/cp
[official-gcc.git] / gcc / ifcvt.c
blob6e20557d52b5821317d25a3fdaa933af2e961925
1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "predict.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "basic-block.h"
40 #include "symtab.h"
41 #include "alias.h"
42 #include "tree.h"
43 #include "expmed.h"
44 #include "dojump.h"
45 #include "explow.h"
46 #include "calls.h"
47 #include "emit-rtl.h"
48 #include "varasm.h"
49 #include "stmt.h"
50 #include "expr.h"
51 #include "output.h"
52 #include "insn-codes.h"
53 #include "optabs.h"
54 #include "diagnostic-core.h"
55 #include "tm_p.h"
56 #include "cfgloop.h"
57 #include "target.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "dbgcnt.h"
61 #include "shrink-wrap.h"
62 #include "ifcvt.h"
64 #ifndef HAVE_incscc
65 #define HAVE_incscc 0
66 #endif
67 #ifndef HAVE_decscc
68 #define HAVE_decscc 0
69 #endif
70 #ifndef HAVE_trap
71 #define HAVE_trap 0
72 #endif
74 #ifndef MAX_CONDITIONAL_EXECUTE
75 #define MAX_CONDITIONAL_EXECUTE \
76 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
77 + 1)
78 #endif
80 #ifndef HAVE_cbranchcc4
81 #define HAVE_cbranchcc4 0
82 #endif
84 #define IFCVT_MULTIPLE_DUMPS 1
86 #define NULL_BLOCK ((basic_block) NULL)
88 /* True if after combine pass. */
89 static bool ifcvt_after_combine;
91 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
92 static int num_possible_if_blocks;
94 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
95 execution. */
96 static int num_updated_if_blocks;
98 /* # of changes made. */
99 static int num_true_changes;
101 /* Whether conditional execution changes were made. */
102 static int cond_exec_changed_p;
104 /* Forward references. */
105 static int count_bb_insns (const_basic_block);
106 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
107 static rtx_insn *first_active_insn (basic_block);
108 static rtx_insn *last_active_insn (basic_block, int);
109 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
110 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
111 static basic_block block_fallthru (basic_block);
112 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
113 int);
114 static rtx cond_exec_get_condition (rtx_insn *);
115 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
116 static int noce_operand_ok (const_rtx);
117 static void merge_if_block (ce_if_block *);
118 static int find_cond_trap (basic_block, edge, edge);
119 static basic_block find_if_header (basic_block, int);
120 static int block_jumps_and_fallthru_p (basic_block, basic_block);
121 static int noce_find_if_block (basic_block, edge, edge, int);
122 static int cond_exec_find_if_block (ce_if_block *);
123 static int find_if_case_1 (basic_block, edge, edge);
124 static int find_if_case_2 (basic_block, edge, edge);
125 static int dead_or_predicable (basic_block, basic_block, basic_block,
126 edge, int);
127 static void noce_emit_move_insn (rtx, rtx);
128 static rtx_insn *block_has_only_trap (basic_block);
130 /* Count the number of non-jump active insns in BB. */
132 static int
133 count_bb_insns (const_basic_block bb)
135 int count = 0;
136 rtx_insn *insn = BB_HEAD (bb);
138 while (1)
140 if (active_insn_p (insn) && !JUMP_P (insn))
141 count++;
143 if (insn == BB_END (bb))
144 break;
145 insn = NEXT_INSN (insn);
148 return count;
151 /* Determine whether the total insn_rtx_cost on non-jump insns in
152 basic block BB is less than MAX_COST. This function returns
153 false if the cost of any instruction could not be estimated.
155 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
156 as those insns are being speculated. MAX_COST is scaled with SCALE
157 plus a small fudge factor. */
159 static bool
160 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
162 int count = 0;
163 rtx_insn *insn = BB_HEAD (bb);
164 bool speed = optimize_bb_for_speed_p (bb);
166 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
167 applied to insn_rtx_cost when optimizing for size. Only do
168 this after combine because if-conversion might interfere with
169 passes before combine.
171 Use optimize_function_for_speed_p instead of the pre-defined
172 variable speed to make sure it is set to same value for all
173 basic blocks in one if-conversion transformation. */
174 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
175 scale = REG_BR_PROB_BASE;
176 /* Our branch probability/scaling factors are just estimates and don't
177 account for cases where we can get speculation for free and other
178 secondary benefits. So we fudge the scale factor to make speculating
179 appear a little more profitable when optimizing for performance. */
180 else
181 scale += REG_BR_PROB_BASE / 8;
184 max_cost *= scale;
186 while (1)
188 if (NONJUMP_INSN_P (insn))
190 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
191 if (cost == 0)
192 return false;
194 /* If this instruction is the load or set of a "stack" register,
195 such as a floating point register on x87, then the cost of
196 speculatively executing this insn may need to include
197 the additional cost of popping its result off of the
198 register stack. Unfortunately, correctly recognizing and
199 accounting for this additional overhead is tricky, so for
200 now we simply prohibit such speculative execution. */
201 #ifdef STACK_REGS
203 rtx set = single_set (insn);
204 if (set && STACK_REG_P (SET_DEST (set)))
205 return false;
207 #endif
209 count += cost;
210 if (count >= max_cost)
211 return false;
213 else if (CALL_P (insn))
214 return false;
216 if (insn == BB_END (bb))
217 break;
218 insn = NEXT_INSN (insn);
221 return true;
224 /* Return the first non-jump active insn in the basic block. */
226 static rtx_insn *
227 first_active_insn (basic_block bb)
229 rtx_insn *insn = BB_HEAD (bb);
231 if (LABEL_P (insn))
233 if (insn == BB_END (bb))
234 return NULL;
235 insn = NEXT_INSN (insn);
238 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
240 if (insn == BB_END (bb))
241 return NULL;
242 insn = NEXT_INSN (insn);
245 if (JUMP_P (insn))
246 return NULL;
248 return insn;
251 /* Return the last non-jump active (non-jump) insn in the basic block. */
253 static rtx_insn *
254 last_active_insn (basic_block bb, int skip_use_p)
256 rtx_insn *insn = BB_END (bb);
257 rtx_insn *head = BB_HEAD (bb);
259 while (NOTE_P (insn)
260 || JUMP_P (insn)
261 || DEBUG_INSN_P (insn)
262 || (skip_use_p
263 && NONJUMP_INSN_P (insn)
264 && GET_CODE (PATTERN (insn)) == USE))
266 if (insn == head)
267 return NULL;
268 insn = PREV_INSN (insn);
271 if (LABEL_P (insn))
272 return NULL;
274 return insn;
277 /* Return the active insn before INSN inside basic block CURR_BB. */
279 static rtx_insn *
280 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
282 if (!insn || insn == BB_HEAD (curr_bb))
283 return NULL;
285 while ((insn = PREV_INSN (insn)) != NULL_RTX)
287 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
288 break;
290 /* No other active insn all the way to the start of the basic block. */
291 if (insn == BB_HEAD (curr_bb))
292 return NULL;
295 return insn;
298 /* Return the active insn after INSN inside basic block CURR_BB. */
300 static rtx_insn *
301 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
303 if (!insn || insn == BB_END (curr_bb))
304 return NULL;
306 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
308 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
309 break;
311 /* No other active insn all the way to the end of the basic block. */
312 if (insn == BB_END (curr_bb))
313 return NULL;
316 return insn;
319 /* Return the basic block reached by falling though the basic block BB. */
321 static basic_block
322 block_fallthru (basic_block bb)
324 edge e = find_fallthru_edge (bb->succs);
326 return (e) ? e->dest : NULL_BLOCK;
329 /* Return true if RTXs A and B can be safely interchanged. */
331 static bool
332 rtx_interchangeable_p (const_rtx a, const_rtx b)
334 if (!rtx_equal_p (a, b))
335 return false;
337 if (GET_CODE (a) != MEM)
338 return true;
340 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
341 reference is not. Interchanging a dead type-unsafe memory reference with
342 a live type-safe one creates a live type-unsafe memory reference, in other
343 words, it makes the program illegal.
344 We check here conservatively whether the two memory references have equal
345 memory attributes. */
347 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
351 /* Go through a bunch of insns, converting them to conditional
352 execution format if possible. Return TRUE if all of the non-note
353 insns were processed. */
355 static int
356 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
357 /* if block information */rtx_insn *start,
358 /* first insn to look at */rtx end,
359 /* last insn to look at */rtx test,
360 /* conditional execution test */int prob_val,
361 /* probability of branch taken. */int mod_ok)
363 int must_be_last = FALSE;
364 rtx_insn *insn;
365 rtx xtest;
366 rtx pattern;
368 if (!start || !end)
369 return FALSE;
371 for (insn = start; ; insn = NEXT_INSN (insn))
373 /* dwarf2out can't cope with conditional prologues. */
374 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
375 return FALSE;
377 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
378 goto insn_done;
380 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
382 /* dwarf2out can't cope with conditional unwind info. */
383 if (RTX_FRAME_RELATED_P (insn))
384 return FALSE;
386 /* Remove USE insns that get in the way. */
387 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
389 /* ??? Ug. Actually unlinking the thing is problematic,
390 given what we'd have to coordinate with our callers. */
391 SET_INSN_DELETED (insn);
392 goto insn_done;
395 /* Last insn wasn't last? */
396 if (must_be_last)
397 return FALSE;
399 if (modified_in_p (test, insn))
401 if (!mod_ok)
402 return FALSE;
403 must_be_last = TRUE;
406 /* Now build the conditional form of the instruction. */
407 pattern = PATTERN (insn);
408 xtest = copy_rtx (test);
410 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
411 two conditions. */
412 if (GET_CODE (pattern) == COND_EXEC)
414 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
415 return FALSE;
417 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
418 COND_EXEC_TEST (pattern));
419 pattern = COND_EXEC_CODE (pattern);
422 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
424 /* If the machine needs to modify the insn being conditionally executed,
425 say for example to force a constant integer operand into a temp
426 register, do so here. */
427 #ifdef IFCVT_MODIFY_INSN
428 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
429 if (! pattern)
430 return FALSE;
431 #endif
433 validate_change (insn, &PATTERN (insn), pattern, 1);
435 if (CALL_P (insn) && prob_val >= 0)
436 validate_change (insn, &REG_NOTES (insn),
437 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
438 prob_val, REG_NOTES (insn)), 1);
440 insn_done:
441 if (insn == end)
442 break;
445 return TRUE;
448 /* Return the condition for a jump. Do not do any special processing. */
450 static rtx
451 cond_exec_get_condition (rtx_insn *jump)
453 rtx test_if, cond;
455 if (any_condjump_p (jump))
456 test_if = SET_SRC (pc_set (jump));
457 else
458 return NULL_RTX;
459 cond = XEXP (test_if, 0);
461 /* If this branches to JUMP_LABEL when the condition is false,
462 reverse the condition. */
463 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
464 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
466 enum rtx_code rev = reversed_comparison_code (cond, jump);
467 if (rev == UNKNOWN)
468 return NULL_RTX;
470 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
471 XEXP (cond, 1));
474 return cond;
477 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
478 to conditional execution. Return TRUE if we were successful at
479 converting the block. */
481 static int
482 cond_exec_process_if_block (ce_if_block * ce_info,
483 /* if block information */int do_multiple_p)
485 basic_block test_bb = ce_info->test_bb; /* last test block */
486 basic_block then_bb = ce_info->then_bb; /* THEN */
487 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
488 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
489 rtx_insn *then_start; /* first insn in THEN block */
490 rtx_insn *then_end; /* last insn + 1 in THEN block */
491 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
492 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
493 int max; /* max # of insns to convert. */
494 int then_mod_ok; /* whether conditional mods are ok in THEN */
495 rtx true_expr; /* test for else block insns */
496 rtx false_expr; /* test for then block insns */
497 int true_prob_val; /* probability of else block */
498 int false_prob_val; /* probability of then block */
499 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
500 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
501 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
502 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
503 int then_n_insns, else_n_insns, n_insns;
504 enum rtx_code false_code;
505 rtx note;
507 /* If test is comprised of && or || elements, and we've failed at handling
508 all of them together, just use the last test if it is the special case of
509 && elements without an ELSE block. */
510 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
512 if (else_bb || ! ce_info->and_and_p)
513 return FALSE;
515 ce_info->test_bb = test_bb = ce_info->last_test_bb;
516 ce_info->num_multiple_test_blocks = 0;
517 ce_info->num_and_and_blocks = 0;
518 ce_info->num_or_or_blocks = 0;
521 /* Find the conditional jump to the ELSE or JOIN part, and isolate
522 the test. */
523 test_expr = cond_exec_get_condition (BB_END (test_bb));
524 if (! test_expr)
525 return FALSE;
527 /* If the conditional jump is more than just a conditional jump,
528 then we can not do conditional execution conversion on this block. */
529 if (! onlyjump_p (BB_END (test_bb)))
530 return FALSE;
532 /* Collect the bounds of where we're to search, skipping any labels, jumps
533 and notes at the beginning and end of the block. Then count the total
534 number of insns and see if it is small enough to convert. */
535 then_start = first_active_insn (then_bb);
536 then_end = last_active_insn (then_bb, TRUE);
537 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
538 n_insns = then_n_insns;
539 max = MAX_CONDITIONAL_EXECUTE;
541 if (else_bb)
543 int n_matching;
545 max *= 2;
546 else_start = first_active_insn (else_bb);
547 else_end = last_active_insn (else_bb, TRUE);
548 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
549 n_insns += else_n_insns;
551 /* Look for matching sequences at the head and tail of the two blocks,
552 and limit the range of insns to be converted if possible. */
553 n_matching = flow_find_cross_jump (then_bb, else_bb,
554 &then_first_tail, &else_first_tail,
555 NULL);
556 if (then_first_tail == BB_HEAD (then_bb))
557 then_start = then_end = NULL;
558 if (else_first_tail == BB_HEAD (else_bb))
559 else_start = else_end = NULL;
561 if (n_matching > 0)
563 if (then_end)
564 then_end = find_active_insn_before (then_bb, then_first_tail);
565 if (else_end)
566 else_end = find_active_insn_before (else_bb, else_first_tail);
567 n_insns -= 2 * n_matching;
570 if (then_start
571 && else_start
572 && then_n_insns > n_matching
573 && else_n_insns > n_matching)
575 int longest_match = MIN (then_n_insns - n_matching,
576 else_n_insns - n_matching);
577 n_matching
578 = flow_find_head_matching_sequence (then_bb, else_bb,
579 &then_last_head,
580 &else_last_head,
581 longest_match);
583 if (n_matching > 0)
585 rtx_insn *insn;
587 /* We won't pass the insns in the head sequence to
588 cond_exec_process_insns, so we need to test them here
589 to make sure that they don't clobber the condition. */
590 for (insn = BB_HEAD (then_bb);
591 insn != NEXT_INSN (then_last_head);
592 insn = NEXT_INSN (insn))
593 if (!LABEL_P (insn) && !NOTE_P (insn)
594 && !DEBUG_INSN_P (insn)
595 && modified_in_p (test_expr, insn))
596 return FALSE;
599 if (then_last_head == then_end)
600 then_start = then_end = NULL;
601 if (else_last_head == else_end)
602 else_start = else_end = NULL;
604 if (n_matching > 0)
606 if (then_start)
607 then_start = find_active_insn_after (then_bb, then_last_head);
608 if (else_start)
609 else_start = find_active_insn_after (else_bb, else_last_head);
610 n_insns -= 2 * n_matching;
615 if (n_insns > max)
616 return FALSE;
618 /* Map test_expr/test_jump into the appropriate MD tests to use on
619 the conditionally executed code. */
621 true_expr = test_expr;
623 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
624 if (false_code != UNKNOWN)
625 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
626 XEXP (true_expr, 0), XEXP (true_expr, 1));
627 else
628 false_expr = NULL_RTX;
630 #ifdef IFCVT_MODIFY_TESTS
631 /* If the machine description needs to modify the tests, such as setting a
632 conditional execution register from a comparison, it can do so here. */
633 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
635 /* See if the conversion failed. */
636 if (!true_expr || !false_expr)
637 goto fail;
638 #endif
640 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
641 if (note)
643 true_prob_val = XINT (note, 0);
644 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
646 else
648 true_prob_val = -1;
649 false_prob_val = -1;
652 /* If we have && or || tests, do them here. These tests are in the adjacent
653 blocks after the first block containing the test. */
654 if (ce_info->num_multiple_test_blocks > 0)
656 basic_block bb = test_bb;
657 basic_block last_test_bb = ce_info->last_test_bb;
659 if (! false_expr)
660 goto fail;
664 rtx_insn *start, *end;
665 rtx t, f;
666 enum rtx_code f_code;
668 bb = block_fallthru (bb);
669 start = first_active_insn (bb);
670 end = last_active_insn (bb, TRUE);
671 if (start
672 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
673 false_prob_val, FALSE))
674 goto fail;
676 /* If the conditional jump is more than just a conditional jump, then
677 we can not do conditional execution conversion on this block. */
678 if (! onlyjump_p (BB_END (bb)))
679 goto fail;
681 /* Find the conditional jump and isolate the test. */
682 t = cond_exec_get_condition (BB_END (bb));
683 if (! t)
684 goto fail;
686 f_code = reversed_comparison_code (t, BB_END (bb));
687 if (f_code == UNKNOWN)
688 goto fail;
690 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
691 if (ce_info->and_and_p)
693 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
694 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
696 else
698 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
699 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
702 /* If the machine description needs to modify the tests, such as
703 setting a conditional execution register from a comparison, it can
704 do so here. */
705 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
706 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
708 /* See if the conversion failed. */
709 if (!t || !f)
710 goto fail;
711 #endif
713 true_expr = t;
714 false_expr = f;
716 while (bb != last_test_bb);
719 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
720 on then THEN block. */
721 then_mod_ok = (else_bb == NULL_BLOCK);
723 /* Go through the THEN and ELSE blocks converting the insns if possible
724 to conditional execution. */
726 if (then_end
727 && (! false_expr
728 || ! cond_exec_process_insns (ce_info, then_start, then_end,
729 false_expr, false_prob_val,
730 then_mod_ok)))
731 goto fail;
733 if (else_bb && else_end
734 && ! cond_exec_process_insns (ce_info, else_start, else_end,
735 true_expr, true_prob_val, TRUE))
736 goto fail;
738 /* If we cannot apply the changes, fail. Do not go through the normal fail
739 processing, since apply_change_group will call cancel_changes. */
740 if (! apply_change_group ())
742 #ifdef IFCVT_MODIFY_CANCEL
743 /* Cancel any machine dependent changes. */
744 IFCVT_MODIFY_CANCEL (ce_info);
745 #endif
746 return FALSE;
749 #ifdef IFCVT_MODIFY_FINAL
750 /* Do any machine dependent final modifications. */
751 IFCVT_MODIFY_FINAL (ce_info);
752 #endif
754 /* Conversion succeeded. */
755 if (dump_file)
756 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
757 n_insns, (n_insns == 1) ? " was" : "s were");
759 /* Merge the blocks! If we had matching sequences, make sure to delete one
760 copy at the appropriate location first: delete the copy in the THEN branch
761 for a tail sequence so that the remaining one is executed last for both
762 branches, and delete the copy in the ELSE branch for a head sequence so
763 that the remaining one is executed first for both branches. */
764 if (then_first_tail)
766 rtx_insn *from = then_first_tail;
767 if (!INSN_P (from))
768 from = find_active_insn_after (then_bb, from);
769 delete_insn_chain (from, BB_END (then_bb), false);
771 if (else_last_head)
772 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
774 merge_if_block (ce_info);
775 cond_exec_changed_p = TRUE;
776 return TRUE;
778 fail:
779 #ifdef IFCVT_MODIFY_CANCEL
780 /* Cancel any machine dependent changes. */
781 IFCVT_MODIFY_CANCEL (ce_info);
782 #endif
784 cancel_changes (0);
785 return FALSE;
788 /* Used by noce_process_if_block to communicate with its subroutines.
790 The subroutines know that A and B may be evaluated freely. They
791 know that X is a register. They should insert new instructions
792 before cond_earliest. */
794 struct noce_if_info
796 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
797 basic_block test_bb, then_bb, else_bb, join_bb;
799 /* The jump that ends TEST_BB. */
800 rtx_insn *jump;
802 /* The jump condition. */
803 rtx cond;
805 /* New insns should be inserted before this one. */
806 rtx_insn *cond_earliest;
808 /* Insns in the THEN and ELSE block. There is always just this
809 one insns in those blocks. The insns are single_set insns.
810 If there was no ELSE block, INSN_B is the last insn before
811 COND_EARLIEST, or NULL_RTX. In the former case, the insn
812 operands are still valid, as if INSN_B was moved down below
813 the jump. */
814 rtx_insn *insn_a, *insn_b;
816 /* The SET_SRC of INSN_A and INSN_B. */
817 rtx a, b;
819 /* The SET_DEST of INSN_A. */
820 rtx x;
822 /* True if this if block is not canonical. In the canonical form of
823 if blocks, the THEN_BB is the block reached via the fallthru edge
824 from TEST_BB. For the noce transformations, we allow the symmetric
825 form as well. */
826 bool then_else_reversed;
828 /* Estimated cost of the particular branch instruction. */
829 int branch_cost;
832 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
833 static int noce_try_move (struct noce_if_info *);
834 static int noce_try_store_flag (struct noce_if_info *);
835 static int noce_try_addcc (struct noce_if_info *);
836 static int noce_try_store_flag_constants (struct noce_if_info *);
837 static int noce_try_store_flag_mask (struct noce_if_info *);
838 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
839 rtx, rtx, rtx);
840 static int noce_try_cmove (struct noce_if_info *);
841 static int noce_try_cmove_arith (struct noce_if_info *);
842 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
843 static int noce_try_minmax (struct noce_if_info *);
844 static int noce_try_abs (struct noce_if_info *);
845 static int noce_try_sign_mask (struct noce_if_info *);
847 /* Helper function for noce_try_store_flag*. */
849 static rtx
850 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
851 int normalize)
853 rtx cond = if_info->cond;
854 int cond_complex;
855 enum rtx_code code;
857 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
858 || ! general_operand (XEXP (cond, 1), VOIDmode));
860 /* If earliest == jump, or when the condition is complex, try to
861 build the store_flag insn directly. */
863 if (cond_complex)
865 rtx set = pc_set (if_info->jump);
866 cond = XEXP (SET_SRC (set), 0);
867 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
868 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
869 reversep = !reversep;
870 if (if_info->then_else_reversed)
871 reversep = !reversep;
874 if (reversep)
875 code = reversed_comparison_code (cond, if_info->jump);
876 else
877 code = GET_CODE (cond);
879 if ((if_info->cond_earliest == if_info->jump || cond_complex)
880 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
882 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
883 XEXP (cond, 1));
884 rtx set = gen_rtx_SET (x, src);
886 start_sequence ();
887 rtx_insn *insn = emit_insn (set);
889 if (recog_memoized (insn) >= 0)
891 rtx_insn *seq = get_insns ();
892 end_sequence ();
893 emit_insn (seq);
895 if_info->cond_earliest = if_info->jump;
897 return x;
900 end_sequence ();
903 /* Don't even try if the comparison operands or the mode of X are weird. */
904 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
905 return NULL_RTX;
907 return emit_store_flag (x, code, XEXP (cond, 0),
908 XEXP (cond, 1), VOIDmode,
909 (code == LTU || code == LEU
910 || code == GEU || code == GTU), normalize);
913 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
914 X is the destination/target and Y is the value to copy. */
916 static void
917 noce_emit_move_insn (rtx x, rtx y)
919 machine_mode outmode;
920 rtx outer, inner;
921 int bitpos;
923 if (GET_CODE (x) != STRICT_LOW_PART)
925 rtx_insn *seq, *insn;
926 rtx target;
927 optab ot;
929 start_sequence ();
930 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
931 otherwise construct a suitable SET pattern ourselves. */
932 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
933 ? emit_move_insn (x, y)
934 : emit_insn (gen_rtx_SET (x, y));
935 seq = get_insns ();
936 end_sequence ();
938 if (recog_memoized (insn) <= 0)
940 if (GET_CODE (x) == ZERO_EXTRACT)
942 rtx op = XEXP (x, 0);
943 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
944 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
946 /* store_bit_field expects START to be relative to
947 BYTES_BIG_ENDIAN and adjusts this value for machines with
948 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
949 invoke store_bit_field again it is necessary to have the START
950 value from the first call. */
951 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
953 if (MEM_P (op))
954 start = BITS_PER_UNIT - start - size;
955 else
957 gcc_assert (REG_P (op));
958 start = BITS_PER_WORD - start - size;
962 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
963 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
964 return;
967 switch (GET_RTX_CLASS (GET_CODE (y)))
969 case RTX_UNARY:
970 ot = code_to_optab (GET_CODE (y));
971 if (ot)
973 start_sequence ();
974 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
975 if (target != NULL_RTX)
977 if (target != x)
978 emit_move_insn (x, target);
979 seq = get_insns ();
981 end_sequence ();
983 break;
985 case RTX_BIN_ARITH:
986 case RTX_COMM_ARITH:
987 ot = code_to_optab (GET_CODE (y));
988 if (ot)
990 start_sequence ();
991 target = expand_binop (GET_MODE (y), ot,
992 XEXP (y, 0), XEXP (y, 1),
993 x, 0, OPTAB_DIRECT);
994 if (target != NULL_RTX)
996 if (target != x)
997 emit_move_insn (x, target);
998 seq = get_insns ();
1000 end_sequence ();
1002 break;
1004 default:
1005 break;
1009 emit_insn (seq);
1010 return;
1013 outer = XEXP (x, 0);
1014 inner = XEXP (outer, 0);
1015 outmode = GET_MODE (outer);
1016 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1017 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1018 0, 0, outmode, y);
1021 /* Return the CC reg if it is used in COND. */
1023 static rtx
1024 cc_in_cond (rtx cond)
1026 if (HAVE_cbranchcc4 && cond
1027 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1028 return XEXP (cond, 0);
1030 return NULL_RTX;
1033 /* Return sequence of instructions generated by if conversion. This
1034 function calls end_sequence() to end the current stream, ensures
1035 that the instructions are unshared, recognizable non-jump insns.
1036 On failure, this function returns a NULL_RTX. */
1038 static rtx_insn *
1039 end_ifcvt_sequence (struct noce_if_info *if_info)
1041 rtx_insn *insn;
1042 rtx_insn *seq = get_insns ();
1043 rtx cc = cc_in_cond (if_info->cond);
1045 set_used_flags (if_info->x);
1046 set_used_flags (if_info->cond);
1047 set_used_flags (if_info->a);
1048 set_used_flags (if_info->b);
1049 unshare_all_rtl_in_chain (seq);
1050 end_sequence ();
1052 /* Make sure that all of the instructions emitted are recognizable,
1053 and that we haven't introduced a new jump instruction.
1054 As an exercise for the reader, build a general mechanism that
1055 allows proper placement of required clobbers. */
1056 for (insn = seq; insn; insn = NEXT_INSN (insn))
1057 if (JUMP_P (insn)
1058 || recog_memoized (insn) == -1
1059 /* Make sure new generated code does not clobber CC. */
1060 || (cc && set_of (cc, insn)))
1061 return NULL;
1063 return seq;
1066 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1067 "if (a == b) x = a; else x = b" into "x = b". */
1069 static int
1070 noce_try_move (struct noce_if_info *if_info)
1072 rtx cond = if_info->cond;
1073 enum rtx_code code = GET_CODE (cond);
1074 rtx y;
1075 rtx_insn *seq;
1077 if (code != NE && code != EQ)
1078 return FALSE;
1080 /* This optimization isn't valid if either A or B could be a NaN
1081 or a signed zero. */
1082 if (HONOR_NANS (if_info->x)
1083 || HONOR_SIGNED_ZEROS (if_info->x))
1084 return FALSE;
1086 /* Check whether the operands of the comparison are A and in
1087 either order. */
1088 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1089 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1090 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1091 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1093 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1094 return FALSE;
1096 y = (code == EQ) ? if_info->a : if_info->b;
1098 /* Avoid generating the move if the source is the destination. */
1099 if (! rtx_equal_p (if_info->x, y))
1101 start_sequence ();
1102 noce_emit_move_insn (if_info->x, y);
1103 seq = end_ifcvt_sequence (if_info);
1104 if (!seq)
1105 return FALSE;
1107 emit_insn_before_setloc (seq, if_info->jump,
1108 INSN_LOCATION (if_info->insn_a));
1110 return TRUE;
1112 return FALSE;
1115 /* Convert "if (test) x = 1; else x = 0".
1117 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1118 tried in noce_try_store_flag_constants after noce_try_cmove has had
1119 a go at the conversion. */
1121 static int
1122 noce_try_store_flag (struct noce_if_info *if_info)
1124 int reversep;
1125 rtx target;
1126 rtx_insn *seq;
1128 if (CONST_INT_P (if_info->b)
1129 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1130 && if_info->a == const0_rtx)
1131 reversep = 0;
1132 else if (if_info->b == const0_rtx
1133 && CONST_INT_P (if_info->a)
1134 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1135 && (reversed_comparison_code (if_info->cond, if_info->jump)
1136 != UNKNOWN))
1137 reversep = 1;
1138 else
1139 return FALSE;
1141 start_sequence ();
1143 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1144 if (target)
1146 if (target != if_info->x)
1147 noce_emit_move_insn (if_info->x, target);
1149 seq = end_ifcvt_sequence (if_info);
1150 if (! seq)
1151 return FALSE;
1153 emit_insn_before_setloc (seq, if_info->jump,
1154 INSN_LOCATION (if_info->insn_a));
1155 return TRUE;
1157 else
1159 end_sequence ();
1160 return FALSE;
1164 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1166 static int
1167 noce_try_store_flag_constants (struct noce_if_info *if_info)
1169 rtx target;
1170 rtx_insn *seq;
1171 int reversep;
1172 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1173 int normalize, can_reverse;
1174 machine_mode mode;
1176 if (CONST_INT_P (if_info->a)
1177 && CONST_INT_P (if_info->b))
1179 mode = GET_MODE (if_info->x);
1180 ifalse = INTVAL (if_info->a);
1181 itrue = INTVAL (if_info->b);
1183 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1184 /* Make sure we can represent the difference between the two values. */
1185 if ((diff > 0)
1186 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1187 return FALSE;
1189 diff = trunc_int_for_mode (diff, mode);
1191 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1192 != UNKNOWN);
1194 reversep = 0;
1195 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1196 normalize = 0;
1197 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1198 && (STORE_FLAG_VALUE == 1
1199 || if_info->branch_cost >= 2))
1200 normalize = 1;
1201 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1202 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1203 normalize = 1, reversep = 1;
1204 else if (itrue == -1
1205 && (STORE_FLAG_VALUE == -1
1206 || if_info->branch_cost >= 2))
1207 normalize = -1;
1208 else if (ifalse == -1 && can_reverse
1209 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1210 normalize = -1, reversep = 1;
1211 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1212 || if_info->branch_cost >= 3)
1213 normalize = -1;
1214 else
1215 return FALSE;
1217 if (reversep)
1219 std::swap (itrue, ifalse);
1220 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1223 start_sequence ();
1224 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1225 if (! target)
1227 end_sequence ();
1228 return FALSE;
1231 /* if (test) x = 3; else x = 4;
1232 => x = 3 + (test == 0); */
1233 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1235 target = expand_simple_binop (mode,
1236 (diff == STORE_FLAG_VALUE
1237 ? PLUS : MINUS),
1238 gen_int_mode (ifalse, mode), target,
1239 if_info->x, 0, OPTAB_WIDEN);
1242 /* if (test) x = 8; else x = 0;
1243 => x = (test != 0) << 3; */
1244 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1246 target = expand_simple_binop (mode, ASHIFT,
1247 target, GEN_INT (tmp), if_info->x, 0,
1248 OPTAB_WIDEN);
1251 /* if (test) x = -1; else x = b;
1252 => x = -(test != 0) | b; */
1253 else if (itrue == -1)
1255 target = expand_simple_binop (mode, IOR,
1256 target, gen_int_mode (ifalse, mode),
1257 if_info->x, 0, OPTAB_WIDEN);
1260 /* if (test) x = a; else x = b;
1261 => x = (-(test != 0) & (b - a)) + a; */
1262 else
1264 target = expand_simple_binop (mode, AND,
1265 target, gen_int_mode (diff, mode),
1266 if_info->x, 0, OPTAB_WIDEN);
1267 if (target)
1268 target = expand_simple_binop (mode, PLUS,
1269 target, gen_int_mode (ifalse, mode),
1270 if_info->x, 0, OPTAB_WIDEN);
1273 if (! target)
1275 end_sequence ();
1276 return FALSE;
1279 if (target != if_info->x)
1280 noce_emit_move_insn (if_info->x, target);
1282 seq = end_ifcvt_sequence (if_info);
1283 if (!seq)
1284 return FALSE;
1286 emit_insn_before_setloc (seq, if_info->jump,
1287 INSN_LOCATION (if_info->insn_a));
1288 return TRUE;
1291 return FALSE;
1294 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1295 similarly for "foo--". */
1297 static int
1298 noce_try_addcc (struct noce_if_info *if_info)
1300 rtx target;
1301 rtx_insn *seq;
1302 int subtract, normalize;
1304 if (GET_CODE (if_info->a) == PLUS
1305 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1306 && (reversed_comparison_code (if_info->cond, if_info->jump)
1307 != UNKNOWN))
1309 rtx cond = if_info->cond;
1310 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1312 /* First try to use addcc pattern. */
1313 if (general_operand (XEXP (cond, 0), VOIDmode)
1314 && general_operand (XEXP (cond, 1), VOIDmode))
1316 start_sequence ();
1317 target = emit_conditional_add (if_info->x, code,
1318 XEXP (cond, 0),
1319 XEXP (cond, 1),
1320 VOIDmode,
1321 if_info->b,
1322 XEXP (if_info->a, 1),
1323 GET_MODE (if_info->x),
1324 (code == LTU || code == GEU
1325 || code == LEU || code == GTU));
1326 if (target)
1328 if (target != if_info->x)
1329 noce_emit_move_insn (if_info->x, target);
1331 seq = end_ifcvt_sequence (if_info);
1332 if (!seq)
1333 return FALSE;
1335 emit_insn_before_setloc (seq, if_info->jump,
1336 INSN_LOCATION (if_info->insn_a));
1337 return TRUE;
1339 end_sequence ();
1342 /* If that fails, construct conditional increment or decrement using
1343 setcc. */
1344 if (if_info->branch_cost >= 2
1345 && (XEXP (if_info->a, 1) == const1_rtx
1346 || XEXP (if_info->a, 1) == constm1_rtx))
1348 start_sequence ();
1349 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1350 subtract = 0, normalize = 0;
1351 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1352 subtract = 1, normalize = 0;
1353 else
1354 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1357 target = noce_emit_store_flag (if_info,
1358 gen_reg_rtx (GET_MODE (if_info->x)),
1359 1, normalize);
1361 if (target)
1362 target = expand_simple_binop (GET_MODE (if_info->x),
1363 subtract ? MINUS : PLUS,
1364 if_info->b, target, if_info->x,
1365 0, OPTAB_WIDEN);
1366 if (target)
1368 if (target != if_info->x)
1369 noce_emit_move_insn (if_info->x, target);
1371 seq = end_ifcvt_sequence (if_info);
1372 if (!seq)
1373 return FALSE;
1375 emit_insn_before_setloc (seq, if_info->jump,
1376 INSN_LOCATION (if_info->insn_a));
1377 return TRUE;
1379 end_sequence ();
1383 return FALSE;
1386 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1388 static int
1389 noce_try_store_flag_mask (struct noce_if_info *if_info)
1391 rtx target;
1392 rtx_insn *seq;
1393 int reversep;
1395 reversep = 0;
1396 if ((if_info->branch_cost >= 2
1397 || STORE_FLAG_VALUE == -1)
1398 && ((if_info->a == const0_rtx
1399 && rtx_equal_p (if_info->b, if_info->x))
1400 || ((reversep = (reversed_comparison_code (if_info->cond,
1401 if_info->jump)
1402 != UNKNOWN))
1403 && if_info->b == const0_rtx
1404 && rtx_equal_p (if_info->a, if_info->x))))
1406 start_sequence ();
1407 target = noce_emit_store_flag (if_info,
1408 gen_reg_rtx (GET_MODE (if_info->x)),
1409 reversep, -1);
1410 if (target)
1411 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1412 if_info->x,
1413 target, if_info->x, 0,
1414 OPTAB_WIDEN);
1416 if (target)
1418 int old_cost, new_cost, insn_cost;
1419 int speed_p;
1421 if (target != if_info->x)
1422 noce_emit_move_insn (if_info->x, target);
1424 seq = end_ifcvt_sequence (if_info);
1425 if (!seq)
1426 return FALSE;
1428 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1429 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1430 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1431 new_cost = seq_cost (seq, speed_p);
1433 if (new_cost > old_cost)
1434 return FALSE;
1436 emit_insn_before_setloc (seq, if_info->jump,
1437 INSN_LOCATION (if_info->insn_a));
1438 return TRUE;
1441 end_sequence ();
1444 return FALSE;
1447 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1449 static rtx
1450 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1451 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1453 rtx target ATTRIBUTE_UNUSED;
1454 int unsignedp ATTRIBUTE_UNUSED;
1456 /* If earliest == jump, try to build the cmove insn directly.
1457 This is helpful when combine has created some complex condition
1458 (like for alpha's cmovlbs) that we can't hope to regenerate
1459 through the normal interface. */
1461 if (if_info->cond_earliest == if_info->jump)
1463 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1464 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1465 cond, vtrue, vfalse);
1466 rtx set = gen_rtx_SET (x, if_then_else);
1468 start_sequence ();
1469 rtx_insn *insn = emit_insn (set);
1471 if (recog_memoized (insn) >= 0)
1473 rtx_insn *seq = get_insns ();
1474 end_sequence ();
1475 emit_insn (seq);
1477 return x;
1480 end_sequence ();
1483 /* Don't even try if the comparison operands are weird
1484 except that the target supports cbranchcc4. */
1485 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1486 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1488 if (!(HAVE_cbranchcc4)
1489 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1490 || cmp_b != const0_rtx)
1491 return NULL_RTX;
1494 unsignedp = (code == LTU || code == GEU
1495 || code == LEU || code == GTU);
1497 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1498 vtrue, vfalse, GET_MODE (x),
1499 unsignedp);
1500 if (target)
1501 return target;
1503 /* We might be faced with a situation like:
1505 x = (reg:M TARGET)
1506 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1507 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1509 We can't do a conditional move in mode M, but it's possible that we
1510 could do a conditional move in mode N instead and take a subreg of
1511 the result.
1513 If we can't create new pseudos, though, don't bother. */
1514 if (reload_completed)
1515 return NULL_RTX;
1517 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1519 rtx reg_vtrue = SUBREG_REG (vtrue);
1520 rtx reg_vfalse = SUBREG_REG (vfalse);
1521 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1522 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1523 rtx promoted_target;
1525 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1526 || byte_vtrue != byte_vfalse
1527 || (SUBREG_PROMOTED_VAR_P (vtrue)
1528 != SUBREG_PROMOTED_VAR_P (vfalse))
1529 || (SUBREG_PROMOTED_GET (vtrue)
1530 != SUBREG_PROMOTED_GET (vfalse)))
1531 return NULL_RTX;
1533 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1535 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1536 VOIDmode, reg_vtrue, reg_vfalse,
1537 GET_MODE (reg_vtrue), unsignedp);
1538 /* Nope, couldn't do it in that mode either. */
1539 if (!target)
1540 return NULL_RTX;
1542 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1543 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1544 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1545 emit_move_insn (x, target);
1546 return x;
1548 else
1549 return NULL_RTX;
1552 /* Try only simple constants and registers here. More complex cases
1553 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1554 has had a go at it. */
1556 static int
1557 noce_try_cmove (struct noce_if_info *if_info)
1559 enum rtx_code code;
1560 rtx target;
1561 rtx_insn *seq;
1563 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1564 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1566 start_sequence ();
1568 code = GET_CODE (if_info->cond);
1569 target = noce_emit_cmove (if_info, if_info->x, code,
1570 XEXP (if_info->cond, 0),
1571 XEXP (if_info->cond, 1),
1572 if_info->a, if_info->b);
1574 if (target)
1576 if (target != if_info->x)
1577 noce_emit_move_insn (if_info->x, target);
1579 seq = end_ifcvt_sequence (if_info);
1580 if (!seq)
1581 return FALSE;
1583 emit_insn_before_setloc (seq, if_info->jump,
1584 INSN_LOCATION (if_info->insn_a));
1585 return TRUE;
1587 else
1589 end_sequence ();
1590 return FALSE;
1594 return FALSE;
1597 /* Try more complex cases involving conditional_move. */
1599 static int
1600 noce_try_cmove_arith (struct noce_if_info *if_info)
1602 rtx a = if_info->a;
1603 rtx b = if_info->b;
1604 rtx x = if_info->x;
1605 rtx orig_a, orig_b;
1606 rtx_insn *insn_a, *insn_b;
1607 rtx target;
1608 int is_mem = 0;
1609 int insn_cost;
1610 enum rtx_code code;
1611 rtx_insn *ifcvt_seq;
1613 /* A conditional move from two memory sources is equivalent to a
1614 conditional on their addresses followed by a load. Don't do this
1615 early because it'll screw alias analysis. Note that we've
1616 already checked for no side effects. */
1617 /* ??? FIXME: Magic number 5. */
1618 if (cse_not_expected
1619 && MEM_P (a) && MEM_P (b)
1620 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1621 && if_info->branch_cost >= 5)
1623 machine_mode address_mode = get_address_mode (a);
1625 a = XEXP (a, 0);
1626 b = XEXP (b, 0);
1627 x = gen_reg_rtx (address_mode);
1628 is_mem = 1;
1631 /* ??? We could handle this if we knew that a load from A or B could
1632 not trap or fault. This is also true if we've already loaded
1633 from the address along the path from ENTRY. */
1634 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1635 return FALSE;
1637 /* if (test) x = a + b; else x = c - d;
1638 => y = a + b;
1639 x = c - d;
1640 if (test)
1641 x = y;
1644 code = GET_CODE (if_info->cond);
1645 insn_a = if_info->insn_a;
1646 insn_b = if_info->insn_b;
1648 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1649 if insn_rtx_cost can't be estimated. */
1650 if (insn_a)
1652 insn_cost
1653 = insn_rtx_cost (PATTERN (insn_a),
1654 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1655 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1656 return FALSE;
1658 else
1659 insn_cost = 0;
1661 if (insn_b)
1663 insn_cost
1664 += insn_rtx_cost (PATTERN (insn_b),
1665 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1666 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1667 return FALSE;
1670 /* Possibly rearrange operands to make things come out more natural. */
1671 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1673 int reversep = 0;
1674 if (rtx_equal_p (b, x))
1675 reversep = 1;
1676 else if (general_operand (b, GET_MODE (b)))
1677 reversep = 1;
1679 if (reversep)
1681 code = reversed_comparison_code (if_info->cond, if_info->jump);
1682 std::swap (a, b);
1683 std::swap (insn_a, insn_b);
1687 start_sequence ();
1689 orig_a = a;
1690 orig_b = b;
1692 /* If either operand is complex, load it into a register first.
1693 The best way to do this is to copy the original insn. In this
1694 way we preserve any clobbers etc that the insn may have had.
1695 This is of course not possible in the IS_MEM case. */
1696 if (! general_operand (a, GET_MODE (a)))
1698 rtx_insn *insn;
1700 if (is_mem)
1702 rtx reg = gen_reg_rtx (GET_MODE (a));
1703 insn = emit_insn (gen_rtx_SET (reg, a));
1705 else if (! insn_a)
1706 goto end_seq_and_fail;
1707 else
1709 a = gen_reg_rtx (GET_MODE (a));
1710 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1711 rtx set = single_set (copy_of_a);
1712 SET_DEST (set) = a;
1713 insn = emit_insn (PATTERN (copy_of_a));
1715 if (recog_memoized (insn) < 0)
1716 goto end_seq_and_fail;
1718 if (! general_operand (b, GET_MODE (b)))
1720 rtx pat;
1721 rtx_insn *last;
1722 rtx_insn *new_insn;
1724 if (is_mem)
1726 rtx reg = gen_reg_rtx (GET_MODE (b));
1727 pat = gen_rtx_SET (reg, b);
1729 else if (! insn_b)
1730 goto end_seq_and_fail;
1731 else
1733 b = gen_reg_rtx (GET_MODE (b));
1734 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1735 rtx set = single_set (copy_of_insn_b);
1736 SET_DEST (set) = b;
1737 pat = PATTERN (copy_of_insn_b);
1740 /* If insn to set up A clobbers any registers B depends on, try to
1741 swap insn that sets up A with the one that sets up B. If even
1742 that doesn't help, punt. */
1743 last = get_last_insn ();
1744 if (last && modified_in_p (orig_b, last))
1746 new_insn = emit_insn_before (pat, get_insns ());
1747 if (modified_in_p (orig_a, new_insn))
1748 goto end_seq_and_fail;
1750 else
1751 new_insn = emit_insn (pat);
1753 if (recog_memoized (new_insn) < 0)
1754 goto end_seq_and_fail;
1757 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1758 XEXP (if_info->cond, 1), a, b);
1760 if (! target)
1761 goto end_seq_and_fail;
1763 /* If we're handling a memory for above, emit the load now. */
1764 if (is_mem)
1766 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1768 /* Copy over flags as appropriate. */
1769 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1770 MEM_VOLATILE_P (mem) = 1;
1771 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1772 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1773 set_mem_align (mem,
1774 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1776 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1777 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1779 noce_emit_move_insn (if_info->x, mem);
1781 else if (target != x)
1782 noce_emit_move_insn (x, target);
1784 ifcvt_seq = end_ifcvt_sequence (if_info);
1785 if (!ifcvt_seq)
1786 return FALSE;
1788 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1789 INSN_LOCATION (if_info->insn_a));
1790 return TRUE;
1792 end_seq_and_fail:
1793 end_sequence ();
1794 return FALSE;
1797 /* For most cases, the simplified condition we found is the best
1798 choice, but this is not the case for the min/max/abs transforms.
1799 For these we wish to know that it is A or B in the condition. */
1801 static rtx
1802 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1803 rtx_insn **earliest)
1805 rtx cond, set;
1806 rtx_insn *insn;
1807 int reverse;
1809 /* If target is already mentioned in the known condition, return it. */
1810 if (reg_mentioned_p (target, if_info->cond))
1812 *earliest = if_info->cond_earliest;
1813 return if_info->cond;
1816 set = pc_set (if_info->jump);
1817 cond = XEXP (SET_SRC (set), 0);
1818 reverse
1819 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1820 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1821 if (if_info->then_else_reversed)
1822 reverse = !reverse;
1824 /* If we're looking for a constant, try to make the conditional
1825 have that constant in it. There are two reasons why it may
1826 not have the constant we want:
1828 1. GCC may have needed to put the constant in a register, because
1829 the target can't compare directly against that constant. For
1830 this case, we look for a SET immediately before the comparison
1831 that puts a constant in that register.
1833 2. GCC may have canonicalized the conditional, for example
1834 replacing "if x < 4" with "if x <= 3". We can undo that (or
1835 make equivalent types of changes) to get the constants we need
1836 if they're off by one in the right direction. */
1838 if (CONST_INT_P (target))
1840 enum rtx_code code = GET_CODE (if_info->cond);
1841 rtx op_a = XEXP (if_info->cond, 0);
1842 rtx op_b = XEXP (if_info->cond, 1);
1843 rtx_insn *prev_insn;
1845 /* First, look to see if we put a constant in a register. */
1846 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1847 if (prev_insn
1848 && BLOCK_FOR_INSN (prev_insn)
1849 == BLOCK_FOR_INSN (if_info->cond_earliest)
1850 && INSN_P (prev_insn)
1851 && GET_CODE (PATTERN (prev_insn)) == SET)
1853 rtx src = find_reg_equal_equiv_note (prev_insn);
1854 if (!src)
1855 src = SET_SRC (PATTERN (prev_insn));
1856 if (CONST_INT_P (src))
1858 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1859 op_a = src;
1860 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1861 op_b = src;
1863 if (CONST_INT_P (op_a))
1865 std::swap (op_a, op_b);
1866 code = swap_condition (code);
1871 /* Now, look to see if we can get the right constant by
1872 adjusting the conditional. */
1873 if (CONST_INT_P (op_b))
1875 HOST_WIDE_INT desired_val = INTVAL (target);
1876 HOST_WIDE_INT actual_val = INTVAL (op_b);
1878 switch (code)
1880 case LT:
1881 if (actual_val == desired_val + 1)
1883 code = LE;
1884 op_b = GEN_INT (desired_val);
1886 break;
1887 case LE:
1888 if (actual_val == desired_val - 1)
1890 code = LT;
1891 op_b = GEN_INT (desired_val);
1893 break;
1894 case GT:
1895 if (actual_val == desired_val - 1)
1897 code = GE;
1898 op_b = GEN_INT (desired_val);
1900 break;
1901 case GE:
1902 if (actual_val == desired_val + 1)
1904 code = GT;
1905 op_b = GEN_INT (desired_val);
1907 break;
1908 default:
1909 break;
1913 /* If we made any changes, generate a new conditional that is
1914 equivalent to what we started with, but has the right
1915 constants in it. */
1916 if (code != GET_CODE (if_info->cond)
1917 || op_a != XEXP (if_info->cond, 0)
1918 || op_b != XEXP (if_info->cond, 1))
1920 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1921 *earliest = if_info->cond_earliest;
1922 return cond;
1926 cond = canonicalize_condition (if_info->jump, cond, reverse,
1927 earliest, target, HAVE_cbranchcc4, true);
1928 if (! cond || ! reg_mentioned_p (target, cond))
1929 return NULL;
1931 /* We almost certainly searched back to a different place.
1932 Need to re-verify correct lifetimes. */
1934 /* X may not be mentioned in the range (cond_earliest, jump]. */
1935 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1936 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1937 return NULL;
1939 /* A and B may not be modified in the range [cond_earliest, jump). */
1940 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1941 if (INSN_P (insn)
1942 && (modified_in_p (if_info->a, insn)
1943 || modified_in_p (if_info->b, insn)))
1944 return NULL;
1946 return cond;
1949 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1951 static int
1952 noce_try_minmax (struct noce_if_info *if_info)
1954 rtx cond, target;
1955 rtx_insn *earliest, *seq;
1956 enum rtx_code code, op;
1957 int unsignedp;
1959 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1960 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1961 to get the target to tell us... */
1962 if (HONOR_SIGNED_ZEROS (if_info->x)
1963 || HONOR_NANS (if_info->x))
1964 return FALSE;
1966 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1967 if (!cond)
1968 return FALSE;
1970 /* Verify the condition is of the form we expect, and canonicalize
1971 the comparison code. */
1972 code = GET_CODE (cond);
1973 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1975 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1976 return FALSE;
1978 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1980 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1981 return FALSE;
1982 code = swap_condition (code);
1984 else
1985 return FALSE;
1987 /* Determine what sort of operation this is. Note that the code is for
1988 a taken branch, so the code->operation mapping appears backwards. */
1989 switch (code)
1991 case LT:
1992 case LE:
1993 case UNLT:
1994 case UNLE:
1995 op = SMAX;
1996 unsignedp = 0;
1997 break;
1998 case GT:
1999 case GE:
2000 case UNGT:
2001 case UNGE:
2002 op = SMIN;
2003 unsignedp = 0;
2004 break;
2005 case LTU:
2006 case LEU:
2007 op = UMAX;
2008 unsignedp = 1;
2009 break;
2010 case GTU:
2011 case GEU:
2012 op = UMIN;
2013 unsignedp = 1;
2014 break;
2015 default:
2016 return FALSE;
2019 start_sequence ();
2021 target = expand_simple_binop (GET_MODE (if_info->x), op,
2022 if_info->a, if_info->b,
2023 if_info->x, unsignedp, OPTAB_WIDEN);
2024 if (! target)
2026 end_sequence ();
2027 return FALSE;
2029 if (target != if_info->x)
2030 noce_emit_move_insn (if_info->x, target);
2032 seq = end_ifcvt_sequence (if_info);
2033 if (!seq)
2034 return FALSE;
2036 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2037 if_info->cond = cond;
2038 if_info->cond_earliest = earliest;
2040 return TRUE;
2043 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2044 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2045 etc. */
2047 static int
2048 noce_try_abs (struct noce_if_info *if_info)
2050 rtx cond, target, a, b, c;
2051 rtx_insn *earliest, *seq;
2052 int negate;
2053 bool one_cmpl = false;
2055 /* Reject modes with signed zeros. */
2056 if (HONOR_SIGNED_ZEROS (if_info->x))
2057 return FALSE;
2059 /* Recognize A and B as constituting an ABS or NABS. The canonical
2060 form is a branch around the negation, taken when the object is the
2061 first operand of a comparison against 0 that evaluates to true. */
2062 a = if_info->a;
2063 b = if_info->b;
2064 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2065 negate = 0;
2066 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2068 std::swap (a, b);
2069 negate = 1;
2071 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2073 negate = 0;
2074 one_cmpl = true;
2076 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2078 std::swap (a, b);
2079 negate = 1;
2080 one_cmpl = true;
2082 else
2083 return FALSE;
2085 cond = noce_get_alt_condition (if_info, b, &earliest);
2086 if (!cond)
2087 return FALSE;
2089 /* Verify the condition is of the form we expect. */
2090 if (rtx_equal_p (XEXP (cond, 0), b))
2091 c = XEXP (cond, 1);
2092 else if (rtx_equal_p (XEXP (cond, 1), b))
2094 c = XEXP (cond, 0);
2095 negate = !negate;
2097 else
2098 return FALSE;
2100 /* Verify that C is zero. Search one step backward for a
2101 REG_EQUAL note or a simple source if necessary. */
2102 if (REG_P (c))
2104 rtx set;
2105 rtx_insn *insn = prev_nonnote_insn (earliest);
2106 if (insn
2107 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2108 && (set = single_set (insn))
2109 && rtx_equal_p (SET_DEST (set), c))
2111 rtx note = find_reg_equal_equiv_note (insn);
2112 if (note)
2113 c = XEXP (note, 0);
2114 else
2115 c = SET_SRC (set);
2117 else
2118 return FALSE;
2120 if (MEM_P (c)
2121 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2122 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2123 c = get_pool_constant (XEXP (c, 0));
2125 /* Work around funny ideas get_condition has wrt canonicalization.
2126 Note that these rtx constants are known to be CONST_INT, and
2127 therefore imply integer comparisons. */
2128 if (c == constm1_rtx && GET_CODE (cond) == GT)
2130 else if (c == const1_rtx && GET_CODE (cond) == LT)
2132 else if (c != CONST0_RTX (GET_MODE (b)))
2133 return FALSE;
2135 /* Determine what sort of operation this is. */
2136 switch (GET_CODE (cond))
2138 case LT:
2139 case LE:
2140 case UNLT:
2141 case UNLE:
2142 negate = !negate;
2143 break;
2144 case GT:
2145 case GE:
2146 case UNGT:
2147 case UNGE:
2148 break;
2149 default:
2150 return FALSE;
2153 start_sequence ();
2154 if (one_cmpl)
2155 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2156 if_info->x);
2157 else
2158 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2160 /* ??? It's a quandary whether cmove would be better here, especially
2161 for integers. Perhaps combine will clean things up. */
2162 if (target && negate)
2164 if (one_cmpl)
2165 target = expand_simple_unop (GET_MODE (target), NOT, target,
2166 if_info->x, 0);
2167 else
2168 target = expand_simple_unop (GET_MODE (target), NEG, target,
2169 if_info->x, 0);
2172 if (! target)
2174 end_sequence ();
2175 return FALSE;
2178 if (target != if_info->x)
2179 noce_emit_move_insn (if_info->x, target);
2181 seq = end_ifcvt_sequence (if_info);
2182 if (!seq)
2183 return FALSE;
2185 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2186 if_info->cond = cond;
2187 if_info->cond_earliest = earliest;
2189 return TRUE;
2192 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2194 static int
2195 noce_try_sign_mask (struct noce_if_info *if_info)
2197 rtx cond, t, m, c;
2198 rtx_insn *seq;
2199 machine_mode mode;
2200 enum rtx_code code;
2201 bool t_unconditional;
2203 cond = if_info->cond;
2204 code = GET_CODE (cond);
2205 m = XEXP (cond, 0);
2206 c = XEXP (cond, 1);
2208 t = NULL_RTX;
2209 if (if_info->a == const0_rtx)
2211 if ((code == LT && c == const0_rtx)
2212 || (code == LE && c == constm1_rtx))
2213 t = if_info->b;
2215 else if (if_info->b == const0_rtx)
2217 if ((code == GE && c == const0_rtx)
2218 || (code == GT && c == constm1_rtx))
2219 t = if_info->a;
2222 if (! t || side_effects_p (t))
2223 return FALSE;
2225 /* We currently don't handle different modes. */
2226 mode = GET_MODE (t);
2227 if (GET_MODE (m) != mode)
2228 return FALSE;
2230 /* This is only profitable if T is unconditionally executed/evaluated in the
2231 original insn sequence or T is cheap. The former happens if B is the
2232 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2233 INSN_B which can happen for e.g. conditional stores to memory. For the
2234 cost computation use the block TEST_BB where the evaluation will end up
2235 after the transformation. */
2236 t_unconditional =
2237 (t == if_info->b
2238 && (if_info->insn_b == NULL_RTX
2239 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2240 if (!(t_unconditional
2241 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2242 < COSTS_N_INSNS (2))))
2243 return FALSE;
2245 start_sequence ();
2246 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2247 "(signed) m >> 31" directly. This benefits targets with specialized
2248 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2249 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2250 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2251 : NULL_RTX;
2253 if (!t)
2255 end_sequence ();
2256 return FALSE;
2259 noce_emit_move_insn (if_info->x, t);
2261 seq = end_ifcvt_sequence (if_info);
2262 if (!seq)
2263 return FALSE;
2265 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2266 return TRUE;
2270 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2271 transformations. */
2273 static int
2274 noce_try_bitop (struct noce_if_info *if_info)
2276 rtx cond, x, a, result;
2277 rtx_insn *seq;
2278 machine_mode mode;
2279 enum rtx_code code;
2280 int bitnum;
2282 x = if_info->x;
2283 cond = if_info->cond;
2284 code = GET_CODE (cond);
2286 /* Check for no else condition. */
2287 if (! rtx_equal_p (x, if_info->b))
2288 return FALSE;
2290 /* Check for a suitable condition. */
2291 if (code != NE && code != EQ)
2292 return FALSE;
2293 if (XEXP (cond, 1) != const0_rtx)
2294 return FALSE;
2295 cond = XEXP (cond, 0);
2297 /* ??? We could also handle AND here. */
2298 if (GET_CODE (cond) == ZERO_EXTRACT)
2300 if (XEXP (cond, 1) != const1_rtx
2301 || !CONST_INT_P (XEXP (cond, 2))
2302 || ! rtx_equal_p (x, XEXP (cond, 0)))
2303 return FALSE;
2304 bitnum = INTVAL (XEXP (cond, 2));
2305 mode = GET_MODE (x);
2306 if (BITS_BIG_ENDIAN)
2307 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2308 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2309 return FALSE;
2311 else
2312 return FALSE;
2314 a = if_info->a;
2315 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2317 /* Check for "if (X & C) x = x op C". */
2318 if (! rtx_equal_p (x, XEXP (a, 0))
2319 || !CONST_INT_P (XEXP (a, 1))
2320 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2321 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2322 return FALSE;
2324 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2325 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2326 if (GET_CODE (a) == IOR)
2327 result = (code == NE) ? a : NULL_RTX;
2328 else if (code == NE)
2330 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2331 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2332 result = simplify_gen_binary (IOR, mode, x, result);
2334 else
2336 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2337 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2338 result = simplify_gen_binary (AND, mode, x, result);
2341 else if (GET_CODE (a) == AND)
2343 /* Check for "if (X & C) x &= ~C". */
2344 if (! rtx_equal_p (x, XEXP (a, 0))
2345 || !CONST_INT_P (XEXP (a, 1))
2346 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2347 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2348 return FALSE;
2350 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2351 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2352 result = (code == EQ) ? a : NULL_RTX;
2354 else
2355 return FALSE;
2357 if (result)
2359 start_sequence ();
2360 noce_emit_move_insn (x, result);
2361 seq = end_ifcvt_sequence (if_info);
2362 if (!seq)
2363 return FALSE;
2365 emit_insn_before_setloc (seq, if_info->jump,
2366 INSN_LOCATION (if_info->insn_a));
2368 return TRUE;
2372 /* Similar to get_condition, only the resulting condition must be
2373 valid at JUMP, instead of at EARLIEST.
2375 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2376 THEN block of the caller, and we have to reverse the condition. */
2378 static rtx
2379 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2381 rtx cond, set, tmp;
2382 bool reverse;
2384 if (! any_condjump_p (jump))
2385 return NULL_RTX;
2387 set = pc_set (jump);
2389 /* If this branches to JUMP_LABEL when the condition is false,
2390 reverse the condition. */
2391 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2392 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2394 /* We may have to reverse because the caller's if block is not canonical,
2395 i.e. the THEN block isn't the fallthrough block for the TEST block
2396 (see find_if_header). */
2397 if (then_else_reversed)
2398 reverse = !reverse;
2400 /* If the condition variable is a register and is MODE_INT, accept it. */
2402 cond = XEXP (SET_SRC (set), 0);
2403 tmp = XEXP (cond, 0);
2404 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2405 && (GET_MODE (tmp) != BImode
2406 || !targetm.small_register_classes_for_mode_p (BImode)))
2408 *earliest = jump;
2410 if (reverse)
2411 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2412 GET_MODE (cond), tmp, XEXP (cond, 1));
2413 return cond;
2416 /* Otherwise, fall back on canonicalize_condition to do the dirty
2417 work of manipulating MODE_CC values and COMPARE rtx codes. */
2418 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2419 NULL_RTX, HAVE_cbranchcc4, true);
2421 /* We don't handle side-effects in the condition, like handling
2422 REG_INC notes and making sure no duplicate conditions are emitted. */
2423 if (tmp != NULL_RTX && side_effects_p (tmp))
2424 return NULL_RTX;
2426 return tmp;
2429 /* Return true if OP is ok for if-then-else processing. */
2431 static int
2432 noce_operand_ok (const_rtx op)
2434 if (side_effects_p (op))
2435 return FALSE;
2437 /* We special-case memories, so handle any of them with
2438 no address side effects. */
2439 if (MEM_P (op))
2440 return ! side_effects_p (XEXP (op, 0));
2442 return ! may_trap_p (op);
2445 /* Return true if a write into MEM may trap or fault. */
2447 static bool
2448 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2450 rtx addr;
2452 if (MEM_READONLY_P (mem))
2453 return true;
2455 if (may_trap_or_fault_p (mem))
2456 return true;
2458 addr = XEXP (mem, 0);
2460 /* Call target hook to avoid the effects of -fpic etc.... */
2461 addr = targetm.delegitimize_address (addr);
2463 while (addr)
2464 switch (GET_CODE (addr))
2466 case CONST:
2467 case PRE_DEC:
2468 case PRE_INC:
2469 case POST_DEC:
2470 case POST_INC:
2471 case POST_MODIFY:
2472 addr = XEXP (addr, 0);
2473 break;
2474 case LO_SUM:
2475 case PRE_MODIFY:
2476 addr = XEXP (addr, 1);
2477 break;
2478 case PLUS:
2479 if (CONST_INT_P (XEXP (addr, 1)))
2480 addr = XEXP (addr, 0);
2481 else
2482 return false;
2483 break;
2484 case LABEL_REF:
2485 return true;
2486 case SYMBOL_REF:
2487 if (SYMBOL_REF_DECL (addr)
2488 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2489 return true;
2490 return false;
2491 default:
2492 return false;
2495 return false;
2498 /* Return whether we can use store speculation for MEM. TOP_BB is the
2499 basic block above the conditional block where we are considering
2500 doing the speculative store. We look for whether MEM is set
2501 unconditionally later in the function. */
2503 static bool
2504 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2506 basic_block dominator;
2508 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2509 dominator != NULL;
2510 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2512 rtx_insn *insn;
2514 FOR_BB_INSNS (dominator, insn)
2516 /* If we see something that might be a memory barrier, we
2517 have to stop looking. Even if the MEM is set later in
2518 the function, we still don't want to set it
2519 unconditionally before the barrier. */
2520 if (INSN_P (insn)
2521 && (volatile_insn_p (PATTERN (insn))
2522 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2523 return false;
2525 if (memory_must_be_modified_in_insn_p (mem, insn))
2526 return true;
2527 if (modified_in_p (XEXP (mem, 0), insn))
2528 return false;
2533 return false;
2536 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2537 it without using conditional execution. Return TRUE if we were successful
2538 at converting the block. */
2540 static int
2541 noce_process_if_block (struct noce_if_info *if_info)
2543 basic_block test_bb = if_info->test_bb; /* test block */
2544 basic_block then_bb = if_info->then_bb; /* THEN */
2545 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2546 basic_block join_bb = if_info->join_bb; /* JOIN */
2547 rtx_insn *jump = if_info->jump;
2548 rtx cond = if_info->cond;
2549 rtx_insn *insn_a, *insn_b;
2550 rtx set_a, set_b;
2551 rtx orig_x, x, a, b;
2552 rtx cc;
2554 /* We're looking for patterns of the form
2556 (1) if (...) x = a; else x = b;
2557 (2) x = b; if (...) x = a;
2558 (3) if (...) x = a; // as if with an initial x = x.
2560 The later patterns require jumps to be more expensive.
2562 ??? For future expansion, look for multiple X in such patterns. */
2564 /* Look for one of the potential sets. */
2565 insn_a = first_active_insn (then_bb);
2566 if (! insn_a
2567 || insn_a != last_active_insn (then_bb, FALSE)
2568 || (set_a = single_set (insn_a)) == NULL_RTX)
2569 return FALSE;
2571 x = SET_DEST (set_a);
2572 a = SET_SRC (set_a);
2574 /* Look for the other potential set. Make sure we've got equivalent
2575 destinations. */
2576 /* ??? This is overconservative. Storing to two different mems is
2577 as easy as conditionally computing the address. Storing to a
2578 single mem merely requires a scratch memory to use as one of the
2579 destination addresses; often the memory immediately below the
2580 stack pointer is available for this. */
2581 set_b = NULL_RTX;
2582 if (else_bb)
2584 insn_b = first_active_insn (else_bb);
2585 if (! insn_b
2586 || insn_b != last_active_insn (else_bb, FALSE)
2587 || (set_b = single_set (insn_b)) == NULL_RTX
2588 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2589 return FALSE;
2591 else
2593 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2594 /* We're going to be moving the evaluation of B down from above
2595 COND_EARLIEST to JUMP. Make sure the relevant data is still
2596 intact. */
2597 if (! insn_b
2598 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2599 || !NONJUMP_INSN_P (insn_b)
2600 || (set_b = single_set (insn_b)) == NULL_RTX
2601 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2602 || ! noce_operand_ok (SET_SRC (set_b))
2603 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2604 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2605 /* Avoid extending the lifetime of hard registers on small
2606 register class machines. */
2607 || (REG_P (SET_SRC (set_b))
2608 && HARD_REGISTER_P (SET_SRC (set_b))
2609 && targetm.small_register_classes_for_mode_p
2610 (GET_MODE (SET_SRC (set_b))))
2611 /* Likewise with X. In particular this can happen when
2612 noce_get_condition looks farther back in the instruction
2613 stream than one might expect. */
2614 || reg_overlap_mentioned_p (x, cond)
2615 || reg_overlap_mentioned_p (x, a)
2616 || modified_between_p (x, insn_b, jump))
2618 insn_b = NULL;
2619 set_b = NULL_RTX;
2623 /* If x has side effects then only the if-then-else form is safe to
2624 convert. But even in that case we would need to restore any notes
2625 (such as REG_INC) at then end. That can be tricky if
2626 noce_emit_move_insn expands to more than one insn, so disable the
2627 optimization entirely for now if there are side effects. */
2628 if (side_effects_p (x))
2629 return FALSE;
2631 b = (set_b ? SET_SRC (set_b) : x);
2633 /* Only operate on register destinations, and even then avoid extending
2634 the lifetime of hard registers on small register class machines. */
2635 orig_x = x;
2636 if (!REG_P (x)
2637 || (HARD_REGISTER_P (x)
2638 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2640 if (GET_MODE (x) == BLKmode)
2641 return FALSE;
2643 if (GET_CODE (x) == ZERO_EXTRACT
2644 && (!CONST_INT_P (XEXP (x, 1))
2645 || !CONST_INT_P (XEXP (x, 2))))
2646 return FALSE;
2648 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2649 ? XEXP (x, 0) : x));
2652 /* Don't operate on sources that may trap or are volatile. */
2653 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2654 return FALSE;
2656 retry:
2657 /* Set up the info block for our subroutines. */
2658 if_info->insn_a = insn_a;
2659 if_info->insn_b = insn_b;
2660 if_info->x = x;
2661 if_info->a = a;
2662 if_info->b = b;
2664 /* Skip it if the instruction to be moved might clobber CC. */
2665 cc = cc_in_cond (cond);
2666 if (cc
2667 && (set_of (cc, insn_a)
2668 || (insn_b && set_of (cc, insn_b))))
2669 return FALSE;
2671 /* Try optimizations in some approximation of a useful order. */
2672 /* ??? Should first look to see if X is live incoming at all. If it
2673 isn't, we don't need anything but an unconditional set. */
2675 /* Look and see if A and B are really the same. Avoid creating silly
2676 cmove constructs that no one will fix up later. */
2677 if (rtx_interchangeable_p (a, b))
2679 /* If we have an INSN_B, we don't have to create any new rtl. Just
2680 move the instruction that we already have. If we don't have an
2681 INSN_B, that means that A == X, and we've got a noop move. In
2682 that case don't do anything and let the code below delete INSN_A. */
2683 if (insn_b && else_bb)
2685 rtx note;
2687 if (else_bb && insn_b == BB_END (else_bb))
2688 BB_END (else_bb) = PREV_INSN (insn_b);
2689 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2691 /* If there was a REG_EQUAL note, delete it since it may have been
2692 true due to this insn being after a jump. */
2693 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2694 remove_note (insn_b, note);
2696 insn_b = NULL;
2698 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2699 x must be executed twice. */
2700 else if (insn_b && side_effects_p (orig_x))
2701 return FALSE;
2703 x = orig_x;
2704 goto success;
2707 if (!set_b && MEM_P (orig_x))
2709 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2710 for optimizations if writing to x may trap or fault,
2711 i.e. it's a memory other than a static var or a stack slot,
2712 is misaligned on strict aligned machines or is read-only. If
2713 x is a read-only memory, then the program is valid only if we
2714 avoid the store into it. If there are stores on both the
2715 THEN and ELSE arms, then we can go ahead with the conversion;
2716 either the program is broken, or the condition is always
2717 false such that the other memory is selected. */
2718 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2719 return FALSE;
2721 /* Avoid store speculation: given "if (...) x = a" where x is a
2722 MEM, we only want to do the store if x is always set
2723 somewhere in the function. This avoids cases like
2724 if (pthread_mutex_trylock(mutex))
2725 ++global_variable;
2726 where we only want global_variable to be changed if the mutex
2727 is held. FIXME: This should ideally be expressed directly in
2728 RTL somehow. */
2729 if (!noce_can_store_speculate_p (test_bb, orig_x))
2730 return FALSE;
2733 if (noce_try_move (if_info))
2734 goto success;
2735 if (noce_try_store_flag (if_info))
2736 goto success;
2737 if (noce_try_bitop (if_info))
2738 goto success;
2739 if (noce_try_minmax (if_info))
2740 goto success;
2741 if (noce_try_abs (if_info))
2742 goto success;
2743 if (HAVE_conditional_move
2744 && noce_try_cmove (if_info))
2745 goto success;
2746 if (! targetm.have_conditional_execution ())
2748 if (noce_try_store_flag_constants (if_info))
2749 goto success;
2750 if (noce_try_addcc (if_info))
2751 goto success;
2752 if (noce_try_store_flag_mask (if_info))
2753 goto success;
2754 if (HAVE_conditional_move
2755 && noce_try_cmove_arith (if_info))
2756 goto success;
2757 if (noce_try_sign_mask (if_info))
2758 goto success;
2761 if (!else_bb && set_b)
2763 insn_b = NULL;
2764 set_b = NULL_RTX;
2765 b = orig_x;
2766 goto retry;
2769 return FALSE;
2771 success:
2773 /* If we used a temporary, fix it up now. */
2774 if (orig_x != x)
2776 rtx_insn *seq;
2778 start_sequence ();
2779 noce_emit_move_insn (orig_x, x);
2780 seq = get_insns ();
2781 set_used_flags (orig_x);
2782 unshare_all_rtl_in_chain (seq);
2783 end_sequence ();
2785 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2788 /* The original THEN and ELSE blocks may now be removed. The test block
2789 must now jump to the join block. If the test block and the join block
2790 can be merged, do so. */
2791 if (else_bb)
2793 delete_basic_block (else_bb);
2794 num_true_changes++;
2796 else
2797 remove_edge (find_edge (test_bb, join_bb));
2799 remove_edge (find_edge (then_bb, join_bb));
2800 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2801 delete_basic_block (then_bb);
2802 num_true_changes++;
2804 if (can_merge_blocks_p (test_bb, join_bb))
2806 merge_blocks (test_bb, join_bb);
2807 num_true_changes++;
2810 num_updated_if_blocks++;
2811 return TRUE;
2814 /* Check whether a block is suitable for conditional move conversion.
2815 Every insn must be a simple set of a register to a constant or a
2816 register. For each assignment, store the value in the pointer map
2817 VALS, keyed indexed by register pointer, then store the register
2818 pointer in REGS. COND is the condition we will test. */
2820 static int
2821 check_cond_move_block (basic_block bb,
2822 hash_map<rtx, rtx> *vals,
2823 vec<rtx> *regs,
2824 rtx cond)
2826 rtx_insn *insn;
2827 rtx cc = cc_in_cond (cond);
2829 /* We can only handle simple jumps at the end of the basic block.
2830 It is almost impossible to update the CFG otherwise. */
2831 insn = BB_END (bb);
2832 if (JUMP_P (insn) && !onlyjump_p (insn))
2833 return FALSE;
2835 FOR_BB_INSNS (bb, insn)
2837 rtx set, dest, src;
2839 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2840 continue;
2841 set = single_set (insn);
2842 if (!set)
2843 return FALSE;
2845 dest = SET_DEST (set);
2846 src = SET_SRC (set);
2847 if (!REG_P (dest)
2848 || (HARD_REGISTER_P (dest)
2849 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2850 return FALSE;
2852 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2853 return FALSE;
2855 if (side_effects_p (src) || side_effects_p (dest))
2856 return FALSE;
2858 if (may_trap_p (src) || may_trap_p (dest))
2859 return FALSE;
2861 /* Don't try to handle this if the source register was
2862 modified earlier in the block. */
2863 if ((REG_P (src)
2864 && vals->get (src))
2865 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2866 && vals->get (SUBREG_REG (src))))
2867 return FALSE;
2869 /* Don't try to handle this if the destination register was
2870 modified earlier in the block. */
2871 if (vals->get (dest))
2872 return FALSE;
2874 /* Don't try to handle this if the condition uses the
2875 destination register. */
2876 if (reg_overlap_mentioned_p (dest, cond))
2877 return FALSE;
2879 /* Don't try to handle this if the source register is modified
2880 later in the block. */
2881 if (!CONSTANT_P (src)
2882 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2883 return FALSE;
2885 /* Skip it if the instruction to be moved might clobber CC. */
2886 if (cc && set_of (cc, insn))
2887 return FALSE;
2889 vals->put (dest, src);
2891 regs->safe_push (dest);
2894 return TRUE;
2897 /* Given a basic block BB suitable for conditional move conversion,
2898 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2899 the register values depending on COND, emit the insns in the block as
2900 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2901 processed. The caller has started a sequence for the conversion.
2902 Return true if successful, false if something goes wrong. */
2904 static bool
2905 cond_move_convert_if_block (struct noce_if_info *if_infop,
2906 basic_block bb, rtx cond,
2907 hash_map<rtx, rtx> *then_vals,
2908 hash_map<rtx, rtx> *else_vals,
2909 bool else_block_p)
2911 enum rtx_code code;
2912 rtx_insn *insn;
2913 rtx cond_arg0, cond_arg1;
2915 code = GET_CODE (cond);
2916 cond_arg0 = XEXP (cond, 0);
2917 cond_arg1 = XEXP (cond, 1);
2919 FOR_BB_INSNS (bb, insn)
2921 rtx set, target, dest, t, e;
2923 /* ??? Maybe emit conditional debug insn? */
2924 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2925 continue;
2926 set = single_set (insn);
2927 gcc_assert (set && REG_P (SET_DEST (set)));
2929 dest = SET_DEST (set);
2931 rtx *then_slot = then_vals->get (dest);
2932 rtx *else_slot = else_vals->get (dest);
2933 t = then_slot ? *then_slot : NULL_RTX;
2934 e = else_slot ? *else_slot : NULL_RTX;
2936 if (else_block_p)
2938 /* If this register was set in the then block, we already
2939 handled this case there. */
2940 if (t)
2941 continue;
2942 t = dest;
2943 gcc_assert (e);
2945 else
2947 gcc_assert (t);
2948 if (!e)
2949 e = dest;
2952 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2953 t, e);
2954 if (!target)
2955 return false;
2957 if (target != dest)
2958 noce_emit_move_insn (dest, target);
2961 return true;
2964 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2965 it using only conditional moves. Return TRUE if we were successful at
2966 converting the block. */
2968 static int
2969 cond_move_process_if_block (struct noce_if_info *if_info)
2971 basic_block test_bb = if_info->test_bb;
2972 basic_block then_bb = if_info->then_bb;
2973 basic_block else_bb = if_info->else_bb;
2974 basic_block join_bb = if_info->join_bb;
2975 rtx_insn *jump = if_info->jump;
2976 rtx cond = if_info->cond;
2977 rtx_insn *seq, *loc_insn;
2978 rtx reg;
2979 int c;
2980 vec<rtx> then_regs = vNULL;
2981 vec<rtx> else_regs = vNULL;
2982 unsigned int i;
2983 int success_p = FALSE;
2985 /* Build a mapping for each block to the value used for each
2986 register. */
2987 hash_map<rtx, rtx> then_vals;
2988 hash_map<rtx, rtx> else_vals;
2990 /* Make sure the blocks are suitable. */
2991 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
2992 || (else_bb
2993 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
2994 goto done;
2996 /* Make sure the blocks can be used together. If the same register
2997 is set in both blocks, and is not set to a constant in both
2998 cases, then both blocks must set it to the same register. We
2999 have already verified that if it is set to a register, that the
3000 source register does not change after the assignment. Also count
3001 the number of registers set in only one of the blocks. */
3002 c = 0;
3003 FOR_EACH_VEC_ELT (then_regs, i, reg)
3005 rtx *then_slot = then_vals.get (reg);
3006 rtx *else_slot = else_vals.get (reg);
3008 gcc_checking_assert (then_slot);
3009 if (!else_slot)
3010 ++c;
3011 else
3013 rtx then_val = *then_slot;
3014 rtx else_val = *else_slot;
3015 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3016 && !rtx_equal_p (then_val, else_val))
3017 goto done;
3021 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3022 FOR_EACH_VEC_ELT (else_regs, i, reg)
3024 gcc_checking_assert (else_vals.get (reg));
3025 if (!then_vals.get (reg))
3026 ++c;
3029 /* Make sure it is reasonable to convert this block. What matters
3030 is the number of assignments currently made in only one of the
3031 branches, since if we convert we are going to always execute
3032 them. */
3033 if (c > MAX_CONDITIONAL_EXECUTE)
3034 goto done;
3036 /* Try to emit the conditional moves. First do the then block,
3037 then do anything left in the else blocks. */
3038 start_sequence ();
3039 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3040 &then_vals, &else_vals, false)
3041 || (else_bb
3042 && !cond_move_convert_if_block (if_info, else_bb, cond,
3043 &then_vals, &else_vals, true)))
3045 end_sequence ();
3046 goto done;
3048 seq = end_ifcvt_sequence (if_info);
3049 if (!seq)
3050 goto done;
3052 loc_insn = first_active_insn (then_bb);
3053 if (!loc_insn)
3055 loc_insn = first_active_insn (else_bb);
3056 gcc_assert (loc_insn);
3058 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3060 if (else_bb)
3062 delete_basic_block (else_bb);
3063 num_true_changes++;
3065 else
3066 remove_edge (find_edge (test_bb, join_bb));
3068 remove_edge (find_edge (then_bb, join_bb));
3069 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3070 delete_basic_block (then_bb);
3071 num_true_changes++;
3073 if (can_merge_blocks_p (test_bb, join_bb))
3075 merge_blocks (test_bb, join_bb);
3076 num_true_changes++;
3079 num_updated_if_blocks++;
3081 success_p = TRUE;
3083 done:
3084 then_regs.release ();
3085 else_regs.release ();
3086 return success_p;
3090 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3091 IF-THEN-ELSE-JOIN block.
3093 If so, we'll try to convert the insns to not require the branch,
3094 using only transformations that do not require conditional execution.
3096 Return TRUE if we were successful at converting the block. */
3098 static int
3099 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3100 int pass)
3102 basic_block then_bb, else_bb, join_bb;
3103 bool then_else_reversed = false;
3104 rtx_insn *jump;
3105 rtx cond;
3106 rtx_insn *cond_earliest;
3107 struct noce_if_info if_info;
3109 /* We only ever should get here before reload. */
3110 gcc_assert (!reload_completed);
3112 /* Recognize an IF-THEN-ELSE-JOIN block. */
3113 if (single_pred_p (then_edge->dest)
3114 && single_succ_p (then_edge->dest)
3115 && single_pred_p (else_edge->dest)
3116 && single_succ_p (else_edge->dest)
3117 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3119 then_bb = then_edge->dest;
3120 else_bb = else_edge->dest;
3121 join_bb = single_succ (then_bb);
3123 /* Recognize an IF-THEN-JOIN block. */
3124 else if (single_pred_p (then_edge->dest)
3125 && single_succ_p (then_edge->dest)
3126 && single_succ (then_edge->dest) == else_edge->dest)
3128 then_bb = then_edge->dest;
3129 else_bb = NULL_BLOCK;
3130 join_bb = else_edge->dest;
3132 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3133 of basic blocks in cfglayout mode does not matter, so the fallthrough
3134 edge can go to any basic block (and not just to bb->next_bb, like in
3135 cfgrtl mode). */
3136 else if (single_pred_p (else_edge->dest)
3137 && single_succ_p (else_edge->dest)
3138 && single_succ (else_edge->dest) == then_edge->dest)
3140 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3141 To make this work, we have to invert the THEN and ELSE blocks
3142 and reverse the jump condition. */
3143 then_bb = else_edge->dest;
3144 else_bb = NULL_BLOCK;
3145 join_bb = single_succ (then_bb);
3146 then_else_reversed = true;
3148 else
3149 /* Not a form we can handle. */
3150 return FALSE;
3152 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3153 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3154 return FALSE;
3155 if (else_bb
3156 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3157 return FALSE;
3159 num_possible_if_blocks++;
3161 if (dump_file)
3163 fprintf (dump_file,
3164 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3165 (else_bb) ? "-ELSE" : "",
3166 pass, test_bb->index, then_bb->index);
3168 if (else_bb)
3169 fprintf (dump_file, ", else %d", else_bb->index);
3171 fprintf (dump_file, ", join %d\n", join_bb->index);
3174 /* If the conditional jump is more than just a conditional
3175 jump, then we can not do if-conversion on this block. */
3176 jump = BB_END (test_bb);
3177 if (! onlyjump_p (jump))
3178 return FALSE;
3180 /* If this is not a standard conditional jump, we can't parse it. */
3181 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3182 if (!cond)
3183 return FALSE;
3185 /* We must be comparing objects whose modes imply the size. */
3186 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3187 return FALSE;
3189 /* Initialize an IF_INFO struct to pass around. */
3190 memset (&if_info, 0, sizeof if_info);
3191 if_info.test_bb = test_bb;
3192 if_info.then_bb = then_bb;
3193 if_info.else_bb = else_bb;
3194 if_info.join_bb = join_bb;
3195 if_info.cond = cond;
3196 if_info.cond_earliest = cond_earliest;
3197 if_info.jump = jump;
3198 if_info.then_else_reversed = then_else_reversed;
3199 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3200 predictable_edge_p (then_edge));
3202 /* Do the real work. */
3204 if (noce_process_if_block (&if_info))
3205 return TRUE;
3207 if (HAVE_conditional_move
3208 && cond_move_process_if_block (&if_info))
3209 return TRUE;
3211 return FALSE;
3215 /* Merge the blocks and mark for local life update. */
3217 static void
3218 merge_if_block (struct ce_if_block * ce_info)
3220 basic_block test_bb = ce_info->test_bb; /* last test block */
3221 basic_block then_bb = ce_info->then_bb; /* THEN */
3222 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3223 basic_block join_bb = ce_info->join_bb; /* join block */
3224 basic_block combo_bb;
3226 /* All block merging is done into the lower block numbers. */
3228 combo_bb = test_bb;
3229 df_set_bb_dirty (test_bb);
3231 /* Merge any basic blocks to handle && and || subtests. Each of
3232 the blocks are on the fallthru path from the predecessor block. */
3233 if (ce_info->num_multiple_test_blocks > 0)
3235 basic_block bb = test_bb;
3236 basic_block last_test_bb = ce_info->last_test_bb;
3237 basic_block fallthru = block_fallthru (bb);
3241 bb = fallthru;
3242 fallthru = block_fallthru (bb);
3243 merge_blocks (combo_bb, bb);
3244 num_true_changes++;
3246 while (bb != last_test_bb);
3249 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3250 label, but it might if there were || tests. That label's count should be
3251 zero, and it normally should be removed. */
3253 if (then_bb)
3255 /* If THEN_BB has no successors, then there's a BARRIER after it.
3256 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3257 is no longer needed, and in fact it is incorrect to leave it in
3258 the insn stream. */
3259 if (EDGE_COUNT (then_bb->succs) == 0
3260 && EDGE_COUNT (combo_bb->succs) > 1)
3262 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3263 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3264 end = NEXT_INSN (end);
3266 if (end && BARRIER_P (end))
3267 delete_insn (end);
3269 merge_blocks (combo_bb, then_bb);
3270 num_true_changes++;
3273 /* The ELSE block, if it existed, had a label. That label count
3274 will almost always be zero, but odd things can happen when labels
3275 get their addresses taken. */
3276 if (else_bb)
3278 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3279 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3280 is no longer needed, and in fact it is incorrect to leave it in
3281 the insn stream. */
3282 if (EDGE_COUNT (else_bb->succs) == 0
3283 && EDGE_COUNT (combo_bb->succs) > 1)
3285 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3286 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3287 end = NEXT_INSN (end);
3289 if (end && BARRIER_P (end))
3290 delete_insn (end);
3292 merge_blocks (combo_bb, else_bb);
3293 num_true_changes++;
3296 /* If there was no join block reported, that means it was not adjacent
3297 to the others, and so we cannot merge them. */
3299 if (! join_bb)
3301 rtx_insn *last = BB_END (combo_bb);
3303 /* The outgoing edge for the current COMBO block should already
3304 be correct. Verify this. */
3305 if (EDGE_COUNT (combo_bb->succs) == 0)
3306 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3307 || (NONJUMP_INSN_P (last)
3308 && GET_CODE (PATTERN (last)) == TRAP_IF
3309 && (TRAP_CONDITION (PATTERN (last))
3310 == const_true_rtx)));
3312 else
3313 /* There should still be something at the end of the THEN or ELSE
3314 blocks taking us to our final destination. */
3315 gcc_assert (JUMP_P (last)
3316 || (EDGE_SUCC (combo_bb, 0)->dest
3317 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3318 && CALL_P (last)
3319 && SIBLING_CALL_P (last))
3320 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3321 && can_throw_internal (last)));
3324 /* The JOIN block may have had quite a number of other predecessors too.
3325 Since we've already merged the TEST, THEN and ELSE blocks, we should
3326 have only one remaining edge from our if-then-else diamond. If there
3327 is more than one remaining edge, it must come from elsewhere. There
3328 may be zero incoming edges if the THEN block didn't actually join
3329 back up (as with a call to a non-return function). */
3330 else if (EDGE_COUNT (join_bb->preds) < 2
3331 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3333 /* We can merge the JOIN cleanly and update the dataflow try
3334 again on this pass.*/
3335 merge_blocks (combo_bb, join_bb);
3336 num_true_changes++;
3338 else
3340 /* We cannot merge the JOIN. */
3342 /* The outgoing edge for the current COMBO block should already
3343 be correct. Verify this. */
3344 gcc_assert (single_succ_p (combo_bb)
3345 && single_succ (combo_bb) == join_bb);
3347 /* Remove the jump and cruft from the end of the COMBO block. */
3348 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3349 tidy_fallthru_edge (single_succ_edge (combo_bb));
3352 num_updated_if_blocks++;
3355 /* Find a block ending in a simple IF condition and try to transform it
3356 in some way. When converting a multi-block condition, put the new code
3357 in the first such block and delete the rest. Return a pointer to this
3358 first block if some transformation was done. Return NULL otherwise. */
3360 static basic_block
3361 find_if_header (basic_block test_bb, int pass)
3363 ce_if_block ce_info;
3364 edge then_edge;
3365 edge else_edge;
3367 /* The kind of block we're looking for has exactly two successors. */
3368 if (EDGE_COUNT (test_bb->succs) != 2)
3369 return NULL;
3371 then_edge = EDGE_SUCC (test_bb, 0);
3372 else_edge = EDGE_SUCC (test_bb, 1);
3374 if (df_get_bb_dirty (then_edge->dest))
3375 return NULL;
3376 if (df_get_bb_dirty (else_edge->dest))
3377 return NULL;
3379 /* Neither edge should be abnormal. */
3380 if ((then_edge->flags & EDGE_COMPLEX)
3381 || (else_edge->flags & EDGE_COMPLEX))
3382 return NULL;
3384 /* Nor exit the loop. */
3385 if ((then_edge->flags & EDGE_LOOP_EXIT)
3386 || (else_edge->flags & EDGE_LOOP_EXIT))
3387 return NULL;
3389 /* The THEN edge is canonically the one that falls through. */
3390 if (then_edge->flags & EDGE_FALLTHRU)
3392 else if (else_edge->flags & EDGE_FALLTHRU)
3393 std::swap (then_edge, else_edge);
3394 else
3395 /* Otherwise this must be a multiway branch of some sort. */
3396 return NULL;
3398 memset (&ce_info, 0, sizeof (ce_info));
3399 ce_info.test_bb = test_bb;
3400 ce_info.then_bb = then_edge->dest;
3401 ce_info.else_bb = else_edge->dest;
3402 ce_info.pass = pass;
3404 #ifdef IFCVT_MACHDEP_INIT
3405 IFCVT_MACHDEP_INIT (&ce_info);
3406 #endif
3408 if (!reload_completed
3409 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3410 goto success;
3412 if (reload_completed
3413 && targetm.have_conditional_execution ()
3414 && cond_exec_find_if_block (&ce_info))
3415 goto success;
3417 if (HAVE_trap
3418 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3419 && find_cond_trap (test_bb, then_edge, else_edge))
3420 goto success;
3422 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3423 && (reload_completed || !targetm.have_conditional_execution ()))
3425 if (find_if_case_1 (test_bb, then_edge, else_edge))
3426 goto success;
3427 if (find_if_case_2 (test_bb, then_edge, else_edge))
3428 goto success;
3431 return NULL;
3433 success:
3434 if (dump_file)
3435 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3436 /* Set this so we continue looking. */
3437 cond_exec_changed_p = TRUE;
3438 return ce_info.test_bb;
3441 /* Return true if a block has two edges, one of which falls through to the next
3442 block, and the other jumps to a specific block, so that we can tell if the
3443 block is part of an && test or an || test. Returns either -1 or the number
3444 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3446 static int
3447 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3449 edge cur_edge;
3450 int fallthru_p = FALSE;
3451 int jump_p = FALSE;
3452 rtx_insn *insn;
3453 rtx_insn *end;
3454 int n_insns = 0;
3455 edge_iterator ei;
3457 if (!cur_bb || !target_bb)
3458 return -1;
3460 /* If no edges, obviously it doesn't jump or fallthru. */
3461 if (EDGE_COUNT (cur_bb->succs) == 0)
3462 return FALSE;
3464 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3466 if (cur_edge->flags & EDGE_COMPLEX)
3467 /* Anything complex isn't what we want. */
3468 return -1;
3470 else if (cur_edge->flags & EDGE_FALLTHRU)
3471 fallthru_p = TRUE;
3473 else if (cur_edge->dest == target_bb)
3474 jump_p = TRUE;
3476 else
3477 return -1;
3480 if ((jump_p & fallthru_p) == 0)
3481 return -1;
3483 /* Don't allow calls in the block, since this is used to group && and ||
3484 together for conditional execution support. ??? we should support
3485 conditional execution support across calls for IA-64 some day, but
3486 for now it makes the code simpler. */
3487 end = BB_END (cur_bb);
3488 insn = BB_HEAD (cur_bb);
3490 while (insn != NULL_RTX)
3492 if (CALL_P (insn))
3493 return -1;
3495 if (INSN_P (insn)
3496 && !JUMP_P (insn)
3497 && !DEBUG_INSN_P (insn)
3498 && GET_CODE (PATTERN (insn)) != USE
3499 && GET_CODE (PATTERN (insn)) != CLOBBER)
3500 n_insns++;
3502 if (insn == end)
3503 break;
3505 insn = NEXT_INSN (insn);
3508 return n_insns;
3511 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3512 block. If so, we'll try to convert the insns to not require the branch.
3513 Return TRUE if we were successful at converting the block. */
3515 static int
3516 cond_exec_find_if_block (struct ce_if_block * ce_info)
3518 basic_block test_bb = ce_info->test_bb;
3519 basic_block then_bb = ce_info->then_bb;
3520 basic_block else_bb = ce_info->else_bb;
3521 basic_block join_bb = NULL_BLOCK;
3522 edge cur_edge;
3523 basic_block next;
3524 edge_iterator ei;
3526 ce_info->last_test_bb = test_bb;
3528 /* We only ever should get here after reload,
3529 and if we have conditional execution. */
3530 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3532 /* Discover if any fall through predecessors of the current test basic block
3533 were && tests (which jump to the else block) or || tests (which jump to
3534 the then block). */
3535 if (single_pred_p (test_bb)
3536 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3538 basic_block bb = single_pred (test_bb);
3539 basic_block target_bb;
3540 int max_insns = MAX_CONDITIONAL_EXECUTE;
3541 int n_insns;
3543 /* Determine if the preceding block is an && or || block. */
3544 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3546 ce_info->and_and_p = TRUE;
3547 target_bb = else_bb;
3549 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3551 ce_info->and_and_p = FALSE;
3552 target_bb = then_bb;
3554 else
3555 target_bb = NULL_BLOCK;
3557 if (target_bb && n_insns <= max_insns)
3559 int total_insns = 0;
3560 int blocks = 0;
3562 ce_info->last_test_bb = test_bb;
3564 /* Found at least one && or || block, look for more. */
3567 ce_info->test_bb = test_bb = bb;
3568 total_insns += n_insns;
3569 blocks++;
3571 if (!single_pred_p (bb))
3572 break;
3574 bb = single_pred (bb);
3575 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3577 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3579 ce_info->num_multiple_test_blocks = blocks;
3580 ce_info->num_multiple_test_insns = total_insns;
3582 if (ce_info->and_and_p)
3583 ce_info->num_and_and_blocks = blocks;
3584 else
3585 ce_info->num_or_or_blocks = blocks;
3589 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3590 other than any || blocks which jump to the THEN block. */
3591 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3592 return FALSE;
3594 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3595 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3597 if (cur_edge->flags & EDGE_COMPLEX)
3598 return FALSE;
3601 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3603 if (cur_edge->flags & EDGE_COMPLEX)
3604 return FALSE;
3607 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3608 if (EDGE_COUNT (then_bb->succs) > 0
3609 && (!single_succ_p (then_bb)
3610 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3611 || (epilogue_completed
3612 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3613 return FALSE;
3615 /* If the THEN block has no successors, conditional execution can still
3616 make a conditional call. Don't do this unless the ELSE block has
3617 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3618 Check for the last insn of the THEN block being an indirect jump, which
3619 is listed as not having any successors, but confuses the rest of the CE
3620 code processing. ??? we should fix this in the future. */
3621 if (EDGE_COUNT (then_bb->succs) == 0)
3623 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3625 rtx_insn *last_insn = BB_END (then_bb);
3627 while (last_insn
3628 && NOTE_P (last_insn)
3629 && last_insn != BB_HEAD (then_bb))
3630 last_insn = PREV_INSN (last_insn);
3632 if (last_insn
3633 && JUMP_P (last_insn)
3634 && ! simplejump_p (last_insn))
3635 return FALSE;
3637 join_bb = else_bb;
3638 else_bb = NULL_BLOCK;
3640 else
3641 return FALSE;
3644 /* If the THEN block's successor is the other edge out of the TEST block,
3645 then we have an IF-THEN combo without an ELSE. */
3646 else if (single_succ (then_bb) == else_bb)
3648 join_bb = else_bb;
3649 else_bb = NULL_BLOCK;
3652 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3653 has exactly one predecessor and one successor, and the outgoing edge
3654 is not complex, then we have an IF-THEN-ELSE combo. */
3655 else if (single_succ_p (else_bb)
3656 && single_succ (then_bb) == single_succ (else_bb)
3657 && single_pred_p (else_bb)
3658 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3659 && !(epilogue_completed
3660 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3661 join_bb = single_succ (else_bb);
3663 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3664 else
3665 return FALSE;
3667 num_possible_if_blocks++;
3669 if (dump_file)
3671 fprintf (dump_file,
3672 "\nIF-THEN%s block found, pass %d, start block %d "
3673 "[insn %d], then %d [%d]",
3674 (else_bb) ? "-ELSE" : "",
3675 ce_info->pass,
3676 test_bb->index,
3677 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3678 then_bb->index,
3679 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3681 if (else_bb)
3682 fprintf (dump_file, ", else %d [%d]",
3683 else_bb->index,
3684 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3686 fprintf (dump_file, ", join %d [%d]",
3687 join_bb->index,
3688 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3690 if (ce_info->num_multiple_test_blocks > 0)
3691 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3692 ce_info->num_multiple_test_blocks,
3693 (ce_info->and_and_p) ? "&&" : "||",
3694 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3695 ce_info->last_test_bb->index,
3696 ((BB_HEAD (ce_info->last_test_bb))
3697 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3698 : -1));
3700 fputc ('\n', dump_file);
3703 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3704 first condition for free, since we've already asserted that there's a
3705 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3706 we checked the FALLTHRU flag, those are already adjacent to the last IF
3707 block. */
3708 /* ??? As an enhancement, move the ELSE block. Have to deal with
3709 BLOCK notes, if by no other means than backing out the merge if they
3710 exist. Sticky enough I don't want to think about it now. */
3711 next = then_bb;
3712 if (else_bb && (next = next->next_bb) != else_bb)
3713 return FALSE;
3714 if ((next = next->next_bb) != join_bb
3715 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3717 if (else_bb)
3718 join_bb = NULL;
3719 else
3720 return FALSE;
3723 /* Do the real work. */
3725 ce_info->else_bb = else_bb;
3726 ce_info->join_bb = join_bb;
3728 /* If we have && and || tests, try to first handle combining the && and ||
3729 tests into the conditional code, and if that fails, go back and handle
3730 it without the && and ||, which at present handles the && case if there
3731 was no ELSE block. */
3732 if (cond_exec_process_if_block (ce_info, TRUE))
3733 return TRUE;
3735 if (ce_info->num_multiple_test_blocks)
3737 cancel_changes (0);
3739 if (cond_exec_process_if_block (ce_info, FALSE))
3740 return TRUE;
3743 return FALSE;
3746 /* Convert a branch over a trap, or a branch
3747 to a trap, into a conditional trap. */
3749 static int
3750 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3752 basic_block then_bb = then_edge->dest;
3753 basic_block else_bb = else_edge->dest;
3754 basic_block other_bb, trap_bb;
3755 rtx_insn *trap, *jump;
3756 rtx cond;
3757 rtx_insn *cond_earliest;
3758 enum rtx_code code;
3760 /* Locate the block with the trap instruction. */
3761 /* ??? While we look for no successors, we really ought to allow
3762 EH successors. Need to fix merge_if_block for that to work. */
3763 if ((trap = block_has_only_trap (then_bb)) != NULL)
3764 trap_bb = then_bb, other_bb = else_bb;
3765 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3766 trap_bb = else_bb, other_bb = then_bb;
3767 else
3768 return FALSE;
3770 if (dump_file)
3772 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3773 test_bb->index, trap_bb->index);
3776 /* If this is not a standard conditional jump, we can't parse it. */
3777 jump = BB_END (test_bb);
3778 cond = noce_get_condition (jump, &cond_earliest, false);
3779 if (! cond)
3780 return FALSE;
3782 /* If the conditional jump is more than just a conditional jump, then
3783 we can not do if-conversion on this block. */
3784 if (! onlyjump_p (jump))
3785 return FALSE;
3787 /* We must be comparing objects whose modes imply the size. */
3788 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3789 return FALSE;
3791 /* Reverse the comparison code, if necessary. */
3792 code = GET_CODE (cond);
3793 if (then_bb == trap_bb)
3795 code = reversed_comparison_code (cond, jump);
3796 if (code == UNKNOWN)
3797 return FALSE;
3800 /* Attempt to generate the conditional trap. */
3801 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3802 copy_rtx (XEXP (cond, 1)),
3803 TRAP_CODE (PATTERN (trap)));
3804 if (seq == NULL)
3805 return FALSE;
3807 /* Emit the new insns before cond_earliest. */
3808 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3810 /* Delete the trap block if possible. */
3811 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3812 df_set_bb_dirty (test_bb);
3813 df_set_bb_dirty (then_bb);
3814 df_set_bb_dirty (else_bb);
3816 if (EDGE_COUNT (trap_bb->preds) == 0)
3818 delete_basic_block (trap_bb);
3819 num_true_changes++;
3822 /* Wire together the blocks again. */
3823 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3824 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3825 else if (trap_bb == then_bb)
3827 rtx lab = JUMP_LABEL (jump);
3828 rtx_insn *seq = targetm.gen_jump (lab);
3829 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
3830 LABEL_NUSES (lab) += 1;
3831 JUMP_LABEL (newjump) = lab;
3832 emit_barrier_after (newjump);
3834 delete_insn (jump);
3836 if (can_merge_blocks_p (test_bb, other_bb))
3838 merge_blocks (test_bb, other_bb);
3839 num_true_changes++;
3842 num_updated_if_blocks++;
3843 return TRUE;
3846 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3847 return it. */
3849 static rtx_insn *
3850 block_has_only_trap (basic_block bb)
3852 rtx_insn *trap;
3854 /* We're not the exit block. */
3855 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3856 return NULL;
3858 /* The block must have no successors. */
3859 if (EDGE_COUNT (bb->succs) > 0)
3860 return NULL;
3862 /* The only instruction in the THEN block must be the trap. */
3863 trap = first_active_insn (bb);
3864 if (! (trap == BB_END (bb)
3865 && GET_CODE (PATTERN (trap)) == TRAP_IF
3866 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3867 return NULL;
3869 return trap;
3872 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3873 transformable, but not necessarily the other. There need be no
3874 JOIN block.
3876 Return TRUE if we were successful at converting the block.
3878 Cases we'd like to look at:
3881 if (test) goto over; // x not live
3882 x = a;
3883 goto label;
3884 over:
3886 becomes
3888 x = a;
3889 if (! test) goto label;
3892 if (test) goto E; // x not live
3893 x = big();
3894 goto L;
3896 x = b;
3897 goto M;
3899 becomes
3901 x = b;
3902 if (test) goto M;
3903 x = big();
3904 goto L;
3906 (3) // This one's really only interesting for targets that can do
3907 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3908 // it results in multiple branches on a cache line, which often
3909 // does not sit well with predictors.
3911 if (test1) goto E; // predicted not taken
3912 x = a;
3913 if (test2) goto F;
3916 x = b;
3919 becomes
3921 x = a;
3922 if (test1) goto E;
3923 if (test2) goto F;
3925 Notes:
3927 (A) Don't do (2) if the branch is predicted against the block we're
3928 eliminating. Do it anyway if we can eliminate a branch; this requires
3929 that the sole successor of the eliminated block postdominate the other
3930 side of the if.
3932 (B) With CE, on (3) we can steal from both sides of the if, creating
3934 if (test1) x = a;
3935 if (!test1) x = b;
3936 if (test1) goto J;
3937 if (test2) goto F;
3941 Again, this is most useful if J postdominates.
3943 (C) CE substitutes for helpful life information.
3945 (D) These heuristics need a lot of work. */
3947 /* Tests for case 1 above. */
3949 static int
3950 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3952 basic_block then_bb = then_edge->dest;
3953 basic_block else_bb = else_edge->dest;
3954 basic_block new_bb;
3955 int then_bb_index, then_prob;
3956 rtx else_target = NULL_RTX;
3958 /* If we are partitioning hot/cold basic blocks, we don't want to
3959 mess up unconditional or indirect jumps that cross between hot
3960 and cold sections.
3962 Basic block partitioning may result in some jumps that appear to
3963 be optimizable (or blocks that appear to be mergeable), but which really
3964 must be left untouched (they are required to make it safely across
3965 partition boundaries). See the comments at the top of
3966 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3968 if ((BB_END (then_bb)
3969 && JUMP_P (BB_END (then_bb))
3970 && CROSSING_JUMP_P (BB_END (then_bb)))
3971 || (BB_END (test_bb)
3972 && JUMP_P (BB_END (test_bb))
3973 && CROSSING_JUMP_P (BB_END (test_bb)))
3974 || (BB_END (else_bb)
3975 && JUMP_P (BB_END (else_bb))
3976 && CROSSING_JUMP_P (BB_END (else_bb))))
3977 return FALSE;
3979 /* THEN has one successor. */
3980 if (!single_succ_p (then_bb))
3981 return FALSE;
3983 /* THEN does not fall through, but is not strange either. */
3984 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3985 return FALSE;
3987 /* THEN has one predecessor. */
3988 if (!single_pred_p (then_bb))
3989 return FALSE;
3991 /* THEN must do something. */
3992 if (forwarder_block_p (then_bb))
3993 return FALSE;
3995 num_possible_if_blocks++;
3996 if (dump_file)
3997 fprintf (dump_file,
3998 "\nIF-CASE-1 found, start %d, then %d\n",
3999 test_bb->index, then_bb->index);
4001 if (then_edge->probability)
4002 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4003 else
4004 then_prob = REG_BR_PROB_BASE / 2;
4006 /* We're speculating from the THEN path, we want to make sure the cost
4007 of speculation is within reason. */
4008 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4009 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4010 predictable_edge_p (then_edge)))))
4011 return FALSE;
4013 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4015 rtx_insn *jump = BB_END (else_edge->src);
4016 gcc_assert (JUMP_P (jump));
4017 else_target = JUMP_LABEL (jump);
4020 /* Registers set are dead, or are predicable. */
4021 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4022 single_succ_edge (then_bb), 1))
4023 return FALSE;
4025 /* Conversion went ok, including moving the insns and fixing up the
4026 jump. Adjust the CFG to match. */
4028 /* We can avoid creating a new basic block if then_bb is immediately
4029 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4030 through to else_bb. */
4032 if (then_bb->next_bb == else_bb
4033 && then_bb->prev_bb == test_bb
4034 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4036 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4037 new_bb = 0;
4039 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4040 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4041 else_bb, else_target);
4042 else
4043 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4044 else_bb);
4046 df_set_bb_dirty (test_bb);
4047 df_set_bb_dirty (else_bb);
4049 then_bb_index = then_bb->index;
4050 delete_basic_block (then_bb);
4052 /* Make rest of code believe that the newly created block is the THEN_BB
4053 block we removed. */
4054 if (new_bb)
4056 df_bb_replace (then_bb_index, new_bb);
4057 /* This should have been done above via force_nonfallthru_and_redirect
4058 (possibly called from redirect_edge_and_branch_force). */
4059 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4062 num_true_changes++;
4063 num_updated_if_blocks++;
4065 return TRUE;
4068 /* Test for case 2 above. */
4070 static int
4071 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4073 basic_block then_bb = then_edge->dest;
4074 basic_block else_bb = else_edge->dest;
4075 edge else_succ;
4076 int then_prob, else_prob;
4078 /* We do not want to speculate (empty) loop latches. */
4079 if (current_loops
4080 && else_bb->loop_father->latch == else_bb)
4081 return FALSE;
4083 /* If we are partitioning hot/cold basic blocks, we don't want to
4084 mess up unconditional or indirect jumps that cross between hot
4085 and cold sections.
4087 Basic block partitioning may result in some jumps that appear to
4088 be optimizable (or blocks that appear to be mergeable), but which really
4089 must be left untouched (they are required to make it safely across
4090 partition boundaries). See the comments at the top of
4091 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4093 if ((BB_END (then_bb)
4094 && JUMP_P (BB_END (then_bb))
4095 && CROSSING_JUMP_P (BB_END (then_bb)))
4096 || (BB_END (test_bb)
4097 && JUMP_P (BB_END (test_bb))
4098 && CROSSING_JUMP_P (BB_END (test_bb)))
4099 || (BB_END (else_bb)
4100 && JUMP_P (BB_END (else_bb))
4101 && CROSSING_JUMP_P (BB_END (else_bb))))
4102 return FALSE;
4104 /* ELSE has one successor. */
4105 if (!single_succ_p (else_bb))
4106 return FALSE;
4107 else
4108 else_succ = single_succ_edge (else_bb);
4110 /* ELSE outgoing edge is not complex. */
4111 if (else_succ->flags & EDGE_COMPLEX)
4112 return FALSE;
4114 /* ELSE has one predecessor. */
4115 if (!single_pred_p (else_bb))
4116 return FALSE;
4118 /* THEN is not EXIT. */
4119 if (then_bb->index < NUM_FIXED_BLOCKS)
4120 return FALSE;
4122 if (else_edge->probability)
4124 else_prob = else_edge->probability;
4125 then_prob = REG_BR_PROB_BASE - else_prob;
4127 else
4129 else_prob = REG_BR_PROB_BASE / 2;
4130 then_prob = REG_BR_PROB_BASE / 2;
4133 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4134 if (else_prob > then_prob)
4136 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4137 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4138 else_succ->dest))
4140 else
4141 return FALSE;
4143 num_possible_if_blocks++;
4144 if (dump_file)
4145 fprintf (dump_file,
4146 "\nIF-CASE-2 found, start %d, else %d\n",
4147 test_bb->index, else_bb->index);
4149 /* We're speculating from the ELSE path, we want to make sure the cost
4150 of speculation is within reason. */
4151 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4152 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4153 predictable_edge_p (else_edge)))))
4154 return FALSE;
4156 /* Registers set are dead, or are predicable. */
4157 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4158 return FALSE;
4160 /* Conversion went ok, including moving the insns and fixing up the
4161 jump. Adjust the CFG to match. */
4163 df_set_bb_dirty (test_bb);
4164 df_set_bb_dirty (then_bb);
4165 delete_basic_block (else_bb);
4167 num_true_changes++;
4168 num_updated_if_blocks++;
4170 /* ??? We may now fallthru from one of THEN's successors into a join
4171 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4173 return TRUE;
4176 /* Used by the code above to perform the actual rtl transformations.
4177 Return TRUE if successful.
4179 TEST_BB is the block containing the conditional branch. MERGE_BB
4180 is the block containing the code to manipulate. DEST_EDGE is an
4181 edge representing a jump to the join block; after the conversion,
4182 TEST_BB should be branching to its destination.
4183 REVERSEP is true if the sense of the branch should be reversed. */
4185 static int
4186 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4187 basic_block other_bb, edge dest_edge, int reversep)
4189 basic_block new_dest = dest_edge->dest;
4190 rtx_insn *head, *end, *jump;
4191 rtx_insn *earliest = NULL;
4192 rtx old_dest;
4193 bitmap merge_set = NULL;
4194 /* Number of pending changes. */
4195 int n_validated_changes = 0;
4196 rtx new_dest_label = NULL_RTX;
4198 jump = BB_END (test_bb);
4200 /* Find the extent of the real code in the merge block. */
4201 head = BB_HEAD (merge_bb);
4202 end = BB_END (merge_bb);
4204 while (DEBUG_INSN_P (end) && end != head)
4205 end = PREV_INSN (end);
4207 /* If merge_bb ends with a tablejump, predicating/moving insn's
4208 into test_bb and then deleting merge_bb will result in the jumptable
4209 that follows merge_bb being removed along with merge_bb and then we
4210 get an unresolved reference to the jumptable. */
4211 if (tablejump_p (end, NULL, NULL))
4212 return FALSE;
4214 if (LABEL_P (head))
4215 head = NEXT_INSN (head);
4216 while (DEBUG_INSN_P (head) && head != end)
4217 head = NEXT_INSN (head);
4218 if (NOTE_P (head))
4220 if (head == end)
4222 head = end = NULL;
4223 goto no_body;
4225 head = NEXT_INSN (head);
4226 while (DEBUG_INSN_P (head) && head != end)
4227 head = NEXT_INSN (head);
4230 if (JUMP_P (end))
4232 if (!onlyjump_p (end))
4233 return FALSE;
4234 if (head == end)
4236 head = end = NULL;
4237 goto no_body;
4239 end = PREV_INSN (end);
4240 while (DEBUG_INSN_P (end) && end != head)
4241 end = PREV_INSN (end);
4244 /* Don't move frame-related insn across the conditional branch. This
4245 can lead to one of the paths of the branch having wrong unwind info. */
4246 if (epilogue_completed)
4248 rtx_insn *insn = head;
4249 while (1)
4251 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4252 return FALSE;
4253 if (insn == end)
4254 break;
4255 insn = NEXT_INSN (insn);
4259 /* Disable handling dead code by conditional execution if the machine needs
4260 to do anything funny with the tests, etc. */
4261 #ifndef IFCVT_MODIFY_TESTS
4262 if (targetm.have_conditional_execution ())
4264 /* In the conditional execution case, we have things easy. We know
4265 the condition is reversible. We don't have to check life info
4266 because we're going to conditionally execute the code anyway.
4267 All that's left is making sure the insns involved can actually
4268 be predicated. */
4270 rtx cond;
4272 cond = cond_exec_get_condition (jump);
4273 if (! cond)
4274 return FALSE;
4276 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4277 int prob_val = (note ? XINT (note, 0) : -1);
4279 if (reversep)
4281 enum rtx_code rev = reversed_comparison_code (cond, jump);
4282 if (rev == UNKNOWN)
4283 return FALSE;
4284 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4285 XEXP (cond, 1));
4286 if (prob_val >= 0)
4287 prob_val = REG_BR_PROB_BASE - prob_val;
4290 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4291 && verify_changes (0))
4292 n_validated_changes = num_validated_changes ();
4293 else
4294 cancel_changes (0);
4296 earliest = jump;
4298 #endif
4300 /* If we allocated new pseudos (e.g. in the conditional move
4301 expander called from noce_emit_cmove), we must resize the
4302 array first. */
4303 if (max_regno < max_reg_num ())
4304 max_regno = max_reg_num ();
4306 /* Try the NCE path if the CE path did not result in any changes. */
4307 if (n_validated_changes == 0)
4309 rtx cond;
4310 rtx_insn *insn;
4311 regset live;
4312 bool success;
4314 /* In the non-conditional execution case, we have to verify that there
4315 are no trapping operations, no calls, no references to memory, and
4316 that any registers modified are dead at the branch site. */
4318 if (!any_condjump_p (jump))
4319 return FALSE;
4321 /* Find the extent of the conditional. */
4322 cond = noce_get_condition (jump, &earliest, false);
4323 if (!cond)
4324 return FALSE;
4326 live = BITMAP_ALLOC (&reg_obstack);
4327 simulate_backwards_to_point (merge_bb, live, end);
4328 success = can_move_insns_across (head, end, earliest, jump,
4329 merge_bb, live,
4330 df_get_live_in (other_bb), NULL);
4331 BITMAP_FREE (live);
4332 if (!success)
4333 return FALSE;
4335 /* Collect the set of registers set in MERGE_BB. */
4336 merge_set = BITMAP_ALLOC (&reg_obstack);
4338 FOR_BB_INSNS (merge_bb, insn)
4339 if (NONDEBUG_INSN_P (insn))
4340 df_simulate_find_defs (insn, merge_set);
4342 /* If shrink-wrapping, disable this optimization when test_bb is
4343 the first basic block and merge_bb exits. The idea is to not
4344 move code setting up a return register as that may clobber a
4345 register used to pass function parameters, which then must be
4346 saved in caller-saved regs. A caller-saved reg requires the
4347 prologue, killing a shrink-wrap opportunity. */
4348 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4349 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4350 && single_succ_p (new_dest)
4351 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4352 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4354 regset return_regs;
4355 unsigned int i;
4357 return_regs = BITMAP_ALLOC (&reg_obstack);
4359 /* Start off with the intersection of regs used to pass
4360 params and regs used to return values. */
4361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4362 if (FUNCTION_ARG_REGNO_P (i)
4363 && targetm.calls.function_value_regno_p (i))
4364 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4366 bitmap_and_into (return_regs,
4367 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4368 bitmap_and_into (return_regs,
4369 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4370 if (!bitmap_empty_p (return_regs))
4372 FOR_BB_INSNS_REVERSE (new_dest, insn)
4373 if (NONDEBUG_INSN_P (insn))
4375 df_ref def;
4377 /* If this insn sets any reg in return_regs, add all
4378 reg uses to the set of regs we're interested in. */
4379 FOR_EACH_INSN_DEF (def, insn)
4380 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4382 df_simulate_uses (insn, return_regs);
4383 break;
4386 if (bitmap_intersect_p (merge_set, return_regs))
4388 BITMAP_FREE (return_regs);
4389 BITMAP_FREE (merge_set);
4390 return FALSE;
4393 BITMAP_FREE (return_regs);
4397 no_body:
4398 /* We don't want to use normal invert_jump or redirect_jump because
4399 we don't want to delete_insn called. Also, we want to do our own
4400 change group management. */
4402 old_dest = JUMP_LABEL (jump);
4403 if (other_bb != new_dest)
4405 if (!any_condjump_p (jump))
4406 goto cancel;
4408 if (JUMP_P (BB_END (dest_edge->src)))
4409 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4410 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4411 new_dest_label = ret_rtx;
4412 else
4413 new_dest_label = block_label (new_dest);
4415 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
4416 if (reversep
4417 ? ! invert_jump_1 (jump_insn, new_dest_label)
4418 : ! redirect_jump_1 (jump_insn, new_dest_label))
4419 goto cancel;
4422 if (verify_changes (n_validated_changes))
4423 confirm_change_group ();
4424 else
4425 goto cancel;
4427 if (other_bb != new_dest)
4429 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
4430 0, reversep);
4432 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4433 if (reversep)
4435 std::swap (BRANCH_EDGE (test_bb)->count,
4436 FALLTHRU_EDGE (test_bb)->count);
4437 std::swap (BRANCH_EDGE (test_bb)->probability,
4438 FALLTHRU_EDGE (test_bb)->probability);
4439 update_br_prob_note (test_bb);
4443 /* Move the insns out of MERGE_BB to before the branch. */
4444 if (head != NULL)
4446 rtx_insn *insn;
4448 if (end == BB_END (merge_bb))
4449 BB_END (merge_bb) = PREV_INSN (head);
4451 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4452 notes being moved might become invalid. */
4453 insn = head;
4456 rtx note;
4458 if (! INSN_P (insn))
4459 continue;
4460 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4461 if (! note)
4462 continue;
4463 remove_note (insn, note);
4464 } while (insn != end && (insn = NEXT_INSN (insn)));
4466 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4467 notes referring to the registers being set might become invalid. */
4468 if (merge_set)
4470 unsigned i;
4471 bitmap_iterator bi;
4473 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4474 remove_reg_equal_equiv_notes_for_regno (i);
4476 BITMAP_FREE (merge_set);
4479 reorder_insns (head, end, PREV_INSN (earliest));
4482 /* Remove the jump and edge if we can. */
4483 if (other_bb == new_dest)
4485 delete_insn (jump);
4486 remove_edge (BRANCH_EDGE (test_bb));
4487 /* ??? Can't merge blocks here, as then_bb is still in use.
4488 At minimum, the merge will get done just before bb-reorder. */
4491 return TRUE;
4493 cancel:
4494 cancel_changes (0);
4496 if (merge_set)
4497 BITMAP_FREE (merge_set);
4499 return FALSE;
4502 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4503 we are after combine pass. */
4505 static void
4506 if_convert (bool after_combine)
4508 basic_block bb;
4509 int pass;
4511 if (optimize == 1)
4513 df_live_add_problem ();
4514 df_live_set_all_dirty ();
4517 /* Record whether we are after combine pass. */
4518 ifcvt_after_combine = after_combine;
4519 num_possible_if_blocks = 0;
4520 num_updated_if_blocks = 0;
4521 num_true_changes = 0;
4523 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4524 mark_loop_exit_edges ();
4525 loop_optimizer_finalize ();
4526 free_dominance_info (CDI_DOMINATORS);
4528 /* Compute postdominators. */
4529 calculate_dominance_info (CDI_POST_DOMINATORS);
4531 df_set_flags (DF_LR_RUN_DCE);
4533 /* Go through each of the basic blocks looking for things to convert. If we
4534 have conditional execution, we make multiple passes to allow us to handle
4535 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4536 pass = 0;
4539 df_analyze ();
4540 /* Only need to do dce on the first pass. */
4541 df_clear_flags (DF_LR_RUN_DCE);
4542 cond_exec_changed_p = FALSE;
4543 pass++;
4545 #ifdef IFCVT_MULTIPLE_DUMPS
4546 if (dump_file && pass > 1)
4547 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4548 #endif
4550 FOR_EACH_BB_FN (bb, cfun)
4552 basic_block new_bb;
4553 while (!df_get_bb_dirty (bb)
4554 && (new_bb = find_if_header (bb, pass)) != NULL)
4555 bb = new_bb;
4558 #ifdef IFCVT_MULTIPLE_DUMPS
4559 if (dump_file && cond_exec_changed_p)
4560 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4561 #endif
4563 while (cond_exec_changed_p);
4565 #ifdef IFCVT_MULTIPLE_DUMPS
4566 if (dump_file)
4567 fprintf (dump_file, "\n\n========== no more changes\n");
4568 #endif
4570 free_dominance_info (CDI_POST_DOMINATORS);
4572 if (dump_file)
4573 fflush (dump_file);
4575 clear_aux_for_blocks ();
4577 /* If we allocated new pseudos, we must resize the array for sched1. */
4578 if (max_regno < max_reg_num ())
4579 max_regno = max_reg_num ();
4581 /* Write the final stats. */
4582 if (dump_file && num_possible_if_blocks > 0)
4584 fprintf (dump_file,
4585 "\n%d possible IF blocks searched.\n",
4586 num_possible_if_blocks);
4587 fprintf (dump_file,
4588 "%d IF blocks converted.\n",
4589 num_updated_if_blocks);
4590 fprintf (dump_file,
4591 "%d true changes made.\n\n\n",
4592 num_true_changes);
4595 if (optimize == 1)
4596 df_remove_problem (df_live);
4598 #ifdef ENABLE_CHECKING
4599 verify_flow_info ();
4600 #endif
4603 /* If-conversion and CFG cleanup. */
4604 static unsigned int
4605 rest_of_handle_if_conversion (void)
4607 if (flag_if_conversion)
4609 if (dump_file)
4611 dump_reg_info (dump_file);
4612 dump_flow_info (dump_file, dump_flags);
4614 cleanup_cfg (CLEANUP_EXPENSIVE);
4615 if_convert (false);
4618 cleanup_cfg (0);
4619 return 0;
4622 namespace {
4624 const pass_data pass_data_rtl_ifcvt =
4626 RTL_PASS, /* type */
4627 "ce1", /* name */
4628 OPTGROUP_NONE, /* optinfo_flags */
4629 TV_IFCVT, /* tv_id */
4630 0, /* properties_required */
4631 0, /* properties_provided */
4632 0, /* properties_destroyed */
4633 0, /* todo_flags_start */
4634 TODO_df_finish, /* todo_flags_finish */
4637 class pass_rtl_ifcvt : public rtl_opt_pass
4639 public:
4640 pass_rtl_ifcvt (gcc::context *ctxt)
4641 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4644 /* opt_pass methods: */
4645 virtual bool gate (function *)
4647 return (optimize > 0) && dbg_cnt (if_conversion);
4650 virtual unsigned int execute (function *)
4652 return rest_of_handle_if_conversion ();
4655 }; // class pass_rtl_ifcvt
4657 } // anon namespace
4659 rtl_opt_pass *
4660 make_pass_rtl_ifcvt (gcc::context *ctxt)
4662 return new pass_rtl_ifcvt (ctxt);
4666 /* Rerun if-conversion, as combine may have simplified things enough
4667 to now meet sequence length restrictions. */
4669 namespace {
4671 const pass_data pass_data_if_after_combine =
4673 RTL_PASS, /* type */
4674 "ce2", /* name */
4675 OPTGROUP_NONE, /* optinfo_flags */
4676 TV_IFCVT, /* tv_id */
4677 0, /* properties_required */
4678 0, /* properties_provided */
4679 0, /* properties_destroyed */
4680 0, /* todo_flags_start */
4681 TODO_df_finish, /* todo_flags_finish */
4684 class pass_if_after_combine : public rtl_opt_pass
4686 public:
4687 pass_if_after_combine (gcc::context *ctxt)
4688 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4691 /* opt_pass methods: */
4692 virtual bool gate (function *)
4694 return optimize > 0 && flag_if_conversion
4695 && dbg_cnt (if_after_combine);
4698 virtual unsigned int execute (function *)
4700 if_convert (true);
4701 return 0;
4704 }; // class pass_if_after_combine
4706 } // anon namespace
4708 rtl_opt_pass *
4709 make_pass_if_after_combine (gcc::context *ctxt)
4711 return new pass_if_after_combine (ctxt);
4715 namespace {
4717 const pass_data pass_data_if_after_reload =
4719 RTL_PASS, /* type */
4720 "ce3", /* name */
4721 OPTGROUP_NONE, /* optinfo_flags */
4722 TV_IFCVT2, /* tv_id */
4723 0, /* properties_required */
4724 0, /* properties_provided */
4725 0, /* properties_destroyed */
4726 0, /* todo_flags_start */
4727 TODO_df_finish, /* todo_flags_finish */
4730 class pass_if_after_reload : public rtl_opt_pass
4732 public:
4733 pass_if_after_reload (gcc::context *ctxt)
4734 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4737 /* opt_pass methods: */
4738 virtual bool gate (function *)
4740 return optimize > 0 && flag_if_conversion2
4741 && dbg_cnt (if_after_reload);
4744 virtual unsigned int execute (function *)
4746 if_convert (true);
4747 return 0;
4750 }; // class pass_if_after_reload
4752 } // anon namespace
4754 rtl_opt_pass *
4755 make_pass_if_after_reload (gcc::context *ctxt)
4757 return new pass_if_after_reload (ctxt);