PR target/38900
[official-gcc.git] / gcc / cp / init.c
blob68ffe3a3dd02be912bcf4d13485f31c8de47818d
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 bool is_global = !building_stmt_tree ();
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75 return is_global;
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 finish_compound_stmt (compound_stmt);
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
88 gcc_assert (!building_stmt_tree () == is_global);
90 return stmt_expr;
93 /* Constructors */
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 tree base_ptr = TREE_VALUE ((tree) data);
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111 expand_virtual_init (binfo, base_ptr);
114 return NULL_TREE;
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
120 void
121 initialize_vtbl_ptrs (tree addr)
123 tree list;
124 tree type;
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 tree init = NULL_TREE;
153 /* [dcl.init]
155 To zero-initialize an object of type T means:
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
169 -- if T is a reference type, no initialization is performed. */
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173 if (type == error_mark_node)
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 if (value)
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
227 /* If we have an error_mark here, we should just return error mark
228 as we don't know the size of the array yet. */
229 if (max_index == error_mark_node)
230 return error_mark_node;
231 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
233 /* A zero-sized array, which is accepted as an extension, will
234 have an upper bound of -1. */
235 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
237 constructor_elt *ce;
239 v = VEC_alloc (constructor_elt, gc, 1);
240 ce = VEC_quick_push (constructor_elt, v, NULL);
242 /* If this is a one element array, we just use a regular init. */
243 if (tree_int_cst_equal (size_zero_node, max_index))
244 ce->index = size_zero_node;
245 else
246 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
247 max_index);
249 ce->value = build_zero_init (TREE_TYPE (type),
250 /*nelts=*/NULL_TREE,
251 static_storage_p);
254 /* Build a constructor to contain the initializations. */
255 init = build_constructor (type, v);
257 else if (TREE_CODE (type) == VECTOR_TYPE)
258 init = fold_convert (type, integer_zero_node);
259 else
260 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
262 /* In all cases, the initializer is a constant. */
263 if (init)
264 TREE_CONSTANT (init) = 1;
266 return init;
269 /* Return a suitable initializer for value-initializing an object of type
270 TYPE, as described in [dcl.init]. */
272 tree
273 build_value_init (tree type)
275 /* [dcl.init]
277 To value-initialize an object of type T means:
279 - if T is a class type (clause 9) with a user-provided constructor
280 (12.1), then the default constructor for T is called (and the
281 initialization is ill-formed if T has no accessible default
282 constructor);
284 - if T is a non-union class type without a user-provided constructor,
285 then every non-static data member and base-class component of T is
286 value-initialized;92)
288 - if T is an array type, then each element is value-initialized;
290 - otherwise, the object is zero-initialized.
292 A program that calls for default-initialization or
293 value-initialization of an entity of reference type is ill-formed.
295 92) Value-initialization for such a class object may be implemented by
296 zero-initializing the object and then calling the default
297 constructor. */
299 if (CLASS_TYPE_P (type))
301 if (type_has_user_provided_constructor (type))
302 return build_aggr_init_expr
303 (type,
304 build_special_member_call (NULL_TREE, complete_ctor_identifier,
305 NULL, type, LOOKUP_NORMAL,
306 tf_warning_or_error));
307 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
309 /* This is a class that needs constructing, but doesn't have
310 a user-provided constructor. So we need to zero-initialize
311 the object and then call the implicitly defined ctor.
312 This will be handled in simplify_aggr_init_expr. */
313 tree ctor = build_special_member_call
314 (NULL_TREE, complete_ctor_identifier,
315 NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
317 ctor = build_aggr_init_expr (type, ctor);
318 AGGR_INIT_ZERO_FIRST (ctor) = 1;
319 return ctor;
322 return build_value_init_noctor (type);
325 /* Like build_value_init, but don't call the constructor for TYPE. Used
326 for base initializers. */
328 tree
329 build_value_init_noctor (tree type)
331 if (CLASS_TYPE_P (type))
333 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
335 if (TREE_CODE (type) != UNION_TYPE)
337 tree field;
338 VEC(constructor_elt,gc) *v = NULL;
340 /* Iterate over the fields, building initializations. */
341 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
343 tree ftype, value;
345 if (TREE_CODE (field) != FIELD_DECL)
346 continue;
348 ftype = TREE_TYPE (field);
350 if (TREE_CODE (ftype) == REFERENCE_TYPE)
351 error ("value-initialization of reference");
353 /* We could skip vfields and fields of types with
354 user-defined constructors, but I think that won't improve
355 performance at all; it should be simpler in general just
356 to zero out the entire object than try to only zero the
357 bits that actually need it. */
359 /* Note that for class types there will be FIELD_DECLs
360 corresponding to base classes as well. Thus, iterating
361 over TYPE_FIELDs will result in correct initialization of
362 all of the subobjects. */
363 value = build_value_init (ftype);
365 if (value)
366 CONSTRUCTOR_APPEND_ELT(v, field, value);
369 /* Build a constructor to contain the zero- initializations. */
370 return build_constructor (type, v);
373 else if (TREE_CODE (type) == ARRAY_TYPE)
375 VEC(constructor_elt,gc) *v = NULL;
377 /* Iterate over the array elements, building initializations. */
378 tree max_index = array_type_nelts (type);
380 /* If we have an error_mark here, we should just return error mark
381 as we don't know the size of the array yet. */
382 if (max_index == error_mark_node)
383 return error_mark_node;
384 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
386 /* A zero-sized array, which is accepted as an extension, will
387 have an upper bound of -1. */
388 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
390 constructor_elt *ce;
392 v = VEC_alloc (constructor_elt, gc, 1);
393 ce = VEC_quick_push (constructor_elt, v, NULL);
395 /* If this is a one element array, we just use a regular init. */
396 if (tree_int_cst_equal (size_zero_node, max_index))
397 ce->index = size_zero_node;
398 else
399 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
400 max_index);
402 ce->value = build_value_init (TREE_TYPE (type));
404 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
405 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
406 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
409 /* Build a constructor to contain the initializations. */
410 return build_constructor (type, v);
413 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
416 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
417 arguments. If TREE_LIST is void_type_node, an empty initializer
418 list was given; if NULL_TREE no initializer was given. */
420 static void
421 perform_member_init (tree member, tree init)
423 tree decl;
424 tree type = TREE_TYPE (member);
426 /* Effective C++ rule 12 requires that all data members be
427 initialized. */
428 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
429 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
430 "%qD should be initialized in the member initialization list",
431 member);
433 /* Get an lvalue for the data member. */
434 decl = build_class_member_access_expr (current_class_ref, member,
435 /*access_path=*/NULL_TREE,
436 /*preserve_reference=*/true,
437 tf_warning_or_error);
438 if (decl == error_mark_node)
439 return;
441 if (init == void_type_node)
443 /* mem() means value-initialization. */
444 if (TREE_CODE (type) == ARRAY_TYPE)
446 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
447 /*explicit_value_init_p=*/true,
448 /* from_array=*/0,
449 tf_warning_or_error);
450 finish_expr_stmt (init);
452 else
454 if (TREE_CODE (type) == REFERENCE_TYPE)
455 permerror (DECL_SOURCE_LOCATION (current_function_decl),
456 "value-initialization of %q#D, which has reference type",
457 member);
458 else
460 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
461 finish_expr_stmt (init);
465 /* Deal with this here, as we will get confused if we try to call the
466 assignment op for an anonymous union. This can happen in a
467 synthesized copy constructor. */
468 else if (ANON_AGGR_TYPE_P (type))
470 if (init)
472 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
473 finish_expr_stmt (init);
476 else if (TYPE_NEEDS_CONSTRUCTING (type))
478 if (init != NULL_TREE
479 && TREE_CODE (type) == ARRAY_TYPE
480 && TREE_CHAIN (init) == NULL_TREE
481 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
483 /* Initialization of one array from another. */
484 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
485 /*explicit_value_init_p=*/false,
486 /* from_array=*/1,
487 tf_warning_or_error));
489 else
491 if (CP_TYPE_CONST_P (type)
492 && init == NULL_TREE
493 && !type_has_user_provided_default_constructor (type))
494 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
495 vtable; still give this diagnostic. */
496 permerror (DECL_SOURCE_LOCATION (current_function_decl),
497 "uninitialized member %qD with %<const%> type %qT",
498 member, type);
499 finish_expr_stmt (build_aggr_init (decl, init, 0,
500 tf_warning_or_error));
503 else
505 if (init == NULL_TREE)
507 /* member traversal: note it leaves init NULL */
508 if (TREE_CODE (type) == REFERENCE_TYPE)
509 permerror (DECL_SOURCE_LOCATION (current_function_decl),
510 "uninitialized reference member %qD",
511 member);
512 else if (CP_TYPE_CONST_P (type))
513 permerror (DECL_SOURCE_LOCATION (current_function_decl),
514 "uninitialized member %qD with %<const%> type %qT",
515 member, type);
517 else if (TREE_CODE (init) == TREE_LIST)
518 /* There was an explicit member initialization. Do some work
519 in that case. */
520 init = build_x_compound_expr_from_list (init, "member initializer");
522 if (init)
523 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
524 tf_warning_or_error));
527 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
529 tree expr;
531 expr = build_class_member_access_expr (current_class_ref, member,
532 /*access_path=*/NULL_TREE,
533 /*preserve_reference=*/false,
534 tf_warning_or_error);
535 expr = build_delete (type, expr, sfk_complete_destructor,
536 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
538 if (expr != error_mark_node)
539 finish_eh_cleanup (expr);
543 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
544 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
546 static tree
547 build_field_list (tree t, tree list, int *uses_unions_p)
549 tree fields;
551 *uses_unions_p = 0;
553 /* Note whether or not T is a union. */
554 if (TREE_CODE (t) == UNION_TYPE)
555 *uses_unions_p = 1;
557 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
559 /* Skip CONST_DECLs for enumeration constants and so forth. */
560 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
561 continue;
563 /* Keep track of whether or not any fields are unions. */
564 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
565 *uses_unions_p = 1;
567 /* For an anonymous struct or union, we must recursively
568 consider the fields of the anonymous type. They can be
569 directly initialized from the constructor. */
570 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
572 /* Add this field itself. Synthesized copy constructors
573 initialize the entire aggregate. */
574 list = tree_cons (fields, NULL_TREE, list);
575 /* And now add the fields in the anonymous aggregate. */
576 list = build_field_list (TREE_TYPE (fields), list,
577 uses_unions_p);
579 /* Add this field. */
580 else if (DECL_NAME (fields))
581 list = tree_cons (fields, NULL_TREE, list);
584 return list;
587 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
588 a FIELD_DECL or BINFO in T that needs initialization. The
589 TREE_VALUE gives the initializer, or list of initializer arguments.
591 Return a TREE_LIST containing all of the initializations required
592 for T, in the order in which they should be performed. The output
593 list has the same format as the input. */
595 static tree
596 sort_mem_initializers (tree t, tree mem_inits)
598 tree init;
599 tree base, binfo, base_binfo;
600 tree sorted_inits;
601 tree next_subobject;
602 VEC(tree,gc) *vbases;
603 int i;
604 int uses_unions_p;
606 /* Build up a list of initializations. The TREE_PURPOSE of entry
607 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
608 TREE_VALUE will be the constructor arguments, or NULL if no
609 explicit initialization was provided. */
610 sorted_inits = NULL_TREE;
612 /* Process the virtual bases. */
613 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
614 VEC_iterate (tree, vbases, i, base); i++)
615 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
617 /* Process the direct bases. */
618 for (binfo = TYPE_BINFO (t), i = 0;
619 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
620 if (!BINFO_VIRTUAL_P (base_binfo))
621 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
623 /* Process the non-static data members. */
624 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
625 /* Reverse the entire list of initializations, so that they are in
626 the order that they will actually be performed. */
627 sorted_inits = nreverse (sorted_inits);
629 /* If the user presented the initializers in an order different from
630 that in which they will actually occur, we issue a warning. Keep
631 track of the next subobject which can be explicitly initialized
632 without issuing a warning. */
633 next_subobject = sorted_inits;
635 /* Go through the explicit initializers, filling in TREE_PURPOSE in
636 the SORTED_INITS. */
637 for (init = mem_inits; init; init = TREE_CHAIN (init))
639 tree subobject;
640 tree subobject_init;
642 subobject = TREE_PURPOSE (init);
644 /* If the explicit initializers are in sorted order, then
645 SUBOBJECT will be NEXT_SUBOBJECT, or something following
646 it. */
647 for (subobject_init = next_subobject;
648 subobject_init;
649 subobject_init = TREE_CHAIN (subobject_init))
650 if (TREE_PURPOSE (subobject_init) == subobject)
651 break;
653 /* Issue a warning if the explicit initializer order does not
654 match that which will actually occur.
655 ??? Are all these on the correct lines? */
656 if (warn_reorder && !subobject_init)
658 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
659 warning (OPT_Wreorder, "%q+D will be initialized after",
660 TREE_PURPOSE (next_subobject));
661 else
662 warning (OPT_Wreorder, "base %qT will be initialized after",
663 TREE_PURPOSE (next_subobject));
664 if (TREE_CODE (subobject) == FIELD_DECL)
665 warning (OPT_Wreorder, " %q+#D", subobject);
666 else
667 warning (OPT_Wreorder, " base %qT", subobject);
668 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
669 OPT_Wreorder, " when initialized here");
672 /* Look again, from the beginning of the list. */
673 if (!subobject_init)
675 subobject_init = sorted_inits;
676 while (TREE_PURPOSE (subobject_init) != subobject)
677 subobject_init = TREE_CHAIN (subobject_init);
680 /* It is invalid to initialize the same subobject more than
681 once. */
682 if (TREE_VALUE (subobject_init))
684 if (TREE_CODE (subobject) == FIELD_DECL)
685 error_at (DECL_SOURCE_LOCATION (current_function_decl),
686 "multiple initializations given for %qD",
687 subobject);
688 else
689 error_at (DECL_SOURCE_LOCATION (current_function_decl),
690 "multiple initializations given for base %qT",
691 subobject);
694 /* Record the initialization. */
695 TREE_VALUE (subobject_init) = TREE_VALUE (init);
696 next_subobject = subobject_init;
699 /* [class.base.init]
701 If a ctor-initializer specifies more than one mem-initializer for
702 multiple members of the same union (including members of
703 anonymous unions), the ctor-initializer is ill-formed. */
704 if (uses_unions_p)
706 tree last_field = NULL_TREE;
707 for (init = sorted_inits; init; init = TREE_CHAIN (init))
709 tree field;
710 tree field_type;
711 int done;
713 /* Skip uninitialized members and base classes. */
714 if (!TREE_VALUE (init)
715 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
716 continue;
717 /* See if this field is a member of a union, or a member of a
718 structure contained in a union, etc. */
719 field = TREE_PURPOSE (init);
720 for (field_type = DECL_CONTEXT (field);
721 !same_type_p (field_type, t);
722 field_type = TYPE_CONTEXT (field_type))
723 if (TREE_CODE (field_type) == UNION_TYPE)
724 break;
725 /* If this field is not a member of a union, skip it. */
726 if (TREE_CODE (field_type) != UNION_TYPE)
727 continue;
729 /* It's only an error if we have two initializers for the same
730 union type. */
731 if (!last_field)
733 last_field = field;
734 continue;
737 /* See if LAST_FIELD and the field initialized by INIT are
738 members of the same union. If so, there's a problem,
739 unless they're actually members of the same structure
740 which is itself a member of a union. For example, given:
742 union { struct { int i; int j; }; };
744 initializing both `i' and `j' makes sense. */
745 field_type = DECL_CONTEXT (field);
746 done = 0;
749 tree last_field_type;
751 last_field_type = DECL_CONTEXT (last_field);
752 while (1)
754 if (same_type_p (last_field_type, field_type))
756 if (TREE_CODE (field_type) == UNION_TYPE)
757 error_at (DECL_SOURCE_LOCATION (current_function_decl),
758 "initializations for multiple members of %qT",
759 last_field_type);
760 done = 1;
761 break;
764 if (same_type_p (last_field_type, t))
765 break;
767 last_field_type = TYPE_CONTEXT (last_field_type);
770 /* If we've reached the outermost class, then we're
771 done. */
772 if (same_type_p (field_type, t))
773 break;
775 field_type = TYPE_CONTEXT (field_type);
777 while (!done);
779 last_field = field;
783 return sorted_inits;
786 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
787 is a TREE_LIST giving the explicit mem-initializer-list for the
788 constructor. The TREE_PURPOSE of each entry is a subobject (a
789 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
790 is a TREE_LIST giving the arguments to the constructor or
791 void_type_node for an empty list of arguments. */
793 void
794 emit_mem_initializers (tree mem_inits)
796 /* We will already have issued an error message about the fact that
797 the type is incomplete. */
798 if (!COMPLETE_TYPE_P (current_class_type))
799 return;
801 /* Sort the mem-initializers into the order in which the
802 initializations should be performed. */
803 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
805 in_base_initializer = 1;
807 /* Initialize base classes. */
808 while (mem_inits
809 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
811 tree subobject = TREE_PURPOSE (mem_inits);
812 tree arguments = TREE_VALUE (mem_inits);
814 /* If these initializations are taking place in a copy constructor,
815 the base class should probably be explicitly initialized if there
816 is a user-defined constructor in the base class (other than the
817 default constructor, which will be called anyway). */
818 if (extra_warnings && !arguments
819 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
820 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
821 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
822 "base class %q#T should be explicitly initialized in the "
823 "copy constructor",
824 BINFO_TYPE (subobject));
826 /* Initialize the base. */
827 if (BINFO_VIRTUAL_P (subobject))
828 construct_virtual_base (subobject, arguments);
829 else
831 tree base_addr;
833 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
834 subobject, 1);
835 expand_aggr_init_1 (subobject, NULL_TREE,
836 cp_build_indirect_ref (base_addr, NULL,
837 tf_warning_or_error),
838 arguments,
839 LOOKUP_NORMAL,
840 tf_warning_or_error);
841 expand_cleanup_for_base (subobject, NULL_TREE);
844 mem_inits = TREE_CHAIN (mem_inits);
846 in_base_initializer = 0;
848 /* Initialize the vptrs. */
849 initialize_vtbl_ptrs (current_class_ptr);
851 /* Initialize the data members. */
852 while (mem_inits)
854 perform_member_init (TREE_PURPOSE (mem_inits),
855 TREE_VALUE (mem_inits));
856 mem_inits = TREE_CHAIN (mem_inits);
860 /* Returns the address of the vtable (i.e., the value that should be
861 assigned to the vptr) for BINFO. */
863 static tree
864 build_vtbl_address (tree binfo)
866 tree binfo_for = binfo;
867 tree vtbl;
869 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
870 /* If this is a virtual primary base, then the vtable we want to store
871 is that for the base this is being used as the primary base of. We
872 can't simply skip the initialization, because we may be expanding the
873 inits of a subobject constructor where the virtual base layout
874 can be different. */
875 while (BINFO_PRIMARY_P (binfo_for))
876 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
878 /* Figure out what vtable BINFO's vtable is based on, and mark it as
879 used. */
880 vtbl = get_vtbl_decl_for_binfo (binfo_for);
881 TREE_USED (vtbl) = 1;
883 /* Now compute the address to use when initializing the vptr. */
884 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
885 if (TREE_CODE (vtbl) == VAR_DECL)
886 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
888 return vtbl;
891 /* This code sets up the virtual function tables appropriate for
892 the pointer DECL. It is a one-ply initialization.
894 BINFO is the exact type that DECL is supposed to be. In
895 multiple inheritance, this might mean "C's A" if C : A, B. */
897 static void
898 expand_virtual_init (tree binfo, tree decl)
900 tree vtbl, vtbl_ptr;
901 tree vtt_index;
903 /* Compute the initializer for vptr. */
904 vtbl = build_vtbl_address (binfo);
906 /* We may get this vptr from a VTT, if this is a subobject
907 constructor or subobject destructor. */
908 vtt_index = BINFO_VPTR_INDEX (binfo);
909 if (vtt_index)
911 tree vtbl2;
912 tree vtt_parm;
914 /* Compute the value to use, when there's a VTT. */
915 vtt_parm = current_vtt_parm;
916 vtbl2 = build2 (POINTER_PLUS_EXPR,
917 TREE_TYPE (vtt_parm),
918 vtt_parm,
919 vtt_index);
920 vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
921 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
923 /* The actual initializer is the VTT value only in the subobject
924 constructor. In maybe_clone_body we'll substitute NULL for
925 the vtt_parm in the case of the non-subobject constructor. */
926 vtbl = build3 (COND_EXPR,
927 TREE_TYPE (vtbl),
928 build2 (EQ_EXPR, boolean_type_node,
929 current_in_charge_parm, integer_zero_node),
930 vtbl2,
931 vtbl);
934 /* Compute the location of the vtpr. */
935 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
936 tf_warning_or_error),
937 TREE_TYPE (binfo));
938 gcc_assert (vtbl_ptr != error_mark_node);
940 /* Assign the vtable to the vptr. */
941 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
942 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
943 tf_warning_or_error));
946 /* If an exception is thrown in a constructor, those base classes already
947 constructed must be destroyed. This function creates the cleanup
948 for BINFO, which has just been constructed. If FLAG is non-NULL,
949 it is a DECL which is nonzero when this base needs to be
950 destroyed. */
952 static void
953 expand_cleanup_for_base (tree binfo, tree flag)
955 tree expr;
957 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
958 return;
960 /* Call the destructor. */
961 expr = build_special_member_call (current_class_ref,
962 base_dtor_identifier,
963 NULL,
964 binfo,
965 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
966 tf_warning_or_error);
967 if (flag)
968 expr = fold_build3 (COND_EXPR, void_type_node,
969 c_common_truthvalue_conversion (input_location, flag),
970 expr, integer_zero_node);
972 finish_eh_cleanup (expr);
975 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
976 constructor. */
978 static void
979 construct_virtual_base (tree vbase, tree arguments)
981 tree inner_if_stmt;
982 tree exp;
983 tree flag;
985 /* If there are virtual base classes with destructors, we need to
986 emit cleanups to destroy them if an exception is thrown during
987 the construction process. These exception regions (i.e., the
988 period during which the cleanups must occur) begin from the time
989 the construction is complete to the end of the function. If we
990 create a conditional block in which to initialize the
991 base-classes, then the cleanup region for the virtual base begins
992 inside a block, and ends outside of that block. This situation
993 confuses the sjlj exception-handling code. Therefore, we do not
994 create a single conditional block, but one for each
995 initialization. (That way the cleanup regions always begin
996 in the outer block.) We trust the back end to figure out
997 that the FLAG will not change across initializations, and
998 avoid doing multiple tests. */
999 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1000 inner_if_stmt = begin_if_stmt ();
1001 finish_if_stmt_cond (flag, inner_if_stmt);
1003 /* Compute the location of the virtual base. If we're
1004 constructing virtual bases, then we must be the most derived
1005 class. Therefore, we don't have to look up the virtual base;
1006 we already know where it is. */
1007 exp = convert_to_base_statically (current_class_ref, vbase);
1009 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1010 LOOKUP_COMPLAIN, tf_warning_or_error);
1011 finish_then_clause (inner_if_stmt);
1012 finish_if_stmt (inner_if_stmt);
1014 expand_cleanup_for_base (vbase, flag);
1017 /* Find the context in which this FIELD can be initialized. */
1019 static tree
1020 initializing_context (tree field)
1022 tree t = DECL_CONTEXT (field);
1024 /* Anonymous union members can be initialized in the first enclosing
1025 non-anonymous union context. */
1026 while (t && ANON_AGGR_TYPE_P (t))
1027 t = TYPE_CONTEXT (t);
1028 return t;
1031 /* Function to give error message if member initialization specification
1032 is erroneous. FIELD is the member we decided to initialize.
1033 TYPE is the type for which the initialization is being performed.
1034 FIELD must be a member of TYPE.
1036 MEMBER_NAME is the name of the member. */
1038 static int
1039 member_init_ok_or_else (tree field, tree type, tree member_name)
1041 if (field == error_mark_node)
1042 return 0;
1043 if (!field)
1045 error ("class %qT does not have any field named %qD", type,
1046 member_name);
1047 return 0;
1049 if (TREE_CODE (field) == VAR_DECL)
1051 error ("%q#D is a static data member; it can only be "
1052 "initialized at its definition",
1053 field);
1054 return 0;
1056 if (TREE_CODE (field) != FIELD_DECL)
1058 error ("%q#D is not a non-static data member of %qT",
1059 field, type);
1060 return 0;
1062 if (initializing_context (field) != type)
1064 error ("class %qT does not have any field named %qD", type,
1065 member_name);
1066 return 0;
1069 return 1;
1072 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1073 is a _TYPE node or TYPE_DECL which names a base for that type.
1074 Check the validity of NAME, and return either the base _TYPE, base
1075 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1076 NULL_TREE and issue a diagnostic.
1078 An old style unnamed direct single base construction is permitted,
1079 where NAME is NULL. */
1081 tree
1082 expand_member_init (tree name)
1084 tree basetype;
1085 tree field;
1087 if (!current_class_ref)
1088 return NULL_TREE;
1090 if (!name)
1092 /* This is an obsolete unnamed base class initializer. The
1093 parser will already have warned about its use. */
1094 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1096 case 0:
1097 error ("unnamed initializer for %qT, which has no base classes",
1098 current_class_type);
1099 return NULL_TREE;
1100 case 1:
1101 basetype = BINFO_TYPE
1102 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1103 break;
1104 default:
1105 error ("unnamed initializer for %qT, which uses multiple inheritance",
1106 current_class_type);
1107 return NULL_TREE;
1110 else if (TYPE_P (name))
1112 basetype = TYPE_MAIN_VARIANT (name);
1113 name = TYPE_NAME (name);
1115 else if (TREE_CODE (name) == TYPE_DECL)
1116 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1117 else
1118 basetype = NULL_TREE;
1120 if (basetype)
1122 tree class_binfo;
1123 tree direct_binfo;
1124 tree virtual_binfo;
1125 int i;
1127 if (current_template_parms)
1128 return basetype;
1130 class_binfo = TYPE_BINFO (current_class_type);
1131 direct_binfo = NULL_TREE;
1132 virtual_binfo = NULL_TREE;
1134 /* Look for a direct base. */
1135 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1136 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1137 break;
1139 /* Look for a virtual base -- unless the direct base is itself
1140 virtual. */
1141 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1142 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1144 /* [class.base.init]
1146 If a mem-initializer-id is ambiguous because it designates
1147 both a direct non-virtual base class and an inherited virtual
1148 base class, the mem-initializer is ill-formed. */
1149 if (direct_binfo && virtual_binfo)
1151 error ("%qD is both a direct base and an indirect virtual base",
1152 basetype);
1153 return NULL_TREE;
1156 if (!direct_binfo && !virtual_binfo)
1158 if (CLASSTYPE_VBASECLASSES (current_class_type))
1159 error ("type %qT is not a direct or virtual base of %qT",
1160 basetype, current_class_type);
1161 else
1162 error ("type %qT is not a direct base of %qT",
1163 basetype, current_class_type);
1164 return NULL_TREE;
1167 return direct_binfo ? direct_binfo : virtual_binfo;
1169 else
1171 if (TREE_CODE (name) == IDENTIFIER_NODE)
1172 field = lookup_field (current_class_type, name, 1, false);
1173 else
1174 field = name;
1176 if (member_init_ok_or_else (field, current_class_type, name))
1177 return field;
1180 return NULL_TREE;
1183 /* This is like `expand_member_init', only it stores one aggregate
1184 value into another.
1186 INIT comes in two flavors: it is either a value which
1187 is to be stored in EXP, or it is a parameter list
1188 to go to a constructor, which will operate on EXP.
1189 If INIT is not a parameter list for a constructor, then set
1190 LOOKUP_ONLYCONVERTING.
1191 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1192 the initializer, if FLAGS is 0, then it is the (init) form.
1193 If `init' is a CONSTRUCTOR, then we emit a warning message,
1194 explaining that such initializations are invalid.
1196 If INIT resolves to a CALL_EXPR which happens to return
1197 something of the type we are looking for, then we know
1198 that we can safely use that call to perform the
1199 initialization.
1201 The virtual function table pointer cannot be set up here, because
1202 we do not really know its type.
1204 This never calls operator=().
1206 When initializing, nothing is CONST.
1208 A default copy constructor may have to be used to perform the
1209 initialization.
1211 A constructor or a conversion operator may have to be used to
1212 perform the initialization, but not both, as it would be ambiguous. */
1214 tree
1215 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1217 tree stmt_expr;
1218 tree compound_stmt;
1219 int destroy_temps;
1220 tree type = TREE_TYPE (exp);
1221 int was_const = TREE_READONLY (exp);
1222 int was_volatile = TREE_THIS_VOLATILE (exp);
1223 int is_global;
1225 if (init == error_mark_node)
1226 return error_mark_node;
1228 TREE_READONLY (exp) = 0;
1229 TREE_THIS_VOLATILE (exp) = 0;
1231 if (init && TREE_CODE (init) != TREE_LIST)
1232 flags |= LOOKUP_ONLYCONVERTING;
1234 if (TREE_CODE (type) == ARRAY_TYPE)
1236 tree itype;
1238 /* An array may not be initialized use the parenthesized
1239 initialization form -- unless the initializer is "()". */
1240 if (init && TREE_CODE (init) == TREE_LIST)
1242 if (complain & tf_error)
1243 error ("bad array initializer");
1244 return error_mark_node;
1246 /* Must arrange to initialize each element of EXP
1247 from elements of INIT. */
1248 itype = init ? TREE_TYPE (init) : NULL_TREE;
1249 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1250 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1251 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1252 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1253 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1254 /*explicit_value_init_p=*/false,
1255 itype && same_type_p (itype,
1256 TREE_TYPE (exp)),
1257 complain);
1258 TREE_READONLY (exp) = was_const;
1259 TREE_THIS_VOLATILE (exp) = was_volatile;
1260 TREE_TYPE (exp) = type;
1261 if (init)
1262 TREE_TYPE (init) = itype;
1263 return stmt_expr;
1266 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1267 /* Just know that we've seen something for this node. */
1268 TREE_USED (exp) = 1;
1270 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1271 destroy_temps = stmts_are_full_exprs_p ();
1272 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1273 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1274 init, LOOKUP_NORMAL|flags, complain);
1275 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1276 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1277 TREE_READONLY (exp) = was_const;
1278 TREE_THIS_VOLATILE (exp) = was_volatile;
1280 return stmt_expr;
1283 static void
1284 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1285 tsubst_flags_t complain)
1287 tree type = TREE_TYPE (exp);
1288 tree ctor_name;
1290 /* It fails because there may not be a constructor which takes
1291 its own type as the first (or only parameter), but which does
1292 take other types via a conversion. So, if the thing initializing
1293 the expression is a unit element of type X, first try X(X&),
1294 followed by initialization by X. If neither of these work
1295 out, then look hard. */
1296 tree rval;
1297 VEC(tree,gc) *parms;
1299 if (init && TREE_CODE (init) != TREE_LIST
1300 && (flags & LOOKUP_ONLYCONVERTING))
1302 /* Base subobjects should only get direct-initialization. */
1303 gcc_assert (true_exp == exp);
1305 if (flags & DIRECT_BIND)
1306 /* Do nothing. We hit this in two cases: Reference initialization,
1307 where we aren't initializing a real variable, so we don't want
1308 to run a new constructor; and catching an exception, where we
1309 have already built up the constructor call so we could wrap it
1310 in an exception region. */;
1311 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1312 && CP_AGGREGATE_TYPE_P (type))
1314 /* A brace-enclosed initializer for an aggregate. */
1315 init = digest_init (type, init);
1317 else
1318 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1320 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1321 /* We need to protect the initialization of a catch parm with a
1322 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1323 around the TARGET_EXPR for the copy constructor. See
1324 initialize_handler_parm. */
1326 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1327 TREE_OPERAND (init, 0));
1328 TREE_TYPE (init) = void_type_node;
1330 else
1331 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1332 TREE_SIDE_EFFECTS (init) = 1;
1333 finish_expr_stmt (init);
1334 return;
1337 if (init == NULL_TREE)
1338 parms = NULL;
1339 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1341 parms = make_tree_vector ();
1342 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1343 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1345 else
1346 parms = make_tree_vector_single (init);
1348 if (true_exp == exp)
1349 ctor_name = complete_ctor_identifier;
1350 else
1351 ctor_name = base_ctor_identifier;
1353 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1354 complain);
1356 if (parms != NULL)
1357 release_tree_vector (parms);
1359 if (TREE_SIDE_EFFECTS (rval))
1360 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1363 /* This function is responsible for initializing EXP with INIT
1364 (if any).
1366 BINFO is the binfo of the type for who we are performing the
1367 initialization. For example, if W is a virtual base class of A and B,
1368 and C : A, B.
1369 If we are initializing B, then W must contain B's W vtable, whereas
1370 were we initializing C, W must contain C's W vtable.
1372 TRUE_EXP is nonzero if it is the true expression being initialized.
1373 In this case, it may be EXP, or may just contain EXP. The reason we
1374 need this is because if EXP is a base element of TRUE_EXP, we
1375 don't necessarily know by looking at EXP where its virtual
1376 baseclass fields should really be pointing. But we do know
1377 from TRUE_EXP. In constructors, we don't know anything about
1378 the value being initialized.
1380 FLAGS is just passed to `build_new_method_call'. See that function
1381 for its description. */
1383 static void
1384 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1385 tsubst_flags_t complain)
1387 tree type = TREE_TYPE (exp);
1389 gcc_assert (init != error_mark_node && type != error_mark_node);
1390 gcc_assert (building_stmt_tree ());
1392 /* Use a function returning the desired type to initialize EXP for us.
1393 If the function is a constructor, and its first argument is
1394 NULL_TREE, know that it was meant for us--just slide exp on
1395 in and expand the constructor. Constructors now come
1396 as TARGET_EXPRs. */
1398 if (init && TREE_CODE (exp) == VAR_DECL
1399 && COMPOUND_LITERAL_P (init))
1401 /* If store_init_value returns NULL_TREE, the INIT has been
1402 recorded as the DECL_INITIAL for EXP. That means there's
1403 nothing more we have to do. */
1404 init = store_init_value (exp, init, flags);
1405 if (init)
1406 finish_expr_stmt (init);
1407 return;
1410 /* If an explicit -- but empty -- initializer list was present,
1411 that's value-initialization. */
1412 if (init == void_type_node)
1414 /* If there's a user-provided constructor, we just call that. */
1415 if (type_has_user_provided_constructor (type))
1416 /* Fall through. */;
1417 /* If there isn't, but we still need to call the constructor,
1418 zero out the object first. */
1419 else if (TYPE_NEEDS_CONSTRUCTING (type))
1421 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1422 init = build2 (INIT_EXPR, type, exp, init);
1423 finish_expr_stmt (init);
1424 /* And then call the constructor. */
1426 /* If we don't need to mess with the constructor at all,
1427 then just zero out the object and we're done. */
1428 else
1430 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1431 finish_expr_stmt (init);
1432 return;
1434 init = NULL_TREE;
1437 /* We know that expand_default_init can handle everything we want
1438 at this point. */
1439 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1442 /* Report an error if TYPE is not a user-defined, class type. If
1443 OR_ELSE is nonzero, give an error message. */
1446 is_class_type (tree type, int or_else)
1448 if (type == error_mark_node)
1449 return 0;
1451 if (! CLASS_TYPE_P (type))
1453 if (or_else)
1454 error ("%qT is not a class type", type);
1455 return 0;
1457 return 1;
1460 tree
1461 get_type_value (tree name)
1463 if (name == error_mark_node)
1464 return NULL_TREE;
1466 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1467 return IDENTIFIER_TYPE_VALUE (name);
1468 else
1469 return NULL_TREE;
1472 /* Build a reference to a member of an aggregate. This is not a C++
1473 `&', but really something which can have its address taken, and
1474 then act as a pointer to member, for example TYPE :: FIELD can have
1475 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1476 this expression is the operand of "&".
1478 @@ Prints out lousy diagnostics for operator <typename>
1479 @@ fields.
1481 @@ This function should be rewritten and placed in search.c. */
1483 tree
1484 build_offset_ref (tree type, tree member, bool address_p)
1486 tree decl;
1487 tree basebinfo = NULL_TREE;
1489 /* class templates can come in as TEMPLATE_DECLs here. */
1490 if (TREE_CODE (member) == TEMPLATE_DECL)
1491 return member;
1493 if (dependent_type_p (type) || type_dependent_expression_p (member))
1494 return build_qualified_name (NULL_TREE, type, member,
1495 /*template_p=*/false);
1497 gcc_assert (TYPE_P (type));
1498 if (! is_class_type (type, 1))
1499 return error_mark_node;
1501 gcc_assert (DECL_P (member) || BASELINK_P (member));
1502 /* Callers should call mark_used before this point. */
1503 gcc_assert (!DECL_P (member) || TREE_USED (member));
1505 if (!COMPLETE_TYPE_P (complete_type (type))
1506 && !TYPE_BEING_DEFINED (type))
1508 error ("incomplete type %qT does not have member %qD", type, member);
1509 return error_mark_node;
1512 /* Entities other than non-static members need no further
1513 processing. */
1514 if (TREE_CODE (member) == TYPE_DECL)
1515 return member;
1516 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1517 return convert_from_reference (member);
1519 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1521 error ("invalid pointer to bit-field %qD", member);
1522 return error_mark_node;
1525 /* Set up BASEBINFO for member lookup. */
1526 decl = maybe_dummy_object (type, &basebinfo);
1528 /* A lot of this logic is now handled in lookup_member. */
1529 if (BASELINK_P (member))
1531 /* Go from the TREE_BASELINK to the member function info. */
1532 tree t = BASELINK_FUNCTIONS (member);
1534 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1536 /* Get rid of a potential OVERLOAD around it. */
1537 t = OVL_CURRENT (t);
1539 /* Unique functions are handled easily. */
1541 /* For non-static member of base class, we need a special rule
1542 for access checking [class.protected]:
1544 If the access is to form a pointer to member, the
1545 nested-name-specifier shall name the derived class
1546 (or any class derived from that class). */
1547 if (address_p && DECL_P (t)
1548 && DECL_NONSTATIC_MEMBER_P (t))
1549 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1550 else
1551 perform_or_defer_access_check (basebinfo, t, t);
1553 if (DECL_STATIC_FUNCTION_P (t))
1554 return t;
1555 member = t;
1557 else
1558 TREE_TYPE (member) = unknown_type_node;
1560 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1561 /* We need additional test besides the one in
1562 check_accessibility_of_qualified_id in case it is
1563 a pointer to non-static member. */
1564 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1566 if (!address_p)
1568 /* If MEMBER is non-static, then the program has fallen afoul of
1569 [expr.prim]:
1571 An id-expression that denotes a nonstatic data member or
1572 nonstatic member function of a class can only be used:
1574 -- as part of a class member access (_expr.ref_) in which the
1575 object-expression refers to the member's class or a class
1576 derived from that class, or
1578 -- to form a pointer to member (_expr.unary.op_), or
1580 -- in the body of a nonstatic member function of that class or
1581 of a class derived from that class (_class.mfct.nonstatic_), or
1583 -- in a mem-initializer for a constructor for that class or for
1584 a class derived from that class (_class.base.init_). */
1585 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1587 /* Build a representation of the qualified name suitable
1588 for use as the operand to "&" -- even though the "&" is
1589 not actually present. */
1590 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1591 /* In Microsoft mode, treat a non-static member function as if
1592 it were a pointer-to-member. */
1593 if (flag_ms_extensions)
1595 PTRMEM_OK_P (member) = 1;
1596 return cp_build_unary_op (ADDR_EXPR, member, 0,
1597 tf_warning_or_error);
1599 error ("invalid use of non-static member function %qD",
1600 TREE_OPERAND (member, 1));
1601 return error_mark_node;
1603 else if (TREE_CODE (member) == FIELD_DECL)
1605 error ("invalid use of non-static data member %qD", member);
1606 return error_mark_node;
1608 return member;
1611 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1612 PTRMEM_OK_P (member) = 1;
1613 return member;
1616 /* If DECL is a scalar enumeration constant or variable with a
1617 constant initializer, return the initializer (or, its initializers,
1618 recursively); otherwise, return DECL. If INTEGRAL_P, the
1619 initializer is only returned if DECL is an integral
1620 constant-expression. */
1622 static tree
1623 constant_value_1 (tree decl, bool integral_p)
1625 while (TREE_CODE (decl) == CONST_DECL
1626 || (integral_p
1627 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1628 : (TREE_CODE (decl) == VAR_DECL
1629 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1631 tree init;
1632 /* Static data members in template classes may have
1633 non-dependent initializers. References to such non-static
1634 data members are not value-dependent, so we must retrieve the
1635 initializer here. The DECL_INITIAL will have the right type,
1636 but will not have been folded because that would prevent us
1637 from performing all appropriate semantic checks at
1638 instantiation time. */
1639 if (DECL_CLASS_SCOPE_P (decl)
1640 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1641 && uses_template_parms (CLASSTYPE_TI_ARGS
1642 (DECL_CONTEXT (decl))))
1644 ++processing_template_decl;
1645 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1646 --processing_template_decl;
1648 else
1650 /* If DECL is a static data member in a template
1651 specialization, we must instantiate it here. The
1652 initializer for the static data member is not processed
1653 until needed; we need it now. */
1654 mark_used (decl);
1655 init = DECL_INITIAL (decl);
1657 if (init == error_mark_node)
1658 return decl;
1659 /* Initializers in templates are generally expanded during
1660 instantiation, so before that for const int i(2)
1661 INIT is a TREE_LIST with the actual initializer as
1662 TREE_VALUE. */
1663 if (processing_template_decl
1664 && init
1665 && TREE_CODE (init) == TREE_LIST
1666 && TREE_CHAIN (init) == NULL_TREE)
1667 init = TREE_VALUE (init);
1668 if (!init
1669 || !TREE_TYPE (init)
1670 || (integral_p
1671 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1672 : (!TREE_CONSTANT (init)
1673 /* Do not return an aggregate constant (of which
1674 string literals are a special case), as we do not
1675 want to make inadvertent copies of such entities,
1676 and we must be sure that their addresses are the
1677 same everywhere. */
1678 || TREE_CODE (init) == CONSTRUCTOR
1679 || TREE_CODE (init) == STRING_CST)))
1680 break;
1681 decl = unshare_expr (init);
1683 return decl;
1686 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1687 constant of integral or enumeration type, then return that value.
1688 These are those variables permitted in constant expressions by
1689 [5.19/1]. */
1691 tree
1692 integral_constant_value (tree decl)
1694 return constant_value_1 (decl, /*integral_p=*/true);
1697 /* A more relaxed version of integral_constant_value, used by the
1698 common C/C++ code and by the C++ front end for optimization
1699 purposes. */
1701 tree
1702 decl_constant_value (tree decl)
1704 return constant_value_1 (decl,
1705 /*integral_p=*/processing_template_decl);
1708 /* Common subroutines of build_new and build_vec_delete. */
1710 /* Call the global __builtin_delete to delete ADDR. */
1712 static tree
1713 build_builtin_delete_call (tree addr)
1715 mark_used (global_delete_fndecl);
1716 return build_call_n (global_delete_fndecl, 1, addr);
1719 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1720 the type of the object being allocated; otherwise, it's just TYPE.
1721 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1722 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1723 a vector of arguments to be provided as arguments to a placement
1724 new operator. This routine performs no semantic checks; it just
1725 creates and returns a NEW_EXPR. */
1727 static tree
1728 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1729 VEC(tree,gc) *init, int use_global_new)
1731 tree init_list;
1732 tree new_expr;
1734 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1735 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1736 permits us to distinguish the case of a missing initializer "new
1737 int" from an empty initializer "new int()". */
1738 if (init == NULL)
1739 init_list = NULL_TREE;
1740 else if (VEC_empty (tree, init))
1741 init_list = void_zero_node;
1742 else
1743 init_list = build_tree_list_vec (init);
1745 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1746 build_tree_list_vec (placement), type, nelts,
1747 init_list);
1748 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1749 TREE_SIDE_EFFECTS (new_expr) = 1;
1751 return new_expr;
1754 /* Generate code for a new-expression, including calling the "operator
1755 new" function, initializing the object, and, if an exception occurs
1756 during construction, cleaning up. The arguments are as for
1757 build_raw_new_expr. This may change PLACEMENT and INIT. */
1759 static tree
1760 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1761 VEC(tree,gc) **init, bool globally_qualified_p,
1762 tsubst_flags_t complain)
1764 tree size, rval;
1765 /* True iff this is a call to "operator new[]" instead of just
1766 "operator new". */
1767 bool array_p = false;
1768 /* If ARRAY_P is true, the element type of the array. This is never
1769 an ARRAY_TYPE; for something like "new int[3][4]", the
1770 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1771 TYPE. */
1772 tree elt_type;
1773 /* The type of the new-expression. (This type is always a pointer
1774 type.) */
1775 tree pointer_type;
1776 tree outer_nelts = NULL_TREE;
1777 tree alloc_call, alloc_expr;
1778 /* The address returned by the call to "operator new". This node is
1779 a VAR_DECL and is therefore reusable. */
1780 tree alloc_node;
1781 tree alloc_fn;
1782 tree cookie_expr, init_expr;
1783 int nothrow, check_new;
1784 int use_java_new = 0;
1785 /* If non-NULL, the number of extra bytes to allocate at the
1786 beginning of the storage allocated for an array-new expression in
1787 order to store the number of elements. */
1788 tree cookie_size = NULL_TREE;
1789 tree placement_first;
1790 tree placement_expr = NULL_TREE;
1791 /* True if the function we are calling is a placement allocation
1792 function. */
1793 bool placement_allocation_fn_p;
1794 /* True if the storage must be initialized, either by a constructor
1795 or due to an explicit new-initializer. */
1796 bool is_initialized;
1797 /* The address of the thing allocated, not including any cookie. In
1798 particular, if an array cookie is in use, DATA_ADDR is the
1799 address of the first array element. This node is a VAR_DECL, and
1800 is therefore reusable. */
1801 tree data_addr;
1802 tree init_preeval_expr = NULL_TREE;
1804 if (nelts)
1806 outer_nelts = nelts;
1807 array_p = true;
1809 else if (TREE_CODE (type) == ARRAY_TYPE)
1811 array_p = true;
1812 nelts = array_type_nelts_top (type);
1813 outer_nelts = nelts;
1814 type = TREE_TYPE (type);
1817 /* If our base type is an array, then make sure we know how many elements
1818 it has. */
1819 for (elt_type = type;
1820 TREE_CODE (elt_type) == ARRAY_TYPE;
1821 elt_type = TREE_TYPE (elt_type))
1822 nelts = cp_build_binary_op (input_location,
1823 MULT_EXPR, nelts,
1824 array_type_nelts_top (elt_type),
1825 complain);
1827 if (TREE_CODE (elt_type) == VOID_TYPE)
1829 if (complain & tf_error)
1830 error ("invalid type %<void%> for new");
1831 return error_mark_node;
1834 if (abstract_virtuals_error (NULL_TREE, elt_type))
1835 return error_mark_node;
1837 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1839 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
1840 && !type_has_user_provided_default_constructor (elt_type))
1842 if (complain & tf_error)
1843 error ("uninitialized const in %<new%> of %q#T", elt_type);
1844 return error_mark_node;
1847 size = size_in_bytes (elt_type);
1848 if (array_p)
1849 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1851 alloc_fn = NULL_TREE;
1853 /* If PLACEMENT is a single simple pointer type not passed by
1854 reference, prepare to capture it in a temporary variable. Do
1855 this now, since PLACEMENT will change in the calls below. */
1856 placement_first = NULL_TREE;
1857 if (VEC_length (tree, *placement) == 1
1858 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
1859 == POINTER_TYPE))
1860 placement_first = VEC_index (tree, *placement, 0);
1862 /* Allocate the object. */
1863 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
1865 tree class_addr;
1866 tree class_decl = build_java_class_ref (elt_type);
1867 static const char alloc_name[] = "_Jv_AllocObject";
1869 if (class_decl == error_mark_node)
1870 return error_mark_node;
1872 use_java_new = 1;
1873 if (!get_global_value_if_present (get_identifier (alloc_name),
1874 &alloc_fn))
1876 if (complain & tf_error)
1877 error ("call to Java constructor with %qs undefined", alloc_name);
1878 return error_mark_node;
1880 else if (really_overloaded_fn (alloc_fn))
1882 if (complain & tf_error)
1883 error ("%qD should never be overloaded", alloc_fn);
1884 return error_mark_node;
1886 alloc_fn = OVL_CURRENT (alloc_fn);
1887 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1888 alloc_call = (cp_build_function_call
1889 (alloc_fn,
1890 build_tree_list (NULL_TREE, class_addr),
1891 complain));
1893 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1895 error ("Java class %q#T object allocated using placement new", elt_type);
1896 return error_mark_node;
1898 else
1900 tree fnname;
1901 tree fns;
1903 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1905 if (!globally_qualified_p
1906 && CLASS_TYPE_P (elt_type)
1907 && (array_p
1908 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1909 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1911 /* Use a class-specific operator new. */
1912 /* If a cookie is required, add some extra space. */
1913 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1915 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1916 size = size_binop (PLUS_EXPR, size, cookie_size);
1918 /* Create the argument list. */
1919 VEC_safe_insert (tree, gc, *placement, 0, size);
1920 /* Do name-lookup to find the appropriate operator. */
1921 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1922 if (fns == NULL_TREE)
1924 if (complain & tf_error)
1925 error ("no suitable %qD found in class %qT", fnname, elt_type);
1926 return error_mark_node;
1928 if (TREE_CODE (fns) == TREE_LIST)
1930 if (complain & tf_error)
1932 error ("request for member %qD is ambiguous", fnname);
1933 print_candidates (fns);
1935 return error_mark_node;
1937 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1938 fns, placement,
1939 /*conversion_path=*/NULL_TREE,
1940 LOOKUP_NORMAL,
1941 &alloc_fn,
1942 complain);
1944 else
1946 /* Use a global operator new. */
1947 /* See if a cookie might be required. */
1948 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1949 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1950 else
1951 cookie_size = NULL_TREE;
1953 alloc_call = build_operator_new_call (fnname, placement,
1954 &size, &cookie_size,
1955 &alloc_fn);
1959 if (alloc_call == error_mark_node)
1960 return error_mark_node;
1962 gcc_assert (alloc_fn != NULL_TREE);
1964 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
1965 into a temporary variable. */
1966 if (!processing_template_decl
1967 && placement_first != NULL_TREE
1968 && TREE_CODE (alloc_call) == CALL_EXPR
1969 && call_expr_nargs (alloc_call) == 2
1970 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
1971 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
1973 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
1975 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
1976 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
1978 placement_expr = get_target_expr (placement_first);
1979 CALL_EXPR_ARG (alloc_call, 1)
1980 = convert (TREE_TYPE (placement_arg), placement_expr);
1984 /* In the simple case, we can stop now. */
1985 pointer_type = build_pointer_type (type);
1986 if (!cookie_size && !is_initialized)
1987 return build_nop (pointer_type, alloc_call);
1989 /* Store the result of the allocation call in a variable so that we can
1990 use it more than once. */
1991 alloc_expr = get_target_expr (alloc_call);
1992 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1994 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1995 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1996 alloc_call = TREE_OPERAND (alloc_call, 1);
1998 /* Now, check to see if this function is actually a placement
1999 allocation function. This can happen even when PLACEMENT is NULL
2000 because we might have something like:
2002 struct S { void* operator new (size_t, int i = 0); };
2004 A call to `new S' will get this allocation function, even though
2005 there is no explicit placement argument. If there is more than
2006 one argument, or there are variable arguments, then this is a
2007 placement allocation function. */
2008 placement_allocation_fn_p
2009 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2010 || varargs_function_p (alloc_fn));
2012 /* Preevaluate the placement args so that we don't reevaluate them for a
2013 placement delete. */
2014 if (placement_allocation_fn_p)
2016 tree inits;
2017 stabilize_call (alloc_call, &inits);
2018 if (inits)
2019 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2020 alloc_expr);
2023 /* unless an allocation function is declared with an empty excep-
2024 tion-specification (_except.spec_), throw(), it indicates failure to
2025 allocate storage by throwing a bad_alloc exception (clause _except_,
2026 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2027 cation function is declared with an empty exception-specification,
2028 throw(), it returns null to indicate failure to allocate storage and a
2029 non-null pointer otherwise.
2031 So check for a null exception spec on the op new we just called. */
2033 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2034 check_new = (flag_check_new || nothrow) && ! use_java_new;
2036 if (cookie_size)
2038 tree cookie;
2039 tree cookie_ptr;
2040 tree size_ptr_type;
2042 /* Adjust so we're pointing to the start of the object. */
2043 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2044 alloc_node, cookie_size);
2046 /* Store the number of bytes allocated so that we can know how
2047 many elements to destroy later. We use the last sizeof
2048 (size_t) bytes to store the number of elements. */
2049 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2050 cookie_ptr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2051 alloc_node, cookie_ptr);
2052 size_ptr_type = build_pointer_type (sizetype);
2053 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2054 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2056 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2058 if (targetm.cxx.cookie_has_size ())
2060 /* Also store the element size. */
2061 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2062 fold_build1 (NEGATE_EXPR, sizetype,
2063 size_in_bytes (sizetype)));
2065 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2066 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2067 size_in_bytes (elt_type));
2068 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2069 cookie, cookie_expr);
2072 else
2074 cookie_expr = NULL_TREE;
2075 data_addr = alloc_node;
2078 /* Now use a pointer to the type we've actually allocated. */
2079 data_addr = fold_convert (pointer_type, data_addr);
2080 /* Any further uses of alloc_node will want this type, too. */
2081 alloc_node = fold_convert (pointer_type, alloc_node);
2083 /* Now initialize the allocated object. Note that we preevaluate the
2084 initialization expression, apart from the actual constructor call or
2085 assignment--we do this because we want to delay the allocation as long
2086 as possible in order to minimize the size of the exception region for
2087 placement delete. */
2088 if (is_initialized)
2090 bool stable;
2091 bool explicit_value_init_p = false;
2093 if (*init != NULL && VEC_empty (tree, *init))
2095 *init = NULL;
2096 explicit_value_init_p = true;
2099 if (array_p)
2101 if (*init)
2103 if (complain & tf_error)
2104 permerror (input_location, "ISO C++ forbids initialization in array new");
2105 else
2106 return error_mark_node;
2108 init_expr
2109 = build_vec_init (data_addr,
2110 cp_build_binary_op (input_location,
2111 MINUS_EXPR, outer_nelts,
2112 integer_one_node,
2113 complain),
2114 build_tree_list_vec (*init),
2115 explicit_value_init_p,
2116 /*from_array=*/0,
2117 complain);
2119 /* An array initialization is stable because the initialization
2120 of each element is a full-expression, so the temporaries don't
2121 leak out. */
2122 stable = true;
2124 else
2126 init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
2128 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2130 init_expr = build_special_member_call (init_expr,
2131 complete_ctor_identifier,
2132 init, elt_type,
2133 LOOKUP_NORMAL,
2134 complain);
2136 else if (explicit_value_init_p)
2138 /* Something like `new int()'. */
2139 init_expr = build2 (INIT_EXPR, type,
2140 init_expr, build_value_init (type));
2142 else
2144 tree ie;
2146 /* We are processing something like `new int (10)', which
2147 means allocate an int, and initialize it with 10. */
2149 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2150 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2151 complain);
2153 stable = stabilize_init (init_expr, &init_preeval_expr);
2156 if (init_expr == error_mark_node)
2157 return error_mark_node;
2159 /* If any part of the object initialization terminates by throwing an
2160 exception and a suitable deallocation function can be found, the
2161 deallocation function is called to free the memory in which the
2162 object was being constructed, after which the exception continues
2163 to propagate in the context of the new-expression. If no
2164 unambiguous matching deallocation function can be found,
2165 propagating the exception does not cause the object's memory to be
2166 freed. */
2167 if (flag_exceptions && ! use_java_new)
2169 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2170 tree cleanup;
2172 /* The Standard is unclear here, but the right thing to do
2173 is to use the same method for finding deallocation
2174 functions that we use for finding allocation functions. */
2175 cleanup = (build_op_delete_call
2176 (dcode,
2177 alloc_node,
2178 size,
2179 globally_qualified_p,
2180 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2181 alloc_fn));
2183 if (!cleanup)
2184 /* We're done. */;
2185 else if (stable)
2186 /* This is much simpler if we were able to preevaluate all of
2187 the arguments to the constructor call. */
2189 /* CLEANUP is compiler-generated, so no diagnostics. */
2190 TREE_NO_WARNING (cleanup) = true;
2191 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2192 init_expr, cleanup);
2193 /* Likewise, this try-catch is compiler-generated. */
2194 TREE_NO_WARNING (init_expr) = true;
2196 else
2197 /* Ack! First we allocate the memory. Then we set our sentry
2198 variable to true, and expand a cleanup that deletes the
2199 memory if sentry is true. Then we run the constructor, and
2200 finally clear the sentry.
2202 We need to do this because we allocate the space first, so
2203 if there are any temporaries with cleanups in the
2204 constructor args and we weren't able to preevaluate them, we
2205 need this EH region to extend until end of full-expression
2206 to preserve nesting. */
2208 tree end, sentry, begin;
2210 begin = get_target_expr (boolean_true_node);
2211 CLEANUP_EH_ONLY (begin) = 1;
2213 sentry = TARGET_EXPR_SLOT (begin);
2215 /* CLEANUP is compiler-generated, so no diagnostics. */
2216 TREE_NO_WARNING (cleanup) = true;
2218 TARGET_EXPR_CLEANUP (begin)
2219 = build3 (COND_EXPR, void_type_node, sentry,
2220 cleanup, void_zero_node);
2222 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2223 sentry, boolean_false_node);
2225 init_expr
2226 = build2 (COMPOUND_EXPR, void_type_node, begin,
2227 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2228 end));
2229 /* Likewise, this is compiler-generated. */
2230 TREE_NO_WARNING (init_expr) = true;
2234 else
2235 init_expr = NULL_TREE;
2237 /* Now build up the return value in reverse order. */
2239 rval = data_addr;
2241 if (init_expr)
2242 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2243 if (cookie_expr)
2244 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2246 if (rval == data_addr)
2247 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2248 and return the call (which doesn't need to be adjusted). */
2249 rval = TARGET_EXPR_INITIAL (alloc_expr);
2250 else
2252 if (check_new)
2254 tree ifexp = cp_build_binary_op (input_location,
2255 NE_EXPR, alloc_node,
2256 integer_zero_node,
2257 complain);
2258 rval = build_conditional_expr (ifexp, rval, alloc_node,
2259 complain);
2262 /* Perform the allocation before anything else, so that ALLOC_NODE
2263 has been initialized before we start using it. */
2264 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2267 if (init_preeval_expr)
2268 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2270 /* A new-expression is never an lvalue. */
2271 gcc_assert (!lvalue_p (rval));
2273 return rval;
2276 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2277 is a vector of placement-new arguments (or NULL if none). If NELTS
2278 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2279 is not NULL, then this is an array-new allocation; TYPE is the type
2280 of the elements in the array and NELTS is the number of elements in
2281 the array. *INIT, if non-NULL, is the initializer for the new
2282 object, or an empty vector to indicate an initializer of "()". If
2283 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2284 rather than just "new". This may change PLACEMENT and INIT. */
2286 tree
2287 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2288 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2290 tree rval;
2291 VEC(tree,gc) *orig_placement = NULL;
2292 tree orig_nelts = NULL_TREE;
2293 VEC(tree,gc) *orig_init = NULL;
2295 if (type == error_mark_node)
2296 return error_mark_node;
2298 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2300 tree auto_node = type_uses_auto (type);
2301 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2302 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2305 if (processing_template_decl)
2307 if (dependent_type_p (type)
2308 || any_type_dependent_arguments_p (*placement)
2309 || (nelts && type_dependent_expression_p (nelts))
2310 || any_type_dependent_arguments_p (*init))
2311 return build_raw_new_expr (*placement, type, nelts, *init,
2312 use_global_new);
2314 orig_placement = make_tree_vector_copy (*placement);
2315 orig_nelts = nelts;
2316 orig_init = make_tree_vector_copy (*init);
2318 make_args_non_dependent (*placement);
2319 if (nelts)
2320 nelts = build_non_dependent_expr (nelts);
2321 make_args_non_dependent (*init);
2324 if (nelts)
2326 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2328 if (complain & tf_error)
2329 permerror (input_location, "size in array new must have integral type");
2330 else
2331 return error_mark_node;
2333 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2336 /* ``A reference cannot be created by the new operator. A reference
2337 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2338 returned by new.'' ARM 5.3.3 */
2339 if (TREE_CODE (type) == REFERENCE_TYPE)
2341 if (complain & tf_error)
2342 error ("new cannot be applied to a reference type");
2343 else
2344 return error_mark_node;
2345 type = TREE_TYPE (type);
2348 if (TREE_CODE (type) == FUNCTION_TYPE)
2350 if (complain & tf_error)
2351 error ("new cannot be applied to a function type");
2352 return error_mark_node;
2355 /* The type allocated must be complete. If the new-type-id was
2356 "T[N]" then we are just checking that "T" is complete here, but
2357 that is equivalent, since the value of "N" doesn't matter. */
2358 if (!complete_type_or_else (type, NULL_TREE))
2359 return error_mark_node;
2361 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2362 if (rval == error_mark_node)
2363 return error_mark_node;
2365 if (processing_template_decl)
2367 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2368 orig_init, use_global_new);
2369 release_tree_vector (orig_placement);
2370 release_tree_vector (orig_init);
2371 return ret;
2374 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2375 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2376 TREE_NO_WARNING (rval) = 1;
2378 return rval;
2381 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2383 tree
2384 build_java_class_ref (tree type)
2386 tree name = NULL_TREE, class_decl;
2387 static tree CL_suffix = NULL_TREE;
2388 if (CL_suffix == NULL_TREE)
2389 CL_suffix = get_identifier("class$");
2390 if (jclass_node == NULL_TREE)
2392 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2393 if (jclass_node == NULL_TREE)
2395 error ("call to Java constructor, while %<jclass%> undefined");
2396 return error_mark_node;
2398 jclass_node = TREE_TYPE (jclass_node);
2401 /* Mangle the class$ field. */
2403 tree field;
2404 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2405 if (DECL_NAME (field) == CL_suffix)
2407 mangle_decl (field);
2408 name = DECL_ASSEMBLER_NAME (field);
2409 break;
2411 if (!field)
2413 error ("can't find %<class$%> in %qT", type);
2414 return error_mark_node;
2418 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2419 if (class_decl == NULL_TREE)
2421 class_decl = build_decl (input_location,
2422 VAR_DECL, name, TREE_TYPE (jclass_node));
2423 TREE_STATIC (class_decl) = 1;
2424 DECL_EXTERNAL (class_decl) = 1;
2425 TREE_PUBLIC (class_decl) = 1;
2426 DECL_ARTIFICIAL (class_decl) = 1;
2427 DECL_IGNORED_P (class_decl) = 1;
2428 pushdecl_top_level (class_decl);
2429 make_decl_rtl (class_decl);
2431 return class_decl;
2434 static tree
2435 build_vec_delete_1 (tree base, tree maxindex, tree type,
2436 special_function_kind auto_delete_vec, int use_global_delete)
2438 tree virtual_size;
2439 tree ptype = build_pointer_type (type = complete_type (type));
2440 tree size_exp = size_in_bytes (type);
2442 /* Temporary variables used by the loop. */
2443 tree tbase, tbase_init;
2445 /* This is the body of the loop that implements the deletion of a
2446 single element, and moves temp variables to next elements. */
2447 tree body;
2449 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2450 tree loop = 0;
2452 /* This is the thing that governs what to do after the loop has run. */
2453 tree deallocate_expr = 0;
2455 /* This is the BIND_EXPR which holds the outermost iterator of the
2456 loop. It is convenient to set this variable up and test it before
2457 executing any other code in the loop.
2458 This is also the containing expression returned by this function. */
2459 tree controller = NULL_TREE;
2460 tree tmp;
2462 /* We should only have 1-D arrays here. */
2463 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2465 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2466 goto no_destructor;
2468 /* The below is short by the cookie size. */
2469 virtual_size = size_binop (MULT_EXPR, size_exp,
2470 convert (sizetype, maxindex));
2472 tbase = create_temporary_var (ptype);
2473 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2474 fold_build2 (POINTER_PLUS_EXPR, ptype,
2475 fold_convert (ptype, base),
2476 virtual_size),
2477 tf_warning_or_error);
2478 DECL_REGISTER (tbase) = 1;
2479 controller = build3 (BIND_EXPR, void_type_node, tbase,
2480 NULL_TREE, NULL_TREE);
2481 TREE_SIDE_EFFECTS (controller) = 1;
2483 body = build1 (EXIT_EXPR, void_type_node,
2484 build2 (EQ_EXPR, boolean_type_node, tbase,
2485 fold_convert (ptype, base)));
2486 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2487 body = build_compound_expr
2488 (input_location,
2489 body, cp_build_modify_expr (tbase, NOP_EXPR,
2490 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2491 tf_warning_or_error));
2492 body = build_compound_expr
2493 (input_location,
2494 body, build_delete (ptype, tbase, sfk_complete_destructor,
2495 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2497 loop = build1 (LOOP_EXPR, void_type_node, body);
2498 loop = build_compound_expr (input_location, tbase_init, loop);
2500 no_destructor:
2501 /* If the delete flag is one, or anything else with the low bit set,
2502 delete the storage. */
2503 if (auto_delete_vec != sfk_base_destructor)
2505 tree base_tbd;
2507 /* The below is short by the cookie size. */
2508 virtual_size = size_binop (MULT_EXPR, size_exp,
2509 convert (sizetype, maxindex));
2511 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2512 /* no header */
2513 base_tbd = base;
2514 else
2516 tree cookie_size;
2518 cookie_size = targetm.cxx.get_cookie_size (type);
2519 base_tbd
2520 = cp_convert (ptype,
2521 cp_build_binary_op (input_location,
2522 MINUS_EXPR,
2523 cp_convert (string_type_node,
2524 base),
2525 cookie_size,
2526 tf_warning_or_error));
2527 /* True size with header. */
2528 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2531 if (auto_delete_vec == sfk_deleting_destructor)
2532 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2533 base_tbd, virtual_size,
2534 use_global_delete & 1,
2535 /*placement=*/NULL_TREE,
2536 /*alloc_fn=*/NULL_TREE);
2539 body = loop;
2540 if (!deallocate_expr)
2542 else if (!body)
2543 body = deallocate_expr;
2544 else
2545 body = build_compound_expr (input_location, body, deallocate_expr);
2547 if (!body)
2548 body = integer_zero_node;
2550 /* Outermost wrapper: If pointer is null, punt. */
2551 body = fold_build3 (COND_EXPR, void_type_node,
2552 fold_build2 (NE_EXPR, boolean_type_node, base,
2553 convert (TREE_TYPE (base),
2554 integer_zero_node)),
2555 body, integer_zero_node);
2556 body = build1 (NOP_EXPR, void_type_node, body);
2558 if (controller)
2560 TREE_OPERAND (controller, 1) = body;
2561 body = controller;
2564 if (TREE_CODE (base) == SAVE_EXPR)
2565 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2566 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2568 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2571 /* Create an unnamed variable of the indicated TYPE. */
2573 tree
2574 create_temporary_var (tree type)
2576 tree decl;
2578 decl = build_decl (input_location,
2579 VAR_DECL, NULL_TREE, type);
2580 TREE_USED (decl) = 1;
2581 DECL_ARTIFICIAL (decl) = 1;
2582 DECL_IGNORED_P (decl) = 1;
2583 DECL_CONTEXT (decl) = current_function_decl;
2585 return decl;
2588 /* Create a new temporary variable of the indicated TYPE, initialized
2589 to INIT.
2591 It is not entered into current_binding_level, because that breaks
2592 things when it comes time to do final cleanups (which take place
2593 "outside" the binding contour of the function). */
2595 static tree
2596 get_temp_regvar (tree type, tree init)
2598 tree decl;
2600 decl = create_temporary_var (type);
2601 add_decl_expr (decl);
2603 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2604 tf_warning_or_error));
2606 return decl;
2609 /* `build_vec_init' returns tree structure that performs
2610 initialization of a vector of aggregate types.
2612 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2613 to the first element, of POINTER_TYPE.
2614 MAXINDEX is the maximum index of the array (one less than the
2615 number of elements). It is only used if BASE is a pointer or
2616 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2618 INIT is the (possibly NULL) initializer.
2620 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2621 elements in the array are value-initialized.
2623 FROM_ARRAY is 0 if we should init everything with INIT
2624 (i.e., every element initialized from INIT).
2625 FROM_ARRAY is 1 if we should index into INIT in parallel
2626 with initialization of DECL.
2627 FROM_ARRAY is 2 if we should index into INIT in parallel,
2628 but use assignment instead of initialization. */
2630 tree
2631 build_vec_init (tree base, tree maxindex, tree init,
2632 bool explicit_value_init_p,
2633 int from_array, tsubst_flags_t complain)
2635 tree rval;
2636 tree base2 = NULL_TREE;
2637 tree size;
2638 tree itype = NULL_TREE;
2639 tree iterator;
2640 /* The type of BASE. */
2641 tree atype = TREE_TYPE (base);
2642 /* The type of an element in the array. */
2643 tree type = TREE_TYPE (atype);
2644 /* The element type reached after removing all outer array
2645 types. */
2646 tree inner_elt_type;
2647 /* The type of a pointer to an element in the array. */
2648 tree ptype;
2649 tree stmt_expr;
2650 tree compound_stmt;
2651 int destroy_temps;
2652 tree try_block = NULL_TREE;
2653 int num_initialized_elts = 0;
2654 bool is_global;
2656 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2657 maxindex = array_type_nelts (atype);
2659 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2660 return error_mark_node;
2662 if (explicit_value_init_p)
2663 gcc_assert (!init);
2665 inner_elt_type = strip_array_types (type);
2666 if (init
2667 && (from_array == 2
2668 ? (!CLASS_TYPE_P (inner_elt_type)
2669 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2670 : !TYPE_NEEDS_CONSTRUCTING (type))
2671 && ((TREE_CODE (init) == CONSTRUCTOR
2672 /* Don't do this if the CONSTRUCTOR might contain something
2673 that might throw and require us to clean up. */
2674 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2675 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2676 || from_array))
2678 /* Do non-default initialization of POD arrays resulting from
2679 brace-enclosed initializers. In this case, digest_init and
2680 store_constructor will handle the semantics for us. */
2682 gcc_assert (TREE_CODE (atype) == ARRAY_TYPE);
2683 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2684 return stmt_expr;
2687 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2688 size = size_in_bytes (type);
2689 if (TREE_CODE (atype) == ARRAY_TYPE)
2691 ptype = build_pointer_type (type);
2692 base = cp_convert (ptype, decay_conversion (base));
2694 else
2695 ptype = atype;
2697 /* The code we are generating looks like:
2699 T* t1 = (T*) base;
2700 T* rval = t1;
2701 ptrdiff_t iterator = maxindex;
2702 try {
2703 for (; iterator != -1; --iterator) {
2704 ... initialize *t1 ...
2705 ++t1;
2707 } catch (...) {
2708 ... destroy elements that were constructed ...
2710 rval;
2713 We can omit the try and catch blocks if we know that the
2714 initialization will never throw an exception, or if the array
2715 elements do not have destructors. We can omit the loop completely if
2716 the elements of the array do not have constructors.
2718 We actually wrap the entire body of the above in a STMT_EXPR, for
2719 tidiness.
2721 When copying from array to another, when the array elements have
2722 only trivial copy constructors, we should use __builtin_memcpy
2723 rather than generating a loop. That way, we could take advantage
2724 of whatever cleverness the back end has for dealing with copies
2725 of blocks of memory. */
2727 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2728 destroy_temps = stmts_are_full_exprs_p ();
2729 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2730 rval = get_temp_regvar (ptype, base);
2731 base = get_temp_regvar (ptype, rval);
2732 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2734 /* Protect the entire array initialization so that we can destroy
2735 the partially constructed array if an exception is thrown.
2736 But don't do this if we're assigning. */
2737 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2738 && from_array != 2)
2740 try_block = begin_try_block ();
2743 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2745 /* Do non-default initialization of non-POD arrays resulting from
2746 brace-enclosed initializers. */
2747 unsigned HOST_WIDE_INT idx;
2748 tree elt;
2749 from_array = 0;
2751 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2753 tree baseref = build1 (INDIRECT_REF, type, base);
2755 num_initialized_elts++;
2757 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2758 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2759 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2760 else
2761 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2762 elt, complain));
2763 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2765 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2766 complain));
2767 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2768 complain));
2771 /* Clear out INIT so that we don't get confused below. */
2772 init = NULL_TREE;
2774 else if (from_array)
2776 /* If initializing one array from another, initialize element by
2777 element. We rely upon the below calls the do argument
2778 checking. */
2779 if (init)
2781 base2 = decay_conversion (init);
2782 itype = TREE_TYPE (base2);
2783 base2 = get_temp_regvar (itype, base2);
2784 itype = TREE_TYPE (itype);
2786 else if (TYPE_LANG_SPECIFIC (type)
2787 && TYPE_NEEDS_CONSTRUCTING (type)
2788 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2790 if (complain & tf_error)
2791 error ("initializer ends prematurely");
2792 return error_mark_node;
2796 /* Now, default-initialize any remaining elements. We don't need to
2797 do that if a) the type does not need constructing, or b) we've
2798 already initialized all the elements.
2800 We do need to keep going if we're copying an array. */
2802 if (from_array
2803 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2804 && ! (host_integerp (maxindex, 0)
2805 && (num_initialized_elts
2806 == tree_low_cst (maxindex, 0) + 1))))
2808 /* If the ITERATOR is equal to -1, then we don't have to loop;
2809 we've already initialized all the elements. */
2810 tree for_stmt;
2811 tree elt_init;
2812 tree to;
2814 for_stmt = begin_for_stmt ();
2815 finish_for_init_stmt (for_stmt);
2816 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2817 build_int_cst (TREE_TYPE (iterator), -1)),
2818 for_stmt);
2819 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2820 complain),
2821 for_stmt);
2823 to = build1 (INDIRECT_REF, type, base);
2825 if (from_array)
2827 tree from;
2829 if (base2)
2830 from = build1 (INDIRECT_REF, itype, base2);
2831 else
2832 from = NULL_TREE;
2834 if (from_array == 2)
2835 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2836 complain);
2837 else if (TYPE_NEEDS_CONSTRUCTING (type))
2838 elt_init = build_aggr_init (to, from, 0, complain);
2839 else if (from)
2840 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2841 complain);
2842 else
2843 gcc_unreachable ();
2845 else if (TREE_CODE (type) == ARRAY_TYPE)
2847 if (init != 0)
2848 sorry
2849 ("cannot initialize multi-dimensional array with initializer");
2850 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2851 0, 0,
2852 explicit_value_init_p,
2853 0, complain);
2855 else if (explicit_value_init_p)
2856 elt_init = build2 (INIT_EXPR, type, to,
2857 build_value_init (type));
2858 else
2860 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
2861 elt_init = build_aggr_init (to, init, 0, complain);
2864 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2865 finish_expr_stmt (elt_init);
2866 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2868 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2869 complain));
2870 if (base2)
2871 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
2872 complain));
2874 finish_for_stmt (for_stmt);
2877 /* Make sure to cleanup any partially constructed elements. */
2878 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2879 && from_array != 2)
2881 tree e;
2882 tree m = cp_build_binary_op (input_location,
2883 MINUS_EXPR, maxindex, iterator,
2884 complain);
2886 /* Flatten multi-dimensional array since build_vec_delete only
2887 expects one-dimensional array. */
2888 if (TREE_CODE (type) == ARRAY_TYPE)
2889 m = cp_build_binary_op (input_location,
2890 MULT_EXPR, m,
2891 array_type_nelts_total (type),
2892 complain);
2894 finish_cleanup_try_block (try_block);
2895 e = build_vec_delete_1 (rval, m,
2896 inner_elt_type, sfk_base_destructor,
2897 /*use_global_delete=*/0);
2898 finish_cleanup (e, try_block);
2901 /* The value of the array initialization is the array itself, RVAL
2902 is a pointer to the first element. */
2903 finish_stmt_expr_expr (rval, stmt_expr);
2905 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2907 /* Now make the result have the correct type. */
2908 if (TREE_CODE (atype) == ARRAY_TYPE)
2910 atype = build_pointer_type (atype);
2911 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2912 stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
2913 TREE_NO_WARNING (stmt_expr) = 1;
2916 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2917 return stmt_expr;
2920 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2921 build_delete. */
2923 static tree
2924 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2926 tree name;
2927 tree fn;
2928 switch (dtor_kind)
2930 case sfk_complete_destructor:
2931 name = complete_dtor_identifier;
2932 break;
2934 case sfk_base_destructor:
2935 name = base_dtor_identifier;
2936 break;
2938 case sfk_deleting_destructor:
2939 name = deleting_dtor_identifier;
2940 break;
2942 default:
2943 gcc_unreachable ();
2945 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2946 return build_new_method_call (exp, fn,
2947 /*args=*/NULL,
2948 /*conversion_path=*/NULL_TREE,
2949 flags,
2950 /*fn_p=*/NULL,
2951 tf_warning_or_error);
2954 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2955 ADDR is an expression which yields the store to be destroyed.
2956 AUTO_DELETE is the name of the destructor to call, i.e., either
2957 sfk_complete_destructor, sfk_base_destructor, or
2958 sfk_deleting_destructor.
2960 FLAGS is the logical disjunction of zero or more LOOKUP_
2961 flags. See cp-tree.h for more info. */
2963 tree
2964 build_delete (tree type, tree addr, special_function_kind auto_delete,
2965 int flags, int use_global_delete)
2967 tree expr;
2969 if (addr == error_mark_node)
2970 return error_mark_node;
2972 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2973 set to `error_mark_node' before it gets properly cleaned up. */
2974 if (type == error_mark_node)
2975 return error_mark_node;
2977 type = TYPE_MAIN_VARIANT (type);
2979 if (TREE_CODE (type) == POINTER_TYPE)
2981 bool complete_p = true;
2983 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2984 if (TREE_CODE (type) == ARRAY_TYPE)
2985 goto handle_array;
2987 /* We don't want to warn about delete of void*, only other
2988 incomplete types. Deleting other incomplete types
2989 invokes undefined behavior, but it is not ill-formed, so
2990 compile to something that would even do The Right Thing
2991 (TM) should the type have a trivial dtor and no delete
2992 operator. */
2993 if (!VOID_TYPE_P (type))
2995 complete_type (type);
2996 if (!COMPLETE_TYPE_P (type))
2998 if (warning (0, "possible problem detected in invocation of "
2999 "delete operator:"))
3001 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3002 inform (input_location, "neither the destructor nor the class-specific "
3003 "operator delete will be called, even if they are "
3004 "declared when the class is defined.");
3006 complete_p = false;
3009 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3010 /* Call the builtin operator delete. */
3011 return build_builtin_delete_call (addr);
3012 if (TREE_SIDE_EFFECTS (addr))
3013 addr = save_expr (addr);
3015 /* Throw away const and volatile on target type of addr. */
3016 addr = convert_force (build_pointer_type (type), addr, 0);
3018 else if (TREE_CODE (type) == ARRAY_TYPE)
3020 handle_array:
3022 if (TYPE_DOMAIN (type) == NULL_TREE)
3024 error ("unknown array size in delete");
3025 return error_mark_node;
3027 return build_vec_delete (addr, array_type_nelts (type),
3028 auto_delete, use_global_delete);
3030 else
3032 /* Don't check PROTECT here; leave that decision to the
3033 destructor. If the destructor is accessible, call it,
3034 else report error. */
3035 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3036 if (TREE_SIDE_EFFECTS (addr))
3037 addr = save_expr (addr);
3039 addr = convert_force (build_pointer_type (type), addr, 0);
3042 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3044 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3046 if (auto_delete != sfk_deleting_destructor)
3047 return void_zero_node;
3049 return build_op_delete_call (DELETE_EXPR, addr,
3050 cxx_sizeof_nowarn (type),
3051 use_global_delete,
3052 /*placement=*/NULL_TREE,
3053 /*alloc_fn=*/NULL_TREE);
3055 else
3057 tree head = NULL_TREE;
3058 tree do_delete = NULL_TREE;
3059 tree ifexp;
3061 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3062 lazily_declare_fn (sfk_destructor, type);
3064 /* For `::delete x', we must not use the deleting destructor
3065 since then we would not be sure to get the global `operator
3066 delete'. */
3067 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3069 /* We will use ADDR multiple times so we must save it. */
3070 addr = save_expr (addr);
3071 head = get_target_expr (build_headof (addr));
3072 /* Delete the object. */
3073 do_delete = build_builtin_delete_call (head);
3074 /* Otherwise, treat this like a complete object destructor
3075 call. */
3076 auto_delete = sfk_complete_destructor;
3078 /* If the destructor is non-virtual, there is no deleting
3079 variant. Instead, we must explicitly call the appropriate
3080 `operator delete' here. */
3081 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3082 && auto_delete == sfk_deleting_destructor)
3084 /* We will use ADDR multiple times so we must save it. */
3085 addr = save_expr (addr);
3086 /* Build the call. */
3087 do_delete = build_op_delete_call (DELETE_EXPR,
3088 addr,
3089 cxx_sizeof_nowarn (type),
3090 /*global_p=*/false,
3091 /*placement=*/NULL_TREE,
3092 /*alloc_fn=*/NULL_TREE);
3093 /* Call the complete object destructor. */
3094 auto_delete = sfk_complete_destructor;
3096 else if (auto_delete == sfk_deleting_destructor
3097 && TYPE_GETS_REG_DELETE (type))
3099 /* Make sure we have access to the member op delete, even though
3100 we'll actually be calling it from the destructor. */
3101 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3102 /*global_p=*/false,
3103 /*placement=*/NULL_TREE,
3104 /*alloc_fn=*/NULL_TREE);
3107 expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
3108 tf_warning_or_error),
3109 auto_delete, flags);
3110 if (do_delete)
3111 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3113 /* We need to calculate this before the dtor changes the vptr. */
3114 if (head)
3115 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3117 if (flags & LOOKUP_DESTRUCTOR)
3118 /* Explicit destructor call; don't check for null pointer. */
3119 ifexp = integer_one_node;
3120 else
3121 /* Handle deleting a null pointer. */
3122 ifexp = fold (cp_build_binary_op (input_location,
3123 NE_EXPR, addr, integer_zero_node,
3124 tf_warning_or_error));
3126 if (ifexp != integer_one_node)
3127 expr = build3 (COND_EXPR, void_type_node,
3128 ifexp, expr, void_zero_node);
3130 return expr;
3134 /* At the beginning of a destructor, push cleanups that will call the
3135 destructors for our base classes and members.
3137 Called from begin_destructor_body. */
3139 void
3140 push_base_cleanups (void)
3142 tree binfo, base_binfo;
3143 int i;
3144 tree member;
3145 tree expr;
3146 VEC(tree,gc) *vbases;
3148 /* Run destructors for all virtual baseclasses. */
3149 if (CLASSTYPE_VBASECLASSES (current_class_type))
3151 tree cond = (condition_conversion
3152 (build2 (BIT_AND_EXPR, integer_type_node,
3153 current_in_charge_parm,
3154 integer_two_node)));
3156 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3157 order, which is also the right order for pushing cleanups. */
3158 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3159 VEC_iterate (tree, vbases, i, base_binfo); i++)
3161 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3163 expr = build_special_member_call (current_class_ref,
3164 base_dtor_identifier,
3165 NULL,
3166 base_binfo,
3167 (LOOKUP_NORMAL
3168 | LOOKUP_NONVIRTUAL),
3169 tf_warning_or_error);
3170 expr = build3 (COND_EXPR, void_type_node, cond,
3171 expr, void_zero_node);
3172 finish_decl_cleanup (NULL_TREE, expr);
3177 /* Take care of the remaining baseclasses. */
3178 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3179 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3181 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3182 || BINFO_VIRTUAL_P (base_binfo))
3183 continue;
3185 expr = build_special_member_call (current_class_ref,
3186 base_dtor_identifier,
3187 NULL, base_binfo,
3188 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3189 tf_warning_or_error);
3190 finish_decl_cleanup (NULL_TREE, expr);
3193 for (member = TYPE_FIELDS (current_class_type); member;
3194 member = TREE_CHAIN (member))
3196 if (TREE_TYPE (member) == error_mark_node
3197 || TREE_CODE (member) != FIELD_DECL
3198 || DECL_ARTIFICIAL (member))
3199 continue;
3200 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3202 tree this_member = (build_class_member_access_expr
3203 (current_class_ref, member,
3204 /*access_path=*/NULL_TREE,
3205 /*preserve_reference=*/false,
3206 tf_warning_or_error));
3207 tree this_type = TREE_TYPE (member);
3208 expr = build_delete (this_type, this_member,
3209 sfk_complete_destructor,
3210 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3212 finish_decl_cleanup (NULL_TREE, expr);
3217 /* Build a C++ vector delete expression.
3218 MAXINDEX is the number of elements to be deleted.
3219 ELT_SIZE is the nominal size of each element in the vector.
3220 BASE is the expression that should yield the store to be deleted.
3221 This function expands (or synthesizes) these calls itself.
3222 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3224 This also calls delete for virtual baseclasses of elements of the vector.
3226 Update: MAXINDEX is no longer needed. The size can be extracted from the
3227 start of the vector for pointers, and from the type for arrays. We still
3228 use MAXINDEX for arrays because it happens to already have one of the
3229 values we'd have to extract. (We could use MAXINDEX with pointers to
3230 confirm the size, and trap if the numbers differ; not clear that it'd
3231 be worth bothering.) */
3233 tree
3234 build_vec_delete (tree base, tree maxindex,
3235 special_function_kind auto_delete_vec, int use_global_delete)
3237 tree type;
3238 tree rval;
3239 tree base_init = NULL_TREE;
3241 type = TREE_TYPE (base);
3243 if (TREE_CODE (type) == POINTER_TYPE)
3245 /* Step back one from start of vector, and read dimension. */
3246 tree cookie_addr;
3247 tree size_ptr_type = build_pointer_type (sizetype);
3249 if (TREE_SIDE_EFFECTS (base))
3251 base_init = get_target_expr (base);
3252 base = TARGET_EXPR_SLOT (base_init);
3254 type = strip_array_types (TREE_TYPE (type));
3255 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3256 cookie_addr = build2 (POINTER_PLUS_EXPR,
3257 size_ptr_type,
3258 fold_convert (size_ptr_type, base),
3259 cookie_addr);
3260 maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
3262 else if (TREE_CODE (type) == ARRAY_TYPE)
3264 /* Get the total number of things in the array, maxindex is a
3265 bad name. */
3266 maxindex = array_type_nelts_total (type);
3267 type = strip_array_types (type);
3268 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3269 if (TREE_SIDE_EFFECTS (base))
3271 base_init = get_target_expr (base);
3272 base = TARGET_EXPR_SLOT (base_init);
3275 else
3277 if (base != error_mark_node)
3278 error ("type to vector delete is neither pointer or array type");
3279 return error_mark_node;
3282 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3283 use_global_delete);
3284 if (base_init)
3285 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3287 return rval;