* regex.c (wcs_re_match_2_internal, byte_re_match_2_internal):
[official-gcc.git] / gcc / combine.c
blob89866e0fa3d7d1c0eb3f5baa21e61948fb8eb8cb
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
242 static struct reg_stat *reg_stat;
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
247 static int mem_last_set;
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
252 static int last_call_cuid;
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
260 static rtx subst_insn;
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
269 static int subst_low_cuid;
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
274 static HARD_REG_SET newpat_used_regs;
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
280 static rtx added_links_insn;
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
293 static int *uid_insn_cost;
295 /* Length of the currently allocated uid_insn_cost array. */
297 static int last_insn_cost;
299 /* Incremented for each label. */
301 static int label_tick;
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
306 static enum machine_mode nonzero_bits_mode;
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
314 static int nonzero_sign_valid;
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
321 struct undo
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
335 struct undobuf
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
342 static struct undobuf undobuf;
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
347 static int n_occurrences;
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx distribute_and_simplify_rtx (rtx, int);
390 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
391 unsigned HOST_WIDE_INT);
392 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
393 HOST_WIDE_INT, enum machine_mode, int *);
394 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
395 int);
396 static int recog_for_combine (rtx *, rtx, rtx *);
397 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
425 /* Our implementation of gen_lowpart never emits a new pseudo. */
426 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
427 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
429 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
430 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
432 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
433 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
435 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
439 insn. The substitution can be undone by undo_all. If INTO is already
440 set to NEWVAL, do not record this change. Because computing NEWVAL might
441 also call SUBST, we have to compute it before we put anything into
442 the undo table. */
444 static void
445 do_SUBST (rtx *into, rtx newval)
447 struct undo *buf;
448 rtx oldval = *into;
450 if (oldval == newval)
451 return;
453 /* We'd like to catch as many invalid transformations here as
454 possible. Unfortunately, there are way too many mode changes
455 that are perfectly valid, so we'd waste too much effort for
456 little gain doing the checks here. Focus on catching invalid
457 transformations involving integer constants. */
458 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
459 && GET_CODE (newval) == CONST_INT)
461 /* Sanity check that we're replacing oldval with a CONST_INT
462 that is a valid sign-extension for the original mode. */
463 gcc_assert (INTVAL (newval)
464 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
466 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
467 CONST_INT is not valid, because after the replacement, the
468 original mode would be gone. Unfortunately, we can't tell
469 when do_SUBST is called to replace the operand thereof, so we
470 perform this test on oldval instead, checking whether an
471 invalid replacement took place before we got here. */
472 gcc_assert (!(GET_CODE (oldval) == SUBREG
473 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
474 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
475 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = xmalloc (sizeof (struct undo));
483 buf->is_int = 0;
484 buf->where.r = into;
485 buf->old_contents.r = oldval;
486 *into = newval;
488 buf->next = undobuf.undos, undobuf.undos = buf;
491 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
493 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
494 for the value of a HOST_WIDE_INT value (including CONST_INT) is
495 not safe. */
497 static void
498 do_SUBST_INT (int *into, int newval)
500 struct undo *buf;
501 int oldval = *into;
503 if (oldval == newval)
504 return;
506 if (undobuf.frees)
507 buf = undobuf.frees, undobuf.frees = buf->next;
508 else
509 buf = xmalloc (sizeof (struct undo));
511 buf->is_int = 1;
512 buf->where.i = into;
513 buf->old_contents.i = oldval;
514 *into = newval;
516 buf->next = undobuf.undos, undobuf.undos = buf;
519 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
521 /* Subroutine of try_combine. Determine whether the combine replacement
522 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
523 that the original instruction sequence I1, I2 and I3. Note that I1
524 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
525 costs of all instructions can be estimated, and the replacements are
526 more expensive than the original sequence. */
528 static bool
529 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
531 int i1_cost, i2_cost, i3_cost;
532 int new_i2_cost, new_i3_cost;
533 int old_cost, new_cost;
535 /* Lookup the original insn_rtx_costs. */
536 i2_cost = INSN_UID (i2) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i2)] : 0;
538 i3_cost = INSN_UID (i3) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i3)] : 0;
541 if (i1)
543 i1_cost = INSN_UID (i1) <= last_insn_cost
544 ? uid_insn_cost[INSN_UID (i1)] : 0;
545 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
546 ? i1_cost + i2_cost + i3_cost : 0;
548 else
550 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
551 i1_cost = 0;
554 /* Calculate the replacement insn_rtx_costs. */
555 new_i3_cost = insn_rtx_cost (newpat);
556 if (newi2pat)
558 new_i2_cost = insn_rtx_cost (newi2pat);
559 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
560 ? new_i2_cost + new_i3_cost : 0;
562 else
564 new_cost = new_i3_cost;
565 new_i2_cost = 0;
568 if (undobuf.other_insn)
570 int old_other_cost, new_other_cost;
572 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
573 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
574 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
575 if (old_other_cost > 0 && new_other_cost > 0)
577 old_cost += old_other_cost;
578 new_cost += new_other_cost;
580 else
581 old_cost = 0;
584 /* Disallow this recombination if both new_cost and old_cost are
585 greater than zero, and new_cost is greater than old cost. */
586 if (old_cost > 0
587 && new_cost > old_cost)
589 if (dump_file)
591 if (i1)
593 fprintf (dump_file,
594 "rejecting combination of insns %d, %d and %d\n",
595 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
596 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
597 i1_cost, i2_cost, i3_cost, old_cost);
599 else
601 fprintf (dump_file,
602 "rejecting combination of insns %d and %d\n",
603 INSN_UID (i2), INSN_UID (i3));
604 fprintf (dump_file, "original costs %d + %d = %d\n",
605 i2_cost, i3_cost, old_cost);
608 if (newi2pat)
610 fprintf (dump_file, "replacement costs %d + %d = %d\n",
611 new_i2_cost, new_i3_cost, new_cost);
613 else
614 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 return false;
620 /* Update the uid_insn_cost array with the replacement costs. */
621 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
622 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
623 if (i1)
624 uid_insn_cost[INSN_UID (i1)] = 0;
626 return true;
629 /* Main entry point for combiner. F is the first insn of the function.
630 NREGS is the first unused pseudo-reg number.
632 Return nonzero if the combiner has turned an indirect jump
633 instruction into a direct jump. */
635 combine_instructions (rtx f, unsigned int nregs)
637 rtx insn, next;
638 #ifdef HAVE_cc0
639 rtx prev;
640 #endif
641 int i;
642 rtx links, nextlinks;
644 int new_direct_jump_p = 0;
646 combine_attempts = 0;
647 combine_merges = 0;
648 combine_extras = 0;
649 combine_successes = 0;
651 combine_max_regno = nregs;
653 rtl_hooks = combine_rtl_hooks;
655 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
657 init_recog_no_volatile ();
659 /* Compute maximum uid value so uid_cuid can be allocated. */
661 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
662 if (INSN_UID (insn) > i)
663 i = INSN_UID (insn);
665 uid_cuid = xmalloc ((i + 1) * sizeof (int));
666 max_uid_cuid = i;
668 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
670 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
671 problems when, for example, we have j <<= 1 in a loop. */
673 nonzero_sign_valid = 0;
675 /* Compute the mapping from uids to cuids.
676 Cuids are numbers assigned to insns, like uids,
677 except that cuids increase monotonically through the code.
679 Scan all SETs and see if we can deduce anything about what
680 bits are known to be zero for some registers and how many copies
681 of the sign bit are known to exist for those registers.
683 Also set any known values so that we can use it while searching
684 for what bits are known to be set. */
686 label_tick = 1;
688 setup_incoming_promotions ();
690 refresh_blocks = sbitmap_alloc (last_basic_block);
691 sbitmap_zero (refresh_blocks);
693 /* Allocate array of current insn_rtx_costs. */
694 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
695 last_insn_cost = max_uid_cuid;
697 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
699 uid_cuid[INSN_UID (insn)] = ++i;
700 subst_low_cuid = i;
701 subst_insn = insn;
703 if (INSN_P (insn))
705 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
706 NULL);
707 record_dead_and_set_regs (insn);
709 #ifdef AUTO_INC_DEC
710 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
711 if (REG_NOTE_KIND (links) == REG_INC)
712 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
713 NULL);
714 #endif
716 /* Record the current insn_rtx_cost of this instruction. */
717 if (NONJUMP_INSN_P (insn))
718 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
719 if (dump_file)
720 fprintf(dump_file, "insn_cost %d: %d\n",
721 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
724 if (LABEL_P (insn))
725 label_tick++;
728 nonzero_sign_valid = 1;
730 /* Now scan all the insns in forward order. */
732 label_tick = 1;
733 last_call_cuid = 0;
734 mem_last_set = 0;
735 init_reg_last ();
736 setup_incoming_promotions ();
738 FOR_EACH_BB (this_basic_block)
740 for (insn = BB_HEAD (this_basic_block);
741 insn != NEXT_INSN (BB_END (this_basic_block));
742 insn = next ? next : NEXT_INSN (insn))
744 next = 0;
746 if (LABEL_P (insn))
747 label_tick++;
749 else if (INSN_P (insn))
751 /* See if we know about function return values before this
752 insn based upon SUBREG flags. */
753 check_promoted_subreg (insn, PATTERN (insn));
755 /* Try this insn with each insn it links back to. */
757 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
758 if ((next = try_combine (insn, XEXP (links, 0),
759 NULL_RTX, &new_direct_jump_p)) != 0)
760 goto retry;
762 /* Try each sequence of three linked insns ending with this one. */
764 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
766 rtx link = XEXP (links, 0);
768 /* If the linked insn has been replaced by a note, then there
769 is no point in pursuing this chain any further. */
770 if (NOTE_P (link))
771 continue;
773 for (nextlinks = LOG_LINKS (link);
774 nextlinks;
775 nextlinks = XEXP (nextlinks, 1))
776 if ((next = try_combine (insn, link,
777 XEXP (nextlinks, 0),
778 &new_direct_jump_p)) != 0)
779 goto retry;
782 #ifdef HAVE_cc0
783 /* Try to combine a jump insn that uses CC0
784 with a preceding insn that sets CC0, and maybe with its
785 logical predecessor as well.
786 This is how we make decrement-and-branch insns.
787 We need this special code because data flow connections
788 via CC0 do not get entered in LOG_LINKS. */
790 if (JUMP_P (insn)
791 && (prev = prev_nonnote_insn (insn)) != 0
792 && NONJUMP_INSN_P (prev)
793 && sets_cc0_p (PATTERN (prev)))
795 if ((next = try_combine (insn, prev,
796 NULL_RTX, &new_direct_jump_p)) != 0)
797 goto retry;
799 for (nextlinks = LOG_LINKS (prev); nextlinks;
800 nextlinks = XEXP (nextlinks, 1))
801 if ((next = try_combine (insn, prev,
802 XEXP (nextlinks, 0),
803 &new_direct_jump_p)) != 0)
804 goto retry;
807 /* Do the same for an insn that explicitly references CC0. */
808 if (NONJUMP_INSN_P (insn)
809 && (prev = prev_nonnote_insn (insn)) != 0
810 && NONJUMP_INSN_P (prev)
811 && sets_cc0_p (PATTERN (prev))
812 && GET_CODE (PATTERN (insn)) == SET
813 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
815 if ((next = try_combine (insn, prev,
816 NULL_RTX, &new_direct_jump_p)) != 0)
817 goto retry;
819 for (nextlinks = LOG_LINKS (prev); nextlinks;
820 nextlinks = XEXP (nextlinks, 1))
821 if ((next = try_combine (insn, prev,
822 XEXP (nextlinks, 0),
823 &new_direct_jump_p)) != 0)
824 goto retry;
827 /* Finally, see if any of the insns that this insn links to
828 explicitly references CC0. If so, try this insn, that insn,
829 and its predecessor if it sets CC0. */
830 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
831 if (NONJUMP_INSN_P (XEXP (links, 0))
832 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
833 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
834 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
835 && NONJUMP_INSN_P (prev)
836 && sets_cc0_p (PATTERN (prev))
837 && (next = try_combine (insn, XEXP (links, 0),
838 prev, &new_direct_jump_p)) != 0)
839 goto retry;
840 #endif
842 /* Try combining an insn with two different insns whose results it
843 uses. */
844 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
845 for (nextlinks = XEXP (links, 1); nextlinks;
846 nextlinks = XEXP (nextlinks, 1))
847 if ((next = try_combine (insn, XEXP (links, 0),
848 XEXP (nextlinks, 0),
849 &new_direct_jump_p)) != 0)
850 goto retry;
852 /* Try this insn with each REG_EQUAL note it links back to. */
853 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
855 rtx set, note;
856 rtx temp = XEXP (links, 0);
857 if ((set = single_set (temp)) != 0
858 && (note = find_reg_equal_equiv_note (temp)) != 0
859 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
860 /* Avoid using a register that may already been marked
861 dead by an earlier instruction. */
862 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
864 /* Temporarily replace the set's source with the
865 contents of the REG_EQUAL note. The insn will
866 be deleted or recognized by try_combine. */
867 rtx orig = SET_SRC (set);
868 SET_SRC (set) = XEXP (note, 0);
869 next = try_combine (insn, temp, NULL_RTX,
870 &new_direct_jump_p);
871 if (next)
872 goto retry;
873 SET_SRC (set) = orig;
877 if (!NOTE_P (insn))
878 record_dead_and_set_regs (insn);
880 retry:
885 clear_bb_flags ();
887 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
888 BASIC_BLOCK (i)->flags |= BB_DIRTY);
889 new_direct_jump_p |= purge_all_dead_edges (0);
890 delete_noop_moves ();
892 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
893 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
894 | PROP_KILL_DEAD_CODE);
896 /* Clean up. */
897 sbitmap_free (refresh_blocks);
898 free (uid_insn_cost);
899 free (reg_stat);
900 free (uid_cuid);
903 struct undo *undo, *next;
904 for (undo = undobuf.frees; undo; undo = next)
906 next = undo->next;
907 free (undo);
909 undobuf.frees = 0;
912 total_attempts += combine_attempts;
913 total_merges += combine_merges;
914 total_extras += combine_extras;
915 total_successes += combine_successes;
917 nonzero_sign_valid = 0;
918 rtl_hooks = general_rtl_hooks;
920 /* Make recognizer allow volatile MEMs again. */
921 init_recog ();
923 return new_direct_jump_p;
926 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
928 static void
929 init_reg_last (void)
931 unsigned int i;
932 for (i = 0; i < combine_max_regno; i++)
933 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
936 /* Set up any promoted values for incoming argument registers. */
938 static void
939 setup_incoming_promotions (void)
941 unsigned int regno;
942 rtx reg;
943 enum machine_mode mode;
944 int unsignedp;
945 rtx first = get_insns ();
947 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
949 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
950 /* Check whether this register can hold an incoming pointer
951 argument. FUNCTION_ARG_REGNO_P tests outgoing register
952 numbers, so translate if necessary due to register windows. */
953 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
954 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
956 record_value_for_reg
957 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
958 : SIGN_EXTEND),
959 GET_MODE (reg),
960 gen_rtx_CLOBBER (mode, const0_rtx)));
965 /* Called via note_stores. If X is a pseudo that is narrower than
966 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
968 If we are setting only a portion of X and we can't figure out what
969 portion, assume all bits will be used since we don't know what will
970 be happening.
972 Similarly, set how many bits of X are known to be copies of the sign bit
973 at all locations in the function. This is the smallest number implied
974 by any set of X. */
976 static void
977 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
978 void *data ATTRIBUTE_UNUSED)
980 unsigned int num;
982 if (REG_P (x)
983 && REGNO (x) >= FIRST_PSEUDO_REGISTER
984 /* If this register is undefined at the start of the file, we can't
985 say what its contents were. */
986 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
987 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
989 if (set == 0 || GET_CODE (set) == CLOBBER)
991 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
992 reg_stat[REGNO (x)].sign_bit_copies = 1;
993 return;
996 /* If this is a complex assignment, see if we can convert it into a
997 simple assignment. */
998 set = expand_field_assignment (set);
1000 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1001 set what we know about X. */
1003 if (SET_DEST (set) == x
1004 || (GET_CODE (SET_DEST (set)) == SUBREG
1005 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1006 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1007 && SUBREG_REG (SET_DEST (set)) == x))
1009 rtx src = SET_SRC (set);
1011 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1012 /* If X is narrower than a word and SRC is a non-negative
1013 constant that would appear negative in the mode of X,
1014 sign-extend it for use in reg_stat[].nonzero_bits because some
1015 machines (maybe most) will actually do the sign-extension
1016 and this is the conservative approach.
1018 ??? For 2.5, try to tighten up the MD files in this regard
1019 instead of this kludge. */
1021 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1022 && GET_CODE (src) == CONST_INT
1023 && INTVAL (src) > 0
1024 && 0 != (INTVAL (src)
1025 & ((HOST_WIDE_INT) 1
1026 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1027 src = GEN_INT (INTVAL (src)
1028 | ((HOST_WIDE_INT) (-1)
1029 << GET_MODE_BITSIZE (GET_MODE (x))));
1030 #endif
1032 /* Don't call nonzero_bits if it cannot change anything. */
1033 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1034 reg_stat[REGNO (x)].nonzero_bits
1035 |= nonzero_bits (src, nonzero_bits_mode);
1036 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1037 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1038 || reg_stat[REGNO (x)].sign_bit_copies > num)
1039 reg_stat[REGNO (x)].sign_bit_copies = num;
1041 else
1043 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1044 reg_stat[REGNO (x)].sign_bit_copies = 1;
1049 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1050 insns that were previously combined into I3 or that will be combined
1051 into the merger of INSN and I3.
1053 Return 0 if the combination is not allowed for any reason.
1055 If the combination is allowed, *PDEST will be set to the single
1056 destination of INSN and *PSRC to the single source, and this function
1057 will return 1. */
1059 static int
1060 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1061 rtx *pdest, rtx *psrc)
1063 int i;
1064 rtx set = 0, src, dest;
1065 rtx p;
1066 #ifdef AUTO_INC_DEC
1067 rtx link;
1068 #endif
1069 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1070 && next_active_insn (succ) == i3)
1071 : next_active_insn (insn) == i3);
1073 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1074 or a PARALLEL consisting of such a SET and CLOBBERs.
1076 If INSN has CLOBBER parallel parts, ignore them for our processing.
1077 By definition, these happen during the execution of the insn. When it
1078 is merged with another insn, all bets are off. If they are, in fact,
1079 needed and aren't also supplied in I3, they may be added by
1080 recog_for_combine. Otherwise, it won't match.
1082 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1083 note.
1085 Get the source and destination of INSN. If more than one, can't
1086 combine. */
1088 if (GET_CODE (PATTERN (insn)) == SET)
1089 set = PATTERN (insn);
1090 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1091 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1093 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1095 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1096 rtx note;
1098 switch (GET_CODE (elt))
1100 /* This is important to combine floating point insns
1101 for the SH4 port. */
1102 case USE:
1103 /* Combining an isolated USE doesn't make sense.
1104 We depend here on combinable_i3pat to reject them. */
1105 /* The code below this loop only verifies that the inputs of
1106 the SET in INSN do not change. We call reg_set_between_p
1107 to verify that the REG in the USE does not change between
1108 I3 and INSN.
1109 If the USE in INSN was for a pseudo register, the matching
1110 insn pattern will likely match any register; combining this
1111 with any other USE would only be safe if we knew that the
1112 used registers have identical values, or if there was
1113 something to tell them apart, e.g. different modes. For
1114 now, we forgo such complicated tests and simply disallow
1115 combining of USES of pseudo registers with any other USE. */
1116 if (REG_P (XEXP (elt, 0))
1117 && GET_CODE (PATTERN (i3)) == PARALLEL)
1119 rtx i3pat = PATTERN (i3);
1120 int i = XVECLEN (i3pat, 0) - 1;
1121 unsigned int regno = REGNO (XEXP (elt, 0));
1125 rtx i3elt = XVECEXP (i3pat, 0, i);
1127 if (GET_CODE (i3elt) == USE
1128 && REG_P (XEXP (i3elt, 0))
1129 && (REGNO (XEXP (i3elt, 0)) == regno
1130 ? reg_set_between_p (XEXP (elt, 0),
1131 PREV_INSN (insn), i3)
1132 : regno >= FIRST_PSEUDO_REGISTER))
1133 return 0;
1135 while (--i >= 0);
1137 break;
1139 /* We can ignore CLOBBERs. */
1140 case CLOBBER:
1141 break;
1143 case SET:
1144 /* Ignore SETs whose result isn't used but not those that
1145 have side-effects. */
1146 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1147 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1148 || INTVAL (XEXP (note, 0)) <= 0)
1149 && ! side_effects_p (elt))
1150 break;
1152 /* If we have already found a SET, this is a second one and
1153 so we cannot combine with this insn. */
1154 if (set)
1155 return 0;
1157 set = elt;
1158 break;
1160 default:
1161 /* Anything else means we can't combine. */
1162 return 0;
1166 if (set == 0
1167 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1168 so don't do anything with it. */
1169 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1170 return 0;
1172 else
1173 return 0;
1175 if (set == 0)
1176 return 0;
1178 set = expand_field_assignment (set);
1179 src = SET_SRC (set), dest = SET_DEST (set);
1181 /* Don't eliminate a store in the stack pointer. */
1182 if (dest == stack_pointer_rtx
1183 /* Don't combine with an insn that sets a register to itself if it has
1184 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1185 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1186 /* Can't merge an ASM_OPERANDS. */
1187 || GET_CODE (src) == ASM_OPERANDS
1188 /* Can't merge a function call. */
1189 || GET_CODE (src) == CALL
1190 /* Don't eliminate a function call argument. */
1191 || (CALL_P (i3)
1192 && (find_reg_fusage (i3, USE, dest)
1193 || (REG_P (dest)
1194 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1195 && global_regs[REGNO (dest)])))
1196 /* Don't substitute into an incremented register. */
1197 || FIND_REG_INC_NOTE (i3, dest)
1198 || (succ && FIND_REG_INC_NOTE (succ, dest))
1199 /* Don't substitute into a non-local goto, this confuses CFG. */
1200 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1201 #if 0
1202 /* Don't combine the end of a libcall into anything. */
1203 /* ??? This gives worse code, and appears to be unnecessary, since no
1204 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1205 use REG_RETVAL notes for noconflict blocks, but other code here
1206 makes sure that those insns don't disappear. */
1207 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1208 #endif
1209 /* Make sure that DEST is not used after SUCC but before I3. */
1210 || (succ && ! all_adjacent
1211 && reg_used_between_p (dest, succ, i3))
1212 /* Make sure that the value that is to be substituted for the register
1213 does not use any registers whose values alter in between. However,
1214 If the insns are adjacent, a use can't cross a set even though we
1215 think it might (this can happen for a sequence of insns each setting
1216 the same destination; last_set of that register might point to
1217 a NOTE). If INSN has a REG_EQUIV note, the register is always
1218 equivalent to the memory so the substitution is valid even if there
1219 are intervening stores. Also, don't move a volatile asm or
1220 UNSPEC_VOLATILE across any other insns. */
1221 || (! all_adjacent
1222 && (((!MEM_P (src)
1223 || ! find_reg_note (insn, REG_EQUIV, src))
1224 && use_crosses_set_p (src, INSN_CUID (insn)))
1225 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1226 || GET_CODE (src) == UNSPEC_VOLATILE))
1227 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1228 better register allocation by not doing the combine. */
1229 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1230 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1231 /* Don't combine across a CALL_INSN, because that would possibly
1232 change whether the life span of some REGs crosses calls or not,
1233 and it is a pain to update that information.
1234 Exception: if source is a constant, moving it later can't hurt.
1235 Accept that special case, because it helps -fforce-addr a lot. */
1236 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1237 return 0;
1239 /* DEST must either be a REG or CC0. */
1240 if (REG_P (dest))
1242 /* If register alignment is being enforced for multi-word items in all
1243 cases except for parameters, it is possible to have a register copy
1244 insn referencing a hard register that is not allowed to contain the
1245 mode being copied and which would not be valid as an operand of most
1246 insns. Eliminate this problem by not combining with such an insn.
1248 Also, on some machines we don't want to extend the life of a hard
1249 register. */
1251 if (REG_P (src)
1252 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1253 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1254 /* Don't extend the life of a hard register unless it is
1255 user variable (if we have few registers) or it can't
1256 fit into the desired register (meaning something special
1257 is going on).
1258 Also avoid substituting a return register into I3, because
1259 reload can't handle a conflict with constraints of other
1260 inputs. */
1261 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1262 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1263 return 0;
1265 else if (GET_CODE (dest) != CC0)
1266 return 0;
1269 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1270 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1271 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1273 /* Don't substitute for a register intended as a clobberable
1274 operand. */
1275 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1276 if (rtx_equal_p (reg, dest))
1277 return 0;
1279 /* If the clobber represents an earlyclobber operand, we must not
1280 substitute an expression containing the clobbered register.
1281 As we do not analyze the constraint strings here, we have to
1282 make the conservative assumption. However, if the register is
1283 a fixed hard reg, the clobber cannot represent any operand;
1284 we leave it up to the machine description to either accept or
1285 reject use-and-clobber patterns. */
1286 if (!REG_P (reg)
1287 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1288 || !fixed_regs[REGNO (reg)])
1289 if (reg_overlap_mentioned_p (reg, src))
1290 return 0;
1293 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1294 or not), reject, unless nothing volatile comes between it and I3 */
1296 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1298 /* Make sure succ doesn't contain a volatile reference. */
1299 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1300 return 0;
1302 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1303 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1304 return 0;
1307 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1308 to be an explicit register variable, and was chosen for a reason. */
1310 if (GET_CODE (src) == ASM_OPERANDS
1311 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1312 return 0;
1314 /* If there are any volatile insns between INSN and I3, reject, because
1315 they might affect machine state. */
1317 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1318 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1319 return 0;
1321 /* If INSN contains an autoincrement or autodecrement, make sure that
1322 register is not used between there and I3, and not already used in
1323 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1324 Also insist that I3 not be a jump; if it were one
1325 and the incremented register were spilled, we would lose. */
1327 #ifdef AUTO_INC_DEC
1328 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1329 if (REG_NOTE_KIND (link) == REG_INC
1330 && (JUMP_P (i3)
1331 || reg_used_between_p (XEXP (link, 0), insn, i3)
1332 || (pred != NULL_RTX
1333 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1334 || (succ != NULL_RTX
1335 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1336 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1337 return 0;
1338 #endif
1340 #ifdef HAVE_cc0
1341 /* Don't combine an insn that follows a CC0-setting insn.
1342 An insn that uses CC0 must not be separated from the one that sets it.
1343 We do, however, allow I2 to follow a CC0-setting insn if that insn
1344 is passed as I1; in that case it will be deleted also.
1345 We also allow combining in this case if all the insns are adjacent
1346 because that would leave the two CC0 insns adjacent as well.
1347 It would be more logical to test whether CC0 occurs inside I1 or I2,
1348 but that would be much slower, and this ought to be equivalent. */
1350 p = prev_nonnote_insn (insn);
1351 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1352 && ! all_adjacent)
1353 return 0;
1354 #endif
1356 /* If we get here, we have passed all the tests and the combination is
1357 to be allowed. */
1359 *pdest = dest;
1360 *psrc = src;
1362 return 1;
1365 /* LOC is the location within I3 that contains its pattern or the component
1366 of a PARALLEL of the pattern. We validate that it is valid for combining.
1368 One problem is if I3 modifies its output, as opposed to replacing it
1369 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1370 so would produce an insn that is not equivalent to the original insns.
1372 Consider:
1374 (set (reg:DI 101) (reg:DI 100))
1375 (set (subreg:SI (reg:DI 101) 0) <foo>)
1377 This is NOT equivalent to:
1379 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1380 (set (reg:DI 101) (reg:DI 100))])
1382 Not only does this modify 100 (in which case it might still be valid
1383 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1385 We can also run into a problem if I2 sets a register that I1
1386 uses and I1 gets directly substituted into I3 (not via I2). In that
1387 case, we would be getting the wrong value of I2DEST into I3, so we
1388 must reject the combination. This case occurs when I2 and I1 both
1389 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1390 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1391 of a SET must prevent combination from occurring.
1393 Before doing the above check, we first try to expand a field assignment
1394 into a set of logical operations.
1396 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1397 we place a register that is both set and used within I3. If more than one
1398 such register is detected, we fail.
1400 Return 1 if the combination is valid, zero otherwise. */
1402 static int
1403 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1404 int i1_not_in_src, rtx *pi3dest_killed)
1406 rtx x = *loc;
1408 if (GET_CODE (x) == SET)
1410 rtx set = x ;
1411 rtx dest = SET_DEST (set);
1412 rtx src = SET_SRC (set);
1413 rtx inner_dest = dest;
1415 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1416 || GET_CODE (inner_dest) == SUBREG
1417 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1418 inner_dest = XEXP (inner_dest, 0);
1420 /* Check for the case where I3 modifies its output, as discussed
1421 above. We don't want to prevent pseudos from being combined
1422 into the address of a MEM, so only prevent the combination if
1423 i1 or i2 set the same MEM. */
1424 if ((inner_dest != dest &&
1425 (!MEM_P (inner_dest)
1426 || rtx_equal_p (i2dest, inner_dest)
1427 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1428 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1429 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1431 /* This is the same test done in can_combine_p except we can't test
1432 all_adjacent; we don't have to, since this instruction will stay
1433 in place, thus we are not considering increasing the lifetime of
1434 INNER_DEST.
1436 Also, if this insn sets a function argument, combining it with
1437 something that might need a spill could clobber a previous
1438 function argument; the all_adjacent test in can_combine_p also
1439 checks this; here, we do a more specific test for this case. */
1441 || (REG_P (inner_dest)
1442 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1443 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1444 GET_MODE (inner_dest))))
1445 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1446 return 0;
1448 /* If DEST is used in I3, it is being killed in this insn,
1449 so record that for later.
1450 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1451 STACK_POINTER_REGNUM, since these are always considered to be
1452 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1453 if (pi3dest_killed && REG_P (dest)
1454 && reg_referenced_p (dest, PATTERN (i3))
1455 && REGNO (dest) != FRAME_POINTER_REGNUM
1456 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1457 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1458 #endif
1459 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1460 && (REGNO (dest) != ARG_POINTER_REGNUM
1461 || ! fixed_regs [REGNO (dest)])
1462 #endif
1463 && REGNO (dest) != STACK_POINTER_REGNUM)
1465 if (*pi3dest_killed)
1466 return 0;
1468 *pi3dest_killed = dest;
1472 else if (GET_CODE (x) == PARALLEL)
1474 int i;
1476 for (i = 0; i < XVECLEN (x, 0); i++)
1477 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1478 i1_not_in_src, pi3dest_killed))
1479 return 0;
1482 return 1;
1485 /* Return 1 if X is an arithmetic expression that contains a multiplication
1486 and division. We don't count multiplications by powers of two here. */
1488 static int
1489 contains_muldiv (rtx x)
1491 switch (GET_CODE (x))
1493 case MOD: case DIV: case UMOD: case UDIV:
1494 return 1;
1496 case MULT:
1497 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1498 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1499 default:
1500 if (BINARY_P (x))
1501 return contains_muldiv (XEXP (x, 0))
1502 || contains_muldiv (XEXP (x, 1));
1504 if (UNARY_P (x))
1505 return contains_muldiv (XEXP (x, 0));
1507 return 0;
1511 /* Determine whether INSN can be used in a combination. Return nonzero if
1512 not. This is used in try_combine to detect early some cases where we
1513 can't perform combinations. */
1515 static int
1516 cant_combine_insn_p (rtx insn)
1518 rtx set;
1519 rtx src, dest;
1521 /* If this isn't really an insn, we can't do anything.
1522 This can occur when flow deletes an insn that it has merged into an
1523 auto-increment address. */
1524 if (! INSN_P (insn))
1525 return 1;
1527 /* Never combine loads and stores involving hard regs that are likely
1528 to be spilled. The register allocator can usually handle such
1529 reg-reg moves by tying. If we allow the combiner to make
1530 substitutions of likely-spilled regs, we may abort in reload.
1531 As an exception, we allow combinations involving fixed regs; these are
1532 not available to the register allocator so there's no risk involved. */
1534 set = single_set (insn);
1535 if (! set)
1536 return 0;
1537 src = SET_SRC (set);
1538 dest = SET_DEST (set);
1539 if (GET_CODE (src) == SUBREG)
1540 src = SUBREG_REG (src);
1541 if (GET_CODE (dest) == SUBREG)
1542 dest = SUBREG_REG (dest);
1543 if (REG_P (src) && REG_P (dest)
1544 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1545 && ! fixed_regs[REGNO (src)]
1546 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1547 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1548 && ! fixed_regs[REGNO (dest)]
1549 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1550 return 1;
1552 return 0;
1555 /* Adjust INSN after we made a change to its destination.
1557 Changing the destination can invalidate notes that say something about
1558 the results of the insn and a LOG_LINK pointing to the insn. */
1560 static void
1561 adjust_for_new_dest (rtx insn)
1563 rtx *loc;
1565 /* For notes, be conservative and simply remove them. */
1566 loc = &REG_NOTES (insn);
1567 while (*loc)
1569 enum reg_note kind = REG_NOTE_KIND (*loc);
1570 if (kind == REG_EQUAL || kind == REG_EQUIV)
1571 *loc = XEXP (*loc, 1);
1572 else
1573 loc = &XEXP (*loc, 1);
1576 /* The new insn will have a destination that was previously the destination
1577 of an insn just above it. Call distribute_links to make a LOG_LINK from
1578 the next use of that destination. */
1579 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1582 /* Try to combine the insns I1 and I2 into I3.
1583 Here I1 and I2 appear earlier than I3.
1584 I1 can be zero; then we combine just I2 into I3.
1586 If we are combining three insns and the resulting insn is not recognized,
1587 try splitting it into two insns. If that happens, I2 and I3 are retained
1588 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1589 are pseudo-deleted.
1591 Return 0 if the combination does not work. Then nothing is changed.
1592 If we did the combination, return the insn at which combine should
1593 resume scanning.
1595 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1596 new direct jump instruction. */
1598 static rtx
1599 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1601 /* New patterns for I3 and I2, respectively. */
1602 rtx newpat, newi2pat = 0;
1603 rtvec newpat_vec_with_clobbers = 0;
1604 int substed_i2 = 0, substed_i1 = 0;
1605 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1606 int added_sets_1, added_sets_2;
1607 /* Total number of SETs to put into I3. */
1608 int total_sets;
1609 /* Nonzero if I2's body now appears in I3. */
1610 int i2_is_used;
1611 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1612 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1613 /* Contains I3 if the destination of I3 is used in its source, which means
1614 that the old life of I3 is being killed. If that usage is placed into
1615 I2 and not in I3, a REG_DEAD note must be made. */
1616 rtx i3dest_killed = 0;
1617 /* SET_DEST and SET_SRC of I2 and I1. */
1618 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1619 /* PATTERN (I2), or a copy of it in certain cases. */
1620 rtx i2pat;
1621 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1622 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1623 int i1_feeds_i3 = 0;
1624 /* Notes that must be added to REG_NOTES in I3 and I2. */
1625 rtx new_i3_notes, new_i2_notes;
1626 /* Notes that we substituted I3 into I2 instead of the normal case. */
1627 int i3_subst_into_i2 = 0;
1628 /* Notes that I1, I2 or I3 is a MULT operation. */
1629 int have_mult = 0;
1630 int swap_i2i3 = 0;
1632 int maxreg;
1633 rtx temp;
1634 rtx link;
1635 int i;
1637 /* Exit early if one of the insns involved can't be used for
1638 combinations. */
1639 if (cant_combine_insn_p (i3)
1640 || cant_combine_insn_p (i2)
1641 || (i1 && cant_combine_insn_p (i1))
1642 /* We also can't do anything if I3 has a
1643 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1644 libcall. */
1645 #if 0
1646 /* ??? This gives worse code, and appears to be unnecessary, since no
1647 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1648 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1649 #endif
1651 return 0;
1653 combine_attempts++;
1654 undobuf.other_insn = 0;
1656 /* Reset the hard register usage information. */
1657 CLEAR_HARD_REG_SET (newpat_used_regs);
1659 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1660 code below, set I1 to be the earlier of the two insns. */
1661 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1662 temp = i1, i1 = i2, i2 = temp;
1664 added_links_insn = 0;
1666 /* First check for one important special-case that the code below will
1667 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1668 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1669 we may be able to replace that destination with the destination of I3.
1670 This occurs in the common code where we compute both a quotient and
1671 remainder into a structure, in which case we want to do the computation
1672 directly into the structure to avoid register-register copies.
1674 Note that this case handles both multiple sets in I2 and also
1675 cases where I2 has a number of CLOBBER or PARALLELs.
1677 We make very conservative checks below and only try to handle the
1678 most common cases of this. For example, we only handle the case
1679 where I2 and I3 are adjacent to avoid making difficult register
1680 usage tests. */
1682 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1683 && REG_P (SET_SRC (PATTERN (i3)))
1684 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1685 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1686 && GET_CODE (PATTERN (i2)) == PARALLEL
1687 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1688 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1689 below would need to check what is inside (and reg_overlap_mentioned_p
1690 doesn't support those codes anyway). Don't allow those destinations;
1691 the resulting insn isn't likely to be recognized anyway. */
1692 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1693 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1694 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1695 SET_DEST (PATTERN (i3)))
1696 && next_real_insn (i2) == i3)
1698 rtx p2 = PATTERN (i2);
1700 /* Make sure that the destination of I3,
1701 which we are going to substitute into one output of I2,
1702 is not used within another output of I2. We must avoid making this:
1703 (parallel [(set (mem (reg 69)) ...)
1704 (set (reg 69) ...)])
1705 which is not well-defined as to order of actions.
1706 (Besides, reload can't handle output reloads for this.)
1708 The problem can also happen if the dest of I3 is a memory ref,
1709 if another dest in I2 is an indirect memory ref. */
1710 for (i = 0; i < XVECLEN (p2, 0); i++)
1711 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1712 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1713 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1714 SET_DEST (XVECEXP (p2, 0, i))))
1715 break;
1717 if (i == XVECLEN (p2, 0))
1718 for (i = 0; i < XVECLEN (p2, 0); i++)
1719 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1720 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1721 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1723 combine_merges++;
1725 subst_insn = i3;
1726 subst_low_cuid = INSN_CUID (i2);
1728 added_sets_2 = added_sets_1 = 0;
1729 i2dest = SET_SRC (PATTERN (i3));
1731 /* Replace the dest in I2 with our dest and make the resulting
1732 insn the new pattern for I3. Then skip to where we
1733 validate the pattern. Everything was set up above. */
1734 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1735 SET_DEST (PATTERN (i3)));
1737 newpat = p2;
1738 i3_subst_into_i2 = 1;
1739 goto validate_replacement;
1743 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1744 one of those words to another constant, merge them by making a new
1745 constant. */
1746 if (i1 == 0
1747 && (temp = single_set (i2)) != 0
1748 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1749 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1750 && REG_P (SET_DEST (temp))
1751 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1752 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1753 && GET_CODE (PATTERN (i3)) == SET
1754 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1755 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1756 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1757 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1758 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1760 HOST_WIDE_INT lo, hi;
1762 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1763 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1764 else
1766 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1767 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1770 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1772 /* We don't handle the case of the target word being wider
1773 than a host wide int. */
1774 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1776 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1777 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1778 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1780 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1781 hi = INTVAL (SET_SRC (PATTERN (i3)));
1782 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1784 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1785 >> (HOST_BITS_PER_WIDE_INT - 1));
1787 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1788 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1789 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1790 (INTVAL (SET_SRC (PATTERN (i3)))));
1791 if (hi == sign)
1792 hi = lo < 0 ? -1 : 0;
1794 else
1795 /* We don't handle the case of the higher word not fitting
1796 entirely in either hi or lo. */
1797 gcc_unreachable ();
1799 combine_merges++;
1800 subst_insn = i3;
1801 subst_low_cuid = INSN_CUID (i2);
1802 added_sets_2 = added_sets_1 = 0;
1803 i2dest = SET_DEST (temp);
1805 SUBST (SET_SRC (temp),
1806 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1808 newpat = PATTERN (i2);
1809 goto validate_replacement;
1812 #ifndef HAVE_cc0
1813 /* If we have no I1 and I2 looks like:
1814 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1815 (set Y OP)])
1816 make up a dummy I1 that is
1817 (set Y OP)
1818 and change I2 to be
1819 (set (reg:CC X) (compare:CC Y (const_int 0)))
1821 (We can ignore any trailing CLOBBERs.)
1823 This undoes a previous combination and allows us to match a branch-and-
1824 decrement insn. */
1826 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1827 && XVECLEN (PATTERN (i2), 0) >= 2
1828 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1829 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1830 == MODE_CC)
1831 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1832 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1833 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1834 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1835 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1836 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1838 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1839 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1840 break;
1842 if (i == 1)
1844 /* We make I1 with the same INSN_UID as I2. This gives it
1845 the same INSN_CUID for value tracking. Our fake I1 will
1846 never appear in the insn stream so giving it the same INSN_UID
1847 as I2 will not cause a problem. */
1849 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1850 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1851 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1852 NULL_RTX);
1854 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1855 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1856 SET_DEST (PATTERN (i1)));
1859 #endif
1861 /* Verify that I2 and I1 are valid for combining. */
1862 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1863 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1865 undo_all ();
1866 return 0;
1869 /* Record whether I2DEST is used in I2SRC and similarly for the other
1870 cases. Knowing this will help in register status updating below. */
1871 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1872 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1873 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1875 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1876 in I2SRC. */
1877 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1879 /* Ensure that I3's pattern can be the destination of combines. */
1880 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1881 i1 && i2dest_in_i1src && i1_feeds_i3,
1882 &i3dest_killed))
1884 undo_all ();
1885 return 0;
1888 /* See if any of the insns is a MULT operation. Unless one is, we will
1889 reject a combination that is, since it must be slower. Be conservative
1890 here. */
1891 if (GET_CODE (i2src) == MULT
1892 || (i1 != 0 && GET_CODE (i1src) == MULT)
1893 || (GET_CODE (PATTERN (i3)) == SET
1894 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1895 have_mult = 1;
1897 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1898 We used to do this EXCEPT in one case: I3 has a post-inc in an
1899 output operand. However, that exception can give rise to insns like
1900 mov r3,(r3)+
1901 which is a famous insn on the PDP-11 where the value of r3 used as the
1902 source was model-dependent. Avoid this sort of thing. */
1904 #if 0
1905 if (!(GET_CODE (PATTERN (i3)) == SET
1906 && REG_P (SET_SRC (PATTERN (i3)))
1907 && MEM_P (SET_DEST (PATTERN (i3)))
1908 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1909 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1910 /* It's not the exception. */
1911 #endif
1912 #ifdef AUTO_INC_DEC
1913 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1914 if (REG_NOTE_KIND (link) == REG_INC
1915 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1916 || (i1 != 0
1917 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1919 undo_all ();
1920 return 0;
1922 #endif
1924 /* See if the SETs in I1 or I2 need to be kept around in the merged
1925 instruction: whenever the value set there is still needed past I3.
1926 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1928 For the SET in I1, we have two cases: If I1 and I2 independently
1929 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1930 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1931 in I1 needs to be kept around unless I1DEST dies or is set in either
1932 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1933 I1DEST. If so, we know I1 feeds into I2. */
1935 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1937 added_sets_1
1938 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1939 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1941 /* If the set in I2 needs to be kept around, we must make a copy of
1942 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1943 PATTERN (I2), we are only substituting for the original I1DEST, not into
1944 an already-substituted copy. This also prevents making self-referential
1945 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1946 I2DEST. */
1948 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1949 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1950 : PATTERN (i2));
1952 if (added_sets_2)
1953 i2pat = copy_rtx (i2pat);
1955 combine_merges++;
1957 /* Substitute in the latest insn for the regs set by the earlier ones. */
1959 maxreg = max_reg_num ();
1961 subst_insn = i3;
1963 /* It is possible that the source of I2 or I1 may be performing an
1964 unneeded operation, such as a ZERO_EXTEND of something that is known
1965 to have the high part zero. Handle that case by letting subst look at
1966 the innermost one of them.
1968 Another way to do this would be to have a function that tries to
1969 simplify a single insn instead of merging two or more insns. We don't
1970 do this because of the potential of infinite loops and because
1971 of the potential extra memory required. However, doing it the way
1972 we are is a bit of a kludge and doesn't catch all cases.
1974 But only do this if -fexpensive-optimizations since it slows things down
1975 and doesn't usually win. */
1977 if (flag_expensive_optimizations)
1979 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1980 if (i1)
1982 subst_low_cuid = INSN_CUID (i1);
1983 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1985 else
1987 subst_low_cuid = INSN_CUID (i2);
1988 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1992 #ifndef HAVE_cc0
1993 /* Many machines that don't use CC0 have insns that can both perform an
1994 arithmetic operation and set the condition code. These operations will
1995 be represented as a PARALLEL with the first element of the vector
1996 being a COMPARE of an arithmetic operation with the constant zero.
1997 The second element of the vector will set some pseudo to the result
1998 of the same arithmetic operation. If we simplify the COMPARE, we won't
1999 match such a pattern and so will generate an extra insn. Here we test
2000 for this case, where both the comparison and the operation result are
2001 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2002 I2SRC. Later we will make the PARALLEL that contains I2. */
2004 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2005 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2006 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2007 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2009 #ifdef SELECT_CC_MODE
2010 rtx *cc_use;
2011 enum machine_mode compare_mode;
2012 #endif
2014 newpat = PATTERN (i3);
2015 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2017 i2_is_used = 1;
2019 #ifdef SELECT_CC_MODE
2020 /* See if a COMPARE with the operand we substituted in should be done
2021 with the mode that is currently being used. If not, do the same
2022 processing we do in `subst' for a SET; namely, if the destination
2023 is used only once, try to replace it with a register of the proper
2024 mode and also replace the COMPARE. */
2025 if (undobuf.other_insn == 0
2026 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2027 &undobuf.other_insn))
2028 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2029 i2src, const0_rtx))
2030 != GET_MODE (SET_DEST (newpat))))
2032 unsigned int regno = REGNO (SET_DEST (newpat));
2033 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2035 if (regno < FIRST_PSEUDO_REGISTER
2036 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2037 && ! REG_USERVAR_P (SET_DEST (newpat))))
2039 if (regno >= FIRST_PSEUDO_REGISTER)
2040 SUBST (regno_reg_rtx[regno], new_dest);
2042 SUBST (SET_DEST (newpat), new_dest);
2043 SUBST (XEXP (*cc_use, 0), new_dest);
2044 SUBST (SET_SRC (newpat),
2045 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2047 else
2048 undobuf.other_insn = 0;
2050 #endif
2052 else
2053 #endif
2055 n_occurrences = 0; /* `subst' counts here */
2057 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2058 need to make a unique copy of I2SRC each time we substitute it
2059 to avoid self-referential rtl. */
2061 subst_low_cuid = INSN_CUID (i2);
2062 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2063 ! i1_feeds_i3 && i1dest_in_i1src);
2064 substed_i2 = 1;
2066 /* Record whether i2's body now appears within i3's body. */
2067 i2_is_used = n_occurrences;
2070 /* If we already got a failure, don't try to do more. Otherwise,
2071 try to substitute in I1 if we have it. */
2073 if (i1 && GET_CODE (newpat) != CLOBBER)
2075 /* Before we can do this substitution, we must redo the test done
2076 above (see detailed comments there) that ensures that I1DEST
2077 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2079 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2080 0, (rtx*) 0))
2082 undo_all ();
2083 return 0;
2086 n_occurrences = 0;
2087 subst_low_cuid = INSN_CUID (i1);
2088 newpat = subst (newpat, i1dest, i1src, 0, 0);
2089 substed_i1 = 1;
2092 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2093 to count all the ways that I2SRC and I1SRC can be used. */
2094 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2095 && i2_is_used + added_sets_2 > 1)
2096 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2097 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2098 > 1))
2099 /* Fail if we tried to make a new register (we used to abort, but there's
2100 really no reason to). */
2101 || max_reg_num () != maxreg
2102 /* Fail if we couldn't do something and have a CLOBBER. */
2103 || GET_CODE (newpat) == CLOBBER
2104 /* Fail if this new pattern is a MULT and we didn't have one before
2105 at the outer level. */
2106 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2107 && ! have_mult))
2109 undo_all ();
2110 return 0;
2113 /* If the actions of the earlier insns must be kept
2114 in addition to substituting them into the latest one,
2115 we must make a new PARALLEL for the latest insn
2116 to hold additional the SETs. */
2118 if (added_sets_1 || added_sets_2)
2120 combine_extras++;
2122 if (GET_CODE (newpat) == PARALLEL)
2124 rtvec old = XVEC (newpat, 0);
2125 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2126 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2127 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2128 sizeof (old->elem[0]) * old->num_elem);
2130 else
2132 rtx old = newpat;
2133 total_sets = 1 + added_sets_1 + added_sets_2;
2134 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2135 XVECEXP (newpat, 0, 0) = old;
2138 if (added_sets_1)
2139 XVECEXP (newpat, 0, --total_sets)
2140 = (GET_CODE (PATTERN (i1)) == PARALLEL
2141 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2143 if (added_sets_2)
2145 /* If there is no I1, use I2's body as is. We used to also not do
2146 the subst call below if I2 was substituted into I3,
2147 but that could lose a simplification. */
2148 if (i1 == 0)
2149 XVECEXP (newpat, 0, --total_sets) = i2pat;
2150 else
2151 /* See comment where i2pat is assigned. */
2152 XVECEXP (newpat, 0, --total_sets)
2153 = subst (i2pat, i1dest, i1src, 0, 0);
2157 /* We come here when we are replacing a destination in I2 with the
2158 destination of I3. */
2159 validate_replacement:
2161 /* Note which hard regs this insn has as inputs. */
2162 mark_used_regs_combine (newpat);
2164 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2165 consider splitting this pattern, we might need these clobbers. */
2166 if (i1 && GET_CODE (newpat) == PARALLEL
2167 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2169 int len = XVECLEN (newpat, 0);
2171 newpat_vec_with_clobbers = rtvec_alloc (len);
2172 for (i = 0; i < len; i++)
2173 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2176 /* Is the result of combination a valid instruction? */
2177 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2179 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2180 the second SET's destination is a register that is unused and isn't
2181 marked as an instruction that might trap in an EH region. In that case,
2182 we just need the first SET. This can occur when simplifying a divmod
2183 insn. We *must* test for this case here because the code below that
2184 splits two independent SETs doesn't handle this case correctly when it
2185 updates the register status.
2187 It's pointless doing this if we originally had two sets, one from
2188 i3, and one from i2. Combining then splitting the parallel results
2189 in the original i2 again plus an invalid insn (which we delete).
2190 The net effect is only to move instructions around, which makes
2191 debug info less accurate.
2193 Also check the case where the first SET's destination is unused.
2194 That would not cause incorrect code, but does cause an unneeded
2195 insn to remain. */
2197 if (insn_code_number < 0
2198 && !(added_sets_2 && i1 == 0)
2199 && GET_CODE (newpat) == PARALLEL
2200 && XVECLEN (newpat, 0) == 2
2201 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2202 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2203 && asm_noperands (newpat) < 0)
2205 rtx set0 = XVECEXP (newpat, 0, 0);
2206 rtx set1 = XVECEXP (newpat, 0, 1);
2207 rtx note;
2209 if (((REG_P (SET_DEST (set1))
2210 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2211 || (GET_CODE (SET_DEST (set1)) == SUBREG
2212 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2213 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2214 || INTVAL (XEXP (note, 0)) <= 0)
2215 && ! side_effects_p (SET_SRC (set1)))
2217 newpat = set0;
2218 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2221 else if (((REG_P (SET_DEST (set0))
2222 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2223 || (GET_CODE (SET_DEST (set0)) == SUBREG
2224 && find_reg_note (i3, REG_UNUSED,
2225 SUBREG_REG (SET_DEST (set0)))))
2226 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2227 || INTVAL (XEXP (note, 0)) <= 0)
2228 && ! side_effects_p (SET_SRC (set0)))
2230 newpat = set1;
2231 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2233 if (insn_code_number >= 0)
2235 /* If we will be able to accept this, we have made a
2236 change to the destination of I3. This requires us to
2237 do a few adjustments. */
2239 PATTERN (i3) = newpat;
2240 adjust_for_new_dest (i3);
2245 /* If we were combining three insns and the result is a simple SET
2246 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2247 insns. There are two ways to do this. It can be split using a
2248 machine-specific method (like when you have an addition of a large
2249 constant) or by combine in the function find_split_point. */
2251 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2252 && asm_noperands (newpat) < 0)
2254 rtx m_split, *split;
2255 rtx ni2dest = i2dest;
2257 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2258 use I2DEST as a scratch register will help. In the latter case,
2259 convert I2DEST to the mode of the source of NEWPAT if we can. */
2261 m_split = split_insns (newpat, i3);
2263 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2264 inputs of NEWPAT. */
2266 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2267 possible to try that as a scratch reg. This would require adding
2268 more code to make it work though. */
2270 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2272 /* If I2DEST is a hard register or the only use of a pseudo,
2273 we can change its mode. */
2274 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2275 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2276 && REG_P (i2dest)
2277 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2278 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2279 && ! REG_USERVAR_P (i2dest))))
2280 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2281 REGNO (i2dest));
2283 m_split = split_insns (gen_rtx_PARALLEL
2284 (VOIDmode,
2285 gen_rtvec (2, newpat,
2286 gen_rtx_CLOBBER (VOIDmode,
2287 ni2dest))),
2288 i3);
2289 /* If the split with the mode-changed register didn't work, try
2290 the original register. */
2291 if (! m_split && ni2dest != i2dest)
2293 ni2dest = i2dest;
2294 m_split = split_insns (gen_rtx_PARALLEL
2295 (VOIDmode,
2296 gen_rtvec (2, newpat,
2297 gen_rtx_CLOBBER (VOIDmode,
2298 i2dest))),
2299 i3);
2303 /* If recog_for_combine has discarded clobbers, try to use them
2304 again for the split. */
2305 if (m_split == 0 && newpat_vec_with_clobbers)
2306 m_split
2307 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2308 newpat_vec_with_clobbers), i3);
2310 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2312 m_split = PATTERN (m_split);
2313 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2314 if (insn_code_number >= 0)
2315 newpat = m_split;
2317 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2318 && (next_real_insn (i2) == i3
2319 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2321 rtx i2set, i3set;
2322 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2323 newi2pat = PATTERN (m_split);
2325 i3set = single_set (NEXT_INSN (m_split));
2326 i2set = single_set (m_split);
2328 /* In case we changed the mode of I2DEST, replace it in the
2329 pseudo-register table here. We can't do it above in case this
2330 code doesn't get executed and we do a split the other way. */
2332 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2333 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2335 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2337 /* If I2 or I3 has multiple SETs, we won't know how to track
2338 register status, so don't use these insns. If I2's destination
2339 is used between I2 and I3, we also can't use these insns. */
2341 if (i2_code_number >= 0 && i2set && i3set
2342 && (next_real_insn (i2) == i3
2343 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2344 insn_code_number = recog_for_combine (&newi3pat, i3,
2345 &new_i3_notes);
2346 if (insn_code_number >= 0)
2347 newpat = newi3pat;
2349 /* It is possible that both insns now set the destination of I3.
2350 If so, we must show an extra use of it. */
2352 if (insn_code_number >= 0)
2354 rtx new_i3_dest = SET_DEST (i3set);
2355 rtx new_i2_dest = SET_DEST (i2set);
2357 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2358 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2359 || GET_CODE (new_i3_dest) == SUBREG)
2360 new_i3_dest = XEXP (new_i3_dest, 0);
2362 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2363 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2364 || GET_CODE (new_i2_dest) == SUBREG)
2365 new_i2_dest = XEXP (new_i2_dest, 0);
2367 if (REG_P (new_i3_dest)
2368 && REG_P (new_i2_dest)
2369 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2370 REG_N_SETS (REGNO (new_i2_dest))++;
2374 /* If we can split it and use I2DEST, go ahead and see if that
2375 helps things be recognized. Verify that none of the registers
2376 are set between I2 and I3. */
2377 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2378 #ifdef HAVE_cc0
2379 && REG_P (i2dest)
2380 #endif
2381 /* We need I2DEST in the proper mode. If it is a hard register
2382 or the only use of a pseudo, we can change its mode.
2383 Make sure we don't change a hard register to have a mode that
2384 isn't valid for it, or change the number of registers. */
2385 && (GET_MODE (*split) == GET_MODE (i2dest)
2386 || GET_MODE (*split) == VOIDmode
2387 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2388 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2389 && (HARD_REGNO_NREGS (REGNO (i2dest), GET_MODE (i2dest))
2390 == HARD_REGNO_NREGS (REGNO (i2dest), GET_MODE (*split))))
2391 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2392 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2393 && ! REG_USERVAR_P (i2dest)))
2394 && (next_real_insn (i2) == i3
2395 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2396 /* We can't overwrite I2DEST if its value is still used by
2397 NEWPAT. */
2398 && ! reg_referenced_p (i2dest, newpat))
2400 rtx newdest = i2dest;
2401 enum rtx_code split_code = GET_CODE (*split);
2402 enum machine_mode split_mode = GET_MODE (*split);
2404 /* Get NEWDEST as a register in the proper mode. We have already
2405 validated that we can do this. */
2406 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2408 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2410 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2411 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2414 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2415 an ASHIFT. This can occur if it was inside a PLUS and hence
2416 appeared to be a memory address. This is a kludge. */
2417 if (split_code == MULT
2418 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2419 && INTVAL (XEXP (*split, 1)) > 0
2420 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2422 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2423 XEXP (*split, 0), GEN_INT (i)));
2424 /* Update split_code because we may not have a multiply
2425 anymore. */
2426 split_code = GET_CODE (*split);
2429 #ifdef INSN_SCHEDULING
2430 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2431 be written as a ZERO_EXTEND. */
2432 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2434 #ifdef LOAD_EXTEND_OP
2435 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2436 what it really is. */
2437 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2438 == SIGN_EXTEND)
2439 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2440 SUBREG_REG (*split)));
2441 else
2442 #endif
2443 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2444 SUBREG_REG (*split)));
2446 #endif
2448 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2449 SUBST (*split, newdest);
2450 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2452 /* recog_for_combine might have added CLOBBERs to newi2pat.
2453 Make sure NEWPAT does not depend on the clobbered regs. */
2454 if (GET_CODE (newi2pat) == PARALLEL)
2455 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2456 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2458 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2459 if (reg_overlap_mentioned_p (reg, newpat))
2461 undo_all ();
2462 return 0;
2466 /* If the split point was a MULT and we didn't have one before,
2467 don't use one now. */
2468 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2469 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2473 /* Check for a case where we loaded from memory in a narrow mode and
2474 then sign extended it, but we need both registers. In that case,
2475 we have a PARALLEL with both loads from the same memory location.
2476 We can split this into a load from memory followed by a register-register
2477 copy. This saves at least one insn, more if register allocation can
2478 eliminate the copy.
2480 We cannot do this if the destination of the first assignment is a
2481 condition code register or cc0. We eliminate this case by making sure
2482 the SET_DEST and SET_SRC have the same mode.
2484 We cannot do this if the destination of the second assignment is
2485 a register that we have already assumed is zero-extended. Similarly
2486 for a SUBREG of such a register. */
2488 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2489 && GET_CODE (newpat) == PARALLEL
2490 && XVECLEN (newpat, 0) == 2
2491 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2492 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2493 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2494 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2495 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2496 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2497 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2498 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2499 INSN_CUID (i2))
2500 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2502 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2503 (REG_P (temp)
2504 && reg_stat[REGNO (temp)].nonzero_bits != 0
2505 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2506 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2507 && (reg_stat[REGNO (temp)].nonzero_bits
2508 != GET_MODE_MASK (word_mode))))
2509 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2510 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2511 (REG_P (temp)
2512 && reg_stat[REGNO (temp)].nonzero_bits != 0
2513 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2514 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2515 && (reg_stat[REGNO (temp)].nonzero_bits
2516 != GET_MODE_MASK (word_mode)))))
2517 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2518 SET_SRC (XVECEXP (newpat, 0, 1)))
2519 && ! find_reg_note (i3, REG_UNUSED,
2520 SET_DEST (XVECEXP (newpat, 0, 0))))
2522 rtx ni2dest;
2524 newi2pat = XVECEXP (newpat, 0, 0);
2525 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2526 newpat = XVECEXP (newpat, 0, 1);
2527 SUBST (SET_SRC (newpat),
2528 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2529 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2531 if (i2_code_number >= 0)
2532 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2534 if (insn_code_number >= 0)
2535 swap_i2i3 = 1;
2538 /* Similarly, check for a case where we have a PARALLEL of two independent
2539 SETs but we started with three insns. In this case, we can do the sets
2540 as two separate insns. This case occurs when some SET allows two
2541 other insns to combine, but the destination of that SET is still live. */
2543 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2544 && GET_CODE (newpat) == PARALLEL
2545 && XVECLEN (newpat, 0) == 2
2546 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2547 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2548 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2549 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2550 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2551 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2552 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2553 INSN_CUID (i2))
2554 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2555 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2556 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2557 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2558 XVECEXP (newpat, 0, 0))
2559 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2560 XVECEXP (newpat, 0, 1))
2561 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2562 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2564 /* Normally, it doesn't matter which of the two is done first,
2565 but it does if one references cc0. In that case, it has to
2566 be first. */
2567 #ifdef HAVE_cc0
2568 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2570 newi2pat = XVECEXP (newpat, 0, 0);
2571 newpat = XVECEXP (newpat, 0, 1);
2573 else
2574 #endif
2576 newi2pat = XVECEXP (newpat, 0, 1);
2577 newpat = XVECEXP (newpat, 0, 0);
2580 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2582 if (i2_code_number >= 0)
2583 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2586 /* If it still isn't recognized, fail and change things back the way they
2587 were. */
2588 if ((insn_code_number < 0
2589 /* Is the result a reasonable ASM_OPERANDS? */
2590 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2592 undo_all ();
2593 return 0;
2596 /* If we had to change another insn, make sure it is valid also. */
2597 if (undobuf.other_insn)
2599 rtx other_pat = PATTERN (undobuf.other_insn);
2600 rtx new_other_notes;
2601 rtx note, next;
2603 CLEAR_HARD_REG_SET (newpat_used_regs);
2605 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2606 &new_other_notes);
2608 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2610 undo_all ();
2611 return 0;
2614 PATTERN (undobuf.other_insn) = other_pat;
2616 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2617 are still valid. Then add any non-duplicate notes added by
2618 recog_for_combine. */
2619 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2621 next = XEXP (note, 1);
2623 if (REG_NOTE_KIND (note) == REG_UNUSED
2624 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2626 if (REG_P (XEXP (note, 0)))
2627 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2629 remove_note (undobuf.other_insn, note);
2633 for (note = new_other_notes; note; note = XEXP (note, 1))
2634 if (REG_P (XEXP (note, 0)))
2635 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2637 distribute_notes (new_other_notes, undobuf.other_insn,
2638 undobuf.other_insn, NULL_RTX);
2640 #ifdef HAVE_cc0
2641 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2642 they are adjacent to each other or not. */
2644 rtx p = prev_nonnote_insn (i3);
2645 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2646 && sets_cc0_p (newi2pat))
2648 undo_all ();
2649 return 0;
2652 #endif
2654 /* Only allow this combination if insn_rtx_costs reports that the
2655 replacement instructions are cheaper than the originals. */
2656 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2658 undo_all ();
2659 return 0;
2662 /* We now know that we can do this combination. Merge the insns and
2663 update the status of registers and LOG_LINKS. */
2665 if (swap_i2i3)
2667 rtx insn;
2668 rtx link;
2669 rtx ni2dest;
2671 /* I3 now uses what used to be its destination and which is now
2672 I2's destination. This requires us to do a few adjustments. */
2673 PATTERN (i3) = newpat;
2674 adjust_for_new_dest (i3);
2676 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2677 so we still will.
2679 However, some later insn might be using I2's dest and have
2680 a LOG_LINK pointing at I3. We must remove this link.
2681 The simplest way to remove the link is to point it at I1,
2682 which we know will be a NOTE. */
2684 /* newi2pat is usually a SET here; however, recog_for_combine might
2685 have added some clobbers. */
2686 if (GET_CODE (newi2pat) == PARALLEL)
2687 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2688 else
2689 ni2dest = SET_DEST (newi2pat);
2691 for (insn = NEXT_INSN (i3);
2692 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2693 || insn != BB_HEAD (this_basic_block->next_bb));
2694 insn = NEXT_INSN (insn))
2696 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2698 for (link = LOG_LINKS (insn); link;
2699 link = XEXP (link, 1))
2700 if (XEXP (link, 0) == i3)
2701 XEXP (link, 0) = i1;
2703 break;
2709 rtx i3notes, i2notes, i1notes = 0;
2710 rtx i3links, i2links, i1links = 0;
2711 rtx midnotes = 0;
2712 unsigned int regno;
2714 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2715 clear them. */
2716 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2717 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2718 if (i1)
2719 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2721 /* Ensure that we do not have something that should not be shared but
2722 occurs multiple times in the new insns. Check this by first
2723 resetting all the `used' flags and then copying anything is shared. */
2725 reset_used_flags (i3notes);
2726 reset_used_flags (i2notes);
2727 reset_used_flags (i1notes);
2728 reset_used_flags (newpat);
2729 reset_used_flags (newi2pat);
2730 if (undobuf.other_insn)
2731 reset_used_flags (PATTERN (undobuf.other_insn));
2733 i3notes = copy_rtx_if_shared (i3notes);
2734 i2notes = copy_rtx_if_shared (i2notes);
2735 i1notes = copy_rtx_if_shared (i1notes);
2736 newpat = copy_rtx_if_shared (newpat);
2737 newi2pat = copy_rtx_if_shared (newi2pat);
2738 if (undobuf.other_insn)
2739 reset_used_flags (PATTERN (undobuf.other_insn));
2741 INSN_CODE (i3) = insn_code_number;
2742 PATTERN (i3) = newpat;
2744 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2746 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2748 reset_used_flags (call_usage);
2749 call_usage = copy_rtx (call_usage);
2751 if (substed_i2)
2752 replace_rtx (call_usage, i2dest, i2src);
2754 if (substed_i1)
2755 replace_rtx (call_usage, i1dest, i1src);
2757 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2760 if (undobuf.other_insn)
2761 INSN_CODE (undobuf.other_insn) = other_code_number;
2763 /* We had one special case above where I2 had more than one set and
2764 we replaced a destination of one of those sets with the destination
2765 of I3. In that case, we have to update LOG_LINKS of insns later
2766 in this basic block. Note that this (expensive) case is rare.
2768 Also, in this case, we must pretend that all REG_NOTEs for I2
2769 actually came from I3, so that REG_UNUSED notes from I2 will be
2770 properly handled. */
2772 if (i3_subst_into_i2)
2774 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2775 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2776 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2777 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2778 && ! find_reg_note (i2, REG_UNUSED,
2779 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2780 for (temp = NEXT_INSN (i2);
2781 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2782 || BB_HEAD (this_basic_block) != temp);
2783 temp = NEXT_INSN (temp))
2784 if (temp != i3 && INSN_P (temp))
2785 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2786 if (XEXP (link, 0) == i2)
2787 XEXP (link, 0) = i3;
2789 if (i3notes)
2791 rtx link = i3notes;
2792 while (XEXP (link, 1))
2793 link = XEXP (link, 1);
2794 XEXP (link, 1) = i2notes;
2796 else
2797 i3notes = i2notes;
2798 i2notes = 0;
2801 LOG_LINKS (i3) = 0;
2802 REG_NOTES (i3) = 0;
2803 LOG_LINKS (i2) = 0;
2804 REG_NOTES (i2) = 0;
2806 if (newi2pat)
2808 INSN_CODE (i2) = i2_code_number;
2809 PATTERN (i2) = newi2pat;
2811 else
2812 SET_INSN_DELETED (i2);
2814 if (i1)
2816 LOG_LINKS (i1) = 0;
2817 REG_NOTES (i1) = 0;
2818 SET_INSN_DELETED (i1);
2821 /* Get death notes for everything that is now used in either I3 or
2822 I2 and used to die in a previous insn. If we built two new
2823 patterns, move from I1 to I2 then I2 to I3 so that we get the
2824 proper movement on registers that I2 modifies. */
2826 if (newi2pat)
2828 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2829 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2831 else
2832 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2833 i3, &midnotes);
2835 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2836 if (i3notes)
2837 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2838 if (i2notes)
2839 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2840 if (i1notes)
2841 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2842 if (midnotes)
2843 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2845 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2846 know these are REG_UNUSED and want them to go to the desired insn,
2847 so we always pass it as i3. We have not counted the notes in
2848 reg_n_deaths yet, so we need to do so now. */
2850 if (newi2pat && new_i2_notes)
2852 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2853 if (REG_P (XEXP (temp, 0)))
2854 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2856 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2859 if (new_i3_notes)
2861 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2862 if (REG_P (XEXP (temp, 0)))
2863 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2865 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2868 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2869 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2870 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2871 in that case, it might delete I2. Similarly for I2 and I1.
2872 Show an additional death due to the REG_DEAD note we make here. If
2873 we discard it in distribute_notes, we will decrement it again. */
2875 if (i3dest_killed)
2877 if (REG_P (i3dest_killed))
2878 REG_N_DEATHS (REGNO (i3dest_killed))++;
2880 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2881 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2882 NULL_RTX),
2883 NULL_RTX, i2, NULL_RTX);
2884 else
2885 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2886 NULL_RTX),
2887 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2890 if (i2dest_in_i2src)
2892 if (REG_P (i2dest))
2893 REG_N_DEATHS (REGNO (i2dest))++;
2895 if (newi2pat && reg_set_p (i2dest, newi2pat))
2896 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2897 NULL_RTX, i2, NULL_RTX);
2898 else
2899 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2900 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2903 if (i1dest_in_i1src)
2905 if (REG_P (i1dest))
2906 REG_N_DEATHS (REGNO (i1dest))++;
2908 if (newi2pat && reg_set_p (i1dest, newi2pat))
2909 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2910 NULL_RTX, i2, NULL_RTX);
2911 else
2912 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2913 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2916 distribute_links (i3links);
2917 distribute_links (i2links);
2918 distribute_links (i1links);
2920 if (REG_P (i2dest))
2922 rtx link;
2923 rtx i2_insn = 0, i2_val = 0, set;
2925 /* The insn that used to set this register doesn't exist, and
2926 this life of the register may not exist either. See if one of
2927 I3's links points to an insn that sets I2DEST. If it does,
2928 that is now the last known value for I2DEST. If we don't update
2929 this and I2 set the register to a value that depended on its old
2930 contents, we will get confused. If this insn is used, thing
2931 will be set correctly in combine_instructions. */
2933 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2934 if ((set = single_set (XEXP (link, 0))) != 0
2935 && rtx_equal_p (i2dest, SET_DEST (set)))
2936 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2938 record_value_for_reg (i2dest, i2_insn, i2_val);
2940 /* If the reg formerly set in I2 died only once and that was in I3,
2941 zero its use count so it won't make `reload' do any work. */
2942 if (! added_sets_2
2943 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2944 && ! i2dest_in_i2src)
2946 regno = REGNO (i2dest);
2947 REG_N_SETS (regno)--;
2951 if (i1 && REG_P (i1dest))
2953 rtx link;
2954 rtx i1_insn = 0, i1_val = 0, set;
2956 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2957 if ((set = single_set (XEXP (link, 0))) != 0
2958 && rtx_equal_p (i1dest, SET_DEST (set)))
2959 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2961 record_value_for_reg (i1dest, i1_insn, i1_val);
2963 regno = REGNO (i1dest);
2964 if (! added_sets_1 && ! i1dest_in_i1src)
2965 REG_N_SETS (regno)--;
2968 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2969 been made to this insn. The order of
2970 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2971 can affect nonzero_bits of newpat */
2972 if (newi2pat)
2973 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2974 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2976 /* Set new_direct_jump_p if a new return or simple jump instruction
2977 has been created.
2979 If I3 is now an unconditional jump, ensure that it has a
2980 BARRIER following it since it may have initially been a
2981 conditional jump. It may also be the last nonnote insn. */
2983 if (returnjump_p (i3) || any_uncondjump_p (i3))
2985 *new_direct_jump_p = 1;
2986 mark_jump_label (PATTERN (i3), i3, 0);
2988 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2989 || !BARRIER_P (temp))
2990 emit_barrier_after (i3);
2993 if (undobuf.other_insn != NULL_RTX
2994 && (returnjump_p (undobuf.other_insn)
2995 || any_uncondjump_p (undobuf.other_insn)))
2997 *new_direct_jump_p = 1;
2999 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3000 || !BARRIER_P (temp))
3001 emit_barrier_after (undobuf.other_insn);
3004 /* An NOOP jump does not need barrier, but it does need cleaning up
3005 of CFG. */
3006 if (GET_CODE (newpat) == SET
3007 && SET_SRC (newpat) == pc_rtx
3008 && SET_DEST (newpat) == pc_rtx)
3009 *new_direct_jump_p = 1;
3012 combine_successes++;
3013 undo_commit ();
3015 if (added_links_insn
3016 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3017 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3018 return added_links_insn;
3019 else
3020 return newi2pat ? i2 : i3;
3023 /* Undo all the modifications recorded in undobuf. */
3025 static void
3026 undo_all (void)
3028 struct undo *undo, *next;
3030 for (undo = undobuf.undos; undo; undo = next)
3032 next = undo->next;
3033 if (undo->is_int)
3034 *undo->where.i = undo->old_contents.i;
3035 else
3036 *undo->where.r = undo->old_contents.r;
3038 undo->next = undobuf.frees;
3039 undobuf.frees = undo;
3042 undobuf.undos = 0;
3045 /* We've committed to accepting the changes we made. Move all
3046 of the undos to the free list. */
3048 static void
3049 undo_commit (void)
3051 struct undo *undo, *next;
3053 for (undo = undobuf.undos; undo; undo = next)
3055 next = undo->next;
3056 undo->next = undobuf.frees;
3057 undobuf.frees = undo;
3059 undobuf.undos = 0;
3063 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3064 where we have an arithmetic expression and return that point. LOC will
3065 be inside INSN.
3067 try_combine will call this function to see if an insn can be split into
3068 two insns. */
3070 static rtx *
3071 find_split_point (rtx *loc, rtx insn)
3073 rtx x = *loc;
3074 enum rtx_code code = GET_CODE (x);
3075 rtx *split;
3076 unsigned HOST_WIDE_INT len = 0;
3077 HOST_WIDE_INT pos = 0;
3078 int unsignedp = 0;
3079 rtx inner = NULL_RTX;
3081 /* First special-case some codes. */
3082 switch (code)
3084 case SUBREG:
3085 #ifdef INSN_SCHEDULING
3086 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3087 point. */
3088 if (MEM_P (SUBREG_REG (x)))
3089 return loc;
3090 #endif
3091 return find_split_point (&SUBREG_REG (x), insn);
3093 case MEM:
3094 #ifdef HAVE_lo_sum
3095 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3096 using LO_SUM and HIGH. */
3097 if (GET_CODE (XEXP (x, 0)) == CONST
3098 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3100 SUBST (XEXP (x, 0),
3101 gen_rtx_LO_SUM (Pmode,
3102 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3103 XEXP (x, 0)));
3104 return &XEXP (XEXP (x, 0), 0);
3106 #endif
3108 /* If we have a PLUS whose second operand is a constant and the
3109 address is not valid, perhaps will can split it up using
3110 the machine-specific way to split large constants. We use
3111 the first pseudo-reg (one of the virtual regs) as a placeholder;
3112 it will not remain in the result. */
3113 if (GET_CODE (XEXP (x, 0)) == PLUS
3114 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3115 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3117 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3118 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3119 subst_insn);
3121 /* This should have produced two insns, each of which sets our
3122 placeholder. If the source of the second is a valid address,
3123 we can make put both sources together and make a split point
3124 in the middle. */
3126 if (seq
3127 && NEXT_INSN (seq) != NULL_RTX
3128 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3129 && NONJUMP_INSN_P (seq)
3130 && GET_CODE (PATTERN (seq)) == SET
3131 && SET_DEST (PATTERN (seq)) == reg
3132 && ! reg_mentioned_p (reg,
3133 SET_SRC (PATTERN (seq)))
3134 && NONJUMP_INSN_P (NEXT_INSN (seq))
3135 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3136 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3137 && memory_address_p (GET_MODE (x),
3138 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3140 rtx src1 = SET_SRC (PATTERN (seq));
3141 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3143 /* Replace the placeholder in SRC2 with SRC1. If we can
3144 find where in SRC2 it was placed, that can become our
3145 split point and we can replace this address with SRC2.
3146 Just try two obvious places. */
3148 src2 = replace_rtx (src2, reg, src1);
3149 split = 0;
3150 if (XEXP (src2, 0) == src1)
3151 split = &XEXP (src2, 0);
3152 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3153 && XEXP (XEXP (src2, 0), 0) == src1)
3154 split = &XEXP (XEXP (src2, 0), 0);
3156 if (split)
3158 SUBST (XEXP (x, 0), src2);
3159 return split;
3163 /* If that didn't work, perhaps the first operand is complex and
3164 needs to be computed separately, so make a split point there.
3165 This will occur on machines that just support REG + CONST
3166 and have a constant moved through some previous computation. */
3168 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3169 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3170 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3171 return &XEXP (XEXP (x, 0), 0);
3173 break;
3175 case SET:
3176 #ifdef HAVE_cc0
3177 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3178 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3179 we need to put the operand into a register. So split at that
3180 point. */
3182 if (SET_DEST (x) == cc0_rtx
3183 && GET_CODE (SET_SRC (x)) != COMPARE
3184 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3185 && !OBJECT_P (SET_SRC (x))
3186 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3187 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3188 return &SET_SRC (x);
3189 #endif
3191 /* See if we can split SET_SRC as it stands. */
3192 split = find_split_point (&SET_SRC (x), insn);
3193 if (split && split != &SET_SRC (x))
3194 return split;
3196 /* See if we can split SET_DEST as it stands. */
3197 split = find_split_point (&SET_DEST (x), insn);
3198 if (split && split != &SET_DEST (x))
3199 return split;
3201 /* See if this is a bitfield assignment with everything constant. If
3202 so, this is an IOR of an AND, so split it into that. */
3203 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3204 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3205 <= HOST_BITS_PER_WIDE_INT)
3206 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3207 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3208 && GET_CODE (SET_SRC (x)) == CONST_INT
3209 && ((INTVAL (XEXP (SET_DEST (x), 1))
3210 + INTVAL (XEXP (SET_DEST (x), 2)))
3211 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3212 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3214 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3215 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3216 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3217 rtx dest = XEXP (SET_DEST (x), 0);
3218 enum machine_mode mode = GET_MODE (dest);
3219 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3221 if (BITS_BIG_ENDIAN)
3222 pos = GET_MODE_BITSIZE (mode) - len - pos;
3224 if (src == mask)
3225 SUBST (SET_SRC (x),
3226 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3227 else
3229 rtx negmask = gen_int_mode (~(mask << pos), mode);
3230 SUBST (SET_SRC (x),
3231 simplify_gen_binary (IOR, mode,
3232 simplify_gen_binary (AND, mode,
3233 dest, negmask),
3234 GEN_INT (src << pos)));
3237 SUBST (SET_DEST (x), dest);
3239 split = find_split_point (&SET_SRC (x), insn);
3240 if (split && split != &SET_SRC (x))
3241 return split;
3244 /* Otherwise, see if this is an operation that we can split into two.
3245 If so, try to split that. */
3246 code = GET_CODE (SET_SRC (x));
3248 switch (code)
3250 case AND:
3251 /* If we are AND'ing with a large constant that is only a single
3252 bit and the result is only being used in a context where we
3253 need to know if it is zero or nonzero, replace it with a bit
3254 extraction. This will avoid the large constant, which might
3255 have taken more than one insn to make. If the constant were
3256 not a valid argument to the AND but took only one insn to make,
3257 this is no worse, but if it took more than one insn, it will
3258 be better. */
3260 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3261 && REG_P (XEXP (SET_SRC (x), 0))
3262 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3263 && REG_P (SET_DEST (x))
3264 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3265 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3266 && XEXP (*split, 0) == SET_DEST (x)
3267 && XEXP (*split, 1) == const0_rtx)
3269 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3270 XEXP (SET_SRC (x), 0),
3271 pos, NULL_RTX, 1, 1, 0, 0);
3272 if (extraction != 0)
3274 SUBST (SET_SRC (x), extraction);
3275 return find_split_point (loc, insn);
3278 break;
3280 case NE:
3281 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3282 is known to be on, this can be converted into a NEG of a shift. */
3283 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3284 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3285 && 1 <= (pos = exact_log2
3286 (nonzero_bits (XEXP (SET_SRC (x), 0),
3287 GET_MODE (XEXP (SET_SRC (x), 0))))))
3289 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3291 SUBST (SET_SRC (x),
3292 gen_rtx_NEG (mode,
3293 gen_rtx_LSHIFTRT (mode,
3294 XEXP (SET_SRC (x), 0),
3295 GEN_INT (pos))));
3297 split = find_split_point (&SET_SRC (x), insn);
3298 if (split && split != &SET_SRC (x))
3299 return split;
3301 break;
3303 case SIGN_EXTEND:
3304 inner = XEXP (SET_SRC (x), 0);
3306 /* We can't optimize if either mode is a partial integer
3307 mode as we don't know how many bits are significant
3308 in those modes. */
3309 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3310 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3311 break;
3313 pos = 0;
3314 len = GET_MODE_BITSIZE (GET_MODE (inner));
3315 unsignedp = 0;
3316 break;
3318 case SIGN_EXTRACT:
3319 case ZERO_EXTRACT:
3320 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3321 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3323 inner = XEXP (SET_SRC (x), 0);
3324 len = INTVAL (XEXP (SET_SRC (x), 1));
3325 pos = INTVAL (XEXP (SET_SRC (x), 2));
3327 if (BITS_BIG_ENDIAN)
3328 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3329 unsignedp = (code == ZERO_EXTRACT);
3331 break;
3333 default:
3334 break;
3337 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3339 enum machine_mode mode = GET_MODE (SET_SRC (x));
3341 /* For unsigned, we have a choice of a shift followed by an
3342 AND or two shifts. Use two shifts for field sizes where the
3343 constant might be too large. We assume here that we can
3344 always at least get 8-bit constants in an AND insn, which is
3345 true for every current RISC. */
3347 if (unsignedp && len <= 8)
3349 SUBST (SET_SRC (x),
3350 gen_rtx_AND (mode,
3351 gen_rtx_LSHIFTRT
3352 (mode, gen_lowpart (mode, inner),
3353 GEN_INT (pos)),
3354 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3356 split = find_split_point (&SET_SRC (x), insn);
3357 if (split && split != &SET_SRC (x))
3358 return split;
3360 else
3362 SUBST (SET_SRC (x),
3363 gen_rtx_fmt_ee
3364 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3365 gen_rtx_ASHIFT (mode,
3366 gen_lowpart (mode, inner),
3367 GEN_INT (GET_MODE_BITSIZE (mode)
3368 - len - pos)),
3369 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3371 split = find_split_point (&SET_SRC (x), insn);
3372 if (split && split != &SET_SRC (x))
3373 return split;
3377 /* See if this is a simple operation with a constant as the second
3378 operand. It might be that this constant is out of range and hence
3379 could be used as a split point. */
3380 if (BINARY_P (SET_SRC (x))
3381 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3382 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3383 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3384 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3385 return &XEXP (SET_SRC (x), 1);
3387 /* Finally, see if this is a simple operation with its first operand
3388 not in a register. The operation might require this operand in a
3389 register, so return it as a split point. We can always do this
3390 because if the first operand were another operation, we would have
3391 already found it as a split point. */
3392 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3393 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3394 return &XEXP (SET_SRC (x), 0);
3396 return 0;
3398 case AND:
3399 case IOR:
3400 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3401 it is better to write this as (not (ior A B)) so we can split it.
3402 Similarly for IOR. */
3403 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3405 SUBST (*loc,
3406 gen_rtx_NOT (GET_MODE (x),
3407 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3408 GET_MODE (x),
3409 XEXP (XEXP (x, 0), 0),
3410 XEXP (XEXP (x, 1), 0))));
3411 return find_split_point (loc, insn);
3414 /* Many RISC machines have a large set of logical insns. If the
3415 second operand is a NOT, put it first so we will try to split the
3416 other operand first. */
3417 if (GET_CODE (XEXP (x, 1)) == NOT)
3419 rtx tem = XEXP (x, 0);
3420 SUBST (XEXP (x, 0), XEXP (x, 1));
3421 SUBST (XEXP (x, 1), tem);
3423 break;
3425 default:
3426 break;
3429 /* Otherwise, select our actions depending on our rtx class. */
3430 switch (GET_RTX_CLASS (code))
3432 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3433 case RTX_TERNARY:
3434 split = find_split_point (&XEXP (x, 2), insn);
3435 if (split)
3436 return split;
3437 /* ... fall through ... */
3438 case RTX_BIN_ARITH:
3439 case RTX_COMM_ARITH:
3440 case RTX_COMPARE:
3441 case RTX_COMM_COMPARE:
3442 split = find_split_point (&XEXP (x, 1), insn);
3443 if (split)
3444 return split;
3445 /* ... fall through ... */
3446 case RTX_UNARY:
3447 /* Some machines have (and (shift ...) ...) insns. If X is not
3448 an AND, but XEXP (X, 0) is, use it as our split point. */
3449 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3450 return &XEXP (x, 0);
3452 split = find_split_point (&XEXP (x, 0), insn);
3453 if (split)
3454 return split;
3455 return loc;
3457 default:
3458 /* Otherwise, we don't have a split point. */
3459 return 0;
3463 /* Throughout X, replace FROM with TO, and return the result.
3464 The result is TO if X is FROM;
3465 otherwise the result is X, but its contents may have been modified.
3466 If they were modified, a record was made in undobuf so that
3467 undo_all will (among other things) return X to its original state.
3469 If the number of changes necessary is too much to record to undo,
3470 the excess changes are not made, so the result is invalid.
3471 The changes already made can still be undone.
3472 undobuf.num_undo is incremented for such changes, so by testing that
3473 the caller can tell whether the result is valid.
3475 `n_occurrences' is incremented each time FROM is replaced.
3477 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3479 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3480 by copying if `n_occurrences' is nonzero. */
3482 static rtx
3483 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3485 enum rtx_code code = GET_CODE (x);
3486 enum machine_mode op0_mode = VOIDmode;
3487 const char *fmt;
3488 int len, i;
3489 rtx new;
3491 /* Two expressions are equal if they are identical copies of a shared
3492 RTX or if they are both registers with the same register number
3493 and mode. */
3495 #define COMBINE_RTX_EQUAL_P(X,Y) \
3496 ((X) == (Y) \
3497 || (REG_P (X) && REG_P (Y) \
3498 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3500 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3502 n_occurrences++;
3503 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3506 /* If X and FROM are the same register but different modes, they will
3507 not have been seen as equal above. However, flow.c will make a
3508 LOG_LINKS entry for that case. If we do nothing, we will try to
3509 rerecognize our original insn and, when it succeeds, we will
3510 delete the feeding insn, which is incorrect.
3512 So force this insn not to match in this (rare) case. */
3513 if (! in_dest && code == REG && REG_P (from)
3514 && REGNO (x) == REGNO (from))
3515 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3517 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3518 of which may contain things that can be combined. */
3519 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3520 return x;
3522 /* It is possible to have a subexpression appear twice in the insn.
3523 Suppose that FROM is a register that appears within TO.
3524 Then, after that subexpression has been scanned once by `subst',
3525 the second time it is scanned, TO may be found. If we were
3526 to scan TO here, we would find FROM within it and create a
3527 self-referent rtl structure which is completely wrong. */
3528 if (COMBINE_RTX_EQUAL_P (x, to))
3529 return to;
3531 /* Parallel asm_operands need special attention because all of the
3532 inputs are shared across the arms. Furthermore, unsharing the
3533 rtl results in recognition failures. Failure to handle this case
3534 specially can result in circular rtl.
3536 Solve this by doing a normal pass across the first entry of the
3537 parallel, and only processing the SET_DESTs of the subsequent
3538 entries. Ug. */
3540 if (code == PARALLEL
3541 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3542 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3544 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3546 /* If this substitution failed, this whole thing fails. */
3547 if (GET_CODE (new) == CLOBBER
3548 && XEXP (new, 0) == const0_rtx)
3549 return new;
3551 SUBST (XVECEXP (x, 0, 0), new);
3553 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3555 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3557 if (!REG_P (dest)
3558 && GET_CODE (dest) != CC0
3559 && GET_CODE (dest) != PC)
3561 new = subst (dest, from, to, 0, unique_copy);
3563 /* If this substitution failed, this whole thing fails. */
3564 if (GET_CODE (new) == CLOBBER
3565 && XEXP (new, 0) == const0_rtx)
3566 return new;
3568 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3572 else
3574 len = GET_RTX_LENGTH (code);
3575 fmt = GET_RTX_FORMAT (code);
3577 /* We don't need to process a SET_DEST that is a register, CC0,
3578 or PC, so set up to skip this common case. All other cases
3579 where we want to suppress replacing something inside a
3580 SET_SRC are handled via the IN_DEST operand. */
3581 if (code == SET
3582 && (REG_P (SET_DEST (x))
3583 || GET_CODE (SET_DEST (x)) == CC0
3584 || GET_CODE (SET_DEST (x)) == PC))
3585 fmt = "ie";
3587 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3588 constant. */
3589 if (fmt[0] == 'e')
3590 op0_mode = GET_MODE (XEXP (x, 0));
3592 for (i = 0; i < len; i++)
3594 if (fmt[i] == 'E')
3596 int j;
3597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3599 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3601 new = (unique_copy && n_occurrences
3602 ? copy_rtx (to) : to);
3603 n_occurrences++;
3605 else
3607 new = subst (XVECEXP (x, i, j), from, to, 0,
3608 unique_copy);
3610 /* If this substitution failed, this whole thing
3611 fails. */
3612 if (GET_CODE (new) == CLOBBER
3613 && XEXP (new, 0) == const0_rtx)
3614 return new;
3617 SUBST (XVECEXP (x, i, j), new);
3620 else if (fmt[i] == 'e')
3622 /* If this is a register being set, ignore it. */
3623 new = XEXP (x, i);
3624 if (in_dest
3625 && i == 0
3626 && (((code == SUBREG || code == ZERO_EXTRACT)
3627 && REG_P (new))
3628 || code == STRICT_LOW_PART))
3631 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3633 /* In general, don't install a subreg involving two
3634 modes not tieable. It can worsen register
3635 allocation, and can even make invalid reload
3636 insns, since the reg inside may need to be copied
3637 from in the outside mode, and that may be invalid
3638 if it is an fp reg copied in integer mode.
3640 We allow two exceptions to this: It is valid if
3641 it is inside another SUBREG and the mode of that
3642 SUBREG and the mode of the inside of TO is
3643 tieable and it is valid if X is a SET that copies
3644 FROM to CC0. */
3646 if (GET_CODE (to) == SUBREG
3647 && ! MODES_TIEABLE_P (GET_MODE (to),
3648 GET_MODE (SUBREG_REG (to)))
3649 && ! (code == SUBREG
3650 && MODES_TIEABLE_P (GET_MODE (x),
3651 GET_MODE (SUBREG_REG (to))))
3652 #ifdef HAVE_cc0
3653 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3654 #endif
3656 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3658 #ifdef CANNOT_CHANGE_MODE_CLASS
3659 if (code == SUBREG
3660 && REG_P (to)
3661 && REGNO (to) < FIRST_PSEUDO_REGISTER
3662 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3663 GET_MODE (to),
3664 GET_MODE (x)))
3665 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3666 #endif
3668 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3669 n_occurrences++;
3671 else
3672 /* If we are in a SET_DEST, suppress most cases unless we
3673 have gone inside a MEM, in which case we want to
3674 simplify the address. We assume here that things that
3675 are actually part of the destination have their inner
3676 parts in the first expression. This is true for SUBREG,
3677 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3678 things aside from REG and MEM that should appear in a
3679 SET_DEST. */
3680 new = subst (XEXP (x, i), from, to,
3681 (((in_dest
3682 && (code == SUBREG || code == STRICT_LOW_PART
3683 || code == ZERO_EXTRACT))
3684 || code == SET)
3685 && i == 0), unique_copy);
3687 /* If we found that we will have to reject this combination,
3688 indicate that by returning the CLOBBER ourselves, rather than
3689 an expression containing it. This will speed things up as
3690 well as prevent accidents where two CLOBBERs are considered
3691 to be equal, thus producing an incorrect simplification. */
3693 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3694 return new;
3696 if (GET_CODE (x) == SUBREG
3697 && (GET_CODE (new) == CONST_INT
3698 || GET_CODE (new) == CONST_DOUBLE))
3700 enum machine_mode mode = GET_MODE (x);
3702 x = simplify_subreg (GET_MODE (x), new,
3703 GET_MODE (SUBREG_REG (x)),
3704 SUBREG_BYTE (x));
3705 if (! x)
3706 x = gen_rtx_CLOBBER (mode, const0_rtx);
3708 else if (GET_CODE (new) == CONST_INT
3709 && GET_CODE (x) == ZERO_EXTEND)
3711 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3712 new, GET_MODE (XEXP (x, 0)));
3713 gcc_assert (x);
3715 else
3716 SUBST (XEXP (x, i), new);
3721 /* Try to simplify X. If the simplification changed the code, it is likely
3722 that further simplification will help, so loop, but limit the number
3723 of repetitions that will be performed. */
3725 for (i = 0; i < 4; i++)
3727 /* If X is sufficiently simple, don't bother trying to do anything
3728 with it. */
3729 if (code != CONST_INT && code != REG && code != CLOBBER)
3730 x = combine_simplify_rtx (x, op0_mode, in_dest);
3732 if (GET_CODE (x) == code)
3733 break;
3735 code = GET_CODE (x);
3737 /* We no longer know the original mode of operand 0 since we
3738 have changed the form of X) */
3739 op0_mode = VOIDmode;
3742 return x;
3745 /* Simplify X, a piece of RTL. We just operate on the expression at the
3746 outer level; call `subst' to simplify recursively. Return the new
3747 expression.
3749 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3750 if we are inside a SET_DEST. */
3752 static rtx
3753 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3755 enum rtx_code code = GET_CODE (x);
3756 enum machine_mode mode = GET_MODE (x);
3757 rtx temp;
3758 rtx reversed;
3759 int i;
3761 /* If this is a commutative operation, put a constant last and a complex
3762 expression first. We don't need to do this for comparisons here. */
3763 if (COMMUTATIVE_ARITH_P (x)
3764 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3766 temp = XEXP (x, 0);
3767 SUBST (XEXP (x, 0), XEXP (x, 1));
3768 SUBST (XEXP (x, 1), temp);
3771 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3772 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3773 things. Check for cases where both arms are testing the same
3774 condition.
3776 Don't do anything if all operands are very simple. */
3778 if ((BINARY_P (x)
3779 && ((!OBJECT_P (XEXP (x, 0))
3780 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3781 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3782 || (!OBJECT_P (XEXP (x, 1))
3783 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3784 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3785 || (UNARY_P (x)
3786 && (!OBJECT_P (XEXP (x, 0))
3787 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3788 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3790 rtx cond, true_rtx, false_rtx;
3792 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3793 if (cond != 0
3794 /* If everything is a comparison, what we have is highly unlikely
3795 to be simpler, so don't use it. */
3796 && ! (COMPARISON_P (x)
3797 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3799 rtx cop1 = const0_rtx;
3800 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3802 if (cond_code == NE && COMPARISON_P (cond))
3803 return x;
3805 /* Simplify the alternative arms; this may collapse the true and
3806 false arms to store-flag values. Be careful to use copy_rtx
3807 here since true_rtx or false_rtx might share RTL with x as a
3808 result of the if_then_else_cond call above. */
3809 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3810 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3812 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3813 is unlikely to be simpler. */
3814 if (general_operand (true_rtx, VOIDmode)
3815 && general_operand (false_rtx, VOIDmode))
3817 enum rtx_code reversed;
3819 /* Restarting if we generate a store-flag expression will cause
3820 us to loop. Just drop through in this case. */
3822 /* If the result values are STORE_FLAG_VALUE and zero, we can
3823 just make the comparison operation. */
3824 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3825 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3826 cond, cop1);
3827 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3828 && ((reversed = reversed_comparison_code_parts
3829 (cond_code, cond, cop1, NULL))
3830 != UNKNOWN))
3831 x = simplify_gen_relational (reversed, mode, VOIDmode,
3832 cond, cop1);
3834 /* Likewise, we can make the negate of a comparison operation
3835 if the result values are - STORE_FLAG_VALUE and zero. */
3836 else if (GET_CODE (true_rtx) == CONST_INT
3837 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3838 && false_rtx == const0_rtx)
3839 x = simplify_gen_unary (NEG, mode,
3840 simplify_gen_relational (cond_code,
3841 mode, VOIDmode,
3842 cond, cop1),
3843 mode);
3844 else if (GET_CODE (false_rtx) == CONST_INT
3845 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3846 && true_rtx == const0_rtx
3847 && ((reversed = reversed_comparison_code_parts
3848 (cond_code, cond, cop1, NULL))
3849 != UNKNOWN))
3850 x = simplify_gen_unary (NEG, mode,
3851 simplify_gen_relational (reversed,
3852 mode, VOIDmode,
3853 cond, cop1),
3854 mode);
3855 else
3856 return gen_rtx_IF_THEN_ELSE (mode,
3857 simplify_gen_relational (cond_code,
3858 mode,
3859 VOIDmode,
3860 cond,
3861 cop1),
3862 true_rtx, false_rtx);
3864 code = GET_CODE (x);
3865 op0_mode = VOIDmode;
3870 /* Try to fold this expression in case we have constants that weren't
3871 present before. */
3872 temp = 0;
3873 switch (GET_RTX_CLASS (code))
3875 case RTX_UNARY:
3876 if (op0_mode == VOIDmode)
3877 op0_mode = GET_MODE (XEXP (x, 0));
3878 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3879 break;
3880 case RTX_COMPARE:
3881 case RTX_COMM_COMPARE:
3883 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3884 if (cmp_mode == VOIDmode)
3886 cmp_mode = GET_MODE (XEXP (x, 1));
3887 if (cmp_mode == VOIDmode)
3888 cmp_mode = op0_mode;
3890 temp = simplify_relational_operation (code, mode, cmp_mode,
3891 XEXP (x, 0), XEXP (x, 1));
3893 break;
3894 case RTX_COMM_ARITH:
3895 case RTX_BIN_ARITH:
3896 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3897 break;
3898 case RTX_BITFIELD_OPS:
3899 case RTX_TERNARY:
3900 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3901 XEXP (x, 1), XEXP (x, 2));
3902 break;
3903 default:
3904 break;
3907 if (temp)
3909 x = temp;
3910 code = GET_CODE (temp);
3911 op0_mode = VOIDmode;
3912 mode = GET_MODE (temp);
3915 /* First see if we can apply the inverse distributive law. */
3916 if (code == PLUS || code == MINUS
3917 || code == AND || code == IOR || code == XOR)
3919 x = apply_distributive_law (x);
3920 code = GET_CODE (x);
3921 op0_mode = VOIDmode;
3924 /* If CODE is an associative operation not otherwise handled, see if we
3925 can associate some operands. This can win if they are constants or
3926 if they are logically related (i.e. (a & b) & a). */
3927 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3928 || code == AND || code == IOR || code == XOR
3929 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3930 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3931 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3933 if (GET_CODE (XEXP (x, 0)) == code)
3935 rtx other = XEXP (XEXP (x, 0), 0);
3936 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3937 rtx inner_op1 = XEXP (x, 1);
3938 rtx inner;
3940 /* Make sure we pass the constant operand if any as the second
3941 one if this is a commutative operation. */
3942 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3944 rtx tem = inner_op0;
3945 inner_op0 = inner_op1;
3946 inner_op1 = tem;
3948 inner = simplify_binary_operation (code == MINUS ? PLUS
3949 : code == DIV ? MULT
3950 : code,
3951 mode, inner_op0, inner_op1);
3953 /* For commutative operations, try the other pair if that one
3954 didn't simplify. */
3955 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3957 other = XEXP (XEXP (x, 0), 1);
3958 inner = simplify_binary_operation (code, mode,
3959 XEXP (XEXP (x, 0), 0),
3960 XEXP (x, 1));
3963 if (inner)
3964 return simplify_gen_binary (code, mode, other, inner);
3968 /* A little bit of algebraic simplification here. */
3969 switch (code)
3971 case MEM:
3972 /* Ensure that our address has any ASHIFTs converted to MULT in case
3973 address-recognizing predicates are called later. */
3974 temp = make_compound_operation (XEXP (x, 0), MEM);
3975 SUBST (XEXP (x, 0), temp);
3976 break;
3978 case SUBREG:
3979 if (op0_mode == VOIDmode)
3980 op0_mode = GET_MODE (SUBREG_REG (x));
3982 /* See if this can be moved to simplify_subreg. */
3983 if (CONSTANT_P (SUBREG_REG (x))
3984 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3985 /* Don't call gen_lowpart if the inner mode
3986 is VOIDmode and we cannot simplify it, as SUBREG without
3987 inner mode is invalid. */
3988 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3989 || gen_lowpart_common (mode, SUBREG_REG (x))))
3990 return gen_lowpart (mode, SUBREG_REG (x));
3992 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3993 break;
3995 rtx temp;
3996 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3997 SUBREG_BYTE (x));
3998 if (temp)
3999 return temp;
4002 /* Don't change the mode of the MEM if that would change the meaning
4003 of the address. */
4004 if (MEM_P (SUBREG_REG (x))
4005 && (MEM_VOLATILE_P (SUBREG_REG (x))
4006 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4007 return gen_rtx_CLOBBER (mode, const0_rtx);
4009 /* Note that we cannot do any narrowing for non-constants since
4010 we might have been counting on using the fact that some bits were
4011 zero. We now do this in the SET. */
4013 break;
4015 case NOT:
4016 if (GET_CODE (XEXP (x, 0)) == SUBREG
4017 && subreg_lowpart_p (XEXP (x, 0))
4018 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4019 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4020 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4021 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4023 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4025 x = gen_rtx_ROTATE (inner_mode,
4026 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4027 inner_mode),
4028 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4029 return gen_lowpart (mode, x);
4032 /* Apply De Morgan's laws to reduce number of patterns for machines
4033 with negating logical insns (and-not, nand, etc.). If result has
4034 only one NOT, put it first, since that is how the patterns are
4035 coded. */
4037 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4039 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4040 enum machine_mode op_mode;
4042 op_mode = GET_MODE (in1);
4043 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4045 op_mode = GET_MODE (in2);
4046 if (op_mode == VOIDmode)
4047 op_mode = mode;
4048 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4050 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4052 rtx tem = in2;
4053 in2 = in1; in1 = tem;
4056 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4057 mode, in1, in2);
4059 break;
4061 case NEG:
4062 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4063 if (GET_CODE (XEXP (x, 0)) == XOR
4064 && XEXP (XEXP (x, 0), 1) == const1_rtx
4065 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4066 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4067 constm1_rtx);
4069 temp = expand_compound_operation (XEXP (x, 0));
4071 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4072 replaced by (lshiftrt X C). This will convert
4073 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4075 if (GET_CODE (temp) == ASHIFTRT
4076 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4077 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4078 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4079 INTVAL (XEXP (temp, 1)));
4081 /* If X has only a single bit that might be nonzero, say, bit I, convert
4082 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4083 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4084 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4085 or a SUBREG of one since we'd be making the expression more
4086 complex if it was just a register. */
4088 if (!REG_P (temp)
4089 && ! (GET_CODE (temp) == SUBREG
4090 && REG_P (SUBREG_REG (temp)))
4091 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4093 rtx temp1 = simplify_shift_const
4094 (NULL_RTX, ASHIFTRT, mode,
4095 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4096 GET_MODE_BITSIZE (mode) - 1 - i),
4097 GET_MODE_BITSIZE (mode) - 1 - i);
4099 /* If all we did was surround TEMP with the two shifts, we
4100 haven't improved anything, so don't use it. Otherwise,
4101 we are better off with TEMP1. */
4102 if (GET_CODE (temp1) != ASHIFTRT
4103 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4104 || XEXP (XEXP (temp1, 0), 0) != temp)
4105 return temp1;
4107 break;
4109 case TRUNCATE:
4110 /* We can't handle truncation to a partial integer mode here
4111 because we don't know the real bitsize of the partial
4112 integer mode. */
4113 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4114 break;
4116 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4117 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4118 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4119 SUBST (XEXP (x, 0),
4120 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4121 GET_MODE_MASK (mode), NULL_RTX, 0));
4123 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4124 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4125 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4126 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4127 return XEXP (XEXP (x, 0), 0);
4129 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4130 (OP:SI foo:SI) if OP is NEG or ABS. */
4131 if ((GET_CODE (XEXP (x, 0)) == ABS
4132 || GET_CODE (XEXP (x, 0)) == NEG)
4133 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4134 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4135 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4136 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4137 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4139 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4140 (truncate:SI x). */
4141 if (GET_CODE (XEXP (x, 0)) == SUBREG
4142 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4143 && subreg_lowpart_p (XEXP (x, 0)))
4144 return SUBREG_REG (XEXP (x, 0));
4146 /* If we know that the value is already truncated, we can
4147 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4148 is nonzero for the corresponding modes. But don't do this
4149 for an (LSHIFTRT (MULT ...)) since this will cause problems
4150 with the umulXi3_highpart patterns. */
4151 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4152 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4153 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4154 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4155 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4156 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4157 return gen_lowpart (mode, XEXP (x, 0));
4159 /* A truncate of a comparison can be replaced with a subreg if
4160 STORE_FLAG_VALUE permits. This is like the previous test,
4161 but it works even if the comparison is done in a mode larger
4162 than HOST_BITS_PER_WIDE_INT. */
4163 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4164 && COMPARISON_P (XEXP (x, 0))
4165 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4166 return gen_lowpart (mode, XEXP (x, 0));
4168 /* Similarly, a truncate of a register whose value is a
4169 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4170 permits. */
4171 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4172 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4173 && (temp = get_last_value (XEXP (x, 0)))
4174 && COMPARISON_P (temp))
4175 return gen_lowpart (mode, XEXP (x, 0));
4177 break;
4179 case FLOAT_TRUNCATE:
4180 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4181 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4182 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4183 return XEXP (XEXP (x, 0), 0);
4185 /* (float_truncate:SF (float_truncate:DF foo:XF))
4186 = (float_truncate:SF foo:XF).
4187 This may eliminate double rounding, so it is unsafe.
4189 (float_truncate:SF (float_extend:XF foo:DF))
4190 = (float_truncate:SF foo:DF).
4192 (float_truncate:DF (float_extend:XF foo:SF))
4193 = (float_extend:SF foo:DF). */
4194 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4195 && flag_unsafe_math_optimizations)
4196 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4197 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4198 0)))
4199 > GET_MODE_SIZE (mode)
4200 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4201 mode,
4202 XEXP (XEXP (x, 0), 0), mode);
4204 /* (float_truncate (float x)) is (float x) */
4205 if (GET_CODE (XEXP (x, 0)) == FLOAT
4206 && (flag_unsafe_math_optimizations
4207 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4208 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4209 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4210 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4211 return simplify_gen_unary (FLOAT, mode,
4212 XEXP (XEXP (x, 0), 0),
4213 GET_MODE (XEXP (XEXP (x, 0), 0)));
4215 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4216 (OP:SF foo:SF) if OP is NEG or ABS. */
4217 if ((GET_CODE (XEXP (x, 0)) == ABS
4218 || GET_CODE (XEXP (x, 0)) == NEG)
4219 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4220 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4221 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4222 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4224 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4225 is (float_truncate:SF x). */
4226 if (GET_CODE (XEXP (x, 0)) == SUBREG
4227 && subreg_lowpart_p (XEXP (x, 0))
4228 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4229 return SUBREG_REG (XEXP (x, 0));
4230 break;
4231 case FLOAT_EXTEND:
4232 /* (float_extend (float_extend x)) is (float_extend x)
4234 (float_extend (float x)) is (float x) assuming that double
4235 rounding can't happen.
4237 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4238 || (GET_CODE (XEXP (x, 0)) == FLOAT
4239 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4240 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4241 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4242 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4243 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4244 XEXP (XEXP (x, 0), 0),
4245 GET_MODE (XEXP (XEXP (x, 0), 0)));
4247 break;
4248 #ifdef HAVE_cc0
4249 case COMPARE:
4250 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4251 using cc0, in which case we want to leave it as a COMPARE
4252 so we can distinguish it from a register-register-copy. */
4253 if (XEXP (x, 1) == const0_rtx)
4254 return XEXP (x, 0);
4256 /* x - 0 is the same as x unless x's mode has signed zeros and
4257 allows rounding towards -infinity. Under those conditions,
4258 0 - 0 is -0. */
4259 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4260 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4261 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4262 return XEXP (x, 0);
4263 break;
4264 #endif
4266 case CONST:
4267 /* (const (const X)) can become (const X). Do it this way rather than
4268 returning the inner CONST since CONST can be shared with a
4269 REG_EQUAL note. */
4270 if (GET_CODE (XEXP (x, 0)) == CONST)
4271 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4272 break;
4274 #ifdef HAVE_lo_sum
4275 case LO_SUM:
4276 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4277 can add in an offset. find_split_point will split this address up
4278 again if it doesn't match. */
4279 if (GET_CODE (XEXP (x, 0)) == HIGH
4280 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4281 return XEXP (x, 1);
4282 break;
4283 #endif
4285 case PLUS:
4286 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4288 if (GET_CODE (XEXP (x, 0)) == MULT
4289 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4291 rtx in1, in2;
4293 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4294 in2 = XEXP (XEXP (x, 0), 1);
4295 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4296 simplify_gen_binary (MULT, mode,
4297 in1, in2));
4300 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4301 outermost. That's because that's the way indexed addresses are
4302 supposed to appear. This code used to check many more cases, but
4303 they are now checked elsewhere. */
4304 if (GET_CODE (XEXP (x, 0)) == PLUS
4305 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4306 return simplify_gen_binary (PLUS, mode,
4307 simplify_gen_binary (PLUS, mode,
4308 XEXP (XEXP (x, 0), 0),
4309 XEXP (x, 1)),
4310 XEXP (XEXP (x, 0), 1));
4312 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4313 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4314 bit-field and can be replaced by either a sign_extend or a
4315 sign_extract. The `and' may be a zero_extend and the two
4316 <c>, -<c> constants may be reversed. */
4317 if (GET_CODE (XEXP (x, 0)) == XOR
4318 && GET_CODE (XEXP (x, 1)) == CONST_INT
4319 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4320 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4321 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4322 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4323 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4324 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4325 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4326 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4327 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4328 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4329 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4330 == (unsigned int) i + 1))))
4331 return simplify_shift_const
4332 (NULL_RTX, ASHIFTRT, mode,
4333 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4334 XEXP (XEXP (XEXP (x, 0), 0), 0),
4335 GET_MODE_BITSIZE (mode) - (i + 1)),
4336 GET_MODE_BITSIZE (mode) - (i + 1));
4338 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4339 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4340 is 1. This produces better code than the alternative immediately
4341 below. */
4342 if (COMPARISON_P (XEXP (x, 0))
4343 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4344 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4345 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4346 return
4347 simplify_gen_unary (NEG, mode, reversed, mode);
4349 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4350 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4351 the bitsize of the mode - 1. This allows simplification of
4352 "a = (b & 8) == 0;" */
4353 if (XEXP (x, 1) == constm1_rtx
4354 && !REG_P (XEXP (x, 0))
4355 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4356 && REG_P (SUBREG_REG (XEXP (x, 0))))
4357 && nonzero_bits (XEXP (x, 0), mode) == 1)
4358 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4359 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4360 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4361 GET_MODE_BITSIZE (mode) - 1),
4362 GET_MODE_BITSIZE (mode) - 1);
4364 /* If we are adding two things that have no bits in common, convert
4365 the addition into an IOR. This will often be further simplified,
4366 for example in cases like ((a & 1) + (a & 2)), which can
4367 become a & 3. */
4369 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4370 && (nonzero_bits (XEXP (x, 0), mode)
4371 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4373 /* Try to simplify the expression further. */
4374 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4375 temp = combine_simplify_rtx (tor, mode, in_dest);
4377 /* If we could, great. If not, do not go ahead with the IOR
4378 replacement, since PLUS appears in many special purpose
4379 address arithmetic instructions. */
4380 if (GET_CODE (temp) != CLOBBER && temp != tor)
4381 return temp;
4383 break;
4385 case MINUS:
4386 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4387 by reversing the comparison code if valid. */
4388 if (STORE_FLAG_VALUE == 1
4389 && XEXP (x, 0) == const1_rtx
4390 && COMPARISON_P (XEXP (x, 1))
4391 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4392 return reversed;
4394 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4395 (and <foo> (const_int pow2-1)) */
4396 if (GET_CODE (XEXP (x, 1)) == AND
4397 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4398 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4399 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4400 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4401 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4403 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4405 if (GET_CODE (XEXP (x, 1)) == MULT
4406 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4408 rtx in1, in2;
4410 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4411 in2 = XEXP (XEXP (x, 1), 1);
4412 return simplify_gen_binary (PLUS, mode,
4413 simplify_gen_binary (MULT, mode,
4414 in1, in2),
4415 XEXP (x, 0));
4418 /* Canonicalize (minus (neg A) (mult B C)) to
4419 (minus (mult (neg B) C) A). */
4420 if (GET_CODE (XEXP (x, 1)) == MULT
4421 && GET_CODE (XEXP (x, 0)) == NEG)
4423 rtx in1, in2;
4425 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4426 in2 = XEXP (XEXP (x, 1), 1);
4427 return simplify_gen_binary (MINUS, mode,
4428 simplify_gen_binary (MULT, mode,
4429 in1, in2),
4430 XEXP (XEXP (x, 0), 0));
4433 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4434 integers. */
4435 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4436 return simplify_gen_binary (MINUS, mode,
4437 simplify_gen_binary (MINUS, mode,
4438 XEXP (x, 0),
4439 XEXP (XEXP (x, 1), 0)),
4440 XEXP (XEXP (x, 1), 1));
4441 break;
4443 case MULT:
4444 /* If we have (mult (plus A B) C), apply the distributive law and then
4445 the inverse distributive law to see if things simplify. This
4446 occurs mostly in addresses, often when unrolling loops. */
4448 if (GET_CODE (XEXP (x, 0)) == PLUS)
4450 rtx result = distribute_and_simplify_rtx (x, 0);
4451 if (result)
4452 return result;
4455 /* Try simplify a*(b/c) as (a*b)/c. */
4456 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4457 && GET_CODE (XEXP (x, 0)) == DIV)
4459 rtx tem = simplify_binary_operation (MULT, mode,
4460 XEXP (XEXP (x, 0), 0),
4461 XEXP (x, 1));
4462 if (tem)
4463 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4465 break;
4467 case UDIV:
4468 /* If this is a divide by a power of two, treat it as a shift if
4469 its first operand is a shift. */
4470 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4471 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4472 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4473 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4474 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4475 || GET_CODE (XEXP (x, 0)) == ROTATE
4476 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4477 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4478 break;
4480 case EQ: case NE:
4481 case GT: case GTU: case GE: case GEU:
4482 case LT: case LTU: case LE: case LEU:
4483 case UNEQ: case LTGT:
4484 case UNGT: case UNGE:
4485 case UNLT: case UNLE:
4486 case UNORDERED: case ORDERED:
4487 /* If the first operand is a condition code, we can't do anything
4488 with it. */
4489 if (GET_CODE (XEXP (x, 0)) == COMPARE
4490 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4491 && ! CC0_P (XEXP (x, 0))))
4493 rtx op0 = XEXP (x, 0);
4494 rtx op1 = XEXP (x, 1);
4495 enum rtx_code new_code;
4497 if (GET_CODE (op0) == COMPARE)
4498 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4500 /* Simplify our comparison, if possible. */
4501 new_code = simplify_comparison (code, &op0, &op1);
4503 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4504 if only the low-order bit is possibly nonzero in X (such as when
4505 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4506 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4507 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4508 (plus X 1).
4510 Remove any ZERO_EXTRACT we made when thinking this was a
4511 comparison. It may now be simpler to use, e.g., an AND. If a
4512 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4513 the call to make_compound_operation in the SET case. */
4515 if (STORE_FLAG_VALUE == 1
4516 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4517 && op1 == const0_rtx
4518 && mode == GET_MODE (op0)
4519 && nonzero_bits (op0, mode) == 1)
4520 return gen_lowpart (mode,
4521 expand_compound_operation (op0));
4523 else if (STORE_FLAG_VALUE == 1
4524 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4525 && op1 == const0_rtx
4526 && mode == GET_MODE (op0)
4527 && (num_sign_bit_copies (op0, mode)
4528 == GET_MODE_BITSIZE (mode)))
4530 op0 = expand_compound_operation (op0);
4531 return simplify_gen_unary (NEG, mode,
4532 gen_lowpart (mode, op0),
4533 mode);
4536 else if (STORE_FLAG_VALUE == 1
4537 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4538 && op1 == const0_rtx
4539 && mode == GET_MODE (op0)
4540 && nonzero_bits (op0, mode) == 1)
4542 op0 = expand_compound_operation (op0);
4543 return simplify_gen_binary (XOR, mode,
4544 gen_lowpart (mode, op0),
4545 const1_rtx);
4548 else if (STORE_FLAG_VALUE == 1
4549 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4550 && op1 == const0_rtx
4551 && mode == GET_MODE (op0)
4552 && (num_sign_bit_copies (op0, mode)
4553 == GET_MODE_BITSIZE (mode)))
4555 op0 = expand_compound_operation (op0);
4556 return plus_constant (gen_lowpart (mode, op0), 1);
4559 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4560 those above. */
4561 if (STORE_FLAG_VALUE == -1
4562 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4563 && op1 == const0_rtx
4564 && (num_sign_bit_copies (op0, mode)
4565 == GET_MODE_BITSIZE (mode)))
4566 return gen_lowpart (mode,
4567 expand_compound_operation (op0));
4569 else if (STORE_FLAG_VALUE == -1
4570 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4571 && op1 == const0_rtx
4572 && mode == GET_MODE (op0)
4573 && nonzero_bits (op0, mode) == 1)
4575 op0 = expand_compound_operation (op0);
4576 return simplify_gen_unary (NEG, mode,
4577 gen_lowpart (mode, op0),
4578 mode);
4581 else if (STORE_FLAG_VALUE == -1
4582 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4583 && op1 == const0_rtx
4584 && mode == GET_MODE (op0)
4585 && (num_sign_bit_copies (op0, mode)
4586 == GET_MODE_BITSIZE (mode)))
4588 op0 = expand_compound_operation (op0);
4589 return simplify_gen_unary (NOT, mode,
4590 gen_lowpart (mode, op0),
4591 mode);
4594 /* If X is 0/1, (eq X 0) is X-1. */
4595 else if (STORE_FLAG_VALUE == -1
4596 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4597 && op1 == const0_rtx
4598 && mode == GET_MODE (op0)
4599 && nonzero_bits (op0, mode) == 1)
4601 op0 = expand_compound_operation (op0);
4602 return plus_constant (gen_lowpart (mode, op0), -1);
4605 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4606 one bit that might be nonzero, we can convert (ne x 0) to
4607 (ashift x c) where C puts the bit in the sign bit. Remove any
4608 AND with STORE_FLAG_VALUE when we are done, since we are only
4609 going to test the sign bit. */
4610 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4611 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4612 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4613 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4614 && op1 == const0_rtx
4615 && mode == GET_MODE (op0)
4616 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4618 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4619 expand_compound_operation (op0),
4620 GET_MODE_BITSIZE (mode) - 1 - i);
4621 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4622 return XEXP (x, 0);
4623 else
4624 return x;
4627 /* If the code changed, return a whole new comparison. */
4628 if (new_code != code)
4629 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4631 /* Otherwise, keep this operation, but maybe change its operands.
4632 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4633 SUBST (XEXP (x, 0), op0);
4634 SUBST (XEXP (x, 1), op1);
4636 break;
4638 case IF_THEN_ELSE:
4639 return simplify_if_then_else (x);
4641 case ZERO_EXTRACT:
4642 case SIGN_EXTRACT:
4643 case ZERO_EXTEND:
4644 case SIGN_EXTEND:
4645 /* If we are processing SET_DEST, we are done. */
4646 if (in_dest)
4647 return x;
4649 return expand_compound_operation (x);
4651 case SET:
4652 return simplify_set (x);
4654 case AND:
4655 case IOR:
4656 case XOR:
4657 return simplify_logical (x);
4659 case ABS:
4660 /* (abs (neg <foo>)) -> (abs <foo>) */
4661 if (GET_CODE (XEXP (x, 0)) == NEG)
4662 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4664 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4665 do nothing. */
4666 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4667 break;
4669 /* If operand is something known to be positive, ignore the ABS. */
4670 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4671 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4672 <= HOST_BITS_PER_WIDE_INT)
4673 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4674 & ((HOST_WIDE_INT) 1
4675 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4676 == 0)))
4677 return XEXP (x, 0);
4679 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4680 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4681 return gen_rtx_NEG (mode, XEXP (x, 0));
4683 break;
4685 case FFS:
4686 /* (ffs (*_extend <X>)) = (ffs <X>) */
4687 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4688 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4689 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4690 break;
4692 case POPCOUNT:
4693 case PARITY:
4694 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4695 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4696 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4697 break;
4699 case FLOAT:
4700 /* (float (sign_extend <X>)) = (float <X>). */
4701 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4702 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4703 break;
4705 case ASHIFT:
4706 case LSHIFTRT:
4707 case ASHIFTRT:
4708 case ROTATE:
4709 case ROTATERT:
4710 /* If this is a shift by a constant amount, simplify it. */
4711 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4712 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4713 INTVAL (XEXP (x, 1)));
4715 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4716 SUBST (XEXP (x, 1),
4717 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4718 ((HOST_WIDE_INT) 1
4719 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4720 - 1,
4721 NULL_RTX, 0));
4722 break;
4724 case VEC_SELECT:
4726 rtx op0 = XEXP (x, 0);
4727 rtx op1 = XEXP (x, 1);
4728 int len;
4730 gcc_assert (GET_CODE (op1) == PARALLEL);
4731 len = XVECLEN (op1, 0);
4732 if (len == 1
4733 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4734 && GET_CODE (op0) == VEC_CONCAT)
4736 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4738 /* Try to find the element in the VEC_CONCAT. */
4739 for (;;)
4741 if (GET_MODE (op0) == GET_MODE (x))
4742 return op0;
4743 if (GET_CODE (op0) == VEC_CONCAT)
4745 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4746 if (op0_size < offset)
4747 op0 = XEXP (op0, 0);
4748 else
4750 offset -= op0_size;
4751 op0 = XEXP (op0, 1);
4754 else
4755 break;
4760 break;
4762 default:
4763 break;
4766 return x;
4769 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4771 static rtx
4772 simplify_if_then_else (rtx x)
4774 enum machine_mode mode = GET_MODE (x);
4775 rtx cond = XEXP (x, 0);
4776 rtx true_rtx = XEXP (x, 1);
4777 rtx false_rtx = XEXP (x, 2);
4778 enum rtx_code true_code = GET_CODE (cond);
4779 int comparison_p = COMPARISON_P (cond);
4780 rtx temp;
4781 int i;
4782 enum rtx_code false_code;
4783 rtx reversed;
4785 /* Simplify storing of the truth value. */
4786 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4787 return simplify_gen_relational (true_code, mode, VOIDmode,
4788 XEXP (cond, 0), XEXP (cond, 1));
4790 /* Also when the truth value has to be reversed. */
4791 if (comparison_p
4792 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4793 && (reversed = reversed_comparison (cond, mode)))
4794 return reversed;
4796 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4797 in it is being compared against certain values. Get the true and false
4798 comparisons and see if that says anything about the value of each arm. */
4800 if (comparison_p
4801 && ((false_code = reversed_comparison_code (cond, NULL))
4802 != UNKNOWN)
4803 && REG_P (XEXP (cond, 0)))
4805 HOST_WIDE_INT nzb;
4806 rtx from = XEXP (cond, 0);
4807 rtx true_val = XEXP (cond, 1);
4808 rtx false_val = true_val;
4809 int swapped = 0;
4811 /* If FALSE_CODE is EQ, swap the codes and arms. */
4813 if (false_code == EQ)
4815 swapped = 1, true_code = EQ, false_code = NE;
4816 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4819 /* If we are comparing against zero and the expression being tested has
4820 only a single bit that might be nonzero, that is its value when it is
4821 not equal to zero. Similarly if it is known to be -1 or 0. */
4823 if (true_code == EQ && true_val == const0_rtx
4824 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4825 false_code = EQ, false_val = GEN_INT (nzb);
4826 else if (true_code == EQ && true_val == const0_rtx
4827 && (num_sign_bit_copies (from, GET_MODE (from))
4828 == GET_MODE_BITSIZE (GET_MODE (from))))
4829 false_code = EQ, false_val = constm1_rtx;
4831 /* Now simplify an arm if we know the value of the register in the
4832 branch and it is used in the arm. Be careful due to the potential
4833 of locally-shared RTL. */
4835 if (reg_mentioned_p (from, true_rtx))
4836 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4837 from, true_val),
4838 pc_rtx, pc_rtx, 0, 0);
4839 if (reg_mentioned_p (from, false_rtx))
4840 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4841 from, false_val),
4842 pc_rtx, pc_rtx, 0, 0);
4844 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4845 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4847 true_rtx = XEXP (x, 1);
4848 false_rtx = XEXP (x, 2);
4849 true_code = GET_CODE (cond);
4852 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4853 reversed, do so to avoid needing two sets of patterns for
4854 subtract-and-branch insns. Similarly if we have a constant in the true
4855 arm, the false arm is the same as the first operand of the comparison, or
4856 the false arm is more complicated than the true arm. */
4858 if (comparison_p
4859 && reversed_comparison_code (cond, NULL) != UNKNOWN
4860 && (true_rtx == pc_rtx
4861 || (CONSTANT_P (true_rtx)
4862 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4863 || true_rtx == const0_rtx
4864 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4865 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4866 && !OBJECT_P (false_rtx))
4867 || reg_mentioned_p (true_rtx, false_rtx)
4868 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4870 true_code = reversed_comparison_code (cond, NULL);
4871 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4872 SUBST (XEXP (x, 1), false_rtx);
4873 SUBST (XEXP (x, 2), true_rtx);
4875 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4876 cond = XEXP (x, 0);
4878 /* It is possible that the conditional has been simplified out. */
4879 true_code = GET_CODE (cond);
4880 comparison_p = COMPARISON_P (cond);
4883 /* If the two arms are identical, we don't need the comparison. */
4885 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4886 return true_rtx;
4888 /* Convert a == b ? b : a to "a". */
4889 if (true_code == EQ && ! side_effects_p (cond)
4890 && !HONOR_NANS (mode)
4891 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4892 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4893 return false_rtx;
4894 else if (true_code == NE && ! side_effects_p (cond)
4895 && !HONOR_NANS (mode)
4896 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4897 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4898 return true_rtx;
4900 /* Look for cases where we have (abs x) or (neg (abs X)). */
4902 if (GET_MODE_CLASS (mode) == MODE_INT
4903 && GET_CODE (false_rtx) == NEG
4904 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4905 && comparison_p
4906 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4907 && ! side_effects_p (true_rtx))
4908 switch (true_code)
4910 case GT:
4911 case GE:
4912 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4913 case LT:
4914 case LE:
4915 return
4916 simplify_gen_unary (NEG, mode,
4917 simplify_gen_unary (ABS, mode, true_rtx, mode),
4918 mode);
4919 default:
4920 break;
4923 /* Look for MIN or MAX. */
4925 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4926 && comparison_p
4927 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4928 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4929 && ! side_effects_p (cond))
4930 switch (true_code)
4932 case GE:
4933 case GT:
4934 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4935 case LE:
4936 case LT:
4937 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4938 case GEU:
4939 case GTU:
4940 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4941 case LEU:
4942 case LTU:
4943 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4944 default:
4945 break;
4948 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4949 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4950 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4951 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4952 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4953 neither 1 or -1, but it isn't worth checking for. */
4955 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4956 && comparison_p
4957 && GET_MODE_CLASS (mode) == MODE_INT
4958 && ! side_effects_p (x))
4960 rtx t = make_compound_operation (true_rtx, SET);
4961 rtx f = make_compound_operation (false_rtx, SET);
4962 rtx cond_op0 = XEXP (cond, 0);
4963 rtx cond_op1 = XEXP (cond, 1);
4964 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4965 enum machine_mode m = mode;
4966 rtx z = 0, c1 = NULL_RTX;
4968 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4969 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4970 || GET_CODE (t) == ASHIFT
4971 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4972 && rtx_equal_p (XEXP (t, 0), f))
4973 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4975 /* If an identity-zero op is commutative, check whether there
4976 would be a match if we swapped the operands. */
4977 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4978 || GET_CODE (t) == XOR)
4979 && rtx_equal_p (XEXP (t, 1), f))
4980 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4981 else if (GET_CODE (t) == SIGN_EXTEND
4982 && (GET_CODE (XEXP (t, 0)) == PLUS
4983 || GET_CODE (XEXP (t, 0)) == MINUS
4984 || GET_CODE (XEXP (t, 0)) == IOR
4985 || GET_CODE (XEXP (t, 0)) == XOR
4986 || GET_CODE (XEXP (t, 0)) == ASHIFT
4987 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4988 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4989 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4990 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4991 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4992 && (num_sign_bit_copies (f, GET_MODE (f))
4993 > (unsigned int)
4994 (GET_MODE_BITSIZE (mode)
4995 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4997 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4998 extend_op = SIGN_EXTEND;
4999 m = GET_MODE (XEXP (t, 0));
5001 else if (GET_CODE (t) == SIGN_EXTEND
5002 && (GET_CODE (XEXP (t, 0)) == PLUS
5003 || GET_CODE (XEXP (t, 0)) == IOR
5004 || GET_CODE (XEXP (t, 0)) == XOR)
5005 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5006 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5007 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5008 && (num_sign_bit_copies (f, GET_MODE (f))
5009 > (unsigned int)
5010 (GET_MODE_BITSIZE (mode)
5011 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5013 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5014 extend_op = SIGN_EXTEND;
5015 m = GET_MODE (XEXP (t, 0));
5017 else if (GET_CODE (t) == ZERO_EXTEND
5018 && (GET_CODE (XEXP (t, 0)) == PLUS
5019 || GET_CODE (XEXP (t, 0)) == MINUS
5020 || GET_CODE (XEXP (t, 0)) == IOR
5021 || GET_CODE (XEXP (t, 0)) == XOR
5022 || GET_CODE (XEXP (t, 0)) == ASHIFT
5023 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5024 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5025 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5026 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5027 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5028 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5029 && ((nonzero_bits (f, GET_MODE (f))
5030 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5031 == 0))
5033 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5034 extend_op = ZERO_EXTEND;
5035 m = GET_MODE (XEXP (t, 0));
5037 else if (GET_CODE (t) == ZERO_EXTEND
5038 && (GET_CODE (XEXP (t, 0)) == PLUS
5039 || GET_CODE (XEXP (t, 0)) == IOR
5040 || GET_CODE (XEXP (t, 0)) == XOR)
5041 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5042 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5043 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5044 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5045 && ((nonzero_bits (f, GET_MODE (f))
5046 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5047 == 0))
5049 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5050 extend_op = ZERO_EXTEND;
5051 m = GET_MODE (XEXP (t, 0));
5054 if (z)
5056 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5057 cond_op0, cond_op1),
5058 pc_rtx, pc_rtx, 0, 0);
5059 temp = simplify_gen_binary (MULT, m, temp,
5060 simplify_gen_binary (MULT, m, c1,
5061 const_true_rtx));
5062 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5063 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5065 if (extend_op != UNKNOWN)
5066 temp = simplify_gen_unary (extend_op, mode, temp, m);
5068 return temp;
5072 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5073 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5074 negation of a single bit, we can convert this operation to a shift. We
5075 can actually do this more generally, but it doesn't seem worth it. */
5077 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5078 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5079 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5080 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5081 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5082 == GET_MODE_BITSIZE (mode))
5083 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5084 return
5085 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5086 gen_lowpart (mode, XEXP (cond, 0)), i);
5088 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5089 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5090 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5091 && GET_MODE (XEXP (cond, 0)) == mode
5092 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5093 == nonzero_bits (XEXP (cond, 0), mode)
5094 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5095 return XEXP (cond, 0);
5097 return x;
5100 /* Simplify X, a SET expression. Return the new expression. */
5102 static rtx
5103 simplify_set (rtx x)
5105 rtx src = SET_SRC (x);
5106 rtx dest = SET_DEST (x);
5107 enum machine_mode mode
5108 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5109 rtx other_insn;
5110 rtx *cc_use;
5112 /* (set (pc) (return)) gets written as (return). */
5113 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5114 return src;
5116 /* Now that we know for sure which bits of SRC we are using, see if we can
5117 simplify the expression for the object knowing that we only need the
5118 low-order bits. */
5120 if (GET_MODE_CLASS (mode) == MODE_INT
5121 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5123 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5124 SUBST (SET_SRC (x), src);
5127 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5128 the comparison result and try to simplify it unless we already have used
5129 undobuf.other_insn. */
5130 if ((GET_MODE_CLASS (mode) == MODE_CC
5131 || GET_CODE (src) == COMPARE
5132 || CC0_P (dest))
5133 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5134 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5135 && COMPARISON_P (*cc_use)
5136 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5138 enum rtx_code old_code = GET_CODE (*cc_use);
5139 enum rtx_code new_code;
5140 rtx op0, op1, tmp;
5141 int other_changed = 0;
5142 enum machine_mode compare_mode = GET_MODE (dest);
5144 if (GET_CODE (src) == COMPARE)
5145 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5146 else
5147 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5149 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5150 op0, op1);
5151 if (!tmp)
5152 new_code = old_code;
5153 else if (!CONSTANT_P (tmp))
5155 new_code = GET_CODE (tmp);
5156 op0 = XEXP (tmp, 0);
5157 op1 = XEXP (tmp, 1);
5159 else
5161 rtx pat = PATTERN (other_insn);
5162 undobuf.other_insn = other_insn;
5163 SUBST (*cc_use, tmp);
5165 /* Attempt to simplify CC user. */
5166 if (GET_CODE (pat) == SET)
5168 rtx new = simplify_rtx (SET_SRC (pat));
5169 if (new != NULL_RTX)
5170 SUBST (SET_SRC (pat), new);
5173 /* Convert X into a no-op move. */
5174 SUBST (SET_DEST (x), pc_rtx);
5175 SUBST (SET_SRC (x), pc_rtx);
5176 return x;
5179 /* Simplify our comparison, if possible. */
5180 new_code = simplify_comparison (new_code, &op0, &op1);
5182 #ifdef SELECT_CC_MODE
5183 /* If this machine has CC modes other than CCmode, check to see if we
5184 need to use a different CC mode here. */
5185 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5186 compare_mode = GET_MODE (op0);
5187 else
5188 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5190 #ifndef HAVE_cc0
5191 /* If the mode changed, we have to change SET_DEST, the mode in the
5192 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5193 a hard register, just build new versions with the proper mode. If it
5194 is a pseudo, we lose unless it is only time we set the pseudo, in
5195 which case we can safely change its mode. */
5196 if (compare_mode != GET_MODE (dest))
5198 unsigned int regno = REGNO (dest);
5199 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5201 if (regno < FIRST_PSEUDO_REGISTER
5202 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5204 if (regno >= FIRST_PSEUDO_REGISTER)
5205 SUBST (regno_reg_rtx[regno], new_dest);
5207 SUBST (SET_DEST (x), new_dest);
5208 SUBST (XEXP (*cc_use, 0), new_dest);
5209 other_changed = 1;
5211 dest = new_dest;
5214 #endif /* cc0 */
5215 #endif /* SELECT_CC_MODE */
5217 /* If the code changed, we have to build a new comparison in
5218 undobuf.other_insn. */
5219 if (new_code != old_code)
5221 int other_changed_previously = other_changed;
5222 unsigned HOST_WIDE_INT mask;
5224 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5225 dest, const0_rtx));
5226 other_changed = 1;
5228 /* If the only change we made was to change an EQ into an NE or
5229 vice versa, OP0 has only one bit that might be nonzero, and OP1
5230 is zero, check if changing the user of the condition code will
5231 produce a valid insn. If it won't, we can keep the original code
5232 in that insn by surrounding our operation with an XOR. */
5234 if (((old_code == NE && new_code == EQ)
5235 || (old_code == EQ && new_code == NE))
5236 && ! other_changed_previously && op1 == const0_rtx
5237 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5238 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5240 rtx pat = PATTERN (other_insn), note = 0;
5242 if ((recog_for_combine (&pat, other_insn, &note) < 0
5243 && ! check_asm_operands (pat)))
5245 PUT_CODE (*cc_use, old_code);
5246 other_changed = 0;
5248 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5249 op0, GEN_INT (mask));
5254 if (other_changed)
5255 undobuf.other_insn = other_insn;
5257 #ifdef HAVE_cc0
5258 /* If we are now comparing against zero, change our source if
5259 needed. If we do not use cc0, we always have a COMPARE. */
5260 if (op1 == const0_rtx && dest == cc0_rtx)
5262 SUBST (SET_SRC (x), op0);
5263 src = op0;
5265 else
5266 #endif
5268 /* Otherwise, if we didn't previously have a COMPARE in the
5269 correct mode, we need one. */
5270 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5272 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5273 src = SET_SRC (x);
5275 else
5277 /* Otherwise, update the COMPARE if needed. */
5278 SUBST (XEXP (src, 0), op0);
5279 SUBST (XEXP (src, 1), op1);
5282 else
5284 /* Get SET_SRC in a form where we have placed back any
5285 compound expressions. Then do the checks below. */
5286 src = make_compound_operation (src, SET);
5287 SUBST (SET_SRC (x), src);
5290 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5291 and X being a REG or (subreg (reg)), we may be able to convert this to
5292 (set (subreg:m2 x) (op)).
5294 We can always do this if M1 is narrower than M2 because that means that
5295 we only care about the low bits of the result.
5297 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5298 perform a narrower operation than requested since the high-order bits will
5299 be undefined. On machine where it is defined, this transformation is safe
5300 as long as M1 and M2 have the same number of words. */
5302 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5303 && !OBJECT_P (SUBREG_REG (src))
5304 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5305 / UNITS_PER_WORD)
5306 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5307 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5308 #ifndef WORD_REGISTER_OPERATIONS
5309 && (GET_MODE_SIZE (GET_MODE (src))
5310 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5311 #endif
5312 #ifdef CANNOT_CHANGE_MODE_CLASS
5313 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5314 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5315 GET_MODE (SUBREG_REG (src)),
5316 GET_MODE (src)))
5317 #endif
5318 && (REG_P (dest)
5319 || (GET_CODE (dest) == SUBREG
5320 && REG_P (SUBREG_REG (dest)))))
5322 SUBST (SET_DEST (x),
5323 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5324 dest));
5325 SUBST (SET_SRC (x), SUBREG_REG (src));
5327 src = SET_SRC (x), dest = SET_DEST (x);
5330 #ifdef HAVE_cc0
5331 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5332 in SRC. */
5333 if (dest == cc0_rtx
5334 && GET_CODE (src) == SUBREG
5335 && subreg_lowpart_p (src)
5336 && (GET_MODE_BITSIZE (GET_MODE (src))
5337 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5339 rtx inner = SUBREG_REG (src);
5340 enum machine_mode inner_mode = GET_MODE (inner);
5342 /* Here we make sure that we don't have a sign bit on. */
5343 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5344 && (nonzero_bits (inner, inner_mode)
5345 < ((unsigned HOST_WIDE_INT) 1
5346 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5348 SUBST (SET_SRC (x), inner);
5349 src = SET_SRC (x);
5352 #endif
5354 #ifdef LOAD_EXTEND_OP
5355 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5356 would require a paradoxical subreg. Replace the subreg with a
5357 zero_extend to avoid the reload that would otherwise be required. */
5359 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5360 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5361 && SUBREG_BYTE (src) == 0
5362 && (GET_MODE_SIZE (GET_MODE (src))
5363 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5364 && MEM_P (SUBREG_REG (src)))
5366 SUBST (SET_SRC (x),
5367 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5368 GET_MODE (src), SUBREG_REG (src)));
5370 src = SET_SRC (x);
5372 #endif
5374 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5375 are comparing an item known to be 0 or -1 against 0, use a logical
5376 operation instead. Check for one of the arms being an IOR of the other
5377 arm with some value. We compute three terms to be IOR'ed together. In
5378 practice, at most two will be nonzero. Then we do the IOR's. */
5380 if (GET_CODE (dest) != PC
5381 && GET_CODE (src) == IF_THEN_ELSE
5382 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5383 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5384 && XEXP (XEXP (src, 0), 1) == const0_rtx
5385 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5386 #ifdef HAVE_conditional_move
5387 && ! can_conditionally_move_p (GET_MODE (src))
5388 #endif
5389 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5390 GET_MODE (XEXP (XEXP (src, 0), 0)))
5391 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5392 && ! side_effects_p (src))
5394 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5395 ? XEXP (src, 1) : XEXP (src, 2));
5396 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5397 ? XEXP (src, 2) : XEXP (src, 1));
5398 rtx term1 = const0_rtx, term2, term3;
5400 if (GET_CODE (true_rtx) == IOR
5401 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5402 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5403 else if (GET_CODE (true_rtx) == IOR
5404 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5405 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5406 else if (GET_CODE (false_rtx) == IOR
5407 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5408 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5409 else if (GET_CODE (false_rtx) == IOR
5410 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5411 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5413 term2 = simplify_gen_binary (AND, GET_MODE (src),
5414 XEXP (XEXP (src, 0), 0), true_rtx);
5415 term3 = simplify_gen_binary (AND, GET_MODE (src),
5416 simplify_gen_unary (NOT, GET_MODE (src),
5417 XEXP (XEXP (src, 0), 0),
5418 GET_MODE (src)),
5419 false_rtx);
5421 SUBST (SET_SRC (x),
5422 simplify_gen_binary (IOR, GET_MODE (src),
5423 simplify_gen_binary (IOR, GET_MODE (src),
5424 term1, term2),
5425 term3));
5427 src = SET_SRC (x);
5430 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5431 whole thing fail. */
5432 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5433 return src;
5434 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5435 return dest;
5436 else
5437 /* Convert this into a field assignment operation, if possible. */
5438 return make_field_assignment (x);
5441 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5442 result. */
5444 static rtx
5445 simplify_logical (rtx x)
5447 enum machine_mode mode = GET_MODE (x);
5448 rtx op0 = XEXP (x, 0);
5449 rtx op1 = XEXP (x, 1);
5450 rtx reversed;
5452 switch (GET_CODE (x))
5454 case AND:
5455 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5456 insn (and may simplify more). */
5457 if (GET_CODE (op0) == XOR
5458 && rtx_equal_p (XEXP (op0, 0), op1)
5459 && ! side_effects_p (op1))
5460 x = simplify_gen_binary (AND, mode,
5461 simplify_gen_unary (NOT, mode,
5462 XEXP (op0, 1), mode),
5463 op1);
5465 if (GET_CODE (op0) == XOR
5466 && rtx_equal_p (XEXP (op0, 1), op1)
5467 && ! side_effects_p (op1))
5468 x = simplify_gen_binary (AND, mode,
5469 simplify_gen_unary (NOT, mode,
5470 XEXP (op0, 0), mode),
5471 op1);
5473 /* Similarly for (~(A ^ B)) & A. */
5474 if (GET_CODE (op0) == NOT
5475 && GET_CODE (XEXP (op0, 0)) == XOR
5476 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5477 && ! side_effects_p (op1))
5478 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5480 if (GET_CODE (op0) == NOT
5481 && GET_CODE (XEXP (op0, 0)) == XOR
5482 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5483 && ! side_effects_p (op1))
5484 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5486 /* We can call simplify_and_const_int only if we don't lose
5487 any (sign) bits when converting INTVAL (op1) to
5488 "unsigned HOST_WIDE_INT". */
5489 if (GET_CODE (op1) == CONST_INT
5490 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5491 || INTVAL (op1) > 0))
5493 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5495 /* If we have (ior (and (X C1) C2)) and the next restart would be
5496 the last, simplify this by making C1 as small as possible
5497 and then exit. Only do this if C1 actually changes: for now
5498 this only saves memory but, should this transformation be
5499 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5500 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5501 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5502 && GET_CODE (op1) == CONST_INT
5503 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5504 return simplify_gen_binary (IOR, mode,
5505 simplify_gen_binary
5506 (AND, mode, XEXP (op0, 0),
5507 GEN_INT (INTVAL (XEXP (op0, 1))
5508 & ~INTVAL (op1))), op1);
5510 if (GET_CODE (x) != AND)
5511 return x;
5513 op0 = XEXP (x, 0);
5514 op1 = XEXP (x, 1);
5517 /* Convert (A | B) & A to A. */
5518 if (GET_CODE (op0) == IOR
5519 && (rtx_equal_p (XEXP (op0, 0), op1)
5520 || rtx_equal_p (XEXP (op0, 1), op1))
5521 && ! side_effects_p (XEXP (op0, 0))
5522 && ! side_effects_p (XEXP (op0, 1)))
5523 return op1;
5525 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5526 apply the distributive law and then the inverse distributive
5527 law to see if things simplify. */
5528 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5530 rtx result = distribute_and_simplify_rtx (x, 0);
5531 if (result)
5532 return result;
5534 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5536 rtx result = distribute_and_simplify_rtx (x, 1);
5537 if (result)
5538 return result;
5540 break;
5542 case IOR:
5543 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5544 if (GET_CODE (op1) == CONST_INT
5545 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5546 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5547 return op1;
5549 /* Convert (A & B) | A to A. */
5550 if (GET_CODE (op0) == AND
5551 && (rtx_equal_p (XEXP (op0, 0), op1)
5552 || rtx_equal_p (XEXP (op0, 1), op1))
5553 && ! side_effects_p (XEXP (op0, 0))
5554 && ! side_effects_p (XEXP (op0, 1)))
5555 return op1;
5557 /* If we have (ior (and A B) C), apply the distributive law and then
5558 the inverse distributive law to see if things simplify. */
5560 if (GET_CODE (op0) == AND)
5562 rtx result = distribute_and_simplify_rtx (x, 0);
5563 if (result)
5564 return result;
5567 if (GET_CODE (op1) == AND)
5569 rtx result = distribute_and_simplify_rtx (x, 1);
5570 if (result)
5571 return result;
5574 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5575 mode size to (rotate A CX). */
5577 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5578 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5579 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5580 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5581 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5582 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5583 == GET_MODE_BITSIZE (mode)))
5584 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5585 (GET_CODE (op0) == ASHIFT
5586 ? XEXP (op0, 1) : XEXP (op1, 1)));
5588 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5589 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5590 does not affect any of the bits in OP1, it can really be done
5591 as a PLUS and we can associate. We do this by seeing if OP1
5592 can be safely shifted left C bits. */
5593 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5594 && GET_CODE (XEXP (op0, 0)) == PLUS
5595 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5596 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5597 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5599 int count = INTVAL (XEXP (op0, 1));
5600 HOST_WIDE_INT mask = INTVAL (op1) << count;
5602 if (mask >> count == INTVAL (op1)
5603 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5605 SUBST (XEXP (XEXP (op0, 0), 1),
5606 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5607 return op0;
5610 break;
5612 case XOR:
5613 /* If we are XORing two things that have no bits in common,
5614 convert them into an IOR. This helps to detect rotation encoded
5615 using those methods and possibly other simplifications. */
5617 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5618 && (nonzero_bits (op0, mode)
5619 & nonzero_bits (op1, mode)) == 0)
5620 return (simplify_gen_binary (IOR, mode, op0, op1));
5622 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5623 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5624 (NOT y). */
5626 int num_negated = 0;
5628 if (GET_CODE (op0) == NOT)
5629 num_negated++, op0 = XEXP (op0, 0);
5630 if (GET_CODE (op1) == NOT)
5631 num_negated++, op1 = XEXP (op1, 0);
5633 if (num_negated == 2)
5635 SUBST (XEXP (x, 0), op0);
5636 SUBST (XEXP (x, 1), op1);
5638 else if (num_negated == 1)
5639 return
5640 simplify_gen_unary (NOT, mode,
5641 simplify_gen_binary (XOR, mode, op0, op1),
5642 mode);
5645 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5646 correspond to a machine insn or result in further simplifications
5647 if B is a constant. */
5649 if (GET_CODE (op0) == AND
5650 && rtx_equal_p (XEXP (op0, 1), op1)
5651 && ! side_effects_p (op1))
5652 return simplify_gen_binary (AND, mode,
5653 simplify_gen_unary (NOT, mode,
5654 XEXP (op0, 0), mode),
5655 op1);
5657 else if (GET_CODE (op0) == AND
5658 && rtx_equal_p (XEXP (op0, 0), op1)
5659 && ! side_effects_p (op1))
5660 return simplify_gen_binary (AND, mode,
5661 simplify_gen_unary (NOT, mode,
5662 XEXP (op0, 1), mode),
5663 op1);
5665 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5666 comparison if STORE_FLAG_VALUE is 1. */
5667 if (STORE_FLAG_VALUE == 1
5668 && op1 == const1_rtx
5669 && COMPARISON_P (op0)
5670 && (reversed = reversed_comparison (op0, mode)))
5671 return reversed;
5673 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5674 is (lt foo (const_int 0)), so we can perform the above
5675 simplification if STORE_FLAG_VALUE is 1. */
5677 if (STORE_FLAG_VALUE == 1
5678 && op1 == const1_rtx
5679 && GET_CODE (op0) == LSHIFTRT
5680 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5681 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5682 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5684 /* (xor (comparison foo bar) (const_int sign-bit))
5685 when STORE_FLAG_VALUE is the sign bit. */
5686 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5687 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5688 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5689 && op1 == const_true_rtx
5690 && COMPARISON_P (op0)
5691 && (reversed = reversed_comparison (op0, mode)))
5692 return reversed;
5694 break;
5696 default:
5697 gcc_unreachable ();
5700 return x;
5703 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5704 operations" because they can be replaced with two more basic operations.
5705 ZERO_EXTEND is also considered "compound" because it can be replaced with
5706 an AND operation, which is simpler, though only one operation.
5708 The function expand_compound_operation is called with an rtx expression
5709 and will convert it to the appropriate shifts and AND operations,
5710 simplifying at each stage.
5712 The function make_compound_operation is called to convert an expression
5713 consisting of shifts and ANDs into the equivalent compound expression.
5714 It is the inverse of this function, loosely speaking. */
5716 static rtx
5717 expand_compound_operation (rtx x)
5719 unsigned HOST_WIDE_INT pos = 0, len;
5720 int unsignedp = 0;
5721 unsigned int modewidth;
5722 rtx tem;
5724 switch (GET_CODE (x))
5726 case ZERO_EXTEND:
5727 unsignedp = 1;
5728 case SIGN_EXTEND:
5729 /* We can't necessarily use a const_int for a multiword mode;
5730 it depends on implicitly extending the value.
5731 Since we don't know the right way to extend it,
5732 we can't tell whether the implicit way is right.
5734 Even for a mode that is no wider than a const_int,
5735 we can't win, because we need to sign extend one of its bits through
5736 the rest of it, and we don't know which bit. */
5737 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5738 return x;
5740 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5741 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5742 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5743 reloaded. If not for that, MEM's would very rarely be safe.
5745 Reject MODEs bigger than a word, because we might not be able
5746 to reference a two-register group starting with an arbitrary register
5747 (and currently gen_lowpart might crash for a SUBREG). */
5749 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5750 return x;
5752 /* Reject MODEs that aren't scalar integers because turning vector
5753 or complex modes into shifts causes problems. */
5755 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5756 return x;
5758 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5759 /* If the inner object has VOIDmode (the only way this can happen
5760 is if it is an ASM_OPERANDS), we can't do anything since we don't
5761 know how much masking to do. */
5762 if (len == 0)
5763 return x;
5765 break;
5767 case ZERO_EXTRACT:
5768 unsignedp = 1;
5770 /* ... fall through ... */
5772 case SIGN_EXTRACT:
5773 /* If the operand is a CLOBBER, just return it. */
5774 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5775 return XEXP (x, 0);
5777 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5778 || GET_CODE (XEXP (x, 2)) != CONST_INT
5779 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5780 return x;
5782 /* Reject MODEs that aren't scalar integers because turning vector
5783 or complex modes into shifts causes problems. */
5785 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5786 return x;
5788 len = INTVAL (XEXP (x, 1));
5789 pos = INTVAL (XEXP (x, 2));
5791 /* If this goes outside the object being extracted, replace the object
5792 with a (use (mem ...)) construct that only combine understands
5793 and is used only for this purpose. */
5794 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5795 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5797 if (BITS_BIG_ENDIAN)
5798 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5800 break;
5802 default:
5803 return x;
5805 /* Convert sign extension to zero extension, if we know that the high
5806 bit is not set, as this is easier to optimize. It will be converted
5807 back to cheaper alternative in make_extraction. */
5808 if (GET_CODE (x) == SIGN_EXTEND
5809 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5810 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5811 & ~(((unsigned HOST_WIDE_INT)
5812 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5813 >> 1))
5814 == 0)))
5816 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5817 rtx temp2 = expand_compound_operation (temp);
5819 /* Make sure this is a profitable operation. */
5820 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5821 return temp2;
5822 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5823 return temp;
5824 else
5825 return x;
5828 /* We can optimize some special cases of ZERO_EXTEND. */
5829 if (GET_CODE (x) == ZERO_EXTEND)
5831 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5832 know that the last value didn't have any inappropriate bits
5833 set. */
5834 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5835 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5836 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5837 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5838 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5839 return XEXP (XEXP (x, 0), 0);
5841 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5842 if (GET_CODE (XEXP (x, 0)) == SUBREG
5843 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5844 && subreg_lowpart_p (XEXP (x, 0))
5845 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5846 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5847 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5848 return SUBREG_REG (XEXP (x, 0));
5850 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5851 is a comparison and STORE_FLAG_VALUE permits. This is like
5852 the first case, but it works even when GET_MODE (x) is larger
5853 than HOST_WIDE_INT. */
5854 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5855 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5856 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5857 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5858 <= HOST_BITS_PER_WIDE_INT)
5859 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5860 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5861 return XEXP (XEXP (x, 0), 0);
5863 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5864 if (GET_CODE (XEXP (x, 0)) == SUBREG
5865 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5866 && subreg_lowpart_p (XEXP (x, 0))
5867 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5868 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5869 <= HOST_BITS_PER_WIDE_INT)
5870 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5871 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5872 return SUBREG_REG (XEXP (x, 0));
5876 /* If we reach here, we want to return a pair of shifts. The inner
5877 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5878 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5879 logical depending on the value of UNSIGNEDP.
5881 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5882 converted into an AND of a shift.
5884 We must check for the case where the left shift would have a negative
5885 count. This can happen in a case like (x >> 31) & 255 on machines
5886 that can't shift by a constant. On those machines, we would first
5887 combine the shift with the AND to produce a variable-position
5888 extraction. Then the constant of 31 would be substituted in to produce
5889 a such a position. */
5891 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5892 if (modewidth + len >= pos)
5893 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5894 GET_MODE (x),
5895 simplify_shift_const (NULL_RTX, ASHIFT,
5896 GET_MODE (x),
5897 XEXP (x, 0),
5898 modewidth - pos - len),
5899 modewidth - len);
5901 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5902 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5903 simplify_shift_const (NULL_RTX, LSHIFTRT,
5904 GET_MODE (x),
5905 XEXP (x, 0), pos),
5906 ((HOST_WIDE_INT) 1 << len) - 1);
5907 else
5908 /* Any other cases we can't handle. */
5909 return x;
5911 /* If we couldn't do this for some reason, return the original
5912 expression. */
5913 if (GET_CODE (tem) == CLOBBER)
5914 return x;
5916 return tem;
5919 /* X is a SET which contains an assignment of one object into
5920 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5921 or certain SUBREGS). If possible, convert it into a series of
5922 logical operations.
5924 We half-heartedly support variable positions, but do not at all
5925 support variable lengths. */
5927 static rtx
5928 expand_field_assignment (rtx x)
5930 rtx inner;
5931 rtx pos; /* Always counts from low bit. */
5932 int len;
5933 rtx mask, cleared, masked;
5934 enum machine_mode compute_mode;
5936 /* Loop until we find something we can't simplify. */
5937 while (1)
5939 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5940 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5942 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5943 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5944 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5946 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5947 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5949 inner = XEXP (SET_DEST (x), 0);
5950 len = INTVAL (XEXP (SET_DEST (x), 1));
5951 pos = XEXP (SET_DEST (x), 2);
5953 /* If the position is constant and spans the width of INNER,
5954 surround INNER with a USE to indicate this. */
5955 if (GET_CODE (pos) == CONST_INT
5956 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5957 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5959 if (BITS_BIG_ENDIAN)
5961 if (GET_CODE (pos) == CONST_INT)
5962 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5963 - INTVAL (pos));
5964 else if (GET_CODE (pos) == MINUS
5965 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5966 && (INTVAL (XEXP (pos, 1))
5967 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5968 /* If position is ADJUST - X, new position is X. */
5969 pos = XEXP (pos, 0);
5970 else
5971 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5972 GEN_INT (GET_MODE_BITSIZE (
5973 GET_MODE (inner))
5974 - len),
5975 pos);
5979 /* A SUBREG between two modes that occupy the same numbers of words
5980 can be done by moving the SUBREG to the source. */
5981 else if (GET_CODE (SET_DEST (x)) == SUBREG
5982 /* We need SUBREGs to compute nonzero_bits properly. */
5983 && nonzero_sign_valid
5984 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5985 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5986 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5987 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5989 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5990 gen_lowpart
5991 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5992 SET_SRC (x)));
5993 continue;
5995 else
5996 break;
5998 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5999 inner = SUBREG_REG (inner);
6001 compute_mode = GET_MODE (inner);
6003 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6004 if (! SCALAR_INT_MODE_P (compute_mode))
6006 enum machine_mode imode;
6008 /* Don't do anything for vector or complex integral types. */
6009 if (! FLOAT_MODE_P (compute_mode))
6010 break;
6012 /* Try to find an integral mode to pun with. */
6013 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6014 if (imode == BLKmode)
6015 break;
6017 compute_mode = imode;
6018 inner = gen_lowpart (imode, inner);
6021 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6022 if (len >= HOST_BITS_PER_WIDE_INT)
6023 break;
6025 /* Now compute the equivalent expression. Make a copy of INNER
6026 for the SET_DEST in case it is a MEM into which we will substitute;
6027 we don't want shared RTL in that case. */
6028 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6029 cleared = simplify_gen_binary (AND, compute_mode,
6030 simplify_gen_unary (NOT, compute_mode,
6031 simplify_gen_binary (ASHIFT,
6032 compute_mode,
6033 mask, pos),
6034 compute_mode),
6035 inner);
6036 masked = simplify_gen_binary (ASHIFT, compute_mode,
6037 simplify_gen_binary (
6038 AND, compute_mode,
6039 gen_lowpart (compute_mode, SET_SRC (x)),
6040 mask),
6041 pos);
6043 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6044 simplify_gen_binary (IOR, compute_mode,
6045 cleared, masked));
6048 return x;
6051 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6052 it is an RTX that represents a variable starting position; otherwise,
6053 POS is the (constant) starting bit position (counted from the LSB).
6055 INNER may be a USE. This will occur when we started with a bitfield
6056 that went outside the boundary of the object in memory, which is
6057 allowed on most machines. To isolate this case, we produce a USE
6058 whose mode is wide enough and surround the MEM with it. The only
6059 code that understands the USE is this routine. If it is not removed,
6060 it will cause the resulting insn not to match.
6062 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6063 signed reference.
6065 IN_DEST is nonzero if this is a reference in the destination of a
6066 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6067 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6068 be used.
6070 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6071 ZERO_EXTRACT should be built even for bits starting at bit 0.
6073 MODE is the desired mode of the result (if IN_DEST == 0).
6075 The result is an RTX for the extraction or NULL_RTX if the target
6076 can't handle it. */
6078 static rtx
6079 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6080 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6081 int in_dest, int in_compare)
6083 /* This mode describes the size of the storage area
6084 to fetch the overall value from. Within that, we
6085 ignore the POS lowest bits, etc. */
6086 enum machine_mode is_mode = GET_MODE (inner);
6087 enum machine_mode inner_mode;
6088 enum machine_mode wanted_inner_mode = byte_mode;
6089 enum machine_mode wanted_inner_reg_mode = word_mode;
6090 enum machine_mode pos_mode = word_mode;
6091 enum machine_mode extraction_mode = word_mode;
6092 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6093 int spans_byte = 0;
6094 rtx new = 0;
6095 rtx orig_pos_rtx = pos_rtx;
6096 HOST_WIDE_INT orig_pos;
6098 /* Get some information about INNER and get the innermost object. */
6099 if (GET_CODE (inner) == USE)
6100 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6101 /* We don't need to adjust the position because we set up the USE
6102 to pretend that it was a full-word object. */
6103 spans_byte = 1, inner = XEXP (inner, 0);
6104 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6106 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6107 consider just the QI as the memory to extract from.
6108 The subreg adds or removes high bits; its mode is
6109 irrelevant to the meaning of this extraction,
6110 since POS and LEN count from the lsb. */
6111 if (MEM_P (SUBREG_REG (inner)))
6112 is_mode = GET_MODE (SUBREG_REG (inner));
6113 inner = SUBREG_REG (inner);
6115 else if (GET_CODE (inner) == ASHIFT
6116 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6117 && pos_rtx == 0 && pos == 0
6118 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6120 /* We're extracting the least significant bits of an rtx
6121 (ashift X (const_int C)), where LEN > C. Extract the
6122 least significant (LEN - C) bits of X, giving an rtx
6123 whose mode is MODE, then shift it left C times. */
6124 new = make_extraction (mode, XEXP (inner, 0),
6125 0, 0, len - INTVAL (XEXP (inner, 1)),
6126 unsignedp, in_dest, in_compare);
6127 if (new != 0)
6128 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6131 inner_mode = GET_MODE (inner);
6133 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6134 pos = INTVAL (pos_rtx), pos_rtx = 0;
6136 /* See if this can be done without an extraction. We never can if the
6137 width of the field is not the same as that of some integer mode. For
6138 registers, we can only avoid the extraction if the position is at the
6139 low-order bit and this is either not in the destination or we have the
6140 appropriate STRICT_LOW_PART operation available.
6142 For MEM, we can avoid an extract if the field starts on an appropriate
6143 boundary and we can change the mode of the memory reference. However,
6144 we cannot directly access the MEM if we have a USE and the underlying
6145 MEM is not TMODE. This combination means that MEM was being used in a
6146 context where bits outside its mode were being referenced; that is only
6147 valid in bit-field insns. */
6149 if (tmode != BLKmode
6150 && ! (spans_byte && inner_mode != tmode)
6151 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6152 && !MEM_P (inner)
6153 && (! in_dest
6154 || (REG_P (inner)
6155 && have_insn_for (STRICT_LOW_PART, tmode))))
6156 || (MEM_P (inner) && pos_rtx == 0
6157 && (pos
6158 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6159 : BITS_PER_UNIT)) == 0
6160 /* We can't do this if we are widening INNER_MODE (it
6161 may not be aligned, for one thing). */
6162 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6163 && (inner_mode == tmode
6164 || (! mode_dependent_address_p (XEXP (inner, 0))
6165 && ! MEM_VOLATILE_P (inner))))))
6167 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6168 field. If the original and current mode are the same, we need not
6169 adjust the offset. Otherwise, we do if bytes big endian.
6171 If INNER is not a MEM, get a piece consisting of just the field
6172 of interest (in this case POS % BITS_PER_WORD must be 0). */
6174 if (MEM_P (inner))
6176 HOST_WIDE_INT offset;
6178 /* POS counts from lsb, but make OFFSET count in memory order. */
6179 if (BYTES_BIG_ENDIAN)
6180 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6181 else
6182 offset = pos / BITS_PER_UNIT;
6184 new = adjust_address_nv (inner, tmode, offset);
6186 else if (REG_P (inner))
6188 if (tmode != inner_mode)
6190 /* We can't call gen_lowpart in a DEST since we
6191 always want a SUBREG (see below) and it would sometimes
6192 return a new hard register. */
6193 if (pos || in_dest)
6195 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6197 if (WORDS_BIG_ENDIAN
6198 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6199 final_word = ((GET_MODE_SIZE (inner_mode)
6200 - GET_MODE_SIZE (tmode))
6201 / UNITS_PER_WORD) - final_word;
6203 final_word *= UNITS_PER_WORD;
6204 if (BYTES_BIG_ENDIAN &&
6205 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6206 final_word += (GET_MODE_SIZE (inner_mode)
6207 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6209 /* Avoid creating invalid subregs, for example when
6210 simplifying (x>>32)&255. */
6211 if (final_word >= GET_MODE_SIZE (inner_mode))
6212 return NULL_RTX;
6214 new = gen_rtx_SUBREG (tmode, inner, final_word);
6216 else
6217 new = gen_lowpart (tmode, inner);
6219 else
6220 new = inner;
6222 else
6223 new = force_to_mode (inner, tmode,
6224 len >= HOST_BITS_PER_WIDE_INT
6225 ? ~(unsigned HOST_WIDE_INT) 0
6226 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6227 NULL_RTX, 0);
6229 /* If this extraction is going into the destination of a SET,
6230 make a STRICT_LOW_PART unless we made a MEM. */
6232 if (in_dest)
6233 return (MEM_P (new) ? new
6234 : (GET_CODE (new) != SUBREG
6235 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6236 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6238 if (mode == tmode)
6239 return new;
6241 if (GET_CODE (new) == CONST_INT)
6242 return gen_int_mode (INTVAL (new), mode);
6244 /* If we know that no extraneous bits are set, and that the high
6245 bit is not set, convert the extraction to the cheaper of
6246 sign and zero extension, that are equivalent in these cases. */
6247 if (flag_expensive_optimizations
6248 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6249 && ((nonzero_bits (new, tmode)
6250 & ~(((unsigned HOST_WIDE_INT)
6251 GET_MODE_MASK (tmode))
6252 >> 1))
6253 == 0)))
6255 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6256 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6258 /* Prefer ZERO_EXTENSION, since it gives more information to
6259 backends. */
6260 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6261 return temp;
6262 return temp1;
6265 /* Otherwise, sign- or zero-extend unless we already are in the
6266 proper mode. */
6268 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6269 mode, new));
6272 /* Unless this is a COMPARE or we have a funny memory reference,
6273 don't do anything with zero-extending field extracts starting at
6274 the low-order bit since they are simple AND operations. */
6275 if (pos_rtx == 0 && pos == 0 && ! in_dest
6276 && ! in_compare && ! spans_byte && unsignedp)
6277 return 0;
6279 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6280 we would be spanning bytes or if the position is not a constant and the
6281 length is not 1. In all other cases, we would only be going outside
6282 our object in cases when an original shift would have been
6283 undefined. */
6284 if (! spans_byte && MEM_P (inner)
6285 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6286 || (pos_rtx != 0 && len != 1)))
6287 return 0;
6289 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6290 and the mode for the result. */
6291 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6293 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6294 pos_mode = mode_for_extraction (EP_insv, 2);
6295 extraction_mode = mode_for_extraction (EP_insv, 3);
6298 if (! in_dest && unsignedp
6299 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6301 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6302 pos_mode = mode_for_extraction (EP_extzv, 3);
6303 extraction_mode = mode_for_extraction (EP_extzv, 0);
6306 if (! in_dest && ! unsignedp
6307 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6309 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6310 pos_mode = mode_for_extraction (EP_extv, 3);
6311 extraction_mode = mode_for_extraction (EP_extv, 0);
6314 /* Never narrow an object, since that might not be safe. */
6316 if (mode != VOIDmode
6317 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6318 extraction_mode = mode;
6320 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6321 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6322 pos_mode = GET_MODE (pos_rtx);
6324 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6325 if we have to change the mode of memory and cannot, the desired mode is
6326 EXTRACTION_MODE. */
6327 if (!MEM_P (inner))
6328 wanted_inner_mode = wanted_inner_reg_mode;
6329 else if (inner_mode != wanted_inner_mode
6330 && (mode_dependent_address_p (XEXP (inner, 0))
6331 || MEM_VOLATILE_P (inner)))
6332 wanted_inner_mode = extraction_mode;
6334 orig_pos = pos;
6336 if (BITS_BIG_ENDIAN)
6338 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6339 BITS_BIG_ENDIAN style. If position is constant, compute new
6340 position. Otherwise, build subtraction.
6341 Note that POS is relative to the mode of the original argument.
6342 If it's a MEM we need to recompute POS relative to that.
6343 However, if we're extracting from (or inserting into) a register,
6344 we want to recompute POS relative to wanted_inner_mode. */
6345 int width = (MEM_P (inner)
6346 ? GET_MODE_BITSIZE (is_mode)
6347 : GET_MODE_BITSIZE (wanted_inner_mode));
6349 if (pos_rtx == 0)
6350 pos = width - len - pos;
6351 else
6352 pos_rtx
6353 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6354 /* POS may be less than 0 now, but we check for that below.
6355 Note that it can only be less than 0 if !MEM_P (inner). */
6358 /* If INNER has a wider mode, make it smaller. If this is a constant
6359 extract, try to adjust the byte to point to the byte containing
6360 the value. */
6361 if (wanted_inner_mode != VOIDmode
6362 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6363 && ((MEM_P (inner)
6364 && (inner_mode == wanted_inner_mode
6365 || (! mode_dependent_address_p (XEXP (inner, 0))
6366 && ! MEM_VOLATILE_P (inner))))))
6368 int offset = 0;
6370 /* The computations below will be correct if the machine is big
6371 endian in both bits and bytes or little endian in bits and bytes.
6372 If it is mixed, we must adjust. */
6374 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6375 adjust OFFSET to compensate. */
6376 if (BYTES_BIG_ENDIAN
6377 && ! spans_byte
6378 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6379 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6381 /* If this is a constant position, we can move to the desired byte. */
6382 if (pos_rtx == 0)
6384 offset += pos / BITS_PER_UNIT;
6385 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6388 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6389 && ! spans_byte
6390 && is_mode != wanted_inner_mode)
6391 offset = (GET_MODE_SIZE (is_mode)
6392 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6394 if (offset != 0 || inner_mode != wanted_inner_mode)
6395 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6398 /* If INNER is not memory, we can always get it into the proper mode. If we
6399 are changing its mode, POS must be a constant and smaller than the size
6400 of the new mode. */
6401 else if (!MEM_P (inner))
6403 if (GET_MODE (inner) != wanted_inner_mode
6404 && (pos_rtx != 0
6405 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6406 return 0;
6408 inner = force_to_mode (inner, wanted_inner_mode,
6409 pos_rtx
6410 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6411 ? ~(unsigned HOST_WIDE_INT) 0
6412 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6413 << orig_pos),
6414 NULL_RTX, 0);
6417 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6418 have to zero extend. Otherwise, we can just use a SUBREG. */
6419 if (pos_rtx != 0
6420 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6422 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6424 /* If we know that no extraneous bits are set, and that the high
6425 bit is not set, convert extraction to cheaper one - either
6426 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6427 cases. */
6428 if (flag_expensive_optimizations
6429 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6430 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6431 & ~(((unsigned HOST_WIDE_INT)
6432 GET_MODE_MASK (GET_MODE (pos_rtx)))
6433 >> 1))
6434 == 0)))
6436 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6438 /* Prefer ZERO_EXTENSION, since it gives more information to
6439 backends. */
6440 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6441 temp = temp1;
6443 pos_rtx = temp;
6445 else if (pos_rtx != 0
6446 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6447 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6449 /* Make POS_RTX unless we already have it and it is correct. If we don't
6450 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6451 be a CONST_INT. */
6452 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6453 pos_rtx = orig_pos_rtx;
6455 else if (pos_rtx == 0)
6456 pos_rtx = GEN_INT (pos);
6458 /* Make the required operation. See if we can use existing rtx. */
6459 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6460 extraction_mode, inner, GEN_INT (len), pos_rtx);
6461 if (! in_dest)
6462 new = gen_lowpart (mode, new);
6464 return new;
6467 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6468 with any other operations in X. Return X without that shift if so. */
6470 static rtx
6471 extract_left_shift (rtx x, int count)
6473 enum rtx_code code = GET_CODE (x);
6474 enum machine_mode mode = GET_MODE (x);
6475 rtx tem;
6477 switch (code)
6479 case ASHIFT:
6480 /* This is the shift itself. If it is wide enough, we will return
6481 either the value being shifted if the shift count is equal to
6482 COUNT or a shift for the difference. */
6483 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6484 && INTVAL (XEXP (x, 1)) >= count)
6485 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6486 INTVAL (XEXP (x, 1)) - count);
6487 break;
6489 case NEG: case NOT:
6490 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6491 return simplify_gen_unary (code, mode, tem, mode);
6493 break;
6495 case PLUS: case IOR: case XOR: case AND:
6496 /* If we can safely shift this constant and we find the inner shift,
6497 make a new operation. */
6498 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6499 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6500 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6501 return simplify_gen_binary (code, mode, tem,
6502 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6504 break;
6506 default:
6507 break;
6510 return 0;
6513 /* Look at the expression rooted at X. Look for expressions
6514 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6515 Form these expressions.
6517 Return the new rtx, usually just X.
6519 Also, for machines like the VAX that don't have logical shift insns,
6520 try to convert logical to arithmetic shift operations in cases where
6521 they are equivalent. This undoes the canonicalizations to logical
6522 shifts done elsewhere.
6524 We try, as much as possible, to re-use rtl expressions to save memory.
6526 IN_CODE says what kind of expression we are processing. Normally, it is
6527 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6528 being kludges), it is MEM. When processing the arguments of a comparison
6529 or a COMPARE against zero, it is COMPARE. */
6531 static rtx
6532 make_compound_operation (rtx x, enum rtx_code in_code)
6534 enum rtx_code code = GET_CODE (x);
6535 enum machine_mode mode = GET_MODE (x);
6536 int mode_width = GET_MODE_BITSIZE (mode);
6537 rtx rhs, lhs;
6538 enum rtx_code next_code;
6539 int i;
6540 rtx new = 0;
6541 rtx tem;
6542 const char *fmt;
6544 /* Select the code to be used in recursive calls. Once we are inside an
6545 address, we stay there. If we have a comparison, set to COMPARE,
6546 but once inside, go back to our default of SET. */
6548 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6549 : ((code == COMPARE || COMPARISON_P (x))
6550 && XEXP (x, 1) == const0_rtx) ? COMPARE
6551 : in_code == COMPARE ? SET : in_code);
6553 /* Process depending on the code of this operation. If NEW is set
6554 nonzero, it will be returned. */
6556 switch (code)
6558 case ASHIFT:
6559 /* Convert shifts by constants into multiplications if inside
6560 an address. */
6561 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6562 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6563 && INTVAL (XEXP (x, 1)) >= 0)
6565 new = make_compound_operation (XEXP (x, 0), next_code);
6566 new = gen_rtx_MULT (mode, new,
6567 GEN_INT ((HOST_WIDE_INT) 1
6568 << INTVAL (XEXP (x, 1))));
6570 break;
6572 case AND:
6573 /* If the second operand is not a constant, we can't do anything
6574 with it. */
6575 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6576 break;
6578 /* If the constant is a power of two minus one and the first operand
6579 is a logical right shift, make an extraction. */
6580 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6581 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6583 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6584 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6585 0, in_code == COMPARE);
6588 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6589 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6590 && subreg_lowpart_p (XEXP (x, 0))
6591 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6592 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6594 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6595 next_code);
6596 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6597 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6598 0, in_code == COMPARE);
6600 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6601 else if ((GET_CODE (XEXP (x, 0)) == XOR
6602 || GET_CODE (XEXP (x, 0)) == IOR)
6603 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6604 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6605 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6607 /* Apply the distributive law, and then try to make extractions. */
6608 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6609 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6610 XEXP (x, 1)),
6611 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6612 XEXP (x, 1)));
6613 new = make_compound_operation (new, in_code);
6616 /* If we are have (and (rotate X C) M) and C is larger than the number
6617 of bits in M, this is an extraction. */
6619 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6620 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6621 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6622 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6624 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6625 new = make_extraction (mode, new,
6626 (GET_MODE_BITSIZE (mode)
6627 - INTVAL (XEXP (XEXP (x, 0), 1))),
6628 NULL_RTX, i, 1, 0, in_code == COMPARE);
6631 /* On machines without logical shifts, if the operand of the AND is
6632 a logical shift and our mask turns off all the propagated sign
6633 bits, we can replace the logical shift with an arithmetic shift. */
6634 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6635 && !have_insn_for (LSHIFTRT, mode)
6636 && have_insn_for (ASHIFTRT, mode)
6637 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6638 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6639 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6640 && mode_width <= HOST_BITS_PER_WIDE_INT)
6642 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6644 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6645 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6646 SUBST (XEXP (x, 0),
6647 gen_rtx_ASHIFTRT (mode,
6648 make_compound_operation
6649 (XEXP (XEXP (x, 0), 0), next_code),
6650 XEXP (XEXP (x, 0), 1)));
6653 /* If the constant is one less than a power of two, this might be
6654 representable by an extraction even if no shift is present.
6655 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6656 we are in a COMPARE. */
6657 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6658 new = make_extraction (mode,
6659 make_compound_operation (XEXP (x, 0),
6660 next_code),
6661 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6663 /* If we are in a comparison and this is an AND with a power of two,
6664 convert this into the appropriate bit extract. */
6665 else if (in_code == COMPARE
6666 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6667 new = make_extraction (mode,
6668 make_compound_operation (XEXP (x, 0),
6669 next_code),
6670 i, NULL_RTX, 1, 1, 0, 1);
6672 break;
6674 case LSHIFTRT:
6675 /* If the sign bit is known to be zero, replace this with an
6676 arithmetic shift. */
6677 if (have_insn_for (ASHIFTRT, mode)
6678 && ! have_insn_for (LSHIFTRT, mode)
6679 && mode_width <= HOST_BITS_PER_WIDE_INT
6680 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6682 new = gen_rtx_ASHIFTRT (mode,
6683 make_compound_operation (XEXP (x, 0),
6684 next_code),
6685 XEXP (x, 1));
6686 break;
6689 /* ... fall through ... */
6691 case ASHIFTRT:
6692 lhs = XEXP (x, 0);
6693 rhs = XEXP (x, 1);
6695 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6696 this is a SIGN_EXTRACT. */
6697 if (GET_CODE (rhs) == CONST_INT
6698 && GET_CODE (lhs) == ASHIFT
6699 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6700 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6702 new = make_compound_operation (XEXP (lhs, 0), next_code);
6703 new = make_extraction (mode, new,
6704 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6705 NULL_RTX, mode_width - INTVAL (rhs),
6706 code == LSHIFTRT, 0, in_code == COMPARE);
6707 break;
6710 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6711 If so, try to merge the shifts into a SIGN_EXTEND. We could
6712 also do this for some cases of SIGN_EXTRACT, but it doesn't
6713 seem worth the effort; the case checked for occurs on Alpha. */
6715 if (!OBJECT_P (lhs)
6716 && ! (GET_CODE (lhs) == SUBREG
6717 && (OBJECT_P (SUBREG_REG (lhs))))
6718 && GET_CODE (rhs) == CONST_INT
6719 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6720 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6721 new = make_extraction (mode, make_compound_operation (new, next_code),
6722 0, NULL_RTX, mode_width - INTVAL (rhs),
6723 code == LSHIFTRT, 0, in_code == COMPARE);
6725 break;
6727 case SUBREG:
6728 /* Call ourselves recursively on the inner expression. If we are
6729 narrowing the object and it has a different RTL code from
6730 what it originally did, do this SUBREG as a force_to_mode. */
6732 tem = make_compound_operation (SUBREG_REG (x), in_code);
6733 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6734 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6735 && subreg_lowpart_p (x))
6737 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6738 NULL_RTX, 0);
6740 /* If we have something other than a SUBREG, we might have
6741 done an expansion, so rerun ourselves. */
6742 if (GET_CODE (newer) != SUBREG)
6743 newer = make_compound_operation (newer, in_code);
6745 return newer;
6748 /* If this is a paradoxical subreg, and the new code is a sign or
6749 zero extension, omit the subreg and widen the extension. If it
6750 is a regular subreg, we can still get rid of the subreg by not
6751 widening so much, or in fact removing the extension entirely. */
6752 if ((GET_CODE (tem) == SIGN_EXTEND
6753 || GET_CODE (tem) == ZERO_EXTEND)
6754 && subreg_lowpart_p (x))
6756 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6757 || (GET_MODE_SIZE (mode) >
6758 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6760 if (! SCALAR_INT_MODE_P (mode))
6761 break;
6762 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6764 else
6765 tem = gen_lowpart (mode, XEXP (tem, 0));
6766 return tem;
6768 break;
6770 default:
6771 break;
6774 if (new)
6776 x = gen_lowpart (mode, new);
6777 code = GET_CODE (x);
6780 /* Now recursively process each operand of this operation. */
6781 fmt = GET_RTX_FORMAT (code);
6782 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6783 if (fmt[i] == 'e')
6785 new = make_compound_operation (XEXP (x, i), next_code);
6786 SUBST (XEXP (x, i), new);
6789 return x;
6792 /* Given M see if it is a value that would select a field of bits
6793 within an item, but not the entire word. Return -1 if not.
6794 Otherwise, return the starting position of the field, where 0 is the
6795 low-order bit.
6797 *PLEN is set to the length of the field. */
6799 static int
6800 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6802 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6803 int pos = exact_log2 (m & -m);
6804 int len = 0;
6806 if (pos >= 0)
6807 /* Now shift off the low-order zero bits and see if we have a
6808 power of two minus 1. */
6809 len = exact_log2 ((m >> pos) + 1);
6811 if (len <= 0)
6812 pos = -1;
6814 *plen = len;
6815 return pos;
6818 /* See if X can be simplified knowing that we will only refer to it in
6819 MODE and will only refer to those bits that are nonzero in MASK.
6820 If other bits are being computed or if masking operations are done
6821 that select a superset of the bits in MASK, they can sometimes be
6822 ignored.
6824 Return a possibly simplified expression, but always convert X to
6825 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6827 Also, if REG is nonzero and X is a register equal in value to REG,
6828 replace X with REG.
6830 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6831 are all off in X. This is used when X will be complemented, by either
6832 NOT, NEG, or XOR. */
6834 static rtx
6835 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6836 rtx reg, int just_select)
6838 enum rtx_code code = GET_CODE (x);
6839 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6840 enum machine_mode op_mode;
6841 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6842 rtx op0, op1, temp;
6844 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6845 code below will do the wrong thing since the mode of such an
6846 expression is VOIDmode.
6848 Also do nothing if X is a CLOBBER; this can happen if X was
6849 the return value from a call to gen_lowpart. */
6850 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6851 return x;
6853 /* We want to perform the operation is its present mode unless we know
6854 that the operation is valid in MODE, in which case we do the operation
6855 in MODE. */
6856 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6857 && have_insn_for (code, mode))
6858 ? mode : GET_MODE (x));
6860 /* It is not valid to do a right-shift in a narrower mode
6861 than the one it came in with. */
6862 if ((code == LSHIFTRT || code == ASHIFTRT)
6863 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6864 op_mode = GET_MODE (x);
6866 /* Truncate MASK to fit OP_MODE. */
6867 if (op_mode)
6868 mask &= GET_MODE_MASK (op_mode);
6870 /* When we have an arithmetic operation, or a shift whose count we
6871 do not know, we need to assume that all bits up to the highest-order
6872 bit in MASK will be needed. This is how we form such a mask. */
6873 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6874 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6875 else
6876 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6877 - 1);
6879 /* Determine what bits of X are guaranteed to be (non)zero. */
6880 nonzero = nonzero_bits (x, mode);
6882 /* If none of the bits in X are needed, return a zero. */
6883 if (! just_select && (nonzero & mask) == 0)
6884 x = const0_rtx;
6886 /* If X is a CONST_INT, return a new one. Do this here since the
6887 test below will fail. */
6888 if (GET_CODE (x) == CONST_INT)
6890 if (SCALAR_INT_MODE_P (mode))
6891 return gen_int_mode (INTVAL (x) & mask, mode);
6892 else
6894 x = GEN_INT (INTVAL (x) & mask);
6895 return gen_lowpart_common (mode, x);
6899 /* If X is narrower than MODE and we want all the bits in X's mode, just
6900 get X in the proper mode. */
6901 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6902 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6903 return gen_lowpart (mode, x);
6905 switch (code)
6907 case CLOBBER:
6908 /* If X is a (clobber (const_int)), return it since we know we are
6909 generating something that won't match. */
6910 return x;
6912 case USE:
6913 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6914 spanned the boundary of the MEM. If we are now masking so it is
6915 within that boundary, we don't need the USE any more. */
6916 if (! BITS_BIG_ENDIAN
6917 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6918 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6919 break;
6921 case SIGN_EXTEND:
6922 case ZERO_EXTEND:
6923 case ZERO_EXTRACT:
6924 case SIGN_EXTRACT:
6925 x = expand_compound_operation (x);
6926 if (GET_CODE (x) != code)
6927 return force_to_mode (x, mode, mask, reg, next_select);
6928 break;
6930 case REG:
6931 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6932 || rtx_equal_p (reg, get_last_value (x))))
6933 x = reg;
6934 break;
6936 case SUBREG:
6937 if (subreg_lowpart_p (x)
6938 /* We can ignore the effect of this SUBREG if it narrows the mode or
6939 if the constant masks to zero all the bits the mode doesn't
6940 have. */
6941 && ((GET_MODE_SIZE (GET_MODE (x))
6942 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6943 || (0 == (mask
6944 & GET_MODE_MASK (GET_MODE (x))
6945 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6946 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6947 break;
6949 case AND:
6950 /* If this is an AND with a constant, convert it into an AND
6951 whose constant is the AND of that constant with MASK. If it
6952 remains an AND of MASK, delete it since it is redundant. */
6954 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6956 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6957 mask & INTVAL (XEXP (x, 1)));
6959 /* If X is still an AND, see if it is an AND with a mask that
6960 is just some low-order bits. If so, and it is MASK, we don't
6961 need it. */
6963 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6964 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6965 == mask))
6966 x = XEXP (x, 0);
6968 /* If it remains an AND, try making another AND with the bits
6969 in the mode mask that aren't in MASK turned on. If the
6970 constant in the AND is wide enough, this might make a
6971 cheaper constant. */
6973 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6974 && GET_MODE_MASK (GET_MODE (x)) != mask
6975 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6977 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6978 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6979 int width = GET_MODE_BITSIZE (GET_MODE (x));
6980 rtx y;
6982 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6983 number, sign extend it. */
6984 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6985 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6986 cval |= (HOST_WIDE_INT) -1 << width;
6988 y = simplify_gen_binary (AND, GET_MODE (x),
6989 XEXP (x, 0), GEN_INT (cval));
6990 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6991 x = y;
6994 break;
6997 goto binop;
6999 case PLUS:
7000 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7001 low-order bits (as in an alignment operation) and FOO is already
7002 aligned to that boundary, mask C1 to that boundary as well.
7003 This may eliminate that PLUS and, later, the AND. */
7006 unsigned int width = GET_MODE_BITSIZE (mode);
7007 unsigned HOST_WIDE_INT smask = mask;
7009 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7010 number, sign extend it. */
7012 if (width < HOST_BITS_PER_WIDE_INT
7013 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7014 smask |= (HOST_WIDE_INT) -1 << width;
7016 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7017 && exact_log2 (- smask) >= 0
7018 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7019 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7020 return force_to_mode (plus_constant (XEXP (x, 0),
7021 (INTVAL (XEXP (x, 1)) & smask)),
7022 mode, smask, reg, next_select);
7025 /* ... fall through ... */
7027 case MULT:
7028 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7029 most significant bit in MASK since carries from those bits will
7030 affect the bits we are interested in. */
7031 mask = fuller_mask;
7032 goto binop;
7034 case MINUS:
7035 /* If X is (minus C Y) where C's least set bit is larger than any bit
7036 in the mask, then we may replace with (neg Y). */
7037 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7038 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7039 & -INTVAL (XEXP (x, 0))))
7040 > mask))
7042 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7043 GET_MODE (x));
7044 return force_to_mode (x, mode, mask, reg, next_select);
7047 /* Similarly, if C contains every bit in the fuller_mask, then we may
7048 replace with (not Y). */
7049 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7050 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7051 == INTVAL (XEXP (x, 0))))
7053 x = simplify_gen_unary (NOT, GET_MODE (x),
7054 XEXP (x, 1), GET_MODE (x));
7055 return force_to_mode (x, mode, mask, reg, next_select);
7058 mask = fuller_mask;
7059 goto binop;
7061 case IOR:
7062 case XOR:
7063 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7064 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7065 operation which may be a bitfield extraction. Ensure that the
7066 constant we form is not wider than the mode of X. */
7068 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7069 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7070 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7071 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7072 && GET_CODE (XEXP (x, 1)) == CONST_INT
7073 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7074 + floor_log2 (INTVAL (XEXP (x, 1))))
7075 < GET_MODE_BITSIZE (GET_MODE (x)))
7076 && (INTVAL (XEXP (x, 1))
7077 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7079 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7080 << INTVAL (XEXP (XEXP (x, 0), 1)));
7081 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7082 XEXP (XEXP (x, 0), 0), temp);
7083 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7084 XEXP (XEXP (x, 0), 1));
7085 return force_to_mode (x, mode, mask, reg, next_select);
7088 binop:
7089 /* For most binary operations, just propagate into the operation and
7090 change the mode if we have an operation of that mode. */
7092 op0 = gen_lowpart (op_mode,
7093 force_to_mode (XEXP (x, 0), mode, mask,
7094 reg, next_select));
7095 op1 = gen_lowpart (op_mode,
7096 force_to_mode (XEXP (x, 1), mode, mask,
7097 reg, next_select));
7099 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7100 x = simplify_gen_binary (code, op_mode, op0, op1);
7101 break;
7103 case ASHIFT:
7104 /* For left shifts, do the same, but just for the first operand.
7105 However, we cannot do anything with shifts where we cannot
7106 guarantee that the counts are smaller than the size of the mode
7107 because such a count will have a different meaning in a
7108 wider mode. */
7110 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7111 && INTVAL (XEXP (x, 1)) >= 0
7112 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7113 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7114 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7115 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7116 break;
7118 /* If the shift count is a constant and we can do arithmetic in
7119 the mode of the shift, refine which bits we need. Otherwise, use the
7120 conservative form of the mask. */
7121 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7122 && INTVAL (XEXP (x, 1)) >= 0
7123 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7124 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7125 mask >>= INTVAL (XEXP (x, 1));
7126 else
7127 mask = fuller_mask;
7129 op0 = gen_lowpart (op_mode,
7130 force_to_mode (XEXP (x, 0), op_mode,
7131 mask, reg, next_select));
7133 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7134 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7135 break;
7137 case LSHIFTRT:
7138 /* Here we can only do something if the shift count is a constant,
7139 this shift constant is valid for the host, and we can do arithmetic
7140 in OP_MODE. */
7142 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7143 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7144 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7146 rtx inner = XEXP (x, 0);
7147 unsigned HOST_WIDE_INT inner_mask;
7149 /* Select the mask of the bits we need for the shift operand. */
7150 inner_mask = mask << INTVAL (XEXP (x, 1));
7152 /* We can only change the mode of the shift if we can do arithmetic
7153 in the mode of the shift and INNER_MASK is no wider than the
7154 width of X's mode. */
7155 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7156 op_mode = GET_MODE (x);
7158 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7160 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7161 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7164 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7165 shift and AND produces only copies of the sign bit (C2 is one less
7166 than a power of two), we can do this with just a shift. */
7168 if (GET_CODE (x) == LSHIFTRT
7169 && GET_CODE (XEXP (x, 1)) == CONST_INT
7170 /* The shift puts one of the sign bit copies in the least significant
7171 bit. */
7172 && ((INTVAL (XEXP (x, 1))
7173 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7174 >= GET_MODE_BITSIZE (GET_MODE (x)))
7175 && exact_log2 (mask + 1) >= 0
7176 /* Number of bits left after the shift must be more than the mask
7177 needs. */
7178 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7179 <= GET_MODE_BITSIZE (GET_MODE (x)))
7180 /* Must be more sign bit copies than the mask needs. */
7181 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7182 >= exact_log2 (mask + 1)))
7183 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7184 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7185 - exact_log2 (mask + 1)));
7187 goto shiftrt;
7189 case ASHIFTRT:
7190 /* If we are just looking for the sign bit, we don't need this shift at
7191 all, even if it has a variable count. */
7192 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7193 && (mask == ((unsigned HOST_WIDE_INT) 1
7194 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7195 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7197 /* If this is a shift by a constant, get a mask that contains those bits
7198 that are not copies of the sign bit. We then have two cases: If
7199 MASK only includes those bits, this can be a logical shift, which may
7200 allow simplifications. If MASK is a single-bit field not within
7201 those bits, we are requesting a copy of the sign bit and hence can
7202 shift the sign bit to the appropriate location. */
7204 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7205 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7207 int i = -1;
7209 /* If the considered data is wider than HOST_WIDE_INT, we can't
7210 represent a mask for all its bits in a single scalar.
7211 But we only care about the lower bits, so calculate these. */
7213 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7215 nonzero = ~(HOST_WIDE_INT) 0;
7217 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7218 is the number of bits a full-width mask would have set.
7219 We need only shift if these are fewer than nonzero can
7220 hold. If not, we must keep all bits set in nonzero. */
7222 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7223 < HOST_BITS_PER_WIDE_INT)
7224 nonzero >>= INTVAL (XEXP (x, 1))
7225 + HOST_BITS_PER_WIDE_INT
7226 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7228 else
7230 nonzero = GET_MODE_MASK (GET_MODE (x));
7231 nonzero >>= INTVAL (XEXP (x, 1));
7234 if ((mask & ~nonzero) == 0
7235 || (i = exact_log2 (mask)) >= 0)
7237 x = simplify_shift_const
7238 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7239 i < 0 ? INTVAL (XEXP (x, 1))
7240 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7242 if (GET_CODE (x) != ASHIFTRT)
7243 return force_to_mode (x, mode, mask, reg, next_select);
7247 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7248 even if the shift count isn't a constant. */
7249 if (mask == 1)
7250 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7251 XEXP (x, 0), XEXP (x, 1));
7253 shiftrt:
7255 /* If this is a zero- or sign-extension operation that just affects bits
7256 we don't care about, remove it. Be sure the call above returned
7257 something that is still a shift. */
7259 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7260 && GET_CODE (XEXP (x, 1)) == CONST_INT
7261 && INTVAL (XEXP (x, 1)) >= 0
7262 && (INTVAL (XEXP (x, 1))
7263 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7264 && GET_CODE (XEXP (x, 0)) == ASHIFT
7265 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7266 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7267 reg, next_select);
7269 break;
7271 case ROTATE:
7272 case ROTATERT:
7273 /* If the shift count is constant and we can do computations
7274 in the mode of X, compute where the bits we care about are.
7275 Otherwise, we can't do anything. Don't change the mode of
7276 the shift or propagate MODE into the shift, though. */
7277 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7278 && INTVAL (XEXP (x, 1)) >= 0)
7280 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7281 GET_MODE (x), GEN_INT (mask),
7282 XEXP (x, 1));
7283 if (temp && GET_CODE (temp) == CONST_INT)
7284 SUBST (XEXP (x, 0),
7285 force_to_mode (XEXP (x, 0), GET_MODE (x),
7286 INTVAL (temp), reg, next_select));
7288 break;
7290 case NEG:
7291 /* If we just want the low-order bit, the NEG isn't needed since it
7292 won't change the low-order bit. */
7293 if (mask == 1)
7294 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7296 /* We need any bits less significant than the most significant bit in
7297 MASK since carries from those bits will affect the bits we are
7298 interested in. */
7299 mask = fuller_mask;
7300 goto unop;
7302 case NOT:
7303 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7304 same as the XOR case above. Ensure that the constant we form is not
7305 wider than the mode of X. */
7307 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7308 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7309 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7310 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7311 < GET_MODE_BITSIZE (GET_MODE (x)))
7312 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7314 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7315 GET_MODE (x));
7316 temp = simplify_gen_binary (XOR, GET_MODE (x),
7317 XEXP (XEXP (x, 0), 0), temp);
7318 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7319 temp, XEXP (XEXP (x, 0), 1));
7321 return force_to_mode (x, mode, mask, reg, next_select);
7324 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7325 use the full mask inside the NOT. */
7326 mask = fuller_mask;
7328 unop:
7329 op0 = gen_lowpart (op_mode,
7330 force_to_mode (XEXP (x, 0), mode, mask,
7331 reg, next_select));
7332 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7333 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7334 break;
7336 case NE:
7337 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7338 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7339 which is equal to STORE_FLAG_VALUE. */
7340 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7341 && GET_MODE (XEXP (x, 0)) == mode
7342 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7343 && (nonzero_bits (XEXP (x, 0), mode)
7344 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7345 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7347 break;
7349 case IF_THEN_ELSE:
7350 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7351 written in a narrower mode. We play it safe and do not do so. */
7353 SUBST (XEXP (x, 1),
7354 gen_lowpart (GET_MODE (x),
7355 force_to_mode (XEXP (x, 1), mode,
7356 mask, reg, next_select)));
7357 SUBST (XEXP (x, 2),
7358 gen_lowpart (GET_MODE (x),
7359 force_to_mode (XEXP (x, 2), mode,
7360 mask, reg, next_select)));
7361 break;
7363 default:
7364 break;
7367 /* Ensure we return a value of the proper mode. */
7368 return gen_lowpart (mode, x);
7371 /* Return nonzero if X is an expression that has one of two values depending on
7372 whether some other value is zero or nonzero. In that case, we return the
7373 value that is being tested, *PTRUE is set to the value if the rtx being
7374 returned has a nonzero value, and *PFALSE is set to the other alternative.
7376 If we return zero, we set *PTRUE and *PFALSE to X. */
7378 static rtx
7379 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7381 enum machine_mode mode = GET_MODE (x);
7382 enum rtx_code code = GET_CODE (x);
7383 rtx cond0, cond1, true0, true1, false0, false1;
7384 unsigned HOST_WIDE_INT nz;
7386 /* If we are comparing a value against zero, we are done. */
7387 if ((code == NE || code == EQ)
7388 && XEXP (x, 1) == const0_rtx)
7390 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7391 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7392 return XEXP (x, 0);
7395 /* If this is a unary operation whose operand has one of two values, apply
7396 our opcode to compute those values. */
7397 else if (UNARY_P (x)
7398 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7400 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7401 *pfalse = simplify_gen_unary (code, mode, false0,
7402 GET_MODE (XEXP (x, 0)));
7403 return cond0;
7406 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7407 make can't possibly match and would suppress other optimizations. */
7408 else if (code == COMPARE)
7411 /* If this is a binary operation, see if either side has only one of two
7412 values. If either one does or if both do and they are conditional on
7413 the same value, compute the new true and false values. */
7414 else if (BINARY_P (x))
7416 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7417 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7419 if ((cond0 != 0 || cond1 != 0)
7420 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7422 /* If if_then_else_cond returned zero, then true/false are the
7423 same rtl. We must copy one of them to prevent invalid rtl
7424 sharing. */
7425 if (cond0 == 0)
7426 true0 = copy_rtx (true0);
7427 else if (cond1 == 0)
7428 true1 = copy_rtx (true1);
7430 if (COMPARISON_P (x))
7432 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7433 true0, true1);
7434 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7435 false0, false1);
7437 else
7439 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7440 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7443 return cond0 ? cond0 : cond1;
7446 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7447 operands is zero when the other is nonzero, and vice-versa,
7448 and STORE_FLAG_VALUE is 1 or -1. */
7450 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7451 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7452 || code == UMAX)
7453 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7455 rtx op0 = XEXP (XEXP (x, 0), 1);
7456 rtx op1 = XEXP (XEXP (x, 1), 1);
7458 cond0 = XEXP (XEXP (x, 0), 0);
7459 cond1 = XEXP (XEXP (x, 1), 0);
7461 if (COMPARISON_P (cond0)
7462 && COMPARISON_P (cond1)
7463 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7464 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7465 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7466 || ((swap_condition (GET_CODE (cond0))
7467 == reversed_comparison_code (cond1, NULL))
7468 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7469 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7470 && ! side_effects_p (x))
7472 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7473 *pfalse = simplify_gen_binary (MULT, mode,
7474 (code == MINUS
7475 ? simplify_gen_unary (NEG, mode,
7476 op1, mode)
7477 : op1),
7478 const_true_rtx);
7479 return cond0;
7483 /* Similarly for MULT, AND and UMIN, except that for these the result
7484 is always zero. */
7485 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7486 && (code == MULT || code == AND || code == UMIN)
7487 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7489 cond0 = XEXP (XEXP (x, 0), 0);
7490 cond1 = XEXP (XEXP (x, 1), 0);
7492 if (COMPARISON_P (cond0)
7493 && COMPARISON_P (cond1)
7494 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7495 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7496 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7497 || ((swap_condition (GET_CODE (cond0))
7498 == reversed_comparison_code (cond1, NULL))
7499 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7500 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7501 && ! side_effects_p (x))
7503 *ptrue = *pfalse = const0_rtx;
7504 return cond0;
7509 else if (code == IF_THEN_ELSE)
7511 /* If we have IF_THEN_ELSE already, extract the condition and
7512 canonicalize it if it is NE or EQ. */
7513 cond0 = XEXP (x, 0);
7514 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7515 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7516 return XEXP (cond0, 0);
7517 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7519 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7520 return XEXP (cond0, 0);
7522 else
7523 return cond0;
7526 /* If X is a SUBREG, we can narrow both the true and false values
7527 if the inner expression, if there is a condition. */
7528 else if (code == SUBREG
7529 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7530 &true0, &false0)))
7532 true0 = simplify_gen_subreg (mode, true0,
7533 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7534 false0 = simplify_gen_subreg (mode, false0,
7535 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7536 if (true0 && false0)
7538 *ptrue = true0;
7539 *pfalse = false0;
7540 return cond0;
7544 /* If X is a constant, this isn't special and will cause confusions
7545 if we treat it as such. Likewise if it is equivalent to a constant. */
7546 else if (CONSTANT_P (x)
7547 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7550 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7551 will be least confusing to the rest of the compiler. */
7552 else if (mode == BImode)
7554 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7555 return x;
7558 /* If X is known to be either 0 or -1, those are the true and
7559 false values when testing X. */
7560 else if (x == constm1_rtx || x == const0_rtx
7561 || (mode != VOIDmode
7562 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7564 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7565 return x;
7568 /* Likewise for 0 or a single bit. */
7569 else if (SCALAR_INT_MODE_P (mode)
7570 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7571 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7573 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7574 return x;
7577 /* Otherwise fail; show no condition with true and false values the same. */
7578 *ptrue = *pfalse = x;
7579 return 0;
7582 /* Return the value of expression X given the fact that condition COND
7583 is known to be true when applied to REG as its first operand and VAL
7584 as its second. X is known to not be shared and so can be modified in
7585 place.
7587 We only handle the simplest cases, and specifically those cases that
7588 arise with IF_THEN_ELSE expressions. */
7590 static rtx
7591 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7593 enum rtx_code code = GET_CODE (x);
7594 rtx temp;
7595 const char *fmt;
7596 int i, j;
7598 if (side_effects_p (x))
7599 return x;
7601 /* If either operand of the condition is a floating point value,
7602 then we have to avoid collapsing an EQ comparison. */
7603 if (cond == EQ
7604 && rtx_equal_p (x, reg)
7605 && ! FLOAT_MODE_P (GET_MODE (x))
7606 && ! FLOAT_MODE_P (GET_MODE (val)))
7607 return val;
7609 if (cond == UNEQ && rtx_equal_p (x, reg))
7610 return val;
7612 /* If X is (abs REG) and we know something about REG's relationship
7613 with zero, we may be able to simplify this. */
7615 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7616 switch (cond)
7618 case GE: case GT: case EQ:
7619 return XEXP (x, 0);
7620 case LT: case LE:
7621 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7622 XEXP (x, 0),
7623 GET_MODE (XEXP (x, 0)));
7624 default:
7625 break;
7628 /* The only other cases we handle are MIN, MAX, and comparisons if the
7629 operands are the same as REG and VAL. */
7631 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7633 if (rtx_equal_p (XEXP (x, 0), val))
7634 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7636 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7638 if (COMPARISON_P (x))
7640 if (comparison_dominates_p (cond, code))
7641 return const_true_rtx;
7643 code = reversed_comparison_code (x, NULL);
7644 if (code != UNKNOWN
7645 && comparison_dominates_p (cond, code))
7646 return const0_rtx;
7647 else
7648 return x;
7650 else if (code == SMAX || code == SMIN
7651 || code == UMIN || code == UMAX)
7653 int unsignedp = (code == UMIN || code == UMAX);
7655 /* Do not reverse the condition when it is NE or EQ.
7656 This is because we cannot conclude anything about
7657 the value of 'SMAX (x, y)' when x is not equal to y,
7658 but we can when x equals y. */
7659 if ((code == SMAX || code == UMAX)
7660 && ! (cond == EQ || cond == NE))
7661 cond = reverse_condition (cond);
7663 switch (cond)
7665 case GE: case GT:
7666 return unsignedp ? x : XEXP (x, 1);
7667 case LE: case LT:
7668 return unsignedp ? x : XEXP (x, 0);
7669 case GEU: case GTU:
7670 return unsignedp ? XEXP (x, 1) : x;
7671 case LEU: case LTU:
7672 return unsignedp ? XEXP (x, 0) : x;
7673 default:
7674 break;
7679 else if (code == SUBREG)
7681 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7682 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7684 if (SUBREG_REG (x) != r)
7686 /* We must simplify subreg here, before we lose track of the
7687 original inner_mode. */
7688 new = simplify_subreg (GET_MODE (x), r,
7689 inner_mode, SUBREG_BYTE (x));
7690 if (new)
7691 return new;
7692 else
7693 SUBST (SUBREG_REG (x), r);
7696 return x;
7698 /* We don't have to handle SIGN_EXTEND here, because even in the
7699 case of replacing something with a modeless CONST_INT, a
7700 CONST_INT is already (supposed to be) a valid sign extension for
7701 its narrower mode, which implies it's already properly
7702 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7703 story is different. */
7704 else if (code == ZERO_EXTEND)
7706 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7707 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7709 if (XEXP (x, 0) != r)
7711 /* We must simplify the zero_extend here, before we lose
7712 track of the original inner_mode. */
7713 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7714 r, inner_mode);
7715 if (new)
7716 return new;
7717 else
7718 SUBST (XEXP (x, 0), r);
7721 return x;
7724 fmt = GET_RTX_FORMAT (code);
7725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7727 if (fmt[i] == 'e')
7728 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7729 else if (fmt[i] == 'E')
7730 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7731 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7732 cond, reg, val));
7735 return x;
7738 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7739 assignment as a field assignment. */
7741 static int
7742 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7744 if (x == y || rtx_equal_p (x, y))
7745 return 1;
7747 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7748 return 0;
7750 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7751 Note that all SUBREGs of MEM are paradoxical; otherwise they
7752 would have been rewritten. */
7753 if (MEM_P (x) && GET_CODE (y) == SUBREG
7754 && MEM_P (SUBREG_REG (y))
7755 && rtx_equal_p (SUBREG_REG (y),
7756 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7757 return 1;
7759 if (MEM_P (y) && GET_CODE (x) == SUBREG
7760 && MEM_P (SUBREG_REG (x))
7761 && rtx_equal_p (SUBREG_REG (x),
7762 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7763 return 1;
7765 /* We used to see if get_last_value of X and Y were the same but that's
7766 not correct. In one direction, we'll cause the assignment to have
7767 the wrong destination and in the case, we'll import a register into this
7768 insn that might have already have been dead. So fail if none of the
7769 above cases are true. */
7770 return 0;
7773 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7774 Return that assignment if so.
7776 We only handle the most common cases. */
7778 static rtx
7779 make_field_assignment (rtx x)
7781 rtx dest = SET_DEST (x);
7782 rtx src = SET_SRC (x);
7783 rtx assign;
7784 rtx rhs, lhs;
7785 HOST_WIDE_INT c1;
7786 HOST_WIDE_INT pos;
7787 unsigned HOST_WIDE_INT len;
7788 rtx other;
7789 enum machine_mode mode;
7791 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7792 a clear of a one-bit field. We will have changed it to
7793 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7794 for a SUBREG. */
7796 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7797 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7798 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7799 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7801 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7802 1, 1, 1, 0);
7803 if (assign != 0)
7804 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7805 return x;
7808 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7809 && subreg_lowpart_p (XEXP (src, 0))
7810 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7811 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7812 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7813 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7814 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7815 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7817 assign = make_extraction (VOIDmode, dest, 0,
7818 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7819 1, 1, 1, 0);
7820 if (assign != 0)
7821 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7822 return x;
7825 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7826 one-bit field. */
7827 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7828 && XEXP (XEXP (src, 0), 0) == const1_rtx
7829 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7831 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7832 1, 1, 1, 0);
7833 if (assign != 0)
7834 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7835 return x;
7838 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7839 SRC is an AND with all bits of that field set, then we can discard
7840 the AND. */
7841 if (GET_CODE (dest) == ZERO_EXTRACT
7842 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7843 && GET_CODE (src) == AND
7844 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7846 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7847 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7848 unsigned HOST_WIDE_INT ze_mask;
7850 if (width >= HOST_BITS_PER_WIDE_INT)
7851 ze_mask = -1;
7852 else
7853 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7855 /* Complete overlap. We can remove the source AND. */
7856 if ((and_mask & ze_mask) == ze_mask)
7857 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7859 /* Partial overlap. We can reduce the source AND. */
7860 if ((and_mask & ze_mask) != and_mask)
7862 mode = GET_MODE (src);
7863 src = gen_rtx_AND (mode, XEXP (src, 0),
7864 gen_int_mode (and_mask & ze_mask, mode));
7865 return gen_rtx_SET (VOIDmode, dest, src);
7869 /* The other case we handle is assignments into a constant-position
7870 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7871 a mask that has all one bits except for a group of zero bits and
7872 OTHER is known to have zeros where C1 has ones, this is such an
7873 assignment. Compute the position and length from C1. Shift OTHER
7874 to the appropriate position, force it to the required mode, and
7875 make the extraction. Check for the AND in both operands. */
7877 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7878 return x;
7880 rhs = expand_compound_operation (XEXP (src, 0));
7881 lhs = expand_compound_operation (XEXP (src, 1));
7883 if (GET_CODE (rhs) == AND
7884 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7885 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7886 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7887 else if (GET_CODE (lhs) == AND
7888 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7889 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7890 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7891 else
7892 return x;
7894 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7895 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7896 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7897 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7898 return x;
7900 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7901 if (assign == 0)
7902 return x;
7904 /* The mode to use for the source is the mode of the assignment, or of
7905 what is inside a possible STRICT_LOW_PART. */
7906 mode = (GET_CODE (assign) == STRICT_LOW_PART
7907 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7909 /* Shift OTHER right POS places and make it the source, restricting it
7910 to the proper length and mode. */
7912 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7913 GET_MODE (src), other, pos),
7914 mode,
7915 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7916 ? ~(unsigned HOST_WIDE_INT) 0
7917 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7918 dest, 0);
7920 /* If SRC is masked by an AND that does not make a difference in
7921 the value being stored, strip it. */
7922 if (GET_CODE (assign) == ZERO_EXTRACT
7923 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7924 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7925 && GET_CODE (src) == AND
7926 && GET_CODE (XEXP (src, 1)) == CONST_INT
7927 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7928 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7929 src = XEXP (src, 0);
7931 return gen_rtx_SET (VOIDmode, assign, src);
7934 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7935 if so. */
7937 static rtx
7938 apply_distributive_law (rtx x)
7940 enum rtx_code code = GET_CODE (x);
7941 enum rtx_code inner_code;
7942 rtx lhs, rhs, other;
7943 rtx tem;
7945 /* Distributivity is not true for floating point as it can change the
7946 value. So we don't do it unless -funsafe-math-optimizations. */
7947 if (FLOAT_MODE_P (GET_MODE (x))
7948 && ! flag_unsafe_math_optimizations)
7949 return x;
7951 /* The outer operation can only be one of the following: */
7952 if (code != IOR && code != AND && code != XOR
7953 && code != PLUS && code != MINUS)
7954 return x;
7956 lhs = XEXP (x, 0);
7957 rhs = XEXP (x, 1);
7959 /* If either operand is a primitive we can't do anything, so get out
7960 fast. */
7961 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7962 return x;
7964 lhs = expand_compound_operation (lhs);
7965 rhs = expand_compound_operation (rhs);
7966 inner_code = GET_CODE (lhs);
7967 if (inner_code != GET_CODE (rhs))
7968 return x;
7970 /* See if the inner and outer operations distribute. */
7971 switch (inner_code)
7973 case LSHIFTRT:
7974 case ASHIFTRT:
7975 case AND:
7976 case IOR:
7977 /* These all distribute except over PLUS. */
7978 if (code == PLUS || code == MINUS)
7979 return x;
7980 break;
7982 case MULT:
7983 if (code != PLUS && code != MINUS)
7984 return x;
7985 break;
7987 case ASHIFT:
7988 /* This is also a multiply, so it distributes over everything. */
7989 break;
7991 case SUBREG:
7992 /* Non-paradoxical SUBREGs distributes over all operations, provided
7993 the inner modes and byte offsets are the same, this is an extraction
7994 of a low-order part, we don't convert an fp operation to int or
7995 vice versa, and we would not be converting a single-word
7996 operation into a multi-word operation. The latter test is not
7997 required, but it prevents generating unneeded multi-word operations.
7998 Some of the previous tests are redundant given the latter test, but
7999 are retained because they are required for correctness.
8001 We produce the result slightly differently in this case. */
8003 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8004 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8005 || ! subreg_lowpart_p (lhs)
8006 || (GET_MODE_CLASS (GET_MODE (lhs))
8007 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8008 || (GET_MODE_SIZE (GET_MODE (lhs))
8009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8010 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8011 return x;
8013 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8014 SUBREG_REG (lhs), SUBREG_REG (rhs));
8015 return gen_lowpart (GET_MODE (x), tem);
8017 default:
8018 return x;
8021 /* Set LHS and RHS to the inner operands (A and B in the example
8022 above) and set OTHER to the common operand (C in the example).
8023 There is only one way to do this unless the inner operation is
8024 commutative. */
8025 if (COMMUTATIVE_ARITH_P (lhs)
8026 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8027 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8028 else if (COMMUTATIVE_ARITH_P (lhs)
8029 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8030 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8031 else if (COMMUTATIVE_ARITH_P (lhs)
8032 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8033 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8034 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8035 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8036 else
8037 return x;
8039 /* Form the new inner operation, seeing if it simplifies first. */
8040 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8042 /* There is one exception to the general way of distributing:
8043 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8044 if (code == XOR && inner_code == IOR)
8046 inner_code = AND;
8047 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8050 /* We may be able to continuing distributing the result, so call
8051 ourselves recursively on the inner operation before forming the
8052 outer operation, which we return. */
8053 return simplify_gen_binary (inner_code, GET_MODE (x),
8054 apply_distributive_law (tem), other);
8057 /* See if X is of the form (* (+ A B) C), and if so convert to
8058 (+ (* A C) (* B C)) and try to simplify.
8060 Most of the time, this results in no change. However, if some of
8061 the operands are the same or inverses of each other, simplifications
8062 will result.
8064 For example, (and (ior A B) (not B)) can occur as the result of
8065 expanding a bit field assignment. When we apply the distributive
8066 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8067 which then simplifies to (and (A (not B))).
8069 Note that no checks happen on the validity of applying the inverse
8070 distributive law. This is pointless since we can do it in the
8071 few places where this routine is called.
8073 N is the index of the term that is decomposed (the arithmetic operation,
8074 i.e. (+ A B) in the first example above). !N is the index of the term that
8075 is distributed, i.e. of C in the first example above. */
8076 static rtx
8077 distribute_and_simplify_rtx (rtx x, int n)
8079 enum machine_mode mode;
8080 enum rtx_code outer_code, inner_code;
8081 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8083 decomposed = XEXP (x, n);
8084 if (!ARITHMETIC_P (decomposed))
8085 return NULL_RTX;
8087 mode = GET_MODE (x);
8088 outer_code = GET_CODE (x);
8089 distributed = XEXP (x, !n);
8091 inner_code = GET_CODE (decomposed);
8092 inner_op0 = XEXP (decomposed, 0);
8093 inner_op1 = XEXP (decomposed, 1);
8095 /* Special case (and (xor B C) (not A)), which is equivalent to
8096 (xor (ior A B) (ior A C)) */
8097 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8099 distributed = XEXP (distributed, 0);
8100 outer_code = IOR;
8103 if (n == 0)
8105 /* Distribute the second term. */
8106 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8107 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8109 else
8111 /* Distribute the first term. */
8112 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8113 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8116 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8117 new_op0, new_op1));
8118 if (GET_CODE (tmp) != outer_code
8119 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8120 return tmp;
8122 return NULL_RTX;
8125 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8126 in MODE.
8128 Return an equivalent form, if different from X. Otherwise, return X. If
8129 X is zero, we are to always construct the equivalent form. */
8131 static rtx
8132 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8133 unsigned HOST_WIDE_INT constop)
8135 unsigned HOST_WIDE_INT nonzero;
8136 int i;
8138 /* Simplify VAROP knowing that we will be only looking at some of the
8139 bits in it.
8141 Note by passing in CONSTOP, we guarantee that the bits not set in
8142 CONSTOP are not significant and will never be examined. We must
8143 ensure that is the case by explicitly masking out those bits
8144 before returning. */
8145 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8147 /* If VAROP is a CLOBBER, we will fail so return it. */
8148 if (GET_CODE (varop) == CLOBBER)
8149 return varop;
8151 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8152 to VAROP and return the new constant. */
8153 if (GET_CODE (varop) == CONST_INT)
8154 return gen_int_mode (INTVAL (varop) & constop, mode);
8156 /* See what bits may be nonzero in VAROP. Unlike the general case of
8157 a call to nonzero_bits, here we don't care about bits outside
8158 MODE. */
8160 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8162 /* Turn off all bits in the constant that are known to already be zero.
8163 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8164 which is tested below. */
8166 constop &= nonzero;
8168 /* If we don't have any bits left, return zero. */
8169 if (constop == 0)
8170 return const0_rtx;
8172 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8173 a power of two, we can replace this with an ASHIFT. */
8174 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8175 && (i = exact_log2 (constop)) >= 0)
8176 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8178 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8179 or XOR, then try to apply the distributive law. This may eliminate
8180 operations if either branch can be simplified because of the AND.
8181 It may also make some cases more complex, but those cases probably
8182 won't match a pattern either with or without this. */
8184 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8185 return
8186 gen_lowpart
8187 (mode,
8188 apply_distributive_law
8189 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8190 simplify_and_const_int (NULL_RTX,
8191 GET_MODE (varop),
8192 XEXP (varop, 0),
8193 constop),
8194 simplify_and_const_int (NULL_RTX,
8195 GET_MODE (varop),
8196 XEXP (varop, 1),
8197 constop))));
8199 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8200 the AND and see if one of the operands simplifies to zero. If so, we
8201 may eliminate it. */
8203 if (GET_CODE (varop) == PLUS
8204 && exact_log2 (constop + 1) >= 0)
8206 rtx o0, o1;
8208 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8209 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8210 if (o0 == const0_rtx)
8211 return o1;
8212 if (o1 == const0_rtx)
8213 return o0;
8216 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8217 if we already had one (just check for the simplest cases). */
8218 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8219 && GET_MODE (XEXP (x, 0)) == mode
8220 && SUBREG_REG (XEXP (x, 0)) == varop)
8221 varop = XEXP (x, 0);
8222 else
8223 varop = gen_lowpart (mode, varop);
8225 /* If we can't make the SUBREG, try to return what we were given. */
8226 if (GET_CODE (varop) == CLOBBER)
8227 return x ? x : varop;
8229 /* If we are only masking insignificant bits, return VAROP. */
8230 if (constop == nonzero)
8231 x = varop;
8232 else
8234 /* Otherwise, return an AND. */
8235 constop = trunc_int_for_mode (constop, mode);
8236 /* See how much, if any, of X we can use. */
8237 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8238 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8240 else
8242 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8243 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8244 SUBST (XEXP (x, 1), GEN_INT (constop));
8246 SUBST (XEXP (x, 0), varop);
8250 return x;
8253 /* Given a REG, X, compute which bits in X can be nonzero.
8254 We don't care about bits outside of those defined in MODE.
8256 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8257 a shift, AND, or zero_extract, we can do better. */
8259 static rtx
8260 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8261 rtx known_x ATTRIBUTE_UNUSED,
8262 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8263 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8264 unsigned HOST_WIDE_INT *nonzero)
8266 rtx tem;
8268 /* If X is a register whose nonzero bits value is current, use it.
8269 Otherwise, if X is a register whose value we can find, use that
8270 value. Otherwise, use the previously-computed global nonzero bits
8271 for this register. */
8273 if (reg_stat[REGNO (x)].last_set_value != 0
8274 && (reg_stat[REGNO (x)].last_set_mode == mode
8275 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8276 && GET_MODE_CLASS (mode) == MODE_INT))
8277 && (reg_stat[REGNO (x)].last_set_label == label_tick
8278 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8279 && REG_N_SETS (REGNO (x)) == 1
8280 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8281 REGNO (x))))
8282 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8284 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8285 return NULL;
8288 tem = get_last_value (x);
8290 if (tem)
8292 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8293 /* If X is narrower than MODE and TEM is a non-negative
8294 constant that would appear negative in the mode of X,
8295 sign-extend it for use in reg_nonzero_bits because some
8296 machines (maybe most) will actually do the sign-extension
8297 and this is the conservative approach.
8299 ??? For 2.5, try to tighten up the MD files in this regard
8300 instead of this kludge. */
8302 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8303 && GET_CODE (tem) == CONST_INT
8304 && INTVAL (tem) > 0
8305 && 0 != (INTVAL (tem)
8306 & ((HOST_WIDE_INT) 1
8307 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8308 tem = GEN_INT (INTVAL (tem)
8309 | ((HOST_WIDE_INT) (-1)
8310 << GET_MODE_BITSIZE (GET_MODE (x))));
8311 #endif
8312 return tem;
8314 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8316 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8318 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8319 /* We don't know anything about the upper bits. */
8320 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8321 *nonzero &= mask;
8324 return NULL;
8327 /* Return the number of bits at the high-order end of X that are known to
8328 be equal to the sign bit. X will be used in mode MODE; if MODE is
8329 VOIDmode, X will be used in its own mode. The returned value will always
8330 be between 1 and the number of bits in MODE. */
8332 static rtx
8333 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8334 rtx known_x ATTRIBUTE_UNUSED,
8335 enum machine_mode known_mode
8336 ATTRIBUTE_UNUSED,
8337 unsigned int known_ret ATTRIBUTE_UNUSED,
8338 unsigned int *result)
8340 rtx tem;
8342 if (reg_stat[REGNO (x)].last_set_value != 0
8343 && reg_stat[REGNO (x)].last_set_mode == mode
8344 && (reg_stat[REGNO (x)].last_set_label == label_tick
8345 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8346 && REG_N_SETS (REGNO (x)) == 1
8347 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8348 REGNO (x))))
8349 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8351 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8352 return NULL;
8355 tem = get_last_value (x);
8356 if (tem != 0)
8357 return tem;
8359 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8360 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8361 *result = reg_stat[REGNO (x)].sign_bit_copies;
8363 return NULL;
8366 /* Return the number of "extended" bits there are in X, when interpreted
8367 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8368 unsigned quantities, this is the number of high-order zero bits.
8369 For signed quantities, this is the number of copies of the sign bit
8370 minus 1. In both case, this function returns the number of "spare"
8371 bits. For example, if two quantities for which this function returns
8372 at least 1 are added, the addition is known not to overflow.
8374 This function will always return 0 unless called during combine, which
8375 implies that it must be called from a define_split. */
8377 unsigned int
8378 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8380 if (nonzero_sign_valid == 0)
8381 return 0;
8383 return (unsignedp
8384 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8385 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8386 - floor_log2 (nonzero_bits (x, mode)))
8387 : 0)
8388 : num_sign_bit_copies (x, mode) - 1);
8391 /* This function is called from `simplify_shift_const' to merge two
8392 outer operations. Specifically, we have already found that we need
8393 to perform operation *POP0 with constant *PCONST0 at the outermost
8394 position. We would now like to also perform OP1 with constant CONST1
8395 (with *POP0 being done last).
8397 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8398 the resulting operation. *PCOMP_P is set to 1 if we would need to
8399 complement the innermost operand, otherwise it is unchanged.
8401 MODE is the mode in which the operation will be done. No bits outside
8402 the width of this mode matter. It is assumed that the width of this mode
8403 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8405 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8406 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8407 result is simply *PCONST0.
8409 If the resulting operation cannot be expressed as one operation, we
8410 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8412 static int
8413 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8415 enum rtx_code op0 = *pop0;
8416 HOST_WIDE_INT const0 = *pconst0;
8418 const0 &= GET_MODE_MASK (mode);
8419 const1 &= GET_MODE_MASK (mode);
8421 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8422 if (op0 == AND)
8423 const1 &= const0;
8425 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8426 if OP0 is SET. */
8428 if (op1 == UNKNOWN || op0 == SET)
8429 return 1;
8431 else if (op0 == UNKNOWN)
8432 op0 = op1, const0 = const1;
8434 else if (op0 == op1)
8436 switch (op0)
8438 case AND:
8439 const0 &= const1;
8440 break;
8441 case IOR:
8442 const0 |= const1;
8443 break;
8444 case XOR:
8445 const0 ^= const1;
8446 break;
8447 case PLUS:
8448 const0 += const1;
8449 break;
8450 case NEG:
8451 op0 = UNKNOWN;
8452 break;
8453 default:
8454 break;
8458 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8459 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8460 return 0;
8462 /* If the two constants aren't the same, we can't do anything. The
8463 remaining six cases can all be done. */
8464 else if (const0 != const1)
8465 return 0;
8467 else
8468 switch (op0)
8470 case IOR:
8471 if (op1 == AND)
8472 /* (a & b) | b == b */
8473 op0 = SET;
8474 else /* op1 == XOR */
8475 /* (a ^ b) | b == a | b */
8477 break;
8479 case XOR:
8480 if (op1 == AND)
8481 /* (a & b) ^ b == (~a) & b */
8482 op0 = AND, *pcomp_p = 1;
8483 else /* op1 == IOR */
8484 /* (a | b) ^ b == a & ~b */
8485 op0 = AND, const0 = ~const0;
8486 break;
8488 case AND:
8489 if (op1 == IOR)
8490 /* (a | b) & b == b */
8491 op0 = SET;
8492 else /* op1 == XOR */
8493 /* (a ^ b) & b) == (~a) & b */
8494 *pcomp_p = 1;
8495 break;
8496 default:
8497 break;
8500 /* Check for NO-OP cases. */
8501 const0 &= GET_MODE_MASK (mode);
8502 if (const0 == 0
8503 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8504 op0 = UNKNOWN;
8505 else if (const0 == 0 && op0 == AND)
8506 op0 = SET;
8507 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8508 && op0 == AND)
8509 op0 = UNKNOWN;
8511 /* ??? Slightly redundant with the above mask, but not entirely.
8512 Moving this above means we'd have to sign-extend the mode mask
8513 for the final test. */
8514 const0 = trunc_int_for_mode (const0, mode);
8516 *pop0 = op0;
8517 *pconst0 = const0;
8519 return 1;
8522 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8523 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8524 that we started with.
8526 The shift is normally computed in the widest mode we find in VAROP, as
8527 long as it isn't a different number of words than RESULT_MODE. Exceptions
8528 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8530 static rtx
8531 simplify_shift_const (rtx x, enum rtx_code code,
8532 enum machine_mode result_mode, rtx varop,
8533 int orig_count)
8535 enum rtx_code orig_code = code;
8536 unsigned int count;
8537 int signed_count;
8538 enum machine_mode mode = result_mode;
8539 enum machine_mode shift_mode, tmode;
8540 unsigned int mode_words
8541 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8542 /* We form (outer_op (code varop count) (outer_const)). */
8543 enum rtx_code outer_op = UNKNOWN;
8544 HOST_WIDE_INT outer_const = 0;
8545 rtx const_rtx;
8546 int complement_p = 0;
8547 rtx new;
8549 /* Make sure and truncate the "natural" shift on the way in. We don't
8550 want to do this inside the loop as it makes it more difficult to
8551 combine shifts. */
8552 if (SHIFT_COUNT_TRUNCATED)
8553 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8555 /* If we were given an invalid count, don't do anything except exactly
8556 what was requested. */
8558 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8560 if (x)
8561 return x;
8563 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8566 count = orig_count;
8568 /* Unless one of the branches of the `if' in this loop does a `continue',
8569 we will `break' the loop after the `if'. */
8571 while (count != 0)
8573 /* If we have an operand of (clobber (const_int 0)), just return that
8574 value. */
8575 if (GET_CODE (varop) == CLOBBER)
8576 return varop;
8578 /* If we discovered we had to complement VAROP, leave. Making a NOT
8579 here would cause an infinite loop. */
8580 if (complement_p)
8581 break;
8583 /* Convert ROTATERT to ROTATE. */
8584 if (code == ROTATERT)
8586 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8587 code = ROTATE;
8588 if (VECTOR_MODE_P (result_mode))
8589 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8590 else
8591 count = bitsize - count;
8594 /* We need to determine what mode we will do the shift in. If the
8595 shift is a right shift or a ROTATE, we must always do it in the mode
8596 it was originally done in. Otherwise, we can do it in MODE, the
8597 widest mode encountered. */
8598 shift_mode
8599 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8600 ? result_mode : mode);
8602 /* Handle cases where the count is greater than the size of the mode
8603 minus 1. For ASHIFT, use the size minus one as the count (this can
8604 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8605 take the count modulo the size. For other shifts, the result is
8606 zero.
8608 Since these shifts are being produced by the compiler by combining
8609 multiple operations, each of which are defined, we know what the
8610 result is supposed to be. */
8612 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8614 if (code == ASHIFTRT)
8615 count = GET_MODE_BITSIZE (shift_mode) - 1;
8616 else if (code == ROTATE || code == ROTATERT)
8617 count %= GET_MODE_BITSIZE (shift_mode);
8618 else
8620 /* We can't simply return zero because there may be an
8621 outer op. */
8622 varop = const0_rtx;
8623 count = 0;
8624 break;
8628 /* An arithmetic right shift of a quantity known to be -1 or 0
8629 is a no-op. */
8630 if (code == ASHIFTRT
8631 && (num_sign_bit_copies (varop, shift_mode)
8632 == GET_MODE_BITSIZE (shift_mode)))
8634 count = 0;
8635 break;
8638 /* If we are doing an arithmetic right shift and discarding all but
8639 the sign bit copies, this is equivalent to doing a shift by the
8640 bitsize minus one. Convert it into that shift because it will often
8641 allow other simplifications. */
8643 if (code == ASHIFTRT
8644 && (count + num_sign_bit_copies (varop, shift_mode)
8645 >= GET_MODE_BITSIZE (shift_mode)))
8646 count = GET_MODE_BITSIZE (shift_mode) - 1;
8648 /* We simplify the tests below and elsewhere by converting
8649 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8650 `make_compound_operation' will convert it to an ASHIFTRT for
8651 those machines (such as VAX) that don't have an LSHIFTRT. */
8652 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8653 && code == ASHIFTRT
8654 && ((nonzero_bits (varop, shift_mode)
8655 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8656 == 0))
8657 code = LSHIFTRT;
8659 if (code == LSHIFTRT
8660 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8661 && !(nonzero_bits (varop, shift_mode) >> count))
8662 varop = const0_rtx;
8663 if (code == ASHIFT
8664 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8665 && !((nonzero_bits (varop, shift_mode) << count)
8666 & GET_MODE_MASK (shift_mode)))
8667 varop = const0_rtx;
8669 switch (GET_CODE (varop))
8671 case SIGN_EXTEND:
8672 case ZERO_EXTEND:
8673 case SIGN_EXTRACT:
8674 case ZERO_EXTRACT:
8675 new = expand_compound_operation (varop);
8676 if (new != varop)
8678 varop = new;
8679 continue;
8681 break;
8683 case MEM:
8684 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8685 minus the width of a smaller mode, we can do this with a
8686 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8687 if ((code == ASHIFTRT || code == LSHIFTRT)
8688 && ! mode_dependent_address_p (XEXP (varop, 0))
8689 && ! MEM_VOLATILE_P (varop)
8690 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8691 MODE_INT, 1)) != BLKmode)
8693 new = adjust_address_nv (varop, tmode,
8694 BYTES_BIG_ENDIAN ? 0
8695 : count / BITS_PER_UNIT);
8697 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8698 : ZERO_EXTEND, mode, new);
8699 count = 0;
8700 continue;
8702 break;
8704 case USE:
8705 /* Similar to the case above, except that we can only do this if
8706 the resulting mode is the same as that of the underlying
8707 MEM and adjust the address depending on the *bits* endianness
8708 because of the way that bit-field extract insns are defined. */
8709 if ((code == ASHIFTRT || code == LSHIFTRT)
8710 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8711 MODE_INT, 1)) != BLKmode
8712 && tmode == GET_MODE (XEXP (varop, 0)))
8714 if (BITS_BIG_ENDIAN)
8715 new = XEXP (varop, 0);
8716 else
8718 new = copy_rtx (XEXP (varop, 0));
8719 SUBST (XEXP (new, 0),
8720 plus_constant (XEXP (new, 0),
8721 count / BITS_PER_UNIT));
8724 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8725 : ZERO_EXTEND, mode, new);
8726 count = 0;
8727 continue;
8729 break;
8731 case SUBREG:
8732 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8733 the same number of words as what we've seen so far. Then store
8734 the widest mode in MODE. */
8735 if (subreg_lowpart_p (varop)
8736 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8737 > GET_MODE_SIZE (GET_MODE (varop)))
8738 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8739 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8740 == mode_words)
8742 varop = SUBREG_REG (varop);
8743 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8744 mode = GET_MODE (varop);
8745 continue;
8747 break;
8749 case MULT:
8750 /* Some machines use MULT instead of ASHIFT because MULT
8751 is cheaper. But it is still better on those machines to
8752 merge two shifts into one. */
8753 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8754 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8756 varop
8757 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8758 XEXP (varop, 0),
8759 GEN_INT (exact_log2 (
8760 INTVAL (XEXP (varop, 1)))));
8761 continue;
8763 break;
8765 case UDIV:
8766 /* Similar, for when divides are cheaper. */
8767 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8768 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8770 varop
8771 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8772 XEXP (varop, 0),
8773 GEN_INT (exact_log2 (
8774 INTVAL (XEXP (varop, 1)))));
8775 continue;
8777 break;
8779 case ASHIFTRT:
8780 /* If we are extracting just the sign bit of an arithmetic
8781 right shift, that shift is not needed. However, the sign
8782 bit of a wider mode may be different from what would be
8783 interpreted as the sign bit in a narrower mode, so, if
8784 the result is narrower, don't discard the shift. */
8785 if (code == LSHIFTRT
8786 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8787 && (GET_MODE_BITSIZE (result_mode)
8788 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8790 varop = XEXP (varop, 0);
8791 continue;
8794 /* ... fall through ... */
8796 case LSHIFTRT:
8797 case ASHIFT:
8798 case ROTATE:
8799 /* Here we have two nested shifts. The result is usually the
8800 AND of a new shift with a mask. We compute the result below. */
8801 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8802 && INTVAL (XEXP (varop, 1)) >= 0
8803 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8804 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8805 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8807 enum rtx_code first_code = GET_CODE (varop);
8808 unsigned int first_count = INTVAL (XEXP (varop, 1));
8809 unsigned HOST_WIDE_INT mask;
8810 rtx mask_rtx;
8812 /* We have one common special case. We can't do any merging if
8813 the inner code is an ASHIFTRT of a smaller mode. However, if
8814 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8815 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8816 we can convert it to
8817 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8818 This simplifies certain SIGN_EXTEND operations. */
8819 if (code == ASHIFT && first_code == ASHIFTRT
8820 && count == (unsigned int)
8821 (GET_MODE_BITSIZE (result_mode)
8822 - GET_MODE_BITSIZE (GET_MODE (varop))))
8824 /* C3 has the low-order C1 bits zero. */
8826 mask = (GET_MODE_MASK (mode)
8827 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8829 varop = simplify_and_const_int (NULL_RTX, result_mode,
8830 XEXP (varop, 0), mask);
8831 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8832 varop, count);
8833 count = first_count;
8834 code = ASHIFTRT;
8835 continue;
8838 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8839 than C1 high-order bits equal to the sign bit, we can convert
8840 this to either an ASHIFT or an ASHIFTRT depending on the
8841 two counts.
8843 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8845 if (code == ASHIFTRT && first_code == ASHIFT
8846 && GET_MODE (varop) == shift_mode
8847 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8848 > first_count))
8850 varop = XEXP (varop, 0);
8852 signed_count = count - first_count;
8853 if (signed_count < 0)
8854 count = -signed_count, code = ASHIFT;
8855 else
8856 count = signed_count;
8858 continue;
8861 /* There are some cases we can't do. If CODE is ASHIFTRT,
8862 we can only do this if FIRST_CODE is also ASHIFTRT.
8864 We can't do the case when CODE is ROTATE and FIRST_CODE is
8865 ASHIFTRT.
8867 If the mode of this shift is not the mode of the outer shift,
8868 we can't do this if either shift is a right shift or ROTATE.
8870 Finally, we can't do any of these if the mode is too wide
8871 unless the codes are the same.
8873 Handle the case where the shift codes are the same
8874 first. */
8876 if (code == first_code)
8878 if (GET_MODE (varop) != result_mode
8879 && (code == ASHIFTRT || code == LSHIFTRT
8880 || code == ROTATE))
8881 break;
8883 count += first_count;
8884 varop = XEXP (varop, 0);
8885 continue;
8888 if (code == ASHIFTRT
8889 || (code == ROTATE && first_code == ASHIFTRT)
8890 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8891 || (GET_MODE (varop) != result_mode
8892 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8893 || first_code == ROTATE
8894 || code == ROTATE)))
8895 break;
8897 /* To compute the mask to apply after the shift, shift the
8898 nonzero bits of the inner shift the same way the
8899 outer shift will. */
8901 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8903 mask_rtx
8904 = simplify_binary_operation (code, result_mode, mask_rtx,
8905 GEN_INT (count));
8907 /* Give up if we can't compute an outer operation to use. */
8908 if (mask_rtx == 0
8909 || GET_CODE (mask_rtx) != CONST_INT
8910 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8911 INTVAL (mask_rtx),
8912 result_mode, &complement_p))
8913 break;
8915 /* If the shifts are in the same direction, we add the
8916 counts. Otherwise, we subtract them. */
8917 signed_count = count;
8918 if ((code == ASHIFTRT || code == LSHIFTRT)
8919 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8920 signed_count += first_count;
8921 else
8922 signed_count -= first_count;
8924 /* If COUNT is positive, the new shift is usually CODE,
8925 except for the two exceptions below, in which case it is
8926 FIRST_CODE. If the count is negative, FIRST_CODE should
8927 always be used */
8928 if (signed_count > 0
8929 && ((first_code == ROTATE && code == ASHIFT)
8930 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8931 code = first_code, count = signed_count;
8932 else if (signed_count < 0)
8933 code = first_code, count = -signed_count;
8934 else
8935 count = signed_count;
8937 varop = XEXP (varop, 0);
8938 continue;
8941 /* If we have (A << B << C) for any shift, we can convert this to
8942 (A << C << B). This wins if A is a constant. Only try this if
8943 B is not a constant. */
8945 else if (GET_CODE (varop) == code
8946 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8947 && 0 != (new
8948 = simplify_binary_operation (code, mode,
8949 XEXP (varop, 0),
8950 GEN_INT (count))))
8952 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8953 count = 0;
8954 continue;
8956 break;
8958 case NOT:
8959 /* Make this fit the case below. */
8960 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8961 GEN_INT (GET_MODE_MASK (mode)));
8962 continue;
8964 case IOR:
8965 case AND:
8966 case XOR:
8967 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8968 with C the size of VAROP - 1 and the shift is logical if
8969 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8970 we have an (le X 0) operation. If we have an arithmetic shift
8971 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8972 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8974 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8975 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8976 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8977 && (code == LSHIFTRT || code == ASHIFTRT)
8978 && count == (unsigned int)
8979 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8980 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8982 count = 0;
8983 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8984 const0_rtx);
8986 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8987 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8989 continue;
8992 /* If we have (shift (logical)), move the logical to the outside
8993 to allow it to possibly combine with another logical and the
8994 shift to combine with another shift. This also canonicalizes to
8995 what a ZERO_EXTRACT looks like. Also, some machines have
8996 (and (shift)) insns. */
8998 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8999 /* We can't do this if we have (ashiftrt (xor)) and the
9000 constant has its sign bit set in shift_mode. */
9001 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9002 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9003 shift_mode))
9004 && (new = simplify_binary_operation (code, result_mode,
9005 XEXP (varop, 1),
9006 GEN_INT (count))) != 0
9007 && GET_CODE (new) == CONST_INT
9008 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9009 INTVAL (new), result_mode, &complement_p))
9011 varop = XEXP (varop, 0);
9012 continue;
9015 /* If we can't do that, try to simplify the shift in each arm of the
9016 logical expression, make a new logical expression, and apply
9017 the inverse distributive law. This also can't be done
9018 for some (ashiftrt (xor)). */
9019 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9020 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9021 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9022 shift_mode)))
9024 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9025 XEXP (varop, 0), count);
9026 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9027 XEXP (varop, 1), count);
9029 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9030 lhs, rhs);
9031 varop = apply_distributive_law (varop);
9033 count = 0;
9034 continue;
9036 break;
9038 case EQ:
9039 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9040 says that the sign bit can be tested, FOO has mode MODE, C is
9041 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9042 that may be nonzero. */
9043 if (code == LSHIFTRT
9044 && XEXP (varop, 1) == const0_rtx
9045 && GET_MODE (XEXP (varop, 0)) == result_mode
9046 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9047 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9048 && ((STORE_FLAG_VALUE
9049 & ((HOST_WIDE_INT) 1
9050 < (GET_MODE_BITSIZE (result_mode) - 1))))
9051 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9052 && merge_outer_ops (&outer_op, &outer_const, XOR,
9053 (HOST_WIDE_INT) 1, result_mode,
9054 &complement_p))
9056 varop = XEXP (varop, 0);
9057 count = 0;
9058 continue;
9060 break;
9062 case NEG:
9063 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9064 than the number of bits in the mode is equivalent to A. */
9065 if (code == LSHIFTRT
9066 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9067 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9069 varop = XEXP (varop, 0);
9070 count = 0;
9071 continue;
9074 /* NEG commutes with ASHIFT since it is multiplication. Move the
9075 NEG outside to allow shifts to combine. */
9076 if (code == ASHIFT
9077 && merge_outer_ops (&outer_op, &outer_const, NEG,
9078 (HOST_WIDE_INT) 0, result_mode,
9079 &complement_p))
9081 varop = XEXP (varop, 0);
9082 continue;
9084 break;
9086 case PLUS:
9087 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9088 is one less than the number of bits in the mode is
9089 equivalent to (xor A 1). */
9090 if (code == LSHIFTRT
9091 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9092 && XEXP (varop, 1) == constm1_rtx
9093 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9094 && merge_outer_ops (&outer_op, &outer_const, XOR,
9095 (HOST_WIDE_INT) 1, result_mode,
9096 &complement_p))
9098 count = 0;
9099 varop = XEXP (varop, 0);
9100 continue;
9103 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9104 that might be nonzero in BAR are those being shifted out and those
9105 bits are known zero in FOO, we can replace the PLUS with FOO.
9106 Similarly in the other operand order. This code occurs when
9107 we are computing the size of a variable-size array. */
9109 if ((code == ASHIFTRT || code == LSHIFTRT)
9110 && count < HOST_BITS_PER_WIDE_INT
9111 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9112 && (nonzero_bits (XEXP (varop, 1), result_mode)
9113 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9115 varop = XEXP (varop, 0);
9116 continue;
9118 else if ((code == ASHIFTRT || code == LSHIFTRT)
9119 && count < HOST_BITS_PER_WIDE_INT
9120 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9121 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9122 >> count)
9123 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9124 & nonzero_bits (XEXP (varop, 1),
9125 result_mode)))
9127 varop = XEXP (varop, 1);
9128 continue;
9131 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9132 if (code == ASHIFT
9133 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9134 && (new = simplify_binary_operation (ASHIFT, result_mode,
9135 XEXP (varop, 1),
9136 GEN_INT (count))) != 0
9137 && GET_CODE (new) == CONST_INT
9138 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9139 INTVAL (new), result_mode, &complement_p))
9141 varop = XEXP (varop, 0);
9142 continue;
9145 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9146 signbit', and attempt to change the PLUS to an XOR and move it to
9147 the outer operation as is done above in the AND/IOR/XOR case
9148 leg for shift(logical). See details in logical handling above
9149 for reasoning in doing so. */
9150 if (code == LSHIFTRT
9151 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9152 && mode_signbit_p (result_mode, XEXP (varop, 1))
9153 && (new = simplify_binary_operation (code, result_mode,
9154 XEXP (varop, 1),
9155 GEN_INT (count))) != 0
9156 && GET_CODE (new) == CONST_INT
9157 && merge_outer_ops (&outer_op, &outer_const, XOR,
9158 INTVAL (new), result_mode, &complement_p))
9160 varop = XEXP (varop, 0);
9161 continue;
9164 break;
9166 case MINUS:
9167 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9168 with C the size of VAROP - 1 and the shift is logical if
9169 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9170 we have a (gt X 0) operation. If the shift is arithmetic with
9171 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9172 we have a (neg (gt X 0)) operation. */
9174 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9175 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9176 && count == (unsigned int)
9177 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9178 && (code == LSHIFTRT || code == ASHIFTRT)
9179 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9180 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9181 == count
9182 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9184 count = 0;
9185 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9186 const0_rtx);
9188 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9189 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9191 continue;
9193 break;
9195 case TRUNCATE:
9196 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9197 if the truncate does not affect the value. */
9198 if (code == LSHIFTRT
9199 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9200 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9201 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9202 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9203 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9205 rtx varop_inner = XEXP (varop, 0);
9207 varop_inner
9208 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9209 XEXP (varop_inner, 0),
9210 GEN_INT
9211 (count + INTVAL (XEXP (varop_inner, 1))));
9212 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9213 count = 0;
9214 continue;
9216 break;
9218 default:
9219 break;
9222 break;
9225 /* We need to determine what mode to do the shift in. If the shift is
9226 a right shift or ROTATE, we must always do it in the mode it was
9227 originally done in. Otherwise, we can do it in MODE, the widest mode
9228 encountered. The code we care about is that of the shift that will
9229 actually be done, not the shift that was originally requested. */
9230 shift_mode
9231 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9232 ? result_mode : mode);
9234 /* We have now finished analyzing the shift. The result should be
9235 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9236 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9237 to the result of the shift. OUTER_CONST is the relevant constant,
9238 but we must turn off all bits turned off in the shift.
9240 If we were passed a value for X, see if we can use any pieces of
9241 it. If not, make new rtx. */
9243 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9244 && GET_CODE (XEXP (x, 1)) == CONST_INT
9245 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9246 const_rtx = XEXP (x, 1);
9247 else
9248 const_rtx = GEN_INT (count);
9250 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9251 && GET_MODE (XEXP (x, 0)) == shift_mode
9252 && SUBREG_REG (XEXP (x, 0)) == varop)
9253 varop = XEXP (x, 0);
9254 else if (GET_MODE (varop) != shift_mode)
9255 varop = gen_lowpart (shift_mode, varop);
9257 /* If we can't make the SUBREG, try to return what we were given. */
9258 if (GET_CODE (varop) == CLOBBER)
9259 return x ? x : varop;
9261 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9262 if (new != 0)
9263 x = new;
9264 else
9265 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9267 /* If we have an outer operation and we just made a shift, it is
9268 possible that we could have simplified the shift were it not
9269 for the outer operation. So try to do the simplification
9270 recursively. */
9272 if (outer_op != UNKNOWN && GET_CODE (x) == code
9273 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9274 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9275 INTVAL (XEXP (x, 1)));
9277 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9278 turn off all the bits that the shift would have turned off. */
9279 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9280 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9281 GET_MODE_MASK (result_mode) >> orig_count);
9283 /* Do the remainder of the processing in RESULT_MODE. */
9284 x = gen_lowpart (result_mode, x);
9286 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9287 operation. */
9288 if (complement_p)
9289 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9291 if (outer_op != UNKNOWN)
9293 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9294 outer_const = trunc_int_for_mode (outer_const, result_mode);
9296 if (outer_op == AND)
9297 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9298 else if (outer_op == SET)
9299 /* This means that we have determined that the result is
9300 equivalent to a constant. This should be rare. */
9301 x = GEN_INT (outer_const);
9302 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9303 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9304 else
9305 x = simplify_gen_binary (outer_op, result_mode, x,
9306 GEN_INT (outer_const));
9309 return x;
9312 /* Like recog, but we receive the address of a pointer to a new pattern.
9313 We try to match the rtx that the pointer points to.
9314 If that fails, we may try to modify or replace the pattern,
9315 storing the replacement into the same pointer object.
9317 Modifications include deletion or addition of CLOBBERs.
9319 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9320 the CLOBBERs are placed.
9322 The value is the final insn code from the pattern ultimately matched,
9323 or -1. */
9325 static int
9326 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9328 rtx pat = *pnewpat;
9329 int insn_code_number;
9330 int num_clobbers_to_add = 0;
9331 int i;
9332 rtx notes = 0;
9333 rtx old_notes, old_pat;
9335 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9336 we use to indicate that something didn't match. If we find such a
9337 thing, force rejection. */
9338 if (GET_CODE (pat) == PARALLEL)
9339 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9340 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9341 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9342 return -1;
9344 old_pat = PATTERN (insn);
9345 old_notes = REG_NOTES (insn);
9346 PATTERN (insn) = pat;
9347 REG_NOTES (insn) = 0;
9349 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9351 /* If it isn't, there is the possibility that we previously had an insn
9352 that clobbered some register as a side effect, but the combined
9353 insn doesn't need to do that. So try once more without the clobbers
9354 unless this represents an ASM insn. */
9356 if (insn_code_number < 0 && ! check_asm_operands (pat)
9357 && GET_CODE (pat) == PARALLEL)
9359 int pos;
9361 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9362 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9364 if (i != pos)
9365 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9366 pos++;
9369 SUBST_INT (XVECLEN (pat, 0), pos);
9371 if (pos == 1)
9372 pat = XVECEXP (pat, 0, 0);
9374 PATTERN (insn) = pat;
9375 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9377 PATTERN (insn) = old_pat;
9378 REG_NOTES (insn) = old_notes;
9380 /* Recognize all noop sets, these will be killed by followup pass. */
9381 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9382 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9384 /* If we had any clobbers to add, make a new pattern than contains
9385 them. Then check to make sure that all of them are dead. */
9386 if (num_clobbers_to_add)
9388 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9389 rtvec_alloc (GET_CODE (pat) == PARALLEL
9390 ? (XVECLEN (pat, 0)
9391 + num_clobbers_to_add)
9392 : num_clobbers_to_add + 1));
9394 if (GET_CODE (pat) == PARALLEL)
9395 for (i = 0; i < XVECLEN (pat, 0); i++)
9396 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9397 else
9398 XVECEXP (newpat, 0, 0) = pat;
9400 add_clobbers (newpat, insn_code_number);
9402 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9403 i < XVECLEN (newpat, 0); i++)
9405 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9406 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9407 return -1;
9408 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9409 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9411 pat = newpat;
9414 *pnewpat = pat;
9415 *pnotes = notes;
9417 return insn_code_number;
9420 /* Like gen_lowpart_general but for use by combine. In combine it
9421 is not possible to create any new pseudoregs. However, it is
9422 safe to create invalid memory addresses, because combine will
9423 try to recognize them and all they will do is make the combine
9424 attempt fail.
9426 If for some reason this cannot do its job, an rtx
9427 (clobber (const_int 0)) is returned.
9428 An insn containing that will not be recognized. */
9430 static rtx
9431 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9433 enum machine_mode imode = GET_MODE (x);
9434 unsigned int osize = GET_MODE_SIZE (omode);
9435 unsigned int isize = GET_MODE_SIZE (imode);
9436 rtx result;
9438 if (omode == imode)
9439 return x;
9441 /* Return identity if this is a CONST or symbolic reference. */
9442 if (omode == Pmode
9443 && (GET_CODE (x) == CONST
9444 || GET_CODE (x) == SYMBOL_REF
9445 || GET_CODE (x) == LABEL_REF))
9446 return x;
9448 /* We can only support MODE being wider than a word if X is a
9449 constant integer or has a mode the same size. */
9450 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9451 && ! ((imode == VOIDmode
9452 && (GET_CODE (x) == CONST_INT
9453 || GET_CODE (x) == CONST_DOUBLE))
9454 || isize == osize))
9455 goto fail;
9457 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9458 won't know what to do. So we will strip off the SUBREG here and
9459 process normally. */
9460 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9462 x = SUBREG_REG (x);
9464 /* For use in case we fall down into the address adjustments
9465 further below, we need to adjust the known mode and size of
9466 x; imode and isize, since we just adjusted x. */
9467 imode = GET_MODE (x);
9469 if (imode == omode)
9470 return x;
9472 isize = GET_MODE_SIZE (imode);
9475 result = gen_lowpart_common (omode, x);
9477 #ifdef CANNOT_CHANGE_MODE_CLASS
9478 if (result != 0 && GET_CODE (result) == SUBREG)
9479 record_subregs_of_mode (result);
9480 #endif
9482 if (result)
9483 return result;
9485 if (MEM_P (x))
9487 int offset = 0;
9489 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9490 address. */
9491 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9492 goto fail;
9494 /* If we want to refer to something bigger than the original memref,
9495 generate a paradoxical subreg instead. That will force a reload
9496 of the original memref X. */
9497 if (isize < osize)
9498 return gen_rtx_SUBREG (omode, x, 0);
9500 if (WORDS_BIG_ENDIAN)
9501 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9503 /* Adjust the address so that the address-after-the-data is
9504 unchanged. */
9505 if (BYTES_BIG_ENDIAN)
9506 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9508 return adjust_address_nv (x, omode, offset);
9511 /* If X is a comparison operator, rewrite it in a new mode. This
9512 probably won't match, but may allow further simplifications. */
9513 else if (COMPARISON_P (x))
9514 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9516 /* If we couldn't simplify X any other way, just enclose it in a
9517 SUBREG. Normally, this SUBREG won't match, but some patterns may
9518 include an explicit SUBREG or we may simplify it further in combine. */
9519 else
9521 int offset = 0;
9522 rtx res;
9524 offset = subreg_lowpart_offset (omode, imode);
9525 if (imode == VOIDmode)
9527 imode = int_mode_for_mode (omode);
9528 x = gen_lowpart_common (imode, x);
9529 if (x == NULL)
9530 goto fail;
9532 res = simplify_gen_subreg (omode, x, imode, offset);
9533 if (res)
9534 return res;
9537 fail:
9538 return gen_rtx_CLOBBER (imode, const0_rtx);
9541 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9542 comparison code that will be tested.
9544 The result is a possibly different comparison code to use. *POP0 and
9545 *POP1 may be updated.
9547 It is possible that we might detect that a comparison is either always
9548 true or always false. However, we do not perform general constant
9549 folding in combine, so this knowledge isn't useful. Such tautologies
9550 should have been detected earlier. Hence we ignore all such cases. */
9552 static enum rtx_code
9553 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9555 rtx op0 = *pop0;
9556 rtx op1 = *pop1;
9557 rtx tem, tem1;
9558 int i;
9559 enum machine_mode mode, tmode;
9561 /* Try a few ways of applying the same transformation to both operands. */
9562 while (1)
9564 #ifndef WORD_REGISTER_OPERATIONS
9565 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9566 so check specially. */
9567 if (code != GTU && code != GEU && code != LTU && code != LEU
9568 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9569 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9570 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9571 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9572 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9573 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9574 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9575 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9576 && XEXP (op0, 1) == XEXP (op1, 1)
9577 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9578 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9579 && (INTVAL (XEXP (op0, 1))
9580 == (GET_MODE_BITSIZE (GET_MODE (op0))
9581 - (GET_MODE_BITSIZE
9582 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9584 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9585 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9587 #endif
9589 /* If both operands are the same constant shift, see if we can ignore the
9590 shift. We can if the shift is a rotate or if the bits shifted out of
9591 this shift are known to be zero for both inputs and if the type of
9592 comparison is compatible with the shift. */
9593 if (GET_CODE (op0) == GET_CODE (op1)
9594 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9595 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9596 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9597 && (code != GT && code != LT && code != GE && code != LE))
9598 || (GET_CODE (op0) == ASHIFTRT
9599 && (code != GTU && code != LTU
9600 && code != GEU && code != LEU)))
9601 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9602 && INTVAL (XEXP (op0, 1)) >= 0
9603 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9604 && XEXP (op0, 1) == XEXP (op1, 1))
9606 enum machine_mode mode = GET_MODE (op0);
9607 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9608 int shift_count = INTVAL (XEXP (op0, 1));
9610 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9611 mask &= (mask >> shift_count) << shift_count;
9612 else if (GET_CODE (op0) == ASHIFT)
9613 mask = (mask & (mask << shift_count)) >> shift_count;
9615 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9616 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9617 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9618 else
9619 break;
9622 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9623 SUBREGs are of the same mode, and, in both cases, the AND would
9624 be redundant if the comparison was done in the narrower mode,
9625 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9626 and the operand's possibly nonzero bits are 0xffffff01; in that case
9627 if we only care about QImode, we don't need the AND). This case
9628 occurs if the output mode of an scc insn is not SImode and
9629 STORE_FLAG_VALUE == 1 (e.g., the 386).
9631 Similarly, check for a case where the AND's are ZERO_EXTEND
9632 operations from some narrower mode even though a SUBREG is not
9633 present. */
9635 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9636 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9637 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9639 rtx inner_op0 = XEXP (op0, 0);
9640 rtx inner_op1 = XEXP (op1, 0);
9641 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9642 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9643 int changed = 0;
9645 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9646 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9647 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9648 && (GET_MODE (SUBREG_REG (inner_op0))
9649 == GET_MODE (SUBREG_REG (inner_op1)))
9650 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9651 <= HOST_BITS_PER_WIDE_INT)
9652 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9653 GET_MODE (SUBREG_REG (inner_op0)))))
9654 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9655 GET_MODE (SUBREG_REG (inner_op1))))))
9657 op0 = SUBREG_REG (inner_op0);
9658 op1 = SUBREG_REG (inner_op1);
9660 /* The resulting comparison is always unsigned since we masked
9661 off the original sign bit. */
9662 code = unsigned_condition (code);
9664 changed = 1;
9667 else if (c0 == c1)
9668 for (tmode = GET_CLASS_NARROWEST_MODE
9669 (GET_MODE_CLASS (GET_MODE (op0)));
9670 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9671 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9673 op0 = gen_lowpart (tmode, inner_op0);
9674 op1 = gen_lowpart (tmode, inner_op1);
9675 code = unsigned_condition (code);
9676 changed = 1;
9677 break;
9680 if (! changed)
9681 break;
9684 /* If both operands are NOT, we can strip off the outer operation
9685 and adjust the comparison code for swapped operands; similarly for
9686 NEG, except that this must be an equality comparison. */
9687 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9688 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9689 && (code == EQ || code == NE)))
9690 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9692 else
9693 break;
9696 /* If the first operand is a constant, swap the operands and adjust the
9697 comparison code appropriately, but don't do this if the second operand
9698 is already a constant integer. */
9699 if (swap_commutative_operands_p (op0, op1))
9701 tem = op0, op0 = op1, op1 = tem;
9702 code = swap_condition (code);
9705 /* We now enter a loop during which we will try to simplify the comparison.
9706 For the most part, we only are concerned with comparisons with zero,
9707 but some things may really be comparisons with zero but not start
9708 out looking that way. */
9710 while (GET_CODE (op1) == CONST_INT)
9712 enum machine_mode mode = GET_MODE (op0);
9713 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9714 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9715 int equality_comparison_p;
9716 int sign_bit_comparison_p;
9717 int unsigned_comparison_p;
9718 HOST_WIDE_INT const_op;
9720 /* We only want to handle integral modes. This catches VOIDmode,
9721 CCmode, and the floating-point modes. An exception is that we
9722 can handle VOIDmode if OP0 is a COMPARE or a comparison
9723 operation. */
9725 if (GET_MODE_CLASS (mode) != MODE_INT
9726 && ! (mode == VOIDmode
9727 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9728 break;
9730 /* Get the constant we are comparing against and turn off all bits
9731 not on in our mode. */
9732 const_op = INTVAL (op1);
9733 if (mode != VOIDmode)
9734 const_op = trunc_int_for_mode (const_op, mode);
9735 op1 = GEN_INT (const_op);
9737 /* If we are comparing against a constant power of two and the value
9738 being compared can only have that single bit nonzero (e.g., it was
9739 `and'ed with that bit), we can replace this with a comparison
9740 with zero. */
9741 if (const_op
9742 && (code == EQ || code == NE || code == GE || code == GEU
9743 || code == LT || code == LTU)
9744 && mode_width <= HOST_BITS_PER_WIDE_INT
9745 && exact_log2 (const_op) >= 0
9746 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9748 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9749 op1 = const0_rtx, const_op = 0;
9752 /* Similarly, if we are comparing a value known to be either -1 or
9753 0 with -1, change it to the opposite comparison against zero. */
9755 if (const_op == -1
9756 && (code == EQ || code == NE || code == GT || code == LE
9757 || code == GEU || code == LTU)
9758 && num_sign_bit_copies (op0, mode) == mode_width)
9760 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9761 op1 = const0_rtx, const_op = 0;
9764 /* Do some canonicalizations based on the comparison code. We prefer
9765 comparisons against zero and then prefer equality comparisons.
9766 If we can reduce the size of a constant, we will do that too. */
9768 switch (code)
9770 case LT:
9771 /* < C is equivalent to <= (C - 1) */
9772 if (const_op > 0)
9774 const_op -= 1;
9775 op1 = GEN_INT (const_op);
9776 code = LE;
9777 /* ... fall through to LE case below. */
9779 else
9780 break;
9782 case LE:
9783 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9784 if (const_op < 0)
9786 const_op += 1;
9787 op1 = GEN_INT (const_op);
9788 code = LT;
9791 /* If we are doing a <= 0 comparison on a value known to have
9792 a zero sign bit, we can replace this with == 0. */
9793 else if (const_op == 0
9794 && mode_width <= HOST_BITS_PER_WIDE_INT
9795 && (nonzero_bits (op0, mode)
9796 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9797 code = EQ;
9798 break;
9800 case GE:
9801 /* >= C is equivalent to > (C - 1). */
9802 if (const_op > 0)
9804 const_op -= 1;
9805 op1 = GEN_INT (const_op);
9806 code = GT;
9807 /* ... fall through to GT below. */
9809 else
9810 break;
9812 case GT:
9813 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9814 if (const_op < 0)
9816 const_op += 1;
9817 op1 = GEN_INT (const_op);
9818 code = GE;
9821 /* If we are doing a > 0 comparison on a value known to have
9822 a zero sign bit, we can replace this with != 0. */
9823 else if (const_op == 0
9824 && mode_width <= HOST_BITS_PER_WIDE_INT
9825 && (nonzero_bits (op0, mode)
9826 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9827 code = NE;
9828 break;
9830 case LTU:
9831 /* < C is equivalent to <= (C - 1). */
9832 if (const_op > 0)
9834 const_op -= 1;
9835 op1 = GEN_INT (const_op);
9836 code = LEU;
9837 /* ... fall through ... */
9840 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9841 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9842 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9844 const_op = 0, op1 = const0_rtx;
9845 code = GE;
9846 break;
9848 else
9849 break;
9851 case LEU:
9852 /* unsigned <= 0 is equivalent to == 0 */
9853 if (const_op == 0)
9854 code = EQ;
9856 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9857 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9858 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9860 const_op = 0, op1 = const0_rtx;
9861 code = GE;
9863 break;
9865 case GEU:
9866 /* >= C is equivalent to > (C - 1). */
9867 if (const_op > 1)
9869 const_op -= 1;
9870 op1 = GEN_INT (const_op);
9871 code = GTU;
9872 /* ... fall through ... */
9875 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9876 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9877 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9879 const_op = 0, op1 = const0_rtx;
9880 code = LT;
9881 break;
9883 else
9884 break;
9886 case GTU:
9887 /* unsigned > 0 is equivalent to != 0 */
9888 if (const_op == 0)
9889 code = NE;
9891 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9892 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9893 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9895 const_op = 0, op1 = const0_rtx;
9896 code = LT;
9898 break;
9900 default:
9901 break;
9904 /* Compute some predicates to simplify code below. */
9906 equality_comparison_p = (code == EQ || code == NE);
9907 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9908 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9909 || code == GEU);
9911 /* If this is a sign bit comparison and we can do arithmetic in
9912 MODE, say that we will only be needing the sign bit of OP0. */
9913 if (sign_bit_comparison_p
9914 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9915 op0 = force_to_mode (op0, mode,
9916 ((HOST_WIDE_INT) 1
9917 << (GET_MODE_BITSIZE (mode) - 1)),
9918 NULL_RTX, 0);
9920 /* Now try cases based on the opcode of OP0. If none of the cases
9921 does a "continue", we exit this loop immediately after the
9922 switch. */
9924 switch (GET_CODE (op0))
9926 case ZERO_EXTRACT:
9927 /* If we are extracting a single bit from a variable position in
9928 a constant that has only a single bit set and are comparing it
9929 with zero, we can convert this into an equality comparison
9930 between the position and the location of the single bit. */
9931 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9932 have already reduced the shift count modulo the word size. */
9933 if (!SHIFT_COUNT_TRUNCATED
9934 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9935 && XEXP (op0, 1) == const1_rtx
9936 && equality_comparison_p && const_op == 0
9937 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9939 if (BITS_BIG_ENDIAN)
9941 enum machine_mode new_mode
9942 = mode_for_extraction (EP_extzv, 1);
9943 if (new_mode == MAX_MACHINE_MODE)
9944 i = BITS_PER_WORD - 1 - i;
9945 else
9947 mode = new_mode;
9948 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9952 op0 = XEXP (op0, 2);
9953 op1 = GEN_INT (i);
9954 const_op = i;
9956 /* Result is nonzero iff shift count is equal to I. */
9957 code = reverse_condition (code);
9958 continue;
9961 /* ... fall through ... */
9963 case SIGN_EXTRACT:
9964 tem = expand_compound_operation (op0);
9965 if (tem != op0)
9967 op0 = tem;
9968 continue;
9970 break;
9972 case NOT:
9973 /* If testing for equality, we can take the NOT of the constant. */
9974 if (equality_comparison_p
9975 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9977 op0 = XEXP (op0, 0);
9978 op1 = tem;
9979 continue;
9982 /* If just looking at the sign bit, reverse the sense of the
9983 comparison. */
9984 if (sign_bit_comparison_p)
9986 op0 = XEXP (op0, 0);
9987 code = (code == GE ? LT : GE);
9988 continue;
9990 break;
9992 case NEG:
9993 /* If testing for equality, we can take the NEG of the constant. */
9994 if (equality_comparison_p
9995 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9997 op0 = XEXP (op0, 0);
9998 op1 = tem;
9999 continue;
10002 /* The remaining cases only apply to comparisons with zero. */
10003 if (const_op != 0)
10004 break;
10006 /* When X is ABS or is known positive,
10007 (neg X) is < 0 if and only if X != 0. */
10009 if (sign_bit_comparison_p
10010 && (GET_CODE (XEXP (op0, 0)) == ABS
10011 || (mode_width <= HOST_BITS_PER_WIDE_INT
10012 && (nonzero_bits (XEXP (op0, 0), mode)
10013 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10015 op0 = XEXP (op0, 0);
10016 code = (code == LT ? NE : EQ);
10017 continue;
10020 /* If we have NEG of something whose two high-order bits are the
10021 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10022 if (num_sign_bit_copies (op0, mode) >= 2)
10024 op0 = XEXP (op0, 0);
10025 code = swap_condition (code);
10026 continue;
10028 break;
10030 case ROTATE:
10031 /* If we are testing equality and our count is a constant, we
10032 can perform the inverse operation on our RHS. */
10033 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10034 && (tem = simplify_binary_operation (ROTATERT, mode,
10035 op1, XEXP (op0, 1))) != 0)
10037 op0 = XEXP (op0, 0);
10038 op1 = tem;
10039 continue;
10042 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10043 a particular bit. Convert it to an AND of a constant of that
10044 bit. This will be converted into a ZERO_EXTRACT. */
10045 if (const_op == 0 && sign_bit_comparison_p
10046 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10047 && mode_width <= HOST_BITS_PER_WIDE_INT)
10049 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10050 ((HOST_WIDE_INT) 1
10051 << (mode_width - 1
10052 - INTVAL (XEXP (op0, 1)))));
10053 code = (code == LT ? NE : EQ);
10054 continue;
10057 /* Fall through. */
10059 case ABS:
10060 /* ABS is ignorable inside an equality comparison with zero. */
10061 if (const_op == 0 && equality_comparison_p)
10063 op0 = XEXP (op0, 0);
10064 continue;
10066 break;
10068 case SIGN_EXTEND:
10069 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10070 (compare FOO CONST) if CONST fits in FOO's mode and we
10071 are either testing inequality or have an unsigned
10072 comparison with ZERO_EXTEND or a signed comparison with
10073 SIGN_EXTEND. But don't do it if we don't have a compare
10074 insn of the given mode, since we'd have to revert it
10075 later on, and then we wouldn't know whether to sign- or
10076 zero-extend. */
10077 mode = GET_MODE (XEXP (op0, 0));
10078 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10079 && ! unsigned_comparison_p
10080 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10081 && ((unsigned HOST_WIDE_INT) const_op
10082 < (((unsigned HOST_WIDE_INT) 1
10083 << (GET_MODE_BITSIZE (mode) - 1))))
10084 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10086 op0 = XEXP (op0, 0);
10087 continue;
10089 break;
10091 case SUBREG:
10092 /* Check for the case where we are comparing A - C1 with C2, that is
10094 (subreg:MODE (plus (A) (-C1))) op (C2)
10096 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10097 comparison in the wider mode. One of the following two conditions
10098 must be true in order for this to be valid:
10100 1. The mode extension results in the same bit pattern being added
10101 on both sides and the comparison is equality or unsigned. As
10102 C2 has been truncated to fit in MODE, the pattern can only be
10103 all 0s or all 1s.
10105 2. The mode extension results in the sign bit being copied on
10106 each side.
10108 The difficulty here is that we have predicates for A but not for
10109 (A - C1) so we need to check that C1 is within proper bounds so
10110 as to perturbate A as little as possible. */
10112 if (mode_width <= HOST_BITS_PER_WIDE_INT
10113 && subreg_lowpart_p (op0)
10114 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10115 && GET_CODE (SUBREG_REG (op0)) == PLUS
10116 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10118 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10119 rtx a = XEXP (SUBREG_REG (op0), 0);
10120 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10122 if ((c1 > 0
10123 && (unsigned HOST_WIDE_INT) c1
10124 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10125 && (equality_comparison_p || unsigned_comparison_p)
10126 /* (A - C1) zero-extends if it is positive and sign-extends
10127 if it is negative, C2 both zero- and sign-extends. */
10128 && ((0 == (nonzero_bits (a, inner_mode)
10129 & ~GET_MODE_MASK (mode))
10130 && const_op >= 0)
10131 /* (A - C1) sign-extends if it is positive and 1-extends
10132 if it is negative, C2 both sign- and 1-extends. */
10133 || (num_sign_bit_copies (a, inner_mode)
10134 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10135 - mode_width)
10136 && const_op < 0)))
10137 || ((unsigned HOST_WIDE_INT) c1
10138 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10139 /* (A - C1) always sign-extends, like C2. */
10140 && num_sign_bit_copies (a, inner_mode)
10141 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10142 - mode_width - 1)))
10144 op0 = SUBREG_REG (op0);
10145 continue;
10149 /* If the inner mode is narrower and we are extracting the low part,
10150 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10151 if (subreg_lowpart_p (op0)
10152 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10153 /* Fall through */ ;
10154 else
10155 break;
10157 /* ... fall through ... */
10159 case ZERO_EXTEND:
10160 mode = GET_MODE (XEXP (op0, 0));
10161 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10162 && (unsigned_comparison_p || equality_comparison_p)
10163 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10164 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10165 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10167 op0 = XEXP (op0, 0);
10168 continue;
10170 break;
10172 case PLUS:
10173 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10174 this for equality comparisons due to pathological cases involving
10175 overflows. */
10176 if (equality_comparison_p
10177 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10178 op1, XEXP (op0, 1))))
10180 op0 = XEXP (op0, 0);
10181 op1 = tem;
10182 continue;
10185 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10186 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10187 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10189 op0 = XEXP (XEXP (op0, 0), 0);
10190 code = (code == LT ? EQ : NE);
10191 continue;
10193 break;
10195 case MINUS:
10196 /* We used to optimize signed comparisons against zero, but that
10197 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10198 arrive here as equality comparisons, or (GEU, LTU) are
10199 optimized away. No need to special-case them. */
10201 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10202 (eq B (minus A C)), whichever simplifies. We can only do
10203 this for equality comparisons due to pathological cases involving
10204 overflows. */
10205 if (equality_comparison_p
10206 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10207 XEXP (op0, 1), op1)))
10209 op0 = XEXP (op0, 0);
10210 op1 = tem;
10211 continue;
10214 if (equality_comparison_p
10215 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10216 XEXP (op0, 0), op1)))
10218 op0 = XEXP (op0, 1);
10219 op1 = tem;
10220 continue;
10223 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10224 of bits in X minus 1, is one iff X > 0. */
10225 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10226 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10227 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10228 == mode_width - 1
10229 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10231 op0 = XEXP (op0, 1);
10232 code = (code == GE ? LE : GT);
10233 continue;
10235 break;
10237 case XOR:
10238 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10239 if C is zero or B is a constant. */
10240 if (equality_comparison_p
10241 && 0 != (tem = simplify_binary_operation (XOR, mode,
10242 XEXP (op0, 1), op1)))
10244 op0 = XEXP (op0, 0);
10245 op1 = tem;
10246 continue;
10248 break;
10250 case EQ: case NE:
10251 case UNEQ: case LTGT:
10252 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10253 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10254 case UNORDERED: case ORDERED:
10255 /* We can't do anything if OP0 is a condition code value, rather
10256 than an actual data value. */
10257 if (const_op != 0
10258 || CC0_P (XEXP (op0, 0))
10259 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10260 break;
10262 /* Get the two operands being compared. */
10263 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10264 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10265 else
10266 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10268 /* Check for the cases where we simply want the result of the
10269 earlier test or the opposite of that result. */
10270 if (code == NE || code == EQ
10271 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10272 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10273 && (STORE_FLAG_VALUE
10274 & (((HOST_WIDE_INT) 1
10275 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10276 && (code == LT || code == GE)))
10278 enum rtx_code new_code;
10279 if (code == LT || code == NE)
10280 new_code = GET_CODE (op0);
10281 else
10282 new_code = reversed_comparison_code (op0, NULL);
10284 if (new_code != UNKNOWN)
10286 code = new_code;
10287 op0 = tem;
10288 op1 = tem1;
10289 continue;
10292 break;
10294 case IOR:
10295 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10296 iff X <= 0. */
10297 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10298 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10299 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10301 op0 = XEXP (op0, 1);
10302 code = (code == GE ? GT : LE);
10303 continue;
10305 break;
10307 case AND:
10308 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10309 will be converted to a ZERO_EXTRACT later. */
10310 if (const_op == 0 && equality_comparison_p
10311 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10312 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10314 op0 = simplify_and_const_int
10315 (op0, mode, gen_rtx_LSHIFTRT (mode,
10316 XEXP (op0, 1),
10317 XEXP (XEXP (op0, 0), 1)),
10318 (HOST_WIDE_INT) 1);
10319 continue;
10322 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10323 zero and X is a comparison and C1 and C2 describe only bits set
10324 in STORE_FLAG_VALUE, we can compare with X. */
10325 if (const_op == 0 && equality_comparison_p
10326 && mode_width <= HOST_BITS_PER_WIDE_INT
10327 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10328 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10329 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10330 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10331 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10333 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10334 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10335 if ((~STORE_FLAG_VALUE & mask) == 0
10336 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10337 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10338 && COMPARISON_P (tem))))
10340 op0 = XEXP (XEXP (op0, 0), 0);
10341 continue;
10345 /* If we are doing an equality comparison of an AND of a bit equal
10346 to the sign bit, replace this with a LT or GE comparison of
10347 the underlying value. */
10348 if (equality_comparison_p
10349 && const_op == 0
10350 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10351 && mode_width <= HOST_BITS_PER_WIDE_INT
10352 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10353 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10355 op0 = XEXP (op0, 0);
10356 code = (code == EQ ? GE : LT);
10357 continue;
10360 /* If this AND operation is really a ZERO_EXTEND from a narrower
10361 mode, the constant fits within that mode, and this is either an
10362 equality or unsigned comparison, try to do this comparison in
10363 the narrower mode. */
10364 if ((equality_comparison_p || unsigned_comparison_p)
10365 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10366 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10367 & GET_MODE_MASK (mode))
10368 + 1)) >= 0
10369 && const_op >> i == 0
10370 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10372 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10373 continue;
10376 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10377 fits in both M1 and M2 and the SUBREG is either paradoxical
10378 or represents the low part, permute the SUBREG and the AND
10379 and try again. */
10380 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10382 unsigned HOST_WIDE_INT c1;
10383 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10384 /* Require an integral mode, to avoid creating something like
10385 (AND:SF ...). */
10386 if (SCALAR_INT_MODE_P (tmode)
10387 /* It is unsafe to commute the AND into the SUBREG if the
10388 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10389 not defined. As originally written the upper bits
10390 have a defined value due to the AND operation.
10391 However, if we commute the AND inside the SUBREG then
10392 they no longer have defined values and the meaning of
10393 the code has been changed. */
10394 && (0
10395 #ifdef WORD_REGISTER_OPERATIONS
10396 || (mode_width > GET_MODE_BITSIZE (tmode)
10397 && mode_width <= BITS_PER_WORD)
10398 #endif
10399 || (mode_width <= GET_MODE_BITSIZE (tmode)
10400 && subreg_lowpart_p (XEXP (op0, 0))))
10401 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10402 && mode_width <= HOST_BITS_PER_WIDE_INT
10403 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10404 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10405 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10406 && c1 != mask
10407 && c1 != GET_MODE_MASK (tmode))
10409 op0 = simplify_gen_binary (AND, tmode,
10410 SUBREG_REG (XEXP (op0, 0)),
10411 gen_int_mode (c1, tmode));
10412 op0 = gen_lowpart (mode, op0);
10413 continue;
10417 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10418 if (const_op == 0 && equality_comparison_p
10419 && XEXP (op0, 1) == const1_rtx
10420 && GET_CODE (XEXP (op0, 0)) == NOT)
10422 op0 = simplify_and_const_int
10423 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10424 code = (code == NE ? EQ : NE);
10425 continue;
10428 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10429 (eq (and (lshiftrt X) 1) 0).
10430 Also handle the case where (not X) is expressed using xor. */
10431 if (const_op == 0 && equality_comparison_p
10432 && XEXP (op0, 1) == const1_rtx
10433 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10435 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10436 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10438 if (GET_CODE (shift_op) == NOT
10439 || (GET_CODE (shift_op) == XOR
10440 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10441 && GET_CODE (shift_count) == CONST_INT
10442 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10443 && (INTVAL (XEXP (shift_op, 1))
10444 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10446 op0 = simplify_and_const_int
10447 (NULL_RTX, mode,
10448 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10449 (HOST_WIDE_INT) 1);
10450 code = (code == NE ? EQ : NE);
10451 continue;
10454 break;
10456 case ASHIFT:
10457 /* If we have (compare (ashift FOO N) (const_int C)) and
10458 the high order N bits of FOO (N+1 if an inequality comparison)
10459 are known to be zero, we can do this by comparing FOO with C
10460 shifted right N bits so long as the low-order N bits of C are
10461 zero. */
10462 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10463 && INTVAL (XEXP (op0, 1)) >= 0
10464 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10465 < HOST_BITS_PER_WIDE_INT)
10466 && ((const_op
10467 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10468 && mode_width <= HOST_BITS_PER_WIDE_INT
10469 && (nonzero_bits (XEXP (op0, 0), mode)
10470 & ~(mask >> (INTVAL (XEXP (op0, 1))
10471 + ! equality_comparison_p))) == 0)
10473 /* We must perform a logical shift, not an arithmetic one,
10474 as we want the top N bits of C to be zero. */
10475 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10477 temp >>= INTVAL (XEXP (op0, 1));
10478 op1 = gen_int_mode (temp, mode);
10479 op0 = XEXP (op0, 0);
10480 continue;
10483 /* If we are doing a sign bit comparison, it means we are testing
10484 a particular bit. Convert it to the appropriate AND. */
10485 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10486 && mode_width <= HOST_BITS_PER_WIDE_INT)
10488 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10489 ((HOST_WIDE_INT) 1
10490 << (mode_width - 1
10491 - INTVAL (XEXP (op0, 1)))));
10492 code = (code == LT ? NE : EQ);
10493 continue;
10496 /* If this an equality comparison with zero and we are shifting
10497 the low bit to the sign bit, we can convert this to an AND of the
10498 low-order bit. */
10499 if (const_op == 0 && equality_comparison_p
10500 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10501 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10502 == mode_width - 1)
10504 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10505 (HOST_WIDE_INT) 1);
10506 continue;
10508 break;
10510 case ASHIFTRT:
10511 /* If this is an equality comparison with zero, we can do this
10512 as a logical shift, which might be much simpler. */
10513 if (equality_comparison_p && const_op == 0
10514 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10516 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10517 XEXP (op0, 0),
10518 INTVAL (XEXP (op0, 1)));
10519 continue;
10522 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10523 do the comparison in a narrower mode. */
10524 if (! unsigned_comparison_p
10525 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10526 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10527 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10528 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10529 MODE_INT, 1)) != BLKmode
10530 && (((unsigned HOST_WIDE_INT) const_op
10531 + (GET_MODE_MASK (tmode) >> 1) + 1)
10532 <= GET_MODE_MASK (tmode)))
10534 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10535 continue;
10538 /* Likewise if OP0 is a PLUS of a sign extension with a
10539 constant, which is usually represented with the PLUS
10540 between the shifts. */
10541 if (! unsigned_comparison_p
10542 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10543 && GET_CODE (XEXP (op0, 0)) == PLUS
10544 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10545 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10546 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10547 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10548 MODE_INT, 1)) != BLKmode
10549 && (((unsigned HOST_WIDE_INT) const_op
10550 + (GET_MODE_MASK (tmode) >> 1) + 1)
10551 <= GET_MODE_MASK (tmode)))
10553 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10554 rtx add_const = XEXP (XEXP (op0, 0), 1);
10555 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10556 add_const, XEXP (op0, 1));
10558 op0 = simplify_gen_binary (PLUS, tmode,
10559 gen_lowpart (tmode, inner),
10560 new_const);
10561 continue;
10564 /* ... fall through ... */
10565 case LSHIFTRT:
10566 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10567 the low order N bits of FOO are known to be zero, we can do this
10568 by comparing FOO with C shifted left N bits so long as no
10569 overflow occurs. */
10570 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10571 && INTVAL (XEXP (op0, 1)) >= 0
10572 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10573 && mode_width <= HOST_BITS_PER_WIDE_INT
10574 && (nonzero_bits (XEXP (op0, 0), mode)
10575 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10576 && (((unsigned HOST_WIDE_INT) const_op
10577 + (GET_CODE (op0) != LSHIFTRT
10578 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10579 + 1)
10580 : 0))
10581 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10583 /* If the shift was logical, then we must make the condition
10584 unsigned. */
10585 if (GET_CODE (op0) == LSHIFTRT)
10586 code = unsigned_condition (code);
10588 const_op <<= INTVAL (XEXP (op0, 1));
10589 op1 = GEN_INT (const_op);
10590 op0 = XEXP (op0, 0);
10591 continue;
10594 /* If we are using this shift to extract just the sign bit, we
10595 can replace this with an LT or GE comparison. */
10596 if (const_op == 0
10597 && (equality_comparison_p || sign_bit_comparison_p)
10598 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10599 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10600 == mode_width - 1)
10602 op0 = XEXP (op0, 0);
10603 code = (code == NE || code == GT ? LT : GE);
10604 continue;
10606 break;
10608 default:
10609 break;
10612 break;
10615 /* Now make any compound operations involved in this comparison. Then,
10616 check for an outmost SUBREG on OP0 that is not doing anything or is
10617 paradoxical. The latter transformation must only be performed when
10618 it is known that the "extra" bits will be the same in op0 and op1 or
10619 that they don't matter. There are three cases to consider:
10621 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10622 care bits and we can assume they have any convenient value. So
10623 making the transformation is safe.
10625 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10626 In this case the upper bits of op0 are undefined. We should not make
10627 the simplification in that case as we do not know the contents of
10628 those bits.
10630 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10631 UNKNOWN. In that case we know those bits are zeros or ones. We must
10632 also be sure that they are the same as the upper bits of op1.
10634 We can never remove a SUBREG for a non-equality comparison because
10635 the sign bit is in a different place in the underlying object. */
10637 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10638 op1 = make_compound_operation (op1, SET);
10640 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10641 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10642 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10643 && (code == NE || code == EQ))
10645 if (GET_MODE_SIZE (GET_MODE (op0))
10646 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10648 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10649 implemented. */
10650 if (REG_P (SUBREG_REG (op0)))
10652 op0 = SUBREG_REG (op0);
10653 op1 = gen_lowpart (GET_MODE (op0), op1);
10656 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10657 <= HOST_BITS_PER_WIDE_INT)
10658 && (nonzero_bits (SUBREG_REG (op0),
10659 GET_MODE (SUBREG_REG (op0)))
10660 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10662 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10664 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10665 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10666 op0 = SUBREG_REG (op0), op1 = tem;
10670 /* We now do the opposite procedure: Some machines don't have compare
10671 insns in all modes. If OP0's mode is an integer mode smaller than a
10672 word and we can't do a compare in that mode, see if there is a larger
10673 mode for which we can do the compare. There are a number of cases in
10674 which we can use the wider mode. */
10676 mode = GET_MODE (op0);
10677 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10678 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10679 && ! have_insn_for (COMPARE, mode))
10680 for (tmode = GET_MODE_WIDER_MODE (mode);
10681 (tmode != VOIDmode
10682 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10683 tmode = GET_MODE_WIDER_MODE (tmode))
10684 if (have_insn_for (COMPARE, tmode))
10686 int zero_extended;
10688 /* If the only nonzero bits in OP0 and OP1 are those in the
10689 narrower mode and this is an equality or unsigned comparison,
10690 we can use the wider mode. Similarly for sign-extended
10691 values, in which case it is true for all comparisons. */
10692 zero_extended = ((code == EQ || code == NE
10693 || code == GEU || code == GTU
10694 || code == LEU || code == LTU)
10695 && (nonzero_bits (op0, tmode)
10696 & ~GET_MODE_MASK (mode)) == 0
10697 && ((GET_CODE (op1) == CONST_INT
10698 || (nonzero_bits (op1, tmode)
10699 & ~GET_MODE_MASK (mode)) == 0)));
10701 if (zero_extended
10702 || ((num_sign_bit_copies (op0, tmode)
10703 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10704 - GET_MODE_BITSIZE (mode)))
10705 && (num_sign_bit_copies (op1, tmode)
10706 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10707 - GET_MODE_BITSIZE (mode)))))
10709 /* If OP0 is an AND and we don't have an AND in MODE either,
10710 make a new AND in the proper mode. */
10711 if (GET_CODE (op0) == AND
10712 && !have_insn_for (AND, mode))
10713 op0 = simplify_gen_binary (AND, tmode,
10714 gen_lowpart (tmode,
10715 XEXP (op0, 0)),
10716 gen_lowpart (tmode,
10717 XEXP (op0, 1)));
10719 op0 = gen_lowpart (tmode, op0);
10720 if (zero_extended && GET_CODE (op1) == CONST_INT)
10721 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10722 op1 = gen_lowpart (tmode, op1);
10723 break;
10726 /* If this is a test for negative, we can make an explicit
10727 test of the sign bit. */
10729 if (op1 == const0_rtx && (code == LT || code == GE)
10730 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10732 op0 = simplify_gen_binary (AND, tmode,
10733 gen_lowpart (tmode, op0),
10734 GEN_INT ((HOST_WIDE_INT) 1
10735 << (GET_MODE_BITSIZE (mode)
10736 - 1)));
10737 code = (code == LT) ? NE : EQ;
10738 break;
10742 #ifdef CANONICALIZE_COMPARISON
10743 /* If this machine only supports a subset of valid comparisons, see if we
10744 can convert an unsupported one into a supported one. */
10745 CANONICALIZE_COMPARISON (code, op0, op1);
10746 #endif
10748 *pop0 = op0;
10749 *pop1 = op1;
10751 return code;
10754 /* Utility function for record_value_for_reg. Count number of
10755 rtxs in X. */
10756 static int
10757 count_rtxs (rtx x)
10759 enum rtx_code code = GET_CODE (x);
10760 const char *fmt;
10761 int i, ret = 1;
10763 if (GET_RTX_CLASS (code) == '2'
10764 || GET_RTX_CLASS (code) == 'c')
10766 rtx x0 = XEXP (x, 0);
10767 rtx x1 = XEXP (x, 1);
10769 if (x0 == x1)
10770 return 1 + 2 * count_rtxs (x0);
10772 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10773 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10774 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10775 return 2 + 2 * count_rtxs (x0)
10776 + count_rtxs (x == XEXP (x1, 0)
10777 ? XEXP (x1, 1) : XEXP (x1, 0));
10779 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10780 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10781 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10782 return 2 + 2 * count_rtxs (x1)
10783 + count_rtxs (x == XEXP (x0, 0)
10784 ? XEXP (x0, 1) : XEXP (x0, 0));
10787 fmt = GET_RTX_FORMAT (code);
10788 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10789 if (fmt[i] == 'e')
10790 ret += count_rtxs (XEXP (x, i));
10792 return ret;
10795 /* Utility function for following routine. Called when X is part of a value
10796 being stored into last_set_value. Sets last_set_table_tick
10797 for each register mentioned. Similar to mention_regs in cse.c */
10799 static void
10800 update_table_tick (rtx x)
10802 enum rtx_code code = GET_CODE (x);
10803 const char *fmt = GET_RTX_FORMAT (code);
10804 int i;
10806 if (code == REG)
10808 unsigned int regno = REGNO (x);
10809 unsigned int endregno
10810 = regno + (regno < FIRST_PSEUDO_REGISTER
10811 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10812 unsigned int r;
10814 for (r = regno; r < endregno; r++)
10815 reg_stat[r].last_set_table_tick = label_tick;
10817 return;
10820 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10821 /* Note that we can't have an "E" in values stored; see
10822 get_last_value_validate. */
10823 if (fmt[i] == 'e')
10825 /* Check for identical subexpressions. If x contains
10826 identical subexpression we only have to traverse one of
10827 them. */
10828 if (i == 0 && ARITHMETIC_P (x))
10830 /* Note that at this point x1 has already been
10831 processed. */
10832 rtx x0 = XEXP (x, 0);
10833 rtx x1 = XEXP (x, 1);
10835 /* If x0 and x1 are identical then there is no need to
10836 process x0. */
10837 if (x0 == x1)
10838 break;
10840 /* If x0 is identical to a subexpression of x1 then while
10841 processing x1, x0 has already been processed. Thus we
10842 are done with x. */
10843 if (ARITHMETIC_P (x1)
10844 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10845 break;
10847 /* If x1 is identical to a subexpression of x0 then we
10848 still have to process the rest of x0. */
10849 if (ARITHMETIC_P (x0)
10850 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10852 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10853 break;
10857 update_table_tick (XEXP (x, i));
10861 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10862 are saying that the register is clobbered and we no longer know its
10863 value. If INSN is zero, don't update reg_stat[].last_set; this is
10864 only permitted with VALUE also zero and is used to invalidate the
10865 register. */
10867 static void
10868 record_value_for_reg (rtx reg, rtx insn, rtx value)
10870 unsigned int regno = REGNO (reg);
10871 unsigned int endregno
10872 = regno + (regno < FIRST_PSEUDO_REGISTER
10873 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10874 unsigned int i;
10876 /* If VALUE contains REG and we have a previous value for REG, substitute
10877 the previous value. */
10878 if (value && insn && reg_overlap_mentioned_p (reg, value))
10880 rtx tem;
10882 /* Set things up so get_last_value is allowed to see anything set up to
10883 our insn. */
10884 subst_low_cuid = INSN_CUID (insn);
10885 tem = get_last_value (reg);
10887 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10888 it isn't going to be useful and will take a lot of time to process,
10889 so just use the CLOBBER. */
10891 if (tem)
10893 if (ARITHMETIC_P (tem)
10894 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10895 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10896 tem = XEXP (tem, 0);
10897 else if (count_occurrences (value, reg, 1) >= 2)
10899 /* If there are two or more occurrences of REG in VALUE,
10900 prevent the value from growing too much. */
10901 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10902 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10905 value = replace_rtx (copy_rtx (value), reg, tem);
10909 /* For each register modified, show we don't know its value, that
10910 we don't know about its bitwise content, that its value has been
10911 updated, and that we don't know the location of the death of the
10912 register. */
10913 for (i = regno; i < endregno; i++)
10915 if (insn)
10916 reg_stat[i].last_set = insn;
10918 reg_stat[i].last_set_value = 0;
10919 reg_stat[i].last_set_mode = 0;
10920 reg_stat[i].last_set_nonzero_bits = 0;
10921 reg_stat[i].last_set_sign_bit_copies = 0;
10922 reg_stat[i].last_death = 0;
10925 /* Mark registers that are being referenced in this value. */
10926 if (value)
10927 update_table_tick (value);
10929 /* Now update the status of each register being set.
10930 If someone is using this register in this block, set this register
10931 to invalid since we will get confused between the two lives in this
10932 basic block. This makes using this register always invalid. In cse, we
10933 scan the table to invalidate all entries using this register, but this
10934 is too much work for us. */
10936 for (i = regno; i < endregno; i++)
10938 reg_stat[i].last_set_label = label_tick;
10939 if (value && reg_stat[i].last_set_table_tick == label_tick)
10940 reg_stat[i].last_set_invalid = 1;
10941 else
10942 reg_stat[i].last_set_invalid = 0;
10945 /* The value being assigned might refer to X (like in "x++;"). In that
10946 case, we must replace it with (clobber (const_int 0)) to prevent
10947 infinite loops. */
10948 if (value && ! get_last_value_validate (&value, insn,
10949 reg_stat[regno].last_set_label, 0))
10951 value = copy_rtx (value);
10952 if (! get_last_value_validate (&value, insn,
10953 reg_stat[regno].last_set_label, 1))
10954 value = 0;
10957 /* For the main register being modified, update the value, the mode, the
10958 nonzero bits, and the number of sign bit copies. */
10960 reg_stat[regno].last_set_value = value;
10962 if (value)
10964 enum machine_mode mode = GET_MODE (reg);
10965 subst_low_cuid = INSN_CUID (insn);
10966 reg_stat[regno].last_set_mode = mode;
10967 if (GET_MODE_CLASS (mode) == MODE_INT
10968 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10969 mode = nonzero_bits_mode;
10970 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10971 reg_stat[regno].last_set_sign_bit_copies
10972 = num_sign_bit_copies (value, GET_MODE (reg));
10976 /* Called via note_stores from record_dead_and_set_regs to handle one
10977 SET or CLOBBER in an insn. DATA is the instruction in which the
10978 set is occurring. */
10980 static void
10981 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10983 rtx record_dead_insn = (rtx) data;
10985 if (GET_CODE (dest) == SUBREG)
10986 dest = SUBREG_REG (dest);
10988 if (REG_P (dest))
10990 /* If we are setting the whole register, we know its value. Otherwise
10991 show that we don't know the value. We can handle SUBREG in
10992 some cases. */
10993 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10994 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10995 else if (GET_CODE (setter) == SET
10996 && GET_CODE (SET_DEST (setter)) == SUBREG
10997 && SUBREG_REG (SET_DEST (setter)) == dest
10998 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10999 && subreg_lowpart_p (SET_DEST (setter)))
11000 record_value_for_reg (dest, record_dead_insn,
11001 gen_lowpart (GET_MODE (dest),
11002 SET_SRC (setter)));
11003 else
11004 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11006 else if (MEM_P (dest)
11007 /* Ignore pushes, they clobber nothing. */
11008 && ! push_operand (dest, GET_MODE (dest)))
11009 mem_last_set = INSN_CUID (record_dead_insn);
11012 /* Update the records of when each REG was most recently set or killed
11013 for the things done by INSN. This is the last thing done in processing
11014 INSN in the combiner loop.
11016 We update reg_stat[], in particular fields last_set, last_set_value,
11017 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11018 last_death, and also the similar information mem_last_set (which insn
11019 most recently modified memory) and last_call_cuid (which insn was the
11020 most recent subroutine call). */
11022 static void
11023 record_dead_and_set_regs (rtx insn)
11025 rtx link;
11026 unsigned int i;
11028 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11030 if (REG_NOTE_KIND (link) == REG_DEAD
11031 && REG_P (XEXP (link, 0)))
11033 unsigned int regno = REGNO (XEXP (link, 0));
11034 unsigned int endregno
11035 = regno + (regno < FIRST_PSEUDO_REGISTER
11036 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11037 : 1);
11039 for (i = regno; i < endregno; i++)
11040 reg_stat[i].last_death = insn;
11042 else if (REG_NOTE_KIND (link) == REG_INC)
11043 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11046 if (CALL_P (insn))
11048 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11049 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11051 reg_stat[i].last_set_value = 0;
11052 reg_stat[i].last_set_mode = 0;
11053 reg_stat[i].last_set_nonzero_bits = 0;
11054 reg_stat[i].last_set_sign_bit_copies = 0;
11055 reg_stat[i].last_death = 0;
11058 last_call_cuid = mem_last_set = INSN_CUID (insn);
11060 /* Don't bother recording what this insn does. It might set the
11061 return value register, but we can't combine into a call
11062 pattern anyway, so there's no point trying (and it may cause
11063 a crash, if e.g. we wind up asking for last_set_value of a
11064 SUBREG of the return value register). */
11065 return;
11068 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11071 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11072 register present in the SUBREG, so for each such SUBREG go back and
11073 adjust nonzero and sign bit information of the registers that are
11074 known to have some zero/sign bits set.
11076 This is needed because when combine blows the SUBREGs away, the
11077 information on zero/sign bits is lost and further combines can be
11078 missed because of that. */
11080 static void
11081 record_promoted_value (rtx insn, rtx subreg)
11083 rtx links, set;
11084 unsigned int regno = REGNO (SUBREG_REG (subreg));
11085 enum machine_mode mode = GET_MODE (subreg);
11087 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11088 return;
11090 for (links = LOG_LINKS (insn); links;)
11092 insn = XEXP (links, 0);
11093 set = single_set (insn);
11095 if (! set || !REG_P (SET_DEST (set))
11096 || REGNO (SET_DEST (set)) != regno
11097 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11099 links = XEXP (links, 1);
11100 continue;
11103 if (reg_stat[regno].last_set == insn)
11105 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11106 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11109 if (REG_P (SET_SRC (set)))
11111 regno = REGNO (SET_SRC (set));
11112 links = LOG_LINKS (insn);
11114 else
11115 break;
11119 /* Scan X for promoted SUBREGs. For each one found,
11120 note what it implies to the registers used in it. */
11122 static void
11123 check_promoted_subreg (rtx insn, rtx x)
11125 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11126 && REG_P (SUBREG_REG (x)))
11127 record_promoted_value (insn, x);
11128 else
11130 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11131 int i, j;
11133 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11134 switch (format[i])
11136 case 'e':
11137 check_promoted_subreg (insn, XEXP (x, i));
11138 break;
11139 case 'V':
11140 case 'E':
11141 if (XVEC (x, i) != 0)
11142 for (j = 0; j < XVECLEN (x, i); j++)
11143 check_promoted_subreg (insn, XVECEXP (x, i, j));
11144 break;
11149 /* Utility routine for the following function. Verify that all the registers
11150 mentioned in *LOC are valid when *LOC was part of a value set when
11151 label_tick == TICK. Return 0 if some are not.
11153 If REPLACE is nonzero, replace the invalid reference with
11154 (clobber (const_int 0)) and return 1. This replacement is useful because
11155 we often can get useful information about the form of a value (e.g., if
11156 it was produced by a shift that always produces -1 or 0) even though
11157 we don't know exactly what registers it was produced from. */
11159 static int
11160 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11162 rtx x = *loc;
11163 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11164 int len = GET_RTX_LENGTH (GET_CODE (x));
11165 int i;
11167 if (REG_P (x))
11169 unsigned int regno = REGNO (x);
11170 unsigned int endregno
11171 = regno + (regno < FIRST_PSEUDO_REGISTER
11172 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11173 unsigned int j;
11175 for (j = regno; j < endregno; j++)
11176 if (reg_stat[j].last_set_invalid
11177 /* If this is a pseudo-register that was only set once and not
11178 live at the beginning of the function, it is always valid. */
11179 || (! (regno >= FIRST_PSEUDO_REGISTER
11180 && REG_N_SETS (regno) == 1
11181 && (! REGNO_REG_SET_P
11182 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11183 && reg_stat[j].last_set_label > tick))
11185 if (replace)
11186 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11187 return replace;
11190 return 1;
11192 /* If this is a memory reference, make sure that there were
11193 no stores after it that might have clobbered the value. We don't
11194 have alias info, so we assume any store invalidates it. */
11195 else if (MEM_P (x) && !MEM_READONLY_P (x)
11196 && INSN_CUID (insn) <= mem_last_set)
11198 if (replace)
11199 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11200 return replace;
11203 for (i = 0; i < len; i++)
11205 if (fmt[i] == 'e')
11207 /* Check for identical subexpressions. If x contains
11208 identical subexpression we only have to traverse one of
11209 them. */
11210 if (i == 1 && ARITHMETIC_P (x))
11212 /* Note that at this point x0 has already been checked
11213 and found valid. */
11214 rtx x0 = XEXP (x, 0);
11215 rtx x1 = XEXP (x, 1);
11217 /* If x0 and x1 are identical then x is also valid. */
11218 if (x0 == x1)
11219 return 1;
11221 /* If x1 is identical to a subexpression of x0 then
11222 while checking x0, x1 has already been checked. Thus
11223 it is valid and so as x. */
11224 if (ARITHMETIC_P (x0)
11225 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11226 return 1;
11228 /* If x0 is identical to a subexpression of x1 then x is
11229 valid iff the rest of x1 is valid. */
11230 if (ARITHMETIC_P (x1)
11231 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11232 return
11233 get_last_value_validate (&XEXP (x1,
11234 x0 == XEXP (x1, 0) ? 1 : 0),
11235 insn, tick, replace);
11238 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11239 replace) == 0)
11240 return 0;
11242 /* Don't bother with these. They shouldn't occur anyway. */
11243 else if (fmt[i] == 'E')
11244 return 0;
11247 /* If we haven't found a reason for it to be invalid, it is valid. */
11248 return 1;
11251 /* Get the last value assigned to X, if known. Some registers
11252 in the value may be replaced with (clobber (const_int 0)) if their value
11253 is known longer known reliably. */
11255 static rtx
11256 get_last_value (rtx x)
11258 unsigned int regno;
11259 rtx value;
11261 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11262 then convert it to the desired mode. If this is a paradoxical SUBREG,
11263 we cannot predict what values the "extra" bits might have. */
11264 if (GET_CODE (x) == SUBREG
11265 && subreg_lowpart_p (x)
11266 && (GET_MODE_SIZE (GET_MODE (x))
11267 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11268 && (value = get_last_value (SUBREG_REG (x))) != 0)
11269 return gen_lowpart (GET_MODE (x), value);
11271 if (!REG_P (x))
11272 return 0;
11274 regno = REGNO (x);
11275 value = reg_stat[regno].last_set_value;
11277 /* If we don't have a value, or if it isn't for this basic block and
11278 it's either a hard register, set more than once, or it's a live
11279 at the beginning of the function, return 0.
11281 Because if it's not live at the beginning of the function then the reg
11282 is always set before being used (is never used without being set).
11283 And, if it's set only once, and it's always set before use, then all
11284 uses must have the same last value, even if it's not from this basic
11285 block. */
11287 if (value == 0
11288 || (reg_stat[regno].last_set_label != label_tick
11289 && (regno < FIRST_PSEUDO_REGISTER
11290 || REG_N_SETS (regno) != 1
11291 || (REGNO_REG_SET_P
11292 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11293 return 0;
11295 /* If the value was set in a later insn than the ones we are processing,
11296 we can't use it even if the register was only set once. */
11297 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11298 return 0;
11300 /* If the value has all its registers valid, return it. */
11301 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11302 reg_stat[regno].last_set_label, 0))
11303 return value;
11305 /* Otherwise, make a copy and replace any invalid register with
11306 (clobber (const_int 0)). If that fails for some reason, return 0. */
11308 value = copy_rtx (value);
11309 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11310 reg_stat[regno].last_set_label, 1))
11311 return value;
11313 return 0;
11316 /* Return nonzero if expression X refers to a REG or to memory
11317 that is set in an instruction more recent than FROM_CUID. */
11319 static int
11320 use_crosses_set_p (rtx x, int from_cuid)
11322 const char *fmt;
11323 int i;
11324 enum rtx_code code = GET_CODE (x);
11326 if (code == REG)
11328 unsigned int regno = REGNO (x);
11329 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11330 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11332 #ifdef PUSH_ROUNDING
11333 /* Don't allow uses of the stack pointer to be moved,
11334 because we don't know whether the move crosses a push insn. */
11335 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11336 return 1;
11337 #endif
11338 for (; regno < endreg; regno++)
11339 if (reg_stat[regno].last_set
11340 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11341 return 1;
11342 return 0;
11345 if (code == MEM && mem_last_set > from_cuid)
11346 return 1;
11348 fmt = GET_RTX_FORMAT (code);
11350 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11352 if (fmt[i] == 'E')
11354 int j;
11355 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11356 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11357 return 1;
11359 else if (fmt[i] == 'e'
11360 && use_crosses_set_p (XEXP (x, i), from_cuid))
11361 return 1;
11363 return 0;
11366 /* Define three variables used for communication between the following
11367 routines. */
11369 static unsigned int reg_dead_regno, reg_dead_endregno;
11370 static int reg_dead_flag;
11372 /* Function called via note_stores from reg_dead_at_p.
11374 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11375 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11377 static void
11378 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11380 unsigned int regno, endregno;
11382 if (!REG_P (dest))
11383 return;
11385 regno = REGNO (dest);
11386 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11387 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11389 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11390 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11393 /* Return nonzero if REG is known to be dead at INSN.
11395 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11396 referencing REG, it is dead. If we hit a SET referencing REG, it is
11397 live. Otherwise, see if it is live or dead at the start of the basic
11398 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11399 must be assumed to be always live. */
11401 static int
11402 reg_dead_at_p (rtx reg, rtx insn)
11404 basic_block block;
11405 unsigned int i;
11407 /* Set variables for reg_dead_at_p_1. */
11408 reg_dead_regno = REGNO (reg);
11409 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11410 ? hard_regno_nregs[reg_dead_regno]
11411 [GET_MODE (reg)]
11412 : 1);
11414 reg_dead_flag = 0;
11416 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11417 we allow the machine description to decide whether use-and-clobber
11418 patterns are OK. */
11419 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11421 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11422 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11423 return 0;
11426 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11427 beginning of function. */
11428 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11429 insn = prev_nonnote_insn (insn))
11431 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11432 if (reg_dead_flag)
11433 return reg_dead_flag == 1 ? 1 : 0;
11435 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11436 return 1;
11439 /* Get the basic block that we were in. */
11440 if (insn == 0)
11441 block = ENTRY_BLOCK_PTR->next_bb;
11442 else
11444 FOR_EACH_BB (block)
11445 if (insn == BB_HEAD (block))
11446 break;
11448 if (block == EXIT_BLOCK_PTR)
11449 return 0;
11452 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11453 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11454 return 0;
11456 return 1;
11459 /* Note hard registers in X that are used. This code is similar to
11460 that in flow.c, but much simpler since we don't care about pseudos. */
11462 static void
11463 mark_used_regs_combine (rtx x)
11465 RTX_CODE code = GET_CODE (x);
11466 unsigned int regno;
11467 int i;
11469 switch (code)
11471 case LABEL_REF:
11472 case SYMBOL_REF:
11473 case CONST_INT:
11474 case CONST:
11475 case CONST_DOUBLE:
11476 case CONST_VECTOR:
11477 case PC:
11478 case ADDR_VEC:
11479 case ADDR_DIFF_VEC:
11480 case ASM_INPUT:
11481 #ifdef HAVE_cc0
11482 /* CC0 must die in the insn after it is set, so we don't need to take
11483 special note of it here. */
11484 case CC0:
11485 #endif
11486 return;
11488 case CLOBBER:
11489 /* If we are clobbering a MEM, mark any hard registers inside the
11490 address as used. */
11491 if (MEM_P (XEXP (x, 0)))
11492 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11493 return;
11495 case REG:
11496 regno = REGNO (x);
11497 /* A hard reg in a wide mode may really be multiple registers.
11498 If so, mark all of them just like the first. */
11499 if (regno < FIRST_PSEUDO_REGISTER)
11501 unsigned int endregno, r;
11503 /* None of this applies to the stack, frame or arg pointers. */
11504 if (regno == STACK_POINTER_REGNUM
11505 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11506 || regno == HARD_FRAME_POINTER_REGNUM
11507 #endif
11508 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11509 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11510 #endif
11511 || regno == FRAME_POINTER_REGNUM)
11512 return;
11514 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11515 for (r = regno; r < endregno; r++)
11516 SET_HARD_REG_BIT (newpat_used_regs, r);
11518 return;
11520 case SET:
11522 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11523 the address. */
11524 rtx testreg = SET_DEST (x);
11526 while (GET_CODE (testreg) == SUBREG
11527 || GET_CODE (testreg) == ZERO_EXTRACT
11528 || GET_CODE (testreg) == STRICT_LOW_PART)
11529 testreg = XEXP (testreg, 0);
11531 if (MEM_P (testreg))
11532 mark_used_regs_combine (XEXP (testreg, 0));
11534 mark_used_regs_combine (SET_SRC (x));
11536 return;
11538 default:
11539 break;
11542 /* Recursively scan the operands of this expression. */
11545 const char *fmt = GET_RTX_FORMAT (code);
11547 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11549 if (fmt[i] == 'e')
11550 mark_used_regs_combine (XEXP (x, i));
11551 else if (fmt[i] == 'E')
11553 int j;
11555 for (j = 0; j < XVECLEN (x, i); j++)
11556 mark_used_regs_combine (XVECEXP (x, i, j));
11562 /* Remove register number REGNO from the dead registers list of INSN.
11564 Return the note used to record the death, if there was one. */
11567 remove_death (unsigned int regno, rtx insn)
11569 rtx note = find_regno_note (insn, REG_DEAD, regno);
11571 if (note)
11573 REG_N_DEATHS (regno)--;
11574 remove_note (insn, note);
11577 return note;
11580 /* For each register (hardware or pseudo) used within expression X, if its
11581 death is in an instruction with cuid between FROM_CUID (inclusive) and
11582 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11583 list headed by PNOTES.
11585 That said, don't move registers killed by maybe_kill_insn.
11587 This is done when X is being merged by combination into TO_INSN. These
11588 notes will then be distributed as needed. */
11590 static void
11591 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11592 rtx *pnotes)
11594 const char *fmt;
11595 int len, i;
11596 enum rtx_code code = GET_CODE (x);
11598 if (code == REG)
11600 unsigned int regno = REGNO (x);
11601 rtx where_dead = reg_stat[regno].last_death;
11602 rtx before_dead, after_dead;
11604 /* Don't move the register if it gets killed in between from and to. */
11605 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11606 && ! reg_referenced_p (x, maybe_kill_insn))
11607 return;
11609 /* WHERE_DEAD could be a USE insn made by combine, so first we
11610 make sure that we have insns with valid INSN_CUID values. */
11611 before_dead = where_dead;
11612 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11613 before_dead = PREV_INSN (before_dead);
11615 after_dead = where_dead;
11616 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11617 after_dead = NEXT_INSN (after_dead);
11619 if (before_dead && after_dead
11620 && INSN_CUID (before_dead) >= from_cuid
11621 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11622 || (where_dead != after_dead
11623 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11625 rtx note = remove_death (regno, where_dead);
11627 /* It is possible for the call above to return 0. This can occur
11628 when last_death points to I2 or I1 that we combined with.
11629 In that case make a new note.
11631 We must also check for the case where X is a hard register
11632 and NOTE is a death note for a range of hard registers
11633 including X. In that case, we must put REG_DEAD notes for
11634 the remaining registers in place of NOTE. */
11636 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11637 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11638 > GET_MODE_SIZE (GET_MODE (x))))
11640 unsigned int deadregno = REGNO (XEXP (note, 0));
11641 unsigned int deadend
11642 = (deadregno + hard_regno_nregs[deadregno]
11643 [GET_MODE (XEXP (note, 0))]);
11644 unsigned int ourend
11645 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11646 unsigned int i;
11648 for (i = deadregno; i < deadend; i++)
11649 if (i < regno || i >= ourend)
11650 REG_NOTES (where_dead)
11651 = gen_rtx_EXPR_LIST (REG_DEAD,
11652 regno_reg_rtx[i],
11653 REG_NOTES (where_dead));
11656 /* If we didn't find any note, or if we found a REG_DEAD note that
11657 covers only part of the given reg, and we have a multi-reg hard
11658 register, then to be safe we must check for REG_DEAD notes
11659 for each register other than the first. They could have
11660 their own REG_DEAD notes lying around. */
11661 else if ((note == 0
11662 || (note != 0
11663 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11664 < GET_MODE_SIZE (GET_MODE (x)))))
11665 && regno < FIRST_PSEUDO_REGISTER
11666 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11668 unsigned int ourend
11669 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11670 unsigned int i, offset;
11671 rtx oldnotes = 0;
11673 if (note)
11674 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11675 else
11676 offset = 1;
11678 for (i = regno + offset; i < ourend; i++)
11679 move_deaths (regno_reg_rtx[i],
11680 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11683 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11685 XEXP (note, 1) = *pnotes;
11686 *pnotes = note;
11688 else
11689 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11691 REG_N_DEATHS (regno)++;
11694 return;
11697 else if (GET_CODE (x) == SET)
11699 rtx dest = SET_DEST (x);
11701 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11703 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11704 that accesses one word of a multi-word item, some
11705 piece of everything register in the expression is used by
11706 this insn, so remove any old death. */
11707 /* ??? So why do we test for equality of the sizes? */
11709 if (GET_CODE (dest) == ZERO_EXTRACT
11710 || GET_CODE (dest) == STRICT_LOW_PART
11711 || (GET_CODE (dest) == SUBREG
11712 && (((GET_MODE_SIZE (GET_MODE (dest))
11713 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11714 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11715 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11717 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11718 return;
11721 /* If this is some other SUBREG, we know it replaces the entire
11722 value, so use that as the destination. */
11723 if (GET_CODE (dest) == SUBREG)
11724 dest = SUBREG_REG (dest);
11726 /* If this is a MEM, adjust deaths of anything used in the address.
11727 For a REG (the only other possibility), the entire value is
11728 being replaced so the old value is not used in this insn. */
11730 if (MEM_P (dest))
11731 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11732 to_insn, pnotes);
11733 return;
11736 else if (GET_CODE (x) == CLOBBER)
11737 return;
11739 len = GET_RTX_LENGTH (code);
11740 fmt = GET_RTX_FORMAT (code);
11742 for (i = 0; i < len; i++)
11744 if (fmt[i] == 'E')
11746 int j;
11747 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11748 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11749 to_insn, pnotes);
11751 else if (fmt[i] == 'e')
11752 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11756 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11757 pattern of an insn. X must be a REG. */
11759 static int
11760 reg_bitfield_target_p (rtx x, rtx body)
11762 int i;
11764 if (GET_CODE (body) == SET)
11766 rtx dest = SET_DEST (body);
11767 rtx target;
11768 unsigned int regno, tregno, endregno, endtregno;
11770 if (GET_CODE (dest) == ZERO_EXTRACT)
11771 target = XEXP (dest, 0);
11772 else if (GET_CODE (dest) == STRICT_LOW_PART)
11773 target = SUBREG_REG (XEXP (dest, 0));
11774 else
11775 return 0;
11777 if (GET_CODE (target) == SUBREG)
11778 target = SUBREG_REG (target);
11780 if (!REG_P (target))
11781 return 0;
11783 tregno = REGNO (target), regno = REGNO (x);
11784 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11785 return target == x;
11787 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11788 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11790 return endregno > tregno && regno < endtregno;
11793 else if (GET_CODE (body) == PARALLEL)
11794 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11795 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11796 return 1;
11798 return 0;
11801 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11802 as appropriate. I3 and I2 are the insns resulting from the combination
11803 insns including FROM (I2 may be zero).
11805 Each note in the list is either ignored or placed on some insns, depending
11806 on the type of note. */
11808 static void
11809 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11811 rtx note, next_note;
11812 rtx tem;
11814 for (note = notes; note; note = next_note)
11816 rtx place = 0, place2 = 0;
11818 /* If this NOTE references a pseudo register, ensure it references
11819 the latest copy of that register. */
11820 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11821 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11822 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11824 next_note = XEXP (note, 1);
11825 switch (REG_NOTE_KIND (note))
11827 case REG_BR_PROB:
11828 case REG_BR_PRED:
11829 /* Doesn't matter much where we put this, as long as it's somewhere.
11830 It is preferable to keep these notes on branches, which is most
11831 likely to be i3. */
11832 place = i3;
11833 break;
11835 case REG_VALUE_PROFILE:
11836 /* Just get rid of this note, as it is unused later anyway. */
11837 break;
11839 case REG_NON_LOCAL_GOTO:
11840 if (JUMP_P (i3))
11841 place = i3;
11842 else
11844 gcc_assert (i2 && JUMP_P (i2));
11845 place = i2;
11847 break;
11849 case REG_EH_REGION:
11850 /* These notes must remain with the call or trapping instruction. */
11851 if (CALL_P (i3))
11852 place = i3;
11853 else if (i2 && CALL_P (i2))
11854 place = i2;
11855 else
11857 gcc_assert (flag_non_call_exceptions);
11858 if (may_trap_p (i3))
11859 place = i3;
11860 else if (i2 && may_trap_p (i2))
11861 place = i2;
11862 /* ??? Otherwise assume we've combined things such that we
11863 can now prove that the instructions can't trap. Drop the
11864 note in this case. */
11866 break;
11868 case REG_NORETURN:
11869 case REG_SETJMP:
11870 /* These notes must remain with the call. It should not be
11871 possible for both I2 and I3 to be a call. */
11872 if (CALL_P (i3))
11873 place = i3;
11874 else
11876 gcc_assert (i2 && CALL_P (i2));
11877 place = i2;
11879 break;
11881 case REG_UNUSED:
11882 /* Any clobbers for i3 may still exist, and so we must process
11883 REG_UNUSED notes from that insn.
11885 Any clobbers from i2 or i1 can only exist if they were added by
11886 recog_for_combine. In that case, recog_for_combine created the
11887 necessary REG_UNUSED notes. Trying to keep any original
11888 REG_UNUSED notes from these insns can cause incorrect output
11889 if it is for the same register as the original i3 dest.
11890 In that case, we will notice that the register is set in i3,
11891 and then add a REG_UNUSED note for the destination of i3, which
11892 is wrong. However, it is possible to have REG_UNUSED notes from
11893 i2 or i1 for register which were both used and clobbered, so
11894 we keep notes from i2 or i1 if they will turn into REG_DEAD
11895 notes. */
11897 /* If this register is set or clobbered in I3, put the note there
11898 unless there is one already. */
11899 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11901 if (from_insn != i3)
11902 break;
11904 if (! (REG_P (XEXP (note, 0))
11905 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11906 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11907 place = i3;
11909 /* Otherwise, if this register is used by I3, then this register
11910 now dies here, so we must put a REG_DEAD note here unless there
11911 is one already. */
11912 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11913 && ! (REG_P (XEXP (note, 0))
11914 ? find_regno_note (i3, REG_DEAD,
11915 REGNO (XEXP (note, 0)))
11916 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11918 PUT_REG_NOTE_KIND (note, REG_DEAD);
11919 place = i3;
11921 break;
11923 case REG_EQUAL:
11924 case REG_EQUIV:
11925 case REG_NOALIAS:
11926 /* These notes say something about results of an insn. We can
11927 only support them if they used to be on I3 in which case they
11928 remain on I3. Otherwise they are ignored.
11930 If the note refers to an expression that is not a constant, we
11931 must also ignore the note since we cannot tell whether the
11932 equivalence is still true. It might be possible to do
11933 slightly better than this (we only have a problem if I2DEST
11934 or I1DEST is present in the expression), but it doesn't
11935 seem worth the trouble. */
11937 if (from_insn == i3
11938 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11939 place = i3;
11940 break;
11942 case REG_INC:
11943 case REG_NO_CONFLICT:
11944 /* These notes say something about how a register is used. They must
11945 be present on any use of the register in I2 or I3. */
11946 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11947 place = i3;
11949 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11951 if (place)
11952 place2 = i2;
11953 else
11954 place = i2;
11956 break;
11958 case REG_LABEL:
11959 /* This can show up in several ways -- either directly in the
11960 pattern, or hidden off in the constant pool with (or without?)
11961 a REG_EQUAL note. */
11962 /* ??? Ignore the without-reg_equal-note problem for now. */
11963 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11964 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11965 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11966 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11967 place = i3;
11969 if (i2
11970 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11971 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11972 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11973 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11975 if (place)
11976 place2 = i2;
11977 else
11978 place = i2;
11981 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11982 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11983 if (place && JUMP_P (place))
11985 rtx label = JUMP_LABEL (place);
11987 if (!label)
11988 JUMP_LABEL (place) = XEXP (note, 0);
11989 else
11991 gcc_assert (label == XEXP (note, 0));
11992 if (LABEL_P (label))
11993 LABEL_NUSES (label)--;
11995 place = 0;
11997 if (place2 && JUMP_P (place2))
11999 rtx label = JUMP_LABEL (place2);
12001 if (!label)
12002 JUMP_LABEL (place2) = XEXP (note, 0);
12003 else
12005 gcc_assert (label == XEXP (note, 0));
12006 if (LABEL_P (label))
12007 LABEL_NUSES (label)--;
12009 place2 = 0;
12011 break;
12013 case REG_NONNEG:
12014 /* This note says something about the value of a register prior
12015 to the execution of an insn. It is too much trouble to see
12016 if the note is still correct in all situations. It is better
12017 to simply delete it. */
12018 break;
12020 case REG_RETVAL:
12021 /* If the insn previously containing this note still exists,
12022 put it back where it was. Otherwise move it to the previous
12023 insn. Adjust the corresponding REG_LIBCALL note. */
12024 if (!NOTE_P (from_insn))
12025 place = from_insn;
12026 else
12028 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12029 place = prev_real_insn (from_insn);
12030 if (tem && place)
12031 XEXP (tem, 0) = place;
12032 /* If we're deleting the last remaining instruction of a
12033 libcall sequence, don't add the notes. */
12034 else if (XEXP (note, 0) == from_insn)
12035 tem = place = 0;
12036 /* Don't add the dangling REG_RETVAL note. */
12037 else if (! tem)
12038 place = 0;
12040 break;
12042 case REG_LIBCALL:
12043 /* This is handled similarly to REG_RETVAL. */
12044 if (!NOTE_P (from_insn))
12045 place = from_insn;
12046 else
12048 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12049 place = next_real_insn (from_insn);
12050 if (tem && place)
12051 XEXP (tem, 0) = place;
12052 /* If we're deleting the last remaining instruction of a
12053 libcall sequence, don't add the notes. */
12054 else if (XEXP (note, 0) == from_insn)
12055 tem = place = 0;
12056 /* Don't add the dangling REG_LIBCALL note. */
12057 else if (! tem)
12058 place = 0;
12060 break;
12062 case REG_DEAD:
12063 /* If the register is used as an input in I3, it dies there.
12064 Similarly for I2, if it is nonzero and adjacent to I3.
12066 If the register is not used as an input in either I3 or I2
12067 and it is not one of the registers we were supposed to eliminate,
12068 there are two possibilities. We might have a non-adjacent I2
12069 or we might have somehow eliminated an additional register
12070 from a computation. For example, we might have had A & B where
12071 we discover that B will always be zero. In this case we will
12072 eliminate the reference to A.
12074 In both cases, we must search to see if we can find a previous
12075 use of A and put the death note there. */
12077 if (from_insn
12078 && CALL_P (from_insn)
12079 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12080 place = from_insn;
12081 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12082 place = i3;
12083 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12084 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12085 place = i2;
12087 if (place == 0)
12089 basic_block bb = this_basic_block;
12091 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12093 if (! INSN_P (tem))
12095 if (tem == BB_HEAD (bb))
12096 break;
12097 continue;
12100 /* If the register is being set at TEM, see if that is all
12101 TEM is doing. If so, delete TEM. Otherwise, make this
12102 into a REG_UNUSED note instead. Don't delete sets to
12103 global register vars. */
12104 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12105 || !global_regs[REGNO (XEXP (note, 0))])
12106 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12108 rtx set = single_set (tem);
12109 rtx inner_dest = 0;
12110 #ifdef HAVE_cc0
12111 rtx cc0_setter = NULL_RTX;
12112 #endif
12114 if (set != 0)
12115 for (inner_dest = SET_DEST (set);
12116 (GET_CODE (inner_dest) == STRICT_LOW_PART
12117 || GET_CODE (inner_dest) == SUBREG
12118 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12119 inner_dest = XEXP (inner_dest, 0))
12122 /* Verify that it was the set, and not a clobber that
12123 modified the register.
12125 CC0 targets must be careful to maintain setter/user
12126 pairs. If we cannot delete the setter due to side
12127 effects, mark the user with an UNUSED note instead
12128 of deleting it. */
12130 if (set != 0 && ! side_effects_p (SET_SRC (set))
12131 && rtx_equal_p (XEXP (note, 0), inner_dest)
12132 #ifdef HAVE_cc0
12133 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12134 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12135 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12136 #endif
12139 /* Move the notes and links of TEM elsewhere.
12140 This might delete other dead insns recursively.
12141 First set the pattern to something that won't use
12142 any register. */
12143 rtx old_notes = REG_NOTES (tem);
12145 PATTERN (tem) = pc_rtx;
12146 REG_NOTES (tem) = NULL;
12148 distribute_notes (old_notes, tem, tem, NULL_RTX);
12149 distribute_links (LOG_LINKS (tem));
12151 SET_INSN_DELETED (tem);
12153 #ifdef HAVE_cc0
12154 /* Delete the setter too. */
12155 if (cc0_setter)
12157 PATTERN (cc0_setter) = pc_rtx;
12158 old_notes = REG_NOTES (cc0_setter);
12159 REG_NOTES (cc0_setter) = NULL;
12161 distribute_notes (old_notes, cc0_setter,
12162 cc0_setter, NULL_RTX);
12163 distribute_links (LOG_LINKS (cc0_setter));
12165 SET_INSN_DELETED (cc0_setter);
12167 #endif
12169 else
12171 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12173 /* If there isn't already a REG_UNUSED note, put one
12174 here. Do not place a REG_DEAD note, even if
12175 the register is also used here; that would not
12176 match the algorithm used in lifetime analysis
12177 and can cause the consistency check in the
12178 scheduler to fail. */
12179 if (! find_regno_note (tem, REG_UNUSED,
12180 REGNO (XEXP (note, 0))))
12181 place = tem;
12182 break;
12185 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12186 || (CALL_P (tem)
12187 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12189 place = tem;
12191 /* If we are doing a 3->2 combination, and we have a
12192 register which formerly died in i3 and was not used
12193 by i2, which now no longer dies in i3 and is used in
12194 i2 but does not die in i2, and place is between i2
12195 and i3, then we may need to move a link from place to
12196 i2. */
12197 if (i2 && INSN_UID (place) <= max_uid_cuid
12198 && INSN_CUID (place) > INSN_CUID (i2)
12199 && from_insn
12200 && INSN_CUID (from_insn) > INSN_CUID (i2)
12201 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12203 rtx links = LOG_LINKS (place);
12204 LOG_LINKS (place) = 0;
12205 distribute_links (links);
12207 break;
12210 if (tem == BB_HEAD (bb))
12211 break;
12214 /* We haven't found an insn for the death note and it
12215 is still a REG_DEAD note, but we have hit the beginning
12216 of the block. If the existing life info says the reg
12217 was dead, there's nothing left to do. Otherwise, we'll
12218 need to do a global life update after combine. */
12219 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12220 && REGNO_REG_SET_P (bb->global_live_at_start,
12221 REGNO (XEXP (note, 0))))
12222 SET_BIT (refresh_blocks, this_basic_block->index);
12225 /* If the register is set or already dead at PLACE, we needn't do
12226 anything with this note if it is still a REG_DEAD note.
12227 We check here if it is set at all, not if is it totally replaced,
12228 which is what `dead_or_set_p' checks, so also check for it being
12229 set partially. */
12231 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12233 unsigned int regno = REGNO (XEXP (note, 0));
12235 /* Similarly, if the instruction on which we want to place
12236 the note is a noop, we'll need do a global live update
12237 after we remove them in delete_noop_moves. */
12238 if (noop_move_p (place))
12239 SET_BIT (refresh_blocks, this_basic_block->index);
12241 if (dead_or_set_p (place, XEXP (note, 0))
12242 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12244 /* Unless the register previously died in PLACE, clear
12245 last_death. [I no longer understand why this is
12246 being done.] */
12247 if (reg_stat[regno].last_death != place)
12248 reg_stat[regno].last_death = 0;
12249 place = 0;
12251 else
12252 reg_stat[regno].last_death = place;
12254 /* If this is a death note for a hard reg that is occupying
12255 multiple registers, ensure that we are still using all
12256 parts of the object. If we find a piece of the object
12257 that is unused, we must arrange for an appropriate REG_DEAD
12258 note to be added for it. However, we can't just emit a USE
12259 and tag the note to it, since the register might actually
12260 be dead; so we recourse, and the recursive call then finds
12261 the previous insn that used this register. */
12263 if (place && regno < FIRST_PSEUDO_REGISTER
12264 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12266 unsigned int endregno
12267 = regno + hard_regno_nregs[regno]
12268 [GET_MODE (XEXP (note, 0))];
12269 int all_used = 1;
12270 unsigned int i;
12272 for (i = regno; i < endregno; i++)
12273 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12274 && ! find_regno_fusage (place, USE, i))
12275 || dead_or_set_regno_p (place, i))
12276 all_used = 0;
12278 if (! all_used)
12280 /* Put only REG_DEAD notes for pieces that are
12281 not already dead or set. */
12283 for (i = regno; i < endregno;
12284 i += hard_regno_nregs[i][reg_raw_mode[i]])
12286 rtx piece = regno_reg_rtx[i];
12287 basic_block bb = this_basic_block;
12289 if (! dead_or_set_p (place, piece)
12290 && ! reg_bitfield_target_p (piece,
12291 PATTERN (place)))
12293 rtx new_note
12294 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12296 distribute_notes (new_note, place, place,
12297 NULL_RTX);
12299 else if (! refers_to_regno_p (i, i + 1,
12300 PATTERN (place), 0)
12301 && ! find_regno_fusage (place, USE, i))
12302 for (tem = PREV_INSN (place); ;
12303 tem = PREV_INSN (tem))
12305 if (! INSN_P (tem))
12307 if (tem == BB_HEAD (bb))
12309 SET_BIT (refresh_blocks,
12310 this_basic_block->index);
12311 break;
12313 continue;
12315 if (dead_or_set_p (tem, piece)
12316 || reg_bitfield_target_p (piece,
12317 PATTERN (tem)))
12319 REG_NOTES (tem)
12320 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12321 REG_NOTES (tem));
12322 break;
12328 place = 0;
12332 break;
12334 default:
12335 /* Any other notes should not be present at this point in the
12336 compilation. */
12337 gcc_unreachable ();
12340 if (place)
12342 XEXP (note, 1) = REG_NOTES (place);
12343 REG_NOTES (place) = note;
12345 else if ((REG_NOTE_KIND (note) == REG_DEAD
12346 || REG_NOTE_KIND (note) == REG_UNUSED)
12347 && REG_P (XEXP (note, 0)))
12348 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12350 if (place2)
12352 if ((REG_NOTE_KIND (note) == REG_DEAD
12353 || REG_NOTE_KIND (note) == REG_UNUSED)
12354 && REG_P (XEXP (note, 0)))
12355 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12357 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12358 REG_NOTE_KIND (note),
12359 XEXP (note, 0),
12360 REG_NOTES (place2));
12365 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12366 I3, I2, and I1 to new locations. This is also called to add a link
12367 pointing at I3 when I3's destination is changed. */
12369 static void
12370 distribute_links (rtx links)
12372 rtx link, next_link;
12374 for (link = links; link; link = next_link)
12376 rtx place = 0;
12377 rtx insn;
12378 rtx set, reg;
12380 next_link = XEXP (link, 1);
12382 /* If the insn that this link points to is a NOTE or isn't a single
12383 set, ignore it. In the latter case, it isn't clear what we
12384 can do other than ignore the link, since we can't tell which
12385 register it was for. Such links wouldn't be used by combine
12386 anyway.
12388 It is not possible for the destination of the target of the link to
12389 have been changed by combine. The only potential of this is if we
12390 replace I3, I2, and I1 by I3 and I2. But in that case the
12391 destination of I2 also remains unchanged. */
12393 if (NOTE_P (XEXP (link, 0))
12394 || (set = single_set (XEXP (link, 0))) == 0)
12395 continue;
12397 reg = SET_DEST (set);
12398 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12399 || GET_CODE (reg) == STRICT_LOW_PART)
12400 reg = XEXP (reg, 0);
12402 /* A LOG_LINK is defined as being placed on the first insn that uses
12403 a register and points to the insn that sets the register. Start
12404 searching at the next insn after the target of the link and stop
12405 when we reach a set of the register or the end of the basic block.
12407 Note that this correctly handles the link that used to point from
12408 I3 to I2. Also note that not much searching is typically done here
12409 since most links don't point very far away. */
12411 for (insn = NEXT_INSN (XEXP (link, 0));
12412 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12413 || BB_HEAD (this_basic_block->next_bb) != insn));
12414 insn = NEXT_INSN (insn))
12415 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12417 if (reg_referenced_p (reg, PATTERN (insn)))
12418 place = insn;
12419 break;
12421 else if (CALL_P (insn)
12422 && find_reg_fusage (insn, USE, reg))
12424 place = insn;
12425 break;
12427 else if (INSN_P (insn) && reg_set_p (reg, insn))
12428 break;
12430 /* If we found a place to put the link, place it there unless there
12431 is already a link to the same insn as LINK at that point. */
12433 if (place)
12435 rtx link2;
12437 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12438 if (XEXP (link2, 0) == XEXP (link, 0))
12439 break;
12441 if (link2 == 0)
12443 XEXP (link, 1) = LOG_LINKS (place);
12444 LOG_LINKS (place) = link;
12446 /* Set added_links_insn to the earliest insn we added a
12447 link to. */
12448 if (added_links_insn == 0
12449 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12450 added_links_insn = place;
12456 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12457 Check whether the expression pointer to by LOC is a register or
12458 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12459 Otherwise return zero. */
12461 static int
12462 unmentioned_reg_p_1 (rtx *loc, void *expr)
12464 rtx x = *loc;
12466 if (x != NULL_RTX
12467 && (REG_P (x) || MEM_P (x))
12468 && ! reg_mentioned_p (x, (rtx) expr))
12469 return 1;
12470 return 0;
12473 /* Check for any register or memory mentioned in EQUIV that is not
12474 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12475 of EXPR where some registers may have been replaced by constants. */
12477 static bool
12478 unmentioned_reg_p (rtx equiv, rtx expr)
12480 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12483 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12485 static int
12486 insn_cuid (rtx insn)
12488 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12489 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12490 insn = NEXT_INSN (insn);
12492 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12494 return INSN_CUID (insn);
12497 void
12498 dump_combine_stats (FILE *file)
12500 fnotice
12501 (file,
12502 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12503 combine_attempts, combine_merges, combine_extras, combine_successes);
12506 void
12507 dump_combine_total_stats (FILE *file)
12509 fnotice
12510 (file,
12511 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12512 total_attempts, total_merges, total_extras, total_successes);