[ARM 2/5 big.LITTLE] Allow tuning parameters without unique tuning targets.
[official-gcc.git] / gcc / stor-layout.c
blob9325525dd9fd86c368c6184db8eaf7d2d341a0ed
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
71 void
72 internal_reference_types (void)
74 reference_types_internal = 1;
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
80 tree
81 variable_size (tree size)
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
98 return save_expr (size);
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
111 enum tree_code code = TREE_CODE (*tp);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
118 *walk_subtrees = 0;
119 return NULL_TREE;
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
126 *walk_subtrees = 0;
127 return NULL_TREE;
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
141 *walk_subtrees = 0;
142 return NULL_TREE;
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
157 return copy_tree_r (tp, walk_subtrees, data);
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
163 static tree
164 self_referential_size (tree size)
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
194 tree subst, param_name, param_type, param_decl;
196 if (DECL_P (ref))
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 if (targetm.calls.promote_prototypes (NULL_TREE)
215 && INTEGRAL_TYPE_P (param_type)
216 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
217 DECL_ARG_TYPE (param_decl) = integer_type_node;
218 else
219 DECL_ARG_TYPE (param_decl) = param_type;
220 DECL_ARTIFICIAL (param_decl) = 1;
221 TREE_READONLY (param_decl) = 1;
223 size = substitute_in_expr (size, subst, param_decl);
225 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
226 param_decl_list = chainon (param_decl, param_decl_list);
227 args->quick_push (ref);
230 self_refs.release ();
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
235 /* The 3 lists have been created in reverse order. */
236 param_type_list = nreverse (param_type_list);
237 param_decl_list = nreverse (param_decl_list);
239 /* Build the function type. */
240 return_type = TREE_TYPE (size);
241 fntype = build_function_type (return_type, param_type_list);
243 /* Build the function declaration. */
244 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
245 fnname = get_file_function_name (buf);
246 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
247 for (t = param_decl_list; t; t = DECL_CHAIN (t))
248 DECL_CONTEXT (t) = fndecl;
249 DECL_ARGUMENTS (fndecl) = param_decl_list;
250 DECL_RESULT (fndecl)
251 = build_decl (input_location, RESULT_DECL, 0, return_type);
252 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl) = 1;
257 DECL_IGNORED_P (fndecl) = 1;
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl) = 1;
261 TREE_NOTHROW (fndecl) = 1;
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl) = 1;
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl) = make_node (BLOCK);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
270 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
271 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
272 TREE_STATIC (fndecl) = 1;
274 /* Put it onto the list of size functions. */
275 vec_safe_push (size_functions, fndecl);
277 /* Replace the original expression with a call to the size function. */
278 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
281 /* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
288 void
289 finalize_size_functions (void)
291 unsigned int i;
292 tree fndecl;
294 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
296 allocate_struct_function (fndecl, false);
297 set_cfun (NULL);
298 dump_function (TDI_original, fndecl);
299 gimplify_function_tree (fndecl);
300 dump_function (TDI_generic, fndecl);
301 cgraph_finalize_function (fndecl, false);
304 vec_free (size_functions);
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
312 enum machine_mode
313 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
315 enum machine_mode mode;
317 if (limit && size > MAX_FIXED_MODE_SIZE)
318 return BLKmode;
320 /* Get the first mode which has this size, in the specified class. */
321 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 if (GET_MODE_PRECISION (mode) == size)
324 return mode;
326 return BLKmode;
329 /* Similar, except passed a tree node. */
331 enum machine_mode
332 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
334 unsigned HOST_WIDE_INT uhwi;
335 unsigned int ui;
337 if (!tree_fits_uhwi_p (size))
338 return BLKmode;
339 uhwi = tree_to_uhwi (size);
340 ui = uhwi;
341 if (uhwi != ui)
342 return BLKmode;
343 return mode_for_size (ui, mclass, limit);
346 /* Similar, but never return BLKmode; return the narrowest mode that
347 contains at least the requested number of value bits. */
349 enum machine_mode
350 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
352 enum machine_mode mode;
354 /* Get the first mode which has at least this size, in the
355 specified class. */
356 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
357 mode = GET_MODE_WIDER_MODE (mode))
358 if (GET_MODE_PRECISION (mode) >= size)
359 return mode;
361 gcc_unreachable ();
364 /* Find an integer mode of the exact same size, or BLKmode on failure. */
366 enum machine_mode
367 int_mode_for_mode (enum machine_mode mode)
369 switch (GET_MODE_CLASS (mode))
371 case MODE_INT:
372 case MODE_PARTIAL_INT:
373 break;
375 case MODE_COMPLEX_INT:
376 case MODE_COMPLEX_FLOAT:
377 case MODE_FLOAT:
378 case MODE_DECIMAL_FLOAT:
379 case MODE_VECTOR_INT:
380 case MODE_VECTOR_FLOAT:
381 case MODE_FRACT:
382 case MODE_ACCUM:
383 case MODE_UFRACT:
384 case MODE_UACCUM:
385 case MODE_VECTOR_FRACT:
386 case MODE_VECTOR_ACCUM:
387 case MODE_VECTOR_UFRACT:
388 case MODE_VECTOR_UACCUM:
389 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
390 break;
392 case MODE_RANDOM:
393 if (mode == BLKmode)
394 break;
396 /* ... fall through ... */
398 case MODE_CC:
399 default:
400 gcc_unreachable ();
403 return mode;
406 /* Find a mode that is suitable for representing a vector with
407 NUNITS elements of mode INNERMODE. Returns BLKmode if there
408 is no suitable mode. */
410 enum machine_mode
411 mode_for_vector (enum machine_mode innermode, unsigned nunits)
413 enum machine_mode mode;
415 /* First, look for a supported vector type. */
416 if (SCALAR_FLOAT_MODE_P (innermode))
417 mode = MIN_MODE_VECTOR_FLOAT;
418 else if (SCALAR_FRACT_MODE_P (innermode))
419 mode = MIN_MODE_VECTOR_FRACT;
420 else if (SCALAR_UFRACT_MODE_P (innermode))
421 mode = MIN_MODE_VECTOR_UFRACT;
422 else if (SCALAR_ACCUM_MODE_P (innermode))
423 mode = MIN_MODE_VECTOR_ACCUM;
424 else if (SCALAR_UACCUM_MODE_P (innermode))
425 mode = MIN_MODE_VECTOR_UACCUM;
426 else
427 mode = MIN_MODE_VECTOR_INT;
429 /* Do not check vector_mode_supported_p here. We'll do that
430 later in vector_type_mode. */
431 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
432 if (GET_MODE_NUNITS (mode) == nunits
433 && GET_MODE_INNER (mode) == innermode)
434 break;
436 /* For integers, try mapping it to a same-sized scalar mode. */
437 if (mode == VOIDmode
438 && GET_MODE_CLASS (innermode) == MODE_INT)
439 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
440 MODE_INT, 0);
442 if (mode == VOIDmode
443 || (GET_MODE_CLASS (mode) == MODE_INT
444 && !have_regs_of_mode[mode]))
445 return BLKmode;
447 return mode;
450 /* Return the alignment of MODE. This will be bounded by 1 and
451 BIGGEST_ALIGNMENT. */
453 unsigned int
454 get_mode_alignment (enum machine_mode mode)
456 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
459 /* Return the precision of the mode, or for a complex or vector mode the
460 precision of the mode of its elements. */
462 unsigned int
463 element_precision (enum machine_mode mode)
465 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
466 mode = GET_MODE_INNER (mode);
468 return GET_MODE_PRECISION (mode);
471 /* Return the natural mode of an array, given that it is SIZE bytes in
472 total and has elements of type ELEM_TYPE. */
474 static enum machine_mode
475 mode_for_array (tree elem_type, tree size)
477 tree elem_size;
478 unsigned HOST_WIDE_INT int_size, int_elem_size;
479 bool limit_p;
481 /* One-element arrays get the component type's mode. */
482 elem_size = TYPE_SIZE (elem_type);
483 if (simple_cst_equal (size, elem_size))
484 return TYPE_MODE (elem_type);
486 limit_p = true;
487 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
489 int_size = tree_to_uhwi (size);
490 int_elem_size = tree_to_uhwi (elem_size);
491 if (int_elem_size > 0
492 && int_size % int_elem_size == 0
493 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
494 int_size / int_elem_size))
495 limit_p = false;
497 return mode_for_size_tree (size, MODE_INT, limit_p);
500 /* Subroutine of layout_decl: Force alignment required for the data type.
501 But if the decl itself wants greater alignment, don't override that. */
503 static inline void
504 do_type_align (tree type, tree decl)
506 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
508 DECL_ALIGN (decl) = TYPE_ALIGN (type);
509 if (TREE_CODE (decl) == FIELD_DECL)
510 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
514 /* Set the size, mode and alignment of a ..._DECL node.
515 TYPE_DECL does need this for C++.
516 Note that LABEL_DECL and CONST_DECL nodes do not need this,
517 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
518 Don't call layout_decl for them.
520 KNOWN_ALIGN is the amount of alignment we can assume this
521 decl has with no special effort. It is relevant only for FIELD_DECLs
522 and depends on the previous fields.
523 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
524 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
525 the record will be aligned to suit. */
527 void
528 layout_decl (tree decl, unsigned int known_align)
530 tree type = TREE_TYPE (decl);
531 enum tree_code code = TREE_CODE (decl);
532 rtx rtl = NULL_RTX;
533 location_t loc = DECL_SOURCE_LOCATION (decl);
535 if (code == CONST_DECL)
536 return;
538 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
539 || code == TYPE_DECL ||code == FIELD_DECL);
541 rtl = DECL_RTL_IF_SET (decl);
543 if (type == error_mark_node)
544 type = void_type_node;
546 /* Usually the size and mode come from the data type without change,
547 however, the front-end may set the explicit width of the field, so its
548 size may not be the same as the size of its type. This happens with
549 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
550 also happens with other fields. For example, the C++ front-end creates
551 zero-sized fields corresponding to empty base classes, and depends on
552 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
553 size in bytes from the size in bits. If we have already set the mode,
554 don't set it again since we can be called twice for FIELD_DECLs. */
556 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
557 if (DECL_MODE (decl) == VOIDmode)
558 DECL_MODE (decl) = TYPE_MODE (type);
560 if (DECL_SIZE (decl) == 0)
562 DECL_SIZE (decl) = TYPE_SIZE (type);
563 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
565 else if (DECL_SIZE_UNIT (decl) == 0)
566 DECL_SIZE_UNIT (decl)
567 = fold_convert_loc (loc, sizetype,
568 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
569 bitsize_unit_node));
571 if (code != FIELD_DECL)
572 /* For non-fields, update the alignment from the type. */
573 do_type_align (type, decl);
574 else
575 /* For fields, it's a bit more complicated... */
577 bool old_user_align = DECL_USER_ALIGN (decl);
578 bool zero_bitfield = false;
579 bool packed_p = DECL_PACKED (decl);
580 unsigned int mfa;
582 if (DECL_BIT_FIELD (decl))
584 DECL_BIT_FIELD_TYPE (decl) = type;
586 /* A zero-length bit-field affects the alignment of the next
587 field. In essence such bit-fields are not influenced by
588 any packing due to #pragma pack or attribute packed. */
589 if (integer_zerop (DECL_SIZE (decl))
590 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
592 zero_bitfield = true;
593 packed_p = false;
594 #ifdef PCC_BITFIELD_TYPE_MATTERS
595 if (PCC_BITFIELD_TYPE_MATTERS)
596 do_type_align (type, decl);
597 else
598 #endif
600 #ifdef EMPTY_FIELD_BOUNDARY
601 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
603 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
604 DECL_USER_ALIGN (decl) = 0;
606 #endif
610 /* See if we can use an ordinary integer mode for a bit-field.
611 Conditions are: a fixed size that is correct for another mode,
612 occupying a complete byte or bytes on proper boundary. */
613 if (TYPE_SIZE (type) != 0
614 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
615 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
617 enum machine_mode xmode
618 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
619 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
621 if (xmode != BLKmode
622 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
623 && (known_align == 0 || known_align >= xalign))
625 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
626 DECL_MODE (decl) = xmode;
627 DECL_BIT_FIELD (decl) = 0;
631 /* Turn off DECL_BIT_FIELD if we won't need it set. */
632 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
633 && known_align >= TYPE_ALIGN (type)
634 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
635 DECL_BIT_FIELD (decl) = 0;
637 else if (packed_p && DECL_USER_ALIGN (decl))
638 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
639 round up; we'll reduce it again below. We want packing to
640 supersede USER_ALIGN inherited from the type, but defer to
641 alignment explicitly specified on the field decl. */;
642 else
643 do_type_align (type, decl);
645 /* If the field is packed and not explicitly aligned, give it the
646 minimum alignment. Note that do_type_align may set
647 DECL_USER_ALIGN, so we need to check old_user_align instead. */
648 if (packed_p
649 && !old_user_align)
650 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
652 if (! packed_p && ! DECL_USER_ALIGN (decl))
654 /* Some targets (i.e. i386, VMS) limit struct field alignment
655 to a lower boundary than alignment of variables unless
656 it was overridden by attribute aligned. */
657 #ifdef BIGGEST_FIELD_ALIGNMENT
658 DECL_ALIGN (decl)
659 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
660 #endif
661 #ifdef ADJUST_FIELD_ALIGN
662 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
663 #endif
666 if (zero_bitfield)
667 mfa = initial_max_fld_align * BITS_PER_UNIT;
668 else
669 mfa = maximum_field_alignment;
670 /* Should this be controlled by DECL_USER_ALIGN, too? */
671 if (mfa != 0)
672 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
675 /* Evaluate nonconstant size only once, either now or as soon as safe. */
676 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
677 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
678 if (DECL_SIZE_UNIT (decl) != 0
679 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
680 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
682 /* If requested, warn about definitions of large data objects. */
683 if (warn_larger_than
684 && (code == VAR_DECL || code == PARM_DECL)
685 && ! DECL_EXTERNAL (decl))
687 tree size = DECL_SIZE_UNIT (decl);
689 if (size != 0 && TREE_CODE (size) == INTEGER_CST
690 && compare_tree_int (size, larger_than_size) > 0)
692 int size_as_int = TREE_INT_CST_LOW (size);
694 if (compare_tree_int (size, size_as_int) == 0)
695 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
696 else
697 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
698 decl, larger_than_size);
702 /* If the RTL was already set, update its mode and mem attributes. */
703 if (rtl)
705 PUT_MODE (rtl, DECL_MODE (decl));
706 SET_DECL_RTL (decl, 0);
707 set_mem_attributes (rtl, decl, 1);
708 SET_DECL_RTL (decl, rtl);
712 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
713 a previous call to layout_decl and calls it again. */
715 void
716 relayout_decl (tree decl)
718 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
719 DECL_MODE (decl) = VOIDmode;
720 if (!DECL_USER_ALIGN (decl))
721 DECL_ALIGN (decl) = 0;
722 SET_DECL_RTL (decl, 0);
724 layout_decl (decl, 0);
727 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
728 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
729 is to be passed to all other layout functions for this record. It is the
730 responsibility of the caller to call `free' for the storage returned.
731 Note that garbage collection is not permitted until we finish laying
732 out the record. */
734 record_layout_info
735 start_record_layout (tree t)
737 record_layout_info rli = XNEW (struct record_layout_info_s);
739 rli->t = t;
741 /* If the type has a minimum specified alignment (via an attribute
742 declaration, for example) use it -- otherwise, start with a
743 one-byte alignment. */
744 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
745 rli->unpacked_align = rli->record_align;
746 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
748 #ifdef STRUCTURE_SIZE_BOUNDARY
749 /* Packed structures don't need to have minimum size. */
750 if (! TYPE_PACKED (t))
752 unsigned tmp;
754 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
755 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
756 if (maximum_field_alignment != 0)
757 tmp = MIN (tmp, maximum_field_alignment);
758 rli->record_align = MAX (rli->record_align, tmp);
760 #endif
762 rli->offset = size_zero_node;
763 rli->bitpos = bitsize_zero_node;
764 rli->prev_field = 0;
765 rli->pending_statics = 0;
766 rli->packed_maybe_necessary = 0;
767 rli->remaining_in_alignment = 0;
769 return rli;
772 /* Return the combined bit position for the byte offset OFFSET and the
773 bit position BITPOS.
775 These functions operate on byte and bit positions present in FIELD_DECLs
776 and assume that these expressions result in no (intermediate) overflow.
777 This assumption is necessary to fold the expressions as much as possible,
778 so as to avoid creating artificially variable-sized types in languages
779 supporting variable-sized types like Ada. */
781 tree
782 bit_from_pos (tree offset, tree bitpos)
784 if (TREE_CODE (offset) == PLUS_EXPR)
785 offset = size_binop (PLUS_EXPR,
786 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
787 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
788 else
789 offset = fold_convert (bitsizetype, offset);
790 return size_binop (PLUS_EXPR, bitpos,
791 size_binop (MULT_EXPR, offset, bitsize_unit_node));
794 /* Return the combined truncated byte position for the byte offset OFFSET and
795 the bit position BITPOS. */
797 tree
798 byte_from_pos (tree offset, tree bitpos)
800 tree bytepos;
801 if (TREE_CODE (bitpos) == MULT_EXPR
802 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
803 bytepos = TREE_OPERAND (bitpos, 0);
804 else
805 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
806 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
809 /* Split the bit position POS into a byte offset *POFFSET and a bit
810 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
812 void
813 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
814 tree pos)
816 tree toff_align = bitsize_int (off_align);
817 if (TREE_CODE (pos) == MULT_EXPR
818 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
820 *poffset = size_binop (MULT_EXPR,
821 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
822 size_int (off_align / BITS_PER_UNIT));
823 *pbitpos = bitsize_zero_node;
825 else
827 *poffset = size_binop (MULT_EXPR,
828 fold_convert (sizetype,
829 size_binop (FLOOR_DIV_EXPR, pos,
830 toff_align)),
831 size_int (off_align / BITS_PER_UNIT));
832 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
836 /* Given a pointer to bit and byte offsets and an offset alignment,
837 normalize the offsets so they are within the alignment. */
839 void
840 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
842 /* If the bit position is now larger than it should be, adjust it
843 downwards. */
844 if (compare_tree_int (*pbitpos, off_align) >= 0)
846 tree offset, bitpos;
847 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
848 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
849 *pbitpos = bitpos;
853 /* Print debugging information about the information in RLI. */
855 DEBUG_FUNCTION void
856 debug_rli (record_layout_info rli)
858 print_node_brief (stderr, "type", rli->t, 0);
859 print_node_brief (stderr, "\noffset", rli->offset, 0);
860 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
862 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
863 rli->record_align, rli->unpacked_align,
864 rli->offset_align);
866 /* The ms_struct code is the only that uses this. */
867 if (targetm.ms_bitfield_layout_p (rli->t))
868 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
870 if (rli->packed_maybe_necessary)
871 fprintf (stderr, "packed may be necessary\n");
873 if (!vec_safe_is_empty (rli->pending_statics))
875 fprintf (stderr, "pending statics:\n");
876 debug_vec_tree (rli->pending_statics);
880 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
881 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
883 void
884 normalize_rli (record_layout_info rli)
886 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
889 /* Returns the size in bytes allocated so far. */
891 tree
892 rli_size_unit_so_far (record_layout_info rli)
894 return byte_from_pos (rli->offset, rli->bitpos);
897 /* Returns the size in bits allocated so far. */
899 tree
900 rli_size_so_far (record_layout_info rli)
902 return bit_from_pos (rli->offset, rli->bitpos);
905 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
906 the next available location within the record is given by KNOWN_ALIGN.
907 Update the variable alignment fields in RLI, and return the alignment
908 to give the FIELD. */
910 unsigned int
911 update_alignment_for_field (record_layout_info rli, tree field,
912 unsigned int known_align)
914 /* The alignment required for FIELD. */
915 unsigned int desired_align;
916 /* The type of this field. */
917 tree type = TREE_TYPE (field);
918 /* True if the field was explicitly aligned by the user. */
919 bool user_align;
920 bool is_bitfield;
922 /* Do not attempt to align an ERROR_MARK node */
923 if (TREE_CODE (type) == ERROR_MARK)
924 return 0;
926 /* Lay out the field so we know what alignment it needs. */
927 layout_decl (field, known_align);
928 desired_align = DECL_ALIGN (field);
929 user_align = DECL_USER_ALIGN (field);
931 is_bitfield = (type != error_mark_node
932 && DECL_BIT_FIELD_TYPE (field)
933 && ! integer_zerop (TYPE_SIZE (type)));
935 /* Record must have at least as much alignment as any field.
936 Otherwise, the alignment of the field within the record is
937 meaningless. */
938 if (targetm.ms_bitfield_layout_p (rli->t))
940 /* Here, the alignment of the underlying type of a bitfield can
941 affect the alignment of a record; even a zero-sized field
942 can do this. The alignment should be to the alignment of
943 the type, except that for zero-size bitfields this only
944 applies if there was an immediately prior, nonzero-size
945 bitfield. (That's the way it is, experimentally.) */
946 if ((!is_bitfield && !DECL_PACKED (field))
947 || ((DECL_SIZE (field) == NULL_TREE
948 || !integer_zerop (DECL_SIZE (field)))
949 ? !DECL_PACKED (field)
950 : (rli->prev_field
951 && DECL_BIT_FIELD_TYPE (rli->prev_field)
952 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
954 unsigned int type_align = TYPE_ALIGN (type);
955 type_align = MAX (type_align, desired_align);
956 if (maximum_field_alignment != 0)
957 type_align = MIN (type_align, maximum_field_alignment);
958 rli->record_align = MAX (rli->record_align, type_align);
959 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
962 #ifdef PCC_BITFIELD_TYPE_MATTERS
963 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
965 /* Named bit-fields cause the entire structure to have the
966 alignment implied by their type. Some targets also apply the same
967 rules to unnamed bitfields. */
968 if (DECL_NAME (field) != 0
969 || targetm.align_anon_bitfield ())
971 unsigned int type_align = TYPE_ALIGN (type);
973 #ifdef ADJUST_FIELD_ALIGN
974 if (! TYPE_USER_ALIGN (type))
975 type_align = ADJUST_FIELD_ALIGN (field, type_align);
976 #endif
978 /* Targets might chose to handle unnamed and hence possibly
979 zero-width bitfield. Those are not influenced by #pragmas
980 or packed attributes. */
981 if (integer_zerop (DECL_SIZE (field)))
983 if (initial_max_fld_align)
984 type_align = MIN (type_align,
985 initial_max_fld_align * BITS_PER_UNIT);
987 else if (maximum_field_alignment != 0)
988 type_align = MIN (type_align, maximum_field_alignment);
989 else if (DECL_PACKED (field))
990 type_align = MIN (type_align, BITS_PER_UNIT);
992 /* The alignment of the record is increased to the maximum
993 of the current alignment, the alignment indicated on the
994 field (i.e., the alignment specified by an __aligned__
995 attribute), and the alignment indicated by the type of
996 the field. */
997 rli->record_align = MAX (rli->record_align, desired_align);
998 rli->record_align = MAX (rli->record_align, type_align);
1000 if (warn_packed)
1001 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1002 user_align |= TYPE_USER_ALIGN (type);
1005 #endif
1006 else
1008 rli->record_align = MAX (rli->record_align, desired_align);
1009 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1012 TYPE_USER_ALIGN (rli->t) |= user_align;
1014 return desired_align;
1017 /* Called from place_field to handle unions. */
1019 static void
1020 place_union_field (record_layout_info rli, tree field)
1022 update_alignment_for_field (rli, field, /*known_align=*/0);
1024 DECL_FIELD_OFFSET (field) = size_zero_node;
1025 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1026 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1028 /* If this is an ERROR_MARK return *after* having set the
1029 field at the start of the union. This helps when parsing
1030 invalid fields. */
1031 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1032 return;
1034 /* We assume the union's size will be a multiple of a byte so we don't
1035 bother with BITPOS. */
1036 if (TREE_CODE (rli->t) == UNION_TYPE)
1037 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1038 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1039 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1040 DECL_SIZE_UNIT (field), rli->offset);
1043 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1044 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1045 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1046 units of alignment than the underlying TYPE. */
1047 static int
1048 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1049 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1051 /* Note that the calculation of OFFSET might overflow; we calculate it so
1052 that we still get the right result as long as ALIGN is a power of two. */
1053 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1055 offset = offset % align;
1056 return ((offset + size + align - 1) / align
1057 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1059 #endif
1061 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1062 is a FIELD_DECL to be added after those fields already present in
1063 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1064 callers that desire that behavior must manually perform that step.) */
1066 void
1067 place_field (record_layout_info rli, tree field)
1069 /* The alignment required for FIELD. */
1070 unsigned int desired_align;
1071 /* The alignment FIELD would have if we just dropped it into the
1072 record as it presently stands. */
1073 unsigned int known_align;
1074 unsigned int actual_align;
1075 /* The type of this field. */
1076 tree type = TREE_TYPE (field);
1078 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1080 /* If FIELD is static, then treat it like a separate variable, not
1081 really like a structure field. If it is a FUNCTION_DECL, it's a
1082 method. In both cases, all we do is lay out the decl, and we do
1083 it *after* the record is laid out. */
1084 if (TREE_CODE (field) == VAR_DECL)
1086 vec_safe_push (rli->pending_statics, field);
1087 return;
1090 /* Enumerators and enum types which are local to this class need not
1091 be laid out. Likewise for initialized constant fields. */
1092 else if (TREE_CODE (field) != FIELD_DECL)
1093 return;
1095 /* Unions are laid out very differently than records, so split
1096 that code off to another function. */
1097 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1099 place_union_field (rli, field);
1100 return;
1103 else if (TREE_CODE (type) == ERROR_MARK)
1105 /* Place this field at the current allocation position, so we
1106 maintain monotonicity. */
1107 DECL_FIELD_OFFSET (field) = rli->offset;
1108 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1109 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1110 return;
1113 /* Work out the known alignment so far. Note that A & (-A) is the
1114 value of the least-significant bit in A that is one. */
1115 if (! integer_zerop (rli->bitpos))
1116 known_align = (tree_to_uhwi (rli->bitpos)
1117 & - tree_to_uhwi (rli->bitpos));
1118 else if (integer_zerop (rli->offset))
1119 known_align = 0;
1120 else if (tree_fits_uhwi_p (rli->offset))
1121 known_align = (BITS_PER_UNIT
1122 * (tree_to_uhwi (rli->offset)
1123 & - tree_to_uhwi (rli->offset)));
1124 else
1125 known_align = rli->offset_align;
1127 desired_align = update_alignment_for_field (rli, field, known_align);
1128 if (known_align == 0)
1129 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1131 if (warn_packed && DECL_PACKED (field))
1133 if (known_align >= TYPE_ALIGN (type))
1135 if (TYPE_ALIGN (type) > desired_align)
1137 if (STRICT_ALIGNMENT)
1138 warning (OPT_Wattributes, "packed attribute causes "
1139 "inefficient alignment for %q+D", field);
1140 /* Don't warn if DECL_PACKED was set by the type. */
1141 else if (!TYPE_PACKED (rli->t))
1142 warning (OPT_Wattributes, "packed attribute is "
1143 "unnecessary for %q+D", field);
1146 else
1147 rli->packed_maybe_necessary = 1;
1150 /* Does this field automatically have alignment it needs by virtue
1151 of the fields that precede it and the record's own alignment? */
1152 if (known_align < desired_align)
1154 /* No, we need to skip space before this field.
1155 Bump the cumulative size to multiple of field alignment. */
1157 if (!targetm.ms_bitfield_layout_p (rli->t)
1158 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1159 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1161 /* If the alignment is still within offset_align, just align
1162 the bit position. */
1163 if (desired_align < rli->offset_align)
1164 rli->bitpos = round_up (rli->bitpos, desired_align);
1165 else
1167 /* First adjust OFFSET by the partial bits, then align. */
1168 rli->offset
1169 = size_binop (PLUS_EXPR, rli->offset,
1170 fold_convert (sizetype,
1171 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1172 bitsize_unit_node)));
1173 rli->bitpos = bitsize_zero_node;
1175 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1178 if (! TREE_CONSTANT (rli->offset))
1179 rli->offset_align = desired_align;
1180 if (targetm.ms_bitfield_layout_p (rli->t))
1181 rli->prev_field = NULL;
1184 /* Handle compatibility with PCC. Note that if the record has any
1185 variable-sized fields, we need not worry about compatibility. */
1186 #ifdef PCC_BITFIELD_TYPE_MATTERS
1187 if (PCC_BITFIELD_TYPE_MATTERS
1188 && ! targetm.ms_bitfield_layout_p (rli->t)
1189 && TREE_CODE (field) == FIELD_DECL
1190 && type != error_mark_node
1191 && DECL_BIT_FIELD (field)
1192 && (! DECL_PACKED (field)
1193 /* Enter for these packed fields only to issue a warning. */
1194 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1195 && maximum_field_alignment == 0
1196 && ! integer_zerop (DECL_SIZE (field))
1197 && tree_fits_uhwi_p (DECL_SIZE (field))
1198 && tree_fits_uhwi_p (rli->offset)
1199 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1201 unsigned int type_align = TYPE_ALIGN (type);
1202 tree dsize = DECL_SIZE (field);
1203 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1204 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1205 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1207 #ifdef ADJUST_FIELD_ALIGN
1208 if (! TYPE_USER_ALIGN (type))
1209 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1210 #endif
1212 /* A bit field may not span more units of alignment of its type
1213 than its type itself. Advance to next boundary if necessary. */
1214 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1216 if (DECL_PACKED (field))
1218 if (warn_packed_bitfield_compat == 1)
1219 inform
1220 (input_location,
1221 "offset of packed bit-field %qD has changed in GCC 4.4",
1222 field);
1224 else
1225 rli->bitpos = round_up (rli->bitpos, type_align);
1228 if (! DECL_PACKED (field))
1229 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1231 #endif
1233 #ifdef BITFIELD_NBYTES_LIMITED
1234 if (BITFIELD_NBYTES_LIMITED
1235 && ! targetm.ms_bitfield_layout_p (rli->t)
1236 && TREE_CODE (field) == FIELD_DECL
1237 && type != error_mark_node
1238 && DECL_BIT_FIELD_TYPE (field)
1239 && ! DECL_PACKED (field)
1240 && ! integer_zerop (DECL_SIZE (field))
1241 && tree_fits_uhwi_p (DECL_SIZE (field))
1242 && tree_fits_uhwi_p (rli->offset)
1243 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1245 unsigned int type_align = TYPE_ALIGN (type);
1246 tree dsize = DECL_SIZE (field);
1247 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1248 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1249 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1251 #ifdef ADJUST_FIELD_ALIGN
1252 if (! TYPE_USER_ALIGN (type))
1253 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1254 #endif
1256 if (maximum_field_alignment != 0)
1257 type_align = MIN (type_align, maximum_field_alignment);
1258 /* ??? This test is opposite the test in the containing if
1259 statement, so this code is unreachable currently. */
1260 else if (DECL_PACKED (field))
1261 type_align = MIN (type_align, BITS_PER_UNIT);
1263 /* A bit field may not span the unit of alignment of its type.
1264 Advance to next boundary if necessary. */
1265 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1266 rli->bitpos = round_up (rli->bitpos, type_align);
1268 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1270 #endif
1272 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1273 A subtlety:
1274 When a bit field is inserted into a packed record, the whole
1275 size of the underlying type is used by one or more same-size
1276 adjacent bitfields. (That is, if its long:3, 32 bits is
1277 used in the record, and any additional adjacent long bitfields are
1278 packed into the same chunk of 32 bits. However, if the size
1279 changes, a new field of that size is allocated.) In an unpacked
1280 record, this is the same as using alignment, but not equivalent
1281 when packing.
1283 Note: for compatibility, we use the type size, not the type alignment
1284 to determine alignment, since that matches the documentation */
1286 if (targetm.ms_bitfield_layout_p (rli->t))
1288 tree prev_saved = rli->prev_field;
1289 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1291 /* This is a bitfield if it exists. */
1292 if (rli->prev_field)
1294 /* If both are bitfields, nonzero, and the same size, this is
1295 the middle of a run. Zero declared size fields are special
1296 and handled as "end of run". (Note: it's nonzero declared
1297 size, but equal type sizes!) (Since we know that both
1298 the current and previous fields are bitfields by the
1299 time we check it, DECL_SIZE must be present for both.) */
1300 if (DECL_BIT_FIELD_TYPE (field)
1301 && !integer_zerop (DECL_SIZE (field))
1302 && !integer_zerop (DECL_SIZE (rli->prev_field))
1303 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1304 && tree_fits_uhwi_p (TYPE_SIZE (type))
1305 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1307 /* We're in the middle of a run of equal type size fields; make
1308 sure we realign if we run out of bits. (Not decl size,
1309 type size!) */
1310 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1312 if (rli->remaining_in_alignment < bitsize)
1314 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1316 /* out of bits; bump up to next 'word'. */
1317 rli->bitpos
1318 = size_binop (PLUS_EXPR, rli->bitpos,
1319 bitsize_int (rli->remaining_in_alignment));
1320 rli->prev_field = field;
1321 if (typesize < bitsize)
1322 rli->remaining_in_alignment = 0;
1323 else
1324 rli->remaining_in_alignment = typesize - bitsize;
1326 else
1327 rli->remaining_in_alignment -= bitsize;
1329 else
1331 /* End of a run: if leaving a run of bitfields of the same type
1332 size, we have to "use up" the rest of the bits of the type
1333 size.
1335 Compute the new position as the sum of the size for the prior
1336 type and where we first started working on that type.
1337 Note: since the beginning of the field was aligned then
1338 of course the end will be too. No round needed. */
1340 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1342 rli->bitpos
1343 = size_binop (PLUS_EXPR, rli->bitpos,
1344 bitsize_int (rli->remaining_in_alignment));
1346 else
1347 /* We "use up" size zero fields; the code below should behave
1348 as if the prior field was not a bitfield. */
1349 prev_saved = NULL;
1351 /* Cause a new bitfield to be captured, either this time (if
1352 currently a bitfield) or next time we see one. */
1353 if (!DECL_BIT_FIELD_TYPE (field)
1354 || integer_zerop (DECL_SIZE (field)))
1355 rli->prev_field = NULL;
1358 normalize_rli (rli);
1361 /* If we're starting a new run of same type size bitfields
1362 (or a run of non-bitfields), set up the "first of the run"
1363 fields.
1365 That is, if the current field is not a bitfield, or if there
1366 was a prior bitfield the type sizes differ, or if there wasn't
1367 a prior bitfield the size of the current field is nonzero.
1369 Note: we must be sure to test ONLY the type size if there was
1370 a prior bitfield and ONLY for the current field being zero if
1371 there wasn't. */
1373 if (!DECL_BIT_FIELD_TYPE (field)
1374 || (prev_saved != NULL
1375 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1376 : !integer_zerop (DECL_SIZE (field)) ))
1378 /* Never smaller than a byte for compatibility. */
1379 unsigned int type_align = BITS_PER_UNIT;
1381 /* (When not a bitfield), we could be seeing a flex array (with
1382 no DECL_SIZE). Since we won't be using remaining_in_alignment
1383 until we see a bitfield (and come by here again) we just skip
1384 calculating it. */
1385 if (DECL_SIZE (field) != NULL
1386 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1387 && tree_fits_uhwi_p (DECL_SIZE (field)))
1389 unsigned HOST_WIDE_INT bitsize
1390 = tree_to_uhwi (DECL_SIZE (field));
1391 unsigned HOST_WIDE_INT typesize
1392 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1394 if (typesize < bitsize)
1395 rli->remaining_in_alignment = 0;
1396 else
1397 rli->remaining_in_alignment = typesize - bitsize;
1400 /* Now align (conventionally) for the new type. */
1401 type_align = TYPE_ALIGN (TREE_TYPE (field));
1403 if (maximum_field_alignment != 0)
1404 type_align = MIN (type_align, maximum_field_alignment);
1406 rli->bitpos = round_up (rli->bitpos, type_align);
1408 /* If we really aligned, don't allow subsequent bitfields
1409 to undo that. */
1410 rli->prev_field = NULL;
1414 /* Offset so far becomes the position of this field after normalizing. */
1415 normalize_rli (rli);
1416 DECL_FIELD_OFFSET (field) = rli->offset;
1417 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1418 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1420 /* If this field ended up more aligned than we thought it would be (we
1421 approximate this by seeing if its position changed), lay out the field
1422 again; perhaps we can use an integral mode for it now. */
1423 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1424 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1425 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1426 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1427 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1428 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1429 actual_align = (BITS_PER_UNIT
1430 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1431 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1432 else
1433 actual_align = DECL_OFFSET_ALIGN (field);
1434 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1435 store / extract bit field operations will check the alignment of the
1436 record against the mode of bit fields. */
1438 if (known_align != actual_align)
1439 layout_decl (field, actual_align);
1441 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1442 rli->prev_field = field;
1444 /* Now add size of this field to the size of the record. If the size is
1445 not constant, treat the field as being a multiple of bytes and just
1446 adjust the offset, resetting the bit position. Otherwise, apportion the
1447 size amongst the bit position and offset. First handle the case of an
1448 unspecified size, which can happen when we have an invalid nested struct
1449 definition, such as struct j { struct j { int i; } }. The error message
1450 is printed in finish_struct. */
1451 if (DECL_SIZE (field) == 0)
1452 /* Do nothing. */;
1453 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1454 || TREE_OVERFLOW (DECL_SIZE (field)))
1456 rli->offset
1457 = size_binop (PLUS_EXPR, rli->offset,
1458 fold_convert (sizetype,
1459 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1460 bitsize_unit_node)));
1461 rli->offset
1462 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1463 rli->bitpos = bitsize_zero_node;
1464 rli->offset_align = MIN (rli->offset_align, desired_align);
1466 else if (targetm.ms_bitfield_layout_p (rli->t))
1468 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1470 /* If we ended a bitfield before the full length of the type then
1471 pad the struct out to the full length of the last type. */
1472 if ((DECL_CHAIN (field) == NULL
1473 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1474 && DECL_BIT_FIELD_TYPE (field)
1475 && !integer_zerop (DECL_SIZE (field)))
1476 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1477 bitsize_int (rli->remaining_in_alignment));
1479 normalize_rli (rli);
1481 else
1483 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1484 normalize_rli (rli);
1488 /* Assuming that all the fields have been laid out, this function uses
1489 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1490 indicated by RLI. */
1492 static void
1493 finalize_record_size (record_layout_info rli)
1495 tree unpadded_size, unpadded_size_unit;
1497 /* Now we want just byte and bit offsets, so set the offset alignment
1498 to be a byte and then normalize. */
1499 rli->offset_align = BITS_PER_UNIT;
1500 normalize_rli (rli);
1502 /* Determine the desired alignment. */
1503 #ifdef ROUND_TYPE_ALIGN
1504 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1505 rli->record_align);
1506 #else
1507 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1508 #endif
1510 /* Compute the size so far. Be sure to allow for extra bits in the
1511 size in bytes. We have guaranteed above that it will be no more
1512 than a single byte. */
1513 unpadded_size = rli_size_so_far (rli);
1514 unpadded_size_unit = rli_size_unit_so_far (rli);
1515 if (! integer_zerop (rli->bitpos))
1516 unpadded_size_unit
1517 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1519 /* Round the size up to be a multiple of the required alignment. */
1520 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1521 TYPE_SIZE_UNIT (rli->t)
1522 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1524 if (TREE_CONSTANT (unpadded_size)
1525 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1526 && input_location != BUILTINS_LOCATION)
1527 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1529 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1530 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1531 && TREE_CONSTANT (unpadded_size))
1533 tree unpacked_size;
1535 #ifdef ROUND_TYPE_ALIGN
1536 rli->unpacked_align
1537 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1538 #else
1539 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1540 #endif
1542 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1543 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1545 if (TYPE_NAME (rli->t))
1547 tree name;
1549 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1550 name = TYPE_NAME (rli->t);
1551 else
1552 name = DECL_NAME (TYPE_NAME (rli->t));
1554 if (STRICT_ALIGNMENT)
1555 warning (OPT_Wpacked, "packed attribute causes inefficient "
1556 "alignment for %qE", name);
1557 else
1558 warning (OPT_Wpacked,
1559 "packed attribute is unnecessary for %qE", name);
1561 else
1563 if (STRICT_ALIGNMENT)
1564 warning (OPT_Wpacked,
1565 "packed attribute causes inefficient alignment");
1566 else
1567 warning (OPT_Wpacked, "packed attribute is unnecessary");
1573 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1575 void
1576 compute_record_mode (tree type)
1578 tree field;
1579 enum machine_mode mode = VOIDmode;
1581 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1582 However, if possible, we use a mode that fits in a register
1583 instead, in order to allow for better optimization down the
1584 line. */
1585 SET_TYPE_MODE (type, BLKmode);
1587 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1588 return;
1590 /* A record which has any BLKmode members must itself be
1591 BLKmode; it can't go in a register. Unless the member is
1592 BLKmode only because it isn't aligned. */
1593 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1595 if (TREE_CODE (field) != FIELD_DECL)
1596 continue;
1598 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1599 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1600 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1601 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1602 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1603 || ! tree_fits_uhwi_p (bit_position (field))
1604 || DECL_SIZE (field) == 0
1605 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1606 return;
1608 /* If this field is the whole struct, remember its mode so
1609 that, say, we can put a double in a class into a DF
1610 register instead of forcing it to live in the stack. */
1611 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1612 mode = DECL_MODE (field);
1614 /* With some targets, it is sub-optimal to access an aligned
1615 BLKmode structure as a scalar. */
1616 if (targetm.member_type_forces_blk (field, mode))
1617 return;
1620 /* If we only have one real field; use its mode if that mode's size
1621 matches the type's size. This only applies to RECORD_TYPE. This
1622 does not apply to unions. */
1623 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1624 && tree_fits_uhwi_p (TYPE_SIZE (type))
1625 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1626 SET_TYPE_MODE (type, mode);
1627 else
1628 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1630 /* If structure's known alignment is less than what the scalar
1631 mode would need, and it matters, then stick with BLKmode. */
1632 if (TYPE_MODE (type) != BLKmode
1633 && STRICT_ALIGNMENT
1634 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1635 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1637 /* If this is the only reason this type is BLKmode, then
1638 don't force containing types to be BLKmode. */
1639 TYPE_NO_FORCE_BLK (type) = 1;
1640 SET_TYPE_MODE (type, BLKmode);
1644 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1645 out. */
1647 static void
1648 finalize_type_size (tree type)
1650 /* Normally, use the alignment corresponding to the mode chosen.
1651 However, where strict alignment is not required, avoid
1652 over-aligning structures, since most compilers do not do this
1653 alignment. */
1655 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1656 && (STRICT_ALIGNMENT
1657 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1658 && TREE_CODE (type) != QUAL_UNION_TYPE
1659 && TREE_CODE (type) != ARRAY_TYPE)))
1661 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1663 /* Don't override a larger alignment requirement coming from a user
1664 alignment of one of the fields. */
1665 if (mode_align >= TYPE_ALIGN (type))
1667 TYPE_ALIGN (type) = mode_align;
1668 TYPE_USER_ALIGN (type) = 0;
1672 /* Do machine-dependent extra alignment. */
1673 #ifdef ROUND_TYPE_ALIGN
1674 TYPE_ALIGN (type)
1675 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1676 #endif
1678 /* If we failed to find a simple way to calculate the unit size
1679 of the type, find it by division. */
1680 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1681 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1682 result will fit in sizetype. We will get more efficient code using
1683 sizetype, so we force a conversion. */
1684 TYPE_SIZE_UNIT (type)
1685 = fold_convert (sizetype,
1686 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1687 bitsize_unit_node));
1689 if (TYPE_SIZE (type) != 0)
1691 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1692 TYPE_SIZE_UNIT (type)
1693 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1696 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1697 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1698 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1699 if (TYPE_SIZE_UNIT (type) != 0
1700 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1701 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1703 /* Also layout any other variants of the type. */
1704 if (TYPE_NEXT_VARIANT (type)
1705 || type != TYPE_MAIN_VARIANT (type))
1707 tree variant;
1708 /* Record layout info of this variant. */
1709 tree size = TYPE_SIZE (type);
1710 tree size_unit = TYPE_SIZE_UNIT (type);
1711 unsigned int align = TYPE_ALIGN (type);
1712 unsigned int user_align = TYPE_USER_ALIGN (type);
1713 enum machine_mode mode = TYPE_MODE (type);
1715 /* Copy it into all variants. */
1716 for (variant = TYPE_MAIN_VARIANT (type);
1717 variant != 0;
1718 variant = TYPE_NEXT_VARIANT (variant))
1720 TYPE_SIZE (variant) = size;
1721 TYPE_SIZE_UNIT (variant) = size_unit;
1722 TYPE_ALIGN (variant) = align;
1723 TYPE_USER_ALIGN (variant) = user_align;
1724 SET_TYPE_MODE (variant, mode);
1729 /* Return a new underlying object for a bitfield started with FIELD. */
1731 static tree
1732 start_bitfield_representative (tree field)
1734 tree repr = make_node (FIELD_DECL);
1735 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1736 /* Force the representative to begin at a BITS_PER_UNIT aligned
1737 boundary - C++ may use tail-padding of a base object to
1738 continue packing bits so the bitfield region does not start
1739 at bit zero (see g++.dg/abi/bitfield5.C for example).
1740 Unallocated bits may happen for other reasons as well,
1741 for example Ada which allows explicit bit-granular structure layout. */
1742 DECL_FIELD_BIT_OFFSET (repr)
1743 = size_binop (BIT_AND_EXPR,
1744 DECL_FIELD_BIT_OFFSET (field),
1745 bitsize_int (~(BITS_PER_UNIT - 1)));
1746 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1747 DECL_SIZE (repr) = DECL_SIZE (field);
1748 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1749 DECL_PACKED (repr) = DECL_PACKED (field);
1750 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1751 return repr;
1754 /* Finish up a bitfield group that was started by creating the underlying
1755 object REPR with the last field in the bitfield group FIELD. */
1757 static void
1758 finish_bitfield_representative (tree repr, tree field)
1760 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1761 enum machine_mode mode;
1762 tree nextf, size;
1764 size = size_diffop (DECL_FIELD_OFFSET (field),
1765 DECL_FIELD_OFFSET (repr));
1766 gcc_assert (tree_fits_uhwi_p (size));
1767 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1768 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1769 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1770 + tree_to_uhwi (DECL_SIZE (field)));
1772 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1773 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1775 /* Now nothing tells us how to pad out bitsize ... */
1776 nextf = DECL_CHAIN (field);
1777 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1778 nextf = DECL_CHAIN (nextf);
1779 if (nextf)
1781 tree maxsize;
1782 /* If there was an error, the field may be not laid out
1783 correctly. Don't bother to do anything. */
1784 if (TREE_TYPE (nextf) == error_mark_node)
1785 return;
1786 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1787 DECL_FIELD_OFFSET (repr));
1788 if (tree_fits_uhwi_p (maxsize))
1790 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1791 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1792 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1793 /* If the group ends within a bitfield nextf does not need to be
1794 aligned to BITS_PER_UNIT. Thus round up. */
1795 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1797 else
1798 maxbitsize = bitsize;
1800 else
1802 /* ??? If you consider that tail-padding of this struct might be
1803 re-used when deriving from it we cannot really do the following
1804 and thus need to set maxsize to bitsize? Also we cannot
1805 generally rely on maxsize to fold to an integer constant, so
1806 use bitsize as fallback for this case. */
1807 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1808 DECL_FIELD_OFFSET (repr));
1809 if (tree_fits_uhwi_p (maxsize))
1810 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1811 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1812 else
1813 maxbitsize = bitsize;
1816 /* Only if we don't artificially break up the representative in
1817 the middle of a large bitfield with different possibly
1818 overlapping representatives. And all representatives start
1819 at byte offset. */
1820 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1822 /* Find the smallest nice mode to use. */
1823 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1824 mode = GET_MODE_WIDER_MODE (mode))
1825 if (GET_MODE_BITSIZE (mode) >= bitsize)
1826 break;
1827 if (mode != VOIDmode
1828 && (GET_MODE_BITSIZE (mode) > maxbitsize
1829 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1830 mode = VOIDmode;
1832 if (mode == VOIDmode)
1834 /* We really want a BLKmode representative only as a last resort,
1835 considering the member b in
1836 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1837 Otherwise we simply want to split the representative up
1838 allowing for overlaps within the bitfield region as required for
1839 struct { int a : 7; int b : 7;
1840 int c : 10; int d; } __attribute__((packed));
1841 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1842 DECL_SIZE (repr) = bitsize_int (bitsize);
1843 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1844 DECL_MODE (repr) = BLKmode;
1845 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1846 bitsize / BITS_PER_UNIT);
1848 else
1850 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1851 DECL_SIZE (repr) = bitsize_int (modesize);
1852 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1853 DECL_MODE (repr) = mode;
1854 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1857 /* Remember whether the bitfield group is at the end of the
1858 structure or not. */
1859 DECL_CHAIN (repr) = nextf;
1862 /* Compute and set FIELD_DECLs for the underlying objects we should
1863 use for bitfield access for the structure laid out with RLI. */
1865 static void
1866 finish_bitfield_layout (record_layout_info rli)
1868 tree field, prev;
1869 tree repr = NULL_TREE;
1871 /* Unions would be special, for the ease of type-punning optimizations
1872 we could use the underlying type as hint for the representative
1873 if the bitfield would fit and the representative would not exceed
1874 the union in size. */
1875 if (TREE_CODE (rli->t) != RECORD_TYPE)
1876 return;
1878 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1879 field; field = DECL_CHAIN (field))
1881 if (TREE_CODE (field) != FIELD_DECL)
1882 continue;
1884 /* In the C++ memory model, consecutive bit fields in a structure are
1885 considered one memory location and updating a memory location
1886 may not store into adjacent memory locations. */
1887 if (!repr
1888 && DECL_BIT_FIELD_TYPE (field))
1890 /* Start new representative. */
1891 repr = start_bitfield_representative (field);
1893 else if (repr
1894 && ! DECL_BIT_FIELD_TYPE (field))
1896 /* Finish off new representative. */
1897 finish_bitfield_representative (repr, prev);
1898 repr = NULL_TREE;
1900 else if (DECL_BIT_FIELD_TYPE (field))
1902 gcc_assert (repr != NULL_TREE);
1904 /* Zero-size bitfields finish off a representative and
1905 do not have a representative themselves. This is
1906 required by the C++ memory model. */
1907 if (integer_zerop (DECL_SIZE (field)))
1909 finish_bitfield_representative (repr, prev);
1910 repr = NULL_TREE;
1913 /* We assume that either DECL_FIELD_OFFSET of the representative
1914 and each bitfield member is a constant or they are equal.
1915 This is because we need to be able to compute the bit-offset
1916 of each field relative to the representative in get_bit_range
1917 during RTL expansion.
1918 If these constraints are not met, simply force a new
1919 representative to be generated. That will at most
1920 generate worse code but still maintain correctness with
1921 respect to the C++ memory model. */
1922 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1923 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1924 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1925 DECL_FIELD_OFFSET (field), 0)))
1927 finish_bitfield_representative (repr, prev);
1928 repr = start_bitfield_representative (field);
1931 else
1932 continue;
1934 if (repr)
1935 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1937 prev = field;
1940 if (repr)
1941 finish_bitfield_representative (repr, prev);
1944 /* Do all of the work required to layout the type indicated by RLI,
1945 once the fields have been laid out. This function will call `free'
1946 for RLI, unless FREE_P is false. Passing a value other than false
1947 for FREE_P is bad practice; this option only exists to support the
1948 G++ 3.2 ABI. */
1950 void
1951 finish_record_layout (record_layout_info rli, int free_p)
1953 tree variant;
1955 /* Compute the final size. */
1956 finalize_record_size (rli);
1958 /* Compute the TYPE_MODE for the record. */
1959 compute_record_mode (rli->t);
1961 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1962 finalize_type_size (rli->t);
1964 /* Compute bitfield representatives. */
1965 finish_bitfield_layout (rli);
1967 /* Propagate TYPE_PACKED to variants. With C++ templates,
1968 handle_packed_attribute is too early to do this. */
1969 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1970 variant = TYPE_NEXT_VARIANT (variant))
1971 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1973 /* Lay out any static members. This is done now because their type
1974 may use the record's type. */
1975 while (!vec_safe_is_empty (rli->pending_statics))
1976 layout_decl (rli->pending_statics->pop (), 0);
1978 /* Clean up. */
1979 if (free_p)
1981 vec_free (rli->pending_statics);
1982 free (rli);
1987 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1988 NAME, its fields are chained in reverse on FIELDS.
1990 If ALIGN_TYPE is non-null, it is given the same alignment as
1991 ALIGN_TYPE. */
1993 void
1994 finish_builtin_struct (tree type, const char *name, tree fields,
1995 tree align_type)
1997 tree tail, next;
1999 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2001 DECL_FIELD_CONTEXT (fields) = type;
2002 next = DECL_CHAIN (fields);
2003 DECL_CHAIN (fields) = tail;
2005 TYPE_FIELDS (type) = tail;
2007 if (align_type)
2009 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2010 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2013 layout_type (type);
2014 #if 0 /* not yet, should get fixed properly later */
2015 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2016 #else
2017 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2018 TYPE_DECL, get_identifier (name), type);
2019 #endif
2020 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2021 layout_decl (TYPE_NAME (type), 0);
2024 /* Calculate the mode, size, and alignment for TYPE.
2025 For an array type, calculate the element separation as well.
2026 Record TYPE on the chain of permanent or temporary types
2027 so that dbxout will find out about it.
2029 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2030 layout_type does nothing on such a type.
2032 If the type is incomplete, its TYPE_SIZE remains zero. */
2034 void
2035 layout_type (tree type)
2037 gcc_assert (type);
2039 if (type == error_mark_node)
2040 return;
2042 /* Do nothing if type has been laid out before. */
2043 if (TYPE_SIZE (type))
2044 return;
2046 switch (TREE_CODE (type))
2048 case LANG_TYPE:
2049 /* This kind of type is the responsibility
2050 of the language-specific code. */
2051 gcc_unreachable ();
2053 case BOOLEAN_TYPE:
2054 case INTEGER_TYPE:
2055 case ENUMERAL_TYPE:
2056 SET_TYPE_MODE (type,
2057 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2058 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2059 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2060 break;
2062 case REAL_TYPE:
2063 SET_TYPE_MODE (type,
2064 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2065 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2066 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2067 break;
2069 case FIXED_POINT_TYPE:
2070 /* TYPE_MODE (type) has been set already. */
2071 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2072 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2073 break;
2075 case COMPLEX_TYPE:
2076 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2077 SET_TYPE_MODE (type,
2078 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2079 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2080 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2081 0));
2082 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2083 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2084 break;
2086 case VECTOR_TYPE:
2088 int nunits = TYPE_VECTOR_SUBPARTS (type);
2089 tree innertype = TREE_TYPE (type);
2091 gcc_assert (!(nunits & (nunits - 1)));
2093 /* Find an appropriate mode for the vector type. */
2094 if (TYPE_MODE (type) == VOIDmode)
2095 SET_TYPE_MODE (type,
2096 mode_for_vector (TYPE_MODE (innertype), nunits));
2098 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2099 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2100 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2101 TYPE_SIZE_UNIT (innertype),
2102 size_int (nunits));
2103 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2104 bitsize_int (nunits));
2106 /* For vector types, we do not default to the mode's alignment.
2107 Instead, query a target hook, defaulting to natural alignment.
2108 This prevents ABI changes depending on whether or not native
2109 vector modes are supported. */
2110 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2112 /* However, if the underlying mode requires a bigger alignment than
2113 what the target hook provides, we cannot use the mode. For now,
2114 simply reject that case. */
2115 gcc_assert (TYPE_ALIGN (type)
2116 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2117 break;
2120 case VOID_TYPE:
2121 /* This is an incomplete type and so doesn't have a size. */
2122 TYPE_ALIGN (type) = 1;
2123 TYPE_USER_ALIGN (type) = 0;
2124 SET_TYPE_MODE (type, VOIDmode);
2125 break;
2127 case OFFSET_TYPE:
2128 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2129 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2130 /* A pointer might be MODE_PARTIAL_INT,
2131 but ptrdiff_t must be integral. */
2132 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2133 TYPE_PRECISION (type) = POINTER_SIZE;
2134 break;
2136 case FUNCTION_TYPE:
2137 case METHOD_TYPE:
2138 /* It's hard to see what the mode and size of a function ought to
2139 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2140 make it consistent with that. */
2141 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2142 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2143 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2144 break;
2146 case POINTER_TYPE:
2147 case REFERENCE_TYPE:
2149 enum machine_mode mode = TYPE_MODE (type);
2150 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2152 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2153 mode = targetm.addr_space.address_mode (as);
2156 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2157 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2158 TYPE_UNSIGNED (type) = 1;
2159 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2161 break;
2163 case ARRAY_TYPE:
2165 tree index = TYPE_DOMAIN (type);
2166 tree element = TREE_TYPE (type);
2168 build_pointer_type (element);
2170 /* We need to know both bounds in order to compute the size. */
2171 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2172 && TYPE_SIZE (element))
2174 tree ub = TYPE_MAX_VALUE (index);
2175 tree lb = TYPE_MIN_VALUE (index);
2176 tree element_size = TYPE_SIZE (element);
2177 tree length;
2179 /* Make sure that an array of zero-sized element is zero-sized
2180 regardless of its extent. */
2181 if (integer_zerop (element_size))
2182 length = size_zero_node;
2184 /* The computation should happen in the original signedness so
2185 that (possible) negative values are handled appropriately
2186 when determining overflow. */
2187 else
2189 /* ??? When it is obvious that the range is signed
2190 represent it using ssizetype. */
2191 if (TREE_CODE (lb) == INTEGER_CST
2192 && TREE_CODE (ub) == INTEGER_CST
2193 && TYPE_UNSIGNED (TREE_TYPE (lb))
2194 && tree_int_cst_lt (ub, lb))
2196 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2197 lb = double_int_to_tree
2198 (ssizetype,
2199 tree_to_double_int (lb).sext (prec));
2200 ub = double_int_to_tree
2201 (ssizetype,
2202 tree_to_double_int (ub).sext (prec));
2204 length
2205 = fold_convert (sizetype,
2206 size_binop (PLUS_EXPR,
2207 build_int_cst (TREE_TYPE (lb), 1),
2208 size_binop (MINUS_EXPR, ub, lb)));
2211 /* ??? We have no way to distinguish a null-sized array from an
2212 array spanning the whole sizetype range, so we arbitrarily
2213 decide that [0, -1] is the only valid representation. */
2214 if (integer_zerop (length)
2215 && TREE_OVERFLOW (length)
2216 && integer_zerop (lb))
2217 length = size_zero_node;
2219 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2220 fold_convert (bitsizetype,
2221 length));
2223 /* If we know the size of the element, calculate the total size
2224 directly, rather than do some division thing below. This
2225 optimization helps Fortran assumed-size arrays (where the
2226 size of the array is determined at runtime) substantially. */
2227 if (TYPE_SIZE_UNIT (element))
2228 TYPE_SIZE_UNIT (type)
2229 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2232 /* Now round the alignment and size,
2233 using machine-dependent criteria if any. */
2235 #ifdef ROUND_TYPE_ALIGN
2236 TYPE_ALIGN (type)
2237 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2238 #else
2239 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2240 #endif
2241 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2242 SET_TYPE_MODE (type, BLKmode);
2243 if (TYPE_SIZE (type) != 0
2244 && ! targetm.member_type_forces_blk (type, VOIDmode)
2245 /* BLKmode elements force BLKmode aggregate;
2246 else extract/store fields may lose. */
2247 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2248 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2250 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2251 TYPE_SIZE (type)));
2252 if (TYPE_MODE (type) != BLKmode
2253 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2254 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2256 TYPE_NO_FORCE_BLK (type) = 1;
2257 SET_TYPE_MODE (type, BLKmode);
2260 /* When the element size is constant, check that it is at least as
2261 large as the element alignment. */
2262 if (TYPE_SIZE_UNIT (element)
2263 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2264 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2265 TYPE_ALIGN_UNIT. */
2266 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2267 && !integer_zerop (TYPE_SIZE_UNIT (element))
2268 && compare_tree_int (TYPE_SIZE_UNIT (element),
2269 TYPE_ALIGN_UNIT (element)) < 0)
2270 error ("alignment of array elements is greater than element size");
2271 break;
2274 case RECORD_TYPE:
2275 case UNION_TYPE:
2276 case QUAL_UNION_TYPE:
2278 tree field;
2279 record_layout_info rli;
2281 /* Initialize the layout information. */
2282 rli = start_record_layout (type);
2284 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2285 in the reverse order in building the COND_EXPR that denotes
2286 its size. We reverse them again later. */
2287 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2288 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2290 /* Place all the fields. */
2291 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2292 place_field (rli, field);
2294 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2295 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2297 /* Finish laying out the record. */
2298 finish_record_layout (rli, /*free_p=*/true);
2300 break;
2302 default:
2303 gcc_unreachable ();
2306 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2307 records and unions, finish_record_layout already called this
2308 function. */
2309 if (TREE_CODE (type) != RECORD_TYPE
2310 && TREE_CODE (type) != UNION_TYPE
2311 && TREE_CODE (type) != QUAL_UNION_TYPE)
2312 finalize_type_size (type);
2314 /* We should never see alias sets on incomplete aggregates. And we
2315 should not call layout_type on not incomplete aggregates. */
2316 if (AGGREGATE_TYPE_P (type))
2317 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2320 /* Vector types need to re-check the target flags each time we report
2321 the machine mode. We need to do this because attribute target can
2322 change the result of vector_mode_supported_p and have_regs_of_mode
2323 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2324 change on a per-function basis. */
2325 /* ??? Possibly a better solution is to run through all the types
2326 referenced by a function and re-compute the TYPE_MODE once, rather
2327 than make the TYPE_MODE macro call a function. */
2329 enum machine_mode
2330 vector_type_mode (const_tree t)
2332 enum machine_mode mode;
2334 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2336 mode = t->type_common.mode;
2337 if (VECTOR_MODE_P (mode)
2338 && (!targetm.vector_mode_supported_p (mode)
2339 || !have_regs_of_mode[mode]))
2341 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2343 /* For integers, try mapping it to a same-sized scalar mode. */
2344 if (GET_MODE_CLASS (innermode) == MODE_INT)
2346 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2347 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2349 if (mode != VOIDmode && have_regs_of_mode[mode])
2350 return mode;
2353 return BLKmode;
2356 return mode;
2359 /* Create and return a type for signed integers of PRECISION bits. */
2361 tree
2362 make_signed_type (int precision)
2364 tree type = make_node (INTEGER_TYPE);
2366 TYPE_PRECISION (type) = precision;
2368 fixup_signed_type (type);
2369 return type;
2372 /* Create and return a type for unsigned integers of PRECISION bits. */
2374 tree
2375 make_unsigned_type (int precision)
2377 tree type = make_node (INTEGER_TYPE);
2379 TYPE_PRECISION (type) = precision;
2381 fixup_unsigned_type (type);
2382 return type;
2385 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2386 and SATP. */
2388 tree
2389 make_fract_type (int precision, int unsignedp, int satp)
2391 tree type = make_node (FIXED_POINT_TYPE);
2393 TYPE_PRECISION (type) = precision;
2395 if (satp)
2396 TYPE_SATURATING (type) = 1;
2398 /* Lay out the type: set its alignment, size, etc. */
2399 if (unsignedp)
2401 TYPE_UNSIGNED (type) = 1;
2402 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2404 else
2405 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2406 layout_type (type);
2408 return type;
2411 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2412 and SATP. */
2414 tree
2415 make_accum_type (int precision, int unsignedp, int satp)
2417 tree type = make_node (FIXED_POINT_TYPE);
2419 TYPE_PRECISION (type) = precision;
2421 if (satp)
2422 TYPE_SATURATING (type) = 1;
2424 /* Lay out the type: set its alignment, size, etc. */
2425 if (unsignedp)
2427 TYPE_UNSIGNED (type) = 1;
2428 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2430 else
2431 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2432 layout_type (type);
2434 return type;
2437 /* Initialize sizetypes so layout_type can use them. */
2439 void
2440 initialize_sizetypes (void)
2442 int precision, bprecision;
2444 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2445 if (strcmp (SIZETYPE, "unsigned int") == 0)
2446 precision = INT_TYPE_SIZE;
2447 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2448 precision = LONG_TYPE_SIZE;
2449 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2450 precision = LONG_LONG_TYPE_SIZE;
2451 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2452 precision = SHORT_TYPE_SIZE;
2453 else
2454 gcc_unreachable ();
2456 bprecision
2457 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2458 bprecision
2459 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2460 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2461 bprecision = HOST_BITS_PER_DOUBLE_INT;
2463 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2464 sizetype = make_node (INTEGER_TYPE);
2465 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2466 TYPE_PRECISION (sizetype) = precision;
2467 TYPE_UNSIGNED (sizetype) = 1;
2468 bitsizetype = make_node (INTEGER_TYPE);
2469 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2470 TYPE_PRECISION (bitsizetype) = bprecision;
2471 TYPE_UNSIGNED (bitsizetype) = 1;
2473 /* Now layout both types manually. */
2474 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2475 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2476 TYPE_SIZE (sizetype) = bitsize_int (precision);
2477 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2478 set_min_and_max_values_for_integral_type (sizetype, precision,
2479 /*is_unsigned=*/true);
2481 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2482 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2483 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2484 TYPE_SIZE_UNIT (bitsizetype)
2485 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2486 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2487 /*is_unsigned=*/true);
2489 /* Create the signed variants of *sizetype. */
2490 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2491 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2492 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2493 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2496 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2497 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2498 for TYPE, based on the PRECISION and whether or not the TYPE
2499 IS_UNSIGNED. PRECISION need not correspond to a width supported
2500 natively by the hardware; for example, on a machine with 8-bit,
2501 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2502 61. */
2504 void
2505 set_min_and_max_values_for_integral_type (tree type,
2506 int precision,
2507 bool is_unsigned)
2509 tree min_value;
2510 tree max_value;
2512 /* For bitfields with zero width we end up creating integer types
2513 with zero precision. Don't assign any minimum/maximum values
2514 to those types, they don't have any valid value. */
2515 if (precision < 1)
2516 return;
2518 if (is_unsigned)
2520 min_value = build_int_cst (type, 0);
2521 max_value
2522 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2523 ? -1
2524 : ((HOST_WIDE_INT) 1 << precision) - 1,
2525 precision - HOST_BITS_PER_WIDE_INT > 0
2526 ? ((unsigned HOST_WIDE_INT) ~0
2527 >> (HOST_BITS_PER_WIDE_INT
2528 - (precision - HOST_BITS_PER_WIDE_INT)))
2529 : 0);
2531 else
2533 min_value
2534 = build_int_cst_wide (type,
2535 (precision - HOST_BITS_PER_WIDE_INT > 0
2537 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2538 (((HOST_WIDE_INT) (-1)
2539 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2540 ? precision - HOST_BITS_PER_WIDE_INT - 1
2541 : 0))));
2542 max_value
2543 = build_int_cst_wide (type,
2544 (precision - HOST_BITS_PER_WIDE_INT > 0
2545 ? -1
2546 : (HOST_WIDE_INT)
2547 (((unsigned HOST_WIDE_INT) 1
2548 << (precision - 1)) - 1)),
2549 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2550 ? (HOST_WIDE_INT)
2551 ((((unsigned HOST_WIDE_INT) 1
2552 << (precision - HOST_BITS_PER_WIDE_INT
2553 - 1))) - 1)
2554 : 0));
2557 TYPE_MIN_VALUE (type) = min_value;
2558 TYPE_MAX_VALUE (type) = max_value;
2561 /* Set the extreme values of TYPE based on its precision in bits,
2562 then lay it out. Used when make_signed_type won't do
2563 because the tree code is not INTEGER_TYPE.
2564 E.g. for Pascal, when the -fsigned-char option is given. */
2566 void
2567 fixup_signed_type (tree type)
2569 int precision = TYPE_PRECISION (type);
2571 /* We can not represent properly constants greater then
2572 HOST_BITS_PER_DOUBLE_INT, still we need the types
2573 as they are used by i386 vector extensions and friends. */
2574 if (precision > HOST_BITS_PER_DOUBLE_INT)
2575 precision = HOST_BITS_PER_DOUBLE_INT;
2577 set_min_and_max_values_for_integral_type (type, precision,
2578 /*is_unsigned=*/false);
2580 /* Lay out the type: set its alignment, size, etc. */
2581 layout_type (type);
2584 /* Set the extreme values of TYPE based on its precision in bits,
2585 then lay it out. This is used both in `make_unsigned_type'
2586 and for enumeral types. */
2588 void
2589 fixup_unsigned_type (tree type)
2591 int precision = TYPE_PRECISION (type);
2593 /* We can not represent properly constants greater then
2594 HOST_BITS_PER_DOUBLE_INT, still we need the types
2595 as they are used by i386 vector extensions and friends. */
2596 if (precision > HOST_BITS_PER_DOUBLE_INT)
2597 precision = HOST_BITS_PER_DOUBLE_INT;
2599 TYPE_UNSIGNED (type) = 1;
2601 set_min_and_max_values_for_integral_type (type, precision,
2602 /*is_unsigned=*/true);
2604 /* Lay out the type: set its alignment, size, etc. */
2605 layout_type (type);
2608 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2609 starting at BITPOS.
2611 BITREGION_START is the bit position of the first bit in this
2612 sequence of bit fields. BITREGION_END is the last bit in this
2613 sequence. If these two fields are non-zero, we should restrict the
2614 memory access to that range. Otherwise, we are allowed to touch
2615 any adjacent non bit-fields.
2617 ALIGN is the alignment of the underlying object in bits.
2618 VOLATILEP says whether the bitfield is volatile. */
2620 bit_field_mode_iterator
2621 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2622 HOST_WIDE_INT bitregion_start,
2623 HOST_WIDE_INT bitregion_end,
2624 unsigned int align, bool volatilep)
2625 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2626 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2627 m_bitregion_end (bitregion_end), m_align (align),
2628 m_volatilep (volatilep), m_count (0)
2630 if (!m_bitregion_end)
2632 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2633 the bitfield is mapped and won't trap, provided that ALIGN isn't
2634 too large. The cap is the biggest required alignment for data,
2635 or at least the word size. And force one such chunk at least. */
2636 unsigned HOST_WIDE_INT units
2637 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2638 if (bitsize <= 0)
2639 bitsize = 1;
2640 m_bitregion_end = bitpos + bitsize + units - 1;
2641 m_bitregion_end -= m_bitregion_end % units + 1;
2645 /* Calls to this function return successively larger modes that can be used
2646 to represent the bitfield. Return true if another bitfield mode is
2647 available, storing it in *OUT_MODE if so. */
2649 bool
2650 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2652 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2654 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2656 /* Skip modes that don't have full precision. */
2657 if (unit != GET_MODE_PRECISION (m_mode))
2658 continue;
2660 /* Stop if the mode is too wide to handle efficiently. */
2661 if (unit > MAX_FIXED_MODE_SIZE)
2662 break;
2664 /* Don't deliver more than one multiword mode; the smallest one
2665 should be used. */
2666 if (m_count > 0 && unit > BITS_PER_WORD)
2667 break;
2669 /* Skip modes that are too small. */
2670 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2671 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2672 if (subend > unit)
2673 continue;
2675 /* Stop if the mode goes outside the bitregion. */
2676 HOST_WIDE_INT start = m_bitpos - substart;
2677 if (m_bitregion_start && start < m_bitregion_start)
2678 break;
2679 HOST_WIDE_INT end = start + unit;
2680 if (end > m_bitregion_end + 1)
2681 break;
2683 /* Stop if the mode requires too much alignment. */
2684 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2685 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2686 break;
2688 *out_mode = m_mode;
2689 m_mode = GET_MODE_WIDER_MODE (m_mode);
2690 m_count++;
2691 return true;
2693 return false;
2696 /* Return true if smaller modes are generally preferred for this kind
2697 of bitfield. */
2699 bool
2700 bit_field_mode_iterator::prefer_smaller_modes ()
2702 return (m_volatilep
2703 ? targetm.narrow_volatile_bitfield ()
2704 : !SLOW_BYTE_ACCESS);
2707 /* Find the best machine mode to use when referencing a bit field of length
2708 BITSIZE bits starting at BITPOS.
2710 BITREGION_START is the bit position of the first bit in this
2711 sequence of bit fields. BITREGION_END is the last bit in this
2712 sequence. If these two fields are non-zero, we should restrict the
2713 memory access to that range. Otherwise, we are allowed to touch
2714 any adjacent non bit-fields.
2716 The underlying object is known to be aligned to a boundary of ALIGN bits.
2717 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2718 larger than LARGEST_MODE (usually SImode).
2720 If no mode meets all these conditions, we return VOIDmode.
2722 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2723 smallest mode meeting these conditions.
2725 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2726 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2727 all the conditions.
2729 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2730 decide which of the above modes should be used. */
2732 enum machine_mode
2733 get_best_mode (int bitsize, int bitpos,
2734 unsigned HOST_WIDE_INT bitregion_start,
2735 unsigned HOST_WIDE_INT bitregion_end,
2736 unsigned int align,
2737 enum machine_mode largest_mode, bool volatilep)
2739 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2740 bitregion_end, align, volatilep);
2741 enum machine_mode widest_mode = VOIDmode;
2742 enum machine_mode mode;
2743 while (iter.next_mode (&mode)
2744 /* ??? For historical reasons, reject modes that would normally
2745 receive greater alignment, even if unaligned accesses are
2746 acceptable. This has both advantages and disadvantages.
2747 Removing this check means that something like:
2749 struct s { unsigned int x; unsigned int y; };
2750 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2752 can be implemented using a single load and compare on
2753 64-bit machines that have no alignment restrictions.
2754 For example, on powerpc64-linux-gnu, we would generate:
2756 ld 3,0(3)
2757 cntlzd 3,3
2758 srdi 3,3,6
2761 rather than:
2763 lwz 9,0(3)
2764 cmpwi 7,9,0
2765 bne 7,.L3
2766 lwz 3,4(3)
2767 cntlzw 3,3
2768 srwi 3,3,5
2769 extsw 3,3
2771 .p2align 4,,15
2772 .L3:
2773 li 3,0
2776 However, accessing more than one field can make life harder
2777 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2778 has a series of unsigned short copies followed by a series of
2779 unsigned short comparisons. With this check, both the copies
2780 and comparisons remain 16-bit accesses and FRE is able
2781 to eliminate the latter. Without the check, the comparisons
2782 can be done using 2 64-bit operations, which FRE isn't able
2783 to handle in the same way.
2785 Either way, it would probably be worth disabling this check
2786 during expand. One particular example where removing the
2787 check would help is the get_best_mode call in store_bit_field.
2788 If we are given a memory bitregion of 128 bits that is aligned
2789 to a 64-bit boundary, and the bitfield we want to modify is
2790 in the second half of the bitregion, this check causes
2791 store_bitfield to turn the memory into a 64-bit reference
2792 to the _first_ half of the region. We later use
2793 adjust_bitfield_address to get a reference to the correct half,
2794 but doing so looks to adjust_bitfield_address as though we are
2795 moving past the end of the original object, so it drops the
2796 associated MEM_EXPR and MEM_OFFSET. Removing the check
2797 causes store_bit_field to keep a 128-bit memory reference,
2798 so that the final bitfield reference still has a MEM_EXPR
2799 and MEM_OFFSET. */
2800 && GET_MODE_ALIGNMENT (mode) <= align
2801 && (largest_mode == VOIDmode
2802 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2804 widest_mode = mode;
2805 if (iter.prefer_smaller_modes ())
2806 break;
2808 return widest_mode;
2811 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2812 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2814 void
2815 get_mode_bounds (enum machine_mode mode, int sign,
2816 enum machine_mode target_mode,
2817 rtx *mmin, rtx *mmax)
2819 unsigned size = GET_MODE_BITSIZE (mode);
2820 unsigned HOST_WIDE_INT min_val, max_val;
2822 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2824 if (sign)
2826 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2827 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2829 else
2831 min_val = 0;
2832 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2835 *mmin = gen_int_mode (min_val, target_mode);
2836 *mmax = gen_int_mode (max_val, target_mode);
2839 #include "gt-stor-layout.h"