* configure.in: Pass a computed --program-transform-name
[official-gcc.git] / gcc / dwarfout.c
blobdfd1f0b57e1c6e4402b6cedd2fe7669f9278ab77
1 /* Output Dwarf format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
25 Notes on the GNU Implementation of DWARF Debugging Information
26 --------------------------------------------------------------
27 Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28 ------------------------------------------------------------
30 This file describes special and unique aspects of the GNU implementation of
31 the DWARF Version 1 debugging information language, as provided in the GNU
32 version 2.x compiler(s).
34 For general information about the DWARF debugging information language,
35 you should obtain the DWARF version 1.1 specification document (and perhaps
36 also the DWARF version 2 draft specification document) developed by the
37 (now defunct) UNIX International Programming Languages Special Interest Group.
39 To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40 specification, visit the web page for the DWARF Version 2 committee, at
42 http://www.eagercon.com/dwarf/dwarf2std.htm
44 The generation of DWARF debugging information by the GNU version 2.x C
45 compiler has now been tested rather extensively for m88k, i386, i860, and
46 SPARC targets. The DWARF output of the GNU C compiler appears to inter-
47 operate well with the standard SVR4 SDB debugger on these kinds of target
48 systems (but of course, there are no guarantees).
50 DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51 C++ users should definitely use DWARF 2 instead.
53 Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54 addition of full support for GNU FORTRAN. (This should, in theory, be a
55 lot simpler to add than adding support for g++... but we'll see.)
57 Many features of the DWARF version 2 specification have been adapted to
58 (and used in) the GNU implementation of DWARF (version 1). In most of
59 these cases, a DWARF version 2 approach is used in place of (or in addition
60 to) DWARF version 1 stuff simply because it is apparent that DWARF version
61 1 is not sufficiently expressive to provide the kinds of information which
62 may be necessary to support really robust debugging. In all of these cases
63 however, the use of DWARF version 2 features should not interfere in any
64 way with the interoperability (of GNU compilers) with generally available
65 "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
67 The DWARF generation enhancement for the GNU compiler(s) was initially
68 donated to the Free Software Foundation by Network Computing Devices.
69 (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70 been largely supported (i.e. funded) by Intel Corporation. (Thanks Intel!)
72 If you have questions or comments about the DWARF generation feature, please
73 send mail to me <rfg@netcom.com>. I will be happy to investigate any bugs
74 reported and I may even provide fixes (but of course, I can make no promises).
76 The DWARF debugging information produced by GCC may deviate in a few minor
77 (but perhaps significant) respects from the DWARF debugging information
78 currently produced by other C compilers. A serious attempt has been made
79 however to conform to the published specifications, to existing practice,
80 and to generally accepted norms in the GNU implementation of DWARF.
82 ** IMPORTANT NOTE ** ** IMPORTANT NOTE ** ** IMPORTANT NOTE **
84 Under normal circumstances, the DWARF information generated by the GNU
85 compilers (in an assembly language file) is essentially impossible for
86 a human being to read. This fact can make it very difficult to debug
87 certain DWARF-related problems. In order to overcome this difficulty,
88 a feature has been added to dwarfout.c (enabled by the -dA
89 option) which causes additional comments to be placed into the assembly
90 language output file, out to the right-hand side of most bits of DWARF
91 material. The comments indicate (far more clearly that the obscure
92 DWARF hex codes do) what is actually being encoded in DWARF. Thus, the
93 -dA option can be highly useful for those who must study the
94 DWARF output from the GNU compilers in detail.
96 ---------
98 (Footnote: Within this file, the term `Debugging Information Entry' will
99 be abbreviated as `DIE'.)
102 Release Notes (aka known bugs)
103 -------------------------------
105 In one very obscure case involving dynamically sized arrays, the DWARF
106 "location information" for such an array may make it appear that the
107 array has been totally optimized out of existence, when in fact it
108 *must* actually exist. (This only happens when you are using *both* -g
109 *and* -O.) This is due to aggressive dead store elimination in the
110 compiler, and to the fact that the DECL_RTL expressions associated with
111 variables are not always updated to correctly reflect the effects of
112 GCC's aggressive dead store elimination.
114 -------------------------------
116 When attempting to set a breakpoint at the "start" of a function compiled
117 with -g1, the debugger currently has no way of knowing exactly where the
118 end of the prologue code for the function is. Thus, for most targets,
119 all the debugger can do is to set the breakpoint at the AT_low_pc address
120 for the function. But if you stop there and then try to look at one or
121 more of the formal parameter values, they may not have been "homed" yet,
122 so you may get inaccurate answers (or perhaps even addressing errors).
124 Some people may consider this simply a non-feature, but I consider it a
125 bug, and I hope to provide some GNU-specific attributes (on function
126 DIEs) which will specify the address of the end of the prologue and the
127 address of the beginning of the epilogue in a future release.
129 -------------------------------
131 It is believed at this time that old bugs relating to the AT_bit_offset
132 values for bit-fields have been fixed.
134 There may still be some very obscure bugs relating to the DWARF description
135 of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136 where the alignment of type `long long' data objects is different from
137 (and less than) the size of a type `long long' data object.
139 Please report any problems with the DWARF description of bit-fields as you
140 would any other GCC bug. (Procedures for bug reporting are given in the
141 GNU C compiler manual.)
143 --------------------------------
145 At this time, GCC does not know how to handle the GNU C "nested functions"
146 extension. (See the GCC manual for more info on this extension to ANSI C.)
148 --------------------------------
150 The GNU compilers now represent inline functions (and inlined instances
151 thereof) in exactly the manner described by the current DWARF version 2
152 (draft) specification. The version 1 specification for handling inline
153 functions (and inlined instances) was known to be brain-damaged (by the
154 PLSIG) when the version 1 spec was finalized, but it was simply too late
155 in the cycle to get it removed before the version 1 spec was formally
156 released to the public (by UI).
158 --------------------------------
160 At this time, GCC does not generate the kind of really precise information
161 about the exact declared types of entities with signed integral types which
162 is required by the current DWARF draft specification.
164 Specifically, the current DWARF draft specification seems to require that
165 the type of a non-unsigned integral bit-field member of a struct or union
166 type be represented as either a "signed" type or as a "plain" type,
167 depending upon the exact set of keywords that were used in the
168 type specification for the given bit-field member. It was felt (by the
169 UI/PLSIG) that this distinction between "plain" and "signed" integral types
170 could have some significance (in the case of bit-fields) because ANSI C
171 does not constrain the signedness of a plain bit-field, whereas it does
172 constrain the signedness of an explicitly "signed" bit-field. For this
173 reason, the current DWARF specification calls for compilers to produce
174 type information (for *all* integral typed entities... not just bit-fields)
175 which explicitly indicates the signedness of the relevant type to be
176 "signed" or "plain" or "unsigned".
178 Unfortunately, the GNU DWARF implementation is currently incapable of making
179 such distinctions.
181 --------------------------------
184 Known Interoperability Problems
185 -------------------------------
187 Although the GNU implementation of DWARF conforms (for the most part) with
188 the current UI/PLSIG DWARF version 1 specification (with many compatible
189 version 2 features added in as "vendor specific extensions" just for good
190 measure) there are a few known cases where GCC's DWARF output can cause
191 some confusion for "classic" (pre version 1) DWARF consumers such as the
192 System V Release 4 SDB debugger. These cases are described in this section.
194 --------------------------------
196 The DWARF version 1 specification includes the fundamental type codes
197 FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198 Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199 data types) the only one of these fundamental type codes which GCC ever
200 generates is FT_ext_prec_float. This fundamental type code is generated
201 by GCC for the `long double' data type. Unfortunately, due to an apparent
202 bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203 attempt is made to print a variable, parameter, or field whose type was
204 given in terms of FT_ext_prec_float.
206 (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207 codes mentioned here. This will fact will cause additional problems when
208 there is a GNU FORTRAN front-end.)
210 --------------------------------
212 In general, it appears that SVR4 SDB is not able to effectively ignore
213 fundamental type codes in the "implementation defined" range. This can
214 cause problems when a program being debugged uses the `long long' data
215 type (or the signed or unsigned varieties thereof) because these types
216 are not defined by ANSI C, and thus, GCC must use its own private fundamental
217 type codes (from the implementation-defined range) to represent these types.
219 --------------------------------
222 General GNU DWARF extensions
223 ----------------------------
225 In the current DWARF version 1 specification, no mechanism is specified by
226 which accurate information about executable code from include files can be
227 properly (and fully) described. (The DWARF version 2 specification *does*
228 specify such a mechanism, but it is about 10 times more complicated than
229 it needs to be so I'm not terribly anxious to try to implement it right
230 away.)
232 In the GNU implementation of DWARF version 1, a fully downward-compatible
233 extension has been implemented which permits the GNU compilers to specify
234 which executable lines come from which files. This extension places
235 additional information (about source file names) in GNU-specific sections
236 (which should be totally ignored by all non-GNU DWARF consumers) so that
237 this extended information can be provided (to GNU DWARF consumers) in a way
238 which is totally transparent (and invisible) to non-GNU DWARF consumers
239 (e.g. the SVR4 SDB debugger). The additional information is placed *only*
240 in specialized GNU-specific sections, where it should never even be seen
241 by non-GNU DWARF consumers.
243 To understand this GNU DWARF extension, imagine that the sequence of entries
244 in the .lines section is broken up into several subsections. Each contiguous
245 sequence of .line entries which relates to a sequence of lines (or statements)
246 from one particular file (either a `base' file or an `include' file) could
247 be called a `line entries chunk' (LEC).
249 For each LEC there is one entry in the .debug_srcinfo section.
251 Each normal entry in the .debug_srcinfo section consists of two 4-byte
252 words of data as follows:
254 (1) The starting address (relative to the entire .line section)
255 of the first .line entry in the relevant LEC.
257 (2) The starting address (relative to the entire .debug_sfnames
258 section) of a NUL terminated string representing the
259 relevant filename. (This filename name be either a
260 relative or an absolute filename, depending upon how the
261 given source file was located during compilation.)
263 Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264 and it also points you to the first .line entry that was generated as a result
265 of having compiled a given source line from the given source file.
267 Each subsequent .line entry should also be assumed to have been produced
268 as a result of compiling yet more lines from the same file. The end of
269 any given LEC is easily found by looking at the first 4-byte pointer in
270 the *next* .debug_srcinfo entry. That next .debug_srcinfo entry points
271 to a new and different LEC, so the preceding LEC (implicitly) must have
272 ended with the last .line section entry which occurs at the 2 1/2 words
273 just before the address given in the first pointer of the new .debug_srcinfo
274 entry.
276 The following picture may help to clarify this feature. Let's assume that
277 `LE' stands for `.line entry'. Also, assume that `* 'stands for a pointer.
280 .line section .debug_srcinfo section .debug_sfnames section
281 ----------------------------------------------------------------
283 LE <---------------------- *
284 LE * -----------------> "foobar.c" <---
285 LE |
286 LE |
287 LE <---------------------- * |
288 LE * -----------------> "foobar.h" <| |
289 LE | |
290 LE | |
291 LE <---------------------- * | |
292 LE * -----------------> "inner.h" | |
293 LE | |
294 LE <---------------------- * | |
295 LE * ------------------------------- |
296 LE |
297 LE |
298 LE |
299 LE |
300 LE <---------------------- * |
301 LE * -----------------------------------
306 In effect, each entry in the .debug_srcinfo section points to *both* a
307 filename (in the .debug_sfnames section) and to the start of a block of
308 consecutive LEs (in the .line section).
310 Note that just like in the .line section, there are specialized first and
311 last entries in the .debug_srcinfo section for each object file. These
312 special first and last entries for the .debug_srcinfo section are very
313 different from the normal .debug_srcinfo section entries. They provide
314 additional information which may be helpful to a debugger when it is
315 interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
316 sections.
318 The first entry in the .debug_srcinfo section for each compilation unit
319 consists of five 4-byte words of data. The contents of these five words
320 should be interpreted (by debuggers) as follows:
322 (1) The starting address (relative to the entire .line section)
323 of the .line section for this compilation unit.
325 (2) The starting address (relative to the entire .debug_sfnames
326 section) of the .debug_sfnames section for this compilation
327 unit.
329 (3) The starting address (in the execution virtual address space)
330 of the .text section for this compilation unit.
332 (4) The ending address plus one (in the execution virtual address
333 space) of the .text section for this compilation unit.
335 (5) The date/time (in seconds since midnight 1/1/70) at which the
336 compilation of this compilation unit occurred. This value
337 should be interpreted as an unsigned quantity because gcc
338 might be configured to generate a default value of 0xffffffff
339 in this field (in cases where it is desired to have object
340 files created at different times from identical source files
341 be byte-for-byte identical). By default, these timestamps
342 are *not* generated by dwarfout.c (so that object files
343 compiled at different times will be byte-for-byte identical).
344 If you wish to enable this "timestamp" feature however, you
345 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 in your target configuration file and then rebuild the GNU
347 compiler(s).
349 Note that the first string placed into the .debug_sfnames section for each
350 compilation unit is the name of the directory in which compilation occurred.
351 This string ends with a `/' (to help indicate that it is the pathname of a
352 directory). Thus, the second word of each specialized initial .debug_srcinfo
353 entry for each compilation unit may be used as a pointer to the (string)
354 name of the compilation directory, and that string may in turn be used to
355 "absolutize" any relative pathnames which may appear later on in the
356 .debug_sfnames section entries for the same compilation unit.
358 The fifth and last word of each specialized starting entry for a compilation
359 unit in the .debug_srcinfo section may (depending upon your configuration)
360 indicate the date/time of compilation, and this may be used (by a debugger)
361 to determine if any of the source files which contributed code to this
362 compilation unit are newer than the object code for the compilation unit
363 itself. If so, the debugger may wish to print an "out-of-date" warning
364 about the compilation unit.
366 The .debug_srcinfo section associated with each compilation will also have
367 a specialized terminating entry. This terminating .debug_srcinfo section
368 entry will consist of the following two 4-byte words of data:
370 (1) The offset, measured from the start of the .line section to
371 the beginning of the terminating entry for the .line section.
373 (2) A word containing the value 0xffffffff.
375 --------------------------------
377 In the current DWARF version 1 specification, no mechanism is specified by
378 which information about macro definitions and un-definitions may be provided
379 to the DWARF consumer.
381 The DWARF version 2 (draft) specification does specify such a mechanism.
382 That specification was based on the GNU ("vendor specific extension")
383 which provided some support for macro definitions and un-definitions,
384 but the "official" DWARF version 2 (draft) specification mechanism for
385 handling macros and the GNU implementation have diverged somewhat. I
386 plan to update the GNU implementation to conform to the "official"
387 DWARF version 2 (draft) specification as soon as I get time to do that.
389 Note that in the GNU implementation, additional information about macro
390 definitions and un-definitions is *only* provided when the -g3 level of
391 debug-info production is selected. (The default level is -g2 and the
392 plain old -g option is considered to be identical to -g2.)
394 GCC records information about macro definitions and undefinitions primarily
395 in a section called the .debug_macinfo section. Normal entries in the
396 .debug_macinfo section consist of the following three parts:
398 (1) A special "type" byte.
400 (2) A 3-byte line-number/filename-offset field.
402 (3) A NUL terminated string.
404 The interpretation of the second and third parts is dependent upon the
405 value of the leading (type) byte.
407 The type byte may have one of four values depending upon the type of the
408 .debug_macinfo entry which follows. The 1-byte MACINFO type codes presently
409 used, and their meanings are as follows:
411 MACINFO_start A base file or an include file starts here.
412 MACINFO_resume The current base or include file ends here.
413 MACINFO_define A #define directive occurs here.
414 MACINFO_undef A #undef directive occur here.
416 (Note that the MACINFO_... codes mentioned here are simply symbolic names
417 for constants which are defined in the GNU dwarf.h file.)
419 For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420 contains the number of the source line (relative to the start of the current
421 base source file or the current include files) when the #define or #undef
422 directive appears. For a MACINFO_define entry, the following string field
423 contains the name of the macro which is defined, followed by its definition.
424 Note that the definition is always separated from the name of the macro
425 by at least one whitespace character. For a MACINFO_undef entry, the
426 string which follows the 3-byte line number field contains just the name
427 of the macro which is being undef'ed.
429 For a MACINFO_start entry, the 3-byte field following the type byte contains
430 the offset, relative to the start of the .debug_sfnames section for the
431 current compilation unit, of a string which names the new source file which
432 is beginning its inclusion at this point. Following that 3-byte field,
433 each MACINFO_start entry always contains a zero length NUL terminated
434 string.
436 For a MACINFO_resume entry, the 3-byte field following the type byte contains
437 the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438 current file (whose inclusion ends here) was initiated. Following that
439 3-byte field, each MACINFO_resume entry always contains a zero length NUL
440 terminated string.
442 Each set of .debug_macinfo entries for each compilation unit is terminated
443 by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444 by a single NUL byte.
446 --------------------------------
448 In the current DWARF draft specification, no provision is made for providing
449 a separate level of (limited) debugging information necessary to support
450 tracebacks (only) through fully-debugged code (e.g. code in system libraries).
452 A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453 This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454 version 1 specification for two reasons. First, it was felt (by the PLSIG)
455 that the issues involved in supporting a "traceback only" subset of DWARF
456 were not well understood. Second, and perhaps more importantly, the PLSIG
457 is already having enough trouble agreeing on what it means to be "conforming"
458 to the DWARF specification, and it was felt that trying to specify multiple
459 different *levels* of conformance would only complicate our discussions of
460 this already divisive issue. Nonetheless, the GNU implementation of DWARF
461 provides an abbreviated "traceback only" level of debug-info production for
462 use with fully-debugged "system library" code. This level should only be
463 used for fully debugged system library code, and even then, it should only
464 be used where there is a very strong need to conserve disk space. This
465 abbreviated level of debug-info production can be used by specifying the
466 -g1 option on the compilation command line.
468 --------------------------------
470 As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471 version 2 (draft) approach for inline functions (and inlined instances
472 thereof). This is used in preference to the version 1 approach because
473 (quite simply) the version 1 approach is highly brain-damaged and probably
474 unworkable.
476 --------------------------------
479 GNU DWARF Representation of GNU C Extensions to ANSI C
480 ------------------------------------------------------
482 The file dwarfout.c has been designed and implemented so as to provide
483 some reasonable DWARF representation for each and every declarative
484 construct which is accepted by the GNU C compiler. Since the GNU C
485 compiler accepts a superset of ANSI C, this means that there are some
486 cases in which the DWARF information produced by GCC must take some
487 liberties in improvising DWARF representations for declarations which
488 are only valid in (extended) GNU C.
490 In particular, GNU C provides at least three significant extensions to
491 ANSI C when it comes to declarations. These are (1) inline functions,
492 and (2) dynamic arrays, and (3) incomplete enum types. (See the GCC
493 manual for more information on these GNU extensions to ANSI C.) When
494 used, these GNU C extensions are represented (in the generated DWARF
495 output of GCC) in the most natural and intuitively obvious ways.
497 In the case of inline functions, the DWARF representation is exactly as
498 called for in the DWARF version 2 (draft) specification for an identical
499 function written in C++; i.e. we "reuse" the representation of inline
500 functions which has been defined for C++ to support this GNU C extension.
502 In the case of dynamic arrays, we use the most obvious representational
503 mechanism available; i.e. an array type in which the upper bound of
504 some dimension (usually the first and only dimension) is a variable
505 rather than a constant. (See the DWARF version 1 specification for more
506 details.)
508 In the case of incomplete enum types, such types are represented simply
509 as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510 attributes or AT_element_list attributes.
512 --------------------------------
515 Future Directions
516 -----------------
518 The codes, formats, and other paraphernalia necessary to provide proper
519 support for symbolic debugging for the C++ language are still being worked
520 on by the UI/PLSIG. The vast majority of the additions to DWARF which will
521 be needed to completely support C++ have already been hashed out and agreed
522 upon, but a few small issues (e.g. anonymous unions, access declarations)
523 are still being discussed. Also, we in the PLSIG are still discussing
524 whether or not we need to do anything special for C++ templates. (At this
525 time it is not yet clear whether we even need to do anything special for
526 these.)
528 With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529 complete and sufficient set of codes and rules for adequately representing
530 all of FORTRAN 77, and most of Fortran 90 in DWARF. While some support for
531 this has been implemented in dwarfout.c, further implementation and testing
532 is needed.
534 GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535 issue until there are GNU front-ends for these other languages.
537 As currently defined, DWARF only describes a (binary) language which can
538 be used to communicate symbolic debugging information from a compiler
539 through an assembler and a linker, to a debugger. There is no clear
540 specification of what processing should be (or must be) done by the
541 assembler and/or the linker. Fortunately, the role of the assembler
542 is easily inferred (by anyone knowledgeable about assemblers) just by
543 looking at examples of assembly-level DWARF code. Sadly though, the
544 allowable (or required) processing steps performed by a linker are
545 harder to infer and (perhaps) even harder to agree upon. There are
546 several forms of very useful `post-processing' steps which intelligent
547 linkers *could* (in theory) perform on object files containing DWARF,
548 but any and all such link-time transformations are currently both disallowed
549 and unspecified.
551 In particular, possible link-time transformations of DWARF code which could
552 provide significant benefits include (but are not limited to):
554 Commonization of duplicate DIEs obtained from multiple input
555 (object) files.
557 Cross-compilation type checking based upon DWARF type information
558 for objects and functions.
560 Other possible `compacting' transformations designed to save disk
561 space and to reduce linker & debugger I/O activity.
565 #include "config.h"
566 #include "system.h"
567 #include "coretypes.h"
568 #include "tm.h"
570 #ifdef DWARF_DEBUGGING_INFO
571 #include "dwarf.h"
572 #include "tree.h"
573 #include "flags.h"
574 #include "function.h"
575 #include "rtl.h"
576 #include "hard-reg-set.h"
577 #include "insn-config.h"
578 #include "reload.h"
579 #include "output.h"
580 #include "dwarf2asm.h"
581 #include "toplev.h"
582 #include "tm_p.h"
583 #include "debug.h"
584 #include "target.h"
585 #include "langhooks.h"
587 /* NOTE: In the comments in this file, many references are made to
588 so called "Debugging Information Entries". For the sake of brevity,
589 this term is abbreviated to `DIE' throughout the remainder of this
590 file. */
592 /* Note that the implementation of C++ support herein is (as yet) unfinished.
593 If you want to try to complete it, more power to you. */
595 /* How to start an assembler comment. */
596 #ifndef ASM_COMMENT_START
597 #define ASM_COMMENT_START ";#"
598 #endif
600 /* How to print out a register name. */
601 #ifndef PRINT_REG
602 #define PRINT_REG(RTX, CODE, FILE) \
603 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
604 #endif
606 /* Define a macro which returns nonzero for any tagged type which is
607 used (directly or indirectly) in the specification of either some
608 function's return type or some formal parameter of some function.
609 We use this macro when we are operating in "terse" mode to help us
610 know what tagged types have to be represented in Dwarf (even in
611 terse mode) and which ones don't.
613 A flag bit with this meaning really should be a part of the normal
614 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
615 for these nodes. For now, we have to just fake it. It it safe for
616 us to simply return zero for all complete tagged types (which will
617 get forced out anyway if they were used in the specification of some
618 formal or return type) and nonzero for all incomplete tagged types.
621 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
623 /* Define a macro which returns nonzero for a TYPE_DECL which was
624 implicitly generated for a tagged type.
626 Note that unlike the gcc front end (which generates a NULL named
627 TYPE_DECL node for each complete tagged type, each array type, and
628 each function type node created) the g++ front end generates a
629 _named_ TYPE_DECL node for each tagged type node created.
630 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
631 generate a DW_TAG_typedef DIE for them. */
632 #define TYPE_DECL_IS_STUB(decl) \
633 (DECL_NAME (decl) == NULL \
634 || (DECL_ARTIFICIAL (decl) \
635 && is_tagged_type (TREE_TYPE (decl)) \
636 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
638 /* Maximum size (in bytes) of an artificially generated label. */
640 #define MAX_ARTIFICIAL_LABEL_BYTES 30
642 /* Structure to keep track of source filenames. */
644 struct filename_entry {
645 unsigned number;
646 const char * name;
649 typedef struct filename_entry filename_entry;
651 /* Pointer to an array of elements, each one having the structure above. */
653 static filename_entry *filename_table;
655 /* Total number of entries in the table (i.e. array) pointed to by
656 `filename_table'. This is the *total* and includes both used and
657 unused slots. */
659 static unsigned ft_entries_allocated;
661 /* Number of entries in the filename_table which are actually in use. */
663 static unsigned ft_entries;
665 /* Size (in elements) of increments by which we may expand the filename
666 table. Actually, a single hunk of space of this size should be enough
667 for most typical programs. */
669 #define FT_ENTRIES_INCREMENT 64
671 /* Local pointer to the name of the main input file. Initialized in
672 dwarfout_init. */
674 static const char *primary_filename;
676 /* Counter to generate unique names for DIEs. */
678 static unsigned next_unused_dienum = 1;
680 /* Number of the DIE which is currently being generated. */
682 static unsigned current_dienum;
684 /* Number to use for the special "pubname" label on the next DIE which
685 represents a function or data object defined in this compilation
686 unit which has "extern" linkage. */
688 static int next_pubname_number = 0;
690 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
692 /* Pointer to a dynamically allocated list of pre-reserved and still
693 pending sibling DIE numbers. Note that this list will grow as needed. */
695 static unsigned *pending_sibling_stack;
697 /* Counter to keep track of the number of pre-reserved and still pending
698 sibling DIE numbers. */
700 static unsigned pending_siblings;
702 /* The currently allocated size of the above list (expressed in number of
703 list elements). */
705 static unsigned pending_siblings_allocated;
707 /* Size (in elements) of increments by which we may expand the pending
708 sibling stack. Actually, a single hunk of space of this size should
709 be enough for most typical programs. */
711 #define PENDING_SIBLINGS_INCREMENT 64
713 /* Nonzero if we are performing our file-scope finalization pass and if
714 we should force out Dwarf descriptions of any and all file-scope
715 tagged types which are still incomplete types. */
717 static int finalizing = 0;
719 /* A pointer to the base of a list of pending types which we haven't
720 generated DIEs for yet, but which we will have to come back to
721 later on. */
723 static tree *pending_types_list;
725 /* Number of elements currently allocated for the pending_types_list. */
727 static unsigned pending_types_allocated;
729 /* Number of elements of pending_types_list currently in use. */
731 static unsigned pending_types;
733 /* Size (in elements) of increments by which we may expand the pending
734 types list. Actually, a single hunk of space of this size should
735 be enough for most typical programs. */
737 #define PENDING_TYPES_INCREMENT 64
739 /* A pointer to the base of a list of incomplete types which might be
740 completed at some later time. */
742 static tree *incomplete_types_list;
744 /* Number of elements currently allocated for the incomplete_types_list. */
745 static unsigned incomplete_types_allocated;
747 /* Number of elements of incomplete_types_list currently in use. */
748 static unsigned incomplete_types;
750 /* Size (in elements) of increments by which we may expand the incomplete
751 types list. Actually, a single hunk of space of this size should
752 be enough for most typical programs. */
753 #define INCOMPLETE_TYPES_INCREMENT 64
755 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
756 This is used in a hack to help us get the DIEs describing types of
757 formal parameters to come *after* all of the DIEs describing the formal
758 parameters themselves. That's necessary in order to be compatible
759 with what the brain-damaged svr4 SDB debugger requires. */
761 static tree fake_containing_scope;
763 /* A pointer to the ..._DECL node which we have most recently been working
764 on. We keep this around just in case something about it looks screwy
765 and we want to tell the user what the source coordinates for the actual
766 declaration are. */
768 static tree dwarf_last_decl;
770 /* A flag indicating that we are emitting the member declarations of a
771 class, so member functions and variables should not be entirely emitted.
772 This is a kludge to avoid passing a second argument to output_*_die. */
774 static int in_class;
776 /* Forward declarations for functions defined in this file. */
778 static void dwarfout_init (const char *);
779 static void dwarfout_finish (const char *);
780 static void dwarfout_define (unsigned int, const char *);
781 static void dwarfout_undef (unsigned int, const char *);
782 static void dwarfout_start_source_file (unsigned, const char *);
783 static void dwarfout_start_source_file_check (unsigned, const char *);
784 static void dwarfout_end_source_file (unsigned);
785 static void dwarfout_end_source_file_check (unsigned);
786 static void dwarfout_begin_block (unsigned, unsigned);
787 static void dwarfout_end_block (unsigned, unsigned);
788 static void dwarfout_end_epilogue (unsigned int, const char *);
789 static void dwarfout_source_line (unsigned int, const char *);
790 static void dwarfout_end_prologue (unsigned int, const char *);
791 static void dwarfout_end_function (unsigned int);
792 static void dwarfout_function_decl (tree);
793 static void dwarfout_global_decl (tree);
794 static void dwarfout_deferred_inline_function (tree);
795 static void dwarfout_file_scope_decl (tree , int);
796 static const char *dwarf_tag_name (unsigned);
797 static const char *dwarf_attr_name (unsigned);
798 static const char *dwarf_stack_op_name (unsigned);
799 static const char *dwarf_typemod_name (unsigned);
800 static const char *dwarf_fmt_byte_name (unsigned);
801 static const char *dwarf_fund_type_name (unsigned);
802 static tree decl_ultimate_origin (tree);
803 static tree block_ultimate_origin (tree);
804 static tree decl_class_context (tree);
805 #if 0
806 static void output_unsigned_leb128 (unsigned long);
807 static void output_signed_leb128 (long);
808 #endif
809 static int fundamental_type_code (tree);
810 static tree root_type_1 (tree, int);
811 static tree root_type (tree);
812 static void write_modifier_bytes_1 (tree, int, int, int);
813 static void write_modifier_bytes (tree, int, int);
814 static inline int type_is_fundamental (tree);
815 static void equate_decl_number_to_die_number (tree);
816 static inline void equate_type_number_to_die_number (tree);
817 static void output_reg_number (rtx);
818 static void output_mem_loc_descriptor (rtx);
819 static void output_loc_descriptor (rtx);
820 static void output_bound_representation (tree, unsigned, char);
821 static void output_enumeral_list (tree);
822 static inline HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
823 static inline tree field_type (tree);
824 static inline unsigned int simple_type_align_in_bits (tree);
825 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
826 static HOST_WIDE_INT field_byte_offset (tree);
827 static inline void sibling_attribute (void);
828 static void location_attribute (rtx);
829 static void data_member_location_attribute (tree);
830 static void const_value_attribute (rtx);
831 static void location_or_const_value_attribute (tree);
832 static inline void name_attribute (const char *);
833 static inline void fund_type_attribute (unsigned);
834 static void mod_fund_type_attribute (tree, int, int);
835 static inline void user_def_type_attribute (tree);
836 static void mod_u_d_type_attribute (tree, int, int);
837 #ifdef USE_ORDERING_ATTRIBUTE
838 static inline void ordering_attribute (unsigned);
839 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
840 static void subscript_data_attribute (tree);
841 static void byte_size_attribute (tree);
842 static inline void bit_offset_attribute (tree);
843 static inline void bit_size_attribute (tree);
844 static inline void element_list_attribute (tree);
845 static inline void stmt_list_attribute (const char *);
846 static inline void low_pc_attribute (const char *);
847 static inline void high_pc_attribute (const char *);
848 static inline void body_begin_attribute (const char *);
849 static inline void body_end_attribute (const char *);
850 static inline void language_attribute (unsigned);
851 static inline void member_attribute (tree);
852 #if 0
853 static inline void string_length_attribute (tree);
854 #endif
855 static inline void comp_dir_attribute (const char *);
856 static inline void sf_names_attribute (const char *);
857 static inline void src_info_attribute (const char *);
858 static inline void mac_info_attribute (const char *);
859 static inline void prototyped_attribute (tree);
860 static inline void producer_attribute (const char *);
861 static inline void inline_attribute (tree);
862 static inline void containing_type_attribute (tree);
863 static inline void abstract_origin_attribute (tree);
864 #ifdef DWARF_DECL_COORDINATES
865 static inline void src_coords_attribute (unsigned, unsigned);
866 #endif /* defined(DWARF_DECL_COORDINATES) */
867 static inline void pure_or_virtual_attribute (tree);
868 static void name_and_src_coords_attributes (tree);
869 static void type_attribute (tree, int, int);
870 static const char *type_tag (tree);
871 static inline void dienum_push (void);
872 static inline void dienum_pop (void);
873 static inline tree member_declared_type (tree);
874 static const char *function_start_label (tree);
875 static void output_array_type_die (void *);
876 static void output_set_type_die (void *);
877 #if 0
878 static void output_entry_point_die (void *);
879 #endif
880 static void output_inlined_enumeration_type_die (void *);
881 static void output_inlined_structure_type_die (void *);
882 static void output_inlined_union_type_die (void *);
883 static void output_enumeration_type_die (void *);
884 static void output_formal_parameter_die (void *);
885 static void output_global_subroutine_die (void *);
886 static void output_global_variable_die (void *);
887 static void output_label_die (void *);
888 static void output_lexical_block_die (void *);
889 static void output_inlined_subroutine_die (void *);
890 static void output_local_variable_die (void *);
891 static void output_member_die (void *);
892 #if 0
893 static void output_pointer_type_die (void *);
894 static void output_reference_type_die (void *);
895 #endif
896 static void output_ptr_to_mbr_type_die (void *);
897 static void output_compile_unit_die (void *);
898 static void output_string_type_die (void *);
899 static void output_inheritance_die (void *);
900 static void output_structure_type_die (void *);
901 static void output_local_subroutine_die (void *);
902 static void output_subroutine_type_die (void *);
903 static void output_typedef_die (void *);
904 static void output_union_type_die (void *);
905 static void output_unspecified_parameters_die (void *);
906 static void output_padded_null_die (void *);
907 static void output_die (void (*)(void *), void *);
908 static void end_sibling_chain (void);
909 static void output_formal_types (tree);
910 static void pend_type (tree);
911 static int type_ok_for_scope (tree, tree);
912 static void output_pending_types_for_scope (tree);
913 static void output_type (tree, tree);
914 static void output_tagged_type_instantiation (tree);
915 static void output_block (tree, int);
916 static void output_decls_for_scope (tree, int);
917 static void output_decl (tree, tree);
918 static void shuffle_filename_entry (filename_entry *);
919 static void generate_new_sfname_entry (void);
920 static unsigned lookup_filename (const char *);
921 static void generate_srcinfo_entry (unsigned, unsigned);
922 static void generate_macinfo_entry (unsigned int, rtx, const char *);
923 static int is_pseudo_reg (rtx);
924 static tree type_main_variant (tree);
925 static int is_tagged_type (tree);
926 static int is_redundant_typedef (tree);
927 static void add_incomplete_type (tree);
928 static void retry_incomplete_types (void);
930 /* Definitions of defaults for assembler-dependent names of various
931 pseudo-ops and section names.
933 Theses may be overridden in your tm.h file (if necessary) for your
934 particular assembler. The default values provided here correspond to
935 what is expected by "standard" AT&T System V.4 assemblers. */
937 #ifndef FILE_ASM_OP
938 #define FILE_ASM_OP "\t.file\t"
939 #endif
940 #ifndef SET_ASM_OP
941 #define SET_ASM_OP "\t.set\t"
942 #endif
944 /* Pseudo-ops for pushing the current section onto the section stack (and
945 simultaneously changing to a new section) and for popping back to the
946 section we were in immediately before this one. Note that most svr4
947 assemblers only maintain a one level stack... you can push all the
948 sections you want, but you can only pop out one level. (The sparc
949 svr4 assembler is an exception to this general rule.) That's
950 OK because we only use at most one level of the section stack herein. */
952 #ifndef PUSHSECTION_ASM_OP
953 #define PUSHSECTION_ASM_OP "\t.section\t"
954 #endif
955 #ifndef POPSECTION_ASM_OP
956 #define POPSECTION_ASM_OP "\t.previous"
957 #endif
959 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
960 to print the PUSHSECTION_ASM_OP and the section name. The default here
961 works for almost all svr4 assemblers, except for the sparc, where the
962 section name must be enclosed in double quotes. (See sparcv4.h.) */
964 #ifndef PUSHSECTION_FORMAT
965 #define PUSHSECTION_FORMAT "%s%s\n"
966 #endif
968 #ifndef DEBUG_SECTION
969 #define DEBUG_SECTION ".debug"
970 #endif
971 #ifndef LINE_SECTION
972 #define LINE_SECTION ".line"
973 #endif
974 #ifndef DEBUG_SFNAMES_SECTION
975 #define DEBUG_SFNAMES_SECTION ".debug_sfnames"
976 #endif
977 #ifndef DEBUG_SRCINFO_SECTION
978 #define DEBUG_SRCINFO_SECTION ".debug_srcinfo"
979 #endif
980 #ifndef DEBUG_MACINFO_SECTION
981 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
982 #endif
983 #ifndef DEBUG_PUBNAMES_SECTION
984 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
985 #endif
986 #ifndef DEBUG_ARANGES_SECTION
987 #define DEBUG_ARANGES_SECTION ".debug_aranges"
988 #endif
989 #ifndef TEXT_SECTION_NAME
990 #define TEXT_SECTION_NAME ".text"
991 #endif
992 #ifndef DATA_SECTION_NAME
993 #define DATA_SECTION_NAME ".data"
994 #endif
995 #ifndef DATA1_SECTION_NAME
996 #define DATA1_SECTION_NAME ".data1"
997 #endif
998 #ifndef RODATA_SECTION_NAME
999 #define RODATA_SECTION_NAME ".rodata"
1000 #endif
1001 #ifndef RODATA1_SECTION_NAME
1002 #define RODATA1_SECTION_NAME ".rodata1"
1003 #endif
1004 #ifndef BSS_SECTION_NAME
1005 #define BSS_SECTION_NAME ".bss"
1006 #endif
1008 /* Definitions of defaults for formats and names of various special
1009 (artificial) labels which may be generated within this file (when
1010 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1012 If necessary, these may be overridden from within your tm.h file,
1013 but typically, you should never need to override these.
1015 These labels have been hacked (temporarily) so that they all begin with
1016 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1017 stock m88k/svr4 assembler, both of which need to see .L at the start of
1018 a label in order to prevent that label from going into the linker symbol
1019 table). When I get time, I'll have to fix this the right way so that we
1020 will use ASM_GENERATE_INTERNAL_LABEL and (*targetm.asm_out.internal_label) herein,
1021 but that will require a rather massive set of changes. For the moment,
1022 the following definitions out to produce the right results for all svr4
1023 and svr3 assemblers. -- rfg
1026 #ifndef TEXT_BEGIN_LABEL
1027 #define TEXT_BEGIN_LABEL "*.L_text_b"
1028 #endif
1029 #ifndef TEXT_END_LABEL
1030 #define TEXT_END_LABEL "*.L_text_e"
1031 #endif
1033 #ifndef DATA_BEGIN_LABEL
1034 #define DATA_BEGIN_LABEL "*.L_data_b"
1035 #endif
1036 #ifndef DATA_END_LABEL
1037 #define DATA_END_LABEL "*.L_data_e"
1038 #endif
1040 #ifndef DATA1_BEGIN_LABEL
1041 #define DATA1_BEGIN_LABEL "*.L_data1_b"
1042 #endif
1043 #ifndef DATA1_END_LABEL
1044 #define DATA1_END_LABEL "*.L_data1_e"
1045 #endif
1047 #ifndef RODATA_BEGIN_LABEL
1048 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
1049 #endif
1050 #ifndef RODATA_END_LABEL
1051 #define RODATA_END_LABEL "*.L_rodata_e"
1052 #endif
1054 #ifndef RODATA1_BEGIN_LABEL
1055 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
1056 #endif
1057 #ifndef RODATA1_END_LABEL
1058 #define RODATA1_END_LABEL "*.L_rodata1_e"
1059 #endif
1061 #ifndef BSS_BEGIN_LABEL
1062 #define BSS_BEGIN_LABEL "*.L_bss_b"
1063 #endif
1064 #ifndef BSS_END_LABEL
1065 #define BSS_END_LABEL "*.L_bss_e"
1066 #endif
1068 #ifndef LINE_BEGIN_LABEL
1069 #define LINE_BEGIN_LABEL "*.L_line_b"
1070 #endif
1071 #ifndef LINE_LAST_ENTRY_LABEL
1072 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
1073 #endif
1074 #ifndef LINE_END_LABEL
1075 #define LINE_END_LABEL "*.L_line_e"
1076 #endif
1078 #ifndef DEBUG_BEGIN_LABEL
1079 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
1080 #endif
1081 #ifndef SFNAMES_BEGIN_LABEL
1082 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
1083 #endif
1084 #ifndef SRCINFO_BEGIN_LABEL
1085 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
1086 #endif
1087 #ifndef MACINFO_BEGIN_LABEL
1088 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
1089 #endif
1091 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1092 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1093 #endif
1094 #ifndef DEBUG_ARANGES_END_LABEL
1095 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1096 #endif
1098 #ifndef DIE_BEGIN_LABEL_FMT
1099 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
1100 #endif
1101 #ifndef DIE_END_LABEL_FMT
1102 #define DIE_END_LABEL_FMT "*.L_D%u_e"
1103 #endif
1104 #ifndef PUB_DIE_LABEL_FMT
1105 #define PUB_DIE_LABEL_FMT "*.L_P%u"
1106 #endif
1107 #ifndef BLOCK_BEGIN_LABEL_FMT
1108 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
1109 #endif
1110 #ifndef BLOCK_END_LABEL_FMT
1111 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
1112 #endif
1113 #ifndef SS_BEGIN_LABEL_FMT
1114 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
1115 #endif
1116 #ifndef SS_END_LABEL_FMT
1117 #define SS_END_LABEL_FMT "*.L_s%u_e"
1118 #endif
1119 #ifndef EE_BEGIN_LABEL_FMT
1120 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
1121 #endif
1122 #ifndef EE_END_LABEL_FMT
1123 #define EE_END_LABEL_FMT "*.L_e%u_e"
1124 #endif
1125 #ifndef MT_BEGIN_LABEL_FMT
1126 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
1127 #endif
1128 #ifndef MT_END_LABEL_FMT
1129 #define MT_END_LABEL_FMT "*.L_t%u_e"
1130 #endif
1131 #ifndef LOC_BEGIN_LABEL_FMT
1132 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
1133 #endif
1134 #ifndef LOC_END_LABEL_FMT
1135 #define LOC_END_LABEL_FMT "*.L_l%u_e"
1136 #endif
1137 #ifndef BOUND_BEGIN_LABEL_FMT
1138 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
1139 #endif
1140 #ifndef BOUND_END_LABEL_FMT
1141 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
1142 #endif
1143 #ifndef BODY_BEGIN_LABEL_FMT
1144 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
1145 #endif
1146 #ifndef BODY_END_LABEL_FMT
1147 #define BODY_END_LABEL_FMT "*.L_b%u_e"
1148 #endif
1149 #ifndef FUNC_END_LABEL_FMT
1150 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
1151 #endif
1152 #ifndef TYPE_NAME_FMT
1153 #define TYPE_NAME_FMT "*.L_T%u"
1154 #endif
1155 #ifndef DECL_NAME_FMT
1156 #define DECL_NAME_FMT "*.L_E%u"
1157 #endif
1158 #ifndef LINE_CODE_LABEL_FMT
1159 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
1160 #endif
1161 #ifndef SFNAMES_ENTRY_LABEL_FMT
1162 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
1163 #endif
1164 #ifndef LINE_ENTRY_LABEL_FMT
1165 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
1166 #endif
1168 /* Definitions of defaults for various types of primitive assembly language
1169 output operations.
1171 If necessary, these may be overridden from within your tm.h file,
1172 but typically, you shouldn't need to override these. */
1174 #ifndef ASM_OUTPUT_PUSH_SECTION
1175 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1176 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1177 #endif
1179 #ifndef ASM_OUTPUT_POP_SECTION
1180 #define ASM_OUTPUT_POP_SECTION(FILE) \
1181 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1182 #endif
1184 #ifndef ASM_OUTPUT_DWARF_DELTA2
1185 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
1186 dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1187 #endif
1189 #ifndef ASM_OUTPUT_DWARF_DELTA4
1190 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
1191 dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1192 #endif
1194 #ifndef ASM_OUTPUT_DWARF_TAG
1195 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
1196 dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1197 #endif
1199 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1200 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
1201 dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1202 #endif
1204 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1205 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
1206 dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1207 #endif
1209 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1210 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
1211 dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1212 #endif
1214 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1215 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
1216 dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1217 #endif
1219 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1220 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
1221 dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1222 #endif
1224 #ifndef ASM_OUTPUT_DWARF_ADDR
1225 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
1226 dw2_asm_output_addr (4, LABEL, NULL)
1227 #endif
1229 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1230 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
1231 dw2_asm_output_addr_rtx (4, RTX, NULL)
1232 #endif
1234 #ifndef ASM_OUTPUT_DWARF_REF
1235 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
1236 dw2_asm_output_addr (4, LABEL, NULL)
1237 #endif
1239 #ifndef ASM_OUTPUT_DWARF_DATA1
1240 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1241 dw2_asm_output_data (1, VALUE, NULL)
1242 #endif
1244 #ifndef ASM_OUTPUT_DWARF_DATA2
1245 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1246 dw2_asm_output_data (2, VALUE, NULL)
1247 #endif
1249 #ifndef ASM_OUTPUT_DWARF_DATA4
1250 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1251 dw2_asm_output_data (4, VALUE, NULL)
1252 #endif
1254 #ifndef ASM_OUTPUT_DWARF_DATA8
1255 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
1256 dw2_asm_output_data (8, VALUE, NULL)
1257 #endif
1259 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1260 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1261 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1262 defined, we call it, then issue the line feed. If not, we supply a
1263 default definition of calling ASM_OUTPUT_ASCII */
1265 #ifndef ASM_OUTPUT_DWARF_STRING
1266 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1267 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1268 #else
1269 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1270 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1271 #endif
1274 /* The debug hooks structure. */
1275 const struct gcc_debug_hooks dwarf_debug_hooks =
1277 dwarfout_init,
1278 dwarfout_finish,
1279 dwarfout_define,
1280 dwarfout_undef,
1281 dwarfout_start_source_file_check,
1282 dwarfout_end_source_file_check,
1283 dwarfout_begin_block,
1284 dwarfout_end_block,
1285 debug_true_tree, /* ignore_block */
1286 dwarfout_source_line, /* source_line */
1287 dwarfout_source_line, /* begin_prologue */
1288 dwarfout_end_prologue,
1289 dwarfout_end_epilogue,
1290 debug_nothing_tree, /* begin_function */
1291 dwarfout_end_function,
1292 dwarfout_function_decl,
1293 dwarfout_global_decl,
1294 dwarfout_deferred_inline_function,
1295 debug_nothing_tree, /* outlining_inline_function */
1296 debug_nothing_rtx, /* label */
1297 debug_nothing_int /* handle_pch */
1300 /************************ general utility functions **************************/
1302 static inline int
1303 is_pseudo_reg (rtx rtl)
1305 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
1306 || ((GET_CODE (rtl) == SUBREG)
1307 && (REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER)));
1310 static inline tree
1311 type_main_variant (tree type)
1313 type = TYPE_MAIN_VARIANT (type);
1315 /* There really should be only one main variant among any group of variants
1316 of a given type (and all of the MAIN_VARIANT values for all members of
1317 the group should point to that one type) but sometimes the C front-end
1318 messes this up for array types, so we work around that bug here. */
1320 if (TREE_CODE (type) == ARRAY_TYPE)
1322 while (type != TYPE_MAIN_VARIANT (type))
1323 type = TYPE_MAIN_VARIANT (type);
1326 return type;
1329 /* Return nonzero if the given type node represents a tagged type. */
1331 static inline int
1332 is_tagged_type (tree type)
1334 enum tree_code code = TREE_CODE (type);
1336 return (code == RECORD_TYPE || code == UNION_TYPE
1337 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
1340 static const char *
1341 dwarf_tag_name (unsigned int tag)
1343 switch (tag)
1345 case TAG_padding: return "TAG_padding";
1346 case TAG_array_type: return "TAG_array_type";
1347 case TAG_class_type: return "TAG_class_type";
1348 case TAG_entry_point: return "TAG_entry_point";
1349 case TAG_enumeration_type: return "TAG_enumeration_type";
1350 case TAG_formal_parameter: return "TAG_formal_parameter";
1351 case TAG_global_subroutine: return "TAG_global_subroutine";
1352 case TAG_global_variable: return "TAG_global_variable";
1353 case TAG_label: return "TAG_label";
1354 case TAG_lexical_block: return "TAG_lexical_block";
1355 case TAG_local_variable: return "TAG_local_variable";
1356 case TAG_member: return "TAG_member";
1357 case TAG_pointer_type: return "TAG_pointer_type";
1358 case TAG_reference_type: return "TAG_reference_type";
1359 case TAG_compile_unit: return "TAG_compile_unit";
1360 case TAG_string_type: return "TAG_string_type";
1361 case TAG_structure_type: return "TAG_structure_type";
1362 case TAG_subroutine: return "TAG_subroutine";
1363 case TAG_subroutine_type: return "TAG_subroutine_type";
1364 case TAG_typedef: return "TAG_typedef";
1365 case TAG_union_type: return "TAG_union_type";
1366 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
1367 case TAG_variant: return "TAG_variant";
1368 case TAG_common_block: return "TAG_common_block";
1369 case TAG_common_inclusion: return "TAG_common_inclusion";
1370 case TAG_inheritance: return "TAG_inheritance";
1371 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
1372 case TAG_module: return "TAG_module";
1373 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
1374 case TAG_set_type: return "TAG_set_type";
1375 case TAG_subrange_type: return "TAG_subrange_type";
1376 case TAG_with_stmt: return "TAG_with_stmt";
1378 /* GNU extensions. */
1380 case TAG_format_label: return "TAG_format_label";
1381 case TAG_namelist: return "TAG_namelist";
1382 case TAG_function_template: return "TAG_function_template";
1383 case TAG_class_template: return "TAG_class_template";
1385 default: return "TAG_<unknown>";
1389 static const char *
1390 dwarf_attr_name (unsigned int attr)
1392 switch (attr)
1394 case AT_sibling: return "AT_sibling";
1395 case AT_location: return "AT_location";
1396 case AT_name: return "AT_name";
1397 case AT_fund_type: return "AT_fund_type";
1398 case AT_mod_fund_type: return "AT_mod_fund_type";
1399 case AT_user_def_type: return "AT_user_def_type";
1400 case AT_mod_u_d_type: return "AT_mod_u_d_type";
1401 case AT_ordering: return "AT_ordering";
1402 case AT_subscr_data: return "AT_subscr_data";
1403 case AT_byte_size: return "AT_byte_size";
1404 case AT_bit_offset: return "AT_bit_offset";
1405 case AT_bit_size: return "AT_bit_size";
1406 case AT_element_list: return "AT_element_list";
1407 case AT_stmt_list: return "AT_stmt_list";
1408 case AT_low_pc: return "AT_low_pc";
1409 case AT_high_pc: return "AT_high_pc";
1410 case AT_language: return "AT_language";
1411 case AT_member: return "AT_member";
1412 case AT_discr: return "AT_discr";
1413 case AT_discr_value: return "AT_discr_value";
1414 case AT_string_length: return "AT_string_length";
1415 case AT_common_reference: return "AT_common_reference";
1416 case AT_comp_dir: return "AT_comp_dir";
1417 case AT_const_value_string: return "AT_const_value_string";
1418 case AT_const_value_data2: return "AT_const_value_data2";
1419 case AT_const_value_data4: return "AT_const_value_data4";
1420 case AT_const_value_data8: return "AT_const_value_data8";
1421 case AT_const_value_block2: return "AT_const_value_block2";
1422 case AT_const_value_block4: return "AT_const_value_block4";
1423 case AT_containing_type: return "AT_containing_type";
1424 case AT_default_value_addr: return "AT_default_value_addr";
1425 case AT_default_value_data2: return "AT_default_value_data2";
1426 case AT_default_value_data4: return "AT_default_value_data4";
1427 case AT_default_value_data8: return "AT_default_value_data8";
1428 case AT_default_value_string: return "AT_default_value_string";
1429 case AT_friends: return "AT_friends";
1430 case AT_inline: return "AT_inline";
1431 case AT_is_optional: return "AT_is_optional";
1432 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1433 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1434 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1435 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1436 case AT_private: return "AT_private";
1437 case AT_producer: return "AT_producer";
1438 case AT_program: return "AT_program";
1439 case AT_protected: return "AT_protected";
1440 case AT_prototyped: return "AT_prototyped";
1441 case AT_public: return "AT_public";
1442 case AT_pure_virtual: return "AT_pure_virtual";
1443 case AT_return_addr: return "AT_return_addr";
1444 case AT_abstract_origin: return "AT_abstract_origin";
1445 case AT_start_scope: return "AT_start_scope";
1446 case AT_stride_size: return "AT_stride_size";
1447 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1448 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1449 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1450 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1451 case AT_virtual: return "AT_virtual";
1453 /* GNU extensions */
1455 case AT_sf_names: return "AT_sf_names";
1456 case AT_src_info: return "AT_src_info";
1457 case AT_mac_info: return "AT_mac_info";
1458 case AT_src_coords: return "AT_src_coords";
1459 case AT_body_begin: return "AT_body_begin";
1460 case AT_body_end: return "AT_body_end";
1462 default: return "AT_<unknown>";
1466 static const char *
1467 dwarf_stack_op_name (unsigned int op)
1469 switch (op)
1471 case OP_REG: return "OP_REG";
1472 case OP_BASEREG: return "OP_BASEREG";
1473 case OP_ADDR: return "OP_ADDR";
1474 case OP_CONST: return "OP_CONST";
1475 case OP_DEREF2: return "OP_DEREF2";
1476 case OP_DEREF4: return "OP_DEREF4";
1477 case OP_ADD: return "OP_ADD";
1478 default: return "OP_<unknown>";
1482 static const char *
1483 dwarf_typemod_name (unsigned int mod)
1485 switch (mod)
1487 case MOD_pointer_to: return "MOD_pointer_to";
1488 case MOD_reference_to: return "MOD_reference_to";
1489 case MOD_const: return "MOD_const";
1490 case MOD_volatile: return "MOD_volatile";
1491 default: return "MOD_<unknown>";
1495 static const char *
1496 dwarf_fmt_byte_name (unsigned int fmt)
1498 switch (fmt)
1500 case FMT_FT_C_C: return "FMT_FT_C_C";
1501 case FMT_FT_C_X: return "FMT_FT_C_X";
1502 case FMT_FT_X_C: return "FMT_FT_X_C";
1503 case FMT_FT_X_X: return "FMT_FT_X_X";
1504 case FMT_UT_C_C: return "FMT_UT_C_C";
1505 case FMT_UT_C_X: return "FMT_UT_C_X";
1506 case FMT_UT_X_C: return "FMT_UT_X_C";
1507 case FMT_UT_X_X: return "FMT_UT_X_X";
1508 case FMT_ET: return "FMT_ET";
1509 default: return "FMT_<unknown>";
1513 static const char *
1514 dwarf_fund_type_name (unsigned int ft)
1516 switch (ft)
1518 case FT_char: return "FT_char";
1519 case FT_signed_char: return "FT_signed_char";
1520 case FT_unsigned_char: return "FT_unsigned_char";
1521 case FT_short: return "FT_short";
1522 case FT_signed_short: return "FT_signed_short";
1523 case FT_unsigned_short: return "FT_unsigned_short";
1524 case FT_integer: return "FT_integer";
1525 case FT_signed_integer: return "FT_signed_integer";
1526 case FT_unsigned_integer: return "FT_unsigned_integer";
1527 case FT_long: return "FT_long";
1528 case FT_signed_long: return "FT_signed_long";
1529 case FT_unsigned_long: return "FT_unsigned_long";
1530 case FT_pointer: return "FT_pointer";
1531 case FT_float: return "FT_float";
1532 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1533 case FT_ext_prec_float: return "FT_ext_prec_float";
1534 case FT_complex: return "FT_complex";
1535 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1536 case FT_void: return "FT_void";
1537 case FT_boolean: return "FT_boolean";
1538 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1539 case FT_label: return "FT_label";
1541 /* GNU extensions. */
1543 case FT_long_long: return "FT_long_long";
1544 case FT_signed_long_long: return "FT_signed_long_long";
1545 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1547 case FT_int8: return "FT_int8";
1548 case FT_signed_int8: return "FT_signed_int8";
1549 case FT_unsigned_int8: return "FT_unsigned_int8";
1550 case FT_int16: return "FT_int16";
1551 case FT_signed_int16: return "FT_signed_int16";
1552 case FT_unsigned_int16: return "FT_unsigned_int16";
1553 case FT_int32: return "FT_int32";
1554 case FT_signed_int32: return "FT_signed_int32";
1555 case FT_unsigned_int32: return "FT_unsigned_int32";
1556 case FT_int64: return "FT_int64";
1557 case FT_signed_int64: return "FT_signed_int64";
1558 case FT_unsigned_int64: return "FT_unsigned_int64";
1559 case FT_int128: return "FT_int128";
1560 case FT_signed_int128: return "FT_signed_int128";
1561 case FT_unsigned_int128: return "FT_unsigned_int128";
1563 case FT_real32: return "FT_real32";
1564 case FT_real64: return "FT_real64";
1565 case FT_real96: return "FT_real96";
1566 case FT_real128: return "FT_real128";
1568 default: return "FT_<unknown>";
1572 /* Determine the "ultimate origin" of a decl. The decl may be an
1573 inlined instance of an inlined instance of a decl which is local
1574 to an inline function, so we have to trace all of the way back
1575 through the origin chain to find out what sort of node actually
1576 served as the original seed for the given block. */
1578 static tree
1579 decl_ultimate_origin (tree decl)
1581 #ifdef ENABLE_CHECKING
1582 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1583 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1584 most distant ancestor, this should never happen. */
1585 abort ();
1586 #endif
1588 return DECL_ABSTRACT_ORIGIN (decl);
1591 /* Determine the "ultimate origin" of a block. The block may be an
1592 inlined instance of an inlined instance of a block which is local
1593 to an inline function, so we have to trace all of the way back
1594 through the origin chain to find out what sort of node actually
1595 served as the original seed for the given block. */
1597 static tree
1598 block_ultimate_origin (tree block)
1600 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1602 if (immediate_origin == NULL)
1603 return NULL;
1604 else
1606 tree ret_val;
1607 tree lookahead = immediate_origin;
1611 ret_val = lookahead;
1612 lookahead = (TREE_CODE (ret_val) == BLOCK)
1613 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1614 : NULL;
1616 while (lookahead != NULL && lookahead != ret_val);
1617 return ret_val;
1621 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1622 of a virtual function may refer to a base class, so we check the 'this'
1623 parameter. */
1625 static tree
1626 decl_class_context (tree decl)
1628 tree context = NULL_TREE;
1629 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1630 context = DECL_CONTEXT (decl);
1631 else
1632 context = TYPE_MAIN_VARIANT
1633 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1635 if (context && !TYPE_P (context))
1636 context = NULL_TREE;
1638 return context;
1641 #if 0
1642 static void
1643 output_unsigned_leb128 (unsigned long value)
1645 unsigned long orig_value = value;
1649 unsigned byte = (value & 0x7f);
1651 value >>= 7;
1652 if (value != 0) /* more bytes to follow */
1653 byte |= 0x80;
1654 dw2_asm_output_data (1, byte, "\t%s ULEB128 number - value = %lu",
1655 orig_value);
1657 while (value != 0);
1660 static void
1661 output_signed_leb128 (long value)
1663 long orig_value = value;
1664 int negative = (value < 0);
1665 int more;
1669 unsigned byte = (value & 0x7f);
1671 value >>= 7;
1672 if (negative)
1673 value |= 0xfe000000; /* manually sign extend */
1674 if (((value == 0) && ((byte & 0x40) == 0))
1675 || ((value == -1) && ((byte & 0x40) == 1)))
1676 more = 0;
1677 else
1679 byte |= 0x80;
1680 more = 1;
1682 dw2_asm_output_data (1, byte, "\t%s SLEB128 number - value = %ld",
1683 orig_value);
1685 while (more);
1687 #endif
1689 /**************** utility functions for attribute functions ******************/
1691 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1692 type code for the given type.
1694 This routine must only be called for GCC type nodes that correspond to
1695 Dwarf fundamental types.
1697 The current Dwarf draft specification calls for Dwarf fundamental types
1698 to accurately reflect the fact that a given type was either a "plain"
1699 integral type or an explicitly "signed" integral type. Unfortunately,
1700 we can't always do this, because GCC may already have thrown away the
1701 information about the precise way in which the type was originally
1702 specified, as in:
1704 typedef signed int my_type;
1706 struct s { my_type f; };
1708 Since we may be stuck here without enough information to do exactly
1709 what is called for in the Dwarf draft specification, we do the best
1710 that we can under the circumstances and always use the "plain" integral
1711 fundamental type codes for int, short, and long types. That's probably
1712 good enough. The additional accuracy called for in the current DWARF
1713 draft specification is probably never even useful in practice. */
1715 static int
1716 fundamental_type_code (tree type)
1718 if (TREE_CODE (type) == ERROR_MARK)
1719 return 0;
1721 switch (TREE_CODE (type))
1723 case ERROR_MARK:
1724 return FT_void;
1726 case VOID_TYPE:
1727 return FT_void;
1729 case INTEGER_TYPE:
1730 /* Carefully distinguish all the standard types of C,
1731 without messing up if the language is not C.
1732 Note that we check only for the names that contain spaces;
1733 other names might occur by coincidence in other languages. */
1734 if (TYPE_NAME (type) != 0
1735 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1736 && DECL_NAME (TYPE_NAME (type)) != 0
1737 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1739 const char *const name =
1740 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1742 if (!strcmp (name, "unsigned char"))
1743 return FT_unsigned_char;
1744 if (!strcmp (name, "signed char"))
1745 return FT_signed_char;
1746 if (!strcmp (name, "unsigned int"))
1747 return FT_unsigned_integer;
1748 if (!strcmp (name, "short int"))
1749 return FT_short;
1750 if (!strcmp (name, "short unsigned int"))
1751 return FT_unsigned_short;
1752 if (!strcmp (name, "long int"))
1753 return FT_long;
1754 if (!strcmp (name, "long unsigned int"))
1755 return FT_unsigned_long;
1756 if (!strcmp (name, "long long int"))
1757 return FT_long_long; /* Not grok'ed by svr4 SDB */
1758 if (!strcmp (name, "long long unsigned int"))
1759 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1762 /* Most integer types will be sorted out above, however, for the
1763 sake of special `array index' integer types, the following code
1764 is also provided. */
1766 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1767 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1769 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1770 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1772 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1773 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1775 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1776 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1778 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1779 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1781 if (TYPE_MODE (type) == TImode)
1782 return (TREE_UNSIGNED (type) ? FT_unsigned_int128 : FT_int128);
1784 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1785 if (TYPE_PRECISION (type) == 1)
1786 return FT_boolean;
1788 abort ();
1790 case REAL_TYPE:
1791 /* Carefully distinguish all the standard types of C,
1792 without messing up if the language is not C. */
1793 if (TYPE_NAME (type) != 0
1794 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1795 && DECL_NAME (TYPE_NAME (type)) != 0
1796 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1798 const char *const name =
1799 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1801 /* Note that here we can run afoul of a serious bug in "classic"
1802 svr4 SDB debuggers. They don't seem to understand the
1803 FT_ext_prec_float type (even though they should). */
1805 if (!strcmp (name, "long double"))
1806 return FT_ext_prec_float;
1809 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1811 /* On the SH, when compiling with -m3e or -m4-single-only, both
1812 float and double are 32 bits. But since the debugger doesn't
1813 know about the subtarget, it always thinks double is 64 bits.
1814 So we have to tell the debugger that the type is float to
1815 make the output of the 'print' command etc. readable. */
1816 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1817 return FT_float;
1818 return FT_dbl_prec_float;
1820 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1821 return FT_float;
1823 /* Note that here we can run afoul of a serious bug in "classic"
1824 svr4 SDB debuggers. They don't seem to understand the
1825 FT_ext_prec_float type (even though they should). */
1827 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1828 return FT_ext_prec_float;
1829 abort ();
1831 case COMPLEX_TYPE:
1832 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1834 case CHAR_TYPE:
1835 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1837 case BOOLEAN_TYPE:
1838 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1840 default:
1841 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1843 return 0;
1846 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1847 the Dwarf "root" type for the given input type. The Dwarf "root" type
1848 of a given type is generally the same as the given type, except that if
1849 the given type is a pointer or reference type, then the root type of
1850 the given type is the root type of the "basis" type for the pointer or
1851 reference type. (This definition of the "root" type is recursive.)
1852 Also, the root type of a `const' qualified type or a `volatile'
1853 qualified type is the root type of the given type without the
1854 qualifiers. */
1856 static tree
1857 root_type_1 (tree type, int count)
1859 /* Give up after searching 1000 levels, in case this is a recursive
1860 pointer type. Such types are possible in Ada, but it is not possible
1861 to represent them in DWARF1 debug info. */
1862 if (count > 1000)
1863 return error_mark_node;
1865 switch (TREE_CODE (type))
1867 case ERROR_MARK:
1868 return error_mark_node;
1870 case POINTER_TYPE:
1871 case REFERENCE_TYPE:
1872 return root_type_1 (TREE_TYPE (type), count+1);
1874 default:
1875 return type;
1879 static tree
1880 root_type (tree type)
1882 type = root_type_1 (type, 0);
1883 if (type != error_mark_node)
1884 type = type_main_variant (type);
1885 return type;
1888 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1889 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1891 static void
1892 write_modifier_bytes_1 (tree type, int decl_const, int decl_volatile, int count)
1894 if (TREE_CODE (type) == ERROR_MARK)
1895 return;
1897 /* Give up after searching 1000 levels, in case this is a recursive
1898 pointer type. Such types are possible in Ada, but it is not possible
1899 to represent them in DWARF1 debug info. */
1900 if (count > 1000)
1901 return;
1903 if (TYPE_READONLY (type) || decl_const)
1904 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1905 if (TYPE_VOLATILE (type) || decl_volatile)
1906 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1907 switch (TREE_CODE (type))
1909 case POINTER_TYPE:
1910 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1911 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1912 return;
1914 case REFERENCE_TYPE:
1915 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1916 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1917 return;
1919 case ERROR_MARK:
1920 default:
1921 return;
1925 static void
1926 write_modifier_bytes (tree type, int decl_const, int decl_volatile)
1928 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1931 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
1932 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1934 static inline int
1935 type_is_fundamental (tree type)
1937 switch (TREE_CODE (type))
1939 case ERROR_MARK:
1940 case VOID_TYPE:
1941 case INTEGER_TYPE:
1942 case REAL_TYPE:
1943 case COMPLEX_TYPE:
1944 case BOOLEAN_TYPE:
1945 case CHAR_TYPE:
1946 return 1;
1948 case SET_TYPE:
1949 case ARRAY_TYPE:
1950 case RECORD_TYPE:
1951 case UNION_TYPE:
1952 case QUAL_UNION_TYPE:
1953 case ENUMERAL_TYPE:
1954 case FUNCTION_TYPE:
1955 case METHOD_TYPE:
1956 case POINTER_TYPE:
1957 case REFERENCE_TYPE:
1958 case FILE_TYPE:
1959 case OFFSET_TYPE:
1960 case LANG_TYPE:
1961 case VECTOR_TYPE:
1962 return 0;
1964 default:
1965 abort ();
1967 return 0;
1970 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1971 equate directive which will associate a symbolic name with the current DIE.
1973 The name used is an artificial label generated from the DECL_UID number
1974 associated with the given decl node. The name it gets equated to is the
1975 symbolic label that we (previously) output at the start of the DIE that
1976 we are currently generating.
1978 Calling this function while generating some "decl related" form of DIE
1979 makes it possible to later refer to the DIE which represents the given
1980 decl simply by re-generating the symbolic name from the ..._DECL node's
1981 UID number. */
1983 static void
1984 equate_decl_number_to_die_number (tree decl)
1986 /* In the case where we are generating a DIE for some ..._DECL node
1987 which represents either some inline function declaration or some
1988 entity declared within an inline function declaration/definition,
1989 setup a symbolic name for the current DIE so that we have a name
1990 for this DIE that we can easily refer to later on within
1991 AT_abstract_origin attributes. */
1993 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1994 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1996 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1997 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1998 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
2001 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2002 equate directive which will associate a symbolic name with the current DIE.
2004 The name used is an artificial label generated from the TYPE_UID number
2005 associated with the given type node. The name it gets equated to is the
2006 symbolic label that we (previously) output at the start of the DIE that
2007 we are currently generating.
2009 Calling this function while generating some "type related" form of DIE
2010 makes it easy to later refer to the DIE which represents the given type
2011 simply by re-generating the alternative name from the ..._TYPE node's
2012 UID number. */
2014 static inline void
2015 equate_type_number_to_die_number (tree type)
2017 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
2018 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2020 /* We are generating a DIE to represent the main variant of this type
2021 (i.e the type without any const or volatile qualifiers) so in order
2022 to get the equate to come out right, we need to get the main variant
2023 itself here. */
2025 type = type_main_variant (type);
2027 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
2028 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2029 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
2032 static void
2033 output_reg_number (rtx rtl)
2035 unsigned regno = REGNO (rtl);
2037 if (regno >= DWARF_FRAME_REGISTERS)
2039 warning ("%Jinternal regno botch: '%D' has regno = %d\n",
2040 dwarf_last_decl, dwarf_last_decl, regno);
2041 regno = 0;
2043 dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno)));
2044 if (flag_debug_asm)
2046 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
2047 PRINT_REG (rtl, 0, asm_out_file);
2049 fputc ('\n', asm_out_file);
2052 /* The following routine is a nice and simple transducer. It converts the
2053 RTL for a variable or parameter (resident in memory) into an equivalent
2054 Dwarf representation of a mechanism for getting the address of that same
2055 variable onto the top of a hypothetical "address evaluation" stack.
2057 When creating memory location descriptors, we are effectively trans-
2058 forming the RTL for a memory-resident object into its Dwarf postfix
2059 expression equivalent. This routine just recursively descends an
2060 RTL tree, turning it into Dwarf postfix code as it goes. */
2062 static void
2063 output_mem_loc_descriptor (rtx rtl)
2065 /* Note that for a dynamically sized array, the location we will
2066 generate a description of here will be the lowest numbered location
2067 which is actually within the array. That's *not* necessarily the
2068 same as the zeroth element of the array. */
2070 rtl = (*targetm.delegitimize_address) (rtl);
2072 switch (GET_CODE (rtl))
2074 case SUBREG:
2076 /* The case of a subreg may arise when we have a local (register)
2077 variable or a formal (register) parameter which doesn't quite
2078 fill up an entire register. For now, just assume that it is
2079 legitimate to make the Dwarf info refer to the whole register
2080 which contains the given subreg. */
2082 rtl = SUBREG_REG (rtl);
2083 /* Drop thru. */
2085 case REG:
2087 /* Whenever a register number forms a part of the description of
2088 the method for calculating the (dynamic) address of a memory
2089 resident object, DWARF rules require the register number to
2090 be referred to as a "base register". This distinction is not
2091 based in any way upon what category of register the hardware
2092 believes the given register belongs to. This is strictly
2093 DWARF terminology we're dealing with here.
2095 Note that in cases where the location of a memory-resident data
2096 object could be expressed as:
2098 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2100 the actual DWARF location descriptor that we generate may just
2101 be OP_BASEREG (basereg). This may look deceptively like the
2102 object in question was allocated to a register (rather than
2103 in memory) so DWARF consumers need to be aware of the subtle
2104 distinction between OP_REG and OP_BASEREG. */
2106 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
2107 output_reg_number (rtl);
2108 break;
2110 case MEM:
2111 output_mem_loc_descriptor (XEXP (rtl, 0));
2112 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
2113 break;
2115 case CONST:
2116 case SYMBOL_REF:
2117 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
2118 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2119 break;
2121 case PLUS:
2122 output_mem_loc_descriptor (XEXP (rtl, 0));
2123 output_mem_loc_descriptor (XEXP (rtl, 1));
2124 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2125 break;
2127 case CONST_INT:
2128 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2129 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
2130 break;
2132 case MULT:
2133 /* If a pseudo-reg is optimized away, it is possible for it to
2134 be replaced with a MEM containing a multiply. Use a GNU extension
2135 to describe it. */
2136 output_mem_loc_descriptor (XEXP (rtl, 0));
2137 output_mem_loc_descriptor (XEXP (rtl, 1));
2138 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
2139 break;
2141 default:
2142 abort ();
2146 /* Output a proper Dwarf location descriptor for a variable or parameter
2147 which is either allocated in a register or in a memory location. For
2148 a register, we just generate an OP_REG and the register number. For a
2149 memory location we provide a Dwarf postfix expression describing how to
2150 generate the (dynamic) address of the object onto the address stack. */
2152 static void
2153 output_loc_descriptor (rtx rtl)
2155 switch (GET_CODE (rtl))
2157 case SUBREG:
2159 /* The case of a subreg may arise when we have a local (register)
2160 variable or a formal (register) parameter which doesn't quite
2161 fill up an entire register. For now, just assume that it is
2162 legitimate to make the Dwarf info refer to the whole register
2163 which contains the given subreg. */
2165 rtl = SUBREG_REG (rtl);
2166 /* Drop thru. */
2168 case REG:
2169 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
2170 output_reg_number (rtl);
2171 break;
2173 case MEM:
2174 output_mem_loc_descriptor (XEXP (rtl, 0));
2175 break;
2177 default:
2178 abort (); /* Should never happen */
2182 /* Given a tree node describing an array bound (either lower or upper)
2183 output a representation for that bound. DIM_NUM is used for
2184 multi-dimensional arrays and U_OR_L designates upper or lower
2185 bound. */
2187 static void
2188 output_bound_representation (tree bound, unsigned int dim_num, char u_or_l)
2190 switch (TREE_CODE (bound))
2193 case ERROR_MARK:
2194 return;
2196 /* All fixed-bounds are represented by INTEGER_CST nodes. */
2198 case INTEGER_CST:
2199 if (host_integerp (bound, 0))
2200 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, tree_low_cst (bound, 0));
2201 break;
2203 default:
2205 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2206 SAVE_EXPR nodes, in which case we can do something, or as
2207 an expression, which we cannot represent. */
2209 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2210 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2212 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
2213 current_dienum, dim_num, u_or_l);
2215 sprintf (end_label, BOUND_END_LABEL_FMT,
2216 current_dienum, dim_num, u_or_l);
2218 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2219 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2221 /* If optimization is turned on, the SAVE_EXPRs that describe
2222 how to access the upper bound values are essentially bogus.
2223 They only describe (at best) how to get at these values at
2224 the points in the generated code right after they have just
2225 been computed. Worse yet, in the typical case, the upper
2226 bound values will not even *be* computed in the optimized
2227 code, so these SAVE_EXPRs are entirely bogus.
2229 In order to compensate for this fact, we check here to see
2230 if optimization is enabled, and if so, we effectively create
2231 an empty location description for the (unknown and unknowable)
2232 upper bound.
2234 This should not cause too much trouble for existing (stupid?)
2235 debuggers because they have to deal with empty upper bounds
2236 location descriptions anyway in order to be able to deal with
2237 incomplete array types.
2239 Of course an intelligent debugger (GDB?) should be able to
2240 comprehend that a missing upper bound specification in a
2241 array type used for a storage class `auto' local array variable
2242 indicates that the upper bound is both unknown (at compile-
2243 time) and unknowable (at run-time) due to optimization. */
2245 if (! optimize)
2247 while (TREE_CODE (bound) == NOP_EXPR
2248 || TREE_CODE (bound) == CONVERT_EXPR)
2249 bound = TREE_OPERAND (bound, 0);
2251 if (TREE_CODE (bound) == SAVE_EXPR
2252 && SAVE_EXPR_RTL (bound))
2253 output_loc_descriptor
2254 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
2257 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2259 break;
2264 /* Recursive function to output a sequence of value/name pairs for
2265 enumeration constants in reversed order. This is called from
2266 enumeration_type_die. */
2268 static void
2269 output_enumeral_list (tree link)
2271 if (link)
2273 output_enumeral_list (TREE_CHAIN (link));
2275 if (host_integerp (TREE_VALUE (link), 0))
2276 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2277 tree_low_cst (TREE_VALUE (link), 0));
2279 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
2280 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
2284 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2285 which is not less than the value itself. */
2287 static inline HOST_WIDE_INT
2288 ceiling (HOST_WIDE_INT value, unsigned int boundary)
2290 return (((value + boundary - 1) / boundary) * boundary);
2293 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2294 pointer to the declared type for the relevant field variable, or return
2295 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
2297 static inline tree
2298 field_type (tree decl)
2300 tree type;
2302 if (TREE_CODE (decl) == ERROR_MARK)
2303 return integer_type_node;
2305 type = DECL_BIT_FIELD_TYPE (decl);
2306 if (type == NULL)
2307 type = TREE_TYPE (decl);
2308 return type;
2311 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2312 node, return the alignment in bits for the type, or else return
2313 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
2315 static inline unsigned int
2316 simple_type_align_in_bits (tree type)
2318 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
2321 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2322 node, return the size in bits for the type if it is a constant, or
2323 else return the alignment for the type if the type's size is not
2324 constant, or else return BITS_PER_WORD if the type actually turns out
2325 to be an ERROR_MARK node. */
2327 static inline unsigned HOST_WIDE_INT
2328 simple_type_size_in_bits (tree type)
2330 tree type_size_tree;
2332 if (TREE_CODE (type) == ERROR_MARK)
2333 return BITS_PER_WORD;
2334 type_size_tree = TYPE_SIZE (type);
2336 if (type_size_tree == NULL_TREE)
2337 return 0;
2338 if (! host_integerp (type_size_tree, 1))
2339 return TYPE_ALIGN (type);
2340 return tree_low_cst (type_size_tree, 1);
2343 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2344 return the byte offset of the lowest addressed byte of the "containing
2345 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2346 mine what that offset is, either because the argument turns out to be a
2347 pointer to an ERROR_MARK node, or because the offset is actually variable.
2348 (We can't handle the latter case just yet.) */
2350 static HOST_WIDE_INT
2351 field_byte_offset (tree decl)
2353 unsigned int type_align_in_bytes;
2354 unsigned int type_align_in_bits;
2355 unsigned HOST_WIDE_INT type_size_in_bits;
2356 HOST_WIDE_INT object_offset_in_align_units;
2357 HOST_WIDE_INT object_offset_in_bits;
2358 HOST_WIDE_INT object_offset_in_bytes;
2359 tree type;
2360 tree field_size_tree;
2361 HOST_WIDE_INT bitpos_int;
2362 HOST_WIDE_INT deepest_bitpos;
2363 unsigned HOST_WIDE_INT field_size_in_bits;
2365 if (TREE_CODE (decl) == ERROR_MARK)
2366 return 0;
2368 if (TREE_CODE (decl) != FIELD_DECL)
2369 abort ();
2371 type = field_type (decl);
2372 field_size_tree = DECL_SIZE (decl);
2374 /* The size could be unspecified if there was an error, or for
2375 a flexible array member. */
2376 if (! field_size_tree)
2377 field_size_tree = bitsize_zero_node;
2379 /* We cannot yet cope with fields whose positions or sizes are variable,
2380 so for now, when we see such things, we simply return 0. Someday,
2381 we may be able to handle such cases, but it will be damn difficult. */
2383 if (! host_integerp (bit_position (decl), 0)
2384 || ! host_integerp (field_size_tree, 1))
2385 return 0;
2387 bitpos_int = int_bit_position (decl);
2388 field_size_in_bits = tree_low_cst (field_size_tree, 1);
2390 type_size_in_bits = simple_type_size_in_bits (type);
2391 type_align_in_bits = simple_type_align_in_bits (type);
2392 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2394 /* Note that the GCC front-end doesn't make any attempt to keep track
2395 of the starting bit offset (relative to the start of the containing
2396 structure type) of the hypothetical "containing object" for a bit-
2397 field. Thus, when computing the byte offset value for the start of
2398 the "containing object" of a bit-field, we must deduce this infor-
2399 mation on our own.
2401 This can be rather tricky to do in some cases. For example, handling
2402 the following structure type definition when compiling for an i386/i486
2403 target (which only aligns long long's to 32-bit boundaries) can be very
2404 tricky:
2406 struct S {
2407 int field1;
2408 long long field2:31;
2411 Fortunately, there is a simple rule-of-thumb which can be used in such
2412 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2413 the structure shown above. It decides to do this based upon one simple
2414 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2415 taining object" for each bit-field at the first (i.e. lowest addressed)
2416 legitimate alignment boundary (based upon the required minimum alignment
2417 for the declared type of the field) which it can possibly use, subject
2418 to the condition that there is still enough available space remaining
2419 in the containing object (when allocated at the selected point) to
2420 fully accommodate all of the bits of the bit-field itself.
2422 This simple rule makes it obvious why GCC allocates 8 bytes for each
2423 object of the structure type shown above. When looking for a place to
2424 allocate the "containing object" for `field2', the compiler simply tries
2425 to allocate a 64-bit "containing object" at each successive 32-bit
2426 boundary (starting at zero) until it finds a place to allocate that 64-
2427 bit field such that at least 31 contiguous (and previously unallocated)
2428 bits remain within that selected 64 bit field. (As it turns out, for
2429 the example above, the compiler finds that it is OK to allocate the
2430 "containing object" 64-bit field at bit-offset zero within the
2431 structure type.)
2433 Here we attempt to work backwards from the limited set of facts we're
2434 given, and we try to deduce from those facts, where GCC must have
2435 believed that the containing object started (within the structure type).
2437 The value we deduce is then used (by the callers of this routine) to
2438 generate AT_location and AT_bit_offset attributes for fields (both
2439 bit-fields and, in the case of AT_location, regular fields as well). */
2441 /* Figure out the bit-distance from the start of the structure to the
2442 "deepest" bit of the bit-field. */
2443 deepest_bitpos = bitpos_int + field_size_in_bits;
2445 /* This is the tricky part. Use some fancy footwork to deduce where the
2446 lowest addressed bit of the containing object must be. */
2447 object_offset_in_bits
2448 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2450 /* Compute the offset of the containing object in "alignment units". */
2451 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2453 /* Compute the offset of the containing object in bytes. */
2454 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2456 /* The above code assumes that the field does not cross an alignment
2457 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2458 or if the structure is packed. If this happens, then we get an object
2459 which starts after the bitfield, which means that the bit offset is
2460 negative. Gdb fails when given negative bit offsets. We avoid this
2461 by recomputing using the first bit of the bitfield. This will give
2462 us an object which does not completely contain the bitfield, but it
2463 will be aligned, and it will contain the first bit of the bitfield.
2465 However, only do this for a BYTES_BIG_ENDIAN target. For a
2466 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2467 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2468 then we end up computing the object byte offset for the wrong word of the
2469 desired bitfield, which in turn causes the field offset to be negative
2470 in bit_offset_attribute. */
2471 if (BYTES_BIG_ENDIAN
2472 && object_offset_in_bits > bitpos_int)
2474 deepest_bitpos = bitpos_int + 1;
2475 object_offset_in_bits
2476 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2477 object_offset_in_align_units = (object_offset_in_bits
2478 / type_align_in_bits);
2479 object_offset_in_bytes = (object_offset_in_align_units
2480 * type_align_in_bytes);
2483 return object_offset_in_bytes;
2486 /****************************** attributes *********************************/
2488 /* The following routines are responsible for writing out the various types
2489 of Dwarf attributes (and any following data bytes associated with them).
2490 These routines are listed in order based on the numerical codes of their
2491 associated attributes. */
2493 /* Generate an AT_sibling attribute. */
2495 static inline void
2496 sibling_attribute (void)
2498 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2500 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2501 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2502 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2505 /* Output the form of location attributes suitable for whole variables and
2506 whole parameters. Note that the location attributes for struct fields
2507 are generated by the routine `data_member_location_attribute' below. */
2509 static void
2510 location_attribute (rtx rtl)
2512 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2513 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2515 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2516 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2517 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2518 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2519 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2521 /* Handle a special case. If we are about to output a location descriptor
2522 for a variable or parameter which has been optimized out of existence,
2523 don't do that. Instead we output a zero-length location descriptor
2524 value as part of the location attribute.
2526 A variable which has been optimized out of existence will have a
2527 DECL_RTL value which denotes a pseudo-reg.
2529 Currently, in some rare cases, variables can have DECL_RTL values
2530 which look like (MEM (REG pseudo-reg#)). These cases are due to
2531 bugs elsewhere in the compiler. We treat such cases
2532 as if the variable(s) in question had been optimized out of existence.
2534 Note that in all cases where we wish to express the fact that a
2535 variable has been optimized out of existence, we do not simply
2536 suppress the generation of the entire location attribute because
2537 the absence of a location attribute in certain kinds of DIEs is
2538 used to indicate something else entirely... i.e. that the DIE
2539 represents an object declaration, but not a definition. So saith
2540 the PLSIG.
2543 if (! is_pseudo_reg (rtl)
2544 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2545 output_loc_descriptor (rtl);
2547 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2550 /* Output the specialized form of location attribute used for data members
2551 of struct and union types.
2553 In the special case of a FIELD_DECL node which represents a bit-field,
2554 the "offset" part of this special location descriptor must indicate the
2555 distance in bytes from the lowest-addressed byte of the containing
2556 struct or union type to the lowest-addressed byte of the "containing
2557 object" for the bit-field. (See the `field_byte_offset' function above.)
2559 For any given bit-field, the "containing object" is a hypothetical
2560 object (of some integral or enum type) within which the given bit-field
2561 lives. The type of this hypothetical "containing object" is always the
2562 same as the declared type of the individual bit-field itself (for GCC
2563 anyway... the DWARF spec doesn't actually mandate this).
2565 Note that it is the size (in bytes) of the hypothetical "containing
2566 object" which will be given in the AT_byte_size attribute for this
2567 bit-field. (See the `byte_size_attribute' function below.) It is
2568 also used when calculating the value of the AT_bit_offset attribute.
2569 (See the `bit_offset_attribute' function below.) */
2571 static void
2572 data_member_location_attribute (tree t)
2574 unsigned object_offset_in_bytes;
2575 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2576 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2578 if (TREE_CODE (t) == TREE_VEC)
2579 object_offset_in_bytes = tree_low_cst (BINFO_OFFSET (t), 0);
2580 else
2581 object_offset_in_bytes = field_byte_offset (t);
2583 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2584 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2585 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2586 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2587 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2588 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2589 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2590 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2591 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2594 /* Output an AT_const_value attribute for a variable or a parameter which
2595 does not have a "location" either in memory or in a register. These
2596 things can arise in GNU C when a constant is passed as an actual
2597 parameter to an inlined function. They can also arise in C++ where
2598 declared constants do not necessarily get memory "homes". */
2600 static void
2601 const_value_attribute (rtx rtl)
2603 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2604 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2606 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2607 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2608 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2609 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2610 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2612 switch (GET_CODE (rtl))
2614 case CONST_INT:
2615 /* Note that a CONST_INT rtx could represent either an integer or
2616 a floating-point constant. A CONST_INT is used whenever the
2617 constant will fit into a single word. In all such cases, the
2618 original mode of the constant value is wiped out, and the
2619 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2620 precise mode information for these constants, we always just
2621 output them using 4 bytes. */
2623 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2624 break;
2626 case CONST_DOUBLE:
2627 /* Note that a CONST_DOUBLE rtx could represent either an integer
2628 or a floating-point constant. A CONST_DOUBLE is used whenever
2629 the constant requires more than one word in order to be adequately
2630 represented. In all such cases, the original mode of the constant
2631 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2632 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2634 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2635 (unsigned int) CONST_DOUBLE_HIGH (rtl),
2636 (unsigned int) CONST_DOUBLE_LOW (rtl));
2637 break;
2639 case CONST_STRING:
2640 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2641 break;
2643 case SYMBOL_REF:
2644 case LABEL_REF:
2645 case CONST:
2646 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2647 break;
2649 case PLUS:
2650 /* In cases where an inlined instance of an inline function is passed
2651 the address of an `auto' variable (which is local to the caller)
2652 we can get a situation where the DECL_RTL of the artificial
2653 local variable (for the inlining) which acts as a stand-in for
2654 the corresponding formal parameter (of the inline function)
2655 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2656 This is not exactly a compile-time constant expression, but it
2657 isn't the address of the (artificial) local variable either.
2658 Rather, it represents the *value* which the artificial local
2659 variable always has during its lifetime. We currently have no
2660 way to represent such quasi-constant values in Dwarf, so for now
2661 we just punt and generate an AT_const_value attribute with form
2662 FORM_BLOCK4 and a length of zero. */
2663 break;
2665 default:
2666 abort (); /* No other kinds of rtx should be possible here. */
2669 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2672 /* Generate *either* an AT_location attribute or else an AT_const_value
2673 data attribute for a variable or a parameter. We generate the
2674 AT_const_value attribute only in those cases where the given
2675 variable or parameter does not have a true "location" either in
2676 memory or in a register. This can happen (for example) when a
2677 constant is passed as an actual argument in a call to an inline
2678 function. (It's possible that these things can crop up in other
2679 ways also.) Note that one type of constant value which can be
2680 passed into an inlined function is a constant pointer. This can
2681 happen for example if an actual argument in an inlined function
2682 call evaluates to a compile-time constant address. */
2684 static void
2685 location_or_const_value_attribute (tree decl)
2687 rtx rtl;
2689 if (TREE_CODE (decl) == ERROR_MARK)
2690 return;
2692 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2694 /* Should never happen. */
2695 abort ();
2696 return;
2699 /* Here we have to decide where we are going to say the parameter "lives"
2700 (as far as the debugger is concerned). We only have a couple of choices.
2701 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2702 normally indicates where the parameter lives during most of the activa-
2703 tion of the function. If optimization is enabled however, this could
2704 be either NULL or else a pseudo-reg. Both of those cases indicate that
2705 the parameter doesn't really live anywhere (as far as the code generation
2706 parts of GCC are concerned) during most of the function's activation.
2707 That will happen (for example) if the parameter is never referenced
2708 within the function.
2710 We could just generate a location descriptor here for all non-NULL
2711 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2712 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2713 cases where DECL_RTL is NULL or is a pseudo-reg.
2715 Note however that we can only get away with using DECL_INCOMING_RTL as
2716 a backup substitute for DECL_RTL in certain limited cases. In cases
2717 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2718 we can be sure that the parameter was passed using the same type as it
2719 is declared to have within the function, and that its DECL_INCOMING_RTL
2720 points us to a place where a value of that type is passed. In cases
2721 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2722 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2723 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2724 points us to a value of some type which is *different* from the type
2725 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2726 to generate a location attribute in such cases, the debugger would
2727 end up (for example) trying to fetch a `float' from a place which
2728 actually contains the first part of a `double'. That would lead to
2729 really incorrect and confusing output at debug-time, and we don't
2730 want that now do we?
2732 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2733 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2734 couple of cute exceptions however. On little-endian machines we can
2735 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2736 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2737 an integral type which is smaller than TREE_TYPE(decl). These cases
2738 arise when (on a little-endian machine) a non-prototyped function has
2739 a parameter declared to be of type `short' or `char'. In such cases,
2740 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2741 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2742 passed `int' value. If the debugger then uses that address to fetch a
2743 `short' or a `char' (on a little-endian machine) the result will be the
2744 correct data, so we allow for such exceptional cases below.
2746 Note that our goal here is to describe the place where the given formal
2747 parameter lives during most of the function's activation (i.e. between
2748 the end of the prologue and the start of the epilogue). We'll do that
2749 as best as we can. Note however that if the given formal parameter is
2750 modified sometime during the execution of the function, then a stack
2751 backtrace (at debug-time) will show the function as having been called
2752 with the *new* value rather than the value which was originally passed
2753 in. This happens rarely enough that it is not a major problem, but it
2754 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2755 may generate two additional attributes for any given TAG_formal_parameter
2756 DIE which will describe the "passed type" and the "passed location" for
2757 the given formal parameter in addition to the attributes we now generate
2758 to indicate the "declared type" and the "active location" for each
2759 parameter. This additional set of attributes could be used by debuggers
2760 for stack backtraces.
2762 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2763 can be NULL also. This happens (for example) for inlined-instances of
2764 inline function formal parameters which are never referenced. This really
2765 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2766 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2767 these values for inlined instances of inline function parameters, so
2768 when we see such cases, we are just out-of-luck for the time
2769 being (until integrate.c gets fixed).
2772 /* Use DECL_RTL as the "location" unless we find something better. */
2773 rtl = DECL_RTL (decl);
2775 if (TREE_CODE (decl) == PARM_DECL)
2776 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2778 /* This decl represents a formal parameter which was optimized out. */
2779 tree declared_type = type_main_variant (TREE_TYPE (decl));
2780 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2782 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2783 *all* cases where (rtl == NULL_RTX) just below. */
2785 if (declared_type == passed_type)
2786 rtl = DECL_INCOMING_RTL (decl);
2787 else if (! BYTES_BIG_ENDIAN)
2788 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2789 /* NMS WTF? */
2790 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2791 rtl = DECL_INCOMING_RTL (decl);
2794 if (rtl == NULL_RTX)
2795 return;
2797 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2798 #ifdef LEAF_REG_REMAP
2799 if (current_function_uses_only_leaf_regs)
2800 leaf_renumber_regs_insn (rtl);
2801 #endif
2803 switch (GET_CODE (rtl))
2805 case ADDRESSOF:
2806 /* The address of a variable that was optimized away; don't emit
2807 anything. */
2808 break;
2810 case CONST_INT:
2811 case CONST_DOUBLE:
2812 case CONST_STRING:
2813 case SYMBOL_REF:
2814 case LABEL_REF:
2815 case CONST:
2816 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2817 const_value_attribute (rtl);
2818 break;
2820 case MEM:
2821 case REG:
2822 case SUBREG:
2823 location_attribute (rtl);
2824 break;
2826 case CONCAT:
2827 /* ??? CONCAT is used for complex variables, which may have the real
2828 part stored in one place and the imag part stored somewhere else.
2829 DWARF1 has no way to describe a variable that lives in two different
2830 places, so we just describe where the first part lives, and hope that
2831 the second part is stored after it. */
2832 location_attribute (XEXP (rtl, 0));
2833 break;
2835 default:
2836 abort (); /* Should never happen. */
2840 /* Generate an AT_name attribute given some string value to be included as
2841 the value of the attribute. */
2843 static inline void
2844 name_attribute (const char *name_string)
2846 if (name_string && *name_string)
2848 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2849 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2853 static inline void
2854 fund_type_attribute (unsigned int ft_code)
2856 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2857 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2860 static void
2861 mod_fund_type_attribute (tree type, int decl_const, int decl_volatile)
2863 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2864 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2866 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2867 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2868 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2869 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2870 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2871 write_modifier_bytes (type, decl_const, decl_volatile);
2872 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2873 fundamental_type_code (root_type (type)));
2874 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2877 static inline void
2878 user_def_type_attribute (tree type)
2880 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2882 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2883 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2884 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2887 static void
2888 mod_u_d_type_attribute (tree type, int decl_const, int decl_volatile)
2890 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2891 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2892 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2894 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2895 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2896 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2897 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2898 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2899 write_modifier_bytes (type, decl_const, decl_volatile);
2900 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2901 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2902 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2905 #ifdef USE_ORDERING_ATTRIBUTE
2906 static inline void
2907 ordering_attribute (unsigned ordering)
2909 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2910 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2912 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2914 /* Note that the block of subscript information for an array type also
2915 includes information about the element type of type given array type. */
2917 static void
2918 subscript_data_attribute (tree type)
2920 unsigned dimension_number;
2921 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2922 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2924 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2925 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2926 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2927 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2928 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2930 /* The GNU compilers represent multidimensional array types as sequences
2931 of one dimensional array types whose element types are themselves array
2932 types. Here we squish that down, so that each multidimensional array
2933 type gets only one array_type DIE in the Dwarf debugging info. The
2934 draft Dwarf specification say that we are allowed to do this kind
2935 of compression in C (because there is no difference between an
2936 array or arrays and a multidimensional array in C) but for other
2937 source languages (e.g. Ada) we probably shouldn't do this. */
2939 for (dimension_number = 0;
2940 TREE_CODE (type) == ARRAY_TYPE;
2941 type = TREE_TYPE (type), dimension_number++)
2943 tree domain = TYPE_DOMAIN (type);
2945 /* Arrays come in three flavors. Unspecified bounds, fixed
2946 bounds, and (in GNU C only) variable bounds. Handle all
2947 three forms here. */
2949 if (domain)
2951 /* We have an array type with specified bounds. */
2953 tree lower = TYPE_MIN_VALUE (domain);
2954 tree upper = TYPE_MAX_VALUE (domain);
2956 /* Handle only fundamental types as index types for now. */
2957 if (! type_is_fundamental (domain))
2958 abort ();
2960 /* Output the representation format byte for this dimension. */
2961 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2962 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2963 upper && TREE_CODE (upper) == INTEGER_CST));
2965 /* Output the index type for this dimension. */
2966 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2967 fundamental_type_code (domain));
2969 /* Output the representation for the lower bound. */
2970 output_bound_representation (lower, dimension_number, 'l');
2972 /* Output the representation for the upper bound. */
2973 if (upper)
2974 output_bound_representation (upper, dimension_number, 'u');
2975 else
2976 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2978 else
2980 /* We have an array type with an unspecified length. For C and
2981 C++ we can assume that this really means that (a) the index
2982 type is an integral type, and (b) the lower bound is zero.
2983 Note that Dwarf defines the representation of an unspecified
2984 (upper) bound as being a zero-length location description. */
2986 /* Output the array-bounds format byte. */
2988 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2990 /* Output the (assumed) index type. */
2992 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2994 /* Output the (assumed) lower bound (constant) value. */
2996 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2998 /* Output the (empty) location description for the upper bound. */
3000 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3004 /* Output the prefix byte that says that the element type is coming up. */
3006 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
3008 /* Output a representation of the type of the elements of this array type. */
3010 type_attribute (type, 0, 0);
3012 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3015 static void
3016 byte_size_attribute (tree tree_node)
3018 unsigned size;
3020 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
3021 switch (TREE_CODE (tree_node))
3023 case ERROR_MARK:
3024 size = 0;
3025 break;
3027 case ENUMERAL_TYPE:
3028 case RECORD_TYPE:
3029 case UNION_TYPE:
3030 case QUAL_UNION_TYPE:
3031 case ARRAY_TYPE:
3032 size = int_size_in_bytes (tree_node);
3033 break;
3035 case FIELD_DECL:
3036 /* For a data member of a struct or union, the AT_byte_size is
3037 generally given as the number of bytes normally allocated for
3038 an object of the *declared* type of the member itself. This
3039 is true even for bit-fields. */
3040 size = simple_type_size_in_bits (field_type (tree_node))
3041 / BITS_PER_UNIT;
3042 break;
3044 default:
3045 abort ();
3048 /* Note that `size' might be -1 when we get to this point. If it
3049 is, that indicates that the byte size of the entity in question
3050 is variable. We have no good way of expressing this fact in Dwarf
3051 at the present time, so just let the -1 pass on through. */
3053 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
3056 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3057 which specifies the distance in bits from the highest order bit of the
3058 "containing object" for the bit-field to the highest order bit of the
3059 bit-field itself.
3061 For any given bit-field, the "containing object" is a hypothetical
3062 object (of some integral or enum type) within which the given bit-field
3063 lives. The type of this hypothetical "containing object" is always the
3064 same as the declared type of the individual bit-field itself.
3066 The determination of the exact location of the "containing object" for
3067 a bit-field is rather complicated. It's handled by the `field_byte_offset'
3068 function (above).
3070 Note that it is the size (in bytes) of the hypothetical "containing
3071 object" which will be given in the AT_byte_size attribute for this
3072 bit-field. (See `byte_size_attribute' above.) */
3074 static inline void
3075 bit_offset_attribute (tree decl)
3077 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
3078 tree type = DECL_BIT_FIELD_TYPE (decl);
3079 HOST_WIDE_INT bitpos_int;
3080 HOST_WIDE_INT highest_order_object_bit_offset;
3081 HOST_WIDE_INT highest_order_field_bit_offset;
3082 HOST_WIDE_INT bit_offset;
3084 /* Must be a bit field. */
3085 if (!type
3086 || TREE_CODE (decl) != FIELD_DECL)
3087 abort ();
3089 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3090 if we encounter such things, just return without generating any
3091 attribute whatsoever. */
3093 if (! host_integerp (bit_position (decl), 0)
3094 || ! host_integerp (DECL_SIZE (decl), 1))
3095 return;
3097 bitpos_int = int_bit_position (decl);
3099 /* Note that the bit offset is always the distance (in bits) from the
3100 highest-order bit of the "containing object" to the highest-order
3101 bit of the bit-field itself. Since the "high-order end" of any
3102 object or field is different on big-endian and little-endian machines,
3103 the computation below must take account of these differences. */
3105 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
3106 highest_order_field_bit_offset = bitpos_int;
3108 if (! BYTES_BIG_ENDIAN)
3110 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 1);
3111 highest_order_object_bit_offset += simple_type_size_in_bits (type);
3114 bit_offset =
3115 (! BYTES_BIG_ENDIAN
3116 ? highest_order_object_bit_offset - highest_order_field_bit_offset
3117 : highest_order_field_bit_offset - highest_order_object_bit_offset);
3119 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
3120 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
3123 /* For a FIELD_DECL node which represents a bit field, output an attribute
3124 which specifies the length in bits of the given field. */
3126 static inline void
3127 bit_size_attribute (tree decl)
3129 /* Must be a field and a bit field. */
3130 if (TREE_CODE (decl) != FIELD_DECL
3131 || ! DECL_BIT_FIELD_TYPE (decl))
3132 abort ();
3134 if (host_integerp (DECL_SIZE (decl), 1))
3136 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
3137 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
3138 tree_low_cst (DECL_SIZE (decl), 1));
3142 /* The following routine outputs the `element_list' attribute for enumeration
3143 type DIEs. The element_lits attribute includes the names and values of
3144 all of the enumeration constants associated with the given enumeration
3145 type. */
3147 static inline void
3148 element_list_attribute (tree element)
3150 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3151 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3153 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
3154 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
3155 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
3156 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3157 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3159 /* Here we output a list of value/name pairs for each enumeration constant
3160 defined for this enumeration type (as required), but we do it in REVERSE
3161 order. The order is the one required by the draft #5 Dwarf specification
3162 published by the UI/PLSIG. */
3164 output_enumeral_list (element); /* Recursively output the whole list. */
3166 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3169 /* Generate an AT_stmt_list attribute. These are normally present only in
3170 DIEs with a TAG_compile_unit tag. */
3172 static inline void
3173 stmt_list_attribute (const char *label)
3175 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
3176 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3177 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
3180 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3181 for a subroutine DIE. */
3183 static inline void
3184 low_pc_attribute (const char *asm_low_label)
3186 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
3187 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
3190 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3191 subroutine DIE. */
3193 static inline void
3194 high_pc_attribute (const char *asm_high_label)
3196 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
3197 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
3200 /* Generate an AT_body_begin attribute for a subroutine DIE. */
3202 static inline void
3203 body_begin_attribute (const char *asm_begin_label)
3205 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
3206 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
3209 /* Generate an AT_body_end attribute for a subroutine DIE. */
3211 static inline void
3212 body_end_attribute (const char *asm_end_label)
3214 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
3215 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
3218 /* Generate an AT_language attribute given a LANG value. These attributes
3219 are used only within TAG_compile_unit DIEs. */
3221 static inline void
3222 language_attribute (unsigned int language_code)
3224 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
3225 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
3228 static inline void
3229 member_attribute (tree context)
3231 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3233 /* Generate this attribute only for members in C++. */
3235 if (context != NULL && is_tagged_type (context))
3237 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
3238 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
3239 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3243 #if 0
3244 #ifndef SL_BEGIN_LABEL_FMT
3245 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
3246 #endif
3247 #ifndef SL_END_LABEL_FMT
3248 #define SL_END_LABEL_FMT "*.L_sl%u_e"
3249 #endif
3251 static inline void
3252 string_length_attribute (tree upper_bound)
3254 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3255 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3257 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
3258 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
3259 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
3260 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
3261 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3262 output_bound_representation (upper_bound, 0, 'u');
3263 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3265 #endif
3267 static inline void
3268 comp_dir_attribute (const char *dirname)
3270 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
3271 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
3274 static inline void
3275 sf_names_attribute (const char *sf_names_start_label)
3277 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
3278 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3279 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
3282 static inline void
3283 src_info_attribute (const char *src_info_start_label)
3285 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
3286 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3287 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
3290 static inline void
3291 mac_info_attribute (const char *mac_info_start_label)
3293 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
3294 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3295 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
3298 static inline void
3299 prototyped_attribute (tree func_type)
3301 if ((strcmp (lang_hooks.name, "GNU C") == 0)
3302 && (TYPE_ARG_TYPES (func_type) != NULL))
3304 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
3305 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3309 static inline void
3310 producer_attribute (const char *producer)
3312 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
3313 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
3316 static inline void
3317 inline_attribute (tree decl)
3319 if (DECL_INLINE (decl))
3321 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
3322 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3326 static inline void
3327 containing_type_attribute (tree containing_type)
3329 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3331 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3332 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3333 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3336 static inline void
3337 abstract_origin_attribute (tree origin)
3339 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3341 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3342 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3344 case 'd':
3345 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3346 break;
3348 case 't':
3349 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3350 break;
3352 default:
3353 abort (); /* Should never happen. */
3356 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3359 #ifdef DWARF_DECL_COORDINATES
3360 static inline void
3361 src_coords_attribute (unsigned src_fileno, unsigned src_lineno)
3363 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3364 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3365 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3367 #endif /* defined(DWARF_DECL_COORDINATES) */
3369 static inline void
3370 pure_or_virtual_attribute (tree func_decl)
3372 if (DECL_VIRTUAL_P (func_decl))
3374 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3375 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3376 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3377 else
3378 #endif
3379 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3380 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3384 /************************* end of attributes *****************************/
3386 /********************* utility routines for DIEs *************************/
3388 /* Output an AT_name attribute and an AT_src_coords attribute for the
3389 given decl, but only if it actually has a name. */
3391 static void
3392 name_and_src_coords_attributes (tree decl)
3394 tree decl_name = DECL_NAME (decl);
3396 if (decl_name && IDENTIFIER_POINTER (decl_name))
3398 name_attribute (IDENTIFIER_POINTER (decl_name));
3399 #ifdef DWARF_DECL_COORDINATES
3401 register unsigned file_index;
3403 /* This is annoying, but we have to pop out of the .debug section
3404 for a moment while we call `lookup_filename' because calling it
3405 may cause a temporary switch into the .debug_sfnames section and
3406 most svr4 assemblers are not smart enough to be able to nest
3407 section switches to any depth greater than one. Note that we
3408 also can't skirt this issue by delaying all output to the
3409 .debug_sfnames section unit the end of compilation because that
3410 would cause us to have inter-section forward references and
3411 Fred Fish sez that m68k/svr4 assemblers botch those. */
3413 ASM_OUTPUT_POP_SECTION (asm_out_file);
3414 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3415 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3417 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3419 #endif /* defined(DWARF_DECL_COORDINATES) */
3423 /* Many forms of DIEs contain a "type description" part. The following
3424 routine writes out these "type descriptor" parts. */
3426 static void
3427 type_attribute (tree type, int decl_const, int decl_volatile)
3429 enum tree_code code = TREE_CODE (type);
3430 int root_type_modified;
3432 if (code == ERROR_MARK)
3433 return;
3435 /* Handle a special case. For functions whose return type is void,
3436 we generate *no* type attribute. (Note that no object may have
3437 type `void', so this only applies to function return types. */
3439 if (code == VOID_TYPE)
3440 return;
3442 /* If this is a subtype, find the underlying type. Eventually,
3443 this should write out the appropriate subtype info. */
3444 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3445 && TREE_TYPE (type) != 0)
3446 type = TREE_TYPE (type), code = TREE_CODE (type);
3448 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3449 || decl_const || decl_volatile
3450 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3452 if (type_is_fundamental (root_type (type)))
3454 if (root_type_modified)
3455 mod_fund_type_attribute (type, decl_const, decl_volatile);
3456 else
3457 fund_type_attribute (fundamental_type_code (type));
3459 else
3461 if (root_type_modified)
3462 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3463 else
3464 /* We have to get the type_main_variant here (and pass that to the
3465 `user_def_type_attribute' routine) because the ..._TYPE node we
3466 have might simply be a *copy* of some original type node (where
3467 the copy was created to help us keep track of typedef names)
3468 and that copy might have a different TYPE_UID from the original
3469 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3470 is labeling a given type DIE for future reference, it always and
3471 only creates labels for DIEs representing *main variants*, and it
3472 never even knows about non-main-variants.) */
3473 user_def_type_attribute (type_main_variant (type));
3477 /* Given a tree pointer to a struct, class, union, or enum type node, return
3478 a pointer to the (string) tag name for the given type, or zero if the
3479 type was declared without a tag. */
3481 static const char *
3482 type_tag (tree type)
3484 const char *name = 0;
3486 if (TYPE_NAME (type) != 0)
3488 tree t = 0;
3490 /* Find the IDENTIFIER_NODE for the type name. */
3491 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3492 t = TYPE_NAME (type);
3494 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3495 a TYPE_DECL node, regardless of whether or not a `typedef' was
3496 involved. */
3497 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3498 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3499 t = DECL_NAME (TYPE_NAME (type));
3501 /* Now get the name as a string, or invent one. */
3502 if (t != 0)
3503 name = IDENTIFIER_POINTER (t);
3506 return (name == 0 || *name == '\0') ? 0 : name;
3509 static inline void
3510 dienum_push (void)
3512 /* Start by checking if the pending_sibling_stack needs to be expanded.
3513 If necessary, expand it. */
3515 if (pending_siblings == pending_siblings_allocated)
3517 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3518 pending_sibling_stack
3519 = xrealloc (pending_sibling_stack,
3520 pending_siblings_allocated * sizeof(unsigned));
3523 pending_siblings++;
3524 NEXT_DIE_NUM = next_unused_dienum++;
3527 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3528 NEXT_DIE_NUM. */
3530 static inline void
3531 dienum_pop (void)
3533 pending_siblings--;
3536 static inline tree
3537 member_declared_type (tree member)
3539 return (DECL_BIT_FIELD_TYPE (member))
3540 ? DECL_BIT_FIELD_TYPE (member)
3541 : TREE_TYPE (member);
3544 /* Get the function's label, as described by its RTL.
3545 This may be different from the DECL_NAME name used
3546 in the source file. */
3548 static const char *
3549 function_start_label (tree decl)
3551 rtx x;
3552 const char *fnname;
3554 x = DECL_RTL (decl);
3555 if (GET_CODE (x) != MEM)
3556 abort ();
3557 x = XEXP (x, 0);
3558 if (GET_CODE (x) != SYMBOL_REF)
3559 abort ();
3560 fnname = XSTR (x, 0);
3561 return fnname;
3565 /******************************* DIEs ************************************/
3567 /* Output routines for individual types of DIEs. */
3569 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3571 static void
3572 output_array_type_die (void *arg)
3574 tree type = arg;
3576 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3577 sibling_attribute ();
3578 equate_type_number_to_die_number (type);
3579 member_attribute (TYPE_CONTEXT (type));
3581 /* I believe that we can default the array ordering. SDB will probably
3582 do the right things even if AT_ordering is not present. It's not
3583 even an issue until we start to get into multidimensional arrays
3584 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3585 dimensional arrays, then we'll have to put the AT_ordering attribute
3586 back in. (But if and when we find out that we need to put these in,
3587 we will only do so for multidimensional arrays. After all, we don't
3588 want to waste space in the .debug section now do we?) */
3590 #ifdef USE_ORDERING_ATTRIBUTE
3591 ordering_attribute (ORD_row_major);
3592 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3594 subscript_data_attribute (type);
3597 static void
3598 output_set_type_die (void *arg)
3600 tree type = arg;
3602 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3603 sibling_attribute ();
3604 equate_type_number_to_die_number (type);
3605 member_attribute (TYPE_CONTEXT (type));
3606 type_attribute (TREE_TYPE (type), 0, 0);
3609 #if 0
3610 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3612 static void
3613 output_entry_point_die (void *arg)
3615 tree decl = arg;
3616 tree origin = decl_ultimate_origin (decl);
3618 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3619 sibling_attribute ();
3620 dienum_push ();
3621 if (origin != NULL)
3622 abstract_origin_attribute (origin);
3623 else
3625 name_and_src_coords_attributes (decl);
3626 member_attribute (DECL_CONTEXT (decl));
3627 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3629 if (DECL_ABSTRACT (decl))
3630 equate_decl_number_to_die_number (decl);
3631 else
3632 low_pc_attribute (function_start_label (decl));
3634 #endif
3636 /* Output a DIE to represent an inlined instance of an enumeration type. */
3638 static void
3639 output_inlined_enumeration_type_die (void *arg)
3641 tree type = arg;
3643 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3644 sibling_attribute ();
3645 if (!TREE_ASM_WRITTEN (type))
3646 abort ();
3647 abstract_origin_attribute (type);
3650 /* Output a DIE to represent an inlined instance of a structure type. */
3652 static void
3653 output_inlined_structure_type_die (void *arg)
3655 tree type = arg;
3657 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3658 sibling_attribute ();
3659 if (!TREE_ASM_WRITTEN (type))
3660 abort ();
3661 abstract_origin_attribute (type);
3664 /* Output a DIE to represent an inlined instance of a union type. */
3666 static void
3667 output_inlined_union_type_die (void *arg)
3669 tree type = arg;
3671 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3672 sibling_attribute ();
3673 if (!TREE_ASM_WRITTEN (type))
3674 abort ();
3675 abstract_origin_attribute (type);
3678 /* Output a DIE to represent an enumeration type. Note that these DIEs
3679 include all of the information about the enumeration values also.
3680 This information is encoded into the element_list attribute. */
3682 static void
3683 output_enumeration_type_die (void *arg)
3685 tree type = arg;
3687 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3688 sibling_attribute ();
3689 equate_type_number_to_die_number (type);
3690 name_attribute (type_tag (type));
3691 member_attribute (TYPE_CONTEXT (type));
3693 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3694 given enum type is incomplete, do not generate the AT_byte_size
3695 attribute or the AT_element_list attribute. */
3697 if (COMPLETE_TYPE_P (type))
3699 byte_size_attribute (type);
3700 element_list_attribute (TYPE_FIELDS (type));
3704 /* Output a DIE to represent either a real live formal parameter decl or
3705 to represent just the type of some formal parameter position in some
3706 function type.
3708 Note that this routine is a bit unusual because its argument may be
3709 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3710 represents an inlining of some PARM_DECL) or else some sort of a
3711 ..._TYPE node. If it's the former then this function is being called
3712 to output a DIE to represent a formal parameter object (or some inlining
3713 thereof). If it's the latter, then this function is only being called
3714 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3715 formal argument type of some subprogram type. */
3717 static void
3718 output_formal_parameter_die (void *arg)
3720 tree node = arg;
3722 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3723 sibling_attribute ();
3725 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3727 case 'd': /* We were called with some kind of a ..._DECL node. */
3729 register tree origin = decl_ultimate_origin (node);
3731 if (origin != NULL)
3732 abstract_origin_attribute (origin);
3733 else
3735 name_and_src_coords_attributes (node);
3736 type_attribute (TREE_TYPE (node),
3737 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3739 if (DECL_ABSTRACT (node))
3740 equate_decl_number_to_die_number (node);
3741 else
3742 location_or_const_value_attribute (node);
3744 break;
3746 case 't': /* We were called with some kind of a ..._TYPE node. */
3747 type_attribute (node, 0, 0);
3748 break;
3750 default:
3751 abort (); /* Should never happen. */
3755 /* Output a DIE to represent a declared function (either file-scope
3756 or block-local) which has "external linkage" (according to ANSI-C). */
3758 static void
3759 output_global_subroutine_die (void *arg)
3761 tree decl = arg;
3762 tree origin = decl_ultimate_origin (decl);
3764 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3765 sibling_attribute ();
3766 dienum_push ();
3767 if (origin != NULL)
3768 abstract_origin_attribute (origin);
3769 else
3771 tree type = TREE_TYPE (decl);
3773 name_and_src_coords_attributes (decl);
3774 inline_attribute (decl);
3775 prototyped_attribute (type);
3776 member_attribute (DECL_CONTEXT (decl));
3777 type_attribute (TREE_TYPE (type), 0, 0);
3778 pure_or_virtual_attribute (decl);
3780 if (DECL_ABSTRACT (decl))
3781 equate_decl_number_to_die_number (decl);
3782 else
3784 if (! DECL_EXTERNAL (decl) && ! in_class
3785 && decl == current_function_decl)
3787 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3789 low_pc_attribute (function_start_label (decl));
3790 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
3791 high_pc_attribute (label);
3792 if (use_gnu_debug_info_extensions)
3794 sprintf (label, BODY_BEGIN_LABEL_FMT,
3795 current_function_funcdef_no);
3796 body_begin_attribute (label);
3797 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
3798 body_end_attribute (label);
3804 /* Output a DIE to represent a declared data object (either file-scope
3805 or block-local) which has "external linkage" (according to ANSI-C). */
3807 static void
3808 output_global_variable_die (void *arg)
3810 tree decl = arg;
3811 tree origin = decl_ultimate_origin (decl);
3813 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3814 sibling_attribute ();
3815 if (origin != NULL)
3816 abstract_origin_attribute (origin);
3817 else
3819 name_and_src_coords_attributes (decl);
3820 member_attribute (DECL_CONTEXT (decl));
3821 type_attribute (TREE_TYPE (decl),
3822 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3824 if (DECL_ABSTRACT (decl))
3825 equate_decl_number_to_die_number (decl);
3826 else
3828 if (! DECL_EXTERNAL (decl) && ! in_class
3829 && current_function_decl == decl_function_context (decl))
3830 location_or_const_value_attribute (decl);
3834 static void
3835 output_label_die (void *arg)
3837 tree decl = arg;
3838 tree origin = decl_ultimate_origin (decl);
3840 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3841 sibling_attribute ();
3842 if (origin != NULL)
3843 abstract_origin_attribute (origin);
3844 else
3845 name_and_src_coords_attributes (decl);
3846 if (DECL_ABSTRACT (decl))
3847 equate_decl_number_to_die_number (decl);
3848 else
3850 rtx insn = DECL_RTL (decl);
3852 /* Deleted labels are programmer specified labels which have been
3853 eliminated because of various optimizations. We still emit them
3854 here so that it is possible to put breakpoints on them. */
3855 if (GET_CODE (insn) == CODE_LABEL
3856 || ((GET_CODE (insn) == NOTE
3857 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3859 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3861 /* When optimization is enabled (via -O) some parts of the compiler
3862 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3863 represent source-level labels which were explicitly declared by
3864 the user. This really shouldn't be happening though, so catch
3865 it if it ever does happen. */
3867 if (INSN_DELETED_P (insn))
3868 abort (); /* Should never happen. */
3870 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
3871 low_pc_attribute (label);
3876 static void
3877 output_lexical_block_die (void *arg)
3879 tree stmt = arg;
3881 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3882 sibling_attribute ();
3883 dienum_push ();
3884 if (! BLOCK_ABSTRACT (stmt))
3886 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3887 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3889 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
3890 low_pc_attribute (begin_label);
3891 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
3892 high_pc_attribute (end_label);
3896 static void
3897 output_inlined_subroutine_die (void *arg)
3899 tree stmt = arg;
3901 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3902 sibling_attribute ();
3903 dienum_push ();
3904 abstract_origin_attribute (block_ultimate_origin (stmt));
3905 if (! BLOCK_ABSTRACT (stmt))
3907 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3908 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3910 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
3911 low_pc_attribute (begin_label);
3912 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
3913 high_pc_attribute (end_label);
3917 /* Output a DIE to represent a declared data object (either file-scope
3918 or block-local) which has "internal linkage" (according to ANSI-C). */
3920 static void
3921 output_local_variable_die (void *arg)
3923 tree decl = arg;
3924 tree origin = decl_ultimate_origin (decl);
3926 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3927 sibling_attribute ();
3928 if (origin != NULL)
3929 abstract_origin_attribute (origin);
3930 else
3932 name_and_src_coords_attributes (decl);
3933 member_attribute (DECL_CONTEXT (decl));
3934 type_attribute (TREE_TYPE (decl),
3935 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3937 if (DECL_ABSTRACT (decl))
3938 equate_decl_number_to_die_number (decl);
3939 else
3940 location_or_const_value_attribute (decl);
3943 static void
3944 output_member_die (void *arg)
3946 tree decl = arg;
3948 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3949 sibling_attribute ();
3950 name_and_src_coords_attributes (decl);
3951 member_attribute (DECL_CONTEXT (decl));
3952 type_attribute (member_declared_type (decl),
3953 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3954 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3956 byte_size_attribute (decl);
3957 bit_size_attribute (decl);
3958 bit_offset_attribute (decl);
3960 data_member_location_attribute (decl);
3963 #if 0
3964 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3965 modified types instead.
3967 We keep this code here just in case these types of DIEs may be
3968 needed to represent certain things in other languages (e.g. Pascal)
3969 someday. */
3971 static void
3972 output_pointer_type_die (void *arg)
3974 tree type = arg;
3976 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3977 sibling_attribute ();
3978 equate_type_number_to_die_number (type);
3979 member_attribute (TYPE_CONTEXT (type));
3980 type_attribute (TREE_TYPE (type), 0, 0);
3983 static void
3984 output_reference_type_die (void *arg)
3986 tree type = arg;
3988 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3989 sibling_attribute ();
3990 equate_type_number_to_die_number (type);
3991 member_attribute (TYPE_CONTEXT (type));
3992 type_attribute (TREE_TYPE (type), 0, 0);
3994 #endif
3996 static void
3997 output_ptr_to_mbr_type_die (void *arg)
3999 tree type = arg;
4001 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
4002 sibling_attribute ();
4003 equate_type_number_to_die_number (type);
4004 member_attribute (TYPE_CONTEXT (type));
4005 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
4006 type_attribute (TREE_TYPE (type), 0, 0);
4009 static void
4010 output_compile_unit_die (void *arg)
4012 const char *main_input_filename = arg;
4013 const char *language_string = lang_hooks.name;
4015 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
4016 sibling_attribute ();
4017 dienum_push ();
4018 name_attribute (main_input_filename);
4021 char producer[250];
4023 sprintf (producer, "%s %s", language_string, version_string);
4024 producer_attribute (producer);
4027 if (strcmp (language_string, "GNU C++") == 0)
4028 language_attribute (LANG_C_PLUS_PLUS);
4029 else if (strcmp (language_string, "GNU Ada") == 0)
4030 language_attribute (LANG_ADA83);
4031 else if (strcmp (language_string, "GNU F77") == 0)
4032 language_attribute (LANG_FORTRAN77);
4033 else if (strcmp (language_string, "GNU Pascal") == 0)
4034 language_attribute (LANG_PASCAL83);
4035 else if (strcmp (language_string, "GNU Java") == 0)
4036 language_attribute (LANG_JAVA);
4037 else
4038 language_attribute (LANG_C89);
4039 low_pc_attribute (TEXT_BEGIN_LABEL);
4040 high_pc_attribute (TEXT_END_LABEL);
4041 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4042 stmt_list_attribute (LINE_BEGIN_LABEL);
4045 const char *wd = get_src_pwd ();
4046 if (wd)
4047 comp_dir_attribute (wd);
4050 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
4052 sf_names_attribute (SFNAMES_BEGIN_LABEL);
4053 src_info_attribute (SRCINFO_BEGIN_LABEL);
4054 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
4055 mac_info_attribute (MACINFO_BEGIN_LABEL);
4059 static void
4060 output_string_type_die (void *arg)
4062 tree type = arg;
4064 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
4065 sibling_attribute ();
4066 equate_type_number_to_die_number (type);
4067 member_attribute (TYPE_CONTEXT (type));
4068 /* This is a fixed length string. */
4069 byte_size_attribute (type);
4072 static void
4073 output_inheritance_die (void *arg)
4075 tree binfo = ((tree *)arg)[0];
4076 tree access = ((tree *)arg)[1];
4078 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
4079 sibling_attribute ();
4080 type_attribute (BINFO_TYPE (binfo), 0, 0);
4081 data_member_location_attribute (binfo);
4082 if (TREE_VIA_VIRTUAL (binfo))
4084 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
4085 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4087 if (access == access_public_node)
4089 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
4090 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4092 else if (access == access_protected_node)
4094 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
4095 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4099 static void
4100 output_structure_type_die (void *arg)
4102 tree type = arg;
4104 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
4105 sibling_attribute ();
4106 equate_type_number_to_die_number (type);
4107 name_attribute (type_tag (type));
4108 member_attribute (TYPE_CONTEXT (type));
4110 /* If this type has been completed, then give it a byte_size attribute
4111 and prepare to give a list of members. Otherwise, don't do either of
4112 these things. In the latter case, we will not be generating a list
4113 of members (since we don't have any idea what they might be for an
4114 incomplete type). */
4116 if (COMPLETE_TYPE_P (type))
4118 dienum_push ();
4119 byte_size_attribute (type);
4123 /* Output a DIE to represent a declared function (either file-scope
4124 or block-local) which has "internal linkage" (according to ANSI-C). */
4126 static void
4127 output_local_subroutine_die (void *arg)
4129 tree decl = arg;
4130 tree origin = decl_ultimate_origin (decl);
4132 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
4133 sibling_attribute ();
4134 dienum_push ();
4135 if (origin != NULL)
4136 abstract_origin_attribute (origin);
4137 else
4139 tree type = TREE_TYPE (decl);
4141 name_and_src_coords_attributes (decl);
4142 inline_attribute (decl);
4143 prototyped_attribute (type);
4144 member_attribute (DECL_CONTEXT (decl));
4145 type_attribute (TREE_TYPE (type), 0, 0);
4146 pure_or_virtual_attribute (decl);
4148 if (DECL_ABSTRACT (decl))
4149 equate_decl_number_to_die_number (decl);
4150 else
4152 /* Avoid getting screwed up in cases where a function was declared
4153 static but where no definition was ever given for it. */
4155 if (TREE_ASM_WRITTEN (decl))
4157 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4158 low_pc_attribute (function_start_label (decl));
4159 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
4160 high_pc_attribute (label);
4161 if (use_gnu_debug_info_extensions)
4163 sprintf (label, BODY_BEGIN_LABEL_FMT,
4164 current_function_funcdef_no);
4165 body_begin_attribute (label);
4166 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
4167 body_end_attribute (label);
4173 static void
4174 output_subroutine_type_die (void *arg)
4176 tree type = arg;
4177 tree return_type = TREE_TYPE (type);
4179 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
4180 sibling_attribute ();
4181 dienum_push ();
4182 equate_type_number_to_die_number (type);
4183 prototyped_attribute (type);
4184 member_attribute (TYPE_CONTEXT (type));
4185 type_attribute (return_type, 0, 0);
4188 static void
4189 output_typedef_die (void *arg)
4191 tree decl = arg;
4192 tree origin = decl_ultimate_origin (decl);
4194 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
4195 sibling_attribute ();
4196 if (origin != NULL)
4197 abstract_origin_attribute (origin);
4198 else
4200 name_and_src_coords_attributes (decl);
4201 member_attribute (DECL_CONTEXT (decl));
4202 type_attribute (TREE_TYPE (decl),
4203 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4205 if (DECL_ABSTRACT (decl))
4206 equate_decl_number_to_die_number (decl);
4209 static void
4210 output_union_type_die (void *arg)
4212 tree type = arg;
4214 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
4215 sibling_attribute ();
4216 equate_type_number_to_die_number (type);
4217 name_attribute (type_tag (type));
4218 member_attribute (TYPE_CONTEXT (type));
4220 /* If this type has been completed, then give it a byte_size attribute
4221 and prepare to give a list of members. Otherwise, don't do either of
4222 these things. In the latter case, we will not be generating a list
4223 of members (since we don't have any idea what they might be for an
4224 incomplete type). */
4226 if (COMPLETE_TYPE_P (type))
4228 dienum_push ();
4229 byte_size_attribute (type);
4233 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4234 at the end of an (ANSI prototyped) formal parameters list. */
4236 static void
4237 output_unspecified_parameters_die (void *arg)
4239 tree decl_or_type = arg;
4241 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
4242 sibling_attribute ();
4244 /* This kludge is here only for the sake of being compatible with what
4245 the USL CI5 C compiler does. The specification of Dwarf Version 1
4246 doesn't say that TAG_unspecified_parameters DIEs should contain any
4247 attributes other than the AT_sibling attribute, but they are certainly
4248 allowed to contain additional attributes, and the CI5 compiler
4249 generates AT_name, AT_fund_type, and AT_location attributes within
4250 TAG_unspecified_parameters DIEs which appear in the child lists for
4251 DIEs representing function definitions, so we do likewise here. */
4253 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
4255 name_attribute ("...");
4256 fund_type_attribute (FT_pointer);
4257 /* location_attribute (?); */
4261 static void
4262 output_padded_null_die (void *arg ATTRIBUTE_UNUSED)
4264 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
4267 /*************************** end of DIEs *********************************/
4269 /* Generate some type of DIE. This routine generates the generic outer
4270 wrapper stuff which goes around all types of DIE's (regardless of their
4271 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4272 DIE-length word, followed by the guts of the DIE itself. After the guts
4273 of the DIE, there must always be a terminator label for the DIE. */
4275 static void
4276 output_die (void (*die_specific_output_function) (void *), void *param)
4278 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4279 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4281 current_dienum = NEXT_DIE_NUM;
4282 NEXT_DIE_NUM = next_unused_dienum;
4284 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4285 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4287 /* Write a label which will act as the name for the start of this DIE. */
4289 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4291 /* Write the DIE-length word. */
4293 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4295 /* Fill in the guts of the DIE. */
4297 next_unused_dienum++;
4298 die_specific_output_function (param);
4300 /* Write a label which will act as the name for the end of this DIE. */
4302 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4305 static void
4306 end_sibling_chain (void)
4308 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4310 current_dienum = NEXT_DIE_NUM;
4311 NEXT_DIE_NUM = next_unused_dienum;
4313 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4315 /* Write a label which will act as the name for the start of this DIE. */
4317 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4319 /* Write the DIE-length word. */
4321 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4323 dienum_pop ();
4326 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4327 TAG_unspecified_parameters DIE) to represent the types of the formal
4328 parameters as specified in some function type specification (except
4329 for those which appear as part of a function *definition*).
4331 Note that we must be careful here to output all of the parameter
4332 DIEs *before* we output any DIEs needed to represent the types of
4333 the formal parameters. This keeps svr4 SDB happy because it
4334 (incorrectly) thinks that the first non-parameter DIE it sees ends
4335 the formal parameter list. */
4337 static void
4338 output_formal_types (tree function_or_method_type)
4340 tree link;
4341 tree formal_type = NULL;
4342 tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4344 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4345 get bogus recursion when outputting tagged types local to a
4346 function declaration. */
4347 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4348 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4350 /* In the case where we are generating a formal types list for a C++
4351 non-static member function type, skip over the first thing on the
4352 TYPE_ARG_TYPES list because it only represents the type of the
4353 hidden `this pointer'. The debugger should be able to figure
4354 out (without being explicitly told) that this non-static member
4355 function type takes a `this pointer' and should be able to figure
4356 what the type of that hidden parameter is from the AT_member
4357 attribute of the parent TAG_subroutine_type DIE. */
4359 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4360 first_parm_type = TREE_CHAIN (first_parm_type);
4362 /* Make our first pass over the list of formal parameter types and output
4363 a TAG_formal_parameter DIE for each one. */
4365 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4367 formal_type = TREE_VALUE (link);
4368 if (formal_type == void_type_node)
4369 break;
4371 /* Output a (nameless) DIE to represent the formal parameter itself. */
4373 output_die (output_formal_parameter_die, formal_type);
4376 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4377 DIE to the end of the parameter list. */
4379 if (formal_type != void_type_node)
4380 output_die (output_unspecified_parameters_die, function_or_method_type);
4382 /* Make our second (and final) pass over the list of formal parameter types
4383 and output DIEs to represent those types (as necessary). */
4385 for (link = TYPE_ARG_TYPES (function_or_method_type);
4386 link;
4387 link = TREE_CHAIN (link))
4389 formal_type = TREE_VALUE (link);
4390 if (formal_type == void_type_node)
4391 break;
4393 output_type (formal_type, function_or_method_type);
4396 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4399 /* Remember a type in the pending_types_list. */
4401 static void
4402 pend_type (tree type)
4404 if (pending_types == pending_types_allocated)
4406 pending_types_allocated += PENDING_TYPES_INCREMENT;
4407 pending_types_list
4408 = xrealloc (pending_types_list,
4409 sizeof (tree) * pending_types_allocated);
4411 pending_types_list[pending_types++] = type;
4413 /* Mark the pending type as having been output already (even though
4414 it hasn't been). This prevents the type from being added to the
4415 pending_types_list more than once. */
4417 TREE_ASM_WRITTEN (type) = 1;
4420 /* Return nonzero if it is legitimate to output DIEs to represent a
4421 given type while we are generating the list of child DIEs for some
4422 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4424 See the comments within the function for a description of when it is
4425 considered legitimate to output DIEs for various kinds of types.
4427 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4428 or it may point to a BLOCK node (for types local to a block), or to a
4429 FUNCTION_DECL node (for types local to the heading of some function
4430 definition), or to a FUNCTION_TYPE node (for types local to the
4431 prototyped parameter list of a function type specification), or to a
4432 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4433 (in the case of C++ nested types).
4435 The `scope' parameter should likewise be NULL or should point to a
4436 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4437 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4439 This function is used only for deciding when to "pend" and when to
4440 "un-pend" types to/from the pending_types_list.
4442 Note that we sometimes make use of this "type pending" feature in a
4443 rather twisted way to temporarily delay the production of DIEs for the
4444 types of formal parameters. (We do this just to make svr4 SDB happy.)
4445 It order to delay the production of DIEs representing types of formal
4446 parameters, callers of this function supply `fake_containing_scope' as
4447 the `scope' parameter to this function. Given that fake_containing_scope
4448 is a tagged type which is *not* the containing scope for *any* other type,
4449 the desired effect is achieved, i.e. output of DIEs representing types
4450 is temporarily suspended, and any type DIEs which would have otherwise
4451 been output are instead placed onto the pending_types_list. Later on,
4452 we force these (temporarily pended) types to be output simply by calling
4453 `output_pending_types_for_scope' with an actual argument equal to the
4454 true scope of the types we temporarily pended. */
4456 static inline int
4457 type_ok_for_scope (tree type, tree scope)
4459 /* Tagged types (i.e. struct, union, and enum types) must always be
4460 output only in the scopes where they actually belong (or else the
4461 scoping of their own tag names and the scoping of their member
4462 names will be incorrect). Non-tagged-types on the other hand can
4463 generally be output anywhere, except that svr4 SDB really doesn't
4464 want to see them nested within struct or union types, so here we
4465 say it is always OK to immediately output any such a (non-tagged)
4466 type, so long as we are not within such a context. Note that the
4467 only kinds of non-tagged types which we will be dealing with here
4468 (for C and C++ anyway) will be array types and function types. */
4470 return is_tagged_type (type)
4471 ? (TYPE_CONTEXT (type) == scope
4472 /* Ignore namespaces for the moment. */
4473 || (scope == NULL_TREE
4474 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4475 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4476 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4477 : (scope == NULL_TREE || ! is_tagged_type (scope));
4480 /* Output any pending types (from the pending_types list) which we can output
4481 now (taking into account the scope that we are working on now).
4483 For each type output, remove the given type from the pending_types_list
4484 *before* we try to output it.
4486 Note that we have to process the list in beginning-to-end order,
4487 because the call made here to output_type may cause yet more types
4488 to be added to the end of the list, and we may have to output some
4489 of them too. */
4491 static void
4492 output_pending_types_for_scope (tree containing_scope)
4494 unsigned i;
4496 for (i = 0; i < pending_types; )
4498 tree type = pending_types_list[i];
4500 if (type_ok_for_scope (type, containing_scope))
4502 tree *mover;
4503 tree *limit;
4505 pending_types--;
4506 limit = &pending_types_list[pending_types];
4507 for (mover = &pending_types_list[i]; mover < limit; mover++)
4508 *mover = *(mover+1);
4510 /* Un-mark the type as having been output already (because it
4511 hasn't been, really). Then call output_type to generate a
4512 Dwarf representation of it. */
4514 TREE_ASM_WRITTEN (type) = 0;
4515 output_type (type, containing_scope);
4517 /* Don't increment the loop counter in this case because we
4518 have shifted all of the subsequent pending types down one
4519 element in the pending_types_list array. */
4521 else
4522 i++;
4526 /* Remember a type in the incomplete_types_list. */
4528 static void
4529 add_incomplete_type (tree type)
4531 if (incomplete_types == incomplete_types_allocated)
4533 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4534 incomplete_types_list
4535 = xrealloc (incomplete_types_list,
4536 sizeof (tree) * incomplete_types_allocated);
4539 incomplete_types_list[incomplete_types++] = type;
4542 /* Walk through the list of incomplete types again, trying once more to
4543 emit full debugging info for them. */
4545 static void
4546 retry_incomplete_types (void)
4548 tree type;
4550 finalizing = 1;
4551 while (incomplete_types)
4553 --incomplete_types;
4554 type = incomplete_types_list[incomplete_types];
4555 output_type (type, NULL_TREE);
4559 static void
4560 output_type (tree type, tree containing_scope)
4562 if (type == 0 || type == error_mark_node)
4563 return;
4565 /* We are going to output a DIE to represent the unqualified version of
4566 this type (i.e. without any const or volatile qualifiers) so get
4567 the main variant (i.e. the unqualified version) of this type now. */
4569 type = type_main_variant (type);
4571 if (TREE_ASM_WRITTEN (type))
4573 if (finalizing && AGGREGATE_TYPE_P (type))
4575 tree member;
4577 /* Some of our nested types might not have been defined when we
4578 were written out before; force them out now. */
4580 for (member = TYPE_FIELDS (type); member;
4581 member = TREE_CHAIN (member))
4582 if (TREE_CODE (member) == TYPE_DECL
4583 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4584 output_type (TREE_TYPE (member), containing_scope);
4586 return;
4589 /* If this is a nested type whose containing class hasn't been
4590 written out yet, writing it out will cover this one, too. */
4592 if (TYPE_CONTEXT (type)
4593 && TYPE_P (TYPE_CONTEXT (type))
4594 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4596 output_type (TYPE_CONTEXT (type), containing_scope);
4597 return;
4600 /* Don't generate any DIEs for this type now unless it is OK to do so
4601 (based upon what `type_ok_for_scope' tells us). */
4603 if (! type_ok_for_scope (type, containing_scope))
4605 pend_type (type);
4606 return;
4609 switch (TREE_CODE (type))
4611 case ERROR_MARK:
4612 break;
4614 case VECTOR_TYPE:
4615 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type), containing_scope);
4616 break;
4618 case POINTER_TYPE:
4619 case REFERENCE_TYPE:
4620 /* Prevent infinite recursion in cases where this is a recursive
4621 type. Recursive types are possible in Ada. */
4622 TREE_ASM_WRITTEN (type) = 1;
4623 /* For these types, all that is required is that we output a DIE
4624 (or a set of DIEs) to represent the "basis" type. */
4625 output_type (TREE_TYPE (type), containing_scope);
4626 break;
4628 case OFFSET_TYPE:
4629 /* This code is used for C++ pointer-to-data-member types. */
4630 /* Output a description of the relevant class type. */
4631 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4632 /* Output a description of the type of the object pointed to. */
4633 output_type (TREE_TYPE (type), containing_scope);
4634 /* Now output a DIE to represent this pointer-to-data-member type
4635 itself. */
4636 output_die (output_ptr_to_mbr_type_die, type);
4637 break;
4639 case SET_TYPE:
4640 output_type (TYPE_DOMAIN (type), containing_scope);
4641 output_die (output_set_type_die, type);
4642 break;
4644 case FILE_TYPE:
4645 output_type (TREE_TYPE (type), containing_scope);
4646 abort (); /* No way to represent these in Dwarf yet! */
4647 break;
4649 case FUNCTION_TYPE:
4650 /* Force out return type (in case it wasn't forced out already). */
4651 output_type (TREE_TYPE (type), containing_scope);
4652 output_die (output_subroutine_type_die, type);
4653 output_formal_types (type);
4654 end_sibling_chain ();
4655 break;
4657 case METHOD_TYPE:
4658 /* Force out return type (in case it wasn't forced out already). */
4659 output_type (TREE_TYPE (type), containing_scope);
4660 output_die (output_subroutine_type_die, type);
4661 output_formal_types (type);
4662 end_sibling_chain ();
4663 break;
4665 case ARRAY_TYPE:
4666 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4668 output_type (TREE_TYPE (type), containing_scope);
4669 output_die (output_string_type_die, type);
4671 else
4673 tree element_type;
4675 element_type = TREE_TYPE (type);
4676 while (TREE_CODE (element_type) == ARRAY_TYPE)
4677 element_type = TREE_TYPE (element_type);
4679 output_type (element_type, containing_scope);
4680 output_die (output_array_type_die, type);
4682 break;
4684 case ENUMERAL_TYPE:
4685 case RECORD_TYPE:
4686 case UNION_TYPE:
4687 case QUAL_UNION_TYPE:
4689 /* For a non-file-scope tagged type, we can always go ahead and
4690 output a Dwarf description of this type right now, even if
4691 the type in question is still incomplete, because if this
4692 local type *was* ever completed anywhere within its scope,
4693 that complete definition would already have been attached to
4694 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4695 node by the time we reach this point. That's true because of the
4696 way the front-end does its processing of file-scope declarations (of
4697 functions and class types) within which other types might be
4698 nested. The C and C++ front-ends always gobble up such "local
4699 scope" things en-mass before they try to output *any* debugging
4700 information for any of the stuff contained inside them and thus,
4701 we get the benefit here of what is (in effect) a pre-resolution
4702 of forward references to tagged types in local scopes.
4704 Note however that for file-scope tagged types we cannot assume
4705 that such pre-resolution of forward references has taken place.
4706 A given file-scope tagged type may appear to be incomplete when
4707 we reach this point, but it may yet be given a full definition
4708 (at file-scope) later on during compilation. In order to avoid
4709 generating a premature (and possibly incorrect) set of Dwarf
4710 DIEs for such (as yet incomplete) file-scope tagged types, we
4711 generate nothing at all for as-yet incomplete file-scope tagged
4712 types here unless we are making our special "finalization" pass
4713 for file-scope things at the very end of compilation. At that
4714 time, we will certainly know as much about each file-scope tagged
4715 type as we are ever going to know, so at that point in time, we
4716 can safely generate correct Dwarf descriptions for these file-
4717 scope tagged types. */
4719 if (!COMPLETE_TYPE_P (type)
4720 && (TYPE_CONTEXT (type) == NULL
4721 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4722 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4723 && !finalizing)
4725 /* We don't need to do this for function-local types. */
4726 if (! decl_function_context (TYPE_STUB_DECL (type)))
4727 add_incomplete_type (type);
4728 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4731 /* Prevent infinite recursion in cases where the type of some
4732 member of this type is expressed in terms of this type itself. */
4734 TREE_ASM_WRITTEN (type) = 1;
4736 /* Output a DIE to represent the tagged type itself. */
4738 switch (TREE_CODE (type))
4740 case ENUMERAL_TYPE:
4741 output_die (output_enumeration_type_die, type);
4742 return; /* a special case -- nothing left to do so just return */
4744 case RECORD_TYPE:
4745 output_die (output_structure_type_die, type);
4746 break;
4748 case UNION_TYPE:
4749 case QUAL_UNION_TYPE:
4750 output_die (output_union_type_die, type);
4751 break;
4753 default:
4754 abort (); /* Should never happen. */
4757 /* If this is not an incomplete type, output descriptions of
4758 each of its members.
4760 Note that as we output the DIEs necessary to represent the
4761 members of this record or union type, we will also be trying
4762 to output DIEs to represent the *types* of those members.
4763 However the `output_type' function (above) will specifically
4764 avoid generating type DIEs for member types *within* the list
4765 of member DIEs for this (containing) type except for those
4766 types (of members) which are explicitly marked as also being
4767 members of this (containing) type themselves. The g++ front-
4768 end can force any given type to be treated as a member of some
4769 other (containing) type by setting the TYPE_CONTEXT of the
4770 given (member) type to point to the TREE node representing the
4771 appropriate (containing) type.
4774 if (COMPLETE_TYPE_P (type))
4776 tree binfo = TYPE_BINFO (type);
4778 /* First output info about the base classes. */
4779 if (binfo)
4781 tree bases = BINFO_BASETYPES (binfo);
4782 tree accesses = BINFO_BASEACCESSES (binfo);
4783 register int n_bases = BINFO_N_BASETYPES (binfo);
4784 register int i;
4786 for (i = 0; i < n_bases; i++)
4788 tree arg[2];
4790 arg[0] = TREE_VEC_ELT (bases, i);
4791 arg[1] = (accesses ? TREE_VEC_ELT (accesses, i)
4792 : access_public_node);
4793 output_type (BINFO_TYPE (binfo), containing_scope);
4794 output_die (output_inheritance_die, arg);
4798 ++in_class;
4801 tree normal_member;
4803 /* Now output info about the data members and type members. */
4805 for (normal_member = TYPE_FIELDS (type);
4806 normal_member;
4807 normal_member = TREE_CHAIN (normal_member))
4808 output_decl (normal_member, type);
4812 tree func_member;
4814 /* Now output info about the function members (if any). */
4816 for (func_member = TYPE_METHODS (type);
4817 func_member;
4818 func_member = TREE_CHAIN (func_member))
4820 /* Don't include clones in the member list. */
4821 if (DECL_ABSTRACT_ORIGIN (func_member))
4822 continue;
4824 output_decl (func_member, type);
4828 --in_class;
4830 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4831 scopes (at least in C++) so we must now output any nested
4832 pending types which are local just to this type. */
4834 output_pending_types_for_scope (type);
4836 end_sibling_chain (); /* Terminate member chain. */
4839 break;
4841 case VOID_TYPE:
4842 case INTEGER_TYPE:
4843 case REAL_TYPE:
4844 case COMPLEX_TYPE:
4845 case BOOLEAN_TYPE:
4846 case CHAR_TYPE:
4847 break; /* No DIEs needed for fundamental types. */
4849 case LANG_TYPE: /* No Dwarf representation currently defined. */
4850 break;
4852 default:
4853 abort ();
4856 TREE_ASM_WRITTEN (type) = 1;
4859 static void
4860 output_tagged_type_instantiation (tree type)
4862 if (type == 0 || type == error_mark_node)
4863 return;
4865 /* We are going to output a DIE to represent the unqualified version of
4866 this type (i.e. without any const or volatile qualifiers) so make
4867 sure that we have the main variant (i.e. the unqualified version) of
4868 this type now. */
4870 if (type != type_main_variant (type))
4871 abort ();
4873 if (!TREE_ASM_WRITTEN (type))
4874 abort ();
4876 switch (TREE_CODE (type))
4878 case ERROR_MARK:
4879 break;
4881 case ENUMERAL_TYPE:
4882 output_die (output_inlined_enumeration_type_die, type);
4883 break;
4885 case RECORD_TYPE:
4886 output_die (output_inlined_structure_type_die, type);
4887 break;
4889 case UNION_TYPE:
4890 case QUAL_UNION_TYPE:
4891 output_die (output_inlined_union_type_die, type);
4892 break;
4894 default:
4895 abort (); /* Should never happen. */
4899 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4900 the things which are local to the given block. */
4902 static void
4903 output_block (tree stmt, int depth)
4905 int must_output_die = 0;
4906 tree origin;
4907 enum tree_code origin_code;
4909 /* Ignore blocks never really used to make RTL. */
4911 if (! stmt || ! TREE_USED (stmt)
4912 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
4913 return;
4915 /* Determine the "ultimate origin" of this block. This block may be an
4916 inlined instance of an inlined instance of inline function, so we
4917 have to trace all of the way back through the origin chain to find
4918 out what sort of node actually served as the original seed for the
4919 creation of the current block. */
4921 origin = block_ultimate_origin (stmt);
4922 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4924 /* Determine if we need to output any Dwarf DIEs at all to represent this
4925 block. */
4927 if (origin_code == FUNCTION_DECL)
4928 /* The outer scopes for inlinings *must* always be represented. We
4929 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4930 must_output_die = 1;
4931 else
4933 /* In the case where the current block represents an inlining of the
4934 "body block" of an inline function, we must *NOT* output any DIE
4935 for this block because we have already output a DIE to represent
4936 the whole inlined function scope and the "body block" of any
4937 function doesn't really represent a different scope according to
4938 ANSI C rules. So we check here to make sure that this block does
4939 not represent a "body block inlining" before trying to set the
4940 `must_output_die' flag. */
4942 if (! is_body_block (origin ? origin : stmt))
4944 /* Determine if this block directly contains any "significant"
4945 local declarations which we will need to output DIEs for. */
4947 if (debug_info_level > DINFO_LEVEL_TERSE)
4948 /* We are not in terse mode so *any* local declaration counts
4949 as being a "significant" one. */
4950 must_output_die = (BLOCK_VARS (stmt) != NULL);
4951 else
4953 tree decl;
4955 /* We are in terse mode, so only local (nested) function
4956 definitions count as "significant" local declarations. */
4958 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4959 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4961 must_output_die = 1;
4962 break;
4968 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4969 DIE for any block which contains no significant local declarations
4970 at all. Rather, in such cases we just call `output_decls_for_scope'
4971 so that any needed Dwarf info for any sub-blocks will get properly
4972 generated. Note that in terse mode, our definition of what constitutes
4973 a "significant" local declaration gets restricted to include only
4974 inlined function instances and local (nested) function definitions. */
4976 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4977 /* We don't care about an abstract inlined subroutine. */;
4978 else if (must_output_die)
4980 output_die ((origin_code == FUNCTION_DECL)
4981 ? output_inlined_subroutine_die
4982 : output_lexical_block_die,
4983 stmt);
4984 output_decls_for_scope (stmt, depth);
4985 end_sibling_chain ();
4987 else
4988 output_decls_for_scope (stmt, depth);
4991 /* Output all of the decls declared within a given scope (also called
4992 a `binding contour') and (recursively) all of it's sub-blocks. */
4994 static void
4995 output_decls_for_scope (tree stmt, int depth)
4997 /* Ignore blocks never really used to make RTL. */
4999 if (! stmt || ! TREE_USED (stmt))
5000 return;
5002 /* Output the DIEs to represent all of the data objects, functions,
5003 typedefs, and tagged types declared directly within this block
5004 but not within any nested sub-blocks. */
5007 tree decl;
5009 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5010 output_decl (decl, stmt);
5013 output_pending_types_for_scope (stmt);
5015 /* Output the DIEs to represent all sub-blocks (and the items declared
5016 therein) of this block. */
5019 tree subblocks;
5021 for (subblocks = BLOCK_SUBBLOCKS (stmt);
5022 subblocks;
5023 subblocks = BLOCK_CHAIN (subblocks))
5024 output_block (subblocks, depth + 1);
5028 /* Is this a typedef we can avoid emitting? */
5030 static inline int
5031 is_redundant_typedef (tree decl)
5033 if (TYPE_DECL_IS_STUB (decl))
5034 return 1;
5035 if (DECL_ARTIFICIAL (decl)
5036 && DECL_CONTEXT (decl)
5037 && is_tagged_type (DECL_CONTEXT (decl))
5038 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
5039 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
5040 /* Also ignore the artificial member typedef for the class name. */
5041 return 1;
5042 return 0;
5045 /* Output Dwarf .debug information for a decl described by DECL. */
5047 static void
5048 output_decl (tree decl, tree containing_scope)
5050 /* Make a note of the decl node we are going to be working on. We may
5051 need to give the user the source coordinates of where it appeared in
5052 case we notice (later on) that something about it looks screwy. */
5054 dwarf_last_decl = decl;
5056 if (TREE_CODE (decl) == ERROR_MARK)
5057 return;
5059 /* If a structure is declared within an initialization, e.g. as the
5060 operand of a sizeof, then it will not have a name. We don't want
5061 to output a DIE for it, as the tree nodes are in the temporary obstack */
5063 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5064 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
5065 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
5066 || (TYPE_FIELDS (TREE_TYPE (decl))
5067 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
5068 return;
5070 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5072 if (DECL_IGNORED_P (decl))
5073 return;
5075 switch (TREE_CODE (decl))
5077 case CONST_DECL:
5078 /* The individual enumerators of an enum type get output when we
5079 output the Dwarf representation of the relevant enum type itself. */
5080 break;
5082 case FUNCTION_DECL:
5083 /* If we are in terse mode, don't output any DIEs to represent
5084 mere function declarations. Also, if we are conforming
5085 to the DWARF version 1 specification, don't output DIEs for
5086 mere function declarations. */
5088 if (DECL_INITIAL (decl) == NULL_TREE)
5089 #if (DWARF_VERSION > 1)
5090 if (debug_info_level <= DINFO_LEVEL_TERSE)
5091 #endif
5092 break;
5094 /* Before we describe the FUNCTION_DECL itself, make sure that we
5095 have described its return type. */
5097 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
5100 /* And its containing type. */
5101 register tree origin = decl_class_context (decl);
5102 if (origin)
5103 output_type (origin, containing_scope);
5106 /* If we're emitting an out-of-line copy of an inline function,
5107 set up to refer to the abstract instance emitted from
5108 dwarfout_deferred_inline_function. */
5109 if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
5110 && ! (containing_scope && TYPE_P (containing_scope)))
5111 set_decl_origin_self (decl);
5113 /* If the following DIE will represent a function definition for a
5114 function with "extern" linkage, output a special "pubnames" DIE
5115 label just ahead of the actual DIE. A reference to this label
5116 was already generated in the .debug_pubnames section sub-entry
5117 for this function definition. */
5119 if (TREE_PUBLIC (decl))
5121 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5123 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5124 ASM_OUTPUT_LABEL (asm_out_file, label);
5127 /* Now output a DIE to represent the function itself. */
5129 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
5130 ? output_global_subroutine_die
5131 : output_local_subroutine_die,
5132 decl);
5134 /* Now output descriptions of the arguments for this function.
5135 This gets (unnecessarily?) complex because of the fact that
5136 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5137 cases where there was a trailing `...' at the end of the formal
5138 parameter list. In order to find out if there was a trailing
5139 ellipsis or not, we must instead look at the type associated
5140 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
5141 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5142 ends with a void_type_node then there should *not* be an ellipsis
5143 at the end. */
5145 /* In the case where we are describing a mere function declaration, all
5146 we need to do here (and all we *can* do here) is to describe
5147 the *types* of its formal parameters. */
5149 if (decl != current_function_decl || in_class)
5150 output_formal_types (TREE_TYPE (decl));
5151 else
5153 /* Generate DIEs to represent all known formal parameters. */
5155 tree arg_decls = DECL_ARGUMENTS (decl);
5156 tree parm;
5158 /* WARNING! Kludge zone ahead! Here we have a special
5159 hack for svr4 SDB compatibility. Instead of passing the
5160 current FUNCTION_DECL node as the second parameter (i.e.
5161 the `containing_scope' parameter) to `output_decl' (as
5162 we ought to) we instead pass a pointer to our own private
5163 fake_containing_scope node. That node is a RECORD_TYPE
5164 node which NO OTHER TYPE may ever actually be a member of.
5166 This pointer will ultimately get passed into `output_type'
5167 as its `containing_scope' parameter. `Output_type' will
5168 then perform its part in the hack... i.e. it will pend
5169 the type of the formal parameter onto the pending_types
5170 list. Later on, when we are done generating the whole
5171 sequence of formal parameter DIEs for this function
5172 definition, we will un-pend all previously pended types
5173 of formal parameters for this function definition.
5175 This whole kludge prevents any type DIEs from being
5176 mixed in with the formal parameter DIEs. That's good
5177 because svr4 SDB believes that the list of formal
5178 parameter DIEs for a function ends wherever the first
5179 non-formal-parameter DIE appears. Thus, we have to
5180 keep the formal parameter DIEs segregated. They must
5181 all appear (consecutively) at the start of the list of
5182 children for the DIE representing the function definition.
5183 Then (and only then) may we output any additional DIEs
5184 needed to represent the types of these formal parameters.
5188 When generating DIEs, generate the unspecified_parameters
5189 DIE instead if we come across the arg "__builtin_va_alist"
5192 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
5193 if (TREE_CODE (parm) == PARM_DECL)
5195 if (DECL_NAME(parm) &&
5196 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
5197 "__builtin_va_alist") )
5198 output_die (output_unspecified_parameters_die, decl);
5199 else
5200 output_decl (parm, fake_containing_scope);
5204 Now that we have finished generating all of the DIEs to
5205 represent the formal parameters themselves, force out
5206 any DIEs needed to represent their types. We do this
5207 simply by un-pending all previously pended types which
5208 can legitimately go into the chain of children DIEs for
5209 the current FUNCTION_DECL.
5212 output_pending_types_for_scope (decl);
5215 Decide whether we need an unspecified_parameters DIE at the end.
5216 There are 2 more cases to do this for:
5217 1) the ansi ... declaration - this is detectable when the end
5218 of the arg list is not a void_type_node
5219 2) an unprototyped function declaration (not a definition). This
5220 just means that we have no info about the parameters at all.
5224 tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
5226 if (fn_arg_types)
5228 /* This is the prototyped case, check for.... */
5229 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
5230 output_die (output_unspecified_parameters_die, decl);
5232 else
5234 /* This is unprototyped, check for undefined (just declaration). */
5235 if (!DECL_INITIAL (decl))
5236 output_die (output_unspecified_parameters_die, decl);
5240 /* Output Dwarf info for all of the stuff within the body of the
5241 function (if it has one - it may be just a declaration). */
5244 tree outer_scope = DECL_INITIAL (decl);
5246 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
5248 /* Note that here, `outer_scope' is a pointer to the outermost
5249 BLOCK node created to represent a function.
5250 This outermost BLOCK actually represents the outermost
5251 binding contour for the function, i.e. the contour in which
5252 the function's formal parameters and labels get declared.
5254 Curiously, it appears that the front end doesn't actually
5255 put the PARM_DECL nodes for the current function onto the
5256 BLOCK_VARS list for this outer scope. (They are strung
5257 off of the DECL_ARGUMENTS list for the function instead.)
5258 The BLOCK_VARS list for the `outer_scope' does provide us
5259 with a list of the LABEL_DECL nodes for the function however,
5260 and we output DWARF info for those here.
5262 Just within the `outer_scope' there will be a BLOCK node
5263 representing the function's outermost pair of curly braces,
5264 and any blocks used for the base and member initializers of
5265 a C++ constructor function. */
5267 output_decls_for_scope (outer_scope, 0);
5269 /* Finally, force out any pending types which are local to the
5270 outermost block of this function definition. These will
5271 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5272 node itself. */
5274 output_pending_types_for_scope (decl);
5279 /* Generate a terminator for the list of stuff `owned' by this
5280 function. */
5282 end_sibling_chain ();
5284 break;
5286 case TYPE_DECL:
5287 /* If we are in terse mode, don't generate any DIEs to represent
5288 any actual typedefs. Note that even when we are in terse mode,
5289 we must still output DIEs to represent those tagged types which
5290 are used (directly or indirectly) in the specification of either
5291 a return type or a formal parameter type of some function. */
5293 if (debug_info_level <= DINFO_LEVEL_TERSE)
5294 if (! TYPE_DECL_IS_STUB (decl)
5295 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5296 return;
5298 /* In the special case of a TYPE_DECL node representing
5299 the declaration of some type tag, if the given TYPE_DECL is
5300 marked as having been instantiated from some other (original)
5301 TYPE_DECL node (e.g. one which was generated within the original
5302 definition of an inline function) we have to generate a special
5303 (abbreviated) TAG_structure_type, TAG_union_type, or
5304 TAG_enumeration-type DIE here. */
5306 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5308 output_tagged_type_instantiation (TREE_TYPE (decl));
5309 return;
5312 output_type (TREE_TYPE (decl), containing_scope);
5314 if (! is_redundant_typedef (decl))
5315 /* Output a DIE to represent the typedef itself. */
5316 output_die (output_typedef_die, decl);
5317 break;
5319 case LABEL_DECL:
5320 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5321 output_die (output_label_die, decl);
5322 break;
5324 case VAR_DECL:
5325 /* If we are conforming to the DWARF version 1 specification, don't
5326 generated any DIEs to represent mere external object declarations. */
5328 #if (DWARF_VERSION <= 1)
5329 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5330 break;
5331 #endif
5333 /* If we are in terse mode, don't generate any DIEs to represent
5334 any variable declarations or definitions. */
5336 if (debug_info_level <= DINFO_LEVEL_TERSE)
5337 break;
5339 /* Output any DIEs that are needed to specify the type of this data
5340 object. */
5342 output_type (TREE_TYPE (decl), containing_scope);
5345 /* And its containing type. */
5346 register tree origin = decl_class_context (decl);
5347 if (origin)
5348 output_type (origin, containing_scope);
5351 /* If the following DIE will represent a data object definition for a
5352 data object with "extern" linkage, output a special "pubnames" DIE
5353 label just ahead of the actual DIE. A reference to this label
5354 was already generated in the .debug_pubnames section sub-entry
5355 for this data object definition. */
5357 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5359 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5361 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5362 ASM_OUTPUT_LABEL (asm_out_file, label);
5365 /* Now output the DIE to represent the data object itself. This gets
5366 complicated because of the possibility that the VAR_DECL really
5367 represents an inlined instance of a formal parameter for an inline
5368 function. */
5371 void (*func) (void *);
5372 register tree origin = decl_ultimate_origin (decl);
5374 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5375 func = output_formal_parameter_die;
5376 else
5378 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5379 func = output_global_variable_die;
5380 else
5381 func = output_local_variable_die;
5383 output_die (func, decl);
5385 break;
5387 case FIELD_DECL:
5388 /* Ignore the nameless fields that are used to skip bits. */
5389 if (DECL_NAME (decl) != 0)
5391 output_type (member_declared_type (decl), containing_scope);
5392 output_die (output_member_die, decl);
5394 break;
5396 case PARM_DECL:
5397 /* Force out the type of this formal, if it was not forced out yet.
5398 Note that here we can run afoul of a bug in "classic" svr4 SDB.
5399 It should be able to grok the presence of type DIEs within a list
5400 of TAG_formal_parameter DIEs, but it doesn't. */
5402 output_type (TREE_TYPE (decl), containing_scope);
5403 output_die (output_formal_parameter_die, decl);
5404 break;
5406 case NAMESPACE_DECL:
5407 /* Ignore for now. */
5408 break;
5410 default:
5411 abort ();
5415 /* Output debug information for a function. */
5416 static void
5417 dwarfout_function_decl (tree decl)
5419 dwarfout_file_scope_decl (decl, 0);
5422 /* Debug information for a global DECL. Called from toplev.c after
5423 compilation proper has finished. */
5424 static void
5425 dwarfout_global_decl (tree decl)
5427 /* Output DWARF information for file-scope tentative data object
5428 declarations, file-scope (extern) function declarations (which
5429 had no corresponding body) and file-scope tagged type
5430 declarations and definitions which have not yet been forced out. */
5432 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
5433 dwarfout_file_scope_decl (decl, 1);
5436 /* DECL is an inline function, whose body is present, but which is not
5437 being output at this point. (We're putting that off until we need
5438 to do it.) */
5439 static void
5440 dwarfout_deferred_inline_function (tree decl)
5442 /* Generate the DWARF info for the "abstract" instance of a function
5443 which we may later generate inlined and/or out-of-line instances
5444 of. */
5445 if ((DECL_INLINE (decl) || DECL_ABSTRACT (decl))
5446 && ! DECL_ABSTRACT_ORIGIN (decl))
5448 /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5449 DWARF code expects it to be set in this case. Intuitively,
5450 DECL is the function we just finished defining, so setting
5451 CURRENT_FUNCTION_DECL is sensible. */
5452 tree saved_cfd = current_function_decl;
5453 int was_abstract = DECL_ABSTRACT (decl);
5454 current_function_decl = decl;
5456 /* Let the DWARF code do its work. */
5457 set_decl_abstract_flags (decl, 1);
5458 dwarfout_file_scope_decl (decl, 0);
5459 if (! was_abstract)
5460 set_decl_abstract_flags (decl, 0);
5462 /* Reset CURRENT_FUNCTION_DECL. */
5463 current_function_decl = saved_cfd;
5467 static void
5468 dwarfout_file_scope_decl (tree decl, int set_finalizing)
5470 if (TREE_CODE (decl) == ERROR_MARK)
5471 return;
5473 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5475 if (DECL_IGNORED_P (decl))
5476 return;
5478 switch (TREE_CODE (decl))
5480 case FUNCTION_DECL:
5482 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5483 a builtin function. Explicit programmer-supplied declarations of
5484 these same functions should NOT be ignored however. */
5486 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5487 return;
5489 /* What we would really like to do here is to filter out all mere
5490 file-scope declarations of file-scope functions which are never
5491 referenced later within this translation unit (and keep all of
5492 ones that *are* referenced later on) but we aren't clairvoyant,
5493 so we have no idea which functions will be referenced in the
5494 future (i.e. later on within the current translation unit).
5495 So here we just ignore all file-scope function declarations
5496 which are not also definitions. If and when the debugger needs
5497 to know something about these functions, it will have to hunt
5498 around and find the DWARF information associated with the
5499 *definition* of the function.
5501 Note that we can't just check `DECL_EXTERNAL' to find out which
5502 FUNCTION_DECL nodes represent definitions and which ones represent
5503 mere declarations. We have to check `DECL_INITIAL' instead. That's
5504 because the C front-end supports some weird semantics for "extern
5505 inline" function definitions. These can get inlined within the
5506 current translation unit (an thus, we need to generate DWARF info
5507 for their abstract instances so that the DWARF info for the
5508 concrete inlined instances can have something to refer to) but
5509 the compiler never generates any out-of-lines instances of such
5510 things (despite the fact that they *are* definitions). The
5511 important point is that the C front-end marks these "extern inline"
5512 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5513 anyway.
5515 Note that the C++ front-end also plays some similar games for inline
5516 function definitions appearing within include files which also
5517 contain `#pragma interface' pragmas. */
5519 if (DECL_INITIAL (decl) == NULL_TREE)
5520 return;
5522 if (TREE_PUBLIC (decl)
5523 && ! DECL_EXTERNAL (decl)
5524 && ! DECL_ABSTRACT (decl))
5526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5528 /* Output a .debug_pubnames entry for a public function
5529 defined in this compilation unit. */
5531 fputc ('\n', asm_out_file);
5532 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5533 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5534 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5535 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5536 IDENTIFIER_POINTER (DECL_NAME (decl)));
5537 ASM_OUTPUT_POP_SECTION (asm_out_file);
5540 break;
5542 case VAR_DECL:
5544 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5545 object declaration and if the declaration was never even
5546 referenced from within this entire compilation unit. We
5547 suppress these DIEs in order to save space in the .debug section
5548 (by eliminating entries which are probably useless). Note that
5549 we must not suppress block-local extern declarations (whether
5550 used or not) because that would screw-up the debugger's name
5551 lookup mechanism and cause it to miss things which really ought
5552 to be in scope at a given point. */
5554 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5555 return;
5557 if (TREE_PUBLIC (decl)
5558 && ! DECL_EXTERNAL (decl)
5559 && GET_CODE (DECL_RTL (decl)) == MEM
5560 && ! DECL_ABSTRACT (decl))
5562 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5564 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5566 /* Output a .debug_pubnames entry for a public variable
5567 defined in this compilation unit. */
5569 fputc ('\n', asm_out_file);
5570 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5571 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5572 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5573 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5574 IDENTIFIER_POINTER (DECL_NAME (decl)));
5575 ASM_OUTPUT_POP_SECTION (asm_out_file);
5578 if (DECL_INITIAL (decl) == NULL)
5580 /* Output a .debug_aranges entry for a public variable
5581 which is tentatively defined in this compilation unit. */
5583 fputc ('\n', asm_out_file);
5584 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
5585 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5586 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5587 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5588 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5589 ASM_OUTPUT_POP_SECTION (asm_out_file);
5593 /* If we are in terse mode, don't generate any DIEs to represent
5594 any variable declarations or definitions. */
5596 if (debug_info_level <= DINFO_LEVEL_TERSE)
5597 return;
5599 break;
5601 case TYPE_DECL:
5602 /* Don't bother trying to generate any DIEs to represent any of the
5603 normal built-in types for the language we are compiling, except
5604 in cases where the types in question are *not* DWARF fundamental
5605 types. We make an exception in the case of non-fundamental types
5606 for the sake of Objective-C (and perhaps C++) because the GNU
5607 front-ends for these languages may in fact create certain "built-in"
5608 types which are (for example) RECORD_TYPEs. In such cases, we
5609 really need to output these (non-fundamental) types because other
5610 DIEs may contain references to them. */
5612 /* Also ignore language dependent types here, because they are probably
5613 also built-in types. If we didn't ignore them, then we would get
5614 references to undefined labels because output_type doesn't support
5615 them. So, for now, we need to ignore them to avoid assembler
5616 errors. */
5618 /* ??? This code is different than the equivalent code in dwarf2out.c.
5619 The dwarf2out.c code is probably more correct. */
5621 if (DECL_SOURCE_LINE (decl) == 0
5622 && (type_is_fundamental (TREE_TYPE (decl))
5623 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5624 return;
5626 /* If we are in terse mode, don't generate any DIEs to represent
5627 any actual typedefs. Note that even when we are in terse mode,
5628 we must still output DIEs to represent those tagged types which
5629 are used (directly or indirectly) in the specification of either
5630 a return type or a formal parameter type of some function. */
5632 if (debug_info_level <= DINFO_LEVEL_TERSE)
5633 if (! TYPE_DECL_IS_STUB (decl)
5634 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5635 return;
5637 break;
5639 default:
5640 return;
5643 fputc ('\n', asm_out_file);
5644 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5645 finalizing = set_finalizing;
5646 output_decl (decl, NULL_TREE);
5648 /* NOTE: The call above to `output_decl' may have caused one or more
5649 file-scope named types (i.e. tagged types) to be placed onto the
5650 pending_types_list. We have to get those types off of that list
5651 at some point, and this is the perfect time to do it. If we didn't
5652 take them off now, they might still be on the list when cc1 finally
5653 exits. That might be OK if it weren't for the fact that when we put
5654 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5655 for these types, and that causes them never to be output unless
5656 `output_pending_types_for_scope' takes them off of the list and un-sets
5657 their TREE_ASM_WRITTEN flags. */
5659 output_pending_types_for_scope (NULL_TREE);
5661 /* The above call should have totally emptied the pending_types_list
5662 if this is not a nested function or class. If this is a nested type,
5663 then the remaining pending_types will be emitted when the containing type
5664 is handled. */
5666 if (! DECL_CONTEXT (decl))
5668 if (pending_types != 0)
5669 abort ();
5672 ASM_OUTPUT_POP_SECTION (asm_out_file);
5675 /* Output a marker (i.e. a label) for the beginning of the generated code
5676 for a lexical block. */
5678 static void
5679 dwarfout_begin_block (unsigned int line ATTRIBUTE_UNUSED,
5680 unsigned int blocknum)
5682 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5684 function_section (current_function_decl);
5685 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5686 ASM_OUTPUT_LABEL (asm_out_file, label);
5689 /* Output a marker (i.e. a label) for the end of the generated code
5690 for a lexical block. */
5692 static void
5693 dwarfout_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
5695 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5697 function_section (current_function_decl);
5698 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5699 ASM_OUTPUT_LABEL (asm_out_file, label);
5702 /* Output a marker (i.e. a label) for the point in the generated code where
5703 the real body of the function begins (after parameters have been moved
5704 to their home locations). */
5706 static void
5707 dwarfout_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
5708 const char *file ATTRIBUTE_UNUSED)
5710 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5712 if (! use_gnu_debug_info_extensions)
5713 return;
5715 function_section (current_function_decl);
5716 sprintf (label, BODY_BEGIN_LABEL_FMT, current_function_funcdef_no);
5717 ASM_OUTPUT_LABEL (asm_out_file, label);
5720 /* Output a marker (i.e. a label) for the point in the generated code where
5721 the real body of the function ends (just before the epilogue code). */
5723 static void
5724 dwarfout_end_function (unsigned int line ATTRIBUTE_UNUSED)
5726 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5728 if (! use_gnu_debug_info_extensions)
5729 return;
5730 function_section (current_function_decl);
5731 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
5732 ASM_OUTPUT_LABEL (asm_out_file, label);
5735 /* Output a marker (i.e. a label) for the absolute end of the generated code
5736 for a function definition. This gets called *after* the epilogue code
5737 has been generated. */
5739 static void
5740 dwarfout_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
5741 const char *file ATTRIBUTE_UNUSED)
5743 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5745 /* Output a label to mark the endpoint of the code generated for this
5746 function. */
5748 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
5749 ASM_OUTPUT_LABEL (asm_out_file, label);
5752 static void
5753 shuffle_filename_entry (filename_entry *new_zeroth)
5755 filename_entry temp_entry;
5756 filename_entry *limit_p;
5757 filename_entry *move_p;
5759 if (new_zeroth == &filename_table[0])
5760 return;
5762 temp_entry = *new_zeroth;
5764 /* Shift entries up in the table to make room at [0]. */
5766 limit_p = &filename_table[0];
5767 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5768 *move_p = *(move_p-1);
5770 /* Install the found entry at [0]. */
5772 filename_table[0] = temp_entry;
5775 /* Create a new (string) entry for the .debug_sfnames section. */
5777 static void
5778 generate_new_sfname_entry (void)
5780 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5782 fputc ('\n', asm_out_file);
5783 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
5784 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5785 ASM_OUTPUT_LABEL (asm_out_file, label);
5786 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5787 filename_table[0].name
5788 ? filename_table[0].name
5789 : "");
5790 ASM_OUTPUT_POP_SECTION (asm_out_file);
5793 /* Lookup a filename (in the list of filenames that we know about here in
5794 dwarfout.c) and return its "index". The index of each (known) filename
5795 is just a unique number which is associated with only that one filename.
5796 We need such numbers for the sake of generating labels (in the
5797 .debug_sfnames section) and references to those unique labels (in the
5798 .debug_srcinfo and .debug_macinfo sections).
5800 If the filename given as an argument is not found in our current list,
5801 add it to the list and assign it the next available unique index number.
5803 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5804 one), we shuffle the filename found (or added) up to the zeroth entry of
5805 our list of filenames (which is always searched linearly). We do this so
5806 as to optimize the most common case for these filename lookups within
5807 dwarfout.c. The most common case by far is the case where we call
5808 lookup_filename to lookup the very same filename that we did a lookup
5809 on the last time we called lookup_filename. We make sure that this
5810 common case is fast because such cases will constitute 99.9% of the
5811 lookups we ever do (in practice).
5813 If we add a new filename entry to our table, we go ahead and generate
5814 the corresponding entry in the .debug_sfnames section right away.
5815 Doing so allows us to avoid tickling an assembler bug (present in some
5816 m68k assemblers) which yields assembly-time errors in cases where the
5817 difference of two label addresses is taken and where the two labels
5818 are in a section *other* than the one where the difference is being
5819 calculated, and where at least one of the two symbol references is a
5820 forward reference. (This bug could be tickled by our .debug_srcinfo
5821 entries if we don't output their corresponding .debug_sfnames entries
5822 before them.) */
5824 static unsigned
5825 lookup_filename (const char *file_name)
5827 filename_entry *search_p;
5828 filename_entry *limit_p = &filename_table[ft_entries];
5830 for (search_p = filename_table; search_p < limit_p; search_p++)
5831 if (!strcmp (file_name, search_p->name))
5833 /* When we get here, we have found the filename that we were
5834 looking for in the filename_table. Now we want to make sure
5835 that it gets moved to the zero'th entry in the table (if it
5836 is not already there) so that subsequent attempts to find the
5837 same filename will find it as quickly as possible. */
5839 shuffle_filename_entry (search_p);
5840 return filename_table[0].number;
5843 /* We come here whenever we have a new filename which is not registered
5844 in the current table. Here we add it to the table. */
5846 /* Prepare to add a new table entry by making sure there is enough space
5847 in the table to do so. If not, expand the current table. */
5849 if (ft_entries == ft_entries_allocated)
5851 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5852 filename_table
5853 = xrealloc (filename_table,
5854 ft_entries_allocated * sizeof (filename_entry));
5857 /* Initially, add the new entry at the end of the filename table. */
5859 filename_table[ft_entries].number = ft_entries;
5860 filename_table[ft_entries].name = xstrdup (file_name);
5862 /* Shuffle the new entry into filename_table[0]. */
5864 shuffle_filename_entry (&filename_table[ft_entries]);
5866 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5867 generate_new_sfname_entry ();
5869 ft_entries++;
5870 return filename_table[0].number;
5873 static void
5874 generate_srcinfo_entry (unsigned int line_entry_num, unsigned int files_entry_num)
5876 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5878 fputc ('\n', asm_out_file);
5879 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
5880 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5881 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5882 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5883 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5884 ASM_OUTPUT_POP_SECTION (asm_out_file);
5887 static void
5888 dwarfout_source_line (unsigned int line, const char *filename)
5890 if (debug_info_level >= DINFO_LEVEL_NORMAL
5891 /* We can't emit line number info for functions in separate sections,
5892 because the assembler can't subtract labels in different sections. */
5893 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5895 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5896 static unsigned last_line_entry_num = 0;
5897 static unsigned prev_file_entry_num = (unsigned) -1;
5898 unsigned this_file_entry_num;
5900 function_section (current_function_decl);
5901 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5902 ASM_OUTPUT_LABEL (asm_out_file, label);
5904 fputc ('\n', asm_out_file);
5906 if (use_gnu_debug_info_extensions)
5907 this_file_entry_num = lookup_filename (filename);
5908 else
5909 this_file_entry_num = (unsigned) -1;
5911 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5912 if (this_file_entry_num != prev_file_entry_num)
5914 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5916 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5917 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5921 const char *tail = strrchr (filename, '/');
5923 if (tail != NULL)
5924 filename = tail;
5927 dw2_asm_output_data (4, line, "%s:%u", filename, line);
5928 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5929 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5930 ASM_OUTPUT_POP_SECTION (asm_out_file);
5932 if (this_file_entry_num != prev_file_entry_num)
5933 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5934 prev_file_entry_num = this_file_entry_num;
5938 /* Generate an entry in the .debug_macinfo section. */
5940 static void
5941 generate_macinfo_entry (unsigned int type, rtx offset, const char *string)
5943 if (! use_gnu_debug_info_extensions)
5944 return;
5946 fputc ('\n', asm_out_file);
5947 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
5948 assemble_integer (gen_rtx_PLUS (SImode, GEN_INT (type << 24), offset),
5949 4, BITS_PER_UNIT, 1);
5950 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
5951 ASM_OUTPUT_POP_SECTION (asm_out_file);
5954 /* Wrapper for toplev.c callback to check debug info level. */
5955 static void
5956 dwarfout_start_source_file_check (unsigned int line, const char *filename)
5958 if (debug_info_level == DINFO_LEVEL_VERBOSE)
5959 dwarfout_start_source_file (line, filename);
5962 static void
5963 dwarfout_start_source_file (unsigned int line ATTRIBUTE_UNUSED,
5964 const char *filename)
5966 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5967 const char *label1, *label2;
5969 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5970 label1 = (*label == '*') + label;
5971 label2 = (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL;
5972 generate_macinfo_entry (MACINFO_start,
5973 gen_rtx_MINUS (Pmode,
5974 gen_rtx_SYMBOL_REF (Pmode, label1),
5975 gen_rtx_SYMBOL_REF (Pmode, label2)),
5976 "");
5979 /* Wrapper for toplev.c callback to check debug info level. */
5980 static void
5981 dwarfout_end_source_file_check (unsigned int lineno)
5983 if (debug_info_level == DINFO_LEVEL_VERBOSE)
5984 dwarfout_end_source_file (lineno);
5987 static void
5988 dwarfout_end_source_file (unsigned int lineno)
5990 generate_macinfo_entry (MACINFO_resume, GEN_INT (lineno), "");
5993 /* Called from check_newline in c-parse.y. The `buffer' parameter
5994 contains the tail part of the directive line, i.e. the part which
5995 is past the initial whitespace, #, whitespace, directive-name,
5996 whitespace part. */
5998 static void
5999 dwarfout_define (unsigned int lineno, const char *buffer)
6001 static int initialized = 0;
6003 if (!initialized)
6005 dwarfout_start_source_file (0, primary_filename);
6006 initialized = 1;
6008 generate_macinfo_entry (MACINFO_define, GEN_INT (lineno), buffer);
6011 /* Called from check_newline in c-parse.y. The `buffer' parameter
6012 contains the tail part of the directive line, i.e. the part which
6013 is past the initial whitespace, #, whitespace, directive-name,
6014 whitespace part. */
6016 static void
6017 dwarfout_undef (unsigned int lineno, const char *buffer)
6019 generate_macinfo_entry (MACINFO_undef, GEN_INT (lineno), buffer);
6022 /* Set up for Dwarf output at the start of compilation. */
6024 static void
6025 dwarfout_init (const char *main_input_filename)
6027 warning ("support for the DWARF1 debugging format is deprecated");
6029 /* Remember the name of the primary input file. */
6031 primary_filename = main_input_filename;
6033 /* Allocate the initial hunk of the pending_sibling_stack. */
6035 pending_sibling_stack
6036 = xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
6037 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
6038 pending_siblings = 1;
6040 /* Allocate the initial hunk of the filename_table. */
6042 filename_table = xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
6043 ft_entries_allocated = FT_ENTRIES_INCREMENT;
6044 ft_entries = 0;
6046 /* Allocate the initial hunk of the pending_types_list. */
6048 pending_types_list = xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
6049 pending_types_allocated = PENDING_TYPES_INCREMENT;
6050 pending_types = 0;
6052 /* Create an artificial RECORD_TYPE node which we can use in our hack
6053 to get the DIEs representing types of formal parameters to come out
6054 only *after* the DIEs for the formal parameters themselves. */
6056 fake_containing_scope = make_node (RECORD_TYPE);
6058 /* Output a starting label for the .text section. */
6060 fputc ('\n', asm_out_file);
6061 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6062 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
6063 ASM_OUTPUT_POP_SECTION (asm_out_file);
6065 /* Output a starting label for the .data section. */
6067 fputc ('\n', asm_out_file);
6068 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6069 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
6070 ASM_OUTPUT_POP_SECTION (asm_out_file);
6072 #if 0 /* GNU C doesn't currently use .data1. */
6073 /* Output a starting label for the .data1 section. */
6075 fputc ('\n', asm_out_file);
6076 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6077 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
6078 ASM_OUTPUT_POP_SECTION (asm_out_file);
6079 #endif
6081 /* Output a starting label for the .rodata section. */
6083 fputc ('\n', asm_out_file);
6084 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6085 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
6086 ASM_OUTPUT_POP_SECTION (asm_out_file);
6088 #if 0 /* GNU C doesn't currently use .rodata1. */
6089 /* Output a starting label for the .rodata1 section. */
6091 fputc ('\n', asm_out_file);
6092 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6093 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
6094 ASM_OUTPUT_POP_SECTION (asm_out_file);
6095 #endif
6097 /* Output a starting label for the .bss section. */
6099 fputc ('\n', asm_out_file);
6100 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6101 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
6102 ASM_OUTPUT_POP_SECTION (asm_out_file);
6104 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6106 if (use_gnu_debug_info_extensions)
6108 /* Output a starting label and an initial (compilation directory)
6109 entry for the .debug_sfnames section. The starting label will be
6110 referenced by the initial entry in the .debug_srcinfo section. */
6112 fputc ('\n', asm_out_file);
6113 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
6114 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
6116 const char *pwd = get_src_pwd ();
6117 char *dirname;
6119 if (!pwd)
6120 fatal_error ("can't get current directory: %m");
6122 dirname = concat (pwd, "/", NULL);
6123 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
6124 free (dirname);
6126 ASM_OUTPUT_POP_SECTION (asm_out_file);
6129 if (debug_info_level >= DINFO_LEVEL_VERBOSE
6130 && use_gnu_debug_info_extensions)
6132 /* Output a starting label for the .debug_macinfo section. This
6133 label will be referenced by the AT_mac_info attribute in the
6134 TAG_compile_unit DIE. */
6136 fputc ('\n', asm_out_file);
6137 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6138 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
6139 ASM_OUTPUT_POP_SECTION (asm_out_file);
6142 /* Generate the initial entry for the .line section. */
6144 fputc ('\n', asm_out_file);
6145 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6146 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
6147 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
6148 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6149 ASM_OUTPUT_POP_SECTION (asm_out_file);
6151 if (use_gnu_debug_info_extensions)
6153 /* Generate the initial entry for the .debug_srcinfo section. */
6155 fputc ('\n', asm_out_file);
6156 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6157 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
6158 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
6159 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
6160 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6161 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
6162 #ifdef DWARF_TIMESTAMPS
6163 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
6164 #else
6165 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6166 #endif
6167 ASM_OUTPUT_POP_SECTION (asm_out_file);
6170 /* Generate the initial entry for the .debug_pubnames section. */
6172 fputc ('\n', asm_out_file);
6173 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6174 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6175 ASM_OUTPUT_POP_SECTION (asm_out_file);
6177 /* Generate the initial entry for the .debug_aranges section. */
6179 fputc ('\n', asm_out_file);
6180 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6181 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6182 DEBUG_ARANGES_END_LABEL,
6183 DEBUG_ARANGES_BEGIN_LABEL);
6184 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_BEGIN_LABEL);
6185 ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 1);
6186 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6187 ASM_OUTPUT_POP_SECTION (asm_out_file);
6190 /* Setup first DIE number == 1. */
6191 NEXT_DIE_NUM = next_unused_dienum++;
6193 /* Generate the initial DIE for the .debug section. Note that the
6194 (string) value given in the AT_name attribute of the TAG_compile_unit
6195 DIE will (typically) be a relative pathname and that this pathname
6196 should be taken as being relative to the directory from which the
6197 compiler was invoked when the given (base) source file was compiled. */
6199 fputc ('\n', asm_out_file);
6200 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6201 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
6202 output_die (output_compile_unit_die, (void *) main_input_filename);
6203 ASM_OUTPUT_POP_SECTION (asm_out_file);
6205 fputc ('\n', asm_out_file);
6208 /* Output stuff that dwarf requires at the end of every file. */
6210 static void
6211 dwarfout_finish (const char *main_input_filename ATTRIBUTE_UNUSED)
6213 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6215 fputc ('\n', asm_out_file);
6216 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6217 retry_incomplete_types ();
6218 fputc ('\n', asm_out_file);
6220 /* Mark the end of the chain of siblings which represent all file-scope
6221 declarations in this compilation unit. */
6223 /* The (null) DIE which represents the terminator for the (sibling linked)
6224 list of file-scope items is *special*. Normally, we would just call
6225 end_sibling_chain at this point in order to output a word with the
6226 value `4' and that word would act as the terminator for the list of
6227 DIEs describing file-scope items. Unfortunately, if we were to simply
6228 do that, the label that would follow this DIE in the .debug section
6229 (i.e. `..D2') would *not* be properly aligned (as it must be on some
6230 machines) to a 4 byte boundary.
6232 In order to force the label `..D2' to get aligned to a 4 byte boundary,
6233 the trick used is to insert extra (otherwise useless) padding bytes
6234 into the (null) DIE that we know must precede the ..D2 label in the
6235 .debug section. The amount of padding required can be anywhere between
6236 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
6237 with the padding) would normally contain the value 4, but now it will
6238 also have to include the padding bytes, so it will instead have some
6239 value in the range 4..7.
6241 Fortunately, the rules of Dwarf say that any DIE whose length word
6242 contains *any* value less than 8 should be treated as a null DIE, so
6243 this trick works out nicely. Clever, eh? Don't give me any credit
6244 (or blame). I didn't think of this scheme. I just conformed to it.
6247 output_die (output_padded_null_die, (void *) 0);
6248 dienum_pop ();
6250 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
6251 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
6252 ASM_OUTPUT_POP_SECTION (asm_out_file);
6254 /* Output a terminator label for the .text section. */
6256 fputc ('\n', asm_out_file);
6257 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6258 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
6259 ASM_OUTPUT_POP_SECTION (asm_out_file);
6261 /* Output a terminator label for the .data section. */
6263 fputc ('\n', asm_out_file);
6264 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6265 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
6266 ASM_OUTPUT_POP_SECTION (asm_out_file);
6268 #if 0 /* GNU C doesn't currently use .data1. */
6269 /* Output a terminator label for the .data1 section. */
6271 fputc ('\n', asm_out_file);
6272 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6273 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
6274 ASM_OUTPUT_POP_SECTION (asm_out_file);
6275 #endif
6277 /* Output a terminator label for the .rodata section. */
6279 fputc ('\n', asm_out_file);
6280 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6281 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
6282 ASM_OUTPUT_POP_SECTION (asm_out_file);
6284 #if 0 /* GNU C doesn't currently use .rodata1. */
6285 /* Output a terminator label for the .rodata1 section. */
6287 fputc ('\n', asm_out_file);
6288 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6289 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
6290 ASM_OUTPUT_POP_SECTION (asm_out_file);
6291 #endif
6293 /* Output a terminator label for the .bss section. */
6295 fputc ('\n', asm_out_file);
6296 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6297 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6298 ASM_OUTPUT_POP_SECTION (asm_out_file);
6300 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6302 /* Output a terminating entry for the .line section. */
6304 fputc ('\n', asm_out_file);
6305 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6306 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6307 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6308 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6309 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6310 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6311 ASM_OUTPUT_POP_SECTION (asm_out_file);
6313 if (use_gnu_debug_info_extensions)
6315 /* Output a terminating entry for the .debug_srcinfo section. */
6317 fputc ('\n', asm_out_file);
6318 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6319 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6320 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6321 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6322 ASM_OUTPUT_POP_SECTION (asm_out_file);
6325 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6327 /* Output terminating entries for the .debug_macinfo section. */
6329 dwarfout_end_source_file (0);
6331 fputc ('\n', asm_out_file);
6332 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6333 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6334 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6335 ASM_OUTPUT_POP_SECTION (asm_out_file);
6338 /* Generate the terminating entry for the .debug_pubnames section. */
6340 fputc ('\n', asm_out_file);
6341 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6342 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6343 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6344 ASM_OUTPUT_POP_SECTION (asm_out_file);
6346 /* Generate the terminating entries for the .debug_aranges section.
6348 Note that we want to do this only *after* we have output the end
6349 labels (for the various program sections) which we are going to
6350 refer to here. This allows us to work around a bug in the m68k
6351 svr4 assembler. That assembler gives bogus assembly-time errors
6352 if (within any given section) you try to take the difference of
6353 two relocatable symbols, both of which are located within some
6354 other section, and if one (or both?) of the symbols involved is
6355 being forward-referenced. By generating the .debug_aranges
6356 entries at this late point in the assembly output, we skirt the
6357 issue simply by avoiding forward-references.
6360 fputc ('\n', asm_out_file);
6361 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6363 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6364 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6366 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6367 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6369 #if 0 /* GNU C doesn't currently use .data1. */
6370 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6371 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6372 DATA1_BEGIN_LABEL);
6373 #endif
6375 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6376 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6377 RODATA_BEGIN_LABEL);
6379 #if 0 /* GNU C doesn't currently use .rodata1. */
6380 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6381 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6382 RODATA1_BEGIN_LABEL);
6383 #endif
6385 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6386 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6388 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6389 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6391 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_END_LABEL);
6392 ASM_OUTPUT_POP_SECTION (asm_out_file);
6395 /* There should not be any pending types left at the end. We need
6396 this now because it may not have been checked on the last call to
6397 dwarfout_file_scope_decl. */
6398 if (pending_types != 0)
6399 abort ();
6402 #endif /* DWARF_DEBUGGING_INFO */