1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
24 #include "diagnostic-core.h"
26 #include "hash-table.h"
31 #include "double-int.h"
40 #include "hard-reg-set.h"
42 #include "insn-config.h"
46 #include "dominance.h"
49 #include "basic-block.h"
52 #include "statistics.h"
54 #include "fixed-value.h"
68 #include "tree-pass.h"
71 /* The following code implements gcse after reload, the purpose of this
72 pass is to cleanup redundant loads generated by reload and other
73 optimizations that come after gcse. It searches for simple inter-block
74 redundancies and tries to eliminate them by adding moves and loads
77 Perform partially redundant load elimination, try to eliminate redundant
78 loads created by the reload pass. We try to look for full or partial
79 redundant loads fed by one or more loads/stores in predecessor BBs,
80 and try adding loads to make them fully redundant. We also check if
81 it's worth adding loads to be able to delete the redundant load.
84 1. Build available expressions hash table:
85 For each load/store instruction, if the loaded/stored memory didn't
86 change until the end of the basic block add this memory expression to
88 2. Perform Redundancy elimination:
89 For each load instruction do the following:
90 perform partial redundancy elimination, check if it's worth adding
91 loads to make the load fully redundant. If so add loads and
92 register copies and delete the load.
93 3. Delete instructions made redundant in step 2.
96 If the loaded register is used/defined between load and some store,
97 look for some other free register between load and all its stores,
98 and replace the load with a copy from this register to the loaded
103 /* Keep statistics of this pass. */
111 /* We need to keep a hash table of expressions. The table entries are of
112 type 'struct expr', and for each expression there is a single linked
113 list of occurrences. */
115 /* Expression elements in the hash table. */
118 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
121 /* The same hash for this entry. */
124 /* List of available occurrence in basic blocks in the function. */
125 struct occr
*avail_occr
;
128 /* Hashtable helpers. */
130 struct expr_hasher
: typed_noop_remove
<expr
>
132 typedef expr value_type
;
133 typedef expr compare_type
;
134 static inline hashval_t
hash (const value_type
*);
135 static inline bool equal (const value_type
*, const compare_type
*);
139 /* Hash expression X.
140 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
141 or if the expression contains something we don't want to insert in the
145 hash_expr (rtx x
, int *do_not_record_p
)
147 *do_not_record_p
= 0;
148 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
149 NULL
, /*have_reg_qty=*/false);
152 /* Callback for hashtab.
153 Return the hash value for expression EXP. We don't actually hash
154 here, we just return the cached hash value. */
157 expr_hasher::hash (const value_type
*exp
)
162 /* Callback for hashtab.
163 Return nonzero if exp1 is equivalent to exp2. */
166 expr_hasher::equal (const value_type
*exp1
, const compare_type
*exp2
)
168 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
170 gcc_assert (!equiv_p
|| exp1
->hash
== exp2
->hash
);
174 /* The table itself. */
175 static hash_table
<expr_hasher
> *expr_table
;
178 static struct obstack expr_obstack
;
180 /* Occurrence of an expression.
181 There is at most one occurrence per basic block. If a pattern appears
182 more than once, the last appearance is used. */
186 /* Next occurrence of this expression. */
188 /* The insn that computes the expression. */
190 /* Nonzero if this [anticipatable] occurrence has been deleted. */
194 static struct obstack occr_obstack
;
196 /* The following structure holds the information about the occurrences of
197 the redundant instructions. */
205 static struct obstack unoccr_obstack
;
207 /* Array where each element is the CUID if the insn that last set the hard
208 register with the number of the element, since the start of the current
211 This array is used during the building of the hash table (step 1) to
212 determine if a reg is killed before the end of a basic block.
214 It is also used when eliminating partial redundancies (step 2) to see
215 if a reg was modified since the start of a basic block. */
216 static int *reg_avail_info
;
218 /* A list of insns that may modify memory within the current basic block. */
222 struct modifies_mem
*next
;
224 static struct modifies_mem
*modifies_mem_list
;
226 /* The modifies_mem structs also go on an obstack, only this obstack is
227 freed each time after completing the analysis or transformations on
228 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
229 object on the obstack to keep track of the bottom of the obstack. */
230 static struct obstack modifies_mem_obstack
;
231 static struct modifies_mem
*modifies_mem_obstack_bottom
;
233 /* Mapping of insn UIDs to CUIDs.
234 CUIDs are like UIDs except they increase monotonically in each basic
235 block, have no gaps, and only apply to real insns. */
236 static int *uid_cuid
;
237 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
240 /* Helpers for memory allocation/freeing. */
241 static void alloc_mem (void);
242 static void free_mem (void);
244 /* Support for hash table construction and transformations. */
245 static bool oprs_unchanged_p (rtx
, rtx_insn
*, bool);
246 static void record_last_reg_set_info (rtx_insn
*, rtx
);
247 static void record_last_reg_set_info_regno (rtx_insn
*, int);
248 static void record_last_mem_set_info (rtx_insn
*);
249 static void record_last_set_info (rtx
, const_rtx
, void *);
250 static void record_opr_changes (rtx_insn
*);
252 static void find_mem_conflicts (rtx
, const_rtx
, void *);
253 static int load_killed_in_block_p (int, rtx
, bool);
254 static void reset_opr_set_tables (void);
256 /* Hash table support. */
257 static hashval_t
hash_expr (rtx
, int *);
258 static void insert_expr_in_table (rtx
, rtx_insn
*);
259 static struct expr
*lookup_expr_in_table (rtx
);
260 static void dump_hash_table (FILE *);
262 /* Helpers for eliminate_partially_redundant_load. */
263 static bool reg_killed_on_edge (rtx
, edge
);
264 static bool reg_used_on_edge (rtx
, edge
);
266 static rtx
get_avail_load_store_reg (rtx_insn
*);
268 static bool bb_has_well_behaved_predecessors (basic_block
);
269 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
270 static void hash_scan_set (rtx_insn
*);
271 static void compute_hash_table (void);
273 /* The work horses of this pass. */
274 static void eliminate_partially_redundant_load (basic_block
,
277 static void eliminate_partially_redundant_loads (void);
280 /* Allocate memory for the CUID mapping array and register/memory
290 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
291 uid_cuid
= XCNEWVEC (int, get_max_uid () + 1);
293 FOR_EACH_BB_FN (bb
, cfun
)
294 FOR_BB_INSNS (bb
, insn
)
297 uid_cuid
[INSN_UID (insn
)] = i
++;
299 uid_cuid
[INSN_UID (insn
)] = i
;
302 /* Allocate the available expressions hash table. We don't want to
303 make the hash table too small, but unnecessarily making it too large
304 also doesn't help. The i/4 is a gcse.c relic, and seems like a
305 reasonable choice. */
306 expr_table
= new hash_table
<expr_hasher
> (MAX (i
/ 4, 13));
308 /* We allocate everything on obstacks because we often can roll back
309 the whole obstack to some point. Freeing obstacks is very fast. */
310 gcc_obstack_init (&expr_obstack
);
311 gcc_obstack_init (&occr_obstack
);
312 gcc_obstack_init (&unoccr_obstack
);
313 gcc_obstack_init (&modifies_mem_obstack
);
315 /* Working array used to track the last set for each register
316 in the current block. */
317 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
319 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
320 can roll it back in reset_opr_set_tables. */
321 modifies_mem_obstack_bottom
=
322 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
323 sizeof (struct modifies_mem
));
326 /* Free memory allocated by alloc_mem. */
336 obstack_free (&expr_obstack
, NULL
);
337 obstack_free (&occr_obstack
, NULL
);
338 obstack_free (&unoccr_obstack
, NULL
);
339 obstack_free (&modifies_mem_obstack
, NULL
);
341 free (reg_avail_info
);
345 /* Insert expression X in INSN in the hash TABLE.
346 If it is already present, record it as the last occurrence in INSN's
350 insert_expr_in_table (rtx x
, rtx_insn
*insn
)
354 struct expr
*cur_expr
, **slot
;
355 struct occr
*avail_occr
, *last_occr
= NULL
;
357 hash
= hash_expr (x
, &do_not_record_p
);
359 /* Do not insert expression in the table if it contains volatile operands,
360 or if hash_expr determines the expression is something we don't want
361 to or can't handle. */
365 /* We anticipate that redundant expressions are rare, so for convenience
366 allocate a new hash table element here already and set its fields.
367 If we don't do this, we need a hack with a static struct expr. Anyway,
368 obstack_free is really fast and one more obstack_alloc doesn't hurt if
369 we're going to see more expressions later on. */
370 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
371 sizeof (struct expr
));
373 cur_expr
->hash
= hash
;
374 cur_expr
->avail_occr
= NULL
;
376 slot
= expr_table
->find_slot_with_hash (cur_expr
, hash
, INSERT
);
379 /* The expression isn't found, so insert it. */
383 /* The expression is already in the table, so roll back the
384 obstack and use the existing table entry. */
385 obstack_free (&expr_obstack
, cur_expr
);
389 /* Search for another occurrence in the same basic block. */
390 avail_occr
= cur_expr
->avail_occr
;
392 && BLOCK_FOR_INSN (avail_occr
->insn
) != BLOCK_FOR_INSN (insn
))
394 /* If an occurrence isn't found, save a pointer to the end of
396 last_occr
= avail_occr
;
397 avail_occr
= avail_occr
->next
;
401 /* Found another instance of the expression in the same basic block.
402 Prefer this occurrence to the currently recorded one. We want
403 the last one in the block and the block is scanned from start
405 avail_occr
->insn
= insn
;
408 /* First occurrence of this expression in this basic block. */
409 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
410 sizeof (struct occr
));
412 /* First occurrence of this expression in any block? */
413 if (cur_expr
->avail_occr
== NULL
)
414 cur_expr
->avail_occr
= avail_occr
;
416 last_occr
->next
= avail_occr
;
418 avail_occr
->insn
= insn
;
419 avail_occr
->next
= NULL
;
420 avail_occr
->deleted_p
= 0;
425 /* Lookup pattern PAT in the expression hash table.
426 The result is a pointer to the table entry, or NULL if not found. */
429 lookup_expr_in_table (rtx pat
)
432 struct expr
**slot
, *tmp_expr
;
433 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
438 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
439 sizeof (struct expr
));
440 tmp_expr
->expr
= pat
;
441 tmp_expr
->hash
= hash
;
442 tmp_expr
->avail_occr
= NULL
;
444 slot
= expr_table
->find_slot_with_hash (tmp_expr
, hash
, INSERT
);
445 obstack_free (&expr_obstack
, tmp_expr
);
454 /* Dump all expressions and occurrences that are currently in the
455 expression hash table to FILE. */
457 /* This helper is called via htab_traverse. */
459 dump_expr_hash_table_entry (expr
**slot
, FILE *file
)
461 struct expr
*exprs
= *slot
;
464 fprintf (file
, "expr: ");
465 print_rtl (file
, exprs
->expr
);
466 fprintf (file
,"\nhashcode: %u\n", exprs
->hash
);
467 fprintf (file
,"list of occurrences:\n");
468 occr
= exprs
->avail_occr
;
471 rtx_insn
*insn
= occr
->insn
;
472 print_rtl_single (file
, insn
);
473 fprintf (file
, "\n");
476 fprintf (file
, "\n");
481 dump_hash_table (FILE *file
)
483 fprintf (file
, "\n\nexpression hash table\n");
484 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
485 (long) expr_table
->size (),
486 (long) expr_table
->elements (),
487 expr_table
->collisions ());
488 if (expr_table
->elements () > 0)
490 fprintf (file
, "\n\ntable entries:\n");
491 expr_table
->traverse
<FILE *, dump_expr_hash_table_entry
> (file
);
493 fprintf (file
, "\n");
496 /* Return true if register X is recorded as being set by an instruction
497 whose CUID is greater than the one given. */
500 reg_changed_after_insn_p (rtx x
, int cuid
)
502 unsigned int regno
, end_regno
;
505 end_regno
= END_HARD_REGNO (x
);
507 if (reg_avail_info
[regno
] > cuid
)
509 while (++regno
< end_regno
);
513 /* Return nonzero if the operands of expression X are unchanged
514 1) from the start of INSN's basic block up to but not including INSN
515 if AFTER_INSN is false, or
516 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
519 oprs_unchanged_p (rtx x
, rtx_insn
*insn
, bool after_insn
)
532 /* We are called after register allocation. */
533 gcc_assert (REGNO (x
) < FIRST_PSEUDO_REGISTER
);
535 return !reg_changed_after_insn_p (x
, INSN_CUID (insn
) - 1);
537 return !reg_changed_after_insn_p (x
, 0);
540 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
543 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
569 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
573 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
576 else if (fmt
[i
] == 'E')
577 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
578 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
586 /* Used for communication between find_mem_conflicts and
587 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
588 conflict between two memory references.
589 This is a bit of a hack to work around the limitations of note_stores. */
590 static int mems_conflict_p
;
592 /* DEST is the output of an instruction. If it is a memory reference, and
593 possibly conflicts with the load found in DATA, then set mems_conflict_p
594 to a nonzero value. */
597 find_mem_conflicts (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
600 rtx mem_op
= (rtx
) data
;
602 while (GET_CODE (dest
) == SUBREG
603 || GET_CODE (dest
) == ZERO_EXTRACT
604 || GET_CODE (dest
) == STRICT_LOW_PART
)
605 dest
= XEXP (dest
, 0);
607 /* If DEST is not a MEM, then it will not conflict with the load. Note
608 that function calls are assumed to clobber memory, but are handled
613 if (true_dependence (dest
, GET_MODE (dest
), mem_op
))
618 /* Return nonzero if the expression in X (a memory reference) is killed
619 in the current basic block before (if AFTER_INSN is false) or after
620 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
622 This function assumes that the modifies_mem table is flushed when
623 the hash table construction or redundancy elimination phases start
624 processing a new basic block. */
627 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
629 struct modifies_mem
*list_entry
= modifies_mem_list
;
633 rtx_insn
*setter
= list_entry
->insn
;
635 /* Ignore entries in the list that do not apply. */
637 && INSN_CUID (setter
) < uid_limit
)
639 && INSN_CUID (setter
) > uid_limit
))
641 list_entry
= list_entry
->next
;
645 /* If SETTER is a call everything is clobbered. Note that calls
646 to pure functions are never put on the list, so we need not
651 /* SETTER must be an insn of some kind that sets memory. Call
652 note_stores to examine each hunk of memory that is modified.
653 It will set mems_conflict_p to nonzero if there may be a
654 conflict between X and SETTER. */
656 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
660 list_entry
= list_entry
->next
;
666 /* Record register first/last/block set information for REGNO in INSN. */
669 record_last_reg_set_info (rtx_insn
*insn
, rtx reg
)
671 unsigned int regno
, end_regno
;
674 end_regno
= END_HARD_REGNO (reg
);
676 reg_avail_info
[regno
] = INSN_CUID (insn
);
677 while (++regno
< end_regno
);
681 record_last_reg_set_info_regno (rtx_insn
*insn
, int regno
)
683 reg_avail_info
[regno
] = INSN_CUID (insn
);
687 /* Record memory modification information for INSN. We do not actually care
688 about the memory location(s) that are set, or even how they are set (consider
689 a CALL_INSN). We merely need to record which insns modify memory. */
692 record_last_mem_set_info (rtx_insn
*insn
)
694 struct modifies_mem
*list_entry
;
696 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
697 sizeof (struct modifies_mem
));
698 list_entry
->insn
= insn
;
699 list_entry
->next
= modifies_mem_list
;
700 modifies_mem_list
= list_entry
;
703 /* Called from compute_hash_table via note_stores to handle one
704 SET or CLOBBER in an insn. DATA is really the instruction in which
705 the SET is taking place. */
708 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
710 rtx_insn
*last_set_insn
= (rtx_insn
*) data
;
712 if (GET_CODE (dest
) == SUBREG
)
713 dest
= SUBREG_REG (dest
);
716 record_last_reg_set_info (last_set_insn
, dest
);
717 else if (MEM_P (dest
))
719 /* Ignore pushes, they don't clobber memory. They may still
720 clobber the stack pointer though. Some targets do argument
721 pushes without adding REG_INC notes. See e.g. PR25196,
722 where a pushsi2 on i386 doesn't have REG_INC notes. Note
723 such changes here too. */
724 if (! push_operand (dest
, GET_MODE (dest
)))
725 record_last_mem_set_info (last_set_insn
);
727 record_last_reg_set_info_regno (last_set_insn
, STACK_POINTER_REGNUM
);
732 /* Reset tables used to keep track of what's still available since the
733 start of the block. */
736 reset_opr_set_tables (void)
738 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
739 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
740 modifies_mem_list
= NULL
;
744 /* Record things set by INSN.
745 This data is used by oprs_unchanged_p. */
748 record_opr_changes (rtx_insn
*insn
)
752 /* Find all stores and record them. */
753 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
755 /* Also record autoincremented REGs for this insn as changed. */
756 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
757 if (REG_NOTE_KIND (note
) == REG_INC
)
758 record_last_reg_set_info (insn
, XEXP (note
, 0));
760 /* Finally, if this is a call, record all call clobbers. */
765 hard_reg_set_iterator hrsi
;
766 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, regno
, hrsi
)
767 record_last_reg_set_info_regno (insn
, regno
);
769 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
770 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
772 x
= XEXP (XEXP (link
, 0), 0);
775 gcc_assert (HARD_REGISTER_P (x
));
776 record_last_reg_set_info (insn
, x
);
780 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
781 record_last_mem_set_info (insn
);
786 /* Scan the pattern of INSN and add an entry to the hash TABLE.
787 After reload we are interested in loads/stores only. */
790 hash_scan_set (rtx_insn
*insn
)
792 rtx pat
= PATTERN (insn
);
793 rtx src
= SET_SRC (pat
);
794 rtx dest
= SET_DEST (pat
);
796 /* We are only interested in loads and stores. */
797 if (! MEM_P (src
) && ! MEM_P (dest
))
800 /* Don't mess with jumps and nops. */
801 if (JUMP_P (insn
) || set_noop_p (pat
))
806 if (/* Don't CSE something if we can't do a reg/reg copy. */
807 can_copy_p (GET_MODE (dest
))
808 /* Is SET_SRC something we want to gcse? */
809 && general_operand (src
, GET_MODE (src
))
811 /* Never consider insns touching the register stack. It may
812 create situations that reg-stack cannot handle (e.g. a stack
813 register live across an abnormal edge). */
814 && (REGNO (dest
) < FIRST_STACK_REG
|| REGNO (dest
) > LAST_STACK_REG
)
816 /* An expression is not available if its operands are
817 subsequently modified, including this insn. */
818 && oprs_unchanged_p (src
, insn
, true))
820 insert_expr_in_table (src
, insn
);
823 else if (REG_P (src
))
825 /* Only record sets of pseudo-regs in the hash table. */
826 if (/* Don't CSE something if we can't do a reg/reg copy. */
827 can_copy_p (GET_MODE (src
))
828 /* Is SET_DEST something we want to gcse? */
829 && general_operand (dest
, GET_MODE (dest
))
831 /* As above for STACK_REGS. */
832 && (REGNO (src
) < FIRST_STACK_REG
|| REGNO (src
) > LAST_STACK_REG
)
834 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
835 /* Check if the memory expression is killed after insn. */
836 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
837 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
839 insert_expr_in_table (dest
, insn
);
845 /* Create hash table of memory expressions available at end of basic
846 blocks. Basically you should think of this hash table as the
847 representation of AVAIL_OUT. This is the set of expressions that
848 is generated in a basic block and not killed before the end of the
849 same basic block. Notice that this is really a local computation. */
852 compute_hash_table (void)
856 FOR_EACH_BB_FN (bb
, cfun
)
860 /* First pass over the instructions records information used to
861 determine when registers and memory are last set.
862 Since we compute a "local" AVAIL_OUT, reset the tables that
863 help us keep track of what has been modified since the start
865 reset_opr_set_tables ();
866 FOR_BB_INSNS (bb
, insn
)
869 record_opr_changes (insn
);
872 /* The next pass actually builds the hash table. */
873 FOR_BB_INSNS (bb
, insn
)
874 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
875 hash_scan_set (insn
);
880 /* Check if register REG is killed in any insn waiting to be inserted on
881 edge E. This function is required to check that our data flow analysis
882 is still valid prior to commit_edge_insertions. */
885 reg_killed_on_edge (rtx reg
, edge e
)
889 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
890 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
896 /* Similar to above - check if register REG is used in any insn waiting
897 to be inserted on edge E.
898 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
899 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
902 reg_used_on_edge (rtx reg
, edge e
)
906 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
907 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
913 /* Return the loaded/stored register of a load/store instruction. */
916 get_avail_load_store_reg (rtx_insn
*insn
)
918 if (REG_P (SET_DEST (PATTERN (insn
))))
920 return SET_DEST (PATTERN (insn
));
924 gcc_assert (REG_P (SET_SRC (PATTERN (insn
))));
925 return SET_SRC (PATTERN (insn
));
929 /* Return nonzero if the predecessors of BB are "well behaved". */
932 bb_has_well_behaved_predecessors (basic_block bb
)
937 if (EDGE_COUNT (bb
->preds
) == 0)
940 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
942 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
945 if ((pred
->flags
& EDGE_ABNORMAL_CALL
) && cfun
->has_nonlocal_label
)
948 if (tablejump_p (BB_END (pred
->src
), NULL
, NULL
))
955 /* Search for the occurrences of expression in BB. */
958 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
960 for (; occr
!= NULL
; occr
= occr
->next
)
961 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
967 /* This handles the case where several stores feed a partially redundant
968 load. It checks if the redundancy elimination is possible and if it's
971 Redundancy elimination is possible if,
972 1) None of the operands of an insn have been modified since the start
973 of the current basic block.
974 2) In any predecessor of the current basic block, the same expression
977 See the function body for the heuristics that determine if eliminating
978 a redundancy is also worth doing, assuming it is possible. */
981 eliminate_partially_redundant_load (basic_block bb
, rtx_insn
*insn
,
985 rtx_insn
*avail_insn
= NULL
;
989 struct unoccr
*occr
, *avail_occrs
= NULL
;
990 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
992 gcov_type ok_count
= 0; /* Redundant load execution count. */
993 gcov_type critical_count
= 0; /* Execution count of critical edges. */
995 bool critical_edge_split
= false;
997 /* The execution count of the loads to be added to make the
998 load fully redundant. */
999 gcov_type not_ok_count
= 0;
1000 basic_block pred_bb
;
1002 pat
= PATTERN (insn
);
1003 dest
= SET_DEST (pat
);
1005 /* Check that the loaded register is not used, set, or killed from the
1006 beginning of the block. */
1007 if (reg_changed_after_insn_p (dest
, 0)
1008 || reg_used_between_p (dest
, PREV_INSN (BB_HEAD (bb
)), insn
))
1011 /* Check potential for replacing load with copy for predecessors. */
1012 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
1014 rtx_insn
*next_pred_bb_end
;
1017 avail_reg
= NULL_RTX
;
1018 pred_bb
= pred
->src
;
1019 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
1020 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
1021 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
1023 /* Check if the loaded register is not used. */
1024 avail_insn
= a_occr
->insn
;
1025 avail_reg
= get_avail_load_store_reg (avail_insn
);
1026 gcc_assert (avail_reg
);
1028 /* Make sure we can generate a move from register avail_reg to
1030 rtx_insn
*move
= as_a
<rtx_insn
*>
1031 (gen_move_insn (copy_rtx (dest
), copy_rtx (avail_reg
)));
1032 extract_insn (move
);
1033 if (! constrain_operands (1, get_preferred_alternatives (insn
,
1035 || reg_killed_on_edge (avail_reg
, pred
)
1036 || reg_used_on_edge (dest
, pred
))
1041 if (!reg_set_between_p (avail_reg
, avail_insn
, next_pred_bb_end
))
1042 /* AVAIL_INSN remains non-null. */
1048 if (EDGE_CRITICAL_P (pred
))
1049 critical_count
+= pred
->count
;
1051 if (avail_insn
!= NULL_RTX
)
1054 ok_count
+= pred
->count
;
1055 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest
),
1056 copy_rtx (avail_reg
)))))
1058 /* Check if there is going to be a split. */
1059 if (EDGE_CRITICAL_P (pred
))
1060 critical_edge_split
= true;
1062 else /* Its a dead move no need to generate. */
1064 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1065 sizeof (struct unoccr
));
1066 occr
->insn
= avail_insn
;
1068 occr
->next
= avail_occrs
;
1070 if (! rollback_unoccr
)
1071 rollback_unoccr
= occr
;
1075 /* Adding a load on a critical edge will cause a split. */
1076 if (EDGE_CRITICAL_P (pred
))
1077 critical_edge_split
= true;
1078 not_ok_count
+= pred
->count
;
1079 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1080 sizeof (struct unoccr
));
1081 unoccr
->insn
= NULL
;
1082 unoccr
->pred
= pred
;
1083 unoccr
->next
= unavail_occrs
;
1084 unavail_occrs
= unoccr
;
1085 if (! rollback_unoccr
)
1086 rollback_unoccr
= unoccr
;
1090 if (/* No load can be replaced by copy. */
1092 /* Prevent exploding the code. */
1093 || (optimize_bb_for_size_p (bb
) && npred_ok
> 1)
1094 /* If we don't have profile information we cannot tell if splitting
1095 a critical edge is profitable or not so don't do it. */
1096 || ((! profile_info
|| ! flag_branch_probabilities
1097 || targetm
.cannot_modify_jumps_p ())
1098 && critical_edge_split
))
1101 /* Check if it's worth applying the partial redundancy elimination. */
1102 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1104 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1107 /* Generate moves to the loaded register from where
1108 the memory is available. */
1109 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1111 avail_insn
= occr
->insn
;
1113 /* Set avail_reg to be the register having the value of the
1115 avail_reg
= get_avail_load_store_reg (avail_insn
);
1116 gcc_assert (avail_reg
);
1118 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1119 copy_rtx (avail_reg
)),
1121 stats
.moves_inserted
++;
1125 "generating move from %d to %d on edge from %d to %d\n",
1132 /* Regenerate loads where the memory is unavailable. */
1133 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1135 pred
= unoccr
->pred
;
1136 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1137 stats
.copies_inserted
++;
1142 "generating on edge from %d to %d a copy of load: ",
1145 print_rtl (dump_file
, PATTERN (insn
));
1146 fprintf (dump_file
, "\n");
1150 /* Delete the insn if it is not available in this block and mark it
1151 for deletion if it is available. If insn is available it may help
1152 discover additional redundancies, so mark it for later deletion. */
1153 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1154 a_occr
&& (a_occr
->insn
!= insn
);
1155 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
))
1160 stats
.insns_deleted
++;
1164 fprintf (dump_file
, "deleting insn:\n");
1165 print_rtl_single (dump_file
, insn
);
1166 fprintf (dump_file
, "\n");
1171 a_occr
->deleted_p
= 1;
1174 if (rollback_unoccr
)
1175 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1178 /* Performing the redundancy elimination as described before. */
1181 eliminate_partially_redundant_loads (void)
1186 /* Note we start at block 1. */
1188 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1192 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
->next_bb
,
1193 EXIT_BLOCK_PTR_FOR_FN (cfun
),
1196 /* Don't try anything on basic blocks with strange predecessors. */
1197 if (! bb_has_well_behaved_predecessors (bb
))
1200 /* Do not try anything on cold basic blocks. */
1201 if (optimize_bb_for_size_p (bb
))
1204 /* Reset the table of things changed since the start of the current
1206 reset_opr_set_tables ();
1208 /* Look at all insns in the current basic block and see if there are
1209 any loads in it that we can record. */
1210 FOR_BB_INSNS (bb
, insn
)
1212 /* Is it a load - of the form (set (reg) (mem))? */
1213 if (NONJUMP_INSN_P (insn
)
1214 && GET_CODE (PATTERN (insn
)) == SET
1215 && REG_P (SET_DEST (PATTERN (insn
)))
1216 && MEM_P (SET_SRC (PATTERN (insn
))))
1218 rtx pat
= PATTERN (insn
);
1219 rtx src
= SET_SRC (pat
);
1222 if (!MEM_VOLATILE_P (src
)
1223 && GET_MODE (src
) != BLKmode
1224 && general_operand (src
, GET_MODE (src
))
1225 /* Are the operands unchanged since the start of the
1227 && oprs_unchanged_p (src
, insn
, false)
1228 && !(cfun
->can_throw_non_call_exceptions
&& may_trap_p (src
))
1229 && !side_effects_p (src
)
1230 /* Is the expression recorded? */
1231 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1233 /* We now have a load (insn) and an available memory at
1234 its BB start (expr). Try to remove the loads if it is
1236 eliminate_partially_redundant_load (bb
, insn
, expr
);
1240 /* Keep track of everything modified by this insn, so that we
1241 know what has been modified since the start of the current
1244 record_opr_changes (insn
);
1248 commit_edge_insertions ();
1251 /* Go over the expression hash table and delete insns that were
1252 marked for later deletion. */
1254 /* This helper is called via htab_traverse. */
1256 delete_redundant_insns_1 (expr
**slot
, void *data ATTRIBUTE_UNUSED
)
1258 struct expr
*exprs
= *slot
;
1261 for (occr
= exprs
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1263 if (occr
->deleted_p
&& dbg_cnt (gcse2_delete
))
1265 delete_insn (occr
->insn
);
1266 stats
.insns_deleted
++;
1270 fprintf (dump_file
, "deleting insn:\n");
1271 print_rtl_single (dump_file
, occr
->insn
);
1272 fprintf (dump_file
, "\n");
1281 delete_redundant_insns (void)
1283 expr_table
->traverse
<void *, delete_redundant_insns_1
> (NULL
);
1285 fprintf (dump_file
, "\n");
1288 /* Main entry point of the GCSE after reload - clean some redundant loads
1292 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1295 memset (&stats
, 0, sizeof (stats
));
1297 /* Allocate memory for this pass.
1298 Also computes and initializes the insns' CUIDs. */
1301 /* We need alias analysis. */
1302 init_alias_analysis ();
1304 compute_hash_table ();
1307 dump_hash_table (dump_file
);
1309 if (expr_table
->elements () > 0)
1311 eliminate_partially_redundant_loads ();
1312 delete_redundant_insns ();
1316 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1317 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1318 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1319 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1320 fprintf (dump_file
, "\n\n");
1323 statistics_counter_event (cfun
, "copies inserted",
1324 stats
.copies_inserted
);
1325 statistics_counter_event (cfun
, "moves inserted",
1326 stats
.moves_inserted
);
1327 statistics_counter_event (cfun
, "insns deleted",
1328 stats
.insns_deleted
);
1331 /* We are finished with alias. */
1332 end_alias_analysis ();
1340 rest_of_handle_gcse2 (void)
1342 gcse_after_reload_main (get_insns ());
1343 rebuild_jump_labels (get_insns ());
1349 const pass_data pass_data_gcse2
=
1351 RTL_PASS
, /* type */
1353 OPTGROUP_NONE
, /* optinfo_flags */
1354 TV_GCSE_AFTER_RELOAD
, /* tv_id */
1355 0, /* properties_required */
1356 0, /* properties_provided */
1357 0, /* properties_destroyed */
1358 0, /* todo_flags_start */
1359 0, /* todo_flags_finish */
1362 class pass_gcse2
: public rtl_opt_pass
1365 pass_gcse2 (gcc::context
*ctxt
)
1366 : rtl_opt_pass (pass_data_gcse2
, ctxt
)
1369 /* opt_pass methods: */
1370 virtual bool gate (function
*fun
)
1372 return (optimize
> 0 && flag_gcse_after_reload
1373 && optimize_function_for_speed_p (fun
));
1376 virtual unsigned int execute (function
*) { return rest_of_handle_gcse2 (); }
1378 }; // class pass_gcse2
1383 make_pass_gcse2 (gcc::context
*ctxt
)
1385 return new pass_gcse2 (ctxt
);