1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2016 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* Simplifications of operations with one constant operand and
79 simplifications to constants or single values. */
81 (for op (plus pointer_plus minus bit_ior bit_xor)
86 /* 0 +p index -> (type)index */
88 (pointer_plus integer_zerop @1)
89 (non_lvalue (convert @1)))
91 /* See if ARG1 is zero and X + ARG1 reduces to X.
92 Likewise if the operands are reversed. */
94 (plus:c @0 real_zerop@1)
95 (if (fold_real_zero_addition_p (type, @1, 0))
98 /* See if ARG1 is zero and X - ARG1 reduces to X. */
100 (minus @0 real_zerop@1)
101 (if (fold_real_zero_addition_p (type, @1, 1))
105 This is unsafe for certain floats even in non-IEEE formats.
106 In IEEE, it is unsafe because it does wrong for NaNs.
107 Also note that operand_equal_p is always false if an operand
111 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
112 { build_zero_cst (type); }))
115 (mult @0 integer_zerop@1)
118 /* Maybe fold x * 0 to 0. The expressions aren't the same
119 when x is NaN, since x * 0 is also NaN. Nor are they the
120 same in modes with signed zeros, since multiplying a
121 negative value by 0 gives -0, not +0. */
123 (mult @0 real_zerop@1)
124 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
127 /* In IEEE floating point, x*1 is not equivalent to x for snans.
128 Likewise for complex arithmetic with signed zeros. */
131 (if (!HONOR_SNANS (type)
132 && (!HONOR_SIGNED_ZEROS (type)
133 || !COMPLEX_FLOAT_TYPE_P (type)))
136 /* Transform x * -1.0 into -x. */
138 (mult @0 real_minus_onep)
139 (if (!HONOR_SNANS (type)
140 && (!HONOR_SIGNED_ZEROS (type)
141 || !COMPLEX_FLOAT_TYPE_P (type)))
144 /* X * 1, X / 1 -> X. */
145 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
150 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
151 undefined behavior in constexpr evaluation, and assuming that the division
152 traps enables better optimizations than these anyway. */
153 (for div (trunc_div ceil_div floor_div round_div exact_div)
154 /* 0 / X is always zero. */
156 (div integer_zerop@0 @1)
157 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
158 (if (!integer_zerop (@1))
162 (div @0 integer_minus_onep@1)
163 (if (!TYPE_UNSIGNED (type))
168 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
169 (if (!integer_zerop (@0))
170 { build_one_cst (type); }))
171 /* X / abs (X) is X < 0 ? -1 : 1. */
174 (if (INTEGRAL_TYPE_P (type)
175 && TYPE_OVERFLOW_UNDEFINED (type))
176 (cond (lt @0 { build_zero_cst (type); })
177 { build_minus_one_cst (type); } { build_one_cst (type); })))
180 (div:C @0 (negate @0))
181 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
182 && TYPE_OVERFLOW_UNDEFINED (type))
183 { build_minus_one_cst (type); })))
185 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
186 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
189 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
190 && TYPE_UNSIGNED (type))
193 /* Combine two successive divisions. Note that combining ceil_div
194 and floor_div is trickier and combining round_div even more so. */
195 (for div (trunc_div exact_div)
197 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
200 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
203 (div @0 { wide_int_to_tree (type, mul); })
204 (if (TYPE_UNSIGNED (type)
205 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
206 { build_zero_cst (type); })))))
208 /* Optimize A / A to 1.0 if we don't care about
209 NaNs or Infinities. */
212 (if (FLOAT_TYPE_P (type)
213 && ! HONOR_NANS (type)
214 && ! HONOR_INFINITIES (type))
215 { build_one_cst (type); }))
217 /* Optimize -A / A to -1.0 if we don't care about
218 NaNs or Infinities. */
220 (rdiv:C @0 (negate @0))
221 (if (FLOAT_TYPE_P (type)
222 && ! HONOR_NANS (type)
223 && ! HONOR_INFINITIES (type))
224 { build_minus_one_cst (type); }))
226 /* PR71078: x / abs(x) -> copysign (1.0, x) */
228 (rdiv:C (convert? @0) (convert? (abs @0)))
229 (if (SCALAR_FLOAT_TYPE_P (type)
230 && ! HONOR_NANS (type)
231 && ! HONOR_INFINITIES (type))
233 (if (types_match (type, float_type_node))
234 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
235 (if (types_match (type, double_type_node))
236 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
237 (if (types_match (type, long_double_type_node))
238 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
240 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
243 (if (!HONOR_SNANS (type))
246 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
248 (rdiv @0 real_minus_onep)
249 (if (!HONOR_SNANS (type))
252 (if (flag_reciprocal_math)
253 /* Convert (A/B)/C to A/(B*C) */
255 (rdiv (rdiv:s @0 @1) @2)
256 (rdiv @0 (mult @1 @2)))
258 /* Convert A/(B/C) to (A/B)*C */
260 (rdiv @0 (rdiv:s @1 @2))
261 (mult (rdiv @0 @1) @2)))
263 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
264 (for div (trunc_div ceil_div floor_div round_div exact_div)
266 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
267 (if (integer_pow2p (@2)
268 && tree_int_cst_sgn (@2) > 0
269 && wi::add (@2, @1) == 0
270 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
271 (rshift (convert @0) { build_int_cst (integer_type_node,
272 wi::exact_log2 (@2)); }))))
274 /* If ARG1 is a constant, we can convert this to a multiply by the
275 reciprocal. This does not have the same rounding properties,
276 so only do this if -freciprocal-math. We can actually
277 always safely do it if ARG1 is a power of two, but it's hard to
278 tell if it is or not in a portable manner. */
279 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
283 (if (flag_reciprocal_math
286 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
288 (mult @0 { tem; } )))
289 (if (cst != COMPLEX_CST)
290 (with { tree inverse = exact_inverse (type, @1); }
292 (mult @0 { inverse; } ))))))))
294 (for mod (ceil_mod floor_mod round_mod trunc_mod)
295 /* 0 % X is always zero. */
297 (mod integer_zerop@0 @1)
298 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
299 (if (!integer_zerop (@1))
301 /* X % 1 is always zero. */
303 (mod @0 integer_onep)
304 { build_zero_cst (type); })
305 /* X % -1 is zero. */
307 (mod @0 integer_minus_onep@1)
308 (if (!TYPE_UNSIGNED (type))
309 { build_zero_cst (type); }))
313 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
314 (if (!integer_zerop (@0))
315 { build_zero_cst (type); }))
316 /* (X % Y) % Y is just X % Y. */
318 (mod (mod@2 @0 @1) @1)
320 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
322 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
323 (if (ANY_INTEGRAL_TYPE_P (type)
324 && TYPE_OVERFLOW_UNDEFINED (type)
325 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
326 { build_zero_cst (type); })))
328 /* X % -C is the same as X % C. */
330 (trunc_mod @0 INTEGER_CST@1)
331 (if (TYPE_SIGN (type) == SIGNED
332 && !TREE_OVERFLOW (@1)
334 && !TYPE_OVERFLOW_TRAPS (type)
335 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
336 && !sign_bit_p (@1, @1))
337 (trunc_mod @0 (negate @1))))
339 /* X % -Y is the same as X % Y. */
341 (trunc_mod @0 (convert? (negate @1)))
342 (if (INTEGRAL_TYPE_P (type)
343 && !TYPE_UNSIGNED (type)
344 && !TYPE_OVERFLOW_TRAPS (type)
345 && tree_nop_conversion_p (type, TREE_TYPE (@1))
346 /* Avoid this transformation if X might be INT_MIN or
347 Y might be -1, because we would then change valid
348 INT_MIN % -(-1) into invalid INT_MIN % -1. */
349 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
350 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
352 (trunc_mod @0 (convert @1))))
354 /* X - (X / Y) * Y is the same as X % Y. */
356 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
357 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
358 (convert (trunc_mod @0 @1))))
360 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
361 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
362 Also optimize A % (C << N) where C is a power of 2,
363 to A & ((C << N) - 1). */
364 (match (power_of_two_cand @1)
366 (match (power_of_two_cand @1)
367 (lshift INTEGER_CST@1 @2))
368 (for mod (trunc_mod floor_mod)
370 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
371 (if ((TYPE_UNSIGNED (type)
372 || tree_expr_nonnegative_p (@0))
373 && tree_nop_conversion_p (type, TREE_TYPE (@3))
374 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
375 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
377 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
379 (trunc_div (mult @0 integer_pow2p@1) @1)
380 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
381 (bit_and @0 { wide_int_to_tree
382 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
383 false, TYPE_PRECISION (type))); })))
385 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
387 (mult (trunc_div @0 integer_pow2p@1) @1)
388 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
389 (bit_and @0 (negate @1))))
391 /* Simplify (t * 2) / 2) -> t. */
392 (for div (trunc_div ceil_div floor_div round_div exact_div)
394 (div (mult @0 @1) @1)
395 (if (ANY_INTEGRAL_TYPE_P (type)
396 && TYPE_OVERFLOW_UNDEFINED (type))
400 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
405 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
408 (pows (op @0) REAL_CST@1)
409 (with { HOST_WIDE_INT n; }
410 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
412 /* Likewise for powi. */
415 (pows (op @0) INTEGER_CST@1)
416 (if (wi::bit_and (@1, 1) == 0)
418 /* Strip negate and abs from both operands of hypot. */
426 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
427 (for copysigns (COPYSIGN)
429 (copysigns (op @0) @1)
432 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
437 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
441 (coss (copysigns @0 @1))
444 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
448 (pows (copysigns @0 @2) REAL_CST@1)
449 (with { HOST_WIDE_INT n; }
450 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
452 /* Likewise for powi. */
456 (pows (copysigns @0 @2) INTEGER_CST@1)
457 (if (wi::bit_and (@1, 1) == 0)
462 /* hypot(copysign(x, y), z) -> hypot(x, z). */
464 (hypots (copysigns @0 @1) @2)
466 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
468 (hypots @0 (copysigns @1 @2))
471 /* copysign(x, CST) -> [-]abs (x). */
472 (for copysigns (COPYSIGN)
474 (copysigns @0 REAL_CST@1)
475 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
479 /* copysign(copysign(x, y), z) -> copysign(x, z). */
480 (for copysigns (COPYSIGN)
482 (copysigns (copysigns @0 @1) @2)
485 /* copysign(x,y)*copysign(x,y) -> x*x. */
486 (for copysigns (COPYSIGN)
488 (mult (copysigns@2 @0 @1) @2)
491 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
492 (for ccoss (CCOS CCOSH)
497 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
498 (for ops (conj negate)
504 /* Fold (a * (1 << b)) into (a << b) */
506 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
507 (if (! FLOAT_TYPE_P (type)
508 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
511 /* Fold (C1/X)*C2 into (C1*C2)/X. */
513 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
514 (if (flag_associative_math
517 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
519 (rdiv { tem; } @1)))))
521 /* Convert C1/(X*C2) into (C1/C2)/X */
523 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
524 (if (flag_reciprocal_math)
526 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
528 (rdiv { tem; } @1)))))
530 /* Simplify ~X & X as zero. */
532 (bit_and:c (convert? @0) (convert? (bit_not @0)))
533 { build_zero_cst (type); })
535 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
537 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
538 (if (TYPE_UNSIGNED (type))
539 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
541 /* PR35691: Transform
542 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
543 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
544 (for bitop (bit_and bit_ior)
547 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
548 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
549 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
550 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
551 (cmp (bit_ior @0 (convert @1)) @2))))
553 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
555 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
556 (minus (bit_xor @0 @1) @1))
558 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
559 (if (wi::bit_not (@2) == @1)
560 (minus (bit_xor @0 @1) @1)))
562 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
564 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
565 (minus @1 (bit_xor @0 @1)))
567 /* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
569 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
572 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
573 (if (wi::bit_not (@2) == @1)
576 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
578 (bit_ior:c (bit_xor:c @0 @1) @0)
581 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
584 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
585 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
586 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
590 /* X % Y is smaller than Y. */
593 (cmp (trunc_mod @0 @1) @1)
594 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
595 { constant_boolean_node (cmp == LT_EXPR, type); })))
598 (cmp @1 (trunc_mod @0 @1))
599 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
600 { constant_boolean_node (cmp == GT_EXPR, type); })))
604 (bit_ior @0 integer_all_onesp@1)
609 (bit_ior @0 integer_zerop)
614 (bit_and @0 integer_zerop@1)
620 (for op (bit_ior bit_xor plus)
622 (op:c (convert? @0) (convert? (bit_not @0)))
623 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
628 { build_zero_cst (type); })
630 /* Canonicalize X ^ ~0 to ~X. */
632 (bit_xor @0 integer_all_onesp@1)
637 (bit_and @0 integer_all_onesp)
640 /* x & x -> x, x | x -> x */
641 (for bitop (bit_and bit_ior)
646 /* x & C -> x if we know that x & ~C == 0. */
649 (bit_and SSA_NAME@0 INTEGER_CST@1)
650 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
651 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
655 /* x + (x & 1) -> (x + 1) & ~1 */
657 (plus:c @0 (bit_and:s @0 integer_onep@1))
658 (bit_and (plus @0 @1) (bit_not @1)))
660 /* x & ~(x & y) -> x & ~y */
661 /* x | ~(x | y) -> x | ~y */
662 (for bitop (bit_and bit_ior)
664 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
665 (bitop @0 (bit_not @1))))
667 /* (x | y) & ~x -> y & ~x */
668 /* (x & y) | ~x -> y | ~x */
669 (for bitop (bit_and bit_ior)
670 rbitop (bit_ior bit_and)
672 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
675 /* (x & y) ^ (x | y) -> x ^ y */
677 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
680 /* (x ^ y) ^ (x | y) -> x & y */
682 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
685 /* (x & y) + (x ^ y) -> x | y */
686 /* (x & y) | (x ^ y) -> x | y */
687 /* (x & y) ^ (x ^ y) -> x | y */
688 (for op (plus bit_ior bit_xor)
690 (op:c (bit_and @0 @1) (bit_xor @0 @1))
693 /* (x & y) + (x | y) -> x + y */
695 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
698 /* (x + y) - (x | y) -> x & y */
700 (minus (plus @0 @1) (bit_ior @0 @1))
701 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
702 && !TYPE_SATURATING (type))
705 /* (x + y) - (x & y) -> x | y */
707 (minus (plus @0 @1) (bit_and @0 @1))
708 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
709 && !TYPE_SATURATING (type))
712 /* (x | y) - (x ^ y) -> x & y */
714 (minus (bit_ior @0 @1) (bit_xor @0 @1))
717 /* (x | y) - (x & y) -> x ^ y */
719 (minus (bit_ior @0 @1) (bit_and @0 @1))
722 /* (x | y) & ~(x & y) -> x ^ y */
724 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
727 /* (x | y) & (~x ^ y) -> x & y */
729 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
732 /* ~x & ~y -> ~(x | y)
733 ~x | ~y -> ~(x & y) */
734 (for op (bit_and bit_ior)
735 rop (bit_ior bit_and)
737 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
738 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
739 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
740 (bit_not (rop (convert @0) (convert @1))))))
742 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
743 with a constant, and the two constants have no bits in common,
744 we should treat this as a BIT_IOR_EXPR since this may produce more
746 (for op (bit_xor plus)
748 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
749 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
750 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
751 && tree_nop_conversion_p (type, TREE_TYPE (@2))
752 && wi::bit_and (@1, @3) == 0)
753 (bit_ior (convert @4) (convert @5)))))
755 /* (X | Y) ^ X -> Y & ~ X*/
757 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
758 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
759 (convert (bit_and @1 (bit_not @0)))))
761 /* Convert ~X ^ ~Y to X ^ Y. */
763 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
764 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
765 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
766 (bit_xor (convert @0) (convert @1))))
768 /* Convert ~X ^ C to X ^ ~C. */
770 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
771 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
772 (bit_xor (convert @0) (bit_not @1))))
774 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
775 (for opo (bit_and bit_xor)
776 opi (bit_xor bit_and)
778 (opo:c (opi:c @0 @1) @1)
779 (bit_and (bit_not @0) @1)))
781 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
782 operands are another bit-wise operation with a common input. If so,
783 distribute the bit operations to save an operation and possibly two if
784 constants are involved. For example, convert
785 (A | B) & (A | C) into A | (B & C)
786 Further simplification will occur if B and C are constants. */
787 (for op (bit_and bit_ior bit_xor)
788 rop (bit_ior bit_and bit_and)
790 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
791 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
792 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
793 (rop (convert @0) (op (convert @1) (convert @2))))))
795 /* Some simple reassociation for bit operations, also handled in reassoc. */
796 /* (X & Y) & Y -> X & Y
797 (X | Y) | Y -> X | Y */
798 (for op (bit_and bit_ior)
800 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
802 /* (X ^ Y) ^ Y -> X */
804 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
806 /* (X & Y) & (X & Z) -> (X & Y) & Z
807 (X | Y) | (X | Z) -> (X | Y) | Z */
808 (for op (bit_and bit_ior)
810 (op:c (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
811 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
812 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
813 (if (single_use (@5) && single_use (@6))
815 (if (single_use (@3) && single_use (@4))
816 (op (convert @1) @5))))))
817 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
819 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
820 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
821 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
822 (bit_xor (convert @1) (convert @2))))
831 (abs tree_expr_nonnegative_p@0)
834 /* A few cases of fold-const.c negate_expr_p predicate. */
837 (if ((INTEGRAL_TYPE_P (type)
838 && TYPE_OVERFLOW_WRAPS (type))
839 || (!TYPE_OVERFLOW_SANITIZED (type)
840 && may_negate_without_overflow_p (t)))))
845 (if (!TYPE_OVERFLOW_SANITIZED (type))))
848 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
849 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
853 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
855 /* (-A) * (-B) -> A * B */
857 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
858 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
859 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
860 (mult (convert @0) (convert (negate @1)))))
862 /* -(A + B) -> (-B) - A. */
864 (negate (plus:c @0 negate_expr_p@1))
865 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
866 && !HONOR_SIGNED_ZEROS (element_mode (type)))
867 (minus (negate @1) @0)))
869 /* A - B -> A + (-B) if B is easily negatable. */
871 (minus @0 negate_expr_p@1)
872 (if (!FIXED_POINT_TYPE_P (type))
873 (plus @0 (negate @1))))
875 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
877 For bitwise binary operations apply operand conversions to the
878 binary operation result instead of to the operands. This allows
879 to combine successive conversions and bitwise binary operations.
880 We combine the above two cases by using a conditional convert. */
881 (for bitop (bit_and bit_ior bit_xor)
883 (bitop (convert @0) (convert? @1))
884 (if (((TREE_CODE (@1) == INTEGER_CST
885 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
886 && int_fits_type_p (@1, TREE_TYPE (@0)))
887 || types_match (@0, @1))
888 /* ??? This transform conflicts with fold-const.c doing
889 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
890 constants (if x has signed type, the sign bit cannot be set
891 in c). This folds extension into the BIT_AND_EXPR.
892 Restrict it to GIMPLE to avoid endless recursions. */
893 && (bitop != BIT_AND_EXPR || GIMPLE)
894 && (/* That's a good idea if the conversion widens the operand, thus
895 after hoisting the conversion the operation will be narrower. */
896 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
897 /* It's also a good idea if the conversion is to a non-integer
899 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
900 /* Or if the precision of TO is not the same as the precision
902 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
903 (convert (bitop @0 (convert @1))))))
905 (for bitop (bit_and bit_ior)
906 rbitop (bit_ior bit_and)
907 /* (x | y) & x -> x */
908 /* (x & y) | x -> x */
910 (bitop:c (rbitop:c @0 @1) @0)
912 /* (~x | y) & x -> x & y */
913 /* (~x & y) | x -> x | y */
915 (bitop:c (rbitop:c (bit_not @0) @1) @0)
918 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
920 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
921 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
923 /* Combine successive equal operations with constants. */
924 (for bitop (bit_and bit_ior bit_xor)
926 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
927 (bitop @0 (bitop @1 @2))))
929 /* Try simple folding for X op !X, and X op X with the help
930 of the truth_valued_p and logical_inverted_value predicates. */
931 (match truth_valued_p
933 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
934 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
935 (match truth_valued_p
937 (match truth_valued_p
940 (match (logical_inverted_value @0)
942 (match (logical_inverted_value @0)
943 (bit_not truth_valued_p@0))
944 (match (logical_inverted_value @0)
945 (eq @0 integer_zerop))
946 (match (logical_inverted_value @0)
947 (ne truth_valued_p@0 integer_truep))
948 (match (logical_inverted_value @0)
949 (bit_xor truth_valued_p@0 integer_truep))
953 (bit_and:c @0 (logical_inverted_value @0))
954 { build_zero_cst (type); })
955 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
956 (for op (bit_ior bit_xor)
958 (op:c truth_valued_p@0 (logical_inverted_value @0))
959 { constant_boolean_node (true, type); }))
960 /* X ==/!= !X is false/true. */
963 (op:c truth_valued_p@0 (logical_inverted_value @0))
964 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
968 (bit_not (bit_not @0))
971 /* Convert ~ (-A) to A - 1. */
973 (bit_not (convert? (negate @0)))
974 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
975 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
976 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
978 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
980 (bit_not (convert? (minus @0 integer_each_onep)))
981 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
982 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
983 (convert (negate @0))))
985 (bit_not (convert? (plus @0 integer_all_onesp)))
986 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
987 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
988 (convert (negate @0))))
990 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
992 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
993 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
994 (convert (bit_xor @0 (bit_not @1)))))
996 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
997 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
998 (convert (bit_xor @0 @1))))
1000 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1002 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1003 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1005 /* Fold A - (A & B) into ~B & A. */
1007 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1008 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1009 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1010 (convert (bit_and (bit_not @1) @0))))
1012 /* For integral types with undefined overflow and C != 0 fold
1013 x * C EQ/NE y * C into x EQ/NE y. */
1016 (cmp (mult:c @0 @1) (mult:c @2 @1))
1017 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1019 && tree_expr_nonzero_p (@1))
1022 /* For integral types with undefined overflow and C != 0 fold
1023 x * C RELOP y * C into:
1025 x RELOP y for nonnegative C
1026 y RELOP x for negative C */
1027 (for cmp (lt gt le ge)
1029 (cmp (mult:c @0 @1) (mult:c @2 @1))
1030 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1031 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1032 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1034 (if (TREE_CODE (@1) == INTEGER_CST
1035 && wi::neg_p (@1, TYPE_SIGN (TREE_TYPE (@1))))
1038 /* ((X inner_op C0) outer_op C1)
1039 With X being a tree where value_range has reasoned certain bits to always be
1040 zero throughout its computed value range,
1041 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1042 where zero_mask has 1's for all bits that are sure to be 0 in
1044 if (inner_op == '^') C0 &= ~C1;
1045 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1046 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1048 (for inner_op (bit_ior bit_xor)
1049 outer_op (bit_xor bit_ior)
1052 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1056 wide_int zero_mask_not;
1060 if (TREE_CODE (@2) == SSA_NAME)
1061 zero_mask_not = get_nonzero_bits (@2);
1065 if (inner_op == BIT_XOR_EXPR)
1067 C0 = wi::bit_and_not (@0, @1);
1068 cst_emit = wi::bit_or (C0, @1);
1073 cst_emit = wi::bit_xor (@0, @1);
1076 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
1077 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1078 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
1079 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1081 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1083 (pointer_plus (pointer_plus:s @0 @1) @3)
1084 (pointer_plus @0 (plus @1 @3)))
1090 tem4 = (unsigned long) tem3;
1095 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1096 /* Conditionally look through a sign-changing conversion. */
1097 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1098 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1099 || (GENERIC && type == TREE_TYPE (@1))))
1103 tem = (sizetype) ptr;
1107 and produce the simpler and easier to analyze with respect to alignment
1108 ... = ptr & ~algn; */
1110 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1111 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
1112 (bit_and @0 { algn; })))
1114 /* Try folding difference of addresses. */
1116 (minus (convert ADDR_EXPR@0) (convert @1))
1117 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1118 (with { HOST_WIDE_INT diff; }
1119 (if (ptr_difference_const (@0, @1, &diff))
1120 { build_int_cst_type (type, diff); }))))
1122 (minus (convert @0) (convert ADDR_EXPR@1))
1123 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1124 (with { HOST_WIDE_INT diff; }
1125 (if (ptr_difference_const (@0, @1, &diff))
1126 { build_int_cst_type (type, diff); }))))
1128 /* If arg0 is derived from the address of an object or function, we may
1129 be able to fold this expression using the object or function's
1132 (bit_and (convert? @0) INTEGER_CST@1)
1133 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1134 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1138 unsigned HOST_WIDE_INT bitpos;
1139 get_pointer_alignment_1 (@0, &align, &bitpos);
1141 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1142 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
1145 /* We can't reassociate at all for saturating types. */
1146 (if (!TYPE_SATURATING (type))
1148 /* Contract negates. */
1149 /* A + (-B) -> A - B */
1151 (plus:c (convert1? @0) (convert2? (negate @1)))
1152 /* Apply STRIP_NOPS on @0 and the negate. */
1153 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1154 && tree_nop_conversion_p (type, TREE_TYPE (@1))
1155 && !TYPE_OVERFLOW_SANITIZED (type))
1156 (minus (convert @0) (convert @1))))
1157 /* A - (-B) -> A + B */
1159 (minus (convert1? @0) (convert2? (negate @1)))
1160 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1161 && tree_nop_conversion_p (type, TREE_TYPE (@1))
1162 && !TYPE_OVERFLOW_SANITIZED (type))
1163 (plus (convert @0) (convert @1))))
1166 (negate (convert? (negate @1)))
1167 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1168 && !TYPE_OVERFLOW_SANITIZED (type))
1171 /* We can't reassociate floating-point unless -fassociative-math
1172 or fixed-point plus or minus because of saturation to +-Inf. */
1173 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1174 && !FIXED_POINT_TYPE_P (type))
1176 /* Match patterns that allow contracting a plus-minus pair
1177 irrespective of overflow issues. */
1178 /* (A +- B) - A -> +- B */
1179 /* (A +- B) -+ B -> A */
1180 /* A - (A +- B) -> -+ B */
1181 /* A +- (B -+ A) -> +- B */
1183 (minus (plus:c @0 @1) @0)
1186 (minus (minus @0 @1) @0)
1189 (plus:c (minus @0 @1) @1)
1192 (minus @0 (plus:c @0 @1))
1195 (minus @0 (minus @0 @1))
1198 /* (A +- CST1) +- CST2 -> A + CST3 */
1199 (for outer_op (plus minus)
1200 (for inner_op (plus minus)
1202 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1203 /* If the constant operation overflows we cannot do the transform
1204 as we would introduce undefined overflow, for example
1205 with (a - 1) + INT_MIN. */
1206 (with { tree cst = const_binop (outer_op == inner_op
1207 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1208 (if (cst && !TREE_OVERFLOW (cst))
1209 (inner_op @0 { cst; } ))))))
1211 /* (CST1 - A) +- CST2 -> CST3 - A */
1212 (for outer_op (plus minus)
1214 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1215 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1216 (if (cst && !TREE_OVERFLOW (cst))
1217 (minus { cst; } @0)))))
1219 /* CST1 - (CST2 - A) -> CST3 + A */
1221 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1222 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1223 (if (cst && !TREE_OVERFLOW (cst))
1224 (plus { cst; } @0))))
1228 (plus:c (bit_not @0) @0)
1229 (if (!TYPE_OVERFLOW_TRAPS (type))
1230 { build_all_ones_cst (type); }))
1234 (plus (convert? (bit_not @0)) integer_each_onep)
1235 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1236 (negate (convert @0))))
1240 (minus (convert? (negate @0)) integer_each_onep)
1241 (if (!TYPE_OVERFLOW_TRAPS (type)
1242 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1243 (bit_not (convert @0))))
1247 (minus integer_all_onesp @0)
1250 /* (T)(P + A) - (T)P -> (T) A */
1251 (for add (plus pointer_plus)
1253 (minus (convert (add @@0 @1))
1255 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1256 /* For integer types, if A has a smaller type
1257 than T the result depends on the possible
1259 E.g. T=size_t, A=(unsigned)429497295, P>0.
1260 However, if an overflow in P + A would cause
1261 undefined behavior, we can assume that there
1263 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1264 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1265 /* For pointer types, if the conversion of A to the
1266 final type requires a sign- or zero-extension,
1267 then we have to punt - it is not defined which
1269 || (POINTER_TYPE_P (TREE_TYPE (@0))
1270 && TREE_CODE (@1) == INTEGER_CST
1271 && tree_int_cst_sign_bit (@1) == 0))
1274 /* (T)P - (T)(P + A) -> -(T) A */
1275 (for add (plus pointer_plus)
1278 (convert (add @@0 @1)))
1279 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1280 /* For integer types, if A has a smaller type
1281 than T the result depends on the possible
1283 E.g. T=size_t, A=(unsigned)429497295, P>0.
1284 However, if an overflow in P + A would cause
1285 undefined behavior, we can assume that there
1287 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1289 /* For pointer types, if the conversion of A to the
1290 final type requires a sign- or zero-extension,
1291 then we have to punt - it is not defined which
1293 || (POINTER_TYPE_P (TREE_TYPE (@0))
1294 && TREE_CODE (@1) == INTEGER_CST
1295 && tree_int_cst_sign_bit (@1) == 0))
1296 (negate (convert @1)))))
1298 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1299 (for add (plus pointer_plus)
1301 (minus (convert (add @@0 @1))
1302 (convert (add @0 @2)))
1303 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1304 /* For integer types, if A has a smaller type
1305 than T the result depends on the possible
1307 E.g. T=size_t, A=(unsigned)429497295, P>0.
1308 However, if an overflow in P + A would cause
1309 undefined behavior, we can assume that there
1311 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1312 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1313 /* For pointer types, if the conversion of A to the
1314 final type requires a sign- or zero-extension,
1315 then we have to punt - it is not defined which
1317 || (POINTER_TYPE_P (TREE_TYPE (@0))
1318 && TREE_CODE (@1) == INTEGER_CST
1319 && tree_int_cst_sign_bit (@1) == 0
1320 && TREE_CODE (@2) == INTEGER_CST
1321 && tree_int_cst_sign_bit (@2) == 0))
1322 (minus (convert @1) (convert @2)))))))
1325 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1327 (for minmax (min max FMIN FMAX)
1331 /* min(max(x,y),y) -> y. */
1333 (min:c (max:c @0 @1) @1)
1335 /* max(min(x,y),y) -> y. */
1337 (max:c (min:c @0 @1) @1)
1339 /* max(a,-a) -> abs(a). */
1341 (max:c @0 (negate @0))
1342 (if (TREE_CODE (type) != COMPLEX_TYPE
1343 && (! ANY_INTEGRAL_TYPE_P (type)
1344 || TYPE_OVERFLOW_UNDEFINED (type)))
1346 /* min(a,-a) -> -abs(a). */
1348 (min:c @0 (negate @0))
1349 (if (TREE_CODE (type) != COMPLEX_TYPE
1350 && (! ANY_INTEGRAL_TYPE_P (type)
1351 || TYPE_OVERFLOW_UNDEFINED (type)))
1356 (if (INTEGRAL_TYPE_P (type)
1357 && TYPE_MIN_VALUE (type)
1358 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1360 (if (INTEGRAL_TYPE_P (type)
1361 && TYPE_MAX_VALUE (type)
1362 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1367 (if (INTEGRAL_TYPE_P (type)
1368 && TYPE_MAX_VALUE (type)
1369 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1371 (if (INTEGRAL_TYPE_P (type)
1372 && TYPE_MIN_VALUE (type)
1373 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1376 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1377 and the outer convert demotes the expression back to x's type. */
1378 (for minmax (min max)
1380 (convert (minmax@0 (convert @1) INTEGER_CST@2))
1381 (if (INTEGRAL_TYPE_P (type)
1382 && types_match (@1, type) && int_fits_type_p (@2, type)
1383 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1384 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1385 (minmax @1 (convert @2)))))
1387 (for minmax (FMIN FMAX)
1388 /* If either argument is NaN, return the other one. Avoid the
1389 transformation if we get (and honor) a signalling NaN. */
1391 (minmax:c @0 REAL_CST@1)
1392 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1393 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1395 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1396 functions to return the numeric arg if the other one is NaN.
1397 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1398 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1399 worry about it either. */
1400 (if (flag_finite_math_only)
1407 /* min (-A, -B) -> -max (A, B) */
1408 (for minmax (min max FMIN FMAX)
1409 maxmin (max min FMAX FMIN)
1411 (minmax (negate:s@2 @0) (negate:s@3 @1))
1412 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1413 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1414 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1415 (negate (maxmin @0 @1)))))
1416 /* MIN (~X, ~Y) -> ~MAX (X, Y)
1417 MAX (~X, ~Y) -> ~MIN (X, Y) */
1418 (for minmax (min max)
1421 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1422 (bit_not (maxmin @0 @1))))
1424 /* MIN (X, Y) == X -> X <= Y */
1425 (for minmax (min min max max)
1429 (cmp:c (minmax:c @0 @1) @0)
1430 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1432 /* MIN (X, 5) == 0 -> X == 0
1433 MIN (X, 5) == 7 -> false */
1436 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1437 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1438 { constant_boolean_node (cmp == NE_EXPR, type); }
1439 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1443 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1444 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1445 { constant_boolean_node (cmp == NE_EXPR, type); }
1446 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1448 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1449 (for minmax (min min max max min min max max )
1450 cmp (lt le gt ge gt ge lt le )
1451 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1453 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1454 (comb (cmp @0 @2) (cmp @1 @2))))
1456 /* Simplifications of shift and rotates. */
1458 (for rotate (lrotate rrotate)
1460 (rotate integer_all_onesp@0 @1)
1463 /* Optimize -1 >> x for arithmetic right shifts. */
1465 (rshift integer_all_onesp@0 @1)
1466 (if (!TYPE_UNSIGNED (type)
1467 && tree_expr_nonnegative_p (@1))
1470 /* Optimize (x >> c) << c into x & (-1<<c). */
1472 (lshift (rshift @0 INTEGER_CST@1) @1)
1473 (if (wi::ltu_p (@1, element_precision (type)))
1474 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1476 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1479 (rshift (lshift @0 INTEGER_CST@1) @1)
1480 (if (TYPE_UNSIGNED (type)
1481 && (wi::ltu_p (@1, element_precision (type))))
1482 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1484 (for shiftrotate (lrotate rrotate lshift rshift)
1486 (shiftrotate @0 integer_zerop)
1489 (shiftrotate integer_zerop@0 @1)
1491 /* Prefer vector1 << scalar to vector1 << vector2
1492 if vector2 is uniform. */
1493 (for vec (VECTOR_CST CONSTRUCTOR)
1495 (shiftrotate @0 vec@1)
1496 (with { tree tem = uniform_vector_p (@1); }
1498 (shiftrotate @0 { tem; }))))))
1500 /* Rewrite an LROTATE_EXPR by a constant into an
1501 RROTATE_EXPR by a new constant. */
1503 (lrotate @0 INTEGER_CST@1)
1504 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
1505 build_int_cst (TREE_TYPE (@1),
1506 element_precision (type)), @1); }))
1508 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1509 (for op (lrotate rrotate rshift lshift)
1511 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1512 (with { unsigned int prec = element_precision (type); }
1513 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1514 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1515 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1516 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1517 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1518 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1519 being well defined. */
1521 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
1522 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
1523 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
1524 { build_zero_cst (type); }
1525 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1526 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
1529 /* ((1 << A) & 1) != 0 -> A == 0
1530 ((1 << A) & 1) == 0 -> A != 0 */
1534 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1535 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
1537 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1538 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1542 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1543 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1545 || (!integer_zerop (@2)
1546 && wi::ne_p (wi::lshift (@0, cand), @2)))
1547 { constant_boolean_node (cmp == NE_EXPR, type); }
1548 (if (!integer_zerop (@2)
1549 && wi::eq_p (wi::lshift (@0, cand), @2))
1550 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
1552 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1553 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1554 if the new mask might be further optimized. */
1555 (for shift (lshift rshift)
1557 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1559 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1560 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1561 && tree_fits_uhwi_p (@1)
1562 && tree_to_uhwi (@1) > 0
1563 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1566 unsigned int shiftc = tree_to_uhwi (@1);
1567 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1568 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1569 tree shift_type = TREE_TYPE (@3);
1572 if (shift == LSHIFT_EXPR)
1573 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1574 else if (shift == RSHIFT_EXPR
1575 && (TYPE_PRECISION (shift_type)
1576 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1578 prec = TYPE_PRECISION (TREE_TYPE (@3));
1580 /* See if more bits can be proven as zero because of
1583 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1585 tree inner_type = TREE_TYPE (@0);
1586 if ((TYPE_PRECISION (inner_type)
1587 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1588 && TYPE_PRECISION (inner_type) < prec)
1590 prec = TYPE_PRECISION (inner_type);
1591 /* See if we can shorten the right shift. */
1593 shift_type = inner_type;
1594 /* Otherwise X >> C1 is all zeros, so we'll optimize
1595 it into (X, 0) later on by making sure zerobits
1599 zerobits = HOST_WIDE_INT_M1U;
1602 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1603 zerobits <<= prec - shiftc;
1605 /* For arithmetic shift if sign bit could be set, zerobits
1606 can contain actually sign bits, so no transformation is
1607 possible, unless MASK masks them all away. In that
1608 case the shift needs to be converted into logical shift. */
1609 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1610 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1612 if ((mask & zerobits) == 0)
1613 shift_type = unsigned_type_for (TREE_TYPE (@3));
1619 /* ((X << 16) & 0xff00) is (X, 0). */
1620 (if ((mask & zerobits) == mask)
1621 { build_int_cst (type, 0); }
1622 (with { newmask = mask | zerobits; }
1623 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1626 /* Only do the transformation if NEWMASK is some integer
1628 for (prec = BITS_PER_UNIT;
1629 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1630 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
1633 (if (prec < HOST_BITS_PER_WIDE_INT
1634 || newmask == HOST_WIDE_INT_M1U)
1636 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1637 (if (!tree_int_cst_equal (newmaskt, @2))
1638 (if (shift_type != TREE_TYPE (@3))
1639 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1640 (bit_and @4 { newmaskt; })))))))))))))
1642 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1643 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
1644 (for shift (lshift rshift)
1645 (for bit_op (bit_and bit_xor bit_ior)
1647 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1648 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1649 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1650 (bit_op (shift (convert @0) @1) { mask; }))))))
1652 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
1654 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
1655 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
1656 && (element_precision (TREE_TYPE (@0))
1657 <= element_precision (TREE_TYPE (@1))
1658 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
1660 { tree shift_type = TREE_TYPE (@0); }
1661 (convert (rshift (convert:shift_type @1) @2)))))
1663 /* ~(~X >>r Y) -> X >>r Y
1664 ~(~X <<r Y) -> X <<r Y */
1665 (for rotate (lrotate rrotate)
1667 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
1668 (if ((element_precision (TREE_TYPE (@0))
1669 <= element_precision (TREE_TYPE (@1))
1670 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
1671 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
1672 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
1674 { tree rotate_type = TREE_TYPE (@0); }
1675 (convert (rotate (convert:rotate_type @1) @2))))))
1677 /* Simplifications of conversions. */
1679 /* Basic strip-useless-type-conversions / strip_nops. */
1680 (for cvt (convert view_convert float fix_trunc)
1683 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1684 || (GENERIC && type == TREE_TYPE (@0)))
1687 /* Contract view-conversions. */
1689 (view_convert (view_convert @0))
1692 /* For integral conversions with the same precision or pointer
1693 conversions use a NOP_EXPR instead. */
1696 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1697 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1698 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1701 /* Strip inner integral conversions that do not change precision or size. */
1703 (view_convert (convert@0 @1))
1704 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1705 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1706 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1707 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1710 /* Re-association barriers around constants and other re-association
1711 barriers can be removed. */
1713 (paren CONSTANT_CLASS_P@0)
1716 (paren (paren@1 @0))
1719 /* Handle cases of two conversions in a row. */
1720 (for ocvt (convert float fix_trunc)
1721 (for icvt (convert float)
1726 tree inside_type = TREE_TYPE (@0);
1727 tree inter_type = TREE_TYPE (@1);
1728 int inside_int = INTEGRAL_TYPE_P (inside_type);
1729 int inside_ptr = POINTER_TYPE_P (inside_type);
1730 int inside_float = FLOAT_TYPE_P (inside_type);
1731 int inside_vec = VECTOR_TYPE_P (inside_type);
1732 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1733 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1734 int inter_int = INTEGRAL_TYPE_P (inter_type);
1735 int inter_ptr = POINTER_TYPE_P (inter_type);
1736 int inter_float = FLOAT_TYPE_P (inter_type);
1737 int inter_vec = VECTOR_TYPE_P (inter_type);
1738 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1739 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1740 int final_int = INTEGRAL_TYPE_P (type);
1741 int final_ptr = POINTER_TYPE_P (type);
1742 int final_float = FLOAT_TYPE_P (type);
1743 int final_vec = VECTOR_TYPE_P (type);
1744 unsigned int final_prec = TYPE_PRECISION (type);
1745 int final_unsignedp = TYPE_UNSIGNED (type);
1748 /* In addition to the cases of two conversions in a row
1749 handled below, if we are converting something to its own
1750 type via an object of identical or wider precision, neither
1751 conversion is needed. */
1752 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1754 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1755 && (((inter_int || inter_ptr) && final_int)
1756 || (inter_float && final_float))
1757 && inter_prec >= final_prec)
1760 /* Likewise, if the intermediate and initial types are either both
1761 float or both integer, we don't need the middle conversion if the
1762 former is wider than the latter and doesn't change the signedness
1763 (for integers). Avoid this if the final type is a pointer since
1764 then we sometimes need the middle conversion. */
1765 (if (((inter_int && inside_int) || (inter_float && inside_float))
1766 && (final_int || final_float)
1767 && inter_prec >= inside_prec
1768 && (inter_float || inter_unsignedp == inside_unsignedp))
1771 /* If we have a sign-extension of a zero-extended value, we can
1772 replace that by a single zero-extension. Likewise if the
1773 final conversion does not change precision we can drop the
1774 intermediate conversion. */
1775 (if (inside_int && inter_int && final_int
1776 && ((inside_prec < inter_prec && inter_prec < final_prec
1777 && inside_unsignedp && !inter_unsignedp)
1778 || final_prec == inter_prec))
1781 /* Two conversions in a row are not needed unless:
1782 - some conversion is floating-point (overstrict for now), or
1783 - some conversion is a vector (overstrict for now), or
1784 - the intermediate type is narrower than both initial and
1786 - the intermediate type and innermost type differ in signedness,
1787 and the outermost type is wider than the intermediate, or
1788 - the initial type is a pointer type and the precisions of the
1789 intermediate and final types differ, or
1790 - the final type is a pointer type and the precisions of the
1791 initial and intermediate types differ. */
1792 (if (! inside_float && ! inter_float && ! final_float
1793 && ! inside_vec && ! inter_vec && ! final_vec
1794 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1795 && ! (inside_int && inter_int
1796 && inter_unsignedp != inside_unsignedp
1797 && inter_prec < final_prec)
1798 && ((inter_unsignedp && inter_prec > inside_prec)
1799 == (final_unsignedp && final_prec > inter_prec))
1800 && ! (inside_ptr && inter_prec != final_prec)
1801 && ! (final_ptr && inside_prec != inter_prec))
1804 /* A truncation to an unsigned type (a zero-extension) should be
1805 canonicalized as bitwise and of a mask. */
1806 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
1807 && final_int && inter_int && inside_int
1808 && final_prec == inside_prec
1809 && final_prec > inter_prec
1811 (convert (bit_and @0 { wide_int_to_tree
1813 wi::mask (inter_prec, false,
1814 TYPE_PRECISION (inside_type))); })))
1816 /* If we are converting an integer to a floating-point that can
1817 represent it exactly and back to an integer, we can skip the
1818 floating-point conversion. */
1819 (if (GIMPLE /* PR66211 */
1820 && inside_int && inter_float && final_int &&
1821 (unsigned) significand_size (TYPE_MODE (inter_type))
1822 >= inside_prec - !inside_unsignedp)
1825 /* If we have a narrowing conversion to an integral type that is fed by a
1826 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1827 masks off bits outside the final type (and nothing else). */
1829 (convert (bit_and @0 INTEGER_CST@1))
1830 (if (INTEGRAL_TYPE_P (type)
1831 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1832 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1833 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1834 TYPE_PRECISION (type)), 0))
1838 /* (X /[ex] A) * A -> X. */
1840 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
1843 /* Canonicalization of binary operations. */
1845 /* Convert X + -C into X - C. */
1847 (plus @0 REAL_CST@1)
1848 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1849 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
1850 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1851 (minus @0 { tem; })))))
1853 /* Convert x+x into x*2. */
1856 (if (SCALAR_FLOAT_TYPE_P (type))
1857 (mult @0 { build_real (type, dconst2); })
1858 (if (INTEGRAL_TYPE_P (type))
1859 (mult @0 { build_int_cst (type, 2); }))))
1862 (minus integer_zerop @1)
1865 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1866 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1867 (-ARG1 + ARG0) reduces to -ARG1. */
1869 (minus real_zerop@0 @1)
1870 (if (fold_real_zero_addition_p (type, @0, 0))
1873 /* Transform x * -1 into -x. */
1875 (mult @0 integer_minus_onep)
1878 /* True if we can easily extract the real and imaginary parts of a complex
1880 (match compositional_complex
1881 (convert? (complex @0 @1)))
1883 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1885 (complex (realpart @0) (imagpart @0))
1888 (realpart (complex @0 @1))
1891 (imagpart (complex @0 @1))
1894 /* Sometimes we only care about half of a complex expression. */
1896 (realpart (convert?:s (conj:s @0)))
1897 (convert (realpart @0)))
1899 (imagpart (convert?:s (conj:s @0)))
1900 (convert (negate (imagpart @0))))
1901 (for part (realpart imagpart)
1902 (for op (plus minus)
1904 (part (convert?:s@2 (op:s @0 @1)))
1905 (convert (op (part @0) (part @1))))))
1907 (realpart (convert?:s (CEXPI:s @0)))
1910 (imagpart (convert?:s (CEXPI:s @0)))
1913 /* conj(conj(x)) -> x */
1915 (conj (convert? (conj @0)))
1916 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1919 /* conj({x,y}) -> {x,-y} */
1921 (conj (convert?:s (complex:s @0 @1)))
1922 (with { tree itype = TREE_TYPE (type); }
1923 (complex (convert:itype @0) (negate (convert:itype @1)))))
1925 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1926 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1931 (bswap (bit_not (bswap @0)))
1933 (for bitop (bit_xor bit_ior bit_and)
1935 (bswap (bitop:c (bswap @0) @1))
1936 (bitop @0 (bswap @1)))))
1939 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1941 /* Simplify constant conditions.
1942 Only optimize constant conditions when the selected branch
1943 has the same type as the COND_EXPR. This avoids optimizing
1944 away "c ? x : throw", where the throw has a void type.
1945 Note that we cannot throw away the fold-const.c variant nor
1946 this one as we depend on doing this transform before possibly
1947 A ? B : B -> B triggers and the fold-const.c one can optimize
1948 0 ? A : B to B even if A has side-effects. Something
1949 genmatch cannot handle. */
1951 (cond INTEGER_CST@0 @1 @2)
1952 (if (integer_zerop (@0))
1953 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1955 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1958 (vec_cond VECTOR_CST@0 @1 @2)
1959 (if (integer_all_onesp (@0))
1961 (if (integer_zerop (@0))
1964 /* Simplification moved from fold_cond_expr_with_comparison. It may also
1966 /* This pattern implements two kinds simplification:
1969 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
1970 1) Conversions are type widening from smaller type.
1971 2) Const c1 equals to c2 after canonicalizing comparison.
1972 3) Comparison has tree code LT, LE, GT or GE.
1973 This specific pattern is needed when (cmp (convert x) c) may not
1974 be simplified by comparison patterns because of multiple uses of
1975 x. It also makes sense here because simplifying across multiple
1976 referred var is always benefitial for complicated cases.
1979 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
1980 (for cmp (lt le gt ge eq)
1982 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
1985 tree from_type = TREE_TYPE (@1);
1986 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
1987 enum tree_code code = ERROR_MARK;
1989 if (INTEGRAL_TYPE_P (from_type)
1990 && int_fits_type_p (@2, from_type)
1991 && (types_match (c1_type, from_type)
1992 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
1993 && (TYPE_UNSIGNED (from_type)
1994 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
1995 && (types_match (c2_type, from_type)
1996 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
1997 && (TYPE_UNSIGNED (from_type)
1998 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2002 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2004 /* X <= Y - 1 equals to X < Y. */
2007 /* X > Y - 1 equals to X >= Y. */
2011 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2013 /* X < Y + 1 equals to X <= Y. */
2016 /* X >= Y + 1 equals to X > Y. */
2020 if (code != ERROR_MARK
2021 || wi::to_widest (@2) == wi::to_widest (@3))
2023 if (cmp == LT_EXPR || cmp == LE_EXPR)
2025 if (cmp == GT_EXPR || cmp == GE_EXPR)
2029 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2030 else if (int_fits_type_p (@3, from_type))
2034 (if (code == MAX_EXPR)
2035 (convert (max @1 (convert @2)))
2036 (if (code == MIN_EXPR)
2037 (convert (min @1 (convert @2)))
2038 (if (code == EQ_EXPR)
2039 (convert (cond (eq @1 (convert @3))
2040 (convert:from_type @3) (convert:from_type @2)))))))))
2042 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2044 1) OP is PLUS or MINUS.
2045 2) CMP is LT, LE, GT or GE.
2046 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2048 This pattern also handles special cases like:
2050 A) Operand x is a unsigned to signed type conversion and c1 is
2051 integer zero. In this case,
2052 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2053 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2054 B) Const c1 may not equal to (C3 op' C2). In this case we also
2055 check equality for (c1+1) and (c1-1) by adjusting comparison
2058 TODO: Though signed type is handled by this pattern, it cannot be
2059 simplified at the moment because C standard requires additional
2060 type promotion. In order to match&simplify it here, the IR needs
2061 to be cleaned up by other optimizers, i.e, VRP. */
2062 (for op (plus minus)
2063 (for cmp (lt le gt ge)
2065 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2066 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2067 (if (types_match (from_type, to_type)
2068 /* Check if it is special case A). */
2069 || (TYPE_UNSIGNED (from_type)
2070 && !TYPE_UNSIGNED (to_type)
2071 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2072 && integer_zerop (@1)
2073 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2076 bool overflow = false;
2077 enum tree_code code, cmp_code = cmp;
2078 wide_int real_c1, c1 = @1, c2 = @2, c3 = @3;
2079 signop sgn = TYPE_SIGN (from_type);
2081 /* Handle special case A), given x of unsigned type:
2082 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2083 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2084 if (!types_match (from_type, to_type))
2086 if (cmp_code == LT_EXPR)
2088 if (cmp_code == GE_EXPR)
2090 c1 = wi::max_value (to_type);
2092 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2093 compute (c3 op' c2) and check if it equals to c1 with op' being
2094 the inverted operator of op. Make sure overflow doesn't happen
2095 if it is undefined. */
2096 if (op == PLUS_EXPR)
2097 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2099 real_c1 = wi::add (c3, c2, sgn, &overflow);
2102 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2104 /* Check if c1 equals to real_c1. Boundary condition is handled
2105 by adjusting comparison operation if necessary. */
2106 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2109 /* X <= Y - 1 equals to X < Y. */
2110 if (cmp_code == LE_EXPR)
2112 /* X > Y - 1 equals to X >= Y. */
2113 if (cmp_code == GT_EXPR)
2116 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2119 /* X < Y + 1 equals to X <= Y. */
2120 if (cmp_code == LT_EXPR)
2122 /* X >= Y + 1 equals to X > Y. */
2123 if (cmp_code == GE_EXPR)
2126 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2128 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2130 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2135 (if (code == MAX_EXPR)
2136 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2137 { wide_int_to_tree (from_type, c2); })
2138 (if (code == MIN_EXPR)
2139 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2140 { wide_int_to_tree (from_type, c2); })))))))))
2142 (for cnd (cond vec_cond)
2143 /* A ? B : (A ? X : C) -> A ? B : C. */
2145 (cnd @0 (cnd @0 @1 @2) @3)
2148 (cnd @0 @1 (cnd @0 @2 @3))
2150 /* A ? B : (!A ? C : X) -> A ? B : C. */
2151 /* ??? This matches embedded conditions open-coded because genmatch
2152 would generate matching code for conditions in separate stmts only.
2153 The following is still important to merge then and else arm cases
2154 from if-conversion. */
2156 (cnd @0 @1 (cnd @2 @3 @4))
2157 (if (COMPARISON_CLASS_P (@0)
2158 && COMPARISON_CLASS_P (@2)
2159 && invert_tree_comparison
2160 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2161 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2162 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2165 (cnd @0 (cnd @1 @2 @3) @4)
2166 (if (COMPARISON_CLASS_P (@0)
2167 && COMPARISON_CLASS_P (@1)
2168 && invert_tree_comparison
2169 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2170 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2171 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2174 /* A ? B : B -> B. */
2179 /* !A ? B : C -> A ? C : B. */
2181 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2184 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2185 return all -1 or all 0 results. */
2186 /* ??? We could instead convert all instances of the vec_cond to negate,
2187 but that isn't necessarily a win on its own. */
2189 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2190 (if (VECTOR_TYPE_P (type)
2191 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
2192 && (TYPE_MODE (TREE_TYPE (type))
2193 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2194 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2196 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2198 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2199 (if (VECTOR_TYPE_P (type)
2200 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
2201 && (TYPE_MODE (TREE_TYPE (type))
2202 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2203 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2206 /* Simplifications of comparisons. */
2208 /* See if we can reduce the magnitude of a constant involved in a
2209 comparison by changing the comparison code. This is a canonicalization
2210 formerly done by maybe_canonicalize_comparison_1. */
2214 (cmp @0 INTEGER_CST@1)
2215 (if (tree_int_cst_sgn (@1) == -1)
2216 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2220 (cmp @0 INTEGER_CST@1)
2221 (if (tree_int_cst_sgn (@1) == 1)
2222 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2225 /* We can simplify a logical negation of a comparison to the
2226 inverted comparison. As we cannot compute an expression
2227 operator using invert_tree_comparison we have to simulate
2228 that with expression code iteration. */
2229 (for cmp (tcc_comparison)
2230 icmp (inverted_tcc_comparison)
2231 ncmp (inverted_tcc_comparison_with_nans)
2232 /* Ideally we'd like to combine the following two patterns
2233 and handle some more cases by using
2234 (logical_inverted_value (cmp @0 @1))
2235 here but for that genmatch would need to "inline" that.
2236 For now implement what forward_propagate_comparison did. */
2238 (bit_not (cmp @0 @1))
2239 (if (VECTOR_TYPE_P (type)
2240 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2241 /* Comparison inversion may be impossible for trapping math,
2242 invert_tree_comparison will tell us. But we can't use
2243 a computed operator in the replacement tree thus we have
2244 to play the trick below. */
2245 (with { enum tree_code ic = invert_tree_comparison
2246 (cmp, HONOR_NANS (@0)); }
2252 (bit_xor (cmp @0 @1) integer_truep)
2253 (with { enum tree_code ic = invert_tree_comparison
2254 (cmp, HONOR_NANS (@0)); }
2260 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2261 ??? The transformation is valid for the other operators if overflow
2262 is undefined for the type, but performing it here badly interacts
2263 with the transformation in fold_cond_expr_with_comparison which
2264 attempts to synthetize ABS_EXPR. */
2267 (cmp (minus@2 @0 @1) integer_zerop)
2268 (if (single_use (@2))
2271 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2272 signed arithmetic case. That form is created by the compiler
2273 often enough for folding it to be of value. One example is in
2274 computing loop trip counts after Operator Strength Reduction. */
2275 (for cmp (simple_comparison)
2276 scmp (swapped_simple_comparison)
2278 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2279 /* Handle unfolded multiplication by zero. */
2280 (if (integer_zerop (@1))
2282 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2283 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2285 /* If @1 is negative we swap the sense of the comparison. */
2286 (if (tree_int_cst_sgn (@1) < 0)
2290 /* Simplify comparison of something with itself. For IEEE
2291 floating-point, we can only do some of these simplifications. */
2295 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
2296 || ! HONOR_NANS (@0))
2297 { constant_boolean_node (true, type); }
2298 (if (cmp != EQ_EXPR)
2304 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
2305 || ! HONOR_NANS (@0))
2306 { constant_boolean_node (false, type); })))
2307 (for cmp (unle unge uneq)
2310 { constant_boolean_node (true, type); }))
2311 (for cmp (unlt ungt)
2317 (if (!flag_trapping_math)
2318 { constant_boolean_node (false, type); }))
2320 /* Fold ~X op ~Y as Y op X. */
2321 (for cmp (simple_comparison)
2323 (cmp (bit_not@2 @0) (bit_not@3 @1))
2324 (if (single_use (@2) && single_use (@3))
2327 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
2328 (for cmp (simple_comparison)
2329 scmp (swapped_simple_comparison)
2331 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2332 (if (single_use (@2)
2333 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2334 (scmp @0 (bit_not @1)))))
2336 (for cmp (simple_comparison)
2337 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2339 (cmp (convert@2 @0) (convert? @1))
2340 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2341 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2342 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2343 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2344 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2347 tree type1 = TREE_TYPE (@1);
2348 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2350 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2351 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2352 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2353 type1 = float_type_node;
2354 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2355 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2356 type1 = double_type_node;
2359 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2360 ? TREE_TYPE (@0) : type1);
2362 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2363 (cmp (convert:newtype @0) (convert:newtype @1))))))
2367 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
2369 /* a CMP (-0) -> a CMP 0 */
2370 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2371 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2372 /* x != NaN is always true, other ops are always false. */
2373 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2374 && ! HONOR_SNANS (@1))
2375 { constant_boolean_node (cmp == NE_EXPR, type); })
2376 /* Fold comparisons against infinity. */
2377 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2378 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2381 REAL_VALUE_TYPE max;
2382 enum tree_code code = cmp;
2383 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2385 code = swap_tree_comparison (code);
2388 /* x > +Inf is always false, if with ignore sNANs. */
2389 (if (code == GT_EXPR
2390 && ! HONOR_SNANS (@0))
2391 { constant_boolean_node (false, type); })
2392 (if (code == LE_EXPR)
2393 /* x <= +Inf is always true, if we don't case about NaNs. */
2394 (if (! HONOR_NANS (@0))
2395 { constant_boolean_node (true, type); }
2396 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
2398 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2399 (if (code == EQ_EXPR || code == GE_EXPR)
2400 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2402 (lt @0 { build_real (TREE_TYPE (@0), max); })
2403 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2404 /* x < +Inf is always equal to x <= DBL_MAX. */
2405 (if (code == LT_EXPR)
2406 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2408 (ge @0 { build_real (TREE_TYPE (@0), max); })
2409 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2410 /* x != +Inf is always equal to !(x > DBL_MAX). */
2411 (if (code == NE_EXPR)
2412 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2413 (if (! HONOR_NANS (@0))
2415 (ge @0 { build_real (TREE_TYPE (@0), max); })
2416 (le @0 { build_real (TREE_TYPE (@0), max); }))
2418 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2419 { build_one_cst (type); })
2420 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2421 { build_one_cst (type); }))))))))))
2423 /* If this is a comparison of a real constant with a PLUS_EXPR
2424 or a MINUS_EXPR of a real constant, we can convert it into a
2425 comparison with a revised real constant as long as no overflow
2426 occurs when unsafe_math_optimizations are enabled. */
2427 (if (flag_unsafe_math_optimizations)
2428 (for op (plus minus)
2430 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2433 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2434 TREE_TYPE (@1), @2, @1);
2436 (if (tem && !TREE_OVERFLOW (tem))
2437 (cmp @0 { tem; }))))))
2439 /* Likewise, we can simplify a comparison of a real constant with
2440 a MINUS_EXPR whose first operand is also a real constant, i.e.
2441 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2442 floating-point types only if -fassociative-math is set. */
2443 (if (flag_associative_math)
2445 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
2446 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
2447 (if (tem && !TREE_OVERFLOW (tem))
2448 (cmp { tem; } @1)))))
2450 /* Fold comparisons against built-in math functions. */
2451 (if (flag_unsafe_math_optimizations
2452 && ! flag_errno_math)
2455 (cmp (sq @0) REAL_CST@1)
2457 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2459 /* sqrt(x) < y is always false, if y is negative. */
2460 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
2461 { constant_boolean_node (false, type); })
2462 /* sqrt(x) > y is always true, if y is negative and we
2463 don't care about NaNs, i.e. negative values of x. */
2464 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2465 { constant_boolean_node (true, type); })
2466 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2467 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
2468 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2470 /* sqrt(x) < 0 is always false. */
2471 (if (cmp == LT_EXPR)
2472 { constant_boolean_node (false, type); })
2473 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2474 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2475 { constant_boolean_node (true, type); })
2476 /* sqrt(x) <= 0 -> x == 0. */
2477 (if (cmp == LE_EXPR)
2479 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2480 == or !=. In the last case:
2482 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2484 if x is negative or NaN. Due to -funsafe-math-optimizations,
2485 the results for other x follow from natural arithmetic. */
2487 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2491 real_arithmetic (&c2, MULT_EXPR,
2492 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2493 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2495 (if (REAL_VALUE_ISINF (c2))
2496 /* sqrt(x) > y is x == +Inf, when y is very large. */
2497 (if (HONOR_INFINITIES (@0))
2498 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2499 { constant_boolean_node (false, type); })
2500 /* sqrt(x) > c is the same as x > c*c. */
2501 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2502 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2506 real_arithmetic (&c2, MULT_EXPR,
2507 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2508 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2510 (if (REAL_VALUE_ISINF (c2))
2512 /* sqrt(x) < y is always true, when y is a very large
2513 value and we don't care about NaNs or Infinities. */
2514 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2515 { constant_boolean_node (true, type); })
2516 /* sqrt(x) < y is x != +Inf when y is very large and we
2517 don't care about NaNs. */
2518 (if (! HONOR_NANS (@0))
2519 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2520 /* sqrt(x) < y is x >= 0 when y is very large and we
2521 don't care about Infinities. */
2522 (if (! HONOR_INFINITIES (@0))
2523 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2524 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2527 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2528 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2529 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2530 (if (! HONOR_NANS (@0))
2531 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2532 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2535 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2536 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
2538 /* Fold A /[ex] B CMP C to A CMP B * C. */
2541 (cmp (exact_div @0 @1) INTEGER_CST@2)
2542 (if (!integer_zerop (@1))
2543 (if (wi::eq_p (@2, 0))
2545 (if (TREE_CODE (@1) == INTEGER_CST)
2549 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2552 { constant_boolean_node (cmp == NE_EXPR, type); }
2553 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
2554 (for cmp (lt le gt ge)
2556 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
2557 (if (wi::gt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1))))
2561 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2564 { constant_boolean_node (wi::lt_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
2565 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
2566 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
2568 /* Unordered tests if either argument is a NaN. */
2570 (bit_ior (unordered @0 @0) (unordered @1 @1))
2571 (if (types_match (@0, @1))
2574 (bit_and (ordered @0 @0) (ordered @1 @1))
2575 (if (types_match (@0, @1))
2578 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2581 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2584 /* Simple range test simplifications. */
2585 /* A < B || A >= B -> true. */
2586 (for test1 (lt le le le ne ge)
2587 test2 (ge gt ge ne eq ne)
2589 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2590 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2591 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2592 { constant_boolean_node (true, type); })))
2593 /* A < B && A >= B -> false. */
2594 (for test1 (lt lt lt le ne eq)
2595 test2 (ge gt eq gt eq gt)
2597 (bit_and:c (test1 @0 @1) (test2 @0 @1))
2598 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2599 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2600 { constant_boolean_node (false, type); })))
2602 /* -A CMP -B -> B CMP A. */
2603 (for cmp (tcc_comparison)
2604 scmp (swapped_tcc_comparison)
2606 (cmp (negate @0) (negate @1))
2607 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2608 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2609 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2612 (cmp (negate @0) CONSTANT_CLASS_P@1)
2613 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2614 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2615 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2616 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
2617 (if (tem && !TREE_OVERFLOW (tem))
2618 (scmp @0 { tem; }))))))
2620 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2623 (op (abs @0) zerop@1)
2626 /* From fold_sign_changed_comparison and fold_widened_comparison. */
2627 (for cmp (simple_comparison)
2629 (cmp (convert@0 @00) (convert?@1 @10))
2630 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2631 /* Disable this optimization if we're casting a function pointer
2632 type on targets that require function pointer canonicalization. */
2633 && !(targetm.have_canonicalize_funcptr_for_compare ()
2634 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2635 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2637 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2638 && (TREE_CODE (@10) == INTEGER_CST
2639 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2640 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2643 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2644 /* ??? The special-casing of INTEGER_CST conversion was in the original
2645 code and here to avoid a spurious overflow flag on the resulting
2646 constant which fold_convert produces. */
2647 (if (TREE_CODE (@1) == INTEGER_CST)
2648 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2649 TREE_OVERFLOW (@1)); })
2650 (cmp @00 (convert @1)))
2652 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2653 /* If possible, express the comparison in the shorter mode. */
2654 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
2655 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
2656 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
2657 && TYPE_UNSIGNED (TREE_TYPE (@00))))
2658 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2659 || ((TYPE_PRECISION (TREE_TYPE (@00))
2660 >= TYPE_PRECISION (TREE_TYPE (@10)))
2661 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2662 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2663 || (TREE_CODE (@10) == INTEGER_CST
2664 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2665 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2666 (cmp @00 (convert @10))
2667 (if (TREE_CODE (@10) == INTEGER_CST
2668 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2669 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2672 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2673 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2674 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2675 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2677 (if (above || below)
2678 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2679 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2680 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2681 { constant_boolean_node (above ? true : false, type); }
2682 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2683 { constant_boolean_node (above ? false : true, type); }))))))))))))
2686 /* A local variable can never be pointed to by
2687 the default SSA name of an incoming parameter.
2688 SSA names are canonicalized to 2nd place. */
2690 (cmp addr@0 SSA_NAME@1)
2691 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2692 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2693 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2694 (if (TREE_CODE (base) == VAR_DECL
2695 && auto_var_in_fn_p (base, current_function_decl))
2696 (if (cmp == NE_EXPR)
2697 { constant_boolean_node (true, type); }
2698 { constant_boolean_node (false, type); }))))))
2700 /* Equality compare simplifications from fold_binary */
2703 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2704 Similarly for NE_EXPR. */
2706 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2707 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2708 && wi::bit_and_not (@1, @2) != 0)
2709 { constant_boolean_node (cmp == NE_EXPR, type); }))
2711 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2713 (cmp (bit_xor @0 @1) integer_zerop)
2716 /* (X ^ Y) == Y becomes X == 0.
2717 Likewise (X ^ Y) == X becomes Y == 0. */
2719 (cmp:c (bit_xor:c @0 @1) @0)
2720 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2722 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2724 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2725 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
2726 (cmp @0 (bit_xor @1 (convert @2)))))
2729 (cmp (convert? addr@0) integer_zerop)
2730 (if (tree_single_nonzero_warnv_p (@0, NULL))
2731 { constant_boolean_node (cmp == NE_EXPR, type); })))
2733 /* If we have (A & C) == C where C is a power of 2, convert this into
2734 (A & C) != 0. Similarly for NE_EXPR. */
2738 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2739 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2741 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
2742 convert this into a shift followed by ANDing with D. */
2745 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
2746 integer_pow2p@2 integer_zerop)
2748 int shift = wi::exact_log2 (@2) - wi::exact_log2 (@1);
2752 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
2754 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
2756 /* If we have (A & C) != 0 where C is the sign bit of A, convert
2757 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2761 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2762 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2763 && (TYPE_PRECISION (TREE_TYPE (@0))
2764 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2765 && element_precision (@2) >= element_precision (@0)
2766 && wi::only_sign_bit_p (@1, element_precision (@0)))
2767 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2768 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2770 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
2771 this into a right shift or sign extension followed by ANDing with C. */
2774 (lt @0 integer_zerop)
2775 integer_pow2p@1 integer_zerop)
2776 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
2778 int shift = element_precision (@0) - wi::exact_log2 (@1) - 1;
2782 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
2784 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
2785 sign extension followed by AND with C will achieve the effect. */
2786 (bit_and (convert @0) @1)))))
2788 /* When the addresses are not directly of decls compare base and offset.
2789 This implements some remaining parts of fold_comparison address
2790 comparisons but still no complete part of it. Still it is good
2791 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2792 (for cmp (simple_comparison)
2794 (cmp (convert1?@2 addr@0) (convert2? addr@1))
2797 HOST_WIDE_INT off0, off1;
2798 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2799 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2800 if (base0 && TREE_CODE (base0) == MEM_REF)
2802 off0 += mem_ref_offset (base0).to_short_addr ();
2803 base0 = TREE_OPERAND (base0, 0);
2805 if (base1 && TREE_CODE (base1) == MEM_REF)
2807 off1 += mem_ref_offset (base1).to_short_addr ();
2808 base1 = TREE_OPERAND (base1, 0);
2811 (if (base0 && base1)
2815 /* Punt in GENERIC on variables with value expressions;
2816 the value expressions might point to fields/elements
2817 of other vars etc. */
2819 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
2820 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
2822 else if (decl_in_symtab_p (base0)
2823 && decl_in_symtab_p (base1))
2824 equal = symtab_node::get_create (base0)
2825 ->equal_address_to (symtab_node::get_create (base1));
2826 else if ((DECL_P (base0)
2827 || TREE_CODE (base0) == SSA_NAME
2828 || TREE_CODE (base0) == STRING_CST)
2830 || TREE_CODE (base1) == SSA_NAME
2831 || TREE_CODE (base1) == STRING_CST))
2832 equal = (base0 == base1);
2835 && (cmp == EQ_EXPR || cmp == NE_EXPR
2836 /* If the offsets are equal we can ignore overflow. */
2838 || POINTER_TYPE_OVERFLOW_UNDEFINED
2839 /* Or if we compare using pointers to decls or strings. */
2840 || (POINTER_TYPE_P (TREE_TYPE (@2))
2841 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
2843 (if (cmp == EQ_EXPR)
2844 { constant_boolean_node (off0 == off1, type); })
2845 (if (cmp == NE_EXPR)
2846 { constant_boolean_node (off0 != off1, type); })
2847 (if (cmp == LT_EXPR)
2848 { constant_boolean_node (off0 < off1, type); })
2849 (if (cmp == LE_EXPR)
2850 { constant_boolean_node (off0 <= off1, type); })
2851 (if (cmp == GE_EXPR)
2852 { constant_boolean_node (off0 >= off1, type); })
2853 (if (cmp == GT_EXPR)
2854 { constant_boolean_node (off0 > off1, type); }))
2856 && DECL_P (base0) && DECL_P (base1)
2857 /* If we compare this as integers require equal offset. */
2858 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2861 (if (cmp == EQ_EXPR)
2862 { constant_boolean_node (false, type); })
2863 (if (cmp == NE_EXPR)
2864 { constant_boolean_node (true, type); })))))))))
2866 /* Simplify pointer equality compares using PTA. */
2870 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2871 && ptrs_compare_unequal (@0, @1))
2872 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
2874 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
2875 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
2876 Disable the transform if either operand is pointer to function.
2877 This broke pr22051-2.c for arm where function pointer
2878 canonicalizaion is not wanted. */
2882 (cmp (convert @0) INTEGER_CST@1)
2883 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
2884 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2885 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
2886 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
2887 (cmp @0 (convert @1)))))
2889 /* Non-equality compare simplifications from fold_binary */
2890 (for cmp (lt gt le ge)
2891 /* Comparisons with the highest or lowest possible integer of
2892 the specified precision will have known values. */
2894 (cmp (convert?@2 @0) INTEGER_CST@1)
2895 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2896 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
2899 tree arg1_type = TREE_TYPE (@1);
2900 unsigned int prec = TYPE_PRECISION (arg1_type);
2901 wide_int max = wi::max_value (arg1_type);
2902 wide_int signed_max = wi::max_value (prec, SIGNED);
2903 wide_int min = wi::min_value (arg1_type);
2906 (if (wi::eq_p (@1, max))
2908 (if (cmp == GT_EXPR)
2909 { constant_boolean_node (false, type); })
2910 (if (cmp == GE_EXPR)
2912 (if (cmp == LE_EXPR)
2913 { constant_boolean_node (true, type); })
2914 (if (cmp == LT_EXPR)
2916 (if (wi::eq_p (@1, min))
2918 (if (cmp == LT_EXPR)
2919 { constant_boolean_node (false, type); })
2920 (if (cmp == LE_EXPR)
2922 (if (cmp == GE_EXPR)
2923 { constant_boolean_node (true, type); })
2924 (if (cmp == GT_EXPR)
2926 (if (wi::eq_p (@1, max - 1))
2928 (if (cmp == GT_EXPR)
2929 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2930 (if (cmp == LE_EXPR)
2931 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2932 (if (wi::eq_p (@1, min + 1))
2934 (if (cmp == GE_EXPR)
2935 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2936 (if (cmp == LT_EXPR)
2937 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2938 (if (wi::eq_p (@1, signed_max)
2939 && TYPE_UNSIGNED (arg1_type)
2940 /* We will flip the signedness of the comparison operator
2941 associated with the mode of @1, so the sign bit is
2942 specified by this mode. Check that @1 is the signed
2943 max associated with this sign bit. */
2944 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2945 /* signed_type does not work on pointer types. */
2946 && INTEGRAL_TYPE_P (arg1_type))
2947 /* The following case also applies to X < signed_max+1
2948 and X >= signed_max+1 because previous transformations. */
2949 (if (cmp == LE_EXPR || cmp == GT_EXPR)
2950 (with { tree st = signed_type_for (arg1_type); }
2951 (if (cmp == LE_EXPR)
2952 (ge (convert:st @0) { build_zero_cst (st); })
2953 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2955 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2956 /* If the second operand is NaN, the result is constant. */
2959 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2960 && (cmp != LTGT_EXPR || ! flag_trapping_math))
2961 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
2962 ? false : true, type); })))
2964 /* bool_var != 0 becomes bool_var. */
2966 (ne @0 integer_zerop)
2967 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2968 && types_match (type, TREE_TYPE (@0)))
2970 /* bool_var == 1 becomes bool_var. */
2972 (eq @0 integer_onep)
2973 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2974 && types_match (type, TREE_TYPE (@0)))
2977 bool_var == 0 becomes !bool_var or
2978 bool_var != 1 becomes !bool_var
2979 here because that only is good in assignment context as long
2980 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2981 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2982 clearly less optimal and which we'll transform again in forwprop. */
2984 /* When one argument is a constant, overflow detection can be simplified.
2985 Currently restricted to single use so as not to interfere too much with
2986 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
2987 A + CST CMP A -> A CMP' CST' */
2988 (for cmp (lt le ge gt)
2991 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
2992 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2993 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2996 (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
2997 (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
2999 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3000 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3001 expects the long form, so we restrict the transformation for now. */
3004 (cmp:c (minus@2 @0 @1) @0)
3005 (if (single_use (@2)
3006 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3007 && TYPE_UNSIGNED (TREE_TYPE (@0))
3008 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3011 /* Testing for overflow is unnecessary if we already know the result. */
3016 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3017 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3018 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3019 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3024 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3025 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3026 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3027 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3029 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3030 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3034 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3035 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3036 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3037 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3039 /* Simplification of math builtins. These rules must all be optimizations
3040 as well as IL simplifications. If there is a possibility that the new
3041 form could be a pessimization, the rule should go in the canonicalization
3042 section that follows this one.
3044 Rules can generally go in this section if they satisfy one of
3047 - the rule describes an identity
3049 - the rule replaces calls with something as simple as addition or
3052 - the rule contains unary calls only and simplifies the surrounding
3053 arithmetic. (The idea here is to exclude non-unary calls in which
3054 one operand is constant and in which the call is known to be cheap
3055 when the operand has that value.) */
3057 (if (flag_unsafe_math_optimizations)
3058 /* Simplify sqrt(x) * sqrt(x) -> x. */
3060 (mult (SQRT@1 @0) @1)
3061 (if (!HONOR_SNANS (type))
3064 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3065 (for root (SQRT CBRT)
3067 (mult (root:s @0) (root:s @1))
3068 (root (mult @0 @1))))
3070 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3071 (for exps (EXP EXP2 EXP10 POW10)
3073 (mult (exps:s @0) (exps:s @1))
3074 (exps (plus @0 @1))))
3076 /* Simplify a/root(b/c) into a*root(c/b). */
3077 (for root (SQRT CBRT)
3079 (rdiv @0 (root:s (rdiv:s @1 @2)))
3080 (mult @0 (root (rdiv @2 @1)))))
3082 /* Simplify x/expN(y) into x*expN(-y). */
3083 (for exps (EXP EXP2 EXP10 POW10)
3085 (rdiv @0 (exps:s @1))
3086 (mult @0 (exps (negate @1)))))
3088 (for logs (LOG LOG2 LOG10 LOG10)
3089 exps (EXP EXP2 EXP10 POW10)
3090 /* logN(expN(x)) -> x. */
3094 /* expN(logN(x)) -> x. */
3099 /* Optimize logN(func()) for various exponential functions. We
3100 want to determine the value "x" and the power "exponent" in
3101 order to transform logN(x**exponent) into exponent*logN(x). */
3102 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3103 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3106 (if (SCALAR_FLOAT_TYPE_P (type))
3112 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3113 x = build_real_truncate (type, dconst_e ());
3116 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3117 x = build_real (type, dconst2);
3121 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3123 REAL_VALUE_TYPE dconst10;
3124 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3125 x = build_real (type, dconst10);
3132 (mult (logs { x; }) @0)))))
3140 (if (SCALAR_FLOAT_TYPE_P (type))
3146 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3147 x = build_real (type, dconsthalf);
3150 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3151 x = build_real_truncate (type, dconst_third ());
3157 (mult { x; } (logs @0))))))
3159 /* logN(pow(x,exponent)) -> exponent*logN(x). */
3160 (for logs (LOG LOG2 LOG10)
3164 (mult @1 (logs @0))))
3169 exps (EXP EXP2 EXP10 POW10)
3170 /* sqrt(expN(x)) -> expN(x*0.5). */
3173 (exps (mult @0 { build_real (type, dconsthalf); })))
3174 /* cbrt(expN(x)) -> expN(x/3). */
3177 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3178 /* pow(expN(x), y) -> expN(x*y). */
3181 (exps (mult @0 @1))))
3183 /* tan(atan(x)) -> x. */
3190 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3192 (CABS (complex:C @0 real_zerop@1))
3195 /* trunc(trunc(x)) -> trunc(x), etc. */
3196 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3200 /* f(x) -> x if x is integer valued and f does nothing for such values. */
3201 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3203 (fns integer_valued_real_p@0)
3206 /* hypot(x,0) and hypot(0,x) -> abs(x). */
3208 (HYPOT:c @0 real_zerop@1)
3211 /* pow(1,x) -> 1. */
3213 (POW real_onep@0 @1)
3217 /* copysign(x,x) -> x. */
3222 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3223 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3226 (for scale (LDEXP SCALBN SCALBLN)
3227 /* ldexp(0, x) -> 0. */
3229 (scale real_zerop@0 @1)
3231 /* ldexp(x, 0) -> x. */
3233 (scale @0 integer_zerop@1)
3235 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3237 (scale REAL_CST@0 @1)
3238 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3241 /* Canonicalization of sequences of math builtins. These rules represent
3242 IL simplifications but are not necessarily optimizations.
3244 The sincos pass is responsible for picking "optimal" implementations
3245 of math builtins, which may be more complicated and can sometimes go
3246 the other way, e.g. converting pow into a sequence of sqrts.
3247 We only want to do these canonicalizations before the pass has run. */
3249 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3250 /* Simplify tan(x) * cos(x) -> sin(x). */
3252 (mult:c (TAN:s @0) (COS:s @0))
3255 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3257 (mult:c @0 (POW:s @0 REAL_CST@1))
3258 (if (!TREE_OVERFLOW (@1))
3259 (POW @0 (plus @1 { build_one_cst (type); }))))
3261 /* Simplify sin(x) / cos(x) -> tan(x). */
3263 (rdiv (SIN:s @0) (COS:s @0))
3266 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3268 (rdiv (COS:s @0) (SIN:s @0))
3269 (rdiv { build_one_cst (type); } (TAN @0)))
3271 /* Simplify sin(x) / tan(x) -> cos(x). */
3273 (rdiv (SIN:s @0) (TAN:s @0))
3274 (if (! HONOR_NANS (@0)
3275 && ! HONOR_INFINITIES (@0))
3278 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3280 (rdiv (TAN:s @0) (SIN:s @0))
3281 (if (! HONOR_NANS (@0)
3282 && ! HONOR_INFINITIES (@0))
3283 (rdiv { build_one_cst (type); } (COS @0))))
3285 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3287 (mult (POW:s @0 @1) (POW:s @0 @2))
3288 (POW @0 (plus @1 @2)))
3290 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3292 (mult (POW:s @0 @1) (POW:s @2 @1))
3293 (POW (mult @0 @2) @1))
3295 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3297 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3298 (POWI (mult @0 @2) @1))
3300 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3302 (rdiv (POW:s @0 REAL_CST@1) @0)
3303 (if (!TREE_OVERFLOW (@1))
3304 (POW @0 (minus @1 { build_one_cst (type); }))))
3306 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3308 (rdiv @0 (POW:s @1 @2))
3309 (mult @0 (POW @1 (negate @2))))
3314 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3317 (pows @0 { build_real (type, dconst_quarter ()); }))
3318 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3321 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3322 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3325 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3326 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3328 (cbrts (cbrts tree_expr_nonnegative_p@0))
3329 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3330 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3332 (sqrts (pows @0 @1))
3333 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3334 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3336 (cbrts (pows tree_expr_nonnegative_p@0 @1))
3337 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3338 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3340 (pows (sqrts @0) @1)
3341 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3342 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3344 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3345 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3346 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3348 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3349 (pows @0 (mult @1 @2))))
3351 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3353 (CABS (complex @0 @0))
3354 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3356 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3359 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3361 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3366 (cexps compositional_complex@0)
3367 (if (targetm.libc_has_function (function_c99_math_complex))
3369 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3370 (mult @1 (imagpart @2)))))))
3372 (if (canonicalize_math_p ())
3373 /* floor(x) -> trunc(x) if x is nonnegative. */
3377 (floors tree_expr_nonnegative_p@0)
3380 (match double_value_p
3382 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3383 (for froms (BUILT_IN_TRUNCL
3395 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3396 (if (optimize && canonicalize_math_p ())
3398 (froms (convert double_value_p@0))
3399 (convert (tos @0)))))
3401 (match float_value_p
3403 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3404 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3405 BUILT_IN_FLOORL BUILT_IN_FLOOR
3406 BUILT_IN_CEILL BUILT_IN_CEIL
3407 BUILT_IN_ROUNDL BUILT_IN_ROUND
3408 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3409 BUILT_IN_RINTL BUILT_IN_RINT)
3410 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3411 BUILT_IN_FLOORF BUILT_IN_FLOORF
3412 BUILT_IN_CEILF BUILT_IN_CEILF
3413 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3414 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3415 BUILT_IN_RINTF BUILT_IN_RINTF)
3416 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3418 (if (optimize && canonicalize_math_p ()
3419 && targetm.libc_has_function (function_c99_misc))
3421 (froms (convert float_value_p@0))
3422 (convert (tos @0)))))
3424 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
3425 tos (XFLOOR XCEIL XROUND XRINT)
3426 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3427 (if (optimize && canonicalize_math_p ())
3429 (froms (convert double_value_p@0))
3432 (for froms (XFLOORL XCEILL XROUNDL XRINTL
3433 XFLOOR XCEIL XROUND XRINT)
3434 tos (XFLOORF XCEILF XROUNDF XRINTF)
3435 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3437 (if (optimize && canonicalize_math_p ())
3439 (froms (convert float_value_p@0))
3442 (if (canonicalize_math_p ())
3443 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3444 (for floors (IFLOOR LFLOOR LLFLOOR)
3446 (floors tree_expr_nonnegative_p@0)
3449 (if (canonicalize_math_p ())
3450 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
3451 (for fns (IFLOOR LFLOOR LLFLOOR
3453 IROUND LROUND LLROUND)
3455 (fns integer_valued_real_p@0)
3457 (if (!flag_errno_math)
3458 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
3459 (for rints (IRINT LRINT LLRINT)
3461 (rints integer_valued_real_p@0)
3464 (if (canonicalize_math_p ())
3465 (for ifn (IFLOOR ICEIL IROUND IRINT)
3466 lfn (LFLOOR LCEIL LROUND LRINT)
3467 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
3468 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
3469 sizeof (int) == sizeof (long). */
3470 (if (TYPE_PRECISION (integer_type_node)
3471 == TYPE_PRECISION (long_integer_type_node))
3474 (lfn:long_integer_type_node @0)))
3475 /* Canonicalize llround (x) to lround (x) on LP64 targets where
3476 sizeof (long long) == sizeof (long). */
3477 (if (TYPE_PRECISION (long_long_integer_type_node)
3478 == TYPE_PRECISION (long_integer_type_node))
3481 (lfn:long_integer_type_node @0)))))
3483 /* cproj(x) -> x if we're ignoring infinities. */
3486 (if (!HONOR_INFINITIES (type))
3489 /* If the real part is inf and the imag part is known to be
3490 nonnegative, return (inf + 0i). */
3492 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
3493 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
3494 { build_complex_inf (type, false); }))
3496 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
3498 (CPROJ (complex @0 REAL_CST@1))
3499 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
3500 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
3506 (pows @0 REAL_CST@1)
3508 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
3509 REAL_VALUE_TYPE tmp;
3512 /* pow(x,0) -> 1. */
3513 (if (real_equal (value, &dconst0))
3514 { build_real (type, dconst1); })
3515 /* pow(x,1) -> x. */
3516 (if (real_equal (value, &dconst1))
3518 /* pow(x,-1) -> 1/x. */
3519 (if (real_equal (value, &dconstm1))
3520 (rdiv { build_real (type, dconst1); } @0))
3521 /* pow(x,0.5) -> sqrt(x). */
3522 (if (flag_unsafe_math_optimizations
3523 && canonicalize_math_p ()
3524 && real_equal (value, &dconsthalf))
3526 /* pow(x,1/3) -> cbrt(x). */
3527 (if (flag_unsafe_math_optimizations
3528 && canonicalize_math_p ()
3529 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
3530 real_equal (value, &tmp)))
3533 /* powi(1,x) -> 1. */
3535 (POWI real_onep@0 @1)
3539 (POWI @0 INTEGER_CST@1)
3541 /* powi(x,0) -> 1. */
3542 (if (wi::eq_p (@1, 0))
3543 { build_real (type, dconst1); })
3544 /* powi(x,1) -> x. */
3545 (if (wi::eq_p (@1, 1))
3547 /* powi(x,-1) -> 1/x. */
3548 (if (wi::eq_p (@1, -1))
3549 (rdiv { build_real (type, dconst1); } @0))))
3551 /* Narrowing of arithmetic and logical operations.
3553 These are conceptually similar to the transformations performed for
3554 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
3555 term we want to move all that code out of the front-ends into here. */
3557 /* If we have a narrowing conversion of an arithmetic operation where
3558 both operands are widening conversions from the same type as the outer
3559 narrowing conversion. Then convert the innermost operands to a suitable
3560 unsigned type (to avoid introducing undefined behavior), perform the
3561 operation and convert the result to the desired type. */
3562 (for op (plus minus)
3564 (convert (op:s (convert@2 @0) (convert?@3 @1)))
3565 (if (INTEGRAL_TYPE_P (type)
3566 /* We check for type compatibility between @0 and @1 below,
3567 so there's no need to check that @1/@3 are integral types. */
3568 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3569 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3570 /* The precision of the type of each operand must match the
3571 precision of the mode of each operand, similarly for the
3573 && (TYPE_PRECISION (TREE_TYPE (@0))
3574 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3575 && (TYPE_PRECISION (TREE_TYPE (@1))
3576 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3577 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3578 /* The inner conversion must be a widening conversion. */
3579 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3580 && types_match (@0, type)
3581 && (types_match (@0, @1)
3582 /* Or the second operand is const integer or converted const
3583 integer from valueize. */
3584 || TREE_CODE (@1) == INTEGER_CST))
3585 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3586 (op @0 (convert @1))
3587 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3588 (convert (op (convert:utype @0)
3589 (convert:utype @1))))))))
3591 /* This is another case of narrowing, specifically when there's an outer
3592 BIT_AND_EXPR which masks off bits outside the type of the innermost
3593 operands. Like the previous case we have to convert the operands
3594 to unsigned types to avoid introducing undefined behavior for the
3595 arithmetic operation. */
3596 (for op (minus plus)
3598 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3599 (if (INTEGRAL_TYPE_P (type)
3600 /* We check for type compatibility between @0 and @1 below,
3601 so there's no need to check that @1/@3 are integral types. */
3602 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3603 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3604 /* The precision of the type of each operand must match the
3605 precision of the mode of each operand, similarly for the
3607 && (TYPE_PRECISION (TREE_TYPE (@0))
3608 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3609 && (TYPE_PRECISION (TREE_TYPE (@1))
3610 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3611 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3612 /* The inner conversion must be a widening conversion. */
3613 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3614 && types_match (@0, @1)
3615 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3616 <= TYPE_PRECISION (TREE_TYPE (@0)))
3617 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3618 true, TYPE_PRECISION (type))) == 0))
3619 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3620 (with { tree ntype = TREE_TYPE (@0); }
3621 (convert (bit_and (op @0 @1) (convert:ntype @4))))
3622 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3623 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3624 (convert:utype @4))))))))
3626 /* Transform (@0 < @1 and @0 < @2) to use min,
3627 (@0 > @1 and @0 > @2) to use max */
3628 (for op (lt le gt ge)
3629 ext (min min max max)
3631 (bit_and (op:cs @0 @1) (op:cs @0 @2))
3632 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3633 && TREE_CODE (@0) != INTEGER_CST)
3634 (op @0 (ext @1 @2)))))
3637 /* signbit(x) -> 0 if x is nonnegative. */
3638 (SIGNBIT tree_expr_nonnegative_p@0)
3639 { integer_zero_node; })
3642 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3644 (if (!HONOR_SIGNED_ZEROS (@0))
3645 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
3647 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
3649 (for op (plus minus)
3652 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3653 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3654 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3655 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
3656 && !TYPE_SATURATING (TREE_TYPE (@0)))
3657 (with { tree res = int_const_binop (rop, @2, @1); }
3658 (if (TREE_OVERFLOW (res))
3659 { constant_boolean_node (cmp == NE_EXPR, type); }
3660 (if (single_use (@3))
3661 (cmp @0 { res; }))))))))
3662 (for cmp (lt le gt ge)
3663 (for op (plus minus)
3666 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3667 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3668 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3669 (with { tree res = int_const_binop (rop, @2, @1); }
3670 (if (TREE_OVERFLOW (res))
3672 fold_overflow_warning (("assuming signed overflow does not occur "
3673 "when simplifying conditional to constant"),
3674 WARN_STRICT_OVERFLOW_CONDITIONAL);
3675 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
3676 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
3677 bool ovf_high = wi::lt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
3678 != (op == MINUS_EXPR);
3679 constant_boolean_node (less == ovf_high, type);
3681 (if (single_use (@3))
3684 fold_overflow_warning (("assuming signed overflow does not occur "
3685 "when changing X +- C1 cmp C2 to "
3687 WARN_STRICT_OVERFLOW_COMPARISON);
3689 (cmp @0 { res; })))))))))
3691 /* Canonicalizations of BIT_FIELD_REFs. */
3694 (BIT_FIELD_REF @0 @1 @2)
3696 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
3697 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3699 (if (integer_zerop (@2))
3700 (view_convert (realpart @0)))
3701 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3702 (view_convert (imagpart @0)))))
3703 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3704 && INTEGRAL_TYPE_P (type)
3705 /* On GIMPLE this should only apply to register arguments. */
3706 && (! GIMPLE || is_gimple_reg (@0))
3707 /* A bit-field-ref that referenced the full argument can be stripped. */
3708 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
3709 && integer_zerop (@2))
3710 /* Low-parts can be reduced to integral conversions.
3711 ??? The following doesn't work for PDP endian. */
3712 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
3713 /* Don't even think about BITS_BIG_ENDIAN. */
3714 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
3715 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
3716 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
3717 ? (TYPE_PRECISION (TREE_TYPE (@0))
3718 - TYPE_PRECISION (type))
3722 /* Simplify vector extracts. */
3725 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
3726 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
3727 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
3728 || (VECTOR_TYPE_P (type)
3729 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
3732 tree ctor = (TREE_CODE (@0) == SSA_NAME
3733 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
3734 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
3735 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
3736 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
3737 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
3740 && (idx % width) == 0
3742 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
3747 /* Constructor elements can be subvectors. */
3748 unsigned HOST_WIDE_INT k = 1;
3749 if (CONSTRUCTOR_NELTS (ctor) != 0)
3751 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
3752 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
3753 k = TYPE_VECTOR_SUBPARTS (cons_elem);
3757 /* We keep an exact subset of the constructor elements. */
3758 (if ((idx % k) == 0 && (n % k) == 0)
3759 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3760 { build_constructor (type, NULL); }
3767 (if (idx < CONSTRUCTOR_NELTS (ctor))
3768 { CONSTRUCTOR_ELT (ctor, idx)->value; }
3769 { build_zero_cst (type); })
3771 vec<constructor_elt, va_gc> *vals;
3772 vec_alloc (vals, n);
3773 for (unsigned i = 0;
3774 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
3775 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
3776 CONSTRUCTOR_ELT (ctor, idx + i)->value);
3777 build_constructor (type, vals);
3779 /* The bitfield references a single constructor element. */
3780 (if (idx + n <= (idx / k + 1) * k)
3782 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
3783 { build_zero_cst (type); })
3785 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
3786 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
3787 @1 { bitsize_int ((idx % k) * width); })))))))))