1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
37 #include "cfgcleanup.h"
40 #include "tree-pass.h"
43 #ifndef LOAD_EXTEND_OP
44 #define LOAD_EXTEND_OP(M) UNKNOWN
47 static int reload_cse_noop_set_p (rtx
);
48 static bool reload_cse_simplify (rtx_insn
*, rtx
);
49 static void reload_cse_regs_1 (void);
50 static int reload_cse_simplify_set (rtx
, rtx_insn
*);
51 static int reload_cse_simplify_operands (rtx_insn
*, rtx
);
53 static void reload_combine (void);
54 static void reload_combine_note_use (rtx
*, rtx_insn
*, int, rtx
);
55 static void reload_combine_note_store (rtx
, const_rtx
, void *);
57 static bool reload_cse_move2add (rtx_insn
*);
58 static void move2add_note_store (rtx
, const_rtx
, void *);
60 /* Call cse / combine like post-reload optimization phases.
61 FIRST is the first instruction. */
64 reload_cse_regs (rtx_insn
*first ATTRIBUTE_UNUSED
)
69 moves_converted
= reload_cse_move2add (first
);
70 if (flag_expensive_optimizations
)
78 /* See whether a single set SET is a noop. */
80 reload_cse_noop_set_p (rtx set
)
82 if (cselib_reg_set_mode (SET_DEST (set
)) != GET_MODE (SET_DEST (set
)))
85 return rtx_equal_for_cselib_p (SET_DEST (set
), SET_SRC (set
));
88 /* Try to simplify INSN. Return true if the CFG may have changed. */
90 reload_cse_simplify (rtx_insn
*insn
, rtx testreg
)
92 rtx body
= PATTERN (insn
);
93 basic_block insn_bb
= BLOCK_FOR_INSN (insn
);
94 unsigned insn_bb_succs
= EDGE_COUNT (insn_bb
->succs
);
96 if (GET_CODE (body
) == SET
)
100 /* Simplify even if we may think it is a no-op.
101 We may think a memory load of a value smaller than WORD_SIZE
102 is redundant because we haven't taken into account possible
103 implicit extension. reload_cse_simplify_set() will bring
104 this out, so it's safer to simplify before we delete. */
105 count
+= reload_cse_simplify_set (body
, insn
);
107 if (!count
&& reload_cse_noop_set_p (body
))
109 rtx value
= SET_DEST (body
);
111 && ! REG_FUNCTION_VALUE_P (value
))
113 if (check_for_inc_dec (insn
))
114 delete_insn_and_edges (insn
);
115 /* We're done with this insn. */
120 apply_change_group ();
122 reload_cse_simplify_operands (insn
, testreg
);
124 else if (GET_CODE (body
) == PARALLEL
)
128 rtx value
= NULL_RTX
;
130 /* Registers mentioned in the clobber list for an asm cannot be reused
131 within the body of the asm. Invalidate those registers now so that
132 we don't try to substitute values for them. */
133 if (asm_noperands (body
) >= 0)
135 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
137 rtx part
= XVECEXP (body
, 0, i
);
138 if (GET_CODE (part
) == CLOBBER
&& REG_P (XEXP (part
, 0)))
139 cselib_invalidate_rtx (XEXP (part
, 0));
143 /* If every action in a PARALLEL is a noop, we can delete
144 the entire PARALLEL. */
145 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
147 rtx part
= XVECEXP (body
, 0, i
);
148 if (GET_CODE (part
) == SET
)
150 if (! reload_cse_noop_set_p (part
))
152 if (REG_P (SET_DEST (part
))
153 && REG_FUNCTION_VALUE_P (SET_DEST (part
)))
157 value
= SET_DEST (part
);
160 else if (GET_CODE (part
) != CLOBBER
)
166 if (check_for_inc_dec (insn
))
167 delete_insn_and_edges (insn
);
168 /* We're done with this insn. */
172 /* It's not a no-op, but we can try to simplify it. */
173 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
174 if (GET_CODE (XVECEXP (body
, 0, i
)) == SET
)
175 count
+= reload_cse_simplify_set (XVECEXP (body
, 0, i
), insn
);
178 apply_change_group ();
180 reload_cse_simplify_operands (insn
, testreg
);
184 return (EDGE_COUNT (insn_bb
->succs
) != insn_bb_succs
);
187 /* Do a very simple CSE pass over the hard registers.
189 This function detects no-op moves where we happened to assign two
190 different pseudo-registers to the same hard register, and then
191 copied one to the other. Reload will generate a useless
192 instruction copying a register to itself.
194 This function also detects cases where we load a value from memory
195 into two different registers, and (if memory is more expensive than
196 registers) changes it to simply copy the first register into the
199 Another optimization is performed that scans the operands of each
200 instruction to see whether the value is already available in a
201 hard register. It then replaces the operand with the hard register
202 if possible, much like an optional reload would. */
205 reload_cse_regs_1 (void)
207 bool cfg_changed
= false;
210 rtx testreg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
212 cselib_init (CSELIB_RECORD_MEMORY
);
213 init_alias_analysis ();
215 FOR_EACH_BB_FN (bb
, cfun
)
216 FOR_BB_INSNS (bb
, insn
)
219 cfg_changed
|= reload_cse_simplify (insn
, testreg
);
221 cselib_process_insn (insn
);
225 end_alias_analysis ();
231 /* Try to simplify a single SET instruction. SET is the set pattern.
232 INSN is the instruction it came from.
233 This function only handles one case: if we set a register to a value
234 which is not a register, we try to find that value in some other register
235 and change the set into a register copy. */
238 reload_cse_simplify_set (rtx set
, rtx_insn
*insn
)
246 struct elt_loc_list
*l
;
247 enum rtx_code extend_op
= UNKNOWN
;
248 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
250 dreg
= true_regnum (SET_DEST (set
));
255 if (side_effects_p (src
) || true_regnum (src
) >= 0)
258 dclass
= REGNO_REG_CLASS (dreg
);
260 /* When replacing a memory with a register, we need to honor assumptions
261 that combine made wrt the contents of sign bits. We'll do this by
262 generating an extend instruction instead of a reg->reg copy. Thus
263 the destination must be a register that we can widen. */
265 && GET_MODE_BITSIZE (GET_MODE (src
)) < BITS_PER_WORD
266 && (extend_op
= LOAD_EXTEND_OP (GET_MODE (src
))) != UNKNOWN
267 && !REG_P (SET_DEST (set
)))
270 val
= cselib_lookup (src
, GET_MODE (SET_DEST (set
)), 0, VOIDmode
);
274 /* If memory loads are cheaper than register copies, don't change them. */
276 old_cost
= memory_move_cost (GET_MODE (src
), dclass
, true);
277 else if (REG_P (src
))
278 old_cost
= register_move_cost (GET_MODE (src
),
279 REGNO_REG_CLASS (REGNO (src
)), dclass
);
281 old_cost
= set_src_cost (src
, GET_MODE (SET_DEST (set
)), speed
);
283 for (l
= val
->locs
; l
; l
= l
->next
)
285 rtx this_rtx
= l
->loc
;
288 if (CONSTANT_P (this_rtx
) && ! references_value_p (this_rtx
, 0))
290 if (extend_op
!= UNKNOWN
)
294 if (!CONST_SCALAR_INT_P (this_rtx
))
300 result
= wide_int::from (std::make_pair (this_rtx
,
302 BITS_PER_WORD
, UNSIGNED
);
305 result
= wide_int::from (std::make_pair (this_rtx
,
307 BITS_PER_WORD
, SIGNED
);
312 this_rtx
= immed_wide_int_const (result
, word_mode
);
315 this_cost
= set_src_cost (this_rtx
, GET_MODE (SET_DEST (set
)), speed
);
317 else if (REG_P (this_rtx
))
319 if (extend_op
!= UNKNOWN
)
321 this_rtx
= gen_rtx_fmt_e (extend_op
, word_mode
, this_rtx
);
322 this_cost
= set_src_cost (this_rtx
, word_mode
, speed
);
325 this_cost
= register_move_cost (GET_MODE (this_rtx
),
326 REGNO_REG_CLASS (REGNO (this_rtx
)),
332 /* If equal costs, prefer registers over anything else. That
333 tends to lead to smaller instructions on some machines. */
334 if (this_cost
< old_cost
335 || (this_cost
== old_cost
337 && !REG_P (SET_SRC (set
))))
339 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set
))) < BITS_PER_WORD
340 && extend_op
!= UNKNOWN
341 #ifdef CANNOT_CHANGE_MODE_CLASS
342 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
344 REGNO_REG_CLASS (REGNO (SET_DEST (set
))))
348 rtx wide_dest
= gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
)));
349 ORIGINAL_REGNO (wide_dest
) = ORIGINAL_REGNO (SET_DEST (set
));
350 validate_change (insn
, &SET_DEST (set
), wide_dest
, 1);
353 validate_unshare_change (insn
, &SET_SRC (set
), this_rtx
, 1);
354 old_cost
= this_cost
, did_change
= 1;
361 /* Try to replace operands in INSN with equivalent values that are already
362 in registers. This can be viewed as optional reloading.
364 For each non-register operand in the insn, see if any hard regs are
365 known to be equivalent to that operand. Record the alternatives which
366 can accept these hard registers. Among all alternatives, select the
367 ones which are better or equal to the one currently matching, where
368 "better" is in terms of '?' and '!' constraints. Among the remaining
369 alternatives, select the one which replaces most operands with
373 reload_cse_simplify_operands (rtx_insn
*insn
, rtx testreg
)
377 /* For each operand, all registers that are equivalent to it. */
378 HARD_REG_SET equiv_regs
[MAX_RECOG_OPERANDS
];
380 const char *constraints
[MAX_RECOG_OPERANDS
];
382 /* Vector recording how bad an alternative is. */
383 int *alternative_reject
;
384 /* Vector recording how many registers can be introduced by choosing
386 int *alternative_nregs
;
387 /* Array of vectors recording, for each operand and each alternative,
388 which hard register to substitute, or -1 if the operand should be
390 int *op_alt_regno
[MAX_RECOG_OPERANDS
];
391 /* Array of alternatives, sorted in order of decreasing desirability. */
392 int *alternative_order
;
394 extract_constrain_insn (insn
);
396 if (recog_data
.n_alternatives
== 0 || recog_data
.n_operands
== 0)
399 alternative_reject
= XALLOCAVEC (int, recog_data
.n_alternatives
);
400 alternative_nregs
= XALLOCAVEC (int, recog_data
.n_alternatives
);
401 alternative_order
= XALLOCAVEC (int, recog_data
.n_alternatives
);
402 memset (alternative_reject
, 0, recog_data
.n_alternatives
* sizeof (int));
403 memset (alternative_nregs
, 0, recog_data
.n_alternatives
* sizeof (int));
405 /* For each operand, find out which regs are equivalent. */
406 for (i
= 0; i
< recog_data
.n_operands
; i
++)
409 struct elt_loc_list
*l
;
412 CLEAR_HARD_REG_SET (equiv_regs
[i
]);
414 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
415 right, so avoid the problem here. Likewise if we have a constant
416 and the insn pattern doesn't tell us the mode we need. */
417 if (LABEL_P (recog_data
.operand
[i
])
418 || (CONSTANT_P (recog_data
.operand
[i
])
419 && recog_data
.operand_mode
[i
] == VOIDmode
))
422 op
= recog_data
.operand
[i
];
424 && GET_MODE_BITSIZE (GET_MODE (op
)) < BITS_PER_WORD
425 && LOAD_EXTEND_OP (GET_MODE (op
)) != UNKNOWN
)
427 rtx set
= single_set (insn
);
429 /* We might have multiple sets, some of which do implicit
430 extension. Punt on this for now. */
433 /* If the destination is also a MEM or a STRICT_LOW_PART, no
435 Also, if there is an explicit extension, we don't have to
436 worry about an implicit one. */
437 else if (MEM_P (SET_DEST (set
))
438 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
439 || GET_CODE (SET_SRC (set
)) == ZERO_EXTEND
440 || GET_CODE (SET_SRC (set
)) == SIGN_EXTEND
)
441 ; /* Continue ordinary processing. */
442 #ifdef CANNOT_CHANGE_MODE_CLASS
443 /* If the register cannot change mode to word_mode, it follows that
444 it cannot have been used in word_mode. */
445 else if (REG_P (SET_DEST (set
))
446 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
448 REGNO_REG_CLASS (REGNO (SET_DEST (set
)))))
449 ; /* Continue ordinary processing. */
451 /* If this is a straight load, make the extension explicit. */
452 else if (REG_P (SET_DEST (set
))
453 && recog_data
.n_operands
== 2
454 && SET_SRC (set
) == op
455 && SET_DEST (set
) == recog_data
.operand
[1-i
])
457 validate_change (insn
, recog_data
.operand_loc
[i
],
458 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op
)),
461 validate_change (insn
, recog_data
.operand_loc
[1-i
],
462 gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
))),
464 if (! apply_change_group ())
466 return reload_cse_simplify_operands (insn
, testreg
);
469 /* ??? There might be arithmetic operations with memory that are
470 safe to optimize, but is it worth the trouble? */
474 if (side_effects_p (op
))
476 v
= cselib_lookup (op
, recog_data
.operand_mode
[i
], 0, VOIDmode
);
480 for (l
= v
->locs
; l
; l
= l
->next
)
482 SET_HARD_REG_BIT (equiv_regs
[i
], REGNO (l
->loc
));
485 alternative_mask preferred
= get_preferred_alternatives (insn
);
486 for (i
= 0; i
< recog_data
.n_operands
; i
++)
492 op_alt_regno
[i
] = XALLOCAVEC (int, recog_data
.n_alternatives
);
493 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
494 op_alt_regno
[i
][j
] = -1;
496 p
= constraints
[i
] = recog_data
.constraints
[i
];
497 mode
= recog_data
.operand_mode
[i
];
499 /* Add the reject values for each alternative given by the constraints
508 alternative_reject
[j
] += 3;
510 alternative_reject
[j
] += 300;
513 /* We won't change operands which are already registers. We
514 also don't want to modify output operands. */
515 regno
= true_regnum (recog_data
.operand
[i
]);
517 || constraints
[i
][0] == '='
518 || constraints
[i
][0] == '+')
521 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
523 enum reg_class rclass
= NO_REGS
;
525 if (! TEST_HARD_REG_BIT (equiv_regs
[i
], regno
))
528 set_mode_and_regno (testreg
, mode
, regno
);
530 /* We found a register equal to this operand. Now look for all
531 alternatives that can accept this register and have not been
532 assigned a register they can use yet. */
542 rclass
= reg_class_subunion
[rclass
][GENERAL_REGS
];
547 = (reg_class_subunion
549 [reg_class_for_constraint (lookup_constraint (p
))]);
553 /* See if REGNO fits this alternative, and set it up as the
554 replacement register if we don't have one for this
555 alternative yet and the operand being replaced is not
556 a cheap CONST_INT. */
557 if (op_alt_regno
[i
][j
] == -1
558 && TEST_BIT (preferred
, j
)
559 && reg_fits_class_p (testreg
, rclass
, 0, mode
)
560 && (!CONST_INT_P (recog_data
.operand
[i
])
561 || (set_src_cost (recog_data
.operand
[i
], mode
,
562 optimize_bb_for_speed_p
563 (BLOCK_FOR_INSN (insn
)))
564 > set_src_cost (testreg
, mode
,
565 optimize_bb_for_speed_p
566 (BLOCK_FOR_INSN (insn
))))))
568 alternative_nregs
[j
]++;
569 op_alt_regno
[i
][j
] = regno
;
575 p
+= CONSTRAINT_LEN (c
, p
);
583 /* Record all alternatives which are better or equal to the currently
584 matching one in the alternative_order array. */
585 for (i
= j
= 0; i
< recog_data
.n_alternatives
; i
++)
586 if (alternative_reject
[i
] <= alternative_reject
[which_alternative
])
587 alternative_order
[j
++] = i
;
588 recog_data
.n_alternatives
= j
;
590 /* Sort it. Given a small number of alternatives, a dumb algorithm
591 won't hurt too much. */
592 for (i
= 0; i
< recog_data
.n_alternatives
- 1; i
++)
595 int best_reject
= alternative_reject
[alternative_order
[i
]];
596 int best_nregs
= alternative_nregs
[alternative_order
[i
]];
598 for (j
= i
+ 1; j
< recog_data
.n_alternatives
; j
++)
600 int this_reject
= alternative_reject
[alternative_order
[j
]];
601 int this_nregs
= alternative_nregs
[alternative_order
[j
]];
603 if (this_reject
< best_reject
604 || (this_reject
== best_reject
&& this_nregs
> best_nregs
))
607 best_reject
= this_reject
;
608 best_nregs
= this_nregs
;
612 std::swap (alternative_order
[best
], alternative_order
[i
]);
615 /* Substitute the operands as determined by op_alt_regno for the best
617 j
= alternative_order
[0];
619 for (i
= 0; i
< recog_data
.n_operands
; i
++)
621 machine_mode mode
= recog_data
.operand_mode
[i
];
622 if (op_alt_regno
[i
][j
] == -1)
625 validate_change (insn
, recog_data
.operand_loc
[i
],
626 gen_rtx_REG (mode
, op_alt_regno
[i
][j
]), 1);
629 for (i
= recog_data
.n_dups
- 1; i
>= 0; i
--)
631 int op
= recog_data
.dup_num
[i
];
632 machine_mode mode
= recog_data
.operand_mode
[op
];
634 if (op_alt_regno
[op
][j
] == -1)
637 validate_change (insn
, recog_data
.dup_loc
[i
],
638 gen_rtx_REG (mode
, op_alt_regno
[op
][j
]), 1);
641 return apply_change_group ();
644 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
646 This code might also be useful when reload gave up on reg+reg addressing
647 because of clashes between the return register and INDEX_REG_CLASS. */
649 /* The maximum number of uses of a register we can keep track of to
650 replace them with reg+reg addressing. */
651 #define RELOAD_COMBINE_MAX_USES 16
653 /* Describes a recorded use of a register. */
656 /* The insn where a register has been used. */
658 /* Points to the memory reference enclosing the use, if any, NULL_RTX
661 /* Location of the register within INSN. */
663 /* The reverse uid of the insn. */
667 /* If the register is used in some unknown fashion, USE_INDEX is negative.
668 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
669 indicates where it is first set or clobbered.
670 Otherwise, USE_INDEX is the index of the last encountered use of the
671 register (which is first among these we have seen since we scan backwards).
672 USE_RUID indicates the first encountered, i.e. last, of these uses.
673 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
674 with a constant offset; OFFSET contains this constant in that case.
675 STORE_RUID is always meaningful if we only want to use a value in a
676 register in a different place: it denotes the next insn in the insn
677 stream (i.e. the last encountered) that sets or clobbers the register.
678 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
681 struct reg_use reg_use
[RELOAD_COMBINE_MAX_USES
];
687 bool all_offsets_match
;
688 } reg_state
[FIRST_PSEUDO_REGISTER
];
690 /* Reverse linear uid. This is increased in reload_combine while scanning
691 the instructions from last to first. It is used to set last_label_ruid
692 and the store_ruid / use_ruid fields in reg_state. */
693 static int reload_combine_ruid
;
695 /* The RUID of the last label we encountered in reload_combine. */
696 static int last_label_ruid
;
698 /* The RUID of the last jump we encountered in reload_combine. */
699 static int last_jump_ruid
;
701 /* The register numbers of the first and last index register. A value of
702 -1 in LAST_INDEX_REG indicates that we've previously computed these
703 values and found no suitable index registers. */
704 static int first_index_reg
= -1;
705 static int last_index_reg
;
707 #define LABEL_LIVE(LABEL) \
708 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
710 /* Subroutine of reload_combine_split_ruids, called to fix up a single
711 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
714 reload_combine_split_one_ruid (int *pruid
, int split_ruid
)
716 if (*pruid
> split_ruid
)
720 /* Called when we insert a new insn in a position we've already passed in
721 the scan. Examine all our state, increasing all ruids that are higher
722 than SPLIT_RUID by one in order to make room for a new insn. */
725 reload_combine_split_ruids (int split_ruid
)
729 reload_combine_split_one_ruid (&reload_combine_ruid
, split_ruid
);
730 reload_combine_split_one_ruid (&last_label_ruid
, split_ruid
);
731 reload_combine_split_one_ruid (&last_jump_ruid
, split_ruid
);
733 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
735 int j
, idx
= reg_state
[i
].use_index
;
736 reload_combine_split_one_ruid (®_state
[i
].use_ruid
, split_ruid
);
737 reload_combine_split_one_ruid (®_state
[i
].store_ruid
, split_ruid
);
738 reload_combine_split_one_ruid (®_state
[i
].real_store_ruid
,
742 for (j
= idx
; j
< RELOAD_COMBINE_MAX_USES
; j
++)
744 reload_combine_split_one_ruid (®_state
[i
].reg_use
[j
].ruid
,
750 /* Called when we are about to rescan a previously encountered insn with
751 reload_combine_note_use after modifying some part of it. This clears all
752 information about uses in that particular insn. */
755 reload_combine_purge_insn_uses (rtx_insn
*insn
)
759 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
761 int j
, k
, idx
= reg_state
[i
].use_index
;
764 j
= k
= RELOAD_COMBINE_MAX_USES
;
767 if (reg_state
[i
].reg_use
[j
].insn
!= insn
)
771 reg_state
[i
].reg_use
[k
] = reg_state
[i
].reg_use
[j
];
774 reg_state
[i
].use_index
= k
;
778 /* Called when we need to forget about all uses of REGNO after an insn
779 which is identified by RUID. */
782 reload_combine_purge_reg_uses_after_ruid (unsigned regno
, int ruid
)
784 int j
, k
, idx
= reg_state
[regno
].use_index
;
787 j
= k
= RELOAD_COMBINE_MAX_USES
;
790 if (reg_state
[regno
].reg_use
[j
].ruid
>= ruid
)
794 reg_state
[regno
].reg_use
[k
] = reg_state
[regno
].reg_use
[j
];
797 reg_state
[regno
].use_index
= k
;
800 /* Find the use of REGNO with the ruid that is highest among those
801 lower than RUID_LIMIT, and return it if it is the only use of this
802 reg in the insn. Return NULL otherwise. */
804 static struct reg_use
*
805 reload_combine_closest_single_use (unsigned regno
, int ruid_limit
)
807 int i
, best_ruid
= 0;
808 int use_idx
= reg_state
[regno
].use_index
;
809 struct reg_use
*retval
;
814 for (i
= use_idx
; i
< RELOAD_COMBINE_MAX_USES
; i
++)
816 struct reg_use
*use
= reg_state
[regno
].reg_use
+ i
;
817 int this_ruid
= use
->ruid
;
818 if (this_ruid
>= ruid_limit
)
820 if (this_ruid
> best_ruid
)
822 best_ruid
= this_ruid
;
825 else if (this_ruid
== best_ruid
)
828 if (last_label_ruid
>= best_ruid
)
833 /* After we've moved an add insn, fix up any debug insns that occur
834 between the old location of the add and the new location. REG is
835 the destination register of the add insn; REPLACEMENT is the
836 SET_SRC of the add. FROM and TO specify the range in which we
837 should make this change on debug insns. */
840 fixup_debug_insns (rtx reg
, rtx replacement
, rtx_insn
*from
, rtx_insn
*to
)
843 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
847 if (!DEBUG_INSN_P (insn
))
850 t
= INSN_VAR_LOCATION_LOC (insn
);
851 t
= simplify_replace_rtx (t
, reg
, replacement
);
852 validate_change (insn
, &INSN_VAR_LOCATION_LOC (insn
), t
, 0);
856 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
857 with SRC in the insn described by USE, taking costs into account. Return
858 true if we made the replacement. */
861 try_replace_in_use (struct reg_use
*use
, rtx reg
, rtx src
)
863 rtx_insn
*use_insn
= use
->insn
;
864 rtx mem
= use
->containing_mem
;
865 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
869 addr_space_t as
= MEM_ADDR_SPACE (mem
);
870 rtx oldaddr
= XEXP (mem
, 0);
871 rtx newaddr
= NULL_RTX
;
872 int old_cost
= address_cost (oldaddr
, GET_MODE (mem
), as
, speed
);
875 newaddr
= simplify_replace_rtx (oldaddr
, reg
, src
);
876 if (memory_address_addr_space_p (GET_MODE (mem
), newaddr
, as
))
878 XEXP (mem
, 0) = newaddr
;
879 new_cost
= address_cost (newaddr
, GET_MODE (mem
), as
, speed
);
880 XEXP (mem
, 0) = oldaddr
;
881 if (new_cost
<= old_cost
882 && validate_change (use_insn
,
883 &XEXP (mem
, 0), newaddr
, 0))
889 rtx new_set
= single_set (use_insn
);
891 && REG_P (SET_DEST (new_set
))
892 && GET_CODE (SET_SRC (new_set
)) == PLUS
893 && REG_P (XEXP (SET_SRC (new_set
), 0))
894 && CONSTANT_P (XEXP (SET_SRC (new_set
), 1)))
897 machine_mode mode
= GET_MODE (SET_DEST (new_set
));
898 int old_cost
= set_src_cost (SET_SRC (new_set
), mode
, speed
);
900 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set
), 0), reg
));
901 new_src
= simplify_replace_rtx (SET_SRC (new_set
), reg
, src
);
903 if (set_src_cost (new_src
, mode
, speed
) <= old_cost
904 && validate_change (use_insn
, &SET_SRC (new_set
),
912 /* Called by reload_combine when scanning INSN. This function tries to detect
913 patterns where a constant is added to a register, and the result is used
915 Return true if no further processing is needed on INSN; false if it wasn't
916 recognized and should be handled normally. */
919 reload_combine_recognize_const_pattern (rtx_insn
*insn
)
921 int from_ruid
= reload_combine_ruid
;
922 rtx set
, pat
, reg
, src
, addreg
;
926 rtx_insn
*add_moved_after_insn
= NULL
;
927 int add_moved_after_ruid
= 0;
928 int clobbered_regno
= -1;
930 set
= single_set (insn
);
934 reg
= SET_DEST (set
);
937 || REG_NREGS (reg
) != 1
938 || GET_MODE (reg
) != Pmode
939 || reg
== stack_pointer_rtx
)
944 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
945 uses of REG1 inside an address, or inside another add insn. If
946 possible and profitable, merge the addition into subsequent
948 if (GET_CODE (src
) != PLUS
949 || !REG_P (XEXP (src
, 0))
950 || !CONSTANT_P (XEXP (src
, 1)))
953 addreg
= XEXP (src
, 0);
954 must_move_add
= rtx_equal_p (reg
, addreg
);
956 pat
= PATTERN (insn
);
957 if (must_move_add
&& set
!= pat
)
959 /* We have to be careful when moving the add; apart from the
960 single_set there may also be clobbers. Recognize one special
961 case, that of one clobber alongside the set (likely a clobber
962 of the CC register). */
963 gcc_assert (GET_CODE (PATTERN (insn
)) == PARALLEL
);
964 if (XVECLEN (pat
, 0) != 2 || XVECEXP (pat
, 0, 0) != set
965 || GET_CODE (XVECEXP (pat
, 0, 1)) != CLOBBER
966 || !REG_P (XEXP (XVECEXP (pat
, 0, 1), 0)))
968 clobbered_regno
= REGNO (XEXP (XVECEXP (pat
, 0, 1), 0));
973 use
= reload_combine_closest_single_use (regno
, from_ruid
);
976 /* Start the search for the next use from here. */
977 from_ruid
= use
->ruid
;
979 if (use
&& GET_MODE (*use
->usep
) == Pmode
)
981 bool delete_add
= false;
982 rtx_insn
*use_insn
= use
->insn
;
983 int use_ruid
= use
->ruid
;
985 /* Avoid moving the add insn past a jump. */
986 if (must_move_add
&& use_ruid
<= last_jump_ruid
)
989 /* If the add clobbers another hard reg in parallel, don't move
990 it past a real set of this hard reg. */
991 if (must_move_add
&& clobbered_regno
>= 0
992 && reg_state
[clobbered_regno
].real_store_ruid
>= use_ruid
)
995 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
996 if (HAVE_cc0
&& must_move_add
&& sets_cc0_p (PATTERN (use_insn
)))
999 gcc_assert (reg_state
[regno
].store_ruid
<= use_ruid
);
1000 /* Avoid moving a use of ADDREG past a point where it is stored. */
1001 if (reg_state
[REGNO (addreg
)].store_ruid
> use_ruid
)
1004 /* We also must not move the addition past an insn that sets
1005 the same register, unless we can combine two add insns. */
1006 if (must_move_add
&& reg_state
[regno
].store_ruid
== use_ruid
)
1008 if (use
->containing_mem
== NULL_RTX
)
1014 if (try_replace_in_use (use
, reg
, src
))
1016 reload_combine_purge_insn_uses (use_insn
);
1017 reload_combine_note_use (&PATTERN (use_insn
), use_insn
,
1018 use_ruid
, NULL_RTX
);
1022 fixup_debug_insns (reg
, src
, insn
, use_insn
);
1028 add_moved_after_insn
= use_insn
;
1029 add_moved_after_ruid
= use_ruid
;
1034 /* If we get here, we couldn't handle this use. */
1040 if (!must_move_add
|| add_moved_after_insn
== NULL_RTX
)
1041 /* Process the add normally. */
1044 fixup_debug_insns (reg
, src
, insn
, add_moved_after_insn
);
1046 reorder_insns (insn
, insn
, add_moved_after_insn
);
1047 reload_combine_purge_reg_uses_after_ruid (regno
, add_moved_after_ruid
);
1048 reload_combine_split_ruids (add_moved_after_ruid
- 1);
1049 reload_combine_note_use (&PATTERN (insn
), insn
,
1050 add_moved_after_ruid
, NULL_RTX
);
1051 reg_state
[regno
].store_ruid
= add_moved_after_ruid
;
1056 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1057 can handle and improve. Return true if no further processing is needed on
1058 INSN; false if it wasn't recognized and should be handled normally. */
1061 reload_combine_recognize_pattern (rtx_insn
*insn
)
1066 set
= single_set (insn
);
1067 if (set
== NULL_RTX
)
1070 reg
= SET_DEST (set
);
1071 src
= SET_SRC (set
);
1072 if (!REG_P (reg
) || REG_NREGS (reg
) != 1)
1075 regno
= REGNO (reg
);
1077 /* Look for (set (REGX) (CONST_INT))
1078 (set (REGX) (PLUS (REGX) (REGY)))
1080 ... (MEM (REGX)) ...
1082 (set (REGZ) (CONST_INT))
1084 ... (MEM (PLUS (REGZ) (REGY)))... .
1086 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1087 and that we know all uses of REGX before it dies.
1088 Also, explicitly check that REGX != REGY; our life information
1089 does not yet show whether REGY changes in this insn. */
1091 if (GET_CODE (src
) == PLUS
1092 && reg_state
[regno
].all_offsets_match
1093 && last_index_reg
!= -1
1094 && REG_P (XEXP (src
, 1))
1095 && rtx_equal_p (XEXP (src
, 0), reg
)
1096 && !rtx_equal_p (XEXP (src
, 1), reg
)
1097 && reg_state
[regno
].use_index
>= 0
1098 && reg_state
[regno
].use_index
< RELOAD_COMBINE_MAX_USES
1099 && last_label_ruid
< reg_state
[regno
].use_ruid
)
1101 rtx base
= XEXP (src
, 1);
1102 rtx_insn
*prev
= prev_nonnote_nondebug_insn (insn
);
1103 rtx prev_set
= prev
? single_set (prev
) : NULL_RTX
;
1104 rtx index_reg
= NULL_RTX
;
1105 rtx reg_sum
= NULL_RTX
;
1108 /* Now we need to set INDEX_REG to an index register (denoted as
1109 REGZ in the illustration above) and REG_SUM to the expression
1110 register+register that we want to use to substitute uses of REG
1111 (typically in MEMs) with. First check REG and BASE for being
1112 index registers; we can use them even if they are not dead. */
1113 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], regno
)
1114 || TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
1122 /* Otherwise, look for a free index register. Since we have
1123 checked above that neither REG nor BASE are index registers,
1124 if we find anything at all, it will be different from these
1126 for (i
= first_index_reg
; i
<= last_index_reg
; i
++)
1128 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], i
)
1129 && reg_state
[i
].use_index
== RELOAD_COMBINE_MAX_USES
1130 && reg_state
[i
].store_ruid
<= reg_state
[regno
].use_ruid
1131 && (call_used_regs
[i
] || df_regs_ever_live_p (i
))
1132 && (!frame_pointer_needed
|| i
!= HARD_FRAME_POINTER_REGNUM
)
1133 && !fixed_regs
[i
] && !global_regs
[i
]
1134 && hard_regno_nregs
[i
][GET_MODE (reg
)] == 1
1135 && targetm
.hard_regno_scratch_ok (i
))
1137 index_reg
= gen_rtx_REG (GET_MODE (reg
), i
);
1138 reg_sum
= gen_rtx_PLUS (GET_MODE (reg
), index_reg
, base
);
1144 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1145 (REGY), i.e. BASE, is not clobbered before the last use we'll
1149 && CONST_INT_P (SET_SRC (prev_set
))
1150 && rtx_equal_p (SET_DEST (prev_set
), reg
)
1151 && (reg_state
[REGNO (base
)].store_ruid
1152 <= reg_state
[regno
].use_ruid
))
1154 /* Change destination register and, if necessary, the constant
1155 value in PREV, the constant loading instruction. */
1156 validate_change (prev
, &SET_DEST (prev_set
), index_reg
, 1);
1157 if (reg_state
[regno
].offset
!= const0_rtx
)
1158 validate_change (prev
,
1159 &SET_SRC (prev_set
),
1160 GEN_INT (INTVAL (SET_SRC (prev_set
))
1161 + INTVAL (reg_state
[regno
].offset
)),
1164 /* Now for every use of REG that we have recorded, replace REG
1166 for (i
= reg_state
[regno
].use_index
;
1167 i
< RELOAD_COMBINE_MAX_USES
; i
++)
1168 validate_unshare_change (reg_state
[regno
].reg_use
[i
].insn
,
1169 reg_state
[regno
].reg_use
[i
].usep
,
1170 /* Each change must have its own
1174 if (apply_change_group ())
1176 struct reg_use
*lowest_ruid
= NULL
;
1178 /* For every new use of REG_SUM, we have to record the use
1179 of BASE therein, i.e. operand 1. */
1180 for (i
= reg_state
[regno
].use_index
;
1181 i
< RELOAD_COMBINE_MAX_USES
; i
++)
1183 struct reg_use
*use
= reg_state
[regno
].reg_use
+ i
;
1184 reload_combine_note_use (&XEXP (*use
->usep
, 1), use
->insn
,
1185 use
->ruid
, use
->containing_mem
);
1186 if (lowest_ruid
== NULL
|| use
->ruid
< lowest_ruid
->ruid
)
1190 fixup_debug_insns (reg
, reg_sum
, insn
, lowest_ruid
->insn
);
1192 /* Delete the reg-reg addition. */
1195 if (reg_state
[regno
].offset
!= const0_rtx
)
1196 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1198 remove_reg_equal_equiv_notes (prev
);
1200 reg_state
[regno
].use_index
= RELOAD_COMBINE_MAX_USES
;
1209 reload_combine (void)
1211 rtx_insn
*insn
, *prev
;
1214 int min_labelno
, n_labels
;
1215 HARD_REG_SET ever_live_at_start
, *label_live
;
1217 /* To avoid wasting too much time later searching for an index register,
1218 determine the minimum and maximum index register numbers. */
1219 if (INDEX_REG_CLASS
== NO_REGS
)
1220 last_index_reg
= -1;
1221 else if (first_index_reg
== -1 && last_index_reg
== 0)
1223 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1224 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], r
))
1226 if (first_index_reg
== -1)
1227 first_index_reg
= r
;
1232 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1233 to -1 so we'll know to quit early the next time we get here. */
1234 if (first_index_reg
== -1)
1236 last_index_reg
= -1;
1241 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1242 information is a bit fuzzy immediately after reload, but it's
1243 still good enough to determine which registers are live at a jump
1245 min_labelno
= get_first_label_num ();
1246 n_labels
= max_label_num () - min_labelno
;
1247 label_live
= XNEWVEC (HARD_REG_SET
, n_labels
);
1248 CLEAR_HARD_REG_SET (ever_live_at_start
);
1250 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
1252 insn
= BB_HEAD (bb
);
1256 bitmap live_in
= df_get_live_in (bb
);
1258 REG_SET_TO_HARD_REG_SET (live
, live_in
);
1259 compute_use_by_pseudos (&live
, live_in
);
1260 COPY_HARD_REG_SET (LABEL_LIVE (insn
), live
);
1261 IOR_HARD_REG_SET (ever_live_at_start
, live
);
1265 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1266 last_label_ruid
= last_jump_ruid
= reload_combine_ruid
= 0;
1267 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1269 reg_state
[r
].store_ruid
= 0;
1270 reg_state
[r
].real_store_ruid
= 0;
1272 reg_state
[r
].use_index
= -1;
1274 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
1277 for (insn
= get_last_insn (); insn
; insn
= prev
)
1279 bool control_flow_insn
;
1282 prev
= PREV_INSN (insn
);
1284 /* We cannot do our optimization across labels. Invalidating all the use
1285 information we have would be costly, so we just note where the label
1286 is and then later disable any optimization that would cross it. */
1288 last_label_ruid
= reload_combine_ruid
;
1289 else if (BARRIER_P (insn
))
1291 /* Crossing a barrier resets all the use information. */
1292 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1293 if (! fixed_regs
[r
])
1294 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
1296 else if (INSN_P (insn
) && volatile_insn_p (PATTERN (insn
)))
1297 /* Optimizations across insns being marked as volatile must be
1298 prevented. All the usage information is invalidated
1300 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1302 && reg_state
[r
].use_index
!= RELOAD_COMBINE_MAX_USES
)
1303 reg_state
[r
].use_index
= -1;
1305 if (! NONDEBUG_INSN_P (insn
))
1308 reload_combine_ruid
++;
1310 control_flow_insn
= control_flow_insn_p (insn
);
1311 if (control_flow_insn
)
1312 last_jump_ruid
= reload_combine_ruid
;
1314 if (reload_combine_recognize_const_pattern (insn
)
1315 || reload_combine_recognize_pattern (insn
))
1318 note_stores (PATTERN (insn
), reload_combine_note_store
, NULL
);
1323 HARD_REG_SET used_regs
;
1325 get_call_reg_set_usage (insn
, &used_regs
, call_used_reg_set
);
1327 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1328 if (TEST_HARD_REG_BIT (used_regs
, r
))
1330 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
1331 reg_state
[r
].store_ruid
= reload_combine_ruid
;
1334 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
;
1335 link
= XEXP (link
, 1))
1337 rtx setuse
= XEXP (link
, 0);
1338 rtx usage_rtx
= XEXP (setuse
, 0);
1339 if ((GET_CODE (setuse
) == USE
|| GET_CODE (setuse
) == CLOBBER
)
1340 && REG_P (usage_rtx
))
1342 unsigned int end_regno
= END_REGNO (usage_rtx
);
1343 for (unsigned int i
= REGNO (usage_rtx
); i
< end_regno
; ++i
)
1344 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
1346 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
1347 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1350 reg_state
[i
].use_index
= -1;
1355 if (control_flow_insn
&& !ANY_RETURN_P (PATTERN (insn
)))
1357 /* Non-spill registers might be used at the call destination in
1358 some unknown fashion, so we have to mark the unknown use. */
1361 if ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
1362 && JUMP_LABEL (insn
))
1364 if (ANY_RETURN_P (JUMP_LABEL (insn
)))
1367 live
= &LABEL_LIVE (JUMP_LABEL (insn
));
1370 live
= &ever_live_at_start
;
1373 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1374 if (TEST_HARD_REG_BIT (*live
, r
))
1375 reg_state
[r
].use_index
= -1;
1378 reload_combine_note_use (&PATTERN (insn
), insn
, reload_combine_ruid
,
1381 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1383 if (REG_NOTE_KIND (note
) == REG_INC
&& REG_P (XEXP (note
, 0)))
1385 int regno
= REGNO (XEXP (note
, 0));
1386 reg_state
[regno
].store_ruid
= reload_combine_ruid
;
1387 reg_state
[regno
].real_store_ruid
= reload_combine_ruid
;
1388 reg_state
[regno
].use_index
= -1;
1396 /* Check if DST is a register or a subreg of a register; if it is,
1397 update store_ruid, real_store_ruid and use_index in the reg_state
1398 structure accordingly. Called via note_stores from reload_combine. */
1401 reload_combine_note_store (rtx dst
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1405 machine_mode mode
= GET_MODE (dst
);
1407 if (GET_CODE (dst
) == SUBREG
)
1409 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
1410 GET_MODE (SUBREG_REG (dst
)),
1413 dst
= SUBREG_REG (dst
);
1416 /* Some targets do argument pushes without adding REG_INC notes. */
1420 dst
= XEXP (dst
, 0);
1421 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_INC
1422 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
1423 || GET_CODE (dst
) == PRE_MODIFY
|| GET_CODE (dst
) == POST_MODIFY
)
1425 unsigned int end_regno
= END_REGNO (XEXP (dst
, 0));
1426 for (unsigned int i
= REGNO (XEXP (dst
, 0)); i
< end_regno
; ++i
)
1428 /* We could probably do better, but for now mark the register
1429 as used in an unknown fashion and set/clobbered at this
1431 reg_state
[i
].use_index
= -1;
1432 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1433 reg_state
[i
].real_store_ruid
= reload_combine_ruid
;
1442 regno
+= REGNO (dst
);
1444 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1445 careful with registers / register parts that are not full words.
1446 Similarly for ZERO_EXTRACT. */
1447 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
1448 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
)
1450 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1452 reg_state
[i
].use_index
= -1;
1453 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1454 reg_state
[i
].real_store_ruid
= reload_combine_ruid
;
1459 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1461 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1462 if (GET_CODE (set
) == SET
)
1463 reg_state
[i
].real_store_ruid
= reload_combine_ruid
;
1464 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
1469 /* XP points to a piece of rtl that has to be checked for any uses of
1471 *XP is the pattern of INSN, or a part of it.
1472 Called from reload_combine, and recursively by itself. */
1474 reload_combine_note_use (rtx
*xp
, rtx_insn
*insn
, int ruid
, rtx containing_mem
)
1477 enum rtx_code code
= x
->code
;
1480 rtx offset
= const0_rtx
; /* For the REG case below. */
1485 if (REG_P (SET_DEST (x
)))
1487 reload_combine_note_use (&SET_SRC (x
), insn
, ruid
, NULL_RTX
);
1493 /* If this is the USE of a return value, we can't change it. */
1494 if (REG_P (XEXP (x
, 0)) && REG_FUNCTION_VALUE_P (XEXP (x
, 0)))
1496 /* Mark the return register as used in an unknown fashion. */
1497 rtx reg
= XEXP (x
, 0);
1498 unsigned int end_regno
= END_REGNO (reg
);
1499 for (unsigned int regno
= REGNO (reg
); regno
< end_regno
; ++regno
)
1500 reg_state
[regno
].use_index
= -1;
1506 if (REG_P (SET_DEST (x
)))
1508 /* No spurious CLOBBERs of pseudo registers may remain. */
1509 gcc_assert (REGNO (SET_DEST (x
)) < FIRST_PSEUDO_REGISTER
);
1515 /* We are interested in (plus (reg) (const_int)) . */
1516 if (!REG_P (XEXP (x
, 0))
1517 || !CONST_INT_P (XEXP (x
, 1)))
1519 offset
= XEXP (x
, 1);
1524 int regno
= REGNO (x
);
1528 /* No spurious USEs of pseudo registers may remain. */
1529 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
1531 nregs
= REG_NREGS (x
);
1533 /* We can't substitute into multi-hard-reg uses. */
1536 while (--nregs
>= 0)
1537 reg_state
[regno
+ nregs
].use_index
= -1;
1541 /* We may be called to update uses in previously seen insns.
1542 Don't add uses beyond the last store we saw. */
1543 if (ruid
< reg_state
[regno
].store_ruid
)
1546 /* If this register is already used in some unknown fashion, we
1548 If we decrement the index from zero to -1, we can't store more
1549 uses, so this register becomes used in an unknown fashion. */
1550 use_index
= --reg_state
[regno
].use_index
;
1554 if (use_index
== RELOAD_COMBINE_MAX_USES
- 1)
1556 /* This is the first use of this register we have seen since we
1557 marked it as dead. */
1558 reg_state
[regno
].offset
= offset
;
1559 reg_state
[regno
].all_offsets_match
= true;
1560 reg_state
[regno
].use_ruid
= ruid
;
1564 if (reg_state
[regno
].use_ruid
> ruid
)
1565 reg_state
[regno
].use_ruid
= ruid
;
1567 if (! rtx_equal_p (offset
, reg_state
[regno
].offset
))
1568 reg_state
[regno
].all_offsets_match
= false;
1571 reg_state
[regno
].reg_use
[use_index
].insn
= insn
;
1572 reg_state
[regno
].reg_use
[use_index
].ruid
= ruid
;
1573 reg_state
[regno
].reg_use
[use_index
].containing_mem
= containing_mem
;
1574 reg_state
[regno
].reg_use
[use_index
].usep
= xp
;
1586 /* Recursively process the components of X. */
1587 fmt
= GET_RTX_FORMAT (code
);
1588 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1591 reload_combine_note_use (&XEXP (x
, i
), insn
, ruid
, containing_mem
);
1592 else if (fmt
[i
] == 'E')
1594 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1595 reload_combine_note_use (&XVECEXP (x
, i
, j
), insn
, ruid
,
1601 /* See if we can reduce the cost of a constant by replacing a move
1602 with an add. We track situations in which a register is set to a
1603 constant or to a register plus a constant. */
1604 /* We cannot do our optimization across labels. Invalidating all the
1605 information about register contents we have would be costly, so we
1606 use move2add_last_label_luid to note where the label is and then
1607 later disable any optimization that would cross it.
1608 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1609 are only valid if reg_set_luid[n] is greater than
1610 move2add_last_label_luid.
1611 For a set that established a new (potential) base register with
1612 non-constant value, we use move2add_luid from the place where the
1613 setting insn is encountered; registers based off that base then
1614 get the same reg_set_luid. Constants all get
1615 move2add_last_label_luid + 1 as their reg_set_luid. */
1616 static int reg_set_luid
[FIRST_PSEUDO_REGISTER
];
1618 /* If reg_base_reg[n] is negative, register n has been set to
1619 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1620 If reg_base_reg[n] is non-negative, register n has been set to the
1621 sum of reg_offset[n] and the value of register reg_base_reg[n]
1622 before reg_set_luid[n], calculated in mode reg_mode[n] .
1623 For multi-hard-register registers, all but the first one are
1624 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1625 marks it as invalid. */
1626 static HOST_WIDE_INT reg_offset
[FIRST_PSEUDO_REGISTER
];
1627 static int reg_base_reg
[FIRST_PSEUDO_REGISTER
];
1628 static rtx reg_symbol_ref
[FIRST_PSEUDO_REGISTER
];
1629 static machine_mode reg_mode
[FIRST_PSEUDO_REGISTER
];
1631 /* move2add_luid is linearly increased while scanning the instructions
1632 from first to last. It is used to set reg_set_luid in
1633 reload_cse_move2add and move2add_note_store. */
1634 static int move2add_luid
;
1636 /* move2add_last_label_luid is set whenever a label is found. Labels
1637 invalidate all previously collected reg_offset data. */
1638 static int move2add_last_label_luid
;
1640 /* ??? We don't know how zero / sign extension is handled, hence we
1641 can't go from a narrower to a wider mode. */
1642 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1643 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1644 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1645 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1647 /* Record that REG is being set to a value with the mode of REG. */
1650 move2add_record_mode (rtx reg
)
1653 machine_mode mode
= GET_MODE (reg
);
1655 if (GET_CODE (reg
) == SUBREG
)
1657 regno
= subreg_regno (reg
);
1658 nregs
= subreg_nregs (reg
);
1660 else if (REG_P (reg
))
1662 regno
= REGNO (reg
);
1663 nregs
= REG_NREGS (reg
);
1667 for (int i
= nregs
- 1; i
> 0; i
--)
1668 reg_mode
[regno
+ i
] = BLKmode
;
1669 reg_mode
[regno
] = mode
;
1672 /* Record that REG is being set to the sum of SYM and OFF. */
1675 move2add_record_sym_value (rtx reg
, rtx sym
, rtx off
)
1677 int regno
= REGNO (reg
);
1679 move2add_record_mode (reg
);
1680 reg_set_luid
[regno
] = move2add_luid
;
1681 reg_base_reg
[regno
] = -1;
1682 reg_symbol_ref
[regno
] = sym
;
1683 reg_offset
[regno
] = INTVAL (off
);
1686 /* Check if REGNO contains a valid value in MODE. */
1689 move2add_valid_value_p (int regno
, machine_mode mode
)
1691 if (reg_set_luid
[regno
] <= move2add_last_label_luid
)
1694 if (mode
!= reg_mode
[regno
])
1696 if (!MODES_OK_FOR_MOVE2ADD (mode
, reg_mode
[regno
]))
1698 /* The value loaded into regno in reg_mode[regno] is also valid in
1699 mode after truncation only if (REG:mode regno) is the lowpart of
1700 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1701 regno of the lowpart might be different. */
1702 int s_off
= subreg_lowpart_offset (mode
, reg_mode
[regno
]);
1703 s_off
= subreg_regno_offset (regno
, reg_mode
[regno
], s_off
, mode
);
1705 /* We could in principle adjust regno, check reg_mode[regno] to be
1706 BLKmode, and return s_off to the caller (vs. -1 for failure),
1707 but we currently have no callers that could make use of this
1712 for (int i
= hard_regno_nregs
[regno
][mode
] - 1; i
> 0; i
--)
1713 if (reg_mode
[regno
+ i
] != BLKmode
)
1718 /* This function is called with INSN that sets REG to (SYM + OFF),
1719 while REG is known to already have value (SYM + offset).
1720 This function tries to change INSN into an add instruction
1721 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1722 It also updates the information about REG's known value.
1723 Return true if we made a change. */
1726 move2add_use_add2_insn (rtx reg
, rtx sym
, rtx off
, rtx_insn
*insn
)
1728 rtx pat
= PATTERN (insn
);
1729 rtx src
= SET_SRC (pat
);
1730 int regno
= REGNO (reg
);
1731 rtx new_src
= gen_int_mode (UINTVAL (off
) - reg_offset
[regno
],
1733 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
1734 bool changed
= false;
1736 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1737 use (set (reg) (reg)) instead.
1738 We don't delete this insn, nor do we convert it into a
1739 note, to avoid losing register notes or the return
1740 value flag. jump2 already knows how to get rid of
1742 if (new_src
== const0_rtx
)
1744 /* If the constants are different, this is a
1745 truncation, that, if turned into (set (reg)
1746 (reg)), would be discarded. Maybe we should
1747 try a truncMN pattern? */
1748 if (INTVAL (off
) == reg_offset
[regno
])
1749 changed
= validate_change (insn
, &SET_SRC (pat
), reg
, 0);
1753 struct full_rtx_costs oldcst
, newcst
;
1754 rtx tem
= gen_rtx_PLUS (GET_MODE (reg
), reg
, new_src
);
1756 get_full_set_rtx_cost (pat
, &oldcst
);
1757 SET_SRC (pat
) = tem
;
1758 get_full_set_rtx_cost (pat
, &newcst
);
1759 SET_SRC (pat
) = src
;
1761 if (costs_lt_p (&newcst
, &oldcst
, speed
)
1762 && have_add2_insn (reg
, new_src
))
1763 changed
= validate_change (insn
, &SET_SRC (pat
), tem
, 0);
1764 else if (sym
== NULL_RTX
&& GET_MODE (reg
) != BImode
)
1766 machine_mode narrow_mode
;
1767 for (narrow_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1768 narrow_mode
!= VOIDmode
1769 && narrow_mode
!= GET_MODE (reg
);
1770 narrow_mode
= GET_MODE_WIDER_MODE (narrow_mode
))
1772 if (have_insn_for (STRICT_LOW_PART
, narrow_mode
)
1773 && ((reg_offset
[regno
] & ~GET_MODE_MASK (narrow_mode
))
1774 == (INTVAL (off
) & ~GET_MODE_MASK (narrow_mode
))))
1776 rtx narrow_reg
= gen_lowpart_common (narrow_mode
, reg
);
1777 rtx narrow_src
= gen_int_mode (INTVAL (off
),
1780 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode
,
1783 get_full_set_rtx_cost (new_set
, &newcst
);
1784 if (costs_lt_p (&newcst
, &oldcst
, speed
))
1786 changed
= validate_change (insn
, &PATTERN (insn
),
1795 move2add_record_sym_value (reg
, sym
, off
);
1800 /* This function is called with INSN that sets REG to (SYM + OFF),
1801 but REG doesn't have known value (SYM + offset). This function
1802 tries to find another register which is known to already have
1803 value (SYM + offset) and change INSN into an add instruction
1804 (set (REG) (plus (the found register) (OFF - offset))) if such
1805 a register is found. It also updates the information about
1807 Return true iff we made a change. */
1810 move2add_use_add3_insn (rtx reg
, rtx sym
, rtx off
, rtx_insn
*insn
)
1812 rtx pat
= PATTERN (insn
);
1813 rtx src
= SET_SRC (pat
);
1814 int regno
= REGNO (reg
);
1816 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
1818 bool changed
= false;
1819 struct full_rtx_costs oldcst
, newcst
, mincst
;
1822 init_costs_to_max (&mincst
);
1823 get_full_set_rtx_cost (pat
, &oldcst
);
1825 plus_expr
= gen_rtx_PLUS (GET_MODE (reg
), reg
, const0_rtx
);
1826 SET_SRC (pat
) = plus_expr
;
1828 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1829 if (move2add_valid_value_p (i
, GET_MODE (reg
))
1830 && reg_base_reg
[i
] < 0
1831 && reg_symbol_ref
[i
] != NULL_RTX
1832 && rtx_equal_p (sym
, reg_symbol_ref
[i
]))
1834 rtx new_src
= gen_int_mode (UINTVAL (off
) - reg_offset
[i
],
1836 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1837 use (set (reg) (reg)) instead.
1838 We don't delete this insn, nor do we convert it into a
1839 note, to avoid losing register notes or the return
1840 value flag. jump2 already knows how to get rid of
1842 if (new_src
== const0_rtx
)
1844 init_costs_to_zero (&mincst
);
1850 XEXP (plus_expr
, 1) = new_src
;
1851 get_full_set_rtx_cost (pat
, &newcst
);
1853 if (costs_lt_p (&newcst
, &mincst
, speed
))
1860 SET_SRC (pat
) = src
;
1862 if (costs_lt_p (&mincst
, &oldcst
, speed
))
1866 tem
= gen_rtx_REG (GET_MODE (reg
), min_regno
);
1869 rtx new_src
= gen_int_mode (UINTVAL (off
) - reg_offset
[min_regno
],
1871 tem
= gen_rtx_PLUS (GET_MODE (reg
), tem
, new_src
);
1873 if (validate_change (insn
, &SET_SRC (pat
), tem
, 0))
1876 reg_set_luid
[regno
] = move2add_luid
;
1877 move2add_record_sym_value (reg
, sym
, off
);
1881 /* Convert move insns with constant inputs to additions if they are cheaper.
1882 Return true if any changes were made. */
1884 reload_cse_move2add (rtx_insn
*first
)
1888 bool changed
= false;
1890 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1892 reg_set_luid
[i
] = 0;
1894 reg_base_reg
[i
] = 0;
1895 reg_symbol_ref
[i
] = NULL_RTX
;
1896 reg_mode
[i
] = VOIDmode
;
1899 move2add_last_label_luid
= 0;
1901 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
), move2add_luid
++)
1907 move2add_last_label_luid
= move2add_luid
;
1908 /* We're going to increment move2add_luid twice after a
1909 label, so that we can use move2add_last_label_luid + 1 as
1910 the luid for constants. */
1914 if (! INSN_P (insn
))
1916 pat
= PATTERN (insn
);
1917 /* For simplicity, we only perform this optimization on
1918 straightforward SETs. */
1919 if (GET_CODE (pat
) == SET
1920 && REG_P (SET_DEST (pat
)))
1922 rtx reg
= SET_DEST (pat
);
1923 int regno
= REGNO (reg
);
1924 rtx src
= SET_SRC (pat
);
1926 /* Check if we have valid information on the contents of this
1927 register in the mode of REG. */
1928 if (move2add_valid_value_p (regno
, GET_MODE (reg
))
1929 && dbg_cnt (cse2_move2add
))
1931 /* Try to transform (set (REGX) (CONST_INT A))
1933 (set (REGX) (CONST_INT B))
1935 (set (REGX) (CONST_INT A))
1937 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1939 (set (REGX) (CONST_INT A))
1941 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1944 if (CONST_INT_P (src
)
1945 && reg_base_reg
[regno
] < 0
1946 && reg_symbol_ref
[regno
] == NULL_RTX
)
1948 changed
|= move2add_use_add2_insn (reg
, NULL_RTX
, src
, insn
);
1952 /* Try to transform (set (REGX) (REGY))
1953 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1956 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1961 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1962 else if (REG_P (src
)
1963 && reg_set_luid
[regno
] == reg_set_luid
[REGNO (src
)]
1964 && reg_base_reg
[regno
] == reg_base_reg
[REGNO (src
)]
1965 && move2add_valid_value_p (REGNO (src
), GET_MODE (reg
)))
1967 rtx_insn
*next
= next_nonnote_nondebug_insn (insn
);
1970 set
= single_set (next
);
1972 && SET_DEST (set
) == reg
1973 && GET_CODE (SET_SRC (set
)) == PLUS
1974 && XEXP (SET_SRC (set
), 0) == reg
1975 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
1977 rtx src3
= XEXP (SET_SRC (set
), 1);
1978 unsigned HOST_WIDE_INT added_offset
= UINTVAL (src3
);
1979 HOST_WIDE_INT base_offset
= reg_offset
[REGNO (src
)];
1980 HOST_WIDE_INT regno_offset
= reg_offset
[regno
];
1982 gen_int_mode (added_offset
1986 bool success
= false;
1987 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
1989 if (new_src
== const0_rtx
)
1990 /* See above why we create (set (reg) (reg)) here. */
1992 = validate_change (next
, &SET_SRC (set
), reg
, 0);
1995 rtx old_src
= SET_SRC (set
);
1996 struct full_rtx_costs oldcst
, newcst
;
1997 rtx tem
= gen_rtx_PLUS (GET_MODE (reg
), reg
, new_src
);
1999 get_full_set_rtx_cost (set
, &oldcst
);
2000 SET_SRC (set
) = tem
;
2001 get_full_set_src_cost (tem
, GET_MODE (reg
), &newcst
);
2002 SET_SRC (set
) = old_src
;
2003 costs_add_n_insns (&oldcst
, 1);
2005 if (costs_lt_p (&newcst
, &oldcst
, speed
)
2006 && have_add2_insn (reg
, new_src
))
2008 rtx newpat
= gen_rtx_SET (reg
, tem
);
2010 = validate_change (next
, &PATTERN (next
),
2018 move2add_record_mode (reg
);
2020 = trunc_int_for_mode (added_offset
+ base_offset
,
2028 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2030 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2032 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2034 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2035 if ((GET_CODE (src
) == SYMBOL_REF
2036 || (GET_CODE (src
) == CONST
2037 && GET_CODE (XEXP (src
, 0)) == PLUS
2038 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == SYMBOL_REF
2039 && CONST_INT_P (XEXP (XEXP (src
, 0), 1))))
2040 && dbg_cnt (cse2_move2add
))
2044 if (GET_CODE (src
) == SYMBOL_REF
)
2051 sym
= XEXP (XEXP (src
, 0), 0);
2052 off
= XEXP (XEXP (src
, 0), 1);
2055 /* If the reg already contains the value which is sum of
2056 sym and some constant value, we can use an add2 insn. */
2057 if (move2add_valid_value_p (regno
, GET_MODE (reg
))
2058 && reg_base_reg
[regno
] < 0
2059 && reg_symbol_ref
[regno
] != NULL_RTX
2060 && rtx_equal_p (sym
, reg_symbol_ref
[regno
]))
2061 changed
|= move2add_use_add2_insn (reg
, sym
, off
, insn
);
2063 /* Otherwise, we have to find a register whose value is sum
2064 of sym and some constant value. */
2066 changed
|= move2add_use_add3_insn (reg
, sym
, off
, insn
);
2072 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2074 if (REG_NOTE_KIND (note
) == REG_INC
2075 && REG_P (XEXP (note
, 0)))
2077 /* Reset the information about this register. */
2078 int regno
= REGNO (XEXP (note
, 0));
2079 if (regno
< FIRST_PSEUDO_REGISTER
)
2081 move2add_record_mode (XEXP (note
, 0));
2082 reg_mode
[regno
] = VOIDmode
;
2086 note_stores (PATTERN (insn
), move2add_note_store
, insn
);
2088 /* If INSN is a conditional branch, we try to extract an
2089 implicit set out of it. */
2090 if (any_condjump_p (insn
))
2092 rtx cnd
= fis_get_condition (insn
);
2095 && GET_CODE (cnd
) == NE
2096 && REG_P (XEXP (cnd
, 0))
2097 && !reg_set_p (XEXP (cnd
, 0), insn
)
2098 /* The following two checks, which are also in
2099 move2add_note_store, are intended to reduce the
2100 number of calls to gen_rtx_SET to avoid memory
2101 allocation if possible. */
2102 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd
, 0)))
2103 && REG_NREGS (XEXP (cnd
, 0)) == 1
2104 && CONST_INT_P (XEXP (cnd
, 1)))
2107 gen_rtx_SET (XEXP (cnd
, 0), XEXP (cnd
, 1));
2108 move2add_note_store (SET_DEST (implicit_set
), implicit_set
, insn
);
2112 /* If this is a CALL_INSN, all call used registers are stored with
2118 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
2120 if (call_used_regs
[i
])
2121 /* Reset the information about this register. */
2122 reg_mode
[i
] = VOIDmode
;
2125 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
;
2126 link
= XEXP (link
, 1))
2128 rtx setuse
= XEXP (link
, 0);
2129 rtx usage_rtx
= XEXP (setuse
, 0);
2130 if (GET_CODE (setuse
) == CLOBBER
2131 && REG_P (usage_rtx
))
2133 unsigned int end_regno
= END_REGNO (usage_rtx
);
2134 for (unsigned int r
= REGNO (usage_rtx
); r
< end_regno
; ++r
)
2135 /* Reset the information about this register. */
2136 reg_mode
[r
] = VOIDmode
;
2144 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2146 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2147 Called from reload_cse_move2add via note_stores. */
2150 move2add_note_store (rtx dst
, const_rtx set
, void *data
)
2152 rtx_insn
*insn
= (rtx_insn
*) data
;
2153 unsigned int regno
= 0;
2154 machine_mode mode
= GET_MODE (dst
);
2156 /* Some targets do argument pushes without adding REG_INC notes. */
2160 dst
= XEXP (dst
, 0);
2161 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_INC
2162 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
)
2163 reg_mode
[REGNO (XEXP (dst
, 0))] = VOIDmode
;
2167 if (GET_CODE (dst
) == SUBREG
)
2168 regno
= subreg_regno (dst
);
2169 else if (REG_P (dst
))
2170 regno
= REGNO (dst
);
2174 if (SCALAR_INT_MODE_P (mode
)
2175 && GET_CODE (set
) == SET
)
2177 rtx note
, sym
= NULL_RTX
;
2180 note
= find_reg_equal_equiv_note (insn
);
2181 if (note
&& GET_CODE (XEXP (note
, 0)) == SYMBOL_REF
)
2183 sym
= XEXP (note
, 0);
2186 else if (note
&& GET_CODE (XEXP (note
, 0)) == CONST
2187 && GET_CODE (XEXP (XEXP (note
, 0), 0)) == PLUS
2188 && GET_CODE (XEXP (XEXP (XEXP (note
, 0), 0), 0)) == SYMBOL_REF
2189 && CONST_INT_P (XEXP (XEXP (XEXP (note
, 0), 0), 1)))
2191 sym
= XEXP (XEXP (XEXP (note
, 0), 0), 0);
2192 off
= XEXP (XEXP (XEXP (note
, 0), 0), 1);
2195 if (sym
!= NULL_RTX
)
2197 move2add_record_sym_value (dst
, sym
, off
);
2202 if (SCALAR_INT_MODE_P (mode
)
2203 && GET_CODE (set
) == SET
2204 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2205 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2207 rtx src
= SET_SRC (set
);
2209 unsigned HOST_WIDE_INT offset
;
2212 switch (GET_CODE (src
))
2215 if (REG_P (XEXP (src
, 0)))
2217 base_reg
= XEXP (src
, 0);
2219 if (CONST_INT_P (XEXP (src
, 1)))
2220 offset
= UINTVAL (XEXP (src
, 1));
2221 else if (REG_P (XEXP (src
, 1))
2222 && move2add_valid_value_p (REGNO (XEXP (src
, 1)), mode
))
2224 if (reg_base_reg
[REGNO (XEXP (src
, 1))] < 0
2225 && reg_symbol_ref
[REGNO (XEXP (src
, 1))] == NULL_RTX
)
2226 offset
= reg_offset
[REGNO (XEXP (src
, 1))];
2227 /* Maybe the first register is known to be a
2229 else if (move2add_valid_value_p (REGNO (base_reg
), mode
)
2230 && reg_base_reg
[REGNO (base_reg
)] < 0
2231 && reg_symbol_ref
[REGNO (base_reg
)] == NULL_RTX
)
2233 offset
= reg_offset
[REGNO (base_reg
)];
2234 base_reg
= XEXP (src
, 1);
2253 /* Start tracking the register as a constant. */
2254 reg_base_reg
[regno
] = -1;
2255 reg_symbol_ref
[regno
] = NULL_RTX
;
2256 reg_offset
[regno
] = INTVAL (SET_SRC (set
));
2257 /* We assign the same luid to all registers set to constants. */
2258 reg_set_luid
[regno
] = move2add_last_label_luid
+ 1;
2259 move2add_record_mode (dst
);
2266 base_regno
= REGNO (base_reg
);
2267 /* If information about the base register is not valid, set it
2268 up as a new base register, pretending its value is known
2269 starting from the current insn. */
2270 if (!move2add_valid_value_p (base_regno
, mode
))
2272 reg_base_reg
[base_regno
] = base_regno
;
2273 reg_symbol_ref
[base_regno
] = NULL_RTX
;
2274 reg_offset
[base_regno
] = 0;
2275 reg_set_luid
[base_regno
] = move2add_luid
;
2276 gcc_assert (GET_MODE (base_reg
) == mode
);
2277 move2add_record_mode (base_reg
);
2280 /* Copy base information from our base register. */
2281 reg_set_luid
[regno
] = reg_set_luid
[base_regno
];
2282 reg_base_reg
[regno
] = reg_base_reg
[base_regno
];
2283 reg_symbol_ref
[regno
] = reg_symbol_ref
[base_regno
];
2285 /* Compute the sum of the offsets or constants. */
2287 = trunc_int_for_mode (offset
+ reg_offset
[base_regno
], mode
);
2289 move2add_record_mode (dst
);
2294 /* Invalidate the contents of the register. */
2295 move2add_record_mode (dst
);
2296 reg_mode
[regno
] = VOIDmode
;
2302 const pass_data pass_data_postreload_cse
=
2304 RTL_PASS
, /* type */
2305 "postreload", /* name */
2306 OPTGROUP_NONE
, /* optinfo_flags */
2307 TV_RELOAD_CSE_REGS
, /* tv_id */
2308 0, /* properties_required */
2309 0, /* properties_provided */
2310 0, /* properties_destroyed */
2311 0, /* todo_flags_start */
2312 TODO_df_finish
, /* todo_flags_finish */
2315 class pass_postreload_cse
: public rtl_opt_pass
2318 pass_postreload_cse (gcc::context
*ctxt
)
2319 : rtl_opt_pass (pass_data_postreload_cse
, ctxt
)
2322 /* opt_pass methods: */
2323 virtual bool gate (function
*) { return (optimize
> 0 && reload_completed
); }
2325 virtual unsigned int execute (function
*);
2327 }; // class pass_postreload_cse
2330 pass_postreload_cse::execute (function
*fun
)
2332 if (!dbg_cnt (postreload_cse
))
2335 /* Do a very simple CSE pass over just the hard registers. */
2336 reload_cse_regs (get_insns ());
2337 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2338 Remove any EH edges associated with them. */
2339 if (fun
->can_throw_non_call_exceptions
2340 && purge_all_dead_edges ())
2349 make_pass_postreload_cse (gcc::context
*ctxt
)
2351 return new pass_postreload_cse (ctxt
);