[RTL-ifcvt] PR rtl-optimization/68506: Fix emitting order of insns in IF-THEN-JOIN...
[official-gcc.git] / gcc / fwprop.c
blob863e35de6004640bb4810160469c8d2d2885e45e
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
34 #include "sparseset.h"
35 #include "cfgrtl.h"
36 #include "cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "rtl-iter.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead.
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
116 static int num_changes;
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
132 static inline df_ref
133 get_def_for_use (df_ref use)
135 return use_def_ref[DF_REF_ID (use)];
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
148 static void
149 process_defs (df_ref def, int top_flag)
151 for (; def; def = DF_REF_NEXT_LOC (def))
153 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
154 unsigned int dregno;
156 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
157 continue;
159 dregno = DF_REF_REGNO (def);
160 if (curr_def)
161 reg_defs_stack.safe_push (curr_def);
162 else
164 /* Do not store anything if "transitioning" from NULL to NULL. But
165 otherwise, push a special entry on the stack to tell the
166 leave_block callback that the entry in reg_defs was NULL. */
167 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
169 else
170 reg_defs_stack.safe_push (def);
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 bitmap_set_bit (local_md, dregno);
176 reg_defs[dregno] = NULL;
178 else
180 bitmap_clear_bit (local_md, dregno);
181 reg_defs[dregno] = def;
187 /* Fill the use_def_ref vector with values for the uses in USE_REC,
188 taking reaching definitions info from LOCAL_MD and REG_DEFS.
189 TOP_FLAG says which artificials uses should be used, when USE_REC
190 is an artificial use vector. */
192 static void
193 process_uses (df_ref use, int top_flag)
195 for (; use; use = DF_REF_NEXT_LOC (use))
196 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
198 unsigned int uregno = DF_REF_REGNO (use);
199 if (reg_defs[uregno]
200 && !bitmap_bit_p (local_md, uregno)
201 && bitmap_bit_p (local_lr, uregno))
202 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
206 class single_def_use_dom_walker : public dom_walker
208 public:
209 single_def_use_dom_walker (cdi_direction direction)
210 : dom_walker (direction) {}
211 virtual void before_dom_children (basic_block);
212 virtual void after_dom_children (basic_block);
215 void
216 single_def_use_dom_walker::before_dom_children (basic_block bb)
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx_insn *insn;
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
226 /* Push a marker for the leave_block callback. */
227 reg_defs_stack.safe_push (NULL);
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
250 /* Pop the definitions created in this basic block when leaving its
251 dominated parts. */
253 void
254 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
256 df_ref saved_def;
257 while ((saved_def = reg_defs_stack.pop ()) != NULL)
259 unsigned int dregno = DF_REF_REGNO (saved_def);
261 /* See also process_defs. */
262 if (saved_def == reg_defs[dregno])
263 reg_defs[dregno] = NULL;
264 else
265 reg_defs[dregno] = saved_def;
270 /* Build a vector holding the reaching definitions of uses reached by a
271 single dominating definition. */
273 static void
274 build_single_def_use_links (void)
276 /* We use the multiple definitions problem to compute our restricted
277 use-def chains. */
278 df_set_flags (DF_EQ_NOTES);
279 df_md_add_problem ();
280 df_note_add_problem ();
281 df_analyze ();
282 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
284 use_def_ref.create (DF_USES_TABLE_SIZE ());
285 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
287 reg_defs.create (max_reg_num ());
288 reg_defs.safe_grow_cleared (max_reg_num ());
290 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
291 local_md = BITMAP_ALLOC (NULL);
292 local_lr = BITMAP_ALLOC (NULL);
294 /* Walk the dominator tree looking for single reaching definitions
295 dominating the uses. This is similar to how SSA form is built. */
296 single_def_use_dom_walker (CDI_DOMINATORS)
297 .walk (cfun->cfg->x_entry_block_ptr);
299 BITMAP_FREE (local_lr);
300 BITMAP_FREE (local_md);
301 reg_defs.release ();
302 reg_defs_stack.release ();
306 /* Do not try to replace constant addresses or addresses of local and
307 argument slots. These MEM expressions are made only once and inserted
308 in many instructions, as well as being used to control symbol table
309 output. It is not safe to clobber them.
311 There are some uncommon cases where the address is already in a register
312 for some reason, but we cannot take advantage of that because we have
313 no easy way to unshare the MEM. In addition, looking up all stack
314 addresses is costly. */
316 static bool
317 can_simplify_addr (rtx addr)
319 rtx reg;
321 if (CONSTANT_ADDRESS_P (addr))
322 return false;
324 if (GET_CODE (addr) == PLUS)
325 reg = XEXP (addr, 0);
326 else
327 reg = addr;
329 return (!REG_P (reg)
330 || (REGNO (reg) != FRAME_POINTER_REGNUM
331 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
332 && REGNO (reg) != ARG_POINTER_REGNUM));
335 /* Returns a canonical version of X for the address, from the point of view,
336 that all multiplications are represented as MULT instead of the multiply
337 by a power of 2 being represented as ASHIFT.
339 Every ASHIFT we find has been made by simplify_gen_binary and was not
340 there before, so it is not shared. So we can do this in place. */
342 static void
343 canonicalize_address (rtx x)
345 for (;;)
346 switch (GET_CODE (x))
348 case ASHIFT:
349 if (CONST_INT_P (XEXP (x, 1))
350 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
351 && INTVAL (XEXP (x, 1)) >= 0)
353 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
354 PUT_CODE (x, MULT);
355 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
356 GET_MODE (x));
359 x = XEXP (x, 0);
360 break;
362 case PLUS:
363 if (GET_CODE (XEXP (x, 0)) == PLUS
364 || GET_CODE (XEXP (x, 0)) == ASHIFT
365 || GET_CODE (XEXP (x, 0)) == CONST)
366 canonicalize_address (XEXP (x, 0));
368 x = XEXP (x, 1);
369 break;
371 case CONST:
372 x = XEXP (x, 0);
373 break;
375 default:
376 return;
380 /* OLD is a memory address. Return whether it is good to use NEW instead,
381 for a memory access in the given MODE. */
383 static bool
384 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
385 addr_space_t as, bool speed)
387 int gain;
389 if (rtx_equal_p (old_rtx, new_rtx)
390 || !memory_address_addr_space_p (mode, new_rtx, as))
391 return false;
393 /* Copy propagation is always ok. */
394 if (REG_P (old_rtx) && REG_P (new_rtx))
395 return true;
397 /* Prefer the new address if it is less expensive. */
398 gain = (address_cost (old_rtx, mode, as, speed)
399 - address_cost (new_rtx, mode, as, speed));
401 /* If the addresses have equivalent cost, prefer the new address
402 if it has the highest `set_src_cost'. That has the potential of
403 eliminating the most insns without additional costs, and it
404 is the same that cse.c used to do. */
405 if (gain == 0)
406 gain = (set_src_cost (new_rtx, VOIDmode, speed)
407 - set_src_cost (old_rtx, VOIDmode, speed));
409 return (gain > 0);
413 /* Flags for the last parameter of propagate_rtx_1. */
415 enum {
416 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
417 if it is false, propagate_rtx_1 returns false if, for at least
418 one occurrence OLD, it failed to collapse the result to a constant.
419 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
420 collapse to zero if replacing (reg:M B) with (reg:M A).
422 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
423 propagate_rtx_1 just tries to make cheaper and valid memory
424 addresses. */
425 PR_CAN_APPEAR = 1,
427 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
428 outside memory addresses. This is needed because propagate_rtx_1 does
429 not do any analysis on memory; thus it is very conservative and in general
430 it will fail if non-read-only MEMs are found in the source expression.
432 PR_HANDLE_MEM is set when the source of the propagation was not
433 another MEM. Then, it is safe not to treat non-read-only MEMs as
434 ``opaque'' objects. */
435 PR_HANDLE_MEM = 2,
437 /* Set when costs should be optimized for speed. */
438 PR_OPTIMIZE_FOR_SPEED = 4
442 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
443 resulting expression. Replace *PX with a new RTL expression if an
444 occurrence of OLD was found.
446 This is only a wrapper around simplify-rtx.c: do not add any pattern
447 matching code here. (The sole exception is the handling of LO_SUM, but
448 that is because there is no simplify_gen_* function for LO_SUM). */
450 static bool
451 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
453 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
454 enum rtx_code code = GET_CODE (x);
455 machine_mode mode = GET_MODE (x);
456 machine_mode op_mode;
457 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
458 bool valid_ops = true;
460 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
462 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
463 they have side effects or not). */
464 *px = (side_effects_p (x)
465 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
466 : gen_rtx_SCRATCH (GET_MODE (x)));
467 return false;
470 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
471 address, and we are *not* inside one. */
472 if (x == old_rtx)
474 *px = new_rtx;
475 return can_appear;
478 /* If this is an expression, try recursive substitution. */
479 switch (GET_RTX_CLASS (code))
481 case RTX_UNARY:
482 op0 = XEXP (x, 0);
483 op_mode = GET_MODE (op0);
484 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
485 if (op0 == XEXP (x, 0))
486 return true;
487 tem = simplify_gen_unary (code, mode, op0, op_mode);
488 break;
490 case RTX_BIN_ARITH:
491 case RTX_COMM_ARITH:
492 op0 = XEXP (x, 0);
493 op1 = XEXP (x, 1);
494 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
495 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
496 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
497 return true;
498 tem = simplify_gen_binary (code, mode, op0, op1);
499 break;
501 case RTX_COMPARE:
502 case RTX_COMM_COMPARE:
503 op0 = XEXP (x, 0);
504 op1 = XEXP (x, 1);
505 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
506 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
507 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
508 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
509 return true;
510 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
511 break;
513 case RTX_TERNARY:
514 case RTX_BITFIELD_OPS:
515 op0 = XEXP (x, 0);
516 op1 = XEXP (x, 1);
517 op2 = XEXP (x, 2);
518 op_mode = GET_MODE (op0);
519 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
520 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
521 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
522 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
523 return true;
524 if (op_mode == VOIDmode)
525 op_mode = GET_MODE (op0);
526 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
527 break;
529 case RTX_EXTRA:
530 /* The only case we try to handle is a SUBREG. */
531 if (code == SUBREG)
533 op0 = XEXP (x, 0);
534 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
535 if (op0 == XEXP (x, 0))
536 return true;
537 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
538 SUBREG_BYTE (x));
540 break;
542 case RTX_OBJ:
543 if (code == MEM && x != new_rtx)
545 rtx new_op0;
546 op0 = XEXP (x, 0);
548 /* There are some addresses that we cannot work on. */
549 if (!can_simplify_addr (op0))
550 return true;
552 op0 = new_op0 = targetm.delegitimize_address (op0);
553 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
554 flags | PR_CAN_APPEAR);
556 /* Dismiss transformation that we do not want to carry on. */
557 if (!valid_ops
558 || new_op0 == op0
559 || !(GET_MODE (new_op0) == GET_MODE (op0)
560 || GET_MODE (new_op0) == VOIDmode))
561 return true;
563 canonicalize_address (new_op0);
565 /* Copy propagations are always ok. Otherwise check the costs. */
566 if (!(REG_P (old_rtx) && REG_P (new_rtx))
567 && !should_replace_address (op0, new_op0, GET_MODE (x),
568 MEM_ADDR_SPACE (x),
569 flags & PR_OPTIMIZE_FOR_SPEED))
570 return true;
572 tem = replace_equiv_address_nv (x, new_op0);
575 else if (code == LO_SUM)
577 op0 = XEXP (x, 0);
578 op1 = XEXP (x, 1);
580 /* The only simplification we do attempts to remove references to op0
581 or make it constant -- in both cases, op0's invalidity will not
582 make the result invalid. */
583 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
584 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
585 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
586 return true;
588 /* (lo_sum (high x) x) -> x */
589 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
590 tem = op1;
591 else
592 tem = gen_rtx_LO_SUM (mode, op0, op1);
594 /* OP1 is likely not a legitimate address, otherwise there would have
595 been no LO_SUM. We want it to disappear if it is invalid, return
596 false in that case. */
597 return memory_address_p (mode, tem);
600 else if (code == REG)
602 if (rtx_equal_p (x, old_rtx))
604 *px = new_rtx;
605 return can_appear;
608 break;
610 default:
611 break;
614 /* No change, no trouble. */
615 if (tem == NULL_RTX)
616 return true;
618 *px = tem;
620 /* The replacement we made so far is valid, if all of the recursive
621 replacements were valid, or we could simplify everything to
622 a constant. */
623 return valid_ops || can_appear || CONSTANT_P (tem);
627 /* Return true if X constains a non-constant mem. */
629 static bool
630 varying_mem_p (const_rtx x)
632 subrtx_iterator::array_type array;
633 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
634 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
635 return true;
636 return false;
640 /* Replace all occurrences of OLD in X with NEW and try to simplify the
641 resulting expression (in mode MODE). Return a new expression if it is
642 a constant, otherwise X.
644 Simplifications where occurrences of NEW collapse to a constant are always
645 accepted. All simplifications are accepted if NEW is a pseudo too.
646 Otherwise, we accept simplifications that have a lower or equal cost. */
648 static rtx
649 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
650 bool speed)
652 rtx tem;
653 bool collapsed;
654 int flags;
656 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
657 return NULL_RTX;
659 flags = 0;
660 if (REG_P (new_rtx)
661 || CONSTANT_P (new_rtx)
662 || (GET_CODE (new_rtx) == SUBREG
663 && REG_P (SUBREG_REG (new_rtx))
664 && (GET_MODE_SIZE (mode)
665 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
666 flags |= PR_CAN_APPEAR;
667 if (!varying_mem_p (new_rtx))
668 flags |= PR_HANDLE_MEM;
670 if (speed)
671 flags |= PR_OPTIMIZE_FOR_SPEED;
673 tem = x;
674 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
675 if (tem == x || !collapsed)
676 return NULL_RTX;
678 /* gen_lowpart_common will not be able to process VOIDmode entities other
679 than CONST_INTs. */
680 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
681 return NULL_RTX;
683 if (GET_MODE (tem) == VOIDmode)
684 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
685 else
686 gcc_assert (GET_MODE (tem) == mode);
688 return tem;
694 /* Return true if the register from reference REF is killed
695 between FROM to (but not including) TO. */
697 static bool
698 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
700 rtx_insn *insn;
702 for (insn = from; insn != to; insn = NEXT_INSN (insn))
704 df_ref def;
705 if (!INSN_P (insn))
706 continue;
708 FOR_EACH_INSN_DEF (def, insn)
709 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
710 return true;
712 return false;
716 /* Check if the given DEF is available in INSN. This would require full
717 computation of available expressions; we check only restricted conditions:
718 - if DEF is the sole definition of its register, go ahead;
719 - in the same basic block, we check for no definitions killing the
720 definition of DEF_INSN;
721 - if USE's basic block has DEF's basic block as the sole predecessor,
722 we check if the definition is killed after DEF_INSN or before
723 TARGET_INSN insn, in their respective basic blocks. */
724 static bool
725 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
727 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
728 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
729 int regno;
730 df_ref def;
732 /* We used to have a def reaching a use that is _before_ the def,
733 with the def not dominating the use even though the use and def
734 are in the same basic block, when a register may be used
735 uninitialized in a loop. This should not happen anymore since
736 we do not use reaching definitions, but still we test for such
737 cases and assume that DEF is not available. */
738 if (def_bb == target_bb
739 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
740 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
741 return true;
743 /* Check if the reg in USE has only one definition. We already
744 know that this definition reaches use, or we wouldn't be here.
745 However, this is invalid for hard registers because if they are
746 live at the beginning of the function it does not mean that we
747 have an uninitialized access. */
748 regno = DF_REF_REGNO (use);
749 def = DF_REG_DEF_CHAIN (regno);
750 if (def
751 && DF_REF_NEXT_REG (def) == NULL
752 && regno >= FIRST_PSEUDO_REGISTER)
753 return false;
755 /* Check locally if we are in the same basic block. */
756 if (def_bb == target_bb)
757 return local_ref_killed_between_p (use, def_insn, target_insn);
759 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
760 if (single_pred_p (target_bb)
761 && single_pred (target_bb) == def_bb)
763 df_ref x;
765 /* See if USE is killed between DEF_INSN and the last insn in the
766 basic block containing DEF_INSN. */
767 x = df_bb_regno_last_def_find (def_bb, regno);
768 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
769 return true;
771 /* See if USE is killed between TARGET_INSN and the first insn in the
772 basic block containing TARGET_INSN. */
773 x = df_bb_regno_first_def_find (target_bb, regno);
774 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
775 return true;
777 return false;
780 /* Otherwise assume the worst case. */
781 return true;
785 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
786 would require full computation of available expressions;
787 we check only restricted conditions, see use_killed_between. */
788 static bool
789 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
791 df_ref use;
792 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
793 rtx def_set = single_set (def_insn);
794 rtx_insn *next;
796 gcc_assert (def_set);
798 /* If target_insn comes right after def_insn, which is very common
799 for addresses, we can use a quicker test. Ignore debug insns
800 other than target insns for this. */
801 next = NEXT_INSN (def_insn);
802 while (next && next != target_insn && DEBUG_INSN_P (next))
803 next = NEXT_INSN (next);
804 if (next == target_insn && REG_P (SET_DEST (def_set)))
806 rtx def_reg = SET_DEST (def_set);
808 /* If the insn uses the reg that it defines, the substitution is
809 invalid. */
810 FOR_EACH_INSN_INFO_USE (use, insn_info)
811 if (rtx_equal_p (DF_REF_REG (use), def_reg))
812 return false;
813 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
814 if (rtx_equal_p (DF_REF_REG (use), def_reg))
815 return false;
817 else
819 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
821 /* Look at all the uses of DEF_INSN, and see if they are not
822 killed between DEF_INSN and TARGET_INSN. */
823 FOR_EACH_INSN_INFO_USE (use, insn_info)
825 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
826 return false;
827 if (use_killed_between (use, def_insn, target_insn))
828 return false;
830 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
832 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
833 return false;
834 if (use_killed_between (use, def_insn, target_insn))
835 return false;
839 return true;
843 static df_ref *active_defs;
844 static sparseset active_defs_check;
846 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
847 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
848 too, for checking purposes. */
850 static void
851 register_active_defs (df_ref use)
853 for (; use; use = DF_REF_NEXT_LOC (use))
855 df_ref def = get_def_for_use (use);
856 int regno = DF_REF_REGNO (use);
858 if (flag_checking)
859 sparseset_set_bit (active_defs_check, regno);
860 active_defs[regno] = def;
865 /* Build the use->def links that we use to update the dataflow info
866 for new uses. Note that building the links is very cheap and if
867 it were done earlier, they could be used to rule out invalid
868 propagations (in addition to what is done in all_uses_available_at).
869 I'm not doing this yet, though. */
871 static void
872 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
874 if (flag_checking)
875 sparseset_clear (active_defs_check);
876 register_active_defs (DF_INSN_USES (def_insn));
877 register_active_defs (DF_INSN_USES (insn));
878 register_active_defs (DF_INSN_EQ_USES (insn));
882 /* Update the USE_DEF_REF array for the given use, using the active definitions
883 in the ACTIVE_DEFS array to match pseudos to their def. */
885 static inline void
886 update_uses (df_ref use)
888 for (; use; use = DF_REF_NEXT_LOC (use))
890 int regno = DF_REF_REGNO (use);
892 /* Set up the use-def chain. */
893 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
894 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
896 if (flag_checking)
897 gcc_assert (sparseset_bit_p (active_defs_check, regno));
898 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
903 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
904 uses if NOTES_ONLY is true. */
906 static void
907 update_df (rtx_insn *insn, rtx note)
909 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
911 if (note)
913 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
914 df_notes_rescan (insn);
916 else
918 df_uses_create (&PATTERN (insn), insn, 0);
919 df_insn_rescan (insn);
920 update_uses (DF_INSN_INFO_USES (insn_info));
923 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
927 /* Try substituting NEW into LOC, which originated from forward propagation
928 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
929 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
930 new insn is not recognized. Return whether the substitution was
931 performed. */
933 static bool
934 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
935 bool set_reg_equal)
937 rtx_insn *insn = DF_REF_INSN (use);
938 rtx set = single_set (insn);
939 rtx note = NULL_RTX;
940 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
941 int old_cost = 0;
942 bool ok;
944 update_df_init (def_insn, insn);
946 /* forward_propagate_subreg may be operating on an instruction with
947 multiple sets. If so, assume the cost of the new instruction is
948 not greater than the old one. */
949 if (set)
950 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
951 if (dump_file)
953 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
954 print_inline_rtx (dump_file, *loc, 2);
955 fprintf (dump_file, "\n with ");
956 print_inline_rtx (dump_file, new_rtx, 2);
957 fprintf (dump_file, "\n");
960 validate_unshare_change (insn, loc, new_rtx, true);
961 if (!verify_changes (0))
963 if (dump_file)
964 fprintf (dump_file, "Changes to insn %d not recognized\n",
965 INSN_UID (insn));
966 ok = false;
969 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
970 && set
971 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
972 > old_cost))
974 if (dump_file)
975 fprintf (dump_file, "Changes to insn %d not profitable\n",
976 INSN_UID (insn));
977 ok = false;
980 else
982 if (dump_file)
983 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
984 ok = true;
987 if (ok)
989 confirm_change_group ();
990 num_changes++;
992 else
994 cancel_changes (0);
996 /* Can also record a simplified value in a REG_EQUAL note,
997 making a new one if one does not already exist. */
998 if (set_reg_equal)
1000 if (dump_file)
1001 fprintf (dump_file, " Setting REG_EQUAL note\n");
1003 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1007 if ((ok || note) && !CONSTANT_P (new_rtx))
1008 update_df (insn, note);
1010 return ok;
1013 /* For the given single_set INSN, containing SRC known to be a
1014 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1015 is redundant due to the register being set by a LOAD_EXTEND_OP
1016 load from memory. */
1018 static bool
1019 free_load_extend (rtx src, rtx_insn *insn)
1021 rtx reg;
1022 df_ref def, use;
1024 reg = XEXP (src, 0);
1025 #ifdef LOAD_EXTEND_OP
1026 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1027 #endif
1028 return false;
1030 FOR_EACH_INSN_USE (use, insn)
1031 if (!DF_REF_IS_ARTIFICIAL (use)
1032 && DF_REF_TYPE (use) == DF_REF_REG_USE
1033 && DF_REF_REG (use) == reg)
1034 break;
1035 if (!use)
1036 return false;
1038 def = get_def_for_use (use);
1039 if (!def)
1040 return false;
1042 if (DF_REF_IS_ARTIFICIAL (def))
1043 return false;
1045 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1047 rtx patt = PATTERN (DF_REF_INSN (def));
1049 if (GET_CODE (patt) == SET
1050 && GET_CODE (SET_SRC (patt)) == MEM
1051 && rtx_equal_p (SET_DEST (patt), reg))
1052 return true;
1054 return false;
1057 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1059 static bool
1060 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1062 rtx use_reg = DF_REF_REG (use);
1063 rtx_insn *use_insn;
1064 rtx src;
1066 /* Only consider subregs... */
1067 machine_mode use_mode = GET_MODE (use_reg);
1068 if (GET_CODE (use_reg) != SUBREG
1069 || !REG_P (SET_DEST (def_set)))
1070 return false;
1072 /* If this is a paradoxical SUBREG... */
1073 if (GET_MODE_SIZE (use_mode)
1074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1076 /* If this is a paradoxical SUBREG, we have no idea what value the
1077 extra bits would have. However, if the operand is equivalent to
1078 a SUBREG whose operand is the same as our mode, and all the modes
1079 are within a word, we can just use the inner operand because
1080 these SUBREGs just say how to treat the register. */
1081 use_insn = DF_REF_INSN (use);
1082 src = SET_SRC (def_set);
1083 if (GET_CODE (src) == SUBREG
1084 && REG_P (SUBREG_REG (src))
1085 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1086 && GET_MODE (SUBREG_REG (src)) == use_mode
1087 && subreg_lowpart_p (src)
1088 && all_uses_available_at (def_insn, use_insn))
1089 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1090 def_insn, false);
1093 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1094 is the low part of the reg being extended then just use the inner
1095 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1096 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1097 or due to the operation being a no-op when applied to registers.
1098 For example, if we have:
1100 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1101 B: (... (subreg:SI (reg:DI X)) ...)
1103 and mode_rep_extended says that Y is already sign-extended,
1104 the backend will typically allow A to be combined with the
1105 definition of Y or, failing that, allow A to be deleted after
1106 reload through register tying. Introducing more uses of Y
1107 prevents both optimisations. */
1108 else if (subreg_lowpart_p (use_reg))
1110 use_insn = DF_REF_INSN (use);
1111 src = SET_SRC (def_set);
1112 if ((GET_CODE (src) == ZERO_EXTEND
1113 || GET_CODE (src) == SIGN_EXTEND)
1114 && REG_P (XEXP (src, 0))
1115 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1116 && GET_MODE (XEXP (src, 0)) == use_mode
1117 && !free_load_extend (src, def_insn)
1118 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1119 != (int) GET_CODE (src))
1120 && all_uses_available_at (def_insn, use_insn))
1121 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1122 def_insn, false);
1125 return false;
1128 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1130 static bool
1131 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1133 rtx_insn *use_insn = DF_REF_INSN (use);
1134 rtx src, use_pat, asm_operands, new_rtx, *loc;
1135 int speed_p, i;
1136 df_ref uses;
1138 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1140 src = SET_SRC (def_set);
1141 use_pat = PATTERN (use_insn);
1143 /* In __asm don't replace if src might need more registers than
1144 reg, as that could increase register pressure on the __asm. */
1145 uses = DF_INSN_USES (def_insn);
1146 if (uses && DF_REF_NEXT_LOC (uses))
1147 return false;
1149 update_df_init (def_insn, use_insn);
1150 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1151 asm_operands = NULL_RTX;
1152 switch (GET_CODE (use_pat))
1154 case ASM_OPERANDS:
1155 asm_operands = use_pat;
1156 break;
1157 case SET:
1158 if (MEM_P (SET_DEST (use_pat)))
1160 loc = &SET_DEST (use_pat);
1161 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1162 if (new_rtx)
1163 validate_unshare_change (use_insn, loc, new_rtx, true);
1165 asm_operands = SET_SRC (use_pat);
1166 break;
1167 case PARALLEL:
1168 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1169 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1171 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1173 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1174 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1175 src, speed_p);
1176 if (new_rtx)
1177 validate_unshare_change (use_insn, loc, new_rtx, true);
1179 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1181 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1182 asm_operands = XVECEXP (use_pat, 0, i);
1183 break;
1184 default:
1185 gcc_unreachable ();
1188 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1189 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1191 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1192 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1193 if (new_rtx)
1194 validate_unshare_change (use_insn, loc, new_rtx, true);
1197 if (num_changes_pending () == 0 || !apply_change_group ())
1198 return false;
1200 update_df (use_insn, NULL);
1201 num_changes++;
1202 return true;
1205 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1206 result. */
1208 static bool
1209 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1211 rtx_insn *use_insn = DF_REF_INSN (use);
1212 rtx use_set = single_set (use_insn);
1213 rtx src, reg, new_rtx, *loc;
1214 bool set_reg_equal;
1215 machine_mode mode;
1216 int asm_use = -1;
1218 if (INSN_CODE (use_insn) < 0)
1219 asm_use = asm_noperands (PATTERN (use_insn));
1221 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1222 return false;
1224 /* Do not propagate into PC, CC0, etc. */
1225 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1226 return false;
1228 /* If def and use are subreg, check if they match. */
1229 reg = DF_REF_REG (use);
1230 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1232 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1233 return false;
1235 /* Check if the def had a subreg, but the use has the whole reg. */
1236 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1237 return false;
1238 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1239 previous case, the optimization is possible and often useful indeed. */
1240 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1241 reg = SUBREG_REG (reg);
1243 /* Make sure that we can treat REG as having the same mode as the
1244 source of DEF_SET. */
1245 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1246 return false;
1248 /* Check if the substitution is valid (last, because it's the most
1249 expensive check!). */
1250 src = SET_SRC (def_set);
1251 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1252 return false;
1254 /* Check if the def is loading something from the constant pool; in this
1255 case we would undo optimization such as compress_float_constant.
1256 Still, we can set a REG_EQUAL note. */
1257 if (MEM_P (src) && MEM_READONLY_P (src))
1259 rtx x = avoid_constant_pool_reference (src);
1260 if (x != src && use_set)
1262 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1263 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1264 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1265 if (old_rtx != new_rtx)
1266 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1268 return false;
1271 if (asm_use >= 0)
1272 return forward_propagate_asm (use, def_insn, def_set, reg);
1274 /* Else try simplifying. */
1276 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1278 loc = &SET_DEST (use_set);
1279 set_reg_equal = false;
1281 else if (!use_set)
1283 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1284 set_reg_equal = false;
1286 else
1288 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1289 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1290 loc = &XEXP (note, 0);
1291 else
1292 loc = &SET_SRC (use_set);
1294 /* Do not replace an existing REG_EQUAL note if the insn is not
1295 recognized. Either we're already replacing in the note, or we'll
1296 separately try plugging the definition in the note and simplifying.
1297 And only install a REQ_EQUAL note when the destination is a REG
1298 that isn't mentioned in USE_SET, as the note would be invalid
1299 otherwise. We also don't want to install a note if we are merely
1300 propagating a pseudo since verifying that this pseudo isn't dead
1301 is a pain; moreover such a note won't help anything. */
1302 set_reg_equal = (note == NULL_RTX
1303 && REG_P (SET_DEST (use_set))
1304 && !REG_P (src)
1305 && !(GET_CODE (src) == SUBREG
1306 && REG_P (SUBREG_REG (src)))
1307 && !reg_mentioned_p (SET_DEST (use_set),
1308 SET_SRC (use_set)));
1311 if (GET_MODE (*loc) == VOIDmode)
1312 mode = GET_MODE (SET_DEST (use_set));
1313 else
1314 mode = GET_MODE (*loc);
1316 new_rtx = propagate_rtx (*loc, mode, reg, src,
1317 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1319 if (!new_rtx)
1320 return false;
1322 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1326 /* Given a use USE of an insn, if it has a single reaching
1327 definition, try to forward propagate it into that insn.
1328 Return true if cfg cleanup will be needed. */
1330 static bool
1331 forward_propagate_into (df_ref use)
1333 df_ref def;
1334 rtx_insn *def_insn, *use_insn;
1335 rtx def_set;
1336 rtx parent;
1338 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1339 return false;
1340 if (DF_REF_IS_ARTIFICIAL (use))
1341 return false;
1343 /* Only consider uses that have a single definition. */
1344 def = get_def_for_use (use);
1345 if (!def)
1346 return false;
1347 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1348 return false;
1349 if (DF_REF_IS_ARTIFICIAL (def))
1350 return false;
1352 /* Do not propagate loop invariant definitions inside the loop. */
1353 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1354 return false;
1356 /* Check if the use is still present in the insn! */
1357 use_insn = DF_REF_INSN (use);
1358 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1359 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1360 else
1361 parent = PATTERN (use_insn);
1363 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1364 return false;
1366 def_insn = DF_REF_INSN (def);
1367 if (multiple_sets (def_insn))
1368 return false;
1369 def_set = single_set (def_insn);
1370 if (!def_set)
1371 return false;
1373 /* Only try one kind of propagation. If two are possible, we'll
1374 do it on the following iterations. */
1375 if (forward_propagate_and_simplify (use, def_insn, def_set)
1376 || forward_propagate_subreg (use, def_insn, def_set))
1378 if (cfun->can_throw_non_call_exceptions
1379 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1380 && purge_dead_edges (DF_REF_BB (use)))
1381 return true;
1383 return false;
1387 static void
1388 fwprop_init (void)
1390 num_changes = 0;
1391 calculate_dominance_info (CDI_DOMINATORS);
1393 /* We do not always want to propagate into loops, so we have to find
1394 loops and be careful about them. Avoid CFG modifications so that
1395 we don't have to update dominance information afterwards for
1396 build_single_def_use_links. */
1397 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1399 build_single_def_use_links ();
1400 df_set_flags (DF_DEFER_INSN_RESCAN);
1402 active_defs = XNEWVEC (df_ref, max_reg_num ());
1403 if (flag_checking)
1404 active_defs_check = sparseset_alloc (max_reg_num ());
1407 static void
1408 fwprop_done (void)
1410 loop_optimizer_finalize ();
1412 use_def_ref.release ();
1413 free (active_defs);
1414 if (flag_checking)
1415 sparseset_free (active_defs_check);
1417 free_dominance_info (CDI_DOMINATORS);
1418 cleanup_cfg (0);
1419 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1421 if (dump_file)
1422 fprintf (dump_file,
1423 "\nNumber of successful forward propagations: %d\n\n",
1424 num_changes);
1428 /* Main entry point. */
1430 static bool
1431 gate_fwprop (void)
1433 return optimize > 0 && flag_forward_propagate;
1436 static unsigned int
1437 fwprop (void)
1439 unsigned i;
1440 bool need_cleanup = false;
1442 fwprop_init ();
1444 /* Go through all the uses. df_uses_create will create new ones at the
1445 end, and we'll go through them as well.
1447 Do not forward propagate addresses into loops until after unrolling.
1448 CSE did so because it was able to fix its own mess, but we are not. */
1450 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1452 df_ref use = DF_USES_GET (i);
1453 if (use)
1454 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1455 || DF_REF_BB (use)->loop_father == NULL
1456 /* The outer most loop is not really a loop. */
1457 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1458 need_cleanup |= forward_propagate_into (use);
1461 fwprop_done ();
1462 if (need_cleanup)
1463 cleanup_cfg (0);
1464 return 0;
1467 namespace {
1469 const pass_data pass_data_rtl_fwprop =
1471 RTL_PASS, /* type */
1472 "fwprop1", /* name */
1473 OPTGROUP_NONE, /* optinfo_flags */
1474 TV_FWPROP, /* tv_id */
1475 0, /* properties_required */
1476 0, /* properties_provided */
1477 0, /* properties_destroyed */
1478 0, /* todo_flags_start */
1479 TODO_df_finish, /* todo_flags_finish */
1482 class pass_rtl_fwprop : public rtl_opt_pass
1484 public:
1485 pass_rtl_fwprop (gcc::context *ctxt)
1486 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1489 /* opt_pass methods: */
1490 virtual bool gate (function *) { return gate_fwprop (); }
1491 virtual unsigned int execute (function *) { return fwprop (); }
1493 }; // class pass_rtl_fwprop
1495 } // anon namespace
1497 rtl_opt_pass *
1498 make_pass_rtl_fwprop (gcc::context *ctxt)
1500 return new pass_rtl_fwprop (ctxt);
1503 static unsigned int
1504 fwprop_addr (void)
1506 unsigned i;
1507 bool need_cleanup = false;
1509 fwprop_init ();
1511 /* Go through all the uses. df_uses_create will create new ones at the
1512 end, and we'll go through them as well. */
1513 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1515 df_ref use = DF_USES_GET (i);
1516 if (use)
1517 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1518 && DF_REF_BB (use)->loop_father != NULL
1519 /* The outer most loop is not really a loop. */
1520 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1521 need_cleanup |= forward_propagate_into (use);
1524 fwprop_done ();
1526 if (need_cleanup)
1527 cleanup_cfg (0);
1528 return 0;
1531 namespace {
1533 const pass_data pass_data_rtl_fwprop_addr =
1535 RTL_PASS, /* type */
1536 "fwprop2", /* name */
1537 OPTGROUP_NONE, /* optinfo_flags */
1538 TV_FWPROP, /* tv_id */
1539 0, /* properties_required */
1540 0, /* properties_provided */
1541 0, /* properties_destroyed */
1542 0, /* todo_flags_start */
1543 TODO_df_finish, /* todo_flags_finish */
1546 class pass_rtl_fwprop_addr : public rtl_opt_pass
1548 public:
1549 pass_rtl_fwprop_addr (gcc::context *ctxt)
1550 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1553 /* opt_pass methods: */
1554 virtual bool gate (function *) { return gate_fwprop (); }
1555 virtual unsigned int execute (function *) { return fwprop_addr (); }
1557 }; // class pass_rtl_fwprop_addr
1559 } // anon namespace
1561 rtl_opt_pass *
1562 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1564 return new pass_rtl_fwprop_addr (ctxt);