re PR middle-end/92046 (Command line options (that are per-functions) are affecting...
[official-gcc.git] / gcc / dse.c
blob5d8c6f990ec69e97e8b2cc723891a96b7e08c1c2
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "params.h"
51 #include "rtl-iter.h"
52 #include "cfgcleanup.h"
53 #include "calls.h"
55 /* This file contains three techniques for performing Dead Store
56 Elimination (dse).
58 * The first technique performs dse locally on any base address. It
59 is based on the cselib which is a local value numbering technique.
60 This technique is local to a basic block but deals with a fairly
61 general addresses.
63 * The second technique performs dse globally but is restricted to
64 base addresses that are either constant or are relative to the
65 frame_pointer.
67 * The third technique, (which is only done after register allocation)
68 processes the spill slots. This differs from the second
69 technique because it takes advantage of the fact that spilling is
70 completely free from the effects of aliasing.
72 Logically, dse is a backwards dataflow problem. A store can be
73 deleted if it if cannot be reached in the backward direction by any
74 use of the value being stored. However, the local technique uses a
75 forwards scan of the basic block because cselib requires that the
76 block be processed in that order.
78 The pass is logically broken into 7 steps:
80 0) Initialization.
82 1) The local algorithm, as well as scanning the insns for the two
83 global algorithms.
85 2) Analysis to see if the global algs are necessary. In the case
86 of stores base on a constant address, there must be at least two
87 stores to that address, to make it possible to delete some of the
88 stores. In the case of stores off of the frame or spill related
89 stores, only one store to an address is necessary because those
90 stores die at the end of the function.
92 3) Set up the global dataflow equations based on processing the
93 info parsed in the first step.
95 4) Solve the dataflow equations.
97 5) Delete the insns that the global analysis has indicated are
98 unnecessary.
100 6) Delete insns that store the same value as preceding store
101 where the earlier store couldn't be eliminated.
103 7) Cleanup.
105 This step uses cselib and canon_rtx to build the largest expression
106 possible for each address. This pass is a forwards pass through
107 each basic block. From the point of view of the global technique,
108 the first pass could examine a block in either direction. The
109 forwards ordering is to accommodate cselib.
111 We make a simplifying assumption: addresses fall into four broad
112 categories:
114 1) base has rtx_varies_p == false, offset is constant.
115 2) base has rtx_varies_p == false, offset variable.
116 3) base has rtx_varies_p == true, offset constant.
117 4) base has rtx_varies_p == true, offset variable.
119 The local passes are able to process all 4 kinds of addresses. The
120 global pass only handles 1).
122 The global problem is formulated as follows:
124 A store, S1, to address A, where A is not relative to the stack
125 frame, can be eliminated if all paths from S1 to the end of the
126 function contain another store to A before a read to A.
128 If the address A is relative to the stack frame, a store S2 to A
129 can be eliminated if there are no paths from S2 that reach the
130 end of the function that read A before another store to A. In
131 this case S2 can be deleted if there are paths from S2 to the
132 end of the function that have no reads or writes to A. This
133 second case allows stores to the stack frame to be deleted that
134 would otherwise die when the function returns. This cannot be
135 done if stores_off_frame_dead_at_return is not true. See the doc
136 for that variable for when this variable is false.
138 The global problem is formulated as a backwards set union
139 dataflow problem where the stores are the gens and reads are the
140 kills. Set union problems are rare and require some special
141 handling given our representation of bitmaps. A straightforward
142 implementation requires a lot of bitmaps filled with 1s.
143 These are expensive and cumbersome in our bitmap formulation so
144 care has been taken to avoid large vectors filled with 1s. See
145 the comments in bb_info and in the dataflow confluence functions
146 for details.
148 There are two places for further enhancements to this algorithm:
150 1) The original dse which was embedded in a pass called flow also
151 did local address forwarding. For example in
153 A <- r100
154 ... <- A
156 flow would replace the right hand side of the second insn with a
157 reference to r100. Most of the information is available to add this
158 to this pass. It has not done it because it is a lot of work in
159 the case that either r100 is assigned to between the first and
160 second insn and/or the second insn is a load of part of the value
161 stored by the first insn.
163 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
164 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
165 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
166 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
168 2) The cleaning up of spill code is quite profitable. It currently
169 depends on reading tea leaves and chicken entrails left by reload.
170 This pass depends on reload creating a singleton alias set for each
171 spill slot and telling the next dse pass which of these alias sets
172 are the singletons. Rather than analyze the addresses of the
173 spills, dse's spill processing just does analysis of the loads and
174 stores that use those alias sets. There are three cases where this
175 falls short:
177 a) Reload sometimes creates the slot for one mode of access, and
178 then inserts loads and/or stores for a smaller mode. In this
179 case, the current code just punts on the slot. The proper thing
180 to do is to back out and use one bit vector position for each
181 byte of the entity associated with the slot. This depends on
182 KNOWING that reload always generates the accesses for each of the
183 bytes in some canonical (read that easy to understand several
184 passes after reload happens) way.
186 b) Reload sometimes decides that spill slot it allocated was not
187 large enough for the mode and goes back and allocates more slots
188 with the same mode and alias set. The backout in this case is a
189 little more graceful than (a). In this case the slot is unmarked
190 as being a spill slot and if final address comes out to be based
191 off the frame pointer, the global algorithm handles this slot.
193 c) For any pass that may prespill, there is currently no
194 mechanism to tell the dse pass that the slot being used has the
195 special properties that reload uses. It may be that all that is
196 required is to have those passes make the same calls that reload
197 does, assuming that the alias sets can be manipulated in the same
198 way. */
200 /* There are limits to the size of constant offsets we model for the
201 global problem. There are certainly test cases, that exceed this
202 limit, however, it is unlikely that there are important programs
203 that really have constant offsets this size. */
204 #define MAX_OFFSET (64 * 1024)
206 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
207 on the default obstack because these bitmaps can grow quite large
208 (~2GB for the small (!) test case of PR54146) and we'll hold on to
209 all that memory until the end of the compiler run.
210 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
211 releasing the whole obstack. */
212 static bitmap_obstack dse_bitmap_obstack;
214 /* Obstack for other data. As for above: Kinda nice to be able to
215 throw it all away at the end in one big sweep. */
216 static struct obstack dse_obstack;
218 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
219 static bitmap scratch = NULL;
221 struct insn_info_type;
223 /* This structure holds information about a candidate store. */
224 class store_info
226 public:
228 /* False means this is a clobber. */
229 bool is_set;
231 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
232 bool is_large;
234 /* The id of the mem group of the base address. If rtx_varies_p is
235 true, this is -1. Otherwise, it is the index into the group
236 table. */
237 int group_id;
239 /* This is the cselib value. */
240 cselib_val *cse_base;
242 /* This canonized mem. */
243 rtx mem;
245 /* Canonized MEM address for use by canon_true_dependence. */
246 rtx mem_addr;
248 /* The offset of the first byte associated with the operation. */
249 poly_int64 offset;
251 /* The number of bytes covered by the operation. This is always exact
252 and known (rather than -1). */
253 poly_int64 width;
255 union
257 /* A bitmask as wide as the number of bytes in the word that
258 contains a 1 if the byte may be needed. The store is unused if
259 all of the bits are 0. This is used if IS_LARGE is false. */
260 unsigned HOST_WIDE_INT small_bitmask;
262 struct
264 /* A bitmap with one bit per byte, or null if the number of
265 bytes isn't known at compile time. A cleared bit means
266 the position is needed. Used if IS_LARGE is true. */
267 bitmap bmap;
269 /* When BITMAP is nonnull, this counts the number of set bits
270 (i.e. unneeded bytes) in the bitmap. If it is equal to
271 WIDTH, the whole store is unused.
273 When BITMAP is null:
274 - the store is definitely not needed when COUNT == 1
275 - all the store is needed when COUNT == 0 and RHS is nonnull
276 - otherwise we don't know which parts of the store are needed. */
277 int count;
278 } large;
279 } positions_needed;
281 /* The next store info for this insn. */
282 class store_info *next;
284 /* The right hand side of the store. This is used if there is a
285 subsequent reload of the mems address somewhere later in the
286 basic block. */
287 rtx rhs;
289 /* If rhs is or holds a constant, this contains that constant,
290 otherwise NULL. */
291 rtx const_rhs;
293 /* Set if this store stores the same constant value as REDUNDANT_REASON
294 insn stored. These aren't eliminated early, because doing that
295 might prevent the earlier larger store to be eliminated. */
296 struct insn_info_type *redundant_reason;
299 /* Return a bitmask with the first N low bits set. */
301 static unsigned HOST_WIDE_INT
302 lowpart_bitmask (int n)
304 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
305 return mask >> (HOST_BITS_PER_WIDE_INT - n);
308 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
310 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
312 /* This structure holds information about a load. These are only
313 built for rtx bases. */
314 class read_info_type
316 public:
317 /* The id of the mem group of the base address. */
318 int group_id;
320 /* The offset of the first byte associated with the operation. */
321 poly_int64 offset;
323 /* The number of bytes covered by the operation, or -1 if not known. */
324 poly_int64 width;
326 /* The mem being read. */
327 rtx mem;
329 /* The next read_info for this insn. */
330 class read_info_type *next;
332 typedef class read_info_type *read_info_t;
334 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
336 /* One of these records is created for each insn. */
338 struct insn_info_type
340 /* Set true if the insn contains a store but the insn itself cannot
341 be deleted. This is set if the insn is a parallel and there is
342 more than one non dead output or if the insn is in some way
343 volatile. */
344 bool cannot_delete;
346 /* This field is only used by the global algorithm. It is set true
347 if the insn contains any read of mem except for a (1). This is
348 also set if the insn is a call or has a clobber mem. If the insn
349 contains a wild read, the use_rec will be null. */
350 bool wild_read;
352 /* This is true only for CALL instructions which could potentially read
353 any non-frame memory location. This field is used by the global
354 algorithm. */
355 bool non_frame_wild_read;
357 /* This field is only used for the processing of const functions.
358 These functions cannot read memory, but they can read the stack
359 because that is where they may get their parms. We need to be
360 this conservative because, like the store motion pass, we don't
361 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
362 Moreover, we need to distinguish two cases:
363 1. Before reload (register elimination), the stores related to
364 outgoing arguments are stack pointer based and thus deemed
365 of non-constant base in this pass. This requires special
366 handling but also means that the frame pointer based stores
367 need not be killed upon encountering a const function call.
368 2. After reload, the stores related to outgoing arguments can be
369 either stack pointer or hard frame pointer based. This means
370 that we have no other choice than also killing all the frame
371 pointer based stores upon encountering a const function call.
372 This field is set after reload for const function calls and before
373 reload for const tail function calls on targets where arg pointer
374 is the frame pointer. Having this set is less severe than a wild
375 read, it just means that all the frame related stores are killed
376 rather than all the stores. */
377 bool frame_read;
379 /* This field is only used for the processing of const functions.
380 It is set if the insn may contain a stack pointer based store. */
381 bool stack_pointer_based;
383 /* This is true if any of the sets within the store contains a
384 cselib base. Such stores can only be deleted by the local
385 algorithm. */
386 bool contains_cselib_groups;
388 /* The insn. */
389 rtx_insn *insn;
391 /* The list of mem sets or mem clobbers that are contained in this
392 insn. If the insn is deletable, it contains only one mem set.
393 But it could also contain clobbers. Insns that contain more than
394 one mem set are not deletable, but each of those mems are here in
395 order to provide info to delete other insns. */
396 store_info *store_rec;
398 /* The linked list of mem uses in this insn. Only the reads from
399 rtx bases are listed here. The reads to cselib bases are
400 completely processed during the first scan and so are never
401 created. */
402 read_info_t read_rec;
404 /* The live fixed registers. We assume only fixed registers can
405 cause trouble by being clobbered from an expanded pattern;
406 storing only the live fixed registers (rather than all registers)
407 means less memory needs to be allocated / copied for the individual
408 stores. */
409 regset fixed_regs_live;
411 /* The prev insn in the basic block. */
412 struct insn_info_type * prev_insn;
414 /* The linked list of insns that are in consideration for removal in
415 the forwards pass through the basic block. This pointer may be
416 trash as it is not cleared when a wild read occurs. The only
417 time it is guaranteed to be correct is when the traversal starts
418 at active_local_stores. */
419 struct insn_info_type * next_local_store;
421 typedef struct insn_info_type *insn_info_t;
423 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
425 /* The linked list of stores that are under consideration in this
426 basic block. */
427 static insn_info_t active_local_stores;
428 static int active_local_stores_len;
430 struct dse_bb_info_type
432 /* Pointer to the insn info for the last insn in the block. These
433 are linked so this is how all of the insns are reached. During
434 scanning this is the current insn being scanned. */
435 insn_info_t last_insn;
437 /* The info for the global dataflow problem. */
440 /* This is set if the transfer function should and in the wild_read
441 bitmap before applying the kill and gen sets. That vector knocks
442 out most of the bits in the bitmap and thus speeds up the
443 operations. */
444 bool apply_wild_read;
446 /* The following 4 bitvectors hold information about which positions
447 of which stores are live or dead. They are indexed by
448 get_bitmap_index. */
450 /* The set of store positions that exist in this block before a wild read. */
451 bitmap gen;
453 /* The set of load positions that exist in this block above the
454 same position of a store. */
455 bitmap kill;
457 /* The set of stores that reach the top of the block without being
458 killed by a read.
460 Do not represent the in if it is all ones. Note that this is
461 what the bitvector should logically be initialized to for a set
462 intersection problem. However, like the kill set, this is too
463 expensive. So initially, the in set will only be created for the
464 exit block and any block that contains a wild read. */
465 bitmap in;
467 /* The set of stores that reach the bottom of the block from it's
468 successors.
470 Do not represent the in if it is all ones. Note that this is
471 what the bitvector should logically be initialized to for a set
472 intersection problem. However, like the kill and in set, this is
473 too expensive. So what is done is that the confluence operator
474 just initializes the vector from one of the out sets of the
475 successors of the block. */
476 bitmap out;
478 /* The following bitvector is indexed by the reg number. It
479 contains the set of regs that are live at the current instruction
480 being processed. While it contains info for all of the
481 registers, only the hard registers are actually examined. It is used
482 to assure that shift and/or add sequences that are inserted do not
483 accidentally clobber live hard regs. */
484 bitmap regs_live;
487 typedef struct dse_bb_info_type *bb_info_t;
489 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
490 ("bb_info_pool");
492 /* Table to hold all bb_infos. */
493 static bb_info_t *bb_table;
495 /* There is a group_info for each rtx base that is used to reference
496 memory. There are also not many of the rtx bases because they are
497 very limited in scope. */
499 struct group_info
501 /* The actual base of the address. */
502 rtx rtx_base;
504 /* The sequential id of the base. This allows us to have a
505 canonical ordering of these that is not based on addresses. */
506 int id;
508 /* True if there are any positions that are to be processed
509 globally. */
510 bool process_globally;
512 /* True if the base of this group is either the frame_pointer or
513 hard_frame_pointer. */
514 bool frame_related;
516 /* A mem wrapped around the base pointer for the group in order to do
517 read dependency. It must be given BLKmode in order to encompass all
518 the possible offsets from the base. */
519 rtx base_mem;
521 /* Canonized version of base_mem's address. */
522 rtx canon_base_addr;
524 /* These two sets of two bitmaps are used to keep track of how many
525 stores are actually referencing that position from this base. We
526 only do this for rtx bases as this will be used to assign
527 positions in the bitmaps for the global problem. Bit N is set in
528 store1 on the first store for offset N. Bit N is set in store2
529 for the second store to offset N. This is all we need since we
530 only care about offsets that have two or more stores for them.
532 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
533 for 0 and greater offsets.
535 There is one special case here, for stores into the stack frame,
536 we will or store1 into store2 before deciding which stores look
537 at globally. This is because stores to the stack frame that have
538 no other reads before the end of the function can also be
539 deleted. */
540 bitmap store1_n, store1_p, store2_n, store2_p;
542 /* These bitmaps keep track of offsets in this group escape this function.
543 An offset escapes if it corresponds to a named variable whose
544 addressable flag is set. */
545 bitmap escaped_n, escaped_p;
547 /* The positions in this bitmap have the same assignments as the in,
548 out, gen and kill bitmaps. This bitmap is all zeros except for
549 the positions that are occupied by stores for this group. */
550 bitmap group_kill;
552 /* The offset_map is used to map the offsets from this base into
553 positions in the global bitmaps. It is only created after all of
554 the all of stores have been scanned and we know which ones we
555 care about. */
556 int *offset_map_n, *offset_map_p;
557 int offset_map_size_n, offset_map_size_p;
560 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
562 /* Index into the rtx_group_vec. */
563 static int rtx_group_next_id;
566 static vec<group_info *> rtx_group_vec;
569 /* This structure holds the set of changes that are being deferred
570 when removing read operation. See replace_read. */
571 struct deferred_change
574 /* The mem that is being replaced. */
575 rtx *loc;
577 /* The reg it is being replaced with. */
578 rtx reg;
580 struct deferred_change *next;
583 static object_allocator<deferred_change> deferred_change_pool
584 ("deferred_change_pool");
586 static deferred_change *deferred_change_list = NULL;
588 /* This is true except if cfun->stdarg -- i.e. we cannot do
589 this for vararg functions because they play games with the frame. */
590 static bool stores_off_frame_dead_at_return;
592 /* Counter for stats. */
593 static int globally_deleted;
594 static int locally_deleted;
596 static bitmap all_blocks;
598 /* Locations that are killed by calls in the global phase. */
599 static bitmap kill_on_calls;
601 /* The number of bits used in the global bitmaps. */
602 static unsigned int current_position;
604 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
606 static void
607 print_range (FILE *file, poly_int64 offset, poly_int64 width)
609 fprintf (file, "[");
610 print_dec (offset, file, SIGNED);
611 fprintf (file, "..");
612 print_dec (offset + width, file, SIGNED);
613 fprintf (file, ")");
616 /*----------------------------------------------------------------------------
617 Zeroth step.
619 Initialization.
620 ----------------------------------------------------------------------------*/
623 /* Hashtable callbacks for maintaining the "bases" field of
624 store_group_info, given that the addresses are function invariants. */
626 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
628 static inline hashval_t hash (const group_info *);
629 static inline bool equal (const group_info *, const group_info *);
632 inline bool
633 invariant_group_base_hasher::equal (const group_info *gi1,
634 const group_info *gi2)
636 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
639 inline hashval_t
640 invariant_group_base_hasher::hash (const group_info *gi)
642 int do_not_record;
643 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
646 /* Tables of group_info structures, hashed by base value. */
647 static hash_table<invariant_group_base_hasher> *rtx_group_table;
650 /* Get the GROUP for BASE. Add a new group if it is not there. */
652 static group_info *
653 get_group_info (rtx base)
655 struct group_info tmp_gi;
656 group_info *gi;
657 group_info **slot;
659 gcc_assert (base != NULL_RTX);
661 /* Find the store_base_info structure for BASE, creating a new one
662 if necessary. */
663 tmp_gi.rtx_base = base;
664 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
665 gi = *slot;
667 if (gi == NULL)
669 *slot = gi = group_info_pool.allocate ();
670 gi->rtx_base = base;
671 gi->id = rtx_group_next_id++;
672 gi->base_mem = gen_rtx_MEM (BLKmode, base);
673 gi->canon_base_addr = canon_rtx (base);
674 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
681 gi->process_globally = false;
682 gi->frame_related =
683 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
684 gi->offset_map_size_n = 0;
685 gi->offset_map_size_p = 0;
686 gi->offset_map_n = NULL;
687 gi->offset_map_p = NULL;
688 rtx_group_vec.safe_push (gi);
691 return gi;
695 /* Initialization of data structures. */
697 static void
698 dse_step0 (void)
700 locally_deleted = 0;
701 globally_deleted = 0;
703 bitmap_obstack_initialize (&dse_bitmap_obstack);
704 gcc_obstack_init (&dse_obstack);
706 scratch = BITMAP_ALLOC (&reg_obstack);
707 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
710 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
712 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
713 rtx_group_next_id = 0;
715 stores_off_frame_dead_at_return = !cfun->stdarg;
717 init_alias_analysis ();
722 /*----------------------------------------------------------------------------
723 First step.
725 Scan all of the insns. Any random ordering of the blocks is fine.
726 Each block is scanned in forward order to accommodate cselib which
727 is used to remove stores with non-constant bases.
728 ----------------------------------------------------------------------------*/
730 /* Delete all of the store_info recs from INSN_INFO. */
732 static void
733 free_store_info (insn_info_t insn_info)
735 store_info *cur = insn_info->store_rec;
736 while (cur)
738 store_info *next = cur->next;
739 if (cur->is_large)
740 BITMAP_FREE (cur->positions_needed.large.bmap);
741 if (cur->cse_base)
742 cse_store_info_pool.remove (cur);
743 else
744 rtx_store_info_pool.remove (cur);
745 cur = next;
748 insn_info->cannot_delete = true;
749 insn_info->contains_cselib_groups = false;
750 insn_info->store_rec = NULL;
753 struct note_add_store_info
755 rtx_insn *first, *current;
756 regset fixed_regs_live;
757 bool failure;
760 /* Callback for emit_inc_dec_insn_before via note_stores.
761 Check if a register is clobbered which is live afterwards. */
763 static void
764 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
766 rtx_insn *insn;
767 note_add_store_info *info = (note_add_store_info *) data;
769 if (!REG_P (loc))
770 return;
772 /* If this register is referenced by the current or an earlier insn,
773 that's OK. E.g. this applies to the register that is being incremented
774 with this addition. */
775 for (insn = info->first;
776 insn != NEXT_INSN (info->current);
777 insn = NEXT_INSN (insn))
778 if (reg_referenced_p (loc, PATTERN (insn)))
779 return;
781 /* If we come here, we have a clobber of a register that's only OK
782 if that register is not live. If we don't have liveness information
783 available, fail now. */
784 if (!info->fixed_regs_live)
786 info->failure = true;
787 return;
789 /* Now check if this is a live fixed register. */
790 unsigned int end_regno = END_REGNO (loc);
791 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
792 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
793 info->failure = true;
796 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
797 SRC + SRCOFF before insn ARG. */
799 static int
800 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
801 rtx op ATTRIBUTE_UNUSED,
802 rtx dest, rtx src, rtx srcoff, void *arg)
804 insn_info_t insn_info = (insn_info_t) arg;
805 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
806 note_add_store_info info;
808 /* We can reuse all operands without copying, because we are about
809 to delete the insn that contained it. */
810 if (srcoff)
812 start_sequence ();
813 emit_insn (gen_add3_insn (dest, src, srcoff));
814 new_insn = get_insns ();
815 end_sequence ();
817 else
818 new_insn = gen_move_insn (dest, src);
819 info.first = new_insn;
820 info.fixed_regs_live = insn_info->fixed_regs_live;
821 info.failure = false;
822 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
824 info.current = cur;
825 note_stores (cur, note_add_store, &info);
828 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
829 return it immediately, communicating the failure to its caller. */
830 if (info.failure)
831 return 1;
833 emit_insn_before (new_insn, insn);
835 return 0;
838 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
839 is there, is split into a separate insn.
840 Return true on success (or if there was nothing to do), false on failure. */
842 static bool
843 check_for_inc_dec_1 (insn_info_t insn_info)
845 rtx_insn *insn = insn_info->insn;
846 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
847 if (note)
848 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
849 insn_info) == 0;
850 return true;
854 /* Entry point for postreload. If you work on reload_cse, or you need this
855 anywhere else, consider if you can provide register liveness information
856 and add a parameter to this function so that it can be passed down in
857 insn_info.fixed_regs_live. */
858 bool
859 check_for_inc_dec (rtx_insn *insn)
861 insn_info_type insn_info;
862 rtx note;
864 insn_info.insn = insn;
865 insn_info.fixed_regs_live = NULL;
866 note = find_reg_note (insn, REG_INC, NULL_RTX);
867 if (note)
868 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
869 &insn_info) == 0;
870 return true;
873 /* Delete the insn and free all of the fields inside INSN_INFO. */
875 static void
876 delete_dead_store_insn (insn_info_t insn_info)
878 read_info_t read_info;
880 if (!dbg_cnt (dse))
881 return;
883 if (!check_for_inc_dec_1 (insn_info))
884 return;
885 if (dump_file && (dump_flags & TDF_DETAILS))
886 fprintf (dump_file, "Locally deleting insn %d\n",
887 INSN_UID (insn_info->insn));
889 free_store_info (insn_info);
890 read_info = insn_info->read_rec;
892 while (read_info)
894 read_info_t next = read_info->next;
895 read_info_type_pool.remove (read_info);
896 read_info = next;
898 insn_info->read_rec = NULL;
900 delete_insn (insn_info->insn);
901 locally_deleted++;
902 insn_info->insn = NULL;
904 insn_info->wild_read = false;
907 /* Return whether DECL, a local variable, can possibly escape the current
908 function scope. */
910 static bool
911 local_variable_can_escape (tree decl)
913 if (TREE_ADDRESSABLE (decl))
914 return true;
916 /* If this is a partitioned variable, we need to consider all the variables
917 in the partition. This is necessary because a store into one of them can
918 be replaced with a store into another and this may not change the outcome
919 of the escape analysis. */
920 if (cfun->gimple_df->decls_to_pointers != NULL)
922 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
923 if (namep)
924 return TREE_ADDRESSABLE (*namep);
927 return false;
930 /* Return whether EXPR can possibly escape the current function scope. */
932 static bool
933 can_escape (tree expr)
935 tree base;
936 if (!expr)
937 return true;
938 base = get_base_address (expr);
939 if (DECL_P (base)
940 && !may_be_aliased (base)
941 && !(VAR_P (base)
942 && !DECL_EXTERNAL (base)
943 && !TREE_STATIC (base)
944 && local_variable_can_escape (base)))
945 return false;
946 return true;
949 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
950 OFFSET and WIDTH. */
952 static void
953 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
954 tree expr)
956 /* Non-constant offsets and widths act as global kills, so there's no point
957 trying to use them to derive global DSE candidates. */
958 HOST_WIDE_INT i, const_offset, const_width;
959 bool expr_escapes = can_escape (expr);
960 if (offset.is_constant (&const_offset)
961 && width.is_constant (&const_width)
962 && const_offset > -MAX_OFFSET
963 && const_offset + const_width < MAX_OFFSET)
964 for (i = const_offset; i < const_offset + const_width; ++i)
966 bitmap store1;
967 bitmap store2;
968 bitmap escaped;
969 int ai;
970 if (i < 0)
972 store1 = group->store1_n;
973 store2 = group->store2_n;
974 escaped = group->escaped_n;
975 ai = -i;
977 else
979 store1 = group->store1_p;
980 store2 = group->store2_p;
981 escaped = group->escaped_p;
982 ai = i;
985 if (!bitmap_set_bit (store1, ai))
986 bitmap_set_bit (store2, ai);
987 else
989 if (i < 0)
991 if (group->offset_map_size_n < ai)
992 group->offset_map_size_n = ai;
994 else
996 if (group->offset_map_size_p < ai)
997 group->offset_map_size_p = ai;
1000 if (expr_escapes)
1001 bitmap_set_bit (escaped, ai);
1005 static void
1006 reset_active_stores (void)
1008 active_local_stores = NULL;
1009 active_local_stores_len = 0;
1012 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1014 static void
1015 free_read_records (bb_info_t bb_info)
1017 insn_info_t insn_info = bb_info->last_insn;
1018 read_info_t *ptr = &insn_info->read_rec;
1019 while (*ptr)
1021 read_info_t next = (*ptr)->next;
1022 read_info_type_pool.remove (*ptr);
1023 *ptr = next;
1027 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1029 static void
1030 add_wild_read (bb_info_t bb_info)
1032 insn_info_t insn_info = bb_info->last_insn;
1033 insn_info->wild_read = true;
1034 free_read_records (bb_info);
1035 reset_active_stores ();
1038 /* Set the BB_INFO so that the last insn is marked as a wild read of
1039 non-frame locations. */
1041 static void
1042 add_non_frame_wild_read (bb_info_t bb_info)
1044 insn_info_t insn_info = bb_info->last_insn;
1045 insn_info->non_frame_wild_read = true;
1046 free_read_records (bb_info);
1047 reset_active_stores ();
1050 /* Return true if X is a constant or one of the registers that behave
1051 as a constant over the life of a function. This is equivalent to
1052 !rtx_varies_p for memory addresses. */
1054 static bool
1055 const_or_frame_p (rtx x)
1057 if (CONSTANT_P (x))
1058 return true;
1060 if (GET_CODE (x) == REG)
1062 /* Note that we have to test for the actual rtx used for the frame
1063 and arg pointers and not just the register number in case we have
1064 eliminated the frame and/or arg pointer and are using it
1065 for pseudos. */
1066 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1067 /* The arg pointer varies if it is not a fixed register. */
1068 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1069 || x == pic_offset_table_rtx)
1070 return true;
1071 return false;
1074 return false;
1077 /* Take all reasonable action to put the address of MEM into the form
1078 that we can do analysis on.
1080 The gold standard is to get the address into the form: address +
1081 OFFSET where address is something that rtx_varies_p considers a
1082 constant. When we can get the address in this form, we can do
1083 global analysis on it. Note that for constant bases, address is
1084 not actually returned, only the group_id. The address can be
1085 obtained from that.
1087 If that fails, we try cselib to get a value we can at least use
1088 locally. If that fails we return false.
1090 The GROUP_ID is set to -1 for cselib bases and the index of the
1091 group for non_varying bases.
1093 FOR_READ is true if this is a mem read and false if not. */
1095 static bool
1096 canon_address (rtx mem,
1097 int *group_id,
1098 poly_int64 *offset,
1099 cselib_val **base)
1101 machine_mode address_mode = get_address_mode (mem);
1102 rtx mem_address = XEXP (mem, 0);
1103 rtx expanded_address, address;
1104 int expanded;
1106 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1110 fprintf (dump_file, " mem: ");
1111 print_inline_rtx (dump_file, mem_address, 0);
1112 fprintf (dump_file, "\n");
1115 /* First see if just canon_rtx (mem_address) is const or frame,
1116 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1117 address = NULL_RTX;
1118 for (expanded = 0; expanded < 2; expanded++)
1120 if (expanded)
1122 /* Use cselib to replace all of the reg references with the full
1123 expression. This will take care of the case where we have
1125 r_x = base + offset;
1126 val = *r_x;
1128 by making it into
1130 val = *(base + offset); */
1132 expanded_address = cselib_expand_value_rtx (mem_address,
1133 scratch, 5);
1135 /* If this fails, just go with the address from first
1136 iteration. */
1137 if (!expanded_address)
1138 break;
1140 else
1141 expanded_address = mem_address;
1143 /* Split the address into canonical BASE + OFFSET terms. */
1144 address = canon_rtx (expanded_address);
1146 *offset = 0;
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1150 if (expanded)
1152 fprintf (dump_file, "\n after cselib_expand address: ");
1153 print_inline_rtx (dump_file, expanded_address, 0);
1154 fprintf (dump_file, "\n");
1157 fprintf (dump_file, "\n after canon_rtx address: ");
1158 print_inline_rtx (dump_file, address, 0);
1159 fprintf (dump_file, "\n");
1162 if (GET_CODE (address) == CONST)
1163 address = XEXP (address, 0);
1165 address = strip_offset_and_add (address, offset);
1167 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1168 && const_or_frame_p (address))
1170 group_info *group = get_group_info (address);
1172 if (dump_file && (dump_flags & TDF_DETAILS))
1174 fprintf (dump_file, " gid=%d offset=", group->id);
1175 print_dec (*offset, dump_file);
1176 fprintf (dump_file, "\n");
1178 *base = NULL;
1179 *group_id = group->id;
1180 return true;
1184 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1185 *group_id = -1;
1187 if (*base == NULL)
1189 if (dump_file && (dump_flags & TDF_DETAILS))
1190 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1191 return false;
1193 if (dump_file && (dump_flags & TDF_DETAILS))
1195 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1196 (*base)->uid, (*base)->hash);
1197 print_dec (*offset, dump_file);
1198 fprintf (dump_file, "\n");
1200 return true;
1204 /* Clear the rhs field from the active_local_stores array. */
1206 static void
1207 clear_rhs_from_active_local_stores (void)
1209 insn_info_t ptr = active_local_stores;
1211 while (ptr)
1213 store_info *store_info = ptr->store_rec;
1214 /* Skip the clobbers. */
1215 while (!store_info->is_set)
1216 store_info = store_info->next;
1218 store_info->rhs = NULL;
1219 store_info->const_rhs = NULL;
1221 ptr = ptr->next_local_store;
1226 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1228 static inline void
1229 set_position_unneeded (store_info *s_info, int pos)
1231 if (__builtin_expect (s_info->is_large, false))
1233 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1234 s_info->positions_needed.large.count++;
1236 else
1237 s_info->positions_needed.small_bitmask
1238 &= ~(HOST_WIDE_INT_1U << pos);
1241 /* Mark the whole store S_INFO as unneeded. */
1243 static inline void
1244 set_all_positions_unneeded (store_info *s_info)
1246 if (__builtin_expect (s_info->is_large, false))
1248 HOST_WIDE_INT width;
1249 if (s_info->width.is_constant (&width))
1251 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1252 s_info->positions_needed.large.count = width;
1254 else
1256 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1257 s_info->positions_needed.large.count = 1;
1260 else
1261 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1264 /* Return TRUE if any bytes from S_INFO store are needed. */
1266 static inline bool
1267 any_positions_needed_p (store_info *s_info)
1269 if (__builtin_expect (s_info->is_large, false))
1271 HOST_WIDE_INT width;
1272 if (s_info->width.is_constant (&width))
1274 gcc_checking_assert (s_info->positions_needed.large.bmap);
1275 return s_info->positions_needed.large.count < width;
1277 else
1279 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1280 return s_info->positions_needed.large.count == 0;
1283 else
1284 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1287 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1288 store are known to be needed. */
1290 static inline bool
1291 all_positions_needed_p (store_info *s_info, poly_int64 start,
1292 poly_int64 width)
1294 gcc_assert (s_info->rhs);
1295 if (!s_info->width.is_constant ())
1297 gcc_assert (s_info->is_large
1298 && !s_info->positions_needed.large.bmap);
1299 return s_info->positions_needed.large.count == 0;
1302 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1303 a non-constant region of a constant-sized store. We can't say for
1304 sure that all positions are needed. */
1305 HOST_WIDE_INT const_start, const_width;
1306 if (!start.is_constant (&const_start)
1307 || !width.is_constant (&const_width))
1308 return false;
1310 if (__builtin_expect (s_info->is_large, false))
1312 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1313 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1314 return false;
1315 return true;
1317 else
1319 unsigned HOST_WIDE_INT mask
1320 = lowpart_bitmask (const_width) << const_start;
1321 return (s_info->positions_needed.small_bitmask & mask) == mask;
1326 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1327 poly_int64, basic_block, bool);
1330 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1331 there is a candidate store, after adding it to the appropriate
1332 local store group if so. */
1334 static int
1335 record_store (rtx body, bb_info_t bb_info)
1337 rtx mem, rhs, const_rhs, mem_addr;
1338 poly_int64 offset = 0;
1339 poly_int64 width = 0;
1340 insn_info_t insn_info = bb_info->last_insn;
1341 store_info *store_info = NULL;
1342 int group_id;
1343 cselib_val *base = NULL;
1344 insn_info_t ptr, last, redundant_reason;
1345 bool store_is_unused;
1347 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1348 return 0;
1350 mem = SET_DEST (body);
1352 /* If this is not used, then this cannot be used to keep the insn
1353 from being deleted. On the other hand, it does provide something
1354 that can be used to prove that another store is dead. */
1355 store_is_unused
1356 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1358 /* Check whether that value is a suitable memory location. */
1359 if (!MEM_P (mem))
1361 /* If the set or clobber is unused, then it does not effect our
1362 ability to get rid of the entire insn. */
1363 if (!store_is_unused)
1364 insn_info->cannot_delete = true;
1365 return 0;
1368 /* At this point we know mem is a mem. */
1369 if (GET_MODE (mem) == BLKmode)
1371 HOST_WIDE_INT const_size;
1372 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1374 if (dump_file && (dump_flags & TDF_DETAILS))
1375 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1376 add_wild_read (bb_info);
1377 insn_info->cannot_delete = true;
1378 return 0;
1380 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1381 as memset (addr, 0, 36); */
1382 else if (!MEM_SIZE_KNOWN_P (mem)
1383 || maybe_le (MEM_SIZE (mem), 0)
1384 /* This is a limit on the bitmap size, which is only relevant
1385 for constant-sized MEMs. */
1386 || (MEM_SIZE (mem).is_constant (&const_size)
1387 && const_size > MAX_OFFSET)
1388 || GET_CODE (body) != SET
1389 || !CONST_INT_P (SET_SRC (body)))
1391 if (!store_is_unused)
1393 /* If the set or clobber is unused, then it does not effect our
1394 ability to get rid of the entire insn. */
1395 insn_info->cannot_delete = true;
1396 clear_rhs_from_active_local_stores ();
1398 return 0;
1402 /* We can still process a volatile mem, we just cannot delete it. */
1403 if (MEM_VOLATILE_P (mem))
1404 insn_info->cannot_delete = true;
1406 if (!canon_address (mem, &group_id, &offset, &base))
1408 clear_rhs_from_active_local_stores ();
1409 return 0;
1412 if (GET_MODE (mem) == BLKmode)
1413 width = MEM_SIZE (mem);
1414 else
1415 width = GET_MODE_SIZE (GET_MODE (mem));
1417 if (!endpoint_representable_p (offset, width))
1419 clear_rhs_from_active_local_stores ();
1420 return 0;
1423 if (known_eq (width, 0))
1424 return 0;
1426 if (group_id >= 0)
1428 /* In the restrictive case where the base is a constant or the
1429 frame pointer we can do global analysis. */
1431 group_info *group
1432 = rtx_group_vec[group_id];
1433 tree expr = MEM_EXPR (mem);
1435 store_info = rtx_store_info_pool.allocate ();
1436 set_usage_bits (group, offset, width, expr);
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1440 fprintf (dump_file, " processing const base store gid=%d",
1441 group_id);
1442 print_range (dump_file, offset, width);
1443 fprintf (dump_file, "\n");
1446 else
1448 if (may_be_sp_based_p (XEXP (mem, 0)))
1449 insn_info->stack_pointer_based = true;
1450 insn_info->contains_cselib_groups = true;
1452 store_info = cse_store_info_pool.allocate ();
1453 group_id = -1;
1455 if (dump_file && (dump_flags & TDF_DETAILS))
1457 fprintf (dump_file, " processing cselib store ");
1458 print_range (dump_file, offset, width);
1459 fprintf (dump_file, "\n");
1463 const_rhs = rhs = NULL_RTX;
1464 if (GET_CODE (body) == SET
1465 /* No place to keep the value after ra. */
1466 && !reload_completed
1467 && (REG_P (SET_SRC (body))
1468 || GET_CODE (SET_SRC (body)) == SUBREG
1469 || CONSTANT_P (SET_SRC (body)))
1470 && !MEM_VOLATILE_P (mem)
1471 /* Sometimes the store and reload is used for truncation and
1472 rounding. */
1473 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1475 rhs = SET_SRC (body);
1476 if (CONSTANT_P (rhs))
1477 const_rhs = rhs;
1478 else if (body == PATTERN (insn_info->insn))
1480 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1481 if (tem && CONSTANT_P (XEXP (tem, 0)))
1482 const_rhs = XEXP (tem, 0);
1484 if (const_rhs == NULL_RTX && REG_P (rhs))
1486 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1488 if (tem && CONSTANT_P (tem))
1489 const_rhs = tem;
1493 /* Check to see if this stores causes some other stores to be
1494 dead. */
1495 ptr = active_local_stores;
1496 last = NULL;
1497 redundant_reason = NULL;
1498 mem = canon_rtx (mem);
1500 if (group_id < 0)
1501 mem_addr = base->val_rtx;
1502 else
1504 group_info *group = rtx_group_vec[group_id];
1505 mem_addr = group->canon_base_addr;
1507 if (maybe_ne (offset, 0))
1508 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1510 while (ptr)
1512 insn_info_t next = ptr->next_local_store;
1513 class store_info *s_info = ptr->store_rec;
1514 bool del = true;
1516 /* Skip the clobbers. We delete the active insn if this insn
1517 shadows the set. To have been put on the active list, it
1518 has exactly on set. */
1519 while (!s_info->is_set)
1520 s_info = s_info->next;
1522 if (s_info->group_id == group_id && s_info->cse_base == base)
1524 HOST_WIDE_INT i;
1525 if (dump_file && (dump_flags & TDF_DETAILS))
1527 fprintf (dump_file, " trying store in insn=%d gid=%d",
1528 INSN_UID (ptr->insn), s_info->group_id);
1529 print_range (dump_file, s_info->offset, s_info->width);
1530 fprintf (dump_file, "\n");
1533 /* Even if PTR won't be eliminated as unneeded, if both
1534 PTR and this insn store the same constant value, we might
1535 eliminate this insn instead. */
1536 if (s_info->const_rhs
1537 && const_rhs
1538 && known_subrange_p (offset, width,
1539 s_info->offset, s_info->width)
1540 && all_positions_needed_p (s_info, offset - s_info->offset,
1541 width)
1542 /* We can only remove the later store if the earlier aliases
1543 at least all accesses the later one. */
1544 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1545 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1546 MEM_ALIAS_SET (s_info->mem))))
1548 if (GET_MODE (mem) == BLKmode)
1550 if (GET_MODE (s_info->mem) == BLKmode
1551 && s_info->const_rhs == const_rhs)
1552 redundant_reason = ptr;
1554 else if (s_info->const_rhs == const0_rtx
1555 && const_rhs == const0_rtx)
1556 redundant_reason = ptr;
1557 else
1559 rtx val;
1560 start_sequence ();
1561 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1562 BLOCK_FOR_INSN (insn_info->insn),
1563 true);
1564 if (get_insns () != NULL)
1565 val = NULL_RTX;
1566 end_sequence ();
1567 if (val && rtx_equal_p (val, const_rhs))
1568 redundant_reason = ptr;
1572 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1573 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1574 /* The new store touches every byte that S_INFO does. */
1575 set_all_positions_unneeded (s_info);
1576 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1577 && s_info->width.is_constant (&const_s_width)
1578 && width.is_constant (&const_width))
1580 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1581 begin_unneeded = MAX (begin_unneeded, 0);
1582 end_unneeded = MIN (end_unneeded, const_s_width);
1583 for (i = begin_unneeded; i < end_unneeded; ++i)
1584 set_position_unneeded (s_info, i);
1586 else
1588 /* We don't know which parts of S_INFO are needed and
1589 which aren't, so invalidate the RHS. */
1590 s_info->rhs = NULL;
1591 s_info->const_rhs = NULL;
1594 else if (s_info->rhs)
1595 /* Need to see if it is possible for this store to overwrite
1596 the value of store_info. If it is, set the rhs to NULL to
1597 keep it from being used to remove a load. */
1599 if (canon_output_dependence (s_info->mem, true,
1600 mem, GET_MODE (mem),
1601 mem_addr))
1603 s_info->rhs = NULL;
1604 s_info->const_rhs = NULL;
1608 /* An insn can be deleted if every position of every one of
1609 its s_infos is zero. */
1610 if (any_positions_needed_p (s_info))
1611 del = false;
1613 if (del)
1615 insn_info_t insn_to_delete = ptr;
1617 active_local_stores_len--;
1618 if (last)
1619 last->next_local_store = ptr->next_local_store;
1620 else
1621 active_local_stores = ptr->next_local_store;
1623 if (!insn_to_delete->cannot_delete)
1624 delete_dead_store_insn (insn_to_delete);
1626 else
1627 last = ptr;
1629 ptr = next;
1632 /* Finish filling in the store_info. */
1633 store_info->next = insn_info->store_rec;
1634 insn_info->store_rec = store_info;
1635 store_info->mem = mem;
1636 store_info->mem_addr = mem_addr;
1637 store_info->cse_base = base;
1638 HOST_WIDE_INT const_width;
1639 if (!width.is_constant (&const_width))
1641 store_info->is_large = true;
1642 store_info->positions_needed.large.count = 0;
1643 store_info->positions_needed.large.bmap = NULL;
1645 else if (const_width > HOST_BITS_PER_WIDE_INT)
1647 store_info->is_large = true;
1648 store_info->positions_needed.large.count = 0;
1649 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1651 else
1653 store_info->is_large = false;
1654 store_info->positions_needed.small_bitmask
1655 = lowpart_bitmask (const_width);
1657 store_info->group_id = group_id;
1658 store_info->offset = offset;
1659 store_info->width = width;
1660 store_info->is_set = GET_CODE (body) == SET;
1661 store_info->rhs = rhs;
1662 store_info->const_rhs = const_rhs;
1663 store_info->redundant_reason = redundant_reason;
1665 /* If this is a clobber, we return 0. We will only be able to
1666 delete this insn if there is only one store USED store, but we
1667 can use the clobber to delete other stores earlier. */
1668 return store_info->is_set ? 1 : 0;
1672 static void
1673 dump_insn_info (const char * start, insn_info_t insn_info)
1675 fprintf (dump_file, "%s insn=%d %s\n", start,
1676 INSN_UID (insn_info->insn),
1677 insn_info->store_rec ? "has store" : "naked");
1681 /* If the modes are different and the value's source and target do not
1682 line up, we need to extract the value from lower part of the rhs of
1683 the store, shift it, and then put it into a form that can be shoved
1684 into the read_insn. This function generates a right SHIFT of a
1685 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1686 shift sequence is returned or NULL if we failed to find a
1687 shift. */
1689 static rtx
1690 find_shift_sequence (poly_int64 access_size,
1691 store_info *store_info,
1692 machine_mode read_mode,
1693 poly_int64 shift, bool speed, bool require_cst)
1695 machine_mode store_mode = GET_MODE (store_info->mem);
1696 scalar_int_mode new_mode;
1697 rtx read_reg = NULL;
1699 /* Some machines like the x86 have shift insns for each size of
1700 operand. Other machines like the ppc or the ia-64 may only have
1701 shift insns that shift values within 32 or 64 bit registers.
1702 This loop tries to find the smallest shift insn that will right
1703 justify the value we want to read but is available in one insn on
1704 the machine. */
1706 opt_scalar_int_mode new_mode_iter;
1707 FOR_EACH_MODE_FROM (new_mode_iter,
1708 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1710 rtx target, new_reg, new_lhs;
1711 rtx_insn *shift_seq, *insn;
1712 int cost;
1714 new_mode = new_mode_iter.require ();
1715 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1716 break;
1718 /* If a constant was stored into memory, try to simplify it here,
1719 otherwise the cost of the shift might preclude this optimization
1720 e.g. at -Os, even when no actual shift will be needed. */
1721 if (store_info->const_rhs)
1723 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1724 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1725 store_mode, byte);
1726 if (ret && CONSTANT_P (ret))
1728 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1729 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1730 ret, shift_rtx);
1731 if (ret && CONSTANT_P (ret))
1733 byte = subreg_lowpart_offset (read_mode, new_mode);
1734 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1735 if (ret && CONSTANT_P (ret)
1736 && (set_src_cost (ret, read_mode, speed)
1737 <= COSTS_N_INSNS (1)))
1738 return ret;
1743 if (require_cst)
1744 return NULL_RTX;
1746 /* Try a wider mode if truncating the store mode to NEW_MODE
1747 requires a real instruction. */
1748 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1749 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1750 continue;
1752 /* Also try a wider mode if the necessary punning is either not
1753 desirable or not possible. */
1754 if (!CONSTANT_P (store_info->rhs)
1755 && !targetm.modes_tieable_p (new_mode, store_mode))
1756 continue;
1758 new_reg = gen_reg_rtx (new_mode);
1760 start_sequence ();
1762 /* In theory we could also check for an ashr. Ian Taylor knows
1763 of one dsp where the cost of these two was not the same. But
1764 this really is a rare case anyway. */
1765 target = expand_binop (new_mode, lshr_optab, new_reg,
1766 gen_int_shift_amount (new_mode, shift),
1767 new_reg, 1, OPTAB_DIRECT);
1769 shift_seq = get_insns ();
1770 end_sequence ();
1772 if (target != new_reg || shift_seq == NULL)
1773 continue;
1775 cost = 0;
1776 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1777 if (INSN_P (insn))
1778 cost += insn_cost (insn, speed);
1780 /* The computation up to here is essentially independent
1781 of the arguments and could be precomputed. It may
1782 not be worth doing so. We could precompute if
1783 worthwhile or at least cache the results. The result
1784 technically depends on both SHIFT and ACCESS_SIZE,
1785 but in practice the answer will depend only on ACCESS_SIZE. */
1787 if (cost > COSTS_N_INSNS (1))
1788 continue;
1790 new_lhs = extract_low_bits (new_mode, store_mode,
1791 copy_rtx (store_info->rhs));
1792 if (new_lhs == NULL_RTX)
1793 continue;
1795 /* We found an acceptable shift. Generate a move to
1796 take the value from the store and put it into the
1797 shift pseudo, then shift it, then generate another
1798 move to put in into the target of the read. */
1799 emit_move_insn (new_reg, new_lhs);
1800 emit_insn (shift_seq);
1801 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1802 break;
1805 return read_reg;
1809 /* Call back for note_stores to find the hard regs set or clobbered by
1810 insn. Data is a bitmap of the hardregs set so far. */
1812 static void
1813 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1815 bitmap regs_set = (bitmap) data;
1817 if (REG_P (x)
1818 && HARD_REGISTER_P (x))
1819 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1822 /* Helper function for replace_read and record_store.
1823 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1824 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1825 if not successful. If REQUIRE_CST is true, return always constant. */
1827 static rtx
1828 get_stored_val (store_info *store_info, machine_mode read_mode,
1829 poly_int64 read_offset, poly_int64 read_width,
1830 basic_block bb, bool require_cst)
1832 machine_mode store_mode = GET_MODE (store_info->mem);
1833 poly_int64 gap;
1834 rtx read_reg;
1836 /* To get here the read is within the boundaries of the write so
1837 shift will never be negative. Start out with the shift being in
1838 bytes. */
1839 if (store_mode == BLKmode)
1840 gap = 0;
1841 else if (BYTES_BIG_ENDIAN)
1842 gap = ((store_info->offset + store_info->width)
1843 - (read_offset + read_width));
1844 else
1845 gap = read_offset - store_info->offset;
1847 if (gap.is_constant () && maybe_ne (gap, 0))
1849 poly_int64 shift = gap * BITS_PER_UNIT;
1850 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1851 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1852 shift, optimize_bb_for_speed_p (bb),
1853 require_cst);
1855 else if (store_mode == BLKmode)
1857 /* The store is a memset (addr, const_val, const_size). */
1858 gcc_assert (CONST_INT_P (store_info->rhs));
1859 scalar_int_mode int_store_mode;
1860 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1861 read_reg = NULL_RTX;
1862 else if (store_info->rhs == const0_rtx)
1863 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1864 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1865 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1866 read_reg = NULL_RTX;
1867 else
1869 unsigned HOST_WIDE_INT c
1870 = INTVAL (store_info->rhs)
1871 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1872 int shift = BITS_PER_UNIT;
1873 while (shift < HOST_BITS_PER_WIDE_INT)
1875 c |= (c << shift);
1876 shift <<= 1;
1878 read_reg = gen_int_mode (c, int_store_mode);
1879 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1882 else if (store_info->const_rhs
1883 && (require_cst
1884 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1885 read_reg = extract_low_bits (read_mode, store_mode,
1886 copy_rtx (store_info->const_rhs));
1887 else
1888 read_reg = extract_low_bits (read_mode, store_mode,
1889 copy_rtx (store_info->rhs));
1890 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1891 read_reg = NULL_RTX;
1892 return read_reg;
1895 /* Take a sequence of:
1896 A <- r1
1898 ... <- A
1900 and change it into
1901 r2 <- r1
1902 A <- r1
1904 ... <- r2
1908 r3 <- extract (r1)
1909 r3 <- r3 >> shift
1910 r2 <- extract (r3)
1911 ... <- r2
1915 r2 <- extract (r1)
1916 ... <- r2
1918 Depending on the alignment and the mode of the store and
1919 subsequent load.
1922 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1923 and READ_INSN are for the read. Return true if the replacement
1924 went ok. */
1926 static bool
1927 replace_read (store_info *store_info, insn_info_t store_insn,
1928 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1929 bitmap regs_live)
1931 machine_mode store_mode = GET_MODE (store_info->mem);
1932 machine_mode read_mode = GET_MODE (read_info->mem);
1933 rtx_insn *insns, *this_insn;
1934 rtx read_reg;
1935 basic_block bb;
1937 if (!dbg_cnt (dse))
1938 return false;
1940 /* Create a sequence of instructions to set up the read register.
1941 This sequence goes immediately before the store and its result
1942 is read by the load.
1944 We need to keep this in perspective. We are replacing a read
1945 with a sequence of insns, but the read will almost certainly be
1946 in cache, so it is not going to be an expensive one. Thus, we
1947 are not willing to do a multi insn shift or worse a subroutine
1948 call to get rid of the read. */
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1950 fprintf (dump_file, "trying to replace %smode load in insn %d"
1951 " from %smode store in insn %d\n",
1952 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1953 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1954 start_sequence ();
1955 bb = BLOCK_FOR_INSN (read_insn->insn);
1956 read_reg = get_stored_val (store_info,
1957 read_mode, read_info->offset, read_info->width,
1958 bb, false);
1959 if (read_reg == NULL_RTX)
1961 end_sequence ();
1962 if (dump_file && (dump_flags & TDF_DETAILS))
1963 fprintf (dump_file, " -- could not extract bits of stored value\n");
1964 return false;
1966 /* Force the value into a new register so that it won't be clobbered
1967 between the store and the load. */
1968 read_reg = copy_to_mode_reg (read_mode, read_reg);
1969 insns = get_insns ();
1970 end_sequence ();
1972 if (insns != NULL_RTX)
1974 /* Now we have to scan the set of new instructions to see if the
1975 sequence contains and sets of hardregs that happened to be
1976 live at this point. For instance, this can happen if one of
1977 the insns sets the CC and the CC happened to be live at that
1978 point. This does occasionally happen, see PR 37922. */
1979 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1981 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1982 note_stores (this_insn, look_for_hardregs, regs_set);
1984 bitmap_and_into (regs_set, regs_live);
1985 if (!bitmap_empty_p (regs_set))
1987 if (dump_file && (dump_flags & TDF_DETAILS))
1989 fprintf (dump_file,
1990 "abandoning replacement because sequence clobbers live hardregs:");
1991 df_print_regset (dump_file, regs_set);
1994 BITMAP_FREE (regs_set);
1995 return false;
1997 BITMAP_FREE (regs_set);
2000 if (validate_change (read_insn->insn, loc, read_reg, 0))
2002 deferred_change *change = deferred_change_pool.allocate ();
2004 /* Insert this right before the store insn where it will be safe
2005 from later insns that might change it before the read. */
2006 emit_insn_before (insns, store_insn->insn);
2008 /* And now for the kludge part: cselib croaks if you just
2009 return at this point. There are two reasons for this:
2011 1) Cselib has an idea of how many pseudos there are and
2012 that does not include the new ones we just added.
2014 2) Cselib does not know about the move insn we added
2015 above the store_info, and there is no way to tell it
2016 about it, because it has "moved on".
2018 Problem (1) is fixable with a certain amount of engineering.
2019 Problem (2) is requires starting the bb from scratch. This
2020 could be expensive.
2022 So we are just going to have to lie. The move/extraction
2023 insns are not really an issue, cselib did not see them. But
2024 the use of the new pseudo read_insn is a real problem because
2025 cselib has not scanned this insn. The way that we solve this
2026 problem is that we are just going to put the mem back for now
2027 and when we are finished with the block, we undo this. We
2028 keep a table of mems to get rid of. At the end of the basic
2029 block we can put them back. */
2031 *loc = read_info->mem;
2032 change->next = deferred_change_list;
2033 deferred_change_list = change;
2034 change->loc = loc;
2035 change->reg = read_reg;
2037 /* Get rid of the read_info, from the point of view of the
2038 rest of dse, play like this read never happened. */
2039 read_insn->read_rec = read_info->next;
2040 read_info_type_pool.remove (read_info);
2041 if (dump_file && (dump_flags & TDF_DETAILS))
2043 fprintf (dump_file, " -- replaced the loaded MEM with ");
2044 print_simple_rtl (dump_file, read_reg);
2045 fprintf (dump_file, "\n");
2047 return true;
2049 else
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2053 fprintf (dump_file, " -- replacing the loaded MEM with ");
2054 print_simple_rtl (dump_file, read_reg);
2055 fprintf (dump_file, " led to an invalid instruction\n");
2057 return false;
2061 /* Check the address of MEM *LOC and kill any appropriate stores that may
2062 be active. */
2064 static void
2065 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2067 rtx mem = *loc, mem_addr;
2068 insn_info_t insn_info;
2069 poly_int64 offset = 0;
2070 poly_int64 width = 0;
2071 cselib_val *base = NULL;
2072 int group_id;
2073 read_info_t read_info;
2075 insn_info = bb_info->last_insn;
2077 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2078 || MEM_VOLATILE_P (mem))
2080 if (crtl->stack_protect_guard
2081 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2082 || (crtl->stack_protect_guard_decl
2083 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2084 && MEM_VOLATILE_P (mem))
2086 /* This is either the stack protector canary on the stack,
2087 which ought to be written by a MEM_VOLATILE_P store and
2088 thus shouldn't be deleted and is read at the very end of
2089 function, but shouldn't conflict with any other store.
2090 Or it is __stack_chk_guard variable or TLS or whatever else
2091 MEM holding the canary value, which really shouldn't be
2092 ever modified in -fstack-protector* protected functions,
2093 otherwise the prologue store wouldn't match the epilogue
2094 check. */
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 fprintf (dump_file, " stack protector canary read ignored.\n");
2097 insn_info->cannot_delete = true;
2098 return;
2101 if (dump_file && (dump_flags & TDF_DETAILS))
2102 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2103 add_wild_read (bb_info);
2104 insn_info->cannot_delete = true;
2105 return;
2108 /* If it is reading readonly mem, then there can be no conflict with
2109 another write. */
2110 if (MEM_READONLY_P (mem))
2111 return;
2113 if (!canon_address (mem, &group_id, &offset, &base))
2115 if (dump_file && (dump_flags & TDF_DETAILS))
2116 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2117 add_wild_read (bb_info);
2118 return;
2121 if (GET_MODE (mem) == BLKmode)
2122 width = -1;
2123 else
2124 width = GET_MODE_SIZE (GET_MODE (mem));
2126 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2129 fprintf (dump_file, " adding wild read, due to overflow.\n");
2130 add_wild_read (bb_info);
2131 return;
2134 read_info = read_info_type_pool.allocate ();
2135 read_info->group_id = group_id;
2136 read_info->mem = mem;
2137 read_info->offset = offset;
2138 read_info->width = width;
2139 read_info->next = insn_info->read_rec;
2140 insn_info->read_rec = read_info;
2141 if (group_id < 0)
2142 mem_addr = base->val_rtx;
2143 else
2145 group_info *group = rtx_group_vec[group_id];
2146 mem_addr = group->canon_base_addr;
2148 if (maybe_ne (offset, 0))
2149 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2151 if (group_id >= 0)
2153 /* This is the restricted case where the base is a constant or
2154 the frame pointer and offset is a constant. */
2155 insn_info_t i_ptr = active_local_stores;
2156 insn_info_t last = NULL;
2158 if (dump_file && (dump_flags & TDF_DETAILS))
2160 if (!known_size_p (width))
2161 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2162 group_id);
2163 else
2165 fprintf (dump_file, " processing const load gid=%d", group_id);
2166 print_range (dump_file, offset, width);
2167 fprintf (dump_file, "\n");
2171 while (i_ptr)
2173 bool remove = false;
2174 store_info *store_info = i_ptr->store_rec;
2176 /* Skip the clobbers. */
2177 while (!store_info->is_set)
2178 store_info = store_info->next;
2180 /* There are three cases here. */
2181 if (store_info->group_id < 0)
2182 /* We have a cselib store followed by a read from a
2183 const base. */
2184 remove
2185 = canon_true_dependence (store_info->mem,
2186 GET_MODE (store_info->mem),
2187 store_info->mem_addr,
2188 mem, mem_addr);
2190 else if (group_id == store_info->group_id)
2192 /* This is a block mode load. We may get lucky and
2193 canon_true_dependence may save the day. */
2194 if (!known_size_p (width))
2195 remove
2196 = canon_true_dependence (store_info->mem,
2197 GET_MODE (store_info->mem),
2198 store_info->mem_addr,
2199 mem, mem_addr);
2201 /* If this read is just reading back something that we just
2202 stored, rewrite the read. */
2203 else
2205 if (store_info->rhs
2206 && known_subrange_p (offset, width, store_info->offset,
2207 store_info->width)
2208 && all_positions_needed_p (store_info,
2209 offset - store_info->offset,
2210 width)
2211 && replace_read (store_info, i_ptr, read_info,
2212 insn_info, loc, bb_info->regs_live))
2213 return;
2215 /* The bases are the same, just see if the offsets
2216 could overlap. */
2217 if (ranges_maybe_overlap_p (offset, width,
2218 store_info->offset,
2219 store_info->width))
2220 remove = true;
2224 /* else
2225 The else case that is missing here is that the
2226 bases are constant but different. There is nothing
2227 to do here because there is no overlap. */
2229 if (remove)
2231 if (dump_file && (dump_flags & TDF_DETAILS))
2232 dump_insn_info ("removing from active", i_ptr);
2234 active_local_stores_len--;
2235 if (last)
2236 last->next_local_store = i_ptr->next_local_store;
2237 else
2238 active_local_stores = i_ptr->next_local_store;
2240 else
2241 last = i_ptr;
2242 i_ptr = i_ptr->next_local_store;
2245 else
2247 insn_info_t i_ptr = active_local_stores;
2248 insn_info_t last = NULL;
2249 if (dump_file && (dump_flags & TDF_DETAILS))
2251 fprintf (dump_file, " processing cselib load mem:");
2252 print_inline_rtx (dump_file, mem, 0);
2253 fprintf (dump_file, "\n");
2256 while (i_ptr)
2258 bool remove = false;
2259 store_info *store_info = i_ptr->store_rec;
2261 if (dump_file && (dump_flags & TDF_DETAILS))
2262 fprintf (dump_file, " processing cselib load against insn %d\n",
2263 INSN_UID (i_ptr->insn));
2265 /* Skip the clobbers. */
2266 while (!store_info->is_set)
2267 store_info = store_info->next;
2269 /* If this read is just reading back something that we just
2270 stored, rewrite the read. */
2271 if (store_info->rhs
2272 && store_info->group_id == -1
2273 && store_info->cse_base == base
2274 && known_subrange_p (offset, width, store_info->offset,
2275 store_info->width)
2276 && all_positions_needed_p (store_info,
2277 offset - store_info->offset, width)
2278 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2279 bb_info->regs_live))
2280 return;
2282 remove = canon_true_dependence (store_info->mem,
2283 GET_MODE (store_info->mem),
2284 store_info->mem_addr,
2285 mem, mem_addr);
2287 if (remove)
2289 if (dump_file && (dump_flags & TDF_DETAILS))
2290 dump_insn_info ("removing from active", i_ptr);
2292 active_local_stores_len--;
2293 if (last)
2294 last->next_local_store = i_ptr->next_local_store;
2295 else
2296 active_local_stores = i_ptr->next_local_store;
2298 else
2299 last = i_ptr;
2300 i_ptr = i_ptr->next_local_store;
2305 /* A note_uses callback in which DATA points the INSN_INFO for
2306 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2307 true for any part of *LOC. */
2309 static void
2310 check_mem_read_use (rtx *loc, void *data)
2312 subrtx_ptr_iterator::array_type array;
2313 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2315 rtx *loc = *iter;
2316 if (MEM_P (*loc))
2317 check_mem_read_rtx (loc, (bb_info_t) data);
2322 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2323 So far it only handles arguments passed in registers. */
2325 static bool
2326 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2328 CUMULATIVE_ARGS args_so_far_v;
2329 cumulative_args_t args_so_far;
2330 tree arg;
2331 int idx;
2333 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2334 args_so_far = pack_cumulative_args (&args_so_far_v);
2336 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2337 for (idx = 0;
2338 arg != void_list_node && idx < nargs;
2339 arg = TREE_CHAIN (arg), idx++)
2341 scalar_int_mode mode;
2342 rtx reg, link, tmp;
2344 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2345 return false;
2347 function_arg_info arg (mode, /*named=*/true);
2348 reg = targetm.calls.function_arg (args_so_far, arg);
2349 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2350 return false;
2352 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2353 link;
2354 link = XEXP (link, 1))
2355 if (GET_CODE (XEXP (link, 0)) == USE)
2357 scalar_int_mode arg_mode;
2358 args[idx] = XEXP (XEXP (link, 0), 0);
2359 if (REG_P (args[idx])
2360 && REGNO (args[idx]) == REGNO (reg)
2361 && (GET_MODE (args[idx]) == mode
2362 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2363 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2364 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2365 break;
2367 if (!link)
2368 return false;
2370 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2371 if (GET_MODE (args[idx]) != mode)
2373 if (!tmp || !CONST_INT_P (tmp))
2374 return false;
2375 tmp = gen_int_mode (INTVAL (tmp), mode);
2377 if (tmp)
2378 args[idx] = tmp;
2380 targetm.calls.function_arg_advance (args_so_far, arg);
2382 if (arg != void_list_node || idx != nargs)
2383 return false;
2384 return true;
2387 /* Return a bitmap of the fixed registers contained in IN. */
2389 static bitmap
2390 copy_fixed_regs (const_bitmap in)
2392 bitmap ret;
2394 ret = ALLOC_REG_SET (NULL);
2395 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
2396 return ret;
2399 /* Apply record_store to all candidate stores in INSN. Mark INSN
2400 if some part of it is not a candidate store and assigns to a
2401 non-register target. */
2403 static void
2404 scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
2406 rtx body;
2407 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2408 int mems_found = 0;
2409 memset (insn_info, 0, sizeof (struct insn_info_type));
2411 if (dump_file && (dump_flags & TDF_DETAILS))
2412 fprintf (dump_file, "\n**scanning insn=%d\n",
2413 INSN_UID (insn));
2415 insn_info->prev_insn = bb_info->last_insn;
2416 insn_info->insn = insn;
2417 bb_info->last_insn = insn_info;
2419 if (DEBUG_INSN_P (insn))
2421 insn_info->cannot_delete = true;
2422 return;
2425 /* Look at all of the uses in the insn. */
2426 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2428 if (CALL_P (insn))
2430 bool const_call;
2431 rtx call, sym;
2432 tree memset_call = NULL_TREE;
2434 insn_info->cannot_delete = true;
2436 /* Const functions cannot do anything bad i.e. read memory,
2437 however, they can read their parameters which may have
2438 been pushed onto the stack.
2439 memset and bzero don't read memory either. */
2440 const_call = RTL_CONST_CALL_P (insn);
2441 if (!const_call
2442 && (call = get_call_rtx_from (insn))
2443 && (sym = XEXP (XEXP (call, 0), 0))
2444 && GET_CODE (sym) == SYMBOL_REF
2445 && SYMBOL_REF_DECL (sym)
2446 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2447 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2448 memset_call = SYMBOL_REF_DECL (sym);
2450 if (const_call || memset_call)
2452 insn_info_t i_ptr = active_local_stores;
2453 insn_info_t last = NULL;
2455 if (dump_file && (dump_flags & TDF_DETAILS))
2456 fprintf (dump_file, "%s call %d\n",
2457 const_call ? "const" : "memset", INSN_UID (insn));
2459 /* See the head comment of the frame_read field. */
2460 if (reload_completed
2461 /* Tail calls are storing their arguments using
2462 arg pointer. If it is a frame pointer on the target,
2463 even before reload we need to kill frame pointer based
2464 stores. */
2465 || (SIBLING_CALL_P (insn)
2466 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2467 insn_info->frame_read = true;
2469 /* Loop over the active stores and remove those which are
2470 killed by the const function call. */
2471 while (i_ptr)
2473 bool remove_store = false;
2475 /* The stack pointer based stores are always killed. */
2476 if (i_ptr->stack_pointer_based)
2477 remove_store = true;
2479 /* If the frame is read, the frame related stores are killed. */
2480 else if (insn_info->frame_read)
2482 store_info *store_info = i_ptr->store_rec;
2484 /* Skip the clobbers. */
2485 while (!store_info->is_set)
2486 store_info = store_info->next;
2488 if (store_info->group_id >= 0
2489 && rtx_group_vec[store_info->group_id]->frame_related)
2490 remove_store = true;
2493 if (remove_store)
2495 if (dump_file && (dump_flags & TDF_DETAILS))
2496 dump_insn_info ("removing from active", i_ptr);
2498 active_local_stores_len--;
2499 if (last)
2500 last->next_local_store = i_ptr->next_local_store;
2501 else
2502 active_local_stores = i_ptr->next_local_store;
2504 else
2505 last = i_ptr;
2507 i_ptr = i_ptr->next_local_store;
2510 if (memset_call)
2512 rtx args[3];
2513 if (get_call_args (insn, memset_call, args, 3)
2514 && CONST_INT_P (args[1])
2515 && CONST_INT_P (args[2])
2516 && INTVAL (args[2]) > 0)
2518 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2519 set_mem_size (mem, INTVAL (args[2]));
2520 body = gen_rtx_SET (mem, args[1]);
2521 mems_found += record_store (body, bb_info);
2522 if (dump_file && (dump_flags & TDF_DETAILS))
2523 fprintf (dump_file, "handling memset as BLKmode store\n");
2524 if (mems_found == 1)
2526 if (active_local_stores_len++ >= max_active_local_stores)
2528 active_local_stores_len = 1;
2529 active_local_stores = NULL;
2531 insn_info->fixed_regs_live
2532 = copy_fixed_regs (bb_info->regs_live);
2533 insn_info->next_local_store = active_local_stores;
2534 active_local_stores = insn_info;
2537 else
2538 clear_rhs_from_active_local_stores ();
2541 else if (SIBLING_CALL_P (insn)
2542 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2543 /* Arguments for a sibling call that are pushed to memory are passed
2544 using the incoming argument pointer of the current function. After
2545 reload that might be (and likely is) frame pointer based. And, if
2546 it is a frame pointer on the target, even before reload we need to
2547 kill frame pointer based stores. */
2548 add_wild_read (bb_info);
2549 else
2550 /* Every other call, including pure functions, may read any memory
2551 that is not relative to the frame. */
2552 add_non_frame_wild_read (bb_info);
2554 return;
2557 /* Assuming that there are sets in these insns, we cannot delete
2558 them. */
2559 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2560 || volatile_refs_p (PATTERN (insn))
2561 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2562 || (RTX_FRAME_RELATED_P (insn))
2563 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2564 insn_info->cannot_delete = true;
2566 body = PATTERN (insn);
2567 if (GET_CODE (body) == PARALLEL)
2569 int i;
2570 for (i = 0; i < XVECLEN (body, 0); i++)
2571 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2573 else
2574 mems_found += record_store (body, bb_info);
2576 if (dump_file && (dump_flags & TDF_DETAILS))
2577 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2578 mems_found, insn_info->cannot_delete ? "true" : "false");
2580 /* If we found some sets of mems, add it into the active_local_stores so
2581 that it can be locally deleted if found dead or used for
2582 replace_read and redundant constant store elimination. Otherwise mark
2583 it as cannot delete. This simplifies the processing later. */
2584 if (mems_found == 1)
2586 if (active_local_stores_len++ >= max_active_local_stores)
2588 active_local_stores_len = 1;
2589 active_local_stores = NULL;
2591 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2592 insn_info->next_local_store = active_local_stores;
2593 active_local_stores = insn_info;
2595 else
2596 insn_info->cannot_delete = true;
2600 /* Remove BASE from the set of active_local_stores. This is a
2601 callback from cselib that is used to get rid of the stores in
2602 active_local_stores. */
2604 static void
2605 remove_useless_values (cselib_val *base)
2607 insn_info_t insn_info = active_local_stores;
2608 insn_info_t last = NULL;
2610 while (insn_info)
2612 store_info *store_info = insn_info->store_rec;
2613 bool del = false;
2615 /* If ANY of the store_infos match the cselib group that is
2616 being deleted, then the insn cannot be deleted. */
2617 while (store_info)
2619 if ((store_info->group_id == -1)
2620 && (store_info->cse_base == base))
2622 del = true;
2623 break;
2625 store_info = store_info->next;
2628 if (del)
2630 active_local_stores_len--;
2631 if (last)
2632 last->next_local_store = insn_info->next_local_store;
2633 else
2634 active_local_stores = insn_info->next_local_store;
2635 free_store_info (insn_info);
2637 else
2638 last = insn_info;
2640 insn_info = insn_info->next_local_store;
2645 /* Do all of step 1. */
2647 static void
2648 dse_step1 (void)
2650 basic_block bb;
2651 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2653 cselib_init (0);
2654 all_blocks = BITMAP_ALLOC (NULL);
2655 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2656 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2658 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2659 since this can consume huge amounts of memory (PR89115). */
2660 int max_active_local_stores = PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES);
2661 if (optimize < 2)
2662 max_active_local_stores /= 10;
2664 FOR_ALL_BB_FN (bb, cfun)
2666 insn_info_t ptr;
2667 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2669 memset (bb_info, 0, sizeof (dse_bb_info_type));
2670 bitmap_set_bit (all_blocks, bb->index);
2671 bb_info->regs_live = regs_live;
2673 bitmap_copy (regs_live, DF_LR_IN (bb));
2674 df_simulate_initialize_forwards (bb, regs_live);
2676 bb_table[bb->index] = bb_info;
2677 cselib_discard_hook = remove_useless_values;
2679 if (bb->index >= NUM_FIXED_BLOCKS)
2681 rtx_insn *insn;
2683 active_local_stores = NULL;
2684 active_local_stores_len = 0;
2685 cselib_clear_table ();
2687 /* Scan the insns. */
2688 FOR_BB_INSNS (bb, insn)
2690 if (INSN_P (insn))
2691 scan_insn (bb_info, insn, max_active_local_stores);
2692 cselib_process_insn (insn);
2693 if (INSN_P (insn))
2694 df_simulate_one_insn_forwards (bb, insn, regs_live);
2697 /* This is something of a hack, because the global algorithm
2698 is supposed to take care of the case where stores go dead
2699 at the end of the function. However, the global
2700 algorithm must take a more conservative view of block
2701 mode reads than the local alg does. So to get the case
2702 where you have a store to the frame followed by a non
2703 overlapping block more read, we look at the active local
2704 stores at the end of the function and delete all of the
2705 frame and spill based ones. */
2706 if (stores_off_frame_dead_at_return
2707 && (EDGE_COUNT (bb->succs) == 0
2708 || (single_succ_p (bb)
2709 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2710 && ! crtl->calls_eh_return)))
2712 insn_info_t i_ptr = active_local_stores;
2713 while (i_ptr)
2715 store_info *store_info = i_ptr->store_rec;
2717 /* Skip the clobbers. */
2718 while (!store_info->is_set)
2719 store_info = store_info->next;
2720 if (store_info->group_id >= 0)
2722 group_info *group = rtx_group_vec[store_info->group_id];
2723 if (group->frame_related && !i_ptr->cannot_delete)
2724 delete_dead_store_insn (i_ptr);
2727 i_ptr = i_ptr->next_local_store;
2731 /* Get rid of the loads that were discovered in
2732 replace_read. Cselib is finished with this block. */
2733 while (deferred_change_list)
2735 deferred_change *next = deferred_change_list->next;
2737 /* There is no reason to validate this change. That was
2738 done earlier. */
2739 *deferred_change_list->loc = deferred_change_list->reg;
2740 deferred_change_pool.remove (deferred_change_list);
2741 deferred_change_list = next;
2744 /* Get rid of all of the cselib based store_infos in this
2745 block and mark the containing insns as not being
2746 deletable. */
2747 ptr = bb_info->last_insn;
2748 while (ptr)
2750 if (ptr->contains_cselib_groups)
2752 store_info *s_info = ptr->store_rec;
2753 while (s_info && !s_info->is_set)
2754 s_info = s_info->next;
2755 if (s_info
2756 && s_info->redundant_reason
2757 && s_info->redundant_reason->insn
2758 && !ptr->cannot_delete)
2760 if (dump_file && (dump_flags & TDF_DETAILS))
2761 fprintf (dump_file, "Locally deleting insn %d "
2762 "because insn %d stores the "
2763 "same value and couldn't be "
2764 "eliminated\n",
2765 INSN_UID (ptr->insn),
2766 INSN_UID (s_info->redundant_reason->insn));
2767 delete_dead_store_insn (ptr);
2769 free_store_info (ptr);
2771 else
2773 store_info *s_info;
2775 /* Free at least positions_needed bitmaps. */
2776 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2777 if (s_info->is_large)
2779 BITMAP_FREE (s_info->positions_needed.large.bmap);
2780 s_info->is_large = false;
2783 ptr = ptr->prev_insn;
2786 cse_store_info_pool.release ();
2788 bb_info->regs_live = NULL;
2791 BITMAP_FREE (regs_live);
2792 cselib_finish ();
2793 rtx_group_table->empty ();
2797 /*----------------------------------------------------------------------------
2798 Second step.
2800 Assign each byte position in the stores that we are going to
2801 analyze globally to a position in the bitmaps. Returns true if
2802 there are any bit positions assigned.
2803 ----------------------------------------------------------------------------*/
2805 static void
2806 dse_step2_init (void)
2808 unsigned int i;
2809 group_info *group;
2811 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2813 /* For all non stack related bases, we only consider a store to
2814 be deletable if there are two or more stores for that
2815 position. This is because it takes one store to make the
2816 other store redundant. However, for the stores that are
2817 stack related, we consider them if there is only one store
2818 for the position. We do this because the stack related
2819 stores can be deleted if their is no read between them and
2820 the end of the function.
2822 To make this work in the current framework, we take the stack
2823 related bases add all of the bits from store1 into store2.
2824 This has the effect of making the eligible even if there is
2825 only one store. */
2827 if (stores_off_frame_dead_at_return && group->frame_related)
2829 bitmap_ior_into (group->store2_n, group->store1_n);
2830 bitmap_ior_into (group->store2_p, group->store1_p);
2831 if (dump_file && (dump_flags & TDF_DETAILS))
2832 fprintf (dump_file, "group %d is frame related ", i);
2835 group->offset_map_size_n++;
2836 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2837 group->offset_map_size_n);
2838 group->offset_map_size_p++;
2839 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2840 group->offset_map_size_p);
2841 group->process_globally = false;
2842 if (dump_file && (dump_flags & TDF_DETAILS))
2844 fprintf (dump_file, "group %d(%d+%d): ", i,
2845 (int)bitmap_count_bits (group->store2_n),
2846 (int)bitmap_count_bits (group->store2_p));
2847 bitmap_print (dump_file, group->store2_n, "n ", " ");
2848 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2854 /* Init the offset tables. */
2856 static bool
2857 dse_step2 (void)
2859 unsigned int i;
2860 group_info *group;
2861 /* Position 0 is unused because 0 is used in the maps to mean
2862 unused. */
2863 current_position = 1;
2864 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2866 bitmap_iterator bi;
2867 unsigned int j;
2869 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2870 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2871 bitmap_clear (group->group_kill);
2873 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2875 bitmap_set_bit (group->group_kill, current_position);
2876 if (bitmap_bit_p (group->escaped_n, j))
2877 bitmap_set_bit (kill_on_calls, current_position);
2878 group->offset_map_n[j] = current_position++;
2879 group->process_globally = true;
2881 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2883 bitmap_set_bit (group->group_kill, current_position);
2884 if (bitmap_bit_p (group->escaped_p, j))
2885 bitmap_set_bit (kill_on_calls, current_position);
2886 group->offset_map_p[j] = current_position++;
2887 group->process_globally = true;
2890 return current_position != 1;
2895 /*----------------------------------------------------------------------------
2896 Third step.
2898 Build the bit vectors for the transfer functions.
2899 ----------------------------------------------------------------------------*/
2902 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2903 there, return 0. */
2905 static int
2906 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2908 if (offset < 0)
2910 HOST_WIDE_INT offset_p = -offset;
2911 if (offset_p >= group_info->offset_map_size_n)
2912 return 0;
2913 return group_info->offset_map_n[offset_p];
2915 else
2917 if (offset >= group_info->offset_map_size_p)
2918 return 0;
2919 return group_info->offset_map_p[offset];
2924 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2925 may be NULL. */
2927 static void
2928 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2930 while (store_info)
2932 HOST_WIDE_INT i, offset, width;
2933 group_info *group_info
2934 = rtx_group_vec[store_info->group_id];
2935 /* We can (conservatively) ignore stores whose bounds aren't known;
2936 they simply don't generate new global dse opportunities. */
2937 if (group_info->process_globally
2938 && store_info->offset.is_constant (&offset)
2939 && store_info->width.is_constant (&width))
2941 HOST_WIDE_INT end = offset + width;
2942 for (i = offset; i < end; i++)
2944 int index = get_bitmap_index (group_info, i);
2945 if (index != 0)
2947 bitmap_set_bit (gen, index);
2948 if (kill)
2949 bitmap_clear_bit (kill, index);
2953 store_info = store_info->next;
2958 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2959 may be NULL. */
2961 static void
2962 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2964 read_info_t read_info = insn_info->read_rec;
2965 int i;
2966 group_info *group;
2968 /* If this insn reads the frame, kill all the frame related stores. */
2969 if (insn_info->frame_read)
2971 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2972 if (group->process_globally && group->frame_related)
2974 if (kill)
2975 bitmap_ior_into (kill, group->group_kill);
2976 bitmap_and_compl_into (gen, group->group_kill);
2979 if (insn_info->non_frame_wild_read)
2981 /* Kill all non-frame related stores. Kill all stores of variables that
2982 escape. */
2983 if (kill)
2984 bitmap_ior_into (kill, kill_on_calls);
2985 bitmap_and_compl_into (gen, kill_on_calls);
2986 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2987 if (group->process_globally && !group->frame_related)
2989 if (kill)
2990 bitmap_ior_into (kill, group->group_kill);
2991 bitmap_and_compl_into (gen, group->group_kill);
2994 while (read_info)
2996 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2998 if (group->process_globally)
3000 if (i == read_info->group_id)
3002 HOST_WIDE_INT offset, width;
3003 /* Reads with non-constant size kill all DSE opportunities
3004 in the group. */
3005 if (!read_info->offset.is_constant (&offset)
3006 || !read_info->width.is_constant (&width)
3007 || !known_size_p (width))
3009 /* Handle block mode reads. */
3010 if (kill)
3011 bitmap_ior_into (kill, group->group_kill);
3012 bitmap_and_compl_into (gen, group->group_kill);
3014 else
3016 /* The groups are the same, just process the
3017 offsets. */
3018 HOST_WIDE_INT j;
3019 HOST_WIDE_INT end = offset + width;
3020 for (j = offset; j < end; j++)
3022 int index = get_bitmap_index (group, j);
3023 if (index != 0)
3025 if (kill)
3026 bitmap_set_bit (kill, index);
3027 bitmap_clear_bit (gen, index);
3032 else
3034 /* The groups are different, if the alias sets
3035 conflict, clear the entire group. We only need
3036 to apply this test if the read_info is a cselib
3037 read. Anything with a constant base cannot alias
3038 something else with a different constant
3039 base. */
3040 if ((read_info->group_id < 0)
3041 && canon_true_dependence (group->base_mem,
3042 GET_MODE (group->base_mem),
3043 group->canon_base_addr,
3044 read_info->mem, NULL_RTX))
3046 if (kill)
3047 bitmap_ior_into (kill, group->group_kill);
3048 bitmap_and_compl_into (gen, group->group_kill);
3054 read_info = read_info->next;
3059 /* Return the insn in BB_INFO before the first wild read or if there
3060 are no wild reads in the block, return the last insn. */
3062 static insn_info_t
3063 find_insn_before_first_wild_read (bb_info_t bb_info)
3065 insn_info_t insn_info = bb_info->last_insn;
3066 insn_info_t last_wild_read = NULL;
3068 while (insn_info)
3070 if (insn_info->wild_read)
3072 last_wild_read = insn_info->prev_insn;
3073 /* Block starts with wild read. */
3074 if (!last_wild_read)
3075 return NULL;
3078 insn_info = insn_info->prev_insn;
3081 if (last_wild_read)
3082 return last_wild_read;
3083 else
3084 return bb_info->last_insn;
3088 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3089 the block in order to build the gen and kill sets for the block.
3090 We start at ptr which may be the last insn in the block or may be
3091 the first insn with a wild read. In the latter case we are able to
3092 skip the rest of the block because it just does not matter:
3093 anything that happens is hidden by the wild read. */
3095 static void
3096 dse_step3_scan (basic_block bb)
3098 bb_info_t bb_info = bb_table[bb->index];
3099 insn_info_t insn_info;
3101 insn_info = find_insn_before_first_wild_read (bb_info);
3103 /* In the spill case or in the no_spill case if there is no wild
3104 read in the block, we will need a kill set. */
3105 if (insn_info == bb_info->last_insn)
3107 if (bb_info->kill)
3108 bitmap_clear (bb_info->kill);
3109 else
3110 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3112 else
3113 if (bb_info->kill)
3114 BITMAP_FREE (bb_info->kill);
3116 while (insn_info)
3118 /* There may have been code deleted by the dce pass run before
3119 this phase. */
3120 if (insn_info->insn && INSN_P (insn_info->insn))
3122 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3123 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3126 insn_info = insn_info->prev_insn;
3131 /* Set the gen set of the exit block, and also any block with no
3132 successors that does not have a wild read. */
3134 static void
3135 dse_step3_exit_block_scan (bb_info_t bb_info)
3137 /* The gen set is all 0's for the exit block except for the
3138 frame_pointer_group. */
3140 if (stores_off_frame_dead_at_return)
3142 unsigned int i;
3143 group_info *group;
3145 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3147 if (group->process_globally && group->frame_related)
3148 bitmap_ior_into (bb_info->gen, group->group_kill);
3154 /* Find all of the blocks that are not backwards reachable from the
3155 exit block or any block with no successors (BB). These are the
3156 infinite loops or infinite self loops. These blocks will still
3157 have their bits set in UNREACHABLE_BLOCKS. */
3159 static void
3160 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3162 edge e;
3163 edge_iterator ei;
3165 if (bitmap_bit_p (unreachable_blocks, bb->index))
3167 bitmap_clear_bit (unreachable_blocks, bb->index);
3168 FOR_EACH_EDGE (e, ei, bb->preds)
3170 mark_reachable_blocks (unreachable_blocks, e->src);
3175 /* Build the transfer functions for the function. */
3177 static void
3178 dse_step3 ()
3180 basic_block bb;
3181 sbitmap_iterator sbi;
3182 bitmap all_ones = NULL;
3183 unsigned int i;
3185 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3186 bitmap_ones (unreachable_blocks);
3188 FOR_ALL_BB_FN (bb, cfun)
3190 bb_info_t bb_info = bb_table[bb->index];
3191 if (bb_info->gen)
3192 bitmap_clear (bb_info->gen);
3193 else
3194 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3196 if (bb->index == ENTRY_BLOCK)
3198 else if (bb->index == EXIT_BLOCK)
3199 dse_step3_exit_block_scan (bb_info);
3200 else
3201 dse_step3_scan (bb);
3202 if (EDGE_COUNT (bb->succs) == 0)
3203 mark_reachable_blocks (unreachable_blocks, bb);
3205 /* If this is the second time dataflow is run, delete the old
3206 sets. */
3207 if (bb_info->in)
3208 BITMAP_FREE (bb_info->in);
3209 if (bb_info->out)
3210 BITMAP_FREE (bb_info->out);
3213 /* For any block in an infinite loop, we must initialize the out set
3214 to all ones. This could be expensive, but almost never occurs in
3215 practice. However, it is common in regression tests. */
3216 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3218 if (bitmap_bit_p (all_blocks, i))
3220 bb_info_t bb_info = bb_table[i];
3221 if (!all_ones)
3223 unsigned int j;
3224 group_info *group;
3226 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3227 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3228 bitmap_ior_into (all_ones, group->group_kill);
3230 if (!bb_info->out)
3232 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3233 bitmap_copy (bb_info->out, all_ones);
3238 if (all_ones)
3239 BITMAP_FREE (all_ones);
3244 /*----------------------------------------------------------------------------
3245 Fourth step.
3247 Solve the bitvector equations.
3248 ----------------------------------------------------------------------------*/
3251 /* Confluence function for blocks with no successors. Create an out
3252 set from the gen set of the exit block. This block logically has
3253 the exit block as a successor. */
3257 static void
3258 dse_confluence_0 (basic_block bb)
3260 bb_info_t bb_info = bb_table[bb->index];
3262 if (bb->index == EXIT_BLOCK)
3263 return;
3265 if (!bb_info->out)
3267 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3268 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3272 /* Propagate the information from the in set of the dest of E to the
3273 out set of the src of E. If the various in or out sets are not
3274 there, that means they are all ones. */
3276 static bool
3277 dse_confluence_n (edge e)
3279 bb_info_t src_info = bb_table[e->src->index];
3280 bb_info_t dest_info = bb_table[e->dest->index];
3282 if (dest_info->in)
3284 if (src_info->out)
3285 bitmap_and_into (src_info->out, dest_info->in);
3286 else
3288 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3289 bitmap_copy (src_info->out, dest_info->in);
3292 return true;
3296 /* Propagate the info from the out to the in set of BB_INDEX's basic
3297 block. There are three cases:
3299 1) The block has no kill set. In this case the kill set is all
3300 ones. It does not matter what the out set of the block is, none of
3301 the info can reach the top. The only thing that reaches the top is
3302 the gen set and we just copy the set.
3304 2) There is a kill set but no out set and bb has successors. In
3305 this case we just return. Eventually an out set will be created and
3306 it is better to wait than to create a set of ones.
3308 3) There is both a kill and out set. We apply the obvious transfer
3309 function.
3312 static bool
3313 dse_transfer_function (int bb_index)
3315 bb_info_t bb_info = bb_table[bb_index];
3317 if (bb_info->kill)
3319 if (bb_info->out)
3321 /* Case 3 above. */
3322 if (bb_info->in)
3323 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3324 bb_info->out, bb_info->kill);
3325 else
3327 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3328 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3329 bb_info->out, bb_info->kill);
3330 return true;
3333 else
3334 /* Case 2 above. */
3335 return false;
3337 else
3339 /* Case 1 above. If there is already an in set, nothing
3340 happens. */
3341 if (bb_info->in)
3342 return false;
3343 else
3345 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3346 bitmap_copy (bb_info->in, bb_info->gen);
3347 return true;
3352 /* Solve the dataflow equations. */
3354 static void
3355 dse_step4 (void)
3357 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3358 dse_confluence_n, dse_transfer_function,
3359 all_blocks, df_get_postorder (DF_BACKWARD),
3360 df_get_n_blocks (DF_BACKWARD));
3361 if (dump_file && (dump_flags & TDF_DETAILS))
3363 basic_block bb;
3365 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3366 FOR_ALL_BB_FN (bb, cfun)
3368 bb_info_t bb_info = bb_table[bb->index];
3370 df_print_bb_index (bb, dump_file);
3371 if (bb_info->in)
3372 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3373 else
3374 fprintf (dump_file, " in: *MISSING*\n");
3375 if (bb_info->gen)
3376 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3377 else
3378 fprintf (dump_file, " gen: *MISSING*\n");
3379 if (bb_info->kill)
3380 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3381 else
3382 fprintf (dump_file, " kill: *MISSING*\n");
3383 if (bb_info->out)
3384 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3385 else
3386 fprintf (dump_file, " out: *MISSING*\n\n");
3393 /*----------------------------------------------------------------------------
3394 Fifth step.
3396 Delete the stores that can only be deleted using the global information.
3397 ----------------------------------------------------------------------------*/
3400 static void
3401 dse_step5 (void)
3403 basic_block bb;
3404 FOR_EACH_BB_FN (bb, cfun)
3406 bb_info_t bb_info = bb_table[bb->index];
3407 insn_info_t insn_info = bb_info->last_insn;
3408 bitmap v = bb_info->out;
3410 while (insn_info)
3412 bool deleted = false;
3413 if (dump_file && insn_info->insn)
3415 fprintf (dump_file, "starting to process insn %d\n",
3416 INSN_UID (insn_info->insn));
3417 bitmap_print (dump_file, v, " v: ", "\n");
3420 /* There may have been code deleted by the dce pass run before
3421 this phase. */
3422 if (insn_info->insn
3423 && INSN_P (insn_info->insn)
3424 && (!insn_info->cannot_delete)
3425 && (!bitmap_empty_p (v)))
3427 store_info *store_info = insn_info->store_rec;
3429 /* Try to delete the current insn. */
3430 deleted = true;
3432 /* Skip the clobbers. */
3433 while (!store_info->is_set)
3434 store_info = store_info->next;
3436 HOST_WIDE_INT i, offset, width;
3437 group_info *group_info = rtx_group_vec[store_info->group_id];
3439 if (!store_info->offset.is_constant (&offset)
3440 || !store_info->width.is_constant (&width))
3441 deleted = false;
3442 else
3444 HOST_WIDE_INT end = offset + width;
3445 for (i = offset; i < end; i++)
3447 int index = get_bitmap_index (group_info, i);
3449 if (dump_file && (dump_flags & TDF_DETAILS))
3450 fprintf (dump_file, "i = %d, index = %d\n",
3451 (int) i, index);
3452 if (index == 0 || !bitmap_bit_p (v, index))
3454 if (dump_file && (dump_flags & TDF_DETAILS))
3455 fprintf (dump_file, "failing at i = %d\n",
3456 (int) i);
3457 deleted = false;
3458 break;
3462 if (deleted)
3464 if (dbg_cnt (dse)
3465 && check_for_inc_dec_1 (insn_info))
3467 delete_insn (insn_info->insn);
3468 insn_info->insn = NULL;
3469 globally_deleted++;
3473 /* We do want to process the local info if the insn was
3474 deleted. For instance, if the insn did a wild read, we
3475 no longer need to trash the info. */
3476 if (insn_info->insn
3477 && INSN_P (insn_info->insn)
3478 && (!deleted))
3480 scan_stores (insn_info->store_rec, v, NULL);
3481 if (insn_info->wild_read)
3483 if (dump_file && (dump_flags & TDF_DETAILS))
3484 fprintf (dump_file, "wild read\n");
3485 bitmap_clear (v);
3487 else if (insn_info->read_rec
3488 || insn_info->non_frame_wild_read
3489 || insn_info->frame_read)
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3493 if (!insn_info->non_frame_wild_read
3494 && !insn_info->frame_read)
3495 fprintf (dump_file, "regular read\n");
3496 if (insn_info->non_frame_wild_read)
3497 fprintf (dump_file, "non-frame wild read\n");
3498 if (insn_info->frame_read)
3499 fprintf (dump_file, "frame read\n");
3501 scan_reads (insn_info, v, NULL);
3505 insn_info = insn_info->prev_insn;
3512 /*----------------------------------------------------------------------------
3513 Sixth step.
3515 Delete stores made redundant by earlier stores (which store the same
3516 value) that couldn't be eliminated.
3517 ----------------------------------------------------------------------------*/
3519 static void
3520 dse_step6 (void)
3522 basic_block bb;
3524 FOR_ALL_BB_FN (bb, cfun)
3526 bb_info_t bb_info = bb_table[bb->index];
3527 insn_info_t insn_info = bb_info->last_insn;
3529 while (insn_info)
3531 /* There may have been code deleted by the dce pass run before
3532 this phase. */
3533 if (insn_info->insn
3534 && INSN_P (insn_info->insn)
3535 && !insn_info->cannot_delete)
3537 store_info *s_info = insn_info->store_rec;
3539 while (s_info && !s_info->is_set)
3540 s_info = s_info->next;
3541 if (s_info
3542 && s_info->redundant_reason
3543 && s_info->redundant_reason->insn
3544 && INSN_P (s_info->redundant_reason->insn))
3546 rtx_insn *rinsn = s_info->redundant_reason->insn;
3547 if (dump_file && (dump_flags & TDF_DETAILS))
3548 fprintf (dump_file, "Locally deleting insn %d "
3549 "because insn %d stores the "
3550 "same value and couldn't be "
3551 "eliminated\n",
3552 INSN_UID (insn_info->insn),
3553 INSN_UID (rinsn));
3554 delete_dead_store_insn (insn_info);
3557 insn_info = insn_info->prev_insn;
3562 /*----------------------------------------------------------------------------
3563 Seventh step.
3565 Destroy everything left standing.
3566 ----------------------------------------------------------------------------*/
3568 static void
3569 dse_step7 (void)
3571 bitmap_obstack_release (&dse_bitmap_obstack);
3572 obstack_free (&dse_obstack, NULL);
3574 end_alias_analysis ();
3575 free (bb_table);
3576 delete rtx_group_table;
3577 rtx_group_table = NULL;
3578 rtx_group_vec.release ();
3579 BITMAP_FREE (all_blocks);
3580 BITMAP_FREE (scratch);
3582 rtx_store_info_pool.release ();
3583 read_info_type_pool.release ();
3584 insn_info_type_pool.release ();
3585 dse_bb_info_type_pool.release ();
3586 group_info_pool.release ();
3587 deferred_change_pool.release ();
3591 /* -------------------------------------------------------------------------
3593 ------------------------------------------------------------------------- */
3595 /* Callback for running pass_rtl_dse. */
3597 static unsigned int
3598 rest_of_handle_dse (void)
3600 df_set_flags (DF_DEFER_INSN_RESCAN);
3602 /* Need the notes since we must track live hardregs in the forwards
3603 direction. */
3604 df_note_add_problem ();
3605 df_analyze ();
3607 dse_step0 ();
3608 dse_step1 ();
3609 dse_step2_init ();
3610 if (dse_step2 ())
3612 df_set_flags (DF_LR_RUN_DCE);
3613 df_analyze ();
3614 if (dump_file && (dump_flags & TDF_DETAILS))
3615 fprintf (dump_file, "doing global processing\n");
3616 dse_step3 ();
3617 dse_step4 ();
3618 dse_step5 ();
3621 dse_step6 ();
3622 dse_step7 ();
3624 if (dump_file)
3625 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3626 locally_deleted, globally_deleted);
3628 /* DSE can eliminate potentially-trapping MEMs.
3629 Remove any EH edges associated with them. */
3630 if ((locally_deleted || globally_deleted)
3631 && cfun->can_throw_non_call_exceptions
3632 && purge_all_dead_edges ())
3634 free_dominance_info (CDI_DOMINATORS);
3635 cleanup_cfg (0);
3638 return 0;
3641 namespace {
3643 const pass_data pass_data_rtl_dse1 =
3645 RTL_PASS, /* type */
3646 "dse1", /* name */
3647 OPTGROUP_NONE, /* optinfo_flags */
3648 TV_DSE1, /* tv_id */
3649 0, /* properties_required */
3650 0, /* properties_provided */
3651 0, /* properties_destroyed */
3652 0, /* todo_flags_start */
3653 TODO_df_finish, /* todo_flags_finish */
3656 class pass_rtl_dse1 : public rtl_opt_pass
3658 public:
3659 pass_rtl_dse1 (gcc::context *ctxt)
3660 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3663 /* opt_pass methods: */
3664 virtual bool gate (function *)
3666 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3669 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3671 }; // class pass_rtl_dse1
3673 } // anon namespace
3675 rtl_opt_pass *
3676 make_pass_rtl_dse1 (gcc::context *ctxt)
3678 return new pass_rtl_dse1 (ctxt);
3681 namespace {
3683 const pass_data pass_data_rtl_dse2 =
3685 RTL_PASS, /* type */
3686 "dse2", /* name */
3687 OPTGROUP_NONE, /* optinfo_flags */
3688 TV_DSE2, /* tv_id */
3689 0, /* properties_required */
3690 0, /* properties_provided */
3691 0, /* properties_destroyed */
3692 0, /* todo_flags_start */
3693 TODO_df_finish, /* todo_flags_finish */
3696 class pass_rtl_dse2 : public rtl_opt_pass
3698 public:
3699 pass_rtl_dse2 (gcc::context *ctxt)
3700 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3703 /* opt_pass methods: */
3704 virtual bool gate (function *)
3706 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3709 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3711 }; // class pass_rtl_dse2
3713 } // anon namespace
3715 rtl_opt_pass *
3716 make_pass_rtl_dse2 (gcc::context *ctxt)
3718 return new pass_rtl_dse2 (ctxt);