1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
37 #include "splay-tree.h"
39 #include "langhooks.h"
42 /* The alias sets assigned to MEMs assist the back-end in determining
43 which MEMs can alias which other MEMs. In general, two MEMs in
44 different alias sets cannot alias each other, with one important
45 exception. Consider something like:
47 struct S {int i; double d; };
49 a store to an `S' can alias something of either type `int' or type
50 `double'. (However, a store to an `int' cannot alias a `double'
51 and vice versa.) We indicate this via a tree structure that looks
59 (The arrows are directed and point downwards.)
60 In this situation we say the alias set for `struct S' is the
61 `superset' and that those for `int' and `double' are `subsets'.
63 To see whether two alias sets can point to the same memory, we must
64 see if either alias set is a subset of the other. We need not trace
65 past immediate descendents, however, since we propagate all
66 grandchildren up one level.
68 Alias set zero is implicitly a superset of all other alias sets.
69 However, this is no actual entry for alias set zero. It is an
70 error to attempt to explicitly construct a subset of zero. */
72 typedef struct alias_set_entry
74 /* The alias set number, as stored in MEM_ALIAS_SET. */
75 HOST_WIDE_INT alias_set
;
77 /* The children of the alias set. These are not just the immediate
78 children, but, in fact, all descendents. So, if we have:
80 struct T { struct S s; float f; }
82 continuing our example above, the children here will be all of
83 `int', `double', `float', and `struct S'. */
86 /* Nonzero if would have a child of zero: this effectively makes this
87 alias set the same as alias set zero. */
91 static int rtx_equal_for_memref_p
PARAMS ((rtx
, rtx
));
92 static rtx find_symbolic_term
PARAMS ((rtx
));
93 rtx get_addr
PARAMS ((rtx
));
94 static int memrefs_conflict_p
PARAMS ((int, rtx
, int, rtx
,
96 static void record_set
PARAMS ((rtx
, rtx
, void *));
97 static rtx find_base_term
PARAMS ((rtx
));
98 static int base_alias_check
PARAMS ((rtx
, rtx
, enum machine_mode
,
100 static rtx find_base_value
PARAMS ((rtx
));
101 static int mems_in_disjoint_alias_sets_p
PARAMS ((rtx
, rtx
));
102 static int insert_subset_children
PARAMS ((splay_tree_node
, void*));
103 static tree find_base_decl
PARAMS ((tree
));
104 static alias_set_entry get_alias_set_entry
PARAMS ((HOST_WIDE_INT
));
105 static rtx fixed_scalar_and_varying_struct_p
PARAMS ((rtx
, rtx
, rtx
, rtx
,
106 int (*) (rtx
, int)));
107 static int aliases_everything_p
PARAMS ((rtx
));
108 static bool nonoverlapping_component_refs_p
PARAMS ((tree
, tree
));
109 static tree decl_for_component_ref
PARAMS ((tree
));
110 static rtx adjust_offset_for_component_ref
PARAMS ((tree
, rtx
));
111 static int nonoverlapping_memrefs_p
PARAMS ((rtx
, rtx
));
112 static int write_dependence_p
PARAMS ((rtx
, rtx
, int));
114 static int nonlocal_mentioned_p_1
PARAMS ((rtx
*, void *));
115 static int nonlocal_mentioned_p
PARAMS ((rtx
));
116 static int nonlocal_referenced_p_1
PARAMS ((rtx
*, void *));
117 static int nonlocal_referenced_p
PARAMS ((rtx
));
118 static int nonlocal_set_p_1
PARAMS ((rtx
*, void *));
119 static int nonlocal_set_p
PARAMS ((rtx
));
121 /* Set up all info needed to perform alias analysis on memory references. */
123 /* Returns the size in bytes of the mode of X. */
124 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
126 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
127 different alias sets. We ignore alias sets in functions making use
128 of variable arguments because the va_arg macros on some systems are
130 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
131 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
133 /* Cap the number of passes we make over the insns propagating alias
134 information through set chains. 10 is a completely arbitrary choice. */
135 #define MAX_ALIAS_LOOP_PASSES 10
137 /* reg_base_value[N] gives an address to which register N is related.
138 If all sets after the first add or subtract to the current value
139 or otherwise modify it so it does not point to a different top level
140 object, reg_base_value[N] is equal to the address part of the source
143 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
144 expressions represent certain special values: function arguments and
145 the stack, frame, and argument pointers.
147 The contents of an ADDRESS is not normally used, the mode of the
148 ADDRESS determines whether the ADDRESS is a function argument or some
149 other special value. Pointer equality, not rtx_equal_p, determines whether
150 two ADDRESS expressions refer to the same base address.
152 The only use of the contents of an ADDRESS is for determining if the
153 current function performs nonlocal memory memory references for the
154 purposes of marking the function as a constant function. */
156 static GTY((length ("reg_base_value_size"))) rtx
*reg_base_value
;
157 static rtx
*new_reg_base_value
;
158 static unsigned int reg_base_value_size
; /* size of reg_base_value array */
160 /* Static hunks of RTL used by the aliasing code; these are initialized
161 once per function to avoid unnecessary RTL allocations. */
162 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
164 #define REG_BASE_VALUE(X) \
165 (REGNO (X) < reg_base_value_size \
166 ? reg_base_value[REGNO (X)] : 0)
168 /* Vector of known invariant relationships between registers. Set in
169 loop unrolling. Indexed by register number, if nonzero the value
170 is an expression describing this register in terms of another.
172 The length of this array is REG_BASE_VALUE_SIZE.
174 Because this array contains only pseudo registers it has no effect
176 static rtx
*alias_invariant
;
178 /* Vector indexed by N giving the initial (unchanging) value known for
179 pseudo-register N. This array is initialized in
180 init_alias_analysis, and does not change until end_alias_analysis
182 rtx
*reg_known_value
;
184 /* Indicates number of valid entries in reg_known_value. */
185 static unsigned int reg_known_value_size
;
187 /* Vector recording for each reg_known_value whether it is due to a
188 REG_EQUIV note. Future passes (viz., reload) may replace the
189 pseudo with the equivalent expression and so we account for the
190 dependences that would be introduced if that happens.
192 The REG_EQUIV notes created in assign_parms may mention the arg
193 pointer, and there are explicit insns in the RTL that modify the
194 arg pointer. Thus we must ensure that such insns don't get
195 scheduled across each other because that would invalidate the
196 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
197 wrong, but solving the problem in the scheduler will likely give
198 better code, so we do it here. */
199 char *reg_known_equiv_p
;
201 /* True when scanning insns from the start of the rtl to the
202 NOTE_INSN_FUNCTION_BEG note. */
203 static bool copying_arguments
;
205 /* The splay-tree used to store the various alias set entries. */
206 static splay_tree alias_sets
;
208 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
209 such an entry, or NULL otherwise. */
211 static alias_set_entry
212 get_alias_set_entry (alias_set
)
213 HOST_WIDE_INT alias_set
;
216 = splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
218 return sn
!= 0 ? ((alias_set_entry
) sn
->value
) : 0;
221 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
222 the two MEMs cannot alias each other. */
225 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
229 #ifdef ENABLE_CHECKING
230 /* Perform a basic sanity check. Namely, that there are no alias sets
231 if we're not using strict aliasing. This helps to catch bugs
232 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
233 where a MEM is allocated in some way other than by the use of
234 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
235 use alias sets to indicate that spilled registers cannot alias each
236 other, we might need to remove this check. */
237 if (! flag_strict_aliasing
238 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
242 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
245 /* Insert the NODE into the splay tree given by DATA. Used by
246 record_alias_subset via splay_tree_foreach. */
249 insert_subset_children (node
, data
)
250 splay_tree_node node
;
253 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
258 /* Return 1 if the two specified alias sets may conflict. */
261 alias_sets_conflict_p (set1
, set2
)
262 HOST_WIDE_INT set1
, set2
;
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1
== 0 || set2
== 0
269 /* If the two alias sets are the same, they may alias. */
273 /* See if the first alias set is a subset of the second. */
274 ase
= get_alias_set_entry (set1
);
276 && (ase
->has_zero_child
277 || splay_tree_lookup (ase
->children
,
278 (splay_tree_key
) set2
)))
281 /* Now do the same, but with the alias sets reversed. */
282 ase
= get_alias_set_entry (set2
);
284 && (ase
->has_zero_child
285 || splay_tree_lookup (ase
->children
,
286 (splay_tree_key
) set1
)))
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
294 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
295 has any readonly fields. If any of the fields have types that
296 contain readonly fields, return true as well. */
299 readonly_fields_p (type
)
304 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
305 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
308 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
309 if (TREE_CODE (field
) == FIELD_DECL
310 && (TREE_READONLY (field
)
311 || readonly_fields_p (TREE_TYPE (field
))))
317 /* Return 1 if any MEM object of type T1 will always conflict (using the
318 dependency routines in this file) with any MEM object of type T2.
319 This is used when allocating temporary storage. If T1 and/or T2 are
320 NULL_TREE, it means we know nothing about the storage. */
323 objects_must_conflict_p (t1
, t2
)
326 HOST_WIDE_INT set1
, set2
;
328 /* If neither has a type specified, we don't know if they'll conflict
329 because we may be using them to store objects of various types, for
330 example the argument and local variables areas of inlined functions. */
331 if (t1
== 0 && t2
== 0)
334 /* If one or the other has readonly fields or is readonly,
335 then they may not conflict. */
336 if ((t1
!= 0 && readonly_fields_p (t1
))
337 || (t2
!= 0 && readonly_fields_p (t2
))
338 || (t1
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t1
))
339 || (t2
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t2
)))
342 /* If they are the same type, they must conflict. */
344 /* Likewise if both are volatile. */
345 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
348 set1
= t1
? get_alias_set (t1
) : 0;
349 set2
= t2
? get_alias_set (t2
) : 0;
351 /* Otherwise they conflict if they have no alias set or the same. We
352 can't simply use alias_sets_conflict_p here, because we must make
353 sure that every subtype of t1 will conflict with every subtype of
354 t2 for which a pair of subobjects of these respective subtypes
355 overlaps on the stack. */
356 return set1
== 0 || set2
== 0 || set1
== set2
;
359 /* T is an expression with pointer type. Find the DECL on which this
360 expression is based. (For example, in `a[i]' this would be `a'.)
361 If there is no such DECL, or a unique decl cannot be determined,
362 NULL_TREE is returned. */
370 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
373 /* If this is a declaration, return it. */
374 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
377 /* Handle general expressions. It would be nice to deal with
378 COMPONENT_REFs here. If we could tell that `a' and `b' were the
379 same, then `a->f' and `b->f' are also the same. */
380 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
383 return find_base_decl (TREE_OPERAND (t
, 0));
386 /* Return 0 if found in neither or both are the same. */
387 d0
= find_base_decl (TREE_OPERAND (t
, 0));
388 d1
= find_base_decl (TREE_OPERAND (t
, 1));
399 d0
= find_base_decl (TREE_OPERAND (t
, 0));
400 d1
= find_base_decl (TREE_OPERAND (t
, 1));
401 d2
= find_base_decl (TREE_OPERAND (t
, 2));
403 /* Set any nonzero values from the last, then from the first. */
404 if (d1
== 0) d1
= d2
;
405 if (d0
== 0) d0
= d1
;
406 if (d1
== 0) d1
= d0
;
407 if (d2
== 0) d2
= d1
;
409 /* At this point all are nonzero or all are zero. If all three are the
410 same, return it. Otherwise, return zero. */
411 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
418 /* Return 1 if all the nested component references handled by
419 get_inner_reference in T are such that we can address the object in T. */
425 /* If we're at the end, it is vacuously addressable. */
426 if (! handled_component_p (t
))
429 /* Bitfields are never addressable. */
430 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
433 /* Fields are addressable unless they are marked as nonaddressable or
434 the containing type has alias set 0. */
435 else if (TREE_CODE (t
) == COMPONENT_REF
436 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
437 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
438 && can_address_p (TREE_OPERAND (t
, 0)))
441 /* Likewise for arrays. */
442 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
443 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
444 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
445 && can_address_p (TREE_OPERAND (t
, 0)))
451 /* Return the alias set for T, which may be either a type or an
452 expression. Call language-specific routine for help, if needed. */
460 /* If we're not doing any alias analysis, just assume everything
461 aliases everything else. Also return 0 if this or its type is
463 if (! flag_strict_aliasing
|| t
== error_mark_node
465 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
468 /* We can be passed either an expression or a type. This and the
469 language-specific routine may make mutually-recursive calls to each other
470 to figure out what to do. At each juncture, we see if this is a tree
471 that the language may need to handle specially. First handle things that
476 tree placeholder_ptr
= 0;
478 /* Remove any nops, then give the language a chance to do
479 something with this tree before we look at it. */
481 set
= (*lang_hooks
.get_alias_set
) (t
);
485 /* First see if the actual object referenced is an INDIRECT_REF from a
486 restrict-qualified pointer or a "void *". Replace
487 PLACEHOLDER_EXPRs. */
488 while (TREE_CODE (inner
) == PLACEHOLDER_EXPR
489 || handled_component_p (inner
))
491 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
492 inner
= find_placeholder (inner
, &placeholder_ptr
);
494 inner
= TREE_OPERAND (inner
, 0);
499 /* Check for accesses through restrict-qualified pointers. */
500 if (TREE_CODE (inner
) == INDIRECT_REF
)
502 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
504 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
506 /* If we haven't computed the actual alias set, do it now. */
507 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
509 /* No two restricted pointers can point at the same thing.
510 However, a restricted pointer can point at the same thing
511 as an unrestricted pointer, if that unrestricted pointer
512 is based on the restricted pointer. So, we make the
513 alias set for the restricted pointer a subset of the
514 alias set for the type pointed to by the type of the
516 HOST_WIDE_INT pointed_to_alias_set
517 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
519 if (pointed_to_alias_set
== 0)
520 /* It's not legal to make a subset of alias set zero. */
524 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
525 record_alias_subset (pointed_to_alias_set
,
526 DECL_POINTER_ALIAS_SET (decl
));
530 /* We use the alias set indicated in the declaration. */
531 return DECL_POINTER_ALIAS_SET (decl
);
534 /* If we have an INDIRECT_REF via a void pointer, we don't
535 know anything about what that might alias. */
536 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
)
540 /* Otherwise, pick up the outermost object that we could have a pointer
541 to, processing conversion and PLACEHOLDER_EXPR as above. */
543 while (TREE_CODE (t
) == PLACEHOLDER_EXPR
544 || (handled_component_p (t
) && ! can_address_p (t
)))
546 if (TREE_CODE (t
) == PLACEHOLDER_EXPR
)
547 t
= find_placeholder (t
, &placeholder_ptr
);
549 t
= TREE_OPERAND (t
, 0);
554 /* If we've already determined the alias set for a decl, just return
555 it. This is necessary for C++ anonymous unions, whose component
556 variables don't look like union members (boo!). */
557 if (TREE_CODE (t
) == VAR_DECL
558 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
559 return MEM_ALIAS_SET (DECL_RTL (t
));
561 /* Now all we care about is the type. */
565 /* Variant qualifiers don't affect the alias set, so get the main
566 variant. If this is a type with a known alias set, return it. */
567 t
= TYPE_MAIN_VARIANT (t
);
568 if (TYPE_ALIAS_SET_KNOWN_P (t
))
569 return TYPE_ALIAS_SET (t
);
571 /* See if the language has special handling for this type. */
572 set
= (*lang_hooks
.get_alias_set
) (t
);
576 /* There are no objects of FUNCTION_TYPE, so there's no point in
577 using up an alias set for them. (There are, of course, pointers
578 and references to functions, but that's different.) */
579 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
582 /* Unless the language specifies otherwise, let vector types alias
583 their components. This avoids some nasty type punning issues in
584 normal usage. And indeed lets vectors be treated more like an
586 else if (TREE_CODE (t
) == VECTOR_TYPE
)
587 set
= get_alias_set (TREE_TYPE (t
));
590 /* Otherwise make a new alias set for this type. */
591 set
= new_alias_set ();
593 TYPE_ALIAS_SET (t
) = set
;
595 /* If this is an aggregate type, we must record any component aliasing
597 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
598 record_component_aliases (t
);
603 /* Return a brand-new alias set. */
608 static HOST_WIDE_INT last_alias_set
;
610 if (flag_strict_aliasing
)
611 return ++last_alias_set
;
616 /* Indicate that things in SUBSET can alias things in SUPERSET, but
617 not vice versa. For example, in C, a store to an `int' can alias a
618 structure containing an `int', but not vice versa. Here, the
619 structure would be the SUPERSET and `int' the SUBSET. This
620 function should be called only once per SUPERSET/SUBSET pair.
622 It is illegal for SUPERSET to be zero; everything is implicitly a
623 subset of alias set zero. */
626 record_alias_subset (superset
, subset
)
627 HOST_WIDE_INT superset
;
628 HOST_WIDE_INT subset
;
630 alias_set_entry superset_entry
;
631 alias_set_entry subset_entry
;
633 /* It is possible in complex type situations for both sets to be the same,
634 in which case we can ignore this operation. */
635 if (superset
== subset
)
641 superset_entry
= get_alias_set_entry (superset
);
642 if (superset_entry
== 0)
644 /* Create an entry for the SUPERSET, so that we have a place to
645 attach the SUBSET. */
647 = (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
648 superset_entry
->alias_set
= superset
;
649 superset_entry
->children
650 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
651 superset_entry
->has_zero_child
= 0;
652 splay_tree_insert (alias_sets
, (splay_tree_key
) superset
,
653 (splay_tree_value
) superset_entry
);
657 superset_entry
->has_zero_child
= 1;
660 subset_entry
= get_alias_set_entry (subset
);
661 /* If there is an entry for the subset, enter all of its children
662 (if they are not already present) as children of the SUPERSET. */
665 if (subset_entry
->has_zero_child
)
666 superset_entry
->has_zero_child
= 1;
668 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
669 superset_entry
->children
);
672 /* Enter the SUBSET itself as a child of the SUPERSET. */
673 splay_tree_insert (superset_entry
->children
,
674 (splay_tree_key
) subset
, 0);
678 /* Record that component types of TYPE, if any, are part of that type for
679 aliasing purposes. For record types, we only record component types
680 for fields that are marked addressable. For array types, we always
681 record the component types, so the front end should not call this
682 function if the individual component aren't addressable. */
685 record_component_aliases (type
)
688 HOST_WIDE_INT superset
= get_alias_set (type
);
694 switch (TREE_CODE (type
))
697 if (! TYPE_NONALIASED_COMPONENT (type
))
698 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
703 case QUAL_UNION_TYPE
:
704 /* Recursively record aliases for the base classes, if there are any */
705 if (TYPE_BINFO (type
) != NULL
&& TYPE_BINFO_BASETYPES (type
) != NULL
)
708 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type
)); i
++)
710 tree binfo
= TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type
), i
);
711 record_alias_subset (superset
,
712 get_alias_set (BINFO_TYPE (binfo
)));
715 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
716 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
717 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
721 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
729 /* Allocate an alias set for use in storing and reading from the varargs
733 get_varargs_alias_set ()
735 static HOST_WIDE_INT set
= -1;
738 set
= new_alias_set ();
743 /* Likewise, but used for the fixed portions of the frame, e.g., register
747 get_frame_alias_set ()
749 static HOST_WIDE_INT set
= -1;
752 set
= new_alias_set ();
757 /* Inside SRC, the source of a SET, find a base address. */
760 find_base_value (src
)
765 switch (GET_CODE (src
))
773 /* At the start of a function, argument registers have known base
774 values which may be lost later. Returning an ADDRESS
775 expression here allows optimization based on argument values
776 even when the argument registers are used for other purposes. */
777 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
778 return new_reg_base_value
[regno
];
780 /* If a pseudo has a known base value, return it. Do not do this
781 for non-fixed hard regs since it can result in a circular
782 dependency chain for registers which have values at function entry.
784 The test above is not sufficient because the scheduler may move
785 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
786 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
787 && regno
< reg_base_value_size
)
789 /* If we're inside init_alias_analysis, use new_reg_base_value
790 to reduce the number of relaxation iterations. */
791 if (new_reg_base_value
&& new_reg_base_value
[regno
]
792 && REG_N_SETS (regno
) == 1)
793 return new_reg_base_value
[regno
];
795 if (reg_base_value
[regno
])
796 return reg_base_value
[regno
];
802 /* Check for an argument passed in memory. Only record in the
803 copying-arguments block; it is too hard to track changes
805 if (copying_arguments
806 && (XEXP (src
, 0) == arg_pointer_rtx
807 || (GET_CODE (XEXP (src
, 0)) == PLUS
808 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
809 return gen_rtx_ADDRESS (VOIDmode
, src
);
814 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
817 /* ... fall through ... */
822 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
824 /* If either operand is a REG that is a known pointer, then it
826 if (REG_P (src_0
) && REG_POINTER (src_0
))
827 return find_base_value (src_0
);
828 if (REG_P (src_1
) && REG_POINTER (src_1
))
829 return find_base_value (src_1
);
831 /* If either operand is a REG, then see if we already have
832 a known value for it. */
835 temp
= find_base_value (src_0
);
842 temp
= find_base_value (src_1
);
847 /* If either base is named object or a special address
848 (like an argument or stack reference), then use it for the
851 && (GET_CODE (src_0
) == SYMBOL_REF
852 || GET_CODE (src_0
) == LABEL_REF
853 || (GET_CODE (src_0
) == ADDRESS
854 && GET_MODE (src_0
) != VOIDmode
)))
858 && (GET_CODE (src_1
) == SYMBOL_REF
859 || GET_CODE (src_1
) == LABEL_REF
860 || (GET_CODE (src_1
) == ADDRESS
861 && GET_MODE (src_1
) != VOIDmode
)))
864 /* Guess which operand is the base address:
865 If either operand is a symbol, then it is the base. If
866 either operand is a CONST_INT, then the other is the base. */
867 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
868 return find_base_value (src_0
);
869 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
870 return find_base_value (src_1
);
876 /* The standard form is (lo_sum reg sym) so look only at the
878 return find_base_value (XEXP (src
, 1));
881 /* If the second operand is constant set the base
882 address to the first operand. */
883 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
884 return find_base_value (XEXP (src
, 0));
888 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
898 return find_base_value (XEXP (src
, 0));
901 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
903 rtx temp
= find_base_value (XEXP (src
, 0));
905 #ifdef POINTERS_EXTEND_UNSIGNED
906 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
907 temp
= convert_memory_address (Pmode
, temp
);
920 /* Called from init_alias_analysis indirectly through note_stores. */
922 /* While scanning insns to find base values, reg_seen[N] is nonzero if
923 register N has been set in this function. */
924 static char *reg_seen
;
926 /* Addresses which are known not to alias anything else are identified
927 by a unique integer. */
928 static int unique_id
;
931 record_set (dest
, set
, data
)
933 void *data ATTRIBUTE_UNUSED
;
938 if (GET_CODE (dest
) != REG
)
941 regno
= REGNO (dest
);
943 if (regno
>= reg_base_value_size
)
948 /* A CLOBBER wipes out any old value but does not prevent a previously
949 unset register from acquiring a base address (i.e. reg_seen is not
951 if (GET_CODE (set
) == CLOBBER
)
953 new_reg_base_value
[regno
] = 0;
962 new_reg_base_value
[regno
] = 0;
966 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
967 GEN_INT (unique_id
++));
971 /* This is not the first set. If the new value is not related to the
972 old value, forget the base value. Note that the following code is
974 extern int x, y; int *p = &x; p += (&y-&x);
975 ANSI C does not allow computing the difference of addresses
976 of distinct top level objects. */
977 if (new_reg_base_value
[regno
])
978 switch (GET_CODE (src
))
982 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
983 new_reg_base_value
[regno
] = 0;
986 /* If the value we add in the PLUS is also a valid base value,
987 this might be the actual base value, and the original value
990 rtx other
= NULL_RTX
;
992 if (XEXP (src
, 0) == dest
)
993 other
= XEXP (src
, 1);
994 else if (XEXP (src
, 1) == dest
)
995 other
= XEXP (src
, 0);
997 if (! other
|| find_base_value (other
))
998 new_reg_base_value
[regno
] = 0;
1002 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1003 new_reg_base_value
[regno
] = 0;
1006 new_reg_base_value
[regno
] = 0;
1009 /* If this is the first set of a register, record the value. */
1010 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1011 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1012 new_reg_base_value
[regno
] = find_base_value (src
);
1014 reg_seen
[regno
] = 1;
1017 /* Called from loop optimization when a new pseudo-register is
1018 created. It indicates that REGNO is being set to VAL. f INVARIANT
1019 is true then this value also describes an invariant relationship
1020 which can be used to deduce that two registers with unknown values
1024 record_base_value (regno
, val
, invariant
)
1029 if (regno
>= reg_base_value_size
)
1032 if (invariant
&& alias_invariant
)
1033 alias_invariant
[regno
] = val
;
1035 if (GET_CODE (val
) == REG
)
1037 if (REGNO (val
) < reg_base_value_size
)
1038 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
1043 reg_base_value
[regno
] = find_base_value (val
);
1046 /* Clear alias info for a register. This is used if an RTL transformation
1047 changes the value of a register. This is used in flow by AUTO_INC_DEC
1048 optimizations. We don't need to clear reg_base_value, since flow only
1049 changes the offset. */
1052 clear_reg_alias_info (reg
)
1055 unsigned int regno
= REGNO (reg
);
1057 if (regno
< reg_known_value_size
&& regno
>= FIRST_PSEUDO_REGISTER
)
1058 reg_known_value
[regno
] = reg
;
1061 /* Returns a canonical version of X, from the point of view alias
1062 analysis. (For example, if X is a MEM whose address is a register,
1063 and the register has a known value (say a SYMBOL_REF), then a MEM
1064 whose address is the SYMBOL_REF is returned.) */
1070 /* Recursively look for equivalences. */
1071 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
1072 && REGNO (x
) < reg_known_value_size
)
1073 return reg_known_value
[REGNO (x
)] == x
1074 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
1075 else if (GET_CODE (x
) == PLUS
)
1077 rtx x0
= canon_rtx (XEXP (x
, 0));
1078 rtx x1
= canon_rtx (XEXP (x
, 1));
1080 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1082 if (GET_CODE (x0
) == CONST_INT
)
1083 return plus_constant (x1
, INTVAL (x0
));
1084 else if (GET_CODE (x1
) == CONST_INT
)
1085 return plus_constant (x0
, INTVAL (x1
));
1086 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1090 /* This gives us much better alias analysis when called from
1091 the loop optimizer. Note we want to leave the original
1092 MEM alone, but need to return the canonicalized MEM with
1093 all the flags with their original values. */
1094 else if (GET_CODE (x
) == MEM
)
1095 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1100 /* Return 1 if X and Y are identical-looking rtx's.
1102 We use the data in reg_known_value above to see if two registers with
1103 different numbers are, in fact, equivalent. */
1106 rtx_equal_for_memref_p (x
, y
)
1114 if (x
== 0 && y
== 0)
1116 if (x
== 0 || y
== 0)
1125 code
= GET_CODE (x
);
1126 /* Rtx's of different codes cannot be equal. */
1127 if (code
!= GET_CODE (y
))
1130 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1131 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1133 if (GET_MODE (x
) != GET_MODE (y
))
1136 /* Some RTL can be compared without a recursive examination. */
1140 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
1143 return REGNO (x
) == REGNO (y
);
1146 return XEXP (x
, 0) == XEXP (y
, 0);
1149 return XSTR (x
, 0) == XSTR (y
, 0);
1153 /* There's no need to compare the contents of CONST_DOUBLEs or
1154 CONST_INTs because pointer equality is a good enough
1155 comparison for these nodes. */
1159 return (XINT (x
, 1) == XINT (y
, 1)
1160 && rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0)));
1166 /* For commutative operations, the RTX match if the operand match in any
1167 order. Also handle the simple binary and unary cases without a loop. */
1168 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
1169 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1170 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1171 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1172 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1173 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
1174 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1175 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
1176 else if (GET_RTX_CLASS (code
) == '1')
1177 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
1179 /* Compare the elements. If any pair of corresponding elements
1180 fail to match, return 0 for the whole things.
1182 Limit cases to types which actually appear in addresses. */
1184 fmt
= GET_RTX_FORMAT (code
);
1185 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1190 if (XINT (x
, i
) != XINT (y
, i
))
1195 /* Two vectors must have the same length. */
1196 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1199 /* And the corresponding elements must match. */
1200 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1201 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
),
1202 XVECEXP (y
, i
, j
)) == 0)
1207 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
1211 /* This can happen for asm operands. */
1213 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1217 /* This can happen for an asm which clobbers memory. */
1221 /* It is believed that rtx's at this level will never
1222 contain anything but integers and other rtx's,
1223 except for within LABEL_REFs and SYMBOL_REFs. */
1231 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1232 X and return it, or return 0 if none found. */
1235 find_symbolic_term (x
)
1242 code
= GET_CODE (x
);
1243 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1245 if (GET_RTX_CLASS (code
) == 'o')
1248 fmt
= GET_RTX_FORMAT (code
);
1249 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1255 t
= find_symbolic_term (XEXP (x
, i
));
1259 else if (fmt
[i
] == 'E')
1270 struct elt_loc_list
*l
;
1272 #if defined (FIND_BASE_TERM)
1273 /* Try machine-dependent ways to find the base term. */
1274 x
= FIND_BASE_TERM (x
);
1277 switch (GET_CODE (x
))
1280 return REG_BASE_VALUE (x
);
1283 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1293 return find_base_term (XEXP (x
, 0));
1296 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1298 rtx temp
= find_base_term (XEXP (x
, 0));
1300 #ifdef POINTERS_EXTEND_UNSIGNED
1301 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
1302 temp
= convert_memory_address (Pmode
, temp
);
1309 val
= CSELIB_VAL_PTR (x
);
1310 for (l
= val
->locs
; l
; l
= l
->next
)
1311 if ((x
= find_base_term (l
->loc
)) != 0)
1317 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1324 rtx tmp1
= XEXP (x
, 0);
1325 rtx tmp2
= XEXP (x
, 1);
1327 /* This is a little bit tricky since we have to determine which of
1328 the two operands represents the real base address. Otherwise this
1329 routine may return the index register instead of the base register.
1331 That may cause us to believe no aliasing was possible, when in
1332 fact aliasing is possible.
1334 We use a few simple tests to guess the base register. Additional
1335 tests can certainly be added. For example, if one of the operands
1336 is a shift or multiply, then it must be the index register and the
1337 other operand is the base register. */
1339 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1340 return find_base_term (tmp2
);
1342 /* If either operand is known to be a pointer, then use it
1343 to determine the base term. */
1344 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1345 return find_base_term (tmp1
);
1347 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1348 return find_base_term (tmp2
);
1350 /* Neither operand was known to be a pointer. Go ahead and find the
1351 base term for both operands. */
1352 tmp1
= find_base_term (tmp1
);
1353 tmp2
= find_base_term (tmp2
);
1355 /* If either base term is named object or a special address
1356 (like an argument or stack reference), then use it for the
1359 && (GET_CODE (tmp1
) == SYMBOL_REF
1360 || GET_CODE (tmp1
) == LABEL_REF
1361 || (GET_CODE (tmp1
) == ADDRESS
1362 && GET_MODE (tmp1
) != VOIDmode
)))
1366 && (GET_CODE (tmp2
) == SYMBOL_REF
1367 || GET_CODE (tmp2
) == LABEL_REF
1368 || (GET_CODE (tmp2
) == ADDRESS
1369 && GET_MODE (tmp2
) != VOIDmode
)))
1372 /* We could not determine which of the two operands was the
1373 base register and which was the index. So we can determine
1374 nothing from the base alias check. */
1379 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1380 return find_base_term (XEXP (x
, 0));
1388 return REG_BASE_VALUE (frame_pointer_rtx
);
1395 /* Return 0 if the addresses X and Y are known to point to different
1396 objects, 1 if they might be pointers to the same object. */
1399 base_alias_check (x
, y
, x_mode
, y_mode
)
1401 enum machine_mode x_mode
, y_mode
;
1403 rtx x_base
= find_base_term (x
);
1404 rtx y_base
= find_base_term (y
);
1406 /* If the address itself has no known base see if a known equivalent
1407 value has one. If either address still has no known base, nothing
1408 is known about aliasing. */
1413 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1416 x_base
= find_base_term (x_c
);
1424 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1427 y_base
= find_base_term (y_c
);
1432 /* If the base addresses are equal nothing is known about aliasing. */
1433 if (rtx_equal_p (x_base
, y_base
))
1436 /* The base addresses of the read and write are different expressions.
1437 If they are both symbols and they are not accessed via AND, there is
1438 no conflict. We can bring knowledge of object alignment into play
1439 here. For example, on alpha, "char a, b;" can alias one another,
1440 though "char a; long b;" cannot. */
1441 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1443 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1445 if (GET_CODE (x
) == AND
1446 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1447 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1449 if (GET_CODE (y
) == AND
1450 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1451 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1453 /* Differing symbols never alias. */
1457 /* If one address is a stack reference there can be no alias:
1458 stack references using different base registers do not alias,
1459 a stack reference can not alias a parameter, and a stack reference
1460 can not alias a global. */
1461 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1462 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1465 if (! flag_argument_noalias
)
1468 if (flag_argument_noalias
> 1)
1471 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1472 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1475 /* Convert the address X into something we can use. This is done by returning
1476 it unchanged unless it is a value; in the latter case we call cselib to get
1477 a more useful rtx. */
1484 struct elt_loc_list
*l
;
1486 if (GET_CODE (x
) != VALUE
)
1488 v
= CSELIB_VAL_PTR (x
);
1489 for (l
= v
->locs
; l
; l
= l
->next
)
1490 if (CONSTANT_P (l
->loc
))
1492 for (l
= v
->locs
; l
; l
= l
->next
)
1493 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1496 return v
->locs
->loc
;
1500 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1501 where SIZE is the size in bytes of the memory reference. If ADDR
1502 is not modified by the memory reference then ADDR is returned. */
1505 addr_side_effect_eval (addr
, size
, n_refs
)
1512 switch (GET_CODE (addr
))
1515 offset
= (n_refs
+ 1) * size
;
1518 offset
= -(n_refs
+ 1) * size
;
1521 offset
= n_refs
* size
;
1524 offset
= -n_refs
* size
;
1532 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
1534 addr
= XEXP (addr
, 0);
1539 /* Return nonzero if X and Y (memory addresses) could reference the
1540 same location in memory. C is an offset accumulator. When
1541 C is nonzero, we are testing aliases between X and Y + C.
1542 XSIZE is the size in bytes of the X reference,
1543 similarly YSIZE is the size in bytes for Y.
1545 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1546 referenced (the reference was BLKmode), so make the most pessimistic
1549 If XSIZE or YSIZE is negative, we may access memory outside the object
1550 being referenced as a side effect. This can happen when using AND to
1551 align memory references, as is done on the Alpha.
1553 Nice to notice that varying addresses cannot conflict with fp if no
1554 local variables had their addresses taken, but that's too hard now. */
1557 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
1562 if (GET_CODE (x
) == VALUE
)
1564 if (GET_CODE (y
) == VALUE
)
1566 if (GET_CODE (x
) == HIGH
)
1568 else if (GET_CODE (x
) == LO_SUM
)
1571 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
1572 if (GET_CODE (y
) == HIGH
)
1574 else if (GET_CODE (y
) == LO_SUM
)
1577 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
1579 if (rtx_equal_for_memref_p (x
, y
))
1581 if (xsize
<= 0 || ysize
<= 0)
1583 if (c
>= 0 && xsize
> c
)
1585 if (c
< 0 && ysize
+c
> 0)
1590 /* This code used to check for conflicts involving stack references and
1591 globals but the base address alias code now handles these cases. */
1593 if (GET_CODE (x
) == PLUS
)
1595 /* The fact that X is canonicalized means that this
1596 PLUS rtx is canonicalized. */
1597 rtx x0
= XEXP (x
, 0);
1598 rtx x1
= XEXP (x
, 1);
1600 if (GET_CODE (y
) == PLUS
)
1602 /* The fact that Y is canonicalized means that this
1603 PLUS rtx is canonicalized. */
1604 rtx y0
= XEXP (y
, 0);
1605 rtx y1
= XEXP (y
, 1);
1607 if (rtx_equal_for_memref_p (x1
, y1
))
1608 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1609 if (rtx_equal_for_memref_p (x0
, y0
))
1610 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1611 if (GET_CODE (x1
) == CONST_INT
)
1613 if (GET_CODE (y1
) == CONST_INT
)
1614 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1615 c
- INTVAL (x1
) + INTVAL (y1
));
1617 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1620 else if (GET_CODE (y1
) == CONST_INT
)
1621 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1625 else if (GET_CODE (x1
) == CONST_INT
)
1626 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1628 else if (GET_CODE (y
) == PLUS
)
1630 /* The fact that Y is canonicalized means that this
1631 PLUS rtx is canonicalized. */
1632 rtx y0
= XEXP (y
, 0);
1633 rtx y1
= XEXP (y
, 1);
1635 if (GET_CODE (y1
) == CONST_INT
)
1636 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1641 if (GET_CODE (x
) == GET_CODE (y
))
1642 switch (GET_CODE (x
))
1646 /* Handle cases where we expect the second operands to be the
1647 same, and check only whether the first operand would conflict
1650 rtx x1
= canon_rtx (XEXP (x
, 1));
1651 rtx y1
= canon_rtx (XEXP (y
, 1));
1652 if (! rtx_equal_for_memref_p (x1
, y1
))
1654 x0
= canon_rtx (XEXP (x
, 0));
1655 y0
= canon_rtx (XEXP (y
, 0));
1656 if (rtx_equal_for_memref_p (x0
, y0
))
1657 return (xsize
== 0 || ysize
== 0
1658 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1660 /* Can't properly adjust our sizes. */
1661 if (GET_CODE (x1
) != CONST_INT
)
1663 xsize
/= INTVAL (x1
);
1664 ysize
/= INTVAL (x1
);
1666 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1670 /* Are these registers known not to be equal? */
1671 if (alias_invariant
)
1673 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1674 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1676 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1677 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1679 if (i_x
== 0 && i_y
== 0)
1682 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1683 ysize
, i_y
? i_y
: y
, c
))
1692 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1693 as an access with indeterminate size. Assume that references
1694 besides AND are aligned, so if the size of the other reference is
1695 at least as large as the alignment, assume no other overlap. */
1696 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1698 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1700 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1702 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1704 /* ??? If we are indexing far enough into the array/structure, we
1705 may yet be able to determine that we can not overlap. But we
1706 also need to that we are far enough from the end not to overlap
1707 a following reference, so we do nothing with that for now. */
1708 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1710 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1713 if (GET_CODE (x
) == ADDRESSOF
)
1715 if (y
== frame_pointer_rtx
1716 || GET_CODE (y
) == ADDRESSOF
)
1717 return xsize
<= 0 || ysize
<= 0;
1719 if (GET_CODE (y
) == ADDRESSOF
)
1721 if (x
== frame_pointer_rtx
)
1722 return xsize
<= 0 || ysize
<= 0;
1727 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1729 c
+= (INTVAL (y
) - INTVAL (x
));
1730 return (xsize
<= 0 || ysize
<= 0
1731 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1734 if (GET_CODE (x
) == CONST
)
1736 if (GET_CODE (y
) == CONST
)
1737 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1738 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1740 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1743 if (GET_CODE (y
) == CONST
)
1744 return memrefs_conflict_p (xsize
, x
, ysize
,
1745 canon_rtx (XEXP (y
, 0)), c
);
1748 return (xsize
<= 0 || ysize
<= 0
1749 || (rtx_equal_for_memref_p (x
, y
)
1750 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1757 /* Functions to compute memory dependencies.
1759 Since we process the insns in execution order, we can build tables
1760 to keep track of what registers are fixed (and not aliased), what registers
1761 are varying in known ways, and what registers are varying in unknown
1764 If both memory references are volatile, then there must always be a
1765 dependence between the two references, since their order can not be
1766 changed. A volatile and non-volatile reference can be interchanged
1769 A MEM_IN_STRUCT reference at a non-AND varying address can never
1770 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1771 also must allow AND addresses, because they may generate accesses
1772 outside the object being referenced. This is used to generate
1773 aligned addresses from unaligned addresses, for instance, the alpha
1774 storeqi_unaligned pattern. */
1776 /* Read dependence: X is read after read in MEM takes place. There can
1777 only be a dependence here if both reads are volatile. */
1780 read_dependence (mem
, x
)
1784 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1787 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1788 MEM2 is a reference to a structure at a varying address, or returns
1789 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1790 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1791 to decide whether or not an address may vary; it should return
1792 nonzero whenever variation is possible.
1793 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1796 fixed_scalar_and_varying_struct_p (mem1
, mem2
, mem1_addr
, mem2_addr
, varies_p
)
1798 rtx mem1_addr
, mem2_addr
;
1799 int (*varies_p
) PARAMS ((rtx
, int));
1801 if (! flag_strict_aliasing
)
1804 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1805 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1806 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1810 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1811 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1812 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1819 /* Returns nonzero if something about the mode or address format MEM1
1820 indicates that it might well alias *anything*. */
1823 aliases_everything_p (mem
)
1826 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1827 /* If the address is an AND, its very hard to know at what it is
1828 actually pointing. */
1834 /* Return true if we can determine that the fields referenced cannot
1835 overlap for any pair of objects. */
1838 nonoverlapping_component_refs_p (x
, y
)
1841 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1845 /* The comparison has to be done at a common type, since we don't
1846 know how the inheritance hierarchy works. */
1850 fieldx
= TREE_OPERAND (x
, 1);
1851 typex
= DECL_FIELD_CONTEXT (fieldx
);
1856 fieldy
= TREE_OPERAND (y
, 1);
1857 typey
= DECL_FIELD_CONTEXT (fieldy
);
1862 y
= TREE_OPERAND (y
, 0);
1864 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1866 x
= TREE_OPERAND (x
, 0);
1868 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1870 /* Never found a common type. */
1874 /* If we're left with accessing different fields of a structure,
1876 if (TREE_CODE (typex
) == RECORD_TYPE
1877 && fieldx
!= fieldy
)
1880 /* The comparison on the current field failed. If we're accessing
1881 a very nested structure, look at the next outer level. */
1882 x
= TREE_OPERAND (x
, 0);
1883 y
= TREE_OPERAND (y
, 0);
1886 && TREE_CODE (x
) == COMPONENT_REF
1887 && TREE_CODE (y
) == COMPONENT_REF
);
1892 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1895 decl_for_component_ref (x
)
1900 x
= TREE_OPERAND (x
, 0);
1902 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1904 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1907 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1908 offset of the field reference. */
1911 adjust_offset_for_component_ref (x
, offset
)
1915 HOST_WIDE_INT ioffset
;
1920 ioffset
= INTVAL (offset
);
1923 tree field
= TREE_OPERAND (x
, 1);
1925 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
1927 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1928 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1931 x
= TREE_OPERAND (x
, 0);
1933 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1935 return GEN_INT (ioffset
);
1938 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1939 X and Y and they do not overlap. */
1942 nonoverlapping_memrefs_p (x
, y
)
1945 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1948 rtx moffsetx
, moffsety
;
1949 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1951 /* Unless both have exprs, we can't tell anything. */
1952 if (exprx
== 0 || expry
== 0)
1955 /* If both are field references, we may be able to determine something. */
1956 if (TREE_CODE (exprx
) == COMPONENT_REF
1957 && TREE_CODE (expry
) == COMPONENT_REF
1958 && nonoverlapping_component_refs_p (exprx
, expry
))
1961 /* If the field reference test failed, look at the DECLs involved. */
1962 moffsetx
= MEM_OFFSET (x
);
1963 if (TREE_CODE (exprx
) == COMPONENT_REF
)
1965 tree t
= decl_for_component_ref (exprx
);
1968 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
1971 else if (TREE_CODE (exprx
) == INDIRECT_REF
)
1973 exprx
= TREE_OPERAND (exprx
, 0);
1974 if (flag_argument_noalias
< 2
1975 || TREE_CODE (exprx
) != PARM_DECL
)
1979 moffsety
= MEM_OFFSET (y
);
1980 if (TREE_CODE (expry
) == COMPONENT_REF
)
1982 tree t
= decl_for_component_ref (expry
);
1985 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
1988 else if (TREE_CODE (expry
) == INDIRECT_REF
)
1990 expry
= TREE_OPERAND (expry
, 0);
1991 if (flag_argument_noalias
< 2
1992 || TREE_CODE (expry
) != PARM_DECL
)
1996 if (! DECL_P (exprx
) || ! DECL_P (expry
))
1999 rtlx
= DECL_RTL (exprx
);
2000 rtly
= DECL_RTL (expry
);
2002 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2003 can't overlap unless they are the same because we never reuse that part
2004 of the stack frame used for locals for spilled pseudos. */
2005 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
2006 && ! rtx_equal_p (rtlx
, rtly
))
2009 /* Get the base and offsets of both decls. If either is a register, we
2010 know both are and are the same, so use that as the base. The only
2011 we can avoid overlap is if we can deduce that they are nonoverlapping
2012 pieces of that decl, which is very rare. */
2013 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
2014 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2015 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2017 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
2018 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2019 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2021 /* If the bases are different, we know they do not overlap if both
2022 are constants or if one is a constant and the other a pointer into the
2023 stack frame. Otherwise a different base means we can't tell if they
2025 if (! rtx_equal_p (basex
, basey
))
2026 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2027 || (CONSTANT_P (basex
) && REG_P (basey
)
2028 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2029 || (CONSTANT_P (basey
) && REG_P (basex
)
2030 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2032 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2033 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2035 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2036 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2039 /* If we have an offset for either memref, it can update the values computed
2042 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2044 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2046 /* If a memref has both a size and an offset, we can use the smaller size.
2047 We can't do this if the offset isn't known because we must view this
2048 memref as being anywhere inside the DECL's MEM. */
2049 if (MEM_SIZE (x
) && moffsetx
)
2050 sizex
= INTVAL (MEM_SIZE (x
));
2051 if (MEM_SIZE (y
) && moffsety
)
2052 sizey
= INTVAL (MEM_SIZE (y
));
2054 /* Put the values of the memref with the lower offset in X's values. */
2055 if (offsetx
> offsety
)
2057 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2058 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2061 /* If we don't know the size of the lower-offset value, we can't tell
2062 if they conflict. Otherwise, we do the test. */
2063 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2066 /* True dependence: X is read after store in MEM takes place. */
2069 true_dependence (mem
, mem_mode
, x
, varies
)
2071 enum machine_mode mem_mode
;
2073 int (*varies
) PARAMS ((rtx
, int));
2075 rtx x_addr
, mem_addr
;
2078 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2081 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2082 This is used in epilogue deallocation functions. */
2083 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2085 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2088 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2091 /* Unchanging memory can't conflict with non-unchanging memory.
2092 A non-unchanging read can conflict with a non-unchanging write.
2093 An unchanging read can conflict with an unchanging write since
2094 there may be a single store to this address to initialize it.
2095 Note that an unchanging store can conflict with a non-unchanging read
2096 since we have to make conservative assumptions when we have a
2097 record with readonly fields and we are copying the whole thing.
2098 Just fall through to the code below to resolve potential conflicts.
2099 This won't handle all cases optimally, but the possible performance
2100 loss should be negligible. */
2101 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2104 if (nonoverlapping_memrefs_p (mem
, x
))
2107 if (mem_mode
== VOIDmode
)
2108 mem_mode
= GET_MODE (mem
);
2110 x_addr
= get_addr (XEXP (x
, 0));
2111 mem_addr
= get_addr (XEXP (mem
, 0));
2113 base
= find_base_term (x_addr
);
2114 if (base
&& (GET_CODE (base
) == LABEL_REF
2115 || (GET_CODE (base
) == SYMBOL_REF
2116 && CONSTANT_POOL_ADDRESS_P (base
))))
2119 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2122 x_addr
= canon_rtx (x_addr
);
2123 mem_addr
= canon_rtx (mem_addr
);
2125 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2126 SIZE_FOR_MODE (x
), x_addr
, 0))
2129 if (aliases_everything_p (x
))
2132 /* We cannot use aliases_everything_p to test MEM, since we must look
2133 at MEM_MODE, rather than GET_MODE (MEM). */
2134 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2137 /* In true_dependence we also allow BLKmode to alias anything. Why
2138 don't we do this in anti_dependence and output_dependence? */
2139 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2142 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2146 /* Canonical true dependence: X is read after store in MEM takes place.
2147 Variant of true_dependence which assumes MEM has already been
2148 canonicalized (hence we no longer do that here).
2149 The mem_addr argument has been added, since true_dependence computed
2150 this value prior to canonicalizing. */
2153 canon_true_dependence (mem
, mem_mode
, mem_addr
, x
, varies
)
2154 rtx mem
, mem_addr
, x
;
2155 enum machine_mode mem_mode
;
2156 int (*varies
) PARAMS ((rtx
, int));
2160 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2163 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2164 This is used in epilogue deallocation functions. */
2165 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2167 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2170 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2173 /* If X is an unchanging read, then it can't possibly conflict with any
2174 non-unchanging store. It may conflict with an unchanging write though,
2175 because there may be a single store to this address to initialize it.
2176 Just fall through to the code below to resolve the case where we have
2177 both an unchanging read and an unchanging write. This won't handle all
2178 cases optimally, but the possible performance loss should be
2180 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2183 if (nonoverlapping_memrefs_p (x
, mem
))
2186 x_addr
= get_addr (XEXP (x
, 0));
2188 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2191 x_addr
= canon_rtx (x_addr
);
2192 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2193 SIZE_FOR_MODE (x
), x_addr
, 0))
2196 if (aliases_everything_p (x
))
2199 /* We cannot use aliases_everything_p to test MEM, since we must look
2200 at MEM_MODE, rather than GET_MODE (MEM). */
2201 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2204 /* In true_dependence we also allow BLKmode to alias anything. Why
2205 don't we do this in anti_dependence and output_dependence? */
2206 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2209 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2213 /* Returns nonzero if a write to X might alias a previous read from
2214 (or, if WRITEP is nonzero, a write to) MEM. */
2217 write_dependence_p (mem
, x
, writep
)
2222 rtx x_addr
, mem_addr
;
2226 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2229 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2230 This is used in epilogue deallocation functions. */
2231 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2233 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2236 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2239 /* Unchanging memory can't conflict with non-unchanging memory. */
2240 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2243 /* If MEM is an unchanging read, then it can't possibly conflict with
2244 the store to X, because there is at most one store to MEM, and it must
2245 have occurred somewhere before MEM. */
2246 if (! writep
&& RTX_UNCHANGING_P (mem
))
2249 if (nonoverlapping_memrefs_p (x
, mem
))
2252 x_addr
= get_addr (XEXP (x
, 0));
2253 mem_addr
= get_addr (XEXP (mem
, 0));
2257 base
= find_base_term (mem_addr
);
2258 if (base
&& (GET_CODE (base
) == LABEL_REF
2259 || (GET_CODE (base
) == SYMBOL_REF
2260 && CONSTANT_POOL_ADDRESS_P (base
))))
2264 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2268 x_addr
= canon_rtx (x_addr
);
2269 mem_addr
= canon_rtx (mem_addr
);
2271 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2272 SIZE_FOR_MODE (x
), x_addr
, 0))
2276 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2279 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2280 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2283 /* Anti dependence: X is written after read in MEM takes place. */
2286 anti_dependence (mem
, x
)
2290 return write_dependence_p (mem
, x
, /*writep=*/0);
2293 /* Output dependence: X is written after store in MEM takes place. */
2296 output_dependence (mem
, x
)
2300 return write_dependence_p (mem
, x
, /*writep=*/1);
2303 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2304 something which is not local to the function and is not constant. */
2307 nonlocal_mentioned_p_1 (loc
, data
)
2309 void *data ATTRIBUTE_UNUSED
;
2318 switch (GET_CODE (x
))
2321 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2323 /* Global registers are not local. */
2324 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2325 && global_regs
[subreg_regno (x
)])
2333 /* Global registers are not local. */
2334 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2349 /* Constants in the function's constants pool are constant. */
2350 if (CONSTANT_POOL_ADDRESS_P (x
))
2355 /* Non-constant calls and recursion are not local. */
2359 /* Be overly conservative and consider any volatile memory
2360 reference as not local. */
2361 if (MEM_VOLATILE_P (x
))
2363 base
= find_base_term (XEXP (x
, 0));
2366 /* A Pmode ADDRESS could be a reference via the structure value
2367 address or static chain. Such memory references are nonlocal.
2369 Thus, we have to examine the contents of the ADDRESS to find
2370 out if this is a local reference or not. */
2371 if (GET_CODE (base
) == ADDRESS
2372 && GET_MODE (base
) == Pmode
2373 && (XEXP (base
, 0) == stack_pointer_rtx
2374 || XEXP (base
, 0) == arg_pointer_rtx
2375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2376 || XEXP (base
, 0) == hard_frame_pointer_rtx
2378 || XEXP (base
, 0) == frame_pointer_rtx
))
2380 /* Constants in the function's constant pool are constant. */
2381 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2386 case UNSPEC_VOLATILE
:
2391 if (MEM_VOLATILE_P (x
))
2403 /* Returns nonzero if X might mention something which is not
2404 local to the function and is not constant. */
2407 nonlocal_mentioned_p (x
)
2413 if (GET_CODE (x
) == CALL_INSN
)
2415 if (! CONST_OR_PURE_CALL_P (x
))
2417 x
= CALL_INSN_FUNCTION_USAGE (x
);
2425 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2428 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2429 something which is not local to the function and is not constant. */
2432 nonlocal_referenced_p_1 (loc
, data
)
2434 void *data ATTRIBUTE_UNUSED
;
2441 switch (GET_CODE (x
))
2447 return nonlocal_mentioned_p (x
);
2450 /* Non-constant calls and recursion are not local. */
2454 if (nonlocal_mentioned_p (SET_SRC (x
)))
2457 if (GET_CODE (SET_DEST (x
)) == MEM
)
2458 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2460 /* If the destination is anything other than a CC0, PC,
2461 MEM, REG, or a SUBREG of a REG that occupies all of
2462 the REG, then X references nonlocal memory if it is
2463 mentioned in the destination. */
2464 if (GET_CODE (SET_DEST (x
)) != CC0
2465 && GET_CODE (SET_DEST (x
)) != PC
2466 && GET_CODE (SET_DEST (x
)) != REG
2467 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2468 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
2469 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2470 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2471 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2472 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2473 return nonlocal_mentioned_p (SET_DEST (x
));
2477 if (GET_CODE (XEXP (x
, 0)) == MEM
)
2478 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2482 return nonlocal_mentioned_p (XEXP (x
, 0));
2485 case UNSPEC_VOLATILE
:
2489 if (MEM_VOLATILE_P (x
))
2501 /* Returns nonzero if X might reference something which is not
2502 local to the function and is not constant. */
2505 nonlocal_referenced_p (x
)
2511 if (GET_CODE (x
) == CALL_INSN
)
2513 if (! CONST_OR_PURE_CALL_P (x
))
2515 x
= CALL_INSN_FUNCTION_USAGE (x
);
2523 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2526 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2527 something which is not local to the function and is not constant. */
2530 nonlocal_set_p_1 (loc
, data
)
2532 void *data ATTRIBUTE_UNUSED
;
2539 switch (GET_CODE (x
))
2542 /* Non-constant calls and recursion are not local. */
2551 return nonlocal_mentioned_p (XEXP (x
, 0));
2554 if (nonlocal_mentioned_p (SET_DEST (x
)))
2556 return nonlocal_set_p (SET_SRC (x
));
2559 return nonlocal_mentioned_p (XEXP (x
, 0));
2565 case UNSPEC_VOLATILE
:
2569 if (MEM_VOLATILE_P (x
))
2581 /* Returns nonzero if X might set something which is not
2582 local to the function and is not constant. */
2591 if (GET_CODE (x
) == CALL_INSN
)
2593 if (! CONST_OR_PURE_CALL_P (x
))
2595 x
= CALL_INSN_FUNCTION_USAGE (x
);
2603 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2606 /* Mark the function if it is constant. */
2609 mark_constant_function ()
2612 int nonlocal_memory_referenced
;
2614 if (TREE_READONLY (current_function_decl
)
2615 || DECL_IS_PURE (current_function_decl
)
2616 || TREE_THIS_VOLATILE (current_function_decl
)
2617 || TYPE_MODE (TREE_TYPE (current_function_decl
)) == VOIDmode
2618 || current_function_has_nonlocal_goto
2619 || !(*targetm
.binds_local_p
) (current_function_decl
))
2622 /* A loop might not return which counts as a side effect. */
2623 if (mark_dfs_back_edges ())
2626 nonlocal_memory_referenced
= 0;
2628 init_alias_analysis ();
2630 /* Determine if this is a constant or pure function. */
2632 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2634 if (! INSN_P (insn
))
2637 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2638 || volatile_refs_p (PATTERN (insn
)))
2641 if (! nonlocal_memory_referenced
)
2642 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2645 end_alias_analysis ();
2647 /* Mark the function. */
2651 else if (nonlocal_memory_referenced
)
2652 DECL_IS_PURE (current_function_decl
) = 1;
2654 TREE_READONLY (current_function_decl
) = 1;
2663 #ifndef OUTGOING_REGNO
2664 #define OUTGOING_REGNO(N) N
2666 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2667 /* Check whether this register can hold an incoming pointer
2668 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2669 numbers, so translate if necessary due to register windows. */
2670 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2671 && HARD_REGNO_MODE_OK (i
, Pmode
))
2672 static_reg_base_value
[i
]
2673 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2675 static_reg_base_value
[STACK_POINTER_REGNUM
]
2676 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2677 static_reg_base_value
[ARG_POINTER_REGNUM
]
2678 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2679 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2680 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2681 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2682 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2683 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2686 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
2689 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2693 init_alias_analysis ()
2695 int maxreg
= max_reg_num ();
2701 reg_known_value_size
= maxreg
;
2704 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
2705 - FIRST_PSEUDO_REGISTER
;
2707 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
2708 - FIRST_PSEUDO_REGISTER
;
2710 /* Overallocate reg_base_value to allow some growth during loop
2711 optimization. Loop unrolling can create a large number of
2713 reg_base_value_size
= maxreg
* 2;
2714 reg_base_value
= (rtx
*) ggc_alloc_cleared (reg_base_value_size
2717 new_reg_base_value
= (rtx
*) xmalloc (reg_base_value_size
* sizeof (rtx
));
2718 reg_seen
= (char *) xmalloc (reg_base_value_size
);
2719 if (! reload_completed
&& flag_unroll_loops
)
2721 /* ??? Why are we realloc'ing if we're just going to zero it? */
2722 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
2723 reg_base_value_size
* sizeof (rtx
));
2724 memset ((char *)alias_invariant
, 0, reg_base_value_size
* sizeof (rtx
));
2727 /* The basic idea is that each pass through this loop will use the
2728 "constant" information from the previous pass to propagate alias
2729 information through another level of assignments.
2731 This could get expensive if the assignment chains are long. Maybe
2732 we should throttle the number of iterations, possibly based on
2733 the optimization level or flag_expensive_optimizations.
2735 We could propagate more information in the first pass by making use
2736 of REG_N_SETS to determine immediately that the alias information
2737 for a pseudo is "constant".
2739 A program with an uninitialized variable can cause an infinite loop
2740 here. Instead of doing a full dataflow analysis to detect such problems
2741 we just cap the number of iterations for the loop.
2743 The state of the arrays for the set chain in question does not matter
2744 since the program has undefined behavior. */
2749 /* Assume nothing will change this iteration of the loop. */
2752 /* We want to assign the same IDs each iteration of this loop, so
2753 start counting from zero each iteration of the loop. */
2756 /* We're at the start of the function each iteration through the
2757 loop, so we're copying arguments. */
2758 copying_arguments
= true;
2760 /* Wipe the potential alias information clean for this pass. */
2761 memset ((char *) new_reg_base_value
, 0, reg_base_value_size
* sizeof (rtx
));
2763 /* Wipe the reg_seen array clean. */
2764 memset ((char *) reg_seen
, 0, reg_base_value_size
);
2766 /* Mark all hard registers which may contain an address.
2767 The stack, frame and argument pointers may contain an address.
2768 An argument register which can hold a Pmode value may contain
2769 an address even if it is not in BASE_REGS.
2771 The address expression is VOIDmode for an argument and
2772 Pmode for other registers. */
2774 memcpy (new_reg_base_value
, static_reg_base_value
,
2775 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2777 /* Walk the insns adding values to the new_reg_base_value array. */
2778 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2784 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2785 /* The prologue/epilogue insns are not threaded onto the
2786 insn chain until after reload has completed. Thus,
2787 there is no sense wasting time checking if INSN is in
2788 the prologue/epilogue until after reload has completed. */
2789 if (reload_completed
2790 && prologue_epilogue_contains (insn
))
2794 /* If this insn has a noalias note, process it, Otherwise,
2795 scan for sets. A simple set will have no side effects
2796 which could change the base value of any other register. */
2798 if (GET_CODE (PATTERN (insn
)) == SET
2799 && REG_NOTES (insn
) != 0
2800 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2801 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2803 note_stores (PATTERN (insn
), record_set
, NULL
);
2805 set
= single_set (insn
);
2808 && GET_CODE (SET_DEST (set
)) == REG
2809 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2811 unsigned int regno
= REGNO (SET_DEST (set
));
2812 rtx src
= SET_SRC (set
);
2814 if (REG_NOTES (insn
) != 0
2815 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2816 && REG_N_SETS (regno
) == 1)
2817 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2818 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2819 && ! rtx_varies_p (XEXP (note
, 0), 1)
2820 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
2822 reg_known_value
[regno
] = XEXP (note
, 0);
2823 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
2825 else if (REG_N_SETS (regno
) == 1
2826 && GET_CODE (src
) == PLUS
2827 && GET_CODE (XEXP (src
, 0)) == REG
2828 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
2829 && (reg_known_value
[REGNO (XEXP (src
, 0))])
2830 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2832 rtx op0
= XEXP (src
, 0);
2833 op0
= reg_known_value
[REGNO (op0
)];
2834 reg_known_value
[regno
]
2835 = plus_constant (op0
, INTVAL (XEXP (src
, 1)));
2836 reg_known_equiv_p
[regno
] = 0;
2838 else if (REG_N_SETS (regno
) == 1
2839 && ! rtx_varies_p (src
, 1))
2841 reg_known_value
[regno
] = src
;
2842 reg_known_equiv_p
[regno
] = 0;
2846 else if (GET_CODE (insn
) == NOTE
2847 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2848 copying_arguments
= false;
2851 /* Now propagate values from new_reg_base_value to reg_base_value. */
2852 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2854 if (new_reg_base_value
[ui
]
2855 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
2856 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
2858 reg_base_value
[ui
] = new_reg_base_value
[ui
];
2863 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2865 /* Fill in the remaining entries. */
2866 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
2867 if (reg_known_value
[i
] == 0)
2868 reg_known_value
[i
] = regno_reg_rtx
[i
];
2870 /* Simplify the reg_base_value array so that no register refers to
2871 another register, except to special registers indirectly through
2872 ADDRESS expressions.
2874 In theory this loop can take as long as O(registers^2), but unless
2875 there are very long dependency chains it will run in close to linear
2878 This loop may not be needed any longer now that the main loop does
2879 a better job at propagating alias information. */
2885 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2887 rtx base
= reg_base_value
[ui
];
2888 if (base
&& GET_CODE (base
) == REG
)
2890 unsigned int base_regno
= REGNO (base
);
2891 if (base_regno
== ui
) /* register set from itself */
2892 reg_base_value
[ui
] = 0;
2894 reg_base_value
[ui
] = reg_base_value
[base_regno
];
2899 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2902 free (new_reg_base_value
);
2903 new_reg_base_value
= 0;
2909 end_alias_analysis ()
2911 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
2912 reg_known_value
= 0;
2913 reg_known_value_size
= 0;
2914 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
2915 reg_known_equiv_p
= 0;
2917 reg_base_value_size
= 0;
2918 if (alias_invariant
)
2920 free (alias_invariant
);
2921 alias_invariant
= 0;
2925 #include "gt-alias.h"