PR tree-optimization/65388
[official-gcc.git] / gcc / postreload-gcse.c
blob324264ac6524660428e818743eeaabd3aab8e7f9
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
26 #include "hash-table.h"
27 #include "rtl.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "vec.h"
31 #include "double-int.h"
32 #include "input.h"
33 #include "alias.h"
34 #include "symtab.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "regs.h"
40 #include "hard-reg-set.h"
41 #include "flags.h"
42 #include "insn-config.h"
43 #include "recog.h"
44 #include "predict.h"
45 #include "function.h"
46 #include "dominance.h"
47 #include "cfg.h"
48 #include "cfgrtl.h"
49 #include "basic-block.h"
50 #include "profile.h"
51 #include "hashtab.h"
52 #include "statistics.h"
53 #include "real.h"
54 #include "fixed-value.h"
55 #include "expmed.h"
56 #include "dojump.h"
57 #include "explow.h"
58 #include "calls.h"
59 #include "emit-rtl.h"
60 #include "varasm.h"
61 #include "stmt.h"
62 #include "expr.h"
63 #include "except.h"
64 #include "intl.h"
65 #include "obstack.h"
66 #include "params.h"
67 #include "target.h"
68 #include "tree-pass.h"
69 #include "dbgcnt.h"
71 /* The following code implements gcse after reload, the purpose of this
72 pass is to cleanup redundant loads generated by reload and other
73 optimizations that come after gcse. It searches for simple inter-block
74 redundancies and tries to eliminate them by adding moves and loads
75 in cold places.
77 Perform partially redundant load elimination, try to eliminate redundant
78 loads created by the reload pass. We try to look for full or partial
79 redundant loads fed by one or more loads/stores in predecessor BBs,
80 and try adding loads to make them fully redundant. We also check if
81 it's worth adding loads to be able to delete the redundant load.
83 Algorithm:
84 1. Build available expressions hash table:
85 For each load/store instruction, if the loaded/stored memory didn't
86 change until the end of the basic block add this memory expression to
87 the hash table.
88 2. Perform Redundancy elimination:
89 For each load instruction do the following:
90 perform partial redundancy elimination, check if it's worth adding
91 loads to make the load fully redundant. If so add loads and
92 register copies and delete the load.
93 3. Delete instructions made redundant in step 2.
95 Future enhancement:
96 If the loaded register is used/defined between load and some store,
97 look for some other free register between load and all its stores,
98 and replace the load with a copy from this register to the loaded
99 register.
103 /* Keep statistics of this pass. */
104 static struct
106 int moves_inserted;
107 int copies_inserted;
108 int insns_deleted;
109 } stats;
111 /* We need to keep a hash table of expressions. The table entries are of
112 type 'struct expr', and for each expression there is a single linked
113 list of occurrences. */
115 /* Expression elements in the hash table. */
116 struct expr
118 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
119 rtx expr;
121 /* The same hash for this entry. */
122 hashval_t hash;
124 /* List of available occurrence in basic blocks in the function. */
125 struct occr *avail_occr;
128 /* Hashtable helpers. */
130 struct expr_hasher : typed_noop_remove <expr>
132 typedef expr value_type;
133 typedef expr compare_type;
134 static inline hashval_t hash (const value_type *);
135 static inline bool equal (const value_type *, const compare_type *);
139 /* Hash expression X.
140 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
141 or if the expression contains something we don't want to insert in the
142 table. */
144 static hashval_t
145 hash_expr (rtx x, int *do_not_record_p)
147 *do_not_record_p = 0;
148 return hash_rtx (x, GET_MODE (x), do_not_record_p,
149 NULL, /*have_reg_qty=*/false);
152 /* Callback for hashtab.
153 Return the hash value for expression EXP. We don't actually hash
154 here, we just return the cached hash value. */
156 inline hashval_t
157 expr_hasher::hash (const value_type *exp)
159 return exp->hash;
162 /* Callback for hashtab.
163 Return nonzero if exp1 is equivalent to exp2. */
165 inline bool
166 expr_hasher::equal (const value_type *exp1, const compare_type *exp2)
168 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
170 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
171 return equiv_p;
174 /* The table itself. */
175 static hash_table<expr_hasher> *expr_table;
178 static struct obstack expr_obstack;
180 /* Occurrence of an expression.
181 There is at most one occurrence per basic block. If a pattern appears
182 more than once, the last appearance is used. */
184 struct occr
186 /* Next occurrence of this expression. */
187 struct occr *next;
188 /* The insn that computes the expression. */
189 rtx_insn *insn;
190 /* Nonzero if this [anticipatable] occurrence has been deleted. */
191 char deleted_p;
194 static struct obstack occr_obstack;
196 /* The following structure holds the information about the occurrences of
197 the redundant instructions. */
198 struct unoccr
200 struct unoccr *next;
201 edge pred;
202 rtx_insn *insn;
205 static struct obstack unoccr_obstack;
207 /* Array where each element is the CUID if the insn that last set the hard
208 register with the number of the element, since the start of the current
209 basic block.
211 This array is used during the building of the hash table (step 1) to
212 determine if a reg is killed before the end of a basic block.
214 It is also used when eliminating partial redundancies (step 2) to see
215 if a reg was modified since the start of a basic block. */
216 static int *reg_avail_info;
218 /* A list of insns that may modify memory within the current basic block. */
219 struct modifies_mem
221 rtx_insn *insn;
222 struct modifies_mem *next;
224 static struct modifies_mem *modifies_mem_list;
226 /* The modifies_mem structs also go on an obstack, only this obstack is
227 freed each time after completing the analysis or transformations on
228 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
229 object on the obstack to keep track of the bottom of the obstack. */
230 static struct obstack modifies_mem_obstack;
231 static struct modifies_mem *modifies_mem_obstack_bottom;
233 /* Mapping of insn UIDs to CUIDs.
234 CUIDs are like UIDs except they increase monotonically in each basic
235 block, have no gaps, and only apply to real insns. */
236 static int *uid_cuid;
237 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
240 /* Helpers for memory allocation/freeing. */
241 static void alloc_mem (void);
242 static void free_mem (void);
244 /* Support for hash table construction and transformations. */
245 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
246 static void record_last_reg_set_info (rtx_insn *, rtx);
247 static void record_last_reg_set_info_regno (rtx_insn *, int);
248 static void record_last_mem_set_info (rtx_insn *);
249 static void record_last_set_info (rtx, const_rtx, void *);
250 static void record_opr_changes (rtx_insn *);
252 static void find_mem_conflicts (rtx, const_rtx, void *);
253 static int load_killed_in_block_p (int, rtx, bool);
254 static void reset_opr_set_tables (void);
256 /* Hash table support. */
257 static hashval_t hash_expr (rtx, int *);
258 static void insert_expr_in_table (rtx, rtx_insn *);
259 static struct expr *lookup_expr_in_table (rtx);
260 static void dump_hash_table (FILE *);
262 /* Helpers for eliminate_partially_redundant_load. */
263 static bool reg_killed_on_edge (rtx, edge);
264 static bool reg_used_on_edge (rtx, edge);
266 static rtx get_avail_load_store_reg (rtx_insn *);
268 static bool bb_has_well_behaved_predecessors (basic_block);
269 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
270 static void hash_scan_set (rtx_insn *);
271 static void compute_hash_table (void);
273 /* The work horses of this pass. */
274 static void eliminate_partially_redundant_load (basic_block,
275 rtx_insn *,
276 struct expr *);
277 static void eliminate_partially_redundant_loads (void);
280 /* Allocate memory for the CUID mapping array and register/memory
281 tracking tables. */
283 static void
284 alloc_mem (void)
286 int i;
287 basic_block bb;
288 rtx_insn *insn;
290 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
291 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
292 i = 1;
293 FOR_EACH_BB_FN (bb, cfun)
294 FOR_BB_INSNS (bb, insn)
296 if (INSN_P (insn))
297 uid_cuid[INSN_UID (insn)] = i++;
298 else
299 uid_cuid[INSN_UID (insn)] = i;
302 /* Allocate the available expressions hash table. We don't want to
303 make the hash table too small, but unnecessarily making it too large
304 also doesn't help. The i/4 is a gcse.c relic, and seems like a
305 reasonable choice. */
306 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
308 /* We allocate everything on obstacks because we often can roll back
309 the whole obstack to some point. Freeing obstacks is very fast. */
310 gcc_obstack_init (&expr_obstack);
311 gcc_obstack_init (&occr_obstack);
312 gcc_obstack_init (&unoccr_obstack);
313 gcc_obstack_init (&modifies_mem_obstack);
315 /* Working array used to track the last set for each register
316 in the current block. */
317 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
319 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
320 can roll it back in reset_opr_set_tables. */
321 modifies_mem_obstack_bottom =
322 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
323 sizeof (struct modifies_mem));
326 /* Free memory allocated by alloc_mem. */
328 static void
329 free_mem (void)
331 free (uid_cuid);
333 delete expr_table;
334 expr_table = NULL;
336 obstack_free (&expr_obstack, NULL);
337 obstack_free (&occr_obstack, NULL);
338 obstack_free (&unoccr_obstack, NULL);
339 obstack_free (&modifies_mem_obstack, NULL);
341 free (reg_avail_info);
345 /* Insert expression X in INSN in the hash TABLE.
346 If it is already present, record it as the last occurrence in INSN's
347 basic block. */
349 static void
350 insert_expr_in_table (rtx x, rtx_insn *insn)
352 int do_not_record_p;
353 hashval_t hash;
354 struct expr *cur_expr, **slot;
355 struct occr *avail_occr, *last_occr = NULL;
357 hash = hash_expr (x, &do_not_record_p);
359 /* Do not insert expression in the table if it contains volatile operands,
360 or if hash_expr determines the expression is something we don't want
361 to or can't handle. */
362 if (do_not_record_p)
363 return;
365 /* We anticipate that redundant expressions are rare, so for convenience
366 allocate a new hash table element here already and set its fields.
367 If we don't do this, we need a hack with a static struct expr. Anyway,
368 obstack_free is really fast and one more obstack_alloc doesn't hurt if
369 we're going to see more expressions later on. */
370 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
371 sizeof (struct expr));
372 cur_expr->expr = x;
373 cur_expr->hash = hash;
374 cur_expr->avail_occr = NULL;
376 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
378 if (! (*slot))
379 /* The expression isn't found, so insert it. */
380 *slot = cur_expr;
381 else
383 /* The expression is already in the table, so roll back the
384 obstack and use the existing table entry. */
385 obstack_free (&expr_obstack, cur_expr);
386 cur_expr = *slot;
389 /* Search for another occurrence in the same basic block. */
390 avail_occr = cur_expr->avail_occr;
391 while (avail_occr
392 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
394 /* If an occurrence isn't found, save a pointer to the end of
395 the list. */
396 last_occr = avail_occr;
397 avail_occr = avail_occr->next;
400 if (avail_occr)
401 /* Found another instance of the expression in the same basic block.
402 Prefer this occurrence to the currently recorded one. We want
403 the last one in the block and the block is scanned from start
404 to end. */
405 avail_occr->insn = insn;
406 else
408 /* First occurrence of this expression in this basic block. */
409 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
410 sizeof (struct occr));
412 /* First occurrence of this expression in any block? */
413 if (cur_expr->avail_occr == NULL)
414 cur_expr->avail_occr = avail_occr;
415 else
416 last_occr->next = avail_occr;
418 avail_occr->insn = insn;
419 avail_occr->next = NULL;
420 avail_occr->deleted_p = 0;
425 /* Lookup pattern PAT in the expression hash table.
426 The result is a pointer to the table entry, or NULL if not found. */
428 static struct expr *
429 lookup_expr_in_table (rtx pat)
431 int do_not_record_p;
432 struct expr **slot, *tmp_expr;
433 hashval_t hash = hash_expr (pat, &do_not_record_p);
435 if (do_not_record_p)
436 return NULL;
438 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
439 sizeof (struct expr));
440 tmp_expr->expr = pat;
441 tmp_expr->hash = hash;
442 tmp_expr->avail_occr = NULL;
444 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
445 obstack_free (&expr_obstack, tmp_expr);
447 if (!slot)
448 return NULL;
449 else
450 return (*slot);
454 /* Dump all expressions and occurrences that are currently in the
455 expression hash table to FILE. */
457 /* This helper is called via htab_traverse. */
459 dump_expr_hash_table_entry (expr **slot, FILE *file)
461 struct expr *exprs = *slot;
462 struct occr *occr;
464 fprintf (file, "expr: ");
465 print_rtl (file, exprs->expr);
466 fprintf (file,"\nhashcode: %u\n", exprs->hash);
467 fprintf (file,"list of occurrences:\n");
468 occr = exprs->avail_occr;
469 while (occr)
471 rtx_insn *insn = occr->insn;
472 print_rtl_single (file, insn);
473 fprintf (file, "\n");
474 occr = occr->next;
476 fprintf (file, "\n");
477 return 1;
480 static void
481 dump_hash_table (FILE *file)
483 fprintf (file, "\n\nexpression hash table\n");
484 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
485 (long) expr_table->size (),
486 (long) expr_table->elements (),
487 expr_table->collisions ());
488 if (expr_table->elements () > 0)
490 fprintf (file, "\n\ntable entries:\n");
491 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
493 fprintf (file, "\n");
496 /* Return true if register X is recorded as being set by an instruction
497 whose CUID is greater than the one given. */
499 static bool
500 reg_changed_after_insn_p (rtx x, int cuid)
502 unsigned int regno, end_regno;
504 regno = REGNO (x);
505 end_regno = END_HARD_REGNO (x);
507 if (reg_avail_info[regno] > cuid)
508 return true;
509 while (++regno < end_regno);
510 return false;
513 /* Return nonzero if the operands of expression X are unchanged
514 1) from the start of INSN's basic block up to but not including INSN
515 if AFTER_INSN is false, or
516 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
518 static bool
519 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
521 int i, j;
522 enum rtx_code code;
523 const char *fmt;
525 if (x == 0)
526 return 1;
528 code = GET_CODE (x);
529 switch (code)
531 case REG:
532 /* We are called after register allocation. */
533 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
534 if (after_insn)
535 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
536 else
537 return !reg_changed_after_insn_p (x, 0);
539 case MEM:
540 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
541 return 0;
542 else
543 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
545 case PC:
546 case CC0: /*FIXME*/
547 case CONST:
548 CASE_CONST_ANY:
549 case SYMBOL_REF:
550 case LABEL_REF:
551 case ADDR_VEC:
552 case ADDR_DIFF_VEC:
553 return 1;
555 case PRE_DEC:
556 case PRE_INC:
557 case POST_DEC:
558 case POST_INC:
559 case PRE_MODIFY:
560 case POST_MODIFY:
561 if (after_insn)
562 return 0;
563 break;
565 default:
566 break;
569 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
571 if (fmt[i] == 'e')
573 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
574 return 0;
576 else if (fmt[i] == 'E')
577 for (j = 0; j < XVECLEN (x, i); j++)
578 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
579 return 0;
582 return 1;
586 /* Used for communication between find_mem_conflicts and
587 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
588 conflict between two memory references.
589 This is a bit of a hack to work around the limitations of note_stores. */
590 static int mems_conflict_p;
592 /* DEST is the output of an instruction. If it is a memory reference, and
593 possibly conflicts with the load found in DATA, then set mems_conflict_p
594 to a nonzero value. */
596 static void
597 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
598 void *data)
600 rtx mem_op = (rtx) data;
602 while (GET_CODE (dest) == SUBREG
603 || GET_CODE (dest) == ZERO_EXTRACT
604 || GET_CODE (dest) == STRICT_LOW_PART)
605 dest = XEXP (dest, 0);
607 /* If DEST is not a MEM, then it will not conflict with the load. Note
608 that function calls are assumed to clobber memory, but are handled
609 elsewhere. */
610 if (! MEM_P (dest))
611 return;
613 if (true_dependence (dest, GET_MODE (dest), mem_op))
614 mems_conflict_p = 1;
618 /* Return nonzero if the expression in X (a memory reference) is killed
619 in the current basic block before (if AFTER_INSN is false) or after
620 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
622 This function assumes that the modifies_mem table is flushed when
623 the hash table construction or redundancy elimination phases start
624 processing a new basic block. */
626 static int
627 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
629 struct modifies_mem *list_entry = modifies_mem_list;
631 while (list_entry)
633 rtx_insn *setter = list_entry->insn;
635 /* Ignore entries in the list that do not apply. */
636 if ((after_insn
637 && INSN_CUID (setter) < uid_limit)
638 || (! after_insn
639 && INSN_CUID (setter) > uid_limit))
641 list_entry = list_entry->next;
642 continue;
645 /* If SETTER is a call everything is clobbered. Note that calls
646 to pure functions are never put on the list, so we need not
647 worry about them. */
648 if (CALL_P (setter))
649 return 1;
651 /* SETTER must be an insn of some kind that sets memory. Call
652 note_stores to examine each hunk of memory that is modified.
653 It will set mems_conflict_p to nonzero if there may be a
654 conflict between X and SETTER. */
655 mems_conflict_p = 0;
656 note_stores (PATTERN (setter), find_mem_conflicts, x);
657 if (mems_conflict_p)
658 return 1;
660 list_entry = list_entry->next;
662 return 0;
666 /* Record register first/last/block set information for REGNO in INSN. */
668 static inline void
669 record_last_reg_set_info (rtx_insn *insn, rtx reg)
671 unsigned int regno, end_regno;
673 regno = REGNO (reg);
674 end_regno = END_HARD_REGNO (reg);
676 reg_avail_info[regno] = INSN_CUID (insn);
677 while (++regno < end_regno);
680 static inline void
681 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
683 reg_avail_info[regno] = INSN_CUID (insn);
687 /* Record memory modification information for INSN. We do not actually care
688 about the memory location(s) that are set, or even how they are set (consider
689 a CALL_INSN). We merely need to record which insns modify memory. */
691 static void
692 record_last_mem_set_info (rtx_insn *insn)
694 struct modifies_mem *list_entry;
696 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
697 sizeof (struct modifies_mem));
698 list_entry->insn = insn;
699 list_entry->next = modifies_mem_list;
700 modifies_mem_list = list_entry;
703 /* Called from compute_hash_table via note_stores to handle one
704 SET or CLOBBER in an insn. DATA is really the instruction in which
705 the SET is taking place. */
707 static void
708 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
710 rtx_insn *last_set_insn = (rtx_insn *) data;
712 if (GET_CODE (dest) == SUBREG)
713 dest = SUBREG_REG (dest);
715 if (REG_P (dest))
716 record_last_reg_set_info (last_set_insn, dest);
717 else if (MEM_P (dest))
719 /* Ignore pushes, they don't clobber memory. They may still
720 clobber the stack pointer though. Some targets do argument
721 pushes without adding REG_INC notes. See e.g. PR25196,
722 where a pushsi2 on i386 doesn't have REG_INC notes. Note
723 such changes here too. */
724 if (! push_operand (dest, GET_MODE (dest)))
725 record_last_mem_set_info (last_set_insn);
726 else
727 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
732 /* Reset tables used to keep track of what's still available since the
733 start of the block. */
735 static void
736 reset_opr_set_tables (void)
738 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
739 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
740 modifies_mem_list = NULL;
744 /* Record things set by INSN.
745 This data is used by oprs_unchanged_p. */
747 static void
748 record_opr_changes (rtx_insn *insn)
750 rtx note;
752 /* Find all stores and record them. */
753 note_stores (PATTERN (insn), record_last_set_info, insn);
755 /* Also record autoincremented REGs for this insn as changed. */
756 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
757 if (REG_NOTE_KIND (note) == REG_INC)
758 record_last_reg_set_info (insn, XEXP (note, 0));
760 /* Finally, if this is a call, record all call clobbers. */
761 if (CALL_P (insn))
763 unsigned int regno;
764 rtx link, x;
765 hard_reg_set_iterator hrsi;
766 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
767 record_last_reg_set_info_regno (insn, regno);
769 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
770 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
772 x = XEXP (XEXP (link, 0), 0);
773 if (REG_P (x))
775 gcc_assert (HARD_REGISTER_P (x));
776 record_last_reg_set_info (insn, x);
780 if (! RTL_CONST_OR_PURE_CALL_P (insn))
781 record_last_mem_set_info (insn);
786 /* Scan the pattern of INSN and add an entry to the hash TABLE.
787 After reload we are interested in loads/stores only. */
789 static void
790 hash_scan_set (rtx_insn *insn)
792 rtx pat = PATTERN (insn);
793 rtx src = SET_SRC (pat);
794 rtx dest = SET_DEST (pat);
796 /* We are only interested in loads and stores. */
797 if (! MEM_P (src) && ! MEM_P (dest))
798 return;
800 /* Don't mess with jumps and nops. */
801 if (JUMP_P (insn) || set_noop_p (pat))
802 return;
804 if (REG_P (dest))
806 if (/* Don't CSE something if we can't do a reg/reg copy. */
807 can_copy_p (GET_MODE (dest))
808 /* Is SET_SRC something we want to gcse? */
809 && general_operand (src, GET_MODE (src))
810 #ifdef STACK_REGS
811 /* Never consider insns touching the register stack. It may
812 create situations that reg-stack cannot handle (e.g. a stack
813 register live across an abnormal edge). */
814 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
815 #endif
816 /* An expression is not available if its operands are
817 subsequently modified, including this insn. */
818 && oprs_unchanged_p (src, insn, true))
820 insert_expr_in_table (src, insn);
823 else if (REG_P (src))
825 /* Only record sets of pseudo-regs in the hash table. */
826 if (/* Don't CSE something if we can't do a reg/reg copy. */
827 can_copy_p (GET_MODE (src))
828 /* Is SET_DEST something we want to gcse? */
829 && general_operand (dest, GET_MODE (dest))
830 #ifdef STACK_REGS
831 /* As above for STACK_REGS. */
832 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
833 #endif
834 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
835 /* Check if the memory expression is killed after insn. */
836 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
837 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
839 insert_expr_in_table (dest, insn);
845 /* Create hash table of memory expressions available at end of basic
846 blocks. Basically you should think of this hash table as the
847 representation of AVAIL_OUT. This is the set of expressions that
848 is generated in a basic block and not killed before the end of the
849 same basic block. Notice that this is really a local computation. */
851 static void
852 compute_hash_table (void)
854 basic_block bb;
856 FOR_EACH_BB_FN (bb, cfun)
858 rtx_insn *insn;
860 /* First pass over the instructions records information used to
861 determine when registers and memory are last set.
862 Since we compute a "local" AVAIL_OUT, reset the tables that
863 help us keep track of what has been modified since the start
864 of the block. */
865 reset_opr_set_tables ();
866 FOR_BB_INSNS (bb, insn)
868 if (INSN_P (insn))
869 record_opr_changes (insn);
872 /* The next pass actually builds the hash table. */
873 FOR_BB_INSNS (bb, insn)
874 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
875 hash_scan_set (insn);
880 /* Check if register REG is killed in any insn waiting to be inserted on
881 edge E. This function is required to check that our data flow analysis
882 is still valid prior to commit_edge_insertions. */
884 static bool
885 reg_killed_on_edge (rtx reg, edge e)
887 rtx_insn *insn;
889 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
890 if (INSN_P (insn) && reg_set_p (reg, insn))
891 return true;
893 return false;
896 /* Similar to above - check if register REG is used in any insn waiting
897 to be inserted on edge E.
898 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
899 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
901 static bool
902 reg_used_on_edge (rtx reg, edge e)
904 rtx_insn *insn;
906 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
907 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
908 return true;
910 return false;
913 /* Return the loaded/stored register of a load/store instruction. */
915 static rtx
916 get_avail_load_store_reg (rtx_insn *insn)
918 if (REG_P (SET_DEST (PATTERN (insn))))
919 /* A load. */
920 return SET_DEST (PATTERN (insn));
921 else
923 /* A store. */
924 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
925 return SET_SRC (PATTERN (insn));
929 /* Return nonzero if the predecessors of BB are "well behaved". */
931 static bool
932 bb_has_well_behaved_predecessors (basic_block bb)
934 edge pred;
935 edge_iterator ei;
937 if (EDGE_COUNT (bb->preds) == 0)
938 return false;
940 FOR_EACH_EDGE (pred, ei, bb->preds)
942 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
943 return false;
945 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
946 return false;
948 if (tablejump_p (BB_END (pred->src), NULL, NULL))
949 return false;
951 return true;
955 /* Search for the occurrences of expression in BB. */
957 static struct occr*
958 get_bb_avail_insn (basic_block bb, struct occr *occr)
960 for (; occr != NULL; occr = occr->next)
961 if (BLOCK_FOR_INSN (occr->insn) == bb)
962 return occr;
963 return NULL;
967 /* This handles the case where several stores feed a partially redundant
968 load. It checks if the redundancy elimination is possible and if it's
969 worth it.
971 Redundancy elimination is possible if,
972 1) None of the operands of an insn have been modified since the start
973 of the current basic block.
974 2) In any predecessor of the current basic block, the same expression
975 is generated.
977 See the function body for the heuristics that determine if eliminating
978 a redundancy is also worth doing, assuming it is possible. */
980 static void
981 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
982 struct expr *expr)
984 edge pred;
985 rtx_insn *avail_insn = NULL;
986 rtx avail_reg;
987 rtx dest, pat;
988 struct occr *a_occr;
989 struct unoccr *occr, *avail_occrs = NULL;
990 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
991 int npred_ok = 0;
992 gcov_type ok_count = 0; /* Redundant load execution count. */
993 gcov_type critical_count = 0; /* Execution count of critical edges. */
994 edge_iterator ei;
995 bool critical_edge_split = false;
997 /* The execution count of the loads to be added to make the
998 load fully redundant. */
999 gcov_type not_ok_count = 0;
1000 basic_block pred_bb;
1002 pat = PATTERN (insn);
1003 dest = SET_DEST (pat);
1005 /* Check that the loaded register is not used, set, or killed from the
1006 beginning of the block. */
1007 if (reg_changed_after_insn_p (dest, 0)
1008 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1009 return;
1011 /* Check potential for replacing load with copy for predecessors. */
1012 FOR_EACH_EDGE (pred, ei, bb->preds)
1014 rtx_insn *next_pred_bb_end;
1016 avail_insn = NULL;
1017 avail_reg = NULL_RTX;
1018 pred_bb = pred->src;
1019 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1020 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1021 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1023 /* Check if the loaded register is not used. */
1024 avail_insn = a_occr->insn;
1025 avail_reg = get_avail_load_store_reg (avail_insn);
1026 gcc_assert (avail_reg);
1028 /* Make sure we can generate a move from register avail_reg to
1029 dest. */
1030 rtx_insn *move = as_a <rtx_insn *>
1031 (gen_move_insn (copy_rtx (dest), copy_rtx (avail_reg)));
1032 extract_insn (move);
1033 if (! constrain_operands (1, get_preferred_alternatives (insn,
1034 pred_bb))
1035 || reg_killed_on_edge (avail_reg, pred)
1036 || reg_used_on_edge (dest, pred))
1038 avail_insn = NULL;
1039 continue;
1041 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1042 /* AVAIL_INSN remains non-null. */
1043 break;
1044 else
1045 avail_insn = NULL;
1048 if (EDGE_CRITICAL_P (pred))
1049 critical_count += pred->count;
1051 if (avail_insn != NULL_RTX)
1053 npred_ok++;
1054 ok_count += pred->count;
1055 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1056 copy_rtx (avail_reg)))))
1058 /* Check if there is going to be a split. */
1059 if (EDGE_CRITICAL_P (pred))
1060 critical_edge_split = true;
1062 else /* Its a dead move no need to generate. */
1063 continue;
1064 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1065 sizeof (struct unoccr));
1066 occr->insn = avail_insn;
1067 occr->pred = pred;
1068 occr->next = avail_occrs;
1069 avail_occrs = occr;
1070 if (! rollback_unoccr)
1071 rollback_unoccr = occr;
1073 else
1075 /* Adding a load on a critical edge will cause a split. */
1076 if (EDGE_CRITICAL_P (pred))
1077 critical_edge_split = true;
1078 not_ok_count += pred->count;
1079 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1080 sizeof (struct unoccr));
1081 unoccr->insn = NULL;
1082 unoccr->pred = pred;
1083 unoccr->next = unavail_occrs;
1084 unavail_occrs = unoccr;
1085 if (! rollback_unoccr)
1086 rollback_unoccr = unoccr;
1090 if (/* No load can be replaced by copy. */
1091 npred_ok == 0
1092 /* Prevent exploding the code. */
1093 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1094 /* If we don't have profile information we cannot tell if splitting
1095 a critical edge is profitable or not so don't do it. */
1096 || ((! profile_info || ! flag_branch_probabilities
1097 || targetm.cannot_modify_jumps_p ())
1098 && critical_edge_split))
1099 goto cleanup;
1101 /* Check if it's worth applying the partial redundancy elimination. */
1102 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1103 goto cleanup;
1104 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1105 goto cleanup;
1107 /* Generate moves to the loaded register from where
1108 the memory is available. */
1109 for (occr = avail_occrs; occr; occr = occr->next)
1111 avail_insn = occr->insn;
1112 pred = occr->pred;
1113 /* Set avail_reg to be the register having the value of the
1114 memory. */
1115 avail_reg = get_avail_load_store_reg (avail_insn);
1116 gcc_assert (avail_reg);
1118 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1119 copy_rtx (avail_reg)),
1120 pred);
1121 stats.moves_inserted++;
1123 if (dump_file)
1124 fprintf (dump_file,
1125 "generating move from %d to %d on edge from %d to %d\n",
1126 REGNO (avail_reg),
1127 REGNO (dest),
1128 pred->src->index,
1129 pred->dest->index);
1132 /* Regenerate loads where the memory is unavailable. */
1133 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1135 pred = unoccr->pred;
1136 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1137 stats.copies_inserted++;
1139 if (dump_file)
1141 fprintf (dump_file,
1142 "generating on edge from %d to %d a copy of load: ",
1143 pred->src->index,
1144 pred->dest->index);
1145 print_rtl (dump_file, PATTERN (insn));
1146 fprintf (dump_file, "\n");
1150 /* Delete the insn if it is not available in this block and mark it
1151 for deletion if it is available. If insn is available it may help
1152 discover additional redundancies, so mark it for later deletion. */
1153 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1154 a_occr && (a_occr->insn != insn);
1155 a_occr = get_bb_avail_insn (bb, a_occr->next))
1158 if (!a_occr)
1160 stats.insns_deleted++;
1162 if (dump_file)
1164 fprintf (dump_file, "deleting insn:\n");
1165 print_rtl_single (dump_file, insn);
1166 fprintf (dump_file, "\n");
1168 delete_insn (insn);
1170 else
1171 a_occr->deleted_p = 1;
1173 cleanup:
1174 if (rollback_unoccr)
1175 obstack_free (&unoccr_obstack, rollback_unoccr);
1178 /* Performing the redundancy elimination as described before. */
1180 static void
1181 eliminate_partially_redundant_loads (void)
1183 rtx_insn *insn;
1184 basic_block bb;
1186 /* Note we start at block 1. */
1188 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1189 return;
1191 FOR_BB_BETWEEN (bb,
1192 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1193 EXIT_BLOCK_PTR_FOR_FN (cfun),
1194 next_bb)
1196 /* Don't try anything on basic blocks with strange predecessors. */
1197 if (! bb_has_well_behaved_predecessors (bb))
1198 continue;
1200 /* Do not try anything on cold basic blocks. */
1201 if (optimize_bb_for_size_p (bb))
1202 continue;
1204 /* Reset the table of things changed since the start of the current
1205 basic block. */
1206 reset_opr_set_tables ();
1208 /* Look at all insns in the current basic block and see if there are
1209 any loads in it that we can record. */
1210 FOR_BB_INSNS (bb, insn)
1212 /* Is it a load - of the form (set (reg) (mem))? */
1213 if (NONJUMP_INSN_P (insn)
1214 && GET_CODE (PATTERN (insn)) == SET
1215 && REG_P (SET_DEST (PATTERN (insn)))
1216 && MEM_P (SET_SRC (PATTERN (insn))))
1218 rtx pat = PATTERN (insn);
1219 rtx src = SET_SRC (pat);
1220 struct expr *expr;
1222 if (!MEM_VOLATILE_P (src)
1223 && GET_MODE (src) != BLKmode
1224 && general_operand (src, GET_MODE (src))
1225 /* Are the operands unchanged since the start of the
1226 block? */
1227 && oprs_unchanged_p (src, insn, false)
1228 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1229 && !side_effects_p (src)
1230 /* Is the expression recorded? */
1231 && (expr = lookup_expr_in_table (src)) != NULL)
1233 /* We now have a load (insn) and an available memory at
1234 its BB start (expr). Try to remove the loads if it is
1235 redundant. */
1236 eliminate_partially_redundant_load (bb, insn, expr);
1240 /* Keep track of everything modified by this insn, so that we
1241 know what has been modified since the start of the current
1242 basic block. */
1243 if (INSN_P (insn))
1244 record_opr_changes (insn);
1248 commit_edge_insertions ();
1251 /* Go over the expression hash table and delete insns that were
1252 marked for later deletion. */
1254 /* This helper is called via htab_traverse. */
1256 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1258 struct expr *exprs = *slot;
1259 struct occr *occr;
1261 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1263 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1265 delete_insn (occr->insn);
1266 stats.insns_deleted++;
1268 if (dump_file)
1270 fprintf (dump_file, "deleting insn:\n");
1271 print_rtl_single (dump_file, occr->insn);
1272 fprintf (dump_file, "\n");
1277 return 1;
1280 static void
1281 delete_redundant_insns (void)
1283 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1284 if (dump_file)
1285 fprintf (dump_file, "\n");
1288 /* Main entry point of the GCSE after reload - clean some redundant loads
1289 due to spilling. */
1291 static void
1292 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1295 memset (&stats, 0, sizeof (stats));
1297 /* Allocate memory for this pass.
1298 Also computes and initializes the insns' CUIDs. */
1299 alloc_mem ();
1301 /* We need alias analysis. */
1302 init_alias_analysis ();
1304 compute_hash_table ();
1306 if (dump_file)
1307 dump_hash_table (dump_file);
1309 if (expr_table->elements () > 0)
1311 eliminate_partially_redundant_loads ();
1312 delete_redundant_insns ();
1314 if (dump_file)
1316 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1317 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1318 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1319 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1320 fprintf (dump_file, "\n\n");
1323 statistics_counter_event (cfun, "copies inserted",
1324 stats.copies_inserted);
1325 statistics_counter_event (cfun, "moves inserted",
1326 stats.moves_inserted);
1327 statistics_counter_event (cfun, "insns deleted",
1328 stats.insns_deleted);
1331 /* We are finished with alias. */
1332 end_alias_analysis ();
1334 free_mem ();
1339 static unsigned int
1340 rest_of_handle_gcse2 (void)
1342 gcse_after_reload_main (get_insns ());
1343 rebuild_jump_labels (get_insns ());
1344 return 0;
1347 namespace {
1349 const pass_data pass_data_gcse2 =
1351 RTL_PASS, /* type */
1352 "gcse2", /* name */
1353 OPTGROUP_NONE, /* optinfo_flags */
1354 TV_GCSE_AFTER_RELOAD, /* tv_id */
1355 0, /* properties_required */
1356 0, /* properties_provided */
1357 0, /* properties_destroyed */
1358 0, /* todo_flags_start */
1359 0, /* todo_flags_finish */
1362 class pass_gcse2 : public rtl_opt_pass
1364 public:
1365 pass_gcse2 (gcc::context *ctxt)
1366 : rtl_opt_pass (pass_data_gcse2, ctxt)
1369 /* opt_pass methods: */
1370 virtual bool gate (function *fun)
1372 return (optimize > 0 && flag_gcse_after_reload
1373 && optimize_function_for_speed_p (fun));
1376 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1378 }; // class pass_gcse2
1380 } // anon namespace
1382 rtl_opt_pass *
1383 make_pass_gcse2 (gcc::context *ctxt)
1385 return new pass_gcse2 (ctxt);