gcc/
[official-gcc.git] / gcc / combine.c
blob5bd4d6e517a738ec6d1b3a9ea0ca004c60632662
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each extended basic block in scanning order. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
347 struct undo
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
361 struct undobuf
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
368 static struct undobuf undobuf;
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
373 static int n_occurrences;
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx, bool);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
483 rtx ret;
484 unsigned int nregs;
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
509 switch (code)
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
536 return find_single_use_1 (dest, &SET_SRC (x));
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
542 default:
543 break;
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
567 else if (fmt[i] == 'E')
569 int j;
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
589 return result;
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
628 #endif
630 if (!REG_P (dest))
631 return 0;
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
643 if (link)
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
652 return 0;
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
661 static void
662 do_SUBST (rtx *into, rtx newval)
664 struct undo *buf;
665 rtx oldval = *into;
667 if (oldval == newval)
668 return;
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
705 buf->next = undobuf.undos, undobuf.undos = buf;
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
714 static void
715 do_SUBST_INT (int *into, int newval)
717 struct undo *buf;
718 int oldval = *into;
720 if (oldval == newval)
721 return;
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
733 buf->next = undobuf.undos, undobuf.undos = buf;
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
749 if (oldval == newval)
750 return;
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
762 buf->next = undobuf.undos, undobuf.undos = buf;
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
776 static bool
777 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
778 rtx newi2pat, rtx newotherpat)
780 int i0_cost, i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
788 if (i1)
790 i1_cost = INSN_COST (i1);
791 if (i0)
793 i0_cost = INSN_COST (i0);
794 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
795 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
797 else
799 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
800 ? i1_cost + i2_cost + i3_cost : 0);
801 i0_cost = 0;
804 else
806 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
807 i1_cost = i0_cost = 0;
810 /* Calculate the replacement insn_rtx_costs. */
811 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
812 if (newi2pat)
814 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
815 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
816 ? new_i2_cost + new_i3_cost : 0;
818 else
820 new_cost = new_i3_cost;
821 new_i2_cost = 0;
824 if (undobuf.other_insn)
826 int old_other_cost, new_other_cost;
828 old_other_cost = INSN_COST (undobuf.other_insn);
829 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
830 if (old_other_cost > 0 && new_other_cost > 0)
832 old_cost += old_other_cost;
833 new_cost += new_other_cost;
835 else
836 old_cost = 0;
839 /* Disallow this recombination if both new_cost and old_cost are
840 greater than zero, and new_cost is greater than old cost. */
841 if (old_cost > 0
842 && new_cost > old_cost)
844 if (dump_file)
846 if (i0)
848 fprintf (dump_file,
849 "rejecting combination of insns %d, %d, %d and %d\n",
850 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
851 INSN_UID (i3));
852 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
853 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
855 else if (i1)
857 fprintf (dump_file,
858 "rejecting combination of insns %d, %d and %d\n",
859 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
860 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
861 i1_cost, i2_cost, i3_cost, old_cost);
863 else
865 fprintf (dump_file,
866 "rejecting combination of insns %d and %d\n",
867 INSN_UID (i2), INSN_UID (i3));
868 fprintf (dump_file, "original costs %d + %d = %d\n",
869 i2_cost, i3_cost, old_cost);
872 if (newi2pat)
874 fprintf (dump_file, "replacement costs %d + %d = %d\n",
875 new_i2_cost, new_i3_cost, new_cost);
877 else
878 fprintf (dump_file, "replacement cost %d\n", new_cost);
881 return false;
884 /* Update the uid_insn_cost array with the replacement costs. */
885 INSN_COST (i2) = new_i2_cost;
886 INSN_COST (i3) = new_i3_cost;
887 if (i1)
888 INSN_COST (i1) = 0;
890 return true;
894 /* Delete any insns that copy a register to itself. */
896 static void
897 delete_noop_moves (void)
899 rtx insn, next;
900 basic_block bb;
902 FOR_EACH_BB (bb)
904 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
906 next = NEXT_INSN (insn);
907 if (INSN_P (insn) && noop_move_p (insn))
909 if (dump_file)
910 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
912 delete_insn_and_edges (insn);
919 /* Fill in log links field for all insns. */
921 static void
922 create_log_links (void)
924 basic_block bb;
925 rtx *next_use, insn;
926 df_ref *def_vec, *use_vec;
928 next_use = XCNEWVEC (rtx, max_reg_num ());
930 /* Pass through each block from the end, recording the uses of each
931 register and establishing log links when def is encountered.
932 Note that we do not clear next_use array in order to save time,
933 so we have to test whether the use is in the same basic block as def.
935 There are a few cases below when we do not consider the definition or
936 usage -- these are taken from original flow.c did. Don't ask me why it is
937 done this way; I don't know and if it works, I don't want to know. */
939 FOR_EACH_BB (bb)
941 FOR_BB_INSNS_REVERSE (bb, insn)
943 if (!NONDEBUG_INSN_P (insn))
944 continue;
946 /* Log links are created only once. */
947 gcc_assert (!LOG_LINKS (insn));
949 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
951 df_ref def = *def_vec;
952 int regno = DF_REF_REGNO (def);
953 rtx use_insn;
955 if (!next_use[regno])
956 continue;
958 /* Do not consider if it is pre/post modification in MEM. */
959 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
960 continue;
962 /* Do not make the log link for frame pointer. */
963 if ((regno == FRAME_POINTER_REGNUM
964 && (! reload_completed || frame_pointer_needed))
965 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
966 || (regno == HARD_FRAME_POINTER_REGNUM
967 && (! reload_completed || frame_pointer_needed))
968 #endif
969 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
970 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
971 #endif
973 continue;
975 use_insn = next_use[regno];
976 if (BLOCK_FOR_INSN (use_insn) == bb)
978 /* flow.c claimed:
980 We don't build a LOG_LINK for hard registers contained
981 in ASM_OPERANDs. If these registers get replaced,
982 we might wind up changing the semantics of the insn,
983 even if reload can make what appear to be valid
984 assignments later. */
985 if (regno >= FIRST_PSEUDO_REGISTER
986 || asm_noperands (PATTERN (use_insn)) < 0)
988 /* Don't add duplicate links between instructions. */
989 rtx links;
990 for (links = LOG_LINKS (use_insn); links;
991 links = XEXP (links, 1))
992 if (insn == XEXP (links, 0))
993 break;
995 if (!links)
996 LOG_LINKS (use_insn) =
997 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
1000 next_use[regno] = NULL_RTX;
1003 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1005 df_ref use = *use_vec;
1006 int regno = DF_REF_REGNO (use);
1008 /* Do not consider the usage of the stack pointer
1009 by function call. */
1010 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1011 continue;
1013 next_use[regno] = insn;
1018 free (next_use);
1021 /* Clear LOG_LINKS fields of insns. */
1023 static void
1024 clear_log_links (void)
1026 rtx insn;
1028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1029 if (INSN_P (insn))
1030 free_INSN_LIST_list (&LOG_LINKS (insn));
1033 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1034 true if we found a LOG_LINK that proves that A feeds B. This only works
1035 if there are no instructions between A and B which could have a link
1036 depending on A, since in that case we would not record a link for B. */
1038 static bool
1039 insn_a_feeds_b (rtx a, rtx b)
1041 rtx links;
1042 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1043 if (XEXP (links, 0) == a)
1044 return true;
1045 return false;
1048 /* Main entry point for combiner. F is the first insn of the function.
1049 NREGS is the first unused pseudo-reg number.
1051 Return nonzero if the combiner has turned an indirect jump
1052 instruction into a direct jump. */
1053 static int
1054 combine_instructions (rtx f, unsigned int nregs)
1056 rtx insn, next;
1057 #ifdef HAVE_cc0
1058 rtx prev;
1059 #endif
1060 rtx links, nextlinks;
1061 rtx first;
1062 basic_block last_bb;
1064 int new_direct_jump_p = 0;
1066 for (first = f; first && !INSN_P (first); )
1067 first = NEXT_INSN (first);
1068 if (!first)
1069 return 0;
1071 combine_attempts = 0;
1072 combine_merges = 0;
1073 combine_extras = 0;
1074 combine_successes = 0;
1076 rtl_hooks = combine_rtl_hooks;
1078 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1080 init_recog_no_volatile ();
1082 /* Allocate array for insn info. */
1083 max_uid_known = get_max_uid ();
1084 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1085 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1087 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1089 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1090 problems when, for example, we have j <<= 1 in a loop. */
1092 nonzero_sign_valid = 0;
1093 label_tick = label_tick_ebb_start = 1;
1095 /* Scan all SETs and see if we can deduce anything about what
1096 bits are known to be zero for some registers and how many copies
1097 of the sign bit are known to exist for those registers.
1099 Also set any known values so that we can use it while searching
1100 for what bits are known to be set. */
1102 setup_incoming_promotions (first);
1103 /* Allow the entry block and the first block to fall into the same EBB.
1104 Conceptually the incoming promotions are assigned to the entry block. */
1105 last_bb = ENTRY_BLOCK_PTR;
1107 create_log_links ();
1108 FOR_EACH_BB (this_basic_block)
1110 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1111 last_call_luid = 0;
1112 mem_last_set = -1;
1114 label_tick++;
1115 if (!single_pred_p (this_basic_block)
1116 || single_pred (this_basic_block) != last_bb)
1117 label_tick_ebb_start = label_tick;
1118 last_bb = this_basic_block;
1120 FOR_BB_INSNS (this_basic_block, insn)
1121 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1123 subst_low_luid = DF_INSN_LUID (insn);
1124 subst_insn = insn;
1126 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1127 insn);
1128 record_dead_and_set_regs (insn);
1130 #ifdef AUTO_INC_DEC
1131 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1132 if (REG_NOTE_KIND (links) == REG_INC)
1133 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1134 insn);
1135 #endif
1137 /* Record the current insn_rtx_cost of this instruction. */
1138 if (NONJUMP_INSN_P (insn))
1139 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1140 optimize_this_for_speed_p);
1141 if (dump_file)
1142 fprintf(dump_file, "insn_cost %d: %d\n",
1143 INSN_UID (insn), INSN_COST (insn));
1147 nonzero_sign_valid = 1;
1149 /* Now scan all the insns in forward order. */
1150 label_tick = label_tick_ebb_start = 1;
1151 init_reg_last ();
1152 setup_incoming_promotions (first);
1153 last_bb = ENTRY_BLOCK_PTR;
1155 FOR_EACH_BB (this_basic_block)
1157 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1158 last_call_luid = 0;
1159 mem_last_set = -1;
1161 label_tick++;
1162 if (!single_pred_p (this_basic_block)
1163 || single_pred (this_basic_block) != last_bb)
1164 label_tick_ebb_start = label_tick;
1165 last_bb = this_basic_block;
1167 rtl_profile_for_bb (this_basic_block);
1168 for (insn = BB_HEAD (this_basic_block);
1169 insn != NEXT_INSN (BB_END (this_basic_block));
1170 insn = next ? next : NEXT_INSN (insn))
1172 next = 0;
1173 if (NONDEBUG_INSN_P (insn))
1175 /* See if we know about function return values before this
1176 insn based upon SUBREG flags. */
1177 check_promoted_subreg (insn, PATTERN (insn));
1179 /* See if we can find hardregs and subreg of pseudos in
1180 narrower modes. This could help turning TRUNCATEs
1181 into SUBREGs. */
1182 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1184 /* Try this insn with each insn it links back to. */
1186 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1187 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1188 NULL_RTX, &new_direct_jump_p)) != 0)
1189 goto retry;
1191 /* Try each sequence of three linked insns ending with this one. */
1193 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1195 rtx link = XEXP (links, 0);
1197 /* If the linked insn has been replaced by a note, then there
1198 is no point in pursuing this chain any further. */
1199 if (NOTE_P (link))
1200 continue;
1202 for (nextlinks = LOG_LINKS (link);
1203 nextlinks;
1204 nextlinks = XEXP (nextlinks, 1))
1205 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1206 NULL_RTX,
1207 &new_direct_jump_p)) != 0)
1208 goto retry;
1211 #ifdef HAVE_cc0
1212 /* Try to combine a jump insn that uses CC0
1213 with a preceding insn that sets CC0, and maybe with its
1214 logical predecessor as well.
1215 This is how we make decrement-and-branch insns.
1216 We need this special code because data flow connections
1217 via CC0 do not get entered in LOG_LINKS. */
1219 if (JUMP_P (insn)
1220 && (prev = prev_nonnote_insn (insn)) != 0
1221 && NONJUMP_INSN_P (prev)
1222 && sets_cc0_p (PATTERN (prev)))
1224 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1225 &new_direct_jump_p)) != 0)
1226 goto retry;
1228 for (nextlinks = LOG_LINKS (prev); nextlinks;
1229 nextlinks = XEXP (nextlinks, 1))
1230 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1231 NULL_RTX,
1232 &new_direct_jump_p)) != 0)
1233 goto retry;
1236 /* Do the same for an insn that explicitly references CC0. */
1237 if (NONJUMP_INSN_P (insn)
1238 && (prev = prev_nonnote_insn (insn)) != 0
1239 && NONJUMP_INSN_P (prev)
1240 && sets_cc0_p (PATTERN (prev))
1241 && GET_CODE (PATTERN (insn)) == SET
1242 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1244 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1245 &new_direct_jump_p)) != 0)
1246 goto retry;
1248 for (nextlinks = LOG_LINKS (prev); nextlinks;
1249 nextlinks = XEXP (nextlinks, 1))
1250 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1251 NULL_RTX,
1252 &new_direct_jump_p)) != 0)
1253 goto retry;
1256 /* Finally, see if any of the insns that this insn links to
1257 explicitly references CC0. If so, try this insn, that insn,
1258 and its predecessor if it sets CC0. */
1259 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1260 if (NONJUMP_INSN_P (XEXP (links, 0))
1261 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1262 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1263 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1264 && NONJUMP_INSN_P (prev)
1265 && sets_cc0_p (PATTERN (prev))
1266 && (next = try_combine (insn, XEXP (links, 0),
1267 prev, NULL_RTX,
1268 &new_direct_jump_p)) != 0)
1269 goto retry;
1270 #endif
1272 /* Try combining an insn with two different insns whose results it
1273 uses. */
1274 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1275 for (nextlinks = XEXP (links, 1); nextlinks;
1276 nextlinks = XEXP (nextlinks, 1))
1277 if ((next = try_combine (insn, XEXP (links, 0),
1278 XEXP (nextlinks, 0), NULL_RTX,
1279 &new_direct_jump_p)) != 0)
1280 goto retry;
1282 /* Try four-instruction combinations. */
1283 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1285 rtx next1;
1286 rtx link = XEXP (links, 0);
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1293 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1295 rtx link1 = XEXP (next1, 0);
1296 if (NOTE_P (link1))
1297 continue;
1298 /* I0 -> I1 -> I2 -> I3. */
1299 for (nextlinks = LOG_LINKS (link1); nextlinks;
1300 nextlinks = XEXP (nextlinks, 1))
1301 if ((next = try_combine (insn, link, link1,
1302 XEXP (nextlinks, 0),
1303 &new_direct_jump_p)) != 0)
1304 goto retry;
1305 /* I0, I1 -> I2, I2 -> I3. */
1306 for (nextlinks = XEXP (next1, 1); nextlinks;
1307 nextlinks = XEXP (nextlinks, 1))
1308 if ((next = try_combine (insn, link, link1,
1309 XEXP (nextlinks, 0),
1310 &new_direct_jump_p)) != 0)
1311 goto retry;
1314 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1316 rtx link1 = XEXP (next1, 0);
1317 if (NOTE_P (link1))
1318 continue;
1319 /* I0 -> I2; I1, I2 -> I3. */
1320 for (nextlinks = LOG_LINKS (link); nextlinks;
1321 nextlinks = XEXP (nextlinks, 1))
1322 if ((next = try_combine (insn, link, link1,
1323 XEXP (nextlinks, 0),
1324 &new_direct_jump_p)) != 0)
1325 goto retry;
1326 /* I0 -> I1; I1, I2 -> I3. */
1327 for (nextlinks = LOG_LINKS (link1); nextlinks;
1328 nextlinks = XEXP (nextlinks, 1))
1329 if ((next = try_combine (insn, link, link1,
1330 XEXP (nextlinks, 0),
1331 &new_direct_jump_p)) != 0)
1332 goto retry;
1336 /* Try this insn with each REG_EQUAL note it links back to. */
1337 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1339 rtx set, note;
1340 rtx temp = XEXP (links, 0);
1341 if ((set = single_set (temp)) != 0
1342 && (note = find_reg_equal_equiv_note (temp)) != 0
1343 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1344 /* Avoid using a register that may already been marked
1345 dead by an earlier instruction. */
1346 && ! unmentioned_reg_p (note, SET_SRC (set))
1347 && (GET_MODE (note) == VOIDmode
1348 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1349 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1351 /* Temporarily replace the set's source with the
1352 contents of the REG_EQUAL note. The insn will
1353 be deleted or recognized by try_combine. */
1354 rtx orig = SET_SRC (set);
1355 SET_SRC (set) = note;
1356 i2mod = temp;
1357 i2mod_old_rhs = copy_rtx (orig);
1358 i2mod_new_rhs = copy_rtx (note);
1359 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1360 &new_direct_jump_p);
1361 i2mod = NULL_RTX;
1362 if (next)
1363 goto retry;
1364 SET_SRC (set) = orig;
1368 if (!NOTE_P (insn))
1369 record_dead_and_set_regs (insn);
1371 retry:
1377 default_rtl_profile ();
1378 clear_log_links ();
1379 clear_bb_flags ();
1380 new_direct_jump_p |= purge_all_dead_edges ();
1381 delete_noop_moves ();
1383 /* Clean up. */
1384 free (uid_log_links);
1385 free (uid_insn_cost);
1386 VEC_free (reg_stat_type, heap, reg_stat);
1389 struct undo *undo, *next;
1390 for (undo = undobuf.frees; undo; undo = next)
1392 next = undo->next;
1393 free (undo);
1395 undobuf.frees = 0;
1398 total_attempts += combine_attempts;
1399 total_merges += combine_merges;
1400 total_extras += combine_extras;
1401 total_successes += combine_successes;
1403 nonzero_sign_valid = 0;
1404 rtl_hooks = general_rtl_hooks;
1406 /* Make recognizer allow volatile MEMs again. */
1407 init_recog ();
1409 return new_direct_jump_p;
1412 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1414 static void
1415 init_reg_last (void)
1417 unsigned int i;
1418 reg_stat_type *p;
1420 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1421 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1424 /* Set up any promoted values for incoming argument registers. */
1426 static void
1427 setup_incoming_promotions (rtx first)
1429 tree arg;
1430 bool strictly_local = false;
1432 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1433 arg = DECL_CHAIN (arg))
1435 rtx x, reg = DECL_INCOMING_RTL (arg);
1436 int uns1, uns3;
1437 enum machine_mode mode1, mode2, mode3, mode4;
1439 /* Only continue if the incoming argument is in a register. */
1440 if (!REG_P (reg))
1441 continue;
1443 /* Determine, if possible, whether all call sites of the current
1444 function lie within the current compilation unit. (This does
1445 take into account the exporting of a function via taking its
1446 address, and so forth.) */
1447 strictly_local = cgraph_local_info (current_function_decl)->local;
1449 /* The mode and signedness of the argument before any promotions happen
1450 (equal to the mode of the pseudo holding it at that stage). */
1451 mode1 = TYPE_MODE (TREE_TYPE (arg));
1452 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1454 /* The mode and signedness of the argument after any source language and
1455 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1456 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1457 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1459 /* The mode and signedness of the argument as it is actually passed,
1460 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1461 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1462 TREE_TYPE (cfun->decl), 0);
1464 /* The mode of the register in which the argument is being passed. */
1465 mode4 = GET_MODE (reg);
1467 /* Eliminate sign extensions in the callee when:
1468 (a) A mode promotion has occurred; */
1469 if (mode1 == mode3)
1470 continue;
1471 /* (b) The mode of the register is the same as the mode of
1472 the argument as it is passed; */
1473 if (mode3 != mode4)
1474 continue;
1475 /* (c) There's no language level extension; */
1476 if (mode1 == mode2)
1478 /* (c.1) All callers are from the current compilation unit. If that's
1479 the case we don't have to rely on an ABI, we only have to know
1480 what we're generating right now, and we know that we will do the
1481 mode1 to mode2 promotion with the given sign. */
1482 else if (!strictly_local)
1483 continue;
1484 /* (c.2) The combination of the two promotions is useful. This is
1485 true when the signs match, or if the first promotion is unsigned.
1486 In the later case, (sign_extend (zero_extend x)) is the same as
1487 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1488 else if (uns1)
1489 uns3 = true;
1490 else if (uns3)
1491 continue;
1493 /* Record that the value was promoted from mode1 to mode3,
1494 so that any sign extension at the head of the current
1495 function may be eliminated. */
1496 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1497 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1498 record_value_for_reg (reg, first, x);
1502 /* Called via note_stores. If X is a pseudo that is narrower than
1503 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1505 If we are setting only a portion of X and we can't figure out what
1506 portion, assume all bits will be used since we don't know what will
1507 be happening.
1509 Similarly, set how many bits of X are known to be copies of the sign bit
1510 at all locations in the function. This is the smallest number implied
1511 by any set of X. */
1513 static void
1514 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1516 rtx insn = (rtx) data;
1517 unsigned int num;
1519 if (REG_P (x)
1520 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1521 /* If this register is undefined at the start of the file, we can't
1522 say what its contents were. */
1523 && ! REGNO_REG_SET_P
1524 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1525 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1527 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1529 if (set == 0 || GET_CODE (set) == CLOBBER)
1531 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1532 rsp->sign_bit_copies = 1;
1533 return;
1536 /* If this register is being initialized using itself, and the
1537 register is uninitialized in this basic block, and there are
1538 no LOG_LINKS which set the register, then part of the
1539 register is uninitialized. In that case we can't assume
1540 anything about the number of nonzero bits.
1542 ??? We could do better if we checked this in
1543 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1544 could avoid making assumptions about the insn which initially
1545 sets the register, while still using the information in other
1546 insns. We would have to be careful to check every insn
1547 involved in the combination. */
1549 if (insn
1550 && reg_referenced_p (x, PATTERN (insn))
1551 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1552 REGNO (x)))
1554 rtx link;
1556 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1558 if (dead_or_set_p (XEXP (link, 0), x))
1559 break;
1561 if (!link)
1563 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1564 rsp->sign_bit_copies = 1;
1565 return;
1569 /* If this is a complex assignment, see if we can convert it into a
1570 simple assignment. */
1571 set = expand_field_assignment (set);
1573 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1574 set what we know about X. */
1576 if (SET_DEST (set) == x
1577 || (GET_CODE (SET_DEST (set)) == SUBREG
1578 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1579 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1580 && SUBREG_REG (SET_DEST (set)) == x))
1582 rtx src = SET_SRC (set);
1584 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1585 /* If X is narrower than a word and SRC is a non-negative
1586 constant that would appear negative in the mode of X,
1587 sign-extend it for use in reg_stat[].nonzero_bits because some
1588 machines (maybe most) will actually do the sign-extension
1589 and this is the conservative approach.
1591 ??? For 2.5, try to tighten up the MD files in this regard
1592 instead of this kludge. */
1594 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1595 && CONST_INT_P (src)
1596 && INTVAL (src) > 0
1597 && 0 != (INTVAL (src)
1598 & ((HOST_WIDE_INT) 1
1599 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1600 src = GEN_INT (INTVAL (src)
1601 | ((HOST_WIDE_INT) (-1)
1602 << GET_MODE_BITSIZE (GET_MODE (x))));
1603 #endif
1605 /* Don't call nonzero_bits if it cannot change anything. */
1606 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1607 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1608 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1609 if (rsp->sign_bit_copies == 0
1610 || rsp->sign_bit_copies > num)
1611 rsp->sign_bit_copies = num;
1613 else
1615 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1616 rsp->sign_bit_copies = 1;
1621 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1622 optionally insns that were previously combined into I3 or that will be
1623 combined into the merger of INSN and I3. The order is PRED, PRED2,
1624 INSN, SUCC, SUCC2, I3.
1626 Return 0 if the combination is not allowed for any reason.
1628 If the combination is allowed, *PDEST will be set to the single
1629 destination of INSN and *PSRC to the single source, and this function
1630 will return 1. */
1632 static int
1633 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1634 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1635 rtx *pdest, rtx *psrc)
1637 int i;
1638 const_rtx set = 0;
1639 rtx src, dest;
1640 rtx p;
1641 #ifdef AUTO_INC_DEC
1642 rtx link;
1643 #endif
1644 bool all_adjacent = true;
1646 if (succ)
1648 if (succ2)
1650 if (next_active_insn (succ2) != i3)
1651 all_adjacent = false;
1652 if (next_active_insn (succ) != succ2)
1653 all_adjacent = false;
1655 else if (next_active_insn (succ) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (insn) != succ)
1658 all_adjacent = false;
1660 else if (next_active_insn (insn) != i3)
1661 all_adjacent = false;
1663 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1664 or a PARALLEL consisting of such a SET and CLOBBERs.
1666 If INSN has CLOBBER parallel parts, ignore them for our processing.
1667 By definition, these happen during the execution of the insn. When it
1668 is merged with another insn, all bets are off. If they are, in fact,
1669 needed and aren't also supplied in I3, they may be added by
1670 recog_for_combine. Otherwise, it won't match.
1672 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1673 note.
1675 Get the source and destination of INSN. If more than one, can't
1676 combine. */
1678 if (GET_CODE (PATTERN (insn)) == SET)
1679 set = PATTERN (insn);
1680 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1681 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1683 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1685 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1687 switch (GET_CODE (elt))
1689 /* This is important to combine floating point insns
1690 for the SH4 port. */
1691 case USE:
1692 /* Combining an isolated USE doesn't make sense.
1693 We depend here on combinable_i3pat to reject them. */
1694 /* The code below this loop only verifies that the inputs of
1695 the SET in INSN do not change. We call reg_set_between_p
1696 to verify that the REG in the USE does not change between
1697 I3 and INSN.
1698 If the USE in INSN was for a pseudo register, the matching
1699 insn pattern will likely match any register; combining this
1700 with any other USE would only be safe if we knew that the
1701 used registers have identical values, or if there was
1702 something to tell them apart, e.g. different modes. For
1703 now, we forgo such complicated tests and simply disallow
1704 combining of USES of pseudo registers with any other USE. */
1705 if (REG_P (XEXP (elt, 0))
1706 && GET_CODE (PATTERN (i3)) == PARALLEL)
1708 rtx i3pat = PATTERN (i3);
1709 int i = XVECLEN (i3pat, 0) - 1;
1710 unsigned int regno = REGNO (XEXP (elt, 0));
1714 rtx i3elt = XVECEXP (i3pat, 0, i);
1716 if (GET_CODE (i3elt) == USE
1717 && REG_P (XEXP (i3elt, 0))
1718 && (REGNO (XEXP (i3elt, 0)) == regno
1719 ? reg_set_between_p (XEXP (elt, 0),
1720 PREV_INSN (insn), i3)
1721 : regno >= FIRST_PSEUDO_REGISTER))
1722 return 0;
1724 while (--i >= 0);
1726 break;
1728 /* We can ignore CLOBBERs. */
1729 case CLOBBER:
1730 break;
1732 case SET:
1733 /* Ignore SETs whose result isn't used but not those that
1734 have side-effects. */
1735 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1736 && insn_nothrow_p (insn)
1737 && !side_effects_p (elt))
1738 break;
1740 /* If we have already found a SET, this is a second one and
1741 so we cannot combine with this insn. */
1742 if (set)
1743 return 0;
1745 set = elt;
1746 break;
1748 default:
1749 /* Anything else means we can't combine. */
1750 return 0;
1754 if (set == 0
1755 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1756 so don't do anything with it. */
1757 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1758 return 0;
1760 else
1761 return 0;
1763 if (set == 0)
1764 return 0;
1766 set = expand_field_assignment (set);
1767 src = SET_SRC (set), dest = SET_DEST (set);
1769 /* Don't eliminate a store in the stack pointer. */
1770 if (dest == stack_pointer_rtx
1771 /* Don't combine with an insn that sets a register to itself if it has
1772 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1773 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1774 /* Can't merge an ASM_OPERANDS. */
1775 || GET_CODE (src) == ASM_OPERANDS
1776 /* Can't merge a function call. */
1777 || GET_CODE (src) == CALL
1778 /* Don't eliminate a function call argument. */
1779 || (CALL_P (i3)
1780 && (find_reg_fusage (i3, USE, dest)
1781 || (REG_P (dest)
1782 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1783 && global_regs[REGNO (dest)])))
1784 /* Don't substitute into an incremented register. */
1785 || FIND_REG_INC_NOTE (i3, dest)
1786 || (succ && FIND_REG_INC_NOTE (succ, dest))
1787 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1788 /* Don't substitute into a non-local goto, this confuses CFG. */
1789 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1790 /* Make sure that DEST is not used after SUCC but before I3. */
1791 || (!all_adjacent
1792 && ((succ2
1793 && (reg_used_between_p (dest, succ2, i3)
1794 || reg_used_between_p (dest, succ, succ2)))
1795 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1796 /* Make sure that the value that is to be substituted for the register
1797 does not use any registers whose values alter in between. However,
1798 If the insns are adjacent, a use can't cross a set even though we
1799 think it might (this can happen for a sequence of insns each setting
1800 the same destination; last_set of that register might point to
1801 a NOTE). If INSN has a REG_EQUIV note, the register is always
1802 equivalent to the memory so the substitution is valid even if there
1803 are intervening stores. Also, don't move a volatile asm or
1804 UNSPEC_VOLATILE across any other insns. */
1805 || (! all_adjacent
1806 && (((!MEM_P (src)
1807 || ! find_reg_note (insn, REG_EQUIV, src))
1808 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1809 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1810 || GET_CODE (src) == UNSPEC_VOLATILE))
1811 /* Don't combine across a CALL_INSN, because that would possibly
1812 change whether the life span of some REGs crosses calls or not,
1813 and it is a pain to update that information.
1814 Exception: if source is a constant, moving it later can't hurt.
1815 Accept that as a special case. */
1816 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1817 return 0;
1819 /* DEST must either be a REG or CC0. */
1820 if (REG_P (dest))
1822 /* If register alignment is being enforced for multi-word items in all
1823 cases except for parameters, it is possible to have a register copy
1824 insn referencing a hard register that is not allowed to contain the
1825 mode being copied and which would not be valid as an operand of most
1826 insns. Eliminate this problem by not combining with such an insn.
1828 Also, on some machines we don't want to extend the life of a hard
1829 register. */
1831 if (REG_P (src)
1832 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1833 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1834 /* Don't extend the life of a hard register unless it is
1835 user variable (if we have few registers) or it can't
1836 fit into the desired register (meaning something special
1837 is going on).
1838 Also avoid substituting a return register into I3, because
1839 reload can't handle a conflict with constraints of other
1840 inputs. */
1841 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1842 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1843 return 0;
1845 else if (GET_CODE (dest) != CC0)
1846 return 0;
1849 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1850 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1851 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1853 /* Don't substitute for a register intended as a clobberable
1854 operand. */
1855 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1856 if (rtx_equal_p (reg, dest))
1857 return 0;
1859 /* If the clobber represents an earlyclobber operand, we must not
1860 substitute an expression containing the clobbered register.
1861 As we do not analyze the constraint strings here, we have to
1862 make the conservative assumption. However, if the register is
1863 a fixed hard reg, the clobber cannot represent any operand;
1864 we leave it up to the machine description to either accept or
1865 reject use-and-clobber patterns. */
1866 if (!REG_P (reg)
1867 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1868 || !fixed_regs[REGNO (reg)])
1869 if (reg_overlap_mentioned_p (reg, src))
1870 return 0;
1873 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1874 or not), reject, unless nothing volatile comes between it and I3 */
1876 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1878 /* Make sure neither succ nor succ2 contains a volatile reference. */
1879 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1880 return 0;
1881 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1882 return 0;
1883 /* We'll check insns between INSN and I3 below. */
1886 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1887 to be an explicit register variable, and was chosen for a reason. */
1889 if (GET_CODE (src) == ASM_OPERANDS
1890 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1891 return 0;
1893 /* If there are any volatile insns between INSN and I3, reject, because
1894 they might affect machine state. */
1896 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1897 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1898 return 0;
1900 /* If INSN contains an autoincrement or autodecrement, make sure that
1901 register is not used between there and I3, and not already used in
1902 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1903 Also insist that I3 not be a jump; if it were one
1904 and the incremented register were spilled, we would lose. */
1906 #ifdef AUTO_INC_DEC
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (REG_NOTE_KIND (link) == REG_INC
1909 && (JUMP_P (i3)
1910 || reg_used_between_p (XEXP (link, 0), insn, i3)
1911 || (pred != NULL_RTX
1912 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1913 || (pred2 != NULL_RTX
1914 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1915 || (succ != NULL_RTX
1916 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1917 || (succ2 != NULL_RTX
1918 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1919 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1920 return 0;
1921 #endif
1923 #ifdef HAVE_cc0
1924 /* Don't combine an insn that follows a CC0-setting insn.
1925 An insn that uses CC0 must not be separated from the one that sets it.
1926 We do, however, allow I2 to follow a CC0-setting insn if that insn
1927 is passed as I1; in that case it will be deleted also.
1928 We also allow combining in this case if all the insns are adjacent
1929 because that would leave the two CC0 insns adjacent as well.
1930 It would be more logical to test whether CC0 occurs inside I1 or I2,
1931 but that would be much slower, and this ought to be equivalent. */
1933 p = prev_nonnote_insn (insn);
1934 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1935 && ! all_adjacent)
1936 return 0;
1937 #endif
1939 /* If we get here, we have passed all the tests and the combination is
1940 to be allowed. */
1942 *pdest = dest;
1943 *psrc = src;
1945 return 1;
1948 /* LOC is the location within I3 that contains its pattern or the component
1949 of a PARALLEL of the pattern. We validate that it is valid for combining.
1951 One problem is if I3 modifies its output, as opposed to replacing it
1952 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1953 doing so would produce an insn that is not equivalent to the original insns.
1955 Consider:
1957 (set (reg:DI 101) (reg:DI 100))
1958 (set (subreg:SI (reg:DI 101) 0) <foo>)
1960 This is NOT equivalent to:
1962 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1963 (set (reg:DI 101) (reg:DI 100))])
1965 Not only does this modify 100 (in which case it might still be valid
1966 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1968 We can also run into a problem if I2 sets a register that I1
1969 uses and I1 gets directly substituted into I3 (not via I2). In that
1970 case, we would be getting the wrong value of I2DEST into I3, so we
1971 must reject the combination. This case occurs when I2 and I1 both
1972 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1973 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1974 of a SET must prevent combination from occurring. The same situation
1975 can occur for I0, in which case I0_NOT_IN_SRC is set.
1977 Before doing the above check, we first try to expand a field assignment
1978 into a set of logical operations.
1980 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1981 we place a register that is both set and used within I3. If more than one
1982 such register is detected, we fail.
1984 Return 1 if the combination is valid, zero otherwise. */
1986 static int
1987 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1988 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1990 rtx x = *loc;
1992 if (GET_CODE (x) == SET)
1994 rtx set = x ;
1995 rtx dest = SET_DEST (set);
1996 rtx src = SET_SRC (set);
1997 rtx inner_dest = dest;
1998 rtx subdest;
2000 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2001 || GET_CODE (inner_dest) == SUBREG
2002 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2003 inner_dest = XEXP (inner_dest, 0);
2005 /* Check for the case where I3 modifies its output, as discussed
2006 above. We don't want to prevent pseudos from being combined
2007 into the address of a MEM, so only prevent the combination if
2008 i1 or i2 set the same MEM. */
2009 if ((inner_dest != dest &&
2010 (!MEM_P (inner_dest)
2011 || rtx_equal_p (i2dest, inner_dest)
2012 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2013 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2014 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2015 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2016 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2018 /* This is the same test done in can_combine_p except we can't test
2019 all_adjacent; we don't have to, since this instruction will stay
2020 in place, thus we are not considering increasing the lifetime of
2021 INNER_DEST.
2023 Also, if this insn sets a function argument, combining it with
2024 something that might need a spill could clobber a previous
2025 function argument; the all_adjacent test in can_combine_p also
2026 checks this; here, we do a more specific test for this case. */
2028 || (REG_P (inner_dest)
2029 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2030 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2031 GET_MODE (inner_dest))))
2032 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2033 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2034 return 0;
2036 /* If DEST is used in I3, it is being killed in this insn, so
2037 record that for later. We have to consider paradoxical
2038 subregs here, since they kill the whole register, but we
2039 ignore partial subregs, STRICT_LOW_PART, etc.
2040 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2041 STACK_POINTER_REGNUM, since these are always considered to be
2042 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2043 subdest = dest;
2044 if (GET_CODE (subdest) == SUBREG
2045 && (GET_MODE_SIZE (GET_MODE (subdest))
2046 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2047 subdest = SUBREG_REG (subdest);
2048 if (pi3dest_killed
2049 && REG_P (subdest)
2050 && reg_referenced_p (subdest, PATTERN (i3))
2051 && REGNO (subdest) != FRAME_POINTER_REGNUM
2052 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2053 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2054 #endif
2055 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2056 && (REGNO (subdest) != ARG_POINTER_REGNUM
2057 || ! fixed_regs [REGNO (subdest)])
2058 #endif
2059 && REGNO (subdest) != STACK_POINTER_REGNUM)
2061 if (*pi3dest_killed)
2062 return 0;
2064 *pi3dest_killed = subdest;
2068 else if (GET_CODE (x) == PARALLEL)
2070 int i;
2072 for (i = 0; i < XVECLEN (x, 0); i++)
2073 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2074 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2075 return 0;
2078 return 1;
2081 /* Return 1 if X is an arithmetic expression that contains a multiplication
2082 and division. We don't count multiplications by powers of two here. */
2084 static int
2085 contains_muldiv (rtx x)
2087 switch (GET_CODE (x))
2089 case MOD: case DIV: case UMOD: case UDIV:
2090 return 1;
2092 case MULT:
2093 return ! (CONST_INT_P (XEXP (x, 1))
2094 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
2095 default:
2096 if (BINARY_P (x))
2097 return contains_muldiv (XEXP (x, 0))
2098 || contains_muldiv (XEXP (x, 1));
2100 if (UNARY_P (x))
2101 return contains_muldiv (XEXP (x, 0));
2103 return 0;
2107 /* Determine whether INSN can be used in a combination. Return nonzero if
2108 not. This is used in try_combine to detect early some cases where we
2109 can't perform combinations. */
2111 static int
2112 cant_combine_insn_p (rtx insn)
2114 rtx set;
2115 rtx src, dest;
2117 /* If this isn't really an insn, we can't do anything.
2118 This can occur when flow deletes an insn that it has merged into an
2119 auto-increment address. */
2120 if (! INSN_P (insn))
2121 return 1;
2123 /* Never combine loads and stores involving hard regs that are likely
2124 to be spilled. The register allocator can usually handle such
2125 reg-reg moves by tying. If we allow the combiner to make
2126 substitutions of likely-spilled regs, reload might die.
2127 As an exception, we allow combinations involving fixed regs; these are
2128 not available to the register allocator so there's no risk involved. */
2130 set = single_set (insn);
2131 if (! set)
2132 return 0;
2133 src = SET_SRC (set);
2134 dest = SET_DEST (set);
2135 if (GET_CODE (src) == SUBREG)
2136 src = SUBREG_REG (src);
2137 if (GET_CODE (dest) == SUBREG)
2138 dest = SUBREG_REG (dest);
2139 if (REG_P (src) && REG_P (dest)
2140 && ((HARD_REGISTER_P (src)
2141 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2142 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2143 || (HARD_REGISTER_P (dest)
2144 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2145 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2146 return 1;
2148 return 0;
2151 struct likely_spilled_retval_info
2153 unsigned regno, nregs;
2154 unsigned mask;
2157 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2158 hard registers that are known to be written to / clobbered in full. */
2159 static void
2160 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2162 struct likely_spilled_retval_info *const info =
2163 (struct likely_spilled_retval_info *) data;
2164 unsigned regno, nregs;
2165 unsigned new_mask;
2167 if (!REG_P (XEXP (set, 0)))
2168 return;
2169 regno = REGNO (x);
2170 if (regno >= info->regno + info->nregs)
2171 return;
2172 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2173 if (regno + nregs <= info->regno)
2174 return;
2175 new_mask = (2U << (nregs - 1)) - 1;
2176 if (regno < info->regno)
2177 new_mask >>= info->regno - regno;
2178 else
2179 new_mask <<= regno - info->regno;
2180 info->mask &= ~new_mask;
2183 /* Return nonzero iff part of the return value is live during INSN, and
2184 it is likely spilled. This can happen when more than one insn is needed
2185 to copy the return value, e.g. when we consider to combine into the
2186 second copy insn for a complex value. */
2188 static int
2189 likely_spilled_retval_p (rtx insn)
2191 rtx use = BB_END (this_basic_block);
2192 rtx reg, p;
2193 unsigned regno, nregs;
2194 /* We assume here that no machine mode needs more than
2195 32 hard registers when the value overlaps with a register
2196 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2197 unsigned mask;
2198 struct likely_spilled_retval_info info;
2200 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2201 return 0;
2202 reg = XEXP (PATTERN (use), 0);
2203 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2204 return 0;
2205 regno = REGNO (reg);
2206 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2207 if (nregs == 1)
2208 return 0;
2209 mask = (2U << (nregs - 1)) - 1;
2211 /* Disregard parts of the return value that are set later. */
2212 info.regno = regno;
2213 info.nregs = nregs;
2214 info.mask = mask;
2215 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2216 if (INSN_P (p))
2217 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2218 mask = info.mask;
2220 /* Check if any of the (probably) live return value registers is
2221 likely spilled. */
2222 nregs --;
2225 if ((mask & 1 << nregs)
2226 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2227 return 1;
2228 } while (nregs--);
2229 return 0;
2232 /* Adjust INSN after we made a change to its destination.
2234 Changing the destination can invalidate notes that say something about
2235 the results of the insn and a LOG_LINK pointing to the insn. */
2237 static void
2238 adjust_for_new_dest (rtx insn)
2240 /* For notes, be conservative and simply remove them. */
2241 remove_reg_equal_equiv_notes (insn);
2243 /* The new insn will have a destination that was previously the destination
2244 of an insn just above it. Call distribute_links to make a LOG_LINK from
2245 the next use of that destination. */
2246 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2248 df_insn_rescan (insn);
2251 /* Return TRUE if combine can reuse reg X in mode MODE.
2252 ADDED_SETS is nonzero if the original set is still required. */
2253 static bool
2254 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2256 unsigned int regno;
2258 if (!REG_P(x))
2259 return false;
2261 regno = REGNO (x);
2262 /* Allow hard registers if the new mode is legal, and occupies no more
2263 registers than the old mode. */
2264 if (regno < FIRST_PSEUDO_REGISTER)
2265 return (HARD_REGNO_MODE_OK (regno, mode)
2266 && (hard_regno_nregs[regno][GET_MODE (x)]
2267 >= hard_regno_nregs[regno][mode]));
2269 /* Or a pseudo that is only used once. */
2270 return (REG_N_SETS (regno) == 1 && !added_sets
2271 && !REG_USERVAR_P (x));
2275 /* Check whether X, the destination of a set, refers to part of
2276 the register specified by REG. */
2278 static bool
2279 reg_subword_p (rtx x, rtx reg)
2281 /* Check that reg is an integer mode register. */
2282 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2283 return false;
2285 if (GET_CODE (x) == STRICT_LOW_PART
2286 || GET_CODE (x) == ZERO_EXTRACT)
2287 x = XEXP (x, 0);
2289 return GET_CODE (x) == SUBREG
2290 && SUBREG_REG (x) == reg
2291 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2294 #ifdef AUTO_INC_DEC
2295 /* Replace auto-increment addressing modes with explicit operations to
2296 access the same addresses without modifying the corresponding
2297 registers. If AFTER holds, SRC is meant to be reused after the
2298 side effect, otherwise it is to be reused before that. */
2300 static rtx
2301 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2303 rtx x = src;
2304 const RTX_CODE code = GET_CODE (x);
2305 int i;
2306 const char *fmt;
2308 switch (code)
2310 case REG:
2311 case CONST_INT:
2312 case CONST_DOUBLE:
2313 case CONST_FIXED:
2314 case CONST_VECTOR:
2315 case SYMBOL_REF:
2316 case CODE_LABEL:
2317 case PC:
2318 case CC0:
2319 case SCRATCH:
2320 /* SCRATCH must be shared because they represent distinct values. */
2321 return x;
2322 case CLOBBER:
2323 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2324 return x;
2325 break;
2327 case CONST:
2328 if (shared_const_p (x))
2329 return x;
2330 break;
2332 case MEM:
2333 mem_mode = GET_MODE (x);
2334 break;
2336 case PRE_INC:
2337 case PRE_DEC:
2338 case POST_INC:
2339 case POST_DEC:
2340 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2341 if (after == (code == PRE_INC || code == PRE_DEC))
2342 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2343 else
2344 x = gen_rtx_PLUS (GET_MODE (x),
2345 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2346 GEN_INT ((code == PRE_INC || code == POST_INC)
2347 ? GET_MODE_SIZE (mem_mode)
2348 : -GET_MODE_SIZE (mem_mode)));
2349 return x;
2351 case PRE_MODIFY:
2352 case POST_MODIFY:
2353 if (after == (code == PRE_MODIFY))
2354 x = XEXP (x, 0);
2355 else
2356 x = XEXP (x, 1);
2357 return cleanup_auto_inc_dec (x, after, mem_mode);
2359 default:
2360 break;
2363 /* Copy the various flags, fields, and other information. We assume
2364 that all fields need copying, and then clear the fields that should
2365 not be copied. That is the sensible default behavior, and forces
2366 us to explicitly document why we are *not* copying a flag. */
2367 x = shallow_copy_rtx (x);
2369 /* We do not copy the USED flag, which is used as a mark bit during
2370 walks over the RTL. */
2371 RTX_FLAG (x, used) = 0;
2373 /* We do not copy FRAME_RELATED for INSNs. */
2374 if (INSN_P (x))
2375 RTX_FLAG (x, frame_related) = 0;
2377 fmt = GET_RTX_FORMAT (code);
2378 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2379 if (fmt[i] == 'e')
2380 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2381 else if (fmt[i] == 'E' || fmt[i] == 'V')
2383 int j;
2384 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2385 for (j = 0; j < XVECLEN (x, i); j++)
2386 XVECEXP (x, i, j)
2387 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2390 return x;
2392 #endif
2394 /* Auxiliary data structure for propagate_for_debug_stmt. */
2396 struct rtx_subst_pair
2398 rtx to;
2399 bool adjusted;
2400 bool after;
2403 /* DATA points to an rtx_subst_pair. Return the value that should be
2404 substituted. */
2406 static rtx
2407 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2409 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2411 if (!rtx_equal_p (from, old_rtx))
2412 return NULL_RTX;
2413 if (!pair->adjusted)
2415 pair->adjusted = true;
2416 #ifdef AUTO_INC_DEC
2417 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2418 #else
2419 pair->to = copy_rtx (pair->to);
2420 #endif
2421 pair->to = make_compound_operation (pair->to, SET);
2422 return pair->to;
2424 return copy_rtx (pair->to);
2427 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2428 and LAST. If MOVE holds, debug insns must also be moved past
2429 LAST. */
2431 static void
2432 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2434 rtx next, move_pos = move ? last : NULL_RTX, loc;
2436 struct rtx_subst_pair p;
2437 p.to = src;
2438 p.adjusted = false;
2439 p.after = move;
2441 next = NEXT_INSN (insn);
2442 while (next != last)
2444 insn = next;
2445 next = NEXT_INSN (insn);
2446 if (DEBUG_INSN_P (insn))
2448 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2449 dest, propagate_for_debug_subst, &p);
2450 if (loc == INSN_VAR_LOCATION_LOC (insn))
2451 continue;
2452 INSN_VAR_LOCATION_LOC (insn) = loc;
2453 if (move_pos)
2455 remove_insn (insn);
2456 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2457 move_pos = emit_debug_insn_after (insn, move_pos);
2459 else
2460 df_insn_rescan (insn);
2465 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2466 Note that the INSN should be deleted *after* removing dead edges, so
2467 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2468 but not for a (set (pc) (label_ref FOO)). */
2470 static void
2471 update_cfg_for_uncondjump (rtx insn)
2473 basic_block bb = BLOCK_FOR_INSN (insn);
2474 bool at_end = (BB_END (bb) == insn);
2476 if (at_end)
2477 purge_dead_edges (bb);
2479 delete_insn (insn);
2480 if (at_end && EDGE_COUNT (bb->succs) == 1)
2481 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2484 /* Try to combine the insns I0, I1 and I2 into I3.
2485 Here I0, I1 and I2 appear earlier than I3.
2486 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2489 If we are combining more than two insns and the resulting insn is not
2490 recognized, try splitting it into two insns. If that happens, I2 and I3
2491 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2492 Otherwise, I0, I1 and I2 are pseudo-deleted.
2494 Return 0 if the combination does not work. Then nothing is changed.
2495 If we did the combination, return the insn at which combine should
2496 resume scanning.
2498 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2499 new direct jump instruction. */
2501 static rtx
2502 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2504 /* New patterns for I3 and I2, respectively. */
2505 rtx newpat, newi2pat = 0;
2506 rtvec newpat_vec_with_clobbers = 0;
2507 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2508 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2509 dead. */
2510 int added_sets_0, added_sets_1, added_sets_2;
2511 /* Total number of SETs to put into I3. */
2512 int total_sets;
2513 /* Nonzero if I2's or I1's body now appears in I3. */
2514 int i2_is_used = 0, i1_is_used = 0;
2515 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2516 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2517 /* Contains I3 if the destination of I3 is used in its source, which means
2518 that the old life of I3 is being killed. If that usage is placed into
2519 I2 and not in I3, a REG_DEAD note must be made. */
2520 rtx i3dest_killed = 0;
2521 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2522 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2523 /* Set if I2DEST was reused as a scratch register. */
2524 bool i2scratch = false;
2525 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2526 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2529 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2530 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2531 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2532 /* Notes that must be added to REG_NOTES in I3 and I2. */
2533 rtx new_i3_notes, new_i2_notes;
2534 /* Notes that we substituted I3 into I2 instead of the normal case. */
2535 int i3_subst_into_i2 = 0;
2536 /* Notes that I1, I2 or I3 is a MULT operation. */
2537 int have_mult = 0;
2538 int swap_i2i3 = 0;
2539 int changed_i3_dest = 0;
2541 int maxreg;
2542 rtx temp;
2543 rtx link;
2544 rtx other_pat = 0;
2545 rtx new_other_notes;
2546 int i;
2548 /* Only try four-insn combinations when there's high likelihood of
2549 success. Look for simple insns, such as loads of constants or
2550 binary operations involving a constant. */
2551 if (i0)
2553 int i;
2554 int ngood = 0;
2555 int nshift = 0;
2557 if (!flag_expensive_optimizations)
2558 return 0;
2560 for (i = 0; i < 4; i++)
2562 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2563 rtx set = single_set (insn);
2564 rtx src;
2565 if (!set)
2566 continue;
2567 src = SET_SRC (set);
2568 if (CONSTANT_P (src))
2570 ngood += 2;
2571 break;
2573 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2574 ngood++;
2575 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2576 || GET_CODE (src) == LSHIFTRT)
2577 nshift++;
2579 if (ngood < 2 && nshift < 2)
2580 return 0;
2583 /* Exit early if one of the insns involved can't be used for
2584 combinations. */
2585 if (cant_combine_insn_p (i3)
2586 || cant_combine_insn_p (i2)
2587 || (i1 && cant_combine_insn_p (i1))
2588 || (i0 && cant_combine_insn_p (i0))
2589 || likely_spilled_retval_p (i3))
2590 return 0;
2592 combine_attempts++;
2593 undobuf.other_insn = 0;
2595 /* Reset the hard register usage information. */
2596 CLEAR_HARD_REG_SET (newpat_used_regs);
2598 if (dump_file && (dump_flags & TDF_DETAILS))
2600 if (i0)
2601 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2602 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2603 else if (i1)
2604 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2605 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2606 else
2607 fprintf (dump_file, "\nTrying %d -> %d:\n",
2608 INSN_UID (i2), INSN_UID (i3));
2611 /* If multiple insns feed into one of I2 or I3, they can be in any
2612 order. To simplify the code below, reorder them in sequence. */
2613 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2614 temp = i2, i2 = i0, i0 = temp;
2615 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2616 temp = i1, i1 = i0, i0 = temp;
2617 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2618 temp = i1, i1 = i2, i2 = temp;
2620 added_links_insn = 0;
2622 /* First check for one important special-case that the code below will
2623 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2624 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2625 we may be able to replace that destination with the destination of I3.
2626 This occurs in the common code where we compute both a quotient and
2627 remainder into a structure, in which case we want to do the computation
2628 directly into the structure to avoid register-register copies.
2630 Note that this case handles both multiple sets in I2 and also
2631 cases where I2 has a number of CLOBBER or PARALLELs.
2633 We make very conservative checks below and only try to handle the
2634 most common cases of this. For example, we only handle the case
2635 where I2 and I3 are adjacent to avoid making difficult register
2636 usage tests. */
2638 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2639 && REG_P (SET_SRC (PATTERN (i3)))
2640 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2641 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2642 && GET_CODE (PATTERN (i2)) == PARALLEL
2643 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2644 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2645 below would need to check what is inside (and reg_overlap_mentioned_p
2646 doesn't support those codes anyway). Don't allow those destinations;
2647 the resulting insn isn't likely to be recognized anyway. */
2648 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2649 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2650 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2651 SET_DEST (PATTERN (i3)))
2652 && next_active_insn (i2) == i3)
2654 rtx p2 = PATTERN (i2);
2656 /* Make sure that the destination of I3,
2657 which we are going to substitute into one output of I2,
2658 is not used within another output of I2. We must avoid making this:
2659 (parallel [(set (mem (reg 69)) ...)
2660 (set (reg 69) ...)])
2661 which is not well-defined as to order of actions.
2662 (Besides, reload can't handle output reloads for this.)
2664 The problem can also happen if the dest of I3 is a memory ref,
2665 if another dest in I2 is an indirect memory ref. */
2666 for (i = 0; i < XVECLEN (p2, 0); i++)
2667 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2668 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2669 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2670 SET_DEST (XVECEXP (p2, 0, i))))
2671 break;
2673 if (i == XVECLEN (p2, 0))
2674 for (i = 0; i < XVECLEN (p2, 0); i++)
2675 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2676 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2677 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2679 combine_merges++;
2681 subst_insn = i3;
2682 subst_low_luid = DF_INSN_LUID (i2);
2684 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2685 i2src = SET_DEST (PATTERN (i3));
2686 i2dest = SET_SRC (PATTERN (i3));
2687 i2dest_killed = dead_or_set_p (i2, i2dest);
2689 /* Replace the dest in I2 with our dest and make the resulting
2690 insn the new pattern for I3. Then skip to where we
2691 validate the pattern. Everything was set up above. */
2692 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2693 SET_DEST (PATTERN (i3)));
2695 newpat = p2;
2696 i3_subst_into_i2 = 1;
2697 goto validate_replacement;
2701 /* If I2 is setting a pseudo to a constant and I3 is setting some
2702 sub-part of it to another constant, merge them by making a new
2703 constant. */
2704 if (i1 == 0
2705 && (temp = single_set (i2)) != 0
2706 && (CONST_INT_P (SET_SRC (temp))
2707 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2708 && GET_CODE (PATTERN (i3)) == SET
2709 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2710 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2711 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2713 rtx dest = SET_DEST (PATTERN (i3));
2714 int offset = -1;
2715 int width = 0;
2717 if (GET_CODE (dest) == ZERO_EXTRACT)
2719 if (CONST_INT_P (XEXP (dest, 1))
2720 && CONST_INT_P (XEXP (dest, 2)))
2722 width = INTVAL (XEXP (dest, 1));
2723 offset = INTVAL (XEXP (dest, 2));
2724 dest = XEXP (dest, 0);
2725 if (BITS_BIG_ENDIAN)
2726 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2729 else
2731 if (GET_CODE (dest) == STRICT_LOW_PART)
2732 dest = XEXP (dest, 0);
2733 width = GET_MODE_BITSIZE (GET_MODE (dest));
2734 offset = 0;
2737 if (offset >= 0)
2739 /* If this is the low part, we're done. */
2740 if (subreg_lowpart_p (dest))
2742 /* Handle the case where inner is twice the size of outer. */
2743 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2744 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2745 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2746 /* Otherwise give up for now. */
2747 else
2748 offset = -1;
2751 if (offset >= 0
2752 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2753 <= HOST_BITS_PER_DOUBLE_INT))
2755 double_int m, o, i;
2756 rtx inner = SET_SRC (PATTERN (i3));
2757 rtx outer = SET_SRC (temp);
2759 o = rtx_to_double_int (outer);
2760 i = rtx_to_double_int (inner);
2762 m = double_int_mask (width);
2763 i = double_int_and (i, m);
2764 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2765 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2766 o = double_int_ior (double_int_and_not (o, m), i);
2768 combine_merges++;
2769 subst_insn = i3;
2770 subst_low_luid = DF_INSN_LUID (i2);
2771 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2772 i2dest = SET_DEST (temp);
2773 i2dest_killed = dead_or_set_p (i2, i2dest);
2775 /* Replace the source in I2 with the new constant and make the
2776 resulting insn the new pattern for I3. Then skip to where we
2777 validate the pattern. Everything was set up above. */
2778 SUBST (SET_SRC (temp),
2779 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2781 newpat = PATTERN (i2);
2783 /* The dest of I3 has been replaced with the dest of I2. */
2784 changed_i3_dest = 1;
2785 goto validate_replacement;
2789 #ifndef HAVE_cc0
2790 /* If we have no I1 and I2 looks like:
2791 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2792 (set Y OP)])
2793 make up a dummy I1 that is
2794 (set Y OP)
2795 and change I2 to be
2796 (set (reg:CC X) (compare:CC Y (const_int 0)))
2798 (We can ignore any trailing CLOBBERs.)
2800 This undoes a previous combination and allows us to match a branch-and-
2801 decrement insn. */
2803 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2804 && XVECLEN (PATTERN (i2), 0) >= 2
2805 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2806 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2807 == MODE_CC)
2808 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2809 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2810 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2811 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2812 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2813 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2815 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2816 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2817 break;
2819 if (i == 1)
2821 /* We make I1 with the same INSN_UID as I2. This gives it
2822 the same DF_INSN_LUID for value tracking. Our fake I1 will
2823 never appear in the insn stream so giving it the same INSN_UID
2824 as I2 will not cause a problem. */
2826 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2827 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2828 INSN_LOCATOR (i2), -1, NULL_RTX);
2830 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2831 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2832 SET_DEST (PATTERN (i1)));
2835 #endif
2837 /* Verify that I2 and I1 are valid for combining. */
2838 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2839 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2840 &i1dest, &i1src))
2841 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2842 &i0dest, &i0src)))
2844 undo_all ();
2845 return 0;
2848 /* Record whether I2DEST is used in I2SRC and similarly for the other
2849 cases. Knowing this will help in register status updating below. */
2850 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2851 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2852 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2853 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2854 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2855 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2856 i2dest_killed = dead_or_set_p (i2, i2dest);
2857 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2858 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2860 /* For the earlier insns, determine which of the subsequent ones they
2861 feed. */
2862 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2863 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2864 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2865 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2866 && reg_overlap_mentioned_p (i0dest, i2src))));
2868 /* Ensure that I3's pattern can be the destination of combines. */
2869 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2870 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2871 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2872 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2873 &i3dest_killed))
2875 undo_all ();
2876 return 0;
2879 /* See if any of the insns is a MULT operation. Unless one is, we will
2880 reject a combination that is, since it must be slower. Be conservative
2881 here. */
2882 if (GET_CODE (i2src) == MULT
2883 || (i1 != 0 && GET_CODE (i1src) == MULT)
2884 || (i0 != 0 && GET_CODE (i0src) == MULT)
2885 || (GET_CODE (PATTERN (i3)) == SET
2886 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2887 have_mult = 1;
2889 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2890 We used to do this EXCEPT in one case: I3 has a post-inc in an
2891 output operand. However, that exception can give rise to insns like
2892 mov r3,(r3)+
2893 which is a famous insn on the PDP-11 where the value of r3 used as the
2894 source was model-dependent. Avoid this sort of thing. */
2896 #if 0
2897 if (!(GET_CODE (PATTERN (i3)) == SET
2898 && REG_P (SET_SRC (PATTERN (i3)))
2899 && MEM_P (SET_DEST (PATTERN (i3)))
2900 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2901 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2902 /* It's not the exception. */
2903 #endif
2904 #ifdef AUTO_INC_DEC
2905 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2906 if (REG_NOTE_KIND (link) == REG_INC
2907 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2908 || (i1 != 0
2909 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2911 undo_all ();
2912 return 0;
2914 #endif
2916 /* See if the SETs in I1 or I2 need to be kept around in the merged
2917 instruction: whenever the value set there is still needed past I3.
2918 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2920 For the SET in I1, we have two cases: If I1 and I2 independently
2921 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2922 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2923 in I1 needs to be kept around unless I1DEST dies or is set in either
2924 I2 or I3. The same consideration applies to I0. */
2926 added_sets_2 = !dead_or_set_p (i3, i2dest);
2928 if (i1)
2929 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2930 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2931 else
2932 added_sets_1 = 0;
2934 if (i0)
2935 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2936 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2937 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2938 else
2939 added_sets_0 = 0;
2941 /* If the set in I2 needs to be kept around, we must make a copy of
2942 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2943 PATTERN (I2), we are only substituting for the original I1DEST, not into
2944 an already-substituted copy. This also prevents making self-referential
2945 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2946 I2DEST. */
2948 if (added_sets_2)
2950 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2951 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2952 else
2953 i2pat = copy_rtx (PATTERN (i2));
2956 if (added_sets_1)
2958 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2959 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2960 else
2961 i1pat = copy_rtx (PATTERN (i1));
2964 if (added_sets_0)
2966 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2967 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2968 else
2969 i0pat = copy_rtx (PATTERN (i0));
2972 combine_merges++;
2974 /* Substitute in the latest insn for the regs set by the earlier ones. */
2976 maxreg = max_reg_num ();
2978 subst_insn = i3;
2980 #ifndef HAVE_cc0
2981 /* Many machines that don't use CC0 have insns that can both perform an
2982 arithmetic operation and set the condition code. These operations will
2983 be represented as a PARALLEL with the first element of the vector
2984 being a COMPARE of an arithmetic operation with the constant zero.
2985 The second element of the vector will set some pseudo to the result
2986 of the same arithmetic operation. If we simplify the COMPARE, we won't
2987 match such a pattern and so will generate an extra insn. Here we test
2988 for this case, where both the comparison and the operation result are
2989 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2990 I2SRC. Later we will make the PARALLEL that contains I2. */
2992 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2993 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2994 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2995 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2997 #ifdef SELECT_CC_MODE
2998 rtx *cc_use;
2999 enum machine_mode compare_mode;
3000 #endif
3002 newpat = PATTERN (i3);
3003 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
3005 i2_is_used = 1;
3007 #ifdef SELECT_CC_MODE
3008 /* See if a COMPARE with the operand we substituted in should be done
3009 with the mode that is currently being used. If not, do the same
3010 processing we do in `subst' for a SET; namely, if the destination
3011 is used only once, try to replace it with a register of the proper
3012 mode and also replace the COMPARE. */
3013 if (undobuf.other_insn == 0
3014 && (cc_use = find_single_use (SET_DEST (newpat), i3,
3015 &undobuf.other_insn))
3016 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
3017 i2src, const0_rtx))
3018 != GET_MODE (SET_DEST (newpat))))
3020 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3021 compare_mode))
3023 unsigned int regno = REGNO (SET_DEST (newpat));
3024 rtx new_dest;
3026 if (regno < FIRST_PSEUDO_REGISTER)
3027 new_dest = gen_rtx_REG (compare_mode, regno);
3028 else
3030 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3031 new_dest = regno_reg_rtx[regno];
3034 SUBST (SET_DEST (newpat), new_dest);
3035 SUBST (XEXP (*cc_use, 0), new_dest);
3036 SUBST (SET_SRC (newpat),
3037 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3039 else
3040 undobuf.other_insn = 0;
3042 #endif
3044 else
3045 #endif
3047 /* It is possible that the source of I2 or I1 may be performing
3048 an unneeded operation, such as a ZERO_EXTEND of something
3049 that is known to have the high part zero. Handle that case
3050 by letting subst look at the innermost one of them.
3052 Another way to do this would be to have a function that tries
3053 to simplify a single insn instead of merging two or more
3054 insns. We don't do this because of the potential of infinite
3055 loops and because of the potential extra memory required.
3056 However, doing it the way we are is a bit of a kludge and
3057 doesn't catch all cases.
3059 But only do this if -fexpensive-optimizations since it slows
3060 things down and doesn't usually win.
3062 This is not done in the COMPARE case above because the
3063 unmodified I2PAT is used in the PARALLEL and so a pattern
3064 with a modified I2SRC would not match. */
3066 if (flag_expensive_optimizations)
3068 /* Pass pc_rtx so no substitutions are done, just
3069 simplifications. */
3070 if (i1)
3072 subst_low_luid = DF_INSN_LUID (i1);
3073 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3075 else
3077 subst_low_luid = DF_INSN_LUID (i2);
3078 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3082 n_occurrences = 0; /* `subst' counts here */
3084 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a
3085 unique copy of I2SRC each time we substitute it to avoid
3086 self-referential rtl. */
3088 subst_low_luid = DF_INSN_LUID (i2);
3089 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3090 ((i1_feeds_i2_n && i1dest_in_i1src)
3091 || (i0_feeds_i2_n && i0dest_in_i0src)));
3092 substed_i2 = 1;
3094 /* Record whether i2's body now appears within i3's body. */
3095 i2_is_used = n_occurrences;
3098 /* If we already got a failure, don't try to do more. Otherwise,
3099 try to substitute in I1 if we have it. */
3101 if (i1 && GET_CODE (newpat) != CLOBBER)
3103 /* Check that an autoincrement side-effect on I1 has not been lost.
3104 This happens if I1DEST is mentioned in I2 and dies there, and
3105 has disappeared from the new pattern. */
3106 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3107 && i1_feeds_i2_n
3108 && dead_or_set_p (i2, i1dest)
3109 && !reg_overlap_mentioned_p (i1dest, newpat))
3110 /* Before we can do this substitution, we must redo the test done
3111 above (see detailed comments there) that ensures that I1DEST
3112 isn't mentioned in any SETs in NEWPAT that are field assignments. */
3113 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3114 0, 0, 0))
3116 undo_all ();
3117 return 0;
3120 n_occurrences = 0;
3121 subst_low_luid = DF_INSN_LUID (i1);
3122 newpat = subst (newpat, i1dest, i1src, 0,
3123 i0_feeds_i1_n && i0dest_in_i0src);
3124 substed_i1 = 1;
3125 i1_is_used = n_occurrences;
3127 if (i0 && GET_CODE (newpat) != CLOBBER)
3129 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3130 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3131 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3132 && !reg_overlap_mentioned_p (i0dest, newpat))
3133 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3134 0, 0, 0))
3136 undo_all ();
3137 return 0;
3140 n_occurrences = 0;
3141 subst_low_luid = DF_INSN_LUID (i0);
3142 newpat = subst (newpat, i0dest, i0src, 0,
3143 i0_feeds_i1_n && i0dest_in_i0src);
3144 substed_i0 = 1;
3147 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3148 to count all the ways that I2SRC and I1SRC can be used. */
3149 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3150 && i2_is_used + added_sets_2 > 1)
3151 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3152 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3153 > 1))
3154 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3155 && (n_occurrences + added_sets_0
3156 + (added_sets_1 && i0_feeds_i1_n)
3157 + (added_sets_2 && i0_feeds_i2_n)
3158 > 1))
3159 /* Fail if we tried to make a new register. */
3160 || max_reg_num () != maxreg
3161 /* Fail if we couldn't do something and have a CLOBBER. */
3162 || GET_CODE (newpat) == CLOBBER
3163 /* Fail if this new pattern is a MULT and we didn't have one before
3164 at the outer level. */
3165 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3166 && ! have_mult))
3168 undo_all ();
3169 return 0;
3172 /* If the actions of the earlier insns must be kept
3173 in addition to substituting them into the latest one,
3174 we must make a new PARALLEL for the latest insn
3175 to hold additional the SETs. */
3177 if (added_sets_0 || added_sets_1 || added_sets_2)
3179 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3180 combine_extras++;
3182 if (GET_CODE (newpat) == PARALLEL)
3184 rtvec old = XVEC (newpat, 0);
3185 total_sets = XVECLEN (newpat, 0) + extra_sets;
3186 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3187 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3188 sizeof (old->elem[0]) * old->num_elem);
3190 else
3192 rtx old = newpat;
3193 total_sets = 1 + extra_sets;
3194 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3195 XVECEXP (newpat, 0, 0) = old;
3198 if (added_sets_0)
3199 XVECEXP (newpat, 0, --total_sets) = i0pat;
3201 if (added_sets_1)
3203 rtx t = i1pat;
3204 if (i0_feeds_i1_n)
3205 t = subst (t, i0dest, i0src, 0, 0);
3207 XVECEXP (newpat, 0, --total_sets) = t;
3209 if (added_sets_2)
3211 rtx t = i2pat;
3212 if (i0_feeds_i2_n)
3213 t = subst (t, i0dest, i0src, 0, 0);
3214 if (i1_feeds_i2_n)
3215 t = subst (t, i1dest, i1src, 0, 0);
3217 XVECEXP (newpat, 0, --total_sets) = t;
3221 validate_replacement:
3223 /* Note which hard regs this insn has as inputs. */
3224 mark_used_regs_combine (newpat);
3226 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3227 consider splitting this pattern, we might need these clobbers. */
3228 if (i1 && GET_CODE (newpat) == PARALLEL
3229 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3231 int len = XVECLEN (newpat, 0);
3233 newpat_vec_with_clobbers = rtvec_alloc (len);
3234 for (i = 0; i < len; i++)
3235 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3238 /* Is the result of combination a valid instruction? */
3239 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3241 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3242 the second SET's destination is a register that is unused and isn't
3243 marked as an instruction that might trap in an EH region. In that case,
3244 we just need the first SET. This can occur when simplifying a divmod
3245 insn. We *must* test for this case here because the code below that
3246 splits two independent SETs doesn't handle this case correctly when it
3247 updates the register status.
3249 It's pointless doing this if we originally had two sets, one from
3250 i3, and one from i2. Combining then splitting the parallel results
3251 in the original i2 again plus an invalid insn (which we delete).
3252 The net effect is only to move instructions around, which makes
3253 debug info less accurate.
3255 Also check the case where the first SET's destination is unused.
3256 That would not cause incorrect code, but does cause an unneeded
3257 insn to remain. */
3259 if (insn_code_number < 0
3260 && !(added_sets_2 && i1 == 0)
3261 && GET_CODE (newpat) == PARALLEL
3262 && XVECLEN (newpat, 0) == 2
3263 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3264 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3265 && asm_noperands (newpat) < 0)
3267 rtx set0 = XVECEXP (newpat, 0, 0);
3268 rtx set1 = XVECEXP (newpat, 0, 1);
3270 if (((REG_P (SET_DEST (set1))
3271 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3272 || (GET_CODE (SET_DEST (set1)) == SUBREG
3273 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3274 && insn_nothrow_p (i3)
3275 && !side_effects_p (SET_SRC (set1)))
3277 newpat = set0;
3278 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3281 else if (((REG_P (SET_DEST (set0))
3282 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3283 || (GET_CODE (SET_DEST (set0)) == SUBREG
3284 && find_reg_note (i3, REG_UNUSED,
3285 SUBREG_REG (SET_DEST (set0)))))
3286 && insn_nothrow_p (i3)
3287 && !side_effects_p (SET_SRC (set0)))
3289 newpat = set1;
3290 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3292 if (insn_code_number >= 0)
3293 changed_i3_dest = 1;
3297 /* If we were combining three insns and the result is a simple SET
3298 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3299 insns. There are two ways to do this. It can be split using a
3300 machine-specific method (like when you have an addition of a large
3301 constant) or by combine in the function find_split_point. */
3303 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3304 && asm_noperands (newpat) < 0)
3306 rtx parallel, m_split, *split;
3308 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3309 use I2DEST as a scratch register will help. In the latter case,
3310 convert I2DEST to the mode of the source of NEWPAT if we can. */
3312 m_split = combine_split_insns (newpat, i3);
3314 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3315 inputs of NEWPAT. */
3317 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3318 possible to try that as a scratch reg. This would require adding
3319 more code to make it work though. */
3321 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3323 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3325 /* First try to split using the original register as a
3326 scratch register. */
3327 parallel = gen_rtx_PARALLEL (VOIDmode,
3328 gen_rtvec (2, newpat,
3329 gen_rtx_CLOBBER (VOIDmode,
3330 i2dest)));
3331 m_split = combine_split_insns (parallel, i3);
3333 /* If that didn't work, try changing the mode of I2DEST if
3334 we can. */
3335 if (m_split == 0
3336 && new_mode != GET_MODE (i2dest)
3337 && new_mode != VOIDmode
3338 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3340 enum machine_mode old_mode = GET_MODE (i2dest);
3341 rtx ni2dest;
3343 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3344 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3345 else
3347 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3348 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3351 parallel = (gen_rtx_PARALLEL
3352 (VOIDmode,
3353 gen_rtvec (2, newpat,
3354 gen_rtx_CLOBBER (VOIDmode,
3355 ni2dest))));
3356 m_split = combine_split_insns (parallel, i3);
3358 if (m_split == 0
3359 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3361 struct undo *buf;
3363 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3364 buf = undobuf.undos;
3365 undobuf.undos = buf->next;
3366 buf->next = undobuf.frees;
3367 undobuf.frees = buf;
3371 i2scratch = m_split != 0;
3374 /* If recog_for_combine has discarded clobbers, try to use them
3375 again for the split. */
3376 if (m_split == 0 && newpat_vec_with_clobbers)
3378 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3379 m_split = combine_split_insns (parallel, i3);
3382 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3384 m_split = PATTERN (m_split);
3385 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3386 if (insn_code_number >= 0)
3387 newpat = m_split;
3389 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3390 && (next_real_insn (i2) == i3
3391 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3393 rtx i2set, i3set;
3394 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3395 newi2pat = PATTERN (m_split);
3397 i3set = single_set (NEXT_INSN (m_split));
3398 i2set = single_set (m_split);
3400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3402 /* If I2 or I3 has multiple SETs, we won't know how to track
3403 register status, so don't use these insns. If I2's destination
3404 is used between I2 and I3, we also can't use these insns. */
3406 if (i2_code_number >= 0 && i2set && i3set
3407 && (next_real_insn (i2) == i3
3408 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3409 insn_code_number = recog_for_combine (&newi3pat, i3,
3410 &new_i3_notes);
3411 if (insn_code_number >= 0)
3412 newpat = newi3pat;
3414 /* It is possible that both insns now set the destination of I3.
3415 If so, we must show an extra use of it. */
3417 if (insn_code_number >= 0)
3419 rtx new_i3_dest = SET_DEST (i3set);
3420 rtx new_i2_dest = SET_DEST (i2set);
3422 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3423 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3424 || GET_CODE (new_i3_dest) == SUBREG)
3425 new_i3_dest = XEXP (new_i3_dest, 0);
3427 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3428 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3429 || GET_CODE (new_i2_dest) == SUBREG)
3430 new_i2_dest = XEXP (new_i2_dest, 0);
3432 if (REG_P (new_i3_dest)
3433 && REG_P (new_i2_dest)
3434 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3435 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3439 /* If we can split it and use I2DEST, go ahead and see if that
3440 helps things be recognized. Verify that none of the registers
3441 are set between I2 and I3. */
3442 if (insn_code_number < 0
3443 && (split = find_split_point (&newpat, i3, false)) != 0
3444 #ifdef HAVE_cc0
3445 && REG_P (i2dest)
3446 #endif
3447 /* We need I2DEST in the proper mode. If it is a hard register
3448 or the only use of a pseudo, we can change its mode.
3449 Make sure we don't change a hard register to have a mode that
3450 isn't valid for it, or change the number of registers. */
3451 && (GET_MODE (*split) == GET_MODE (i2dest)
3452 || GET_MODE (*split) == VOIDmode
3453 || can_change_dest_mode (i2dest, added_sets_2,
3454 GET_MODE (*split)))
3455 && (next_real_insn (i2) == i3
3456 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3457 /* We can't overwrite I2DEST if its value is still used by
3458 NEWPAT. */
3459 && ! reg_referenced_p (i2dest, newpat))
3461 rtx newdest = i2dest;
3462 enum rtx_code split_code = GET_CODE (*split);
3463 enum machine_mode split_mode = GET_MODE (*split);
3464 bool subst_done = false;
3465 newi2pat = NULL_RTX;
3467 i2scratch = true;
3469 /* *SPLIT may be part of I2SRC, so make sure we have the
3470 original expression around for later debug processing.
3471 We should not need I2SRC any more in other cases. */
3472 if (MAY_HAVE_DEBUG_INSNS)
3473 i2src = copy_rtx (i2src);
3474 else
3475 i2src = NULL;
3477 /* Get NEWDEST as a register in the proper mode. We have already
3478 validated that we can do this. */
3479 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3481 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3482 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3483 else
3485 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3486 newdest = regno_reg_rtx[REGNO (i2dest)];
3490 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3491 an ASHIFT. This can occur if it was inside a PLUS and hence
3492 appeared to be a memory address. This is a kludge. */
3493 if (split_code == MULT
3494 && CONST_INT_P (XEXP (*split, 1))
3495 && INTVAL (XEXP (*split, 1)) > 0
3496 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3498 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3499 XEXP (*split, 0), GEN_INT (i)));
3500 /* Update split_code because we may not have a multiply
3501 anymore. */
3502 split_code = GET_CODE (*split);
3505 #ifdef INSN_SCHEDULING
3506 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3507 be written as a ZERO_EXTEND. */
3508 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3510 #ifdef LOAD_EXTEND_OP
3511 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3512 what it really is. */
3513 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3514 == SIGN_EXTEND)
3515 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3516 SUBREG_REG (*split)));
3517 else
3518 #endif
3519 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3522 #endif
3524 /* Attempt to split binary operators using arithmetic identities. */
3525 if (BINARY_P (SET_SRC (newpat))
3526 && split_mode == GET_MODE (SET_SRC (newpat))
3527 && ! side_effects_p (SET_SRC (newpat)))
3529 rtx setsrc = SET_SRC (newpat);
3530 enum machine_mode mode = GET_MODE (setsrc);
3531 enum rtx_code code = GET_CODE (setsrc);
3532 rtx src_op0 = XEXP (setsrc, 0);
3533 rtx src_op1 = XEXP (setsrc, 1);
3535 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3536 if (rtx_equal_p (src_op0, src_op1))
3538 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3539 SUBST (XEXP (setsrc, 0), newdest);
3540 SUBST (XEXP (setsrc, 1), newdest);
3541 subst_done = true;
3543 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3544 else if ((code == PLUS || code == MULT)
3545 && GET_CODE (src_op0) == code
3546 && GET_CODE (XEXP (src_op0, 0)) == code
3547 && (INTEGRAL_MODE_P (mode)
3548 || (FLOAT_MODE_P (mode)
3549 && flag_unsafe_math_optimizations)))
3551 rtx p = XEXP (XEXP (src_op0, 0), 0);
3552 rtx q = XEXP (XEXP (src_op0, 0), 1);
3553 rtx r = XEXP (src_op0, 1);
3554 rtx s = src_op1;
3556 /* Split both "((X op Y) op X) op Y" and
3557 "((X op Y) op Y) op X" as "T op T" where T is
3558 "X op Y". */
3559 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3560 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3563 XEXP (src_op0, 0));
3564 SUBST (XEXP (setsrc, 0), newdest);
3565 SUBST (XEXP (setsrc, 1), newdest);
3566 subst_done = true;
3568 /* Split "((X op X) op Y) op Y)" as "T op T" where
3569 T is "X op Y". */
3570 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3572 rtx tmp = simplify_gen_binary (code, mode, p, r);
3573 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3574 SUBST (XEXP (setsrc, 0), newdest);
3575 SUBST (XEXP (setsrc, 1), newdest);
3576 subst_done = true;
3581 if (!subst_done)
3583 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3584 SUBST (*split, newdest);
3587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3589 /* recog_for_combine might have added CLOBBERs to newi2pat.
3590 Make sure NEWPAT does not depend on the clobbered regs. */
3591 if (GET_CODE (newi2pat) == PARALLEL)
3592 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3593 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3595 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3596 if (reg_overlap_mentioned_p (reg, newpat))
3598 undo_all ();
3599 return 0;
3603 /* If the split point was a MULT and we didn't have one before,
3604 don't use one now. */
3605 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3606 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3610 /* Check for a case where we loaded from memory in a narrow mode and
3611 then sign extended it, but we need both registers. In that case,
3612 we have a PARALLEL with both loads from the same memory location.
3613 We can split this into a load from memory followed by a register-register
3614 copy. This saves at least one insn, more if register allocation can
3615 eliminate the copy.
3617 We cannot do this if the destination of the first assignment is a
3618 condition code register or cc0. We eliminate this case by making sure
3619 the SET_DEST and SET_SRC have the same mode.
3621 We cannot do this if the destination of the second assignment is
3622 a register that we have already assumed is zero-extended. Similarly
3623 for a SUBREG of such a register. */
3625 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3626 && GET_CODE (newpat) == PARALLEL
3627 && XVECLEN (newpat, 0) == 2
3628 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3630 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3631 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3632 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3633 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3634 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3635 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 DF_INSN_LUID (i2))
3637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3639 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3640 (REG_P (temp)
3641 && VEC_index (reg_stat_type, reg_stat,
3642 REGNO (temp))->nonzero_bits != 0
3643 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3644 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3645 && (VEC_index (reg_stat_type, reg_stat,
3646 REGNO (temp))->nonzero_bits
3647 != GET_MODE_MASK (word_mode))))
3648 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3649 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3650 (REG_P (temp)
3651 && VEC_index (reg_stat_type, reg_stat,
3652 REGNO (temp))->nonzero_bits != 0
3653 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3654 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3655 && (VEC_index (reg_stat_type, reg_stat,
3656 REGNO (temp))->nonzero_bits
3657 != GET_MODE_MASK (word_mode)))))
3658 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3659 SET_SRC (XVECEXP (newpat, 0, 1)))
3660 && ! find_reg_note (i3, REG_UNUSED,
3661 SET_DEST (XVECEXP (newpat, 0, 0))))
3663 rtx ni2dest;
3665 newi2pat = XVECEXP (newpat, 0, 0);
3666 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3667 newpat = XVECEXP (newpat, 0, 1);
3668 SUBST (SET_SRC (newpat),
3669 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3670 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3672 if (i2_code_number >= 0)
3673 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3675 if (insn_code_number >= 0)
3676 swap_i2i3 = 1;
3679 /* Similarly, check for a case where we have a PARALLEL of two independent
3680 SETs but we started with three insns. In this case, we can do the sets
3681 as two separate insns. This case occurs when some SET allows two
3682 other insns to combine, but the destination of that SET is still live. */
3684 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3685 && GET_CODE (newpat) == PARALLEL
3686 && XVECLEN (newpat, 0) == 2
3687 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3690 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3691 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3692 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3693 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3694 XVECEXP (newpat, 0, 0))
3695 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3696 XVECEXP (newpat, 0, 1))
3697 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3698 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3700 /* Normally, it doesn't matter which of the two is done first,
3701 but the one that references cc0 can't be the second, and
3702 one which uses any regs/memory set in between i2 and i3 can't
3703 be first. */
3704 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3705 DF_INSN_LUID (i2))
3706 #ifdef HAVE_cc0
3707 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3708 #endif
3711 newi2pat = XVECEXP (newpat, 0, 1);
3712 newpat = XVECEXP (newpat, 0, 0);
3714 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3715 DF_INSN_LUID (i2))
3716 #ifdef HAVE_cc0
3717 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3718 #endif
3721 newi2pat = XVECEXP (newpat, 0, 0);
3722 newpat = XVECEXP (newpat, 0, 1);
3724 else
3726 undo_all ();
3727 return 0;
3730 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3732 if (i2_code_number >= 0)
3734 /* recog_for_combine might have added CLOBBERs to newi2pat.
3735 Make sure NEWPAT does not depend on the clobbered regs. */
3736 if (GET_CODE (newi2pat) == PARALLEL)
3738 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3739 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3741 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3742 if (reg_overlap_mentioned_p (reg, newpat))
3744 undo_all ();
3745 return 0;
3750 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3754 /* If it still isn't recognized, fail and change things back the way they
3755 were. */
3756 if ((insn_code_number < 0
3757 /* Is the result a reasonable ASM_OPERANDS? */
3758 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3760 undo_all ();
3761 return 0;
3764 /* If we had to change another insn, make sure it is valid also. */
3765 if (undobuf.other_insn)
3767 CLEAR_HARD_REG_SET (newpat_used_regs);
3769 other_pat = PATTERN (undobuf.other_insn);
3770 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3771 &new_other_notes);
3773 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3775 undo_all ();
3776 return 0;
3780 #ifdef HAVE_cc0
3781 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3782 they are adjacent to each other or not. */
3784 rtx p = prev_nonnote_insn (i3);
3785 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3786 && sets_cc0_p (newi2pat))
3788 undo_all ();
3789 return 0;
3792 #endif
3794 /* Only allow this combination if insn_rtx_costs reports that the
3795 replacement instructions are cheaper than the originals. */
3796 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3798 undo_all ();
3799 return 0;
3802 if (MAY_HAVE_DEBUG_INSNS)
3804 struct undo *undo;
3806 for (undo = undobuf.undos; undo; undo = undo->next)
3807 if (undo->kind == UNDO_MODE)
3809 rtx reg = *undo->where.r;
3810 enum machine_mode new_mode = GET_MODE (reg);
3811 enum machine_mode old_mode = undo->old_contents.m;
3813 /* Temporarily revert mode back. */
3814 adjust_reg_mode (reg, old_mode);
3816 if (reg == i2dest && i2scratch)
3818 /* If we used i2dest as a scratch register with a
3819 different mode, substitute it for the original
3820 i2src while its original mode is temporarily
3821 restored, and then clear i2scratch so that we don't
3822 do it again later. */
3823 propagate_for_debug (i2, i3, reg, i2src, false);
3824 i2scratch = false;
3825 /* Put back the new mode. */
3826 adjust_reg_mode (reg, new_mode);
3828 else
3830 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3831 rtx first, last;
3833 if (reg == i2dest)
3835 first = i2;
3836 last = i3;
3838 else
3840 first = i3;
3841 last = undobuf.other_insn;
3842 gcc_assert (last);
3845 /* We're dealing with a reg that changed mode but not
3846 meaning, so we want to turn it into a subreg for
3847 the new mode. However, because of REG sharing and
3848 because its mode had already changed, we have to do
3849 it in two steps. First, replace any debug uses of
3850 reg, with its original mode temporarily restored,
3851 with this copy we have created; then, replace the
3852 copy with the SUBREG of the original shared reg,
3853 once again changed to the new mode. */
3854 propagate_for_debug (first, last, reg, tempreg, false);
3855 adjust_reg_mode (reg, new_mode);
3856 propagate_for_debug (first, last, tempreg,
3857 lowpart_subreg (old_mode, reg, new_mode),
3858 false);
3863 /* If we will be able to accept this, we have made a
3864 change to the destination of I3. This requires us to
3865 do a few adjustments. */
3867 if (changed_i3_dest)
3869 PATTERN (i3) = newpat;
3870 adjust_for_new_dest (i3);
3873 /* We now know that we can do this combination. Merge the insns and
3874 update the status of registers and LOG_LINKS. */
3876 if (undobuf.other_insn)
3878 rtx note, next;
3880 PATTERN (undobuf.other_insn) = other_pat;
3882 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3883 are still valid. Then add any non-duplicate notes added by
3884 recog_for_combine. */
3885 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3887 next = XEXP (note, 1);
3889 if (REG_NOTE_KIND (note) == REG_UNUSED
3890 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3891 remove_note (undobuf.other_insn, note);
3894 distribute_notes (new_other_notes, undobuf.other_insn,
3895 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3896 NULL_RTX);
3899 if (swap_i2i3)
3901 rtx insn;
3902 rtx link;
3903 rtx ni2dest;
3905 /* I3 now uses what used to be its destination and which is now
3906 I2's destination. This requires us to do a few adjustments. */
3907 PATTERN (i3) = newpat;
3908 adjust_for_new_dest (i3);
3910 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3911 so we still will.
3913 However, some later insn might be using I2's dest and have
3914 a LOG_LINK pointing at I3. We must remove this link.
3915 The simplest way to remove the link is to point it at I1,
3916 which we know will be a NOTE. */
3918 /* newi2pat is usually a SET here; however, recog_for_combine might
3919 have added some clobbers. */
3920 if (GET_CODE (newi2pat) == PARALLEL)
3921 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3922 else
3923 ni2dest = SET_DEST (newi2pat);
3925 for (insn = NEXT_INSN (i3);
3926 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3927 || insn != BB_HEAD (this_basic_block->next_bb));
3928 insn = NEXT_INSN (insn))
3930 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3932 for (link = LOG_LINKS (insn); link;
3933 link = XEXP (link, 1))
3934 if (XEXP (link, 0) == i3)
3935 XEXP (link, 0) = i1;
3937 break;
3943 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3944 rtx i3links, i2links, i1links = 0, i0links = 0;
3945 rtx midnotes = 0;
3946 int from_luid;
3947 unsigned int regno;
3948 /* Compute which registers we expect to eliminate. newi2pat may be setting
3949 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3950 same as i3dest, in which case newi2pat may be setting i1dest. */
3951 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3952 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3953 || !i2dest_killed
3954 ? 0 : i2dest);
3955 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3956 || (newi2pat && reg_set_p (i1dest, newi2pat))
3957 || !i1dest_killed
3958 ? 0 : i1dest);
3959 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3960 || (newi2pat && reg_set_p (i0dest, newi2pat))
3961 || !i0dest_killed
3962 ? 0 : i0dest);
3964 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3965 clear them. */
3966 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3967 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3968 if (i1)
3969 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3970 if (i0)
3971 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3973 /* Ensure that we do not have something that should not be shared but
3974 occurs multiple times in the new insns. Check this by first
3975 resetting all the `used' flags and then copying anything is shared. */
3977 reset_used_flags (i3notes);
3978 reset_used_flags (i2notes);
3979 reset_used_flags (i1notes);
3980 reset_used_flags (i0notes);
3981 reset_used_flags (newpat);
3982 reset_used_flags (newi2pat);
3983 if (undobuf.other_insn)
3984 reset_used_flags (PATTERN (undobuf.other_insn));
3986 i3notes = copy_rtx_if_shared (i3notes);
3987 i2notes = copy_rtx_if_shared (i2notes);
3988 i1notes = copy_rtx_if_shared (i1notes);
3989 i0notes = copy_rtx_if_shared (i0notes);
3990 newpat = copy_rtx_if_shared (newpat);
3991 newi2pat = copy_rtx_if_shared (newi2pat);
3992 if (undobuf.other_insn)
3993 reset_used_flags (PATTERN (undobuf.other_insn));
3995 INSN_CODE (i3) = insn_code_number;
3996 PATTERN (i3) = newpat;
3998 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4000 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4002 reset_used_flags (call_usage);
4003 call_usage = copy_rtx (call_usage);
4005 if (substed_i2)
4007 /* I2SRC must still be meaningful at this point. Some splitting
4008 operations can invalidate I2SRC, but those operations do not
4009 apply to calls. */
4010 gcc_assert (i2src);
4011 replace_rtx (call_usage, i2dest, i2src);
4014 if (substed_i1)
4015 replace_rtx (call_usage, i1dest, i1src);
4016 if (substed_i0)
4017 replace_rtx (call_usage, i0dest, i0src);
4019 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4022 if (undobuf.other_insn)
4023 INSN_CODE (undobuf.other_insn) = other_code_number;
4025 /* We had one special case above where I2 had more than one set and
4026 we replaced a destination of one of those sets with the destination
4027 of I3. In that case, we have to update LOG_LINKS of insns later
4028 in this basic block. Note that this (expensive) case is rare.
4030 Also, in this case, we must pretend that all REG_NOTEs for I2
4031 actually came from I3, so that REG_UNUSED notes from I2 will be
4032 properly handled. */
4034 if (i3_subst_into_i2)
4036 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4037 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4038 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4039 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4040 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4041 && ! find_reg_note (i2, REG_UNUSED,
4042 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4043 for (temp = NEXT_INSN (i2);
4044 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4045 || BB_HEAD (this_basic_block) != temp);
4046 temp = NEXT_INSN (temp))
4047 if (temp != i3 && INSN_P (temp))
4048 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4049 if (XEXP (link, 0) == i2)
4050 XEXP (link, 0) = i3;
4052 if (i3notes)
4054 rtx link = i3notes;
4055 while (XEXP (link, 1))
4056 link = XEXP (link, 1);
4057 XEXP (link, 1) = i2notes;
4059 else
4060 i3notes = i2notes;
4061 i2notes = 0;
4064 LOG_LINKS (i3) = 0;
4065 REG_NOTES (i3) = 0;
4066 LOG_LINKS (i2) = 0;
4067 REG_NOTES (i2) = 0;
4069 if (newi2pat)
4071 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4072 propagate_for_debug (i2, i3, i2dest, i2src, false);
4073 INSN_CODE (i2) = i2_code_number;
4074 PATTERN (i2) = newi2pat;
4076 else
4078 if (MAY_HAVE_DEBUG_INSNS && i2src)
4079 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
4080 SET_INSN_DELETED (i2);
4083 if (i1)
4085 LOG_LINKS (i1) = 0;
4086 REG_NOTES (i1) = 0;
4087 if (MAY_HAVE_DEBUG_INSNS)
4088 propagate_for_debug (i1, i3, i1dest, i1src, false);
4089 SET_INSN_DELETED (i1);
4092 if (i0)
4094 LOG_LINKS (i0) = 0;
4095 REG_NOTES (i0) = 0;
4096 if (MAY_HAVE_DEBUG_INSNS)
4097 propagate_for_debug (i0, i3, i0dest, i0src, false);
4098 SET_INSN_DELETED (i0);
4101 /* Get death notes for everything that is now used in either I3 or
4102 I2 and used to die in a previous insn. If we built two new
4103 patterns, move from I1 to I2 then I2 to I3 so that we get the
4104 proper movement on registers that I2 modifies. */
4106 if (i0)
4107 from_luid = DF_INSN_LUID (i0);
4108 else if (i1)
4109 from_luid = DF_INSN_LUID (i1);
4110 else
4111 from_luid = DF_INSN_LUID (i2);
4112 if (newi2pat)
4113 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4114 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4116 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4117 if (i3notes)
4118 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4119 elim_i2, elim_i1, elim_i0);
4120 if (i2notes)
4121 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4122 elim_i2, elim_i1, elim_i0);
4123 if (i1notes)
4124 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4125 elim_i2, elim_i1, elim_i0);
4126 if (i0notes)
4127 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4128 elim_i2, elim_i1, elim_i0);
4129 if (midnotes)
4130 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4131 elim_i2, elim_i1, elim_i0);
4133 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4134 know these are REG_UNUSED and want them to go to the desired insn,
4135 so we always pass it as i3. */
4137 if (newi2pat && new_i2_notes)
4138 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4139 NULL_RTX);
4141 if (new_i3_notes)
4142 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4143 NULL_RTX);
4145 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4146 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4147 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4148 in that case, it might delete I2. Similarly for I2 and I1.
4149 Show an additional death due to the REG_DEAD note we make here. If
4150 we discard it in distribute_notes, we will decrement it again. */
4152 if (i3dest_killed)
4154 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4155 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4156 NULL_RTX),
4157 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4158 else
4159 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4160 NULL_RTX),
4161 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4162 elim_i2, elim_i1, elim_i0);
4165 if (i2dest_in_i2src)
4167 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4168 if (newi2pat && reg_set_p (i2dest, newi2pat))
4169 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4170 NULL_RTX, NULL_RTX);
4171 else
4172 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4173 NULL_RTX, NULL_RTX, NULL_RTX);
4176 if (i1dest_in_i1src)
4178 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4179 if (newi2pat && reg_set_p (i1dest, newi2pat))
4180 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4181 NULL_RTX, NULL_RTX);
4182 else
4183 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4184 NULL_RTX, NULL_RTX, NULL_RTX);
4187 if (i0dest_in_i0src)
4189 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4190 if (newi2pat && reg_set_p (i0dest, newi2pat))
4191 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4192 NULL_RTX, NULL_RTX);
4193 else
4194 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4195 NULL_RTX, NULL_RTX, NULL_RTX);
4198 distribute_links (i3links);
4199 distribute_links (i2links);
4200 distribute_links (i1links);
4201 distribute_links (i0links);
4203 if (REG_P (i2dest))
4205 rtx link;
4206 rtx i2_insn = 0, i2_val = 0, set;
4208 /* The insn that used to set this register doesn't exist, and
4209 this life of the register may not exist either. See if one of
4210 I3's links points to an insn that sets I2DEST. If it does,
4211 that is now the last known value for I2DEST. If we don't update
4212 this and I2 set the register to a value that depended on its old
4213 contents, we will get confused. If this insn is used, thing
4214 will be set correctly in combine_instructions. */
4216 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4217 if ((set = single_set (XEXP (link, 0))) != 0
4218 && rtx_equal_p (i2dest, SET_DEST (set)))
4219 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4221 record_value_for_reg (i2dest, i2_insn, i2_val);
4223 /* If the reg formerly set in I2 died only once and that was in I3,
4224 zero its use count so it won't make `reload' do any work. */
4225 if (! added_sets_2
4226 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4227 && ! i2dest_in_i2src)
4229 regno = REGNO (i2dest);
4230 INC_REG_N_SETS (regno, -1);
4234 if (i1 && REG_P (i1dest))
4236 rtx link;
4237 rtx i1_insn = 0, i1_val = 0, set;
4239 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4240 if ((set = single_set (XEXP (link, 0))) != 0
4241 && rtx_equal_p (i1dest, SET_DEST (set)))
4242 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4244 record_value_for_reg (i1dest, i1_insn, i1_val);
4246 regno = REGNO (i1dest);
4247 if (! added_sets_1 && ! i1dest_in_i1src)
4248 INC_REG_N_SETS (regno, -1);
4251 if (i0 && REG_P (i0dest))
4253 rtx link;
4254 rtx i0_insn = 0, i0_val = 0, set;
4256 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4257 if ((set = single_set (XEXP (link, 0))) != 0
4258 && rtx_equal_p (i0dest, SET_DEST (set)))
4259 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4261 record_value_for_reg (i0dest, i0_insn, i0_val);
4263 regno = REGNO (i0dest);
4264 if (! added_sets_0 && ! i0dest_in_i0src)
4265 INC_REG_N_SETS (regno, -1);
4268 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4269 been made to this insn. The order of
4270 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4271 can affect nonzero_bits of newpat */
4272 if (newi2pat)
4273 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4274 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4277 if (undobuf.other_insn != NULL_RTX)
4279 if (dump_file)
4281 fprintf (dump_file, "modifying other_insn ");
4282 dump_insn_slim (dump_file, undobuf.other_insn);
4284 df_insn_rescan (undobuf.other_insn);
4287 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4289 if (dump_file)
4291 fprintf (dump_file, "modifying insn i1 ");
4292 dump_insn_slim (dump_file, i0);
4294 df_insn_rescan (i0);
4297 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4299 if (dump_file)
4301 fprintf (dump_file, "modifying insn i1 ");
4302 dump_insn_slim (dump_file, i1);
4304 df_insn_rescan (i1);
4307 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4309 if (dump_file)
4311 fprintf (dump_file, "modifying insn i2 ");
4312 dump_insn_slim (dump_file, i2);
4314 df_insn_rescan (i2);
4317 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4319 if (dump_file)
4321 fprintf (dump_file, "modifying insn i3 ");
4322 dump_insn_slim (dump_file, i3);
4324 df_insn_rescan (i3);
4327 /* Set new_direct_jump_p if a new return or simple jump instruction
4328 has been created. Adjust the CFG accordingly. */
4330 if (returnjump_p (i3) || any_uncondjump_p (i3))
4332 *new_direct_jump_p = 1;
4333 mark_jump_label (PATTERN (i3), i3, 0);
4334 update_cfg_for_uncondjump (i3);
4337 if (undobuf.other_insn != NULL_RTX
4338 && (returnjump_p (undobuf.other_insn)
4339 || any_uncondjump_p (undobuf.other_insn)))
4341 *new_direct_jump_p = 1;
4342 update_cfg_for_uncondjump (undobuf.other_insn);
4345 /* A noop might also need cleaning up of CFG, if it comes from the
4346 simplification of a jump. */
4347 if (GET_CODE (newpat) == SET
4348 && SET_SRC (newpat) == pc_rtx
4349 && SET_DEST (newpat) == pc_rtx)
4351 *new_direct_jump_p = 1;
4352 update_cfg_for_uncondjump (i3);
4355 combine_successes++;
4356 undo_commit ();
4358 if (added_links_insn
4359 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4360 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4361 return added_links_insn;
4362 else
4363 return newi2pat ? i2 : i3;
4366 /* Undo all the modifications recorded in undobuf. */
4368 static void
4369 undo_all (void)
4371 struct undo *undo, *next;
4373 for (undo = undobuf.undos; undo; undo = next)
4375 next = undo->next;
4376 switch (undo->kind)
4378 case UNDO_RTX:
4379 *undo->where.r = undo->old_contents.r;
4380 break;
4381 case UNDO_INT:
4382 *undo->where.i = undo->old_contents.i;
4383 break;
4384 case UNDO_MODE:
4385 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4386 break;
4387 default:
4388 gcc_unreachable ();
4391 undo->next = undobuf.frees;
4392 undobuf.frees = undo;
4395 undobuf.undos = 0;
4398 /* We've committed to accepting the changes we made. Move all
4399 of the undos to the free list. */
4401 static void
4402 undo_commit (void)
4404 struct undo *undo, *next;
4406 for (undo = undobuf.undos; undo; undo = next)
4408 next = undo->next;
4409 undo->next = undobuf.frees;
4410 undobuf.frees = undo;
4412 undobuf.undos = 0;
4415 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4416 where we have an arithmetic expression and return that point. LOC will
4417 be inside INSN.
4419 try_combine will call this function to see if an insn can be split into
4420 two insns. */
4422 static rtx *
4423 find_split_point (rtx *loc, rtx insn, bool set_src)
4425 rtx x = *loc;
4426 enum rtx_code code = GET_CODE (x);
4427 rtx *split;
4428 unsigned HOST_WIDE_INT len = 0;
4429 HOST_WIDE_INT pos = 0;
4430 int unsignedp = 0;
4431 rtx inner = NULL_RTX;
4433 /* First special-case some codes. */
4434 switch (code)
4436 case SUBREG:
4437 #ifdef INSN_SCHEDULING
4438 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4439 point. */
4440 if (MEM_P (SUBREG_REG (x)))
4441 return loc;
4442 #endif
4443 return find_split_point (&SUBREG_REG (x), insn, false);
4445 case MEM:
4446 #ifdef HAVE_lo_sum
4447 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4448 using LO_SUM and HIGH. */
4449 if (GET_CODE (XEXP (x, 0)) == CONST
4450 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4452 enum machine_mode address_mode
4453 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4455 SUBST (XEXP (x, 0),
4456 gen_rtx_LO_SUM (address_mode,
4457 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4458 XEXP (x, 0)));
4459 return &XEXP (XEXP (x, 0), 0);
4461 #endif
4463 /* If we have a PLUS whose second operand is a constant and the
4464 address is not valid, perhaps will can split it up using
4465 the machine-specific way to split large constants. We use
4466 the first pseudo-reg (one of the virtual regs) as a placeholder;
4467 it will not remain in the result. */
4468 if (GET_CODE (XEXP (x, 0)) == PLUS
4469 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4470 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4471 MEM_ADDR_SPACE (x)))
4473 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4474 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4475 XEXP (x, 0)),
4476 subst_insn);
4478 /* This should have produced two insns, each of which sets our
4479 placeholder. If the source of the second is a valid address,
4480 we can make put both sources together and make a split point
4481 in the middle. */
4483 if (seq
4484 && NEXT_INSN (seq) != NULL_RTX
4485 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4486 && NONJUMP_INSN_P (seq)
4487 && GET_CODE (PATTERN (seq)) == SET
4488 && SET_DEST (PATTERN (seq)) == reg
4489 && ! reg_mentioned_p (reg,
4490 SET_SRC (PATTERN (seq)))
4491 && NONJUMP_INSN_P (NEXT_INSN (seq))
4492 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4493 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4494 && memory_address_addr_space_p
4495 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4496 MEM_ADDR_SPACE (x)))
4498 rtx src1 = SET_SRC (PATTERN (seq));
4499 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4501 /* Replace the placeholder in SRC2 with SRC1. If we can
4502 find where in SRC2 it was placed, that can become our
4503 split point and we can replace this address with SRC2.
4504 Just try two obvious places. */
4506 src2 = replace_rtx (src2, reg, src1);
4507 split = 0;
4508 if (XEXP (src2, 0) == src1)
4509 split = &XEXP (src2, 0);
4510 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4511 && XEXP (XEXP (src2, 0), 0) == src1)
4512 split = &XEXP (XEXP (src2, 0), 0);
4514 if (split)
4516 SUBST (XEXP (x, 0), src2);
4517 return split;
4521 /* If that didn't work, perhaps the first operand is complex and
4522 needs to be computed separately, so make a split point there.
4523 This will occur on machines that just support REG + CONST
4524 and have a constant moved through some previous computation. */
4526 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4527 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4528 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4529 return &XEXP (XEXP (x, 0), 0);
4532 /* If we have a PLUS whose first operand is complex, try computing it
4533 separately by making a split there. */
4534 if (GET_CODE (XEXP (x, 0)) == PLUS
4535 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4536 MEM_ADDR_SPACE (x))
4537 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4538 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4539 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4540 return &XEXP (XEXP (x, 0), 0);
4541 break;
4543 case SET:
4544 #ifdef HAVE_cc0
4545 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4546 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4547 we need to put the operand into a register. So split at that
4548 point. */
4550 if (SET_DEST (x) == cc0_rtx
4551 && GET_CODE (SET_SRC (x)) != COMPARE
4552 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4553 && !OBJECT_P (SET_SRC (x))
4554 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4555 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4556 return &SET_SRC (x);
4557 #endif
4559 /* See if we can split SET_SRC as it stands. */
4560 split = find_split_point (&SET_SRC (x), insn, true);
4561 if (split && split != &SET_SRC (x))
4562 return split;
4564 /* See if we can split SET_DEST as it stands. */
4565 split = find_split_point (&SET_DEST (x), insn, false);
4566 if (split && split != &SET_DEST (x))
4567 return split;
4569 /* See if this is a bitfield assignment with everything constant. If
4570 so, this is an IOR of an AND, so split it into that. */
4571 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4572 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4573 <= HOST_BITS_PER_WIDE_INT)
4574 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4575 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4576 && CONST_INT_P (SET_SRC (x))
4577 && ((INTVAL (XEXP (SET_DEST (x), 1))
4578 + INTVAL (XEXP (SET_DEST (x), 2)))
4579 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4580 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4582 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4583 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4584 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4585 rtx dest = XEXP (SET_DEST (x), 0);
4586 enum machine_mode mode = GET_MODE (dest);
4587 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4588 rtx or_mask;
4590 if (BITS_BIG_ENDIAN)
4591 pos = GET_MODE_BITSIZE (mode) - len - pos;
4593 or_mask = gen_int_mode (src << pos, mode);
4594 if (src == mask)
4595 SUBST (SET_SRC (x),
4596 simplify_gen_binary (IOR, mode, dest, or_mask));
4597 else
4599 rtx negmask = gen_int_mode (~(mask << pos), mode);
4600 SUBST (SET_SRC (x),
4601 simplify_gen_binary (IOR, mode,
4602 simplify_gen_binary (AND, mode,
4603 dest, negmask),
4604 or_mask));
4607 SUBST (SET_DEST (x), dest);
4609 split = find_split_point (&SET_SRC (x), insn, true);
4610 if (split && split != &SET_SRC (x))
4611 return split;
4614 /* Otherwise, see if this is an operation that we can split into two.
4615 If so, try to split that. */
4616 code = GET_CODE (SET_SRC (x));
4618 switch (code)
4620 case AND:
4621 /* If we are AND'ing with a large constant that is only a single
4622 bit and the result is only being used in a context where we
4623 need to know if it is zero or nonzero, replace it with a bit
4624 extraction. This will avoid the large constant, which might
4625 have taken more than one insn to make. If the constant were
4626 not a valid argument to the AND but took only one insn to make,
4627 this is no worse, but if it took more than one insn, it will
4628 be better. */
4630 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4631 && REG_P (XEXP (SET_SRC (x), 0))
4632 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4633 && REG_P (SET_DEST (x))
4634 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4635 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4636 && XEXP (*split, 0) == SET_DEST (x)
4637 && XEXP (*split, 1) == const0_rtx)
4639 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4640 XEXP (SET_SRC (x), 0),
4641 pos, NULL_RTX, 1, 1, 0, 0);
4642 if (extraction != 0)
4644 SUBST (SET_SRC (x), extraction);
4645 return find_split_point (loc, insn, false);
4648 break;
4650 case NE:
4651 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4652 is known to be on, this can be converted into a NEG of a shift. */
4653 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4654 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4655 && 1 <= (pos = exact_log2
4656 (nonzero_bits (XEXP (SET_SRC (x), 0),
4657 GET_MODE (XEXP (SET_SRC (x), 0))))))
4659 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4661 SUBST (SET_SRC (x),
4662 gen_rtx_NEG (mode,
4663 gen_rtx_LSHIFTRT (mode,
4664 XEXP (SET_SRC (x), 0),
4665 GEN_INT (pos))));
4667 split = find_split_point (&SET_SRC (x), insn, true);
4668 if (split && split != &SET_SRC (x))
4669 return split;
4671 break;
4673 case SIGN_EXTEND:
4674 inner = XEXP (SET_SRC (x), 0);
4676 /* We can't optimize if either mode is a partial integer
4677 mode as we don't know how many bits are significant
4678 in those modes. */
4679 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4680 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4681 break;
4683 pos = 0;
4684 len = GET_MODE_BITSIZE (GET_MODE (inner));
4685 unsignedp = 0;
4686 break;
4688 case SIGN_EXTRACT:
4689 case ZERO_EXTRACT:
4690 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4691 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4693 inner = XEXP (SET_SRC (x), 0);
4694 len = INTVAL (XEXP (SET_SRC (x), 1));
4695 pos = INTVAL (XEXP (SET_SRC (x), 2));
4697 if (BITS_BIG_ENDIAN)
4698 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4699 unsignedp = (code == ZERO_EXTRACT);
4701 break;
4703 default:
4704 break;
4707 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4709 enum machine_mode mode = GET_MODE (SET_SRC (x));
4711 /* For unsigned, we have a choice of a shift followed by an
4712 AND or two shifts. Use two shifts for field sizes where the
4713 constant might be too large. We assume here that we can
4714 always at least get 8-bit constants in an AND insn, which is
4715 true for every current RISC. */
4717 if (unsignedp && len <= 8)
4719 SUBST (SET_SRC (x),
4720 gen_rtx_AND (mode,
4721 gen_rtx_LSHIFTRT
4722 (mode, gen_lowpart (mode, inner),
4723 GEN_INT (pos)),
4724 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4726 split = find_split_point (&SET_SRC (x), insn, true);
4727 if (split && split != &SET_SRC (x))
4728 return split;
4730 else
4732 SUBST (SET_SRC (x),
4733 gen_rtx_fmt_ee
4734 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4735 gen_rtx_ASHIFT (mode,
4736 gen_lowpart (mode, inner),
4737 GEN_INT (GET_MODE_BITSIZE (mode)
4738 - len - pos)),
4739 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4741 split = find_split_point (&SET_SRC (x), insn, true);
4742 if (split && split != &SET_SRC (x))
4743 return split;
4747 /* See if this is a simple operation with a constant as the second
4748 operand. It might be that this constant is out of range and hence
4749 could be used as a split point. */
4750 if (BINARY_P (SET_SRC (x))
4751 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4752 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4753 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4754 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4755 return &XEXP (SET_SRC (x), 1);
4757 /* Finally, see if this is a simple operation with its first operand
4758 not in a register. The operation might require this operand in a
4759 register, so return it as a split point. We can always do this
4760 because if the first operand were another operation, we would have
4761 already found it as a split point. */
4762 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4763 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4764 return &XEXP (SET_SRC (x), 0);
4766 return 0;
4768 case AND:
4769 case IOR:
4770 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4771 it is better to write this as (not (ior A B)) so we can split it.
4772 Similarly for IOR. */
4773 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4775 SUBST (*loc,
4776 gen_rtx_NOT (GET_MODE (x),
4777 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4778 GET_MODE (x),
4779 XEXP (XEXP (x, 0), 0),
4780 XEXP (XEXP (x, 1), 0))));
4781 return find_split_point (loc, insn, set_src);
4784 /* Many RISC machines have a large set of logical insns. If the
4785 second operand is a NOT, put it first so we will try to split the
4786 other operand first. */
4787 if (GET_CODE (XEXP (x, 1)) == NOT)
4789 rtx tem = XEXP (x, 0);
4790 SUBST (XEXP (x, 0), XEXP (x, 1));
4791 SUBST (XEXP (x, 1), tem);
4793 break;
4795 case PLUS:
4796 case MINUS:
4797 /* Canonicalization can produce (minus A (mult B C)), where C is a
4798 constant. It may be better to try splitting (plus (mult B -C) A)
4799 instead if this isn't a multiply by a power of two. */
4800 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4801 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4802 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4804 enum machine_mode mode = GET_MODE (x);
4805 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4806 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4807 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4808 XEXP (XEXP (x, 1), 0),
4809 GEN_INT (other_int)),
4810 XEXP (x, 0)));
4811 return find_split_point (loc, insn, set_src);
4814 /* Split at a multiply-accumulate instruction. However if this is
4815 the SET_SRC, we likely do not have such an instruction and it's
4816 worthless to try this split. */
4817 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4818 return loc;
4820 default:
4821 break;
4824 /* Otherwise, select our actions depending on our rtx class. */
4825 switch (GET_RTX_CLASS (code))
4827 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4828 case RTX_TERNARY:
4829 split = find_split_point (&XEXP (x, 2), insn, false);
4830 if (split)
4831 return split;
4832 /* ... fall through ... */
4833 case RTX_BIN_ARITH:
4834 case RTX_COMM_ARITH:
4835 case RTX_COMPARE:
4836 case RTX_COMM_COMPARE:
4837 split = find_split_point (&XEXP (x, 1), insn, false);
4838 if (split)
4839 return split;
4840 /* ... fall through ... */
4841 case RTX_UNARY:
4842 /* Some machines have (and (shift ...) ...) insns. If X is not
4843 an AND, but XEXP (X, 0) is, use it as our split point. */
4844 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4845 return &XEXP (x, 0);
4847 split = find_split_point (&XEXP (x, 0), insn, false);
4848 if (split)
4849 return split;
4850 return loc;
4852 default:
4853 /* Otherwise, we don't have a split point. */
4854 return 0;
4858 /* Throughout X, replace FROM with TO, and return the result.
4859 The result is TO if X is FROM;
4860 otherwise the result is X, but its contents may have been modified.
4861 If they were modified, a record was made in undobuf so that
4862 undo_all will (among other things) return X to its original state.
4864 If the number of changes necessary is too much to record to undo,
4865 the excess changes are not made, so the result is invalid.
4866 The changes already made can still be undone.
4867 undobuf.num_undo is incremented for such changes, so by testing that
4868 the caller can tell whether the result is valid.
4870 `n_occurrences' is incremented each time FROM is replaced.
4872 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4874 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4875 by copying if `n_occurrences' is nonzero. */
4877 static rtx
4878 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4880 enum rtx_code code = GET_CODE (x);
4881 enum machine_mode op0_mode = VOIDmode;
4882 const char *fmt;
4883 int len, i;
4884 rtx new_rtx;
4886 /* Two expressions are equal if they are identical copies of a shared
4887 RTX or if they are both registers with the same register number
4888 and mode. */
4890 #define COMBINE_RTX_EQUAL_P(X,Y) \
4891 ((X) == (Y) \
4892 || (REG_P (X) && REG_P (Y) \
4893 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4895 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4897 n_occurrences++;
4898 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4901 /* If X and FROM are the same register but different modes, they
4902 will not have been seen as equal above. However, the log links code
4903 will make a LOG_LINKS entry for that case. If we do nothing, we
4904 will try to rerecognize our original insn and, when it succeeds,
4905 we will delete the feeding insn, which is incorrect.
4907 So force this insn not to match in this (rare) case. */
4908 if (! in_dest && code == REG && REG_P (from)
4909 && reg_overlap_mentioned_p (x, from))
4910 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4912 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4913 of which may contain things that can be combined. */
4914 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4915 return x;
4917 /* It is possible to have a subexpression appear twice in the insn.
4918 Suppose that FROM is a register that appears within TO.
4919 Then, after that subexpression has been scanned once by `subst',
4920 the second time it is scanned, TO may be found. If we were
4921 to scan TO here, we would find FROM within it and create a
4922 self-referent rtl structure which is completely wrong. */
4923 if (COMBINE_RTX_EQUAL_P (x, to))
4924 return to;
4926 /* Parallel asm_operands need special attention because all of the
4927 inputs are shared across the arms. Furthermore, unsharing the
4928 rtl results in recognition failures. Failure to handle this case
4929 specially can result in circular rtl.
4931 Solve this by doing a normal pass across the first entry of the
4932 parallel, and only processing the SET_DESTs of the subsequent
4933 entries. Ug. */
4935 if (code == PARALLEL
4936 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4937 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4939 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4941 /* If this substitution failed, this whole thing fails. */
4942 if (GET_CODE (new_rtx) == CLOBBER
4943 && XEXP (new_rtx, 0) == const0_rtx)
4944 return new_rtx;
4946 SUBST (XVECEXP (x, 0, 0), new_rtx);
4948 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4950 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4952 if (!REG_P (dest)
4953 && GET_CODE (dest) != CC0
4954 && GET_CODE (dest) != PC)
4956 new_rtx = subst (dest, from, to, 0, unique_copy);
4958 /* If this substitution failed, this whole thing fails. */
4959 if (GET_CODE (new_rtx) == CLOBBER
4960 && XEXP (new_rtx, 0) == const0_rtx)
4961 return new_rtx;
4963 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4967 else
4969 len = GET_RTX_LENGTH (code);
4970 fmt = GET_RTX_FORMAT (code);
4972 /* We don't need to process a SET_DEST that is a register, CC0,
4973 or PC, so set up to skip this common case. All other cases
4974 where we want to suppress replacing something inside a
4975 SET_SRC are handled via the IN_DEST operand. */
4976 if (code == SET
4977 && (REG_P (SET_DEST (x))
4978 || GET_CODE (SET_DEST (x)) == CC0
4979 || GET_CODE (SET_DEST (x)) == PC))
4980 fmt = "ie";
4982 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4983 constant. */
4984 if (fmt[0] == 'e')
4985 op0_mode = GET_MODE (XEXP (x, 0));
4987 for (i = 0; i < len; i++)
4989 if (fmt[i] == 'E')
4991 int j;
4992 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4994 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4996 new_rtx = (unique_copy && n_occurrences
4997 ? copy_rtx (to) : to);
4998 n_occurrences++;
5000 else
5002 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
5003 unique_copy);
5005 /* If this substitution failed, this whole thing
5006 fails. */
5007 if (GET_CODE (new_rtx) == CLOBBER
5008 && XEXP (new_rtx, 0) == const0_rtx)
5009 return new_rtx;
5012 SUBST (XVECEXP (x, i, j), new_rtx);
5015 else if (fmt[i] == 'e')
5017 /* If this is a register being set, ignore it. */
5018 new_rtx = XEXP (x, i);
5019 if (in_dest
5020 && i == 0
5021 && (((code == SUBREG || code == ZERO_EXTRACT)
5022 && REG_P (new_rtx))
5023 || code == STRICT_LOW_PART))
5026 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5028 /* In general, don't install a subreg involving two
5029 modes not tieable. It can worsen register
5030 allocation, and can even make invalid reload
5031 insns, since the reg inside may need to be copied
5032 from in the outside mode, and that may be invalid
5033 if it is an fp reg copied in integer mode.
5035 We allow two exceptions to this: It is valid if
5036 it is inside another SUBREG and the mode of that
5037 SUBREG and the mode of the inside of TO is
5038 tieable and it is valid if X is a SET that copies
5039 FROM to CC0. */
5041 if (GET_CODE (to) == SUBREG
5042 && ! MODES_TIEABLE_P (GET_MODE (to),
5043 GET_MODE (SUBREG_REG (to)))
5044 && ! (code == SUBREG
5045 && MODES_TIEABLE_P (GET_MODE (x),
5046 GET_MODE (SUBREG_REG (to))))
5047 #ifdef HAVE_cc0
5048 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5049 #endif
5051 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5053 #ifdef CANNOT_CHANGE_MODE_CLASS
5054 if (code == SUBREG
5055 && REG_P (to)
5056 && REGNO (to) < FIRST_PSEUDO_REGISTER
5057 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5058 GET_MODE (to),
5059 GET_MODE (x)))
5060 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5061 #endif
5063 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5064 n_occurrences++;
5066 else
5067 /* If we are in a SET_DEST, suppress most cases unless we
5068 have gone inside a MEM, in which case we want to
5069 simplify the address. We assume here that things that
5070 are actually part of the destination have their inner
5071 parts in the first expression. This is true for SUBREG,
5072 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5073 things aside from REG and MEM that should appear in a
5074 SET_DEST. */
5075 new_rtx = subst (XEXP (x, i), from, to,
5076 (((in_dest
5077 && (code == SUBREG || code == STRICT_LOW_PART
5078 || code == ZERO_EXTRACT))
5079 || code == SET)
5080 && i == 0), unique_copy);
5082 /* If we found that we will have to reject this combination,
5083 indicate that by returning the CLOBBER ourselves, rather than
5084 an expression containing it. This will speed things up as
5085 well as prevent accidents where two CLOBBERs are considered
5086 to be equal, thus producing an incorrect simplification. */
5088 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5089 return new_rtx;
5091 if (GET_CODE (x) == SUBREG
5092 && (CONST_INT_P (new_rtx)
5093 || GET_CODE (new_rtx) == CONST_DOUBLE))
5095 enum machine_mode mode = GET_MODE (x);
5097 x = simplify_subreg (GET_MODE (x), new_rtx,
5098 GET_MODE (SUBREG_REG (x)),
5099 SUBREG_BYTE (x));
5100 if (! x)
5101 x = gen_rtx_CLOBBER (mode, const0_rtx);
5103 else if (CONST_INT_P (new_rtx)
5104 && GET_CODE (x) == ZERO_EXTEND)
5106 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5107 new_rtx, GET_MODE (XEXP (x, 0)));
5108 gcc_assert (x);
5110 else
5111 SUBST (XEXP (x, i), new_rtx);
5116 /* Check if we are loading something from the constant pool via float
5117 extension; in this case we would undo compress_float_constant
5118 optimization and degenerate constant load to an immediate value. */
5119 if (GET_CODE (x) == FLOAT_EXTEND
5120 && MEM_P (XEXP (x, 0))
5121 && MEM_READONLY_P (XEXP (x, 0)))
5123 rtx tmp = avoid_constant_pool_reference (x);
5124 if (x != tmp)
5125 return x;
5128 /* Try to simplify X. If the simplification changed the code, it is likely
5129 that further simplification will help, so loop, but limit the number
5130 of repetitions that will be performed. */
5132 for (i = 0; i < 4; i++)
5134 /* If X is sufficiently simple, don't bother trying to do anything
5135 with it. */
5136 if (code != CONST_INT && code != REG && code != CLOBBER)
5137 x = combine_simplify_rtx (x, op0_mode, in_dest);
5139 if (GET_CODE (x) == code)
5140 break;
5142 code = GET_CODE (x);
5144 /* We no longer know the original mode of operand 0 since we
5145 have changed the form of X) */
5146 op0_mode = VOIDmode;
5149 return x;
5152 /* Simplify X, a piece of RTL. We just operate on the expression at the
5153 outer level; call `subst' to simplify recursively. Return the new
5154 expression.
5156 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5157 if we are inside a SET_DEST. */
5159 static rtx
5160 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5162 enum rtx_code code = GET_CODE (x);
5163 enum machine_mode mode = GET_MODE (x);
5164 rtx temp;
5165 int i;
5167 /* If this is a commutative operation, put a constant last and a complex
5168 expression first. We don't need to do this for comparisons here. */
5169 if (COMMUTATIVE_ARITH_P (x)
5170 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5172 temp = XEXP (x, 0);
5173 SUBST (XEXP (x, 0), XEXP (x, 1));
5174 SUBST (XEXP (x, 1), temp);
5177 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5178 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5179 things. Check for cases where both arms are testing the same
5180 condition.
5182 Don't do anything if all operands are very simple. */
5184 if ((BINARY_P (x)
5185 && ((!OBJECT_P (XEXP (x, 0))
5186 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5187 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5188 || (!OBJECT_P (XEXP (x, 1))
5189 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5190 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5191 || (UNARY_P (x)
5192 && (!OBJECT_P (XEXP (x, 0))
5193 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5194 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5196 rtx cond, true_rtx, false_rtx;
5198 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5199 if (cond != 0
5200 /* If everything is a comparison, what we have is highly unlikely
5201 to be simpler, so don't use it. */
5202 && ! (COMPARISON_P (x)
5203 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5205 rtx cop1 = const0_rtx;
5206 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5208 if (cond_code == NE && COMPARISON_P (cond))
5209 return x;
5211 /* Simplify the alternative arms; this may collapse the true and
5212 false arms to store-flag values. Be careful to use copy_rtx
5213 here since true_rtx or false_rtx might share RTL with x as a
5214 result of the if_then_else_cond call above. */
5215 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5216 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5218 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5219 is unlikely to be simpler. */
5220 if (general_operand (true_rtx, VOIDmode)
5221 && general_operand (false_rtx, VOIDmode))
5223 enum rtx_code reversed;
5225 /* Restarting if we generate a store-flag expression will cause
5226 us to loop. Just drop through in this case. */
5228 /* If the result values are STORE_FLAG_VALUE and zero, we can
5229 just make the comparison operation. */
5230 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5231 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5232 cond, cop1);
5233 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5234 && ((reversed = reversed_comparison_code_parts
5235 (cond_code, cond, cop1, NULL))
5236 != UNKNOWN))
5237 x = simplify_gen_relational (reversed, mode, VOIDmode,
5238 cond, cop1);
5240 /* Likewise, we can make the negate of a comparison operation
5241 if the result values are - STORE_FLAG_VALUE and zero. */
5242 else if (CONST_INT_P (true_rtx)
5243 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5244 && false_rtx == const0_rtx)
5245 x = simplify_gen_unary (NEG, mode,
5246 simplify_gen_relational (cond_code,
5247 mode, VOIDmode,
5248 cond, cop1),
5249 mode);
5250 else if (CONST_INT_P (false_rtx)
5251 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5252 && true_rtx == const0_rtx
5253 && ((reversed = reversed_comparison_code_parts
5254 (cond_code, cond, cop1, NULL))
5255 != UNKNOWN))
5256 x = simplify_gen_unary (NEG, mode,
5257 simplify_gen_relational (reversed,
5258 mode, VOIDmode,
5259 cond, cop1),
5260 mode);
5261 else
5262 return gen_rtx_IF_THEN_ELSE (mode,
5263 simplify_gen_relational (cond_code,
5264 mode,
5265 VOIDmode,
5266 cond,
5267 cop1),
5268 true_rtx, false_rtx);
5270 code = GET_CODE (x);
5271 op0_mode = VOIDmode;
5276 /* Try to fold this expression in case we have constants that weren't
5277 present before. */
5278 temp = 0;
5279 switch (GET_RTX_CLASS (code))
5281 case RTX_UNARY:
5282 if (op0_mode == VOIDmode)
5283 op0_mode = GET_MODE (XEXP (x, 0));
5284 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5285 break;
5286 case RTX_COMPARE:
5287 case RTX_COMM_COMPARE:
5289 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5290 if (cmp_mode == VOIDmode)
5292 cmp_mode = GET_MODE (XEXP (x, 1));
5293 if (cmp_mode == VOIDmode)
5294 cmp_mode = op0_mode;
5296 temp = simplify_relational_operation (code, mode, cmp_mode,
5297 XEXP (x, 0), XEXP (x, 1));
5299 break;
5300 case RTX_COMM_ARITH:
5301 case RTX_BIN_ARITH:
5302 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5303 break;
5304 case RTX_BITFIELD_OPS:
5305 case RTX_TERNARY:
5306 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5307 XEXP (x, 1), XEXP (x, 2));
5308 break;
5309 default:
5310 break;
5313 if (temp)
5315 x = temp;
5316 code = GET_CODE (temp);
5317 op0_mode = VOIDmode;
5318 mode = GET_MODE (temp);
5321 /* First see if we can apply the inverse distributive law. */
5322 if (code == PLUS || code == MINUS
5323 || code == AND || code == IOR || code == XOR)
5325 x = apply_distributive_law (x);
5326 code = GET_CODE (x);
5327 op0_mode = VOIDmode;
5330 /* If CODE is an associative operation not otherwise handled, see if we
5331 can associate some operands. This can win if they are constants or
5332 if they are logically related (i.e. (a & b) & a). */
5333 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5334 || code == AND || code == IOR || code == XOR
5335 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5336 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5337 || (flag_associative_math && FLOAT_MODE_P (mode))))
5339 if (GET_CODE (XEXP (x, 0)) == code)
5341 rtx other = XEXP (XEXP (x, 0), 0);
5342 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5343 rtx inner_op1 = XEXP (x, 1);
5344 rtx inner;
5346 /* Make sure we pass the constant operand if any as the second
5347 one if this is a commutative operation. */
5348 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5350 rtx tem = inner_op0;
5351 inner_op0 = inner_op1;
5352 inner_op1 = tem;
5354 inner = simplify_binary_operation (code == MINUS ? PLUS
5355 : code == DIV ? MULT
5356 : code,
5357 mode, inner_op0, inner_op1);
5359 /* For commutative operations, try the other pair if that one
5360 didn't simplify. */
5361 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5363 other = XEXP (XEXP (x, 0), 1);
5364 inner = simplify_binary_operation (code, mode,
5365 XEXP (XEXP (x, 0), 0),
5366 XEXP (x, 1));
5369 if (inner)
5370 return simplify_gen_binary (code, mode, other, inner);
5374 /* A little bit of algebraic simplification here. */
5375 switch (code)
5377 case MEM:
5378 /* Ensure that our address has any ASHIFTs converted to MULT in case
5379 address-recognizing predicates are called later. */
5380 temp = make_compound_operation (XEXP (x, 0), MEM);
5381 SUBST (XEXP (x, 0), temp);
5382 break;
5384 case SUBREG:
5385 if (op0_mode == VOIDmode)
5386 op0_mode = GET_MODE (SUBREG_REG (x));
5388 /* See if this can be moved to simplify_subreg. */
5389 if (CONSTANT_P (SUBREG_REG (x))
5390 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5391 /* Don't call gen_lowpart if the inner mode
5392 is VOIDmode and we cannot simplify it, as SUBREG without
5393 inner mode is invalid. */
5394 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5395 || gen_lowpart_common (mode, SUBREG_REG (x))))
5396 return gen_lowpart (mode, SUBREG_REG (x));
5398 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5399 break;
5401 rtx temp;
5402 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5403 SUBREG_BYTE (x));
5404 if (temp)
5405 return temp;
5408 /* Don't change the mode of the MEM if that would change the meaning
5409 of the address. */
5410 if (MEM_P (SUBREG_REG (x))
5411 && (MEM_VOLATILE_P (SUBREG_REG (x))
5412 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5413 return gen_rtx_CLOBBER (mode, const0_rtx);
5415 /* Note that we cannot do any narrowing for non-constants since
5416 we might have been counting on using the fact that some bits were
5417 zero. We now do this in the SET. */
5419 break;
5421 case NEG:
5422 temp = expand_compound_operation (XEXP (x, 0));
5424 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5425 replaced by (lshiftrt X C). This will convert
5426 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5428 if (GET_CODE (temp) == ASHIFTRT
5429 && CONST_INT_P (XEXP (temp, 1))
5430 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5431 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5432 INTVAL (XEXP (temp, 1)));
5434 /* If X has only a single bit that might be nonzero, say, bit I, convert
5435 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5436 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5437 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5438 or a SUBREG of one since we'd be making the expression more
5439 complex if it was just a register. */
5441 if (!REG_P (temp)
5442 && ! (GET_CODE (temp) == SUBREG
5443 && REG_P (SUBREG_REG (temp)))
5444 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5446 rtx temp1 = simplify_shift_const
5447 (NULL_RTX, ASHIFTRT, mode,
5448 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5449 GET_MODE_BITSIZE (mode) - 1 - i),
5450 GET_MODE_BITSIZE (mode) - 1 - i);
5452 /* If all we did was surround TEMP with the two shifts, we
5453 haven't improved anything, so don't use it. Otherwise,
5454 we are better off with TEMP1. */
5455 if (GET_CODE (temp1) != ASHIFTRT
5456 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5457 || XEXP (XEXP (temp1, 0), 0) != temp)
5458 return temp1;
5460 break;
5462 case TRUNCATE:
5463 /* We can't handle truncation to a partial integer mode here
5464 because we don't know the real bitsize of the partial
5465 integer mode. */
5466 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5467 break;
5469 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5470 SUBST (XEXP (x, 0),
5471 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5472 GET_MODE_MASK (mode), 0));
5474 /* We can truncate a constant value and return it. */
5475 if (CONST_INT_P (XEXP (x, 0)))
5476 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5478 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5479 whose value is a comparison can be replaced with a subreg if
5480 STORE_FLAG_VALUE permits. */
5481 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5482 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5483 && (temp = get_last_value (XEXP (x, 0)))
5484 && COMPARISON_P (temp))
5485 return gen_lowpart (mode, XEXP (x, 0));
5486 break;
5488 case CONST:
5489 /* (const (const X)) can become (const X). Do it this way rather than
5490 returning the inner CONST since CONST can be shared with a
5491 REG_EQUAL note. */
5492 if (GET_CODE (XEXP (x, 0)) == CONST)
5493 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5494 break;
5496 #ifdef HAVE_lo_sum
5497 case LO_SUM:
5498 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5499 can add in an offset. find_split_point will split this address up
5500 again if it doesn't match. */
5501 if (GET_CODE (XEXP (x, 0)) == HIGH
5502 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5503 return XEXP (x, 1);
5504 break;
5505 #endif
5507 case PLUS:
5508 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5509 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5510 bit-field and can be replaced by either a sign_extend or a
5511 sign_extract. The `and' may be a zero_extend and the two
5512 <c>, -<c> constants may be reversed. */
5513 if (GET_CODE (XEXP (x, 0)) == XOR
5514 && CONST_INT_P (XEXP (x, 1))
5515 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5516 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5517 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5518 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5519 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5520 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5521 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5522 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5523 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5524 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5525 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5526 == (unsigned int) i + 1))))
5527 return simplify_shift_const
5528 (NULL_RTX, ASHIFTRT, mode,
5529 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5530 XEXP (XEXP (XEXP (x, 0), 0), 0),
5531 GET_MODE_BITSIZE (mode) - (i + 1)),
5532 GET_MODE_BITSIZE (mode) - (i + 1));
5534 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5535 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5536 the bitsize of the mode - 1. This allows simplification of
5537 "a = (b & 8) == 0;" */
5538 if (XEXP (x, 1) == constm1_rtx
5539 && !REG_P (XEXP (x, 0))
5540 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5541 && REG_P (SUBREG_REG (XEXP (x, 0))))
5542 && nonzero_bits (XEXP (x, 0), mode) == 1)
5543 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5544 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5545 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5546 GET_MODE_BITSIZE (mode) - 1),
5547 GET_MODE_BITSIZE (mode) - 1);
5549 /* If we are adding two things that have no bits in common, convert
5550 the addition into an IOR. This will often be further simplified,
5551 for example in cases like ((a & 1) + (a & 2)), which can
5552 become a & 3. */
5554 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5555 && (nonzero_bits (XEXP (x, 0), mode)
5556 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5558 /* Try to simplify the expression further. */
5559 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5560 temp = combine_simplify_rtx (tor, mode, in_dest);
5562 /* If we could, great. If not, do not go ahead with the IOR
5563 replacement, since PLUS appears in many special purpose
5564 address arithmetic instructions. */
5565 if (GET_CODE (temp) != CLOBBER && temp != tor)
5566 return temp;
5568 break;
5570 case MINUS:
5571 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5572 (and <foo> (const_int pow2-1)) */
5573 if (GET_CODE (XEXP (x, 1)) == AND
5574 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5575 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5576 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5577 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5578 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5579 break;
5581 case MULT:
5582 /* If we have (mult (plus A B) C), apply the distributive law and then
5583 the inverse distributive law to see if things simplify. This
5584 occurs mostly in addresses, often when unrolling loops. */
5586 if (GET_CODE (XEXP (x, 0)) == PLUS)
5588 rtx result = distribute_and_simplify_rtx (x, 0);
5589 if (result)
5590 return result;
5593 /* Try simplify a*(b/c) as (a*b)/c. */
5594 if (FLOAT_MODE_P (mode) && flag_associative_math
5595 && GET_CODE (XEXP (x, 0)) == DIV)
5597 rtx tem = simplify_binary_operation (MULT, mode,
5598 XEXP (XEXP (x, 0), 0),
5599 XEXP (x, 1));
5600 if (tem)
5601 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5603 break;
5605 case UDIV:
5606 /* If this is a divide by a power of two, treat it as a shift if
5607 its first operand is a shift. */
5608 if (CONST_INT_P (XEXP (x, 1))
5609 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5610 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5611 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5612 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5613 || GET_CODE (XEXP (x, 0)) == ROTATE
5614 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5615 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5616 break;
5618 case EQ: case NE:
5619 case GT: case GTU: case GE: case GEU:
5620 case LT: case LTU: case LE: case LEU:
5621 case UNEQ: case LTGT:
5622 case UNGT: case UNGE:
5623 case UNLT: case UNLE:
5624 case UNORDERED: case ORDERED:
5625 /* If the first operand is a condition code, we can't do anything
5626 with it. */
5627 if (GET_CODE (XEXP (x, 0)) == COMPARE
5628 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5629 && ! CC0_P (XEXP (x, 0))))
5631 rtx op0 = XEXP (x, 0);
5632 rtx op1 = XEXP (x, 1);
5633 enum rtx_code new_code;
5635 if (GET_CODE (op0) == COMPARE)
5636 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5638 /* Simplify our comparison, if possible. */
5639 new_code = simplify_comparison (code, &op0, &op1);
5641 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5642 if only the low-order bit is possibly nonzero in X (such as when
5643 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5644 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5645 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5646 (plus X 1).
5648 Remove any ZERO_EXTRACT we made when thinking this was a
5649 comparison. It may now be simpler to use, e.g., an AND. If a
5650 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5651 the call to make_compound_operation in the SET case. */
5653 if (STORE_FLAG_VALUE == 1
5654 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5655 && op1 == const0_rtx
5656 && mode == GET_MODE (op0)
5657 && nonzero_bits (op0, mode) == 1)
5658 return gen_lowpart (mode,
5659 expand_compound_operation (op0));
5661 else if (STORE_FLAG_VALUE == 1
5662 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5663 && op1 == const0_rtx
5664 && mode == GET_MODE (op0)
5665 && (num_sign_bit_copies (op0, mode)
5666 == GET_MODE_BITSIZE (mode)))
5668 op0 = expand_compound_operation (op0);
5669 return simplify_gen_unary (NEG, mode,
5670 gen_lowpart (mode, op0),
5671 mode);
5674 else if (STORE_FLAG_VALUE == 1
5675 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5676 && op1 == const0_rtx
5677 && mode == GET_MODE (op0)
5678 && nonzero_bits (op0, mode) == 1)
5680 op0 = expand_compound_operation (op0);
5681 return simplify_gen_binary (XOR, mode,
5682 gen_lowpart (mode, op0),
5683 const1_rtx);
5686 else if (STORE_FLAG_VALUE == 1
5687 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5688 && op1 == const0_rtx
5689 && mode == GET_MODE (op0)
5690 && (num_sign_bit_copies (op0, mode)
5691 == GET_MODE_BITSIZE (mode)))
5693 op0 = expand_compound_operation (op0);
5694 return plus_constant (gen_lowpart (mode, op0), 1);
5697 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5698 those above. */
5699 if (STORE_FLAG_VALUE == -1
5700 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5701 && op1 == const0_rtx
5702 && (num_sign_bit_copies (op0, mode)
5703 == GET_MODE_BITSIZE (mode)))
5704 return gen_lowpart (mode,
5705 expand_compound_operation (op0));
5707 else if (STORE_FLAG_VALUE == -1
5708 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5709 && op1 == const0_rtx
5710 && mode == GET_MODE (op0)
5711 && nonzero_bits (op0, mode) == 1)
5713 op0 = expand_compound_operation (op0);
5714 return simplify_gen_unary (NEG, mode,
5715 gen_lowpart (mode, op0),
5716 mode);
5719 else if (STORE_FLAG_VALUE == -1
5720 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5721 && op1 == const0_rtx
5722 && mode == GET_MODE (op0)
5723 && (num_sign_bit_copies (op0, mode)
5724 == GET_MODE_BITSIZE (mode)))
5726 op0 = expand_compound_operation (op0);
5727 return simplify_gen_unary (NOT, mode,
5728 gen_lowpart (mode, op0),
5729 mode);
5732 /* If X is 0/1, (eq X 0) is X-1. */
5733 else if (STORE_FLAG_VALUE == -1
5734 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5735 && op1 == const0_rtx
5736 && mode == GET_MODE (op0)
5737 && nonzero_bits (op0, mode) == 1)
5739 op0 = expand_compound_operation (op0);
5740 return plus_constant (gen_lowpart (mode, op0), -1);
5743 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5744 one bit that might be nonzero, we can convert (ne x 0) to
5745 (ashift x c) where C puts the bit in the sign bit. Remove any
5746 AND with STORE_FLAG_VALUE when we are done, since we are only
5747 going to test the sign bit. */
5748 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5749 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5750 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5751 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5752 && op1 == const0_rtx
5753 && mode == GET_MODE (op0)
5754 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5756 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5757 expand_compound_operation (op0),
5758 GET_MODE_BITSIZE (mode) - 1 - i);
5759 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5760 return XEXP (x, 0);
5761 else
5762 return x;
5765 /* If the code changed, return a whole new comparison. */
5766 if (new_code != code)
5767 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5769 /* Otherwise, keep this operation, but maybe change its operands.
5770 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5771 SUBST (XEXP (x, 0), op0);
5772 SUBST (XEXP (x, 1), op1);
5774 break;
5776 case IF_THEN_ELSE:
5777 return simplify_if_then_else (x);
5779 case ZERO_EXTRACT:
5780 case SIGN_EXTRACT:
5781 case ZERO_EXTEND:
5782 case SIGN_EXTEND:
5783 /* If we are processing SET_DEST, we are done. */
5784 if (in_dest)
5785 return x;
5787 return expand_compound_operation (x);
5789 case SET:
5790 return simplify_set (x);
5792 case AND:
5793 case IOR:
5794 return simplify_logical (x);
5796 case ASHIFT:
5797 case LSHIFTRT:
5798 case ASHIFTRT:
5799 case ROTATE:
5800 case ROTATERT:
5801 /* If this is a shift by a constant amount, simplify it. */
5802 if (CONST_INT_P (XEXP (x, 1)))
5803 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5804 INTVAL (XEXP (x, 1)));
5806 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5807 SUBST (XEXP (x, 1),
5808 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5809 ((HOST_WIDE_INT) 1
5810 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5811 - 1,
5812 0));
5813 break;
5815 default:
5816 break;
5819 return x;
5822 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5824 static rtx
5825 simplify_if_then_else (rtx x)
5827 enum machine_mode mode = GET_MODE (x);
5828 rtx cond = XEXP (x, 0);
5829 rtx true_rtx = XEXP (x, 1);
5830 rtx false_rtx = XEXP (x, 2);
5831 enum rtx_code true_code = GET_CODE (cond);
5832 int comparison_p = COMPARISON_P (cond);
5833 rtx temp;
5834 int i;
5835 enum rtx_code false_code;
5836 rtx reversed;
5838 /* Simplify storing of the truth value. */
5839 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5840 return simplify_gen_relational (true_code, mode, VOIDmode,
5841 XEXP (cond, 0), XEXP (cond, 1));
5843 /* Also when the truth value has to be reversed. */
5844 if (comparison_p
5845 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5846 && (reversed = reversed_comparison (cond, mode)))
5847 return reversed;
5849 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5850 in it is being compared against certain values. Get the true and false
5851 comparisons and see if that says anything about the value of each arm. */
5853 if (comparison_p
5854 && ((false_code = reversed_comparison_code (cond, NULL))
5855 != UNKNOWN)
5856 && REG_P (XEXP (cond, 0)))
5858 HOST_WIDE_INT nzb;
5859 rtx from = XEXP (cond, 0);
5860 rtx true_val = XEXP (cond, 1);
5861 rtx false_val = true_val;
5862 int swapped = 0;
5864 /* If FALSE_CODE is EQ, swap the codes and arms. */
5866 if (false_code == EQ)
5868 swapped = 1, true_code = EQ, false_code = NE;
5869 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5872 /* If we are comparing against zero and the expression being tested has
5873 only a single bit that might be nonzero, that is its value when it is
5874 not equal to zero. Similarly if it is known to be -1 or 0. */
5876 if (true_code == EQ && true_val == const0_rtx
5877 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5879 false_code = EQ;
5880 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5882 else if (true_code == EQ && true_val == const0_rtx
5883 && (num_sign_bit_copies (from, GET_MODE (from))
5884 == GET_MODE_BITSIZE (GET_MODE (from))))
5886 false_code = EQ;
5887 false_val = constm1_rtx;
5890 /* Now simplify an arm if we know the value of the register in the
5891 branch and it is used in the arm. Be careful due to the potential
5892 of locally-shared RTL. */
5894 if (reg_mentioned_p (from, true_rtx))
5895 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5896 from, true_val),
5897 pc_rtx, pc_rtx, 0, 0);
5898 if (reg_mentioned_p (from, false_rtx))
5899 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5900 from, false_val),
5901 pc_rtx, pc_rtx, 0, 0);
5903 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5904 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5906 true_rtx = XEXP (x, 1);
5907 false_rtx = XEXP (x, 2);
5908 true_code = GET_CODE (cond);
5911 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5912 reversed, do so to avoid needing two sets of patterns for
5913 subtract-and-branch insns. Similarly if we have a constant in the true
5914 arm, the false arm is the same as the first operand of the comparison, or
5915 the false arm is more complicated than the true arm. */
5917 if (comparison_p
5918 && reversed_comparison_code (cond, NULL) != UNKNOWN
5919 && (true_rtx == pc_rtx
5920 || (CONSTANT_P (true_rtx)
5921 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5922 || true_rtx == const0_rtx
5923 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5924 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5925 && !OBJECT_P (false_rtx))
5926 || reg_mentioned_p (true_rtx, false_rtx)
5927 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5929 true_code = reversed_comparison_code (cond, NULL);
5930 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5931 SUBST (XEXP (x, 1), false_rtx);
5932 SUBST (XEXP (x, 2), true_rtx);
5934 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5935 cond = XEXP (x, 0);
5937 /* It is possible that the conditional has been simplified out. */
5938 true_code = GET_CODE (cond);
5939 comparison_p = COMPARISON_P (cond);
5942 /* If the two arms are identical, we don't need the comparison. */
5944 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5945 return true_rtx;
5947 /* Convert a == b ? b : a to "a". */
5948 if (true_code == EQ && ! side_effects_p (cond)
5949 && !HONOR_NANS (mode)
5950 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5951 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5952 return false_rtx;
5953 else if (true_code == NE && ! side_effects_p (cond)
5954 && !HONOR_NANS (mode)
5955 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5956 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5957 return true_rtx;
5959 /* Look for cases where we have (abs x) or (neg (abs X)). */
5961 if (GET_MODE_CLASS (mode) == MODE_INT
5962 && comparison_p
5963 && XEXP (cond, 1) == const0_rtx
5964 && GET_CODE (false_rtx) == NEG
5965 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5966 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5967 && ! side_effects_p (true_rtx))
5968 switch (true_code)
5970 case GT:
5971 case GE:
5972 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5973 case LT:
5974 case LE:
5975 return
5976 simplify_gen_unary (NEG, mode,
5977 simplify_gen_unary (ABS, mode, true_rtx, mode),
5978 mode);
5979 default:
5980 break;
5983 /* Look for MIN or MAX. */
5985 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5986 && comparison_p
5987 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5988 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5989 && ! side_effects_p (cond))
5990 switch (true_code)
5992 case GE:
5993 case GT:
5994 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5995 case LE:
5996 case LT:
5997 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5998 case GEU:
5999 case GTU:
6000 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6001 case LEU:
6002 case LTU:
6003 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6004 default:
6005 break;
6008 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6009 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6010 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6011 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6012 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6013 neither 1 or -1, but it isn't worth checking for. */
6015 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6016 && comparison_p
6017 && GET_MODE_CLASS (mode) == MODE_INT
6018 && ! side_effects_p (x))
6020 rtx t = make_compound_operation (true_rtx, SET);
6021 rtx f = make_compound_operation (false_rtx, SET);
6022 rtx cond_op0 = XEXP (cond, 0);
6023 rtx cond_op1 = XEXP (cond, 1);
6024 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6025 enum machine_mode m = mode;
6026 rtx z = 0, c1 = NULL_RTX;
6028 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6029 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6030 || GET_CODE (t) == ASHIFT
6031 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6032 && rtx_equal_p (XEXP (t, 0), f))
6033 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6035 /* If an identity-zero op is commutative, check whether there
6036 would be a match if we swapped the operands. */
6037 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6038 || GET_CODE (t) == XOR)
6039 && rtx_equal_p (XEXP (t, 1), f))
6040 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6041 else if (GET_CODE (t) == SIGN_EXTEND
6042 && (GET_CODE (XEXP (t, 0)) == PLUS
6043 || GET_CODE (XEXP (t, 0)) == MINUS
6044 || GET_CODE (XEXP (t, 0)) == IOR
6045 || GET_CODE (XEXP (t, 0)) == XOR
6046 || GET_CODE (XEXP (t, 0)) == ASHIFT
6047 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6048 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6049 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6050 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6051 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6052 && (num_sign_bit_copies (f, GET_MODE (f))
6053 > (unsigned int)
6054 (GET_MODE_BITSIZE (mode)
6055 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6057 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6058 extend_op = SIGN_EXTEND;
6059 m = GET_MODE (XEXP (t, 0));
6061 else if (GET_CODE (t) == SIGN_EXTEND
6062 && (GET_CODE (XEXP (t, 0)) == PLUS
6063 || GET_CODE (XEXP (t, 0)) == IOR
6064 || GET_CODE (XEXP (t, 0)) == XOR)
6065 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6066 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6067 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6068 && (num_sign_bit_copies (f, GET_MODE (f))
6069 > (unsigned int)
6070 (GET_MODE_BITSIZE (mode)
6071 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6073 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6074 extend_op = SIGN_EXTEND;
6075 m = GET_MODE (XEXP (t, 0));
6077 else if (GET_CODE (t) == ZERO_EXTEND
6078 && (GET_CODE (XEXP (t, 0)) == PLUS
6079 || GET_CODE (XEXP (t, 0)) == MINUS
6080 || GET_CODE (XEXP (t, 0)) == IOR
6081 || GET_CODE (XEXP (t, 0)) == XOR
6082 || GET_CODE (XEXP (t, 0)) == ASHIFT
6083 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6084 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6085 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6086 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6087 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6088 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6089 && ((nonzero_bits (f, GET_MODE (f))
6090 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6091 == 0))
6093 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6094 extend_op = ZERO_EXTEND;
6095 m = GET_MODE (XEXP (t, 0));
6097 else if (GET_CODE (t) == ZERO_EXTEND
6098 && (GET_CODE (XEXP (t, 0)) == PLUS
6099 || GET_CODE (XEXP (t, 0)) == IOR
6100 || GET_CODE (XEXP (t, 0)) == XOR)
6101 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6102 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6103 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6104 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6105 && ((nonzero_bits (f, GET_MODE (f))
6106 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6107 == 0))
6109 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6110 extend_op = ZERO_EXTEND;
6111 m = GET_MODE (XEXP (t, 0));
6114 if (z)
6116 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6117 cond_op0, cond_op1),
6118 pc_rtx, pc_rtx, 0, 0);
6119 temp = simplify_gen_binary (MULT, m, temp,
6120 simplify_gen_binary (MULT, m, c1,
6121 const_true_rtx));
6122 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6123 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6125 if (extend_op != UNKNOWN)
6126 temp = simplify_gen_unary (extend_op, mode, temp, m);
6128 return temp;
6132 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6133 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6134 negation of a single bit, we can convert this operation to a shift. We
6135 can actually do this more generally, but it doesn't seem worth it. */
6137 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6138 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6139 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6140 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
6141 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6142 == GET_MODE_BITSIZE (mode))
6143 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
6144 return
6145 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6146 gen_lowpart (mode, XEXP (cond, 0)), i);
6148 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6149 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6150 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6151 && GET_MODE (XEXP (cond, 0)) == mode
6152 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
6153 == nonzero_bits (XEXP (cond, 0), mode)
6154 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6155 return XEXP (cond, 0);
6157 return x;
6160 /* Simplify X, a SET expression. Return the new expression. */
6162 static rtx
6163 simplify_set (rtx x)
6165 rtx src = SET_SRC (x);
6166 rtx dest = SET_DEST (x);
6167 enum machine_mode mode
6168 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6169 rtx other_insn;
6170 rtx *cc_use;
6172 /* (set (pc) (return)) gets written as (return). */
6173 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6174 return src;
6176 /* Now that we know for sure which bits of SRC we are using, see if we can
6177 simplify the expression for the object knowing that we only need the
6178 low-order bits. */
6180 if (GET_MODE_CLASS (mode) == MODE_INT
6181 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6183 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
6184 SUBST (SET_SRC (x), src);
6187 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6188 the comparison result and try to simplify it unless we already have used
6189 undobuf.other_insn. */
6190 if ((GET_MODE_CLASS (mode) == MODE_CC
6191 || GET_CODE (src) == COMPARE
6192 || CC0_P (dest))
6193 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6194 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6195 && COMPARISON_P (*cc_use)
6196 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6198 enum rtx_code old_code = GET_CODE (*cc_use);
6199 enum rtx_code new_code;
6200 rtx op0, op1, tmp;
6201 int other_changed = 0;
6202 enum machine_mode compare_mode = GET_MODE (dest);
6204 if (GET_CODE (src) == COMPARE)
6205 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6206 else
6207 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6209 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6210 op0, op1);
6211 if (!tmp)
6212 new_code = old_code;
6213 else if (!CONSTANT_P (tmp))
6215 new_code = GET_CODE (tmp);
6216 op0 = XEXP (tmp, 0);
6217 op1 = XEXP (tmp, 1);
6219 else
6221 rtx pat = PATTERN (other_insn);
6222 undobuf.other_insn = other_insn;
6223 SUBST (*cc_use, tmp);
6225 /* Attempt to simplify CC user. */
6226 if (GET_CODE (pat) == SET)
6228 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6229 if (new_rtx != NULL_RTX)
6230 SUBST (SET_SRC (pat), new_rtx);
6233 /* Convert X into a no-op move. */
6234 SUBST (SET_DEST (x), pc_rtx);
6235 SUBST (SET_SRC (x), pc_rtx);
6236 return x;
6239 /* Simplify our comparison, if possible. */
6240 new_code = simplify_comparison (new_code, &op0, &op1);
6242 #ifdef SELECT_CC_MODE
6243 /* If this machine has CC modes other than CCmode, check to see if we
6244 need to use a different CC mode here. */
6245 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6246 compare_mode = GET_MODE (op0);
6247 else
6248 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6250 #ifndef HAVE_cc0
6251 /* If the mode changed, we have to change SET_DEST, the mode in the
6252 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6253 a hard register, just build new versions with the proper mode. If it
6254 is a pseudo, we lose unless it is only time we set the pseudo, in
6255 which case we can safely change its mode. */
6256 if (compare_mode != GET_MODE (dest))
6258 if (can_change_dest_mode (dest, 0, compare_mode))
6260 unsigned int regno = REGNO (dest);
6261 rtx new_dest;
6263 if (regno < FIRST_PSEUDO_REGISTER)
6264 new_dest = gen_rtx_REG (compare_mode, regno);
6265 else
6267 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6268 new_dest = regno_reg_rtx[regno];
6271 SUBST (SET_DEST (x), new_dest);
6272 SUBST (XEXP (*cc_use, 0), new_dest);
6273 other_changed = 1;
6275 dest = new_dest;
6278 #endif /* cc0 */
6279 #endif /* SELECT_CC_MODE */
6281 /* If the code changed, we have to build a new comparison in
6282 undobuf.other_insn. */
6283 if (new_code != old_code)
6285 int other_changed_previously = other_changed;
6286 unsigned HOST_WIDE_INT mask;
6287 rtx old_cc_use = *cc_use;
6289 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6290 dest, const0_rtx));
6291 other_changed = 1;
6293 /* If the only change we made was to change an EQ into an NE or
6294 vice versa, OP0 has only one bit that might be nonzero, and OP1
6295 is zero, check if changing the user of the condition code will
6296 produce a valid insn. If it won't, we can keep the original code
6297 in that insn by surrounding our operation with an XOR. */
6299 if (((old_code == NE && new_code == EQ)
6300 || (old_code == EQ && new_code == NE))
6301 && ! other_changed_previously && op1 == const0_rtx
6302 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6303 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6305 rtx pat = PATTERN (other_insn), note = 0;
6307 if ((recog_for_combine (&pat, other_insn, &note) < 0
6308 && ! check_asm_operands (pat)))
6310 *cc_use = old_cc_use;
6311 other_changed = 0;
6313 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6314 op0, GEN_INT (mask));
6319 if (other_changed)
6320 undobuf.other_insn = other_insn;
6322 /* Otherwise, if we didn't previously have a COMPARE in the
6323 correct mode, we need one. */
6324 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6326 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6327 src = SET_SRC (x);
6329 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6331 SUBST (SET_SRC (x), op0);
6332 src = SET_SRC (x);
6334 /* Otherwise, update the COMPARE if needed. */
6335 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6337 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6338 src = SET_SRC (x);
6341 else
6343 /* Get SET_SRC in a form where we have placed back any
6344 compound expressions. Then do the checks below. */
6345 src = make_compound_operation (src, SET);
6346 SUBST (SET_SRC (x), src);
6349 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6350 and X being a REG or (subreg (reg)), we may be able to convert this to
6351 (set (subreg:m2 x) (op)).
6353 We can always do this if M1 is narrower than M2 because that means that
6354 we only care about the low bits of the result.
6356 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6357 perform a narrower operation than requested since the high-order bits will
6358 be undefined. On machine where it is defined, this transformation is safe
6359 as long as M1 and M2 have the same number of words. */
6361 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6362 && !OBJECT_P (SUBREG_REG (src))
6363 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6364 / UNITS_PER_WORD)
6365 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6366 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6367 #ifndef WORD_REGISTER_OPERATIONS
6368 && (GET_MODE_SIZE (GET_MODE (src))
6369 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6370 #endif
6371 #ifdef CANNOT_CHANGE_MODE_CLASS
6372 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6373 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6374 GET_MODE (SUBREG_REG (src)),
6375 GET_MODE (src)))
6376 #endif
6377 && (REG_P (dest)
6378 || (GET_CODE (dest) == SUBREG
6379 && REG_P (SUBREG_REG (dest)))))
6381 SUBST (SET_DEST (x),
6382 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6383 dest));
6384 SUBST (SET_SRC (x), SUBREG_REG (src));
6386 src = SET_SRC (x), dest = SET_DEST (x);
6389 #ifdef HAVE_cc0
6390 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6391 in SRC. */
6392 if (dest == cc0_rtx
6393 && GET_CODE (src) == SUBREG
6394 && subreg_lowpart_p (src)
6395 && (GET_MODE_BITSIZE (GET_MODE (src))
6396 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6398 rtx inner = SUBREG_REG (src);
6399 enum machine_mode inner_mode = GET_MODE (inner);
6401 /* Here we make sure that we don't have a sign bit on. */
6402 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6403 && (nonzero_bits (inner, inner_mode)
6404 < ((unsigned HOST_WIDE_INT) 1
6405 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6407 SUBST (SET_SRC (x), inner);
6408 src = SET_SRC (x);
6411 #endif
6413 #ifdef LOAD_EXTEND_OP
6414 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6415 would require a paradoxical subreg. Replace the subreg with a
6416 zero_extend to avoid the reload that would otherwise be required. */
6418 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6419 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6420 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6421 && SUBREG_BYTE (src) == 0
6422 && (GET_MODE_SIZE (GET_MODE (src))
6423 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6424 && MEM_P (SUBREG_REG (src)))
6426 SUBST (SET_SRC (x),
6427 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6428 GET_MODE (src), SUBREG_REG (src)));
6430 src = SET_SRC (x);
6432 #endif
6434 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6435 are comparing an item known to be 0 or -1 against 0, use a logical
6436 operation instead. Check for one of the arms being an IOR of the other
6437 arm with some value. We compute three terms to be IOR'ed together. In
6438 practice, at most two will be nonzero. Then we do the IOR's. */
6440 if (GET_CODE (dest) != PC
6441 && GET_CODE (src) == IF_THEN_ELSE
6442 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6443 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6444 && XEXP (XEXP (src, 0), 1) == const0_rtx
6445 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6446 #ifdef HAVE_conditional_move
6447 && ! can_conditionally_move_p (GET_MODE (src))
6448 #endif
6449 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6450 GET_MODE (XEXP (XEXP (src, 0), 0)))
6451 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6452 && ! side_effects_p (src))
6454 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6455 ? XEXP (src, 1) : XEXP (src, 2));
6456 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6457 ? XEXP (src, 2) : XEXP (src, 1));
6458 rtx term1 = const0_rtx, term2, term3;
6460 if (GET_CODE (true_rtx) == IOR
6461 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6462 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6463 else if (GET_CODE (true_rtx) == IOR
6464 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6465 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6466 else if (GET_CODE (false_rtx) == IOR
6467 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6468 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6469 else if (GET_CODE (false_rtx) == IOR
6470 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6471 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6473 term2 = simplify_gen_binary (AND, GET_MODE (src),
6474 XEXP (XEXP (src, 0), 0), true_rtx);
6475 term3 = simplify_gen_binary (AND, GET_MODE (src),
6476 simplify_gen_unary (NOT, GET_MODE (src),
6477 XEXP (XEXP (src, 0), 0),
6478 GET_MODE (src)),
6479 false_rtx);
6481 SUBST (SET_SRC (x),
6482 simplify_gen_binary (IOR, GET_MODE (src),
6483 simplify_gen_binary (IOR, GET_MODE (src),
6484 term1, term2),
6485 term3));
6487 src = SET_SRC (x);
6490 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6491 whole thing fail. */
6492 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6493 return src;
6494 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6495 return dest;
6496 else
6497 /* Convert this into a field assignment operation, if possible. */
6498 return make_field_assignment (x);
6501 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6502 result. */
6504 static rtx
6505 simplify_logical (rtx x)
6507 enum machine_mode mode = GET_MODE (x);
6508 rtx op0 = XEXP (x, 0);
6509 rtx op1 = XEXP (x, 1);
6511 switch (GET_CODE (x))
6513 case AND:
6514 /* We can call simplify_and_const_int only if we don't lose
6515 any (sign) bits when converting INTVAL (op1) to
6516 "unsigned HOST_WIDE_INT". */
6517 if (CONST_INT_P (op1)
6518 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6519 || INTVAL (op1) > 0))
6521 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6522 if (GET_CODE (x) != AND)
6523 return x;
6525 op0 = XEXP (x, 0);
6526 op1 = XEXP (x, 1);
6529 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6530 apply the distributive law and then the inverse distributive
6531 law to see if things simplify. */
6532 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6534 rtx result = distribute_and_simplify_rtx (x, 0);
6535 if (result)
6536 return result;
6538 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6540 rtx result = distribute_and_simplify_rtx (x, 1);
6541 if (result)
6542 return result;
6544 break;
6546 case IOR:
6547 /* If we have (ior (and A B) C), apply the distributive law and then
6548 the inverse distributive law to see if things simplify. */
6550 if (GET_CODE (op0) == AND)
6552 rtx result = distribute_and_simplify_rtx (x, 0);
6553 if (result)
6554 return result;
6557 if (GET_CODE (op1) == AND)
6559 rtx result = distribute_and_simplify_rtx (x, 1);
6560 if (result)
6561 return result;
6563 break;
6565 default:
6566 gcc_unreachable ();
6569 return x;
6572 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6573 operations" because they can be replaced with two more basic operations.
6574 ZERO_EXTEND is also considered "compound" because it can be replaced with
6575 an AND operation, which is simpler, though only one operation.
6577 The function expand_compound_operation is called with an rtx expression
6578 and will convert it to the appropriate shifts and AND operations,
6579 simplifying at each stage.
6581 The function make_compound_operation is called to convert an expression
6582 consisting of shifts and ANDs into the equivalent compound expression.
6583 It is the inverse of this function, loosely speaking. */
6585 static rtx
6586 expand_compound_operation (rtx x)
6588 unsigned HOST_WIDE_INT pos = 0, len;
6589 int unsignedp = 0;
6590 unsigned int modewidth;
6591 rtx tem;
6593 switch (GET_CODE (x))
6595 case ZERO_EXTEND:
6596 unsignedp = 1;
6597 case SIGN_EXTEND:
6598 /* We can't necessarily use a const_int for a multiword mode;
6599 it depends on implicitly extending the value.
6600 Since we don't know the right way to extend it,
6601 we can't tell whether the implicit way is right.
6603 Even for a mode that is no wider than a const_int,
6604 we can't win, because we need to sign extend one of its bits through
6605 the rest of it, and we don't know which bit. */
6606 if (CONST_INT_P (XEXP (x, 0)))
6607 return x;
6609 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6610 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6611 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6612 reloaded. If not for that, MEM's would very rarely be safe.
6614 Reject MODEs bigger than a word, because we might not be able
6615 to reference a two-register group starting with an arbitrary register
6616 (and currently gen_lowpart might crash for a SUBREG). */
6618 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6619 return x;
6621 /* Reject MODEs that aren't scalar integers because turning vector
6622 or complex modes into shifts causes problems. */
6624 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6625 return x;
6627 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6628 /* If the inner object has VOIDmode (the only way this can happen
6629 is if it is an ASM_OPERANDS), we can't do anything since we don't
6630 know how much masking to do. */
6631 if (len == 0)
6632 return x;
6634 break;
6636 case ZERO_EXTRACT:
6637 unsignedp = 1;
6639 /* ... fall through ... */
6641 case SIGN_EXTRACT:
6642 /* If the operand is a CLOBBER, just return it. */
6643 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6644 return XEXP (x, 0);
6646 if (!CONST_INT_P (XEXP (x, 1))
6647 || !CONST_INT_P (XEXP (x, 2))
6648 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6649 return x;
6651 /* Reject MODEs that aren't scalar integers because turning vector
6652 or complex modes into shifts causes problems. */
6654 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6655 return x;
6657 len = INTVAL (XEXP (x, 1));
6658 pos = INTVAL (XEXP (x, 2));
6660 /* This should stay within the object being extracted, fail otherwise. */
6661 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6662 return x;
6664 if (BITS_BIG_ENDIAN)
6665 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6667 break;
6669 default:
6670 return x;
6672 /* Convert sign extension to zero extension, if we know that the high
6673 bit is not set, as this is easier to optimize. It will be converted
6674 back to cheaper alternative in make_extraction. */
6675 if (GET_CODE (x) == SIGN_EXTEND
6676 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6677 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6678 & ~(((unsigned HOST_WIDE_INT)
6679 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6680 >> 1))
6681 == 0)))
6683 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6684 rtx temp2 = expand_compound_operation (temp);
6686 /* Make sure this is a profitable operation. */
6687 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6688 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6689 return temp2;
6690 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6691 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6692 return temp;
6693 else
6694 return x;
6697 /* We can optimize some special cases of ZERO_EXTEND. */
6698 if (GET_CODE (x) == ZERO_EXTEND)
6700 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6701 know that the last value didn't have any inappropriate bits
6702 set. */
6703 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6704 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6705 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6706 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6707 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6708 return XEXP (XEXP (x, 0), 0);
6710 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6711 if (GET_CODE (XEXP (x, 0)) == SUBREG
6712 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6713 && subreg_lowpart_p (XEXP (x, 0))
6714 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6715 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6716 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6717 return SUBREG_REG (XEXP (x, 0));
6719 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6720 is a comparison and STORE_FLAG_VALUE permits. This is like
6721 the first case, but it works even when GET_MODE (x) is larger
6722 than HOST_WIDE_INT. */
6723 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6724 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6725 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6726 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6727 <= HOST_BITS_PER_WIDE_INT)
6728 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6729 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6730 return XEXP (XEXP (x, 0), 0);
6732 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6733 if (GET_CODE (XEXP (x, 0)) == SUBREG
6734 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6735 && subreg_lowpart_p (XEXP (x, 0))
6736 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6737 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6738 <= HOST_BITS_PER_WIDE_INT)
6739 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6740 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6741 return SUBREG_REG (XEXP (x, 0));
6745 /* If we reach here, we want to return a pair of shifts. The inner
6746 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6747 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6748 logical depending on the value of UNSIGNEDP.
6750 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6751 converted into an AND of a shift.
6753 We must check for the case where the left shift would have a negative
6754 count. This can happen in a case like (x >> 31) & 255 on machines
6755 that can't shift by a constant. On those machines, we would first
6756 combine the shift with the AND to produce a variable-position
6757 extraction. Then the constant of 31 would be substituted in to produce
6758 a such a position. */
6760 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6761 if (modewidth + len >= pos)
6763 enum machine_mode mode = GET_MODE (x);
6764 tem = gen_lowpart (mode, XEXP (x, 0));
6765 if (!tem || GET_CODE (tem) == CLOBBER)
6766 return x;
6767 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6768 tem, modewidth - pos - len);
6769 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6770 mode, tem, modewidth - len);
6772 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6773 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6774 simplify_shift_const (NULL_RTX, LSHIFTRT,
6775 GET_MODE (x),
6776 XEXP (x, 0), pos),
6777 ((HOST_WIDE_INT) 1 << len) - 1);
6778 else
6779 /* Any other cases we can't handle. */
6780 return x;
6782 /* If we couldn't do this for some reason, return the original
6783 expression. */
6784 if (GET_CODE (tem) == CLOBBER)
6785 return x;
6787 return tem;
6790 /* X is a SET which contains an assignment of one object into
6791 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6792 or certain SUBREGS). If possible, convert it into a series of
6793 logical operations.
6795 We half-heartedly support variable positions, but do not at all
6796 support variable lengths. */
6798 static const_rtx
6799 expand_field_assignment (const_rtx x)
6801 rtx inner;
6802 rtx pos; /* Always counts from low bit. */
6803 int len;
6804 rtx mask, cleared, masked;
6805 enum machine_mode compute_mode;
6807 /* Loop until we find something we can't simplify. */
6808 while (1)
6810 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6811 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6813 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6814 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6815 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6817 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6818 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6820 inner = XEXP (SET_DEST (x), 0);
6821 len = INTVAL (XEXP (SET_DEST (x), 1));
6822 pos = XEXP (SET_DEST (x), 2);
6824 /* A constant position should stay within the width of INNER. */
6825 if (CONST_INT_P (pos)
6826 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6827 break;
6829 if (BITS_BIG_ENDIAN)
6831 if (CONST_INT_P (pos))
6832 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6833 - INTVAL (pos));
6834 else if (GET_CODE (pos) == MINUS
6835 && CONST_INT_P (XEXP (pos, 1))
6836 && (INTVAL (XEXP (pos, 1))
6837 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6838 /* If position is ADJUST - X, new position is X. */
6839 pos = XEXP (pos, 0);
6840 else
6841 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6842 GEN_INT (GET_MODE_BITSIZE (
6843 GET_MODE (inner))
6844 - len),
6845 pos);
6849 /* A SUBREG between two modes that occupy the same numbers of words
6850 can be done by moving the SUBREG to the source. */
6851 else if (GET_CODE (SET_DEST (x)) == SUBREG
6852 /* We need SUBREGs to compute nonzero_bits properly. */
6853 && nonzero_sign_valid
6854 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6855 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6856 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6857 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6859 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6860 gen_lowpart
6861 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6862 SET_SRC (x)));
6863 continue;
6865 else
6866 break;
6868 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6869 inner = SUBREG_REG (inner);
6871 compute_mode = GET_MODE (inner);
6873 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6874 if (! SCALAR_INT_MODE_P (compute_mode))
6876 enum machine_mode imode;
6878 /* Don't do anything for vector or complex integral types. */
6879 if (! FLOAT_MODE_P (compute_mode))
6880 break;
6882 /* Try to find an integral mode to pun with. */
6883 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6884 if (imode == BLKmode)
6885 break;
6887 compute_mode = imode;
6888 inner = gen_lowpart (imode, inner);
6891 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6892 if (len >= HOST_BITS_PER_WIDE_INT)
6893 break;
6895 /* Now compute the equivalent expression. Make a copy of INNER
6896 for the SET_DEST in case it is a MEM into which we will substitute;
6897 we don't want shared RTL in that case. */
6898 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6899 cleared = simplify_gen_binary (AND, compute_mode,
6900 simplify_gen_unary (NOT, compute_mode,
6901 simplify_gen_binary (ASHIFT,
6902 compute_mode,
6903 mask, pos),
6904 compute_mode),
6905 inner);
6906 masked = simplify_gen_binary (ASHIFT, compute_mode,
6907 simplify_gen_binary (
6908 AND, compute_mode,
6909 gen_lowpart (compute_mode, SET_SRC (x)),
6910 mask),
6911 pos);
6913 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6914 simplify_gen_binary (IOR, compute_mode,
6915 cleared, masked));
6918 return x;
6921 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6922 it is an RTX that represents a variable starting position; otherwise,
6923 POS is the (constant) starting bit position (counted from the LSB).
6925 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6926 signed reference.
6928 IN_DEST is nonzero if this is a reference in the destination of a
6929 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6930 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6931 be used.
6933 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6934 ZERO_EXTRACT should be built even for bits starting at bit 0.
6936 MODE is the desired mode of the result (if IN_DEST == 0).
6938 The result is an RTX for the extraction or NULL_RTX if the target
6939 can't handle it. */
6941 static rtx
6942 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6943 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6944 int in_dest, int in_compare)
6946 /* This mode describes the size of the storage area
6947 to fetch the overall value from. Within that, we
6948 ignore the POS lowest bits, etc. */
6949 enum machine_mode is_mode = GET_MODE (inner);
6950 enum machine_mode inner_mode;
6951 enum machine_mode wanted_inner_mode;
6952 enum machine_mode wanted_inner_reg_mode = word_mode;
6953 enum machine_mode pos_mode = word_mode;
6954 enum machine_mode extraction_mode = word_mode;
6955 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6956 rtx new_rtx = 0;
6957 rtx orig_pos_rtx = pos_rtx;
6958 HOST_WIDE_INT orig_pos;
6960 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6962 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6963 consider just the QI as the memory to extract from.
6964 The subreg adds or removes high bits; its mode is
6965 irrelevant to the meaning of this extraction,
6966 since POS and LEN count from the lsb. */
6967 if (MEM_P (SUBREG_REG (inner)))
6968 is_mode = GET_MODE (SUBREG_REG (inner));
6969 inner = SUBREG_REG (inner);
6971 else if (GET_CODE (inner) == ASHIFT
6972 && CONST_INT_P (XEXP (inner, 1))
6973 && pos_rtx == 0 && pos == 0
6974 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6976 /* We're extracting the least significant bits of an rtx
6977 (ashift X (const_int C)), where LEN > C. Extract the
6978 least significant (LEN - C) bits of X, giving an rtx
6979 whose mode is MODE, then shift it left C times. */
6980 new_rtx = make_extraction (mode, XEXP (inner, 0),
6981 0, 0, len - INTVAL (XEXP (inner, 1)),
6982 unsignedp, in_dest, in_compare);
6983 if (new_rtx != 0)
6984 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6987 inner_mode = GET_MODE (inner);
6989 if (pos_rtx && CONST_INT_P (pos_rtx))
6990 pos = INTVAL (pos_rtx), pos_rtx = 0;
6992 /* See if this can be done without an extraction. We never can if the
6993 width of the field is not the same as that of some integer mode. For
6994 registers, we can only avoid the extraction if the position is at the
6995 low-order bit and this is either not in the destination or we have the
6996 appropriate STRICT_LOW_PART operation available.
6998 For MEM, we can avoid an extract if the field starts on an appropriate
6999 boundary and we can change the mode of the memory reference. */
7001 if (tmode != BLKmode
7002 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7003 && !MEM_P (inner)
7004 && (inner_mode == tmode
7005 || !REG_P (inner)
7006 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7007 GET_MODE_BITSIZE (inner_mode))
7008 || reg_truncated_to_mode (tmode, inner))
7009 && (! in_dest
7010 || (REG_P (inner)
7011 && have_insn_for (STRICT_LOW_PART, tmode))))
7012 || (MEM_P (inner) && pos_rtx == 0
7013 && (pos
7014 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7015 : BITS_PER_UNIT)) == 0
7016 /* We can't do this if we are widening INNER_MODE (it
7017 may not be aligned, for one thing). */
7018 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7019 && (inner_mode == tmode
7020 || (! mode_dependent_address_p (XEXP (inner, 0))
7021 && ! MEM_VOLATILE_P (inner))))))
7023 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7024 field. If the original and current mode are the same, we need not
7025 adjust the offset. Otherwise, we do if bytes big endian.
7027 If INNER is not a MEM, get a piece consisting of just the field
7028 of interest (in this case POS % BITS_PER_WORD must be 0). */
7030 if (MEM_P (inner))
7032 HOST_WIDE_INT offset;
7034 /* POS counts from lsb, but make OFFSET count in memory order. */
7035 if (BYTES_BIG_ENDIAN)
7036 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7037 else
7038 offset = pos / BITS_PER_UNIT;
7040 new_rtx = adjust_address_nv (inner, tmode, offset);
7042 else if (REG_P (inner))
7044 if (tmode != inner_mode)
7046 /* We can't call gen_lowpart in a DEST since we
7047 always want a SUBREG (see below) and it would sometimes
7048 return a new hard register. */
7049 if (pos || in_dest)
7051 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7053 if (WORDS_BIG_ENDIAN
7054 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7055 final_word = ((GET_MODE_SIZE (inner_mode)
7056 - GET_MODE_SIZE (tmode))
7057 / UNITS_PER_WORD) - final_word;
7059 final_word *= UNITS_PER_WORD;
7060 if (BYTES_BIG_ENDIAN &&
7061 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7062 final_word += (GET_MODE_SIZE (inner_mode)
7063 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7065 /* Avoid creating invalid subregs, for example when
7066 simplifying (x>>32)&255. */
7067 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7068 return NULL_RTX;
7070 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7072 else
7073 new_rtx = gen_lowpart (tmode, inner);
7075 else
7076 new_rtx = inner;
7078 else
7079 new_rtx = force_to_mode (inner, tmode,
7080 len >= HOST_BITS_PER_WIDE_INT
7081 ? ~(unsigned HOST_WIDE_INT) 0
7082 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7085 /* If this extraction is going into the destination of a SET,
7086 make a STRICT_LOW_PART unless we made a MEM. */
7088 if (in_dest)
7089 return (MEM_P (new_rtx) ? new_rtx
7090 : (GET_CODE (new_rtx) != SUBREG
7091 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7092 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7094 if (mode == tmode)
7095 return new_rtx;
7097 if (CONST_INT_P (new_rtx)
7098 || GET_CODE (new_rtx) == CONST_DOUBLE)
7099 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7100 mode, new_rtx, tmode);
7102 /* If we know that no extraneous bits are set, and that the high
7103 bit is not set, convert the extraction to the cheaper of
7104 sign and zero extension, that are equivalent in these cases. */
7105 if (flag_expensive_optimizations
7106 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7107 && ((nonzero_bits (new_rtx, tmode)
7108 & ~(((unsigned HOST_WIDE_INT)
7109 GET_MODE_MASK (tmode))
7110 >> 1))
7111 == 0)))
7113 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7114 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7116 /* Prefer ZERO_EXTENSION, since it gives more information to
7117 backends. */
7118 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7119 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7120 return temp;
7121 return temp1;
7124 /* Otherwise, sign- or zero-extend unless we already are in the
7125 proper mode. */
7127 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7128 mode, new_rtx));
7131 /* Unless this is a COMPARE or we have a funny memory reference,
7132 don't do anything with zero-extending field extracts starting at
7133 the low-order bit since they are simple AND operations. */
7134 if (pos_rtx == 0 && pos == 0 && ! in_dest
7135 && ! in_compare && unsignedp)
7136 return 0;
7138 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7139 if the position is not a constant and the length is not 1. In all
7140 other cases, we would only be going outside our object in cases when
7141 an original shift would have been undefined. */
7142 if (MEM_P (inner)
7143 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7144 || (pos_rtx != 0 && len != 1)))
7145 return 0;
7147 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7148 and the mode for the result. */
7149 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7151 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7152 pos_mode = mode_for_extraction (EP_insv, 2);
7153 extraction_mode = mode_for_extraction (EP_insv, 3);
7156 if (! in_dest && unsignedp
7157 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7159 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7160 pos_mode = mode_for_extraction (EP_extzv, 3);
7161 extraction_mode = mode_for_extraction (EP_extzv, 0);
7164 if (! in_dest && ! unsignedp
7165 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7167 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7168 pos_mode = mode_for_extraction (EP_extv, 3);
7169 extraction_mode = mode_for_extraction (EP_extv, 0);
7172 /* Never narrow an object, since that might not be safe. */
7174 if (mode != VOIDmode
7175 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7176 extraction_mode = mode;
7178 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7179 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7180 pos_mode = GET_MODE (pos_rtx);
7182 /* If this is not from memory, the desired mode is the preferred mode
7183 for an extraction pattern's first input operand, or word_mode if there
7184 is none. */
7185 if (!MEM_P (inner))
7186 wanted_inner_mode = wanted_inner_reg_mode;
7187 else
7189 /* Be careful not to go beyond the extracted object and maintain the
7190 natural alignment of the memory. */
7191 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7192 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7193 > GET_MODE_BITSIZE (wanted_inner_mode))
7195 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7196 gcc_assert (wanted_inner_mode != VOIDmode);
7199 /* If we have to change the mode of memory and cannot, the desired mode
7200 is EXTRACTION_MODE. */
7201 if (inner_mode != wanted_inner_mode
7202 && (mode_dependent_address_p (XEXP (inner, 0))
7203 || MEM_VOLATILE_P (inner)
7204 || pos_rtx))
7205 wanted_inner_mode = extraction_mode;
7208 orig_pos = pos;
7210 if (BITS_BIG_ENDIAN)
7212 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7213 BITS_BIG_ENDIAN style. If position is constant, compute new
7214 position. Otherwise, build subtraction.
7215 Note that POS is relative to the mode of the original argument.
7216 If it's a MEM we need to recompute POS relative to that.
7217 However, if we're extracting from (or inserting into) a register,
7218 we want to recompute POS relative to wanted_inner_mode. */
7219 int width = (MEM_P (inner)
7220 ? GET_MODE_BITSIZE (is_mode)
7221 : GET_MODE_BITSIZE (wanted_inner_mode));
7223 if (pos_rtx == 0)
7224 pos = width - len - pos;
7225 else
7226 pos_rtx
7227 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7228 /* POS may be less than 0 now, but we check for that below.
7229 Note that it can only be less than 0 if !MEM_P (inner). */
7232 /* If INNER has a wider mode, and this is a constant extraction, try to
7233 make it smaller and adjust the byte to point to the byte containing
7234 the value. */
7235 if (wanted_inner_mode != VOIDmode
7236 && inner_mode != wanted_inner_mode
7237 && ! pos_rtx
7238 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7239 && MEM_P (inner)
7240 && ! mode_dependent_address_p (XEXP (inner, 0))
7241 && ! MEM_VOLATILE_P (inner))
7243 int offset = 0;
7245 /* The computations below will be correct if the machine is big
7246 endian in both bits and bytes or little endian in bits and bytes.
7247 If it is mixed, we must adjust. */
7249 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7250 adjust OFFSET to compensate. */
7251 if (BYTES_BIG_ENDIAN
7252 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7253 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7255 /* We can now move to the desired byte. */
7256 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7257 * GET_MODE_SIZE (wanted_inner_mode);
7258 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7260 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7261 && is_mode != wanted_inner_mode)
7262 offset = (GET_MODE_SIZE (is_mode)
7263 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7265 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7268 /* If INNER is not memory, get it into the proper mode. If we are changing
7269 its mode, POS must be a constant and smaller than the size of the new
7270 mode. */
7271 else if (!MEM_P (inner))
7273 /* On the LHS, don't create paradoxical subregs implicitely truncating
7274 the register unless TRULY_NOOP_TRUNCATION. */
7275 if (in_dest
7276 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7277 GET_MODE_BITSIZE (wanted_inner_mode)))
7278 return NULL_RTX;
7280 if (GET_MODE (inner) != wanted_inner_mode
7281 && (pos_rtx != 0
7282 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7283 return NULL_RTX;
7285 if (orig_pos < 0)
7286 return NULL_RTX;
7288 inner = force_to_mode (inner, wanted_inner_mode,
7289 pos_rtx
7290 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7291 ? ~(unsigned HOST_WIDE_INT) 0
7292 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7293 << orig_pos),
7297 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7298 have to zero extend. Otherwise, we can just use a SUBREG. */
7299 if (pos_rtx != 0
7300 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7302 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7304 /* If we know that no extraneous bits are set, and that the high
7305 bit is not set, convert extraction to cheaper one - either
7306 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7307 cases. */
7308 if (flag_expensive_optimizations
7309 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7310 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7311 & ~(((unsigned HOST_WIDE_INT)
7312 GET_MODE_MASK (GET_MODE (pos_rtx)))
7313 >> 1))
7314 == 0)))
7316 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7318 /* Prefer ZERO_EXTENSION, since it gives more information to
7319 backends. */
7320 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7321 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7322 temp = temp1;
7324 pos_rtx = temp;
7326 else if (pos_rtx != 0
7327 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7328 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7330 /* Make POS_RTX unless we already have it and it is correct. If we don't
7331 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7332 be a CONST_INT. */
7333 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7334 pos_rtx = orig_pos_rtx;
7336 else if (pos_rtx == 0)
7337 pos_rtx = GEN_INT (pos);
7339 /* Make the required operation. See if we can use existing rtx. */
7340 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7341 extraction_mode, inner, GEN_INT (len), pos_rtx);
7342 if (! in_dest)
7343 new_rtx = gen_lowpart (mode, new_rtx);
7345 return new_rtx;
7348 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7349 with any other operations in X. Return X without that shift if so. */
7351 static rtx
7352 extract_left_shift (rtx x, int count)
7354 enum rtx_code code = GET_CODE (x);
7355 enum machine_mode mode = GET_MODE (x);
7356 rtx tem;
7358 switch (code)
7360 case ASHIFT:
7361 /* This is the shift itself. If it is wide enough, we will return
7362 either the value being shifted if the shift count is equal to
7363 COUNT or a shift for the difference. */
7364 if (CONST_INT_P (XEXP (x, 1))
7365 && INTVAL (XEXP (x, 1)) >= count)
7366 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7367 INTVAL (XEXP (x, 1)) - count);
7368 break;
7370 case NEG: case NOT:
7371 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7372 return simplify_gen_unary (code, mode, tem, mode);
7374 break;
7376 case PLUS: case IOR: case XOR: case AND:
7377 /* If we can safely shift this constant and we find the inner shift,
7378 make a new operation. */
7379 if (CONST_INT_P (XEXP (x, 1))
7380 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7381 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7382 return simplify_gen_binary (code, mode, tem,
7383 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7385 break;
7387 default:
7388 break;
7391 return 0;
7394 /* Look at the expression rooted at X. Look for expressions
7395 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7396 Form these expressions.
7398 Return the new rtx, usually just X.
7400 Also, for machines like the VAX that don't have logical shift insns,
7401 try to convert logical to arithmetic shift operations in cases where
7402 they are equivalent. This undoes the canonicalizations to logical
7403 shifts done elsewhere.
7405 We try, as much as possible, to re-use rtl expressions to save memory.
7407 IN_CODE says what kind of expression we are processing. Normally, it is
7408 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7409 being kludges), it is MEM. When processing the arguments of a comparison
7410 or a COMPARE against zero, it is COMPARE. */
7412 static rtx
7413 make_compound_operation (rtx x, enum rtx_code in_code)
7415 enum rtx_code code = GET_CODE (x);
7416 enum machine_mode mode = GET_MODE (x);
7417 int mode_width = GET_MODE_BITSIZE (mode);
7418 rtx rhs, lhs;
7419 enum rtx_code next_code;
7420 int i, j;
7421 rtx new_rtx = 0;
7422 rtx tem;
7423 const char *fmt;
7425 /* Select the code to be used in recursive calls. Once we are inside an
7426 address, we stay there. If we have a comparison, set to COMPARE,
7427 but once inside, go back to our default of SET. */
7429 next_code = (code == MEM ? MEM
7430 : ((code == PLUS || code == MINUS)
7431 && SCALAR_INT_MODE_P (mode)) ? MEM
7432 : ((code == COMPARE || COMPARISON_P (x))
7433 && XEXP (x, 1) == const0_rtx) ? COMPARE
7434 : in_code == COMPARE ? SET : in_code);
7436 /* Process depending on the code of this operation. If NEW is set
7437 nonzero, it will be returned. */
7439 switch (code)
7441 case ASHIFT:
7442 /* Convert shifts by constants into multiplications if inside
7443 an address. */
7444 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7445 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7446 && INTVAL (XEXP (x, 1)) >= 0)
7448 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7449 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7451 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7452 if (GET_CODE (new_rtx) == NEG)
7454 new_rtx = XEXP (new_rtx, 0);
7455 multval = -multval;
7457 multval = trunc_int_for_mode (multval, mode);
7458 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7460 break;
7462 case PLUS:
7463 lhs = XEXP (x, 0);
7464 rhs = XEXP (x, 1);
7465 lhs = make_compound_operation (lhs, next_code);
7466 rhs = make_compound_operation (rhs, next_code);
7467 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7468 && SCALAR_INT_MODE_P (mode))
7470 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7471 XEXP (lhs, 1));
7472 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7474 else if (GET_CODE (lhs) == MULT
7475 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7477 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7478 simplify_gen_unary (NEG, mode,
7479 XEXP (lhs, 1),
7480 mode));
7481 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7483 else
7485 SUBST (XEXP (x, 0), lhs);
7486 SUBST (XEXP (x, 1), rhs);
7487 goto maybe_swap;
7489 x = gen_lowpart (mode, new_rtx);
7490 goto maybe_swap;
7492 case MINUS:
7493 lhs = XEXP (x, 0);
7494 rhs = XEXP (x, 1);
7495 lhs = make_compound_operation (lhs, next_code);
7496 rhs = make_compound_operation (rhs, next_code);
7497 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7498 && SCALAR_INT_MODE_P (mode))
7500 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7501 XEXP (rhs, 1));
7502 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7504 else if (GET_CODE (rhs) == MULT
7505 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7507 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7508 simplify_gen_unary (NEG, mode,
7509 XEXP (rhs, 1),
7510 mode));
7511 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7513 else
7515 SUBST (XEXP (x, 0), lhs);
7516 SUBST (XEXP (x, 1), rhs);
7517 return x;
7519 return gen_lowpart (mode, new_rtx);
7521 case AND:
7522 /* If the second operand is not a constant, we can't do anything
7523 with it. */
7524 if (!CONST_INT_P (XEXP (x, 1)))
7525 break;
7527 /* If the constant is a power of two minus one and the first operand
7528 is a logical right shift, make an extraction. */
7529 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7530 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7532 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7533 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7534 0, in_code == COMPARE);
7537 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7538 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7539 && subreg_lowpart_p (XEXP (x, 0))
7540 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7541 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7543 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7544 next_code);
7545 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7546 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7547 0, in_code == COMPARE);
7549 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7550 else if ((GET_CODE (XEXP (x, 0)) == XOR
7551 || GET_CODE (XEXP (x, 0)) == IOR)
7552 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7553 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7554 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7556 /* Apply the distributive law, and then try to make extractions. */
7557 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7558 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7559 XEXP (x, 1)),
7560 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7561 XEXP (x, 1)));
7562 new_rtx = make_compound_operation (new_rtx, in_code);
7565 /* If we are have (and (rotate X C) M) and C is larger than the number
7566 of bits in M, this is an extraction. */
7568 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7569 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7570 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7571 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7573 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7574 new_rtx = make_extraction (mode, new_rtx,
7575 (GET_MODE_BITSIZE (mode)
7576 - INTVAL (XEXP (XEXP (x, 0), 1))),
7577 NULL_RTX, i, 1, 0, in_code == COMPARE);
7580 /* On machines without logical shifts, if the operand of the AND is
7581 a logical shift and our mask turns off all the propagated sign
7582 bits, we can replace the logical shift with an arithmetic shift. */
7583 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7584 && !have_insn_for (LSHIFTRT, mode)
7585 && have_insn_for (ASHIFTRT, mode)
7586 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7587 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7588 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7589 && mode_width <= HOST_BITS_PER_WIDE_INT)
7591 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7593 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7594 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7595 SUBST (XEXP (x, 0),
7596 gen_rtx_ASHIFTRT (mode,
7597 make_compound_operation
7598 (XEXP (XEXP (x, 0), 0), next_code),
7599 XEXP (XEXP (x, 0), 1)));
7602 /* If the constant is one less than a power of two, this might be
7603 representable by an extraction even if no shift is present.
7604 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7605 we are in a COMPARE. */
7606 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7607 new_rtx = make_extraction (mode,
7608 make_compound_operation (XEXP (x, 0),
7609 next_code),
7610 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7612 /* If we are in a comparison and this is an AND with a power of two,
7613 convert this into the appropriate bit extract. */
7614 else if (in_code == COMPARE
7615 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7616 new_rtx = make_extraction (mode,
7617 make_compound_operation (XEXP (x, 0),
7618 next_code),
7619 i, NULL_RTX, 1, 1, 0, 1);
7621 break;
7623 case LSHIFTRT:
7624 /* If the sign bit is known to be zero, replace this with an
7625 arithmetic shift. */
7626 if (have_insn_for (ASHIFTRT, mode)
7627 && ! have_insn_for (LSHIFTRT, mode)
7628 && mode_width <= HOST_BITS_PER_WIDE_INT
7629 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7631 new_rtx = gen_rtx_ASHIFTRT (mode,
7632 make_compound_operation (XEXP (x, 0),
7633 next_code),
7634 XEXP (x, 1));
7635 break;
7638 /* ... fall through ... */
7640 case ASHIFTRT:
7641 lhs = XEXP (x, 0);
7642 rhs = XEXP (x, 1);
7644 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7645 this is a SIGN_EXTRACT. */
7646 if (CONST_INT_P (rhs)
7647 && GET_CODE (lhs) == ASHIFT
7648 && CONST_INT_P (XEXP (lhs, 1))
7649 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7650 && INTVAL (rhs) < mode_width)
7652 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7653 new_rtx = make_extraction (mode, new_rtx,
7654 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7655 NULL_RTX, mode_width - INTVAL (rhs),
7656 code == LSHIFTRT, 0, in_code == COMPARE);
7657 break;
7660 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7661 If so, try to merge the shifts into a SIGN_EXTEND. We could
7662 also do this for some cases of SIGN_EXTRACT, but it doesn't
7663 seem worth the effort; the case checked for occurs on Alpha. */
7665 if (!OBJECT_P (lhs)
7666 && ! (GET_CODE (lhs) == SUBREG
7667 && (OBJECT_P (SUBREG_REG (lhs))))
7668 && CONST_INT_P (rhs)
7669 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7670 && INTVAL (rhs) < mode_width
7671 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7672 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7673 0, NULL_RTX, mode_width - INTVAL (rhs),
7674 code == LSHIFTRT, 0, in_code == COMPARE);
7676 break;
7678 case SUBREG:
7679 /* Call ourselves recursively on the inner expression. If we are
7680 narrowing the object and it has a different RTL code from
7681 what it originally did, do this SUBREG as a force_to_mode. */
7683 rtx inner = SUBREG_REG (x), simplified;
7685 tem = make_compound_operation (inner, in_code);
7687 simplified
7688 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7689 if (simplified)
7690 tem = simplified;
7692 if (GET_CODE (tem) != GET_CODE (inner)
7693 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7694 && subreg_lowpart_p (x))
7696 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0, 0);
7698 /* If we have something other than a SUBREG, we might have
7699 done an expansion, so rerun ourselves. */
7700 if (GET_CODE (newer) != SUBREG)
7701 newer = make_compound_operation (newer, in_code);
7703 /* force_to_mode can expand compounds. If it just re-expanded the
7704 compound, use gen_lowpart to convert to the desired mode. */
7705 if (rtx_equal_p (newer, x)
7706 /* Likewise if it re-expanded the compound only partially.
7707 This happens for SUBREG of ZERO_EXTRACT if they extract
7708 the same number of bits. */
7709 || (GET_CODE (newer) == SUBREG
7710 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7711 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7712 && GET_CODE (inner) == AND
7713 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7714 return gen_lowpart (GET_MODE (x), tem);
7716 return newer;
7719 if (simplified)
7720 return tem;
7722 break;
7724 default:
7725 break;
7728 if (new_rtx)
7730 x = gen_lowpart (mode, new_rtx);
7731 code = GET_CODE (x);
7734 /* Now recursively process each operand of this operation. */
7735 fmt = GET_RTX_FORMAT (code);
7736 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7737 if (fmt[i] == 'e')
7739 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7740 SUBST (XEXP (x, i), new_rtx);
7742 else if (fmt[i] == 'E')
7743 for (j = 0; j < XVECLEN (x, i); j++)
7745 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7746 SUBST (XVECEXP (x, i, j), new_rtx);
7749 maybe_swap:
7750 /* If this is a commutative operation, the changes to the operands
7751 may have made it noncanonical. */
7752 if (COMMUTATIVE_ARITH_P (x)
7753 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7755 tem = XEXP (x, 0);
7756 SUBST (XEXP (x, 0), XEXP (x, 1));
7757 SUBST (XEXP (x, 1), tem);
7760 return x;
7763 /* Given M see if it is a value that would select a field of bits
7764 within an item, but not the entire word. Return -1 if not.
7765 Otherwise, return the starting position of the field, where 0 is the
7766 low-order bit.
7768 *PLEN is set to the length of the field. */
7770 static int
7771 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7773 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7774 int pos = m ? ctz_hwi (m) : -1;
7775 int len = 0;
7777 if (pos >= 0)
7778 /* Now shift off the low-order zero bits and see if we have a
7779 power of two minus 1. */
7780 len = exact_log2 ((m >> pos) + 1);
7782 if (len <= 0)
7783 pos = -1;
7785 *plen = len;
7786 return pos;
7789 /* If X refers to a register that equals REG in value, replace these
7790 references with REG. */
7791 static rtx
7792 canon_reg_for_combine (rtx x, rtx reg)
7794 rtx op0, op1, op2;
7795 const char *fmt;
7796 int i;
7797 bool copied;
7799 enum rtx_code code = GET_CODE (x);
7800 switch (GET_RTX_CLASS (code))
7802 case RTX_UNARY:
7803 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7804 if (op0 != XEXP (x, 0))
7805 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7806 GET_MODE (reg));
7807 break;
7809 case RTX_BIN_ARITH:
7810 case RTX_COMM_ARITH:
7811 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7812 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7813 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7814 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7815 break;
7817 case RTX_COMPARE:
7818 case RTX_COMM_COMPARE:
7819 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7820 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7821 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7822 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7823 GET_MODE (op0), op0, op1);
7824 break;
7826 case RTX_TERNARY:
7827 case RTX_BITFIELD_OPS:
7828 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7829 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7830 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7831 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7832 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7833 GET_MODE (op0), op0, op1, op2);
7835 case RTX_OBJ:
7836 if (REG_P (x))
7838 if (rtx_equal_p (get_last_value (reg), x)
7839 || rtx_equal_p (reg, get_last_value (x)))
7840 return reg;
7841 else
7842 break;
7845 /* fall through */
7847 default:
7848 fmt = GET_RTX_FORMAT (code);
7849 copied = false;
7850 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7851 if (fmt[i] == 'e')
7853 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7854 if (op != XEXP (x, i))
7856 if (!copied)
7858 copied = true;
7859 x = copy_rtx (x);
7861 XEXP (x, i) = op;
7864 else if (fmt[i] == 'E')
7866 int j;
7867 for (j = 0; j < XVECLEN (x, i); j++)
7869 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7870 if (op != XVECEXP (x, i, j))
7872 if (!copied)
7874 copied = true;
7875 x = copy_rtx (x);
7877 XVECEXP (x, i, j) = op;
7882 break;
7885 return x;
7888 /* Return X converted to MODE. If the value is already truncated to
7889 MODE we can just return a subreg even though in the general case we
7890 would need an explicit truncation. */
7892 static rtx
7893 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7895 if (!CONST_INT_P (x)
7896 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7897 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7898 GET_MODE_BITSIZE (GET_MODE (x)))
7899 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7901 /* Bit-cast X into an integer mode. */
7902 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7903 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7904 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7905 x, GET_MODE (x));
7908 return gen_lowpart (mode, x);
7911 /* See if X can be simplified knowing that we will only refer to it in
7912 MODE and will only refer to those bits that are nonzero in MASK.
7913 If other bits are being computed or if masking operations are done
7914 that select a superset of the bits in MASK, they can sometimes be
7915 ignored.
7917 Return a possibly simplified expression, but always convert X to
7918 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7920 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7921 are all off in X. This is used when X will be complemented, by either
7922 NOT, NEG, or XOR. */
7924 static rtx
7925 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7926 int just_select)
7928 enum rtx_code code = GET_CODE (x);
7929 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7930 enum machine_mode op_mode;
7931 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7932 rtx op0, op1, temp;
7934 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7935 code below will do the wrong thing since the mode of such an
7936 expression is VOIDmode.
7938 Also do nothing if X is a CLOBBER; this can happen if X was
7939 the return value from a call to gen_lowpart. */
7940 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7941 return x;
7943 /* We want to perform the operation is its present mode unless we know
7944 that the operation is valid in MODE, in which case we do the operation
7945 in MODE. */
7946 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7947 && have_insn_for (code, mode))
7948 ? mode : GET_MODE (x));
7950 /* It is not valid to do a right-shift in a narrower mode
7951 than the one it came in with. */
7952 if ((code == LSHIFTRT || code == ASHIFTRT)
7953 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7954 op_mode = GET_MODE (x);
7956 /* Truncate MASK to fit OP_MODE. */
7957 if (op_mode)
7958 mask &= GET_MODE_MASK (op_mode);
7960 /* When we have an arithmetic operation, or a shift whose count we
7961 do not know, we need to assume that all bits up to the highest-order
7962 bit in MASK will be needed. This is how we form such a mask. */
7963 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7964 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7965 else
7966 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7967 - 1);
7969 /* Determine what bits of X are guaranteed to be (non)zero. */
7970 nonzero = nonzero_bits (x, mode);
7972 /* If none of the bits in X are needed, return a zero. */
7973 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7974 x = const0_rtx;
7976 /* If X is a CONST_INT, return a new one. Do this here since the
7977 test below will fail. */
7978 if (CONST_INT_P (x))
7980 if (SCALAR_INT_MODE_P (mode))
7981 return gen_int_mode (INTVAL (x) & mask, mode);
7982 else
7984 x = GEN_INT (INTVAL (x) & mask);
7985 return gen_lowpart_common (mode, x);
7989 /* If X is narrower than MODE and we want all the bits in X's mode, just
7990 get X in the proper mode. */
7991 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7992 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7993 return gen_lowpart (mode, x);
7995 /* We can ignore the effect of a SUBREG if it narrows the mode or
7996 if the constant masks to zero all the bits the mode doesn't have. */
7997 if (GET_CODE (x) == SUBREG
7998 && subreg_lowpart_p (x)
7999 && ((GET_MODE_SIZE (GET_MODE (x))
8000 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8001 || (0 == (mask
8002 & GET_MODE_MASK (GET_MODE (x))
8003 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8004 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8006 /* The arithmetic simplifications here only work for scalar integer modes. */
8007 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8008 return gen_lowpart_or_truncate (mode, x);
8010 switch (code)
8012 case CLOBBER:
8013 /* If X is a (clobber (const_int)), return it since we know we are
8014 generating something that won't match. */
8015 return x;
8017 case SIGN_EXTEND:
8018 case ZERO_EXTEND:
8019 case ZERO_EXTRACT:
8020 case SIGN_EXTRACT:
8021 x = expand_compound_operation (x);
8022 if (GET_CODE (x) != code)
8023 return force_to_mode (x, mode, mask, next_select);
8024 break;
8026 case TRUNCATE:
8027 /* Similarly for a truncate. */
8028 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8030 case AND:
8031 /* If this is an AND with a constant, convert it into an AND
8032 whose constant is the AND of that constant with MASK. If it
8033 remains an AND of MASK, delete it since it is redundant. */
8035 if (CONST_INT_P (XEXP (x, 1)))
8037 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8038 mask & INTVAL (XEXP (x, 1)));
8040 /* If X is still an AND, see if it is an AND with a mask that
8041 is just some low-order bits. If so, and it is MASK, we don't
8042 need it. */
8044 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8045 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8046 == mask))
8047 x = XEXP (x, 0);
8049 /* If it remains an AND, try making another AND with the bits
8050 in the mode mask that aren't in MASK turned on. If the
8051 constant in the AND is wide enough, this might make a
8052 cheaper constant. */
8054 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8055 && GET_MODE_MASK (GET_MODE (x)) != mask
8056 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8058 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
8059 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
8060 int width = GET_MODE_BITSIZE (GET_MODE (x));
8061 rtx y;
8063 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8064 number, sign extend it. */
8065 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8066 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8067 cval |= (HOST_WIDE_INT) -1 << width;
8069 y = simplify_gen_binary (AND, GET_MODE (x),
8070 XEXP (x, 0), GEN_INT (cval));
8071 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8072 < rtx_cost (x, SET, optimize_this_for_speed_p))
8073 x = y;
8076 break;
8079 goto binop;
8081 case PLUS:
8082 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8083 low-order bits (as in an alignment operation) and FOO is already
8084 aligned to that boundary, mask C1 to that boundary as well.
8085 This may eliminate that PLUS and, later, the AND. */
8088 unsigned int width = GET_MODE_BITSIZE (mode);
8089 unsigned HOST_WIDE_INT smask = mask;
8091 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8092 number, sign extend it. */
8094 if (width < HOST_BITS_PER_WIDE_INT
8095 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8096 smask |= (HOST_WIDE_INT) -1 << width;
8098 if (CONST_INT_P (XEXP (x, 1))
8099 && exact_log2 (- smask) >= 0
8100 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8101 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8102 return force_to_mode (plus_constant (XEXP (x, 0),
8103 (INTVAL (XEXP (x, 1)) & smask)),
8104 mode, smask, next_select);
8107 /* ... fall through ... */
8109 case MULT:
8110 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8111 most significant bit in MASK since carries from those bits will
8112 affect the bits we are interested in. */
8113 mask = fuller_mask;
8114 goto binop;
8116 case MINUS:
8117 /* If X is (minus C Y) where C's least set bit is larger than any bit
8118 in the mask, then we may replace with (neg Y). */
8119 if (CONST_INT_P (XEXP (x, 0))
8120 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8121 & -INTVAL (XEXP (x, 0))))
8122 > mask))
8124 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8125 GET_MODE (x));
8126 return force_to_mode (x, mode, mask, next_select);
8129 /* Similarly, if C contains every bit in the fuller_mask, then we may
8130 replace with (not Y). */
8131 if (CONST_INT_P (XEXP (x, 0))
8132 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
8133 == INTVAL (XEXP (x, 0))))
8135 x = simplify_gen_unary (NOT, GET_MODE (x),
8136 XEXP (x, 1), GET_MODE (x));
8137 return force_to_mode (x, mode, mask, next_select);
8140 mask = fuller_mask;
8141 goto binop;
8143 case IOR:
8144 case XOR:
8145 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8146 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8147 operation which may be a bitfield extraction. Ensure that the
8148 constant we form is not wider than the mode of X. */
8150 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8151 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8152 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8153 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8154 && CONST_INT_P (XEXP (x, 1))
8155 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8156 + floor_log2 (INTVAL (XEXP (x, 1))))
8157 < GET_MODE_BITSIZE (GET_MODE (x)))
8158 && (INTVAL (XEXP (x, 1))
8159 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8161 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8162 << INTVAL (XEXP (XEXP (x, 0), 1)));
8163 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8164 XEXP (XEXP (x, 0), 0), temp);
8165 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8166 XEXP (XEXP (x, 0), 1));
8167 return force_to_mode (x, mode, mask, next_select);
8170 binop:
8171 /* For most binary operations, just propagate into the operation and
8172 change the mode if we have an operation of that mode. */
8174 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8175 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8177 /* If we ended up truncating both operands, truncate the result of the
8178 operation instead. */
8179 if (GET_CODE (op0) == TRUNCATE
8180 && GET_CODE (op1) == TRUNCATE)
8182 op0 = XEXP (op0, 0);
8183 op1 = XEXP (op1, 0);
8186 op0 = gen_lowpart_or_truncate (op_mode, op0);
8187 op1 = gen_lowpart_or_truncate (op_mode, op1);
8189 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8190 x = simplify_gen_binary (code, op_mode, op0, op1);
8191 break;
8193 case ASHIFT:
8194 /* For left shifts, do the same, but just for the first operand.
8195 However, we cannot do anything with shifts where we cannot
8196 guarantee that the counts are smaller than the size of the mode
8197 because such a count will have a different meaning in a
8198 wider mode. */
8200 if (! (CONST_INT_P (XEXP (x, 1))
8201 && INTVAL (XEXP (x, 1)) >= 0
8202 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8203 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8204 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8205 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8206 break;
8208 /* If the shift count is a constant and we can do arithmetic in
8209 the mode of the shift, refine which bits we need. Otherwise, use the
8210 conservative form of the mask. */
8211 if (CONST_INT_P (XEXP (x, 1))
8212 && INTVAL (XEXP (x, 1)) >= 0
8213 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8214 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8215 mask >>= INTVAL (XEXP (x, 1));
8216 else
8217 mask = fuller_mask;
8219 op0 = gen_lowpart_or_truncate (op_mode,
8220 force_to_mode (XEXP (x, 0), op_mode,
8221 mask, next_select));
8223 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8224 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8225 break;
8227 case LSHIFTRT:
8228 /* Here we can only do something if the shift count is a constant,
8229 this shift constant is valid for the host, and we can do arithmetic
8230 in OP_MODE. */
8232 if (CONST_INT_P (XEXP (x, 1))
8233 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8234 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8236 rtx inner = XEXP (x, 0);
8237 unsigned HOST_WIDE_INT inner_mask;
8239 /* Select the mask of the bits we need for the shift operand. */
8240 inner_mask = mask << INTVAL (XEXP (x, 1));
8242 /* We can only change the mode of the shift if we can do arithmetic
8243 in the mode of the shift and INNER_MASK is no wider than the
8244 width of X's mode. */
8245 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8246 op_mode = GET_MODE (x);
8248 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8250 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8251 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8254 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8255 shift and AND produces only copies of the sign bit (C2 is one less
8256 than a power of two), we can do this with just a shift. */
8258 if (GET_CODE (x) == LSHIFTRT
8259 && CONST_INT_P (XEXP (x, 1))
8260 /* The shift puts one of the sign bit copies in the least significant
8261 bit. */
8262 && ((INTVAL (XEXP (x, 1))
8263 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8264 >= GET_MODE_BITSIZE (GET_MODE (x)))
8265 && exact_log2 (mask + 1) >= 0
8266 /* Number of bits left after the shift must be more than the mask
8267 needs. */
8268 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8269 <= GET_MODE_BITSIZE (GET_MODE (x)))
8270 /* Must be more sign bit copies than the mask needs. */
8271 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8272 >= exact_log2 (mask + 1)))
8273 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8274 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8275 - exact_log2 (mask + 1)));
8277 goto shiftrt;
8279 case ASHIFTRT:
8280 /* If we are just looking for the sign bit, we don't need this shift at
8281 all, even if it has a variable count. */
8282 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8283 && (mask == ((unsigned HOST_WIDE_INT) 1
8284 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8285 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8287 /* If this is a shift by a constant, get a mask that contains those bits
8288 that are not copies of the sign bit. We then have two cases: If
8289 MASK only includes those bits, this can be a logical shift, which may
8290 allow simplifications. If MASK is a single-bit field not within
8291 those bits, we are requesting a copy of the sign bit and hence can
8292 shift the sign bit to the appropriate location. */
8294 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8295 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8297 int i;
8299 /* If the considered data is wider than HOST_WIDE_INT, we can't
8300 represent a mask for all its bits in a single scalar.
8301 But we only care about the lower bits, so calculate these. */
8303 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8305 nonzero = ~(HOST_WIDE_INT) 0;
8307 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8308 is the number of bits a full-width mask would have set.
8309 We need only shift if these are fewer than nonzero can
8310 hold. If not, we must keep all bits set in nonzero. */
8312 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8313 < HOST_BITS_PER_WIDE_INT)
8314 nonzero >>= INTVAL (XEXP (x, 1))
8315 + HOST_BITS_PER_WIDE_INT
8316 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8318 else
8320 nonzero = GET_MODE_MASK (GET_MODE (x));
8321 nonzero >>= INTVAL (XEXP (x, 1));
8324 if ((mask & ~nonzero) == 0)
8326 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8327 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8328 if (GET_CODE (x) != ASHIFTRT)
8329 return force_to_mode (x, mode, mask, next_select);
8332 else if ((i = exact_log2 (mask)) >= 0)
8334 x = simplify_shift_const
8335 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8336 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8338 if (GET_CODE (x) != ASHIFTRT)
8339 return force_to_mode (x, mode, mask, next_select);
8343 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8344 even if the shift count isn't a constant. */
8345 if (mask == 1)
8346 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8347 XEXP (x, 0), XEXP (x, 1));
8349 shiftrt:
8351 /* If this is a zero- or sign-extension operation that just affects bits
8352 we don't care about, remove it. Be sure the call above returned
8353 something that is still a shift. */
8355 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8356 && CONST_INT_P (XEXP (x, 1))
8357 && INTVAL (XEXP (x, 1)) >= 0
8358 && (INTVAL (XEXP (x, 1))
8359 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8360 && GET_CODE (XEXP (x, 0)) == ASHIFT
8361 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8362 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8363 next_select);
8365 break;
8367 case ROTATE:
8368 case ROTATERT:
8369 /* If the shift count is constant and we can do computations
8370 in the mode of X, compute where the bits we care about are.
8371 Otherwise, we can't do anything. Don't change the mode of
8372 the shift or propagate MODE into the shift, though. */
8373 if (CONST_INT_P (XEXP (x, 1))
8374 && INTVAL (XEXP (x, 1)) >= 0)
8376 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8377 GET_MODE (x), GEN_INT (mask),
8378 XEXP (x, 1));
8379 if (temp && CONST_INT_P (temp))
8380 SUBST (XEXP (x, 0),
8381 force_to_mode (XEXP (x, 0), GET_MODE (x),
8382 INTVAL (temp), next_select));
8384 break;
8386 case NEG:
8387 /* If we just want the low-order bit, the NEG isn't needed since it
8388 won't change the low-order bit. */
8389 if (mask == 1)
8390 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8392 /* We need any bits less significant than the most significant bit in
8393 MASK since carries from those bits will affect the bits we are
8394 interested in. */
8395 mask = fuller_mask;
8396 goto unop;
8398 case NOT:
8399 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8400 same as the XOR case above. Ensure that the constant we form is not
8401 wider than the mode of X. */
8403 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8404 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8405 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8406 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8407 < GET_MODE_BITSIZE (GET_MODE (x)))
8408 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8410 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8411 GET_MODE (x));
8412 temp = simplify_gen_binary (XOR, GET_MODE (x),
8413 XEXP (XEXP (x, 0), 0), temp);
8414 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8415 temp, XEXP (XEXP (x, 0), 1));
8417 return force_to_mode (x, mode, mask, next_select);
8420 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8421 use the full mask inside the NOT. */
8422 mask = fuller_mask;
8424 unop:
8425 op0 = gen_lowpart_or_truncate (op_mode,
8426 force_to_mode (XEXP (x, 0), mode, mask,
8427 next_select));
8428 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8429 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8430 break;
8432 case NE:
8433 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8434 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8435 which is equal to STORE_FLAG_VALUE. */
8436 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8437 && GET_MODE (XEXP (x, 0)) == mode
8438 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8439 && (nonzero_bits (XEXP (x, 0), mode)
8440 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8441 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8443 break;
8445 case IF_THEN_ELSE:
8446 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8447 written in a narrower mode. We play it safe and do not do so. */
8449 SUBST (XEXP (x, 1),
8450 gen_lowpart_or_truncate (GET_MODE (x),
8451 force_to_mode (XEXP (x, 1), mode,
8452 mask, next_select)));
8453 SUBST (XEXP (x, 2),
8454 gen_lowpart_or_truncate (GET_MODE (x),
8455 force_to_mode (XEXP (x, 2), mode,
8456 mask, next_select)));
8457 break;
8459 default:
8460 break;
8463 /* Ensure we return a value of the proper mode. */
8464 return gen_lowpart_or_truncate (mode, x);
8467 /* Return nonzero if X is an expression that has one of two values depending on
8468 whether some other value is zero or nonzero. In that case, we return the
8469 value that is being tested, *PTRUE is set to the value if the rtx being
8470 returned has a nonzero value, and *PFALSE is set to the other alternative.
8472 If we return zero, we set *PTRUE and *PFALSE to X. */
8474 static rtx
8475 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8477 enum machine_mode mode = GET_MODE (x);
8478 enum rtx_code code = GET_CODE (x);
8479 rtx cond0, cond1, true0, true1, false0, false1;
8480 unsigned HOST_WIDE_INT nz;
8482 /* If we are comparing a value against zero, we are done. */
8483 if ((code == NE || code == EQ)
8484 && XEXP (x, 1) == const0_rtx)
8486 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8487 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8488 return XEXP (x, 0);
8491 /* If this is a unary operation whose operand has one of two values, apply
8492 our opcode to compute those values. */
8493 else if (UNARY_P (x)
8494 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8496 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8497 *pfalse = simplify_gen_unary (code, mode, false0,
8498 GET_MODE (XEXP (x, 0)));
8499 return cond0;
8502 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8503 make can't possibly match and would suppress other optimizations. */
8504 else if (code == COMPARE)
8507 /* If this is a binary operation, see if either side has only one of two
8508 values. If either one does or if both do and they are conditional on
8509 the same value, compute the new true and false values. */
8510 else if (BINARY_P (x))
8512 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8513 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8515 if ((cond0 != 0 || cond1 != 0)
8516 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8518 /* If if_then_else_cond returned zero, then true/false are the
8519 same rtl. We must copy one of them to prevent invalid rtl
8520 sharing. */
8521 if (cond0 == 0)
8522 true0 = copy_rtx (true0);
8523 else if (cond1 == 0)
8524 true1 = copy_rtx (true1);
8526 if (COMPARISON_P (x))
8528 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8529 true0, true1);
8530 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8531 false0, false1);
8533 else
8535 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8536 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8539 return cond0 ? cond0 : cond1;
8542 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8543 operands is zero when the other is nonzero, and vice-versa,
8544 and STORE_FLAG_VALUE is 1 or -1. */
8546 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8547 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8548 || code == UMAX)
8549 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8551 rtx op0 = XEXP (XEXP (x, 0), 1);
8552 rtx op1 = XEXP (XEXP (x, 1), 1);
8554 cond0 = XEXP (XEXP (x, 0), 0);
8555 cond1 = XEXP (XEXP (x, 1), 0);
8557 if (COMPARISON_P (cond0)
8558 && COMPARISON_P (cond1)
8559 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8560 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8561 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8562 || ((swap_condition (GET_CODE (cond0))
8563 == reversed_comparison_code (cond1, NULL))
8564 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8565 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8566 && ! side_effects_p (x))
8568 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8569 *pfalse = simplify_gen_binary (MULT, mode,
8570 (code == MINUS
8571 ? simplify_gen_unary (NEG, mode,
8572 op1, mode)
8573 : op1),
8574 const_true_rtx);
8575 return cond0;
8579 /* Similarly for MULT, AND and UMIN, except that for these the result
8580 is always zero. */
8581 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8582 && (code == MULT || code == AND || code == UMIN)
8583 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8585 cond0 = XEXP (XEXP (x, 0), 0);
8586 cond1 = XEXP (XEXP (x, 1), 0);
8588 if (COMPARISON_P (cond0)
8589 && COMPARISON_P (cond1)
8590 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8591 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8592 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8593 || ((swap_condition (GET_CODE (cond0))
8594 == reversed_comparison_code (cond1, NULL))
8595 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8596 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8597 && ! side_effects_p (x))
8599 *ptrue = *pfalse = const0_rtx;
8600 return cond0;
8605 else if (code == IF_THEN_ELSE)
8607 /* If we have IF_THEN_ELSE already, extract the condition and
8608 canonicalize it if it is NE or EQ. */
8609 cond0 = XEXP (x, 0);
8610 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8611 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8612 return XEXP (cond0, 0);
8613 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8615 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8616 return XEXP (cond0, 0);
8618 else
8619 return cond0;
8622 /* If X is a SUBREG, we can narrow both the true and false values
8623 if the inner expression, if there is a condition. */
8624 else if (code == SUBREG
8625 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8626 &true0, &false0)))
8628 true0 = simplify_gen_subreg (mode, true0,
8629 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8630 false0 = simplify_gen_subreg (mode, false0,
8631 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8632 if (true0 && false0)
8634 *ptrue = true0;
8635 *pfalse = false0;
8636 return cond0;
8640 /* If X is a constant, this isn't special and will cause confusions
8641 if we treat it as such. Likewise if it is equivalent to a constant. */
8642 else if (CONSTANT_P (x)
8643 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8646 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8647 will be least confusing to the rest of the compiler. */
8648 else if (mode == BImode)
8650 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8651 return x;
8654 /* If X is known to be either 0 or -1, those are the true and
8655 false values when testing X. */
8656 else if (x == constm1_rtx || x == const0_rtx
8657 || (mode != VOIDmode
8658 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8660 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8661 return x;
8664 /* Likewise for 0 or a single bit. */
8665 else if (SCALAR_INT_MODE_P (mode)
8666 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8667 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8669 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8670 return x;
8673 /* Otherwise fail; show no condition with true and false values the same. */
8674 *ptrue = *pfalse = x;
8675 return 0;
8678 /* Return the value of expression X given the fact that condition COND
8679 is known to be true when applied to REG as its first operand and VAL
8680 as its second. X is known to not be shared and so can be modified in
8681 place.
8683 We only handle the simplest cases, and specifically those cases that
8684 arise with IF_THEN_ELSE expressions. */
8686 static rtx
8687 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8689 enum rtx_code code = GET_CODE (x);
8690 rtx temp;
8691 const char *fmt;
8692 int i, j;
8694 if (side_effects_p (x))
8695 return x;
8697 /* If either operand of the condition is a floating point value,
8698 then we have to avoid collapsing an EQ comparison. */
8699 if (cond == EQ
8700 && rtx_equal_p (x, reg)
8701 && ! FLOAT_MODE_P (GET_MODE (x))
8702 && ! FLOAT_MODE_P (GET_MODE (val)))
8703 return val;
8705 if (cond == UNEQ && rtx_equal_p (x, reg))
8706 return val;
8708 /* If X is (abs REG) and we know something about REG's relationship
8709 with zero, we may be able to simplify this. */
8711 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8712 switch (cond)
8714 case GE: case GT: case EQ:
8715 return XEXP (x, 0);
8716 case LT: case LE:
8717 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8718 XEXP (x, 0),
8719 GET_MODE (XEXP (x, 0)));
8720 default:
8721 break;
8724 /* The only other cases we handle are MIN, MAX, and comparisons if the
8725 operands are the same as REG and VAL. */
8727 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8729 if (rtx_equal_p (XEXP (x, 0), val))
8730 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8732 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8734 if (COMPARISON_P (x))
8736 if (comparison_dominates_p (cond, code))
8737 return const_true_rtx;
8739 code = reversed_comparison_code (x, NULL);
8740 if (code != UNKNOWN
8741 && comparison_dominates_p (cond, code))
8742 return const0_rtx;
8743 else
8744 return x;
8746 else if (code == SMAX || code == SMIN
8747 || code == UMIN || code == UMAX)
8749 int unsignedp = (code == UMIN || code == UMAX);
8751 /* Do not reverse the condition when it is NE or EQ.
8752 This is because we cannot conclude anything about
8753 the value of 'SMAX (x, y)' when x is not equal to y,
8754 but we can when x equals y. */
8755 if ((code == SMAX || code == UMAX)
8756 && ! (cond == EQ || cond == NE))
8757 cond = reverse_condition (cond);
8759 switch (cond)
8761 case GE: case GT:
8762 return unsignedp ? x : XEXP (x, 1);
8763 case LE: case LT:
8764 return unsignedp ? x : XEXP (x, 0);
8765 case GEU: case GTU:
8766 return unsignedp ? XEXP (x, 1) : x;
8767 case LEU: case LTU:
8768 return unsignedp ? XEXP (x, 0) : x;
8769 default:
8770 break;
8775 else if (code == SUBREG)
8777 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8778 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8780 if (SUBREG_REG (x) != r)
8782 /* We must simplify subreg here, before we lose track of the
8783 original inner_mode. */
8784 new_rtx = simplify_subreg (GET_MODE (x), r,
8785 inner_mode, SUBREG_BYTE (x));
8786 if (new_rtx)
8787 return new_rtx;
8788 else
8789 SUBST (SUBREG_REG (x), r);
8792 return x;
8794 /* We don't have to handle SIGN_EXTEND here, because even in the
8795 case of replacing something with a modeless CONST_INT, a
8796 CONST_INT is already (supposed to be) a valid sign extension for
8797 its narrower mode, which implies it's already properly
8798 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8799 story is different. */
8800 else if (code == ZERO_EXTEND)
8802 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8803 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8805 if (XEXP (x, 0) != r)
8807 /* We must simplify the zero_extend here, before we lose
8808 track of the original inner_mode. */
8809 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8810 r, inner_mode);
8811 if (new_rtx)
8812 return new_rtx;
8813 else
8814 SUBST (XEXP (x, 0), r);
8817 return x;
8820 fmt = GET_RTX_FORMAT (code);
8821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8823 if (fmt[i] == 'e')
8824 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8825 else if (fmt[i] == 'E')
8826 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8827 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8828 cond, reg, val));
8831 return x;
8834 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8835 assignment as a field assignment. */
8837 static int
8838 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8840 if (x == y || rtx_equal_p (x, y))
8841 return 1;
8843 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8844 return 0;
8846 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8847 Note that all SUBREGs of MEM are paradoxical; otherwise they
8848 would have been rewritten. */
8849 if (MEM_P (x) && GET_CODE (y) == SUBREG
8850 && MEM_P (SUBREG_REG (y))
8851 && rtx_equal_p (SUBREG_REG (y),
8852 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8853 return 1;
8855 if (MEM_P (y) && GET_CODE (x) == SUBREG
8856 && MEM_P (SUBREG_REG (x))
8857 && rtx_equal_p (SUBREG_REG (x),
8858 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8859 return 1;
8861 /* We used to see if get_last_value of X and Y were the same but that's
8862 not correct. In one direction, we'll cause the assignment to have
8863 the wrong destination and in the case, we'll import a register into this
8864 insn that might have already have been dead. So fail if none of the
8865 above cases are true. */
8866 return 0;
8869 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8870 Return that assignment if so.
8872 We only handle the most common cases. */
8874 static rtx
8875 make_field_assignment (rtx x)
8877 rtx dest = SET_DEST (x);
8878 rtx src = SET_SRC (x);
8879 rtx assign;
8880 rtx rhs, lhs;
8881 HOST_WIDE_INT c1;
8882 HOST_WIDE_INT pos;
8883 unsigned HOST_WIDE_INT len;
8884 rtx other;
8885 enum machine_mode mode;
8887 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8888 a clear of a one-bit field. We will have changed it to
8889 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8890 for a SUBREG. */
8892 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8893 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8894 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8895 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8897 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8898 1, 1, 1, 0);
8899 if (assign != 0)
8900 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8901 return x;
8904 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8905 && subreg_lowpart_p (XEXP (src, 0))
8906 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8907 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8908 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8909 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8910 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8911 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8913 assign = make_extraction (VOIDmode, dest, 0,
8914 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8915 1, 1, 1, 0);
8916 if (assign != 0)
8917 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8918 return x;
8921 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8922 one-bit field. */
8923 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8924 && XEXP (XEXP (src, 0), 0) == const1_rtx
8925 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8927 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8928 1, 1, 1, 0);
8929 if (assign != 0)
8930 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8931 return x;
8934 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8935 SRC is an AND with all bits of that field set, then we can discard
8936 the AND. */
8937 if (GET_CODE (dest) == ZERO_EXTRACT
8938 && CONST_INT_P (XEXP (dest, 1))
8939 && GET_CODE (src) == AND
8940 && CONST_INT_P (XEXP (src, 1)))
8942 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8943 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8944 unsigned HOST_WIDE_INT ze_mask;
8946 if (width >= HOST_BITS_PER_WIDE_INT)
8947 ze_mask = -1;
8948 else
8949 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8951 /* Complete overlap. We can remove the source AND. */
8952 if ((and_mask & ze_mask) == ze_mask)
8953 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8955 /* Partial overlap. We can reduce the source AND. */
8956 if ((and_mask & ze_mask) != and_mask)
8958 mode = GET_MODE (src);
8959 src = gen_rtx_AND (mode, XEXP (src, 0),
8960 gen_int_mode (and_mask & ze_mask, mode));
8961 return gen_rtx_SET (VOIDmode, dest, src);
8965 /* The other case we handle is assignments into a constant-position
8966 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8967 a mask that has all one bits except for a group of zero bits and
8968 OTHER is known to have zeros where C1 has ones, this is such an
8969 assignment. Compute the position and length from C1. Shift OTHER
8970 to the appropriate position, force it to the required mode, and
8971 make the extraction. Check for the AND in both operands. */
8973 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8974 return x;
8976 rhs = expand_compound_operation (XEXP (src, 0));
8977 lhs = expand_compound_operation (XEXP (src, 1));
8979 if (GET_CODE (rhs) == AND
8980 && CONST_INT_P (XEXP (rhs, 1))
8981 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8982 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8983 else if (GET_CODE (lhs) == AND
8984 && CONST_INT_P (XEXP (lhs, 1))
8985 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8986 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8987 else
8988 return x;
8990 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8991 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8992 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8993 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8994 return x;
8996 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8997 if (assign == 0)
8998 return x;
9000 /* The mode to use for the source is the mode of the assignment, or of
9001 what is inside a possible STRICT_LOW_PART. */
9002 mode = (GET_CODE (assign) == STRICT_LOW_PART
9003 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9005 /* Shift OTHER right POS places and make it the source, restricting it
9006 to the proper length and mode. */
9008 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9009 GET_MODE (src),
9010 other, pos),
9011 dest);
9012 src = force_to_mode (src, mode,
9013 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9014 ? ~(unsigned HOST_WIDE_INT) 0
9015 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9018 /* If SRC is masked by an AND that does not make a difference in
9019 the value being stored, strip it. */
9020 if (GET_CODE (assign) == ZERO_EXTRACT
9021 && CONST_INT_P (XEXP (assign, 1))
9022 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9023 && GET_CODE (src) == AND
9024 && CONST_INT_P (XEXP (src, 1))
9025 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
9026 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
9027 src = XEXP (src, 0);
9029 return gen_rtx_SET (VOIDmode, assign, src);
9032 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9033 if so. */
9035 static rtx
9036 apply_distributive_law (rtx x)
9038 enum rtx_code code = GET_CODE (x);
9039 enum rtx_code inner_code;
9040 rtx lhs, rhs, other;
9041 rtx tem;
9043 /* Distributivity is not true for floating point as it can change the
9044 value. So we don't do it unless -funsafe-math-optimizations. */
9045 if (FLOAT_MODE_P (GET_MODE (x))
9046 && ! flag_unsafe_math_optimizations)
9047 return x;
9049 /* The outer operation can only be one of the following: */
9050 if (code != IOR && code != AND && code != XOR
9051 && code != PLUS && code != MINUS)
9052 return x;
9054 lhs = XEXP (x, 0);
9055 rhs = XEXP (x, 1);
9057 /* If either operand is a primitive we can't do anything, so get out
9058 fast. */
9059 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9060 return x;
9062 lhs = expand_compound_operation (lhs);
9063 rhs = expand_compound_operation (rhs);
9064 inner_code = GET_CODE (lhs);
9065 if (inner_code != GET_CODE (rhs))
9066 return x;
9068 /* See if the inner and outer operations distribute. */
9069 switch (inner_code)
9071 case LSHIFTRT:
9072 case ASHIFTRT:
9073 case AND:
9074 case IOR:
9075 /* These all distribute except over PLUS. */
9076 if (code == PLUS || code == MINUS)
9077 return x;
9078 break;
9080 case MULT:
9081 if (code != PLUS && code != MINUS)
9082 return x;
9083 break;
9085 case ASHIFT:
9086 /* This is also a multiply, so it distributes over everything. */
9087 break;
9089 case SUBREG:
9090 /* Non-paradoxical SUBREGs distributes over all operations,
9091 provided the inner modes and byte offsets are the same, this
9092 is an extraction of a low-order part, we don't convert an fp
9093 operation to int or vice versa, this is not a vector mode,
9094 and we would not be converting a single-word operation into a
9095 multi-word operation. The latter test is not required, but
9096 it prevents generating unneeded multi-word operations. Some
9097 of the previous tests are redundant given the latter test,
9098 but are retained because they are required for correctness.
9100 We produce the result slightly differently in this case. */
9102 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9103 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9104 || ! subreg_lowpart_p (lhs)
9105 || (GET_MODE_CLASS (GET_MODE (lhs))
9106 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9107 || (GET_MODE_SIZE (GET_MODE (lhs))
9108 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9109 || VECTOR_MODE_P (GET_MODE (lhs))
9110 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9111 /* Result might need to be truncated. Don't change mode if
9112 explicit truncation is needed. */
9113 || !TRULY_NOOP_TRUNCATION
9114 (GET_MODE_BITSIZE (GET_MODE (x)),
9115 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9116 return x;
9118 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9119 SUBREG_REG (lhs), SUBREG_REG (rhs));
9120 return gen_lowpart (GET_MODE (x), tem);
9122 default:
9123 return x;
9126 /* Set LHS and RHS to the inner operands (A and B in the example
9127 above) and set OTHER to the common operand (C in the example).
9128 There is only one way to do this unless the inner operation is
9129 commutative. */
9130 if (COMMUTATIVE_ARITH_P (lhs)
9131 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9132 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9133 else if (COMMUTATIVE_ARITH_P (lhs)
9134 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9135 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9136 else if (COMMUTATIVE_ARITH_P (lhs)
9137 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9138 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9139 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9140 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9141 else
9142 return x;
9144 /* Form the new inner operation, seeing if it simplifies first. */
9145 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9147 /* There is one exception to the general way of distributing:
9148 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9149 if (code == XOR && inner_code == IOR)
9151 inner_code = AND;
9152 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9155 /* We may be able to continuing distributing the result, so call
9156 ourselves recursively on the inner operation before forming the
9157 outer operation, which we return. */
9158 return simplify_gen_binary (inner_code, GET_MODE (x),
9159 apply_distributive_law (tem), other);
9162 /* See if X is of the form (* (+ A B) C), and if so convert to
9163 (+ (* A C) (* B C)) and try to simplify.
9165 Most of the time, this results in no change. However, if some of
9166 the operands are the same or inverses of each other, simplifications
9167 will result.
9169 For example, (and (ior A B) (not B)) can occur as the result of
9170 expanding a bit field assignment. When we apply the distributive
9171 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9172 which then simplifies to (and (A (not B))).
9174 Note that no checks happen on the validity of applying the inverse
9175 distributive law. This is pointless since we can do it in the
9176 few places where this routine is called.
9178 N is the index of the term that is decomposed (the arithmetic operation,
9179 i.e. (+ A B) in the first example above). !N is the index of the term that
9180 is distributed, i.e. of C in the first example above. */
9181 static rtx
9182 distribute_and_simplify_rtx (rtx x, int n)
9184 enum machine_mode mode;
9185 enum rtx_code outer_code, inner_code;
9186 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9188 /* Distributivity is not true for floating point as it can change the
9189 value. So we don't do it unless -funsafe-math-optimizations. */
9190 if (FLOAT_MODE_P (GET_MODE (x))
9191 && ! flag_unsafe_math_optimizations)
9192 return NULL_RTX;
9194 decomposed = XEXP (x, n);
9195 if (!ARITHMETIC_P (decomposed))
9196 return NULL_RTX;
9198 mode = GET_MODE (x);
9199 outer_code = GET_CODE (x);
9200 distributed = XEXP (x, !n);
9202 inner_code = GET_CODE (decomposed);
9203 inner_op0 = XEXP (decomposed, 0);
9204 inner_op1 = XEXP (decomposed, 1);
9206 /* Special case (and (xor B C) (not A)), which is equivalent to
9207 (xor (ior A B) (ior A C)) */
9208 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9210 distributed = XEXP (distributed, 0);
9211 outer_code = IOR;
9214 if (n == 0)
9216 /* Distribute the second term. */
9217 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9218 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9220 else
9222 /* Distribute the first term. */
9223 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9224 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9227 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9228 new_op0, new_op1));
9229 if (GET_CODE (tmp) != outer_code
9230 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9231 < rtx_cost (x, SET, optimize_this_for_speed_p))
9232 return tmp;
9234 return NULL_RTX;
9237 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9238 in MODE. Return an equivalent form, if different from (and VAROP
9239 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9241 static rtx
9242 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9243 unsigned HOST_WIDE_INT constop)
9245 unsigned HOST_WIDE_INT nonzero;
9246 unsigned HOST_WIDE_INT orig_constop;
9247 rtx orig_varop;
9248 int i;
9250 orig_varop = varop;
9251 orig_constop = constop;
9252 if (GET_CODE (varop) == CLOBBER)
9253 return NULL_RTX;
9255 /* Simplify VAROP knowing that we will be only looking at some of the
9256 bits in it.
9258 Note by passing in CONSTOP, we guarantee that the bits not set in
9259 CONSTOP are not significant and will never be examined. We must
9260 ensure that is the case by explicitly masking out those bits
9261 before returning. */
9262 varop = force_to_mode (varop, mode, constop, 0);
9264 /* If VAROP is a CLOBBER, we will fail so return it. */
9265 if (GET_CODE (varop) == CLOBBER)
9266 return varop;
9268 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9269 to VAROP and return the new constant. */
9270 if (CONST_INT_P (varop))
9271 return gen_int_mode (INTVAL (varop) & constop, mode);
9273 /* See what bits may be nonzero in VAROP. Unlike the general case of
9274 a call to nonzero_bits, here we don't care about bits outside
9275 MODE. */
9277 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9279 /* Turn off all bits in the constant that are known to already be zero.
9280 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9281 which is tested below. */
9283 constop &= nonzero;
9285 /* If we don't have any bits left, return zero. */
9286 if (constop == 0)
9287 return const0_rtx;
9289 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9290 a power of two, we can replace this with an ASHIFT. */
9291 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9292 && (i = exact_log2 (constop)) >= 0)
9293 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9295 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9296 or XOR, then try to apply the distributive law. This may eliminate
9297 operations if either branch can be simplified because of the AND.
9298 It may also make some cases more complex, but those cases probably
9299 won't match a pattern either with or without this. */
9301 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9302 return
9303 gen_lowpart
9304 (mode,
9305 apply_distributive_law
9306 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9307 simplify_and_const_int (NULL_RTX,
9308 GET_MODE (varop),
9309 XEXP (varop, 0),
9310 constop),
9311 simplify_and_const_int (NULL_RTX,
9312 GET_MODE (varop),
9313 XEXP (varop, 1),
9314 constop))));
9316 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9317 the AND and see if one of the operands simplifies to zero. If so, we
9318 may eliminate it. */
9320 if (GET_CODE (varop) == PLUS
9321 && exact_log2 (constop + 1) >= 0)
9323 rtx o0, o1;
9325 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9326 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9327 if (o0 == const0_rtx)
9328 return o1;
9329 if (o1 == const0_rtx)
9330 return o0;
9333 /* Make a SUBREG if necessary. If we can't make it, fail. */
9334 varop = gen_lowpart (mode, varop);
9335 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9336 return NULL_RTX;
9338 /* If we are only masking insignificant bits, return VAROP. */
9339 if (constop == nonzero)
9340 return varop;
9342 if (varop == orig_varop && constop == orig_constop)
9343 return NULL_RTX;
9345 /* Otherwise, return an AND. */
9346 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9350 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9351 in MODE.
9353 Return an equivalent form, if different from X. Otherwise, return X. If
9354 X is zero, we are to always construct the equivalent form. */
9356 static rtx
9357 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9358 unsigned HOST_WIDE_INT constop)
9360 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9361 if (tem)
9362 return tem;
9364 if (!x)
9365 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9366 gen_int_mode (constop, mode));
9367 if (GET_MODE (x) != mode)
9368 x = gen_lowpart (mode, x);
9369 return x;
9372 /* Given a REG, X, compute which bits in X can be nonzero.
9373 We don't care about bits outside of those defined in MODE.
9375 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9376 a shift, AND, or zero_extract, we can do better. */
9378 static rtx
9379 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9380 const_rtx known_x ATTRIBUTE_UNUSED,
9381 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9382 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9383 unsigned HOST_WIDE_INT *nonzero)
9385 rtx tem;
9386 reg_stat_type *rsp;
9388 /* If X is a register whose nonzero bits value is current, use it.
9389 Otherwise, if X is a register whose value we can find, use that
9390 value. Otherwise, use the previously-computed global nonzero bits
9391 for this register. */
9393 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9394 if (rsp->last_set_value != 0
9395 && (rsp->last_set_mode == mode
9396 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9397 && GET_MODE_CLASS (mode) == MODE_INT))
9398 && ((rsp->last_set_label >= label_tick_ebb_start
9399 && rsp->last_set_label < label_tick)
9400 || (rsp->last_set_label == label_tick
9401 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9402 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9403 && REG_N_SETS (REGNO (x)) == 1
9404 && !REGNO_REG_SET_P
9405 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9407 *nonzero &= rsp->last_set_nonzero_bits;
9408 return NULL;
9411 tem = get_last_value (x);
9413 if (tem)
9415 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9416 /* If X is narrower than MODE and TEM is a non-negative
9417 constant that would appear negative in the mode of X,
9418 sign-extend it for use in reg_nonzero_bits because some
9419 machines (maybe most) will actually do the sign-extension
9420 and this is the conservative approach.
9422 ??? For 2.5, try to tighten up the MD files in this regard
9423 instead of this kludge. */
9425 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9426 && CONST_INT_P (tem)
9427 && INTVAL (tem) > 0
9428 && 0 != (INTVAL (tem)
9429 & ((HOST_WIDE_INT) 1
9430 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9431 tem = GEN_INT (INTVAL (tem)
9432 | ((HOST_WIDE_INT) (-1)
9433 << GET_MODE_BITSIZE (GET_MODE (x))));
9434 #endif
9435 return tem;
9437 else if (nonzero_sign_valid && rsp->nonzero_bits)
9439 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9441 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9442 /* We don't know anything about the upper bits. */
9443 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9444 *nonzero &= mask;
9447 return NULL;
9450 /* Return the number of bits at the high-order end of X that are known to
9451 be equal to the sign bit. X will be used in mode MODE; if MODE is
9452 VOIDmode, X will be used in its own mode. The returned value will always
9453 be between 1 and the number of bits in MODE. */
9455 static rtx
9456 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9457 const_rtx known_x ATTRIBUTE_UNUSED,
9458 enum machine_mode known_mode
9459 ATTRIBUTE_UNUSED,
9460 unsigned int known_ret ATTRIBUTE_UNUSED,
9461 unsigned int *result)
9463 rtx tem;
9464 reg_stat_type *rsp;
9466 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9467 if (rsp->last_set_value != 0
9468 && rsp->last_set_mode == mode
9469 && ((rsp->last_set_label >= label_tick_ebb_start
9470 && rsp->last_set_label < label_tick)
9471 || (rsp->last_set_label == label_tick
9472 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9473 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9474 && REG_N_SETS (REGNO (x)) == 1
9475 && !REGNO_REG_SET_P
9476 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9478 *result = rsp->last_set_sign_bit_copies;
9479 return NULL;
9482 tem = get_last_value (x);
9483 if (tem != 0)
9484 return tem;
9486 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9487 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9488 *result = rsp->sign_bit_copies;
9490 return NULL;
9493 /* Return the number of "extended" bits there are in X, when interpreted
9494 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9495 unsigned quantities, this is the number of high-order zero bits.
9496 For signed quantities, this is the number of copies of the sign bit
9497 minus 1. In both case, this function returns the number of "spare"
9498 bits. For example, if two quantities for which this function returns
9499 at least 1 are added, the addition is known not to overflow.
9501 This function will always return 0 unless called during combine, which
9502 implies that it must be called from a define_split. */
9504 unsigned int
9505 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9507 if (nonzero_sign_valid == 0)
9508 return 0;
9510 return (unsignedp
9511 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9512 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9513 - floor_log2 (nonzero_bits (x, mode)))
9514 : 0)
9515 : num_sign_bit_copies (x, mode) - 1);
9518 /* This function is called from `simplify_shift_const' to merge two
9519 outer operations. Specifically, we have already found that we need
9520 to perform operation *POP0 with constant *PCONST0 at the outermost
9521 position. We would now like to also perform OP1 with constant CONST1
9522 (with *POP0 being done last).
9524 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9525 the resulting operation. *PCOMP_P is set to 1 if we would need to
9526 complement the innermost operand, otherwise it is unchanged.
9528 MODE is the mode in which the operation will be done. No bits outside
9529 the width of this mode matter. It is assumed that the width of this mode
9530 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9532 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9533 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9534 result is simply *PCONST0.
9536 If the resulting operation cannot be expressed as one operation, we
9537 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9539 static int
9540 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9542 enum rtx_code op0 = *pop0;
9543 HOST_WIDE_INT const0 = *pconst0;
9545 const0 &= GET_MODE_MASK (mode);
9546 const1 &= GET_MODE_MASK (mode);
9548 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9549 if (op0 == AND)
9550 const1 &= const0;
9552 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9553 if OP0 is SET. */
9555 if (op1 == UNKNOWN || op0 == SET)
9556 return 1;
9558 else if (op0 == UNKNOWN)
9559 op0 = op1, const0 = const1;
9561 else if (op0 == op1)
9563 switch (op0)
9565 case AND:
9566 const0 &= const1;
9567 break;
9568 case IOR:
9569 const0 |= const1;
9570 break;
9571 case XOR:
9572 const0 ^= const1;
9573 break;
9574 case PLUS:
9575 const0 += const1;
9576 break;
9577 case NEG:
9578 op0 = UNKNOWN;
9579 break;
9580 default:
9581 break;
9585 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9586 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9587 return 0;
9589 /* If the two constants aren't the same, we can't do anything. The
9590 remaining six cases can all be done. */
9591 else if (const0 != const1)
9592 return 0;
9594 else
9595 switch (op0)
9597 case IOR:
9598 if (op1 == AND)
9599 /* (a & b) | b == b */
9600 op0 = SET;
9601 else /* op1 == XOR */
9602 /* (a ^ b) | b == a | b */
9604 break;
9606 case XOR:
9607 if (op1 == AND)
9608 /* (a & b) ^ b == (~a) & b */
9609 op0 = AND, *pcomp_p = 1;
9610 else /* op1 == IOR */
9611 /* (a | b) ^ b == a & ~b */
9612 op0 = AND, const0 = ~const0;
9613 break;
9615 case AND:
9616 if (op1 == IOR)
9617 /* (a | b) & b == b */
9618 op0 = SET;
9619 else /* op1 == XOR */
9620 /* (a ^ b) & b) == (~a) & b */
9621 *pcomp_p = 1;
9622 break;
9623 default:
9624 break;
9627 /* Check for NO-OP cases. */
9628 const0 &= GET_MODE_MASK (mode);
9629 if (const0 == 0
9630 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9631 op0 = UNKNOWN;
9632 else if (const0 == 0 && op0 == AND)
9633 op0 = SET;
9634 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9635 && op0 == AND)
9636 op0 = UNKNOWN;
9638 *pop0 = op0;
9640 /* ??? Slightly redundant with the above mask, but not entirely.
9641 Moving this above means we'd have to sign-extend the mode mask
9642 for the final test. */
9643 if (op0 != UNKNOWN && op0 != NEG)
9644 *pconst0 = trunc_int_for_mode (const0, mode);
9646 return 1;
9649 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9650 the shift in. The original shift operation CODE is performed on OP in
9651 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9652 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9653 result of the shift is subject to operation OUTER_CODE with operand
9654 OUTER_CONST. */
9656 static enum machine_mode
9657 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9658 enum machine_mode orig_mode, enum machine_mode mode,
9659 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9661 if (orig_mode == mode)
9662 return mode;
9663 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9665 /* In general we can't perform in wider mode for right shift and rotate. */
9666 switch (code)
9668 case ASHIFTRT:
9669 /* We can still widen if the bits brought in from the left are identical
9670 to the sign bit of ORIG_MODE. */
9671 if (num_sign_bit_copies (op, mode)
9672 > (unsigned) (GET_MODE_BITSIZE (mode)
9673 - GET_MODE_BITSIZE (orig_mode)))
9674 return mode;
9675 return orig_mode;
9677 case LSHIFTRT:
9678 /* Similarly here but with zero bits. */
9679 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9680 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9681 return mode;
9683 /* We can also widen if the bits brought in will be masked off. This
9684 operation is performed in ORIG_MODE. */
9685 if (outer_code == AND)
9687 int care_bits = low_bitmask_len (orig_mode, outer_const);
9689 if (care_bits >= 0
9690 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9691 return mode;
9693 /* fall through */
9695 case ROTATE:
9696 return orig_mode;
9698 case ROTATERT:
9699 gcc_unreachable ();
9701 default:
9702 return mode;
9706 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9707 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9708 simplify it. Otherwise, return a simplified value.
9710 The shift is normally computed in the widest mode we find in VAROP, as
9711 long as it isn't a different number of words than RESULT_MODE. Exceptions
9712 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9714 static rtx
9715 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9716 rtx varop, int orig_count)
9718 enum rtx_code orig_code = code;
9719 rtx orig_varop = varop;
9720 int count;
9721 enum machine_mode mode = result_mode;
9722 enum machine_mode shift_mode, tmode;
9723 unsigned int mode_words
9724 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9725 /* We form (outer_op (code varop count) (outer_const)). */
9726 enum rtx_code outer_op = UNKNOWN;
9727 HOST_WIDE_INT outer_const = 0;
9728 int complement_p = 0;
9729 rtx new_rtx, x;
9731 /* Make sure and truncate the "natural" shift on the way in. We don't
9732 want to do this inside the loop as it makes it more difficult to
9733 combine shifts. */
9734 if (SHIFT_COUNT_TRUNCATED)
9735 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9737 /* If we were given an invalid count, don't do anything except exactly
9738 what was requested. */
9740 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9741 return NULL_RTX;
9743 count = orig_count;
9745 /* Unless one of the branches of the `if' in this loop does a `continue',
9746 we will `break' the loop after the `if'. */
9748 while (count != 0)
9750 /* If we have an operand of (clobber (const_int 0)), fail. */
9751 if (GET_CODE (varop) == CLOBBER)
9752 return NULL_RTX;
9754 /* Convert ROTATERT to ROTATE. */
9755 if (code == ROTATERT)
9757 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9758 code = ROTATE;
9759 if (VECTOR_MODE_P (result_mode))
9760 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9761 else
9762 count = bitsize - count;
9765 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9766 mode, outer_op, outer_const);
9768 /* Handle cases where the count is greater than the size of the mode
9769 minus 1. For ASHIFT, use the size minus one as the count (this can
9770 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9771 take the count modulo the size. For other shifts, the result is
9772 zero.
9774 Since these shifts are being produced by the compiler by combining
9775 multiple operations, each of which are defined, we know what the
9776 result is supposed to be. */
9778 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9780 if (code == ASHIFTRT)
9781 count = GET_MODE_BITSIZE (shift_mode) - 1;
9782 else if (code == ROTATE || code == ROTATERT)
9783 count %= GET_MODE_BITSIZE (shift_mode);
9784 else
9786 /* We can't simply return zero because there may be an
9787 outer op. */
9788 varop = const0_rtx;
9789 count = 0;
9790 break;
9794 /* If we discovered we had to complement VAROP, leave. Making a NOT
9795 here would cause an infinite loop. */
9796 if (complement_p)
9797 break;
9799 /* An arithmetic right shift of a quantity known to be -1 or 0
9800 is a no-op. */
9801 if (code == ASHIFTRT
9802 && (num_sign_bit_copies (varop, shift_mode)
9803 == GET_MODE_BITSIZE (shift_mode)))
9805 count = 0;
9806 break;
9809 /* If we are doing an arithmetic right shift and discarding all but
9810 the sign bit copies, this is equivalent to doing a shift by the
9811 bitsize minus one. Convert it into that shift because it will often
9812 allow other simplifications. */
9814 if (code == ASHIFTRT
9815 && (count + num_sign_bit_copies (varop, shift_mode)
9816 >= GET_MODE_BITSIZE (shift_mode)))
9817 count = GET_MODE_BITSIZE (shift_mode) - 1;
9819 /* We simplify the tests below and elsewhere by converting
9820 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9821 `make_compound_operation' will convert it to an ASHIFTRT for
9822 those machines (such as VAX) that don't have an LSHIFTRT. */
9823 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9824 && code == ASHIFTRT
9825 && ((nonzero_bits (varop, shift_mode)
9826 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9827 == 0))
9828 code = LSHIFTRT;
9830 if (((code == LSHIFTRT
9831 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9832 && !(nonzero_bits (varop, shift_mode) >> count))
9833 || (code == ASHIFT
9834 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9835 && !((nonzero_bits (varop, shift_mode) << count)
9836 & GET_MODE_MASK (shift_mode))))
9837 && !side_effects_p (varop))
9838 varop = const0_rtx;
9840 switch (GET_CODE (varop))
9842 case SIGN_EXTEND:
9843 case ZERO_EXTEND:
9844 case SIGN_EXTRACT:
9845 case ZERO_EXTRACT:
9846 new_rtx = expand_compound_operation (varop);
9847 if (new_rtx != varop)
9849 varop = new_rtx;
9850 continue;
9852 break;
9854 case MEM:
9855 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9856 minus the width of a smaller mode, we can do this with a
9857 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9858 if ((code == ASHIFTRT || code == LSHIFTRT)
9859 && ! mode_dependent_address_p (XEXP (varop, 0))
9860 && ! MEM_VOLATILE_P (varop)
9861 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9862 MODE_INT, 1)) != BLKmode)
9864 new_rtx = adjust_address_nv (varop, tmode,
9865 BYTES_BIG_ENDIAN ? 0
9866 : count / BITS_PER_UNIT);
9868 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9869 : ZERO_EXTEND, mode, new_rtx);
9870 count = 0;
9871 continue;
9873 break;
9875 case SUBREG:
9876 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9877 the same number of words as what we've seen so far. Then store
9878 the widest mode in MODE. */
9879 if (subreg_lowpart_p (varop)
9880 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9881 > GET_MODE_SIZE (GET_MODE (varop)))
9882 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9883 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9884 == mode_words
9885 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9886 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9888 varop = SUBREG_REG (varop);
9889 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9890 mode = GET_MODE (varop);
9891 continue;
9893 break;
9895 case MULT:
9896 /* Some machines use MULT instead of ASHIFT because MULT
9897 is cheaper. But it is still better on those machines to
9898 merge two shifts into one. */
9899 if (CONST_INT_P (XEXP (varop, 1))
9900 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9902 varop
9903 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9904 XEXP (varop, 0),
9905 GEN_INT (exact_log2 (
9906 INTVAL (XEXP (varop, 1)))));
9907 continue;
9909 break;
9911 case UDIV:
9912 /* Similar, for when divides are cheaper. */
9913 if (CONST_INT_P (XEXP (varop, 1))
9914 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9916 varop
9917 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9918 XEXP (varop, 0),
9919 GEN_INT (exact_log2 (
9920 INTVAL (XEXP (varop, 1)))));
9921 continue;
9923 break;
9925 case ASHIFTRT:
9926 /* If we are extracting just the sign bit of an arithmetic
9927 right shift, that shift is not needed. However, the sign
9928 bit of a wider mode may be different from what would be
9929 interpreted as the sign bit in a narrower mode, so, if
9930 the result is narrower, don't discard the shift. */
9931 if (code == LSHIFTRT
9932 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9933 && (GET_MODE_BITSIZE (result_mode)
9934 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9936 varop = XEXP (varop, 0);
9937 continue;
9940 /* ... fall through ... */
9942 case LSHIFTRT:
9943 case ASHIFT:
9944 case ROTATE:
9945 /* Here we have two nested shifts. The result is usually the
9946 AND of a new shift with a mask. We compute the result below. */
9947 if (CONST_INT_P (XEXP (varop, 1))
9948 && INTVAL (XEXP (varop, 1)) >= 0
9949 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9950 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9951 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9952 && !VECTOR_MODE_P (result_mode))
9954 enum rtx_code first_code = GET_CODE (varop);
9955 unsigned int first_count = INTVAL (XEXP (varop, 1));
9956 unsigned HOST_WIDE_INT mask;
9957 rtx mask_rtx;
9959 /* We have one common special case. We can't do any merging if
9960 the inner code is an ASHIFTRT of a smaller mode. However, if
9961 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9962 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9963 we can convert it to
9964 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9965 This simplifies certain SIGN_EXTEND operations. */
9966 if (code == ASHIFT && first_code == ASHIFTRT
9967 && count == (GET_MODE_BITSIZE (result_mode)
9968 - GET_MODE_BITSIZE (GET_MODE (varop))))
9970 /* C3 has the low-order C1 bits zero. */
9972 mask = (GET_MODE_MASK (mode)
9973 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9975 varop = simplify_and_const_int (NULL_RTX, result_mode,
9976 XEXP (varop, 0), mask);
9977 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9978 varop, count);
9979 count = first_count;
9980 code = ASHIFTRT;
9981 continue;
9984 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9985 than C1 high-order bits equal to the sign bit, we can convert
9986 this to either an ASHIFT or an ASHIFTRT depending on the
9987 two counts.
9989 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9991 if (code == ASHIFTRT && first_code == ASHIFT
9992 && GET_MODE (varop) == shift_mode
9993 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9994 > first_count))
9996 varop = XEXP (varop, 0);
9997 count -= first_count;
9998 if (count < 0)
10000 count = -count;
10001 code = ASHIFT;
10004 continue;
10007 /* There are some cases we can't do. If CODE is ASHIFTRT,
10008 we can only do this if FIRST_CODE is also ASHIFTRT.
10010 We can't do the case when CODE is ROTATE and FIRST_CODE is
10011 ASHIFTRT.
10013 If the mode of this shift is not the mode of the outer shift,
10014 we can't do this if either shift is a right shift or ROTATE.
10016 Finally, we can't do any of these if the mode is too wide
10017 unless the codes are the same.
10019 Handle the case where the shift codes are the same
10020 first. */
10022 if (code == first_code)
10024 if (GET_MODE (varop) != result_mode
10025 && (code == ASHIFTRT || code == LSHIFTRT
10026 || code == ROTATE))
10027 break;
10029 count += first_count;
10030 varop = XEXP (varop, 0);
10031 continue;
10034 if (code == ASHIFTRT
10035 || (code == ROTATE && first_code == ASHIFTRT)
10036 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10037 || (GET_MODE (varop) != result_mode
10038 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10039 || first_code == ROTATE
10040 || code == ROTATE)))
10041 break;
10043 /* To compute the mask to apply after the shift, shift the
10044 nonzero bits of the inner shift the same way the
10045 outer shift will. */
10047 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10049 mask_rtx
10050 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10051 GEN_INT (count));
10053 /* Give up if we can't compute an outer operation to use. */
10054 if (mask_rtx == 0
10055 || !CONST_INT_P (mask_rtx)
10056 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10057 INTVAL (mask_rtx),
10058 result_mode, &complement_p))
10059 break;
10061 /* If the shifts are in the same direction, we add the
10062 counts. Otherwise, we subtract them. */
10063 if ((code == ASHIFTRT || code == LSHIFTRT)
10064 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10065 count += first_count;
10066 else
10067 count -= first_count;
10069 /* If COUNT is positive, the new shift is usually CODE,
10070 except for the two exceptions below, in which case it is
10071 FIRST_CODE. If the count is negative, FIRST_CODE should
10072 always be used */
10073 if (count > 0
10074 && ((first_code == ROTATE && code == ASHIFT)
10075 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10076 code = first_code;
10077 else if (count < 0)
10078 code = first_code, count = -count;
10080 varop = XEXP (varop, 0);
10081 continue;
10084 /* If we have (A << B << C) for any shift, we can convert this to
10085 (A << C << B). This wins if A is a constant. Only try this if
10086 B is not a constant. */
10088 else if (GET_CODE (varop) == code
10089 && CONST_INT_P (XEXP (varop, 0))
10090 && !CONST_INT_P (XEXP (varop, 1)))
10092 rtx new_rtx = simplify_const_binary_operation (code, mode,
10093 XEXP (varop, 0),
10094 GEN_INT (count));
10095 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10096 count = 0;
10097 continue;
10099 break;
10101 case NOT:
10102 if (VECTOR_MODE_P (mode))
10103 break;
10105 /* Make this fit the case below. */
10106 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10107 GEN_INT (GET_MODE_MASK (mode)));
10108 continue;
10110 case IOR:
10111 case AND:
10112 case XOR:
10113 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10114 with C the size of VAROP - 1 and the shift is logical if
10115 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10116 we have an (le X 0) operation. If we have an arithmetic shift
10117 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10118 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10120 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10121 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10122 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10123 && (code == LSHIFTRT || code == ASHIFTRT)
10124 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10125 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10127 count = 0;
10128 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10129 const0_rtx);
10131 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10132 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10134 continue;
10137 /* If we have (shift (logical)), move the logical to the outside
10138 to allow it to possibly combine with another logical and the
10139 shift to combine with another shift. This also canonicalizes to
10140 what a ZERO_EXTRACT looks like. Also, some machines have
10141 (and (shift)) insns. */
10143 if (CONST_INT_P (XEXP (varop, 1))
10144 /* We can't do this if we have (ashiftrt (xor)) and the
10145 constant has its sign bit set in shift_mode. */
10146 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10147 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10148 shift_mode))
10149 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10150 XEXP (varop, 1),
10151 GEN_INT (count))) != 0
10152 && CONST_INT_P (new_rtx)
10153 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10154 INTVAL (new_rtx), result_mode, &complement_p))
10156 varop = XEXP (varop, 0);
10157 continue;
10160 /* If we can't do that, try to simplify the shift in each arm of the
10161 logical expression, make a new logical expression, and apply
10162 the inverse distributive law. This also can't be done
10163 for some (ashiftrt (xor)). */
10164 if (CONST_INT_P (XEXP (varop, 1))
10165 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10166 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10167 shift_mode)))
10169 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10170 XEXP (varop, 0), count);
10171 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10172 XEXP (varop, 1), count);
10174 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10175 lhs, rhs);
10176 varop = apply_distributive_law (varop);
10178 count = 0;
10179 continue;
10181 break;
10183 case EQ:
10184 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10185 says that the sign bit can be tested, FOO has mode MODE, C is
10186 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10187 that may be nonzero. */
10188 if (code == LSHIFTRT
10189 && XEXP (varop, 1) == const0_rtx
10190 && GET_MODE (XEXP (varop, 0)) == result_mode
10191 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10192 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10193 && STORE_FLAG_VALUE == -1
10194 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10195 && merge_outer_ops (&outer_op, &outer_const, XOR,
10196 (HOST_WIDE_INT) 1, result_mode,
10197 &complement_p))
10199 varop = XEXP (varop, 0);
10200 count = 0;
10201 continue;
10203 break;
10205 case NEG:
10206 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10207 than the number of bits in the mode is equivalent to A. */
10208 if (code == LSHIFTRT
10209 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10210 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10212 varop = XEXP (varop, 0);
10213 count = 0;
10214 continue;
10217 /* NEG commutes with ASHIFT since it is multiplication. Move the
10218 NEG outside to allow shifts to combine. */
10219 if (code == ASHIFT
10220 && merge_outer_ops (&outer_op, &outer_const, NEG,
10221 (HOST_WIDE_INT) 0, result_mode,
10222 &complement_p))
10224 varop = XEXP (varop, 0);
10225 continue;
10227 break;
10229 case PLUS:
10230 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10231 is one less than the number of bits in the mode is
10232 equivalent to (xor A 1). */
10233 if (code == LSHIFTRT
10234 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10235 && XEXP (varop, 1) == constm1_rtx
10236 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10237 && merge_outer_ops (&outer_op, &outer_const, XOR,
10238 (HOST_WIDE_INT) 1, result_mode,
10239 &complement_p))
10241 count = 0;
10242 varop = XEXP (varop, 0);
10243 continue;
10246 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10247 that might be nonzero in BAR are those being shifted out and those
10248 bits are known zero in FOO, we can replace the PLUS with FOO.
10249 Similarly in the other operand order. This code occurs when
10250 we are computing the size of a variable-size array. */
10252 if ((code == ASHIFTRT || code == LSHIFTRT)
10253 && count < HOST_BITS_PER_WIDE_INT
10254 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10255 && (nonzero_bits (XEXP (varop, 1), result_mode)
10256 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10258 varop = XEXP (varop, 0);
10259 continue;
10261 else if ((code == ASHIFTRT || code == LSHIFTRT)
10262 && count < HOST_BITS_PER_WIDE_INT
10263 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10264 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10265 >> count)
10266 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10267 & nonzero_bits (XEXP (varop, 1),
10268 result_mode)))
10270 varop = XEXP (varop, 1);
10271 continue;
10274 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10275 if (code == ASHIFT
10276 && CONST_INT_P (XEXP (varop, 1))
10277 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10278 XEXP (varop, 1),
10279 GEN_INT (count))) != 0
10280 && CONST_INT_P (new_rtx)
10281 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10282 INTVAL (new_rtx), result_mode, &complement_p))
10284 varop = XEXP (varop, 0);
10285 continue;
10288 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10289 signbit', and attempt to change the PLUS to an XOR and move it to
10290 the outer operation as is done above in the AND/IOR/XOR case
10291 leg for shift(logical). See details in logical handling above
10292 for reasoning in doing so. */
10293 if (code == LSHIFTRT
10294 && CONST_INT_P (XEXP (varop, 1))
10295 && mode_signbit_p (result_mode, XEXP (varop, 1))
10296 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10297 XEXP (varop, 1),
10298 GEN_INT (count))) != 0
10299 && CONST_INT_P (new_rtx)
10300 && merge_outer_ops (&outer_op, &outer_const, XOR,
10301 INTVAL (new_rtx), result_mode, &complement_p))
10303 varop = XEXP (varop, 0);
10304 continue;
10307 break;
10309 case MINUS:
10310 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10311 with C the size of VAROP - 1 and the shift is logical if
10312 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10313 we have a (gt X 0) operation. If the shift is arithmetic with
10314 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10315 we have a (neg (gt X 0)) operation. */
10317 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10318 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10319 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10320 && (code == LSHIFTRT || code == ASHIFTRT)
10321 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10322 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10323 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10325 count = 0;
10326 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10327 const0_rtx);
10329 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10330 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10332 continue;
10334 break;
10336 case TRUNCATE:
10337 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10338 if the truncate does not affect the value. */
10339 if (code == LSHIFTRT
10340 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10341 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10342 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10343 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10344 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10346 rtx varop_inner = XEXP (varop, 0);
10348 varop_inner
10349 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10350 XEXP (varop_inner, 0),
10351 GEN_INT
10352 (count + INTVAL (XEXP (varop_inner, 1))));
10353 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10354 count = 0;
10355 continue;
10357 break;
10359 default:
10360 break;
10363 break;
10366 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10367 outer_op, outer_const);
10369 /* We have now finished analyzing the shift. The result should be
10370 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10371 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10372 to the result of the shift. OUTER_CONST is the relevant constant,
10373 but we must turn off all bits turned off in the shift. */
10375 if (outer_op == UNKNOWN
10376 && orig_code == code && orig_count == count
10377 && varop == orig_varop
10378 && shift_mode == GET_MODE (varop))
10379 return NULL_RTX;
10381 /* Make a SUBREG if necessary. If we can't make it, fail. */
10382 varop = gen_lowpart (shift_mode, varop);
10383 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10384 return NULL_RTX;
10386 /* If we have an outer operation and we just made a shift, it is
10387 possible that we could have simplified the shift were it not
10388 for the outer operation. So try to do the simplification
10389 recursively. */
10391 if (outer_op != UNKNOWN)
10392 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10393 else
10394 x = NULL_RTX;
10396 if (x == NULL_RTX)
10397 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10399 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10400 turn off all the bits that the shift would have turned off. */
10401 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10402 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10403 GET_MODE_MASK (result_mode) >> orig_count);
10405 /* Do the remainder of the processing in RESULT_MODE. */
10406 x = gen_lowpart_or_truncate (result_mode, x);
10408 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10409 operation. */
10410 if (complement_p)
10411 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10413 if (outer_op != UNKNOWN)
10415 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10416 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10417 outer_const = trunc_int_for_mode (outer_const, result_mode);
10419 if (outer_op == AND)
10420 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10421 else if (outer_op == SET)
10423 /* This means that we have determined that the result is
10424 equivalent to a constant. This should be rare. */
10425 if (!side_effects_p (x))
10426 x = GEN_INT (outer_const);
10428 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10429 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10430 else
10431 x = simplify_gen_binary (outer_op, result_mode, x,
10432 GEN_INT (outer_const));
10435 return x;
10438 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10439 The result of the shift is RESULT_MODE. If we cannot simplify it,
10440 return X or, if it is NULL, synthesize the expression with
10441 simplify_gen_binary. Otherwise, return a simplified value.
10443 The shift is normally computed in the widest mode we find in VAROP, as
10444 long as it isn't a different number of words than RESULT_MODE. Exceptions
10445 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10447 static rtx
10448 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10449 rtx varop, int count)
10451 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10452 if (tem)
10453 return tem;
10455 if (!x)
10456 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10457 if (GET_MODE (x) != result_mode)
10458 x = gen_lowpart (result_mode, x);
10459 return x;
10463 /* Like recog, but we receive the address of a pointer to a new pattern.
10464 We try to match the rtx that the pointer points to.
10465 If that fails, we may try to modify or replace the pattern,
10466 storing the replacement into the same pointer object.
10468 Modifications include deletion or addition of CLOBBERs.
10470 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10471 the CLOBBERs are placed.
10473 The value is the final insn code from the pattern ultimately matched,
10474 or -1. */
10476 static int
10477 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10479 rtx pat = *pnewpat;
10480 int insn_code_number;
10481 int num_clobbers_to_add = 0;
10482 int i;
10483 rtx notes = 0;
10484 rtx old_notes, old_pat;
10486 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10487 we use to indicate that something didn't match. If we find such a
10488 thing, force rejection. */
10489 if (GET_CODE (pat) == PARALLEL)
10490 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10491 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10492 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10493 return -1;
10495 old_pat = PATTERN (insn);
10496 old_notes = REG_NOTES (insn);
10497 PATTERN (insn) = pat;
10498 REG_NOTES (insn) = 0;
10500 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10501 if (dump_file && (dump_flags & TDF_DETAILS))
10503 if (insn_code_number < 0)
10504 fputs ("Failed to match this instruction:\n", dump_file);
10505 else
10506 fputs ("Successfully matched this instruction:\n", dump_file);
10507 print_rtl_single (dump_file, pat);
10510 /* If it isn't, there is the possibility that we previously had an insn
10511 that clobbered some register as a side effect, but the combined
10512 insn doesn't need to do that. So try once more without the clobbers
10513 unless this represents an ASM insn. */
10515 if (insn_code_number < 0 && ! check_asm_operands (pat)
10516 && GET_CODE (pat) == PARALLEL)
10518 int pos;
10520 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10521 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10523 if (i != pos)
10524 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10525 pos++;
10528 SUBST_INT (XVECLEN (pat, 0), pos);
10530 if (pos == 1)
10531 pat = XVECEXP (pat, 0, 0);
10533 PATTERN (insn) = pat;
10534 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10535 if (dump_file && (dump_flags & TDF_DETAILS))
10537 if (insn_code_number < 0)
10538 fputs ("Failed to match this instruction:\n", dump_file);
10539 else
10540 fputs ("Successfully matched this instruction:\n", dump_file);
10541 print_rtl_single (dump_file, pat);
10544 PATTERN (insn) = old_pat;
10545 REG_NOTES (insn) = old_notes;
10547 /* Recognize all noop sets, these will be killed by followup pass. */
10548 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10549 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10551 /* If we had any clobbers to add, make a new pattern than contains
10552 them. Then check to make sure that all of them are dead. */
10553 if (num_clobbers_to_add)
10555 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10556 rtvec_alloc (GET_CODE (pat) == PARALLEL
10557 ? (XVECLEN (pat, 0)
10558 + num_clobbers_to_add)
10559 : num_clobbers_to_add + 1));
10561 if (GET_CODE (pat) == PARALLEL)
10562 for (i = 0; i < XVECLEN (pat, 0); i++)
10563 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10564 else
10565 XVECEXP (newpat, 0, 0) = pat;
10567 add_clobbers (newpat, insn_code_number);
10569 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10570 i < XVECLEN (newpat, 0); i++)
10572 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10573 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10574 return -1;
10575 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10577 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10578 notes = alloc_reg_note (REG_UNUSED,
10579 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10582 pat = newpat;
10585 *pnewpat = pat;
10586 *pnotes = notes;
10588 return insn_code_number;
10591 /* Like gen_lowpart_general but for use by combine. In combine it
10592 is not possible to create any new pseudoregs. However, it is
10593 safe to create invalid memory addresses, because combine will
10594 try to recognize them and all they will do is make the combine
10595 attempt fail.
10597 If for some reason this cannot do its job, an rtx
10598 (clobber (const_int 0)) is returned.
10599 An insn containing that will not be recognized. */
10601 static rtx
10602 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10604 enum machine_mode imode = GET_MODE (x);
10605 unsigned int osize = GET_MODE_SIZE (omode);
10606 unsigned int isize = GET_MODE_SIZE (imode);
10607 rtx result;
10609 if (omode == imode)
10610 return x;
10612 /* Return identity if this is a CONST or symbolic reference. */
10613 if (omode == Pmode
10614 && (GET_CODE (x) == CONST
10615 || GET_CODE (x) == SYMBOL_REF
10616 || GET_CODE (x) == LABEL_REF))
10617 return x;
10619 /* We can only support MODE being wider than a word if X is a
10620 constant integer or has a mode the same size. */
10621 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10622 && ! ((imode == VOIDmode
10623 && (CONST_INT_P (x)
10624 || GET_CODE (x) == CONST_DOUBLE))
10625 || isize == osize))
10626 goto fail;
10628 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10629 won't know what to do. So we will strip off the SUBREG here and
10630 process normally. */
10631 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10633 x = SUBREG_REG (x);
10635 /* For use in case we fall down into the address adjustments
10636 further below, we need to adjust the known mode and size of
10637 x; imode and isize, since we just adjusted x. */
10638 imode = GET_MODE (x);
10640 if (imode == omode)
10641 return x;
10643 isize = GET_MODE_SIZE (imode);
10646 result = gen_lowpart_common (omode, x);
10648 if (result)
10649 return result;
10651 if (MEM_P (x))
10653 int offset = 0;
10655 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10656 address. */
10657 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10658 goto fail;
10660 /* If we want to refer to something bigger than the original memref,
10661 generate a paradoxical subreg instead. That will force a reload
10662 of the original memref X. */
10663 if (isize < osize)
10664 return gen_rtx_SUBREG (omode, x, 0);
10666 if (WORDS_BIG_ENDIAN)
10667 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10669 /* Adjust the address so that the address-after-the-data is
10670 unchanged. */
10671 if (BYTES_BIG_ENDIAN)
10672 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10674 return adjust_address_nv (x, omode, offset);
10677 /* If X is a comparison operator, rewrite it in a new mode. This
10678 probably won't match, but may allow further simplifications. */
10679 else if (COMPARISON_P (x))
10680 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10682 /* If we couldn't simplify X any other way, just enclose it in a
10683 SUBREG. Normally, this SUBREG won't match, but some patterns may
10684 include an explicit SUBREG or we may simplify it further in combine. */
10685 else
10687 int offset = 0;
10688 rtx res;
10690 offset = subreg_lowpart_offset (omode, imode);
10691 if (imode == VOIDmode)
10693 imode = int_mode_for_mode (omode);
10694 x = gen_lowpart_common (imode, x);
10695 if (x == NULL)
10696 goto fail;
10698 res = simplify_gen_subreg (omode, x, imode, offset);
10699 if (res)
10700 return res;
10703 fail:
10704 return gen_rtx_CLOBBER (omode, const0_rtx);
10707 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10708 comparison code that will be tested.
10710 The result is a possibly different comparison code to use. *POP0 and
10711 *POP1 may be updated.
10713 It is possible that we might detect that a comparison is either always
10714 true or always false. However, we do not perform general constant
10715 folding in combine, so this knowledge isn't useful. Such tautologies
10716 should have been detected earlier. Hence we ignore all such cases. */
10718 static enum rtx_code
10719 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10721 rtx op0 = *pop0;
10722 rtx op1 = *pop1;
10723 rtx tem, tem1;
10724 int i;
10725 enum machine_mode mode, tmode;
10727 /* Try a few ways of applying the same transformation to both operands. */
10728 while (1)
10730 #ifndef WORD_REGISTER_OPERATIONS
10731 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10732 so check specially. */
10733 if (code != GTU && code != GEU && code != LTU && code != LEU
10734 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10735 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10736 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10737 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10738 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10739 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10740 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10741 && CONST_INT_P (XEXP (op0, 1))
10742 && XEXP (op0, 1) == XEXP (op1, 1)
10743 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10744 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10745 && (INTVAL (XEXP (op0, 1))
10746 == (GET_MODE_BITSIZE (GET_MODE (op0))
10747 - (GET_MODE_BITSIZE
10748 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10750 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10751 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10753 #endif
10755 /* If both operands are the same constant shift, see if we can ignore the
10756 shift. We can if the shift is a rotate or if the bits shifted out of
10757 this shift are known to be zero for both inputs and if the type of
10758 comparison is compatible with the shift. */
10759 if (GET_CODE (op0) == GET_CODE (op1)
10760 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10761 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10762 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10763 && (code != GT && code != LT && code != GE && code != LE))
10764 || (GET_CODE (op0) == ASHIFTRT
10765 && (code != GTU && code != LTU
10766 && code != GEU && code != LEU)))
10767 && CONST_INT_P (XEXP (op0, 1))
10768 && INTVAL (XEXP (op0, 1)) >= 0
10769 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10770 && XEXP (op0, 1) == XEXP (op1, 1))
10772 enum machine_mode mode = GET_MODE (op0);
10773 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10774 int shift_count = INTVAL (XEXP (op0, 1));
10776 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10777 mask &= (mask >> shift_count) << shift_count;
10778 else if (GET_CODE (op0) == ASHIFT)
10779 mask = (mask & (mask << shift_count)) >> shift_count;
10781 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10782 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10783 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10784 else
10785 break;
10788 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10789 SUBREGs are of the same mode, and, in both cases, the AND would
10790 be redundant if the comparison was done in the narrower mode,
10791 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10792 and the operand's possibly nonzero bits are 0xffffff01; in that case
10793 if we only care about QImode, we don't need the AND). This case
10794 occurs if the output mode of an scc insn is not SImode and
10795 STORE_FLAG_VALUE == 1 (e.g., the 386).
10797 Similarly, check for a case where the AND's are ZERO_EXTEND
10798 operations from some narrower mode even though a SUBREG is not
10799 present. */
10801 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10802 && CONST_INT_P (XEXP (op0, 1))
10803 && CONST_INT_P (XEXP (op1, 1)))
10805 rtx inner_op0 = XEXP (op0, 0);
10806 rtx inner_op1 = XEXP (op1, 0);
10807 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10808 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10809 int changed = 0;
10811 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10812 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10813 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10814 && (GET_MODE (SUBREG_REG (inner_op0))
10815 == GET_MODE (SUBREG_REG (inner_op1)))
10816 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10817 <= HOST_BITS_PER_WIDE_INT)
10818 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10819 GET_MODE (SUBREG_REG (inner_op0)))))
10820 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10821 GET_MODE (SUBREG_REG (inner_op1))))))
10823 op0 = SUBREG_REG (inner_op0);
10824 op1 = SUBREG_REG (inner_op1);
10826 /* The resulting comparison is always unsigned since we masked
10827 off the original sign bit. */
10828 code = unsigned_condition (code);
10830 changed = 1;
10833 else if (c0 == c1)
10834 for (tmode = GET_CLASS_NARROWEST_MODE
10835 (GET_MODE_CLASS (GET_MODE (op0)));
10836 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10837 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10839 op0 = gen_lowpart (tmode, inner_op0);
10840 op1 = gen_lowpart (tmode, inner_op1);
10841 code = unsigned_condition (code);
10842 changed = 1;
10843 break;
10846 if (! changed)
10847 break;
10850 /* If both operands are NOT, we can strip off the outer operation
10851 and adjust the comparison code for swapped operands; similarly for
10852 NEG, except that this must be an equality comparison. */
10853 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10854 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10855 && (code == EQ || code == NE)))
10856 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10858 else
10859 break;
10862 /* If the first operand is a constant, swap the operands and adjust the
10863 comparison code appropriately, but don't do this if the second operand
10864 is already a constant integer. */
10865 if (swap_commutative_operands_p (op0, op1))
10867 tem = op0, op0 = op1, op1 = tem;
10868 code = swap_condition (code);
10871 /* We now enter a loop during which we will try to simplify the comparison.
10872 For the most part, we only are concerned with comparisons with zero,
10873 but some things may really be comparisons with zero but not start
10874 out looking that way. */
10876 while (CONST_INT_P (op1))
10878 enum machine_mode mode = GET_MODE (op0);
10879 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10880 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10881 int equality_comparison_p;
10882 int sign_bit_comparison_p;
10883 int unsigned_comparison_p;
10884 HOST_WIDE_INT const_op;
10886 /* We only want to handle integral modes. This catches VOIDmode,
10887 CCmode, and the floating-point modes. An exception is that we
10888 can handle VOIDmode if OP0 is a COMPARE or a comparison
10889 operation. */
10891 if (GET_MODE_CLASS (mode) != MODE_INT
10892 && ! (mode == VOIDmode
10893 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10894 break;
10896 /* Get the constant we are comparing against and turn off all bits
10897 not on in our mode. */
10898 const_op = INTVAL (op1);
10899 if (mode != VOIDmode)
10900 const_op = trunc_int_for_mode (const_op, mode);
10901 op1 = GEN_INT (const_op);
10903 /* If we are comparing against a constant power of two and the value
10904 being compared can only have that single bit nonzero (e.g., it was
10905 `and'ed with that bit), we can replace this with a comparison
10906 with zero. */
10907 if (const_op
10908 && (code == EQ || code == NE || code == GE || code == GEU
10909 || code == LT || code == LTU)
10910 && mode_width <= HOST_BITS_PER_WIDE_INT
10911 && exact_log2 (const_op) >= 0
10912 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10914 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10915 op1 = const0_rtx, const_op = 0;
10918 /* Similarly, if we are comparing a value known to be either -1 or
10919 0 with -1, change it to the opposite comparison against zero. */
10921 if (const_op == -1
10922 && (code == EQ || code == NE || code == GT || code == LE
10923 || code == GEU || code == LTU)
10924 && num_sign_bit_copies (op0, mode) == mode_width)
10926 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10927 op1 = const0_rtx, const_op = 0;
10930 /* Do some canonicalizations based on the comparison code. We prefer
10931 comparisons against zero and then prefer equality comparisons.
10932 If we can reduce the size of a constant, we will do that too. */
10934 switch (code)
10936 case LT:
10937 /* < C is equivalent to <= (C - 1) */
10938 if (const_op > 0)
10940 const_op -= 1;
10941 op1 = GEN_INT (const_op);
10942 code = LE;
10943 /* ... fall through to LE case below. */
10945 else
10946 break;
10948 case LE:
10949 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10950 if (const_op < 0)
10952 const_op += 1;
10953 op1 = GEN_INT (const_op);
10954 code = LT;
10957 /* If we are doing a <= 0 comparison on a value known to have
10958 a zero sign bit, we can replace this with == 0. */
10959 else if (const_op == 0
10960 && mode_width <= HOST_BITS_PER_WIDE_INT
10961 && (nonzero_bits (op0, mode)
10962 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10963 code = EQ;
10964 break;
10966 case GE:
10967 /* >= C is equivalent to > (C - 1). */
10968 if (const_op > 0)
10970 const_op -= 1;
10971 op1 = GEN_INT (const_op);
10972 code = GT;
10973 /* ... fall through to GT below. */
10975 else
10976 break;
10978 case GT:
10979 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10980 if (const_op < 0)
10982 const_op += 1;
10983 op1 = GEN_INT (const_op);
10984 code = GE;
10987 /* If we are doing a > 0 comparison on a value known to have
10988 a zero sign bit, we can replace this with != 0. */
10989 else if (const_op == 0
10990 && mode_width <= HOST_BITS_PER_WIDE_INT
10991 && (nonzero_bits (op0, mode)
10992 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10993 code = NE;
10994 break;
10996 case LTU:
10997 /* < C is equivalent to <= (C - 1). */
10998 if (const_op > 0)
11000 const_op -= 1;
11001 op1 = GEN_INT (const_op);
11002 code = LEU;
11003 /* ... fall through ... */
11006 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11007 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11008 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
11010 const_op = 0, op1 = const0_rtx;
11011 code = GE;
11012 break;
11014 else
11015 break;
11017 case LEU:
11018 /* unsigned <= 0 is equivalent to == 0 */
11019 if (const_op == 0)
11020 code = EQ;
11022 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11023 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11024 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
11026 const_op = 0, op1 = const0_rtx;
11027 code = GE;
11029 break;
11031 case GEU:
11032 /* >= C is equivalent to > (C - 1). */
11033 if (const_op > 1)
11035 const_op -= 1;
11036 op1 = GEN_INT (const_op);
11037 code = GTU;
11038 /* ... fall through ... */
11041 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11042 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11043 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
11045 const_op = 0, op1 = const0_rtx;
11046 code = LT;
11047 break;
11049 else
11050 break;
11052 case GTU:
11053 /* unsigned > 0 is equivalent to != 0 */
11054 if (const_op == 0)
11055 code = NE;
11057 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11058 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11059 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
11061 const_op = 0, op1 = const0_rtx;
11062 code = LT;
11064 break;
11066 default:
11067 break;
11070 /* Compute some predicates to simplify code below. */
11072 equality_comparison_p = (code == EQ || code == NE);
11073 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11074 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11075 || code == GEU);
11077 /* If this is a sign bit comparison and we can do arithmetic in
11078 MODE, say that we will only be needing the sign bit of OP0. */
11079 if (sign_bit_comparison_p
11080 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11081 op0 = force_to_mode (op0, mode,
11082 ((HOST_WIDE_INT) 1
11083 << (GET_MODE_BITSIZE (mode) - 1)),
11086 /* Now try cases based on the opcode of OP0. If none of the cases
11087 does a "continue", we exit this loop immediately after the
11088 switch. */
11090 switch (GET_CODE (op0))
11092 case ZERO_EXTRACT:
11093 /* If we are extracting a single bit from a variable position in
11094 a constant that has only a single bit set and are comparing it
11095 with zero, we can convert this into an equality comparison
11096 between the position and the location of the single bit. */
11097 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11098 have already reduced the shift count modulo the word size. */
11099 if (!SHIFT_COUNT_TRUNCATED
11100 && CONST_INT_P (XEXP (op0, 0))
11101 && XEXP (op0, 1) == const1_rtx
11102 && equality_comparison_p && const_op == 0
11103 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
11105 if (BITS_BIG_ENDIAN)
11107 enum machine_mode new_mode
11108 = mode_for_extraction (EP_extzv, 1);
11109 if (new_mode == MAX_MACHINE_MODE)
11110 i = BITS_PER_WORD - 1 - i;
11111 else
11113 mode = new_mode;
11114 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11118 op0 = XEXP (op0, 2);
11119 op1 = GEN_INT (i);
11120 const_op = i;
11122 /* Result is nonzero iff shift count is equal to I. */
11123 code = reverse_condition (code);
11124 continue;
11127 /* ... fall through ... */
11129 case SIGN_EXTRACT:
11130 tem = expand_compound_operation (op0);
11131 if (tem != op0)
11133 op0 = tem;
11134 continue;
11136 break;
11138 case NOT:
11139 /* If testing for equality, we can take the NOT of the constant. */
11140 if (equality_comparison_p
11141 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11143 op0 = XEXP (op0, 0);
11144 op1 = tem;
11145 continue;
11148 /* If just looking at the sign bit, reverse the sense of the
11149 comparison. */
11150 if (sign_bit_comparison_p)
11152 op0 = XEXP (op0, 0);
11153 code = (code == GE ? LT : GE);
11154 continue;
11156 break;
11158 case NEG:
11159 /* If testing for equality, we can take the NEG of the constant. */
11160 if (equality_comparison_p
11161 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11163 op0 = XEXP (op0, 0);
11164 op1 = tem;
11165 continue;
11168 /* The remaining cases only apply to comparisons with zero. */
11169 if (const_op != 0)
11170 break;
11172 /* When X is ABS or is known positive,
11173 (neg X) is < 0 if and only if X != 0. */
11175 if (sign_bit_comparison_p
11176 && (GET_CODE (XEXP (op0, 0)) == ABS
11177 || (mode_width <= HOST_BITS_PER_WIDE_INT
11178 && (nonzero_bits (XEXP (op0, 0), mode)
11179 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
11181 op0 = XEXP (op0, 0);
11182 code = (code == LT ? NE : EQ);
11183 continue;
11186 /* If we have NEG of something whose two high-order bits are the
11187 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11188 if (num_sign_bit_copies (op0, mode) >= 2)
11190 op0 = XEXP (op0, 0);
11191 code = swap_condition (code);
11192 continue;
11194 break;
11196 case ROTATE:
11197 /* If we are testing equality and our count is a constant, we
11198 can perform the inverse operation on our RHS. */
11199 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11200 && (tem = simplify_binary_operation (ROTATERT, mode,
11201 op1, XEXP (op0, 1))) != 0)
11203 op0 = XEXP (op0, 0);
11204 op1 = tem;
11205 continue;
11208 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11209 a particular bit. Convert it to an AND of a constant of that
11210 bit. This will be converted into a ZERO_EXTRACT. */
11211 if (const_op == 0 && sign_bit_comparison_p
11212 && CONST_INT_P (XEXP (op0, 1))
11213 && mode_width <= HOST_BITS_PER_WIDE_INT)
11215 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11216 ((HOST_WIDE_INT) 1
11217 << (mode_width - 1
11218 - INTVAL (XEXP (op0, 1)))));
11219 code = (code == LT ? NE : EQ);
11220 continue;
11223 /* Fall through. */
11225 case ABS:
11226 /* ABS is ignorable inside an equality comparison with zero. */
11227 if (const_op == 0 && equality_comparison_p)
11229 op0 = XEXP (op0, 0);
11230 continue;
11232 break;
11234 case SIGN_EXTEND:
11235 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11236 (compare FOO CONST) if CONST fits in FOO's mode and we
11237 are either testing inequality or have an unsigned
11238 comparison with ZERO_EXTEND or a signed comparison with
11239 SIGN_EXTEND. But don't do it if we don't have a compare
11240 insn of the given mode, since we'd have to revert it
11241 later on, and then we wouldn't know whether to sign- or
11242 zero-extend. */
11243 mode = GET_MODE (XEXP (op0, 0));
11244 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11245 && ! unsigned_comparison_p
11246 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11247 && ((unsigned HOST_WIDE_INT) const_op
11248 < (((unsigned HOST_WIDE_INT) 1
11249 << (GET_MODE_BITSIZE (mode) - 1))))
11250 && have_insn_for (COMPARE, mode))
11252 op0 = XEXP (op0, 0);
11253 continue;
11255 break;
11257 case SUBREG:
11258 /* Check for the case where we are comparing A - C1 with C2, that is
11260 (subreg:MODE (plus (A) (-C1))) op (C2)
11262 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11263 comparison in the wider mode. One of the following two conditions
11264 must be true in order for this to be valid:
11266 1. The mode extension results in the same bit pattern being added
11267 on both sides and the comparison is equality or unsigned. As
11268 C2 has been truncated to fit in MODE, the pattern can only be
11269 all 0s or all 1s.
11271 2. The mode extension results in the sign bit being copied on
11272 each side.
11274 The difficulty here is that we have predicates for A but not for
11275 (A - C1) so we need to check that C1 is within proper bounds so
11276 as to perturbate A as little as possible. */
11278 if (mode_width <= HOST_BITS_PER_WIDE_INT
11279 && subreg_lowpart_p (op0)
11280 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11281 && GET_CODE (SUBREG_REG (op0)) == PLUS
11282 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11284 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11285 rtx a = XEXP (SUBREG_REG (op0), 0);
11286 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11288 if ((c1 > 0
11289 && (unsigned HOST_WIDE_INT) c1
11290 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11291 && (equality_comparison_p || unsigned_comparison_p)
11292 /* (A - C1) zero-extends if it is positive and sign-extends
11293 if it is negative, C2 both zero- and sign-extends. */
11294 && ((0 == (nonzero_bits (a, inner_mode)
11295 & ~GET_MODE_MASK (mode))
11296 && const_op >= 0)
11297 /* (A - C1) sign-extends if it is positive and 1-extends
11298 if it is negative, C2 both sign- and 1-extends. */
11299 || (num_sign_bit_copies (a, inner_mode)
11300 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11301 - mode_width)
11302 && const_op < 0)))
11303 || ((unsigned HOST_WIDE_INT) c1
11304 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11305 /* (A - C1) always sign-extends, like C2. */
11306 && num_sign_bit_copies (a, inner_mode)
11307 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11308 - (mode_width - 1))))
11310 op0 = SUBREG_REG (op0);
11311 continue;
11315 /* If the inner mode is narrower and we are extracting the low part,
11316 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11317 if (subreg_lowpart_p (op0)
11318 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11319 /* Fall through */ ;
11320 else
11321 break;
11323 /* ... fall through ... */
11325 case ZERO_EXTEND:
11326 mode = GET_MODE (XEXP (op0, 0));
11327 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11328 && (unsigned_comparison_p || equality_comparison_p)
11329 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11330 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11331 && have_insn_for (COMPARE, mode))
11333 op0 = XEXP (op0, 0);
11334 continue;
11336 break;
11338 case PLUS:
11339 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11340 this for equality comparisons due to pathological cases involving
11341 overflows. */
11342 if (equality_comparison_p
11343 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11344 op1, XEXP (op0, 1))))
11346 op0 = XEXP (op0, 0);
11347 op1 = tem;
11348 continue;
11351 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11352 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11353 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11355 op0 = XEXP (XEXP (op0, 0), 0);
11356 code = (code == LT ? EQ : NE);
11357 continue;
11359 break;
11361 case MINUS:
11362 /* We used to optimize signed comparisons against zero, but that
11363 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11364 arrive here as equality comparisons, or (GEU, LTU) are
11365 optimized away. No need to special-case them. */
11367 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11368 (eq B (minus A C)), whichever simplifies. We can only do
11369 this for equality comparisons due to pathological cases involving
11370 overflows. */
11371 if (equality_comparison_p
11372 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11373 XEXP (op0, 1), op1)))
11375 op0 = XEXP (op0, 0);
11376 op1 = tem;
11377 continue;
11380 if (equality_comparison_p
11381 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11382 XEXP (op0, 0), op1)))
11384 op0 = XEXP (op0, 1);
11385 op1 = tem;
11386 continue;
11389 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11390 of bits in X minus 1, is one iff X > 0. */
11391 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11392 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11393 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11394 == mode_width - 1
11395 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11397 op0 = XEXP (op0, 1);
11398 code = (code == GE ? LE : GT);
11399 continue;
11401 break;
11403 case XOR:
11404 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11405 if C is zero or B is a constant. */
11406 if (equality_comparison_p
11407 && 0 != (tem = simplify_binary_operation (XOR, mode,
11408 XEXP (op0, 1), op1)))
11410 op0 = XEXP (op0, 0);
11411 op1 = tem;
11412 continue;
11414 break;
11416 case EQ: case NE:
11417 case UNEQ: case LTGT:
11418 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11419 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11420 case UNORDERED: case ORDERED:
11421 /* We can't do anything if OP0 is a condition code value, rather
11422 than an actual data value. */
11423 if (const_op != 0
11424 || CC0_P (XEXP (op0, 0))
11425 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11426 break;
11428 /* Get the two operands being compared. */
11429 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11430 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11431 else
11432 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11434 /* Check for the cases where we simply want the result of the
11435 earlier test or the opposite of that result. */
11436 if (code == NE || code == EQ
11437 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11438 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11439 && (STORE_FLAG_VALUE
11440 & (((HOST_WIDE_INT) 1
11441 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11442 && (code == LT || code == GE)))
11444 enum rtx_code new_code;
11445 if (code == LT || code == NE)
11446 new_code = GET_CODE (op0);
11447 else
11448 new_code = reversed_comparison_code (op0, NULL);
11450 if (new_code != UNKNOWN)
11452 code = new_code;
11453 op0 = tem;
11454 op1 = tem1;
11455 continue;
11458 break;
11460 case IOR:
11461 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11462 iff X <= 0. */
11463 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11464 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11465 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11467 op0 = XEXP (op0, 1);
11468 code = (code == GE ? GT : LE);
11469 continue;
11471 break;
11473 case AND:
11474 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11475 will be converted to a ZERO_EXTRACT later. */
11476 if (const_op == 0 && equality_comparison_p
11477 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11478 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11480 op0 = simplify_and_const_int
11481 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11482 XEXP (op0, 1),
11483 XEXP (XEXP (op0, 0), 1)),
11484 (HOST_WIDE_INT) 1);
11485 continue;
11488 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11489 zero and X is a comparison and C1 and C2 describe only bits set
11490 in STORE_FLAG_VALUE, we can compare with X. */
11491 if (const_op == 0 && equality_comparison_p
11492 && mode_width <= HOST_BITS_PER_WIDE_INT
11493 && CONST_INT_P (XEXP (op0, 1))
11494 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11495 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11496 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11497 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11499 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11500 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11501 if ((~STORE_FLAG_VALUE & mask) == 0
11502 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11503 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11504 && COMPARISON_P (tem))))
11506 op0 = XEXP (XEXP (op0, 0), 0);
11507 continue;
11511 /* If we are doing an equality comparison of an AND of a bit equal
11512 to the sign bit, replace this with a LT or GE comparison of
11513 the underlying value. */
11514 if (equality_comparison_p
11515 && const_op == 0
11516 && CONST_INT_P (XEXP (op0, 1))
11517 && mode_width <= HOST_BITS_PER_WIDE_INT
11518 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11519 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11521 op0 = XEXP (op0, 0);
11522 code = (code == EQ ? GE : LT);
11523 continue;
11526 /* If this AND operation is really a ZERO_EXTEND from a narrower
11527 mode, the constant fits within that mode, and this is either an
11528 equality or unsigned comparison, try to do this comparison in
11529 the narrower mode.
11531 Note that in:
11533 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11534 -> (ne:DI (reg:SI 4) (const_int 0))
11536 unless TRULY_NOOP_TRUNCATION allows it or the register is
11537 known to hold a value of the required mode the
11538 transformation is invalid. */
11539 if ((equality_comparison_p || unsigned_comparison_p)
11540 && CONST_INT_P (XEXP (op0, 1))
11541 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11542 & GET_MODE_MASK (mode))
11543 + 1)) >= 0
11544 && const_op >> i == 0
11545 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11546 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11547 GET_MODE_BITSIZE (GET_MODE (op0)))
11548 || (REG_P (XEXP (op0, 0))
11549 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11551 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11552 continue;
11555 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11556 fits in both M1 and M2 and the SUBREG is either paradoxical
11557 or represents the low part, permute the SUBREG and the AND
11558 and try again. */
11559 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11561 unsigned HOST_WIDE_INT c1;
11562 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11563 /* Require an integral mode, to avoid creating something like
11564 (AND:SF ...). */
11565 if (SCALAR_INT_MODE_P (tmode)
11566 /* It is unsafe to commute the AND into the SUBREG if the
11567 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11568 not defined. As originally written the upper bits
11569 have a defined value due to the AND operation.
11570 However, if we commute the AND inside the SUBREG then
11571 they no longer have defined values and the meaning of
11572 the code has been changed. */
11573 && (0
11574 #ifdef WORD_REGISTER_OPERATIONS
11575 || (mode_width > GET_MODE_BITSIZE (tmode)
11576 && mode_width <= BITS_PER_WORD)
11577 #endif
11578 || (mode_width <= GET_MODE_BITSIZE (tmode)
11579 && subreg_lowpart_p (XEXP (op0, 0))))
11580 && CONST_INT_P (XEXP (op0, 1))
11581 && mode_width <= HOST_BITS_PER_WIDE_INT
11582 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11583 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11584 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11585 && c1 != mask
11586 && c1 != GET_MODE_MASK (tmode))
11588 op0 = simplify_gen_binary (AND, tmode,
11589 SUBREG_REG (XEXP (op0, 0)),
11590 gen_int_mode (c1, tmode));
11591 op0 = gen_lowpart (mode, op0);
11592 continue;
11596 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11597 if (const_op == 0 && equality_comparison_p
11598 && XEXP (op0, 1) == const1_rtx
11599 && GET_CODE (XEXP (op0, 0)) == NOT)
11601 op0 = simplify_and_const_int
11602 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11603 code = (code == NE ? EQ : NE);
11604 continue;
11607 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11608 (eq (and (lshiftrt X) 1) 0).
11609 Also handle the case where (not X) is expressed using xor. */
11610 if (const_op == 0 && equality_comparison_p
11611 && XEXP (op0, 1) == const1_rtx
11612 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11614 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11615 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11617 if (GET_CODE (shift_op) == NOT
11618 || (GET_CODE (shift_op) == XOR
11619 && CONST_INT_P (XEXP (shift_op, 1))
11620 && CONST_INT_P (shift_count)
11621 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11622 && (INTVAL (XEXP (shift_op, 1))
11623 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11625 op0 = simplify_and_const_int
11626 (NULL_RTX, mode,
11627 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11628 (HOST_WIDE_INT) 1);
11629 code = (code == NE ? EQ : NE);
11630 continue;
11633 break;
11635 case ASHIFT:
11636 /* If we have (compare (ashift FOO N) (const_int C)) and
11637 the high order N bits of FOO (N+1 if an inequality comparison)
11638 are known to be zero, we can do this by comparing FOO with C
11639 shifted right N bits so long as the low-order N bits of C are
11640 zero. */
11641 if (CONST_INT_P (XEXP (op0, 1))
11642 && INTVAL (XEXP (op0, 1)) >= 0
11643 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11644 < HOST_BITS_PER_WIDE_INT)
11645 && ((const_op
11646 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11647 && mode_width <= HOST_BITS_PER_WIDE_INT
11648 && (nonzero_bits (XEXP (op0, 0), mode)
11649 & ~(mask >> (INTVAL (XEXP (op0, 1))
11650 + ! equality_comparison_p))) == 0)
11652 /* We must perform a logical shift, not an arithmetic one,
11653 as we want the top N bits of C to be zero. */
11654 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11656 temp >>= INTVAL (XEXP (op0, 1));
11657 op1 = gen_int_mode (temp, mode);
11658 op0 = XEXP (op0, 0);
11659 continue;
11662 /* If we are doing a sign bit comparison, it means we are testing
11663 a particular bit. Convert it to the appropriate AND. */
11664 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11665 && mode_width <= HOST_BITS_PER_WIDE_INT)
11667 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11668 ((HOST_WIDE_INT) 1
11669 << (mode_width - 1
11670 - INTVAL (XEXP (op0, 1)))));
11671 code = (code == LT ? NE : EQ);
11672 continue;
11675 /* If this an equality comparison with zero and we are shifting
11676 the low bit to the sign bit, we can convert this to an AND of the
11677 low-order bit. */
11678 if (const_op == 0 && equality_comparison_p
11679 && CONST_INT_P (XEXP (op0, 1))
11680 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11681 == mode_width - 1)
11683 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11684 (HOST_WIDE_INT) 1);
11685 continue;
11687 break;
11689 case ASHIFTRT:
11690 /* If this is an equality comparison with zero, we can do this
11691 as a logical shift, which might be much simpler. */
11692 if (equality_comparison_p && const_op == 0
11693 && CONST_INT_P (XEXP (op0, 1)))
11695 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11696 XEXP (op0, 0),
11697 INTVAL (XEXP (op0, 1)));
11698 continue;
11701 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11702 do the comparison in a narrower mode. */
11703 if (! unsigned_comparison_p
11704 && CONST_INT_P (XEXP (op0, 1))
11705 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11706 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11707 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11708 MODE_INT, 1)) != BLKmode
11709 && (((unsigned HOST_WIDE_INT) const_op
11710 + (GET_MODE_MASK (tmode) >> 1) + 1)
11711 <= GET_MODE_MASK (tmode)))
11713 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11714 continue;
11717 /* Likewise if OP0 is a PLUS of a sign extension with a
11718 constant, which is usually represented with the PLUS
11719 between the shifts. */
11720 if (! unsigned_comparison_p
11721 && CONST_INT_P (XEXP (op0, 1))
11722 && GET_CODE (XEXP (op0, 0)) == PLUS
11723 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11724 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11725 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11726 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11727 MODE_INT, 1)) != BLKmode
11728 && (((unsigned HOST_WIDE_INT) const_op
11729 + (GET_MODE_MASK (tmode) >> 1) + 1)
11730 <= GET_MODE_MASK (tmode)))
11732 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11733 rtx add_const = XEXP (XEXP (op0, 0), 1);
11734 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11735 add_const, XEXP (op0, 1));
11737 op0 = simplify_gen_binary (PLUS, tmode,
11738 gen_lowpart (tmode, inner),
11739 new_const);
11740 continue;
11743 /* ... fall through ... */
11744 case LSHIFTRT:
11745 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11746 the low order N bits of FOO are known to be zero, we can do this
11747 by comparing FOO with C shifted left N bits so long as no
11748 overflow occurs. Even if the low order N bits of FOO aren't known
11749 to be zero, if the comparison is >= or < we can use the same
11750 optimization and for > or <= by setting all the low
11751 order N bits in the comparison constant. */
11752 if (CONST_INT_P (XEXP (op0, 1))
11753 && INTVAL (XEXP (op0, 1)) > 0
11754 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11755 && mode_width <= HOST_BITS_PER_WIDE_INT
11756 && (((unsigned HOST_WIDE_INT) const_op
11757 + (GET_CODE (op0) != LSHIFTRT
11758 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11759 + 1)
11760 : 0))
11761 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11763 unsigned HOST_WIDE_INT low_bits
11764 = (nonzero_bits (XEXP (op0, 0), mode)
11765 & (((unsigned HOST_WIDE_INT) 1
11766 << INTVAL (XEXP (op0, 1))) - 1));
11767 if (low_bits == 0 || !equality_comparison_p)
11769 /* If the shift was logical, then we must make the condition
11770 unsigned. */
11771 if (GET_CODE (op0) == LSHIFTRT)
11772 code = unsigned_condition (code);
11774 const_op <<= INTVAL (XEXP (op0, 1));
11775 if (low_bits != 0
11776 && (code == GT || code == GTU
11777 || code == LE || code == LEU))
11778 const_op
11779 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11780 op1 = GEN_INT (const_op);
11781 op0 = XEXP (op0, 0);
11782 continue;
11786 /* If we are using this shift to extract just the sign bit, we
11787 can replace this with an LT or GE comparison. */
11788 if (const_op == 0
11789 && (equality_comparison_p || sign_bit_comparison_p)
11790 && CONST_INT_P (XEXP (op0, 1))
11791 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11792 == mode_width - 1)
11794 op0 = XEXP (op0, 0);
11795 code = (code == NE || code == GT ? LT : GE);
11796 continue;
11798 break;
11800 default:
11801 break;
11804 break;
11807 /* Now make any compound operations involved in this comparison. Then,
11808 check for an outmost SUBREG on OP0 that is not doing anything or is
11809 paradoxical. The latter transformation must only be performed when
11810 it is known that the "extra" bits will be the same in op0 and op1 or
11811 that they don't matter. There are three cases to consider:
11813 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11814 care bits and we can assume they have any convenient value. So
11815 making the transformation is safe.
11817 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11818 In this case the upper bits of op0 are undefined. We should not make
11819 the simplification in that case as we do not know the contents of
11820 those bits.
11822 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11823 UNKNOWN. In that case we know those bits are zeros or ones. We must
11824 also be sure that they are the same as the upper bits of op1.
11826 We can never remove a SUBREG for a non-equality comparison because
11827 the sign bit is in a different place in the underlying object. */
11829 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11830 op1 = make_compound_operation (op1, SET);
11832 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11833 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11834 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11835 && (code == NE || code == EQ))
11837 if (GET_MODE_SIZE (GET_MODE (op0))
11838 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11840 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11841 implemented. */
11842 if (REG_P (SUBREG_REG (op0)))
11844 op0 = SUBREG_REG (op0);
11845 op1 = gen_lowpart (GET_MODE (op0), op1);
11848 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11849 <= HOST_BITS_PER_WIDE_INT)
11850 && (nonzero_bits (SUBREG_REG (op0),
11851 GET_MODE (SUBREG_REG (op0)))
11852 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11854 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11856 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11857 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11858 op0 = SUBREG_REG (op0), op1 = tem;
11862 /* We now do the opposite procedure: Some machines don't have compare
11863 insns in all modes. If OP0's mode is an integer mode smaller than a
11864 word and we can't do a compare in that mode, see if there is a larger
11865 mode for which we can do the compare. There are a number of cases in
11866 which we can use the wider mode. */
11868 mode = GET_MODE (op0);
11869 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11870 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11871 && ! have_insn_for (COMPARE, mode))
11872 for (tmode = GET_MODE_WIDER_MODE (mode);
11873 (tmode != VOIDmode
11874 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11875 tmode = GET_MODE_WIDER_MODE (tmode))
11876 if (have_insn_for (COMPARE, tmode))
11878 int zero_extended;
11880 /* If this is a test for negative, we can make an explicit
11881 test of the sign bit. Test this first so we can use
11882 a paradoxical subreg to extend OP0. */
11884 if (op1 == const0_rtx && (code == LT || code == GE)
11885 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11887 op0 = simplify_gen_binary (AND, tmode,
11888 gen_lowpart (tmode, op0),
11889 GEN_INT ((HOST_WIDE_INT) 1
11890 << (GET_MODE_BITSIZE (mode)
11891 - 1)));
11892 code = (code == LT) ? NE : EQ;
11893 break;
11896 /* If the only nonzero bits in OP0 and OP1 are those in the
11897 narrower mode and this is an equality or unsigned comparison,
11898 we can use the wider mode. Similarly for sign-extended
11899 values, in which case it is true for all comparisons. */
11900 zero_extended = ((code == EQ || code == NE
11901 || code == GEU || code == GTU
11902 || code == LEU || code == LTU)
11903 && (nonzero_bits (op0, tmode)
11904 & ~GET_MODE_MASK (mode)) == 0
11905 && ((CONST_INT_P (op1)
11906 || (nonzero_bits (op1, tmode)
11907 & ~GET_MODE_MASK (mode)) == 0)));
11909 if (zero_extended
11910 || ((num_sign_bit_copies (op0, tmode)
11911 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11912 - GET_MODE_BITSIZE (mode)))
11913 && (num_sign_bit_copies (op1, tmode)
11914 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11915 - GET_MODE_BITSIZE (mode)))))
11917 /* If OP0 is an AND and we don't have an AND in MODE either,
11918 make a new AND in the proper mode. */
11919 if (GET_CODE (op0) == AND
11920 && !have_insn_for (AND, mode))
11921 op0 = simplify_gen_binary (AND, tmode,
11922 gen_lowpart (tmode,
11923 XEXP (op0, 0)),
11924 gen_lowpart (tmode,
11925 XEXP (op0, 1)));
11926 else
11928 if (zero_extended)
11930 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11931 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11933 else
11935 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11936 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11938 break;
11943 #ifdef CANONICALIZE_COMPARISON
11944 /* If this machine only supports a subset of valid comparisons, see if we
11945 can convert an unsupported one into a supported one. */
11946 CANONICALIZE_COMPARISON (code, op0, op1);
11947 #endif
11949 *pop0 = op0;
11950 *pop1 = op1;
11952 return code;
11955 /* Utility function for record_value_for_reg. Count number of
11956 rtxs in X. */
11957 static int
11958 count_rtxs (rtx x)
11960 enum rtx_code code = GET_CODE (x);
11961 const char *fmt;
11962 int i, j, ret = 1;
11964 if (GET_RTX_CLASS (code) == '2'
11965 || GET_RTX_CLASS (code) == 'c')
11967 rtx x0 = XEXP (x, 0);
11968 rtx x1 = XEXP (x, 1);
11970 if (x0 == x1)
11971 return 1 + 2 * count_rtxs (x0);
11973 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11974 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11975 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11976 return 2 + 2 * count_rtxs (x0)
11977 + count_rtxs (x == XEXP (x1, 0)
11978 ? XEXP (x1, 1) : XEXP (x1, 0));
11980 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11981 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11982 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11983 return 2 + 2 * count_rtxs (x1)
11984 + count_rtxs (x == XEXP (x0, 0)
11985 ? XEXP (x0, 1) : XEXP (x0, 0));
11988 fmt = GET_RTX_FORMAT (code);
11989 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11990 if (fmt[i] == 'e')
11991 ret += count_rtxs (XEXP (x, i));
11992 else if (fmt[i] == 'E')
11993 for (j = 0; j < XVECLEN (x, i); j++)
11994 ret += count_rtxs (XVECEXP (x, i, j));
11996 return ret;
11999 /* Utility function for following routine. Called when X is part of a value
12000 being stored into last_set_value. Sets last_set_table_tick
12001 for each register mentioned. Similar to mention_regs in cse.c */
12003 static void
12004 update_table_tick (rtx x)
12006 enum rtx_code code = GET_CODE (x);
12007 const char *fmt = GET_RTX_FORMAT (code);
12008 int i, j;
12010 if (code == REG)
12012 unsigned int regno = REGNO (x);
12013 unsigned int endregno = END_REGNO (x);
12014 unsigned int r;
12016 for (r = regno; r < endregno; r++)
12018 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12019 rsp->last_set_table_tick = label_tick;
12022 return;
12025 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12026 if (fmt[i] == 'e')
12028 /* Check for identical subexpressions. If x contains
12029 identical subexpression we only have to traverse one of
12030 them. */
12031 if (i == 0 && ARITHMETIC_P (x))
12033 /* Note that at this point x1 has already been
12034 processed. */
12035 rtx x0 = XEXP (x, 0);
12036 rtx x1 = XEXP (x, 1);
12038 /* If x0 and x1 are identical then there is no need to
12039 process x0. */
12040 if (x0 == x1)
12041 break;
12043 /* If x0 is identical to a subexpression of x1 then while
12044 processing x1, x0 has already been processed. Thus we
12045 are done with x. */
12046 if (ARITHMETIC_P (x1)
12047 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12048 break;
12050 /* If x1 is identical to a subexpression of x0 then we
12051 still have to process the rest of x0. */
12052 if (ARITHMETIC_P (x0)
12053 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12055 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12056 break;
12060 update_table_tick (XEXP (x, i));
12062 else if (fmt[i] == 'E')
12063 for (j = 0; j < XVECLEN (x, i); j++)
12064 update_table_tick (XVECEXP (x, i, j));
12067 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12068 are saying that the register is clobbered and we no longer know its
12069 value. If INSN is zero, don't update reg_stat[].last_set; this is
12070 only permitted with VALUE also zero and is used to invalidate the
12071 register. */
12073 static void
12074 record_value_for_reg (rtx reg, rtx insn, rtx value)
12076 unsigned int regno = REGNO (reg);
12077 unsigned int endregno = END_REGNO (reg);
12078 unsigned int i;
12079 reg_stat_type *rsp;
12081 /* If VALUE contains REG and we have a previous value for REG, substitute
12082 the previous value. */
12083 if (value && insn && reg_overlap_mentioned_p (reg, value))
12085 rtx tem;
12087 /* Set things up so get_last_value is allowed to see anything set up to
12088 our insn. */
12089 subst_low_luid = DF_INSN_LUID (insn);
12090 tem = get_last_value (reg);
12092 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12093 it isn't going to be useful and will take a lot of time to process,
12094 so just use the CLOBBER. */
12096 if (tem)
12098 if (ARITHMETIC_P (tem)
12099 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12100 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12101 tem = XEXP (tem, 0);
12102 else if (count_occurrences (value, reg, 1) >= 2)
12104 /* If there are two or more occurrences of REG in VALUE,
12105 prevent the value from growing too much. */
12106 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12107 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12110 value = replace_rtx (copy_rtx (value), reg, tem);
12114 /* For each register modified, show we don't know its value, that
12115 we don't know about its bitwise content, that its value has been
12116 updated, and that we don't know the location of the death of the
12117 register. */
12118 for (i = regno; i < endregno; i++)
12120 rsp = VEC_index (reg_stat_type, reg_stat, i);
12122 if (insn)
12123 rsp->last_set = insn;
12125 rsp->last_set_value = 0;
12126 rsp->last_set_mode = VOIDmode;
12127 rsp->last_set_nonzero_bits = 0;
12128 rsp->last_set_sign_bit_copies = 0;
12129 rsp->last_death = 0;
12130 rsp->truncated_to_mode = VOIDmode;
12133 /* Mark registers that are being referenced in this value. */
12134 if (value)
12135 update_table_tick (value);
12137 /* Now update the status of each register being set.
12138 If someone is using this register in this block, set this register
12139 to invalid since we will get confused between the two lives in this
12140 basic block. This makes using this register always invalid. In cse, we
12141 scan the table to invalidate all entries using this register, but this
12142 is too much work for us. */
12144 for (i = regno; i < endregno; i++)
12146 rsp = VEC_index (reg_stat_type, reg_stat, i);
12147 rsp->last_set_label = label_tick;
12148 if (!insn
12149 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12150 rsp->last_set_invalid = 1;
12151 else
12152 rsp->last_set_invalid = 0;
12155 /* The value being assigned might refer to X (like in "x++;"). In that
12156 case, we must replace it with (clobber (const_int 0)) to prevent
12157 infinite loops. */
12158 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12159 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12161 value = copy_rtx (value);
12162 if (!get_last_value_validate (&value, insn, label_tick, 1))
12163 value = 0;
12166 /* For the main register being modified, update the value, the mode, the
12167 nonzero bits, and the number of sign bit copies. */
12169 rsp->last_set_value = value;
12171 if (value)
12173 enum machine_mode mode = GET_MODE (reg);
12174 subst_low_luid = DF_INSN_LUID (insn);
12175 rsp->last_set_mode = mode;
12176 if (GET_MODE_CLASS (mode) == MODE_INT
12177 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12178 mode = nonzero_bits_mode;
12179 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12180 rsp->last_set_sign_bit_copies
12181 = num_sign_bit_copies (value, GET_MODE (reg));
12185 /* Called via note_stores from record_dead_and_set_regs to handle one
12186 SET or CLOBBER in an insn. DATA is the instruction in which the
12187 set is occurring. */
12189 static void
12190 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12192 rtx record_dead_insn = (rtx) data;
12194 if (GET_CODE (dest) == SUBREG)
12195 dest = SUBREG_REG (dest);
12197 if (!record_dead_insn)
12199 if (REG_P (dest))
12200 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12201 return;
12204 if (REG_P (dest))
12206 /* If we are setting the whole register, we know its value. Otherwise
12207 show that we don't know the value. We can handle SUBREG in
12208 some cases. */
12209 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12210 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12211 else if (GET_CODE (setter) == SET
12212 && GET_CODE (SET_DEST (setter)) == SUBREG
12213 && SUBREG_REG (SET_DEST (setter)) == dest
12214 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12215 && subreg_lowpart_p (SET_DEST (setter)))
12216 record_value_for_reg (dest, record_dead_insn,
12217 gen_lowpart (GET_MODE (dest),
12218 SET_SRC (setter)));
12219 else
12220 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12222 else if (MEM_P (dest)
12223 /* Ignore pushes, they clobber nothing. */
12224 && ! push_operand (dest, GET_MODE (dest)))
12225 mem_last_set = DF_INSN_LUID (record_dead_insn);
12228 /* Update the records of when each REG was most recently set or killed
12229 for the things done by INSN. This is the last thing done in processing
12230 INSN in the combiner loop.
12232 We update reg_stat[], in particular fields last_set, last_set_value,
12233 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12234 last_death, and also the similar information mem_last_set (which insn
12235 most recently modified memory) and last_call_luid (which insn was the
12236 most recent subroutine call). */
12238 static void
12239 record_dead_and_set_regs (rtx insn)
12241 rtx link;
12242 unsigned int i;
12244 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12246 if (REG_NOTE_KIND (link) == REG_DEAD
12247 && REG_P (XEXP (link, 0)))
12249 unsigned int regno = REGNO (XEXP (link, 0));
12250 unsigned int endregno = END_REGNO (XEXP (link, 0));
12252 for (i = regno; i < endregno; i++)
12254 reg_stat_type *rsp;
12256 rsp = VEC_index (reg_stat_type, reg_stat, i);
12257 rsp->last_death = insn;
12260 else if (REG_NOTE_KIND (link) == REG_INC)
12261 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12264 if (CALL_P (insn))
12266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12267 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12269 reg_stat_type *rsp;
12271 rsp = VEC_index (reg_stat_type, reg_stat, i);
12272 rsp->last_set_invalid = 1;
12273 rsp->last_set = insn;
12274 rsp->last_set_value = 0;
12275 rsp->last_set_mode = VOIDmode;
12276 rsp->last_set_nonzero_bits = 0;
12277 rsp->last_set_sign_bit_copies = 0;
12278 rsp->last_death = 0;
12279 rsp->truncated_to_mode = VOIDmode;
12282 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12284 /* We can't combine into a call pattern. Remember, though, that
12285 the return value register is set at this LUID. We could
12286 still replace a register with the return value from the
12287 wrong subroutine call! */
12288 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12290 else
12291 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12294 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12295 register present in the SUBREG, so for each such SUBREG go back and
12296 adjust nonzero and sign bit information of the registers that are
12297 known to have some zero/sign bits set.
12299 This is needed because when combine blows the SUBREGs away, the
12300 information on zero/sign bits is lost and further combines can be
12301 missed because of that. */
12303 static void
12304 record_promoted_value (rtx insn, rtx subreg)
12306 rtx links, set;
12307 unsigned int regno = REGNO (SUBREG_REG (subreg));
12308 enum machine_mode mode = GET_MODE (subreg);
12310 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12311 return;
12313 for (links = LOG_LINKS (insn); links;)
12315 reg_stat_type *rsp;
12317 insn = XEXP (links, 0);
12318 set = single_set (insn);
12320 if (! set || !REG_P (SET_DEST (set))
12321 || REGNO (SET_DEST (set)) != regno
12322 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12324 links = XEXP (links, 1);
12325 continue;
12328 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12329 if (rsp->last_set == insn)
12331 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12332 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12335 if (REG_P (SET_SRC (set)))
12337 regno = REGNO (SET_SRC (set));
12338 links = LOG_LINKS (insn);
12340 else
12341 break;
12345 /* Check if X, a register, is known to contain a value already
12346 truncated to MODE. In this case we can use a subreg to refer to
12347 the truncated value even though in the generic case we would need
12348 an explicit truncation. */
12350 static bool
12351 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12353 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12354 enum machine_mode truncated = rsp->truncated_to_mode;
12356 if (truncated == 0
12357 || rsp->truncation_label < label_tick_ebb_start)
12358 return false;
12359 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12360 return true;
12361 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12362 GET_MODE_BITSIZE (truncated)))
12363 return true;
12364 return false;
12367 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12368 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12369 might be able to turn a truncate into a subreg using this information.
12370 Return -1 if traversing *P is complete or 0 otherwise. */
12372 static int
12373 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12375 rtx x = *p;
12376 enum machine_mode truncated_mode;
12377 reg_stat_type *rsp;
12379 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12381 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12382 truncated_mode = GET_MODE (x);
12384 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12385 return -1;
12387 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12388 GET_MODE_BITSIZE (original_mode)))
12389 return -1;
12391 x = SUBREG_REG (x);
12393 /* ??? For hard-regs we now record everything. We might be able to
12394 optimize this using last_set_mode. */
12395 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12396 truncated_mode = GET_MODE (x);
12397 else
12398 return 0;
12400 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12401 if (rsp->truncated_to_mode == 0
12402 || rsp->truncation_label < label_tick_ebb_start
12403 || (GET_MODE_SIZE (truncated_mode)
12404 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12406 rsp->truncated_to_mode = truncated_mode;
12407 rsp->truncation_label = label_tick;
12410 return -1;
12413 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12414 the modes they are used in. This can help truning TRUNCATEs into
12415 SUBREGs. */
12417 static void
12418 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12420 for_each_rtx (x, record_truncated_value, NULL);
12423 /* Scan X for promoted SUBREGs. For each one found,
12424 note what it implies to the registers used in it. */
12426 static void
12427 check_promoted_subreg (rtx insn, rtx x)
12429 if (GET_CODE (x) == SUBREG
12430 && SUBREG_PROMOTED_VAR_P (x)
12431 && REG_P (SUBREG_REG (x)))
12432 record_promoted_value (insn, x);
12433 else
12435 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12436 int i, j;
12438 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12439 switch (format[i])
12441 case 'e':
12442 check_promoted_subreg (insn, XEXP (x, i));
12443 break;
12444 case 'V':
12445 case 'E':
12446 if (XVEC (x, i) != 0)
12447 for (j = 0; j < XVECLEN (x, i); j++)
12448 check_promoted_subreg (insn, XVECEXP (x, i, j));
12449 break;
12454 /* Verify that all the registers and memory references mentioned in *LOC are
12455 still valid. *LOC was part of a value set in INSN when label_tick was
12456 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12457 the invalid references with (clobber (const_int 0)) and return 1. This
12458 replacement is useful because we often can get useful information about
12459 the form of a value (e.g., if it was produced by a shift that always
12460 produces -1 or 0) even though we don't know exactly what registers it
12461 was produced from. */
12463 static int
12464 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12466 rtx x = *loc;
12467 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12468 int len = GET_RTX_LENGTH (GET_CODE (x));
12469 int i, j;
12471 if (REG_P (x))
12473 unsigned int regno = REGNO (x);
12474 unsigned int endregno = END_REGNO (x);
12475 unsigned int j;
12477 for (j = regno; j < endregno; j++)
12479 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12480 if (rsp->last_set_invalid
12481 /* If this is a pseudo-register that was only set once and not
12482 live at the beginning of the function, it is always valid. */
12483 || (! (regno >= FIRST_PSEUDO_REGISTER
12484 && REG_N_SETS (regno) == 1
12485 && (!REGNO_REG_SET_P
12486 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12487 && rsp->last_set_label > tick))
12489 if (replace)
12490 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12491 return replace;
12495 return 1;
12497 /* If this is a memory reference, make sure that there were no stores after
12498 it that might have clobbered the value. We don't have alias info, so we
12499 assume any store invalidates it. Moreover, we only have local UIDs, so
12500 we also assume that there were stores in the intervening basic blocks. */
12501 else if (MEM_P (x) && !MEM_READONLY_P (x)
12502 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12504 if (replace)
12505 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12506 return replace;
12509 for (i = 0; i < len; i++)
12511 if (fmt[i] == 'e')
12513 /* Check for identical subexpressions. If x contains
12514 identical subexpression we only have to traverse one of
12515 them. */
12516 if (i == 1 && ARITHMETIC_P (x))
12518 /* Note that at this point x0 has already been checked
12519 and found valid. */
12520 rtx x0 = XEXP (x, 0);
12521 rtx x1 = XEXP (x, 1);
12523 /* If x0 and x1 are identical then x is also valid. */
12524 if (x0 == x1)
12525 return 1;
12527 /* If x1 is identical to a subexpression of x0 then
12528 while checking x0, x1 has already been checked. Thus
12529 it is valid and so as x. */
12530 if (ARITHMETIC_P (x0)
12531 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12532 return 1;
12534 /* If x0 is identical to a subexpression of x1 then x is
12535 valid iff the rest of x1 is valid. */
12536 if (ARITHMETIC_P (x1)
12537 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12538 return
12539 get_last_value_validate (&XEXP (x1,
12540 x0 == XEXP (x1, 0) ? 1 : 0),
12541 insn, tick, replace);
12544 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12545 replace) == 0)
12546 return 0;
12548 else if (fmt[i] == 'E')
12549 for (j = 0; j < XVECLEN (x, i); j++)
12550 if (get_last_value_validate (&XVECEXP (x, i, j),
12551 insn, tick, replace) == 0)
12552 return 0;
12555 /* If we haven't found a reason for it to be invalid, it is valid. */
12556 return 1;
12559 /* Get the last value assigned to X, if known. Some registers
12560 in the value may be replaced with (clobber (const_int 0)) if their value
12561 is known longer known reliably. */
12563 static rtx
12564 get_last_value (const_rtx x)
12566 unsigned int regno;
12567 rtx value;
12568 reg_stat_type *rsp;
12570 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12571 then convert it to the desired mode. If this is a paradoxical SUBREG,
12572 we cannot predict what values the "extra" bits might have. */
12573 if (GET_CODE (x) == SUBREG
12574 && subreg_lowpart_p (x)
12575 && (GET_MODE_SIZE (GET_MODE (x))
12576 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12577 && (value = get_last_value (SUBREG_REG (x))) != 0)
12578 return gen_lowpart (GET_MODE (x), value);
12580 if (!REG_P (x))
12581 return 0;
12583 regno = REGNO (x);
12584 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12585 value = rsp->last_set_value;
12587 /* If we don't have a value, or if it isn't for this basic block and
12588 it's either a hard register, set more than once, or it's a live
12589 at the beginning of the function, return 0.
12591 Because if it's not live at the beginning of the function then the reg
12592 is always set before being used (is never used without being set).
12593 And, if it's set only once, and it's always set before use, then all
12594 uses must have the same last value, even if it's not from this basic
12595 block. */
12597 if (value == 0
12598 || (rsp->last_set_label < label_tick_ebb_start
12599 && (regno < FIRST_PSEUDO_REGISTER
12600 || REG_N_SETS (regno) != 1
12601 || REGNO_REG_SET_P
12602 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12603 return 0;
12605 /* If the value was set in a later insn than the ones we are processing,
12606 we can't use it even if the register was only set once. */
12607 if (rsp->last_set_label == label_tick
12608 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12609 return 0;
12611 /* If the value has all its registers valid, return it. */
12612 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12613 return value;
12615 /* Otherwise, make a copy and replace any invalid register with
12616 (clobber (const_int 0)). If that fails for some reason, return 0. */
12618 value = copy_rtx (value);
12619 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12620 return value;
12622 return 0;
12625 /* Return nonzero if expression X refers to a REG or to memory
12626 that is set in an instruction more recent than FROM_LUID. */
12628 static int
12629 use_crosses_set_p (const_rtx x, int from_luid)
12631 const char *fmt;
12632 int i;
12633 enum rtx_code code = GET_CODE (x);
12635 if (code == REG)
12637 unsigned int regno = REGNO (x);
12638 unsigned endreg = END_REGNO (x);
12640 #ifdef PUSH_ROUNDING
12641 /* Don't allow uses of the stack pointer to be moved,
12642 because we don't know whether the move crosses a push insn. */
12643 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12644 return 1;
12645 #endif
12646 for (; regno < endreg; regno++)
12648 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12649 if (rsp->last_set
12650 && rsp->last_set_label == label_tick
12651 && DF_INSN_LUID (rsp->last_set) > from_luid)
12652 return 1;
12654 return 0;
12657 if (code == MEM && mem_last_set > from_luid)
12658 return 1;
12660 fmt = GET_RTX_FORMAT (code);
12662 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12664 if (fmt[i] == 'E')
12666 int j;
12667 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12668 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12669 return 1;
12671 else if (fmt[i] == 'e'
12672 && use_crosses_set_p (XEXP (x, i), from_luid))
12673 return 1;
12675 return 0;
12678 /* Define three variables used for communication between the following
12679 routines. */
12681 static unsigned int reg_dead_regno, reg_dead_endregno;
12682 static int reg_dead_flag;
12684 /* Function called via note_stores from reg_dead_at_p.
12686 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12687 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12689 static void
12690 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12692 unsigned int regno, endregno;
12694 if (!REG_P (dest))
12695 return;
12697 regno = REGNO (dest);
12698 endregno = END_REGNO (dest);
12699 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12700 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12703 /* Return nonzero if REG is known to be dead at INSN.
12705 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12706 referencing REG, it is dead. If we hit a SET referencing REG, it is
12707 live. Otherwise, see if it is live or dead at the start of the basic
12708 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12709 must be assumed to be always live. */
12711 static int
12712 reg_dead_at_p (rtx reg, rtx insn)
12714 basic_block block;
12715 unsigned int i;
12717 /* Set variables for reg_dead_at_p_1. */
12718 reg_dead_regno = REGNO (reg);
12719 reg_dead_endregno = END_REGNO (reg);
12721 reg_dead_flag = 0;
12723 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12724 we allow the machine description to decide whether use-and-clobber
12725 patterns are OK. */
12726 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12728 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12729 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12730 return 0;
12733 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12734 beginning of basic block. */
12735 block = BLOCK_FOR_INSN (insn);
12736 for (;;)
12738 if (INSN_P (insn))
12740 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12741 if (reg_dead_flag)
12742 return reg_dead_flag == 1 ? 1 : 0;
12744 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12745 return 1;
12748 if (insn == BB_HEAD (block))
12749 break;
12751 insn = PREV_INSN (insn);
12754 /* Look at live-in sets for the basic block that we were in. */
12755 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12756 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12757 return 0;
12759 return 1;
12762 /* Note hard registers in X that are used. */
12764 static void
12765 mark_used_regs_combine (rtx x)
12767 RTX_CODE code = GET_CODE (x);
12768 unsigned int regno;
12769 int i;
12771 switch (code)
12773 case LABEL_REF:
12774 case SYMBOL_REF:
12775 case CONST_INT:
12776 case CONST:
12777 case CONST_DOUBLE:
12778 case CONST_VECTOR:
12779 case PC:
12780 case ADDR_VEC:
12781 case ADDR_DIFF_VEC:
12782 case ASM_INPUT:
12783 #ifdef HAVE_cc0
12784 /* CC0 must die in the insn after it is set, so we don't need to take
12785 special note of it here. */
12786 case CC0:
12787 #endif
12788 return;
12790 case CLOBBER:
12791 /* If we are clobbering a MEM, mark any hard registers inside the
12792 address as used. */
12793 if (MEM_P (XEXP (x, 0)))
12794 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12795 return;
12797 case REG:
12798 regno = REGNO (x);
12799 /* A hard reg in a wide mode may really be multiple registers.
12800 If so, mark all of them just like the first. */
12801 if (regno < FIRST_PSEUDO_REGISTER)
12803 /* None of this applies to the stack, frame or arg pointers. */
12804 if (regno == STACK_POINTER_REGNUM
12805 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12806 || regno == HARD_FRAME_POINTER_REGNUM
12807 #endif
12808 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12809 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12810 #endif
12811 || regno == FRAME_POINTER_REGNUM)
12812 return;
12814 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12816 return;
12818 case SET:
12820 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12821 the address. */
12822 rtx testreg = SET_DEST (x);
12824 while (GET_CODE (testreg) == SUBREG
12825 || GET_CODE (testreg) == ZERO_EXTRACT
12826 || GET_CODE (testreg) == STRICT_LOW_PART)
12827 testreg = XEXP (testreg, 0);
12829 if (MEM_P (testreg))
12830 mark_used_regs_combine (XEXP (testreg, 0));
12832 mark_used_regs_combine (SET_SRC (x));
12834 return;
12836 default:
12837 break;
12840 /* Recursively scan the operands of this expression. */
12843 const char *fmt = GET_RTX_FORMAT (code);
12845 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12847 if (fmt[i] == 'e')
12848 mark_used_regs_combine (XEXP (x, i));
12849 else if (fmt[i] == 'E')
12851 int j;
12853 for (j = 0; j < XVECLEN (x, i); j++)
12854 mark_used_regs_combine (XVECEXP (x, i, j));
12860 /* Remove register number REGNO from the dead registers list of INSN.
12862 Return the note used to record the death, if there was one. */
12865 remove_death (unsigned int regno, rtx insn)
12867 rtx note = find_regno_note (insn, REG_DEAD, regno);
12869 if (note)
12870 remove_note (insn, note);
12872 return note;
12875 /* For each register (hardware or pseudo) used within expression X, if its
12876 death is in an instruction with luid between FROM_LUID (inclusive) and
12877 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12878 list headed by PNOTES.
12880 That said, don't move registers killed by maybe_kill_insn.
12882 This is done when X is being merged by combination into TO_INSN. These
12883 notes will then be distributed as needed. */
12885 static void
12886 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12887 rtx *pnotes)
12889 const char *fmt;
12890 int len, i;
12891 enum rtx_code code = GET_CODE (x);
12893 if (code == REG)
12895 unsigned int regno = REGNO (x);
12896 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12898 /* Don't move the register if it gets killed in between from and to. */
12899 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12900 && ! reg_referenced_p (x, maybe_kill_insn))
12901 return;
12903 if (where_dead
12904 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12905 && DF_INSN_LUID (where_dead) >= from_luid
12906 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12908 rtx note = remove_death (regno, where_dead);
12910 /* It is possible for the call above to return 0. This can occur
12911 when last_death points to I2 or I1 that we combined with.
12912 In that case make a new note.
12914 We must also check for the case where X is a hard register
12915 and NOTE is a death note for a range of hard registers
12916 including X. In that case, we must put REG_DEAD notes for
12917 the remaining registers in place of NOTE. */
12919 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12920 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12921 > GET_MODE_SIZE (GET_MODE (x))))
12923 unsigned int deadregno = REGNO (XEXP (note, 0));
12924 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12925 unsigned int ourend = END_HARD_REGNO (x);
12926 unsigned int i;
12928 for (i = deadregno; i < deadend; i++)
12929 if (i < regno || i >= ourend)
12930 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12933 /* If we didn't find any note, or if we found a REG_DEAD note that
12934 covers only part of the given reg, and we have a multi-reg hard
12935 register, then to be safe we must check for REG_DEAD notes
12936 for each register other than the first. They could have
12937 their own REG_DEAD notes lying around. */
12938 else if ((note == 0
12939 || (note != 0
12940 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12941 < GET_MODE_SIZE (GET_MODE (x)))))
12942 && regno < FIRST_PSEUDO_REGISTER
12943 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12945 unsigned int ourend = END_HARD_REGNO (x);
12946 unsigned int i, offset;
12947 rtx oldnotes = 0;
12949 if (note)
12950 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12951 else
12952 offset = 1;
12954 for (i = regno + offset; i < ourend; i++)
12955 move_deaths (regno_reg_rtx[i],
12956 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12959 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12961 XEXP (note, 1) = *pnotes;
12962 *pnotes = note;
12964 else
12965 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12968 return;
12971 else if (GET_CODE (x) == SET)
12973 rtx dest = SET_DEST (x);
12975 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12977 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12978 that accesses one word of a multi-word item, some
12979 piece of everything register in the expression is used by
12980 this insn, so remove any old death. */
12981 /* ??? So why do we test for equality of the sizes? */
12983 if (GET_CODE (dest) == ZERO_EXTRACT
12984 || GET_CODE (dest) == STRICT_LOW_PART
12985 || (GET_CODE (dest) == SUBREG
12986 && (((GET_MODE_SIZE (GET_MODE (dest))
12987 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12988 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12989 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12991 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12992 return;
12995 /* If this is some other SUBREG, we know it replaces the entire
12996 value, so use that as the destination. */
12997 if (GET_CODE (dest) == SUBREG)
12998 dest = SUBREG_REG (dest);
13000 /* If this is a MEM, adjust deaths of anything used in the address.
13001 For a REG (the only other possibility), the entire value is
13002 being replaced so the old value is not used in this insn. */
13004 if (MEM_P (dest))
13005 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13006 to_insn, pnotes);
13007 return;
13010 else if (GET_CODE (x) == CLOBBER)
13011 return;
13013 len = GET_RTX_LENGTH (code);
13014 fmt = GET_RTX_FORMAT (code);
13016 for (i = 0; i < len; i++)
13018 if (fmt[i] == 'E')
13020 int j;
13021 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13022 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13023 to_insn, pnotes);
13025 else if (fmt[i] == 'e')
13026 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13030 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13031 pattern of an insn. X must be a REG. */
13033 static int
13034 reg_bitfield_target_p (rtx x, rtx body)
13036 int i;
13038 if (GET_CODE (body) == SET)
13040 rtx dest = SET_DEST (body);
13041 rtx target;
13042 unsigned int regno, tregno, endregno, endtregno;
13044 if (GET_CODE (dest) == ZERO_EXTRACT)
13045 target = XEXP (dest, 0);
13046 else if (GET_CODE (dest) == STRICT_LOW_PART)
13047 target = SUBREG_REG (XEXP (dest, 0));
13048 else
13049 return 0;
13051 if (GET_CODE (target) == SUBREG)
13052 target = SUBREG_REG (target);
13054 if (!REG_P (target))
13055 return 0;
13057 tregno = REGNO (target), regno = REGNO (x);
13058 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13059 return target == x;
13061 endtregno = end_hard_regno (GET_MODE (target), tregno);
13062 endregno = end_hard_regno (GET_MODE (x), regno);
13064 return endregno > tregno && regno < endtregno;
13067 else if (GET_CODE (body) == PARALLEL)
13068 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13069 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13070 return 1;
13072 return 0;
13075 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13076 as appropriate. I3 and I2 are the insns resulting from the combination
13077 insns including FROM (I2 may be zero).
13079 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13080 not need REG_DEAD notes because they are being substituted for. This
13081 saves searching in the most common cases.
13083 Each note in the list is either ignored or placed on some insns, depending
13084 on the type of note. */
13086 static void
13087 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13088 rtx elim_i1, rtx elim_i0)
13090 rtx note, next_note;
13091 rtx tem;
13093 for (note = notes; note; note = next_note)
13095 rtx place = 0, place2 = 0;
13097 next_note = XEXP (note, 1);
13098 switch (REG_NOTE_KIND (note))
13100 case REG_BR_PROB:
13101 case REG_BR_PRED:
13102 /* Doesn't matter much where we put this, as long as it's somewhere.
13103 It is preferable to keep these notes on branches, which is most
13104 likely to be i3. */
13105 place = i3;
13106 break;
13108 case REG_VALUE_PROFILE:
13109 /* Just get rid of this note, as it is unused later anyway. */
13110 break;
13112 case REG_NON_LOCAL_GOTO:
13113 if (JUMP_P (i3))
13114 place = i3;
13115 else
13117 gcc_assert (i2 && JUMP_P (i2));
13118 place = i2;
13120 break;
13122 case REG_EH_REGION:
13123 /* These notes must remain with the call or trapping instruction. */
13124 if (CALL_P (i3))
13125 place = i3;
13126 else if (i2 && CALL_P (i2))
13127 place = i2;
13128 else
13130 gcc_assert (cfun->can_throw_non_call_exceptions);
13131 if (may_trap_p (i3))
13132 place = i3;
13133 else if (i2 && may_trap_p (i2))
13134 place = i2;
13135 /* ??? Otherwise assume we've combined things such that we
13136 can now prove that the instructions can't trap. Drop the
13137 note in this case. */
13139 break;
13141 case REG_NORETURN:
13142 case REG_SETJMP:
13143 /* These notes must remain with the call. It should not be
13144 possible for both I2 and I3 to be a call. */
13145 if (CALL_P (i3))
13146 place = i3;
13147 else
13149 gcc_assert (i2 && CALL_P (i2));
13150 place = i2;
13152 break;
13154 case REG_UNUSED:
13155 /* Any clobbers for i3 may still exist, and so we must process
13156 REG_UNUSED notes from that insn.
13158 Any clobbers from i2 or i1 can only exist if they were added by
13159 recog_for_combine. In that case, recog_for_combine created the
13160 necessary REG_UNUSED notes. Trying to keep any original
13161 REG_UNUSED notes from these insns can cause incorrect output
13162 if it is for the same register as the original i3 dest.
13163 In that case, we will notice that the register is set in i3,
13164 and then add a REG_UNUSED note for the destination of i3, which
13165 is wrong. However, it is possible to have REG_UNUSED notes from
13166 i2 or i1 for register which were both used and clobbered, so
13167 we keep notes from i2 or i1 if they will turn into REG_DEAD
13168 notes. */
13170 /* If this register is set or clobbered in I3, put the note there
13171 unless there is one already. */
13172 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13174 if (from_insn != i3)
13175 break;
13177 if (! (REG_P (XEXP (note, 0))
13178 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13179 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13180 place = i3;
13182 /* Otherwise, if this register is used by I3, then this register
13183 now dies here, so we must put a REG_DEAD note here unless there
13184 is one already. */
13185 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13186 && ! (REG_P (XEXP (note, 0))
13187 ? find_regno_note (i3, REG_DEAD,
13188 REGNO (XEXP (note, 0)))
13189 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13191 PUT_REG_NOTE_KIND (note, REG_DEAD);
13192 place = i3;
13194 break;
13196 case REG_EQUAL:
13197 case REG_EQUIV:
13198 case REG_NOALIAS:
13199 /* These notes say something about results of an insn. We can
13200 only support them if they used to be on I3 in which case they
13201 remain on I3. Otherwise they are ignored.
13203 If the note refers to an expression that is not a constant, we
13204 must also ignore the note since we cannot tell whether the
13205 equivalence is still true. It might be possible to do
13206 slightly better than this (we only have a problem if I2DEST
13207 or I1DEST is present in the expression), but it doesn't
13208 seem worth the trouble. */
13210 if (from_insn == i3
13211 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13212 place = i3;
13213 break;
13215 case REG_INC:
13216 /* These notes say something about how a register is used. They must
13217 be present on any use of the register in I2 or I3. */
13218 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13219 place = i3;
13221 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13223 if (place)
13224 place2 = i2;
13225 else
13226 place = i2;
13228 break;
13230 case REG_LABEL_TARGET:
13231 case REG_LABEL_OPERAND:
13232 /* This can show up in several ways -- either directly in the
13233 pattern, or hidden off in the constant pool with (or without?)
13234 a REG_EQUAL note. */
13235 /* ??? Ignore the without-reg_equal-note problem for now. */
13236 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13237 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13238 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13239 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13240 place = i3;
13242 if (i2
13243 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13244 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13245 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13246 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13248 if (place)
13249 place2 = i2;
13250 else
13251 place = i2;
13254 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13255 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13256 there. */
13257 if (place && JUMP_P (place)
13258 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13259 && (JUMP_LABEL (place) == NULL
13260 || JUMP_LABEL (place) == XEXP (note, 0)))
13262 rtx label = JUMP_LABEL (place);
13264 if (!label)
13265 JUMP_LABEL (place) = XEXP (note, 0);
13266 else if (LABEL_P (label))
13267 LABEL_NUSES (label)--;
13270 if (place2 && JUMP_P (place2)
13271 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13272 && (JUMP_LABEL (place2) == NULL
13273 || JUMP_LABEL (place2) == XEXP (note, 0)))
13275 rtx label = JUMP_LABEL (place2);
13277 if (!label)
13278 JUMP_LABEL (place2) = XEXP (note, 0);
13279 else if (LABEL_P (label))
13280 LABEL_NUSES (label)--;
13281 place2 = 0;
13283 break;
13285 case REG_NONNEG:
13286 /* This note says something about the value of a register prior
13287 to the execution of an insn. It is too much trouble to see
13288 if the note is still correct in all situations. It is better
13289 to simply delete it. */
13290 break;
13292 case REG_DEAD:
13293 /* If we replaced the right hand side of FROM_INSN with a
13294 REG_EQUAL note, the original use of the dying register
13295 will not have been combined into I3 and I2. In such cases,
13296 FROM_INSN is guaranteed to be the first of the combined
13297 instructions, so we simply need to search back before
13298 FROM_INSN for the previous use or set of this register,
13299 then alter the notes there appropriately.
13301 If the register is used as an input in I3, it dies there.
13302 Similarly for I2, if it is nonzero and adjacent to I3.
13304 If the register is not used as an input in either I3 or I2
13305 and it is not one of the registers we were supposed to eliminate,
13306 there are two possibilities. We might have a non-adjacent I2
13307 or we might have somehow eliminated an additional register
13308 from a computation. For example, we might have had A & B where
13309 we discover that B will always be zero. In this case we will
13310 eliminate the reference to A.
13312 In both cases, we must search to see if we can find a previous
13313 use of A and put the death note there. */
13315 if (from_insn
13316 && from_insn == i2mod
13317 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13318 tem = from_insn;
13319 else
13321 if (from_insn
13322 && CALL_P (from_insn)
13323 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13324 place = from_insn;
13325 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13326 place = i3;
13327 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13328 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13329 place = i2;
13330 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13331 && !(i2mod
13332 && reg_overlap_mentioned_p (XEXP (note, 0),
13333 i2mod_old_rhs)))
13334 || rtx_equal_p (XEXP (note, 0), elim_i1)
13335 || rtx_equal_p (XEXP (note, 0), elim_i0))
13336 break;
13337 tem = i3;
13340 if (place == 0)
13342 basic_block bb = this_basic_block;
13344 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13346 if (!NONDEBUG_INSN_P (tem))
13348 if (tem == BB_HEAD (bb))
13349 break;
13350 continue;
13353 /* If the register is being set at TEM, see if that is all
13354 TEM is doing. If so, delete TEM. Otherwise, make this
13355 into a REG_UNUSED note instead. Don't delete sets to
13356 global register vars. */
13357 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13358 || !global_regs[REGNO (XEXP (note, 0))])
13359 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13361 rtx set = single_set (tem);
13362 rtx inner_dest = 0;
13363 #ifdef HAVE_cc0
13364 rtx cc0_setter = NULL_RTX;
13365 #endif
13367 if (set != 0)
13368 for (inner_dest = SET_DEST (set);
13369 (GET_CODE (inner_dest) == STRICT_LOW_PART
13370 || GET_CODE (inner_dest) == SUBREG
13371 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13372 inner_dest = XEXP (inner_dest, 0))
13375 /* Verify that it was the set, and not a clobber that
13376 modified the register.
13378 CC0 targets must be careful to maintain setter/user
13379 pairs. If we cannot delete the setter due to side
13380 effects, mark the user with an UNUSED note instead
13381 of deleting it. */
13383 if (set != 0 && ! side_effects_p (SET_SRC (set))
13384 && rtx_equal_p (XEXP (note, 0), inner_dest)
13385 #ifdef HAVE_cc0
13386 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13387 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13388 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13389 #endif
13392 /* Move the notes and links of TEM elsewhere.
13393 This might delete other dead insns recursively.
13394 First set the pattern to something that won't use
13395 any register. */
13396 rtx old_notes = REG_NOTES (tem);
13398 PATTERN (tem) = pc_rtx;
13399 REG_NOTES (tem) = NULL;
13401 distribute_notes (old_notes, tem, tem, NULL_RTX,
13402 NULL_RTX, NULL_RTX, NULL_RTX);
13403 distribute_links (LOG_LINKS (tem));
13405 SET_INSN_DELETED (tem);
13406 if (tem == i2)
13407 i2 = NULL_RTX;
13409 #ifdef HAVE_cc0
13410 /* Delete the setter too. */
13411 if (cc0_setter)
13413 PATTERN (cc0_setter) = pc_rtx;
13414 old_notes = REG_NOTES (cc0_setter);
13415 REG_NOTES (cc0_setter) = NULL;
13417 distribute_notes (old_notes, cc0_setter,
13418 cc0_setter, NULL_RTX,
13419 NULL_RTX, NULL_RTX, NULL_RTX);
13420 distribute_links (LOG_LINKS (cc0_setter));
13422 SET_INSN_DELETED (cc0_setter);
13423 if (cc0_setter == i2)
13424 i2 = NULL_RTX;
13426 #endif
13428 else
13430 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13432 /* If there isn't already a REG_UNUSED note, put one
13433 here. Do not place a REG_DEAD note, even if
13434 the register is also used here; that would not
13435 match the algorithm used in lifetime analysis
13436 and can cause the consistency check in the
13437 scheduler to fail. */
13438 if (! find_regno_note (tem, REG_UNUSED,
13439 REGNO (XEXP (note, 0))))
13440 place = tem;
13441 break;
13444 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13445 || (CALL_P (tem)
13446 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13448 place = tem;
13450 /* If we are doing a 3->2 combination, and we have a
13451 register which formerly died in i3 and was not used
13452 by i2, which now no longer dies in i3 and is used in
13453 i2 but does not die in i2, and place is between i2
13454 and i3, then we may need to move a link from place to
13455 i2. */
13456 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13457 && from_insn
13458 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13459 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13461 rtx links = LOG_LINKS (place);
13462 LOG_LINKS (place) = 0;
13463 distribute_links (links);
13465 break;
13468 if (tem == BB_HEAD (bb))
13469 break;
13474 /* If the register is set or already dead at PLACE, we needn't do
13475 anything with this note if it is still a REG_DEAD note.
13476 We check here if it is set at all, not if is it totally replaced,
13477 which is what `dead_or_set_p' checks, so also check for it being
13478 set partially. */
13480 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13482 unsigned int regno = REGNO (XEXP (note, 0));
13483 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13485 if (dead_or_set_p (place, XEXP (note, 0))
13486 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13488 /* Unless the register previously died in PLACE, clear
13489 last_death. [I no longer understand why this is
13490 being done.] */
13491 if (rsp->last_death != place)
13492 rsp->last_death = 0;
13493 place = 0;
13495 else
13496 rsp->last_death = place;
13498 /* If this is a death note for a hard reg that is occupying
13499 multiple registers, ensure that we are still using all
13500 parts of the object. If we find a piece of the object
13501 that is unused, we must arrange for an appropriate REG_DEAD
13502 note to be added for it. However, we can't just emit a USE
13503 and tag the note to it, since the register might actually
13504 be dead; so we recourse, and the recursive call then finds
13505 the previous insn that used this register. */
13507 if (place && regno < FIRST_PSEUDO_REGISTER
13508 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13510 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13511 int all_used = 1;
13512 unsigned int i;
13514 for (i = regno; i < endregno; i++)
13515 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13516 && ! find_regno_fusage (place, USE, i))
13517 || dead_or_set_regno_p (place, i))
13518 all_used = 0;
13520 if (! all_used)
13522 /* Put only REG_DEAD notes for pieces that are
13523 not already dead or set. */
13525 for (i = regno; i < endregno;
13526 i += hard_regno_nregs[i][reg_raw_mode[i]])
13528 rtx piece = regno_reg_rtx[i];
13529 basic_block bb = this_basic_block;
13531 if (! dead_or_set_p (place, piece)
13532 && ! reg_bitfield_target_p (piece,
13533 PATTERN (place)))
13535 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13536 NULL_RTX);
13538 distribute_notes (new_note, place, place,
13539 NULL_RTX, NULL_RTX, NULL_RTX,
13540 NULL_RTX);
13542 else if (! refers_to_regno_p (i, i + 1,
13543 PATTERN (place), 0)
13544 && ! find_regno_fusage (place, USE, i))
13545 for (tem = PREV_INSN (place); ;
13546 tem = PREV_INSN (tem))
13548 if (!NONDEBUG_INSN_P (tem))
13550 if (tem == BB_HEAD (bb))
13551 break;
13552 continue;
13554 if (dead_or_set_p (tem, piece)
13555 || reg_bitfield_target_p (piece,
13556 PATTERN (tem)))
13558 add_reg_note (tem, REG_UNUSED, piece);
13559 break;
13565 place = 0;
13569 break;
13571 default:
13572 /* Any other notes should not be present at this point in the
13573 compilation. */
13574 gcc_unreachable ();
13577 if (place)
13579 XEXP (note, 1) = REG_NOTES (place);
13580 REG_NOTES (place) = note;
13583 if (place2)
13584 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13588 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13589 I3, I2, and I1 to new locations. This is also called to add a link
13590 pointing at I3 when I3's destination is changed. */
13592 static void
13593 distribute_links (rtx links)
13595 rtx link, next_link;
13597 for (link = links; link; link = next_link)
13599 rtx place = 0;
13600 rtx insn;
13601 rtx set, reg;
13603 next_link = XEXP (link, 1);
13605 /* If the insn that this link points to is a NOTE or isn't a single
13606 set, ignore it. In the latter case, it isn't clear what we
13607 can do other than ignore the link, since we can't tell which
13608 register it was for. Such links wouldn't be used by combine
13609 anyway.
13611 It is not possible for the destination of the target of the link to
13612 have been changed by combine. The only potential of this is if we
13613 replace I3, I2, and I1 by I3 and I2. But in that case the
13614 destination of I2 also remains unchanged. */
13616 if (NOTE_P (XEXP (link, 0))
13617 || (set = single_set (XEXP (link, 0))) == 0)
13618 continue;
13620 reg = SET_DEST (set);
13621 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13622 || GET_CODE (reg) == STRICT_LOW_PART)
13623 reg = XEXP (reg, 0);
13625 /* A LOG_LINK is defined as being placed on the first insn that uses
13626 a register and points to the insn that sets the register. Start
13627 searching at the next insn after the target of the link and stop
13628 when we reach a set of the register or the end of the basic block.
13630 Note that this correctly handles the link that used to point from
13631 I3 to I2. Also note that not much searching is typically done here
13632 since most links don't point very far away. */
13634 for (insn = NEXT_INSN (XEXP (link, 0));
13635 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13636 || BB_HEAD (this_basic_block->next_bb) != insn));
13637 insn = NEXT_INSN (insn))
13638 if (DEBUG_INSN_P (insn))
13639 continue;
13640 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13642 if (reg_referenced_p (reg, PATTERN (insn)))
13643 place = insn;
13644 break;
13646 else if (CALL_P (insn)
13647 && find_reg_fusage (insn, USE, reg))
13649 place = insn;
13650 break;
13652 else if (INSN_P (insn) && reg_set_p (reg, insn))
13653 break;
13655 /* If we found a place to put the link, place it there unless there
13656 is already a link to the same insn as LINK at that point. */
13658 if (place)
13660 rtx link2;
13662 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13663 if (XEXP (link2, 0) == XEXP (link, 0))
13664 break;
13666 if (link2 == 0)
13668 XEXP (link, 1) = LOG_LINKS (place);
13669 LOG_LINKS (place) = link;
13671 /* Set added_links_insn to the earliest insn we added a
13672 link to. */
13673 if (added_links_insn == 0
13674 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13675 added_links_insn = place;
13681 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13682 Check whether the expression pointer to by LOC is a register or
13683 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13684 Otherwise return zero. */
13686 static int
13687 unmentioned_reg_p_1 (rtx *loc, void *expr)
13689 rtx x = *loc;
13691 if (x != NULL_RTX
13692 && (REG_P (x) || MEM_P (x))
13693 && ! reg_mentioned_p (x, (rtx) expr))
13694 return 1;
13695 return 0;
13698 /* Check for any register or memory mentioned in EQUIV that is not
13699 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13700 of EXPR where some registers may have been replaced by constants. */
13702 static bool
13703 unmentioned_reg_p (rtx equiv, rtx expr)
13705 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13708 void
13709 dump_combine_stats (FILE *file)
13711 fprintf
13712 (file,
13713 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13714 combine_attempts, combine_merges, combine_extras, combine_successes);
13717 void
13718 dump_combine_total_stats (FILE *file)
13720 fprintf
13721 (file,
13722 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13723 total_attempts, total_merges, total_extras, total_successes);
13726 static bool
13727 gate_handle_combine (void)
13729 return (optimize > 0);
13732 /* Try combining insns through substitution. */
13733 static unsigned int
13734 rest_of_handle_combine (void)
13736 int rebuild_jump_labels_after_combine;
13738 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13739 df_note_add_problem ();
13740 df_analyze ();
13742 regstat_init_n_sets_and_refs ();
13744 rebuild_jump_labels_after_combine
13745 = combine_instructions (get_insns (), max_reg_num ());
13747 /* Combining insns may have turned an indirect jump into a
13748 direct jump. Rebuild the JUMP_LABEL fields of jumping
13749 instructions. */
13750 if (rebuild_jump_labels_after_combine)
13752 timevar_push (TV_JUMP);
13753 rebuild_jump_labels (get_insns ());
13754 cleanup_cfg (0);
13755 timevar_pop (TV_JUMP);
13758 regstat_free_n_sets_and_refs ();
13759 return 0;
13762 struct rtl_opt_pass pass_combine =
13765 RTL_PASS,
13766 "combine", /* name */
13767 gate_handle_combine, /* gate */
13768 rest_of_handle_combine, /* execute */
13769 NULL, /* sub */
13770 NULL, /* next */
13771 0, /* static_pass_number */
13772 TV_COMBINE, /* tv_id */
13773 PROP_cfglayout, /* properties_required */
13774 0, /* properties_provided */
13775 0, /* properties_destroyed */
13776 0, /* todo_flags_start */
13777 TODO_dump_func |
13778 TODO_df_finish | TODO_verify_rtl_sharing |
13779 TODO_ggc_collect, /* todo_flags_finish */