gcc/
[official-gcc.git] / gcc / tree-ssa-structalias.c
blob486e9b36d5dbca6da0481242256c80430ecd546c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "diagnostic-core.h"
36 #include "toplev.h"
37 #include "gimple.h"
38 #include "hashtab.h"
39 #include "function.h"
40 #include "cgraph.h"
41 #include "tree-pass.h"
42 #include "timevar.h"
43 #include "alloc-pool.h"
44 #include "splay-tree.h"
45 #include "params.h"
46 #include "cgraph.h"
47 #include "alias.h"
48 #include "pointer-set.h"
50 /* The idea behind this analyzer is to generate set constraints from the
51 program, then solve the resulting constraints in order to generate the
52 points-to sets.
54 Set constraints are a way of modeling program analysis problems that
55 involve sets. They consist of an inclusion constraint language,
56 describing the variables (each variable is a set) and operations that
57 are involved on the variables, and a set of rules that derive facts
58 from these operations. To solve a system of set constraints, you derive
59 all possible facts under the rules, which gives you the correct sets
60 as a consequence.
62 See "Efficient Field-sensitive pointer analysis for C" by "David
63 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
64 http://citeseer.ist.psu.edu/pearce04efficient.html
66 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
67 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
68 http://citeseer.ist.psu.edu/heintze01ultrafast.html
70 There are three types of real constraint expressions, DEREF,
71 ADDRESSOF, and SCALAR. Each constraint expression consists
72 of a constraint type, a variable, and an offset.
74 SCALAR is a constraint expression type used to represent x, whether
75 it appears on the LHS or the RHS of a statement.
76 DEREF is a constraint expression type used to represent *x, whether
77 it appears on the LHS or the RHS of a statement.
78 ADDRESSOF is a constraint expression used to represent &x, whether
79 it appears on the LHS or the RHS of a statement.
81 Each pointer variable in the program is assigned an integer id, and
82 each field of a structure variable is assigned an integer id as well.
84 Structure variables are linked to their list of fields through a "next
85 field" in each variable that points to the next field in offset
86 order.
87 Each variable for a structure field has
89 1. "size", that tells the size in bits of that field.
90 2. "fullsize, that tells the size in bits of the entire structure.
91 3. "offset", that tells the offset in bits from the beginning of the
92 structure to this field.
94 Thus,
95 struct f
97 int a;
98 int b;
99 } foo;
100 int *bar;
102 looks like
104 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
105 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
106 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
109 In order to solve the system of set constraints, the following is
110 done:
112 1. Each constraint variable x has a solution set associated with it,
113 Sol(x).
115 2. Constraints are separated into direct, copy, and complex.
116 Direct constraints are ADDRESSOF constraints that require no extra
117 processing, such as P = &Q
118 Copy constraints are those of the form P = Q.
119 Complex constraints are all the constraints involving dereferences
120 and offsets (including offsetted copies).
122 3. All direct constraints of the form P = &Q are processed, such
123 that Q is added to Sol(P)
125 4. All complex constraints for a given constraint variable are stored in a
126 linked list attached to that variable's node.
128 5. A directed graph is built out of the copy constraints. Each
129 constraint variable is a node in the graph, and an edge from
130 Q to P is added for each copy constraint of the form P = Q
132 6. The graph is then walked, and solution sets are
133 propagated along the copy edges, such that an edge from Q to P
134 causes Sol(P) <- Sol(P) union Sol(Q).
136 7. As we visit each node, all complex constraints associated with
137 that node are processed by adding appropriate copy edges to the graph, or the
138 appropriate variables to the solution set.
140 8. The process of walking the graph is iterated until no solution
141 sets change.
143 Prior to walking the graph in steps 6 and 7, We perform static
144 cycle elimination on the constraint graph, as well
145 as off-line variable substitution.
147 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
148 on and turned into anything), but isn't. You can just see what offset
149 inside the pointed-to struct it's going to access.
151 TODO: Constant bounded arrays can be handled as if they were structs of the
152 same number of elements.
154 TODO: Modeling heap and incoming pointers becomes much better if we
155 add fields to them as we discover them, which we could do.
157 TODO: We could handle unions, but to be honest, it's probably not
158 worth the pain or slowdown. */
160 /* IPA-PTA optimizations possible.
162 When the indirect function called is ANYTHING we can add disambiguation
163 based on the function signatures (or simply the parameter count which
164 is the varinfo size). We also do not need to consider functions that
165 do not have their address taken.
167 The is_global_var bit which marks escape points is overly conservative
168 in IPA mode. Split it to is_escape_point and is_global_var - only
169 externally visible globals are escape points in IPA mode. This is
170 also needed to fix the pt_solution_includes_global predicate
171 (and thus ptr_deref_may_alias_global_p).
173 The way we introduce DECL_PT_UID to avoid fixing up all points-to
174 sets in the translation unit when we copy a DECL during inlining
175 pessimizes precision. The advantage is that the DECL_PT_UID keeps
176 compile-time and memory usage overhead low - the points-to sets
177 do not grow or get unshared as they would during a fixup phase.
178 An alternative solution is to delay IPA PTA until after all
179 inlining transformations have been applied.
181 The way we propagate clobber/use information isn't optimized.
182 It should use a new complex constraint that properly filters
183 out local variables of the callee (though that would make
184 the sets invalid after inlining). OTOH we might as well
185 admit defeat to WHOPR and simply do all the clobber/use analysis
186 and propagation after PTA finished but before we threw away
187 points-to information for memory variables. WHOPR and PTA
188 do not play along well anyway - the whole constraint solving
189 would need to be done in WPA phase and it will be very interesting
190 to apply the results to local SSA names during LTRANS phase.
192 We probably should compute a per-function unit-ESCAPE solution
193 propagating it simply like the clobber / uses solutions. The
194 solution can go alongside the non-IPA espaced solution and be
195 used to query which vars escape the unit through a function.
197 We never put function decls in points-to sets so we do not
198 keep the set of called functions for indirect calls.
200 And probably more. */
201 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct heapvar_map)))
202 htab_t heapvar_for_stmt;
204 static bool use_field_sensitive = true;
205 static int in_ipa_mode = 0;
207 /* Used for predecessor bitmaps. */
208 static bitmap_obstack predbitmap_obstack;
210 /* Used for points-to sets. */
211 static bitmap_obstack pta_obstack;
213 /* Used for oldsolution members of variables. */
214 static bitmap_obstack oldpta_obstack;
216 /* Used for per-solver-iteration bitmaps. */
217 static bitmap_obstack iteration_obstack;
219 static unsigned int create_variable_info_for (tree, const char *);
220 typedef struct constraint_graph *constraint_graph_t;
221 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
223 struct constraint;
224 typedef struct constraint *constraint_t;
226 DEF_VEC_P(constraint_t);
227 DEF_VEC_ALLOC_P(constraint_t,heap);
229 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
230 if (a) \
231 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
233 static struct constraint_stats
235 unsigned int total_vars;
236 unsigned int nonpointer_vars;
237 unsigned int unified_vars_static;
238 unsigned int unified_vars_dynamic;
239 unsigned int iterations;
240 unsigned int num_edges;
241 unsigned int num_implicit_edges;
242 unsigned int points_to_sets_created;
243 } stats;
245 struct variable_info
247 /* ID of this variable */
248 unsigned int id;
250 /* True if this is a variable created by the constraint analysis, such as
251 heap variables and constraints we had to break up. */
252 unsigned int is_artificial_var : 1;
254 /* True if this is a special variable whose solution set should not be
255 changed. */
256 unsigned int is_special_var : 1;
258 /* True for variables whose size is not known or variable. */
259 unsigned int is_unknown_size_var : 1;
261 /* True for (sub-)fields that represent a whole variable. */
262 unsigned int is_full_var : 1;
264 /* True if this is a heap variable. */
265 unsigned int is_heap_var : 1;
267 /* True if this is a variable tracking a restrict pointer source. */
268 unsigned int is_restrict_var : 1;
270 /* True if this field may contain pointers. */
271 unsigned int may_have_pointers : 1;
273 /* True if this field has only restrict qualified pointers. */
274 unsigned int only_restrict_pointers : 1;
276 /* True if this represents a global variable. */
277 unsigned int is_global_var : 1;
279 /* True if this represents a IPA function info. */
280 unsigned int is_fn_info : 1;
282 /* A link to the variable for the next field in this structure. */
283 struct variable_info *next;
285 /* Offset of this variable, in bits, from the base variable */
286 unsigned HOST_WIDE_INT offset;
288 /* Size of the variable, in bits. */
289 unsigned HOST_WIDE_INT size;
291 /* Full size of the base variable, in bits. */
292 unsigned HOST_WIDE_INT fullsize;
294 /* Name of this variable */
295 const char *name;
297 /* Tree that this variable is associated with. */
298 tree decl;
300 /* Points-to set for this variable. */
301 bitmap solution;
303 /* Old points-to set for this variable. */
304 bitmap oldsolution;
306 typedef struct variable_info *varinfo_t;
308 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
309 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
310 unsigned HOST_WIDE_INT);
311 static varinfo_t lookup_vi_for_tree (tree);
313 /* Pool of variable info structures. */
314 static alloc_pool variable_info_pool;
316 DEF_VEC_P(varinfo_t);
318 DEF_VEC_ALLOC_P(varinfo_t, heap);
320 /* Table of variable info structures for constraint variables.
321 Indexed directly by variable info id. */
322 static VEC(varinfo_t,heap) *varmap;
324 /* Return the varmap element N */
326 static inline varinfo_t
327 get_varinfo (unsigned int n)
329 return VEC_index (varinfo_t, varmap, n);
332 /* Static IDs for the special variables. */
333 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
334 escaped_id = 3, nonlocal_id = 4,
335 storedanything_id = 5, integer_id = 6 };
337 struct GTY(()) heapvar_map {
338 struct tree_map map;
339 unsigned HOST_WIDE_INT offset;
342 static int
343 heapvar_map_eq (const void *p1, const void *p2)
345 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
346 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
347 return (h1->map.base.from == h2->map.base.from
348 && h1->offset == h2->offset);
351 static unsigned int
352 heapvar_map_hash (struct heapvar_map *h)
354 return iterative_hash_host_wide_int (h->offset,
355 htab_hash_pointer (h->map.base.from));
358 /* Lookup a heap var for FROM, and return it if we find one. */
360 static tree
361 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
363 struct heapvar_map *h, in;
364 in.map.base.from = from;
365 in.offset = offset;
366 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
367 heapvar_map_hash (&in));
368 if (h)
369 return h->map.to;
370 return NULL_TREE;
373 /* Insert a mapping FROM->TO in the heap var for statement
374 hashtable. */
376 static void
377 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
379 struct heapvar_map *h;
380 void **loc;
382 h = ggc_alloc_heapvar_map ();
383 h->map.base.from = from;
384 h->offset = offset;
385 h->map.hash = heapvar_map_hash (h);
386 h->map.to = to;
387 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
388 gcc_assert (*loc == NULL);
389 *(struct heapvar_map **) loc = h;
392 /* Return a new variable info structure consisting for a variable
393 named NAME, and using constraint graph node NODE. Append it
394 to the vector of variable info structures. */
396 static varinfo_t
397 new_var_info (tree t, const char *name)
399 unsigned index = VEC_length (varinfo_t, varmap);
400 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
402 ret->id = index;
403 ret->name = name;
404 ret->decl = t;
405 /* Vars without decl are artificial and do not have sub-variables. */
406 ret->is_artificial_var = (t == NULL_TREE);
407 ret->is_special_var = false;
408 ret->is_unknown_size_var = false;
409 ret->is_full_var = (t == NULL_TREE);
410 ret->is_heap_var = false;
411 ret->is_restrict_var = false;
412 ret->may_have_pointers = true;
413 ret->only_restrict_pointers = false;
414 ret->is_global_var = (t == NULL_TREE);
415 ret->is_fn_info = false;
416 if (t && DECL_P (t))
417 ret->is_global_var = is_global_var (t);
418 ret->solution = BITMAP_ALLOC (&pta_obstack);
419 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
420 ret->next = NULL;
422 stats.total_vars++;
424 VEC_safe_push (varinfo_t, heap, varmap, ret);
426 return ret;
430 /* A map mapping call statements to per-stmt variables for uses
431 and clobbers specific to the call. */
432 struct pointer_map_t *call_stmt_vars;
434 /* Lookup or create the variable for the call statement CALL. */
436 static varinfo_t
437 get_call_vi (gimple call)
439 void **slot_p;
440 varinfo_t vi, vi2;
442 slot_p = pointer_map_insert (call_stmt_vars, call);
443 if (*slot_p)
444 return (varinfo_t) *slot_p;
446 vi = new_var_info (NULL_TREE, "CALLUSED");
447 vi->offset = 0;
448 vi->size = 1;
449 vi->fullsize = 2;
450 vi->is_full_var = true;
452 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
453 vi2->offset = 1;
454 vi2->size = 1;
455 vi2->fullsize = 2;
456 vi2->is_full_var = true;
458 *slot_p = (void *) vi;
459 return vi;
462 /* Lookup the variable for the call statement CALL representing
463 the uses. Returns NULL if there is nothing special about this call. */
465 static varinfo_t
466 lookup_call_use_vi (gimple call)
468 void **slot_p;
470 slot_p = pointer_map_contains (call_stmt_vars, call);
471 if (slot_p)
472 return (varinfo_t) *slot_p;
474 return NULL;
477 /* Lookup the variable for the call statement CALL representing
478 the clobbers. Returns NULL if there is nothing special about this call. */
480 static varinfo_t
481 lookup_call_clobber_vi (gimple call)
483 varinfo_t uses = lookup_call_use_vi (call);
484 if (!uses)
485 return NULL;
487 return uses->next;
490 /* Lookup or create the variable for the call statement CALL representing
491 the uses. */
493 static varinfo_t
494 get_call_use_vi (gimple call)
496 return get_call_vi (call);
499 /* Lookup or create the variable for the call statement CALL representing
500 the clobbers. */
502 static varinfo_t ATTRIBUTE_UNUSED
503 get_call_clobber_vi (gimple call)
505 return get_call_vi (call)->next;
509 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
511 /* An expression that appears in a constraint. */
513 struct constraint_expr
515 /* Constraint type. */
516 constraint_expr_type type;
518 /* Variable we are referring to in the constraint. */
519 unsigned int var;
521 /* Offset, in bits, of this constraint from the beginning of
522 variables it ends up referring to.
524 IOW, in a deref constraint, we would deref, get the result set,
525 then add OFFSET to each member. */
526 HOST_WIDE_INT offset;
529 /* Use 0x8000... as special unknown offset. */
530 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
532 typedef struct constraint_expr ce_s;
533 DEF_VEC_O(ce_s);
534 DEF_VEC_ALLOC_O(ce_s, heap);
535 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
536 static void get_constraint_for (tree, VEC(ce_s, heap) **);
537 static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
538 static void do_deref (VEC (ce_s, heap) **);
540 /* Our set constraints are made up of two constraint expressions, one
541 LHS, and one RHS.
543 As described in the introduction, our set constraints each represent an
544 operation between set valued variables.
546 struct constraint
548 struct constraint_expr lhs;
549 struct constraint_expr rhs;
552 /* List of constraints that we use to build the constraint graph from. */
554 static VEC(constraint_t,heap) *constraints;
555 static alloc_pool constraint_pool;
557 /* The constraint graph is represented as an array of bitmaps
558 containing successor nodes. */
560 struct constraint_graph
562 /* Size of this graph, which may be different than the number of
563 nodes in the variable map. */
564 unsigned int size;
566 /* Explicit successors of each node. */
567 bitmap *succs;
569 /* Implicit predecessors of each node (Used for variable
570 substitution). */
571 bitmap *implicit_preds;
573 /* Explicit predecessors of each node (Used for variable substitution). */
574 bitmap *preds;
576 /* Indirect cycle representatives, or -1 if the node has no indirect
577 cycles. */
578 int *indirect_cycles;
580 /* Representative node for a node. rep[a] == a unless the node has
581 been unified. */
582 unsigned int *rep;
584 /* Equivalence class representative for a label. This is used for
585 variable substitution. */
586 int *eq_rep;
588 /* Pointer equivalence label for a node. All nodes with the same
589 pointer equivalence label can be unified together at some point
590 (either during constraint optimization or after the constraint
591 graph is built). */
592 unsigned int *pe;
594 /* Pointer equivalence representative for a label. This is used to
595 handle nodes that are pointer equivalent but not location
596 equivalent. We can unite these once the addressof constraints
597 are transformed into initial points-to sets. */
598 int *pe_rep;
600 /* Pointer equivalence label for each node, used during variable
601 substitution. */
602 unsigned int *pointer_label;
604 /* Location equivalence label for each node, used during location
605 equivalence finding. */
606 unsigned int *loc_label;
608 /* Pointed-by set for each node, used during location equivalence
609 finding. This is pointed-by rather than pointed-to, because it
610 is constructed using the predecessor graph. */
611 bitmap *pointed_by;
613 /* Points to sets for pointer equivalence. This is *not* the actual
614 points-to sets for nodes. */
615 bitmap *points_to;
617 /* Bitmap of nodes where the bit is set if the node is a direct
618 node. Used for variable substitution. */
619 sbitmap direct_nodes;
621 /* Bitmap of nodes where the bit is set if the node is address
622 taken. Used for variable substitution. */
623 bitmap address_taken;
625 /* Vector of complex constraints for each graph node. Complex
626 constraints are those involving dereferences or offsets that are
627 not 0. */
628 VEC(constraint_t,heap) **complex;
631 static constraint_graph_t graph;
633 /* During variable substitution and the offline version of indirect
634 cycle finding, we create nodes to represent dereferences and
635 address taken constraints. These represent where these start and
636 end. */
637 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
638 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
640 /* Return the representative node for NODE, if NODE has been unioned
641 with another NODE.
642 This function performs path compression along the way to finding
643 the representative. */
645 static unsigned int
646 find (unsigned int node)
648 gcc_assert (node < graph->size);
649 if (graph->rep[node] != node)
650 return graph->rep[node] = find (graph->rep[node]);
651 return node;
654 /* Union the TO and FROM nodes to the TO nodes.
655 Note that at some point in the future, we may want to do
656 union-by-rank, in which case we are going to have to return the
657 node we unified to. */
659 static bool
660 unite (unsigned int to, unsigned int from)
662 gcc_assert (to < graph->size && from < graph->size);
663 if (to != from && graph->rep[from] != to)
665 graph->rep[from] = to;
666 return true;
668 return false;
671 /* Create a new constraint consisting of LHS and RHS expressions. */
673 static constraint_t
674 new_constraint (const struct constraint_expr lhs,
675 const struct constraint_expr rhs)
677 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
678 ret->lhs = lhs;
679 ret->rhs = rhs;
680 return ret;
683 /* Print out constraint C to FILE. */
685 static void
686 dump_constraint (FILE *file, constraint_t c)
688 if (c->lhs.type == ADDRESSOF)
689 fprintf (file, "&");
690 else if (c->lhs.type == DEREF)
691 fprintf (file, "*");
692 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
693 if (c->lhs.offset == UNKNOWN_OFFSET)
694 fprintf (file, " + UNKNOWN");
695 else if (c->lhs.offset != 0)
696 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
697 fprintf (file, " = ");
698 if (c->rhs.type == ADDRESSOF)
699 fprintf (file, "&");
700 else if (c->rhs.type == DEREF)
701 fprintf (file, "*");
702 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
703 if (c->rhs.offset == UNKNOWN_OFFSET)
704 fprintf (file, " + UNKNOWN");
705 else if (c->rhs.offset != 0)
706 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
707 fprintf (file, "\n");
711 void debug_constraint (constraint_t);
712 void debug_constraints (void);
713 void debug_constraint_graph (void);
714 void debug_solution_for_var (unsigned int);
715 void debug_sa_points_to_info (void);
717 /* Print out constraint C to stderr. */
719 DEBUG_FUNCTION void
720 debug_constraint (constraint_t c)
722 dump_constraint (stderr, c);
725 /* Print out all constraints to FILE */
727 static void
728 dump_constraints (FILE *file, int from)
730 int i;
731 constraint_t c;
732 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
733 dump_constraint (file, c);
736 /* Print out all constraints to stderr. */
738 DEBUG_FUNCTION void
739 debug_constraints (void)
741 dump_constraints (stderr, 0);
744 /* Print out to FILE the edge in the constraint graph that is created by
745 constraint c. The edge may have a label, depending on the type of
746 constraint that it represents. If complex1, e.g: a = *b, then the label
747 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
748 complex with an offset, e.g: a = b + 8, then the label is "+".
749 Otherwise the edge has no label. */
751 static void
752 dump_constraint_edge (FILE *file, constraint_t c)
754 if (c->rhs.type != ADDRESSOF)
756 const char *src = get_varinfo (c->rhs.var)->name;
757 const char *dst = get_varinfo (c->lhs.var)->name;
758 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
759 /* Due to preprocessing of constraints, instructions like *a = *b are
760 illegal; thus, we do not have to handle such cases. */
761 if (c->lhs.type == DEREF)
762 fprintf (file, " [ label=\"*=\" ] ;\n");
763 else if (c->rhs.type == DEREF)
764 fprintf (file, " [ label=\"=*\" ] ;\n");
765 else
767 /* We must check the case where the constraint is an offset.
768 In this case, it is treated as a complex constraint. */
769 if (c->rhs.offset != c->lhs.offset)
770 fprintf (file, " [ label=\"+\" ] ;\n");
771 else
772 fprintf (file, " ;\n");
777 /* Print the constraint graph in dot format. */
779 static void
780 dump_constraint_graph (FILE *file)
782 unsigned int i=0, size;
783 constraint_t c;
785 /* Only print the graph if it has already been initialized: */
786 if (!graph)
787 return;
789 /* Print the constraints used to produce the constraint graph. The
790 constraints will be printed as comments in the dot file: */
791 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
792 dump_constraints (file, 0);
793 fprintf (file, "*/\n");
795 /* Prints the header of the dot file: */
796 fprintf (file, "\n\n// The constraint graph in dot format:\n");
797 fprintf (file, "strict digraph {\n");
798 fprintf (file, " node [\n shape = box\n ]\n");
799 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
800 fprintf (file, "\n // List of nodes in the constraint graph:\n");
802 /* The next lines print the nodes in the graph. In order to get the
803 number of nodes in the graph, we must choose the minimum between the
804 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
805 yet been initialized, then graph->size == 0, otherwise we must only
806 read nodes that have an entry in VEC (varinfo_t, varmap). */
807 size = VEC_length (varinfo_t, varmap);
808 size = size < graph->size ? size : graph->size;
809 for (i = 0; i < size; i++)
811 const char *name = get_varinfo (graph->rep[i])->name;
812 fprintf (file, " \"%s\" ;\n", name);
815 /* Go over the list of constraints printing the edges in the constraint
816 graph. */
817 fprintf (file, "\n // The constraint edges:\n");
818 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
819 if (c)
820 dump_constraint_edge (file, c);
822 /* Prints the tail of the dot file. By now, only the closing bracket. */
823 fprintf (file, "}\n\n\n");
826 /* Print out the constraint graph to stderr. */
828 DEBUG_FUNCTION void
829 debug_constraint_graph (void)
831 dump_constraint_graph (stderr);
834 /* SOLVER FUNCTIONS
836 The solver is a simple worklist solver, that works on the following
837 algorithm:
839 sbitmap changed_nodes = all zeroes;
840 changed_count = 0;
841 For each node that is not already collapsed:
842 changed_count++;
843 set bit in changed nodes
845 while (changed_count > 0)
847 compute topological ordering for constraint graph
849 find and collapse cycles in the constraint graph (updating
850 changed if necessary)
852 for each node (n) in the graph in topological order:
853 changed_count--;
855 Process each complex constraint associated with the node,
856 updating changed if necessary.
858 For each outgoing edge from n, propagate the solution from n to
859 the destination of the edge, updating changed as necessary.
861 } */
863 /* Return true if two constraint expressions A and B are equal. */
865 static bool
866 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
868 return a.type == b.type && a.var == b.var && a.offset == b.offset;
871 /* Return true if constraint expression A is less than constraint expression
872 B. This is just arbitrary, but consistent, in order to give them an
873 ordering. */
875 static bool
876 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
878 if (a.type == b.type)
880 if (a.var == b.var)
881 return a.offset < b.offset;
882 else
883 return a.var < b.var;
885 else
886 return a.type < b.type;
889 /* Return true if constraint A is less than constraint B. This is just
890 arbitrary, but consistent, in order to give them an ordering. */
892 static bool
893 constraint_less (const constraint_t a, const constraint_t b)
895 if (constraint_expr_less (a->lhs, b->lhs))
896 return true;
897 else if (constraint_expr_less (b->lhs, a->lhs))
898 return false;
899 else
900 return constraint_expr_less (a->rhs, b->rhs);
903 /* Return true if two constraints A and B are equal. */
905 static bool
906 constraint_equal (struct constraint a, struct constraint b)
908 return constraint_expr_equal (a.lhs, b.lhs)
909 && constraint_expr_equal (a.rhs, b.rhs);
913 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
915 static constraint_t
916 constraint_vec_find (VEC(constraint_t,heap) *vec,
917 struct constraint lookfor)
919 unsigned int place;
920 constraint_t found;
922 if (vec == NULL)
923 return NULL;
925 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
926 if (place >= VEC_length (constraint_t, vec))
927 return NULL;
928 found = VEC_index (constraint_t, vec, place);
929 if (!constraint_equal (*found, lookfor))
930 return NULL;
931 return found;
934 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
936 static void
937 constraint_set_union (VEC(constraint_t,heap) **to,
938 VEC(constraint_t,heap) **from)
940 int i;
941 constraint_t c;
943 FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
945 if (constraint_vec_find (*to, *c) == NULL)
947 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
948 constraint_less);
949 VEC_safe_insert (constraint_t, heap, *to, place, c);
954 /* Expands the solution in SET to all sub-fields of variables included.
955 Union the expanded result into RESULT. */
957 static void
958 solution_set_expand (bitmap result, bitmap set)
960 bitmap_iterator bi;
961 bitmap vars = NULL;
962 unsigned j;
964 /* In a first pass record all variables we need to add all
965 sub-fields off. This avoids quadratic behavior. */
966 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
968 varinfo_t v = get_varinfo (j);
969 if (v->is_artificial_var
970 || v->is_full_var)
971 continue;
972 v = lookup_vi_for_tree (v->decl);
973 if (vars == NULL)
974 vars = BITMAP_ALLOC (NULL);
975 bitmap_set_bit (vars, v->id);
978 /* In the second pass now do the addition to the solution and
979 to speed up solving add it to the delta as well. */
980 if (vars != NULL)
982 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
984 varinfo_t v = get_varinfo (j);
985 for (; v != NULL; v = v->next)
986 bitmap_set_bit (result, v->id);
988 BITMAP_FREE (vars);
992 /* Take a solution set SET, add OFFSET to each member of the set, and
993 overwrite SET with the result when done. */
995 static void
996 solution_set_add (bitmap set, HOST_WIDE_INT offset)
998 bitmap result = BITMAP_ALLOC (&iteration_obstack);
999 unsigned int i;
1000 bitmap_iterator bi;
1002 /* If the offset is unknown we have to expand the solution to
1003 all subfields. */
1004 if (offset == UNKNOWN_OFFSET)
1006 solution_set_expand (set, set);
1007 return;
1010 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1012 varinfo_t vi = get_varinfo (i);
1014 /* If this is a variable with just one field just set its bit
1015 in the result. */
1016 if (vi->is_artificial_var
1017 || vi->is_unknown_size_var
1018 || vi->is_full_var)
1019 bitmap_set_bit (result, i);
1020 else
1022 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
1024 /* If the offset makes the pointer point to before the
1025 variable use offset zero for the field lookup. */
1026 if (offset < 0
1027 && fieldoffset > vi->offset)
1028 fieldoffset = 0;
1030 if (offset != 0)
1031 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1033 bitmap_set_bit (result, vi->id);
1034 /* If the result is not exactly at fieldoffset include the next
1035 field as well. See get_constraint_for_ptr_offset for more
1036 rationale. */
1037 if (vi->offset != fieldoffset
1038 && vi->next != NULL)
1039 bitmap_set_bit (result, vi->next->id);
1043 bitmap_copy (set, result);
1044 BITMAP_FREE (result);
1047 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
1048 process. */
1050 static bool
1051 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
1053 if (inc == 0)
1054 return bitmap_ior_into (to, from);
1055 else
1057 bitmap tmp;
1058 bool res;
1060 tmp = BITMAP_ALLOC (&iteration_obstack);
1061 bitmap_copy (tmp, from);
1062 solution_set_add (tmp, inc);
1063 res = bitmap_ior_into (to, tmp);
1064 BITMAP_FREE (tmp);
1065 return res;
1069 /* Insert constraint C into the list of complex constraints for graph
1070 node VAR. */
1072 static void
1073 insert_into_complex (constraint_graph_t graph,
1074 unsigned int var, constraint_t c)
1076 VEC (constraint_t, heap) *complex = graph->complex[var];
1077 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1078 constraint_less);
1080 /* Only insert constraints that do not already exist. */
1081 if (place >= VEC_length (constraint_t, complex)
1082 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1083 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1087 /* Condense two variable nodes into a single variable node, by moving
1088 all associated info from SRC to TO. */
1090 static void
1091 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1092 unsigned int from)
1094 unsigned int i;
1095 constraint_t c;
1097 gcc_assert (find (from) == to);
1099 /* Move all complex constraints from src node into to node */
1100 FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
1102 /* In complex constraints for node src, we may have either
1103 a = *src, and *src = a, or an offseted constraint which are
1104 always added to the rhs node's constraints. */
1106 if (c->rhs.type == DEREF)
1107 c->rhs.var = to;
1108 else if (c->lhs.type == DEREF)
1109 c->lhs.var = to;
1110 else
1111 c->rhs.var = to;
1113 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1114 VEC_free (constraint_t, heap, graph->complex[from]);
1115 graph->complex[from] = NULL;
1119 /* Remove edges involving NODE from GRAPH. */
1121 static void
1122 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1124 if (graph->succs[node])
1125 BITMAP_FREE (graph->succs[node]);
1128 /* Merge GRAPH nodes FROM and TO into node TO. */
1130 static void
1131 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1132 unsigned int from)
1134 if (graph->indirect_cycles[from] != -1)
1136 /* If we have indirect cycles with the from node, and we have
1137 none on the to node, the to node has indirect cycles from the
1138 from node now that they are unified.
1139 If indirect cycles exist on both, unify the nodes that they
1140 are in a cycle with, since we know they are in a cycle with
1141 each other. */
1142 if (graph->indirect_cycles[to] == -1)
1143 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1146 /* Merge all the successor edges. */
1147 if (graph->succs[from])
1149 if (!graph->succs[to])
1150 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1151 bitmap_ior_into (graph->succs[to],
1152 graph->succs[from]);
1155 clear_edges_for_node (graph, from);
1159 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1160 it doesn't exist in the graph already. */
1162 static void
1163 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1164 unsigned int from)
1166 if (to == from)
1167 return;
1169 if (!graph->implicit_preds[to])
1170 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1172 if (bitmap_set_bit (graph->implicit_preds[to], from))
1173 stats.num_implicit_edges++;
1176 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1177 it doesn't exist in the graph already.
1178 Return false if the edge already existed, true otherwise. */
1180 static void
1181 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1182 unsigned int from)
1184 if (!graph->preds[to])
1185 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1186 bitmap_set_bit (graph->preds[to], from);
1189 /* Add a graph edge to GRAPH, going from FROM to TO if
1190 it doesn't exist in the graph already.
1191 Return false if the edge already existed, true otherwise. */
1193 static bool
1194 add_graph_edge (constraint_graph_t graph, unsigned int to,
1195 unsigned int from)
1197 if (to == from)
1199 return false;
1201 else
1203 bool r = false;
1205 if (!graph->succs[from])
1206 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1207 if (bitmap_set_bit (graph->succs[from], to))
1209 r = true;
1210 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1211 stats.num_edges++;
1213 return r;
1218 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1220 static bool
1221 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1222 unsigned int dest)
1224 return (graph->succs[dest]
1225 && bitmap_bit_p (graph->succs[dest], src));
1228 /* Initialize the constraint graph structure to contain SIZE nodes. */
1230 static void
1231 init_graph (unsigned int size)
1233 unsigned int j;
1235 graph = XCNEW (struct constraint_graph);
1236 graph->size = size;
1237 graph->succs = XCNEWVEC (bitmap, graph->size);
1238 graph->indirect_cycles = XNEWVEC (int, graph->size);
1239 graph->rep = XNEWVEC (unsigned int, graph->size);
1240 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1241 graph->pe = XCNEWVEC (unsigned int, graph->size);
1242 graph->pe_rep = XNEWVEC (int, graph->size);
1244 for (j = 0; j < graph->size; j++)
1246 graph->rep[j] = j;
1247 graph->pe_rep[j] = -1;
1248 graph->indirect_cycles[j] = -1;
1252 /* Build the constraint graph, adding only predecessor edges right now. */
1254 static void
1255 build_pred_graph (void)
1257 int i;
1258 constraint_t c;
1259 unsigned int j;
1261 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1262 graph->preds = XCNEWVEC (bitmap, graph->size);
1263 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1264 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1265 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1266 graph->points_to = XCNEWVEC (bitmap, graph->size);
1267 graph->eq_rep = XNEWVEC (int, graph->size);
1268 graph->direct_nodes = sbitmap_alloc (graph->size);
1269 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1270 sbitmap_zero (graph->direct_nodes);
1272 for (j = 0; j < FIRST_REF_NODE; j++)
1274 if (!get_varinfo (j)->is_special_var)
1275 SET_BIT (graph->direct_nodes, j);
1278 for (j = 0; j < graph->size; j++)
1279 graph->eq_rep[j] = -1;
1281 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1282 graph->indirect_cycles[j] = -1;
1284 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1286 struct constraint_expr lhs = c->lhs;
1287 struct constraint_expr rhs = c->rhs;
1288 unsigned int lhsvar = lhs.var;
1289 unsigned int rhsvar = rhs.var;
1291 if (lhs.type == DEREF)
1293 /* *x = y. */
1294 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1295 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1297 else if (rhs.type == DEREF)
1299 /* x = *y */
1300 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1301 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1302 else
1303 RESET_BIT (graph->direct_nodes, lhsvar);
1305 else if (rhs.type == ADDRESSOF)
1307 varinfo_t v;
1309 /* x = &y */
1310 if (graph->points_to[lhsvar] == NULL)
1311 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1312 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1314 if (graph->pointed_by[rhsvar] == NULL)
1315 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1316 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1318 /* Implicitly, *x = y */
1319 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1321 /* All related variables are no longer direct nodes. */
1322 RESET_BIT (graph->direct_nodes, rhsvar);
1323 v = get_varinfo (rhsvar);
1324 if (!v->is_full_var)
1326 v = lookup_vi_for_tree (v->decl);
1329 RESET_BIT (graph->direct_nodes, v->id);
1330 v = v->next;
1332 while (v != NULL);
1334 bitmap_set_bit (graph->address_taken, rhsvar);
1336 else if (lhsvar > anything_id
1337 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1339 /* x = y */
1340 add_pred_graph_edge (graph, lhsvar, rhsvar);
1341 /* Implicitly, *x = *y */
1342 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1343 FIRST_REF_NODE + rhsvar);
1345 else if (lhs.offset != 0 || rhs.offset != 0)
1347 if (rhs.offset != 0)
1348 RESET_BIT (graph->direct_nodes, lhs.var);
1349 else if (lhs.offset != 0)
1350 RESET_BIT (graph->direct_nodes, rhs.var);
1355 /* Build the constraint graph, adding successor edges. */
1357 static void
1358 build_succ_graph (void)
1360 unsigned i, t;
1361 constraint_t c;
1363 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1365 struct constraint_expr lhs;
1366 struct constraint_expr rhs;
1367 unsigned int lhsvar;
1368 unsigned int rhsvar;
1370 if (!c)
1371 continue;
1373 lhs = c->lhs;
1374 rhs = c->rhs;
1375 lhsvar = find (lhs.var);
1376 rhsvar = find (rhs.var);
1378 if (lhs.type == DEREF)
1380 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1381 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1383 else if (rhs.type == DEREF)
1385 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1386 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1388 else if (rhs.type == ADDRESSOF)
1390 /* x = &y */
1391 gcc_assert (find (rhs.var) == rhs.var);
1392 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1394 else if (lhsvar > anything_id
1395 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1397 add_graph_edge (graph, lhsvar, rhsvar);
1401 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1402 receive pointers. */
1403 t = find (storedanything_id);
1404 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1406 if (!TEST_BIT (graph->direct_nodes, i)
1407 && get_varinfo (i)->may_have_pointers)
1408 add_graph_edge (graph, find (i), t);
1411 /* Everything stored to ANYTHING also potentially escapes. */
1412 add_graph_edge (graph, find (escaped_id), t);
1416 /* Changed variables on the last iteration. */
1417 static unsigned int changed_count;
1418 static sbitmap changed;
1420 /* Strongly Connected Component visitation info. */
1422 struct scc_info
1424 sbitmap visited;
1425 sbitmap deleted;
1426 unsigned int *dfs;
1427 unsigned int *node_mapping;
1428 int current_index;
1429 VEC(unsigned,heap) *scc_stack;
1433 /* Recursive routine to find strongly connected components in GRAPH.
1434 SI is the SCC info to store the information in, and N is the id of current
1435 graph node we are processing.
1437 This is Tarjan's strongly connected component finding algorithm, as
1438 modified by Nuutila to keep only non-root nodes on the stack.
1439 The algorithm can be found in "On finding the strongly connected
1440 connected components in a directed graph" by Esko Nuutila and Eljas
1441 Soisalon-Soininen, in Information Processing Letters volume 49,
1442 number 1, pages 9-14. */
1444 static void
1445 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1447 unsigned int i;
1448 bitmap_iterator bi;
1449 unsigned int my_dfs;
1451 SET_BIT (si->visited, n);
1452 si->dfs[n] = si->current_index ++;
1453 my_dfs = si->dfs[n];
1455 /* Visit all the successors. */
1456 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1458 unsigned int w;
1460 if (i > LAST_REF_NODE)
1461 break;
1463 w = find (i);
1464 if (TEST_BIT (si->deleted, w))
1465 continue;
1467 if (!TEST_BIT (si->visited, w))
1468 scc_visit (graph, si, w);
1470 unsigned int t = find (w);
1471 unsigned int nnode = find (n);
1472 gcc_assert (nnode == n);
1474 if (si->dfs[t] < si->dfs[nnode])
1475 si->dfs[n] = si->dfs[t];
1479 /* See if any components have been identified. */
1480 if (si->dfs[n] == my_dfs)
1482 if (VEC_length (unsigned, si->scc_stack) > 0
1483 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1485 bitmap scc = BITMAP_ALLOC (NULL);
1486 unsigned int lowest_node;
1487 bitmap_iterator bi;
1489 bitmap_set_bit (scc, n);
1491 while (VEC_length (unsigned, si->scc_stack) != 0
1492 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1494 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1496 bitmap_set_bit (scc, w);
1499 lowest_node = bitmap_first_set_bit (scc);
1500 gcc_assert (lowest_node < FIRST_REF_NODE);
1502 /* Collapse the SCC nodes into a single node, and mark the
1503 indirect cycles. */
1504 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1506 if (i < FIRST_REF_NODE)
1508 if (unite (lowest_node, i))
1509 unify_nodes (graph, lowest_node, i, false);
1511 else
1513 unite (lowest_node, i);
1514 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1518 SET_BIT (si->deleted, n);
1520 else
1521 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1524 /* Unify node FROM into node TO, updating the changed count if
1525 necessary when UPDATE_CHANGED is true. */
1527 static void
1528 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1529 bool update_changed)
1532 gcc_assert (to != from && find (to) == to);
1533 if (dump_file && (dump_flags & TDF_DETAILS))
1534 fprintf (dump_file, "Unifying %s to %s\n",
1535 get_varinfo (from)->name,
1536 get_varinfo (to)->name);
1538 if (update_changed)
1539 stats.unified_vars_dynamic++;
1540 else
1541 stats.unified_vars_static++;
1543 merge_graph_nodes (graph, to, from);
1544 merge_node_constraints (graph, to, from);
1546 /* Mark TO as changed if FROM was changed. If TO was already marked
1547 as changed, decrease the changed count. */
1549 if (update_changed && TEST_BIT (changed, from))
1551 RESET_BIT (changed, from);
1552 if (!TEST_BIT (changed, to))
1553 SET_BIT (changed, to);
1554 else
1556 gcc_assert (changed_count > 0);
1557 changed_count--;
1560 if (get_varinfo (from)->solution)
1562 /* If the solution changes because of the merging, we need to mark
1563 the variable as changed. */
1564 if (bitmap_ior_into (get_varinfo (to)->solution,
1565 get_varinfo (from)->solution))
1567 if (update_changed && !TEST_BIT (changed, to))
1569 SET_BIT (changed, to);
1570 changed_count++;
1574 BITMAP_FREE (get_varinfo (from)->solution);
1575 BITMAP_FREE (get_varinfo (from)->oldsolution);
1577 if (stats.iterations > 0)
1579 BITMAP_FREE (get_varinfo (to)->oldsolution);
1580 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1583 if (valid_graph_edge (graph, to, to))
1585 if (graph->succs[to])
1586 bitmap_clear_bit (graph->succs[to], to);
1590 /* Information needed to compute the topological ordering of a graph. */
1592 struct topo_info
1594 /* sbitmap of visited nodes. */
1595 sbitmap visited;
1596 /* Array that stores the topological order of the graph, *in
1597 reverse*. */
1598 VEC(unsigned,heap) *topo_order;
1602 /* Initialize and return a topological info structure. */
1604 static struct topo_info *
1605 init_topo_info (void)
1607 size_t size = graph->size;
1608 struct topo_info *ti = XNEW (struct topo_info);
1609 ti->visited = sbitmap_alloc (size);
1610 sbitmap_zero (ti->visited);
1611 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1612 return ti;
1616 /* Free the topological sort info pointed to by TI. */
1618 static void
1619 free_topo_info (struct topo_info *ti)
1621 sbitmap_free (ti->visited);
1622 VEC_free (unsigned, heap, ti->topo_order);
1623 free (ti);
1626 /* Visit the graph in topological order, and store the order in the
1627 topo_info structure. */
1629 static void
1630 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1631 unsigned int n)
1633 bitmap_iterator bi;
1634 unsigned int j;
1636 SET_BIT (ti->visited, n);
1638 if (graph->succs[n])
1639 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1641 if (!TEST_BIT (ti->visited, j))
1642 topo_visit (graph, ti, j);
1645 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1648 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1649 starting solution for y. */
1651 static void
1652 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1653 bitmap delta)
1655 unsigned int lhs = c->lhs.var;
1656 bool flag = false;
1657 bitmap sol = get_varinfo (lhs)->solution;
1658 unsigned int j;
1659 bitmap_iterator bi;
1660 HOST_WIDE_INT roffset = c->rhs.offset;
1662 /* Our IL does not allow this. */
1663 gcc_assert (c->lhs.offset == 0);
1665 /* If the solution of Y contains anything it is good enough to transfer
1666 this to the LHS. */
1667 if (bitmap_bit_p (delta, anything_id))
1669 flag |= bitmap_set_bit (sol, anything_id);
1670 goto done;
1673 /* If we do not know at with offset the rhs is dereferenced compute
1674 the reachability set of DELTA, conservatively assuming it is
1675 dereferenced at all valid offsets. */
1676 if (roffset == UNKNOWN_OFFSET)
1678 solution_set_expand (delta, delta);
1679 /* No further offset processing is necessary. */
1680 roffset = 0;
1683 /* For each variable j in delta (Sol(y)), add
1684 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1685 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1687 varinfo_t v = get_varinfo (j);
1688 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1689 unsigned int t;
1691 if (v->is_full_var)
1692 fieldoffset = v->offset;
1693 else if (roffset != 0)
1694 v = first_vi_for_offset (v, fieldoffset);
1695 /* If the access is outside of the variable we can ignore it. */
1696 if (!v)
1697 continue;
1701 t = find (v->id);
1703 /* Adding edges from the special vars is pointless.
1704 They don't have sets that can change. */
1705 if (get_varinfo (t)->is_special_var)
1706 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1707 /* Merging the solution from ESCAPED needlessly increases
1708 the set. Use ESCAPED as representative instead. */
1709 else if (v->id == escaped_id)
1710 flag |= bitmap_set_bit (sol, escaped_id);
1711 else if (v->may_have_pointers
1712 && add_graph_edge (graph, lhs, t))
1713 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1715 /* If the variable is not exactly at the requested offset
1716 we have to include the next one. */
1717 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1718 || v->next == NULL)
1719 break;
1721 v = v->next;
1722 fieldoffset = v->offset;
1724 while (1);
1727 done:
1728 /* If the LHS solution changed, mark the var as changed. */
1729 if (flag)
1731 get_varinfo (lhs)->solution = sol;
1732 if (!TEST_BIT (changed, lhs))
1734 SET_BIT (changed, lhs);
1735 changed_count++;
1740 /* Process a constraint C that represents *(x + off) = y using DELTA
1741 as the starting solution for x. */
1743 static void
1744 do_ds_constraint (constraint_t c, bitmap delta)
1746 unsigned int rhs = c->rhs.var;
1747 bitmap sol = get_varinfo (rhs)->solution;
1748 unsigned int j;
1749 bitmap_iterator bi;
1750 HOST_WIDE_INT loff = c->lhs.offset;
1751 bool escaped_p = false;
1753 /* Our IL does not allow this. */
1754 gcc_assert (c->rhs.offset == 0);
1756 /* If the solution of y contains ANYTHING simply use the ANYTHING
1757 solution. This avoids needlessly increasing the points-to sets. */
1758 if (bitmap_bit_p (sol, anything_id))
1759 sol = get_varinfo (find (anything_id))->solution;
1761 /* If the solution for x contains ANYTHING we have to merge the
1762 solution of y into all pointer variables which we do via
1763 STOREDANYTHING. */
1764 if (bitmap_bit_p (delta, anything_id))
1766 unsigned t = find (storedanything_id);
1767 if (add_graph_edge (graph, t, rhs))
1769 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1771 if (!TEST_BIT (changed, t))
1773 SET_BIT (changed, t);
1774 changed_count++;
1778 return;
1781 /* If we do not know at with offset the rhs is dereferenced compute
1782 the reachability set of DELTA, conservatively assuming it is
1783 dereferenced at all valid offsets. */
1784 if (loff == UNKNOWN_OFFSET)
1786 solution_set_expand (delta, delta);
1787 loff = 0;
1790 /* For each member j of delta (Sol(x)), add an edge from y to j and
1791 union Sol(y) into Sol(j) */
1792 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1794 varinfo_t v = get_varinfo (j);
1795 unsigned int t;
1796 HOST_WIDE_INT fieldoffset = v->offset + loff;
1798 if (v->is_full_var)
1799 fieldoffset = v->offset;
1800 else if (loff != 0)
1801 v = first_vi_for_offset (v, fieldoffset);
1802 /* If the access is outside of the variable we can ignore it. */
1803 if (!v)
1804 continue;
1808 if (v->may_have_pointers)
1810 /* If v is a global variable then this is an escape point. */
1811 if (v->is_global_var
1812 && !escaped_p)
1814 t = find (escaped_id);
1815 if (add_graph_edge (graph, t, rhs)
1816 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1817 && !TEST_BIT (changed, t))
1819 SET_BIT (changed, t);
1820 changed_count++;
1822 /* Enough to let rhs escape once. */
1823 escaped_p = true;
1826 if (v->is_special_var)
1827 break;
1829 t = find (v->id);
1830 if (add_graph_edge (graph, t, rhs)
1831 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1832 && !TEST_BIT (changed, t))
1834 SET_BIT (changed, t);
1835 changed_count++;
1839 /* If the variable is not exactly at the requested offset
1840 we have to include the next one. */
1841 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1842 || v->next == NULL)
1843 break;
1845 v = v->next;
1846 fieldoffset = v->offset;
1848 while (1);
1852 /* Handle a non-simple (simple meaning requires no iteration),
1853 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1855 static void
1856 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1858 if (c->lhs.type == DEREF)
1860 if (c->rhs.type == ADDRESSOF)
1862 gcc_unreachable();
1864 else
1866 /* *x = y */
1867 do_ds_constraint (c, delta);
1870 else if (c->rhs.type == DEREF)
1872 /* x = *y */
1873 if (!(get_varinfo (c->lhs.var)->is_special_var))
1874 do_sd_constraint (graph, c, delta);
1876 else
1878 bitmap tmp;
1879 bitmap solution;
1880 bool flag = false;
1882 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1883 solution = get_varinfo (c->rhs.var)->solution;
1884 tmp = get_varinfo (c->lhs.var)->solution;
1886 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1888 if (flag)
1890 get_varinfo (c->lhs.var)->solution = tmp;
1891 if (!TEST_BIT (changed, c->lhs.var))
1893 SET_BIT (changed, c->lhs.var);
1894 changed_count++;
1900 /* Initialize and return a new SCC info structure. */
1902 static struct scc_info *
1903 init_scc_info (size_t size)
1905 struct scc_info *si = XNEW (struct scc_info);
1906 size_t i;
1908 si->current_index = 0;
1909 si->visited = sbitmap_alloc (size);
1910 sbitmap_zero (si->visited);
1911 si->deleted = sbitmap_alloc (size);
1912 sbitmap_zero (si->deleted);
1913 si->node_mapping = XNEWVEC (unsigned int, size);
1914 si->dfs = XCNEWVEC (unsigned int, size);
1916 for (i = 0; i < size; i++)
1917 si->node_mapping[i] = i;
1919 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1920 return si;
1923 /* Free an SCC info structure pointed to by SI */
1925 static void
1926 free_scc_info (struct scc_info *si)
1928 sbitmap_free (si->visited);
1929 sbitmap_free (si->deleted);
1930 free (si->node_mapping);
1931 free (si->dfs);
1932 VEC_free (unsigned, heap, si->scc_stack);
1933 free (si);
1937 /* Find indirect cycles in GRAPH that occur, using strongly connected
1938 components, and note them in the indirect cycles map.
1940 This technique comes from Ben Hardekopf and Calvin Lin,
1941 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1942 Lines of Code", submitted to PLDI 2007. */
1944 static void
1945 find_indirect_cycles (constraint_graph_t graph)
1947 unsigned int i;
1948 unsigned int size = graph->size;
1949 struct scc_info *si = init_scc_info (size);
1951 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1952 if (!TEST_BIT (si->visited, i) && find (i) == i)
1953 scc_visit (graph, si, i);
1955 free_scc_info (si);
1958 /* Compute a topological ordering for GRAPH, and store the result in the
1959 topo_info structure TI. */
1961 static void
1962 compute_topo_order (constraint_graph_t graph,
1963 struct topo_info *ti)
1965 unsigned int i;
1966 unsigned int size = graph->size;
1968 for (i = 0; i != size; ++i)
1969 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1970 topo_visit (graph, ti, i);
1973 /* Structure used to for hash value numbering of pointer equivalence
1974 classes. */
1976 typedef struct equiv_class_label
1978 hashval_t hashcode;
1979 unsigned int equivalence_class;
1980 bitmap labels;
1981 } *equiv_class_label_t;
1982 typedef const struct equiv_class_label *const_equiv_class_label_t;
1984 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1985 classes. */
1986 static htab_t pointer_equiv_class_table;
1988 /* A hashtable for mapping a bitmap of labels->location equivalence
1989 classes. */
1990 static htab_t location_equiv_class_table;
1992 /* Hash function for a equiv_class_label_t */
1994 static hashval_t
1995 equiv_class_label_hash (const void *p)
1997 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1998 return ecl->hashcode;
2001 /* Equality function for two equiv_class_label_t's. */
2003 static int
2004 equiv_class_label_eq (const void *p1, const void *p2)
2006 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2007 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
2008 return (eql1->hashcode == eql2->hashcode
2009 && bitmap_equal_p (eql1->labels, eql2->labels));
2012 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2013 contains. */
2015 static unsigned int
2016 equiv_class_lookup (htab_t table, bitmap labels)
2018 void **slot;
2019 struct equiv_class_label ecl;
2021 ecl.labels = labels;
2022 ecl.hashcode = bitmap_hash (labels);
2024 slot = htab_find_slot_with_hash (table, &ecl,
2025 ecl.hashcode, NO_INSERT);
2026 if (!slot)
2027 return 0;
2028 else
2029 return ((equiv_class_label_t) *slot)->equivalence_class;
2033 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2034 to TABLE. */
2036 static void
2037 equiv_class_add (htab_t table, unsigned int equivalence_class,
2038 bitmap labels)
2040 void **slot;
2041 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2043 ecl->labels = labels;
2044 ecl->equivalence_class = equivalence_class;
2045 ecl->hashcode = bitmap_hash (labels);
2047 slot = htab_find_slot_with_hash (table, ecl,
2048 ecl->hashcode, INSERT);
2049 gcc_assert (!*slot);
2050 *slot = (void *) ecl;
2053 /* Perform offline variable substitution.
2055 This is a worst case quadratic time way of identifying variables
2056 that must have equivalent points-to sets, including those caused by
2057 static cycles, and single entry subgraphs, in the constraint graph.
2059 The technique is described in "Exploiting Pointer and Location
2060 Equivalence to Optimize Pointer Analysis. In the 14th International
2061 Static Analysis Symposium (SAS), August 2007." It is known as the
2062 "HU" algorithm, and is equivalent to value numbering the collapsed
2063 constraint graph including evaluating unions.
2065 The general method of finding equivalence classes is as follows:
2066 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
2067 Initialize all non-REF nodes to be direct nodes.
2068 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2069 variable}
2070 For each constraint containing the dereference, we also do the same
2071 thing.
2073 We then compute SCC's in the graph and unify nodes in the same SCC,
2074 including pts sets.
2076 For each non-collapsed node x:
2077 Visit all unvisited explicit incoming edges.
2078 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2079 where y->x.
2080 Lookup the equivalence class for pts(x).
2081 If we found one, equivalence_class(x) = found class.
2082 Otherwise, equivalence_class(x) = new class, and new_class is
2083 added to the lookup table.
2085 All direct nodes with the same equivalence class can be replaced
2086 with a single representative node.
2087 All unlabeled nodes (label == 0) are not pointers and all edges
2088 involving them can be eliminated.
2089 We perform these optimizations during rewrite_constraints
2091 In addition to pointer equivalence class finding, we also perform
2092 location equivalence class finding. This is the set of variables
2093 that always appear together in points-to sets. We use this to
2094 compress the size of the points-to sets. */
2096 /* Current maximum pointer equivalence class id. */
2097 static int pointer_equiv_class;
2099 /* Current maximum location equivalence class id. */
2100 static int location_equiv_class;
2102 /* Recursive routine to find strongly connected components in GRAPH,
2103 and label it's nodes with DFS numbers. */
2105 static void
2106 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2108 unsigned int i;
2109 bitmap_iterator bi;
2110 unsigned int my_dfs;
2112 gcc_assert (si->node_mapping[n] == n);
2113 SET_BIT (si->visited, n);
2114 si->dfs[n] = si->current_index ++;
2115 my_dfs = si->dfs[n];
2117 /* Visit all the successors. */
2118 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2120 unsigned int w = si->node_mapping[i];
2122 if (TEST_BIT (si->deleted, w))
2123 continue;
2125 if (!TEST_BIT (si->visited, w))
2126 condense_visit (graph, si, w);
2128 unsigned int t = si->node_mapping[w];
2129 unsigned int nnode = si->node_mapping[n];
2130 gcc_assert (nnode == n);
2132 if (si->dfs[t] < si->dfs[nnode])
2133 si->dfs[n] = si->dfs[t];
2137 /* Visit all the implicit predecessors. */
2138 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2140 unsigned int w = si->node_mapping[i];
2142 if (TEST_BIT (si->deleted, w))
2143 continue;
2145 if (!TEST_BIT (si->visited, w))
2146 condense_visit (graph, si, w);
2148 unsigned int t = si->node_mapping[w];
2149 unsigned int nnode = si->node_mapping[n];
2150 gcc_assert (nnode == n);
2152 if (si->dfs[t] < si->dfs[nnode])
2153 si->dfs[n] = si->dfs[t];
2157 /* See if any components have been identified. */
2158 if (si->dfs[n] == my_dfs)
2160 while (VEC_length (unsigned, si->scc_stack) != 0
2161 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2163 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2164 si->node_mapping[w] = n;
2166 if (!TEST_BIT (graph->direct_nodes, w))
2167 RESET_BIT (graph->direct_nodes, n);
2169 /* Unify our nodes. */
2170 if (graph->preds[w])
2172 if (!graph->preds[n])
2173 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2174 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2176 if (graph->implicit_preds[w])
2178 if (!graph->implicit_preds[n])
2179 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2180 bitmap_ior_into (graph->implicit_preds[n],
2181 graph->implicit_preds[w]);
2183 if (graph->points_to[w])
2185 if (!graph->points_to[n])
2186 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2187 bitmap_ior_into (graph->points_to[n],
2188 graph->points_to[w]);
2191 SET_BIT (si->deleted, n);
2193 else
2194 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2197 /* Label pointer equivalences. */
2199 static void
2200 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2202 unsigned int i;
2203 bitmap_iterator bi;
2204 SET_BIT (si->visited, n);
2206 if (!graph->points_to[n])
2207 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2209 /* Label and union our incoming edges's points to sets. */
2210 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2212 unsigned int w = si->node_mapping[i];
2213 if (!TEST_BIT (si->visited, w))
2214 label_visit (graph, si, w);
2216 /* Skip unused edges */
2217 if (w == n || graph->pointer_label[w] == 0)
2218 continue;
2220 if (graph->points_to[w])
2221 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2223 /* Indirect nodes get fresh variables. */
2224 if (!TEST_BIT (graph->direct_nodes, n))
2225 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2227 if (!bitmap_empty_p (graph->points_to[n]))
2229 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2230 graph->points_to[n]);
2231 if (!label)
2233 label = pointer_equiv_class++;
2234 equiv_class_add (pointer_equiv_class_table,
2235 label, graph->points_to[n]);
2237 graph->pointer_label[n] = label;
2241 /* Perform offline variable substitution, discovering equivalence
2242 classes, and eliminating non-pointer variables. */
2244 static struct scc_info *
2245 perform_var_substitution (constraint_graph_t graph)
2247 unsigned int i;
2248 unsigned int size = graph->size;
2249 struct scc_info *si = init_scc_info (size);
2251 bitmap_obstack_initialize (&iteration_obstack);
2252 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2253 equiv_class_label_eq, free);
2254 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2255 equiv_class_label_eq, free);
2256 pointer_equiv_class = 1;
2257 location_equiv_class = 1;
2259 /* Condense the nodes, which means to find SCC's, count incoming
2260 predecessors, and unite nodes in SCC's. */
2261 for (i = 0; i < FIRST_REF_NODE; i++)
2262 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2263 condense_visit (graph, si, si->node_mapping[i]);
2265 sbitmap_zero (si->visited);
2266 /* Actually the label the nodes for pointer equivalences */
2267 for (i = 0; i < FIRST_REF_NODE; i++)
2268 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2269 label_visit (graph, si, si->node_mapping[i]);
2271 /* Calculate location equivalence labels. */
2272 for (i = 0; i < FIRST_REF_NODE; i++)
2274 bitmap pointed_by;
2275 bitmap_iterator bi;
2276 unsigned int j;
2277 unsigned int label;
2279 if (!graph->pointed_by[i])
2280 continue;
2281 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2283 /* Translate the pointed-by mapping for pointer equivalence
2284 labels. */
2285 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2287 bitmap_set_bit (pointed_by,
2288 graph->pointer_label[si->node_mapping[j]]);
2290 /* The original pointed_by is now dead. */
2291 BITMAP_FREE (graph->pointed_by[i]);
2293 /* Look up the location equivalence label if one exists, or make
2294 one otherwise. */
2295 label = equiv_class_lookup (location_equiv_class_table,
2296 pointed_by);
2297 if (label == 0)
2299 label = location_equiv_class++;
2300 equiv_class_add (location_equiv_class_table,
2301 label, pointed_by);
2303 else
2305 if (dump_file && (dump_flags & TDF_DETAILS))
2306 fprintf (dump_file, "Found location equivalence for node %s\n",
2307 get_varinfo (i)->name);
2308 BITMAP_FREE (pointed_by);
2310 graph->loc_label[i] = label;
2314 if (dump_file && (dump_flags & TDF_DETAILS))
2315 for (i = 0; i < FIRST_REF_NODE; i++)
2317 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2318 fprintf (dump_file,
2319 "Equivalence classes for %s node id %d:%s are pointer: %d"
2320 ", location:%d\n",
2321 direct_node ? "Direct node" : "Indirect node", i,
2322 get_varinfo (i)->name,
2323 graph->pointer_label[si->node_mapping[i]],
2324 graph->loc_label[si->node_mapping[i]]);
2327 /* Quickly eliminate our non-pointer variables. */
2329 for (i = 0; i < FIRST_REF_NODE; i++)
2331 unsigned int node = si->node_mapping[i];
2333 if (graph->pointer_label[node] == 0)
2335 if (dump_file && (dump_flags & TDF_DETAILS))
2336 fprintf (dump_file,
2337 "%s is a non-pointer variable, eliminating edges.\n",
2338 get_varinfo (node)->name);
2339 stats.nonpointer_vars++;
2340 clear_edges_for_node (graph, node);
2344 return si;
2347 /* Free information that was only necessary for variable
2348 substitution. */
2350 static void
2351 free_var_substitution_info (struct scc_info *si)
2353 free_scc_info (si);
2354 free (graph->pointer_label);
2355 free (graph->loc_label);
2356 free (graph->pointed_by);
2357 free (graph->points_to);
2358 free (graph->eq_rep);
2359 sbitmap_free (graph->direct_nodes);
2360 htab_delete (pointer_equiv_class_table);
2361 htab_delete (location_equiv_class_table);
2362 bitmap_obstack_release (&iteration_obstack);
2365 /* Return an existing node that is equivalent to NODE, which has
2366 equivalence class LABEL, if one exists. Return NODE otherwise. */
2368 static unsigned int
2369 find_equivalent_node (constraint_graph_t graph,
2370 unsigned int node, unsigned int label)
2372 /* If the address version of this variable is unused, we can
2373 substitute it for anything else with the same label.
2374 Otherwise, we know the pointers are equivalent, but not the
2375 locations, and we can unite them later. */
2377 if (!bitmap_bit_p (graph->address_taken, node))
2379 gcc_assert (label < graph->size);
2381 if (graph->eq_rep[label] != -1)
2383 /* Unify the two variables since we know they are equivalent. */
2384 if (unite (graph->eq_rep[label], node))
2385 unify_nodes (graph, graph->eq_rep[label], node, false);
2386 return graph->eq_rep[label];
2388 else
2390 graph->eq_rep[label] = node;
2391 graph->pe_rep[label] = node;
2394 else
2396 gcc_assert (label < graph->size);
2397 graph->pe[node] = label;
2398 if (graph->pe_rep[label] == -1)
2399 graph->pe_rep[label] = node;
2402 return node;
2405 /* Unite pointer equivalent but not location equivalent nodes in
2406 GRAPH. This may only be performed once variable substitution is
2407 finished. */
2409 static void
2410 unite_pointer_equivalences (constraint_graph_t graph)
2412 unsigned int i;
2414 /* Go through the pointer equivalences and unite them to their
2415 representative, if they aren't already. */
2416 for (i = 0; i < FIRST_REF_NODE; i++)
2418 unsigned int label = graph->pe[i];
2419 if (label)
2421 int label_rep = graph->pe_rep[label];
2423 if (label_rep == -1)
2424 continue;
2426 label_rep = find (label_rep);
2427 if (label_rep >= 0 && unite (label_rep, find (i)))
2428 unify_nodes (graph, label_rep, i, false);
2433 /* Move complex constraints to the GRAPH nodes they belong to. */
2435 static void
2436 move_complex_constraints (constraint_graph_t graph)
2438 int i;
2439 constraint_t c;
2441 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2443 if (c)
2445 struct constraint_expr lhs = c->lhs;
2446 struct constraint_expr rhs = c->rhs;
2448 if (lhs.type == DEREF)
2450 insert_into_complex (graph, lhs.var, c);
2452 else if (rhs.type == DEREF)
2454 if (!(get_varinfo (lhs.var)->is_special_var))
2455 insert_into_complex (graph, rhs.var, c);
2457 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2458 && (lhs.offset != 0 || rhs.offset != 0))
2460 insert_into_complex (graph, rhs.var, c);
2467 /* Optimize and rewrite complex constraints while performing
2468 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2469 result of perform_variable_substitution. */
2471 static void
2472 rewrite_constraints (constraint_graph_t graph,
2473 struct scc_info *si)
2475 int i;
2476 unsigned int j;
2477 constraint_t c;
2479 for (j = 0; j < graph->size; j++)
2480 gcc_assert (find (j) == j);
2482 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2484 struct constraint_expr lhs = c->lhs;
2485 struct constraint_expr rhs = c->rhs;
2486 unsigned int lhsvar = find (lhs.var);
2487 unsigned int rhsvar = find (rhs.var);
2488 unsigned int lhsnode, rhsnode;
2489 unsigned int lhslabel, rhslabel;
2491 lhsnode = si->node_mapping[lhsvar];
2492 rhsnode = si->node_mapping[rhsvar];
2493 lhslabel = graph->pointer_label[lhsnode];
2494 rhslabel = graph->pointer_label[rhsnode];
2496 /* See if it is really a non-pointer variable, and if so, ignore
2497 the constraint. */
2498 if (lhslabel == 0)
2500 if (dump_file && (dump_flags & TDF_DETAILS))
2503 fprintf (dump_file, "%s is a non-pointer variable,"
2504 "ignoring constraint:",
2505 get_varinfo (lhs.var)->name);
2506 dump_constraint (dump_file, c);
2508 VEC_replace (constraint_t, constraints, i, NULL);
2509 continue;
2512 if (rhslabel == 0)
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2517 fprintf (dump_file, "%s is a non-pointer variable,"
2518 "ignoring constraint:",
2519 get_varinfo (rhs.var)->name);
2520 dump_constraint (dump_file, c);
2522 VEC_replace (constraint_t, constraints, i, NULL);
2523 continue;
2526 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2527 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2528 c->lhs.var = lhsvar;
2529 c->rhs.var = rhsvar;
2534 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2535 part of an SCC, false otherwise. */
2537 static bool
2538 eliminate_indirect_cycles (unsigned int node)
2540 if (graph->indirect_cycles[node] != -1
2541 && !bitmap_empty_p (get_varinfo (node)->solution))
2543 unsigned int i;
2544 VEC(unsigned,heap) *queue = NULL;
2545 int queuepos;
2546 unsigned int to = find (graph->indirect_cycles[node]);
2547 bitmap_iterator bi;
2549 /* We can't touch the solution set and call unify_nodes
2550 at the same time, because unify_nodes is going to do
2551 bitmap unions into it. */
2553 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2555 if (find (i) == i && i != to)
2557 if (unite (to, i))
2558 VEC_safe_push (unsigned, heap, queue, i);
2562 for (queuepos = 0;
2563 VEC_iterate (unsigned, queue, queuepos, i);
2564 queuepos++)
2566 unify_nodes (graph, to, i, true);
2568 VEC_free (unsigned, heap, queue);
2569 return true;
2571 return false;
2574 /* Solve the constraint graph GRAPH using our worklist solver.
2575 This is based on the PW* family of solvers from the "Efficient Field
2576 Sensitive Pointer Analysis for C" paper.
2577 It works by iterating over all the graph nodes, processing the complex
2578 constraints and propagating the copy constraints, until everything stops
2579 changed. This corresponds to steps 6-8 in the solving list given above. */
2581 static void
2582 solve_graph (constraint_graph_t graph)
2584 unsigned int size = graph->size;
2585 unsigned int i;
2586 bitmap pts;
2588 changed_count = 0;
2589 changed = sbitmap_alloc (size);
2590 sbitmap_zero (changed);
2592 /* Mark all initial non-collapsed nodes as changed. */
2593 for (i = 0; i < size; i++)
2595 varinfo_t ivi = get_varinfo (i);
2596 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2597 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2598 || VEC_length (constraint_t, graph->complex[i]) > 0))
2600 SET_BIT (changed, i);
2601 changed_count++;
2605 /* Allocate a bitmap to be used to store the changed bits. */
2606 pts = BITMAP_ALLOC (&pta_obstack);
2608 while (changed_count > 0)
2610 unsigned int i;
2611 struct topo_info *ti = init_topo_info ();
2612 stats.iterations++;
2614 bitmap_obstack_initialize (&iteration_obstack);
2616 compute_topo_order (graph, ti);
2618 while (VEC_length (unsigned, ti->topo_order) != 0)
2621 i = VEC_pop (unsigned, ti->topo_order);
2623 /* If this variable is not a representative, skip it. */
2624 if (find (i) != i)
2625 continue;
2627 /* In certain indirect cycle cases, we may merge this
2628 variable to another. */
2629 if (eliminate_indirect_cycles (i) && find (i) != i)
2630 continue;
2632 /* If the node has changed, we need to process the
2633 complex constraints and outgoing edges again. */
2634 if (TEST_BIT (changed, i))
2636 unsigned int j;
2637 constraint_t c;
2638 bitmap solution;
2639 VEC(constraint_t,heap) *complex = graph->complex[i];
2640 bool solution_empty;
2642 RESET_BIT (changed, i);
2643 changed_count--;
2645 /* Compute the changed set of solution bits. */
2646 bitmap_and_compl (pts, get_varinfo (i)->solution,
2647 get_varinfo (i)->oldsolution);
2649 if (bitmap_empty_p (pts))
2650 continue;
2652 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2654 solution = get_varinfo (i)->solution;
2655 solution_empty = bitmap_empty_p (solution);
2657 /* Process the complex constraints */
2658 FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
2660 /* XXX: This is going to unsort the constraints in
2661 some cases, which will occasionally add duplicate
2662 constraints during unification. This does not
2663 affect correctness. */
2664 c->lhs.var = find (c->lhs.var);
2665 c->rhs.var = find (c->rhs.var);
2667 /* The only complex constraint that can change our
2668 solution to non-empty, given an empty solution,
2669 is a constraint where the lhs side is receiving
2670 some set from elsewhere. */
2671 if (!solution_empty || c->lhs.type != DEREF)
2672 do_complex_constraint (graph, c, pts);
2675 solution_empty = bitmap_empty_p (solution);
2677 if (!solution_empty)
2679 bitmap_iterator bi;
2680 unsigned eff_escaped_id = find (escaped_id);
2682 /* Propagate solution to all successors. */
2683 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2684 0, j, bi)
2686 bitmap tmp;
2687 bool flag;
2689 unsigned int to = find (j);
2690 tmp = get_varinfo (to)->solution;
2691 flag = false;
2693 /* Don't try to propagate to ourselves. */
2694 if (to == i)
2695 continue;
2697 /* If we propagate from ESCAPED use ESCAPED as
2698 placeholder. */
2699 if (i == eff_escaped_id)
2700 flag = bitmap_set_bit (tmp, escaped_id);
2701 else
2702 flag = set_union_with_increment (tmp, pts, 0);
2704 if (flag)
2706 get_varinfo (to)->solution = tmp;
2707 if (!TEST_BIT (changed, to))
2709 SET_BIT (changed, to);
2710 changed_count++;
2717 free_topo_info (ti);
2718 bitmap_obstack_release (&iteration_obstack);
2721 BITMAP_FREE (pts);
2722 sbitmap_free (changed);
2723 bitmap_obstack_release (&oldpta_obstack);
2726 /* Map from trees to variable infos. */
2727 static struct pointer_map_t *vi_for_tree;
2730 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2732 static void
2733 insert_vi_for_tree (tree t, varinfo_t vi)
2735 void **slot = pointer_map_insert (vi_for_tree, t);
2736 gcc_assert (vi);
2737 gcc_assert (*slot == NULL);
2738 *slot = vi;
2741 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2742 exist in the map, return NULL, otherwise, return the varinfo we found. */
2744 static varinfo_t
2745 lookup_vi_for_tree (tree t)
2747 void **slot = pointer_map_contains (vi_for_tree, t);
2748 if (slot == NULL)
2749 return NULL;
2751 return (varinfo_t) *slot;
2754 /* Return a printable name for DECL */
2756 static const char *
2757 alias_get_name (tree decl)
2759 const char *res;
2760 char *temp;
2761 int num_printed = 0;
2763 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2764 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2765 else
2766 res= get_name (decl);
2767 if (res != NULL)
2768 return res;
2770 res = "NULL";
2771 if (!dump_file)
2772 return res;
2774 if (TREE_CODE (decl) == SSA_NAME)
2776 num_printed = asprintf (&temp, "%s_%u",
2777 alias_get_name (SSA_NAME_VAR (decl)),
2778 SSA_NAME_VERSION (decl));
2780 else if (DECL_P (decl))
2782 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2784 if (num_printed > 0)
2786 res = ggc_strdup (temp);
2787 free (temp);
2789 return res;
2792 /* Find the variable id for tree T in the map.
2793 If T doesn't exist in the map, create an entry for it and return it. */
2795 static varinfo_t
2796 get_vi_for_tree (tree t)
2798 void **slot = pointer_map_contains (vi_for_tree, t);
2799 if (slot == NULL)
2800 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2802 return (varinfo_t) *slot;
2805 /* Get a scalar constraint expression for a new temporary variable. */
2807 static struct constraint_expr
2808 new_scalar_tmp_constraint_exp (const char *name)
2810 struct constraint_expr tmp;
2811 varinfo_t vi;
2813 vi = new_var_info (NULL_TREE, name);
2814 vi->offset = 0;
2815 vi->size = -1;
2816 vi->fullsize = -1;
2817 vi->is_full_var = 1;
2819 tmp.var = vi->id;
2820 tmp.type = SCALAR;
2821 tmp.offset = 0;
2823 return tmp;
2826 /* Get a constraint expression vector from an SSA_VAR_P node.
2827 If address_p is true, the result will be taken its address of. */
2829 static void
2830 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2832 struct constraint_expr cexpr;
2833 varinfo_t vi;
2835 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2836 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2838 /* For parameters, get at the points-to set for the actual parm
2839 decl. */
2840 if (TREE_CODE (t) == SSA_NAME
2841 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2842 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)
2843 && SSA_NAME_IS_DEFAULT_DEF (t))
2845 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2846 return;
2849 vi = get_vi_for_tree (t);
2850 cexpr.var = vi->id;
2851 cexpr.type = SCALAR;
2852 cexpr.offset = 0;
2853 /* If we determine the result is "anything", and we know this is readonly,
2854 say it points to readonly memory instead. */
2855 if (cexpr.var == anything_id && TREE_READONLY (t))
2857 gcc_unreachable ();
2858 cexpr.type = ADDRESSOF;
2859 cexpr.var = readonly_id;
2862 /* If we are not taking the address of the constraint expr, add all
2863 sub-fiels of the variable as well. */
2864 if (!address_p
2865 && !vi->is_full_var)
2867 for (; vi; vi = vi->next)
2869 cexpr.var = vi->id;
2870 VEC_safe_push (ce_s, heap, *results, &cexpr);
2872 return;
2875 VEC_safe_push (ce_s, heap, *results, &cexpr);
2878 /* Process constraint T, performing various simplifications and then
2879 adding it to our list of overall constraints. */
2881 static void
2882 process_constraint (constraint_t t)
2884 struct constraint_expr rhs = t->rhs;
2885 struct constraint_expr lhs = t->lhs;
2887 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2888 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2890 /* If we didn't get any useful constraint from the lhs we get
2891 &ANYTHING as fallback from get_constraint_for. Deal with
2892 it here by turning it into *ANYTHING. */
2893 if (lhs.type == ADDRESSOF
2894 && lhs.var == anything_id)
2895 lhs.type = DEREF;
2897 /* ADDRESSOF on the lhs is invalid. */
2898 gcc_assert (lhs.type != ADDRESSOF);
2900 /* We shouldn't add constraints from things that cannot have pointers.
2901 It's not completely trivial to avoid in the callers, so do it here. */
2902 if (rhs.type != ADDRESSOF
2903 && !get_varinfo (rhs.var)->may_have_pointers)
2904 return;
2906 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2907 if (!get_varinfo (lhs.var)->may_have_pointers)
2908 return;
2910 /* This can happen in our IR with things like n->a = *p */
2911 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2913 /* Split into tmp = *rhs, *lhs = tmp */
2914 struct constraint_expr tmplhs;
2915 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2916 process_constraint (new_constraint (tmplhs, rhs));
2917 process_constraint (new_constraint (lhs, tmplhs));
2919 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2921 /* Split into tmp = &rhs, *lhs = tmp */
2922 struct constraint_expr tmplhs;
2923 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2924 process_constraint (new_constraint (tmplhs, rhs));
2925 process_constraint (new_constraint (lhs, tmplhs));
2927 else
2929 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2930 VEC_safe_push (constraint_t, heap, constraints, t);
2934 /* Return true if T is a type that could contain pointers. */
2936 static bool
2937 type_could_have_pointers (tree type)
2939 if (POINTER_TYPE_P (type))
2940 return true;
2942 if (TREE_CODE (type) == ARRAY_TYPE)
2943 return type_could_have_pointers (TREE_TYPE (type));
2945 /* A function or method can consume pointers.
2946 ??? We could be more precise here. */
2947 if (TREE_CODE (type) == FUNCTION_TYPE
2948 || TREE_CODE (type) == METHOD_TYPE)
2949 return true;
2951 return AGGREGATE_TYPE_P (type);
2954 /* Return true if T is a variable of a type that could contain
2955 pointers. */
2957 static bool
2958 could_have_pointers (tree t)
2960 return (((TREE_CODE (t) == VAR_DECL
2961 || TREE_CODE (t) == PARM_DECL
2962 || TREE_CODE (t) == RESULT_DECL)
2963 && (TREE_PUBLIC (t) || DECL_EXTERNAL (t) || TREE_ADDRESSABLE (t)))
2964 || type_could_have_pointers (TREE_TYPE (t)));
2967 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2968 structure. */
2970 static HOST_WIDE_INT
2971 bitpos_of_field (const tree fdecl)
2974 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2975 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2976 return -1;
2978 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2979 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2983 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2984 resulting constraint expressions in *RESULTS. */
2986 static void
2987 get_constraint_for_ptr_offset (tree ptr, tree offset,
2988 VEC (ce_s, heap) **results)
2990 struct constraint_expr c;
2991 unsigned int j, n;
2992 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2994 /* If we do not do field-sensitive PTA adding offsets to pointers
2995 does not change the points-to solution. */
2996 if (!use_field_sensitive)
2998 get_constraint_for_rhs (ptr, results);
2999 return;
3002 /* If the offset is not a non-negative integer constant that fits
3003 in a HOST_WIDE_INT, we have to fall back to a conservative
3004 solution which includes all sub-fields of all pointed-to
3005 variables of ptr. */
3006 if (offset == NULL_TREE
3007 || !host_integerp (offset, 0))
3008 rhsoffset = UNKNOWN_OFFSET;
3009 else
3011 /* Make sure the bit-offset also fits. */
3012 rhsunitoffset = TREE_INT_CST_LOW (offset);
3013 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3014 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3015 rhsoffset = UNKNOWN_OFFSET;
3018 get_constraint_for_rhs (ptr, results);
3019 if (rhsoffset == 0)
3020 return;
3022 /* As we are eventually appending to the solution do not use
3023 VEC_iterate here. */
3024 n = VEC_length (ce_s, *results);
3025 for (j = 0; j < n; j++)
3027 varinfo_t curr;
3028 c = *VEC_index (ce_s, *results, j);
3029 curr = get_varinfo (c.var);
3031 if (c.type == ADDRESSOF
3032 /* If this varinfo represents a full variable just use it. */
3033 && curr->is_full_var)
3034 c.offset = 0;
3035 else if (c.type == ADDRESSOF
3036 /* If we do not know the offset add all subfields. */
3037 && rhsoffset == UNKNOWN_OFFSET)
3039 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3042 struct constraint_expr c2;
3043 c2.var = temp->id;
3044 c2.type = ADDRESSOF;
3045 c2.offset = 0;
3046 if (c2.var != c.var)
3047 VEC_safe_push (ce_s, heap, *results, &c2);
3048 temp = temp->next;
3050 while (temp);
3052 else if (c.type == ADDRESSOF)
3054 varinfo_t temp;
3055 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3057 /* Search the sub-field which overlaps with the
3058 pointed-to offset. If the result is outside of the variable
3059 we have to provide a conservative result, as the variable is
3060 still reachable from the resulting pointer (even though it
3061 technically cannot point to anything). The last and first
3062 sub-fields are such conservative results.
3063 ??? If we always had a sub-field for &object + 1 then
3064 we could represent this in a more precise way. */
3065 if (rhsoffset < 0
3066 && curr->offset < offset)
3067 offset = 0;
3068 temp = first_or_preceding_vi_for_offset (curr, offset);
3070 /* If the found variable is not exactly at the pointed to
3071 result, we have to include the next variable in the
3072 solution as well. Otherwise two increments by offset / 2
3073 do not result in the same or a conservative superset
3074 solution. */
3075 if (temp->offset != offset
3076 && temp->next != NULL)
3078 struct constraint_expr c2;
3079 c2.var = temp->next->id;
3080 c2.type = ADDRESSOF;
3081 c2.offset = 0;
3082 VEC_safe_push (ce_s, heap, *results, &c2);
3084 c.var = temp->id;
3085 c.offset = 0;
3087 else
3088 c.offset = rhsoffset;
3090 VEC_replace (ce_s, *results, j, &c);
3095 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3096 If address_p is true the result will be taken its address of.
3097 If lhs_p is true then the constraint expression is assumed to be used
3098 as the lhs. */
3100 static void
3101 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3102 bool address_p, bool lhs_p)
3104 tree orig_t = t;
3105 HOST_WIDE_INT bitsize = -1;
3106 HOST_WIDE_INT bitmaxsize = -1;
3107 HOST_WIDE_INT bitpos;
3108 tree forzero;
3109 struct constraint_expr *result;
3111 /* Some people like to do cute things like take the address of
3112 &0->a.b */
3113 forzero = t;
3114 while (handled_component_p (forzero)
3115 || INDIRECT_REF_P (forzero)
3116 || TREE_CODE (forzero) == MEM_REF)
3117 forzero = TREE_OPERAND (forzero, 0);
3119 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3121 struct constraint_expr temp;
3123 temp.offset = 0;
3124 temp.var = integer_id;
3125 temp.type = SCALAR;
3126 VEC_safe_push (ce_s, heap, *results, &temp);
3127 return;
3130 /* Handle type-punning through unions. If we are extracting a pointer
3131 from a union via a possibly type-punning access that pointer
3132 points to anything, similar to a conversion of an integer to
3133 a pointer. */
3134 if (!lhs_p)
3136 tree u;
3137 for (u = t;
3138 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3139 u = TREE_OPERAND (u, 0))
3140 if (TREE_CODE (u) == COMPONENT_REF
3141 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3143 struct constraint_expr temp;
3145 temp.offset = 0;
3146 temp.var = anything_id;
3147 temp.type = ADDRESSOF;
3148 VEC_safe_push (ce_s, heap, *results, &temp);
3149 return;
3153 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3155 /* Pretend to take the address of the base, we'll take care of
3156 adding the required subset of sub-fields below. */
3157 get_constraint_for_1 (t, results, true, lhs_p);
3158 gcc_assert (VEC_length (ce_s, *results) == 1);
3159 result = VEC_last (ce_s, *results);
3161 if (result->type == SCALAR
3162 && get_varinfo (result->var)->is_full_var)
3163 /* For single-field vars do not bother about the offset. */
3164 result->offset = 0;
3165 else if (result->type == SCALAR)
3167 /* In languages like C, you can access one past the end of an
3168 array. You aren't allowed to dereference it, so we can
3169 ignore this constraint. When we handle pointer subtraction,
3170 we may have to do something cute here. */
3172 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3173 && bitmaxsize != 0)
3175 /* It's also not true that the constraint will actually start at the
3176 right offset, it may start in some padding. We only care about
3177 setting the constraint to the first actual field it touches, so
3178 walk to find it. */
3179 struct constraint_expr cexpr = *result;
3180 varinfo_t curr;
3181 VEC_pop (ce_s, *results);
3182 cexpr.offset = 0;
3183 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3185 if (ranges_overlap_p (curr->offset, curr->size,
3186 bitpos, bitmaxsize))
3188 cexpr.var = curr->id;
3189 VEC_safe_push (ce_s, heap, *results, &cexpr);
3190 if (address_p)
3191 break;
3194 /* If we are going to take the address of this field then
3195 to be able to compute reachability correctly add at least
3196 the last field of the variable. */
3197 if (address_p
3198 && VEC_length (ce_s, *results) == 0)
3200 curr = get_varinfo (cexpr.var);
3201 while (curr->next != NULL)
3202 curr = curr->next;
3203 cexpr.var = curr->id;
3204 VEC_safe_push (ce_s, heap, *results, &cexpr);
3206 else if (VEC_length (ce_s, *results) == 0)
3207 /* Assert that we found *some* field there. The user couldn't be
3208 accessing *only* padding. */
3209 /* Still the user could access one past the end of an array
3210 embedded in a struct resulting in accessing *only* padding. */
3211 /* Or accessing only padding via type-punning to a type
3212 that has a filed just in padding space. */
3214 cexpr.type = SCALAR;
3215 cexpr.var = anything_id;
3216 cexpr.offset = 0;
3217 VEC_safe_push (ce_s, heap, *results, &cexpr);
3220 else if (bitmaxsize == 0)
3222 if (dump_file && (dump_flags & TDF_DETAILS))
3223 fprintf (dump_file, "Access to zero-sized part of variable,"
3224 "ignoring\n");
3226 else
3227 if (dump_file && (dump_flags & TDF_DETAILS))
3228 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3230 else if (result->type == DEREF)
3232 /* If we do not know exactly where the access goes say so. Note
3233 that only for non-structure accesses we know that we access
3234 at most one subfiled of any variable. */
3235 if (bitpos == -1
3236 || bitsize != bitmaxsize
3237 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3238 || result->offset == UNKNOWN_OFFSET)
3239 result->offset = UNKNOWN_OFFSET;
3240 else
3241 result->offset += bitpos;
3243 else if (result->type == ADDRESSOF)
3245 /* We can end up here for component references on a
3246 VIEW_CONVERT_EXPR <>(&foobar). */
3247 result->type = SCALAR;
3248 result->var = anything_id;
3249 result->offset = 0;
3251 else
3252 gcc_unreachable ();
3256 /* Dereference the constraint expression CONS, and return the result.
3257 DEREF (ADDRESSOF) = SCALAR
3258 DEREF (SCALAR) = DEREF
3259 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3260 This is needed so that we can handle dereferencing DEREF constraints. */
3262 static void
3263 do_deref (VEC (ce_s, heap) **constraints)
3265 struct constraint_expr *c;
3266 unsigned int i = 0;
3268 FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
3270 if (c->type == SCALAR)
3271 c->type = DEREF;
3272 else if (c->type == ADDRESSOF)
3273 c->type = SCALAR;
3274 else if (c->type == DEREF)
3276 struct constraint_expr tmplhs;
3277 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3278 process_constraint (new_constraint (tmplhs, *c));
3279 c->var = tmplhs.var;
3281 else
3282 gcc_unreachable ();
3286 /* Given a tree T, return the constraint expression for taking the
3287 address of it. */
3289 static void
3290 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3292 struct constraint_expr *c;
3293 unsigned int i;
3295 get_constraint_for_1 (t, results, true, true);
3297 FOR_EACH_VEC_ELT (ce_s, *results, i, c)
3299 if (c->type == DEREF)
3300 c->type = SCALAR;
3301 else
3302 c->type = ADDRESSOF;
3306 /* Given a tree T, return the constraint expression for it. */
3308 static void
3309 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
3310 bool lhs_p)
3312 struct constraint_expr temp;
3314 /* x = integer is all glommed to a single variable, which doesn't
3315 point to anything by itself. That is, of course, unless it is an
3316 integer constant being treated as a pointer, in which case, we
3317 will return that this is really the addressof anything. This
3318 happens below, since it will fall into the default case. The only
3319 case we know something about an integer treated like a pointer is
3320 when it is the NULL pointer, and then we just say it points to
3321 NULL.
3323 Do not do that if -fno-delete-null-pointer-checks though, because
3324 in that case *NULL does not fail, so it _should_ alias *anything.
3325 It is not worth adding a new option or renaming the existing one,
3326 since this case is relatively obscure. */
3327 if ((TREE_CODE (t) == INTEGER_CST
3328 && integer_zerop (t))
3329 /* The only valid CONSTRUCTORs in gimple with pointer typed
3330 elements are zero-initializer. But in IPA mode we also
3331 process global initializers, so verify at least. */
3332 || (TREE_CODE (t) == CONSTRUCTOR
3333 && CONSTRUCTOR_NELTS (t) == 0))
3335 if (flag_delete_null_pointer_checks)
3336 temp.var = nothing_id;
3337 else
3338 temp.var = anything_id;
3339 temp.type = ADDRESSOF;
3340 temp.offset = 0;
3341 VEC_safe_push (ce_s, heap, *results, &temp);
3342 return;
3345 /* String constants are read-only. */
3346 if (TREE_CODE (t) == STRING_CST)
3348 temp.var = readonly_id;
3349 temp.type = SCALAR;
3350 temp.offset = 0;
3351 VEC_safe_push (ce_s, heap, *results, &temp);
3352 return;
3355 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3357 case tcc_expression:
3359 switch (TREE_CODE (t))
3361 case ADDR_EXPR:
3362 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3363 return;
3364 default:;
3366 break;
3368 case tcc_reference:
3370 switch (TREE_CODE (t))
3372 case MEM_REF:
3374 tree off = double_int_to_tree (sizetype, mem_ref_offset (t));
3375 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0), off, results);
3376 do_deref (results);
3377 return;
3379 case ARRAY_REF:
3380 case ARRAY_RANGE_REF:
3381 case COMPONENT_REF:
3382 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3383 return;
3384 case VIEW_CONVERT_EXPR:
3385 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3386 lhs_p);
3387 return;
3388 /* We are missing handling for TARGET_MEM_REF here. */
3389 default:;
3391 break;
3393 case tcc_exceptional:
3395 switch (TREE_CODE (t))
3397 case SSA_NAME:
3399 get_constraint_for_ssa_var (t, results, address_p);
3400 return;
3402 case CONSTRUCTOR:
3404 unsigned int i;
3405 tree val;
3406 VEC (ce_s, heap) *tmp = NULL;
3407 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3409 struct constraint_expr *rhsp;
3410 unsigned j;
3411 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3412 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
3413 VEC_safe_push (ce_s, heap, *results, rhsp);
3414 VEC_truncate (ce_s, tmp, 0);
3416 VEC_free (ce_s, heap, tmp);
3417 /* We do not know whether the constructor was complete,
3418 so technically we have to add &NOTHING or &ANYTHING
3419 like we do for an empty constructor as well. */
3420 return;
3422 default:;
3424 break;
3426 case tcc_declaration:
3428 get_constraint_for_ssa_var (t, results, address_p);
3429 return;
3431 default:;
3434 /* The default fallback is a constraint from anything. */
3435 temp.type = ADDRESSOF;
3436 temp.var = anything_id;
3437 temp.offset = 0;
3438 VEC_safe_push (ce_s, heap, *results, &temp);
3441 /* Given a gimple tree T, return the constraint expression vector for it. */
3443 static void
3444 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3446 gcc_assert (VEC_length (ce_s, *results) == 0);
3448 get_constraint_for_1 (t, results, false, true);
3451 /* Given a gimple tree T, return the constraint expression vector for it
3452 to be used as the rhs of a constraint. */
3454 static void
3455 get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
3457 gcc_assert (VEC_length (ce_s, *results) == 0);
3459 get_constraint_for_1 (t, results, false, false);
3463 /* Efficiently generates constraints from all entries in *RHSC to all
3464 entries in *LHSC. */
3466 static void
3467 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3469 struct constraint_expr *lhsp, *rhsp;
3470 unsigned i, j;
3472 if (VEC_length (ce_s, lhsc) <= 1
3473 || VEC_length (ce_s, rhsc) <= 1)
3475 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3476 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
3477 process_constraint (new_constraint (*lhsp, *rhsp));
3479 else
3481 struct constraint_expr tmp;
3482 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3483 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
3484 process_constraint (new_constraint (tmp, *rhsp));
3485 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3486 process_constraint (new_constraint (*lhsp, tmp));
3490 /* Handle aggregate copies by expanding into copies of the respective
3491 fields of the structures. */
3493 static void
3494 do_structure_copy (tree lhsop, tree rhsop)
3496 struct constraint_expr *lhsp, *rhsp;
3497 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3498 unsigned j;
3500 get_constraint_for (lhsop, &lhsc);
3501 get_constraint_for_rhs (rhsop, &rhsc);
3502 lhsp = VEC_index (ce_s, lhsc, 0);
3503 rhsp = VEC_index (ce_s, rhsc, 0);
3504 if (lhsp->type == DEREF
3505 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3506 || rhsp->type == DEREF)
3508 if (lhsp->type == DEREF)
3510 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3511 lhsp->offset = UNKNOWN_OFFSET;
3513 if (rhsp->type == DEREF)
3515 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3516 rhsp->offset = UNKNOWN_OFFSET;
3518 process_all_all_constraints (lhsc, rhsc);
3520 else if (lhsp->type == SCALAR
3521 && (rhsp->type == SCALAR
3522 || rhsp->type == ADDRESSOF))
3524 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3525 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3526 unsigned k = 0;
3527 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3528 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3529 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3531 varinfo_t lhsv, rhsv;
3532 rhsp = VEC_index (ce_s, rhsc, k);
3533 lhsv = get_varinfo (lhsp->var);
3534 rhsv = get_varinfo (rhsp->var);
3535 if (lhsv->may_have_pointers
3536 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3537 rhsv->offset + lhsoffset, rhsv->size))
3538 process_constraint (new_constraint (*lhsp, *rhsp));
3539 if (lhsv->offset + rhsoffset + lhsv->size
3540 > rhsv->offset + lhsoffset + rhsv->size)
3542 ++k;
3543 if (k >= VEC_length (ce_s, rhsc))
3544 break;
3546 else
3547 ++j;
3550 else
3551 gcc_unreachable ();
3553 VEC_free (ce_s, heap, lhsc);
3554 VEC_free (ce_s, heap, rhsc);
3557 /* Create a constraint ID = OP. */
3559 static void
3560 make_constraint_to (unsigned id, tree op)
3562 VEC(ce_s, heap) *rhsc = NULL;
3563 struct constraint_expr *c;
3564 struct constraint_expr includes;
3565 unsigned int j;
3567 includes.var = id;
3568 includes.offset = 0;
3569 includes.type = SCALAR;
3571 get_constraint_for_rhs (op, &rhsc);
3572 FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
3573 process_constraint (new_constraint (includes, *c));
3574 VEC_free (ce_s, heap, rhsc);
3577 /* Create a constraint ID = &FROM. */
3579 static void
3580 make_constraint_from (varinfo_t vi, int from)
3582 struct constraint_expr lhs, rhs;
3584 lhs.var = vi->id;
3585 lhs.offset = 0;
3586 lhs.type = SCALAR;
3588 rhs.var = from;
3589 rhs.offset = 0;
3590 rhs.type = ADDRESSOF;
3591 process_constraint (new_constraint (lhs, rhs));
3594 /* Create a constraint ID = FROM. */
3596 static void
3597 make_copy_constraint (varinfo_t vi, int from)
3599 struct constraint_expr lhs, rhs;
3601 lhs.var = vi->id;
3602 lhs.offset = 0;
3603 lhs.type = SCALAR;
3605 rhs.var = from;
3606 rhs.offset = 0;
3607 rhs.type = SCALAR;
3608 process_constraint (new_constraint (lhs, rhs));
3611 /* Make constraints necessary to make OP escape. */
3613 static void
3614 make_escape_constraint (tree op)
3616 make_constraint_to (escaped_id, op);
3619 /* Add constraints to that the solution of VI is transitively closed. */
3621 static void
3622 make_transitive_closure_constraints (varinfo_t vi)
3624 struct constraint_expr lhs, rhs;
3626 /* VAR = *VAR; */
3627 lhs.type = SCALAR;
3628 lhs.var = vi->id;
3629 lhs.offset = 0;
3630 rhs.type = DEREF;
3631 rhs.var = vi->id;
3632 rhs.offset = 0;
3633 process_constraint (new_constraint (lhs, rhs));
3635 /* VAR = VAR + UNKNOWN; */
3636 lhs.type = SCALAR;
3637 lhs.var = vi->id;
3638 lhs.offset = 0;
3639 rhs.type = SCALAR;
3640 rhs.var = vi->id;
3641 rhs.offset = UNKNOWN_OFFSET;
3642 process_constraint (new_constraint (lhs, rhs));
3645 /* Create a new artificial heap variable with NAME.
3646 Return the created variable. */
3648 static varinfo_t
3649 make_heapvar_for (varinfo_t lhs, const char *name)
3651 varinfo_t vi;
3652 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3654 if (heapvar == NULL_TREE)
3656 var_ann_t ann;
3657 heapvar = create_tmp_var_raw (ptr_type_node, name);
3658 DECL_EXTERNAL (heapvar) = 1;
3660 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3662 ann = get_var_ann (heapvar);
3663 ann->is_heapvar = 1;
3666 /* For global vars we need to add a heapvar to the list of referenced
3667 vars of a different function than it was created for originally. */
3668 if (cfun && gimple_referenced_vars (cfun))
3669 add_referenced_var (heapvar);
3671 vi = new_var_info (heapvar, name);
3672 vi->is_artificial_var = true;
3673 vi->is_heap_var = true;
3674 vi->is_unknown_size_var = true;
3675 vi->offset = 0;
3676 vi->fullsize = ~0;
3677 vi->size = ~0;
3678 vi->is_full_var = true;
3679 insert_vi_for_tree (heapvar, vi);
3681 return vi;
3684 /* Create a new artificial heap variable with NAME and make a
3685 constraint from it to LHS. Return the created variable. */
3687 static varinfo_t
3688 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3690 varinfo_t vi = make_heapvar_for (lhs, name);
3691 make_constraint_from (lhs, vi->id);
3693 return vi;
3696 /* Create a new artificial heap variable with NAME and make a
3697 constraint from it to LHS. Set flags according to a tag used
3698 for tracking restrict pointers. */
3700 static void
3701 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3703 varinfo_t vi;
3704 vi = make_constraint_from_heapvar (lhs, name);
3705 vi->is_restrict_var = 1;
3706 vi->is_global_var = 0;
3707 vi->is_special_var = 1;
3708 vi->may_have_pointers = 0;
3711 /* In IPA mode there are varinfos for different aspects of reach
3712 function designator. One for the points-to set of the return
3713 value, one for the variables that are clobbered by the function,
3714 one for its uses and one for each parameter (including a single
3715 glob for remaining variadic arguments). */
3717 enum { fi_clobbers = 1, fi_uses = 2,
3718 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3720 /* Get a constraint for the requested part of a function designator FI
3721 when operating in IPA mode. */
3723 static struct constraint_expr
3724 get_function_part_constraint (varinfo_t fi, unsigned part)
3726 struct constraint_expr c;
3728 gcc_assert (in_ipa_mode);
3730 if (fi->id == anything_id)
3732 /* ??? We probably should have a ANYFN special variable. */
3733 c.var = anything_id;
3734 c.offset = 0;
3735 c.type = SCALAR;
3737 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3739 varinfo_t ai = first_vi_for_offset (fi, part);
3740 if (ai)
3741 c.var = ai->id;
3742 else
3743 c.var = anything_id;
3744 c.offset = 0;
3745 c.type = SCALAR;
3747 else
3749 c.var = fi->id;
3750 c.offset = part;
3751 c.type = DEREF;
3754 return c;
3757 /* For non-IPA mode, generate constraints necessary for a call on the
3758 RHS. */
3760 static void
3761 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3763 struct constraint_expr rhsc;
3764 unsigned i;
3765 bool returns_uses = false;
3767 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3769 tree arg = gimple_call_arg (stmt, i);
3770 int flags = gimple_call_arg_flags (stmt, i);
3772 /* If the argument is not used or it does not contain pointers
3773 we can ignore it. */
3774 if ((flags & EAF_UNUSED)
3775 || !could_have_pointers (arg))
3776 continue;
3778 /* As we compute ESCAPED context-insensitive we do not gain
3779 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3780 set. The argument would still get clobbered through the
3781 escape solution.
3782 ??? We might get away with less (and more precise) constraints
3783 if using a temporary for transitively closing things. */
3784 if ((flags & EAF_NOCLOBBER)
3785 && (flags & EAF_NOESCAPE))
3787 varinfo_t uses = get_call_use_vi (stmt);
3788 if (!(flags & EAF_DIRECT))
3789 make_transitive_closure_constraints (uses);
3790 make_constraint_to (uses->id, arg);
3791 returns_uses = true;
3793 else if (flags & EAF_NOESCAPE)
3795 varinfo_t uses = get_call_use_vi (stmt);
3796 varinfo_t clobbers = get_call_clobber_vi (stmt);
3797 if (!(flags & EAF_DIRECT))
3799 make_transitive_closure_constraints (uses);
3800 make_transitive_closure_constraints (clobbers);
3802 make_constraint_to (uses->id, arg);
3803 make_constraint_to (clobbers->id, arg);
3804 returns_uses = true;
3806 else
3807 make_escape_constraint (arg);
3810 /* If we added to the calls uses solution make sure we account for
3811 pointers to it to be returned. */
3812 if (returns_uses)
3814 rhsc.var = get_call_use_vi (stmt)->id;
3815 rhsc.offset = 0;
3816 rhsc.type = SCALAR;
3817 VEC_safe_push (ce_s, heap, *results, &rhsc);
3820 /* The static chain escapes as well. */
3821 if (gimple_call_chain (stmt))
3822 make_escape_constraint (gimple_call_chain (stmt));
3824 /* And if we applied NRV the address of the return slot escapes as well. */
3825 if (gimple_call_return_slot_opt_p (stmt)
3826 && gimple_call_lhs (stmt) != NULL_TREE
3827 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3829 VEC(ce_s, heap) *tmpc = NULL;
3830 struct constraint_expr lhsc, *c;
3831 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3832 lhsc.var = escaped_id;
3833 lhsc.offset = 0;
3834 lhsc.type = SCALAR;
3835 FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
3836 process_constraint (new_constraint (lhsc, *c));
3837 VEC_free(ce_s, heap, tmpc);
3840 /* Regular functions return nonlocal memory. */
3841 rhsc.var = nonlocal_id;
3842 rhsc.offset = 0;
3843 rhsc.type = SCALAR;
3844 VEC_safe_push (ce_s, heap, *results, &rhsc);
3847 /* For non-IPA mode, generate constraints necessary for a call
3848 that returns a pointer and assigns it to LHS. This simply makes
3849 the LHS point to global and escaped variables. */
3851 static void
3852 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3853 tree fndecl)
3855 VEC(ce_s, heap) *lhsc = NULL;
3857 get_constraint_for (lhs, &lhsc);
3858 /* If the store is to a global decl make sure to
3859 add proper escape constraints. */
3860 lhs = get_base_address (lhs);
3861 if (lhs
3862 && DECL_P (lhs)
3863 && is_global_var (lhs))
3865 struct constraint_expr tmpc;
3866 tmpc.var = escaped_id;
3867 tmpc.offset = 0;
3868 tmpc.type = SCALAR;
3869 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3872 /* If the call returns an argument unmodified override the rhs
3873 constraints. */
3874 flags = gimple_call_return_flags (stmt);
3875 if (flags & ERF_RETURNS_ARG
3876 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3878 tree arg;
3879 rhsc = NULL;
3880 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3881 get_constraint_for (arg, &rhsc);
3882 process_all_all_constraints (lhsc, rhsc);
3883 VEC_free (ce_s, heap, rhsc);
3885 else if (flags & ERF_NOALIAS)
3887 varinfo_t vi;
3888 struct constraint_expr tmpc;
3889 rhsc = NULL;
3890 vi = make_heapvar_for (get_vi_for_tree (lhs), "HEAP");
3891 /* We delay marking allocated storage global until we know if
3892 it escapes. */
3893 DECL_EXTERNAL (vi->decl) = 0;
3894 vi->is_global_var = 0;
3895 /* If this is not a real malloc call assume the memory was
3896 initialized and thus may point to global memory. All
3897 builtin functions with the malloc attribute behave in a sane way. */
3898 if (!fndecl
3899 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3900 make_constraint_from (vi, nonlocal_id);
3901 tmpc.var = vi->id;
3902 tmpc.offset = 0;
3903 tmpc.type = ADDRESSOF;
3904 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3907 process_all_all_constraints (lhsc, rhsc);
3909 VEC_free (ce_s, heap, lhsc);
3912 /* For non-IPA mode, generate constraints necessary for a call of a
3913 const function that returns a pointer in the statement STMT. */
3915 static void
3916 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3918 struct constraint_expr rhsc;
3919 unsigned int k;
3921 /* Treat nested const functions the same as pure functions as far
3922 as the static chain is concerned. */
3923 if (gimple_call_chain (stmt))
3925 varinfo_t uses = get_call_use_vi (stmt);
3926 make_transitive_closure_constraints (uses);
3927 make_constraint_to (uses->id, gimple_call_chain (stmt));
3928 rhsc.var = uses->id;
3929 rhsc.offset = 0;
3930 rhsc.type = SCALAR;
3931 VEC_safe_push (ce_s, heap, *results, &rhsc);
3934 /* May return arguments. */
3935 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3937 tree arg = gimple_call_arg (stmt, k);
3939 if (could_have_pointers (arg))
3941 VEC(ce_s, heap) *argc = NULL;
3942 unsigned i;
3943 struct constraint_expr *argp;
3944 get_constraint_for_rhs (arg, &argc);
3945 FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
3946 VEC_safe_push (ce_s, heap, *results, argp);
3947 VEC_free(ce_s, heap, argc);
3951 /* May return addresses of globals. */
3952 rhsc.var = nonlocal_id;
3953 rhsc.offset = 0;
3954 rhsc.type = ADDRESSOF;
3955 VEC_safe_push (ce_s, heap, *results, &rhsc);
3958 /* For non-IPA mode, generate constraints necessary for a call to a
3959 pure function in statement STMT. */
3961 static void
3962 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3964 struct constraint_expr rhsc;
3965 unsigned i;
3966 varinfo_t uses = NULL;
3968 /* Memory reached from pointer arguments is call-used. */
3969 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3971 tree arg = gimple_call_arg (stmt, i);
3973 if (could_have_pointers (arg))
3975 if (!uses)
3977 uses = get_call_use_vi (stmt);
3978 make_transitive_closure_constraints (uses);
3980 make_constraint_to (uses->id, arg);
3984 /* The static chain is used as well. */
3985 if (gimple_call_chain (stmt))
3987 if (!uses)
3989 uses = get_call_use_vi (stmt);
3990 make_transitive_closure_constraints (uses);
3992 make_constraint_to (uses->id, gimple_call_chain (stmt));
3995 /* Pure functions may return call-used and nonlocal memory. */
3996 if (uses)
3998 rhsc.var = uses->id;
3999 rhsc.offset = 0;
4000 rhsc.type = SCALAR;
4001 VEC_safe_push (ce_s, heap, *results, &rhsc);
4003 rhsc.var = nonlocal_id;
4004 rhsc.offset = 0;
4005 rhsc.type = SCALAR;
4006 VEC_safe_push (ce_s, heap, *results, &rhsc);
4010 /* Return the varinfo for the callee of CALL. */
4012 static varinfo_t
4013 get_fi_for_callee (gimple call)
4015 tree decl;
4017 /* If we can directly resolve the function being called, do so.
4018 Otherwise, it must be some sort of indirect expression that
4019 we should still be able to handle. */
4020 decl = gimple_call_fndecl (call);
4021 if (decl)
4022 return get_vi_for_tree (decl);
4024 decl = gimple_call_fn (call);
4025 /* The function can be either an SSA name pointer or,
4026 worse, an OBJ_TYPE_REF. In this case we have no
4027 clue and should be getting ANYFN (well, ANYTHING for now). */
4028 if (TREE_CODE (decl) == SSA_NAME)
4030 if (TREE_CODE (decl) == SSA_NAME
4031 && (TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
4032 || TREE_CODE (SSA_NAME_VAR (decl)) == RESULT_DECL)
4033 && SSA_NAME_IS_DEFAULT_DEF (decl))
4034 decl = SSA_NAME_VAR (decl);
4035 return get_vi_for_tree (decl);
4037 else if (TREE_CODE (decl) == INTEGER_CST
4038 || TREE_CODE (decl) == OBJ_TYPE_REF)
4039 return get_varinfo (anything_id);
4040 else
4041 gcc_unreachable ();
4044 /* Walk statement T setting up aliasing constraints according to the
4045 references found in T. This function is the main part of the
4046 constraint builder. AI points to auxiliary alias information used
4047 when building alias sets and computing alias grouping heuristics. */
4049 static void
4050 find_func_aliases (gimple origt)
4052 gimple t = origt;
4053 VEC(ce_s, heap) *lhsc = NULL;
4054 VEC(ce_s, heap) *rhsc = NULL;
4055 struct constraint_expr *c;
4056 varinfo_t fi;
4058 /* Now build constraints expressions. */
4059 if (gimple_code (t) == GIMPLE_PHI)
4061 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
4063 /* Only care about pointers and structures containing
4064 pointers. */
4065 if (could_have_pointers (gimple_phi_result (t)))
4067 size_t i;
4068 unsigned int j;
4070 /* For a phi node, assign all the arguments to
4071 the result. */
4072 get_constraint_for (gimple_phi_result (t), &lhsc);
4073 for (i = 0; i < gimple_phi_num_args (t); i++)
4075 tree strippedrhs = PHI_ARG_DEF (t, i);
4077 STRIP_NOPS (strippedrhs);
4078 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4080 FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
4082 struct constraint_expr *c2;
4083 while (VEC_length (ce_s, rhsc) > 0)
4085 c2 = VEC_last (ce_s, rhsc);
4086 process_constraint (new_constraint (*c, *c2));
4087 VEC_pop (ce_s, rhsc);
4093 /* In IPA mode, we need to generate constraints to pass call
4094 arguments through their calls. There are two cases,
4095 either a GIMPLE_CALL returning a value, or just a plain
4096 GIMPLE_CALL when we are not.
4098 In non-ipa mode, we need to generate constraints for each
4099 pointer passed by address. */
4100 else if (is_gimple_call (t))
4102 tree fndecl = gimple_call_fndecl (t);
4103 if (fndecl != NULL_TREE
4104 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4105 /* ??? All builtins that are handled here need to be handled
4106 in the alias-oracle query functions explicitly! */
4107 switch (DECL_FUNCTION_CODE (fndecl))
4109 /* All the following functions return a pointer to the same object
4110 as their first argument points to. The functions do not add
4111 to the ESCAPED solution. The functions make the first argument
4112 pointed to memory point to what the second argument pointed to
4113 memory points to. */
4114 case BUILT_IN_STRCPY:
4115 case BUILT_IN_STRNCPY:
4116 case BUILT_IN_BCOPY:
4117 case BUILT_IN_MEMCPY:
4118 case BUILT_IN_MEMMOVE:
4119 case BUILT_IN_MEMPCPY:
4120 case BUILT_IN_STPCPY:
4121 case BUILT_IN_STPNCPY:
4122 case BUILT_IN_STRCAT:
4123 case BUILT_IN_STRNCAT:
4125 tree res = gimple_call_lhs (t);
4126 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4127 == BUILT_IN_BCOPY ? 1 : 0));
4128 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4129 == BUILT_IN_BCOPY ? 0 : 1));
4130 if (res != NULL_TREE)
4132 get_constraint_for (res, &lhsc);
4133 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4134 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4135 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4136 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4137 else
4138 get_constraint_for (dest, &rhsc);
4139 process_all_all_constraints (lhsc, rhsc);
4140 VEC_free (ce_s, heap, lhsc);
4141 VEC_free (ce_s, heap, rhsc);
4143 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4144 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4145 do_deref (&lhsc);
4146 do_deref (&rhsc);
4147 process_all_all_constraints (lhsc, rhsc);
4148 VEC_free (ce_s, heap, lhsc);
4149 VEC_free (ce_s, heap, rhsc);
4150 return;
4152 case BUILT_IN_MEMSET:
4154 tree res = gimple_call_lhs (t);
4155 tree dest = gimple_call_arg (t, 0);
4156 unsigned i;
4157 ce_s *lhsp;
4158 struct constraint_expr ac;
4159 if (res != NULL_TREE)
4161 get_constraint_for (res, &lhsc);
4162 get_constraint_for (dest, &rhsc);
4163 process_all_all_constraints (lhsc, rhsc);
4164 VEC_free (ce_s, heap, lhsc);
4165 VEC_free (ce_s, heap, rhsc);
4167 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4168 do_deref (&lhsc);
4169 if (flag_delete_null_pointer_checks
4170 && integer_zerop (gimple_call_arg (t, 1)))
4172 ac.type = ADDRESSOF;
4173 ac.var = nothing_id;
4175 else
4177 ac.type = SCALAR;
4178 ac.var = integer_id;
4180 ac.offset = 0;
4181 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4182 process_constraint (new_constraint (*lhsp, ac));
4183 VEC_free (ce_s, heap, lhsc);
4184 return;
4186 /* All the following functions do not return pointers, do not
4187 modify the points-to sets of memory reachable from their
4188 arguments and do not add to the ESCAPED solution. */
4189 case BUILT_IN_SINCOS:
4190 case BUILT_IN_SINCOSF:
4191 case BUILT_IN_SINCOSL:
4192 case BUILT_IN_FREXP:
4193 case BUILT_IN_FREXPF:
4194 case BUILT_IN_FREXPL:
4195 case BUILT_IN_GAMMA_R:
4196 case BUILT_IN_GAMMAF_R:
4197 case BUILT_IN_GAMMAL_R:
4198 case BUILT_IN_LGAMMA_R:
4199 case BUILT_IN_LGAMMAF_R:
4200 case BUILT_IN_LGAMMAL_R:
4201 case BUILT_IN_MODF:
4202 case BUILT_IN_MODFF:
4203 case BUILT_IN_MODFL:
4204 case BUILT_IN_REMQUO:
4205 case BUILT_IN_REMQUOF:
4206 case BUILT_IN_REMQUOL:
4207 case BUILT_IN_FREE:
4208 return;
4209 /* Trampolines are special - they set up passing the static
4210 frame. */
4211 case BUILT_IN_INIT_TRAMPOLINE:
4213 tree tramp = gimple_call_arg (t, 0);
4214 tree nfunc = gimple_call_arg (t, 1);
4215 tree frame = gimple_call_arg (t, 2);
4216 unsigned i;
4217 struct constraint_expr lhs, *rhsp;
4218 if (in_ipa_mode)
4220 varinfo_t nfi = NULL;
4221 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4222 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4223 if (nfi)
4225 lhs = get_function_part_constraint (nfi, fi_static_chain);
4226 get_constraint_for (frame, &rhsc);
4227 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4228 process_constraint (new_constraint (lhs, *rhsp));
4229 VEC_free (ce_s, heap, rhsc);
4231 /* Make the frame point to the function for
4232 the trampoline adjustment call. */
4233 get_constraint_for (tramp, &lhsc);
4234 do_deref (&lhsc);
4235 get_constraint_for (nfunc, &rhsc);
4236 process_all_all_constraints (lhsc, rhsc);
4237 VEC_free (ce_s, heap, rhsc);
4238 VEC_free (ce_s, heap, lhsc);
4240 return;
4243 /* Else fallthru to generic handling which will let
4244 the frame escape. */
4245 break;
4247 case BUILT_IN_ADJUST_TRAMPOLINE:
4249 tree tramp = gimple_call_arg (t, 0);
4250 tree res = gimple_call_lhs (t);
4251 if (in_ipa_mode && res)
4253 get_constraint_for (res, &lhsc);
4254 get_constraint_for (tramp, &rhsc);
4255 do_deref (&rhsc);
4256 process_all_all_constraints (lhsc, rhsc);
4257 VEC_free (ce_s, heap, rhsc);
4258 VEC_free (ce_s, heap, lhsc);
4260 return;
4262 /* Variadic argument handling needs to be handled in IPA
4263 mode as well. */
4264 case BUILT_IN_VA_START:
4266 if (in_ipa_mode)
4268 tree valist = gimple_call_arg (t, 0);
4269 struct constraint_expr rhs, *lhsp;
4270 unsigned i;
4271 /* The va_list gets access to pointers in variadic
4272 arguments. */
4273 fi = lookup_vi_for_tree (cfun->decl);
4274 gcc_assert (fi != NULL);
4275 get_constraint_for (valist, &lhsc);
4276 do_deref (&lhsc);
4277 rhs = get_function_part_constraint (fi, ~0);
4278 rhs.type = ADDRESSOF;
4279 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4280 process_constraint (new_constraint (*lhsp, rhs));
4281 VEC_free (ce_s, heap, lhsc);
4282 /* va_list is clobbered. */
4283 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4284 return;
4286 break;
4288 /* va_end doesn't have any effect that matters. */
4289 case BUILT_IN_VA_END:
4290 return;
4291 /* Alternate return. Simply give up for now. */
4292 case BUILT_IN_RETURN:
4294 fi = NULL;
4295 if (!in_ipa_mode
4296 || !(fi = get_vi_for_tree (cfun->decl)))
4297 make_constraint_from (get_varinfo (escaped_id), anything_id);
4298 else if (in_ipa_mode
4299 && fi != NULL)
4301 struct constraint_expr lhs, rhs;
4302 lhs = get_function_part_constraint (fi, fi_result);
4303 rhs.var = anything_id;
4304 rhs.offset = 0;
4305 rhs.type = SCALAR;
4306 process_constraint (new_constraint (lhs, rhs));
4308 return;
4310 /* printf-style functions may have hooks to set pointers to
4311 point to somewhere into the generated string. Leave them
4312 for a later excercise... */
4313 default:
4314 /* Fallthru to general call handling. */;
4316 if (!in_ipa_mode
4317 || (fndecl
4318 && (!(fi = lookup_vi_for_tree (fndecl))
4319 || !fi->is_fn_info)))
4321 VEC(ce_s, heap) *rhsc = NULL;
4322 int flags = gimple_call_flags (t);
4324 /* Const functions can return their arguments and addresses
4325 of global memory but not of escaped memory. */
4326 if (flags & (ECF_CONST|ECF_NOVOPS))
4328 if (gimple_call_lhs (t)
4329 && could_have_pointers (gimple_call_lhs (t)))
4330 handle_const_call (t, &rhsc);
4332 /* Pure functions can return addresses in and of memory
4333 reachable from their arguments, but they are not an escape
4334 point for reachable memory of their arguments. */
4335 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4336 handle_pure_call (t, &rhsc);
4337 else
4338 handle_rhs_call (t, &rhsc);
4339 if (gimple_call_lhs (t)
4340 && could_have_pointers (gimple_call_lhs (t)))
4341 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4342 VEC_free (ce_s, heap, rhsc);
4344 else
4346 tree lhsop;
4347 unsigned j;
4349 fi = get_fi_for_callee (t);
4351 /* Assign all the passed arguments to the appropriate incoming
4352 parameters of the function. */
4353 for (j = 0; j < gimple_call_num_args (t); j++)
4355 struct constraint_expr lhs ;
4356 struct constraint_expr *rhsp;
4357 tree arg = gimple_call_arg (t, j);
4359 if (!could_have_pointers (arg))
4360 continue;
4362 get_constraint_for_rhs (arg, &rhsc);
4363 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4364 while (VEC_length (ce_s, rhsc) != 0)
4366 rhsp = VEC_last (ce_s, rhsc);
4367 process_constraint (new_constraint (lhs, *rhsp));
4368 VEC_pop (ce_s, rhsc);
4372 /* If we are returning a value, assign it to the result. */
4373 lhsop = gimple_call_lhs (t);
4374 if (lhsop
4375 && type_could_have_pointers (TREE_TYPE (lhsop)))
4377 struct constraint_expr rhs;
4378 struct constraint_expr *lhsp;
4380 get_constraint_for (lhsop, &lhsc);
4381 rhs = get_function_part_constraint (fi, fi_result);
4382 if (fndecl
4383 && DECL_RESULT (fndecl)
4384 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4386 VEC(ce_s, heap) *tem = NULL;
4387 VEC_safe_push (ce_s, heap, tem, &rhs);
4388 do_deref (&tem);
4389 rhs = *VEC_index (ce_s, tem, 0);
4390 VEC_free(ce_s, heap, tem);
4392 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4393 process_constraint (new_constraint (*lhsp, rhs));
4396 /* If we pass the result decl by reference, honor that. */
4397 if (lhsop
4398 && fndecl
4399 && DECL_RESULT (fndecl)
4400 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4402 struct constraint_expr lhs;
4403 struct constraint_expr *rhsp;
4405 get_constraint_for_address_of (lhsop, &rhsc);
4406 lhs = get_function_part_constraint (fi, fi_result);
4407 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4408 process_constraint (new_constraint (lhs, *rhsp));
4409 VEC_free (ce_s, heap, rhsc);
4412 /* If we use a static chain, pass it along. */
4413 if (gimple_call_chain (t))
4415 struct constraint_expr lhs;
4416 struct constraint_expr *rhsp;
4418 get_constraint_for (gimple_call_chain (t), &rhsc);
4419 lhs = get_function_part_constraint (fi, fi_static_chain);
4420 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4421 process_constraint (new_constraint (lhs, *rhsp));
4425 /* Otherwise, just a regular assignment statement. Only care about
4426 operations with pointer result, others are dealt with as escape
4427 points if they have pointer operands. */
4428 else if (is_gimple_assign (t)
4429 && type_could_have_pointers (TREE_TYPE (gimple_assign_lhs (t))))
4431 /* Otherwise, just a regular assignment statement. */
4432 tree lhsop = gimple_assign_lhs (t);
4433 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4435 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4436 do_structure_copy (lhsop, rhsop);
4437 else
4439 struct constraint_expr temp;
4440 get_constraint_for (lhsop, &lhsc);
4442 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
4443 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4444 gimple_assign_rhs2 (t), &rhsc);
4445 else if (gimple_assign_rhs_code (t) == BIT_AND_EXPR
4446 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4448 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4449 the pointer. Handle it by offsetting it by UNKNOWN. */
4450 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4451 NULL_TREE, &rhsc);
4453 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
4454 && !(POINTER_TYPE_P (gimple_expr_type (t))
4455 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4456 || gimple_assign_single_p (t))
4457 get_constraint_for_rhs (rhsop, &rhsc);
4458 else
4460 temp.type = ADDRESSOF;
4461 temp.var = anything_id;
4462 temp.offset = 0;
4463 VEC_safe_push (ce_s, heap, rhsc, &temp);
4465 process_all_all_constraints (lhsc, rhsc);
4467 /* If there is a store to a global variable the rhs escapes. */
4468 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4469 && DECL_P (lhsop)
4470 && is_global_var (lhsop)
4471 && (!in_ipa_mode
4472 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4473 make_escape_constraint (rhsop);
4474 /* If this is a conversion of a non-restrict pointer to a
4475 restrict pointer track it with a new heapvar. */
4476 else if (gimple_assign_cast_p (t)
4477 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4478 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4479 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4480 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4481 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4482 "CAST_RESTRICT");
4484 /* For conversions of pointers to non-pointers the pointer escapes. */
4485 else if (gimple_assign_cast_p (t)
4486 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
4487 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
4489 make_escape_constraint (gimple_assign_rhs1 (t));
4491 /* Handle escapes through return. */
4492 else if (gimple_code (t) == GIMPLE_RETURN
4493 && gimple_return_retval (t) != NULL_TREE
4494 && could_have_pointers (gimple_return_retval (t)))
4496 fi = NULL;
4497 if (!in_ipa_mode
4498 || !(fi = get_vi_for_tree (cfun->decl)))
4499 make_escape_constraint (gimple_return_retval (t));
4500 else if (in_ipa_mode
4501 && fi != NULL)
4503 struct constraint_expr lhs ;
4504 struct constraint_expr *rhsp;
4505 unsigned i;
4507 lhs = get_function_part_constraint (fi, fi_result);
4508 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4509 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4510 process_constraint (new_constraint (lhs, *rhsp));
4513 /* Handle asms conservatively by adding escape constraints to everything. */
4514 else if (gimple_code (t) == GIMPLE_ASM)
4516 unsigned i, noutputs;
4517 const char **oconstraints;
4518 const char *constraint;
4519 bool allows_mem, allows_reg, is_inout;
4521 noutputs = gimple_asm_noutputs (t);
4522 oconstraints = XALLOCAVEC (const char *, noutputs);
4524 for (i = 0; i < noutputs; ++i)
4526 tree link = gimple_asm_output_op (t, i);
4527 tree op = TREE_VALUE (link);
4529 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4530 oconstraints[i] = constraint;
4531 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4532 &allows_reg, &is_inout);
4534 /* A memory constraint makes the address of the operand escape. */
4535 if (!allows_reg && allows_mem)
4536 make_escape_constraint (build_fold_addr_expr (op));
4538 /* The asm may read global memory, so outputs may point to
4539 any global memory. */
4540 if (op && could_have_pointers (op))
4542 VEC(ce_s, heap) *lhsc = NULL;
4543 struct constraint_expr rhsc, *lhsp;
4544 unsigned j;
4545 get_constraint_for (op, &lhsc);
4546 rhsc.var = nonlocal_id;
4547 rhsc.offset = 0;
4548 rhsc.type = SCALAR;
4549 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4550 process_constraint (new_constraint (*lhsp, rhsc));
4551 VEC_free (ce_s, heap, lhsc);
4554 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4556 tree link = gimple_asm_input_op (t, i);
4557 tree op = TREE_VALUE (link);
4559 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4561 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4562 &allows_mem, &allows_reg);
4564 /* A memory constraint makes the address of the operand escape. */
4565 if (!allows_reg && allows_mem)
4566 make_escape_constraint (build_fold_addr_expr (op));
4567 /* Strictly we'd only need the constraint to ESCAPED if
4568 the asm clobbers memory, otherwise using something
4569 along the lines of per-call clobbers/uses would be enough. */
4570 else if (op && could_have_pointers (op))
4571 make_escape_constraint (op);
4575 VEC_free (ce_s, heap, rhsc);
4576 VEC_free (ce_s, heap, lhsc);
4580 /* Create a constraint adding to the clobber set of FI the memory
4581 pointed to by PTR. */
4583 static void
4584 process_ipa_clobber (varinfo_t fi, tree ptr)
4586 VEC(ce_s, heap) *ptrc = NULL;
4587 struct constraint_expr *c, lhs;
4588 unsigned i;
4589 get_constraint_for_rhs (ptr, &ptrc);
4590 lhs = get_function_part_constraint (fi, fi_clobbers);
4591 FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
4592 process_constraint (new_constraint (lhs, *c));
4593 VEC_free (ce_s, heap, ptrc);
4596 /* Walk statement T setting up clobber and use constraints according to the
4597 references found in T. This function is a main part of the
4598 IPA constraint builder. */
4600 static void
4601 find_func_clobbers (gimple origt)
4603 gimple t = origt;
4604 VEC(ce_s, heap) *lhsc = NULL;
4605 VEC(ce_s, heap) *rhsc = NULL;
4606 varinfo_t fi;
4608 /* Add constraints for clobbered/used in IPA mode.
4609 We are not interested in what automatic variables are clobbered
4610 or used as we only use the information in the caller to which
4611 they do not escape. */
4612 gcc_assert (in_ipa_mode);
4614 /* If the stmt refers to memory in any way it better had a VUSE. */
4615 if (gimple_vuse (t) == NULL_TREE)
4616 return;
4618 /* We'd better have function information for the current function. */
4619 fi = lookup_vi_for_tree (cfun->decl);
4620 gcc_assert (fi != NULL);
4622 /* Account for stores in assignments and calls. */
4623 if (gimple_vdef (t) != NULL_TREE
4624 && gimple_has_lhs (t))
4626 tree lhs = gimple_get_lhs (t);
4627 tree tem = lhs;
4628 while (handled_component_p (tem))
4629 tem = TREE_OPERAND (tem, 0);
4630 if ((DECL_P (tem)
4631 && !auto_var_in_fn_p (tem, cfun->decl))
4632 || INDIRECT_REF_P (tem)
4633 || (TREE_CODE (tem) == MEM_REF
4634 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4635 && auto_var_in_fn_p
4636 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4638 struct constraint_expr lhsc, *rhsp;
4639 unsigned i;
4640 lhsc = get_function_part_constraint (fi, fi_clobbers);
4641 get_constraint_for_address_of (lhs, &rhsc);
4642 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4643 process_constraint (new_constraint (lhsc, *rhsp));
4644 VEC_free (ce_s, heap, rhsc);
4648 /* Account for uses in assigments and returns. */
4649 if (gimple_assign_single_p (t)
4650 || (gimple_code (t) == GIMPLE_RETURN
4651 && gimple_return_retval (t) != NULL_TREE))
4653 tree rhs = (gimple_assign_single_p (t)
4654 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4655 tree tem = rhs;
4656 while (handled_component_p (tem))
4657 tem = TREE_OPERAND (tem, 0);
4658 if ((DECL_P (tem)
4659 && !auto_var_in_fn_p (tem, cfun->decl))
4660 || INDIRECT_REF_P (tem)
4661 || (TREE_CODE (tem) == MEM_REF
4662 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4663 && auto_var_in_fn_p
4664 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4666 struct constraint_expr lhs, *rhsp;
4667 unsigned i;
4668 lhs = get_function_part_constraint (fi, fi_uses);
4669 get_constraint_for_address_of (rhs, &rhsc);
4670 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4671 process_constraint (new_constraint (lhs, *rhsp));
4672 VEC_free (ce_s, heap, rhsc);
4676 if (is_gimple_call (t))
4678 varinfo_t cfi = NULL;
4679 tree decl = gimple_call_fndecl (t);
4680 struct constraint_expr lhs, rhs;
4681 unsigned i, j;
4683 /* For builtins we do not have separate function info. For those
4684 we do not generate escapes for we have to generate clobbers/uses. */
4685 if (decl
4686 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4687 switch (DECL_FUNCTION_CODE (decl))
4689 /* The following functions use and clobber memory pointed to
4690 by their arguments. */
4691 case BUILT_IN_STRCPY:
4692 case BUILT_IN_STRNCPY:
4693 case BUILT_IN_BCOPY:
4694 case BUILT_IN_MEMCPY:
4695 case BUILT_IN_MEMMOVE:
4696 case BUILT_IN_MEMPCPY:
4697 case BUILT_IN_STPCPY:
4698 case BUILT_IN_STPNCPY:
4699 case BUILT_IN_STRCAT:
4700 case BUILT_IN_STRNCAT:
4702 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4703 == BUILT_IN_BCOPY ? 1 : 0));
4704 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4705 == BUILT_IN_BCOPY ? 0 : 1));
4706 unsigned i;
4707 struct constraint_expr *rhsp, *lhsp;
4708 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4709 lhs = get_function_part_constraint (fi, fi_clobbers);
4710 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4711 process_constraint (new_constraint (lhs, *lhsp));
4712 VEC_free (ce_s, heap, lhsc);
4713 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4714 lhs = get_function_part_constraint (fi, fi_uses);
4715 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4716 process_constraint (new_constraint (lhs, *rhsp));
4717 VEC_free (ce_s, heap, rhsc);
4718 return;
4720 /* The following function clobbers memory pointed to by
4721 its argument. */
4722 case BUILT_IN_MEMSET:
4724 tree dest = gimple_call_arg (t, 0);
4725 unsigned i;
4726 ce_s *lhsp;
4727 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4728 lhs = get_function_part_constraint (fi, fi_clobbers);
4729 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4730 process_constraint (new_constraint (lhs, *lhsp));
4731 VEC_free (ce_s, heap, lhsc);
4732 return;
4734 /* The following functions clobber their second and third
4735 arguments. */
4736 case BUILT_IN_SINCOS:
4737 case BUILT_IN_SINCOSF:
4738 case BUILT_IN_SINCOSL:
4740 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4741 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4742 return;
4744 /* The following functions clobber their second argument. */
4745 case BUILT_IN_FREXP:
4746 case BUILT_IN_FREXPF:
4747 case BUILT_IN_FREXPL:
4748 case BUILT_IN_LGAMMA_R:
4749 case BUILT_IN_LGAMMAF_R:
4750 case BUILT_IN_LGAMMAL_R:
4751 case BUILT_IN_GAMMA_R:
4752 case BUILT_IN_GAMMAF_R:
4753 case BUILT_IN_GAMMAL_R:
4754 case BUILT_IN_MODF:
4755 case BUILT_IN_MODFF:
4756 case BUILT_IN_MODFL:
4758 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4759 return;
4761 /* The following functions clobber their third argument. */
4762 case BUILT_IN_REMQUO:
4763 case BUILT_IN_REMQUOF:
4764 case BUILT_IN_REMQUOL:
4766 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4767 return;
4769 /* The following functions neither read nor clobber memory. */
4770 case BUILT_IN_FREE:
4771 return;
4772 /* Trampolines are of no interest to us. */
4773 case BUILT_IN_INIT_TRAMPOLINE:
4774 case BUILT_IN_ADJUST_TRAMPOLINE:
4775 return;
4776 case BUILT_IN_VA_START:
4777 case BUILT_IN_VA_END:
4778 return;
4779 /* printf-style functions may have hooks to set pointers to
4780 point to somewhere into the generated string. Leave them
4781 for a later excercise... */
4782 default:
4783 /* Fallthru to general call handling. */;
4786 /* Parameters passed by value are used. */
4787 lhs = get_function_part_constraint (fi, fi_uses);
4788 for (i = 0; i < gimple_call_num_args (t); i++)
4790 struct constraint_expr *rhsp;
4791 tree arg = gimple_call_arg (t, i);
4793 if (TREE_CODE (arg) == SSA_NAME
4794 || is_gimple_min_invariant (arg))
4795 continue;
4797 get_constraint_for_address_of (arg, &rhsc);
4798 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4799 process_constraint (new_constraint (lhs, *rhsp));
4800 VEC_free (ce_s, heap, rhsc);
4803 /* Build constraints for propagating clobbers/uses along the
4804 callgraph edges. */
4805 cfi = get_fi_for_callee (t);
4806 if (cfi->id == anything_id)
4808 if (gimple_vdef (t))
4809 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4810 anything_id);
4811 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4812 anything_id);
4813 return;
4816 /* For callees without function info (that's external functions),
4817 ESCAPED is clobbered and used. */
4818 if (gimple_call_fndecl (t)
4819 && !cfi->is_fn_info)
4821 varinfo_t vi;
4823 if (gimple_vdef (t))
4824 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4825 escaped_id);
4826 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4828 /* Also honor the call statement use/clobber info. */
4829 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4830 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4831 vi->id);
4832 if ((vi = lookup_call_use_vi (t)) != NULL)
4833 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4834 vi->id);
4835 return;
4838 /* Otherwise the caller clobbers and uses what the callee does.
4839 ??? This should use a new complex constraint that filters
4840 local variables of the callee. */
4841 if (gimple_vdef (t))
4843 lhs = get_function_part_constraint (fi, fi_clobbers);
4844 rhs = get_function_part_constraint (cfi, fi_clobbers);
4845 process_constraint (new_constraint (lhs, rhs));
4847 lhs = get_function_part_constraint (fi, fi_uses);
4848 rhs = get_function_part_constraint (cfi, fi_uses);
4849 process_constraint (new_constraint (lhs, rhs));
4851 else if (gimple_code (t) == GIMPLE_ASM)
4853 /* ??? Ick. We can do better. */
4854 if (gimple_vdef (t))
4855 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4856 anything_id);
4857 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4858 anything_id);
4861 VEC_free (ce_s, heap, rhsc);
4865 /* Find the first varinfo in the same variable as START that overlaps with
4866 OFFSET. Return NULL if we can't find one. */
4868 static varinfo_t
4869 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4871 /* If the offset is outside of the variable, bail out. */
4872 if (offset >= start->fullsize)
4873 return NULL;
4875 /* If we cannot reach offset from start, lookup the first field
4876 and start from there. */
4877 if (start->offset > offset)
4878 start = lookup_vi_for_tree (start->decl);
4880 while (start)
4882 /* We may not find a variable in the field list with the actual
4883 offset when when we have glommed a structure to a variable.
4884 In that case, however, offset should still be within the size
4885 of the variable. */
4886 if (offset >= start->offset
4887 && (offset - start->offset) < start->size)
4888 return start;
4890 start= start->next;
4893 return NULL;
4896 /* Find the first varinfo in the same variable as START that overlaps with
4897 OFFSET. If there is no such varinfo the varinfo directly preceding
4898 OFFSET is returned. */
4900 static varinfo_t
4901 first_or_preceding_vi_for_offset (varinfo_t start,
4902 unsigned HOST_WIDE_INT offset)
4904 /* If we cannot reach offset from start, lookup the first field
4905 and start from there. */
4906 if (start->offset > offset)
4907 start = lookup_vi_for_tree (start->decl);
4909 /* We may not find a variable in the field list with the actual
4910 offset when when we have glommed a structure to a variable.
4911 In that case, however, offset should still be within the size
4912 of the variable.
4913 If we got beyond the offset we look for return the field
4914 directly preceding offset which may be the last field. */
4915 while (start->next
4916 && offset >= start->offset
4917 && !((offset - start->offset) < start->size))
4918 start = start->next;
4920 return start;
4924 /* This structure is used during pushing fields onto the fieldstack
4925 to track the offset of the field, since bitpos_of_field gives it
4926 relative to its immediate containing type, and we want it relative
4927 to the ultimate containing object. */
4929 struct fieldoff
4931 /* Offset from the base of the base containing object to this field. */
4932 HOST_WIDE_INT offset;
4934 /* Size, in bits, of the field. */
4935 unsigned HOST_WIDE_INT size;
4937 unsigned has_unknown_size : 1;
4939 unsigned may_have_pointers : 1;
4941 unsigned only_restrict_pointers : 1;
4943 typedef struct fieldoff fieldoff_s;
4945 DEF_VEC_O(fieldoff_s);
4946 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4948 /* qsort comparison function for two fieldoff's PA and PB */
4950 static int
4951 fieldoff_compare (const void *pa, const void *pb)
4953 const fieldoff_s *foa = (const fieldoff_s *)pa;
4954 const fieldoff_s *fob = (const fieldoff_s *)pb;
4955 unsigned HOST_WIDE_INT foasize, fobsize;
4957 if (foa->offset < fob->offset)
4958 return -1;
4959 else if (foa->offset > fob->offset)
4960 return 1;
4962 foasize = foa->size;
4963 fobsize = fob->size;
4964 if (foasize < fobsize)
4965 return -1;
4966 else if (foasize > fobsize)
4967 return 1;
4968 return 0;
4971 /* Sort a fieldstack according to the field offset and sizes. */
4972 static void
4973 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4975 qsort (VEC_address (fieldoff_s, fieldstack),
4976 VEC_length (fieldoff_s, fieldstack),
4977 sizeof (fieldoff_s),
4978 fieldoff_compare);
4981 /* Return true if V is a tree that we can have subvars for.
4982 Normally, this is any aggregate type. Also complex
4983 types which are not gimple registers can have subvars. */
4985 static inline bool
4986 var_can_have_subvars (const_tree v)
4988 /* Volatile variables should never have subvars. */
4989 if (TREE_THIS_VOLATILE (v))
4990 return false;
4992 /* Non decls or memory tags can never have subvars. */
4993 if (!DECL_P (v))
4994 return false;
4996 /* Aggregates without overlapping fields can have subvars. */
4997 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4998 return true;
5000 return false;
5003 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5004 the fields of TYPE onto fieldstack, recording their offsets along
5005 the way.
5007 OFFSET is used to keep track of the offset in this entire
5008 structure, rather than just the immediately containing structure.
5009 Returns false if the caller is supposed to handle the field we
5010 recursed for. */
5012 static bool
5013 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
5014 HOST_WIDE_INT offset, bool must_have_pointers_p)
5016 tree field;
5017 bool empty_p = true;
5019 if (TREE_CODE (type) != RECORD_TYPE)
5020 return false;
5022 /* If the vector of fields is growing too big, bail out early.
5023 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5024 sure this fails. */
5025 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5026 return false;
5028 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5029 if (TREE_CODE (field) == FIELD_DECL)
5031 bool push = false;
5032 HOST_WIDE_INT foff = bitpos_of_field (field);
5034 if (!var_can_have_subvars (field)
5035 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5036 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5037 push = true;
5038 else if (!push_fields_onto_fieldstack
5039 (TREE_TYPE (field), fieldstack, offset + foff,
5040 must_have_pointers_p)
5041 && (DECL_SIZE (field)
5042 && !integer_zerop (DECL_SIZE (field))))
5043 /* Empty structures may have actual size, like in C++. So
5044 see if we didn't push any subfields and the size is
5045 nonzero, push the field onto the stack. */
5046 push = true;
5048 if (push)
5050 fieldoff_s *pair = NULL;
5051 bool has_unknown_size = false;
5053 if (!VEC_empty (fieldoff_s, *fieldstack))
5054 pair = VEC_last (fieldoff_s, *fieldstack);
5056 if (!DECL_SIZE (field)
5057 || !host_integerp (DECL_SIZE (field), 1))
5058 has_unknown_size = true;
5060 /* If adjacent fields do not contain pointers merge them. */
5061 if (pair
5062 && !pair->may_have_pointers
5063 && !pair->has_unknown_size
5064 && !has_unknown_size
5065 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff
5066 && !must_have_pointers_p
5067 && !could_have_pointers (field))
5069 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5071 else
5073 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5074 pair->offset = offset + foff;
5075 pair->has_unknown_size = has_unknown_size;
5076 if (!has_unknown_size)
5077 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5078 else
5079 pair->size = -1;
5080 pair->may_have_pointers
5081 = must_have_pointers_p || could_have_pointers (field);
5082 pair->only_restrict_pointers
5083 = (!has_unknown_size
5084 && POINTER_TYPE_P (TREE_TYPE (field))
5085 && TYPE_RESTRICT (TREE_TYPE (field)));
5089 empty_p = false;
5092 return !empty_p;
5095 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5096 if it is a varargs function. */
5098 static unsigned int
5099 count_num_arguments (tree decl, bool *is_varargs)
5101 unsigned int num = 0;
5102 tree t;
5104 /* Capture named arguments for K&R functions. They do not
5105 have a prototype and thus no TYPE_ARG_TYPES. */
5106 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5107 ++num;
5109 /* Check if the function has variadic arguments. */
5110 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5111 if (TREE_VALUE (t) == void_type_node)
5112 break;
5113 if (!t)
5114 *is_varargs = true;
5116 return num;
5119 /* Creation function node for DECL, using NAME, and return the index
5120 of the variable we've created for the function. */
5122 static varinfo_t
5123 create_function_info_for (tree decl, const char *name)
5125 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5126 varinfo_t vi, prev_vi;
5127 tree arg;
5128 unsigned int i;
5129 bool is_varargs = false;
5130 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5132 /* Create the variable info. */
5134 vi = new_var_info (decl, name);
5135 vi->offset = 0;
5136 vi->size = 1;
5137 vi->fullsize = fi_parm_base + num_args;
5138 vi->is_fn_info = 1;
5139 vi->may_have_pointers = false;
5140 if (is_varargs)
5141 vi->fullsize = ~0;
5142 insert_vi_for_tree (vi->decl, vi);
5144 prev_vi = vi;
5146 /* Create a variable for things the function clobbers and one for
5147 things the function uses. */
5149 varinfo_t clobbervi, usevi;
5150 const char *newname;
5151 char *tempname;
5153 asprintf (&tempname, "%s.clobber", name);
5154 newname = ggc_strdup (tempname);
5155 free (tempname);
5157 clobbervi = new_var_info (NULL, newname);
5158 clobbervi->offset = fi_clobbers;
5159 clobbervi->size = 1;
5160 clobbervi->fullsize = vi->fullsize;
5161 clobbervi->is_full_var = true;
5162 clobbervi->is_global_var = false;
5163 gcc_assert (prev_vi->offset < clobbervi->offset);
5164 prev_vi->next = clobbervi;
5165 prev_vi = clobbervi;
5167 asprintf (&tempname, "%s.use", name);
5168 newname = ggc_strdup (tempname);
5169 free (tempname);
5171 usevi = new_var_info (NULL, newname);
5172 usevi->offset = fi_uses;
5173 usevi->size = 1;
5174 usevi->fullsize = vi->fullsize;
5175 usevi->is_full_var = true;
5176 usevi->is_global_var = false;
5177 gcc_assert (prev_vi->offset < usevi->offset);
5178 prev_vi->next = usevi;
5179 prev_vi = usevi;
5182 /* And one for the static chain. */
5183 if (fn->static_chain_decl != NULL_TREE)
5185 varinfo_t chainvi;
5186 const char *newname;
5187 char *tempname;
5189 asprintf (&tempname, "%s.chain", name);
5190 newname = ggc_strdup (tempname);
5191 free (tempname);
5193 chainvi = new_var_info (fn->static_chain_decl, newname);
5194 chainvi->offset = fi_static_chain;
5195 chainvi->size = 1;
5196 chainvi->fullsize = vi->fullsize;
5197 chainvi->is_full_var = true;
5198 chainvi->is_global_var = false;
5199 gcc_assert (prev_vi->offset < chainvi->offset);
5200 prev_vi->next = chainvi;
5201 prev_vi = chainvi;
5202 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5205 /* Create a variable for the return var. */
5206 if (DECL_RESULT (decl) != NULL
5207 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5209 varinfo_t resultvi;
5210 const char *newname;
5211 char *tempname;
5212 tree resultdecl = decl;
5214 if (DECL_RESULT (decl))
5215 resultdecl = DECL_RESULT (decl);
5217 asprintf (&tempname, "%s.result", name);
5218 newname = ggc_strdup (tempname);
5219 free (tempname);
5221 resultvi = new_var_info (resultdecl, newname);
5222 resultvi->offset = fi_result;
5223 resultvi->size = 1;
5224 resultvi->fullsize = vi->fullsize;
5225 resultvi->is_full_var = true;
5226 if (DECL_RESULT (decl))
5227 resultvi->may_have_pointers = could_have_pointers (DECL_RESULT (decl));
5228 gcc_assert (prev_vi->offset < resultvi->offset);
5229 prev_vi->next = resultvi;
5230 prev_vi = resultvi;
5231 if (DECL_RESULT (decl))
5232 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5235 /* Set up variables for each argument. */
5236 arg = DECL_ARGUMENTS (decl);
5237 for (i = 0; i < num_args; i++)
5239 varinfo_t argvi;
5240 const char *newname;
5241 char *tempname;
5242 tree argdecl = decl;
5244 if (arg)
5245 argdecl = arg;
5247 asprintf (&tempname, "%s.arg%d", name, i);
5248 newname = ggc_strdup (tempname);
5249 free (tempname);
5251 argvi = new_var_info (argdecl, newname);
5252 argvi->offset = fi_parm_base + i;
5253 argvi->size = 1;
5254 argvi->is_full_var = true;
5255 argvi->fullsize = vi->fullsize;
5256 if (arg)
5257 argvi->may_have_pointers = could_have_pointers (arg);
5258 gcc_assert (prev_vi->offset < argvi->offset);
5259 prev_vi->next = argvi;
5260 prev_vi = argvi;
5261 if (arg)
5263 insert_vi_for_tree (arg, argvi);
5264 arg = DECL_CHAIN (arg);
5268 /* Add one representative for all further args. */
5269 if (is_varargs)
5271 varinfo_t argvi;
5272 const char *newname;
5273 char *tempname;
5274 tree decl;
5276 asprintf (&tempname, "%s.varargs", name);
5277 newname = ggc_strdup (tempname);
5278 free (tempname);
5280 /* We need sth that can be pointed to for va_start. */
5281 decl = create_tmp_var_raw (ptr_type_node, name);
5282 get_var_ann (decl);
5284 argvi = new_var_info (decl, newname);
5285 argvi->offset = fi_parm_base + num_args;
5286 argvi->size = ~0;
5287 argvi->is_full_var = true;
5288 argvi->is_heap_var = true;
5289 argvi->fullsize = vi->fullsize;
5290 gcc_assert (prev_vi->offset < argvi->offset);
5291 prev_vi->next = argvi;
5292 prev_vi = argvi;
5295 return vi;
5299 /* Return true if FIELDSTACK contains fields that overlap.
5300 FIELDSTACK is assumed to be sorted by offset. */
5302 static bool
5303 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5305 fieldoff_s *fo = NULL;
5306 unsigned int i;
5307 HOST_WIDE_INT lastoffset = -1;
5309 FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
5311 if (fo->offset == lastoffset)
5312 return true;
5313 lastoffset = fo->offset;
5315 return false;
5318 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5319 This will also create any varinfo structures necessary for fields
5320 of DECL. */
5322 static varinfo_t
5323 create_variable_info_for_1 (tree decl, const char *name)
5325 varinfo_t vi, newvi;
5326 tree decl_type = TREE_TYPE (decl);
5327 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5328 VEC (fieldoff_s,heap) *fieldstack = NULL;
5329 fieldoff_s *fo;
5330 unsigned int i;
5332 if (!declsize
5333 || !host_integerp (declsize, 1))
5335 vi = new_var_info (decl, name);
5336 vi->offset = 0;
5337 vi->size = ~0;
5338 vi->fullsize = ~0;
5339 vi->is_unknown_size_var = true;
5340 vi->is_full_var = true;
5341 vi->may_have_pointers = could_have_pointers (decl);
5342 return vi;
5345 /* Collect field information. */
5346 if (use_field_sensitive
5347 && var_can_have_subvars (decl)
5348 /* ??? Force us to not use subfields for global initializers
5349 in IPA mode. Else we'd have to parse arbitrary initializers. */
5350 && !(in_ipa_mode
5351 && is_global_var (decl)
5352 && DECL_INITIAL (decl)))
5354 fieldoff_s *fo = NULL;
5355 bool notokay = false;
5356 unsigned int i;
5358 push_fields_onto_fieldstack (decl_type, &fieldstack, 0,
5359 TREE_PUBLIC (decl)
5360 || DECL_EXTERNAL (decl)
5361 || TREE_ADDRESSABLE (decl));
5363 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5364 if (fo->has_unknown_size
5365 || fo->offset < 0)
5367 notokay = true;
5368 break;
5371 /* We can't sort them if we have a field with a variable sized type,
5372 which will make notokay = true. In that case, we are going to return
5373 without creating varinfos for the fields anyway, so sorting them is a
5374 waste to boot. */
5375 if (!notokay)
5377 sort_fieldstack (fieldstack);
5378 /* Due to some C++ FE issues, like PR 22488, we might end up
5379 what appear to be overlapping fields even though they,
5380 in reality, do not overlap. Until the C++ FE is fixed,
5381 we will simply disable field-sensitivity for these cases. */
5382 notokay = check_for_overlaps (fieldstack);
5385 if (notokay)
5386 VEC_free (fieldoff_s, heap, fieldstack);
5389 /* If we didn't end up collecting sub-variables create a full
5390 variable for the decl. */
5391 if (VEC_length (fieldoff_s, fieldstack) <= 1
5392 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5394 vi = new_var_info (decl, name);
5395 vi->offset = 0;
5396 vi->may_have_pointers = could_have_pointers (decl);
5397 vi->fullsize = TREE_INT_CST_LOW (declsize);
5398 vi->size = vi->fullsize;
5399 vi->is_full_var = true;
5400 VEC_free (fieldoff_s, heap, fieldstack);
5401 return vi;
5404 vi = new_var_info (decl, name);
5405 vi->fullsize = TREE_INT_CST_LOW (declsize);
5406 for (i = 0, newvi = vi;
5407 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5408 ++i, newvi = newvi->next)
5410 const char *newname = "NULL";
5411 char *tempname;
5413 if (dump_file)
5415 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5416 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5417 newname = ggc_strdup (tempname);
5418 free (tempname);
5420 newvi->name = newname;
5421 newvi->offset = fo->offset;
5422 newvi->size = fo->size;
5423 newvi->fullsize = vi->fullsize;
5424 newvi->may_have_pointers = fo->may_have_pointers;
5425 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5426 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5427 newvi->next = new_var_info (decl, name);
5430 VEC_free (fieldoff_s, heap, fieldstack);
5432 return vi;
5435 static unsigned int
5436 create_variable_info_for (tree decl, const char *name)
5438 varinfo_t vi = create_variable_info_for_1 (decl, name);
5439 unsigned int id = vi->id;
5441 insert_vi_for_tree (decl, vi);
5443 /* Create initial constraints for globals. */
5444 for (; vi; vi = vi->next)
5446 if (!vi->may_have_pointers
5447 || !vi->is_global_var)
5448 continue;
5450 /* Mark global restrict qualified pointers. */
5451 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5452 && TYPE_RESTRICT (TREE_TYPE (decl)))
5453 || vi->only_restrict_pointers)
5454 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5456 /* For escaped variables initialize them from nonlocal. */
5457 if (!in_ipa_mode
5458 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5459 make_copy_constraint (vi, nonlocal_id);
5461 /* If this is a global variable with an initializer and we are in
5462 IPA mode generate constraints for it. In non-IPA mode
5463 the initializer from nonlocal is all we need. */
5464 if (in_ipa_mode
5465 && DECL_INITIAL (decl))
5467 VEC (ce_s, heap) *rhsc = NULL;
5468 struct constraint_expr lhs, *rhsp;
5469 unsigned i;
5470 get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
5471 lhs.var = vi->id;
5472 lhs.offset = 0;
5473 lhs.type = SCALAR;
5474 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5475 process_constraint (new_constraint (lhs, *rhsp));
5476 /* If this is a variable that escapes from the unit
5477 the initializer escapes as well. */
5478 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5480 lhs.var = escaped_id;
5481 lhs.offset = 0;
5482 lhs.type = SCALAR;
5483 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5484 process_constraint (new_constraint (lhs, *rhsp));
5486 VEC_free (ce_s, heap, rhsc);
5490 return id;
5493 /* Print out the points-to solution for VAR to FILE. */
5495 static void
5496 dump_solution_for_var (FILE *file, unsigned int var)
5498 varinfo_t vi = get_varinfo (var);
5499 unsigned int i;
5500 bitmap_iterator bi;
5502 /* Dump the solution for unified vars anyway, this avoids difficulties
5503 in scanning dumps in the testsuite. */
5504 fprintf (file, "%s = { ", vi->name);
5505 vi = get_varinfo (find (var));
5506 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5507 fprintf (file, "%s ", get_varinfo (i)->name);
5508 fprintf (file, "}");
5510 /* But note when the variable was unified. */
5511 if (vi->id != var)
5512 fprintf (file, " same as %s", vi->name);
5514 fprintf (file, "\n");
5517 /* Print the points-to solution for VAR to stdout. */
5519 DEBUG_FUNCTION void
5520 debug_solution_for_var (unsigned int var)
5522 dump_solution_for_var (stdout, var);
5525 /* Create varinfo structures for all of the variables in the
5526 function for intraprocedural mode. */
5528 static void
5529 intra_create_variable_infos (void)
5531 tree t;
5533 /* For each incoming pointer argument arg, create the constraint ARG
5534 = NONLOCAL or a dummy variable if it is a restrict qualified
5535 passed-by-reference argument. */
5536 for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
5538 varinfo_t p;
5540 if (!could_have_pointers (t))
5541 continue;
5543 /* For restrict qualified pointers to objects passed by
5544 reference build a real representative for the pointed-to object. */
5545 if (DECL_BY_REFERENCE (t)
5546 && POINTER_TYPE_P (TREE_TYPE (t))
5547 && TYPE_RESTRICT (TREE_TYPE (t)))
5549 struct constraint_expr lhsc, rhsc;
5550 varinfo_t vi;
5551 tree heapvar = heapvar_lookup (t, 0);
5552 if (heapvar == NULL_TREE)
5554 var_ann_t ann;
5555 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5556 "PARM_NOALIAS");
5557 DECL_EXTERNAL (heapvar) = 1;
5558 heapvar_insert (t, 0, heapvar);
5559 ann = get_var_ann (heapvar);
5560 ann->is_heapvar = 1;
5562 if (gimple_referenced_vars (cfun))
5563 add_referenced_var (heapvar);
5564 lhsc.var = get_vi_for_tree (t)->id;
5565 lhsc.type = SCALAR;
5566 lhsc.offset = 0;
5567 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5568 rhsc.type = ADDRESSOF;
5569 rhsc.offset = 0;
5570 process_constraint (new_constraint (lhsc, rhsc));
5571 vi->is_restrict_var = 1;
5572 continue;
5575 for (p = get_vi_for_tree (t); p; p = p->next)
5577 if (p->may_have_pointers)
5578 make_constraint_from (p, nonlocal_id);
5579 if (p->only_restrict_pointers)
5580 make_constraint_from_restrict (p, "PARM_RESTRICT");
5582 if (POINTER_TYPE_P (TREE_TYPE (t))
5583 && TYPE_RESTRICT (TREE_TYPE (t)))
5584 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5587 /* Add a constraint for a result decl that is passed by reference. */
5588 if (DECL_RESULT (cfun->decl)
5589 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5591 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5593 for (p = result_vi; p; p = p->next)
5594 make_constraint_from (p, nonlocal_id);
5597 /* Add a constraint for the incoming static chain parameter. */
5598 if (cfun->static_chain_decl != NULL_TREE)
5600 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5602 for (p = chain_vi; p; p = p->next)
5603 make_constraint_from (p, nonlocal_id);
5607 /* Structure used to put solution bitmaps in a hashtable so they can
5608 be shared among variables with the same points-to set. */
5610 typedef struct shared_bitmap_info
5612 bitmap pt_vars;
5613 hashval_t hashcode;
5614 } *shared_bitmap_info_t;
5615 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5617 static htab_t shared_bitmap_table;
5619 /* Hash function for a shared_bitmap_info_t */
5621 static hashval_t
5622 shared_bitmap_hash (const void *p)
5624 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5625 return bi->hashcode;
5628 /* Equality function for two shared_bitmap_info_t's. */
5630 static int
5631 shared_bitmap_eq (const void *p1, const void *p2)
5633 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5634 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5635 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5638 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5639 existing instance if there is one, NULL otherwise. */
5641 static bitmap
5642 shared_bitmap_lookup (bitmap pt_vars)
5644 void **slot;
5645 struct shared_bitmap_info sbi;
5647 sbi.pt_vars = pt_vars;
5648 sbi.hashcode = bitmap_hash (pt_vars);
5650 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5651 sbi.hashcode, NO_INSERT);
5652 if (!slot)
5653 return NULL;
5654 else
5655 return ((shared_bitmap_info_t) *slot)->pt_vars;
5659 /* Add a bitmap to the shared bitmap hashtable. */
5661 static void
5662 shared_bitmap_add (bitmap pt_vars)
5664 void **slot;
5665 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5667 sbi->pt_vars = pt_vars;
5668 sbi->hashcode = bitmap_hash (pt_vars);
5670 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5671 sbi->hashcode, INSERT);
5672 gcc_assert (!*slot);
5673 *slot = (void *) sbi;
5677 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5679 static void
5680 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5682 unsigned int i;
5683 bitmap_iterator bi;
5685 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5687 varinfo_t vi = get_varinfo (i);
5689 /* The only artificial variables that are allowed in a may-alias
5690 set are heap variables. */
5691 if (vi->is_artificial_var && !vi->is_heap_var)
5692 continue;
5694 if (TREE_CODE (vi->decl) == VAR_DECL
5695 || TREE_CODE (vi->decl) == PARM_DECL
5696 || TREE_CODE (vi->decl) == RESULT_DECL)
5698 /* If we are in IPA mode we will not recompute points-to
5699 sets after inlining so make sure they stay valid. */
5700 if (in_ipa_mode
5701 && !DECL_PT_UID_SET_P (vi->decl))
5702 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5704 /* Add the decl to the points-to set. Note that the points-to
5705 set contains global variables. */
5706 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5707 if (vi->is_global_var)
5708 pt->vars_contains_global = true;
5714 /* Compute the points-to solution *PT for the variable VI. */
5716 static void
5717 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5719 unsigned int i;
5720 bitmap_iterator bi;
5721 bitmap finished_solution;
5722 bitmap result;
5723 varinfo_t vi;
5725 memset (pt, 0, sizeof (struct pt_solution));
5727 /* This variable may have been collapsed, let's get the real
5728 variable. */
5729 vi = get_varinfo (find (orig_vi->id));
5731 /* Translate artificial variables into SSA_NAME_PTR_INFO
5732 attributes. */
5733 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5735 varinfo_t vi = get_varinfo (i);
5737 if (vi->is_artificial_var)
5739 if (vi->id == nothing_id)
5740 pt->null = 1;
5741 else if (vi->id == escaped_id)
5743 if (in_ipa_mode)
5744 pt->ipa_escaped = 1;
5745 else
5746 pt->escaped = 1;
5748 else if (vi->id == nonlocal_id)
5749 pt->nonlocal = 1;
5750 else if (vi->is_heap_var)
5751 /* We represent heapvars in the points-to set properly. */
5753 else if (vi->id == readonly_id)
5754 /* Nobody cares. */
5756 else if (vi->id == anything_id
5757 || vi->id == integer_id)
5758 pt->anything = 1;
5760 if (vi->is_restrict_var)
5761 pt->vars_contains_restrict = true;
5764 /* Instead of doing extra work, simply do not create
5765 elaborate points-to information for pt_anything pointers. */
5766 if (pt->anything
5767 && (orig_vi->is_artificial_var
5768 || !pt->vars_contains_restrict))
5769 return;
5771 /* Share the final set of variables when possible. */
5772 finished_solution = BITMAP_GGC_ALLOC ();
5773 stats.points_to_sets_created++;
5775 set_uids_in_ptset (finished_solution, vi->solution, pt);
5776 result = shared_bitmap_lookup (finished_solution);
5777 if (!result)
5779 shared_bitmap_add (finished_solution);
5780 pt->vars = finished_solution;
5782 else
5784 pt->vars = result;
5785 bitmap_clear (finished_solution);
5789 /* Given a pointer variable P, fill in its points-to set. */
5791 static void
5792 find_what_p_points_to (tree p)
5794 struct ptr_info_def *pi;
5795 tree lookup_p = p;
5796 varinfo_t vi;
5798 /* For parameters, get at the points-to set for the actual parm
5799 decl. */
5800 if (TREE_CODE (p) == SSA_NAME
5801 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5802 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)
5803 && SSA_NAME_IS_DEFAULT_DEF (p))
5804 lookup_p = SSA_NAME_VAR (p);
5806 vi = lookup_vi_for_tree (lookup_p);
5807 if (!vi)
5808 return;
5810 pi = get_ptr_info (p);
5811 find_what_var_points_to (vi, &pi->pt);
5815 /* Query statistics for points-to solutions. */
5817 static struct {
5818 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5819 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5820 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5821 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5822 } pta_stats;
5824 void
5825 dump_pta_stats (FILE *s)
5827 fprintf (s, "\nPTA query stats:\n");
5828 fprintf (s, " pt_solution_includes: "
5829 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5830 HOST_WIDE_INT_PRINT_DEC" queries\n",
5831 pta_stats.pt_solution_includes_no_alias,
5832 pta_stats.pt_solution_includes_no_alias
5833 + pta_stats.pt_solution_includes_may_alias);
5834 fprintf (s, " pt_solutions_intersect: "
5835 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5836 HOST_WIDE_INT_PRINT_DEC" queries\n",
5837 pta_stats.pt_solutions_intersect_no_alias,
5838 pta_stats.pt_solutions_intersect_no_alias
5839 + pta_stats.pt_solutions_intersect_may_alias);
5843 /* Reset the points-to solution *PT to a conservative default
5844 (point to anything). */
5846 void
5847 pt_solution_reset (struct pt_solution *pt)
5849 memset (pt, 0, sizeof (struct pt_solution));
5850 pt->anything = true;
5853 /* Set the points-to solution *PT to point only to the variables
5854 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5855 global variables and VARS_CONTAINS_RESTRICT specifies whether
5856 it contains restrict tag variables. */
5858 void
5859 pt_solution_set (struct pt_solution *pt, bitmap vars,
5860 bool vars_contains_global, bool vars_contains_restrict)
5862 memset (pt, 0, sizeof (struct pt_solution));
5863 pt->vars = vars;
5864 pt->vars_contains_global = vars_contains_global;
5865 pt->vars_contains_restrict = vars_contains_restrict;
5868 /* Set the points-to solution *PT to point only to the variable VAR. */
5870 void
5871 pt_solution_set_var (struct pt_solution *pt, tree var)
5873 memset (pt, 0, sizeof (struct pt_solution));
5874 pt->vars = BITMAP_GGC_ALLOC ();
5875 bitmap_set_bit (pt->vars, DECL_UID (var));
5876 pt->vars_contains_global = is_global_var (var);
5879 /* Computes the union of the points-to solutions *DEST and *SRC and
5880 stores the result in *DEST. This changes the points-to bitmap
5881 of *DEST and thus may not be used if that might be shared.
5882 The points-to bitmap of *SRC and *DEST will not be shared after
5883 this function if they were not before. */
5885 static void
5886 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5888 dest->anything |= src->anything;
5889 if (dest->anything)
5891 pt_solution_reset (dest);
5892 return;
5895 dest->nonlocal |= src->nonlocal;
5896 dest->escaped |= src->escaped;
5897 dest->ipa_escaped |= src->ipa_escaped;
5898 dest->null |= src->null;
5899 dest->vars_contains_global |= src->vars_contains_global;
5900 dest->vars_contains_restrict |= src->vars_contains_restrict;
5901 if (!src->vars)
5902 return;
5904 if (!dest->vars)
5905 dest->vars = BITMAP_GGC_ALLOC ();
5906 bitmap_ior_into (dest->vars, src->vars);
5909 /* Return true if the points-to solution *PT is empty. */
5911 bool
5912 pt_solution_empty_p (struct pt_solution *pt)
5914 if (pt->anything
5915 || pt->nonlocal)
5916 return false;
5918 if (pt->vars
5919 && !bitmap_empty_p (pt->vars))
5920 return false;
5922 /* If the solution includes ESCAPED, check if that is empty. */
5923 if (pt->escaped
5924 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5925 return false;
5927 /* If the solution includes ESCAPED, check if that is empty. */
5928 if (pt->ipa_escaped
5929 && !pt_solution_empty_p (&ipa_escaped_pt))
5930 return false;
5932 return true;
5935 /* Return true if the points-to solution *PT includes global memory. */
5937 bool
5938 pt_solution_includes_global (struct pt_solution *pt)
5940 if (pt->anything
5941 || pt->nonlocal
5942 || pt->vars_contains_global)
5943 return true;
5945 if (pt->escaped)
5946 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5948 if (pt->ipa_escaped)
5949 return pt_solution_includes_global (&ipa_escaped_pt);
5951 /* ??? This predicate is not correct for the IPA-PTA solution
5952 as we do not properly distinguish between unit escape points
5953 and global variables. */
5954 if (cfun->gimple_df->ipa_pta)
5955 return true;
5957 return false;
5960 /* Return true if the points-to solution *PT includes the variable
5961 declaration DECL. */
5963 static bool
5964 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
5966 if (pt->anything)
5967 return true;
5969 if (pt->nonlocal
5970 && is_global_var (decl))
5971 return true;
5973 if (pt->vars
5974 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
5975 return true;
5977 /* If the solution includes ESCAPED, check it. */
5978 if (pt->escaped
5979 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
5980 return true;
5982 /* If the solution includes ESCAPED, check it. */
5983 if (pt->ipa_escaped
5984 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
5985 return true;
5987 return false;
5990 bool
5991 pt_solution_includes (struct pt_solution *pt, const_tree decl)
5993 bool res = pt_solution_includes_1 (pt, decl);
5994 if (res)
5995 ++pta_stats.pt_solution_includes_may_alias;
5996 else
5997 ++pta_stats.pt_solution_includes_no_alias;
5998 return res;
6001 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6002 intersection. */
6004 static bool
6005 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6007 if (pt1->anything || pt2->anything)
6008 return true;
6010 /* If either points to unknown global memory and the other points to
6011 any global memory they alias. */
6012 if ((pt1->nonlocal
6013 && (pt2->nonlocal
6014 || pt2->vars_contains_global))
6015 || (pt2->nonlocal
6016 && pt1->vars_contains_global))
6017 return true;
6019 /* Check the escaped solution if required. */
6020 if ((pt1->escaped || pt2->escaped)
6021 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6023 /* If both point to escaped memory and that solution
6024 is not empty they alias. */
6025 if (pt1->escaped && pt2->escaped)
6026 return true;
6028 /* If either points to escaped memory see if the escaped solution
6029 intersects with the other. */
6030 if ((pt1->escaped
6031 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
6032 || (pt2->escaped
6033 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
6034 return true;
6037 /* Check the escaped solution if required.
6038 ??? Do we need to check the local against the IPA escaped sets? */
6039 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6040 && !pt_solution_empty_p (&ipa_escaped_pt))
6042 /* If both point to escaped memory and that solution
6043 is not empty they alias. */
6044 if (pt1->ipa_escaped && pt2->ipa_escaped)
6045 return true;
6047 /* If either points to escaped memory see if the escaped solution
6048 intersects with the other. */
6049 if ((pt1->ipa_escaped
6050 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6051 || (pt2->ipa_escaped
6052 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6053 return true;
6056 /* Now both pointers alias if their points-to solution intersects. */
6057 return (pt1->vars
6058 && pt2->vars
6059 && bitmap_intersect_p (pt1->vars, pt2->vars));
6062 bool
6063 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6065 bool res = pt_solutions_intersect_1 (pt1, pt2);
6066 if (res)
6067 ++pta_stats.pt_solutions_intersect_may_alias;
6068 else
6069 ++pta_stats.pt_solutions_intersect_no_alias;
6070 return res;
6073 /* Return true if both points-to solutions PT1 and PT2 for two restrict
6074 qualified pointers are possibly based on the same pointer. */
6076 bool
6077 pt_solutions_same_restrict_base (struct pt_solution *pt1,
6078 struct pt_solution *pt2)
6080 /* If we deal with points-to solutions of two restrict qualified
6081 pointers solely rely on the pointed-to variable bitmap intersection.
6082 For two pointers that are based on each other the bitmaps will
6083 intersect. */
6084 if (pt1->vars_contains_restrict
6085 && pt2->vars_contains_restrict)
6087 gcc_assert (pt1->vars && pt2->vars);
6088 return bitmap_intersect_p (pt1->vars, pt2->vars);
6091 return true;
6095 /* Dump points-to information to OUTFILE. */
6097 static void
6098 dump_sa_points_to_info (FILE *outfile)
6100 unsigned int i;
6102 fprintf (outfile, "\nPoints-to sets\n\n");
6104 if (dump_flags & TDF_STATS)
6106 fprintf (outfile, "Stats:\n");
6107 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6108 fprintf (outfile, "Non-pointer vars: %d\n",
6109 stats.nonpointer_vars);
6110 fprintf (outfile, "Statically unified vars: %d\n",
6111 stats.unified_vars_static);
6112 fprintf (outfile, "Dynamically unified vars: %d\n",
6113 stats.unified_vars_dynamic);
6114 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6115 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6116 fprintf (outfile, "Number of implicit edges: %d\n",
6117 stats.num_implicit_edges);
6120 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6122 varinfo_t vi = get_varinfo (i);
6123 if (!vi->may_have_pointers)
6124 continue;
6125 dump_solution_for_var (outfile, i);
6130 /* Debug points-to information to stderr. */
6132 DEBUG_FUNCTION void
6133 debug_sa_points_to_info (void)
6135 dump_sa_points_to_info (stderr);
6139 /* Initialize the always-existing constraint variables for NULL
6140 ANYTHING, READONLY, and INTEGER */
6142 static void
6143 init_base_vars (void)
6145 struct constraint_expr lhs, rhs;
6146 varinfo_t var_anything;
6147 varinfo_t var_nothing;
6148 varinfo_t var_readonly;
6149 varinfo_t var_escaped;
6150 varinfo_t var_nonlocal;
6151 varinfo_t var_storedanything;
6152 varinfo_t var_integer;
6154 /* Create the NULL variable, used to represent that a variable points
6155 to NULL. */
6156 var_nothing = new_var_info (NULL_TREE, "NULL");
6157 gcc_assert (var_nothing->id == nothing_id);
6158 var_nothing->is_artificial_var = 1;
6159 var_nothing->offset = 0;
6160 var_nothing->size = ~0;
6161 var_nothing->fullsize = ~0;
6162 var_nothing->is_special_var = 1;
6163 var_nothing->may_have_pointers = 0;
6164 var_nothing->is_global_var = 0;
6166 /* Create the ANYTHING variable, used to represent that a variable
6167 points to some unknown piece of memory. */
6168 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6169 gcc_assert (var_anything->id == anything_id);
6170 var_anything->is_artificial_var = 1;
6171 var_anything->size = ~0;
6172 var_anything->offset = 0;
6173 var_anything->next = NULL;
6174 var_anything->fullsize = ~0;
6175 var_anything->is_special_var = 1;
6177 /* Anything points to anything. This makes deref constraints just
6178 work in the presence of linked list and other p = *p type loops,
6179 by saying that *ANYTHING = ANYTHING. */
6180 lhs.type = SCALAR;
6181 lhs.var = anything_id;
6182 lhs.offset = 0;
6183 rhs.type = ADDRESSOF;
6184 rhs.var = anything_id;
6185 rhs.offset = 0;
6187 /* This specifically does not use process_constraint because
6188 process_constraint ignores all anything = anything constraints, since all
6189 but this one are redundant. */
6190 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6192 /* Create the READONLY variable, used to represent that a variable
6193 points to readonly memory. */
6194 var_readonly = new_var_info (NULL_TREE, "READONLY");
6195 gcc_assert (var_readonly->id == readonly_id);
6196 var_readonly->is_artificial_var = 1;
6197 var_readonly->offset = 0;
6198 var_readonly->size = ~0;
6199 var_readonly->fullsize = ~0;
6200 var_readonly->next = NULL;
6201 var_readonly->is_special_var = 1;
6203 /* readonly memory points to anything, in order to make deref
6204 easier. In reality, it points to anything the particular
6205 readonly variable can point to, but we don't track this
6206 separately. */
6207 lhs.type = SCALAR;
6208 lhs.var = readonly_id;
6209 lhs.offset = 0;
6210 rhs.type = ADDRESSOF;
6211 rhs.var = readonly_id; /* FIXME */
6212 rhs.offset = 0;
6213 process_constraint (new_constraint (lhs, rhs));
6215 /* Create the ESCAPED variable, used to represent the set of escaped
6216 memory. */
6217 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6218 gcc_assert (var_escaped->id == escaped_id);
6219 var_escaped->is_artificial_var = 1;
6220 var_escaped->offset = 0;
6221 var_escaped->size = ~0;
6222 var_escaped->fullsize = ~0;
6223 var_escaped->is_special_var = 0;
6225 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6226 memory. */
6227 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6228 gcc_assert (var_nonlocal->id == nonlocal_id);
6229 var_nonlocal->is_artificial_var = 1;
6230 var_nonlocal->offset = 0;
6231 var_nonlocal->size = ~0;
6232 var_nonlocal->fullsize = ~0;
6233 var_nonlocal->is_special_var = 1;
6235 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6236 lhs.type = SCALAR;
6237 lhs.var = escaped_id;
6238 lhs.offset = 0;
6239 rhs.type = DEREF;
6240 rhs.var = escaped_id;
6241 rhs.offset = 0;
6242 process_constraint (new_constraint (lhs, rhs));
6244 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6245 whole variable escapes. */
6246 lhs.type = SCALAR;
6247 lhs.var = escaped_id;
6248 lhs.offset = 0;
6249 rhs.type = SCALAR;
6250 rhs.var = escaped_id;
6251 rhs.offset = UNKNOWN_OFFSET;
6252 process_constraint (new_constraint (lhs, rhs));
6254 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6255 everything pointed to by escaped points to what global memory can
6256 point to. */
6257 lhs.type = DEREF;
6258 lhs.var = escaped_id;
6259 lhs.offset = 0;
6260 rhs.type = SCALAR;
6261 rhs.var = nonlocal_id;
6262 rhs.offset = 0;
6263 process_constraint (new_constraint (lhs, rhs));
6265 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6266 global memory may point to global memory and escaped memory. */
6267 lhs.type = SCALAR;
6268 lhs.var = nonlocal_id;
6269 lhs.offset = 0;
6270 rhs.type = ADDRESSOF;
6271 rhs.var = nonlocal_id;
6272 rhs.offset = 0;
6273 process_constraint (new_constraint (lhs, rhs));
6274 rhs.type = ADDRESSOF;
6275 rhs.var = escaped_id;
6276 rhs.offset = 0;
6277 process_constraint (new_constraint (lhs, rhs));
6279 /* Create the STOREDANYTHING variable, used to represent the set of
6280 variables stored to *ANYTHING. */
6281 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6282 gcc_assert (var_storedanything->id == storedanything_id);
6283 var_storedanything->is_artificial_var = 1;
6284 var_storedanything->offset = 0;
6285 var_storedanything->size = ~0;
6286 var_storedanything->fullsize = ~0;
6287 var_storedanything->is_special_var = 0;
6289 /* Create the INTEGER variable, used to represent that a variable points
6290 to what an INTEGER "points to". */
6291 var_integer = new_var_info (NULL_TREE, "INTEGER");
6292 gcc_assert (var_integer->id == integer_id);
6293 var_integer->is_artificial_var = 1;
6294 var_integer->size = ~0;
6295 var_integer->fullsize = ~0;
6296 var_integer->offset = 0;
6297 var_integer->next = NULL;
6298 var_integer->is_special_var = 1;
6300 /* INTEGER = ANYTHING, because we don't know where a dereference of
6301 a random integer will point to. */
6302 lhs.type = SCALAR;
6303 lhs.var = integer_id;
6304 lhs.offset = 0;
6305 rhs.type = ADDRESSOF;
6306 rhs.var = anything_id;
6307 rhs.offset = 0;
6308 process_constraint (new_constraint (lhs, rhs));
6311 /* Initialize things necessary to perform PTA */
6313 static void
6314 init_alias_vars (void)
6316 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6318 bitmap_obstack_initialize (&pta_obstack);
6319 bitmap_obstack_initialize (&oldpta_obstack);
6320 bitmap_obstack_initialize (&predbitmap_obstack);
6322 constraint_pool = create_alloc_pool ("Constraint pool",
6323 sizeof (struct constraint), 30);
6324 variable_info_pool = create_alloc_pool ("Variable info pool",
6325 sizeof (struct variable_info), 30);
6326 constraints = VEC_alloc (constraint_t, heap, 8);
6327 varmap = VEC_alloc (varinfo_t, heap, 8);
6328 vi_for_tree = pointer_map_create ();
6329 call_stmt_vars = pointer_map_create ();
6331 memset (&stats, 0, sizeof (stats));
6332 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6333 shared_bitmap_eq, free);
6334 init_base_vars ();
6337 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6338 predecessor edges. */
6340 static void
6341 remove_preds_and_fake_succs (constraint_graph_t graph)
6343 unsigned int i;
6345 /* Clear the implicit ref and address nodes from the successor
6346 lists. */
6347 for (i = 0; i < FIRST_REF_NODE; i++)
6349 if (graph->succs[i])
6350 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6351 FIRST_REF_NODE * 2);
6354 /* Free the successor list for the non-ref nodes. */
6355 for (i = FIRST_REF_NODE; i < graph->size; i++)
6357 if (graph->succs[i])
6358 BITMAP_FREE (graph->succs[i]);
6361 /* Now reallocate the size of the successor list as, and blow away
6362 the predecessor bitmaps. */
6363 graph->size = VEC_length (varinfo_t, varmap);
6364 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6366 free (graph->implicit_preds);
6367 graph->implicit_preds = NULL;
6368 free (graph->preds);
6369 graph->preds = NULL;
6370 bitmap_obstack_release (&predbitmap_obstack);
6373 /* Initialize the heapvar for statement mapping. */
6375 static void
6376 init_alias_heapvars (void)
6378 if (!heapvar_for_stmt)
6379 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
6380 NULL);
6383 /* Delete the heapvar for statement mapping. */
6385 void
6386 delete_alias_heapvars (void)
6388 if (heapvar_for_stmt)
6389 htab_delete (heapvar_for_stmt);
6390 heapvar_for_stmt = NULL;
6393 /* Solve the constraint set. */
6395 static void
6396 solve_constraints (void)
6398 struct scc_info *si;
6400 if (dump_file)
6401 fprintf (dump_file,
6402 "\nCollapsing static cycles and doing variable "
6403 "substitution\n");
6405 init_graph (VEC_length (varinfo_t, varmap) * 2);
6407 if (dump_file)
6408 fprintf (dump_file, "Building predecessor graph\n");
6409 build_pred_graph ();
6411 if (dump_file)
6412 fprintf (dump_file, "Detecting pointer and location "
6413 "equivalences\n");
6414 si = perform_var_substitution (graph);
6416 if (dump_file)
6417 fprintf (dump_file, "Rewriting constraints and unifying "
6418 "variables\n");
6419 rewrite_constraints (graph, si);
6421 build_succ_graph ();
6422 free_var_substitution_info (si);
6424 if (dump_file && (dump_flags & TDF_GRAPH))
6425 dump_constraint_graph (dump_file);
6427 move_complex_constraints (graph);
6429 if (dump_file)
6430 fprintf (dump_file, "Uniting pointer but not location equivalent "
6431 "variables\n");
6432 unite_pointer_equivalences (graph);
6434 if (dump_file)
6435 fprintf (dump_file, "Finding indirect cycles\n");
6436 find_indirect_cycles (graph);
6438 /* Implicit nodes and predecessors are no longer necessary at this
6439 point. */
6440 remove_preds_and_fake_succs (graph);
6442 if (dump_file)
6443 fprintf (dump_file, "Solving graph\n");
6445 solve_graph (graph);
6447 if (dump_file)
6448 dump_sa_points_to_info (dump_file);
6451 /* Create points-to sets for the current function. See the comments
6452 at the start of the file for an algorithmic overview. */
6454 static void
6455 compute_points_to_sets (void)
6457 basic_block bb;
6458 unsigned i;
6459 varinfo_t vi;
6461 timevar_push (TV_TREE_PTA);
6463 init_alias_vars ();
6464 init_alias_heapvars ();
6466 intra_create_variable_infos ();
6468 /* Now walk all statements and build the constraint set. */
6469 FOR_EACH_BB (bb)
6471 gimple_stmt_iterator gsi;
6473 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6475 gimple phi = gsi_stmt (gsi);
6477 if (is_gimple_reg (gimple_phi_result (phi)))
6478 find_func_aliases (phi);
6481 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6483 gimple stmt = gsi_stmt (gsi);
6485 find_func_aliases (stmt);
6489 if (dump_file)
6491 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6492 dump_constraints (dump_file, 0);
6495 /* From the constraints compute the points-to sets. */
6496 solve_constraints ();
6498 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6499 find_what_var_points_to (get_varinfo (escaped_id),
6500 &cfun->gimple_df->escaped);
6502 /* Make sure the ESCAPED solution (which is used as placeholder in
6503 other solutions) does not reference itself. This simplifies
6504 points-to solution queries. */
6505 cfun->gimple_df->escaped.escaped = 0;
6507 /* Mark escaped HEAP variables as global. */
6508 FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
6509 if (vi->is_heap_var
6510 && !vi->is_restrict_var
6511 && !vi->is_global_var)
6512 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6513 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6515 /* Compute the points-to sets for pointer SSA_NAMEs. */
6516 for (i = 0; i < num_ssa_names; ++i)
6518 tree ptr = ssa_name (i);
6519 if (ptr
6520 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6521 find_what_p_points_to (ptr);
6524 /* Compute the call-used/clobbered sets. */
6525 FOR_EACH_BB (bb)
6527 gimple_stmt_iterator gsi;
6529 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6531 gimple stmt = gsi_stmt (gsi);
6532 struct pt_solution *pt;
6533 if (!is_gimple_call (stmt))
6534 continue;
6536 pt = gimple_call_use_set (stmt);
6537 if (gimple_call_flags (stmt) & ECF_CONST)
6538 memset (pt, 0, sizeof (struct pt_solution));
6539 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6541 find_what_var_points_to (vi, pt);
6542 /* Escaped (and thus nonlocal) variables are always
6543 implicitly used by calls. */
6544 /* ??? ESCAPED can be empty even though NONLOCAL
6545 always escaped. */
6546 pt->nonlocal = 1;
6547 pt->escaped = 1;
6549 else
6551 /* If there is nothing special about this call then
6552 we have made everything that is used also escape. */
6553 *pt = cfun->gimple_df->escaped;
6554 pt->nonlocal = 1;
6557 pt = gimple_call_clobber_set (stmt);
6558 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6559 memset (pt, 0, sizeof (struct pt_solution));
6560 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6562 find_what_var_points_to (vi, pt);
6563 /* Escaped (and thus nonlocal) variables are always
6564 implicitly clobbered by calls. */
6565 /* ??? ESCAPED can be empty even though NONLOCAL
6566 always escaped. */
6567 pt->nonlocal = 1;
6568 pt->escaped = 1;
6570 else
6572 /* If there is nothing special about this call then
6573 we have made everything that is used also escape. */
6574 *pt = cfun->gimple_df->escaped;
6575 pt->nonlocal = 1;
6580 timevar_pop (TV_TREE_PTA);
6584 /* Delete created points-to sets. */
6586 static void
6587 delete_points_to_sets (void)
6589 unsigned int i;
6591 htab_delete (shared_bitmap_table);
6592 if (dump_file && (dump_flags & TDF_STATS))
6593 fprintf (dump_file, "Points to sets created:%d\n",
6594 stats.points_to_sets_created);
6596 pointer_map_destroy (vi_for_tree);
6597 pointer_map_destroy (call_stmt_vars);
6598 bitmap_obstack_release (&pta_obstack);
6599 VEC_free (constraint_t, heap, constraints);
6601 for (i = 0; i < graph->size; i++)
6602 VEC_free (constraint_t, heap, graph->complex[i]);
6603 free (graph->complex);
6605 free (graph->rep);
6606 free (graph->succs);
6607 free (graph->pe);
6608 free (graph->pe_rep);
6609 free (graph->indirect_cycles);
6610 free (graph);
6612 VEC_free (varinfo_t, heap, varmap);
6613 free_alloc_pool (variable_info_pool);
6614 free_alloc_pool (constraint_pool);
6618 /* Compute points-to information for every SSA_NAME pointer in the
6619 current function and compute the transitive closure of escaped
6620 variables to re-initialize the call-clobber states of local variables. */
6622 unsigned int
6623 compute_may_aliases (void)
6625 if (cfun->gimple_df->ipa_pta)
6627 if (dump_file)
6629 fprintf (dump_file, "\nNot re-computing points-to information "
6630 "because IPA points-to information is available.\n\n");
6632 /* But still dump what we have remaining it. */
6633 dump_alias_info (dump_file);
6635 if (dump_flags & TDF_DETAILS)
6636 dump_referenced_vars (dump_file);
6639 return 0;
6642 /* For each pointer P_i, determine the sets of variables that P_i may
6643 point-to. Compute the reachability set of escaped and call-used
6644 variables. */
6645 compute_points_to_sets ();
6647 /* Debugging dumps. */
6648 if (dump_file)
6650 dump_alias_info (dump_file);
6652 if (dump_flags & TDF_DETAILS)
6653 dump_referenced_vars (dump_file);
6656 /* Deallocate memory used by aliasing data structures and the internal
6657 points-to solution. */
6658 delete_points_to_sets ();
6660 gcc_assert (!need_ssa_update_p (cfun));
6662 return 0;
6665 static bool
6666 gate_tree_pta (void)
6668 return flag_tree_pta;
6671 /* A dummy pass to cause points-to information to be computed via
6672 TODO_rebuild_alias. */
6674 struct gimple_opt_pass pass_build_alias =
6677 GIMPLE_PASS,
6678 "alias", /* name */
6679 gate_tree_pta, /* gate */
6680 NULL, /* execute */
6681 NULL, /* sub */
6682 NULL, /* next */
6683 0, /* static_pass_number */
6684 TV_NONE, /* tv_id */
6685 PROP_cfg | PROP_ssa, /* properties_required */
6686 0, /* properties_provided */
6687 0, /* properties_destroyed */
6688 0, /* todo_flags_start */
6689 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6693 /* A dummy pass to cause points-to information to be computed via
6694 TODO_rebuild_alias. */
6696 struct gimple_opt_pass pass_build_ealias =
6699 GIMPLE_PASS,
6700 "ealias", /* name */
6701 gate_tree_pta, /* gate */
6702 NULL, /* execute */
6703 NULL, /* sub */
6704 NULL, /* next */
6705 0, /* static_pass_number */
6706 TV_NONE, /* tv_id */
6707 PROP_cfg | PROP_ssa, /* properties_required */
6708 0, /* properties_provided */
6709 0, /* properties_destroyed */
6710 0, /* todo_flags_start */
6711 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6716 /* Return true if we should execute IPA PTA. */
6717 static bool
6718 gate_ipa_pta (void)
6720 return (optimize
6721 && flag_ipa_pta
6722 /* Don't bother doing anything if the program has errors. */
6723 && !seen_error ());
6726 /* IPA PTA solutions for ESCAPED. */
6727 struct pt_solution ipa_escaped_pt
6728 = { true, false, false, false, false, false, false, NULL };
6730 /* Execute the driver for IPA PTA. */
6731 static unsigned int
6732 ipa_pta_execute (void)
6734 struct cgraph_node *node;
6735 struct varpool_node *var;
6736 int from;
6738 in_ipa_mode = 1;
6740 init_alias_heapvars ();
6741 init_alias_vars ();
6743 /* Build the constraints. */
6744 for (node = cgraph_nodes; node; node = node->next)
6746 struct cgraph_node *alias;
6747 varinfo_t vi;
6749 /* Nodes without a body are not interesting. Especially do not
6750 visit clones at this point for now - we get duplicate decls
6751 there for inline clones at least. */
6752 if (!gimple_has_body_p (node->decl)
6753 || node->clone_of)
6754 continue;
6756 vi = create_function_info_for (node->decl,
6757 alias_get_name (node->decl));
6759 /* Associate the varinfo node with all aliases. */
6760 for (alias = node->same_body; alias; alias = alias->next)
6761 insert_vi_for_tree (alias->decl, vi);
6764 /* Create constraints for global variables and their initializers. */
6765 for (var = varpool_nodes; var; var = var->next)
6767 struct varpool_node *alias;
6768 varinfo_t vi;
6770 vi = get_vi_for_tree (var->decl);
6772 /* Associate the varinfo node with all aliases. */
6773 for (alias = var->extra_name; alias; alias = alias->next)
6774 insert_vi_for_tree (alias->decl, vi);
6777 if (dump_file)
6779 fprintf (dump_file,
6780 "Generating constraints for global initializers\n\n");
6781 dump_constraints (dump_file, 0);
6782 fprintf (dump_file, "\n");
6784 from = VEC_length (constraint_t, constraints);
6786 for (node = cgraph_nodes; node; node = node->next)
6788 struct function *func;
6789 basic_block bb;
6790 tree old_func_decl;
6792 /* Nodes without a body are not interesting. */
6793 if (!gimple_has_body_p (node->decl)
6794 || node->clone_of)
6795 continue;
6797 if (dump_file)
6799 fprintf (dump_file,
6800 "Generating constraints for %s", cgraph_node_name (node));
6801 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6802 fprintf (dump_file, " (%s)",
6803 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6804 fprintf (dump_file, "\n");
6807 func = DECL_STRUCT_FUNCTION (node->decl);
6808 old_func_decl = current_function_decl;
6809 push_cfun (func);
6810 current_function_decl = node->decl;
6812 /* For externally visible functions use local constraints for
6813 their arguments. For local functions we see all callers
6814 and thus do not need initial constraints for parameters. */
6815 if (node->local.externally_visible)
6816 intra_create_variable_infos ();
6818 /* Build constriants for the function body. */
6819 FOR_EACH_BB_FN (bb, func)
6821 gimple_stmt_iterator gsi;
6823 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6824 gsi_next (&gsi))
6826 gimple phi = gsi_stmt (gsi);
6828 if (is_gimple_reg (gimple_phi_result (phi)))
6829 find_func_aliases (phi);
6832 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6834 gimple stmt = gsi_stmt (gsi);
6836 find_func_aliases (stmt);
6837 find_func_clobbers (stmt);
6841 current_function_decl = old_func_decl;
6842 pop_cfun ();
6844 if (dump_file)
6846 fprintf (dump_file, "\n");
6847 dump_constraints (dump_file, from);
6848 fprintf (dump_file, "\n");
6850 from = VEC_length (constraint_t, constraints);
6853 /* From the constraints compute the points-to sets. */
6854 solve_constraints ();
6856 /* Compute the global points-to sets for ESCAPED.
6857 ??? Note that the computed escape set is not correct
6858 for the whole unit as we fail to consider graph edges to
6859 externally visible functions. */
6860 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6862 /* Make sure the ESCAPED solution (which is used as placeholder in
6863 other solutions) does not reference itself. This simplifies
6864 points-to solution queries. */
6865 ipa_escaped_pt.ipa_escaped = 0;
6867 /* Assign the points-to sets to the SSA names in the unit. */
6868 for (node = cgraph_nodes; node; node = node->next)
6870 tree ptr;
6871 struct function *fn;
6872 unsigned i;
6873 varinfo_t fi;
6874 basic_block bb;
6875 struct pt_solution uses, clobbers;
6876 struct cgraph_edge *e;
6878 /* Nodes without a body are not interesting. */
6879 if (!gimple_has_body_p (node->decl)
6880 || node->clone_of)
6881 continue;
6883 fn = DECL_STRUCT_FUNCTION (node->decl);
6885 /* Compute the points-to sets for pointer SSA_NAMEs. */
6886 FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
6888 if (ptr
6889 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6890 find_what_p_points_to (ptr);
6893 /* Compute the call-use and call-clobber sets for all direct calls. */
6894 fi = lookup_vi_for_tree (node->decl);
6895 gcc_assert (fi->is_fn_info);
6896 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6897 &clobbers);
6898 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6899 for (e = node->callers; e; e = e->next_caller)
6901 if (!e->call_stmt)
6902 continue;
6904 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6905 *gimple_call_use_set (e->call_stmt) = uses;
6908 /* Compute the call-use and call-clobber sets for indirect calls
6909 and calls to external functions. */
6910 FOR_EACH_BB_FN (bb, fn)
6912 gimple_stmt_iterator gsi;
6914 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6916 gimple stmt = gsi_stmt (gsi);
6917 struct pt_solution *pt;
6918 varinfo_t vi;
6919 tree decl;
6921 if (!is_gimple_call (stmt))
6922 continue;
6924 /* Handle direct calls to external functions. */
6925 decl = gimple_call_fndecl (stmt);
6926 if (decl
6927 && (!(fi = lookup_vi_for_tree (decl))
6928 || !fi->is_fn_info))
6930 pt = gimple_call_use_set (stmt);
6931 if (gimple_call_flags (stmt) & ECF_CONST)
6932 memset (pt, 0, sizeof (struct pt_solution));
6933 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6935 find_what_var_points_to (vi, pt);
6936 /* Escaped (and thus nonlocal) variables are always
6937 implicitly used by calls. */
6938 /* ??? ESCAPED can be empty even though NONLOCAL
6939 always escaped. */
6940 pt->nonlocal = 1;
6941 pt->ipa_escaped = 1;
6943 else
6945 /* If there is nothing special about this call then
6946 we have made everything that is used also escape. */
6947 *pt = ipa_escaped_pt;
6948 pt->nonlocal = 1;
6951 pt = gimple_call_clobber_set (stmt);
6952 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6953 memset (pt, 0, sizeof (struct pt_solution));
6954 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6956 find_what_var_points_to (vi, pt);
6957 /* Escaped (and thus nonlocal) variables are always
6958 implicitly clobbered by calls. */
6959 /* ??? ESCAPED can be empty even though NONLOCAL
6960 always escaped. */
6961 pt->nonlocal = 1;
6962 pt->ipa_escaped = 1;
6964 else
6966 /* If there is nothing special about this call then
6967 we have made everything that is used also escape. */
6968 *pt = ipa_escaped_pt;
6969 pt->nonlocal = 1;
6973 /* Handle indirect calls. */
6974 if (!decl
6975 && (fi = get_fi_for_callee (stmt)))
6977 /* We need to accumulate all clobbers/uses of all possible
6978 callees. */
6979 fi = get_varinfo (find (fi->id));
6980 /* If we cannot constrain the set of functions we'll end up
6981 calling we end up using/clobbering everything. */
6982 if (bitmap_bit_p (fi->solution, anything_id)
6983 || bitmap_bit_p (fi->solution, nonlocal_id)
6984 || bitmap_bit_p (fi->solution, escaped_id))
6986 pt_solution_reset (gimple_call_clobber_set (stmt));
6987 pt_solution_reset (gimple_call_use_set (stmt));
6989 else
6991 bitmap_iterator bi;
6992 unsigned i;
6993 struct pt_solution *uses, *clobbers;
6995 uses = gimple_call_use_set (stmt);
6996 clobbers = gimple_call_clobber_set (stmt);
6997 memset (uses, 0, sizeof (struct pt_solution));
6998 memset (clobbers, 0, sizeof (struct pt_solution));
6999 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7001 struct pt_solution sol;
7003 vi = get_varinfo (i);
7004 if (!vi->is_fn_info)
7006 /* ??? We could be more precise here? */
7007 uses->nonlocal = 1;
7008 uses->ipa_escaped = 1;
7009 clobbers->nonlocal = 1;
7010 clobbers->ipa_escaped = 1;
7011 continue;
7014 if (!uses->anything)
7016 find_what_var_points_to
7017 (first_vi_for_offset (vi, fi_uses), &sol);
7018 pt_solution_ior_into (uses, &sol);
7020 if (!clobbers->anything)
7022 find_what_var_points_to
7023 (first_vi_for_offset (vi, fi_clobbers), &sol);
7024 pt_solution_ior_into (clobbers, &sol);
7032 fn->gimple_df->ipa_pta = true;
7035 delete_points_to_sets ();
7037 in_ipa_mode = 0;
7039 return 0;
7042 struct simple_ipa_opt_pass pass_ipa_pta =
7045 SIMPLE_IPA_PASS,
7046 "pta", /* name */
7047 gate_ipa_pta, /* gate */
7048 ipa_pta_execute, /* execute */
7049 NULL, /* sub */
7050 NULL, /* next */
7051 0, /* static_pass_number */
7052 TV_IPA_PTA, /* tv_id */
7053 0, /* properties_required */
7054 0, /* properties_provided */
7055 0, /* properties_destroyed */
7056 0, /* todo_flags_start */
7057 TODO_update_ssa /* todo_flags_finish */
7062 #include "gt-tree-ssa-structalias.h"