
= Name_Op_Divide
then
1706 Kind
:= N_Op_Divide
;
1707 elsif Op_Name
= Name_Op_Mod
then
1709 elsif Op_Name
= Name_Op_Rem
then
1711 elsif Op_Name
= Name_Op_Expon
then
1714 raise Program_Error
;
1720 if Op_Name
= Name_Op_Add
then
1722 elsif Op_Name
= Name_Op_Subtract
then
1724 elsif Op_Name
= Name_Op_Abs
then
1726 elsif Op_Name
= Name_Op_Not
then
1729 raise Program_Error
;
1736 ----------------------------
1737 -- Preanalyze_And_Resolve --
1738 ----------------------------
1740 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1741 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1744 Full_Analysis
:= False;
1745 Expander_Mode_Save_And_Set
(False);
1747 -- Normally, we suppress all checks for this preanalysis. There is no
1748 -- point in processing them now, since they will be applied properly
1749 -- and in the proper location when the default expressions reanalyzed
1750 -- and reexpanded later on. We will also have more information at that
1751 -- point for possible suppression of individual checks.
1753 -- However, in SPARK mode, most expansion is suppressed, and this
1754 -- later reanalysis and reexpansion may not occur. SPARK mode does
1755 -- require the setting of checking flags for proof purposes, so we
1756 -- do the SPARK preanalysis without suppressing checks.
1758 -- This special handling for SPARK mode is required for example in the
1759 -- case of Ada 2012 constructs such as quantified expressions, which are
1760 -- expanded in two separate steps.
1762 if GNATprove_Mode
then
1763 Analyze_And_Resolve
(N
, T
);
1765 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1768 Expander_Mode_Restore
;
1769 Full_Analysis
:= Save_Full_Analysis
;
1770 end Preanalyze_And_Resolve
;
1772 -- Version without context type
1774 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1775 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1778 Full_Analysis
:= False;
1779 Expander_Mode_Save_And_Set
(False);
1782 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1784 Expander_Mode_Restore
;
1785 Full_Analysis
:= Save_Full_Analysis
;
1786 end Preanalyze_And_Resolve
;
1788 ----------------------------------
1789 -- Replace_Actual_Discriminants --
1790 ----------------------------------
1792 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1793 Loc
: constant Source_Ptr
:= Sloc
(N
);
1794 Tsk
: Node_Id
:= Empty
;
1796 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1797 -- Comment needed???
1803 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1807 if Nkind
(Nod
) = N_Identifier
then
1808 Ent
:= Entity
(Nod
);
1811 and then Ekind
(Ent
) = E_Discriminant
1814 Make_Selected_Component
(Loc
,
1815 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1816 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1818 Set_Etype
(Nod
, Etype
(Ent
));
1826 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1828 -- Start of processing for Replace_Actual_Discriminants
1831 if not Expander_Active
then
1835 if Nkind
(Name
(N
)) = N_Selected_Component
then
1836 Tsk
:= Prefix
(Name
(N
));
1838 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1839 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1845 Replace_Discrs
(Default
);
1847 end Replace_Actual_Discriminants
;
1853 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1854 Ambiguous
: Boolean := False;
1855 Ctx_Type
: Entity_Id
:= Typ
;
1856 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1857 Err_Type
: Entity_Id
:= Empty
;
1858 Found
: Boolean := False;
1861 I1
: Interp_Index
:= 0; -- prevent junk warning
1864 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1866 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1867 -- Determine whether a node comes from a predefined library unit or
1870 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1871 -- Try and fix up a literal so that it matches its expected type. New
1872 -- literals are manufactured if necessary to avoid cascaded errors.
1874 procedure Report_Ambiguous_Argument
;
1875 -- Additional diagnostics when an ambiguous call has an ambiguous
1876 -- argument (typically a controlling actual).
1878 procedure Resolution_Failed
;
1879 -- Called when attempt at resolving current expression fails
1881 ------------------------------------
1882 -- Comes_From_Predefined_Lib_Unit --
1883 -------------------------------------
1885 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1888 Sloc
(Nod
) = Standard_Location
1889 or else Is_Predefined_File_Name
1890 (Unit_File_Name
(Get_Source_Unit
(Sloc
(Nod
))));
1891 end Comes_From_Predefined_Lib_Unit
;
1893 --------------------
1894 -- Patch_Up_Value --
1895 --------------------
1897 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1899 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1901 Make_Real_Literal
(Sloc
(N
),
1902 Realval
=> UR_From_Uint
(Intval
(N
))));
1903 Set_Etype
(N
, Universal_Real
);
1904 Set_Is_Static_Expression
(N
);
1906 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1908 Make_Integer_Literal
(Sloc
(N
),
1909 Intval
=> UR_To_Uint
(Realval
(N
))));
1910 Set_Etype
(N
, Universal_Integer
);
1911 Set_Is_Static_Expression
(N
);
1913 elsif Nkind
(N
) = N_String_Literal
1914 and then Is_Character_Type
(Typ
)
1916 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1918 Make_Character_Literal
(Sloc
(N
),
1920 Char_Literal_Value
=>
1921 UI_From_Int
(Character'Pos ('A'))));
1922 Set_Etype
(N
, Any_Character
);
1923 Set_Is_Static_Expression
(N
);
1925 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1927 Make_String_Literal
(Sloc
(N
),
1928 Strval
=> End_String
));
1930 elsif Nkind
(N
) = N_Range
then
1931 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1932 Patch_Up_Value
(High_Bound
(N
), Typ
);
1936 -------------------------------
1937 -- Report_Ambiguous_Argument --
1938 -------------------------------
1940 procedure Report_Ambiguous_Argument
is
1941 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1946 if Nkind
(Arg
) = N_Function_Call
1947 and then Is_Entity_Name
(Name
(Arg
))
1948 and then Is_Overloaded
(Name
(Arg
))
1950 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1952 -- Could use comments on what is going on here???
1954 Get_First_Interp
(Name
(Arg
), I
, It
);
1955 while Present
(It
.Nam
) loop
1956 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1958 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1959 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1961 Error_Msg_N
("interpretation #!", Arg
);
1964 Get_Next_Interp
(I
, It
);
1967 end Report_Ambiguous_Argument
;
1969 -----------------------
1970 -- Resolution_Failed --
1971 -----------------------
1973 procedure Resolution_Failed
is
1975 Patch_Up_Value
(N
, Typ
);
1977 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1978 Set_Is_Overloaded
(N
, False);
1980 -- The caller will return without calling the expander, so we need
1981 -- to set the analyzed flag. Note that it is fine to set Analyzed
1982 -- to True even if we are in the middle of a shallow analysis,
1983 -- (see the spec of sem for more details) since this is an error
1984 -- situation anyway, and there is no point in repeating the
1985 -- analysis later (indeed it won't work to repeat it later, since
1986 -- we haven't got a clear resolution of which entity is being
1989 Set_Analyzed
(N
, True);
1991 end Resolution_Failed
;
1993 -- Start of processing for Resolve
2000 -- Access attribute on remote subprogram cannot be used for a non-remote
2001 -- access-to-subprogram type.
2003 if Nkind
(N
) = N_Attribute_Reference
2004 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
2005 Name_Unrestricted_Access
,
2006 Name_Unchecked_Access
)
2007 and then Comes_From_Source
(N
)
2008 and then Is_Entity_Name
(Prefix
(N
))
2009 and then Is_Subprogram
(Entity
(Prefix
(N
)))
2010 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
2011 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
2014 ("prefix must statically denote a non-remote subprogram", N
);
2017 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
2019 -- If the context is a Remote_Access_To_Subprogram, access attributes
2020 -- must be resolved with the corresponding fat pointer. There is no need
2021 -- to check for the attribute name since the return type of an
2022 -- attribute is never a remote type.
2024 if Nkind
(N
) = N_Attribute_Reference
2025 and then Comes_From_Source
(N
)
2026 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
2029 Attr
: constant Attribute_Id
:=
2030 Get_Attribute_Id
(Attribute_Name
(N
));
2031 Pref
: constant Node_Id
:= Prefix
(N
);
2034 Is_Remote
: Boolean := True;
2037 -- Check that Typ is a remote access-to-subprogram type
2039 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2041 -- Prefix (N) must statically denote a remote subprogram
2042 -- declared in a package specification.
2044 if Attr
= Attribute_Access
or else
2045 Attr
= Attribute_Unchecked_Access
or else
2046 Attr
= Attribute_Unrestricted_Access
2048 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2050 if Nkind
(Decl
) = N_Subprogram_Body
then
2051 Spec
:= Corresponding_Spec
(Decl
);
2053 if Present
(Spec
) then
2054 Decl
:= Unit_Declaration_Node
(Spec
);
2058 Spec
:= Parent
(Decl
);
2060 if not Is_Entity_Name
(Prefix
(N
))
2061 or else Nkind
(Spec
) /= N_Package_Specification
2063 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2067 ("prefix must statically denote a remote subprogram ",
2071 -- If we are generating code in distributed mode, perform
2072 -- semantic checks against corresponding remote entities.
2075 and then Get_PCS_Name
/= Name_No_DSA
2077 Check_Subtype_Conformant
2078 (New_Id
=> Entity
(Prefix
(N
)),
2079 Old_Id
=> Designated_Type
2080 (Corresponding_Remote_Type
(Typ
)),
2084 Process_Remote_AST_Attribute
(N
, Typ
);
2092 Debug_A_Entry
("resolving ", N
);
2094 if Debug_Flag_V
then
2095 Write_Overloads
(N
);
2098 if Comes_From_Source
(N
) then
2099 if Is_Fixed_Point_Type
(Typ
) then
2100 Check_Restriction
(No_Fixed_Point
, N
);
2102 elsif Is_Floating_Point_Type
(Typ
)
2103 and then Typ
/= Universal_Real
2104 and then Typ
/= Any_Real
2106 Check_Restriction
(No_Floating_Point
, N
);
2110 -- Return if already analyzed
2112 if Analyzed
(N
) then
2113 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2114 Analyze_Dimension
(N
);
2117 -- Any case of Any_Type as the Etype value means that we had a
2120 elsif Etype
(N
) = Any_Type
then
2121 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2125 Check_Parameterless_Call
(N
);
2127 -- The resolution of an Expression_With_Actions is determined by
2130 if Nkind
(N
) = N_Expression_With_Actions
then
2131 Resolve
(Expression
(N
), Typ
);
2134 Expr_Type
:= Etype
(Expression
(N
));
2136 -- If not overloaded, then we know the type, and all that needs doing
2137 -- is to check that this type is compatible with the context.
2139 elsif not Is_Overloaded
(N
) then
2140 Found
:= Covers
(Typ
, Etype
(N
));
2141 Expr_Type
:= Etype
(N
);
2143 -- In the overloaded case, we must select the interpretation that
2144 -- is compatible with the context (i.e. the type passed to Resolve)
2147 -- Loop through possible interpretations
2149 Get_First_Interp
(N
, I
, It
);
2150 Interp_Loop
: while Present
(It
.Typ
) loop
2151 if Debug_Flag_V
then
2152 Write_Str
("Interp: ");
2156 -- We are only interested in interpretations that are compatible
2157 -- with the expected type, any other interpretations are ignored.
2159 if not Covers
(Typ
, It
.Typ
) then
2160 if Debug_Flag_V
then
2161 Write_Str
(" interpretation incompatible with context");
2166 -- Skip the current interpretation if it is disabled by an
2167 -- abstract operator. This action is performed only when the
2168 -- type against which we are resolving is the same as the
2169 -- type of the interpretation.
2171 if Ada_Version
>= Ada_2005
2172 and then It
.Typ
= Typ
2173 and then Typ
/= Universal_Integer
2174 and then Typ
/= Universal_Real
2175 and then Present
(It
.Abstract_Op
)
2177 if Debug_Flag_V
then
2178 Write_Line
("Skip.");
2184 -- First matching interpretation
2190 Expr_Type
:= It
.Typ
;
2192 -- Matching interpretation that is not the first, maybe an
2193 -- error, but there are some cases where preference rules are
2194 -- used to choose between the two possibilities. These and
2195 -- some more obscure cases are handled in Disambiguate.
2198 -- If the current statement is part of a predefined library
2199 -- unit, then all interpretations which come from user level
2200 -- packages should not be considered. Check previous and
2204 if not Comes_From_Predefined_Lib_Unit
(It
.Nam
) then
2207 elsif not Comes_From_Predefined_Lib_Unit
(Seen
) then
2209 -- Previous interpretation must be discarded
2213 Expr_Type
:= It
.Typ
;
2214 Set_Entity
(N
, Seen
);
2219 -- Otherwise apply further disambiguation steps
2221 Error_Msg_Sloc
:= Sloc
(Seen
);
2222 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2224 -- Disambiguation has succeeded. Skip the remaining
2227 if It1
/= No_Interp
then
2229 Expr_Type
:= It1
.Typ
;
2231 while Present
(It
.Typ
) loop
2232 Get_Next_Interp
(I
, It
);
2236 -- Before we issue an ambiguity complaint, check for
2237 -- the case of a subprogram call where at least one
2238 -- of the arguments is Any_Type, and if so, suppress
2239 -- the message, since it is a cascaded error.
2241 if Nkind
(N
) in N_Subprogram_Call
then
2247 A
:= First_Actual
(N
);
2248 while Present
(A
) loop
2251 if Nkind
(E
) = N_Parameter_Association
then
2252 E
:= Explicit_Actual_Parameter
(E
);
2255 if Etype
(E
) = Any_Type
then
2256 if Debug_Flag_V
then
2257 Write_Str
("Any_Type in call");
2268 elsif Nkind
(N
) in N_Binary_Op
2269 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2270 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2274 elsif Nkind
(N
) in N_Unary_Op
2275 and then Etype
(Right_Opnd
(N
)) = Any_Type
2280 -- Not that special case, so issue message using the
2281 -- flag Ambiguous to control printing of the header
2282 -- message only at the start of an ambiguous set.
2284 if not Ambiguous
then
2285 if Nkind
(N
) = N_Function_Call
2286 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2289 ("ambiguous expression "
2290 & "(cannot resolve indirect call)!", N
);
2292 Error_Msg_NE
-- CODEFIX
2293 ("ambiguous expression (cannot resolve&)!",
2299 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2301 ("\\possible interpretation (inherited)#!", N
);
2303 Error_Msg_N
-- CODEFIX
2304 ("\\possible interpretation#!", N
);
2307 if Nkind
(N
) in N_Subprogram_Call
2308 and then Present
(Parameter_Associations
(N
))
2310 Report_Ambiguous_Argument
;
2314 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2316 -- By default, the error message refers to the candidate
2317 -- interpretation. But if it is a predefined operator, it
2318 -- is implicitly declared at the declaration of the type
2319 -- of the operand. Recover the sloc of that declaration
2320 -- for the error message.
2322 if Nkind
(N
) in N_Op
2323 and then Scope
(It
.Nam
) = Standard_Standard
2324 and then not Is_Overloaded
(Right_Opnd
(N
))
2325 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2328 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2330 if Comes_From_Source
(Err_Type
)
2331 and then Present
(Parent
(Err_Type
))
2333 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2336 elsif Nkind
(N
) in N_Binary_Op
2337 and then Scope
(It
.Nam
) = Standard_Standard
2338 and then not Is_Overloaded
(Left_Opnd
(N
))
2339 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2342 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2344 if Comes_From_Source
(Err_Type
)
2345 and then Present
(Parent
(Err_Type
))
2347 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2350 -- If this is an indirect call, use the subprogram_type
2351 -- in the message, to have a meaningful location. Also
2352 -- indicate if this is an inherited operation, created
2353 -- by a type declaration.
2355 elsif Nkind
(N
) = N_Function_Call
2356 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2357 and then Is_Type
(It
.Nam
)
2361 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2366 if Nkind
(N
) in N_Op
2367 and then Scope
(It
.Nam
) = Standard_Standard
2368 and then Present
(Err_Type
)
2370 -- Special-case the message for universal_fixed
2371 -- operators, which are not declared with the type
2372 -- of the operand, but appear forever in Standard.
2374 if It
.Typ
= Universal_Fixed
2375 and then Scope
(It
.Nam
) = Standard_Standard
2378 ("\\possible interpretation as universal_fixed "
2379 & "operation (RM 4.5.5 (19))", N
);
2382 ("\\possible interpretation (predefined)#!", N
);
2386 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2389 ("\\possible interpretation (inherited)#!", N
);
2391 Error_Msg_N
-- CODEFIX
2392 ("\\possible interpretation#!", N
);
2398 -- We have a matching interpretation, Expr_Type is the type
2399 -- from this interpretation, and Seen is the entity.
2401 -- For an operator, just set the entity name. The type will be
2402 -- set by the specific operator resolution routine.
2404 if Nkind
(N
) in N_Op
then
2405 Set_Entity
(N
, Seen
);
2406 Generate_Reference
(Seen
, N
);
2408 elsif Nkind
(N
) = N_Case_Expression
then
2409 Set_Etype
(N
, Expr_Type
);
2411 elsif Nkind
(N
) = N_Character_Literal
then
2412 Set_Etype
(N
, Expr_Type
);
2414 elsif Nkind
(N
) = N_If_Expression
then
2415 Set_Etype
(N
, Expr_Type
);
2417 -- AI05-0139-2: Expression is overloaded because type has
2418 -- implicit dereference. If type matches context, no implicit
2419 -- dereference is involved.
2421 elsif Has_Implicit_Dereference
(Expr_Type
) then
2422 Set_Etype
(N
, Expr_Type
);
2423 Set_Is_Overloaded
(N
, False);
2426 elsif Is_Overloaded
(N
)
2427 and then Present
(It
.Nam
)
2428 and then Ekind
(It
.Nam
) = E_Discriminant
2429 and then Has_Implicit_Dereference
(It
.Nam
)
2431 -- If the node is a general indexing, the dereference is
2432 -- is inserted when resolving the rewritten form, else
2435 if Nkind
(N
) /= N_Indexed_Component
2436 or else No
(Generalized_Indexing
(N
))
2438 Build_Explicit_Dereference
(N
, It
.Nam
);
2441 -- For an explicit dereference, attribute reference, range,
2442 -- short-circuit form (which is not an operator node), or call
2443 -- with a name that is an explicit dereference, there is
2444 -- nothing to be done at this point.
2446 elsif Nkind_In
(N
, N_Explicit_Dereference
,
2447 N_Attribute_Reference
,
2449 N_Indexed_Component
,
2452 N_Selected_Component
,
2454 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2458 -- For procedure or function calls, set the type of the name,
2459 -- and also the entity pointer for the prefix.
2461 elsif Nkind
(N
) in N_Subprogram_Call
2462 and then Is_Entity_Name
(Name
(N
))
2464 Set_Etype
(Name
(N
), Expr_Type
);
2465 Set_Entity
(Name
(N
), Seen
);
2466 Generate_Reference
(Seen
, Name
(N
));
2468 elsif Nkind
(N
) = N_Function_Call
2469 and then Nkind
(Name
(N
)) = N_Selected_Component
2471 Set_Etype
(Name
(N
), Expr_Type
);
2472 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2473 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2475 -- For all other cases, just set the type of the Name
2478 Set_Etype
(Name
(N
), Expr_Type
);
2485 -- Move to next interpretation
2487 exit Interp_Loop
when No
(It
.Typ
);
2489 Get_Next_Interp
(I
, It
);
2490 end loop Interp_Loop
;
2493 -- At this stage Found indicates whether or not an acceptable
2494 -- interpretation exists. If not, then we have an error, except that if
2495 -- the context is Any_Type as a result of some other error, then we
2496 -- suppress the error report.
2499 if Typ
/= Any_Type
then
2501 -- If type we are looking for is Void, then this is the procedure
2502 -- call case, and the error is simply that what we gave is not a
2503 -- procedure name (we think of procedure calls as expressions with
2504 -- types internally, but the user doesn't think of them this way).
2506 if Typ
= Standard_Void_Type
then
2508 -- Special case message if function used as a procedure
2510 if Nkind
(N
) = N_Procedure_Call_Statement
2511 and then Is_Entity_Name
(Name
(N
))
2512 and then Ekind
(Entity
(Name
(N
))) = E_Function
2515 ("cannot use function & in a procedure call",
2516 Name
(N
), Entity
(Name
(N
)));
2518 -- Otherwise give general message (not clear what cases this
2519 -- covers, but no harm in providing for them).
2522 Error_Msg_N
("expect procedure name in procedure call", N
);
2527 -- Otherwise we do have a subexpression with the wrong type
2529 -- Check for the case of an allocator which uses an access type
2530 -- instead of the designated type. This is a common error and we
2531 -- specialize the message, posting an error on the operand of the
2532 -- allocator, complaining that we expected the designated type of
2535 elsif Nkind
(N
) = N_Allocator
2536 and then Is_Access_Type
(Typ
)
2537 and then Is_Access_Type
(Etype
(N
))
2538 and then Designated_Type
(Etype
(N
)) = Typ
2540 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2543 -- Check for view mismatch on Null in instances, for which the
2544 -- view-swapping mechanism has no identifier.
2546 elsif (In_Instance
or else In_Inlined_Body
)
2547 and then (Nkind
(N
) = N_Null
)
2548 and then Is_Private_Type
(Typ
)
2549 and then Is_Access_Type
(Full_View
(Typ
))
2551 Resolve
(N
, Full_View
(Typ
));
2555 -- Check for an aggregate. Sometimes we can get bogus aggregates
2556 -- from misuse of parentheses, and we are about to complain about
2557 -- the aggregate without even looking inside it.
2559 -- Instead, if we have an aggregate of type Any_Composite, then
2560 -- analyze and resolve the component fields, and then only issue
2561 -- another message if we get no errors doing this (otherwise
2562 -- assume that the errors in the aggregate caused the problem).
2564 elsif Nkind
(N
) = N_Aggregate
2565 and then Etype
(N
) = Any_Composite
2567 -- Disable expansion in any case. If there is a type mismatch
2568 -- it may be fatal to try to expand the aggregate. The flag
2569 -- would otherwise be set to false when the error is posted.
2571 Expander_Active
:= False;
2574 procedure Check_Aggr
(Aggr
: Node_Id
);
2575 -- Check one aggregate, and set Found to True if we have a
2576 -- definite error in any of its elements
2578 procedure Check_Elmt
(Aelmt
: Node_Id
);
2579 -- Check one element of aggregate and set Found to True if
2580 -- we definitely have an error in the element.
2586 procedure Check_Aggr
(Aggr
: Node_Id
) is
2590 if Present
(Expressions
(Aggr
)) then
2591 Elmt
:= First
(Expressions
(Aggr
));
2592 while Present
(Elmt
) loop
2598 if Present
(Component_Associations
(Aggr
)) then
2599 Elmt
:= First
(Component_Associations
(Aggr
));
2600 while Present
(Elmt
) loop
2602 -- If this is a default-initialized component, then
2603 -- there is nothing to check. The box will be
2604 -- replaced by the appropriate call during late
2607 if not Box_Present
(Elmt
) then
2608 Check_Elmt
(Expression
(Elmt
));
2620 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2622 -- If we have a nested aggregate, go inside it (to
2623 -- attempt a naked analyze-resolve of the aggregate can
2624 -- cause undesirable cascaded errors). Do not resolve
2625 -- expression if it needs a type from context, as for
2626 -- integer * fixed expression.
2628 if Nkind
(Aelmt
) = N_Aggregate
then
2634 if not Is_Overloaded
(Aelmt
)
2635 and then Etype
(Aelmt
) /= Any_Fixed
2640 if Etype
(Aelmt
) = Any_Type
then
2651 -- Looks like we have a type error, but check for special case
2652 -- of Address wanted, integer found, with the configuration pragma
2653 -- Allow_Integer_Address active. If we have this case, introduce
2654 -- an unchecked conversion to allow the integer expression to be
2655 -- treated as an Address. The reverse case of integer wanted,
2656 -- Address found, is treated in an analogous manner.
2658 if Address_Integer_Convert_OK
(Typ
, Etype
(N
)) then
2659 Rewrite
(N
, Unchecked_Convert_To
(Typ
, Relocate_Node
(N
)));
2660 Analyze_And_Resolve
(N
, Typ
);
2664 -- That special Allow_Integer_Address check did not appply, so we
2665 -- have a real type error. If an error message was issued already,
2666 -- Found got reset to True, so if it's still False, issue standard
2667 -- Wrong_Type message.
2670 if Is_Overloaded
(N
) and then Nkind
(N
) = N_Function_Call
then
2672 Subp_Name
: Node_Id
;
2675 if Is_Entity_Name
(Name
(N
)) then
2676 Subp_Name
:= Name
(N
);
2678 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2680 -- Protected operation: retrieve operation name
2682 Subp_Name
:= Selector_Name
(Name
(N
));
2685 raise Program_Error
;
2688 Error_Msg_Node_2
:= Typ
;
2690 ("no visible interpretation of& "
2691 & "matches expected type&", N
, Subp_Name
);
2694 if All_Errors_Mode
then
2696 Index
: Interp_Index
;
2700 Error_Msg_N
("\\possible interpretations:", N
);
2702 Get_First_Interp
(Name
(N
), Index
, It
);
2703 while Present
(It
.Nam
) loop
2704 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2705 Error_Msg_Node_2
:= It
.Nam
;
2707 ("\\ type& for & declared#", N
, It
.Typ
);
2708 Get_Next_Interp
(Index
, It
);
2713 Error_Msg_N
("\use -gnatf for details", N
);
2717 Wrong_Type
(N
, Typ
);
2725 -- Test if we have more than one interpretation for the context
2727 elsif Ambiguous
then
2731 -- Only one intepretation
2734 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2735 -- the "+" on T is abstract, and the operands are of universal type,
2736 -- the above code will have (incorrectly) resolved the "+" to the
2737 -- universal one in Standard. Therefore check for this case and give
2738 -- an error. We can't do this earlier, because it would cause legal
2739 -- cases to get errors (when some other type has an abstract "+").
2741 if Ada_Version
>= Ada_2005
2742 and then Nkind
(N
) in N_Op
2743 and then Is_Overloaded
(N
)
2744 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2746 Get_First_Interp
(N
, I
, It
);
2747 while Present
(It
.Typ
) loop
2748 if Present
(It
.Abstract_Op
) and then
2749 Etype
(It
.Abstract_Op
) = Typ
2752 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2756 Get_Next_Interp
(I
, It
);
2760 -- Here we have an acceptable interpretation for the context
2762 -- Propagate type information and normalize tree for various
2763 -- predefined operations. If the context only imposes a class of
2764 -- types, rather than a specific type, propagate the actual type
2767 if Typ
= Any_Integer
or else
2768 Typ
= Any_Boolean
or else
2769 Typ
= Any_Modular
or else
2770 Typ
= Any_Real
or else
2773 Ctx_Type
:= Expr_Type
;
2775 -- Any_Fixed is legal in a real context only if a specific fixed-
2776 -- point type is imposed. If Norman Cohen can be confused by this,
2777 -- it deserves a separate message.
2780 and then Expr_Type
= Any_Fixed
2782 Error_Msg_N
("illegal context for mixed mode operation", N
);
2783 Set_Etype
(N
, Universal_Real
);
2784 Ctx_Type
:= Universal_Real
;
2788 -- A user-defined operator is transformed into a function call at
2789 -- this point, so that further processing knows that operators are
2790 -- really operators (i.e. are predefined operators). User-defined
2791 -- operators that are intrinsic are just renamings of the predefined
2792 -- ones, and need not be turned into calls either, but if they rename
2793 -- a different operator, we must transform the node accordingly.
2794 -- Instantiations of Unchecked_Conversion are intrinsic but are
2795 -- treated as functions, even if given an operator designator.
2797 if Nkind
(N
) in N_Op
2798 and then Present
(Entity
(N
))
2799 and then Ekind
(Entity
(N
)) /= E_Operator
2802 if not Is_Predefined_Op
(Entity
(N
)) then
2803 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2805 elsif Present
(Alias
(Entity
(N
)))
2807 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2808 N_Subprogram_Renaming_Declaration
2810 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2812 -- If the node is rewritten, it will be fully resolved in
2813 -- Rewrite_Renamed_Operator.
2815 if Analyzed
(N
) then
2821 case N_Subexpr
'(Nkind (N)) is
2823 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2825 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2827 when N_Short_Circuit
2828 => Resolve_Short_Circuit (N, Ctx_Type);
2830 when N_Attribute_Reference
2831 => Resolve_Attribute (N, Ctx_Type);
2833 when N_Case_Expression
2834 => Resolve_Case_Expression (N, Ctx_Type);
2836 when N_Character_Literal
2837 => Resolve_Character_Literal (N, Ctx_Type);
2839 when N_Expanded_Name
2840 => Resolve_Entity_Name (N, Ctx_Type);
2842 when N_Explicit_Dereference
2843 => Resolve_Explicit_Dereference (N, Ctx_Type);
2845 when N_Expression_With_Actions
2846 => Resolve_Expression_With_Actions (N, Ctx_Type);
2848 when N_Extension_Aggregate
2849 => Resolve_Extension_Aggregate (N, Ctx_Type);
2851 when N_Function_Call
2852 => Resolve_Call (N, Ctx_Type);
2855 => Resolve_Entity_Name (N, Ctx_Type);
2857 when N_If_Expression
2858 => Resolve_If_Expression (N, Ctx_Type);
2860 when N_Indexed_Component
2861 => Resolve_Indexed_Component (N, Ctx_Type);
2863 when N_Integer_Literal
2864 => Resolve_Integer_Literal (N, Ctx_Type);
2866 when N_Membership_Test
2867 => Resolve_Membership_Op (N, Ctx_Type);
2869 when N_Null => Resolve_Null (N, Ctx_Type);
2871 when N_Op_And | N_Op_Or | N_Op_Xor
2872 => Resolve_Logical_Op (N, Ctx_Type);
2874 when N_Op_Eq | N_Op_Ne
2875 => Resolve_Equality_Op (N, Ctx_Type);
2877 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2878 => Resolve_Comparison_Op (N, Ctx_Type);
2880 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2882 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2883 N_Op_Divide | N_Op_Mod | N_Op_Rem
2885 => Resolve_Arithmetic_Op (N, Ctx_Type);
2887 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2889 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2891 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2892 => Resolve_Unary_Op (N, Ctx_Type);
2894 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2896 when N_Procedure_Call_Statement
2897 => Resolve_Call (N, Ctx_Type);
2899 when N_Operator_Symbol
2900 => Resolve_Operator_Symbol (N, Ctx_Type);
2902 when N_Qualified_Expression
2903 => Resolve_Qualified_Expression (N, Ctx_Type);
2905 -- Why is the following null, needs a comment ???
2907 when N_Quantified_Expression
2910 when N_Raise_Expression
2911 => Resolve_Raise_Expression (N, Ctx_Type);
2913 when N_Raise_xxx_Error
2914 => Set_Etype (N, Ctx_Type);
2916 when N_Range => Resolve_Range (N, Ctx_Type);
2919 => Resolve_Real_Literal (N, Ctx_Type);
2921 when N_Reference => Resolve_Reference (N, Ctx_Type);
2923 when N_Selected_Component
2924 => Resolve_Selected_Component (N, Ctx_Type);
2926 when N_Slice => Resolve_Slice (N, Ctx_Type);
2928 when N_String_Literal
2929 => Resolve_String_Literal (N, Ctx_Type);
2931 when N_Type_Conversion
2932 => Resolve_Type_Conversion (N, Ctx_Type);
2934 when N_Unchecked_Expression =>
2935 Resolve_Unchecked_Expression (N, Ctx_Type);
2937 when N_Unchecked_Type_Conversion =>
2938 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2941 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2942 -- expression of an anonymous access type that occurs in the context
2943 -- of a named general access type, except when the expression is that
2944 -- of a membership test. This ensures proper legality checking in
2945 -- terms of allowed conversions (expressions that would be illegal to
2946 -- convert implicitly are allowed in membership tests).
2948 if Ada_Version >= Ada_2012
2949 and then Ekind (Ctx_Type) = E_General_Access_Type
2950 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2951 and then Nkind (Parent (N)) not in N_Membership_Test
2953 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2954 Analyze_And_Resolve (N, Ctx_Type);
2957 -- If the subexpression was replaced by a non-subexpression, then
2958 -- all we do is to expand it. The only legitimate case we know of
2959 -- is converting procedure call statement to entry call statements,
2960 -- but there may be others, so we are making this test general.
2962 if Nkind (N) not in N_Subexpr then
2963 Debug_A_Exit ("resolving ", N, " (done)");
2968 -- The expression is definitely NOT overloaded at this point, so
2969 -- we reset the Is_Overloaded flag to avoid any confusion when
2970 -- reanalyzing the node.
2972 Set_Is_Overloaded (N, False);
2974 -- Freeze expression type, entity if it is a name, and designated
2975 -- type if it is an allocator (RM 13.14(10,11,13)).
2977 -- Now that the resolution of the type of the node is complete, and
2978 -- we did not detect an error, we can expand this node. We skip the
2979 -- expand call if we are in a default expression, see section
2980 -- "Handling of Default Expressions" in Sem spec.
2982 Debug_A_Exit ("resolving ", N, " (done)");
2984 -- We unconditionally freeze the expression, even if we are in
2985 -- default expression mode (the Freeze_Expression routine tests this
2986 -- flag and only freezes static types if it is set).
2988 -- Ada 2012 (AI05-177): The declaration of an expression function
2989 -- does not cause freezing, but we never reach here in that case.
2990 -- Here we are resolving the corresponding expanded body, so we do
2991 -- need to perform normal freezing.
2993 Freeze_Expression (N);
2995 -- Now we can do the expansion
3005 -- Version with check(s) suppressed
3007 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3009 if Suppress = All_Checks then
3011 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3013 Scope_Suppress.Suppress := (others => True);
3015 Scope_Suppress.Suppress := Sva;
3020 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3022 Scope_Suppress.Suppress (Suppress) := True;
3024 Scope_Suppress.Suppress (Suppress) := Svg;
3033 -- Version with implicit type
3035 procedure Resolve (N : Node_Id) is
3037 Resolve (N, Etype (N));
3040 ---------------------
3041 -- Resolve_Actuals --
3042 ---------------------
3044 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3045 Loc : constant Source_Ptr := Sloc (N);
3051 Prev : Node_Id := Empty;
3054 procedure Check_Aliased_Parameter;
3055 -- Check rules on aliased parameters and related accessibility rules
3056 -- in (RM 3.10.2 (10.2-10.4)).
3058 procedure Check_Argument_Order;
3059 -- Performs a check for the case where the actuals are all simple
3060 -- identifiers that correspond to the formal names, but in the wrong
3061 -- order, which is considered suspicious and cause for a warning.
3063 procedure Check_Prefixed_Call;
3064 -- If the original node is an overloaded call in prefix notation,
3065 -- insert an 'Access or a dereference as needed over the first actual
.
3066 -- Try_Object_Operation has already verified that there is a valid
3067 -- interpretation, but the form of the actual can only be determined
3068 -- once the primitive operation is identified.
3070 procedure Insert_Default
;
3071 -- If the actual is missing in a call, insert in the actuals list
3072 -- an instance of the default expression. The insertion is always
3073 -- a named association.
3075 procedure Property_Error
3078 Prop_Nam
: Name_Id
);
3079 -- Emit an error concerning variable Var with entity Var_Id that has
3080 -- enabled property Prop_Nam when it acts as an actual parameter in a
3081 -- call and the corresponding formal parameter is of mode IN.
3083 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3084 -- Check whether T1 and T2, or their full views, are derived from a
3085 -- common type. Used to enforce the restrictions on array conversions
3088 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3089 -- Predicate to determine whether an actual that is a concatenation
3090 -- will be evaluated statically and does not need a transient scope.
3091 -- This must be determined before the actual is resolved and expanded
3092 -- because if needed the transient scope must be introduced earlier.
3094 -----------------------------
3095 -- Check_Aliased_Parameter --
3096 -----------------------------
3098 procedure Check_Aliased_Parameter
is
3099 Nominal_Subt
: Entity_Id
;
3102 if Is_Aliased
(F
) then
3103 if Is_Tagged_Type
(A_Typ
) then
3106 elsif Is_Aliased_View
(A
) then
3107 if Is_Constr_Subt_For_U_Nominal
(A_Typ
) then
3108 Nominal_Subt
:= Base_Type
(A_Typ
);
3110 Nominal_Subt
:= A_Typ
;
3113 if Subtypes_Statically_Match
(F_Typ
, Nominal_Subt
) then
3116 -- In a generic body assume the worst for generic formals:
3117 -- they can have a constrained partial view (AI05-041).
3119 elsif Has_Discriminants
(F_Typ
)
3120 and then not Is_Constrained
(F_Typ
)
3121 and then not Has_Constrained_Partial_View
(F_Typ
)
3122 and then not Is_Generic_Type
(F_Typ
)
3127 Error_Msg_NE
("untagged actual does not match "
3128 & "aliased formal&", A
, F
);
3132 Error_Msg_NE
("actual for aliased formal& must be "
3133 & "aliased object", A
, F
);
3136 if Ekind
(Nam
) = E_Procedure
then
3139 elsif Ekind
(Etype
(Nam
)) = E_Anonymous_Access_Type
then
3140 if Nkind
(Parent
(N
)) = N_Type_Conversion
3141 and then Type_Access_Level
(Etype
(Parent
(N
))) <
3142 Object_Access_Level
(A
)
3144 Error_Msg_N
("aliased actual has wrong accessibility", A
);
3147 elsif Nkind
(Parent
(N
)) = N_Qualified_Expression
3148 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
3149 and then Type_Access_Level
(Etype
(Parent
(Parent
(N
)))) <
3150 Object_Access_Level
(A
)
3153 ("aliased actual in allocator has wrong accessibility", A
);
3156 end Check_Aliased_Parameter
;
3158 --------------------------
3159 -- Check_Argument_Order --
3160 --------------------------
3162 procedure Check_Argument_Order
is
3164 -- Nothing to do if no parameters, or original node is neither a
3165 -- function call nor a procedure call statement (happens in the
3166 -- operator-transformed-to-function call case), or the call does
3167 -- not come from source, or this warning is off.
3169 if not Warn_On_Parameter_Order
3170 or else No
(Parameter_Associations
(N
))
3171 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3172 or else not Comes_From_Source
(N
)
3178 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3181 -- Nothing to do if only one parameter
3187 -- Here if at least two arguments
3190 Actuals
: array (1 .. Nargs
) of Node_Id
;
3194 Wrong_Order
: Boolean := False;
3195 -- Set True if an out of order case is found
3198 -- Collect identifier names of actuals, fail if any actual is
3199 -- not a simple identifier, and record max length of name.
3201 Actual
:= First
(Parameter_Associations
(N
));
3202 for J
in Actuals
'Range loop
3203 if Nkind
(Actual
) /= N_Identifier
then
3206 Actuals
(J
) := Actual
;
3211 -- If we got this far, all actuals are identifiers and the list
3212 -- of their names is stored in the Actuals array.
3214 Formal
:= First_Formal
(Nam
);
3215 for J
in Actuals
'Range loop
3217 -- If we ran out of formals, that's odd, probably an error
3218 -- which will be detected elsewhere, but abandon the search.
3224 -- If name matches and is in order OK
3226 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3230 -- If no match, see if it is elsewhere in list and if so
3231 -- flag potential wrong order if type is compatible.
3233 for K
in Actuals
'Range loop
3234 if Chars
(Formal
) = Chars
(Actuals
(K
))
3236 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3238 Wrong_Order
:= True;
3248 <<Continue
>> Next_Formal
(Formal
);
3251 -- If Formals left over, also probably an error, skip warning
3253 if Present
(Formal
) then
3257 -- Here we give the warning if something was out of order
3261 ("?P?actuals for this call may be in wrong order", N
);
3265 end Check_Argument_Order
;
3267 -------------------------
3268 -- Check_Prefixed_Call --
3269 -------------------------
3271 procedure Check_Prefixed_Call
is
3272 Act
: constant Node_Id
:= First_Actual
(N
);
3273 A_Type
: constant Entity_Id
:= Etype
(Act
);
3274 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3275 Orig
: constant Node_Id
:= Original_Node
(N
);
3279 -- Check whether the call is a prefixed call, with or without
3280 -- additional actuals.
3282 if Nkind
(Orig
) = N_Selected_Component
3284 (Nkind
(Orig
) = N_Indexed_Component
3285 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3286 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3287 and then Is_Entity_Name
(Act
)
3288 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3290 if Is_Access_Type
(A_Type
)
3291 and then not Is_Access_Type
(F_Type
)
3293 -- Introduce dereference on object in prefix
3296 Make_Explicit_Dereference
(Sloc
(Act
),
3297 Prefix
=> Relocate_Node
(Act
));
3298 Rewrite
(Act
, New_A
);
3301 elsif Is_Access_Type
(F_Type
)
3302 and then not Is_Access_Type
(A_Type
)
3304 -- Introduce an implicit 'Access in prefix
3306 if not Is_Aliased_View
(Act
) then
3308 ("object in prefixed call to& must be aliased "
3309 & "(RM 4.1.3 (13 1/2))",
3314 Make_Attribute_Reference
(Loc
,
3315 Attribute_Name
=> Name_Access
,
3316 Prefix
=> Relocate_Node
(Act
)));
3321 end Check_Prefixed_Call
;
3323 --------------------
3324 -- Insert_Default --
3325 --------------------
3327 procedure Insert_Default
is
3332 -- Missing argument in call, nothing to insert
3334 if No
(Default_Value
(F
)) then
3338 -- Note that we do a full New_Copy_Tree, so that any associated
3339 -- Itypes are properly copied. This may not be needed any more,
3340 -- but it does no harm as a safety measure. Defaults of a generic
3341 -- formal may be out of bounds of the corresponding actual (see
3342 -- cc1311b) and an additional check may be required.
3347 New_Scope
=> Current_Scope
,
3350 if Is_Concurrent_Type
(Scope
(Nam
))
3351 and then Has_Discriminants
(Scope
(Nam
))
3353 Replace_Actual_Discriminants
(N
, Actval
);
3356 if Is_Overloadable
(Nam
)
3357 and then Present
(Alias
(Nam
))
3359 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3360 and then not Is_Tagged_Type
(Etype
(F
))
3362 -- If default is a real literal, do not introduce a
3363 -- conversion whose effect may depend on the run-time
3364 -- size of universal real.
3366 if Nkind
(Actval
) = N_Real_Literal
then
3367 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3369 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3373 if Is_Scalar_Type
(Etype
(F
)) then
3374 Enable_Range_Check
(Actval
);
3377 Set_Parent
(Actval
, N
);
3379 -- Resolve aggregates with their base type, to avoid scope
3380 -- anomalies: the subtype was first built in the subprogram
3381 -- declaration, and the current call may be nested.
3383 if Nkind
(Actval
) = N_Aggregate
then
3384 Analyze_And_Resolve
(Actval
, Etype
(F
));
3386 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3390 Set_Parent
(Actval
, N
);
3392 -- See note above concerning aggregates
3394 if Nkind
(Actval
) = N_Aggregate
3395 and then Has_Discriminants
(Etype
(Actval
))
3397 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3399 -- Resolve entities with their own type, which may differ from
3400 -- the type of a reference in a generic context (the view
3401 -- swapping mechanism did not anticipate the re-analysis of
3402 -- default values in calls).
3404 elsif Is_Entity_Name
(Actval
) then
3405 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3408 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3412 -- If default is a tag indeterminate function call, propagate tag
3413 -- to obtain proper dispatching.
3415 if Is_Controlling_Formal
(F
)
3416 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3418 Set_Is_Controlling_Actual
(Actval
);
3423 -- If the default expression raises constraint error, then just
3424 -- silently replace it with an N_Raise_Constraint_Error node, since
3425 -- we already gave the warning on the subprogram spec. If node is
3426 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3427 -- the warnings removal machinery.
3429 if Raises_Constraint_Error
(Actval
)
3430 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3433 Make_Raise_Constraint_Error
(Loc
,
3434 Reason
=> CE_Range_Check_Failed
));
3435 Set_Raises_Constraint_Error
(Actval
);
3436 Set_Etype
(Actval
, Etype
(F
));
3440 Make_Parameter_Association
(Loc
,
3441 Explicit_Actual_Parameter
=> Actval
,
3442 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3444 -- Case of insertion is first named actual
3446 if No
(Prev
) or else
3447 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3449 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3450 Set_First_Named_Actual
(N
, Actval
);
3453 if No
(Parameter_Associations
(N
)) then
3454 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3456 Append
(Assoc
, Parameter_Associations
(N
));
3460 Insert_After
(Prev
, Assoc
);
3463 -- Case of insertion is not first named actual
3466 Set_Next_Named_Actual
3467 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3468 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3469 Append
(Assoc
, Parameter_Associations
(N
));
3472 Mark_Rewrite_Insertion
(Assoc
);
3473 Mark_Rewrite_Insertion
(Actval
);
3478 --------------------
3479 -- Property_Error --
3480 --------------------
3482 procedure Property_Error
3488 Error_Msg_Name_1
:= Prop_Nam
;
3490 ("external variable & with enabled property % cannot appear as "
3491 & "actual in procedure call (SPARK RM 7.1.3(11))", Var
, Var_Id
);
3492 Error_Msg_N
("\\corresponding formal parameter has mode In", Var
);
3499 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3500 FT1
: Entity_Id
:= T1
;
3501 FT2
: Entity_Id
:= T2
;
3504 if Is_Private_Type
(T1
)
3505 and then Present
(Full_View
(T1
))
3507 FT1
:= Full_View
(T1
);
3510 if Is_Private_Type
(T2
)
3511 and then Present
(Full_View
(T2
))
3513 FT2
:= Full_View
(T2
);
3516 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3519 --------------------------
3520 -- Static_Concatenation --
3521 --------------------------
3523 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3526 when N_String_Literal
=>
3531 -- Concatenation is static when both operands are static and
3532 -- the concatenation operator is a predefined one.
3534 return Scope
(Entity
(N
)) = Standard_Standard
3536 Static_Concatenation
(Left_Opnd
(N
))
3538 Static_Concatenation
(Right_Opnd
(N
));
3541 if Is_Entity_Name
(N
) then
3543 Ent
: constant Entity_Id
:= Entity
(N
);
3545 return Ekind
(Ent
) = E_Constant
3546 and then Present
(Constant_Value
(Ent
))
3548 Is_OK_Static_Expression
(Constant_Value
(Ent
));
3555 end Static_Concatenation
;
3557 -- Start of processing for Resolve_Actuals
3560 Check_Argument_Order
;
3561 Check_Function_Writable_Actuals
(N
);
3563 if Present
(First_Actual
(N
)) then
3564 Check_Prefixed_Call
;
3567 A
:= First_Actual
(N
);
3568 F
:= First_Formal
(Nam
);
3569 while Present
(F
) loop
3570 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3573 -- If we have an error in any actual or formal, indicated by a type
3574 -- of Any_Type, then abandon resolution attempt, and set result type
3575 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3576 -- type is imposed from context.
3578 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3579 or else Etype
(F
) = Any_Type
3581 if Nkind
(A
) /= N_Raise_Expression
then
3582 Set_Etype
(N
, Any_Type
);
3587 -- Case where actual is present
3589 -- If the actual is an entity, generate a reference to it now. We
3590 -- do this before the actual is resolved, because a formal of some
3591 -- protected subprogram, or a task discriminant, will be rewritten
3592 -- during expansion, and the source entity reference may be lost.
3595 and then Is_Entity_Name
(A
)
3596 and then Comes_From_Source
(N
)
3598 Orig_A
:= Entity
(A
);
3600 if Present
(Orig_A
) then
3601 if Is_Formal
(Orig_A
)
3602 and then Ekind
(F
) /= E_In_Parameter
3604 Generate_Reference
(Orig_A
, A
, 'm');
3606 elsif not Is_Overloaded
(A
) then
3607 if Ekind
(F
) /= E_Out_Parameter
then
3608 Generate_Reference
(Orig_A
, A
);
3610 -- RM 6.4.1(12): For an out parameter that is passed by
3611 -- copy, the formal parameter object is created, and:
3613 -- * For an access type, the formal parameter is initialized
3614 -- from the value of the actual, without checking that the
3615 -- value satisfies any constraint, any predicate, or any
3616 -- exclusion of the null value.
3618 -- * For a scalar type that has the Default_Value aspect
3619 -- specified, the formal parameter is initialized from the
3620 -- value of the actual, without checking that the value
3621 -- satisfies any constraint or any predicate.
3622 -- I do not understand why this case is included??? this is
3623 -- not a case where an OUT parameter is treated as IN OUT.
3625 -- * For a composite type with discriminants or that has
3626 -- implicit initial values for any subcomponents, the
3627 -- behavior is as for an in out parameter passed by copy.
3629 -- Hence for these cases we generate the read reference now
3630 -- (the write reference will be generated later by
3631 -- Note_Possible_Modification).
3633 elsif Is_By_Copy_Type
(Etype
(F
))
3635 (Is_Access_Type
(Etype
(F
))
3637 (Is_Scalar_Type
(Etype
(F
))
3639 Present
(Default_Aspect_Value
(Etype
(F
))))
3641 (Is_Composite_Type
(Etype
(F
))
3642 and then (Has_Discriminants
(Etype
(F
))
3643 or else Is_Partially_Initialized_Type
3646 Generate_Reference
(Orig_A
, A
);
3653 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3654 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3656 -- If style checking mode on, check match of formal name
3659 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3660 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3664 -- If the formal is Out or In_Out, do not resolve and expand the
3665 -- conversion, because it is subsequently expanded into explicit
3666 -- temporaries and assignments. However, the object of the
3667 -- conversion can be resolved. An exception is the case of tagged
3668 -- type conversion with a class-wide actual. In that case we want
3669 -- the tag check to occur and no temporary will be needed (no
3670 -- representation change can occur) and the parameter is passed by
3671 -- reference, so we go ahead and resolve the type conversion.
3672 -- Another exception is the case of reference to component or
3673 -- subcomponent of a bit-packed array, in which case we want to
3674 -- defer expansion to the point the in and out assignments are
3677 if Ekind
(F
) /= E_In_Parameter
3678 and then Nkind
(A
) = N_Type_Conversion
3679 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3681 if Ekind
(F
) = E_In_Out_Parameter
3682 and then Is_Array_Type
(Etype
(F
))
3684 -- In a view conversion, the conversion must be legal in
3685 -- both directions, and thus both component types must be
3686 -- aliased, or neither (4.6 (8)).
3688 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3689 -- the privacy requirement should not apply to generic
3690 -- types, and should be checked in an instance. ARG query
3693 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3694 Has_Aliased_Components
(Etype
(F
))
3697 ("both component types in a view conversion must be"
3698 & " aliased, or neither", A
);
3700 -- Comment here??? what set of cases???
3703 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3705 -- Check view conv between unrelated by ref array types
3707 if Is_By_Reference_Type
(Etype
(F
))
3708 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3711 ("view conversion between unrelated by reference "
3712 & "array types not allowed (\'A'I-00246)", A
);
3714 -- In Ada 2005 mode, check view conversion component
3715 -- type cannot be private, tagged, or volatile. Note
3716 -- that we only apply this to source conversions. The
3717 -- generated code can contain conversions which are
3718 -- not subject to this test, and we cannot extract the
3719 -- component type in such cases since it is not present.
3721 elsif Comes_From_Source
(A
)
3722 and then Ada_Version
>= Ada_2005
3725 Comp_Type
: constant Entity_Id
:=
3727 (Etype
(Expression
(A
)));
3729 if (Is_Private_Type
(Comp_Type
)
3730 and then not Is_Generic_Type
(Comp_Type
))
3731 or else Is_Tagged_Type
(Comp_Type
)
3732 or else Is_Volatile
(Comp_Type
)
3735 ("component type of a view conversion cannot"
3736 & " be private, tagged, or volatile"
3745 -- Resolve expression if conversion is all OK
3747 if (Conversion_OK
(A
)
3748 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3749 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3751 Resolve
(Expression
(A
));
3754 -- If the actual is a function call that returns a limited
3755 -- unconstrained object that needs finalization, create a
3756 -- transient scope for it, so that it can receive the proper
3757 -- finalization list.
3759 elsif Nkind
(A
) = N_Function_Call
3760 and then Is_Limited_Record
(Etype
(F
))
3761 and then not Is_Constrained
(Etype
(F
))
3762 and then Expander_Active
3763 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3765 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3766 Resolve
(A
, Etype
(F
));
3768 -- A small optimization: if one of the actuals is a concatenation
3769 -- create a block around a procedure call to recover stack space.
3770 -- This alleviates stack usage when several procedure calls in
3771 -- the same statement list use concatenation. We do not perform
3772 -- this wrapping for code statements, where the argument is a
3773 -- static string, and we want to preserve warnings involving
3774 -- sequences of such statements.
3776 elsif Nkind
(A
) = N_Op_Concat
3777 and then Nkind
(N
) = N_Procedure_Call_Statement
3778 and then Expander_Active
3780 not (Is_Intrinsic_Subprogram
(Nam
)
3781 and then Chars
(Nam
) = Name_Asm
)
3782 and then not Static_Concatenation
(A
)
3784 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3785 Resolve
(A
, Etype
(F
));
3788 if Nkind
(A
) = N_Type_Conversion
3789 and then Is_Array_Type
(Etype
(F
))
3790 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3792 (Is_Limited_Type
(Etype
(F
))
3793 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3796 ("conversion between unrelated limited array types "
3797 & "not allowed ('A'I-00246)", A
);
3799 if Is_Limited_Type
(Etype
(F
)) then
3800 Explain_Limited_Type
(Etype
(F
), A
);
3803 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3804 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3808 -- (Ada 2005: AI-251): If the actual is an allocator whose
3809 -- directly designated type is a class-wide interface, we build
3810 -- an anonymous access type to use it as the type of the
3811 -- allocator. Later, when the subprogram call is expanded, if
3812 -- the interface has a secondary dispatch table the expander
3813 -- will add a type conversion to force the correct displacement
3816 if Nkind
(A
) = N_Allocator
then
3818 DDT
: constant Entity_Id
:=
3819 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3821 New_Itype
: Entity_Id
;
3824 if Is_Class_Wide_Type
(DDT
)
3825 and then Is_Interface
(DDT
)
3827 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3828 Set_Etype
(New_Itype
, Etype
(A
));
3829 Set_Directly_Designated_Type
3830 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
3831 Set_Etype
(A
, New_Itype
);
3834 -- Ada 2005, AI-162:If the actual is an allocator, the
3835 -- innermost enclosing statement is the master of the
3836 -- created object. This needs to be done with expansion
3837 -- enabled only, otherwise the transient scope will not
3838 -- be removed in the expansion of the wrapped construct.
3840 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3841 and then Expander_Active
3843 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3847 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
3848 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
3852 -- (Ada 2005): The call may be to a primitive operation of a
3853 -- tagged synchronized type, declared outside of the type. In
3854 -- this case the controlling actual must be converted to its
3855 -- corresponding record type, which is the formal type. The
3856 -- actual may be a subtype, either because of a constraint or
3857 -- because it is a generic actual, so use base type to locate
3860 F_Typ
:= Base_Type
(Etype
(F
));
3862 if Is_Tagged_Type
(F_Typ
)
3863 and then (Is_Concurrent_Type
(F_Typ
)
3864 or else Is_Concurrent_Record_Type
(F_Typ
))
3866 -- If the actual is overloaded, look for an interpretation
3867 -- that has a synchronized type.
3869 if not Is_Overloaded
(A
) then
3870 A_Typ
:= Base_Type
(Etype
(A
));
3874 Index
: Interp_Index
;
3878 Get_First_Interp
(A
, Index
, It
);
3879 while Present
(It
.Typ
) loop
3880 if Is_Concurrent_Type
(It
.Typ
)
3881 or else Is_Concurrent_Record_Type
(It
.Typ
)
3883 A_Typ
:= Base_Type
(It
.Typ
);
3887 Get_Next_Interp
(Index
, It
);
3893 Full_A_Typ
: Entity_Id
;
3896 if Present
(Full_View
(A_Typ
)) then
3897 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
3899 Full_A_Typ
:= A_Typ
;
3902 -- Tagged synchronized type (case 1): the actual is a
3905 if Is_Concurrent_Type
(A_Typ
)
3906 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
3909 Unchecked_Convert_To
3910 (Corresponding_Record_Type
(A_Typ
), A
));
3911 Resolve
(A
, Etype
(F
));
3913 -- Tagged synchronized type (case 2): the formal is a
3916 elsif Ekind
(Full_A_Typ
) = E_Record_Type
3918 (Corresponding_Concurrent_Type
(Full_A_Typ
))
3919 and then Is_Concurrent_Type
(F_Typ
)
3920 and then Present
(Corresponding_Record_Type
(F_Typ
))
3921 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
3923 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
3928 Resolve
(A
, Etype
(F
));
3932 -- Not a synchronized operation
3935 Resolve
(A
, Etype
(F
));
3942 -- An actual cannot be an untagged formal incomplete type
3944 if Ekind
(A_Typ
) = E_Incomplete_Type
3945 and then not Is_Tagged_Type
(A_Typ
)
3946 and then Is_Generic_Type
(A_Typ
)
3949 ("invalid use of untagged formal incomplete type", A
);
3952 if Comes_From_Source
(Original_Node
(N
))
3953 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
3954 N_Procedure_Call_Statement
)
3956 -- In formal mode, check that actual parameters matching
3957 -- formals of tagged types are objects (or ancestor type
3958 -- conversions of objects), not general expressions.
3960 if Is_Actual_Tagged_Parameter
(A
) then
3961 if Is_SPARK_05_Object_Reference
(A
) then
3964 elsif Nkind
(A
) = N_Type_Conversion
then
3966 Operand
: constant Node_Id
:= Expression
(A
);
3967 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
3968 Target_Typ
: constant Entity_Id
:= A_Typ
;
3971 if not Is_SPARK_05_Object_Reference
(Operand
) then
3972 Check_SPARK_05_Restriction
3973 ("object required", Operand
);
3975 -- In formal mode, the only view conversions are those
3976 -- involving ancestor conversion of an extended type.
3979 (Is_Tagged_Type
(Target_Typ
)
3980 and then not Is_Class_Wide_Type
(Target_Typ
)
3981 and then Is_Tagged_Type
(Operand_Typ
)
3982 and then not Is_Class_Wide_Type
(Operand_Typ
)
3983 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
3986 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
3988 Check_SPARK_05_Restriction
3989 ("ancestor conversion is the only permitted "
3990 & "view conversion", A
);
3992 Check_SPARK_05_Restriction
3993 ("ancestor conversion required", A
);
4002 Check_SPARK_05_Restriction
("object required", A
);
4005 -- In formal mode, the only view conversions are those
4006 -- involving ancestor conversion of an extended type.
4008 elsif Nkind
(A
) = N_Type_Conversion
4009 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
4011 Check_SPARK_05_Restriction
4012 ("ancestor conversion is the only permitted view "
4017 -- has warnings suppressed, then we reset Never_Set_In_Source for
4018 -- the calling entity. The reason for this is to catch cases like
4019 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4020 -- uses trickery to modify an IN parameter.
4022 if Ekind
(F
) = E_In_Parameter
4023 and then Is_Entity_Name
(A
)
4024 and then Present
(Entity
(A
))
4025 and then Ekind
(Entity
(A
)) = E_Variable
4026 and then Has_Warnings_Off
(F_Typ
)
4028 Set_Never_Set_In_Source
(Entity
(A
), False);
4031 -- Perform error checks for IN and IN OUT parameters
4033 if Ekind
(F
) /= E_Out_Parameter
then
4035 -- Check unset reference. For scalar parameters, it is clearly
4036 -- wrong to pass an uninitialized value as either an IN or
4037 -- IN-OUT parameter. For composites, it is also clearly an
4038 -- error to pass a completely uninitialized value as an IN
4039 -- parameter, but the case of IN OUT is trickier. We prefer
4040 -- not to give a warning here. For example, suppose there is
4041 -- a routine that sets some component of a record to False.
4042 -- It is perfectly reasonable to make this IN-OUT and allow
4043 -- either initialized or uninitialized records to be passed
4046 -- For partially initialized composite values, we also avoid
4047 -- warnings, since it is quite likely that we are passing a
4048 -- partially initialized value and only the initialized fields
4049 -- will in fact be read in the subprogram.
4051 if Is_Scalar_Type
(A_Typ
)
4052 or else (Ekind
(F
) = E_In_Parameter
4053 and then not Is_Partially_Initialized_Type
(A_Typ
))
4055 Check_Unset_Reference
(A
);
4058 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4059 -- actual to a nested call, since this constitutes a reading of
4060 -- the parameter, which is not allowed.
4062 if Is_Entity_Name
(A
)
4063 and then Ekind
(Entity
(A
)) = E_Out_Parameter
4065 if Ada_Version
= Ada_83
then
4067 ("(Ada 83) illegal reading of out parameter", A
);
4069 -- An effectively volatile OUT parameter cannot act as IN or
4070 -- IN OUT actual in a call (SPARK RM 7.1.3(11)).
4072 elsif SPARK_Mode
= On
4073 and then Is_Effectively_Volatile
(Entity
(A
))
4076 ("illegal reading of volatile OUT parameter", A
);
4081 -- Case of OUT or IN OUT parameter
4083 if Ekind
(F
) /= E_In_Parameter
then
4085 -- For an Out parameter, check for useless assignment. Note
4086 -- that we can't set Last_Assignment this early, because we may
4087 -- kill current values in Resolve_Call, and that call would
4088 -- clobber the Last_Assignment field.
4090 -- Note: call Warn_On_Useless_Assignment before doing the check
4091 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4092 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4093 -- reflects the last assignment, not this one.
4095 if Ekind
(F
) = E_Out_Parameter
then
4096 if Warn_On_Modified_As_Out_Parameter
(F
)
4097 and then Is_Entity_Name
(A
)
4098 and then Present
(Entity
(A
))
4099 and then Comes_From_Source
(N
)
4101 Warn_On_Useless_Assignment
(Entity
(A
), A
);
4105 -- Validate the form of the actual. Note that the call to
4106 -- Is_OK_Variable_For_Out_Formal generates the required
4107 -- reference in this case.
4109 -- A call to an initialization procedure for an aggregate
4110 -- component may initialize a nested component of a constant
4111 -- designated object. In this context the object is variable.
4113 if not Is_OK_Variable_For_Out_Formal
(A
)
4114 and then not Is_Init_Proc
(Nam
)
4116 Error_Msg_NE
("actual for& must be a variable", A
, F
);
4118 if Is_Subprogram
(Current_Scope
)
4120 (Is_Invariant_Procedure
(Current_Scope
)
4121 or else Is_Predicate_Function
(Current_Scope
))
4124 ("function used in predicate cannot "
4125 & "modify its argument", F
);
4129 -- What's the following about???
4131 if Is_Entity_Name
(A
) then
4132 Kill_Checks
(Entity
(A
));
4138 if Etype
(A
) = Any_Type
then
4139 Set_Etype
(N
, Any_Type
);
4143 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4145 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
4147 -- Apply predicate tests except in certain special cases. Note
4148 -- that it might be more consistent to apply these only when
4149 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4150 -- for the outbound predicate tests ???
4152 if Predicate_Tests_On_Arguments
(Nam
) then
4153 Apply_Predicate_Check
(A
, F_Typ
);
4156 -- Apply required constraint checks
4158 -- Gigi looks at the check flag and uses the appropriate types.
4159 -- For now since one flag is used there is an optimization
4160 -- which might not be done in the IN OUT case since Gigi does
4161 -- not do any analysis. More thought required about this ???
4163 -- In fact is this comment obsolete??? doesn't the expander now
4164 -- generate all these tests anyway???
4166 if Is_Scalar_Type
(Etype
(A
)) then
4167 Apply_Scalar_Range_Check
(A
, F_Typ
);
4169 elsif Is_Array_Type
(Etype
(A
)) then
4170 Apply_Length_Check
(A
, F_Typ
);
4172 elsif Is_Record_Type
(F_Typ
)
4173 and then Has_Discriminants
(F_Typ
)
4174 and then Is_Constrained
(F_Typ
)
4175 and then (not Is_Derived_Type
(F_Typ
)
4176 or else Comes_From_Source
(Nam
))
4178 Apply_Discriminant_Check
(A
, F_Typ
);
4180 -- For view conversions of a discriminated object, apply
4181 -- check to object itself, the conversion alreay has the
4184 if Nkind
(A
) = N_Type_Conversion
4185 and then Is_Constrained
(Etype
(Expression
(A
)))
4187 Apply_Discriminant_Check
(Expression
(A
), F_Typ
);
4190 elsif Is_Access_Type
(F_Typ
)
4191 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4192 and then Is_Constrained
(Designated_Type
(F_Typ
))
4194 Apply_Length_Check
(A
, F_Typ
);
4196 elsif Is_Access_Type
(F_Typ
)
4197 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4198 and then Is_Constrained
(Designated_Type
(F_Typ
))
4200 Apply_Discriminant_Check
(A
, F_Typ
);
4203 Apply_Range_Check
(A
, F_Typ
);
4206 -- Ada 2005 (AI-231): Note that the controlling parameter case
4207 -- already existed in Ada 95, which is partially checked
4208 -- elsewhere (see Checks), and we don't want the warning
4209 -- message to differ.
4211 if Is_Access_Type
(F_Typ
)
4212 and then Can_Never_Be_Null
(F_Typ
)
4213 and then Known_Null
(A
)
4215 if Is_Controlling_Formal
(F
) then
4216 Apply_Compile_Time_Constraint_Error
4218 Msg
=> "null value not allowed here??",
4219 Reason
=> CE_Access_Check_Failed
);
4221 elsif Ada_Version
>= Ada_2005
then
4222 Apply_Compile_Time_Constraint_Error
4224 Msg
=> "(Ada 2005) null not allowed in "
4225 & "null-excluding formal??",
4226 Reason
=> CE_Null_Not_Allowed
);
4231 -- Checks for OUT parameters and IN OUT parameters
4233 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4235 -- If there is a type conversion, to make sure the return value
4236 -- meets the constraints of the variable before the conversion.
4238 if Nkind
(A
) = N_Type_Conversion
then
4239 if Is_Scalar_Type
(A_Typ
) then
4240 Apply_Scalar_Range_Check
4241 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4244 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4247 -- If no conversion apply scalar range checks and length checks
4248 -- base on the subtype of the actual (NOT that of the formal).
4251 if Is_Scalar_Type
(F_Typ
) then
4252 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4253 elsif Is_Array_Type
(F_Typ
)
4254 and then Ekind
(F
) = E_Out_Parameter
4256 Apply_Length_Check
(A
, F_Typ
);
4258 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4262 -- Note: we do not apply the predicate checks for the case of
4263 -- OUT and IN OUT parameters. They are instead applied in the
4264 -- Expand_Actuals routine in Exp_Ch6.
4267 -- An actual associated with an access parameter is implicitly
4268 -- converted to the anonymous access type of the formal and must
4269 -- satisfy the legality checks for access conversions.
4271 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4272 if not Valid_Conversion
(A
, F_Typ
, A
) then
4274 ("invalid implicit conversion for access parameter", A
);
4277 -- If the actual is an access selected component of a variable,
4278 -- the call may modify its designated object. It is reasonable
4279 -- to treat this as a potential modification of the enclosing
4280 -- record, to prevent spurious warnings that it should be
4281 -- declared as a constant, because intuitively programmers
4282 -- regard the designated subcomponent as part of the record.
4284 if Nkind
(A
) = N_Selected_Component
4285 and then Is_Entity_Name
(Prefix
(A
))
4286 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4288 Note_Possible_Modification
(A
, Sure
=> False);
4292 -- Check bad case of atomic/volatile argument (RM C.6(12))
4294 if Is_By_Reference_Type
(Etype
(F
))
4295 and then Comes_From_Source
(N
)
4297 if Is_Atomic_Object
(A
)
4298 and then not Is_Atomic
(Etype
(F
))
4301 ("cannot pass atomic argument to non-atomic formal&",
4304 elsif Is_Volatile_Object
(A
)
4305 and then not Is_Volatile
(Etype
(F
))
4308 ("cannot pass volatile argument to non-volatile formal&",
4313 -- Check that subprograms don't have improper controlling
4314 -- arguments (RM 3.9.2 (9)).
4316 -- A primitive operation may have an access parameter of an
4317 -- incomplete tagged type, but a dispatching call is illegal
4318 -- if the type is still incomplete.
4320 if Is_Controlling_Formal
(F
) then
4321 Set_Is_Controlling_Actual
(A
);
4323 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4325 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4327 if Ekind
(Desig
) = E_Incomplete_Type
4328 and then No
(Full_View
(Desig
))
4329 and then No
(Non_Limited_View
(Desig
))
4332 ("premature use of incomplete type& "
4333 & "in dispatching call", A
, Desig
);
4338 elsif Nkind
(A
) = N_Explicit_Dereference
then
4339 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4342 -- Apply legality rule 3.9.2 (9/1)
4344 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4345 and then not Is_Class_Wide_Type
(F_Typ
)
4346 and then not Is_Controlling_Formal
(F
)
4347 and then not In_Instance
4349 Error_Msg_N
("class-wide argument not allowed here!", A
);
4351 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4352 Error_Msg_Node_2
:= F_Typ
;
4354 ("& is not a dispatching operation of &!", A
, Nam
);
4357 -- Apply the checks described in 3.10.2(27): if the context is a
4358 -- specific access-to-object, the actual cannot be class-wide.
4359 -- Use base type to exclude access_to_subprogram cases.
4361 elsif Is_Access_Type
(A_Typ
)
4362 and then Is_Access_Type
(F_Typ
)
4363 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4364 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4365 or else (Nkind
(A
) = N_Attribute_Reference
4367 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4368 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4369 and then not Is_Controlling_Formal
(F
)
4371 -- Disable these checks for call to imported C++ subprograms
4374 (Is_Entity_Name
(Name
(N
))
4375 and then Is_Imported
(Entity
(Name
(N
)))
4376 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4379 ("access to class-wide argument not allowed here!", A
);
4381 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4382 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4384 ("& is not a dispatching operation of &!", A
, Nam
);
4388 Check_Aliased_Parameter
;
4392 -- If it is a named association, treat the selector_name as a
4393 -- proper identifier, and mark the corresponding entity.
4395 if Nkind
(Parent
(A
)) = N_Parameter_Association
4397 -- Ignore reference in SPARK mode, as it refers to an entity not
4398 -- in scope at the point of reference, so the reference should
4399 -- be ignored for computing effects of subprograms.
4401 and then not GNATprove_Mode
4403 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4404 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4405 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4406 Generate_Reference
(F_Typ
, N
, ' ');
4411 if Ekind
(F
) /= E_Out_Parameter
then
4412 Check_Unset_Reference
(A
);
4415 -- The following checks are only relevant when SPARK_Mode is on as
4416 -- they are not standard Ada legality rule. Internally generated
4417 -- temporaries are ignored.
4420 and then Is_Effectively_Volatile_Object
(A
)
4421 and then Comes_From_Source
(A
)
4423 -- An effectively volatile object may act as an actual
4424 -- parameter when the corresponding formal is of a non-scalar
4427 if Is_Volatile
(Etype
(F
))
4428 and then not Is_Scalar_Type
(Etype
(F
))
4432 -- An effectively volatile object may act as an actual
4433 -- parameter in a call to an instance of Unchecked_Conversion.
4435 elsif Is_Unchecked_Conversion_Instance
(Nam
) then
4440 ("volatile object cannot act as actual in a call (SPARK "
4441 & "RM 7.1.3(12))", A
);
4444 -- Detect an external variable with an enabled property that
4445 -- does not match the mode of the corresponding formal in a
4446 -- procedure call. Functions are not considered because they
4447 -- cannot have effectively volatile formal parameters in the
4450 if Ekind
(Nam
) = E_Procedure
4451 and then Ekind
(F
) = E_In_Parameter
4452 and then Is_Entity_Name
(A
)
4453 and then Present
(Entity
(A
))
4454 and then Ekind
(Entity
(A
)) = E_Variable
4458 if Async_Readers_Enabled
(A_Id
) then
4459 Property_Error
(A
, A_Id
, Name_Async_Readers
);
4460 elsif Effective_Reads_Enabled
(A_Id
) then
4461 Property_Error
(A
, A_Id
, Name_Effective_Reads
);
4462 elsif Effective_Writes_Enabled
(A_Id
) then
4463 Property_Error
(A
, A_Id
, Name_Effective_Writes
);
4468 -- A formal parameter of a specific tagged type whose related
4469 -- subprogram is subject to pragma Extensions_Visible with value
4470 -- "False" cannot act as an actual in a subprogram with value
4471 -- "True" (SPARK RM 6.1.7(3)).
4473 if Is_EVF_Expression
(A
)
4474 and then Extensions_Visible_Status
(Nam
) =
4475 Extensions_Visible_True
4478 ("formal parameter with Extensions_Visible False cannot act "
4479 & "as actual parameter", A
);
4481 ("\subprogram & has Extensions_Visible True", A
, Nam
);
4484 -- The actual parameter of a Ghost subprogram whose formal is of
4485 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4487 if Is_Ghost_Entity
(Nam
)
4488 and then Ekind_In
(F
, E_In_Out_Parameter
, E_Out_Parameter
)
4489 and then Is_Entity_Name
(A
)
4490 and then Present
(Entity
(A
))
4491 and then not Is_Ghost_Entity
(Entity
(A
))
4494 ("non-ghost variable & cannot appear as actual in call to "
4495 & "ghost procedure", A
, Entity
(A
));
4497 if Ekind
(F
) = E_In_Out_Parameter
then
4498 Error_Msg_N
("\corresponding formal has mode `IN OUT`", A
);
4500 Error_Msg_N
("\corresponding formal has mode OUT", A
);
4506 -- Case where actual is not present
4514 end Resolve_Actuals
;
4516 -----------------------
4517 -- Resolve_Allocator --
4518 -----------------------
4520 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4521 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4522 E
: constant Node_Id
:= Expression
(N
);
4524 Discrim
: Entity_Id
;
4527 Assoc
: Node_Id
:= Empty
;
4530 procedure Check_Allocator_Discrim_Accessibility
4531 (Disc_Exp
: Node_Id
;
4532 Alloc_Typ
: Entity_Id
);
4533 -- Check that accessibility level associated with an access discriminant
4534 -- initialized in an allocator by the expression Disc_Exp is not deeper
4535 -- than the level of the allocator type Alloc_Typ. An error message is
4536 -- issued if this condition is violated. Specialized checks are done for
4537 -- the cases of a constraint expression which is an access attribute or
4538 -- an access discriminant.
4540 function In_Dispatching_Context
return Boolean;
4541 -- If the allocator is an actual in a call, it is allowed to be class-
4542 -- wide when the context is not because it is a controlling actual.
4544 -------------------------------------------
4545 -- Check_Allocator_Discrim_Accessibility --
4546 -------------------------------------------
4548 procedure Check_Allocator_Discrim_Accessibility
4549 (Disc_Exp
: Node_Id
;
4550 Alloc_Typ
: Entity_Id
)
4553 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4554 Deepest_Type_Access_Level
(Alloc_Typ
)
4557 ("operand type has deeper level than allocator type", Disc_Exp
);
4559 -- When the expression is an Access attribute the level of the prefix
4560 -- object must not be deeper than that of the allocator's type.
4562 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4563 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4565 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4566 Deepest_Type_Access_Level
(Alloc_Typ
)
4569 ("prefix of attribute has deeper level than allocator type",
4572 -- When the expression is an access discriminant the check is against
4573 -- the level of the prefix object.
4575 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4576 and then Nkind
(Disc_Exp
) = N_Selected_Component
4577 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4578 Deepest_Type_Access_Level
(Alloc_Typ
)
4581 ("access discriminant has deeper level than allocator type",
4584 -- All other cases are legal
4589 end Check_Allocator_Discrim_Accessibility
;
4591 ----------------------------
4592 -- In_Dispatching_Context --
4593 ----------------------------
4595 function In_Dispatching_Context
return Boolean is
4596 Par
: constant Node_Id
:= Parent
(N
);
4599 return Nkind
(Par
) in N_Subprogram_Call
4600 and then Is_Entity_Name
(Name
(Par
))
4601 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4602 end In_Dispatching_Context
;
4604 -- Start of processing for Resolve_Allocator
4607 -- Replace general access with specific type
4609 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4610 Set_Etype
(N
, Base_Type
(Typ
));
4613 if Is_Abstract_Type
(Typ
) then
4614 Error_Msg_N
("type of allocator cannot be abstract", N
);
4617 -- For qualified expression, resolve the expression using the given
4618 -- subtype (nothing to do for type mark, subtype indication)
4620 if Nkind
(E
) = N_Qualified_Expression
then
4621 if Is_Class_Wide_Type
(Etype
(E
))
4622 and then not Is_Class_Wide_Type
(Desig_T
)
4623 and then not In_Dispatching_Context
4626 ("class-wide allocator not allowed for this access type", N
);
4629 Resolve
(Expression
(E
), Etype
(E
));
4630 Check_Non_Static_Context
(Expression
(E
));
4631 Check_Unset_Reference
(Expression
(E
));
4633 -- A qualified expression requires an exact match of the type.
4634 -- Class-wide matching is not allowed.
4636 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4637 or else Is_Class_Wide_Type
(Etype
(E
)))
4638 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4640 Wrong_Type
(Expression
(E
), Etype
(E
));
4643 -- Calls to build-in-place functions are not currently supported in
4644 -- allocators for access types associated with a simple storage pool.
4645 -- Supporting such allocators may require passing additional implicit
4646 -- parameters to build-in-place functions (or a significant revision
4647 -- of the current b-i-p implementation to unify the handling for
4648 -- multiple kinds of storage pools). ???
4650 if Is_Limited_View
(Desig_T
)
4651 and then Nkind
(Expression
(E
)) = N_Function_Call
4654 Pool
: constant Entity_Id
:=
4655 Associated_Storage_Pool
(Root_Type
(Typ
));
4659 Present
(Get_Rep_Pragma
4660 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4663 ("limited function calls not yet supported in simple "
4664 & "storage pool allocators", Expression
(E
));
4669 -- A special accessibility check is needed for allocators that
4670 -- constrain access discriminants. The level of the type of the
4671 -- expression used to constrain an access discriminant cannot be
4672 -- deeper than the type of the allocator (in contrast to access
4673 -- parameters, where the level of the actual can be arbitrary).
4675 -- We can't use Valid_Conversion to perform this check because in
4676 -- general the type of the allocator is unrelated to the type of
4677 -- the access discriminant.
4679 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4680 or else Is_Local_Anonymous_Access
(Typ
)
4682 Subtyp
:= Entity
(Subtype_Mark
(E
));
4684 Aggr
:= Original_Node
(Expression
(E
));
4686 if Has_Discriminants
(Subtyp
)
4687 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4689 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4691 -- Get the first component expression of the aggregate
4693 if Present
(Expressions
(Aggr
)) then
4694 Disc_Exp
:= First
(Expressions
(Aggr
));
4696 elsif Present
(Component_Associations
(Aggr
)) then
4697 Assoc
:= First
(Component_Associations
(Aggr
));
4699 if Present
(Assoc
) then
4700 Disc_Exp
:= Expression
(Assoc
);
4709 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4710 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4711 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4714 Next_Discriminant
(Discrim
);
4716 if Present
(Discrim
) then
4717 if Present
(Assoc
) then
4719 Disc_Exp
:= Expression
(Assoc
);
4721 elsif Present
(Next
(Disc_Exp
)) then
4725 Assoc
:= First
(Component_Associations
(Aggr
));
4727 if Present
(Assoc
) then
4728 Disc_Exp
:= Expression
(Assoc
);
4738 -- For a subtype mark or subtype indication, freeze the subtype
4741 Freeze_Expression
(E
);
4743 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4745 ("initialization required for access-to-constant allocator", N
);
4748 -- A special accessibility check is needed for allocators that
4749 -- constrain access discriminants. The level of the type of the
4750 -- expression used to constrain an access discriminant cannot be
4751 -- deeper than the type of the allocator (in contrast to access
4752 -- parameters, where the level of the actual can be arbitrary).
4753 -- We can't use Valid_Conversion to perform this check because
4754 -- in general the type of the allocator is unrelated to the type
4755 -- of the access discriminant.
4757 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4758 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4759 or else Is_Local_Anonymous_Access
(Typ
))
4761 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4763 if Has_Discriminants
(Subtyp
) then
4764 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4765 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4766 while Present
(Discrim
) and then Present
(Constr
) loop
4767 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4768 if Nkind
(Constr
) = N_Discriminant_Association
then
4769 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4771 Disc_Exp
:= Original_Node
(Constr
);
4774 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4777 Next_Discriminant
(Discrim
);
4784 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4785 -- check that the level of the type of the created object is not deeper
4786 -- than the level of the allocator's access type, since extensions can
4787 -- now occur at deeper levels than their ancestor types. This is a
4788 -- static accessibility level check; a run-time check is also needed in
4789 -- the case of an initialized allocator with a class-wide argument (see
4790 -- Expand_Allocator_Expression).
4792 if Ada_Version
>= Ada_2005
4793 and then Is_Class_Wide_Type
(Desig_T
)
4796 Exp_Typ
: Entity_Id
;
4799 if Nkind
(E
) = N_Qualified_Expression
then
4800 Exp_Typ
:= Etype
(E
);
4801 elsif Nkind
(E
) = N_Subtype_Indication
then
4802 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4804 Exp_Typ
:= Entity
(E
);
4807 if Type_Access_Level
(Exp_Typ
) >
4808 Deepest_Type_Access_Level
(Typ
)
4810 if In_Instance_Body
then
4811 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4813 ("type in allocator has deeper level than "
4814 & "designated class-wide type<<", E
);
4815 Error_Msg_N
("\Program_Error [<<", E
);
4817 Make_Raise_Program_Error
(Sloc
(N
),
4818 Reason
=> PE_Accessibility_Check_Failed
));
4821 -- Do not apply Ada 2005 accessibility checks on a class-wide
4822 -- allocator if the type given in the allocator is a formal
4823 -- type. A run-time check will be performed in the instance.
4825 elsif not Is_Generic_Type
(Exp_Typ
) then
4826 Error_Msg_N
("type in allocator has deeper level than "
4827 & "designated class-wide type", E
);
4833 -- Check for allocation from an empty storage pool
4835 if No_Pool_Assigned
(Typ
) then
4836 Error_Msg_N
("allocation from empty storage pool!", N
);
4838 -- If the context is an unchecked conversion, as may happen within an
4839 -- inlined subprogram, the allocator is being resolved with its own
4840 -- anonymous type. In that case, if the target type has a specific
4841 -- storage pool, it must be inherited explicitly by the allocator type.
4843 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
4844 and then No
(Associated_Storage_Pool
(Typ
))
4846 Set_Associated_Storage_Pool
4847 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
4850 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
4851 Check_Restriction
(No_Anonymous_Allocators
, N
);
4854 -- Check that an allocator with task parts isn't for a nested access
4855 -- type when restriction No_Task_Hierarchy applies.
4857 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
4858 and then Has_Task
(Base_Type
(Desig_T
))
4860 Check_Restriction
(No_Task_Hierarchy
, N
);
4863 -- An illegal allocator may be rewritten as a raise Program_Error
4866 if Nkind
(N
) = N_Allocator
then
4868 -- An anonymous access discriminant is the definition of a
4871 if Ekind
(Typ
) = E_Anonymous_Access_Type
4872 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
4873 N_Discriminant_Specification
4876 Discr
: constant Entity_Id
:=
4877 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
4880 Check_Restriction
(No_Coextensions
, N
);
4882 -- Ada 2012 AI05-0052: If the designated type of the allocator
4883 -- is limited, then the allocator shall not be used to define
4884 -- the value of an access discriminant unless the discriminated
4885 -- type is immutably limited.
4887 if Ada_Version
>= Ada_2012
4888 and then Is_Limited_Type
(Desig_T
)
4889 and then not Is_Limited_View
(Scope
(Discr
))
4892 ("only immutably limited types can have anonymous "
4893 & "access discriminants designating a limited type", N
);
4897 -- Avoid marking an allocator as a dynamic coextension if it is
4898 -- within a static construct.
4900 if not Is_Static_Coextension
(N
) then
4901 Set_Is_Dynamic_Coextension
(N
);
4904 -- Cleanup for potential static coextensions
4907 Set_Is_Dynamic_Coextension
(N
, False);
4908 Set_Is_Static_Coextension
(N
, False);
4912 -- Report a simple error: if the designated object is a local task,
4913 -- its body has not been seen yet, and its activation will fail an
4914 -- elaboration check.
4916 if Is_Task_Type
(Desig_T
)
4917 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
4918 and then Is_Compilation_Unit
(Current_Scope
)
4919 and then Ekind
(Current_Scope
) = E_Package
4920 and then not In_Package_Body
(Current_Scope
)
4922 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4923 Error_Msg_N
("cannot activate task before body seen<<", N
);
4924 Error_Msg_N
("\Program_Error [<<", N
);
4927 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4928 -- type with a task component on a subpool. This action must raise
4929 -- Program_Error at runtime.
4931 if Ada_Version
>= Ada_2012
4932 and then Nkind
(N
) = N_Allocator
4933 and then Present
(Subpool_Handle_Name
(N
))
4934 and then Has_Task
(Desig_T
)
4936 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4937 Error_Msg_N
("cannot allocate task on subpool<<", N
);
4938 Error_Msg_N
("\Program_Error [<<", N
);
4941 Make_Raise_Program_Error
(Sloc
(N
),
4942 Reason
=> PE_Explicit_Raise
));
4945 end Resolve_Allocator
;
4947 ---------------------------
4948 -- Resolve_Arithmetic_Op --
4949 ---------------------------
4951 -- Used for resolving all arithmetic operators except exponentiation
4953 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
4954 L
: constant Node_Id
:= Left_Opnd
(N
);
4955 R
: constant Node_Id
:= Right_Opnd
(N
);
4956 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
4957 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
4961 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
4962 -- We do the resolution using the base type, because intermediate values
4963 -- in expressions always are of the base type, not a subtype of it.
4965 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
4966 -- Returns True if N is in a context that expects "any real type"
4968 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
4969 -- Return True iff given type is Integer or universal real/integer
4971 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
4972 -- Choose type of integer literal in fixed-point operation to conform
4973 -- to available fixed-point type. T is the type of the other operand,
4974 -- which is needed to determine the expected type of N.
4976 procedure Set_Operand_Type
(N
: Node_Id
);
4977 -- Set operand type to T if universal
4979 -------------------------------
4980 -- Expected_Type_Is_Any_Real --
4981 -------------------------------
4983 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
4985 -- N is the expression after "delta" in a fixed_point_definition;
4988 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
4989 N_Decimal_Fixed_Point_Definition
,
4991 -- N is one of the bounds in a real_range_specification;
4994 N_Real_Range_Specification
,
4996 -- N is the expression of a delta_constraint;
4999 N_Delta_Constraint
);
5000 end Expected_Type_Is_Any_Real
;
5002 -----------------------------
5003 -- Is_Integer_Or_Universal --
5004 -----------------------------
5006 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
5008 Index
: Interp_Index
;
5012 if not Is_Overloaded
(N
) then
5014 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
5015 or else T
= Universal_Integer
5016 or else T
= Universal_Real
;
5018 Get_First_Interp
(N
, Index
, It
);
5019 while Present
(It
.Typ
) loop
5020 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
5021 or else It
.Typ
= Universal_Integer
5022 or else It
.Typ
= Universal_Real
5027 Get_Next_Interp
(Index
, It
);
5032 end Is_Integer_Or_Universal
;
5034 ----------------------------
5035 -- Set_Mixed_Mode_Operand --
5036 ----------------------------
5038 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
5039 Index
: Interp_Index
;
5043 if Universal_Interpretation
(N
) = Universal_Integer
then
5045 -- A universal integer literal is resolved as standard integer
5046 -- except in the case of a fixed-point result, where we leave it
5047 -- as universal (to be handled by Exp_Fixd later on)
5049 if Is_Fixed_Point_Type
(T
) then
5050 Resolve
(N
, Universal_Integer
);
5052 Resolve
(N
, Standard_Integer
);
5055 elsif Universal_Interpretation
(N
) = Universal_Real
5056 and then (T
= Base_Type
(Standard_Integer
)
5057 or else T
= Universal_Integer
5058 or else T
= Universal_Real
)
5060 -- A universal real can appear in a fixed-type context. We resolve
5061 -- the literal with that context, even though this might raise an
5062 -- exception prematurely (the other operand may be zero).
5066 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
5067 and then T
= Universal_Real
5068 and then Is_Overloaded
(N
)
5070 -- Integer arg in mixed-mode operation. Resolve with universal
5071 -- type, in case preference rule must be applied.
5073 Resolve
(N
, Universal_Integer
);
5076 and then B_Typ
/= Universal_Fixed
5078 -- Not a mixed-mode operation, resolve with context
5082 elsif Etype
(N
) = Any_Fixed
then
5084 -- N may itself be a mixed-mode operation, so use context type
5088 elsif Is_Fixed_Point_Type
(T
)
5089 and then B_Typ
= Universal_Fixed
5090 and then Is_Overloaded
(N
)
5092 -- Must be (fixed * fixed) operation, operand must have one
5093 -- compatible interpretation.
5095 Resolve
(N
, Any_Fixed
);
5097 elsif Is_Fixed_Point_Type
(B_Typ
)
5098 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
5099 and then Is_Overloaded
(N
)
5101 -- C * F(X) in a fixed context, where C is a real literal or a
5102 -- fixed-point expression. F must have either a fixed type
5103 -- interpretation or an integer interpretation, but not both.
5105 Get_First_Interp
(N
, Index
, It
);
5106 while Present
(It
.Typ
) loop
5107 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
5108 if Analyzed
(N
) then
5109 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5111 Resolve
(N
, Standard_Integer
);
5114 elsif Is_Fixed_Point_Type
(It
.Typ
) then
5115 if Analyzed
(N
) then
5116 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5118 Resolve
(N
, It
.Typ
);
5122 Get_Next_Interp
(Index
, It
);
5125 -- Reanalyze the literal with the fixed type of the context. If
5126 -- context is Universal_Fixed, we are within a conversion, leave
5127 -- the literal as a universal real because there is no usable
5128 -- fixed type, and the target of the conversion plays no role in
5142 if B_Typ
= Universal_Fixed
5143 and then Nkind
(Op2
) = N_Real_Literal
5145 T2
:= Universal_Real
;
5150 Set_Analyzed
(Op2
, False);
5157 end Set_Mixed_Mode_Operand
;
5159 ----------------------
5160 -- Set_Operand_Type --
5161 ----------------------
5163 procedure Set_Operand_Type
(N
: Node_Id
) is
5165 if Etype
(N
) = Universal_Integer
5166 or else Etype
(N
) = Universal_Real
5170 end Set_Operand_Type
;
5172 -- Start of processing for Resolve_Arithmetic_Op
5175 if Comes_From_Source
(N
)
5176 and then Ekind
(Entity
(N
)) = E_Function
5177 and then Is_Imported
(Entity
(N
))
5178 and then Is_Intrinsic_Subprogram
(Entity
(N
))
5180 Resolve_Intrinsic_Operator
(N
, Typ
);
5183 -- Special-case for mixed-mode universal expressions or fixed point type
5184 -- operation: each argument is resolved separately. The same treatment
5185 -- is required if one of the operands of a fixed point operation is
5186 -- universal real, since in this case we don't do a conversion to a
5187 -- specific fixed-point type (instead the expander handles the case).
5189 -- Set the type of the node to its universal interpretation because
5190 -- legality checks on an exponentiation operand need the context.
5192 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
5193 and then Present
(Universal_Interpretation
(L
))
5194 and then Present
(Universal_Interpretation
(R
))
5196 Set_Etype
(N
, B_Typ
);
5197 Resolve
(L
, Universal_Interpretation
(L
));
5198 Resolve
(R
, Universal_Interpretation
(R
));
5200 elsif (B_Typ
= Universal_Real
5201 or else Etype
(N
) = Universal_Fixed
5202 or else (Etype
(N
) = Any_Fixed
5203 and then Is_Fixed_Point_Type
(B_Typ
))
5204 or else (Is_Fixed_Point_Type
(B_Typ
)
5205 and then (Is_Integer_Or_Universal
(L
)
5207 Is_Integer_Or_Universal
(R
))))
5208 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5210 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
5211 Check_For_Visible_Operator
(N
, B_Typ
);
5214 -- If context is a fixed type and one operand is integer, the other
5215 -- is resolved with the type of the context.
5217 if Is_Fixed_Point_Type
(B_Typ
)
5218 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
5219 or else TL
= Universal_Integer
)
5224 elsif Is_Fixed_Point_Type
(B_Typ
)
5225 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
5226 or else TR
= Universal_Integer
)
5232 Set_Mixed_Mode_Operand
(L
, TR
);
5233 Set_Mixed_Mode_Operand
(R
, TL
);
5236 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5237 -- multiplying operators from being used when the expected type is
5238 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5239 -- some cases where the expected type is actually Any_Real;
5240 -- Expected_Type_Is_Any_Real takes care of that case.
5242 if Etype
(N
) = Universal_Fixed
5243 or else Etype
(N
) = Any_Fixed
5245 if B_Typ
= Universal_Fixed
5246 and then not Expected_Type_Is_Any_Real
(N
)
5247 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
5248 N_Unchecked_Type_Conversion
)
5250 Error_Msg_N
("type cannot be determined from context!", N
);
5251 Error_Msg_N
("\explicit conversion to result type required", N
);
5253 Set_Etype
(L
, Any_Type
);
5254 Set_Etype
(R
, Any_Type
);
5257 if Ada_Version
= Ada_83
5258 and then Etype
(N
) = Universal_Fixed
5260 Nkind_In
(Parent
(N
), N_Type_Conversion
,
5261 N_Unchecked_Type_Conversion
)
5264 ("(Ada 83) fixed-point operation needs explicit "
5268 -- The expected type is "any real type" in contexts like
5270 -- type T is delta <universal_fixed-expression> ...
5272 -- in which case we need to set the type to Universal_Real
5273 -- so that static expression evaluation will work properly.
5275 if Expected_Type_Is_Any_Real
(N
) then
5276 Set_Etype
(N
, Universal_Real
);
5278 Set_Etype
(N
, B_Typ
);
5282 elsif Is_Fixed_Point_Type
(B_Typ
)
5283 and then (Is_Integer_Or_Universal
(L
)
5284 or else Nkind
(L
) = N_Real_Literal
5285 or else Nkind
(R
) = N_Real_Literal
5286 or else Is_Integer_Or_Universal
(R
))
5288 Set_Etype
(N
, B_Typ
);
5290 elsif Etype
(N
) = Any_Fixed
then
5292 -- If no previous errors, this is only possible if one operand is
5293 -- overloaded and the context is universal. Resolve as such.
5295 Set_Etype
(N
, B_Typ
);
5299 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5301 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5303 Check_For_Visible_Operator
(N
, B_Typ
);
5306 -- If the context is Universal_Fixed and the operands are also
5307 -- universal fixed, this is an error, unless there is only one
5308 -- applicable fixed_point type (usually Duration).
5310 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5311 T
:= Unique_Fixed_Point_Type
(N
);
5313 if T
= Any_Type
then
5326 -- If one of the arguments was resolved to a non-universal type.
5327 -- label the result of the operation itself with the same type.
5328 -- Do the same for the universal argument, if any.
5330 T
:= Intersect_Types
(L
, R
);
5331 Set_Etype
(N
, Base_Type
(T
));
5332 Set_Operand_Type
(L
);
5333 Set_Operand_Type
(R
);
5336 Generate_Operator_Reference
(N
, Typ
);
5337 Analyze_Dimension
(N
);
5338 Eval_Arithmetic_Op
(N
);
5340 -- In SPARK, a multiplication or division with operands of fixed point
5341 -- types must be qualified or explicitly converted to identify the
5344 if (Is_Fixed_Point_Type
(Etype
(L
))
5345 or else Is_Fixed_Point_Type
(Etype
(R
)))
5346 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5348 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5350 Check_SPARK_05_Restriction
5351 ("operation should be qualified or explicitly converted", N
);
5354 -- Set overflow and division checking bit
5356 if Nkind
(N
) in N_Op
then
5357 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5358 Enable_Overflow_Check
(N
);
5361 -- Give warning if explicit division by zero
5363 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5364 and then not Division_Checks_Suppressed
(Etype
(N
))
5366 Rop
:= Right_Opnd
(N
);
5368 if Compile_Time_Known_Value
(Rop
)
5369 and then ((Is_Integer_Type
(Etype
(Rop
))
5370 and then Expr_Value
(Rop
) = Uint_0
)
5372 (Is_Real_Type
(Etype
(Rop
))
5373 and then Expr_Value_R
(Rop
) = Ureal_0
))
5375 -- Specialize the warning message according to the operation.
5376 -- The following warnings are for the case
5381 -- For division, we have two cases, for float division
5382 -- of an unconstrained float type, on a machine where
5383 -- Machine_Overflows is false, we don't get an exception
5384 -- at run-time, but rather an infinity or Nan. The Nan
5385 -- case is pretty obscure, so just warn about infinities.
5387 if Is_Floating_Point_Type
(Typ
)
5388 and then not Is_Constrained
(Typ
)
5389 and then not Machine_Overflows_On_Target
5392 ("float division by zero, may generate "
5393 & "'+'/'- infinity??", Right_Opnd
(N
));
5395 -- For all other cases, we get a Constraint_Error
5398 Apply_Compile_Time_Constraint_Error
5399 (N
, "division by zero??", CE_Divide_By_Zero
,
5400 Loc
=> Sloc
(Right_Opnd
(N
)));
5404 Apply_Compile_Time_Constraint_Error
5405 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5406 Loc
=> Sloc
(Right_Opnd
(N
)));
5409 Apply_Compile_Time_Constraint_Error
5410 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5411 Loc
=> Sloc
(Right_Opnd
(N
)));
5413 -- Division by zero can only happen with division, rem,
5414 -- and mod operations.
5417 raise Program_Error
;
5420 -- Otherwise just set the flag to check at run time
5423 Activate_Division_Check
(N
);
5427 -- If Restriction No_Implicit_Conditionals is active, then it is
5428 -- violated if either operand can be negative for mod, or for rem
5429 -- if both operands can be negative.
5431 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5432 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5441 -- Set if corresponding operand might be negative
5445 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5446 LNeg
:= (not OK
) or else Lo
< 0;
5449 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5450 RNeg
:= (not OK
) or else Lo
< 0;
5452 -- Check if we will be generating conditionals. There are two
5453 -- cases where that can happen, first for REM, the only case
5454 -- is largest negative integer mod -1, where the division can
5455 -- overflow, but we still have to give the right result. The
5456 -- front end generates a test for this annoying case. Here we
5457 -- just test if both operands can be negative (that's what the
5458 -- expander does, so we match its logic here).
5460 -- The second case is mod where either operand can be negative.
5461 -- In this case, the back end has to generate additional tests.
5463 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5465 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5467 Check_Restriction
(No_Implicit_Conditionals
, N
);
5473 Check_Unset_Reference
(L
);
5474 Check_Unset_Reference
(R
);
5475 Check_Function_Writable_Actuals
(N
);
5476 end Resolve_Arithmetic_Op
;
5482 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5483 function Same_Or_Aliased_Subprograms
5485 E
: Entity_Id
) return Boolean;
5486 -- Returns True if the subprogram entity S is the same as E or else
5487 -- S is an alias of E.
5489 ---------------------------------
5490 -- Same_Or_Aliased_Subprograms --
5491 ---------------------------------
5493 function Same_Or_Aliased_Subprograms
5495 E
: Entity_Id
) return Boolean
5497 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5499 return S
= E
or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5500 end Same_Or_Aliased_Subprograms
;
5504 Loc
: constant Source_Ptr
:= Sloc
(N
);
5505 Subp
: constant Node_Id
:= Name
(N
);
5506 Body_Id
: Entity_Id
;
5516 -- Start of processing for Resolve_Call
5519 -- The context imposes a unique interpretation with type Typ on a
5520 -- procedure or function call. Find the entity of the subprogram that
5521 -- yields the expected type, and propagate the corresponding formal
5522 -- constraints on the actuals. The caller has established that an
5523 -- interpretation exists, and emitted an error if not unique.
5525 -- First deal with the case of a call to an access-to-subprogram,
5526 -- dereference made explicit in Analyze_Call.
5528 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5529 if not Is_Overloaded
(Subp
) then
5530 Nam
:= Etype
(Subp
);
5533 -- Find the interpretation whose type (a subprogram type) has a
5534 -- return type that is compatible with the context. Analysis of
5535 -- the node has established that one exists.
5539 Get_First_Interp
(Subp
, I
, It
);
5540 while Present
(It
.Typ
) loop
5541 if Covers
(Typ
, Etype
(It
.Typ
)) then
5546 Get_Next_Interp
(I
, It
);
5550 raise Program_Error
;
5554 -- If the prefix is not an entity, then resolve it
5556 if not Is_Entity_Name
(Subp
) then
5557 Resolve
(Subp
, Nam
);
5560 -- For an indirect call, we always invalidate checks, since we do not
5561 -- know whether the subprogram is local or global. Yes we could do
5562 -- better here, e.g. by knowing that there are no local subprograms,
5563 -- but it does not seem worth the effort. Similarly, we kill all
5564 -- knowledge of current constant values.
5566 Kill_Current_Values
;
5568 -- If this is a procedure call which is really an entry call, do
5569 -- the conversion of the procedure call to an entry call. Protected
5570 -- operations use the same circuitry because the name in the call
5571 -- can be an arbitrary expression with special resolution rules.
5573 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5574 or else (Is_Entity_Name
(Subp
)
5575 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5577 Resolve_Entry_Call
(N
, Typ
);
5578 Check_Elab_Call
(N
);
5580 -- Kill checks and constant values, as above for indirect case
5581 -- Who knows what happens when another task is activated?
5583 Kill_Current_Values
;
5586 -- Normal subprogram call with name established in Resolve
5588 elsif not (Is_Type
(Entity
(Subp
))) then
5589 Nam
:= Entity
(Subp
);
5590 Set_Entity_With_Checks
(Subp
, Nam
);
5592 -- Otherwise we must have the case of an overloaded call
5595 pragma Assert
(Is_Overloaded
(Subp
));
5597 -- Initialize Nam to prevent warning (we know it will be assigned
5598 -- in the loop below, but the compiler does not know that).
5602 Get_First_Interp
(Subp
, I
, It
);
5603 while Present
(It
.Typ
) loop
5604 if Covers
(Typ
, It
.Typ
) then
5606 Set_Entity_With_Checks
(Subp
, Nam
);
5610 Get_Next_Interp
(I
, It
);
5614 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5615 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5616 and then Nkind
(Subp
) /= N_Explicit_Dereference
5617 and then Present
(Parameter_Associations
(N
))
5619 -- The prefix is a parameterless function call that returns an access
5620 -- to subprogram. If parameters are present in the current call, add
5621 -- add an explicit dereference. We use the base type here because
5622 -- within an instance these may be subtypes.
5624 -- The dereference is added either in Analyze_Call or here. Should
5625 -- be consolidated ???
5627 Set_Is_Overloaded
(Subp
, False);
5628 Set_Etype
(Subp
, Etype
(Nam
));
5629 Insert_Explicit_Dereference
(Subp
);
5630 Nam
:= Designated_Type
(Etype
(Nam
));
5631 Resolve
(Subp
, Nam
);
5634 -- Check that a call to Current_Task does not occur in an entry body
5636 if Is_RTE
(Nam
, RE_Current_Task
) then
5645 -- Exclude calls that occur within the default of a formal
5646 -- parameter of the entry, since those are evaluated outside
5649 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5651 if Nkind
(P
) = N_Entry_Body
5652 or else (Nkind
(P
) = N_Subprogram_Body
5653 and then Is_Entry_Barrier_Function
(P
))
5656 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5658 ("& should not be used in entry body (RM C.7(17))<<",
5660 Error_Msg_NE
("\Program_Error [<<", N
, Nam
);
5662 Make_Raise_Program_Error
(Loc
,
5663 Reason
=> PE_Current_Task_In_Entry_Body
));
5664 Set_Etype
(N
, Rtype
);
5671 -- Check that a procedure call does not occur in the context of the
5672 -- entry call statement of a conditional or timed entry call. Note that
5673 -- the case of a call to a subprogram renaming of an entry will also be
5674 -- rejected. The test for N not being an N_Entry_Call_Statement is
5675 -- defensive, covering the possibility that the processing of entry
5676 -- calls might reach this point due to later modifications of the code
5679 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5680 and then Nkind
(N
) /= N_Entry_Call_Statement
5681 and then Entry_Call_Statement
(Parent
(N
)) = N
5683 if Ada_Version
< Ada_2005
then
5684 Error_Msg_N
("entry call required in select statement", N
);
5686 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5687 -- for a procedure_or_entry_call, the procedure_name or
5688 -- procedure_prefix of the procedure_call_statement shall denote
5689 -- an entry renamed by a procedure, or (a view of) a primitive
5690 -- subprogram of a limited interface whose first parameter is
5691 -- a controlling parameter.
5693 elsif Nkind
(N
) = N_Procedure_Call_Statement
5694 and then not Is_Renamed_Entry
(Nam
)
5695 and then not Is_Controlling_Limited_Procedure
(Nam
)
5698 ("entry call or dispatching primitive of interface required", N
);
5702 -- If the SPARK_05 restriction is active, we are not allowed
5703 -- to have a call to a subprogram before we see its completion.
5705 if not Has_Completion
(Nam
)
5706 and then Restriction_Check_Required
(SPARK_05
)
5708 -- Don't flag strange internal calls
5710 and then Comes_From_Source
(N
)
5711 and then Comes_From_Source
(Nam
)
5713 -- Only flag calls in extended main source
5715 and then In_Extended_Main_Source_Unit
(Nam
)
5716 and then In_Extended_Main_Source_Unit
(N
)
5718 -- Exclude enumeration literals from this processing
5720 and then Ekind
(Nam
) /= E_Enumeration_Literal
5722 Check_SPARK_05_Restriction
5723 ("call to subprogram cannot appear before its body", N
);
5726 -- Check that this is not a call to a protected procedure or entry from
5727 -- within a protected function.
5729 Check_Internal_Protected_Use
(N
, Nam
);
5731 -- Freeze the subprogram name if not in a spec-expression. Note that
5732 -- we freeze procedure calls as well as function calls. Procedure calls
5733 -- are not frozen according to the rules (RM 13.14(14)) because it is
5734 -- impossible to have a procedure call to a non-frozen procedure in
5735 -- pure Ada, but in the code that we generate in the expander, this
5736 -- rule needs extending because we can generate procedure calls that
5739 -- In Ada 2012, expression functions may be called within pre/post
5740 -- conditions of subsequent functions or expression functions. Such
5741 -- calls do not freeze when they appear within generated bodies,
5742 -- (including the body of another expression function) which would
5743 -- place the freeze node in the wrong scope. An expression function
5744 -- is frozen in the usual fashion, by the appearance of a real body,
5745 -- or at the end of a declarative part.
5747 if Is_Entity_Name
(Subp
) and then not In_Spec_Expression
5748 and then not Is_Expression_Function
(Current_Scope
)
5750 (not Is_Expression_Function
(Entity
(Subp
))
5751 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5753 Freeze_Expression
(Subp
);
5756 -- For a predefined operator, the type of the result is the type imposed
5757 -- by context, except for a predefined operation on universal fixed.
5758 -- Otherwise The type of the call is the type returned by the subprogram
5761 if Is_Predefined_Op
(Nam
) then
5762 if Etype
(N
) /= Universal_Fixed
then
5766 -- If the subprogram returns an array type, and the context requires the
5767 -- component type of that array type, the node is really an indexing of
5768 -- the parameterless call. Resolve as such. A pathological case occurs
5769 -- when the type of the component is an access to the array type. In
5770 -- this case the call is truly ambiguous.
5772 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
5774 ((Is_Array_Type
(Etype
(Nam
))
5775 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
5777 (Is_Access_Type
(Etype
(Nam
))
5778 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
5780 Covers
(Typ
, Component_Type
(Designated_Type
(Etype
(Nam
))))))
5783 Index_Node
: Node_Id
;
5785 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
5788 if Is_Access_Type
(Ret_Type
)
5789 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
5792 ("cannot disambiguate function call and indexing", N
);
5794 New_Subp
:= Relocate_Node
(Subp
);
5796 -- The called entity may be an explicit dereference, in which
5797 -- case there is no entity to set.
5799 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
5800 Set_Entity
(Subp
, Nam
);
5803 if (Is_Array_Type
(Ret_Type
)
5804 and then Component_Type
(Ret_Type
) /= Any_Type
)
5806 (Is_Access_Type
(Ret_Type
)
5808 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
5810 if Needs_No_Actuals
(Nam
) then
5812 -- Indexed call to a parameterless function
5815 Make_Indexed_Component
(Loc
,
5817 Make_Function_Call
(Loc
, Name
=> New_Subp
),
5818 Expressions
=> Parameter_Associations
(N
));
5820 -- An Ada 2005 prefixed call to a primitive operation
5821 -- whose first parameter is the prefix. This prefix was
5822 -- prepended to the parameter list, which is actually a
5823 -- list of indexes. Remove the prefix in order to build
5824 -- the proper indexed component.
5827 Make_Indexed_Component
(Loc
,
5829 Make_Function_Call
(Loc
,
5831 Parameter_Associations
=>
5833 (Remove_Head
(Parameter_Associations
(N
)))),
5834 Expressions
=> Parameter_Associations
(N
));
5837 -- Preserve the parenthesis count of the node
5839 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
5841 -- Since we are correcting a node classification error made
5842 -- by the parser, we call Replace rather than Rewrite.
5844 Replace
(N
, Index_Node
);
5846 Set_Etype
(Prefix
(N
), Ret_Type
);
5848 Resolve_Indexed_Component
(N
, Typ
);
5849 Check_Elab_Call
(Prefix
(N
));
5857 Set_Etype
(N
, Etype
(Nam
));
5860 -- In the case where the call is to an overloaded subprogram, Analyze
5861 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5862 -- such a case Normalize_Actuals needs to be called once more to order
5863 -- the actuals correctly. Otherwise the call will have the ordering
5864 -- given by the last overloaded subprogram whether this is the correct
5865 -- one being called or not.
5867 if Is_Overloaded
(Subp
) then
5868 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
5869 pragma Assert
(Norm_OK
);
5872 -- In any case, call is fully resolved now. Reset Overload flag, to
5873 -- prevent subsequent overload resolution if node is analyzed again
5875 Set_Is_Overloaded
(Subp
, False);
5876 Set_Is_Overloaded
(N
, False);
5878 -- A Ghost entity must appear in a specific context
5880 if Is_Ghost_Entity
(Nam
) and then Comes_From_Source
(N
) then
5881 Check_Ghost_Context
(Nam
, N
);
5884 -- If we are calling the current subprogram from immediately within its
5885 -- body, then that is the case where we can sometimes detect cases of
5886 -- infinite recursion statically. Do not try this in case restriction
5887 -- No_Recursion is in effect anyway, and do it only for source calls.
5889 if Comes_From_Source
(N
) then
5890 Scop
:= Current_Scope
;
5892 -- Check violation of SPARK_05 restriction which does not permit
5893 -- a subprogram body to contain a call to the subprogram directly.
5895 if Restriction_Check_Required
(SPARK_05
)
5896 and then Same_Or_Aliased_Subprograms
(Nam
, Scop
)
5898 Check_SPARK_05_Restriction
5899 ("subprogram may not contain direct call to itself", N
);
5902 -- Issue warning for possible infinite recursion in the absence
5903 -- of the No_Recursion restriction.
5905 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
5906 and then not Restriction_Active
(No_Recursion
)
5907 and then Check_Infinite_Recursion
(N
)
5909 -- Here we detected and flagged an infinite recursion, so we do
5910 -- not need to test the case below for further warnings. Also we
5911 -- are all done if we now have a raise SE node.
5913 if Nkind
(N
) = N_Raise_Storage_Error
then
5917 -- If call is to immediately containing subprogram, then check for
5918 -- the case of a possible run-time detectable infinite recursion.
5921 Scope_Loop
: while Scop
/= Standard_Standard
loop
5922 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
5924 -- Although in general case, recursion is not statically
5925 -- checkable, the case of calling an immediately containing
5926 -- subprogram is easy to catch.
5928 Check_Restriction
(No_Recursion
, N
);
5930 -- If the recursive call is to a parameterless subprogram,
5931 -- then even if we can't statically detect infinite
5932 -- recursion, this is pretty suspicious, and we output a
5933 -- warning. Furthermore, we will try later to detect some
5934 -- cases here at run time by expanding checking code (see
5935 -- Detect_Infinite_Recursion in package Exp_Ch6).
5937 -- If the recursive call is within a handler, do not emit a
5938 -- warning, because this is a common idiom: loop until input
5939 -- is correct, catch illegal input in handler and restart.
5941 if No
(First_Formal
(Nam
))
5942 and then Etype
(Nam
) = Standard_Void_Type
5943 and then not Error_Posted
(N
)
5944 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
5946 -- For the case of a procedure call. We give the message
5947 -- only if the call is the first statement in a sequence
5948 -- of statements, or if all previous statements are
5949 -- simple assignments. This is simply a heuristic to
5950 -- decrease false positives, without losing too many good
5951 -- warnings. The idea is that these previous statements
5952 -- may affect global variables the procedure depends on.
5953 -- We also exclude raise statements, that may arise from
5954 -- constraint checks and are probably unrelated to the
5955 -- intended control flow.
5957 if Nkind
(N
) = N_Procedure_Call_Statement
5958 and then Is_List_Member
(N
)
5964 while Present
(P
) loop
5965 if not Nkind_In
(P
, N_Assignment_Statement
,
5966 N_Raise_Constraint_Error
)
5976 -- Do not give warning if we are in a conditional context
5979 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
5981 if (K
= N_Loop_Statement
5982 and then Present
(Iteration_Scheme
(Parent
(N
))))
5983 or else K
= N_If_Statement
5984 or else K
= N_Elsif_Part
5985 or else K
= N_Case_Statement_Alternative
5991 -- Here warning is to be issued
5993 Set_Has_Recursive_Call
(Nam
);
5994 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5995 Error_Msg_N
("possible infinite recursion<<!", N
);
5996 Error_Msg_N
("\Storage_Error ]<<!", N
);
6002 Scop
:= Scope
(Scop
);
6003 end loop Scope_Loop
;
6007 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6009 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
6011 -- If subprogram name is a predefined operator, it was given in
6012 -- functional notation. Replace call node with operator node, so
6013 -- that actuals can be resolved appropriately.
6015 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
6016 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
6019 elsif Present
(Alias
(Nam
))
6020 and then Is_Predefined_Op
(Alias
(Nam
))
6022 Resolve_Actuals
(N
, Nam
);
6023 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
6027 -- Create a transient scope if the resulting type requires it
6029 -- There are several notable exceptions:
6031 -- a) In init procs, the transient scope overhead is not needed, and is
6032 -- even incorrect when the call is a nested initialization call for a
6033 -- component whose expansion may generate adjust calls. However, if the
6034 -- call is some other procedure call within an initialization procedure
6035 -- (for example a call to Create_Task in the init_proc of the task
6036 -- run-time record) a transient scope must be created around this call.
6038 -- b) Enumeration literal pseudo-calls need no transient scope
6040 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6041 -- functions) do not use the secondary stack even though the return
6042 -- type may be unconstrained.
6044 -- d) Calls to a build-in-place function, since such functions may
6045 -- allocate their result directly in a target object, and cases where
6046 -- the result does get allocated in the secondary stack are checked for
6047 -- within the specialized Exp_Ch6 procedures for expanding those
6048 -- build-in-place calls.
6050 -- e) If the subprogram is marked Inline_Always, then even if it returns
6051 -- an unconstrained type the call does not require use of the secondary
6052 -- stack. However, inlining will only take place if the body to inline
6053 -- is already present. It may not be available if e.g. the subprogram is
6054 -- declared in a child instance.
6056 -- If this is an initialization call for a type whose construction
6057 -- uses the secondary stack, and it is not a nested call to initialize
6058 -- a component, we do need to create a transient scope for it. We
6059 -- check for this by traversing the type in Check_Initialization_Call.
6062 and then Has_Pragma_Inline
(Nam
)
6063 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
6064 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
6068 elsif Ekind
(Nam
) = E_Enumeration_Literal
6069 or else Is_Build_In_Place_Function
(Nam
)
6070 or else Is_Intrinsic_Subprogram
(Nam
)
6074 elsif Expander_Active
6075 and then Is_Type
(Etype
(Nam
))
6076 and then Requires_Transient_Scope
(Etype
(Nam
))
6078 (not Within_Init_Proc
6080 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
6082 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6084 -- If the call appears within the bounds of a loop, it will
6085 -- be rewritten and reanalyzed, nothing left to do here.
6087 if Nkind
(N
) /= N_Function_Call
then
6091 elsif Is_Init_Proc
(Nam
)
6092 and then not Within_Init_Proc
6094 Check_Initialization_Call
(N
, Nam
);
6097 -- A protected function cannot be called within the definition of the
6098 -- enclosing protected type, unless it is part of a pre/postcondition
6099 -- on another protected operation.
6101 if Is_Protected_Type
(Scope
(Nam
))
6102 and then In_Open_Scopes
(Scope
(Nam
))
6103 and then not Has_Completion
(Scope
(Nam
))
6104 and then not In_Spec_Expression
6107 ("& cannot be called before end of protected definition", N
, Nam
);
6110 -- Propagate interpretation to actuals, and add default expressions
6113 if Present
(First_Formal
(Nam
)) then
6114 Resolve_Actuals
(N
, Nam
);
6116 -- Overloaded literals are rewritten as function calls, for purpose of
6117 -- resolution. After resolution, we can replace the call with the
6120 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
6121 Copy_Node
(Subp
, N
);
6122 Resolve_Entity_Name
(N
, Typ
);
6124 -- Avoid validation, since it is a static function call
6126 Generate_Reference
(Nam
, Subp
);
6130 -- If the subprogram is not global, then kill all saved values and
6131 -- checks. This is a bit conservative, since in many cases we could do
6132 -- better, but it is not worth the effort. Similarly, we kill constant
6133 -- values. However we do not need to do this for internal entities
6134 -- (unless they are inherited user-defined subprograms), since they
6135 -- are not in the business of molesting local values.
6137 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6138 -- kill all checks and values for calls to global subprograms. This
6139 -- takes care of the case where an access to a local subprogram is
6140 -- taken, and could be passed directly or indirectly and then called
6141 -- from almost any context.
6143 -- Note: we do not do this step till after resolving the actuals. That
6144 -- way we still take advantage of the current value information while
6145 -- scanning the actuals.
6147 -- We suppress killing values if we are processing the nodes associated
6148 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6149 -- type kills all the values as part of analyzing the code that
6150 -- initializes the dispatch tables.
6152 if Inside_Freezing_Actions
= 0
6153 and then (not Is_Library_Level_Entity
(Nam
)
6154 or else Suppress_Value_Tracking_On_Call
6155 (Nearest_Dynamic_Scope
(Current_Scope
)))
6156 and then (Comes_From_Source
(Nam
)
6157 or else (Present
(Alias
(Nam
))
6158 and then Comes_From_Source
(Alias
(Nam
))))
6160 Kill_Current_Values
;
6163 -- If we are warning about unread OUT parameters, this is the place to
6164 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6165 -- after the above call to Kill_Current_Values (since that call clears
6166 -- the Last_Assignment field of all local variables).
6168 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
6169 and then Comes_From_Source
(N
)
6170 and then In_Extended_Main_Source_Unit
(N
)
6177 F
:= First_Formal
(Nam
);
6178 A
:= First_Actual
(N
);
6179 while Present
(F
) and then Present
(A
) loop
6180 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
6181 and then Warn_On_Modified_As_Out_Parameter
(F
)
6182 and then Is_Entity_Name
(A
)
6183 and then Present
(Entity
(A
))
6184 and then Comes_From_Source
(N
)
6185 and then Safe_To_Capture_Value
(N
, Entity
(A
))
6187 Set_Last_Assignment
(Entity
(A
), A
);
6196 -- If the subprogram is a primitive operation, check whether or not
6197 -- it is a correct dispatching call.
6199 if Is_Overloadable
(Nam
)
6200 and then Is_Dispatching_Operation
(Nam
)
6202 Check_Dispatching_Call
(N
);
6204 elsif Ekind
(Nam
) /= E_Subprogram_Type
6205 and then Is_Abstract_Subprogram
(Nam
)
6206 and then not In_Instance
6208 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
6211 -- If this is a dispatching call, generate the appropriate reference,
6212 -- for better source navigation in GPS.
6214 if Is_Overloadable
(Nam
)
6215 and then Present
(Controlling_Argument
(N
))
6217 Generate_Reference
(Nam
, Subp
, 'R');
6219 -- Normal case, not a dispatching call: generate a call reference
6222 Generate_Reference
(Nam
, Subp
, 's');
6225 if Is_Intrinsic_Subprogram
(Nam
) then
6226 Check_Intrinsic_Call
(N
);
6229 -- Check for violation of restriction No_Specific_Termination_Handlers
6230 -- and warn on a potentially blocking call to Abort_Task.
6232 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
6233 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
6235 Is_RTE
(Nam
, RE_Specific_Handler
))
6237 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
6239 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
6240 Check_Potentially_Blocking_Operation
(N
);
6243 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6244 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6245 -- need to check the second argument to determine whether it is an
6246 -- absolute or relative timing event.
6248 if Restriction_Check_Required
(No_Relative_Delay
)
6249 and then Is_RTE
(Nam
, RE_Set_Handler
)
6250 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
6252 Check_Restriction
(No_Relative_Delay
, N
);
6255 -- Issue an error for a call to an eliminated subprogram. This routine
6256 -- will not perform the check if the call appears within a default
6259 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
6261 -- In formal mode, the primitive operations of a tagged type or type
6262 -- extension do not include functions that return the tagged type.
6264 if Nkind
(N
) = N_Function_Call
6265 and then Is_Tagged_Type
(Etype
(N
))
6266 and then Is_Entity_Name
(Name
(N
))
6267 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
6269 Check_SPARK_05_Restriction
("function not inherited", N
);
6272 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6273 -- class-wide and the call dispatches on result in a context that does
6274 -- not provide a tag, the call raises Program_Error.
6276 if Nkind
(N
) = N_Function_Call
6277 and then In_Instance
6278 and then Is_Generic_Actual_Type
(Typ
)
6279 and then Is_Class_Wide_Type
(Typ
)
6280 and then Has_Controlling_Result
(Nam
)
6281 and then Nkind
(Parent
(N
)) = N_Object_Declaration
6283 -- Verify that none of the formals are controlling
6286 Call_OK
: Boolean := False;
6290 F
:= First_Formal
(Nam
);
6291 while Present
(F
) loop
6292 if Is_Controlling_Formal
(F
) then
6301 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6302 Error_Msg_N
("!cannot determine tag of result<<", N
);
6303 Error_Msg_N
("\Program_Error [<<!", N
);
6305 Make_Raise_Program_Error
(Sloc
(N
),
6306 Reason
=> PE_Explicit_Raise
));
6311 -- Check for calling a function with OUT or IN OUT parameter when the
6312 -- calling context (us right now) is not Ada 2012, so does not allow
6313 -- OUT or IN OUT parameters in function calls. Functions declared in
6314 -- a predefined unit are OK, as they may be called indirectly from a
6315 -- user-declared instantiation.
6317 if Ada_Version
< Ada_2012
6318 and then Ekind
(Nam
) = E_Function
6319 and then Has_Out_Or_In_Out_Parameter
(Nam
)
6320 and then not In_Predefined_Unit
(Nam
)
6322 Error_Msg_NE
("& has at least one OUT or `IN OUT` parameter", N
, Nam
);
6323 Error_Msg_N
("\call to this function only allowed in Ada 2012", N
);
6326 -- Check the dimensions of the actuals in the call. For function calls,
6327 -- propagate the dimensions from the returned type to N.
6329 Analyze_Dimension_Call
(N
, Nam
);
6331 -- All done, evaluate call and deal with elaboration issues
6334 Check_Elab_Call
(N
);
6336 -- In GNATprove mode, expansion is disabled, but we want to inline some
6337 -- subprograms to facilitate formal verification. Indirect calls through
6338 -- a subprogram type or within a generic cannot be inlined. Inlining is
6339 -- performed only for calls subject to SPARK_Mode on.
6342 and then SPARK_Mode
= On
6343 and then Is_Overloadable
(Nam
)
6344 and then not Inside_A_Generic
6346 Nam_UA
:= Ultimate_Alias
(Nam
);
6347 Nam_Decl
:= Unit_Declaration_Node
(Nam_UA
);
6349 if Nkind
(Nam_Decl
) = N_Subprogram_Declaration
then
6350 Body_Id
:= Corresponding_Body
(Nam_Decl
);
6352 -- Nothing to do if the subprogram is not eligible for inlining in
6355 if not Is_Inlined_Always
(Nam_UA
)
6356 or else not Can_Be_Inlined_In_GNATprove_Mode
(Nam_UA
, Body_Id
)
6360 -- Calls cannot be inlined inside assertions, as GNATprove treats
6361 -- assertions as logic expressions.
6363 elsif In_Assertion_Expr
/= 0 then
6364 Error_Msg_NE
("?no contextual analysis of &", N
, Nam
);
6365 Error_Msg_N
("\call appears in assertion expression", N
);
6366 Set_Is_Inlined_Always
(Nam_UA
, False);
6368 -- Calls cannot be inlined inside default expressions
6370 elsif In_Default_Expr
then
6371 Error_Msg_NE
("?no contextual analysis of &", N
, Nam
);
6372 Error_Msg_N
("\call appears in default expression", N
);
6373 Set_Is_Inlined_Always
(Nam_UA
, False);
6375 -- Inlining should not be performed during pre-analysis
6377 elsif Full_Analysis
then
6379 -- With the one-pass inlining technique, a call cannot be
6380 -- inlined if the corresponding body has not been seen yet.
6382 if No
(Body_Id
) then
6384 ("?no contextual analysis of & (body not seen yet)",
6386 Set_Is_Inlined_Always
(Nam_UA
, False);
6388 -- Nothing to do if there is no body to inline, indicating that
6389 -- the subprogram is not suitable for inlining in GNATprove
6392 elsif No
(Body_To_Inline
(Nam_Decl
)) then
6395 -- Calls cannot be inlined inside potentially unevaluated
6396 -- expressions, as this would create complex actions inside
6397 -- expressions, that are not handled by GNATprove.
6399 elsif Is_Potentially_Unevaluated
(N
) then
6400 Error_Msg_NE
("?no contextual analysis of &", N
, Nam
);
6402 ("\call appears in potentially unevaluated context", N
);
6403 Set_Is_Inlined_Always
(Nam_UA
, False);
6405 -- Otherwise, inline the call
6408 Expand_Inlined_Call
(N
, Nam_UA
, Nam
);
6414 Warn_On_Overlapping_Actuals
(Nam
, N
);
6417 -----------------------------
6418 -- Resolve_Case_Expression --
6419 -----------------------------
6421 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6426 Alt
:= First
(Alternatives
(N
));
6427 while Present
(Alt
) loop
6428 Resolve
(Expression
(Alt
), Typ
);
6432 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6433 -- dynamically tagged must be known statically.
6435 if Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
6436 Alt
:= First
(Alternatives
(N
));
6437 Is_Dyn
:= Is_Dynamically_Tagged
(Expression
(Alt
));
6439 while Present
(Alt
) loop
6440 if Is_Dynamically_Tagged
(Expression
(Alt
)) /= Is_Dyn
then
6441 Error_Msg_N
("all or none of the dependent expressions "
6442 & "can be dynamically tagged", N
);
6450 Eval_Case_Expression
(N
);
6451 end Resolve_Case_Expression
;
6453 -------------------------------
6454 -- Resolve_Character_Literal --
6455 -------------------------------
6457 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6458 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6462 -- Verify that the character does belong to the type of the context
6464 Set_Etype
(N
, B_Typ
);
6465 Eval_Character_Literal
(N
);
6467 -- Wide_Wide_Character literals must always be defined, since the set
6468 -- of wide wide character literals is complete, i.e. if a character
6469 -- literal is accepted by the parser, then it is OK for wide wide
6470 -- character (out of range character literals are rejected).
6472 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6475 -- Always accept character literal for type Any_Character, which
6476 -- occurs in error situations and in comparisons of literals, both
6477 -- of which should accept all literals.
6479 elsif B_Typ
= Any_Character
then
6482 -- For Standard.Character or a type derived from it, check that the
6483 -- literal is in range.
6485 elsif Root_Type
(B_Typ
) = Standard_Character
then
6486 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6490 -- For Standard.Wide_Character or a type derived from it, check that the
6491 -- literal is in range.
6493 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6494 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6498 -- For Standard.Wide_Wide_Character or a type derived from it, we
6499 -- know the literal is in range, since the parser checked.
6501 elsif Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6504 -- If the entity is already set, this has already been resolved in a
6505 -- generic context, or comes from expansion. Nothing else to do.
6507 elsif Present
(Entity
(N
)) then
6510 -- Otherwise we have a user defined character type, and we can use the
6511 -- standard visibility mechanisms to locate the referenced entity.
6514 C
:= Current_Entity
(N
);
6515 while Present
(C
) loop
6516 if Etype
(C
) = B_Typ
then
6517 Set_Entity_With_Checks
(N
, C
);
6518 Generate_Reference
(C
, N
);
6526 -- If we fall through, then the literal does not match any of the
6527 -- entries of the enumeration type. This isn't just a constraint error
6528 -- situation, it is an illegality (see RM 4.2).
6531 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6532 end Resolve_Character_Literal
;
6534 ---------------------------
6535 -- Resolve_Comparison_Op --
6536 ---------------------------
6538 -- Context requires a boolean type, and plays no role in resolution.
6539 -- Processing identical to that for equality operators. The result type is
6540 -- the base type, which matters when pathological subtypes of booleans with
6541 -- limited ranges are used.
6543 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6544 L
: constant Node_Id
:= Left_Opnd
(N
);
6545 R
: constant Node_Id
:= Right_Opnd
(N
);
6549 -- If this is an intrinsic operation which is not predefined, use the
6550 -- types of its declared arguments to resolve the possibly overloaded
6551 -- operands. Otherwise the operands are unambiguous and specify the
6554 if Scope
(Entity
(N
)) /= Standard_Standard
then
6555 T
:= Etype
(First_Entity
(Entity
(N
)));
6558 T
:= Find_Unique_Type
(L
, R
);
6560 if T
= Any_Fixed
then
6561 T
:= Unique_Fixed_Point_Type
(L
);
6565 Set_Etype
(N
, Base_Type
(Typ
));
6566 Generate_Reference
(T
, N
, ' ');
6568 -- Skip remaining processing if already set to Any_Type
6570 if T
= Any_Type
then
6574 -- Deal with other error cases
6576 if T
= Any_String
or else
6577 T
= Any_Composite
or else
6580 if T
= Any_Character
then
6581 Ambiguous_Character
(L
);
6583 Error_Msg_N
("ambiguous operands for comparison", N
);
6586 Set_Etype
(N
, Any_Type
);
6590 -- Resolve the operands if types OK
6594 Check_Unset_Reference
(L
);
6595 Check_Unset_Reference
(R
);
6596 Generate_Operator_Reference
(N
, T
);
6597 Check_Low_Bound_Tested
(N
);
6599 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6600 -- types or array types except String.
6602 if Is_Boolean_Type
(T
) then
6603 Check_SPARK_05_Restriction
6604 ("comparison is not defined on Boolean type", N
);
6606 elsif Is_Array_Type
(T
)
6607 and then Base_Type
(T
) /= Standard_String
6609 Check_SPARK_05_Restriction
6610 ("comparison is not defined on array types other than String", N
);
6613 -- Check comparison on unordered enumeration
6615 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6616 Error_Msg_Sloc
:= Sloc
(Etype
(L
));
6618 ("comparison on unordered enumeration type& declared#?U?",
6622 -- Evaluate the relation (note we do this after the above check since
6623 -- this Eval call may change N to True/False.
6625 Analyze_Dimension
(N
);
6626 Eval_Relational_Op
(N
);
6627 end Resolve_Comparison_Op
;
6629 -----------------------------------------
6630 -- Resolve_Discrete_Subtype_Indication --
6631 -----------------------------------------
6633 procedure Resolve_Discrete_Subtype_Indication
6641 Analyze
(Subtype_Mark
(N
));
6642 S
:= Entity
(Subtype_Mark
(N
));
6644 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6645 Error_Msg_N
("expect range constraint for discrete type", N
);
6646 Set_Etype
(N
, Any_Type
);
6649 R
:= Range_Expression
(Constraint
(N
));
6657 if Base_Type
(S
) /= Base_Type
(Typ
) then
6659 ("expect subtype of }", N
, First_Subtype
(Typ
));
6661 -- Rewrite the constraint as a range of Typ
6662 -- to allow compilation to proceed further.
6665 Rewrite
(Low_Bound
(R
),
6666 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6667 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6668 Attribute_Name
=> Name_First
));
6669 Rewrite
(High_Bound
(R
),
6670 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6671 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6672 Attribute_Name
=> Name_First
));
6676 Set_Etype
(N
, Etype
(R
));
6678 -- Additionally, we must check that the bounds are compatible
6679 -- with the given subtype, which might be different from the
6680 -- type of the context.
6682 Apply_Range_Check
(R
, S
);
6684 -- ??? If the above check statically detects a Constraint_Error
6685 -- it replaces the offending bound(s) of the range R with a
6686 -- Constraint_Error node. When the itype which uses these bounds
6687 -- is frozen the resulting call to Duplicate_Subexpr generates
6688 -- a new temporary for the bounds.
6690 -- Unfortunately there are other itypes that are also made depend
6691 -- on these bounds, so when Duplicate_Subexpr is called they get
6692 -- a forward reference to the newly created temporaries and Gigi
6693 -- aborts on such forward references. This is probably sign of a
6694 -- more fundamental problem somewhere else in either the order of
6695 -- itype freezing or the way certain itypes are constructed.
6697 -- To get around this problem we call Remove_Side_Effects right
6698 -- away if either bounds of R are a Constraint_Error.
6701 L
: constant Node_Id
:= Low_Bound
(R
);
6702 H
: constant Node_Id
:= High_Bound
(R
);
6705 if Nkind
(L
) = N_Raise_Constraint_Error
then
6706 Remove_Side_Effects
(L
);
6709 if Nkind
(H
) = N_Raise_Constraint_Error
then
6710 Remove_Side_Effects
(H
);
6714 Check_Unset_Reference
(Low_Bound
(R
));
6715 Check_Unset_Reference
(High_Bound
(R
));
6718 end Resolve_Discrete_Subtype_Indication
;
6720 -------------------------
6721 -- Resolve_Entity_Name --
6722 -------------------------
6724 -- Used to resolve identifiers and expanded names
6726 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
6727 function Is_Assignment_Or_Object_Expression
6729 Expr
: Node_Id
) return Boolean;
6730 -- Determine whether node Context denotes an assignment statement or an
6731 -- object declaration whose expression is node Expr.
6733 function Is_OK_Volatile_Context
6735 Obj_Ref
: Node_Id
) return Boolean;
6736 -- Determine whether node Context denotes a "non-interfering context"
6737 -- (as defined in SPARK RM 7.1.3(13)) where volatile reference Obj_Ref
6738 -- can safely reside.
6740 ----------------------------------------
6741 -- Is_Assignment_Or_Object_Expression --
6742 ----------------------------------------
6744 function Is_Assignment_Or_Object_Expression
6746 Expr
: Node_Id
) return Boolean
6749 if Nkind_In
(Context
, N_Assignment_Statement
,
6750 N_Object_Declaration
)
6751 and then Expression
(Context
) = Expr
6755 -- Check whether a construct that yields a name is the expression of
6756 -- an assignment statement or an object declaration.
6758 elsif (Nkind_In
(Context
, N_Attribute_Reference
,
6759 N_Explicit_Dereference
,
6760 N_Indexed_Component
,
6761 N_Selected_Component
,
6763 and then Prefix
(Context
) = Expr
)
6765 (Nkind_In
(Context
, N_Type_Conversion
,
6766 N_Unchecked_Type_Conversion
)
6767 and then Expression
(Context
) = Expr
)
6770 Is_Assignment_Or_Object_Expression
6771 (Context
=> Parent
(Context
),
6774 -- Otherwise the context is not an assignment statement or an object
6780 end Is_Assignment_Or_Object_Expression
;
6782 ----------------------------
6783 -- Is_OK_Volatile_Context --
6784 ----------------------------
6786 function Is_OK_Volatile_Context
6788 Obj_Ref
: Node_Id
) return Boolean
6790 function Within_Check
(Nod
: Node_Id
) return Boolean;
6791 -- Determine whether an arbitrary node appears in a check node
6793 function Within_Procedure_Call
(Nod
: Node_Id
) return Boolean;
6794 -- Determine whether an arbitrary node appears in a procedure call
6800 function Within_Check
(Nod
: Node_Id
) return Boolean is
6804 -- Climb the parent chain looking for a check node
6807 while Present
(Par
) loop
6808 if Nkind
(Par
) in N_Raise_xxx_Error
then
6811 -- Prevent the search from going too far
6813 elsif Is_Body_Or_Package_Declaration
(Par
) then
6817 Par
:= Parent
(Par
);
6823 ---------------------------
6824 -- Within_Procedure_Call --
6825 ---------------------------
6827 function Within_Procedure_Call
(Nod
: Node_Id
) return Boolean is
6831 -- Climb the parent chain looking for a procedure call
6834 while Present
(Par
) loop
6835 if Nkind
(Par
) = N_Procedure_Call_Statement
then
6838 -- Prevent the search from going too far
6840 elsif Is_Body_Or_Package_Declaration
(Par
) then
6844 Par
:= Parent
(Par
);
6848 end Within_Procedure_Call
;
6850 -- Start of processing for Is_OK_Volatile_Context
6853 -- The volatile object appears on either side of an assignment
6855 if Nkind
(Context
) = N_Assignment_Statement
then
6858 -- The volatile object is part of the initialization expression of
6859 -- another object. Ensure that the climb of the parent chain came
6860 -- from the expression side and not from the name side.
6862 elsif Nkind
(Context
) = N_Object_Declaration
6863 and then Present
(Expression
(Context
))
6864 and then Expression
(Context
) = Obj_Ref
6868 -- The volatile object appears as an actual parameter in a call to an
6869 -- instance of Unchecked_Conversion whose result is renamed.
6871 elsif Nkind
(Context
) = N_Function_Call
6872 and then Is_Unchecked_Conversion_Instance
(Entity
(Name
(Context
)))
6873 and then Nkind
(Parent
(Context
)) = N_Object_Renaming_Declaration
6877 -- The volatile object appears as the prefix of a name occurring
6878 -- in a non-interfering context.
6880 elsif Nkind_In
(Context
, N_Attribute_Reference
,
6881 N_Explicit_Dereference
,
6882 N_Indexed_Component
,
6883 N_Selected_Component
,
6885 and then Prefix
(Context
) = Obj_Ref
6886 and then Is_OK_Volatile_Context
6887 (Context
=> Parent
(Context
),
6892 -- The volatile object appears as the expression of a type conversion
6893 -- occurring in a non-interfering context.
6895 elsif Nkind_In
(Context
, N_Type_Conversion
,
6896 N_Unchecked_Type_Conversion
)
6897 and then Expression
(Context
) = Obj_Ref
6898 and then Is_OK_Volatile_Context
6899 (Context
=> Parent
(Context
),
6904 -- Allow references to volatile objects in various checks. This is
6905 -- not a direct SPARK 2014 requirement.
6907 elsif Within_Check
(Context
) then
6910 -- Assume that references to effectively volatile objects that appear
6911 -- as actual parameters in a procedure call are always legal. A full
6912 -- legality check is done when the actuals are resolved.
6914 elsif Within_Procedure_Call
(Context
) then
6917 -- Otherwise the context is not suitable for an effectively volatile
6923 end Is_OK_Volatile_Context
;
6927 E
: constant Entity_Id
:= Entity
(N
);
6930 -- Start of processing for Resolve_Entity_Name
6933 -- If garbage from errors, set to Any_Type and return
6935 if No
(E
) and then Total_Errors_Detected
/= 0 then
6936 Set_Etype
(N
, Any_Type
);
6940 -- Replace named numbers by corresponding literals. Note that this is
6941 -- the one case where Resolve_Entity_Name must reset the Etype, since
6942 -- it is currently marked as universal.
6944 if Ekind
(E
) = E_Named_Integer
then
6946 Eval_Named_Integer
(N
);
6948 elsif Ekind
(E
) = E_Named_Real
then
6950 Eval_Named_Real
(N
);
6952 -- For enumeration literals, we need to make sure that a proper style
6953 -- check is done, since such literals are overloaded, and thus we did
6954 -- not do a style check during the first phase of analysis.
6956 elsif Ekind
(E
) = E_Enumeration_Literal
then
6957 Set_Entity_With_Checks
(N
, E
);
6958 Eval_Entity_Name
(N
);
6960 -- Case of subtype name appearing as an operand in expression
6962 elsif Is_Type
(E
) then
6964 -- Allow use of subtype if it is a concurrent type where we are
6965 -- currently inside the body. This will eventually be expanded into a
6966 -- call to Self (for tasks) or _object (for protected objects). Any
6967 -- other use of a subtype is invalid.
6969 if Is_Concurrent_Type
(E
)
6970 and then In_Open_Scopes
(E
)
6974 -- Any other use is an error
6978 ("invalid use of subtype mark in expression or call", N
);
6981 -- Check discriminant use if entity is discriminant in current scope,
6982 -- i.e. discriminant of record or concurrent type currently being
6983 -- analyzed. Uses in corresponding body are unrestricted.
6985 elsif Ekind
(E
) = E_Discriminant
6986 and then Scope
(E
) = Current_Scope
6987 and then not Has_Completion
(Current_Scope
)
6989 Check_Discriminant_Use
(N
);
6991 -- A parameterless generic function cannot appear in a context that
6992 -- requires resolution.
6994 elsif Ekind
(E
) = E_Generic_Function
then
6995 Error_Msg_N
("illegal use of generic function", N
);
6997 -- In Ada 83 an OUT parameter cannot be read
6999 elsif Ekind
(E
) = E_Out_Parameter
7000 and then (Nkind
(Parent
(N
)) in N_Op
7001 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
7002 or else Is_Assignment_Or_Object_Expression
7003 (Context
=> Parent
(N
),
7006 if Ada_Version
= Ada_83
then
7007 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
7009 -- An effectively volatile OUT parameter cannot be read
7010 -- (SPARK RM 7.1.3(11)).
7012 elsif SPARK_Mode
= On
7013 and then Is_Effectively_Volatile
(E
)
7015 Error_Msg_N
("illegal reading of volatile OUT parameter", N
);
7018 -- In all other cases, just do the possible static evaluation
7021 -- A deferred constant that appears in an expression must have a
7022 -- completion, unless it has been removed by in-place expansion of
7025 if Ekind
(E
) = E_Constant
7026 and then Comes_From_Source
(E
)
7027 and then No
(Constant_Value
(E
))
7028 and then Is_Frozen
(Etype
(E
))
7029 and then not In_Spec_Expression
7030 and then not Is_Imported
(E
)
7032 if No_Initialization
(Parent
(E
))
7033 or else (Present
(Full_View
(E
))
7034 and then No_Initialization
(Parent
(Full_View
(E
))))
7039 "deferred constant is frozen before completion", N
);
7043 Eval_Entity_Name
(N
);
7048 -- When the entity appears in a parameter association, retrieve the
7049 -- related subprogram call.
7051 if Nkind
(Par
) = N_Parameter_Association
then
7052 Par
:= Parent
(Par
);
7055 -- The following checks are only relevant when SPARK_Mode is on as they
7056 -- are not standard Ada legality rules. An effectively volatile object
7057 -- subject to enabled properties Async_Writers or Effective_Reads must
7058 -- appear in a specific context.
7061 and then Is_Object
(E
)
7062 and then Is_Effectively_Volatile
(E
)
7063 and then (Async_Writers_Enabled
(E
)
7064 or else Effective_Reads_Enabled
(E
))
7065 and then Comes_From_Source
(N
)
7067 -- The effectively volatile objects appears in a "non-interfering
7068 -- context" as defined in SPARK RM 7.1.3(13).
7070 if Is_OK_Volatile_Context
(Par
, N
) then
7073 -- Otherwise the context causes a side effect with respect to the
7074 -- effectively volatile object.
7078 ("volatile object cannot appear in this context "
7079 & "(SPARK RM 7.1.3(13))", N
);
7083 -- A Ghost entity must appear in a specific context
7085 if Is_Ghost_Entity
(E
) and then Comes_From_Source
(N
) then
7086 Check_Ghost_Context
(E
, N
);
7089 -- In SPARK mode, need to check possible elaboration issues
7091 if SPARK_Mode
= On
and then Ekind
(E
) = E_Variable
then
7092 Check_Elab_Call
(N
);
7094 end Resolve_Entity_Name
;
7100 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
7101 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7109 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
7110 -- If the bounds of the entry family being called depend on task
7111 -- discriminants, build a new index subtype where a discriminant is
7112 -- replaced with the value of the discriminant of the target task.
7113 -- The target task is the prefix of the entry name in the call.
7115 -----------------------
7116 -- Actual_Index_Type --
7117 -----------------------
7119 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
7120 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
7121 Tsk
: constant Entity_Id
:= Scope
(E
);
7122 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
7123 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
7126 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
7127 -- If the bound is given by a discriminant, replace with a reference
7128 -- to the discriminant of the same name in the target task. If the
7129 -- entry name is the target of a requeue statement and the entry is
7130 -- in the current protected object, the bound to be used is the
7131 -- discriminal of the object (see Apply_Range_Checks for details of
7132 -- the transformation).
7134 -----------------------------
7135 -- Actual_Discriminant_Ref --
7136 -----------------------------
7138 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
7139 Typ
: constant Entity_Id
:= Etype
(Bound
);
7143 Remove_Side_Effects
(Bound
);
7145 if not Is_Entity_Name
(Bound
)
7146 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
7150 elsif Is_Protected_Type
(Tsk
)
7151 and then In_Open_Scopes
(Tsk
)
7152 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
7154 -- Note: here Bound denotes a discriminant of the corresponding
7155 -- record type tskV, whose discriminal is a formal of the
7156 -- init-proc tskVIP. What we want is the body discriminal,
7157 -- which is associated to the discriminant of the original
7158 -- concurrent type tsk.
7160 return New_Occurrence_Of
7161 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
7165 Make_Selected_Component
(Loc
,
7166 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
7167 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
7172 end Actual_Discriminant_Ref
;
7174 -- Start of processing for Actual_Index_Type
7177 if not Has_Discriminants
(Tsk
)
7178 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
7180 return Entry_Index_Type
(E
);
7183 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
7184 Set_Etype
(New_T
, Base_Type
(Typ
));
7185 Set_Size_Info
(New_T
, Typ
);
7186 Set_RM_Size
(New_T
, RM_Size
(Typ
));
7187 Set_Scalar_Range
(New_T
,
7188 Make_Range
(Sloc
(Entry_Name
),
7189 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
7190 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
7194 end Actual_Index_Type
;
7196 -- Start of processing of Resolve_Entry
7199 -- Find name of entry being called, and resolve prefix of name with its
7200 -- own type. The prefix can be overloaded, and the name and signature of
7201 -- the entry must be taken into account.
7203 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7205 -- Case of dealing with entry family within the current tasks
7207 E_Name
:= Prefix
(Entry_Name
);
7210 E_Name
:= Entry_Name
;
7213 if Is_Entity_Name
(E_Name
) then
7215 -- Entry call to an entry (or entry family) in the current task. This
7216 -- is legal even though the task will deadlock. Rewrite as call to
7219 -- This can also be a call to an entry in an enclosing task. If this
7220 -- is a single task, we have to retrieve its name, because the scope
7221 -- of the entry is the task type, not the object. If the enclosing
7222 -- task is a task type, the identity of the task is given by its own
7225 -- Finally this can be a requeue on an entry of the same task or
7226 -- protected object.
7228 S
:= Scope
(Entity
(E_Name
));
7230 for J
in reverse 0 .. Scope_Stack
.Last
loop
7231 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
7232 and then not Comes_From_Source
(S
)
7234 -- S is an enclosing task or protected object. The concurrent
7235 -- declaration has been converted into a type declaration, and
7236 -- the object itself has an object declaration that follows
7237 -- the type in the same declarative part.
7239 Tsk
:= Next_Entity
(S
);
7240 while Etype
(Tsk
) /= S
loop
7247 elsif S
= Scope_Stack
.Table
(J
).Entity
then
7249 -- Call to current task. Will be transformed into call to Self
7257 Make_Selected_Component
(Loc
,
7258 Prefix
=> New_Occurrence_Of
(S
, Loc
),
7260 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
7261 Rewrite
(E_Name
, New_N
);
7264 elsif Nkind
(Entry_Name
) = N_Selected_Component
7265 and then Is_Overloaded
(Prefix
(Entry_Name
))
7267 -- Use the entry name (which must be unique at this point) to find
7268 -- the prefix that returns the corresponding task/protected type.
7271 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
7272 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
7277 Get_First_Interp
(Pref
, I
, It
);
7278 while Present
(It
.Typ
) loop
7279 if Scope
(Ent
) = It
.Typ
then
7280 Set_Etype
(Pref
, It
.Typ
);
7284 Get_Next_Interp
(I
, It
);
7289 if Nkind
(Entry_Name
) = N_Selected_Component
then
7290 Resolve
(Prefix
(Entry_Name
));
7292 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7293 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7294 Resolve
(Prefix
(Prefix
(Entry_Name
)));
7295 Index
:= First
(Expressions
(Entry_Name
));
7296 Resolve
(Index
, Entry_Index_Type
(Nam
));
7298 -- Up to this point the expression could have been the actual in a
7299 -- simple entry call, and be given by a named association.
7301 if Nkind
(Index
) = N_Parameter_Association
then
7302 Error_Msg_N
("expect expression for entry index", Index
);
7304 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
7309 ------------------------
7310 -- Resolve_Entry_Call --
7311 ------------------------
7313 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
7314 Entry_Name
: constant Node_Id
:= Name
(N
);
7315 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7317 First_Named
: Node_Id
;
7324 -- We kill all checks here, because it does not seem worth the effort to
7325 -- do anything better, an entry call is a big operation.
7329 -- Processing of the name is similar for entry calls and protected
7330 -- operation calls. Once the entity is determined, we can complete
7331 -- the resolution of the actuals.
7333 -- The selector may be overloaded, in the case of a protected object
7334 -- with overloaded functions. The type of the context is used for
7337 if Nkind
(Entry_Name
) = N_Selected_Component
7338 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
7339 and then Typ
/= Standard_Void_Type
7346 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
7347 while Present
(It
.Typ
) loop
7348 if Covers
(Typ
, It
.Typ
) then
7349 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
7350 Set_Etype
(Entry_Name
, It
.Typ
);
7352 Generate_Reference
(It
.Typ
, N
, ' ');
7355 Get_Next_Interp
(I
, It
);
7360 Resolve_Entry
(Entry_Name
);
7362 if Nkind
(Entry_Name
) = N_Selected_Component
then
7364 -- Simple entry call
7366 Nam
:= Entity
(Selector_Name
(Entry_Name
));
7367 Obj
:= Prefix
(Entry_Name
);
7368 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
7370 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7372 -- Call to member of entry family
7374 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7375 Obj
:= Prefix
(Prefix
(Entry_Name
));
7376 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
7379 -- We cannot in general check the maximum depth of protected entry calls
7380 -- at compile time. But we can tell that any protected entry call at all
7381 -- violates a specified nesting depth of zero.
7383 if Is_Protected_Type
(Scope
(Nam
)) then
7384 Check_Restriction
(Max_Entry_Queue_Length
, N
);
7387 -- Use context type to disambiguate a protected function that can be
7388 -- called without actuals and that returns an array type, and where the
7389 -- argument list may be an indexing of the returned value.
7391 if Ekind
(Nam
) = E_Function
7392 and then Needs_No_Actuals
(Nam
)
7393 and then Present
(Parameter_Associations
(N
))
7395 ((Is_Array_Type
(Etype
(Nam
))
7396 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
7398 or else (Is_Access_Type
(Etype
(Nam
))
7399 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
7403 Component_Type
(Designated_Type
(Etype
(Nam
))))))
7406 Index_Node
: Node_Id
;
7410 Make_Indexed_Component
(Loc
,
7412 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
7413 Expressions
=> Parameter_Associations
(N
));
7415 -- Since we are correcting a node classification error made by the
7416 -- parser, we call Replace rather than Rewrite.
7418 Replace
(N
, Index_Node
);
7419 Set_Etype
(Prefix
(N
), Etype
(Nam
));
7421 Resolve_Indexed_Component
(N
, Typ
);
7426 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
7427 and then Present
(PPC_Wrapper
(Nam
))
7428 and then Current_Scope
/= PPC_Wrapper
(Nam
)
7430 -- Rewrite as call to the precondition wrapper, adding the task
7431 -- object to the list of actuals. If the call is to a member of an
7432 -- entry family, include the index as well.
7436 New_Actuals
: List_Id
;
7439 New_Actuals
:= New_List
(Obj
);
7441 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7442 Append_To
(New_Actuals
,
7443 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
7446 Append_List
(Parameter_Associations
(N
), New_Actuals
);
7448 Make_Procedure_Call_Statement
(Loc
,
7450 New_Occurrence_Of
(PPC_Wrapper
(Nam
), Loc
),
7451 Parameter_Associations
=> New_Actuals
);
7452 Rewrite
(N
, New_Call
);
7454 -- Preanalyze and resolve new call. Current procedure is called
7455 -- from Resolve_Call, after which expansion will take place.
7457 Preanalyze_And_Resolve
(N
);
7462 -- The operation name may have been overloaded. Order the actuals
7463 -- according to the formals of the resolved entity, and set the return
7464 -- type to that of the operation.
7467 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
7468 pragma Assert
(Norm_OK
);
7469 Set_Etype
(N
, Etype
(Nam
));
7472 Resolve_Actuals
(N
, Nam
);
7473 Check_Internal_Protected_Use
(N
, Nam
);
7475 -- Create a call reference to the entry
7477 Generate_Reference
(Nam
, Entry_Name
, 's');
7479 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
7480 Check_Potentially_Blocking_Operation
(N
);
7483 -- Verify that a procedure call cannot masquerade as an entry
7484 -- call where an entry call is expected.
7486 if Ekind
(Nam
) = E_Procedure
then
7487 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
7488 and then N
= Entry_Call_Statement
(Parent
(N
))
7490 Error_Msg_N
("entry call required in select statement", N
);
7492 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
7493 and then N
= Triggering_Statement
(Parent
(N
))
7495 Error_Msg_N
("triggering statement cannot be procedure call", N
);
7497 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
7498 and then not In_Open_Scopes
(Scope
(Nam
))
7500 Error_Msg_N
("task has no entry with this name", Entry_Name
);
7504 -- After resolution, entry calls and protected procedure calls are
7505 -- changed into entry calls, for expansion. The structure of the node
7506 -- does not change, so it can safely be done in place. Protected
7507 -- function calls must keep their structure because they are
7510 if Ekind
(Nam
) /= E_Function
then
7512 -- A protected operation that is not a function may modify the
7513 -- corresponding object, and cannot apply to a constant. If this
7514 -- is an internal call, the prefix is the type itself.
7516 if Is_Protected_Type
(Scope
(Nam
))
7517 and then not Is_Variable
(Obj
)
7518 and then (not Is_Entity_Name
(Obj
)
7519 or else not Is_Type
(Entity
(Obj
)))
7522 ("prefix of protected procedure or entry call must be variable",
7526 Actuals
:= Parameter_Associations
(N
);
7527 First_Named
:= First_Named_Actual
(N
);
7530 Make_Entry_Call_Statement
(Loc
,
7532 Parameter_Associations
=> Actuals
));
7534 Set_First_Named_Actual
(N
, First_Named
);
7535 Set_Analyzed
(N
, True);
7537 -- Protected functions can return on the secondary stack, in which
7538 -- case we must trigger the transient scope mechanism.
7540 elsif Expander_Active
7541 and then Requires_Transient_Scope
(Etype
(Nam
))
7543 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
7545 end Resolve_Entry_Call
;
7547 -------------------------
7548 -- Resolve_Equality_Op --
7549 -------------------------
7551 -- Both arguments must have the same type, and the boolean context does
7552 -- not participate in the resolution. The first pass verifies that the
7553 -- interpretation is not ambiguous, and the type of the left argument is
7554 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7555 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7556 -- though they carry a single (universal) type. Diagnose this case here.
7558 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7559 L
: constant Node_Id
:= Left_Opnd
(N
);
7560 R
: constant Node_Id
:= Right_Opnd
(N
);
7561 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
7563 procedure Check_If_Expression
(Cond
: Node_Id
);
7564 -- The resolution rule for if expressions requires that each such must
7565 -- have a unique type. This means that if several dependent expressions
7566 -- are of a non-null anonymous access type, and the context does not
7567 -- impose an expected type (as can be the case in an equality operation)
7568 -- the expression must be rejected.
7570 procedure Explain_Redundancy
(N
: Node_Id
);
7571 -- Attempt to explain the nature of a redundant comparison with True. If
7572 -- the expression N is too complex, this routine issues a general error
7575 function Find_Unique_Access_Type
return Entity_Id
;
7576 -- In the case of allocators and access attributes, the context must
7577 -- provide an indication of the specific access type to be used. If
7578 -- one operand is of such a "generic" access type, check whether there
7579 -- is a specific visible access type that has the same designated type.
7580 -- This is semantically dubious, and of no interest to any real code,
7581 -- but c48008a makes it all worthwhile.
7583 -------------------------
7584 -- Check_If_Expression --
7585 -------------------------
7587 procedure Check_If_Expression
(Cond
: Node_Id
) is
7588 Then_Expr
: Node_Id
;
7589 Else_Expr
: Node_Id
;
7592 if Nkind
(Cond
) = N_If_Expression
then
7593 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
7594 Else_Expr
:= Next
(Then_Expr
);
7596 if Nkind
(Then_Expr
) /= N_Null
7597 and then Nkind
(Else_Expr
) /= N_Null
7599 Error_Msg_N
("cannot determine type of if expression", Cond
);
7602 end Check_If_Expression
;
7604 ------------------------
7605 -- Explain_Redundancy --
7606 ------------------------
7608 procedure Explain_Redundancy
(N
: Node_Id
) is
7616 -- Strip the operand down to an entity
7619 if Nkind
(Val
) = N_Selected_Component
then
7620 Val
:= Selector_Name
(Val
);
7626 -- The construct denotes an entity
7628 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
7629 Val_Id
:= Entity
(Val
);
7631 -- Do not generate an error message when the comparison is done
7632 -- against the enumeration literal Standard.True.
7634 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
7636 -- Build a customized error message
7639 Add_Str_To_Name_Buffer
("?r?");
7641 if Ekind
(Val_Id
) = E_Component
then
7642 Add_Str_To_Name_Buffer
("component ");
7644 elsif Ekind
(Val_Id
) = E_Constant
then
7645 Add_Str_To_Name_Buffer
("constant ");
7647 elsif Ekind
(Val_Id
) = E_Discriminant
then
7648 Add_Str_To_Name_Buffer
("discriminant ");
7650 elsif Is_Formal
(Val_Id
) then
7651 Add_Str_To_Name_Buffer
("parameter ");
7653 elsif Ekind
(Val_Id
) = E_Variable
then
7654 Add_Str_To_Name_Buffer
("variable ");
7657 Add_Str_To_Name_Buffer
("& is always True!");
7660 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
7663 -- The construct is too complex to disect, issue a general message
7666 Error_Msg_N
("?r?expression is always True!", Val
);
7668 end Explain_Redundancy
;
7670 -----------------------------
7671 -- Find_Unique_Access_Type --
7672 -----------------------------
7674 function Find_Unique_Access_Type
return Entity_Id
is
7680 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
7681 E_Access_Attribute_Type
)
7683 Acc
:= Designated_Type
(Etype
(R
));
7685 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
7686 E_Access_Attribute_Type
)
7688 Acc
:= Designated_Type
(Etype
(L
));
7694 while S
/= Standard_Standard
loop
7695 E
:= First_Entity
(S
);
7696 while Present
(E
) loop
7698 and then Is_Access_Type
(E
)
7699 and then Ekind
(E
) /= E_Allocator_Type
7700 and then Designated_Type
(E
) = Base_Type
(Acc
)
7712 end Find_Unique_Access_Type
;
7714 -- Start of processing for Resolve_Equality_Op
7717 Set_Etype
(N
, Base_Type
(Typ
));
7718 Generate_Reference
(T
, N
, ' ');
7720 if T
= Any_Fixed
then
7721 T
:= Unique_Fixed_Point_Type
(L
);
7724 if T
/= Any_Type
then
7725 if T
= Any_String
or else
7726 T
= Any_Composite
or else
7729 if T
= Any_Character
then
7730 Ambiguous_Character
(L
);
7732 Error_Msg_N
("ambiguous operands for equality", N
);
7735 Set_Etype
(N
, Any_Type
);
7738 elsif T
= Any_Access
7739 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7741 T
:= Find_Unique_Access_Type
;
7744 Error_Msg_N
("ambiguous operands for equality", N
);
7745 Set_Etype
(N
, Any_Type
);
7749 -- If expressions must have a single type, and if the context does
7750 -- not impose one the dependent expressions cannot be anonymous
7753 -- Why no similar processing for case expressions???
7755 elsif Ada_Version
>= Ada_2012
7756 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
7757 E_Anonymous_Access_Subprogram_Type
)
7758 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
7759 E_Anonymous_Access_Subprogram_Type
)
7761 Check_If_Expression
(L
);
7762 Check_If_Expression
(R
);
7768 -- In SPARK, equality operators = and /= for array types other than
7769 -- String are only defined when, for each index position, the
7770 -- operands have equal static bounds.
7772 if Is_Array_Type
(T
) then
7774 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7775 -- operation if not needed.
7777 if Restriction_Check_Required
(SPARK_05
)
7778 and then Base_Type
(T
) /= Standard_String
7779 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7780 and then Etype
(L
) /= Any_Composite
-- or else L in error
7781 and then Etype
(R
) /= Any_Composite
-- or else R in error
7782 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
7784 Check_SPARK_05_Restriction
7785 ("array types should have matching static bounds", N
);
7789 -- If the unique type is a class-wide type then it will be expanded
7790 -- into a dispatching call to the predefined primitive. Therefore we
7791 -- check here for potential violation of such restriction.
7793 if Is_Class_Wide_Type
(T
) then
7794 Check_Restriction
(No_Dispatching_Calls
, N
);
7797 if Warn_On_Redundant_Constructs
7798 and then Comes_From_Source
(N
)
7799 and then Comes_From_Source
(R
)
7800 and then Is_Entity_Name
(R
)
7801 and then Entity
(R
) = Standard_True
7803 Error_Msg_N
-- CODEFIX
7804 ("?r?comparison with True is redundant!", N
);
7805 Explain_Redundancy
(Original_Node
(R
));
7808 Check_Unset_Reference
(L
);
7809 Check_Unset_Reference
(R
);
7810 Generate_Operator_Reference
(N
, T
);
7811 Check_Low_Bound_Tested
(N
);
7813 -- If this is an inequality, it may be the implicit inequality
7814 -- created for a user-defined operation, in which case the corres-
7815 -- ponding equality operation is not intrinsic, and the operation
7816 -- cannot be constant-folded. Else fold.
7818 if Nkind
(N
) = N_Op_Eq
7819 or else Comes_From_Source
(Entity
(N
))
7820 or else Ekind
(Entity
(N
)) = E_Operator
7821 or else Is_Intrinsic_Subprogram
7822 (Corresponding_Equality
(Entity
(N
)))
7824 Analyze_Dimension
(N
);
7825 Eval_Relational_Op
(N
);
7827 elsif Nkind
(N
) = N_Op_Ne
7828 and then Is_Abstract_Subprogram
(Entity
(N
))
7830 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
7833 -- Ada 2005: If one operand is an anonymous access type, convert the
7834 -- other operand to it, to ensure that the underlying types match in
7835 -- the back-end. Same for access_to_subprogram, and the conversion
7836 -- verifies that the types are subtype conformant.
7838 -- We apply the same conversion in the case one of the operands is a
7839 -- private subtype of the type of the other.
7841 -- Why the Expander_Active test here ???
7845 (Ekind_In
(T
, E_Anonymous_Access_Type
,
7846 E_Anonymous_Access_Subprogram_Type
)
7847 or else Is_Private_Type
(T
))
7849 if Etype
(L
) /= T
then
7851 Make_Unchecked_Type_Conversion
(Sloc
(L
),
7852 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
7853 Expression
=> Relocate_Node
(L
)));
7854 Analyze_And_Resolve
(L
, T
);
7857 if (Etype
(R
)) /= T
then
7859 Make_Unchecked_Type_Conversion
(Sloc
(R
),
7860 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
7861 Expression
=> Relocate_Node
(R
)));
7862 Analyze_And_Resolve
(R
, T
);
7866 end Resolve_Equality_Op
;
7868 ----------------------------------
7869 -- Resolve_Explicit_Dereference --
7870 ----------------------------------
7872 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
7873 Loc
: constant Source_Ptr
:= Sloc
(N
);
7875 P
: constant Node_Id
:= Prefix
(N
);
7878 -- The candidate prefix type, if overloaded
7884 Check_Fully_Declared_Prefix
(Typ
, P
);
7887 -- A useful optimization: check whether the dereference denotes an
7888 -- element of a container, and if so rewrite it as a call to the
7889 -- corresponding Element function.
7891 -- Disabled for now, on advice of ARG. A more restricted form of the
7892 -- predicate might be acceptable ???
7894 -- if Is_Container_Element (N) then
7898 if Is_Overloaded
(P
) then
7900 -- Use the context type to select the prefix that has the correct
7901 -- designated type. Keep the first match, which will be the inner-
7904 Get_First_Interp
(P
, I
, It
);
7906 while Present
(It
.Typ
) loop
7907 if Is_Access_Type
(It
.Typ
)
7908 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
7914 -- Remove access types that do not match, but preserve access
7915 -- to subprogram interpretations, in case a further dereference
7916 -- is needed (see below).
7918 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7922 Get_Next_Interp
(I
, It
);
7925 if Present
(P_Typ
) then
7927 Set_Etype
(N
, Designated_Type
(P_Typ
));
7930 -- If no interpretation covers the designated type of the prefix,
7931 -- this is the pathological case where not all implementations of
7932 -- the prefix allow the interpretation of the node as a call. Now
7933 -- that the expected type is known, Remove other interpretations
7934 -- from prefix, rewrite it as a call, and resolve again, so that
7935 -- the proper call node is generated.
7937 Get_First_Interp
(P
, I
, It
);
7938 while Present
(It
.Typ
) loop
7939 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7943 Get_Next_Interp
(I
, It
);
7947 Make_Function_Call
(Loc
,
7949 Make_Explicit_Dereference
(Loc
,
7951 Parameter_Associations
=> New_List
);
7953 Save_Interps
(N
, New_N
);
7955 Analyze_And_Resolve
(N
, Typ
);
7959 -- If not overloaded, resolve P with its own type
7965 if Is_Access_Type
(Etype
(P
)) then
7966 Apply_Access_Check
(N
);
7969 -- If the designated type is a packed unconstrained array type, and the
7970 -- explicit dereference is not in the context of an attribute reference,
7971 -- then we must compute and set the actual subtype, since it is needed
7972 -- by Gigi. The reason we exclude the attribute case is that this is
7973 -- handled fine by Gigi, and in fact we use such attributes to build the
7974 -- actual subtype. We also exclude generated code (which builds actual
7975 -- subtypes directly if they are needed).
7977 if Is_Array_Type
(Etype
(N
))
7978 and then Is_Packed
(Etype
(N
))
7979 and then not Is_Constrained
(Etype
(N
))
7980 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
7981 and then Comes_From_Source
(N
)
7983 Set_Etype
(N
, Get_Actual_Subtype
(N
));
7986 -- Note: No Eval processing is required for an explicit dereference,
7987 -- because such a name can never be static.
7989 end Resolve_Explicit_Dereference
;
7991 -------------------------------------
7992 -- Resolve_Expression_With_Actions --
7993 -------------------------------------
7995 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
7999 -- If N has no actions, and its expression has been constant folded,
8000 -- then rewrite N as just its expression. Note, we can't do this in
8001 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8002 -- Expression (N) to be expanded again.
8004 if Is_Empty_List
(Actions
(N
))
8005 and then Compile_Time_Known_Value
(Expression
(N
))
8007 Rewrite
(N
, Expression
(N
));
8009 end Resolve_Expression_With_Actions
;
8011 ----------------------------------
8012 -- Resolve_Generalized_Indexing --
8013 ----------------------------------
8015 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
) is
8016 Indexing
: constant Node_Id
:= Generalized_Indexing
(N
);
8022 -- In ASIS mode, propagate the information about the indexes back to
8023 -- to the original indexing node. The generalized indexing is either
8024 -- a function call, or a dereference of one. The actuals include the
8025 -- prefix of the original node, which is the container expression.
8028 Resolve
(Indexing
, Typ
);
8029 Set_Etype
(N
, Etype
(Indexing
));
8030 Set_Is_Overloaded
(N
, False);
8033 while Nkind_In
(Call
, N_Explicit_Dereference
, N_Selected_Component
)
8035 Call
:= Prefix
(Call
);
8038 if Nkind
(Call
) = N_Function_Call
then
8039 Indexes
:= Parameter_Associations
(Call
);
8040 Pref
:= Remove_Head
(Indexes
);
8041 Set_Expressions
(N
, Indexes
);
8042 Set_Prefix
(N
, Pref
);
8046 Rewrite
(N
, Indexing
);
8049 end Resolve_Generalized_Indexing
;
8051 ---------------------------
8052 -- Resolve_If_Expression --
8053 ---------------------------
8055 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8056 Condition
: constant Node_Id
:= First
(Expressions
(N
));
8057 Then_Expr
: constant Node_Id
:= Next
(Condition
);
8058 Else_Expr
: Node_Id
:= Next
(Then_Expr
);
8059 Else_Typ
: Entity_Id
;
8060 Then_Typ
: Entity_Id
;
8063 Resolve
(Condition
, Any_Boolean
);
8064 Resolve
(Then_Expr
, Typ
);
8065 Then_Typ
:= Etype
(Then_Expr
);
8067 -- When the "then" expression is of a scalar subtype different from the
8068 -- result subtype, then insert a conversion to ensure the generation of
8069 -- a constraint check. The same is done for the else part below, again
8070 -- comparing subtypes rather than base types.
8072 if Is_Scalar_Type
(Then_Typ
)
8073 and then Then_Typ
/= Typ
8075 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
8076 Analyze_And_Resolve
(Then_Expr
, Typ
);
8079 -- If ELSE expression present, just resolve using the determined type
8081 if Present
(Else_Expr
) then
8082 Resolve
(Else_Expr
, Typ
);
8083 Else_Typ
:= Etype
(Else_Expr
);
8085 if Is_Scalar_Type
(Else_Typ
) and then Else_Typ
/= Typ
then
8086 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
8087 Analyze_And_Resolve
(Else_Expr
, Typ
);
8089 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8090 -- dynamically tagged must be known statically.
8092 elsif Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
8093 if Is_Dynamically_Tagged
(Then_Expr
) /=
8094 Is_Dynamically_Tagged
(Else_Expr
)
8096 Error_Msg_N
("all or none of the dependent expressions "
8097 & "can be dynamically tagged", N
);
8101 -- If no ELSE expression is present, root type must be Standard.Boolean
8102 -- and we provide a Standard.True result converted to the appropriate
8103 -- Boolean type (in case it is a derived boolean type).
8105 elsif Root_Type
(Typ
) = Standard_Boolean
then
8107 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
8108 Analyze_And_Resolve
(Else_Expr
, Typ
);
8109 Append_To
(Expressions
(N
), Else_Expr
);
8112 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
8113 Append_To
(Expressions
(N
), Error
);
8117 Eval_If_Expression
(N
);
8118 end Resolve_If_Expression
;
8120 -------------------------------
8121 -- Resolve_Indexed_Component --
8122 -------------------------------
8124 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8125 Name
: constant Node_Id
:= Prefix
(N
);
8127 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
8131 if Present
(Generalized_Indexing
(N
)) then
8132 Resolve_Generalized_Indexing
(N
, Typ
);
8136 if Is_Overloaded
(Name
) then
8138 -- Use the context type to select the prefix that yields the correct
8144 I1
: Interp_Index
:= 0;
8145 P
: constant Node_Id
:= Prefix
(N
);
8146 Found
: Boolean := False;
8149 Get_First_Interp
(P
, I
, It
);
8150 while Present
(It
.Typ
) loop
8151 if (Is_Array_Type
(It
.Typ
)
8152 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
8153 or else (Is_Access_Type
(It
.Typ
)
8154 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8158 Component_Type
(Designated_Type
(It
.Typ
))))
8161 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8163 if It
= No_Interp
then
8164 Error_Msg_N
("ambiguous prefix for indexing", N
);
8170 Array_Type
:= It
.Typ
;
8176 Array_Type
:= It
.Typ
;
8181 Get_Next_Interp
(I
, It
);
8186 Array_Type
:= Etype
(Name
);
8189 Resolve
(Name
, Array_Type
);
8190 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
8192 -- If prefix is access type, dereference to get real array type.
8193 -- Note: we do not apply an access check because the expander always
8194 -- introduces an explicit dereference, and the check will happen there.
8196 if Is_Access_Type
(Array_Type
) then
8197 Array_Type
:= Designated_Type
(Array_Type
);
8200 -- If name was overloaded, set component type correctly now
8201 -- If a misplaced call to an entry family (which has no index types)
8202 -- return. Error will be diagnosed from calling context.
8204 if Is_Array_Type
(Array_Type
) then
8205 Set_Etype
(N
, Component_Type
(Array_Type
));
8210 Index
:= First_Index
(Array_Type
);
8211 Expr
:= First
(Expressions
(N
));
8213 -- The prefix may have resolved to a string literal, in which case its
8214 -- etype has a special representation. This is only possible currently
8215 -- if the prefix is a static concatenation, written in functional
8218 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
8219 Resolve
(Expr
, Standard_Positive
);
8222 while Present
(Index
) and Present
(Expr
) loop
8223 Resolve
(Expr
, Etype
(Index
));
8224 Check_Unset_Reference
(Expr
);
8226 if Is_Scalar_Type
(Etype
(Expr
)) then
8227 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
8229 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
8237 Analyze_Dimension
(N
);
8239 -- Do not generate the warning on suspicious index if we are analyzing
8240 -- package Ada.Tags; otherwise we will report the warning with the
8241 -- Prims_Ptr field of the dispatch table.
8243 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
8245 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
8248 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
8249 Eval_Indexed_Component
(N
);
8252 -- If the array type is atomic, and the component is not atomic, then
8253 -- this is worth a warning, since we have a situation where the access
8254 -- to the component may cause extra read/writes of the atomic array
8255 -- object, or partial word accesses, which could be unexpected.
8257 if Nkind
(N
) = N_Indexed_Component
8258 and then Is_Atomic_Ref_With_Address
(N
)
8259 and then not (Has_Atomic_Components
(Array_Type
)
8260 or else (Is_Entity_Name
(Prefix
(N
))
8261 and then Has_Atomic_Components
8262 (Entity
(Prefix
(N
)))))
8263 and then not Is_Atomic
(Component_Type
(Array_Type
))
8266 ("??access to non-atomic component of atomic array", Prefix
(N
));
8268 ("??\may cause unexpected accesses to atomic object", Prefix
(N
));
8270 end Resolve_Indexed_Component
;
8272 -----------------------------
8273 -- Resolve_Integer_Literal --
8274 -----------------------------
8276 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8279 Eval_Integer_Literal
(N
);
8280 end Resolve_Integer_Literal
;
8282 --------------------------------
8283 -- Resolve_Intrinsic_Operator --
8284 --------------------------------
8286 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
8287 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8292 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
8293 -- If the operand is a literal, it cannot be the expression in a
8294 -- conversion. Use a qualified expression instead.
8296 ---------------------
8297 -- Convert_Operand --
8298 ---------------------
8300 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
8301 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
8305 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
8307 Make_Qualified_Expression
(Loc
,
8308 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
8309 Expression
=> Relocate_Node
(Opnd
));
8313 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
8317 end Convert_Operand
;
8319 -- Start of processing for Resolve_Intrinsic_Operator
8322 -- We must preserve the original entity in a generic setting, so that
8323 -- the legality of the operation can be verified in an instance.
8325 if not Expander_Active
then
8330 while Scope
(Op
) /= Standard_Standard
loop
8332 pragma Assert
(Present
(Op
));
8336 Set_Is_Overloaded
(N
, False);
8338 -- If the result or operand types are private, rewrite with unchecked
8339 -- conversions on the operands and the result, to expose the proper
8340 -- underlying numeric type.
8342 if Is_Private_Type
(Typ
)
8343 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
8344 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
8346 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
8348 if Nkind
(N
) = N_Op_Expon
then
8349 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
8351 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
8354 if Nkind
(Arg1
) = N_Type_Conversion
then
8355 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8358 if Nkind
(Arg2
) = N_Type_Conversion
then
8359 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8362 Set_Left_Opnd
(N
, Arg1
);
8363 Set_Right_Opnd
(N
, Arg2
);
8365 Set_Etype
(N
, Btyp
);
8366 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8369 elsif Typ
/= Etype
(Left_Opnd
(N
))
8370 or else Typ
/= Etype
(Right_Opnd
(N
))
8372 -- Add explicit conversion where needed, and save interpretations in
8373 -- case operands are overloaded.
8375 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
8376 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
8378 if Nkind
(Arg1
) = N_Type_Conversion
then
8379 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8381 Save_Interps
(Left_Opnd
(N
), Arg1
);
8384 if Nkind
(Arg2
) = N_Type_Conversion
then
8385 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8387 Save_Interps
(Right_Opnd
(N
), Arg2
);
8390 Rewrite
(Left_Opnd
(N
), Arg1
);
8391 Rewrite
(Right_Opnd
(N
), Arg2
);
8394 Resolve_Arithmetic_Op
(N
, Typ
);
8397 Resolve_Arithmetic_Op
(N
, Typ
);
8399 end Resolve_Intrinsic_Operator
;
8401 --------------------------------------
8402 -- Resolve_Intrinsic_Unary_Operator --
8403 --------------------------------------
8405 procedure Resolve_Intrinsic_Unary_Operator
8409 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8415 while Scope
(Op
) /= Standard_Standard
loop
8417 pragma Assert
(Present
(Op
));
8422 if Is_Private_Type
(Typ
) then
8423 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
8424 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8426 Set_Right_Opnd
(N
, Arg2
);
8428 Set_Etype
(N
, Btyp
);
8429 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8433 Resolve_Unary_Op
(N
, Typ
);
8435 end Resolve_Intrinsic_Unary_Operator
;
8437 ------------------------
8438 -- Resolve_Logical_Op --
8439 ------------------------
8441 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8445 Check_No_Direct_Boolean_Operators
(N
);
8447 -- Predefined operations on scalar types yield the base type. On the
8448 -- other hand, logical operations on arrays yield the type of the
8449 -- arguments (and the context).
8451 if Is_Array_Type
(Typ
) then
8454 B_Typ
:= Base_Type
(Typ
);
8457 -- The following test is required because the operands of the operation
8458 -- may be literals, in which case the resulting type appears to be
8459 -- compatible with a signed integer type, when in fact it is compatible
8460 -- only with modular types. If the context itself is universal, the
8461 -- operation is illegal.
8463 if not Valid_Boolean_Arg
(Typ
) then
8464 Error_Msg_N
("invalid context for logical operation", N
);
8465 Set_Etype
(N
, Any_Type
);
8468 elsif Typ
= Any_Modular
then
8470 ("no modular type available in this context", N
);
8471 Set_Etype
(N
, Any_Type
);
8474 elsif Is_Modular_Integer_Type
(Typ
)
8475 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
8476 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
8478 Check_For_Visible_Operator
(N
, B_Typ
);
8481 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8482 -- is active and the result type is standard Boolean (do not mess with
8483 -- ops that return a nonstandard Boolean type, because something strange
8486 -- Note: you might expect this replacement to be done during expansion,
8487 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8488 -- is used, no part of the right operand of an "and" or "or" operator
8489 -- should be executed if the left operand would short-circuit the
8490 -- evaluation of the corresponding "and then" or "or else". If we left
8491 -- the replacement to expansion time, then run-time checks associated
8492 -- with such operands would be evaluated unconditionally, due to being
8493 -- before the condition prior to the rewriting as short-circuit forms
8494 -- during expansion.
8496 if Short_Circuit_And_Or
8497 and then B_Typ
= Standard_Boolean
8498 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
8500 -- Mark the corresponding putative SCO operator as truly a logical
8501 -- (and short-circuit) operator.
8503 if Generate_SCO
and then Comes_From_Source
(N
) then
8504 Set_SCO_Logical_Operator
(N
);
8507 if Nkind
(N
) = N_Op_And
then
8509 Make_And_Then
(Sloc
(N
),
8510 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8511 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8512 Analyze_And_Resolve
(N
, B_Typ
);
8514 -- Case of OR changed to OR ELSE
8518 Make_Or_Else
(Sloc
(N
),
8519 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8520 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8521 Analyze_And_Resolve
(N
, B_Typ
);
8524 -- Return now, since analysis of the rewritten ops will take care of
8525 -- other reference bookkeeping and expression folding.
8530 Resolve
(Left_Opnd
(N
), B_Typ
);
8531 Resolve
(Right_Opnd
(N
), B_Typ
);
8533 Check_Unset_Reference
(Left_Opnd
(N
));
8534 Check_Unset_Reference
(Right_Opnd
(N
));
8536 Set_Etype
(N
, B_Typ
);
8537 Generate_Operator_Reference
(N
, B_Typ
);
8538 Eval_Logical_Op
(N
);
8540 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8541 -- only when both operands have same static lower and higher bounds. Of
8542 -- course the types have to match, so only check if operands are
8543 -- compatible and the node itself has no errors.
8545 if Is_Array_Type
(B_Typ
)
8546 and then Nkind
(N
) in N_Binary_Op
8549 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
8550 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
8553 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8554 -- operation if not needed.
8556 if Restriction_Check_Required
(SPARK_05
)
8557 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
8558 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
8559 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
8560 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
8562 Check_SPARK_05_Restriction
8563 ("array types should have matching static bounds", N
);
8568 Check_Function_Writable_Actuals
(N
);
8569 end Resolve_Logical_Op
;
8571 ---------------------------
8572 -- Resolve_Membership_Op --
8573 ---------------------------
8575 -- The context can only be a boolean type, and does not determine the
8576 -- arguments. Arguments should be unambiguous, but the preference rule for
8577 -- universal types applies.
8579 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8580 pragma Warnings
(Off
, Typ
);
8582 L
: constant Node_Id
:= Left_Opnd
(N
);
8583 R
: constant Node_Id
:= Right_Opnd
(N
);
8586 procedure Resolve_Set_Membership
;
8587 -- Analysis has determined a unique type for the left operand. Use it to
8588 -- resolve the disjuncts.
8590 ----------------------------
8591 -- Resolve_Set_Membership --
8592 ----------------------------
8594 procedure Resolve_Set_Membership
is
8599 -- If the left operand is overloaded, find type compatible with not
8600 -- overloaded alternative of the right operand.
8602 if Is_Overloaded
(L
) then
8604 Alt
:= First
(Alternatives
(N
));
8605 while Present
(Alt
) loop
8606 if not Is_Overloaded
(Alt
) then
8607 Ltyp
:= Intersect_Types
(L
, Alt
);
8614 -- Unclear how to resolve expression if all alternatives are also
8618 Error_Msg_N
("ambiguous expression", N
);
8627 Alt
:= First
(Alternatives
(N
));
8628 while Present
(Alt
) loop
8630 -- Alternative is an expression, a range
8631 -- or a subtype mark.
8633 if not Is_Entity_Name
(Alt
)
8634 or else not Is_Type
(Entity
(Alt
))
8636 Resolve
(Alt
, Ltyp
);
8642 -- Check for duplicates for discrete case
8644 if Is_Discrete_Type
(Ltyp
) then
8651 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
8655 -- Loop checking duplicates. This is quadratic, but giant sets
8656 -- are unlikely in this context so it's a reasonable choice.
8659 Alt
:= First
(Alternatives
(N
));
8660 while Present
(Alt
) loop
8661 if Is_OK_Static_Expression
(Alt
)
8662 and then (Nkind_In
(Alt
, N_Integer_Literal
,
8663 N_Character_Literal
)
8664 or else Nkind
(Alt
) in N_Has_Entity
)
8667 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
8669 for J
in 1 .. Nalts
- 1 loop
8670 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
8671 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
8672 Error_Msg_N
("duplicate of value given#??", Alt
);
8681 end Resolve_Set_Membership
;
8683 -- Start of processing for Resolve_Membership_Op
8686 if L
= Error
or else R
= Error
then
8690 if Present
(Alternatives
(N
)) then
8691 Resolve_Set_Membership
;
8694 elsif not Is_Overloaded
(R
)
8696 (Etype
(R
) = Universal_Integer
8698 Etype
(R
) = Universal_Real
)
8699 and then Is_Overloaded
(L
)
8703 -- Ada 2005 (AI-251): Support the following case:
8705 -- type I is interface;
8706 -- type T is tagged ...
8708 -- function Test (O : I'Class) is
8710 -- return O in T'Class.
8713 -- In this case we have nothing else to do. The membership test will be
8714 -- done at run time.
8716 elsif Ada_Version
>= Ada_2005
8717 and then Is_Class_Wide_Type
(Etype
(L
))
8718 and then Is_Interface
(Etype
(L
))
8719 and then Is_Class_Wide_Type
(Etype
(R
))
8720 and then not Is_Interface
(Etype
(R
))
8724 T
:= Intersect_Types
(L
, R
);
8727 -- If mixed-mode operations are present and operands are all literal,
8728 -- the only interpretation involves Duration, which is probably not
8729 -- the intention of the programmer.
8731 if T
= Any_Fixed
then
8732 T
:= Unique_Fixed_Point_Type
(N
);
8734 if T
= Any_Type
then
8740 Check_Unset_Reference
(L
);
8742 if Nkind
(R
) = N_Range
8743 and then not Is_Scalar_Type
(T
)
8745 Error_Msg_N
("scalar type required for range", R
);
8748 if Is_Entity_Name
(R
) then
8749 Freeze_Expression
(R
);
8752 Check_Unset_Reference
(R
);
8755 -- Here after resolving membership operation
8759 Eval_Membership_Op
(N
);
8760 Check_Function_Writable_Actuals
(N
);
8761 end Resolve_Membership_Op
;
8767 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
8768 Loc
: constant Source_Ptr
:= Sloc
(N
);
8771 -- Handle restriction against anonymous null access values This
8772 -- restriction can be turned off using -gnatdj.
8774 -- Ada 2005 (AI-231): Remove restriction
8776 if Ada_Version
< Ada_2005
8777 and then not Debug_Flag_J
8778 and then Ekind
(Typ
) = E_Anonymous_Access_Type
8779 and then Comes_From_Source
(N
)
8781 -- In the common case of a call which uses an explicitly null value
8782 -- for an access parameter, give specialized error message.
8784 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
8786 ("null is not allowed as argument for an access parameter", N
);
8788 -- Standard message for all other cases (are there any?)
8792 ("null cannot be of an anonymous access type", N
);
8796 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8797 -- assignment to a null-excluding object
8799 if Ada_Version
>= Ada_2005
8800 and then Can_Never_Be_Null
(Typ
)
8801 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
8803 if not Inside_Init_Proc
then
8805 (Compile_Time_Constraint_Error
(N
,
8806 "(Ada 2005) null not allowed in null-excluding objects??"),
8807 Make_Raise_Constraint_Error
(Loc
,
8808 Reason
=> CE_Access_Check_Failed
));
8811 Make_Raise_Constraint_Error
(Loc
,
8812 Reason
=> CE_Access_Check_Failed
));
8816 -- In a distributed context, null for a remote access to subprogram may
8817 -- need to be replaced with a special record aggregate. In this case,
8818 -- return after having done the transformation.
8820 if (Ekind
(Typ
) = E_Record_Type
8821 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
8822 and then Remote_AST_Null_Value
(N
, Typ
)
8827 -- The null literal takes its type from the context
8832 -----------------------
8833 -- Resolve_Op_Concat --
8834 -----------------------
8836 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
8838 -- We wish to avoid deep recursion, because concatenations are often
8839 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8840 -- operands nonrecursively until we find something that is not a simple
8841 -- concatenation (A in this case). We resolve that, and then walk back
8842 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8843 -- to do the rest of the work at each level. The Parent pointers allow
8844 -- us to avoid recursion, and thus avoid running out of memory. See also
8845 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8851 -- The following code is equivalent to:
8853 -- Resolve_Op_Concat_First (NN, Typ);
8854 -- Resolve_Op_Concat_Arg (N, ...);
8855 -- Resolve_Op_Concat_Rest (N, Typ);
8857 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8858 -- operand is a concatenation.
8860 -- Walk down left operands
8863 Resolve_Op_Concat_First
(NN
, Typ
);
8864 Op1
:= Left_Opnd
(NN
);
8865 exit when not (Nkind
(Op1
) = N_Op_Concat
8866 and then not Is_Array_Type
(Component_Type
(Typ
))
8867 and then Entity
(Op1
) = Entity
(NN
));
8871 -- Now (given the above example) NN is A&B and Op1 is A
8873 -- First resolve Op1 ...
8875 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
8877 -- ... then walk NN back up until we reach N (where we started), calling
8878 -- Resolve_Op_Concat_Rest along the way.
8881 Resolve_Op_Concat_Rest
(NN
, Typ
);
8886 if Base_Type
(Etype
(N
)) /= Standard_String
then
8887 Check_SPARK_05_Restriction
8888 ("result of concatenation should have type String", N
);
8890 end Resolve_Op_Concat
;
8892 ---------------------------
8893 -- Resolve_Op_Concat_Arg --
8894 ---------------------------
8896 procedure Resolve_Op_Concat_Arg
8902 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
8903 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
8908 or else (not Is_Overloaded
(Arg
)
8909 and then Etype
(Arg
) /= Any_Composite
8910 and then Covers
(Ctyp
, Etype
(Arg
)))
8912 Resolve
(Arg
, Ctyp
);
8914 Resolve
(Arg
, Btyp
);
8917 -- If both Array & Array and Array & Component are visible, there is a
8918 -- potential ambiguity that must be reported.
8920 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
8921 if Nkind
(Arg
) = N_Aggregate
8922 and then Is_Composite_Type
(Ctyp
)
8924 if Is_Private_Type
(Ctyp
) then
8925 Resolve
(Arg
, Btyp
);
8927 -- If the operation is user-defined and not overloaded use its
8928 -- profile. The operation may be a renaming, in which case it has
8929 -- been rewritten, and we want the original profile.
8931 elsif not Is_Overloaded
(N
)
8932 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
8933 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
8937 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
8940 -- Otherwise an aggregate may match both the array type and the
8944 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
8945 Set_Etype
(Arg
, Any_Type
);
8949 if Is_Overloaded
(Arg
)
8950 and then Has_Compatible_Type
(Arg
, Typ
)
8951 and then Etype
(Arg
) /= Any_Type
8959 Get_First_Interp
(Arg
, I
, It
);
8961 Get_Next_Interp
(I
, It
);
8963 -- Special-case the error message when the overloading is
8964 -- caused by a function that yields an array and can be
8965 -- called without parameters.
8967 if It
.Nam
= Func
then
8968 Error_Msg_Sloc
:= Sloc
(Func
);
8969 Error_Msg_N
("ambiguous call to function#", Arg
);
8971 ("\\interpretation as call yields&", Arg
, Typ
);
8973 ("\\interpretation as indexing of call yields&",
8974 Arg
, Component_Type
(Typ
));
8977 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
8979 Get_First_Interp
(Arg
, I
, It
);
8980 while Present
(It
.Nam
) loop
8981 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
8983 if Base_Type
(It
.Typ
) = Btyp
8985 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
8987 Error_Msg_N
-- CODEFIX
8988 ("\\possible interpretation#", Arg
);
8991 Get_Next_Interp
(I
, It
);
8997 Resolve
(Arg
, Component_Type
(Typ
));
8999 if Nkind
(Arg
) = N_String_Literal
then
9000 Set_Etype
(Arg
, Component_Type
(Typ
));
9003 if Arg
= Left_Opnd
(N
) then
9004 Set_Is_Component_Left_Opnd
(N
);
9006 Set_Is_Component_Right_Opnd
(N
);
9011 Resolve
(Arg
, Btyp
);
9014 -- Concatenation is restricted in SPARK: each operand must be either a
9015 -- string literal, the name of a string constant, a static character or
9016 -- string expression, or another concatenation. Arg cannot be a
9017 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9018 -- separately on each final operand, past concatenation operations.
9020 if Is_Character_Type
(Etype
(Arg
)) then
9021 if not Is_OK_Static_Expression
(Arg
) then
9022 Check_SPARK_05_Restriction
9023 ("character operand for concatenation should be static", Arg
);
9026 elsif Is_String_Type
(Etype
(Arg
)) then
9027 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
9028 and then Is_Constant_Object
(Entity
(Arg
)))
9029 and then not Is_OK_Static_Expression
(Arg
)
9031 Check_SPARK_05_Restriction
9032 ("string operand for concatenation should be static", Arg
);
9035 -- Do not issue error on an operand that is neither a character nor a
9036 -- string, as the error is issued in Resolve_Op_Concat.
9042 Check_Unset_Reference
(Arg
);
9043 end Resolve_Op_Concat_Arg
;
9045 -----------------------------
9046 -- Resolve_Op_Concat_First --
9047 -----------------------------
9049 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
9050 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9051 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9052 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9055 -- The parser folds an enormous sequence of concatenations of string
9056 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9057 -- in the right operand. If the expression resolves to a predefined "&"
9058 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9059 -- we give an error. See P_Simple_Expression in Par.Ch4.
9061 if Nkind
(Op2
) = N_String_Literal
9062 and then Is_Folded_In_Parser
(Op2
)
9063 and then Ekind
(Entity
(N
)) = E_Function
9065 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
9066 and then String_Length
(Strval
(Op1
)) = 0);
9067 Error_Msg_N
("too many user-defined concatenations", N
);
9071 Set_Etype
(N
, Btyp
);
9073 if Is_Limited_Composite
(Btyp
) then
9074 Error_Msg_N
("concatenation not available for limited array", N
);
9075 Explain_Limited_Type
(Btyp
, N
);
9077 end Resolve_Op_Concat_First
;
9079 ----------------------------
9080 -- Resolve_Op_Concat_Rest --
9081 ----------------------------
9083 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
9084 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9085 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9088 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
9090 Generate_Operator_Reference
(N
, Typ
);
9092 if Is_String_Type
(Typ
) then
9093 Eval_Concatenation
(N
);
9096 -- If this is not a static concatenation, but the result is a string
9097 -- type (and not an array of strings) ensure that static string operands
9098 -- have their subtypes properly constructed.
9100 if Nkind
(N
) /= N_String_Literal
9101 and then Is_Character_Type
(Component_Type
(Typ
))
9103 Set_String_Literal_Subtype
(Op1
, Typ
);
9104 Set_String_Literal_Subtype
(Op2
, Typ
);
9106 end Resolve_Op_Concat_Rest
;
9108 ----------------------
9109 -- Resolve_Op_Expon --
9110 ----------------------
9112 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
9113 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9116 -- Catch attempts to do fixed-point exponentiation with universal
9117 -- operands, which is a case where the illegality is not caught during
9118 -- normal operator analysis. This is not done in preanalysis mode
9119 -- since the tree is not fully decorated during preanalysis.
9121 if Full_Analysis
then
9122 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
9123 Error_Msg_N
("exponentiation not available for fixed point", N
);
9126 elsif Nkind
(Parent
(N
)) in N_Op
9127 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
9128 and then Etype
(N
) = Universal_Real
9129 and then Comes_From_Source
(N
)
9131 Error_Msg_N
("exponentiation not available for fixed point", N
);
9136 if Comes_From_Source
(N
)
9137 and then Ekind
(Entity
(N
)) = E_Function
9138 and then Is_Imported
(Entity
(N
))
9139 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9141 Resolve_Intrinsic_Operator
(N
, Typ
);
9145 if Etype
(Left_Opnd
(N
)) = Universal_Integer
9146 or else Etype
(Left_Opnd
(N
)) = Universal_Real
9148 Check_For_Visible_Operator
(N
, B_Typ
);
9151 -- We do the resolution using the base type, because intermediate values
9152 -- in expressions are always of the base type, not a subtype of it.
9154 Resolve
(Left_Opnd
(N
), B_Typ
);
9155 Resolve
(Right_Opnd
(N
), Standard_Integer
);
9157 -- For integer types, right argument must be in Natural range
9159 if Is_Integer_Type
(Typ
) then
9160 Apply_Scalar_Range_Check
(Right_Opnd
(N
), Standard_Natural
);
9163 Check_Unset_Reference
(Left_Opnd
(N
));
9164 Check_Unset_Reference
(Right_Opnd
(N
));
9166 Set_Etype
(N
, B_Typ
);
9167 Generate_Operator_Reference
(N
, B_Typ
);
9169 Analyze_Dimension
(N
);
9171 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
9172 -- Evaluate the exponentiation operator for dimensioned type
9174 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
9179 -- Set overflow checking bit. Much cleverer code needed here eventually
9180 -- and perhaps the Resolve routines should be separated for the various
9181 -- arithmetic operations, since they will need different processing. ???
9183 if Nkind
(N
) in N_Op
then
9184 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9185 Enable_Overflow_Check
(N
);
9188 end Resolve_Op_Expon
;
9190 --------------------
9191 -- Resolve_Op_Not --
9192 --------------------
9194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
9197 function Parent_Is_Boolean
return Boolean;
9198 -- This function determines if the parent node is a boolean operator or
9199 -- operation (comparison op, membership test, or short circuit form) and
9200 -- the not in question is the left operand of this operation. Note that
9201 -- if the not is in parens, then false is returned.
9203 -----------------------
9204 -- Parent_Is_Boolean --
9205 -----------------------
9207 function Parent_Is_Boolean
return Boolean is
9209 if Paren_Count
(N
) /= 0 then
9213 case Nkind
(Parent
(N
)) is
9228 return Left_Opnd
(Parent
(N
)) = N
;
9234 end Parent_Is_Boolean
;
9236 -- Start of processing for Resolve_Op_Not
9239 -- Predefined operations on scalar types yield the base type. On the
9240 -- other hand, logical operations on arrays yield the type of the
9241 -- arguments (and the context).
9243 if Is_Array_Type
(Typ
) then
9246 B_Typ
:= Base_Type
(Typ
);
9249 -- Straightforward case of incorrect arguments
9251 if not Valid_Boolean_Arg
(Typ
) then
9252 Error_Msg_N
("invalid operand type for operator&", N
);
9253 Set_Etype
(N
, Any_Type
);
9256 -- Special case of probable missing parens
9258 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
9259 if Parent_Is_Boolean
then
9261 ("operand of not must be enclosed in parentheses",
9265 ("no modular type available in this context", N
);
9268 Set_Etype
(N
, Any_Type
);
9271 -- OK resolution of NOT
9274 -- Warn if non-boolean types involved. This is a case like not a < b
9275 -- where a and b are modular, where we will get (not a) < b and most
9276 -- likely not (a < b) was intended.
9278 if Warn_On_Questionable_Missing_Parens
9279 and then not Is_Boolean_Type
(Typ
)
9280 and then Parent_Is_Boolean
9282 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
9285 -- Warn on double negation if checking redundant constructs
9287 if Warn_On_Redundant_Constructs
9288 and then Comes_From_Source
(N
)
9289 and then Comes_From_Source
(Right_Opnd
(N
))
9290 and then Root_Type
(Typ
) = Standard_Boolean
9291 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
9293 Error_Msg_N
("redundant double negation?r?", N
);
9296 -- Complete resolution and evaluation of NOT
9298 Resolve
(Right_Opnd
(N
), B_Typ
);
9299 Check_Unset_Reference
(Right_Opnd
(N
));
9300 Set_Etype
(N
, B_Typ
);
9301 Generate_Operator_Reference
(N
, B_Typ
);
9306 -----------------------------
9307 -- Resolve_Operator_Symbol --
9308 -----------------------------
9310 -- Nothing to be done, all resolved already
9312 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
9313 pragma Warnings
(Off
, N
);
9314 pragma Warnings
(Off
, Typ
);
9318 end Resolve_Operator_Symbol
;
9320 ----------------------------------
9321 -- Resolve_Qualified_Expression --
9322 ----------------------------------
9324 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9325 pragma Warnings
(Off
, Typ
);
9327 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9328 Expr
: constant Node_Id
:= Expression
(N
);
9331 Resolve
(Expr
, Target_Typ
);
9333 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9334 -- operation if not needed.
9336 if Restriction_Check_Required
(SPARK_05
)
9337 and then Is_Array_Type
(Target_Typ
)
9338 and then Is_Array_Type
(Etype
(Expr
))
9339 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
9340 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
9342 Check_SPARK_05_Restriction
9343 ("array types should have matching static bounds", N
);
9346 -- A qualified expression requires an exact match of the type, class-
9347 -- wide matching is not allowed. However, if the qualifying type is
9348 -- specific and the expression has a class-wide type, it may still be
9349 -- okay, since it can be the result of the expansion of a call to a
9350 -- dispatching function, so we also have to check class-wideness of the
9351 -- type of the expression's original node.
9353 if (Is_Class_Wide_Type
(Target_Typ
)
9355 (Is_Class_Wide_Type
(Etype
(Expr
))
9356 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
9357 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
9359 Wrong_Type
(Expr
, Target_Typ
);
9362 -- If the target type is unconstrained, then we reset the type of the
9363 -- result from the type of the expression. For other cases, the actual
9364 -- subtype of the expression is the target type.
9366 if Is_Composite_Type
(Target_Typ
)
9367 and then not Is_Constrained
(Target_Typ
)
9369 Set_Etype
(N
, Etype
(Expr
));
9372 Analyze_Dimension
(N
);
9373 Eval_Qualified_Expression
(N
);
9375 -- If we still have a qualified expression after the static evaluation,
9376 -- then apply a scalar range check if needed. The reason that we do this
9377 -- after the Eval call is that otherwise, the application of the range
9378 -- check may convert an illegal static expression and result in warning
9379 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9381 if Nkind
(N
) = N_Qualified_Expression
and then Is_Scalar_Type
(Typ
) then
9382 Apply_Scalar_Range_Check
(Expr
, Typ
);
9384 end Resolve_Qualified_Expression
;
9386 ------------------------------
9387 -- Resolve_Raise_Expression --
9388 ------------------------------
9390 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9392 if Typ
= Raise_Type
then
9393 Error_Msg_N
("cannot find unique type for raise expression", N
);
9394 Set_Etype
(N
, Any_Type
);
9398 end Resolve_Raise_Expression
;
9404 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
9405 L
: constant Node_Id
:= Low_Bound
(N
);
9406 H
: constant Node_Id
:= High_Bound
(N
);
9408 function First_Last_Ref
return Boolean;
9409 -- Returns True if N is of the form X'First .. X'Last where X is the
9410 -- same entity for both attributes.
9412 --------------------
9413 -- First_Last_Ref --
9414 --------------------
9416 function First_Last_Ref
return Boolean is
9417 Lorig
: constant Node_Id
:= Original_Node
(L
);
9418 Horig
: constant Node_Id
:= Original_Node
(H
);
9421 if Nkind
(Lorig
) = N_Attribute_Reference
9422 and then Nkind
(Horig
) = N_Attribute_Reference
9423 and then Attribute_Name
(Lorig
) = Name_First
9424 and then Attribute_Name
(Horig
) = Name_Last
9427 PL
: constant Node_Id
:= Prefix
(Lorig
);
9428 PH
: constant Node_Id
:= Prefix
(Horig
);
9430 if Is_Entity_Name
(PL
)
9431 and then Is_Entity_Name
(PH
)
9432 and then Entity
(PL
) = Entity
(PH
)
9442 -- Start of processing for Resolve_Range
9449 -- Check for inappropriate range on unordered enumeration type
9451 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
9453 -- Exclude X'First .. X'Last if X is the same entity for both
9455 and then not First_Last_Ref
9457 Error_Msg_Sloc
:= Sloc
(Typ
);
9459 ("subrange of unordered enumeration type& declared#?U?", N
, Typ
);
9462 Check_Unset_Reference
(L
);
9463 Check_Unset_Reference
(H
);
9465 -- We have to check the bounds for being within the base range as
9466 -- required for a non-static context. Normally this is automatic and
9467 -- done as part of evaluating expressions, but the N_Range node is an
9468 -- exception, since in GNAT we consider this node to be a subexpression,
9469 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9470 -- this, but that would put the test on the main evaluation path for
9473 Check_Non_Static_Context
(L
);
9474 Check_Non_Static_Context
(H
);
9476 -- Check for an ambiguous range over character literals. This will
9477 -- happen with a membership test involving only literals.
9479 if Typ
= Any_Character
then
9480 Ambiguous_Character
(L
);
9481 Set_Etype
(N
, Any_Type
);
9485 -- If bounds are static, constant-fold them, so size computations are
9486 -- identical between front-end and back-end. Do not perform this
9487 -- transformation while analyzing generic units, as type information
9488 -- would be lost when reanalyzing the constant node in the instance.
9490 if Is_Discrete_Type
(Typ
) and then Expander_Active
then
9491 if Is_OK_Static_Expression
(L
) then
9492 Fold_Uint
(L
, Expr_Value
(L
), Is_OK_Static_Expression
(L
));
9495 if Is_OK_Static_Expression
(H
) then
9496 Fold_Uint
(H
, Expr_Value
(H
), Is_OK_Static_Expression
(H
));
9501 --------------------------
9502 -- Resolve_Real_Literal --
9503 --------------------------
9505 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9506 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
9509 -- Special processing for fixed-point literals to make sure that the
9510 -- value is an exact multiple of small where this is required. We skip
9511 -- this for the universal real case, and also for generic types.
9513 if Is_Fixed_Point_Type
(Typ
)
9514 and then Typ
/= Universal_Fixed
9515 and then Typ
/= Any_Fixed
9516 and then not Is_Generic_Type
(Typ
)
9519 Val
: constant Ureal
:= Realval
(N
);
9520 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
9521 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
9522 Den
: constant Uint
:= Norm_Den
(Cintr
);
9526 -- Case of literal is not an exact multiple of the Small
9530 -- For a source program literal for a decimal fixed-point type,
9531 -- this is statically illegal (RM 4.9(36)).
9533 if Is_Decimal_Fixed_Point_Type
(Typ
)
9534 and then Actual_Typ
= Universal_Real
9535 and then Comes_From_Source
(N
)
9537 Error_Msg_N
("value has extraneous low order digits", N
);
9540 -- Generate a warning if literal from source
9542 if Is_OK_Static_Expression
(N
)
9543 and then Warn_On_Bad_Fixed_Value
9546 ("?b?static fixed-point value is not a multiple of Small!",
9550 -- Replace literal by a value that is the exact representation
9551 -- of a value of the type, i.e. a multiple of the small value,
9552 -- by truncation, since Machine_Rounds is false for all GNAT
9553 -- fixed-point types (RM 4.9(38)).
9555 Stat
:= Is_OK_Static_Expression
(N
);
9557 Make_Real_Literal
(Sloc
(N
),
9558 Realval
=> Small_Value
(Typ
) * Cint
));
9560 Set_Is_Static_Expression
(N
, Stat
);
9563 -- In all cases, set the corresponding integer field
9565 Set_Corresponding_Integer_Value
(N
, Cint
);
9569 -- Now replace the actual type by the expected type as usual
9572 Eval_Real_Literal
(N
);
9573 end Resolve_Real_Literal
;
9575 -----------------------
9576 -- Resolve_Reference --
9577 -----------------------
9579 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
9580 P
: constant Node_Id
:= Prefix
(N
);
9583 -- Replace general access with specific type
9585 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
9586 Set_Etype
(N
, Base_Type
(Typ
));
9589 Resolve
(P
, Designated_Type
(Etype
(N
)));
9591 -- If we are taking the reference of a volatile entity, then treat it as
9592 -- a potential modification of this entity. This is too conservative,
9593 -- but necessary because remove side effects can cause transformations
9594 -- of normal assignments into reference sequences that otherwise fail to
9595 -- notice the modification.
9597 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
9598 Note_Possible_Modification
(P
, Sure
=> False);
9600 end Resolve_Reference
;
9602 --------------------------------
9603 -- Resolve_Selected_Component --
9604 --------------------------------
9606 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
9608 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
9609 P
: constant Node_Id
:= Prefix
(N
);
9610 S
: constant Node_Id
:= Selector_Name
(N
);
9611 T
: Entity_Id
:= Etype
(P
);
9613 I1
: Interp_Index
:= 0; -- prevent junk warning
9618 function Init_Component
return Boolean;
9619 -- Check whether this is the initialization of a component within an
9620 -- init proc (by assignment or call to another init proc). If true,
9621 -- there is no need for a discriminant check.
9623 --------------------
9624 -- Init_Component --
9625 --------------------
9627 function Init_Component
return Boolean is
9629 return Inside_Init_Proc
9630 and then Nkind
(Prefix
(N
)) = N_Identifier
9631 and then Chars
(Prefix
(N
)) = Name_uInit
9632 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
9635 -- Start of processing for Resolve_Selected_Component
9638 if Is_Overloaded
(P
) then
9640 -- Use the context type to select the prefix that has a selector
9641 -- of the correct name and type.
9644 Get_First_Interp
(P
, I
, It
);
9646 Search
: while Present
(It
.Typ
) loop
9647 if Is_Access_Type
(It
.Typ
) then
9648 T
:= Designated_Type
(It
.Typ
);
9653 -- Locate selected component. For a private prefix the selector
9654 -- can denote a discriminant.
9656 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
9658 -- The visible components of a class-wide type are those of
9661 if Is_Class_Wide_Type
(T
) then
9665 Comp
:= First_Entity
(T
);
9666 while Present
(Comp
) loop
9667 if Chars
(Comp
) = Chars
(S
)
9668 and then Covers
(Typ
, Etype
(Comp
))
9677 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9679 if It
= No_Interp
then
9681 ("ambiguous prefix for selected component", N
);
9688 -- There may be an implicit dereference. Retrieve
9689 -- designated record type.
9691 if Is_Access_Type
(It1
.Typ
) then
9692 T
:= Designated_Type
(It1
.Typ
);
9697 if Scope
(Comp1
) /= T
then
9699 -- Resolution chooses the new interpretation.
9700 -- Find the component with the right name.
9702 Comp1
:= First_Entity
(T
);
9703 while Present
(Comp1
)
9704 and then Chars
(Comp1
) /= Chars
(S
)
9706 Comp1
:= Next_Entity
(Comp1
);
9715 Comp
:= Next_Entity
(Comp
);
9719 Get_Next_Interp
(I
, It
);
9722 -- There must be a legal interpretation at this point
9724 pragma Assert
(Found
);
9725 Resolve
(P
, It1
.Typ
);
9727 Set_Entity_With_Checks
(S
, Comp1
);
9730 -- Resolve prefix with its type
9735 -- Generate cross-reference. We needed to wait until full overloading
9736 -- resolution was complete to do this, since otherwise we can't tell if
9737 -- we are an lvalue or not.
9739 if May_Be_Lvalue
(N
) then
9740 Generate_Reference
(Entity
(S
), S
, 'm');
9742 Generate_Reference
(Entity
(S
), S
, 'r');
9745 -- If prefix is an access type, the node will be transformed into an
9746 -- explicit dereference during expansion. The type of the node is the
9747 -- designated type of that of the prefix.
9749 if Is_Access_Type
(Etype
(P
)) then
9750 T
:= Designated_Type
(Etype
(P
));
9751 Check_Fully_Declared_Prefix
(T
, P
);
9756 -- Set flag for expander if discriminant check required
9758 if Has_Discriminants
(T
)
9759 and then Ekind_In
(Entity
(S
), E_Component
, E_Discriminant
)
9760 and then Present
(Original_Record_Component
(Entity
(S
)))
9761 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
9762 and then not Discriminant_Checks_Suppressed
(T
)
9763 and then not Init_Component
9765 Set_Do_Discriminant_Check
(N
);
9768 if Ekind
(Entity
(S
)) = E_Void
then
9769 Error_Msg_N
("premature use of component", S
);
9772 -- If the prefix is a record conversion, this may be a renamed
9773 -- discriminant whose bounds differ from those of the original
9774 -- one, so we must ensure that a range check is performed.
9776 if Nkind
(P
) = N_Type_Conversion
9777 and then Ekind
(Entity
(S
)) = E_Discriminant
9778 and then Is_Discrete_Type
(Typ
)
9780 Set_Etype
(N
, Base_Type
(Typ
));
9783 -- Note: No Eval processing is required, because the prefix is of a
9784 -- record type, or protected type, and neither can possibly be static.
9786 -- If the record type is atomic, and the component is non-atomic, then
9787 -- this is worth a warning, since we have a situation where the access
9788 -- to the component may cause extra read/writes of the atomic array
9789 -- object, or partial word accesses, both of which may be unexpected.
9791 if Nkind
(N
) = N_Selected_Component
9792 and then Is_Atomic_Ref_With_Address
(N
)
9793 and then not Is_Atomic
(Entity
(S
))
9794 and then not Is_Atomic
(Etype
(Entity
(S
)))
9797 ("??access to non-atomic component of atomic record",
9800 ("\??may cause unexpected accesses to atomic object",
9804 Analyze_Dimension
(N
);
9805 end Resolve_Selected_Component
;
9811 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
9812 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9813 L
: constant Node_Id
:= Left_Opnd
(N
);
9814 R
: constant Node_Id
:= Right_Opnd
(N
);
9817 -- We do the resolution using the base type, because intermediate values
9818 -- in expressions always are of the base type, not a subtype of it.
9821 Resolve
(R
, Standard_Natural
);
9823 Check_Unset_Reference
(L
);
9824 Check_Unset_Reference
(R
);
9826 Set_Etype
(N
, B_Typ
);
9827 Generate_Operator_Reference
(N
, B_Typ
);
9831 ---------------------------
9832 -- Resolve_Short_Circuit --
9833 ---------------------------
9835 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
9836 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9837 L
: constant Node_Id
:= Left_Opnd
(N
);
9838 R
: constant Node_Id
:= Right_Opnd
(N
);
9841 -- Ensure all actions associated with the left operand (e.g.
9842 -- finalization of transient controlled objects) are fully evaluated
9843 -- locally within an expression with actions. This is particularly
9844 -- helpful for coverage analysis. However this should not happen in
9847 if Expander_Active
then
9849 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
9851 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
9854 Make_Expression_With_Actions
(Sloc
(L
),
9855 Actions
=> New_List
,
9856 Expression
=> Reloc_L
));
9858 -- Set Comes_From_Source on L to preserve warnings for unset
9861 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
9868 -- Check for issuing warning for always False assert/check, this happens
9869 -- when assertions are turned off, in which case the pragma Assert/Check
9870 -- was transformed into:
9872 -- if False and then <condition> then ...
9874 -- and we detect this pattern
9876 if Warn_On_Assertion_Failure
9877 and then Is_Entity_Name
(R
)
9878 and then Entity
(R
) = Standard_False
9879 and then Nkind
(Parent
(N
)) = N_If_Statement
9880 and then Nkind
(N
) = N_And_Then
9881 and then Is_Entity_Name
(L
)
9882 and then Entity
(L
) = Standard_False
9885 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
9888 -- Special handling of Asssert pragma
9890 if Nkind
(Orig
) = N_Pragma
9891 and then Pragma_Name
(Orig
) = Name_Assert
9894 Expr
: constant Node_Id
:=
9897 (First
(Pragma_Argument_Associations
(Orig
))));
9900 -- Don't warn if original condition is explicit False,
9901 -- since obviously the failure is expected in this case.
9903 if Is_Entity_Name
(Expr
)
9904 and then Entity
(Expr
) = Standard_False
9908 -- Issue warning. We do not want the deletion of the
9909 -- IF/AND-THEN to take this message with it. We achieve this
9910 -- by making sure that the expanded code points to the Sloc
9911 -- of the expression, not the original pragma.
9914 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9915 -- The source location of the expression is not usually
9916 -- the best choice here. For example, it gets located on
9917 -- the last AND keyword in a chain of boolean expressiond
9918 -- AND'ed together. It is best to put the message on the
9919 -- first character of the assertion, which is the effect
9920 -- of the First_Node call here.
9923 ("?A?assertion would fail at run time!",
9925 (First
(Pragma_Argument_Associations
(Orig
))));
9929 -- Similar processing for Check pragma
9931 elsif Nkind
(Orig
) = N_Pragma
9932 and then Pragma_Name
(Orig
) = Name_Check
9934 -- Don't want to warn if original condition is explicit False
9937 Expr
: constant Node_Id
:=
9940 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
9942 if Is_Entity_Name
(Expr
)
9943 and then Entity
(Expr
) = Standard_False
9950 -- Again use Error_Msg_F rather than Error_Msg_N, see
9951 -- comment above for an explanation of why we do this.
9954 ("?A?check would fail at run time!",
9956 (Last
(Pragma_Argument_Associations
(Orig
))));
9963 -- Continue with processing of short circuit
9965 Check_Unset_Reference
(L
);
9966 Check_Unset_Reference
(R
);
9968 Set_Etype
(N
, B_Typ
);
9969 Eval_Short_Circuit
(N
);
9970 end Resolve_Short_Circuit
;
9976 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
9977 Drange
: constant Node_Id
:= Discrete_Range
(N
);
9978 Name
: constant Node_Id
:= Prefix
(N
);
9979 Array_Type
: Entity_Id
:= Empty
;
9980 Dexpr
: Node_Id
:= Empty
;
9981 Index_Type
: Entity_Id
;
9984 if Is_Overloaded
(Name
) then
9986 -- Use the context type to select the prefix that yields the correct
9991 I1
: Interp_Index
:= 0;
9993 P
: constant Node_Id
:= Prefix
(N
);
9994 Found
: Boolean := False;
9997 Get_First_Interp
(P
, I
, It
);
9998 while Present
(It
.Typ
) loop
9999 if (Is_Array_Type
(It
.Typ
)
10000 and then Covers
(Typ
, It
.Typ
))
10001 or else (Is_Access_Type
(It
.Typ
)
10002 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
10003 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
10006 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10008 if It
= No_Interp
then
10009 Error_Msg_N
("ambiguous prefix for slicing", N
);
10010 Set_Etype
(N
, Typ
);
10014 Array_Type
:= It
.Typ
;
10019 Array_Type
:= It
.Typ
;
10024 Get_Next_Interp
(I
, It
);
10029 Array_Type
:= Etype
(Name
);
10032 Resolve
(Name
, Array_Type
);
10034 if Is_Access_Type
(Array_Type
) then
10035 Apply_Access_Check
(N
);
10036 Array_Type
:= Designated_Type
(Array_Type
);
10038 -- If the prefix is an access to an unconstrained array, we must use
10039 -- the actual subtype of the object to perform the index checks. The
10040 -- object denoted by the prefix is implicit in the node, so we build
10041 -- an explicit representation for it in order to compute the actual
10044 if not Is_Constrained
(Array_Type
) then
10045 Remove_Side_Effects
(Prefix
(N
));
10048 Obj
: constant Node_Id
:=
10049 Make_Explicit_Dereference
(Sloc
(N
),
10050 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
10052 Set_Etype
(Obj
, Array_Type
);
10053 Set_Parent
(Obj
, Parent
(N
));
10054 Array_Type
:= Get_Actual_Subtype
(Obj
);
10058 elsif Is_Entity_Name
(Name
)
10059 or else Nkind
(Name
) = N_Explicit_Dereference
10060 or else (Nkind
(Name
) = N_Function_Call
10061 and then not Is_Constrained
(Etype
(Name
)))
10063 Array_Type
:= Get_Actual_Subtype
(Name
);
10065 -- If the name is a selected component that depends on discriminants,
10066 -- build an actual subtype for it. This can happen only when the name
10067 -- itself is overloaded; otherwise the actual subtype is created when
10068 -- the selected component is analyzed.
10070 elsif Nkind
(Name
) = N_Selected_Component
10071 and then Full_Analysis
10072 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
10075 Act_Decl
: constant Node_Id
:=
10076 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
10078 Insert_Action
(N
, Act_Decl
);
10079 Array_Type
:= Defining_Identifier
(Act_Decl
);
10082 -- Maybe this should just be "else", instead of checking for the
10083 -- specific case of slice??? This is needed for the case where the
10084 -- prefix is an Image attribute, which gets expanded to a slice, and so
10085 -- has a constrained subtype which we want to use for the slice range
10086 -- check applied below (the range check won't get done if the
10087 -- unconstrained subtype of the 'Image is used).
10089 elsif Nkind
(Name
) = N_Slice
then
10090 Array_Type
:= Etype
(Name
);
10093 -- Obtain the type of the array index
10095 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
10096 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
10098 Index_Type
:= Etype
(First_Index
(Array_Type
));
10101 -- If name was overloaded, set slice type correctly now
10103 Set_Etype
(N
, Array_Type
);
10105 -- Handle the generation of a range check that compares the array index
10106 -- against the discrete_range. The check is not applied to internally
10107 -- built nodes associated with the expansion of dispatch tables. Check
10108 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10111 if Tagged_Type_Expansion
10112 and then RTU_Loaded
(Ada_Tags
)
10113 and then Nkind
(Prefix
(N
)) = N_Selected_Component
10114 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
10115 and then Entity
(Selector_Name
(Prefix
(N
))) =
10116 RTE_Record_Component
(RE_Prims_Ptr
)
10120 -- The discrete_range is specified by a subtype indication. Create a
10121 -- shallow copy and inherit the type, parent and source location from
10122 -- the discrete_range. This ensures that the range check is inserted
10123 -- relative to the slice and that the runtime exception points to the
10124 -- proper construct.
10126 elsif Is_Entity_Name
(Drange
) then
10127 Dexpr
:= New_Copy
(Scalar_Range
(Entity
(Drange
)));
10129 Set_Etype
(Dexpr
, Etype
(Drange
));
10130 Set_Parent
(Dexpr
, Parent
(Drange
));
10131 Set_Sloc
(Dexpr
, Sloc
(Drange
));
10133 -- The discrete_range is a regular range. Resolve the bounds and remove
10134 -- their side effects.
10137 Resolve
(Drange
, Base_Type
(Index_Type
));
10139 if Nkind
(Drange
) = N_Range
then
10140 Force_Evaluation
(Low_Bound
(Drange
));
10141 Force_Evaluation
(High_Bound
(Drange
));
10147 if Present
(Dexpr
) then
10148 Apply_Range_Check
(Dexpr
, Index_Type
);
10151 Set_Slice_Subtype
(N
);
10153 -- Check bad use of type with predicates
10159 if Nkind
(Drange
) = N_Subtype_Indication
10160 and then Has_Predicates
(Entity
(Subtype_Mark
(Drange
)))
10162 Subt
:= Entity
(Subtype_Mark
(Drange
));
10164 Subt
:= Etype
(Drange
);
10167 if Has_Predicates
(Subt
) then
10168 Bad_Predicated_Subtype_Use
10169 ("subtype& has predicate, not allowed in slice", Drange
, Subt
);
10173 -- Otherwise here is where we check suspicious indexes
10175 if Nkind
(Drange
) = N_Range
then
10176 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
10177 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
10180 Analyze_Dimension
(N
);
10184 ----------------------------
10185 -- Resolve_String_Literal --
10186 ----------------------------
10188 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
10189 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
10190 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
10191 Loc
: constant Source_Ptr
:= Sloc
(N
);
10192 Str
: constant String_Id
:= Strval
(N
);
10193 Strlen
: constant Nat
:= String_Length
(Str
);
10194 Subtype_Id
: Entity_Id
;
10195 Need_Check
: Boolean;
10198 -- For a string appearing in a concatenation, defer creation of the
10199 -- string_literal_subtype until the end of the resolution of the
10200 -- concatenation, because the literal may be constant-folded away. This
10201 -- is a useful optimization for long concatenation expressions.
10203 -- If the string is an aggregate built for a single character (which
10204 -- happens in a non-static context) or a is null string to which special
10205 -- checks may apply, we build the subtype. Wide strings must also get a
10206 -- string subtype if they come from a one character aggregate. Strings
10207 -- generated by attributes might be static, but it is often hard to
10208 -- determine whether the enclosing context is static, so we generate
10209 -- subtypes for them as well, thus losing some rarer optimizations ???
10210 -- Same for strings that come from a static conversion.
10213 (Strlen
= 0 and then Typ
/= Standard_String
)
10214 or else Nkind
(Parent
(N
)) /= N_Op_Concat
10215 or else (N
/= Left_Opnd
(Parent
(N
))
10216 and then N
/= Right_Opnd
(Parent
(N
)))
10217 or else ((Typ
= Standard_Wide_String
10218 or else Typ
= Standard_Wide_Wide_String
)
10219 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
10221 -- If the resolving type is itself a string literal subtype, we can just
10222 -- reuse it, since there is no point in creating another.
10224 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10227 elsif Nkind
(Parent
(N
)) = N_Op_Concat
10228 and then not Need_Check
10229 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
10230 N_Attribute_Reference
,
10231 N_Qualified_Expression
,
10236 -- Do not generate a string literal subtype for the default expression
10237 -- of a formal parameter in GNATprove mode. This is because the string
10238 -- subtype is associated with the freezing actions of the subprogram,
10239 -- however freezing is disabled in GNATprove mode and as a result the
10240 -- subtype is unavailable.
10242 elsif GNATprove_Mode
10243 and then Nkind
(Parent
(N
)) = N_Parameter_Specification
10247 -- Otherwise we must create a string literal subtype. Note that the
10248 -- whole idea of string literal subtypes is simply to avoid the need
10249 -- for building a full fledged array subtype for each literal.
10252 Set_String_Literal_Subtype
(N
, Typ
);
10253 Subtype_Id
:= Etype
(N
);
10256 if Nkind
(Parent
(N
)) /= N_Op_Concat
10259 Set_Etype
(N
, Subtype_Id
);
10260 Eval_String_Literal
(N
);
10263 if Is_Limited_Composite
(Typ
)
10264 or else Is_Private_Composite
(Typ
)
10266 Error_Msg_N
("string literal not available for private array", N
);
10267 Set_Etype
(N
, Any_Type
);
10271 -- The validity of a null string has been checked in the call to
10272 -- Eval_String_Literal.
10277 -- Always accept string literal with component type Any_Character, which
10278 -- occurs in error situations and in comparisons of literals, both of
10279 -- which should accept all literals.
10281 elsif R_Typ
= Any_Character
then
10284 -- If the type is bit-packed, then we always transform the string
10285 -- literal into a full fledged aggregate.
10287 elsif Is_Bit_Packed_Array
(Typ
) then
10290 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10293 -- For Standard.Wide_Wide_String, or any other type whose component
10294 -- type is Standard.Wide_Wide_Character, we know that all the
10295 -- characters in the string must be acceptable, since the parser
10296 -- accepted the characters as valid character literals.
10298 if R_Typ
= Standard_Wide_Wide_Character
then
10301 -- For the case of Standard.String, or any other type whose component
10302 -- type is Standard.Character, we must make sure that there are no
10303 -- wide characters in the string, i.e. that it is entirely composed
10304 -- of characters in range of type Character.
10306 -- If the string literal is the result of a static concatenation, the
10307 -- test has already been performed on the components, and need not be
10310 elsif R_Typ
= Standard_Character
10311 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10313 for J
in 1 .. Strlen
loop
10314 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
10316 -- If we are out of range, post error. This is one of the
10317 -- very few places that we place the flag in the middle of
10318 -- a token, right under the offending wide character. Not
10319 -- quite clear if this is right wrt wide character encoding
10320 -- sequences, but it's only an error message.
10323 ("literal out of range of type Standard.Character",
10324 Source_Ptr
(Int
(Loc
) + J
));
10329 -- For the case of Standard.Wide_String, or any other type whose
10330 -- component type is Standard.Wide_Character, we must make sure that
10331 -- there are no wide characters in the string, i.e. that it is
10332 -- entirely composed of characters in range of type Wide_Character.
10334 -- If the string literal is the result of a static concatenation,
10335 -- the test has already been performed on the components, and need
10336 -- not be repeated.
10338 elsif R_Typ
= Standard_Wide_Character
10339 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10341 for J
in 1 .. Strlen
loop
10342 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
10344 -- If we are out of range, post error. This is one of the
10345 -- very few places that we place the flag in the middle of
10346 -- a token, right under the offending wide character.
10348 -- This is not quite right, because characters in general
10349 -- will take more than one character position ???
10352 ("literal out of range of type Standard.Wide_Character",
10353 Source_Ptr
(Int
(Loc
) + J
));
10358 -- If the root type is not a standard character, then we will convert
10359 -- the string into an aggregate and will let the aggregate code do
10360 -- the checking. Standard Wide_Wide_Character is also OK here.
10366 -- See if the component type of the array corresponding to the string
10367 -- has compile time known bounds. If yes we can directly check
10368 -- whether the evaluation of the string will raise constraint error.
10369 -- Otherwise we need to transform the string literal into the
10370 -- corresponding character aggregate and let the aggregate code do
10373 if Is_Standard_Character_Type
(R_Typ
) then
10375 -- Check for the case of full range, where we are definitely OK
10377 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
10381 -- Here the range is not the complete base type range, so check
10384 Comp_Typ_Lo
: constant Node_Id
:=
10385 Type_Low_Bound
(Component_Type
(Typ
));
10386 Comp_Typ_Hi
: constant Node_Id
:=
10387 Type_High_Bound
(Component_Type
(Typ
));
10392 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
10393 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
10395 for J
in 1 .. Strlen
loop
10396 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
10398 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
10399 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
10401 Apply_Compile_Time_Constraint_Error
10402 (N
, "character out of range??",
10403 CE_Range_Check_Failed
,
10404 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
10414 -- If we got here we meed to transform the string literal into the
10415 -- equivalent qualified positional array aggregate. This is rather
10416 -- heavy artillery for this situation, but it is hard work to avoid.
10419 Lits
: constant List_Id
:= New_List
;
10420 P
: Source_Ptr
:= Loc
+ 1;
10424 -- Build the character literals, we give them source locations that
10425 -- correspond to the string positions, which is a bit tricky given
10426 -- the possible presence of wide character escape sequences.
10428 for J
in 1 .. Strlen
loop
10429 C
:= Get_String_Char
(Str
, J
);
10430 Set_Character_Literal_Name
(C
);
10433 Make_Character_Literal
(P
,
10434 Chars
=> Name_Find
,
10435 Char_Literal_Value
=> UI_From_CC
(C
)));
10437 if In_Character_Range
(C
) then
10440 -- Should we have a call to Skip_Wide here ???
10449 Make_Qualified_Expression
(Loc
,
10450 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
10452 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
10454 Analyze_And_Resolve
(N
, Typ
);
10456 end Resolve_String_Literal
;
10458 -----------------------------
10459 -- Resolve_Type_Conversion --
10460 -----------------------------
10462 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
10463 Conv_OK
: constant Boolean := Conversion_OK
(N
);
10464 Operand
: constant Node_Id
:= Expression
(N
);
10465 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
10466 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10471 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
10472 -- Set to False to suppress cases where we want to suppress the test
10473 -- for redundancy to avoid possible false positives on this warning.
10477 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
10482 -- If the Operand Etype is Universal_Fixed, then the conversion is
10483 -- never redundant. We need this check because by the time we have
10484 -- finished the rather complex transformation, the conversion looks
10485 -- redundant when it is not.
10487 if Operand_Typ
= Universal_Fixed
then
10488 Test_Redundant
:= False;
10490 -- If the operand is marked as Any_Fixed, then special processing is
10491 -- required. This is also a case where we suppress the test for a
10492 -- redundant conversion, since most certainly it is not redundant.
10494 elsif Operand_Typ
= Any_Fixed
then
10495 Test_Redundant
:= False;
10497 -- Mixed-mode operation involving a literal. Context must be a fixed
10498 -- type which is applied to the literal subsequently.
10500 if Is_Fixed_Point_Type
(Typ
) then
10501 Set_Etype
(Operand
, Universal_Real
);
10503 elsif Is_Numeric_Type
(Typ
)
10504 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
10505 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
10507 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
10509 -- Return if expression is ambiguous
10511 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
10514 -- If nothing else, the available fixed type is Duration
10517 Set_Etype
(Operand
, Standard_Duration
);
10520 -- Resolve the real operand with largest available precision
10522 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
10523 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
10525 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
10528 Resolve
(Rop
, Universal_Real
);
10530 -- If the operand is a literal (it could be a non-static and
10531 -- illegal exponentiation) check whether the use of Duration
10532 -- is potentially inaccurate.
10534 if Nkind
(Rop
) = N_Real_Literal
10535 and then Realval
(Rop
) /= Ureal_0
10536 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
10539 ("??universal real operand can only "
10540 & "be interpreted as Duration!", Rop
);
10542 ("\??precision will be lost in the conversion!", Rop
);
10545 elsif Is_Numeric_Type
(Typ
)
10546 and then Nkind
(Operand
) in N_Op
10547 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
10549 Set_Etype
(Operand
, Standard_Duration
);
10552 Error_Msg_N
("invalid context for mixed mode operation", N
);
10553 Set_Etype
(Operand
, Any_Type
);
10560 -- In SPARK, a type conversion between array types should be restricted
10561 -- to types which have matching static bounds.
10563 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10564 -- operation if not needed.
10566 if Restriction_Check_Required
(SPARK_05
)
10567 and then Is_Array_Type
(Target_Typ
)
10568 and then Is_Array_Type
(Operand_Typ
)
10569 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
10570 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
10572 Check_SPARK_05_Restriction
10573 ("array types should have matching static bounds", N
);
10576 -- In formal mode, the operand of an ancestor type conversion must be an
10577 -- object (not an expression).
10579 if Is_Tagged_Type
(Target_Typ
)
10580 and then not Is_Class_Wide_Type
(Target_Typ
)
10581 and then Is_Tagged_Type
(Operand_Typ
)
10582 and then not Is_Class_Wide_Type
(Operand_Typ
)
10583 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
10584 and then not Is_SPARK_05_Object_Reference
(Operand
)
10586 Check_SPARK_05_Restriction
("object required", Operand
);
10589 Analyze_Dimension
(N
);
10591 -- Note: we do the Eval_Type_Conversion call before applying the
10592 -- required checks for a subtype conversion. This is important, since
10593 -- both are prepared under certain circumstances to change the type
10594 -- conversion to a constraint error node, but in the case of
10595 -- Eval_Type_Conversion this may reflect an illegality in the static
10596 -- case, and we would miss the illegality (getting only a warning
10597 -- message), if we applied the type conversion checks first.
10599 Eval_Type_Conversion
(N
);
10601 -- Even when evaluation is not possible, we may be able to simplify the
10602 -- conversion or its expression. This needs to be done before applying
10603 -- checks, since otherwise the checks may use the original expression
10604 -- and defeat the simplifications. This is specifically the case for
10605 -- elimination of the floating-point Truncation attribute in
10606 -- float-to-int conversions.
10608 Simplify_Type_Conversion
(N
);
10610 -- If after evaluation we still have a type conversion, then we may need
10611 -- to apply checks required for a subtype conversion.
10613 -- Skip these type conversion checks if universal fixed operands
10614 -- operands involved, since range checks are handled separately for
10615 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10617 if Nkind
(N
) = N_Type_Conversion
10618 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
10619 and then Target_Typ
/= Universal_Fixed
10620 and then Operand_Typ
/= Universal_Fixed
10622 Apply_Type_Conversion_Checks
(N
);
10625 -- Issue warning for conversion of simple object to its own type. We
10626 -- have to test the original nodes, since they may have been rewritten
10627 -- by various optimizations.
10629 Orig_N
:= Original_Node
(N
);
10631 -- Here we test for a redundant conversion if the warning mode is
10632 -- active (and was not locally reset), and we have a type conversion
10633 -- from source not appearing in a generic instance.
10636 and then Nkind
(Orig_N
) = N_Type_Conversion
10637 and then Comes_From_Source
(Orig_N
)
10638 and then not In_Instance
10640 Orig_N
:= Original_Node
(Expression
(Orig_N
));
10641 Orig_T
:= Target_Typ
;
10643 -- If the node is part of a larger expression, the Target_Type
10644 -- may not be the original type of the node if the context is a
10645 -- condition. Recover original type to see if conversion is needed.
10647 if Is_Boolean_Type
(Orig_T
)
10648 and then Nkind
(Parent
(N
)) in N_Op
10650 Orig_T
:= Etype
(Parent
(N
));
10653 -- If we have an entity name, then give the warning if the entity
10654 -- is the right type, or if it is a loop parameter covered by the
10655 -- original type (that's needed because loop parameters have an
10656 -- odd subtype coming from the bounds).
10658 if (Is_Entity_Name
(Orig_N
)
10660 (Etype
(Entity
(Orig_N
)) = Orig_T
10662 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
10663 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
10665 -- If not an entity, then type of expression must match
10667 or else Etype
(Orig_N
) = Orig_T
10669 -- One more check, do not give warning if the analyzed conversion
10670 -- has an expression with non-static bounds, and the bounds of the
10671 -- target are static. This avoids junk warnings in cases where the
10672 -- conversion is necessary to establish staticness, for example in
10673 -- a case statement.
10675 if not Is_OK_Static_Subtype
(Operand_Typ
)
10676 and then Is_OK_Static_Subtype
(Target_Typ
)
10680 -- Finally, if this type conversion occurs in a context requiring
10681 -- a prefix, and the expression is a qualified expression then the
10682 -- type conversion is not redundant, since a qualified expression
10683 -- is not a prefix, whereas a type conversion is. For example, "X
10684 -- := T'(Funx(...)).Y;" is illegal because a selected component
10685 -- requires a prefix, but a type conversion makes it legal: "X :=
10686 -- T(T'(Funx(...))).Y;"
10688 -- In Ada 2012, a qualified expression is a name, so this idiom is
10689 -- no longer needed, but we still suppress the warning because it
10690 -- seems unfriendly for warnings to pop up when you switch to the
10691 -- newer language version.
10693 elsif Nkind
(Orig_N
) = N_Qualified_Expression
10694 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
10695 N_Indexed_Component
,
10696 N_Selected_Component
,
10698 N_Explicit_Dereference
)
10702 -- Never warn on conversion to Long_Long_Integer'Base since
10703 -- that is most likely an artifact of the extended overflow
10704 -- checking and comes from complex expanded code.
10706 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
10709 -- Here we give the redundant conversion warning. If it is an
10710 -- entity, give the name of the entity in the message. If not,
10711 -- just mention the expression.
10713 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10716 if Is_Entity_Name
(Orig_N
) then
10717 Error_Msg_Node_2
:= Orig_T
;
10718 Error_Msg_NE
-- CODEFIX
10719 ("??redundant conversion, & is of type &!",
10720 N
, Entity
(Orig_N
));
10723 ("??redundant conversion, expression is of type&!",
10730 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10731 -- No need to perform any interface conversion if the type of the
10732 -- expression coincides with the target type.
10734 if Ada_Version
>= Ada_2005
10735 and then Expander_Active
10736 and then Operand_Typ
/= Target_Typ
10739 Opnd
: Entity_Id
:= Operand_Typ
;
10740 Target
: Entity_Id
:= Target_Typ
;
10743 -- If the type of the operand is a limited view, use nonlimited
10744 -- view when available. If it is a class-wide type, recover the
10745 -- class-wide type of the nonlimited view.
10747 if From_Limited_With
(Opnd
) then
10748 if Ekind
(Opnd
) in Incomplete_Kind
10749 and then Present
(Non_Limited_View
(Opnd
))
10751 Opnd
:= Non_Limited_View
(Opnd
);
10752 Set_Etype
(Expression
(N
), Opnd
);
10754 elsif Is_Class_Wide_Type
(Opnd
)
10755 and then Present
(Non_Limited_View
(Etype
(Opnd
)))
10757 Opnd
:= Class_Wide_Type
(Non_Limited_View
(Etype
(Opnd
)));
10758 Set_Etype
(Expression
(N
), Opnd
);
10762 if Is_Access_Type
(Opnd
) then
10763 Opnd
:= Designated_Type
(Opnd
);
10766 if Is_Access_Type
(Target_Typ
) then
10767 Target
:= Designated_Type
(Target
);
10770 if Opnd
= Target
then
10773 -- Conversion from interface type
10775 elsif Is_Interface
(Opnd
) then
10777 -- Ada 2005 (AI-217): Handle entities from limited views
10779 if From_Limited_With
(Opnd
) then
10780 Error_Msg_Qual_Level
:= 99;
10781 Error_Msg_NE
-- CODEFIX
10782 ("missing WITH clause on package &", N
,
10783 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
10785 ("type conversions require visibility of the full view",
10788 elsif From_Limited_With
(Target
)
10790 (Is_Access_Type
(Target_Typ
)
10791 and then Present
(Non_Limited_View
(Etype
(Target
))))
10793 Error_Msg_Qual_Level
:= 99;
10794 Error_Msg_NE
-- CODEFIX
10795 ("missing WITH clause on package &", N
,
10796 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
10798 ("type conversions require visibility of the full view",
10802 Expand_Interface_Conversion
(N
);
10805 -- Conversion to interface type
10807 elsif Is_Interface
(Target
) then
10811 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
10812 Opnd
:= Etype
(Opnd
);
10815 if Is_Class_Wide_Type
(Opnd
)
10816 or else Interface_Present_In_Ancestor
10820 Expand_Interface_Conversion
(N
);
10822 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
10823 Error_Msg_Name_2
:= Chars
(Opnd
);
10825 ("wrong interface conversion (% is not a progenitor "
10832 -- Ada 2012: if target type has predicates, the result requires a
10833 -- predicate check. If the context is a call to another predicate
10834 -- check we must prevent infinite recursion.
10836 if Has_Predicates
(Target_Typ
) then
10837 if Nkind
(Parent
(N
)) = N_Function_Call
10838 and then Present
(Name
(Parent
(N
)))
10839 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
10841 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
10846 Apply_Predicate_Check
(N
, Target_Typ
);
10850 -- If at this stage we have a real to integer conversion, make sure
10851 -- that the Do_Range_Check flag is set, because such conversions in
10852 -- general need a range check. We only need this if expansion is off
10853 -- or we are in GNATProve mode.
10855 if Nkind
(N
) = N_Type_Conversion
10856 and then (GNATprove_Mode
or not Expander_Active
)
10857 and then Is_Integer_Type
(Target_Typ
)
10858 and then Is_Real_Type
(Operand_Typ
)
10860 Set_Do_Range_Check
(Operand
);
10862 end Resolve_Type_Conversion
;
10864 ----------------------
10865 -- Resolve_Unary_Op --
10866 ----------------------
10868 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
10869 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10870 R
: constant Node_Id
:= Right_Opnd
(N
);
10876 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
10877 Error_Msg_Name_1
:= Chars
(Typ
);
10878 Check_SPARK_05_Restriction
10879 ("unary operator not defined for modular type%", N
);
10882 -- Deal with intrinsic unary operators
10884 if Comes_From_Source
(N
)
10885 and then Ekind
(Entity
(N
)) = E_Function
10886 and then Is_Imported
(Entity
(N
))
10887 and then Is_Intrinsic_Subprogram
(Entity
(N
))
10889 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
10893 -- Deal with universal cases
10895 if Etype
(R
) = Universal_Integer
10897 Etype
(R
) = Universal_Real
10899 Check_For_Visible_Operator
(N
, B_Typ
);
10902 Set_Etype
(N
, B_Typ
);
10903 Resolve
(R
, B_Typ
);
10905 -- Generate warning for expressions like abs (x mod 2)
10907 if Warn_On_Redundant_Constructs
10908 and then Nkind
(N
) = N_Op_Abs
10910 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
10912 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
10913 Error_Msg_N
-- CODEFIX
10914 ("?r?abs applied to known non-negative value has no effect", N
);
10918 -- Deal with reference generation
10920 Check_Unset_Reference
(R
);
10921 Generate_Operator_Reference
(N
, B_Typ
);
10922 Analyze_Dimension
(N
);
10925 -- Set overflow checking bit. Much cleverer code needed here eventually
10926 -- and perhaps the Resolve routines should be separated for the various
10927 -- arithmetic operations, since they will need different processing ???
10929 if Nkind
(N
) in N_Op
then
10930 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
10931 Enable_Overflow_Check
(N
);
10935 -- Generate warning for expressions like -5 mod 3 for integers. No need
10936 -- to worry in the floating-point case, since parens do not affect the
10937 -- result so there is no point in giving in a warning.
10940 Norig
: constant Node_Id
:= Original_Node
(N
);
10949 if Warn_On_Questionable_Missing_Parens
10950 and then Comes_From_Source
(Norig
)
10951 and then Is_Integer_Type
(Typ
)
10952 and then Nkind
(Norig
) = N_Op_Minus
10954 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
10956 -- We are looking for cases where the right operand is not
10957 -- parenthesized, and is a binary operator, multiply, divide, or
10958 -- mod. These are the cases where the grouping can affect results.
10960 if Paren_Count
(Rorig
) = 0
10961 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
10963 -- For mod, we always give the warning, since the value is
10964 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10965 -- -(5 mod 315)). But for the other cases, the only concern is
10966 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10967 -- overflows, but (-2) * 64 does not). So we try to give the
10968 -- message only when overflow is possible.
10970 if Nkind
(Rorig
) /= N_Op_Mod
10971 and then Compile_Time_Known_Value
(R
)
10973 Val
:= Expr_Value
(R
);
10975 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
10976 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
10978 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
10981 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
10982 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
10984 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
10987 -- Note that the test below is deliberately excluding the
10988 -- largest negative number, since that is a potentially
10989 -- troublesome case (e.g. -2 * x, where the result is the
10990 -- largest negative integer has an overflow with 2 * x).
10992 if Val
> LB
and then Val
<= HB
then
10997 -- For the multiplication case, the only case we have to worry
10998 -- about is when (-a)*b is exactly the largest negative number
10999 -- so that -(a*b) can cause overflow. This can only happen if
11000 -- a is a power of 2, and more generally if any operand is a
11001 -- constant that is not a power of 2, then the parentheses
11002 -- cannot affect whether overflow occurs. We only bother to
11003 -- test the left most operand
11005 -- Loop looking at left operands for one that has known value
11008 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
11009 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
11010 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
11012 -- Operand value of 0 or 1 skips warning
11017 -- Otherwise check power of 2, if power of 2, warn, if
11018 -- anything else, skip warning.
11021 while Lval
/= 2 loop
11022 if Lval
mod 2 = 1 then
11033 -- Keep looking at left operands
11035 Opnd
:= Left_Opnd
(Opnd
);
11036 end loop Opnd_Loop
;
11038 -- For rem or "/" we can only have a problematic situation
11039 -- if the divisor has a value of minus one or one. Otherwise
11040 -- overflow is impossible (divisor > 1) or we have a case of
11041 -- division by zero in any case.
11043 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
11044 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
11045 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
11050 -- If we fall through warning should be issued
11052 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11055 ("??unary minus expression should be parenthesized here!", N
);
11059 end Resolve_Unary_Op
;
11061 ----------------------------------
11062 -- Resolve_Unchecked_Expression --
11063 ----------------------------------
11065 procedure Resolve_Unchecked_Expression
11070 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
11071 Set_Etype
(N
, Typ
);
11072 end Resolve_Unchecked_Expression
;
11074 ---------------------------------------
11075 -- Resolve_Unchecked_Type_Conversion --
11076 ---------------------------------------
11078 procedure Resolve_Unchecked_Type_Conversion
11082 pragma Warnings
(Off
, Typ
);
11084 Operand
: constant Node_Id
:= Expression
(N
);
11085 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
11088 -- Resolve operand using its own type
11090 Resolve
(Operand
, Opnd_Type
);
11092 -- In an inlined context, the unchecked conversion may be applied
11093 -- to a literal, in which case its type is the type of the context.
11094 -- (In other contexts conversions cannot apply to literals).
11097 and then (Opnd_Type
= Any_Character
or else
11098 Opnd_Type
= Any_Integer
or else
11099 Opnd_Type
= Any_Real
)
11101 Set_Etype
(Operand
, Typ
);
11104 Analyze_Dimension
(N
);
11105 Eval_Unchecked_Conversion
(N
);
11106 end Resolve_Unchecked_Type_Conversion
;
11108 ------------------------------
11109 -- Rewrite_Operator_As_Call --
11110 ------------------------------
11112 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
11113 Loc
: constant Source_Ptr
:= Sloc
(N
);
11114 Actuals
: constant List_Id
:= New_List
;
11118 if Nkind
(N
) in N_Binary_Op
then
11119 Append
(Left_Opnd
(N
), Actuals
);
11122 Append
(Right_Opnd
(N
), Actuals
);
11125 Make_Function_Call
(Sloc
=> Loc
,
11126 Name
=> New_Occurrence_Of
(Nam
, Loc
),
11127 Parameter_Associations
=> Actuals
);
11129 Preserve_Comes_From_Source
(New_N
, N
);
11130 Preserve_Comes_From_Source
(Name
(New_N
), N
);
11131 Rewrite
(N
, New_N
);
11132 Set_Etype
(N
, Etype
(Nam
));
11133 end Rewrite_Operator_As_Call
;
11135 ------------------------------
11136 -- Rewrite_Renamed_Operator --
11137 ------------------------------
11139 procedure Rewrite_Renamed_Operator
11144 Nam
: constant Name_Id
:= Chars
(Op
);
11145 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
11149 -- Do not perform this transformation within a pre/postcondition,
11150 -- because the expression will be re-analyzed, and the transformation
11151 -- might affect the visibility of the operator, e.g. in an instance.
11153 if In_Assertion_Expr
> 0 then
11157 -- Rewrite the operator node using the real operator, not its renaming.
11158 -- Exclude user-defined intrinsic operations of the same name, which are
11159 -- treated separately and rewritten as calls.
11161 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
11162 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
11163 Set_Chars
(Op_Node
, Nam
);
11164 Set_Etype
(Op_Node
, Etype
(N
));
11165 Set_Entity
(Op_Node
, Op
);
11166 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
11168 -- Indicate that both the original entity and its renaming are
11169 -- referenced at this point.
11171 Generate_Reference
(Entity
(N
), N
);
11172 Generate_Reference
(Op
, N
);
11175 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
11178 Rewrite
(N
, Op_Node
);
11180 -- If the context type is private, add the appropriate conversions so
11181 -- that the operator is applied to the full view. This is done in the
11182 -- routines that resolve intrinsic operators.
11184 if Is_Intrinsic_Subprogram
(Op
)
11185 and then Is_Private_Type
(Typ
)
11188 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11189 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
11190 Resolve_Intrinsic_Operator
(N
, Typ
);
11192 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
11193 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11200 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
11202 -- Operator renames a user-defined operator of the same name. Use the
11203 -- original operator in the node, which is the one Gigi knows about.
11205 Set_Entity
(N
, Op
);
11206 Set_Is_Overloaded
(N
, False);
11208 end Rewrite_Renamed_Operator
;
11210 -----------------------
11211 -- Set_Slice_Subtype --
11212 -----------------------
11214 -- Build an implicit subtype declaration to represent the type delivered by
11215 -- the slice. This is an abbreviated version of an array subtype. We define
11216 -- an index subtype for the slice, using either the subtype name or the
11217 -- discrete range of the slice. To be consistent with index usage elsewhere
11218 -- we create a list header to hold the single index. This list is not
11219 -- otherwise attached to the syntax tree.
11221 procedure Set_Slice_Subtype
(N
: Node_Id
) is
11222 Loc
: constant Source_Ptr
:= Sloc
(N
);
11223 Index_List
: constant List_Id
:= New_List
;
11225 Index_Subtype
: Entity_Id
;
11226 Index_Type
: Entity_Id
;
11227 Slice_Subtype
: Entity_Id
;
11228 Drange
: constant Node_Id
:= Discrete_Range
(N
);
11231 Index_Type
:= Base_Type
(Etype
(Drange
));
11233 if Is_Entity_Name
(Drange
) then
11234 Index_Subtype
:= Entity
(Drange
);
11237 -- We force the evaluation of a range. This is definitely needed in
11238 -- the renamed case, and seems safer to do unconditionally. Note in
11239 -- any case that since we will create and insert an Itype referring
11240 -- to this range, we must make sure any side effect removal actions
11241 -- are inserted before the Itype definition.
11243 if Nkind
(Drange
) = N_Range
then
11244 Force_Evaluation
(Low_Bound
(Drange
));
11245 Force_Evaluation
(High_Bound
(Drange
));
11247 -- If the discrete range is given by a subtype indication, the
11248 -- type of the slice is the base of the subtype mark.
11250 elsif Nkind
(Drange
) = N_Subtype_Indication
then
11252 R
: constant Node_Id
:= Range_Expression
(Constraint
(Drange
));
11254 Index_Type
:= Base_Type
(Entity
(Subtype_Mark
(Drange
)));
11255 Force_Evaluation
(Low_Bound
(R
));
11256 Force_Evaluation
(High_Bound
(R
));
11260 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11262 -- Take a new copy of Drange (where bounds have been rewritten to
11263 -- reference side-effect-free names). Using a separate tree ensures
11264 -- that further expansion (e.g. while rewriting a slice assignment
11265 -- into a FOR loop) does not attempt to remove side effects on the
11266 -- bounds again (which would cause the bounds in the index subtype
11267 -- definition to refer to temporaries before they are defined) (the
11268 -- reason is that some names are considered side effect free here
11269 -- for the subtype, but not in the context of a loop iteration
11272 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
11273 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
11274 Set_Etype
(Index_Subtype
, Index_Type
);
11275 Set_Size_Info
(Index_Subtype
, Index_Type
);
11276 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11279 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11281 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11282 Set_Etype
(Index
, Index_Subtype
);
11283 Append
(Index
, Index_List
);
11285 Set_First_Index
(Slice_Subtype
, Index
);
11286 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
11287 Set_Is_Constrained
(Slice_Subtype
, True);
11289 Check_Compile_Time_Size
(Slice_Subtype
);
11291 -- The Etype of the existing Slice node is reset to this slice subtype.
11292 -- Its bounds are obtained from its first index.
11294 Set_Etype
(N
, Slice_Subtype
);
11296 -- For packed slice subtypes, freeze immediately (except in the case of
11297 -- being in a "spec expression" where we never freeze when we first see
11298 -- the expression).
11300 if Is_Packed
(Slice_Subtype
) and not In_Spec_Expression
then
11301 Freeze_Itype
(Slice_Subtype
, N
);
11303 -- For all other cases insert an itype reference in the slice's actions
11304 -- so that the itype is frozen at the proper place in the tree (i.e. at
11305 -- the point where actions for the slice are analyzed). Note that this
11306 -- is different from freezing the itype immediately, which might be
11307 -- premature (e.g. if the slice is within a transient scope). This needs
11308 -- to be done only if expansion is enabled.
11310 elsif Expander_Active
then
11311 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
11313 end Set_Slice_Subtype
;
11315 --------------------------------
11316 -- Set_String_Literal_Subtype --
11317 --------------------------------
11319 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
11320 Loc
: constant Source_Ptr
:= Sloc
(N
);
11321 Low_Bound
: constant Node_Id
:=
11322 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
11323 Subtype_Id
: Entity_Id
;
11326 if Nkind
(N
) /= N_String_Literal
then
11330 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
11331 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
11332 (String_Length
(Strval
(N
))));
11333 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
11334 Set_Is_Constrained
(Subtype_Id
);
11335 Set_Etype
(N
, Subtype_Id
);
11337 -- The low bound is set from the low bound of the corresponding index
11338 -- type. Note that we do not store the high bound in the string literal
11339 -- subtype, but it can be deduced if necessary from the length and the
11342 if Is_OK_Static_Expression
(Low_Bound
) then
11343 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
11345 -- If the lower bound is not static we create a range for the string
11346 -- literal, using the index type and the known length of the literal.
11347 -- The index type is not necessarily Positive, so the upper bound is
11348 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11352 Index_List
: constant List_Id
:= New_List
;
11353 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
11354 High_Bound
: constant Node_Id
:=
11355 Make_Attribute_Reference
(Loc
,
11356 Attribute_Name
=> Name_Val
,
11358 New_Occurrence_Of
(Index_Type
, Loc
),
11359 Expressions
=> New_List
(
11362 Make_Attribute_Reference
(Loc
,
11363 Attribute_Name
=> Name_Pos
,
11365 New_Occurrence_Of
(Index_Type
, Loc
),
11367 New_List
(New_Copy_Tree
(Low_Bound
))),
11369 Make_Integer_Literal
(Loc
,
11370 String_Length
(Strval
(N
)) - 1))));
11372 Array_Subtype
: Entity_Id
;
11375 Index_Subtype
: Entity_Id
;
11378 if Is_Integer_Type
(Index_Type
) then
11379 Set_String_Literal_Low_Bound
11380 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
11383 -- If the index type is an enumeration type, build bounds
11384 -- expression with attributes.
11386 Set_String_Literal_Low_Bound
11388 Make_Attribute_Reference
(Loc
,
11389 Attribute_Name
=> Name_First
,
11391 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
11392 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
11395 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
11397 -- Build bona fide subtype for the string, and wrap it in an
11398 -- unchecked conversion, because the backend expects the
11399 -- String_Literal_Subtype to have a static lower bound.
11402 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11403 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
11404 Set_Scalar_Range
(Index_Subtype
, Drange
);
11405 Set_Parent
(Drange
, N
);
11406 Analyze_And_Resolve
(Drange
, Index_Type
);
11408 -- In the context, the Index_Type may already have a constraint,
11409 -- so use common base type on string subtype. The base type may
11410 -- be used when generating attributes of the string, for example
11411 -- in the context of a slice assignment.
11413 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
11414 Set_Size_Info
(Index_Subtype
, Index_Type
);
11415 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11417 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11419 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11420 Set_Etype
(Index
, Index_Subtype
);
11421 Append
(Index
, Index_List
);
11423 Set_First_Index
(Array_Subtype
, Index
);
11424 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
11425 Set_Is_Constrained
(Array_Subtype
, True);
11428 Make_Unchecked_Type_Conversion
(Loc
,
11429 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
11430 Expression
=> Relocate_Node
(N
)));
11431 Set_Etype
(N
, Array_Subtype
);
11434 end Set_String_Literal_Subtype
;
11436 ------------------------------
11437 -- Simplify_Type_Conversion --
11438 ------------------------------
11440 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
11442 if Nkind
(N
) = N_Type_Conversion
then
11444 Operand
: constant Node_Id
:= Expression
(N
);
11445 Target_Typ
: constant Entity_Id
:= Etype
(N
);
11446 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
11449 -- Special processing if the conversion is the expression of a
11450 -- Rounding or Truncation attribute reference. In this case we
11453 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11459 -- with the Float_Truncate flag set to False or True respectively,
11460 -- which is more efficient.
11462 if Is_Floating_Point_Type
(Opnd_Typ
)
11464 (Is_Integer_Type
(Target_Typ
)
11465 or else (Is_Fixed_Point_Type
(Target_Typ
)
11466 and then Conversion_OK
(N
)))
11467 and then Nkind
(Operand
) = N_Attribute_Reference
11468 and then Nam_In
(Attribute_Name
(Operand
), Name_Rounding
,
11472 Truncate
: constant Boolean :=
11473 Attribute_Name
(Operand
) = Name_Truncation
;
11476 Relocate_Node
(First
(Expressions
(Operand
))));
11477 Set_Float_Truncate
(N
, Truncate
);
11482 end Simplify_Type_Conversion
;
11484 -----------------------------
11485 -- Unique_Fixed_Point_Type --
11486 -----------------------------
11488 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
11489 T1
: Entity_Id
:= Empty
;
11494 procedure Fixed_Point_Error
;
11495 -- Give error messages for true ambiguity. Messages are posted on node
11496 -- N, and entities T1, T2 are the possible interpretations.
11498 -----------------------
11499 -- Fixed_Point_Error --
11500 -----------------------
11502 procedure Fixed_Point_Error
is
11504 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
11505 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
11506 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
11507 end Fixed_Point_Error
;
11509 -- Start of processing for Unique_Fixed_Point_Type
11512 -- The operations on Duration are visible, so Duration is always a
11513 -- possible interpretation.
11515 T1
:= Standard_Duration
;
11517 -- Look for fixed-point types in enclosing scopes
11519 Scop
:= Current_Scope
;
11520 while Scop
/= Standard_Standard
loop
11521 T2
:= First_Entity
(Scop
);
11522 while Present
(T2
) loop
11523 if Is_Fixed_Point_Type
(T2
)
11524 and then Current_Entity
(T2
) = T2
11525 and then Scope
(Base_Type
(T2
)) = Scop
11527 if Present
(T1
) then
11538 Scop
:= Scope
(Scop
);
11541 -- Look for visible fixed type declarations in the context
11543 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
11544 while Present
(Item
) loop
11545 if Nkind
(Item
) = N_With_Clause
then
11546 Scop
:= Entity
(Name
(Item
));
11547 T2
:= First_Entity
(Scop
);
11548 while Present
(T2
) loop
11549 if Is_Fixed_Point_Type
(T2
)
11550 and then Scope
(Base_Type
(T2
)) = Scop
11551 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
11553 if Present
(T1
) then
11568 if Nkind
(N
) = N_Real_Literal
then
11570 ("??real literal interpreted as }!", N
, T1
);
11573 ("??universal_fixed expression interpreted as }!", N
, T1
);
11577 end Unique_Fixed_Point_Type
;
11579 ----------------------
11580 -- Valid_Conversion --
11581 ----------------------
11583 function Valid_Conversion
11585 Target
: Entity_Id
;
11587 Report_Errs
: Boolean := True) return Boolean
11589 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
11590 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
11591 Inc_Ancestor
: Entity_Id
;
11593 function Conversion_Check
11595 Msg
: String) return Boolean;
11596 -- Little routine to post Msg if Valid is False, returns Valid value
11598 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
11599 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11601 procedure Conversion_Error_NE
11603 N
: Node_Or_Entity_Id
;
11604 E
: Node_Or_Entity_Id
);
11605 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11607 function Valid_Tagged_Conversion
11608 (Target_Type
: Entity_Id
;
11609 Opnd_Type
: Entity_Id
) return Boolean;
11610 -- Specifically test for validity of tagged conversions
11612 function Valid_Array_Conversion
return Boolean;
11613 -- Check index and component conformance, and accessibility levels if
11614 -- the component types are anonymous access types (Ada 2005).
11616 ----------------------
11617 -- Conversion_Check --
11618 ----------------------
11620 function Conversion_Check
11622 Msg
: String) return Boolean
11627 -- A generic unit has already been analyzed and we have verified
11628 -- that a particular conversion is OK in that context. Since the
11629 -- instance is reanalyzed without relying on the relationships
11630 -- established during the analysis of the generic, it is possible
11631 -- to end up with inconsistent views of private types. Do not emit
11632 -- the error message in such cases. The rest of the machinery in
11633 -- Valid_Conversion still ensures the proper compatibility of
11634 -- target and operand types.
11636 and then not In_Instance
11638 Conversion_Error_N
(Msg
, Operand
);
11642 end Conversion_Check
;
11644 ------------------------
11645 -- Conversion_Error_N --
11646 ------------------------
11648 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
11650 if Report_Errs
then
11651 Error_Msg_N
(Msg
, N
);
11653 end Conversion_Error_N
;
11655 -------------------------
11656 -- Conversion_Error_NE --
11657 -------------------------
11659 procedure Conversion_Error_NE
11661 N
: Node_Or_Entity_Id
;
11662 E
: Node_Or_Entity_Id
)
11665 if Report_Errs
then
11666 Error_Msg_NE
(Msg
, N
, E
);
11668 end Conversion_Error_NE
;
11670 ----------------------------
11671 -- Valid_Array_Conversion --
11672 ----------------------------
11674 function Valid_Array_Conversion
return Boolean
11676 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
11677 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
11679 Opnd_Index
: Node_Id
;
11680 Opnd_Index_Type
: Entity_Id
;
11682 Target_Comp_Type
: constant Entity_Id
:=
11683 Component_Type
(Target_Type
);
11684 Target_Comp_Base
: constant Entity_Id
:=
11685 Base_Type
(Target_Comp_Type
);
11687 Target_Index
: Node_Id
;
11688 Target_Index_Type
: Entity_Id
;
11691 -- Error if wrong number of dimensions
11694 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
11697 ("incompatible number of dimensions for conversion", Operand
);
11700 -- Number of dimensions matches
11703 -- Loop through indexes of the two arrays
11705 Target_Index
:= First_Index
(Target_Type
);
11706 Opnd_Index
:= First_Index
(Opnd_Type
);
11707 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
11708 Target_Index_Type
:= Etype
(Target_Index
);
11709 Opnd_Index_Type
:= Etype
(Opnd_Index
);
11711 -- Error if index types are incompatible
11713 if not (Is_Integer_Type
(Target_Index_Type
)
11714 and then Is_Integer_Type
(Opnd_Index_Type
))
11715 and then (Root_Type
(Target_Index_Type
)
11716 /= Root_Type
(Opnd_Index_Type
))
11719 ("incompatible index types for array conversion",
11724 Next_Index
(Target_Index
);
11725 Next_Index
(Opnd_Index
);
11728 -- If component types have same base type, all set
11730 if Target_Comp_Base
= Opnd_Comp_Base
then
11733 -- Here if base types of components are not the same. The only
11734 -- time this is allowed is if we have anonymous access types.
11736 -- The conversion of arrays of anonymous access types can lead
11737 -- to dangling pointers. AI-392 formalizes the accessibility
11738 -- checks that must be applied to such conversions to prevent
11739 -- out-of-scope references.
11742 (Target_Comp_Base
, E_Anonymous_Access_Type
,
11743 E_Anonymous_Access_Subprogram_Type
)
11744 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
11746 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
11748 if Type_Access_Level
(Target_Type
) <
11749 Deepest_Type_Access_Level
(Opnd_Type
)
11751 if In_Instance_Body
then
11752 Error_Msg_Warn
:= SPARK_Mode
/= On
;
11754 ("source array type has deeper accessibility "
11755 & "level than target<<", Operand
);
11756 Conversion_Error_N
("\Program_Error [<<", Operand
);
11758 Make_Raise_Program_Error
(Sloc
(N
),
11759 Reason
=> PE_Accessibility_Check_Failed
));
11760 Set_Etype
(N
, Target_Type
);
11763 -- Conversion not allowed because of accessibility levels
11767 ("source array type has deeper accessibility "
11768 & "level than target", Operand
);
11776 -- All other cases where component base types do not match
11780 ("incompatible component types for array conversion",
11785 -- Check that component subtypes statically match. For numeric
11786 -- types this means that both must be either constrained or
11787 -- unconstrained. For enumeration types the bounds must match.
11788 -- All of this is checked in Subtypes_Statically_Match.
11790 if not Subtypes_Statically_Match
11791 (Target_Comp_Type
, Opnd_Comp_Type
)
11794 ("component subtypes must statically match", Operand
);
11800 end Valid_Array_Conversion
;
11802 -----------------------------
11803 -- Valid_Tagged_Conversion --
11804 -----------------------------
11806 function Valid_Tagged_Conversion
11807 (Target_Type
: Entity_Id
;
11808 Opnd_Type
: Entity_Id
) return Boolean
11811 -- Upward conversions are allowed (RM 4.6(22))
11813 if Covers
(Target_Type
, Opnd_Type
)
11814 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
11818 -- Downward conversion are allowed if the operand is class-wide
11821 elsif Is_Class_Wide_Type
(Opnd_Type
)
11822 and then Covers
(Opnd_Type
, Target_Type
)
11826 elsif Covers
(Opnd_Type
, Target_Type
)
11827 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
11830 Conversion_Check
(False,
11831 "downward conversion of tagged objects not allowed");
11833 -- Ada 2005 (AI-251): The conversion to/from interface types is
11836 elsif Is_Interface
(Target_Type
) or else Is_Interface
(Opnd_Type
) then
11839 -- If the operand is a class-wide type obtained through a limited_
11840 -- with clause, and the context includes the nonlimited view, use
11841 -- it to determine whether the conversion is legal.
11843 elsif Is_Class_Wide_Type
(Opnd_Type
)
11844 and then From_Limited_With
(Opnd_Type
)
11845 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
11846 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
11850 elsif Is_Access_Type
(Opnd_Type
)
11851 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
11856 Conversion_Error_NE
11857 ("invalid tagged conversion, not compatible with}",
11858 N
, First_Subtype
(Opnd_Type
));
11861 end Valid_Tagged_Conversion
;
11863 -- Start of processing for Valid_Conversion
11866 Check_Parameterless_Call
(Operand
);
11868 if Is_Overloaded
(Operand
) then
11878 -- Remove procedure calls, which syntactically cannot appear in
11879 -- this context, but which cannot be removed by type checking,
11880 -- because the context does not impose a type.
11882 -- The node may be labelled overloaded, but still contain only one
11883 -- interpretation because others were discarded earlier. If this
11884 -- is the case, retain the single interpretation if legal.
11886 Get_First_Interp
(Operand
, I
, It
);
11887 Opnd_Type
:= It
.Typ
;
11888 Get_Next_Interp
(I
, It
);
11890 if Present
(It
.Typ
)
11891 and then Opnd_Type
/= Standard_Void_Type
11893 -- More than one candidate interpretation is available
11895 Get_First_Interp
(Operand
, I
, It
);
11896 while Present
(It
.Typ
) loop
11897 if It
.Typ
= Standard_Void_Type
then
11901 -- When compiling for a system where Address is of a visible
11902 -- integer type, spurious ambiguities can be produced when
11903 -- arithmetic operations have a literal operand and return
11904 -- System.Address or a descendant of it. These ambiguities
11905 -- are usually resolved by the context, but for conversions
11906 -- there is no context type and the removal of the spurious
11907 -- operations must be done explicitly here.
11909 if not Address_Is_Private
11910 and then Is_Descendent_Of_Address
(It
.Typ
)
11915 Get_Next_Interp
(I
, It
);
11919 Get_First_Interp
(Operand
, I
, It
);
11923 if No
(It
.Typ
) then
11924 Conversion_Error_N
("illegal operand in conversion", Operand
);
11928 Get_Next_Interp
(I
, It
);
11930 if Present
(It
.Typ
) then
11933 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
11935 if It1
= No_Interp
then
11937 ("ambiguous operand in conversion", Operand
);
11939 -- If the interpretation involves a standard operator, use
11940 -- the location of the type, which may be user-defined.
11942 if Sloc
(It
.Nam
) = Standard_Location
then
11943 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
11945 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
11948 Conversion_Error_N
-- CODEFIX
11949 ("\\possible interpretation#!", Operand
);
11951 if Sloc
(N1
) = Standard_Location
then
11952 Error_Msg_Sloc
:= Sloc
(T1
);
11954 Error_Msg_Sloc
:= Sloc
(N1
);
11957 Conversion_Error_N
-- CODEFIX
11958 ("\\possible interpretation#!", Operand
);
11964 Set_Etype
(Operand
, It1
.Typ
);
11965 Opnd_Type
:= It1
.Typ
;
11969 -- Deal with conversion of integer type to address if the pragma
11970 -- Allow_Integer_Address is in effect. We convert the conversion to
11971 -- an unchecked conversion in this case and we are all done.
11973 if Address_Integer_Convert_OK
(Opnd_Type
, Target_Type
) then
11974 Rewrite
(N
, Unchecked_Convert_To
(Target_Type
, Expression
(N
)));
11975 Analyze_And_Resolve
(N
, Target_Type
);
11979 -- If we are within a child unit, check whether the type of the
11980 -- expression has an ancestor in a parent unit, in which case it
11981 -- belongs to its derivation class even if the ancestor is private.
11982 -- See RM 7.3.1 (5.2/3).
11984 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
11988 if Is_Numeric_Type
(Target_Type
) then
11990 -- A universal fixed expression can be converted to any numeric type
11992 if Opnd_Type
= Universal_Fixed
then
11995 -- Also no need to check when in an instance or inlined body, because
11996 -- the legality has been established when the template was analyzed.
11997 -- Furthermore, numeric conversions may occur where only a private
11998 -- view of the operand type is visible at the instantiation point.
11999 -- This results in a spurious error if we check that the operand type
12000 -- is a numeric type.
12002 -- Note: in a previous version of this unit, the following tests were
12003 -- applied only for generated code (Comes_From_Source set to False),
12004 -- but in fact the test is required for source code as well, since
12005 -- this situation can arise in source code.
12007 elsif In_Instance
or else In_Inlined_Body
then
12010 -- Otherwise we need the conversion check
12013 return Conversion_Check
12014 (Is_Numeric_Type
(Opnd_Type
)
12016 (Present
(Inc_Ancestor
)
12017 and then Is_Numeric_Type
(Inc_Ancestor
)),
12018 "illegal operand for numeric conversion");
12023 elsif Is_Array_Type
(Target_Type
) then
12024 if not Is_Array_Type
(Opnd_Type
)
12025 or else Opnd_Type
= Any_Composite
12026 or else Opnd_Type
= Any_String
12029 ("illegal operand for array conversion", Operand
);
12033 return Valid_Array_Conversion
;
12036 -- Ada 2005 (AI-251): Internally generated conversions of access to
12037 -- interface types added to force the displacement of the pointer to
12038 -- reference the corresponding dispatch table.
12040 elsif not Comes_From_Source
(N
)
12041 and then Is_Access_Type
(Target_Type
)
12042 and then Is_Interface
(Designated_Type
(Target_Type
))
12046 -- Ada 2005 (AI-251): Anonymous access types where target references an
12049 elsif Is_Access_Type
(Opnd_Type
)
12050 and then Ekind_In
(Target_Type
, E_General_Access_Type
,
12051 E_Anonymous_Access_Type
)
12052 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
12054 -- Check the static accessibility rule of 4.6(17). Note that the
12055 -- check is not enforced when within an instance body, since the
12056 -- RM requires such cases to be caught at run time.
12058 -- If the operand is a rewriting of an allocator no check is needed
12059 -- because there are no accessibility issues.
12061 if Nkind
(Original_Node
(N
)) = N_Allocator
then
12064 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
12065 if Type_Access_Level
(Opnd_Type
) >
12066 Deepest_Type_Access_Level
(Target_Type
)
12068 -- In an instance, this is a run-time check, but one we know
12069 -- will fail, so generate an appropriate warning. The raise
12070 -- will be generated by Expand_N_Type_Conversion.
12072 if In_Instance_Body
then
12073 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12075 ("cannot convert local pointer to non-local access type<<",
12077 Conversion_Error_N
("\Program_Error [<<", Operand
);
12081 ("cannot convert local pointer to non-local access type",
12086 -- Special accessibility checks are needed in the case of access
12087 -- discriminants declared for a limited type.
12089 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12090 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12092 -- When the operand is a selected access discriminant the check
12093 -- needs to be made against the level of the object denoted by
12094 -- the prefix of the selected name (Object_Access_Level handles
12095 -- checking the prefix of the operand for this case).
12097 if Nkind
(Operand
) = N_Selected_Component
12098 and then Object_Access_Level
(Operand
) >
12099 Deepest_Type_Access_Level
(Target_Type
)
12101 -- In an instance, this is a run-time check, but one we know
12102 -- will fail, so generate an appropriate warning. The raise
12103 -- will be generated by Expand_N_Type_Conversion.
12105 if In_Instance_Body
then
12106 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12108 ("cannot convert access discriminant to non-local "
12109 & "access type<<", Operand
);
12110 Conversion_Error_N
("\Program_Error [<<", Operand
);
12112 -- Real error if not in instance body
12116 ("cannot convert access discriminant to non-local "
12117 & "access type", Operand
);
12122 -- The case of a reference to an access discriminant from
12123 -- within a limited type declaration (which will appear as
12124 -- a discriminal) is always illegal because the level of the
12125 -- discriminant is considered to be deeper than any (nameable)
12128 if Is_Entity_Name
(Operand
)
12129 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12131 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12132 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12135 ("discriminant has deeper accessibility level than target",
12144 -- General and anonymous access types
12146 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12147 E_Anonymous_Access_Type
)
12150 (Is_Access_Type
(Opnd_Type
)
12152 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
12153 E_Access_Protected_Subprogram_Type
),
12154 "must be an access-to-object type")
12156 if Is_Access_Constant
(Opnd_Type
)
12157 and then not Is_Access_Constant
(Target_Type
)
12160 ("access-to-constant operand type not allowed", Operand
);
12164 -- Check the static accessibility rule of 4.6(17). Note that the
12165 -- check is not enforced when within an instance body, since the RM
12166 -- requires such cases to be caught at run time.
12168 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
12169 or else Is_Local_Anonymous_Access
(Target_Type
)
12170 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
12171 N_Object_Declaration
12173 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12174 -- conversions from an anonymous access type to a named general
12175 -- access type. Such conversions are not allowed in the case of
12176 -- access parameters and stand-alone objects of an anonymous
12177 -- access type. The implicit conversion case is recognized by
12178 -- testing that Comes_From_Source is False and that it's been
12179 -- rewritten. The Comes_From_Source test isn't sufficient because
12180 -- nodes in inlined calls to predefined library routines can have
12181 -- Comes_From_Source set to False. (Is there a better way to test
12182 -- for implicit conversions???)
12184 if Ada_Version
>= Ada_2012
12185 and then not Comes_From_Source
(N
)
12186 and then N
/= Original_Node
(N
)
12187 and then Ekind
(Target_Type
) = E_General_Access_Type
12188 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12190 if Is_Itype
(Opnd_Type
) then
12192 -- Implicit conversions aren't allowed for objects of an
12193 -- anonymous access type, since such objects have nonstatic
12194 -- levels in Ada 2012.
12196 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
12197 N_Object_Declaration
12200 ("implicit conversion of stand-alone anonymous "
12201 & "access object not allowed", Operand
);
12204 -- Implicit conversions aren't allowed for anonymous access
12205 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12206 -- is done to exclude anonymous access results.
12208 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
12209 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
12210 N_Function_Specification
,
12211 N_Procedure_Specification
)
12214 ("implicit conversion of anonymous access formal "
12215 & "not allowed", Operand
);
12218 -- This is a case where there's an enclosing object whose
12219 -- to which the "statically deeper than" relationship does
12220 -- not apply (such as an access discriminant selected from
12221 -- a dereference of an access parameter).
12223 elsif Object_Access_Level
(Operand
)
12224 = Scope_Depth
(Standard_Standard
)
12227 ("implicit conversion of anonymous access value "
12228 & "not allowed", Operand
);
12231 -- In other cases, the level of the operand's type must be
12232 -- statically less deep than that of the target type, else
12233 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12235 elsif Type_Access_Level
(Opnd_Type
) >
12236 Deepest_Type_Access_Level
(Target_Type
)
12239 ("implicit conversion of anonymous access value "
12240 & "violates accessibility", Operand
);
12245 elsif Type_Access_Level
(Opnd_Type
) >
12246 Deepest_Type_Access_Level
(Target_Type
)
12248 -- In an instance, this is a run-time check, but one we know
12249 -- will fail, so generate an appropriate warning. The raise
12250 -- will be generated by Expand_N_Type_Conversion.
12252 if In_Instance_Body
then
12253 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12255 ("cannot convert local pointer to non-local access type<<",
12257 Conversion_Error_N
("\Program_Error [<<", Operand
);
12259 -- If not in an instance body, this is a real error
12262 -- Avoid generation of spurious error message
12264 if not Error_Posted
(N
) then
12266 ("cannot convert local pointer to non-local access type",
12273 -- Special accessibility checks are needed in the case of access
12274 -- discriminants declared for a limited type.
12276 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12277 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12279 -- When the operand is a selected access discriminant the check
12280 -- needs to be made against the level of the object denoted by
12281 -- the prefix of the selected name (Object_Access_Level handles
12282 -- checking the prefix of the operand for this case).
12284 if Nkind
(Operand
) = N_Selected_Component
12285 and then Object_Access_Level
(Operand
) >
12286 Deepest_Type_Access_Level
(Target_Type
)
12288 -- In an instance, this is a run-time check, but one we know
12289 -- will fail, so generate an appropriate warning. The raise
12290 -- will be generated by Expand_N_Type_Conversion.
12292 if In_Instance_Body
then
12293 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12295 ("cannot convert access discriminant to non-local "
12296 & "access type<<", Operand
);
12297 Conversion_Error_N
("\Program_Error [<<", Operand
);
12299 -- If not in an instance body, this is a real error
12303 ("cannot convert access discriminant to non-local "
12304 & "access type", Operand
);
12309 -- The case of a reference to an access discriminant from
12310 -- within a limited type declaration (which will appear as
12311 -- a discriminal) is always illegal because the level of the
12312 -- discriminant is considered to be deeper than any (nameable)
12315 if Is_Entity_Name
(Operand
)
12317 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12318 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12321 ("discriminant has deeper accessibility level than target",
12328 -- In the presence of limited_with clauses we have to use nonlimited
12329 -- views, if available.
12331 Check_Limited
: declare
12332 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
12333 -- Helper function to handle limited views
12335 --------------------------
12336 -- Full_Designated_Type --
12337 --------------------------
12339 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
12340 Desig
: constant Entity_Id
:= Designated_Type
(T
);
12343 -- Handle the limited view of a type
12345 if Is_Incomplete_Type
(Desig
)
12346 and then From_Limited_With
(Desig
)
12347 and then Present
(Non_Limited_View
(Desig
))
12349 return Available_View
(Desig
);
12353 end Full_Designated_Type
;
12355 -- Local Declarations
12357 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
12358 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
12360 Same_Base
: constant Boolean :=
12361 Base_Type
(Target
) = Base_Type
(Opnd
);
12363 -- Start of processing for Check_Limited
12366 if Is_Tagged_Type
(Target
) then
12367 return Valid_Tagged_Conversion
(Target
, Opnd
);
12370 if not Same_Base
then
12371 Conversion_Error_NE
12372 ("target designated type not compatible with }",
12373 N
, Base_Type
(Opnd
));
12376 -- Ada 2005 AI-384: legality rule is symmetric in both
12377 -- designated types. The conversion is legal (with possible
12378 -- constraint check) if either designated type is
12381 elsif Subtypes_Statically_Match
(Target
, Opnd
)
12383 (Has_Discriminants
(Target
)
12385 (not Is_Constrained
(Opnd
)
12386 or else not Is_Constrained
(Target
)))
12388 -- Special case, if Value_Size has been used to make the
12389 -- sizes different, the conversion is not allowed even
12390 -- though the subtypes statically match.
12392 if Known_Static_RM_Size
(Target
)
12393 and then Known_Static_RM_Size
(Opnd
)
12394 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
12396 Conversion_Error_NE
12397 ("target designated subtype not compatible with }",
12399 Conversion_Error_NE
12400 ("\because sizes of the two designated subtypes differ",
12404 -- Normal case where conversion is allowed
12412 ("target designated subtype not compatible with }",
12419 -- Access to subprogram types. If the operand is an access parameter,
12420 -- the type has a deeper accessibility that any master, and cannot be
12421 -- assigned. We must make an exception if the conversion is part of an
12422 -- assignment and the target is the return object of an extended return
12423 -- statement, because in that case the accessibility check takes place
12424 -- after the return.
12426 elsif Is_Access_Subprogram_Type
(Target_Type
)
12428 -- Note: this test of Opnd_Type is there to prevent entering this
12429 -- branch in the case of a remote access to subprogram type, which
12430 -- is internally represented as an E_Record_Type.
12432 and then Is_Access_Type
(Opnd_Type
)
12434 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
12435 and then Is_Entity_Name
(Operand
)
12436 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
12438 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
12439 or else not Is_Entity_Name
(Name
(Parent
(N
)))
12440 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
12443 ("illegal attempt to store anonymous access to subprogram",
12446 ("\value has deeper accessibility than any master "
12447 & "(RM 3.10.2 (13))",
12451 ("\use named access type for& instead of access parameter",
12452 Operand
, Entity
(Operand
));
12455 -- Check that the designated types are subtype conformant
12457 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
12458 Old_Id
=> Designated_Type
(Opnd_Type
),
12461 -- Check the static accessibility rule of 4.6(20)
12463 if Type_Access_Level
(Opnd_Type
) >
12464 Deepest_Type_Access_Level
(Target_Type
)
12467 ("operand type has deeper accessibility level than target",
12470 -- Check that if the operand type is declared in a generic body,
12471 -- then the target type must be declared within that same body
12472 -- (enforces last sentence of 4.6(20)).
12474 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
12476 O_Gen
: constant Node_Id
:=
12477 Enclosing_Generic_Body
(Opnd_Type
);
12482 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
12483 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
12484 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
12487 if T_Gen
/= O_Gen
then
12489 ("target type must be declared in same generic body "
12490 & "as operand type", N
);
12497 -- Remote access to subprogram types
12499 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
12500 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
12502 -- It is valid to convert from one RAS type to another provided
12503 -- that their specification statically match.
12505 -- Note: at this point, remote access to subprogram types have been
12506 -- expanded to their E_Record_Type representation, and we need to
12507 -- go back to the original access type definition using the
12508 -- Corresponding_Remote_Type attribute in order to check that the
12509 -- designated profiles match.
12511 pragma Assert
(Ekind
(Target_Type
) = E_Record_Type
);
12512 pragma Assert
(Ekind
(Opnd_Type
) = E_Record_Type
);
12514 Check_Subtype_Conformant
12516 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
12518 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
12523 -- If it was legal in the generic, it's legal in the instance
12525 elsif In_Instance_Body
then
12528 -- If both are tagged types, check legality of view conversions
12530 elsif Is_Tagged_Type
(Target_Type
)
12532 Is_Tagged_Type
(Opnd_Type
)
12534 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
12536 -- Types derived from the same root type are convertible
12538 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
12541 -- In an instance or an inlined body, there may be inconsistent views of
12542 -- the same type, or of types derived from a common root.
12544 elsif (In_Instance
or In_Inlined_Body
)
12546 Root_Type
(Underlying_Type
(Target_Type
)) =
12547 Root_Type
(Underlying_Type
(Opnd_Type
))
12551 -- Special check for common access type error case
12553 elsif Ekind
(Target_Type
) = E_Access_Type
12554 and then Is_Access_Type
(Opnd_Type
)
12556 Conversion_Error_N
("target type must be general access type!", N
);
12557 Conversion_Error_NE
-- CODEFIX
12558 ("add ALL to }!", N
, Target_Type
);
12561 -- Here we have a real conversion error
12564 Conversion_Error_NE
12565 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
12568 end Valid_Conversion
;