Mark ChangeLog
[official-gcc.git] / gcc / alias.c
blobdd842696402670bf0126528316abd4709c8db3ee
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "function.h"
29 #include "expr.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "cselib.h"
37 #include "splay-tree.h"
38 #include "ggc.h"
39 #include "langhooks.h"
40 #include "target.h"
42 /* The alias sets assigned to MEMs assist the back-end in determining
43 which MEMs can alias which other MEMs. In general, two MEMs in
44 different alias sets cannot alias each other, with one important
45 exception. Consider something like:
47 struct S {int i; double d; };
49 a store to an `S' can alias something of either type `int' or type
50 `double'. (However, a store to an `int' cannot alias a `double'
51 and vice versa.) We indicate this via a tree structure that looks
52 like:
53 struct S
54 / \
55 / \
56 |/_ _\|
57 int double
59 (The arrows are directed and point downwards.)
60 In this situation we say the alias set for `struct S' is the
61 `superset' and that those for `int' and `double' are `subsets'.
63 To see whether two alias sets can point to the same memory, we must
64 see if either alias set is a subset of the other. We need not trace
65 past immediate descendents, however, since we propagate all
66 grandchildren up one level.
68 Alias set zero is implicitly a superset of all other alias sets.
69 However, this is no actual entry for alias set zero. It is an
70 error to attempt to explicitly construct a subset of zero. */
72 typedef struct alias_set_entry
74 /* The alias set number, as stored in MEM_ALIAS_SET. */
75 HOST_WIDE_INT alias_set;
77 /* The children of the alias set. These are not just the immediate
78 children, but, in fact, all descendents. So, if we have:
80 struct T { struct S s; float f; }
82 continuing our example above, the children here will be all of
83 `int', `double', `float', and `struct S'. */
84 splay_tree children;
86 /* Nonzero if would have a child of zero: this effectively makes this
87 alias set the same as alias set zero. */
88 int has_zero_child;
89 } *alias_set_entry;
91 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
92 static rtx find_symbolic_term PARAMS ((rtx));
93 rtx get_addr PARAMS ((rtx));
94 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
95 HOST_WIDE_INT));
96 static void record_set PARAMS ((rtx, rtx, void *));
97 static rtx find_base_term PARAMS ((rtx));
98 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
99 enum machine_mode));
100 static rtx find_base_value PARAMS ((rtx));
101 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
102 static int insert_subset_children PARAMS ((splay_tree_node, void*));
103 static tree find_base_decl PARAMS ((tree));
104 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
105 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
106 int (*) (rtx, int)));
107 static int aliases_everything_p PARAMS ((rtx));
108 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
109 static tree decl_for_component_ref PARAMS ((tree));
110 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
111 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
112 static int write_dependence_p PARAMS ((rtx, rtx, int));
114 static int nonlocal_mentioned_p_1 PARAMS ((rtx *, void *));
115 static int nonlocal_mentioned_p PARAMS ((rtx));
116 static int nonlocal_referenced_p_1 PARAMS ((rtx *, void *));
117 static int nonlocal_referenced_p PARAMS ((rtx));
118 static int nonlocal_set_p_1 PARAMS ((rtx *, void *));
119 static int nonlocal_set_p PARAMS ((rtx));
121 /* Set up all info needed to perform alias analysis on memory references. */
123 /* Returns the size in bytes of the mode of X. */
124 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
126 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
127 different alias sets. We ignore alias sets in functions making use
128 of variable arguments because the va_arg macros on some systems are
129 not legal ANSI C. */
130 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
131 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
133 /* Cap the number of passes we make over the insns propagating alias
134 information through set chains. 10 is a completely arbitrary choice. */
135 #define MAX_ALIAS_LOOP_PASSES 10
137 /* reg_base_value[N] gives an address to which register N is related.
138 If all sets after the first add or subtract to the current value
139 or otherwise modify it so it does not point to a different top level
140 object, reg_base_value[N] is equal to the address part of the source
141 of the first set.
143 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
144 expressions represent certain special values: function arguments and
145 the stack, frame, and argument pointers.
147 The contents of an ADDRESS is not normally used, the mode of the
148 ADDRESS determines whether the ADDRESS is a function argument or some
149 other special value. Pointer equality, not rtx_equal_p, determines whether
150 two ADDRESS expressions refer to the same base address.
152 The only use of the contents of an ADDRESS is for determining if the
153 current function performs nonlocal memory memory references for the
154 purposes of marking the function as a constant function. */
156 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
157 static rtx *new_reg_base_value;
158 static unsigned int reg_base_value_size; /* size of reg_base_value array */
160 /* Static hunks of RTL used by the aliasing code; these are initialized
161 once per function to avoid unnecessary RTL allocations. */
162 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
164 #define REG_BASE_VALUE(X) \
165 (REGNO (X) < reg_base_value_size \
166 ? reg_base_value[REGNO (X)] : 0)
168 /* Vector of known invariant relationships between registers. Set in
169 loop unrolling. Indexed by register number, if nonzero the value
170 is an expression describing this register in terms of another.
172 The length of this array is REG_BASE_VALUE_SIZE.
174 Because this array contains only pseudo registers it has no effect
175 after reload. */
176 static rtx *alias_invariant;
178 /* Vector indexed by N giving the initial (unchanging) value known for
179 pseudo-register N. This array is initialized in
180 init_alias_analysis, and does not change until end_alias_analysis
181 is called. */
182 rtx *reg_known_value;
184 /* Indicates number of valid entries in reg_known_value. */
185 static unsigned int reg_known_value_size;
187 /* Vector recording for each reg_known_value whether it is due to a
188 REG_EQUIV note. Future passes (viz., reload) may replace the
189 pseudo with the equivalent expression and so we account for the
190 dependences that would be introduced if that happens.
192 The REG_EQUIV notes created in assign_parms may mention the arg
193 pointer, and there are explicit insns in the RTL that modify the
194 arg pointer. Thus we must ensure that such insns don't get
195 scheduled across each other because that would invalidate the
196 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
197 wrong, but solving the problem in the scheduler will likely give
198 better code, so we do it here. */
199 char *reg_known_equiv_p;
201 /* True when scanning insns from the start of the rtl to the
202 NOTE_INSN_FUNCTION_BEG note. */
203 static bool copying_arguments;
205 /* The splay-tree used to store the various alias set entries. */
206 static splay_tree alias_sets;
208 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
209 such an entry, or NULL otherwise. */
211 static alias_set_entry
212 get_alias_set_entry (alias_set)
213 HOST_WIDE_INT alias_set;
215 splay_tree_node sn
216 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
218 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
221 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
222 the two MEMs cannot alias each other. */
224 static int
225 mems_in_disjoint_alias_sets_p (mem1, mem2)
226 rtx mem1;
227 rtx mem2;
229 #ifdef ENABLE_CHECKING
230 /* Perform a basic sanity check. Namely, that there are no alias sets
231 if we're not using strict aliasing. This helps to catch bugs
232 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
233 where a MEM is allocated in some way other than by the use of
234 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
235 use alias sets to indicate that spilled registers cannot alias each
236 other, we might need to remove this check. */
237 if (! flag_strict_aliasing
238 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
239 abort ();
240 #endif
242 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
245 /* Insert the NODE into the splay tree given by DATA. Used by
246 record_alias_subset via splay_tree_foreach. */
248 static int
249 insert_subset_children (node, data)
250 splay_tree_node node;
251 void *data;
253 splay_tree_insert ((splay_tree) data, node->key, node->value);
255 return 0;
258 /* Return 1 if the two specified alias sets may conflict. */
261 alias_sets_conflict_p (set1, set2)
262 HOST_WIDE_INT set1, set2;
264 alias_set_entry ase;
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1 == 0 || set2 == 0
269 /* If the two alias sets are the same, they may alias. */
270 || set1 == set2)
271 return 1;
273 /* See if the first alias set is a subset of the second. */
274 ase = get_alias_set_entry (set1);
275 if (ase != 0
276 && (ase->has_zero_child
277 || splay_tree_lookup (ase->children,
278 (splay_tree_key) set2)))
279 return 1;
281 /* Now do the same, but with the alias sets reversed. */
282 ase = get_alias_set_entry (set2);
283 if (ase != 0
284 && (ase->has_zero_child
285 || splay_tree_lookup (ase->children,
286 (splay_tree_key) set1)))
287 return 1;
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
291 return 0;
294 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
295 has any readonly fields. If any of the fields have types that
296 contain readonly fields, return true as well. */
299 readonly_fields_p (type)
300 tree type;
302 tree field;
304 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
305 && TREE_CODE (type) != QUAL_UNION_TYPE)
306 return 0;
308 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
309 if (TREE_CODE (field) == FIELD_DECL
310 && (TREE_READONLY (field)
311 || readonly_fields_p (TREE_TYPE (field))))
312 return 1;
314 return 0;
317 /* Return 1 if any MEM object of type T1 will always conflict (using the
318 dependency routines in this file) with any MEM object of type T2.
319 This is used when allocating temporary storage. If T1 and/or T2 are
320 NULL_TREE, it means we know nothing about the storage. */
323 objects_must_conflict_p (t1, t2)
324 tree t1, t2;
326 HOST_WIDE_INT set1, set2;
328 /* If neither has a type specified, we don't know if they'll conflict
329 because we may be using them to store objects of various types, for
330 example the argument and local variables areas of inlined functions. */
331 if (t1 == 0 && t2 == 0)
332 return 0;
334 /* If one or the other has readonly fields or is readonly,
335 then they may not conflict. */
336 if ((t1 != 0 && readonly_fields_p (t1))
337 || (t2 != 0 && readonly_fields_p (t2))
338 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
339 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
340 return 0;
342 /* If they are the same type, they must conflict. */
343 if (t1 == t2
344 /* Likewise if both are volatile. */
345 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
346 return 1;
348 set1 = t1 ? get_alias_set (t1) : 0;
349 set2 = t2 ? get_alias_set (t2) : 0;
351 /* Otherwise they conflict if they have no alias set or the same. We
352 can't simply use alias_sets_conflict_p here, because we must make
353 sure that every subtype of t1 will conflict with every subtype of
354 t2 for which a pair of subobjects of these respective subtypes
355 overlaps on the stack. */
356 return set1 == 0 || set2 == 0 || set1 == set2;
359 /* T is an expression with pointer type. Find the DECL on which this
360 expression is based. (For example, in `a[i]' this would be `a'.)
361 If there is no such DECL, or a unique decl cannot be determined,
362 NULL_TREE is returned. */
364 static tree
365 find_base_decl (t)
366 tree t;
368 tree d0, d1, d2;
370 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
371 return 0;
373 /* If this is a declaration, return it. */
374 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
375 return t;
377 /* Handle general expressions. It would be nice to deal with
378 COMPONENT_REFs here. If we could tell that `a' and `b' were the
379 same, then `a->f' and `b->f' are also the same. */
380 switch (TREE_CODE_CLASS (TREE_CODE (t)))
382 case '1':
383 return find_base_decl (TREE_OPERAND (t, 0));
385 case '2':
386 /* Return 0 if found in neither or both are the same. */
387 d0 = find_base_decl (TREE_OPERAND (t, 0));
388 d1 = find_base_decl (TREE_OPERAND (t, 1));
389 if (d0 == d1)
390 return d0;
391 else if (d0 == 0)
392 return d1;
393 else if (d1 == 0)
394 return d0;
395 else
396 return 0;
398 case '3':
399 d0 = find_base_decl (TREE_OPERAND (t, 0));
400 d1 = find_base_decl (TREE_OPERAND (t, 1));
401 d2 = find_base_decl (TREE_OPERAND (t, 2));
403 /* Set any nonzero values from the last, then from the first. */
404 if (d1 == 0) d1 = d2;
405 if (d0 == 0) d0 = d1;
406 if (d1 == 0) d1 = d0;
407 if (d2 == 0) d2 = d1;
409 /* At this point all are nonzero or all are zero. If all three are the
410 same, return it. Otherwise, return zero. */
411 return (d0 == d1 && d1 == d2) ? d0 : 0;
413 default:
414 return 0;
418 /* Return 1 if all the nested component references handled by
419 get_inner_reference in T are such that we can address the object in T. */
422 can_address_p (t)
423 tree t;
425 /* If we're at the end, it is vacuously addressable. */
426 if (! handled_component_p (t))
427 return 1;
429 /* Bitfields are never addressable. */
430 else if (TREE_CODE (t) == BIT_FIELD_REF)
431 return 0;
433 /* Fields are addressable unless they are marked as nonaddressable or
434 the containing type has alias set 0. */
435 else if (TREE_CODE (t) == COMPONENT_REF
436 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
437 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
438 && can_address_p (TREE_OPERAND (t, 0)))
439 return 1;
441 /* Likewise for arrays. */
442 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
443 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
444 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
445 && can_address_p (TREE_OPERAND (t, 0)))
446 return 1;
448 return 0;
451 /* Return the alias set for T, which may be either a type or an
452 expression. Call language-specific routine for help, if needed. */
454 HOST_WIDE_INT
455 get_alias_set (t)
456 tree t;
458 HOST_WIDE_INT set;
460 /* If we're not doing any alias analysis, just assume everything
461 aliases everything else. Also return 0 if this or its type is
462 an error. */
463 if (! flag_strict_aliasing || t == error_mark_node
464 || (! TYPE_P (t)
465 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
466 return 0;
468 /* We can be passed either an expression or a type. This and the
469 language-specific routine may make mutually-recursive calls to each other
470 to figure out what to do. At each juncture, we see if this is a tree
471 that the language may need to handle specially. First handle things that
472 aren't types. */
473 if (! TYPE_P (t))
475 tree inner = t;
476 tree placeholder_ptr = 0;
478 /* Remove any nops, then give the language a chance to do
479 something with this tree before we look at it. */
480 STRIP_NOPS (t);
481 set = (*lang_hooks.get_alias_set) (t);
482 if (set != -1)
483 return set;
485 /* First see if the actual object referenced is an INDIRECT_REF from a
486 restrict-qualified pointer or a "void *". Replace
487 PLACEHOLDER_EXPRs. */
488 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
489 || handled_component_p (inner))
491 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
492 inner = find_placeholder (inner, &placeholder_ptr);
493 else
494 inner = TREE_OPERAND (inner, 0);
496 STRIP_NOPS (inner);
499 /* Check for accesses through restrict-qualified pointers. */
500 if (TREE_CODE (inner) == INDIRECT_REF)
502 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
504 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
506 /* If we haven't computed the actual alias set, do it now. */
507 if (DECL_POINTER_ALIAS_SET (decl) == -2)
509 /* No two restricted pointers can point at the same thing.
510 However, a restricted pointer can point at the same thing
511 as an unrestricted pointer, if that unrestricted pointer
512 is based on the restricted pointer. So, we make the
513 alias set for the restricted pointer a subset of the
514 alias set for the type pointed to by the type of the
515 decl. */
516 HOST_WIDE_INT pointed_to_alias_set
517 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
519 if (pointed_to_alias_set == 0)
520 /* It's not legal to make a subset of alias set zero. */
522 else
524 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
525 record_alias_subset (pointed_to_alias_set,
526 DECL_POINTER_ALIAS_SET (decl));
530 /* We use the alias set indicated in the declaration. */
531 return DECL_POINTER_ALIAS_SET (decl);
534 /* If we have an INDIRECT_REF via a void pointer, we don't
535 know anything about what that might alias. */
536 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
537 return 0;
540 /* Otherwise, pick up the outermost object that we could have a pointer
541 to, processing conversion and PLACEHOLDER_EXPR as above. */
542 placeholder_ptr = 0;
543 while (TREE_CODE (t) == PLACEHOLDER_EXPR
544 || (handled_component_p (t) && ! can_address_p (t)))
546 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
547 t = find_placeholder (t, &placeholder_ptr);
548 else
549 t = TREE_OPERAND (t, 0);
551 STRIP_NOPS (t);
554 /* If we've already determined the alias set for a decl, just return
555 it. This is necessary for C++ anonymous unions, whose component
556 variables don't look like union members (boo!). */
557 if (TREE_CODE (t) == VAR_DECL
558 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
559 return MEM_ALIAS_SET (DECL_RTL (t));
561 /* Now all we care about is the type. */
562 t = TREE_TYPE (t);
565 /* Variant qualifiers don't affect the alias set, so get the main
566 variant. If this is a type with a known alias set, return it. */
567 t = TYPE_MAIN_VARIANT (t);
568 if (TYPE_ALIAS_SET_KNOWN_P (t))
569 return TYPE_ALIAS_SET (t);
571 /* See if the language has special handling for this type. */
572 set = (*lang_hooks.get_alias_set) (t);
573 if (set != -1)
574 return set;
576 /* There are no objects of FUNCTION_TYPE, so there's no point in
577 using up an alias set for them. (There are, of course, pointers
578 and references to functions, but that's different.) */
579 else if (TREE_CODE (t) == FUNCTION_TYPE)
580 set = 0;
582 /* Unless the language specifies otherwise, let vector types alias
583 their components. This avoids some nasty type punning issues in
584 normal usage. And indeed lets vectors be treated more like an
585 array slice. */
586 else if (TREE_CODE (t) == VECTOR_TYPE)
587 set = get_alias_set (TREE_TYPE (t));
589 else
590 /* Otherwise make a new alias set for this type. */
591 set = new_alias_set ();
593 TYPE_ALIAS_SET (t) = set;
595 /* If this is an aggregate type, we must record any component aliasing
596 information. */
597 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
598 record_component_aliases (t);
600 return set;
603 /* Return a brand-new alias set. */
605 HOST_WIDE_INT
606 new_alias_set ()
608 static HOST_WIDE_INT last_alias_set;
610 if (flag_strict_aliasing)
611 return ++last_alias_set;
612 else
613 return 0;
616 /* Indicate that things in SUBSET can alias things in SUPERSET, but
617 not vice versa. For example, in C, a store to an `int' can alias a
618 structure containing an `int', but not vice versa. Here, the
619 structure would be the SUPERSET and `int' the SUBSET. This
620 function should be called only once per SUPERSET/SUBSET pair.
622 It is illegal for SUPERSET to be zero; everything is implicitly a
623 subset of alias set zero. */
625 void
626 record_alias_subset (superset, subset)
627 HOST_WIDE_INT superset;
628 HOST_WIDE_INT subset;
630 alias_set_entry superset_entry;
631 alias_set_entry subset_entry;
633 /* It is possible in complex type situations for both sets to be the same,
634 in which case we can ignore this operation. */
635 if (superset == subset)
636 return;
638 if (superset == 0)
639 abort ();
641 superset_entry = get_alias_set_entry (superset);
642 if (superset_entry == 0)
644 /* Create an entry for the SUPERSET, so that we have a place to
645 attach the SUBSET. */
646 superset_entry
647 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
648 superset_entry->alias_set = superset;
649 superset_entry->children
650 = splay_tree_new (splay_tree_compare_ints, 0, 0);
651 superset_entry->has_zero_child = 0;
652 splay_tree_insert (alias_sets, (splay_tree_key) superset,
653 (splay_tree_value) superset_entry);
656 if (subset == 0)
657 superset_entry->has_zero_child = 1;
658 else
660 subset_entry = get_alias_set_entry (subset);
661 /* If there is an entry for the subset, enter all of its children
662 (if they are not already present) as children of the SUPERSET. */
663 if (subset_entry)
665 if (subset_entry->has_zero_child)
666 superset_entry->has_zero_child = 1;
668 splay_tree_foreach (subset_entry->children, insert_subset_children,
669 superset_entry->children);
672 /* Enter the SUBSET itself as a child of the SUPERSET. */
673 splay_tree_insert (superset_entry->children,
674 (splay_tree_key) subset, 0);
678 /* Record that component types of TYPE, if any, are part of that type for
679 aliasing purposes. For record types, we only record component types
680 for fields that are marked addressable. For array types, we always
681 record the component types, so the front end should not call this
682 function if the individual component aren't addressable. */
684 void
685 record_component_aliases (type)
686 tree type;
688 HOST_WIDE_INT superset = get_alias_set (type);
689 tree field;
691 if (superset == 0)
692 return;
694 switch (TREE_CODE (type))
696 case ARRAY_TYPE:
697 if (! TYPE_NONALIASED_COMPONENT (type))
698 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
699 break;
701 case RECORD_TYPE:
702 case UNION_TYPE:
703 case QUAL_UNION_TYPE:
704 /* Recursively record aliases for the base classes, if there are any */
705 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
707 int i;
708 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
710 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
711 record_alias_subset (superset,
712 get_alias_set (BINFO_TYPE (binfo)));
715 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
716 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
717 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
718 break;
720 case COMPLEX_TYPE:
721 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
722 break;
724 default:
725 break;
729 /* Allocate an alias set for use in storing and reading from the varargs
730 spill area. */
732 HOST_WIDE_INT
733 get_varargs_alias_set ()
735 static HOST_WIDE_INT set = -1;
737 if (set == -1)
738 set = new_alias_set ();
740 return set;
743 /* Likewise, but used for the fixed portions of the frame, e.g., register
744 save areas. */
746 HOST_WIDE_INT
747 get_frame_alias_set ()
749 static HOST_WIDE_INT set = -1;
751 if (set == -1)
752 set = new_alias_set ();
754 return set;
757 /* Inside SRC, the source of a SET, find a base address. */
759 static rtx
760 find_base_value (src)
761 rtx src;
763 unsigned int regno;
765 switch (GET_CODE (src))
767 case SYMBOL_REF:
768 case LABEL_REF:
769 return src;
771 case REG:
772 regno = REGNO (src);
773 /* At the start of a function, argument registers have known base
774 values which may be lost later. Returning an ADDRESS
775 expression here allows optimization based on argument values
776 even when the argument registers are used for other purposes. */
777 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
778 return new_reg_base_value[regno];
780 /* If a pseudo has a known base value, return it. Do not do this
781 for non-fixed hard regs since it can result in a circular
782 dependency chain for registers which have values at function entry.
784 The test above is not sufficient because the scheduler may move
785 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
786 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
787 && regno < reg_base_value_size)
789 /* If we're inside init_alias_analysis, use new_reg_base_value
790 to reduce the number of relaxation iterations. */
791 if (new_reg_base_value && new_reg_base_value[regno]
792 && REG_N_SETS (regno) == 1)
793 return new_reg_base_value[regno];
795 if (reg_base_value[regno])
796 return reg_base_value[regno];
799 return 0;
801 case MEM:
802 /* Check for an argument passed in memory. Only record in the
803 copying-arguments block; it is too hard to track changes
804 otherwise. */
805 if (copying_arguments
806 && (XEXP (src, 0) == arg_pointer_rtx
807 || (GET_CODE (XEXP (src, 0)) == PLUS
808 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
809 return gen_rtx_ADDRESS (VOIDmode, src);
810 return 0;
812 case CONST:
813 src = XEXP (src, 0);
814 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
815 break;
817 /* ... fall through ... */
819 case PLUS:
820 case MINUS:
822 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
824 /* If either operand is a REG that is a known pointer, then it
825 is the base. */
826 if (REG_P (src_0) && REG_POINTER (src_0))
827 return find_base_value (src_0);
828 if (REG_P (src_1) && REG_POINTER (src_1))
829 return find_base_value (src_1);
831 /* If either operand is a REG, then see if we already have
832 a known value for it. */
833 if (REG_P (src_0))
835 temp = find_base_value (src_0);
836 if (temp != 0)
837 src_0 = temp;
840 if (REG_P (src_1))
842 temp = find_base_value (src_1);
843 if (temp!= 0)
844 src_1 = temp;
847 /* If either base is named object or a special address
848 (like an argument or stack reference), then use it for the
849 base term. */
850 if (src_0 != 0
851 && (GET_CODE (src_0) == SYMBOL_REF
852 || GET_CODE (src_0) == LABEL_REF
853 || (GET_CODE (src_0) == ADDRESS
854 && GET_MODE (src_0) != VOIDmode)))
855 return src_0;
857 if (src_1 != 0
858 && (GET_CODE (src_1) == SYMBOL_REF
859 || GET_CODE (src_1) == LABEL_REF
860 || (GET_CODE (src_1) == ADDRESS
861 && GET_MODE (src_1) != VOIDmode)))
862 return src_1;
864 /* Guess which operand is the base address:
865 If either operand is a symbol, then it is the base. If
866 either operand is a CONST_INT, then the other is the base. */
867 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
868 return find_base_value (src_0);
869 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
870 return find_base_value (src_1);
872 return 0;
875 case LO_SUM:
876 /* The standard form is (lo_sum reg sym) so look only at the
877 second operand. */
878 return find_base_value (XEXP (src, 1));
880 case AND:
881 /* If the second operand is constant set the base
882 address to the first operand. */
883 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
884 return find_base_value (XEXP (src, 0));
885 return 0;
887 case TRUNCATE:
888 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
889 break;
890 /* Fall through. */
891 case HIGH:
892 case PRE_INC:
893 case PRE_DEC:
894 case POST_INC:
895 case POST_DEC:
896 case PRE_MODIFY:
897 case POST_MODIFY:
898 return find_base_value (XEXP (src, 0));
900 case ZERO_EXTEND:
901 case SIGN_EXTEND: /* used for NT/Alpha pointers */
903 rtx temp = find_base_value (XEXP (src, 0));
905 #ifdef POINTERS_EXTEND_UNSIGNED
906 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
907 temp = convert_memory_address (Pmode, temp);
908 #endif
910 return temp;
913 default:
914 break;
917 return 0;
920 /* Called from init_alias_analysis indirectly through note_stores. */
922 /* While scanning insns to find base values, reg_seen[N] is nonzero if
923 register N has been set in this function. */
924 static char *reg_seen;
926 /* Addresses which are known not to alias anything else are identified
927 by a unique integer. */
928 static int unique_id;
930 static void
931 record_set (dest, set, data)
932 rtx dest, set;
933 void *data ATTRIBUTE_UNUSED;
935 unsigned regno;
936 rtx src;
938 if (GET_CODE (dest) != REG)
939 return;
941 regno = REGNO (dest);
943 if (regno >= reg_base_value_size)
944 abort ();
946 if (set)
948 /* A CLOBBER wipes out any old value but does not prevent a previously
949 unset register from acquiring a base address (i.e. reg_seen is not
950 set). */
951 if (GET_CODE (set) == CLOBBER)
953 new_reg_base_value[regno] = 0;
954 return;
956 src = SET_SRC (set);
958 else
960 if (reg_seen[regno])
962 new_reg_base_value[regno] = 0;
963 return;
965 reg_seen[regno] = 1;
966 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
967 GEN_INT (unique_id++));
968 return;
971 /* This is not the first set. If the new value is not related to the
972 old value, forget the base value. Note that the following code is
973 not detected:
974 extern int x, y; int *p = &x; p += (&y-&x);
975 ANSI C does not allow computing the difference of addresses
976 of distinct top level objects. */
977 if (new_reg_base_value[regno])
978 switch (GET_CODE (src))
980 case LO_SUM:
981 case MINUS:
982 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
983 new_reg_base_value[regno] = 0;
984 break;
985 case PLUS:
986 /* If the value we add in the PLUS is also a valid base value,
987 this might be the actual base value, and the original value
988 an index. */
990 rtx other = NULL_RTX;
992 if (XEXP (src, 0) == dest)
993 other = XEXP (src, 1);
994 else if (XEXP (src, 1) == dest)
995 other = XEXP (src, 0);
997 if (! other || find_base_value (other))
998 new_reg_base_value[regno] = 0;
999 break;
1001 case AND:
1002 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1003 new_reg_base_value[regno] = 0;
1004 break;
1005 default:
1006 new_reg_base_value[regno] = 0;
1007 break;
1009 /* If this is the first set of a register, record the value. */
1010 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1011 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1012 new_reg_base_value[regno] = find_base_value (src);
1014 reg_seen[regno] = 1;
1017 /* Called from loop optimization when a new pseudo-register is
1018 created. It indicates that REGNO is being set to VAL. f INVARIANT
1019 is true then this value also describes an invariant relationship
1020 which can be used to deduce that two registers with unknown values
1021 are different. */
1023 void
1024 record_base_value (regno, val, invariant)
1025 unsigned int regno;
1026 rtx val;
1027 int invariant;
1029 if (regno >= reg_base_value_size)
1030 return;
1032 if (invariant && alias_invariant)
1033 alias_invariant[regno] = val;
1035 if (GET_CODE (val) == REG)
1037 if (REGNO (val) < reg_base_value_size)
1038 reg_base_value[regno] = reg_base_value[REGNO (val)];
1040 return;
1043 reg_base_value[regno] = find_base_value (val);
1046 /* Clear alias info for a register. This is used if an RTL transformation
1047 changes the value of a register. This is used in flow by AUTO_INC_DEC
1048 optimizations. We don't need to clear reg_base_value, since flow only
1049 changes the offset. */
1051 void
1052 clear_reg_alias_info (reg)
1053 rtx reg;
1055 unsigned int regno = REGNO (reg);
1057 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1058 reg_known_value[regno] = reg;
1061 /* Returns a canonical version of X, from the point of view alias
1062 analysis. (For example, if X is a MEM whose address is a register,
1063 and the register has a known value (say a SYMBOL_REF), then a MEM
1064 whose address is the SYMBOL_REF is returned.) */
1067 canon_rtx (x)
1068 rtx x;
1070 /* Recursively look for equivalences. */
1071 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1072 && REGNO (x) < reg_known_value_size)
1073 return reg_known_value[REGNO (x)] == x
1074 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1075 else if (GET_CODE (x) == PLUS)
1077 rtx x0 = canon_rtx (XEXP (x, 0));
1078 rtx x1 = canon_rtx (XEXP (x, 1));
1080 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1082 if (GET_CODE (x0) == CONST_INT)
1083 return plus_constant (x1, INTVAL (x0));
1084 else if (GET_CODE (x1) == CONST_INT)
1085 return plus_constant (x0, INTVAL (x1));
1086 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1090 /* This gives us much better alias analysis when called from
1091 the loop optimizer. Note we want to leave the original
1092 MEM alone, but need to return the canonicalized MEM with
1093 all the flags with their original values. */
1094 else if (GET_CODE (x) == MEM)
1095 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1097 return x;
1100 /* Return 1 if X and Y are identical-looking rtx's.
1102 We use the data in reg_known_value above to see if two registers with
1103 different numbers are, in fact, equivalent. */
1105 static int
1106 rtx_equal_for_memref_p (x, y)
1107 rtx x, y;
1109 int i;
1110 int j;
1111 enum rtx_code code;
1112 const char *fmt;
1114 if (x == 0 && y == 0)
1115 return 1;
1116 if (x == 0 || y == 0)
1117 return 0;
1119 x = canon_rtx (x);
1120 y = canon_rtx (y);
1122 if (x == y)
1123 return 1;
1125 code = GET_CODE (x);
1126 /* Rtx's of different codes cannot be equal. */
1127 if (code != GET_CODE (y))
1128 return 0;
1130 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1131 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1133 if (GET_MODE (x) != GET_MODE (y))
1134 return 0;
1136 /* Some RTL can be compared without a recursive examination. */
1137 switch (code)
1139 case VALUE:
1140 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1142 case REG:
1143 return REGNO (x) == REGNO (y);
1145 case LABEL_REF:
1146 return XEXP (x, 0) == XEXP (y, 0);
1148 case SYMBOL_REF:
1149 return XSTR (x, 0) == XSTR (y, 0);
1151 case CONST_INT:
1152 case CONST_DOUBLE:
1153 /* There's no need to compare the contents of CONST_DOUBLEs or
1154 CONST_INTs because pointer equality is a good enough
1155 comparison for these nodes. */
1156 return 0;
1158 case ADDRESSOF:
1159 return (XINT (x, 1) == XINT (y, 1)
1160 && rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)));
1162 default:
1163 break;
1166 /* For commutative operations, the RTX match if the operand match in any
1167 order. Also handle the simple binary and unary cases without a loop. */
1168 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1169 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1170 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1171 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1172 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1173 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1174 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1175 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
1176 else if (GET_RTX_CLASS (code) == '1')
1177 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
1179 /* Compare the elements. If any pair of corresponding elements
1180 fail to match, return 0 for the whole things.
1182 Limit cases to types which actually appear in addresses. */
1184 fmt = GET_RTX_FORMAT (code);
1185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1187 switch (fmt[i])
1189 case 'i':
1190 if (XINT (x, i) != XINT (y, i))
1191 return 0;
1192 break;
1194 case 'E':
1195 /* Two vectors must have the same length. */
1196 if (XVECLEN (x, i) != XVECLEN (y, i))
1197 return 0;
1199 /* And the corresponding elements must match. */
1200 for (j = 0; j < XVECLEN (x, i); j++)
1201 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
1202 XVECEXP (y, i, j)) == 0)
1203 return 0;
1204 break;
1206 case 'e':
1207 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
1208 return 0;
1209 break;
1211 /* This can happen for asm operands. */
1212 case 's':
1213 if (strcmp (XSTR (x, i), XSTR (y, i)))
1214 return 0;
1215 break;
1217 /* This can happen for an asm which clobbers memory. */
1218 case '0':
1219 break;
1221 /* It is believed that rtx's at this level will never
1222 contain anything but integers and other rtx's,
1223 except for within LABEL_REFs and SYMBOL_REFs. */
1224 default:
1225 abort ();
1228 return 1;
1231 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1232 X and return it, or return 0 if none found. */
1234 static rtx
1235 find_symbolic_term (x)
1236 rtx x;
1238 int i;
1239 enum rtx_code code;
1240 const char *fmt;
1242 code = GET_CODE (x);
1243 if (code == SYMBOL_REF || code == LABEL_REF)
1244 return x;
1245 if (GET_RTX_CLASS (code) == 'o')
1246 return 0;
1248 fmt = GET_RTX_FORMAT (code);
1249 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1251 rtx t;
1253 if (fmt[i] == 'e')
1255 t = find_symbolic_term (XEXP (x, i));
1256 if (t != 0)
1257 return t;
1259 else if (fmt[i] == 'E')
1260 break;
1262 return 0;
1265 static rtx
1266 find_base_term (x)
1267 rtx x;
1269 cselib_val *val;
1270 struct elt_loc_list *l;
1272 #if defined (FIND_BASE_TERM)
1273 /* Try machine-dependent ways to find the base term. */
1274 x = FIND_BASE_TERM (x);
1275 #endif
1277 switch (GET_CODE (x))
1279 case REG:
1280 return REG_BASE_VALUE (x);
1282 case TRUNCATE:
1283 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1284 return 0;
1285 /* Fall through. */
1286 case HIGH:
1287 case PRE_INC:
1288 case PRE_DEC:
1289 case POST_INC:
1290 case POST_DEC:
1291 case PRE_MODIFY:
1292 case POST_MODIFY:
1293 return find_base_term (XEXP (x, 0));
1295 case ZERO_EXTEND:
1296 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1298 rtx temp = find_base_term (XEXP (x, 0));
1300 #ifdef POINTERS_EXTEND_UNSIGNED
1301 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1302 temp = convert_memory_address (Pmode, temp);
1303 #endif
1305 return temp;
1308 case VALUE:
1309 val = CSELIB_VAL_PTR (x);
1310 for (l = val->locs; l; l = l->next)
1311 if ((x = find_base_term (l->loc)) != 0)
1312 return x;
1313 return 0;
1315 case CONST:
1316 x = XEXP (x, 0);
1317 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1318 return 0;
1319 /* fall through */
1320 case LO_SUM:
1321 case PLUS:
1322 case MINUS:
1324 rtx tmp1 = XEXP (x, 0);
1325 rtx tmp2 = XEXP (x, 1);
1327 /* This is a little bit tricky since we have to determine which of
1328 the two operands represents the real base address. Otherwise this
1329 routine may return the index register instead of the base register.
1331 That may cause us to believe no aliasing was possible, when in
1332 fact aliasing is possible.
1334 We use a few simple tests to guess the base register. Additional
1335 tests can certainly be added. For example, if one of the operands
1336 is a shift or multiply, then it must be the index register and the
1337 other operand is the base register. */
1339 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1340 return find_base_term (tmp2);
1342 /* If either operand is known to be a pointer, then use it
1343 to determine the base term. */
1344 if (REG_P (tmp1) && REG_POINTER (tmp1))
1345 return find_base_term (tmp1);
1347 if (REG_P (tmp2) && REG_POINTER (tmp2))
1348 return find_base_term (tmp2);
1350 /* Neither operand was known to be a pointer. Go ahead and find the
1351 base term for both operands. */
1352 tmp1 = find_base_term (tmp1);
1353 tmp2 = find_base_term (tmp2);
1355 /* If either base term is named object or a special address
1356 (like an argument or stack reference), then use it for the
1357 base term. */
1358 if (tmp1 != 0
1359 && (GET_CODE (tmp1) == SYMBOL_REF
1360 || GET_CODE (tmp1) == LABEL_REF
1361 || (GET_CODE (tmp1) == ADDRESS
1362 && GET_MODE (tmp1) != VOIDmode)))
1363 return tmp1;
1365 if (tmp2 != 0
1366 && (GET_CODE (tmp2) == SYMBOL_REF
1367 || GET_CODE (tmp2) == LABEL_REF
1368 || (GET_CODE (tmp2) == ADDRESS
1369 && GET_MODE (tmp2) != VOIDmode)))
1370 return tmp2;
1372 /* We could not determine which of the two operands was the
1373 base register and which was the index. So we can determine
1374 nothing from the base alias check. */
1375 return 0;
1378 case AND:
1379 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1380 return find_base_term (XEXP (x, 0));
1381 return 0;
1383 case SYMBOL_REF:
1384 case LABEL_REF:
1385 return x;
1387 case ADDRESSOF:
1388 return REG_BASE_VALUE (frame_pointer_rtx);
1390 default:
1391 return 0;
1395 /* Return 0 if the addresses X and Y are known to point to different
1396 objects, 1 if they might be pointers to the same object. */
1398 static int
1399 base_alias_check (x, y, x_mode, y_mode)
1400 rtx x, y;
1401 enum machine_mode x_mode, y_mode;
1403 rtx x_base = find_base_term (x);
1404 rtx y_base = find_base_term (y);
1406 /* If the address itself has no known base see if a known equivalent
1407 value has one. If either address still has no known base, nothing
1408 is known about aliasing. */
1409 if (x_base == 0)
1411 rtx x_c;
1413 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1414 return 1;
1416 x_base = find_base_term (x_c);
1417 if (x_base == 0)
1418 return 1;
1421 if (y_base == 0)
1423 rtx y_c;
1424 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1425 return 1;
1427 y_base = find_base_term (y_c);
1428 if (y_base == 0)
1429 return 1;
1432 /* If the base addresses are equal nothing is known about aliasing. */
1433 if (rtx_equal_p (x_base, y_base))
1434 return 1;
1436 /* The base addresses of the read and write are different expressions.
1437 If they are both symbols and they are not accessed via AND, there is
1438 no conflict. We can bring knowledge of object alignment into play
1439 here. For example, on alpha, "char a, b;" can alias one another,
1440 though "char a; long b;" cannot. */
1441 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1443 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1444 return 1;
1445 if (GET_CODE (x) == AND
1446 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1447 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1448 return 1;
1449 if (GET_CODE (y) == AND
1450 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1451 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1452 return 1;
1453 /* Differing symbols never alias. */
1454 return 0;
1457 /* If one address is a stack reference there can be no alias:
1458 stack references using different base registers do not alias,
1459 a stack reference can not alias a parameter, and a stack reference
1460 can not alias a global. */
1461 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1462 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1463 return 0;
1465 if (! flag_argument_noalias)
1466 return 1;
1468 if (flag_argument_noalias > 1)
1469 return 0;
1471 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1472 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1475 /* Convert the address X into something we can use. This is done by returning
1476 it unchanged unless it is a value; in the latter case we call cselib to get
1477 a more useful rtx. */
1480 get_addr (x)
1481 rtx x;
1483 cselib_val *v;
1484 struct elt_loc_list *l;
1486 if (GET_CODE (x) != VALUE)
1487 return x;
1488 v = CSELIB_VAL_PTR (x);
1489 for (l = v->locs; l; l = l->next)
1490 if (CONSTANT_P (l->loc))
1491 return l->loc;
1492 for (l = v->locs; l; l = l->next)
1493 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1494 return l->loc;
1495 if (v->locs)
1496 return v->locs->loc;
1497 return x;
1500 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1501 where SIZE is the size in bytes of the memory reference. If ADDR
1502 is not modified by the memory reference then ADDR is returned. */
1505 addr_side_effect_eval (addr, size, n_refs)
1506 rtx addr;
1507 int size;
1508 int n_refs;
1510 int offset = 0;
1512 switch (GET_CODE (addr))
1514 case PRE_INC:
1515 offset = (n_refs + 1) * size;
1516 break;
1517 case PRE_DEC:
1518 offset = -(n_refs + 1) * size;
1519 break;
1520 case POST_INC:
1521 offset = n_refs * size;
1522 break;
1523 case POST_DEC:
1524 offset = -n_refs * size;
1525 break;
1527 default:
1528 return addr;
1531 if (offset)
1532 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1533 else
1534 addr = XEXP (addr, 0);
1536 return addr;
1539 /* Return nonzero if X and Y (memory addresses) could reference the
1540 same location in memory. C is an offset accumulator. When
1541 C is nonzero, we are testing aliases between X and Y + C.
1542 XSIZE is the size in bytes of the X reference,
1543 similarly YSIZE is the size in bytes for Y.
1545 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1546 referenced (the reference was BLKmode), so make the most pessimistic
1547 assumptions.
1549 If XSIZE or YSIZE is negative, we may access memory outside the object
1550 being referenced as a side effect. This can happen when using AND to
1551 align memory references, as is done on the Alpha.
1553 Nice to notice that varying addresses cannot conflict with fp if no
1554 local variables had their addresses taken, but that's too hard now. */
1556 static int
1557 memrefs_conflict_p (xsize, x, ysize, y, c)
1558 rtx x, y;
1559 int xsize, ysize;
1560 HOST_WIDE_INT c;
1562 if (GET_CODE (x) == VALUE)
1563 x = get_addr (x);
1564 if (GET_CODE (y) == VALUE)
1565 y = get_addr (y);
1566 if (GET_CODE (x) == HIGH)
1567 x = XEXP (x, 0);
1568 else if (GET_CODE (x) == LO_SUM)
1569 x = XEXP (x, 1);
1570 else
1571 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1572 if (GET_CODE (y) == HIGH)
1573 y = XEXP (y, 0);
1574 else if (GET_CODE (y) == LO_SUM)
1575 y = XEXP (y, 1);
1576 else
1577 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1579 if (rtx_equal_for_memref_p (x, y))
1581 if (xsize <= 0 || ysize <= 0)
1582 return 1;
1583 if (c >= 0 && xsize > c)
1584 return 1;
1585 if (c < 0 && ysize+c > 0)
1586 return 1;
1587 return 0;
1590 /* This code used to check for conflicts involving stack references and
1591 globals but the base address alias code now handles these cases. */
1593 if (GET_CODE (x) == PLUS)
1595 /* The fact that X is canonicalized means that this
1596 PLUS rtx is canonicalized. */
1597 rtx x0 = XEXP (x, 0);
1598 rtx x1 = XEXP (x, 1);
1600 if (GET_CODE (y) == PLUS)
1602 /* The fact that Y is canonicalized means that this
1603 PLUS rtx is canonicalized. */
1604 rtx y0 = XEXP (y, 0);
1605 rtx y1 = XEXP (y, 1);
1607 if (rtx_equal_for_memref_p (x1, y1))
1608 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1609 if (rtx_equal_for_memref_p (x0, y0))
1610 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1611 if (GET_CODE (x1) == CONST_INT)
1613 if (GET_CODE (y1) == CONST_INT)
1614 return memrefs_conflict_p (xsize, x0, ysize, y0,
1615 c - INTVAL (x1) + INTVAL (y1));
1616 else
1617 return memrefs_conflict_p (xsize, x0, ysize, y,
1618 c - INTVAL (x1));
1620 else if (GET_CODE (y1) == CONST_INT)
1621 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1623 return 1;
1625 else if (GET_CODE (x1) == CONST_INT)
1626 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1628 else if (GET_CODE (y) == PLUS)
1630 /* The fact that Y is canonicalized means that this
1631 PLUS rtx is canonicalized. */
1632 rtx y0 = XEXP (y, 0);
1633 rtx y1 = XEXP (y, 1);
1635 if (GET_CODE (y1) == CONST_INT)
1636 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1637 else
1638 return 1;
1641 if (GET_CODE (x) == GET_CODE (y))
1642 switch (GET_CODE (x))
1644 case MULT:
1646 /* Handle cases where we expect the second operands to be the
1647 same, and check only whether the first operand would conflict
1648 or not. */
1649 rtx x0, y0;
1650 rtx x1 = canon_rtx (XEXP (x, 1));
1651 rtx y1 = canon_rtx (XEXP (y, 1));
1652 if (! rtx_equal_for_memref_p (x1, y1))
1653 return 1;
1654 x0 = canon_rtx (XEXP (x, 0));
1655 y0 = canon_rtx (XEXP (y, 0));
1656 if (rtx_equal_for_memref_p (x0, y0))
1657 return (xsize == 0 || ysize == 0
1658 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1660 /* Can't properly adjust our sizes. */
1661 if (GET_CODE (x1) != CONST_INT)
1662 return 1;
1663 xsize /= INTVAL (x1);
1664 ysize /= INTVAL (x1);
1665 c /= INTVAL (x1);
1666 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1669 case REG:
1670 /* Are these registers known not to be equal? */
1671 if (alias_invariant)
1673 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1674 rtx i_x, i_y; /* invariant relationships of X and Y */
1676 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1677 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1679 if (i_x == 0 && i_y == 0)
1680 break;
1682 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1683 ysize, i_y ? i_y : y, c))
1684 return 0;
1686 break;
1688 default:
1689 break;
1692 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1693 as an access with indeterminate size. Assume that references
1694 besides AND are aligned, so if the size of the other reference is
1695 at least as large as the alignment, assume no other overlap. */
1696 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1698 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1699 xsize = -1;
1700 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1702 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1704 /* ??? If we are indexing far enough into the array/structure, we
1705 may yet be able to determine that we can not overlap. But we
1706 also need to that we are far enough from the end not to overlap
1707 a following reference, so we do nothing with that for now. */
1708 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1709 ysize = -1;
1710 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1713 if (GET_CODE (x) == ADDRESSOF)
1715 if (y == frame_pointer_rtx
1716 || GET_CODE (y) == ADDRESSOF)
1717 return xsize <= 0 || ysize <= 0;
1719 if (GET_CODE (y) == ADDRESSOF)
1721 if (x == frame_pointer_rtx)
1722 return xsize <= 0 || ysize <= 0;
1725 if (CONSTANT_P (x))
1727 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1729 c += (INTVAL (y) - INTVAL (x));
1730 return (xsize <= 0 || ysize <= 0
1731 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1734 if (GET_CODE (x) == CONST)
1736 if (GET_CODE (y) == CONST)
1737 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1738 ysize, canon_rtx (XEXP (y, 0)), c);
1739 else
1740 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1741 ysize, y, c);
1743 if (GET_CODE (y) == CONST)
1744 return memrefs_conflict_p (xsize, x, ysize,
1745 canon_rtx (XEXP (y, 0)), c);
1747 if (CONSTANT_P (y))
1748 return (xsize <= 0 || ysize <= 0
1749 || (rtx_equal_for_memref_p (x, y)
1750 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1752 return 1;
1754 return 1;
1757 /* Functions to compute memory dependencies.
1759 Since we process the insns in execution order, we can build tables
1760 to keep track of what registers are fixed (and not aliased), what registers
1761 are varying in known ways, and what registers are varying in unknown
1762 ways.
1764 If both memory references are volatile, then there must always be a
1765 dependence between the two references, since their order can not be
1766 changed. A volatile and non-volatile reference can be interchanged
1767 though.
1769 A MEM_IN_STRUCT reference at a non-AND varying address can never
1770 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1771 also must allow AND addresses, because they may generate accesses
1772 outside the object being referenced. This is used to generate
1773 aligned addresses from unaligned addresses, for instance, the alpha
1774 storeqi_unaligned pattern. */
1776 /* Read dependence: X is read after read in MEM takes place. There can
1777 only be a dependence here if both reads are volatile. */
1780 read_dependence (mem, x)
1781 rtx mem;
1782 rtx x;
1784 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1787 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1788 MEM2 is a reference to a structure at a varying address, or returns
1789 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1790 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1791 to decide whether or not an address may vary; it should return
1792 nonzero whenever variation is possible.
1793 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1795 static rtx
1796 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1797 rtx mem1, mem2;
1798 rtx mem1_addr, mem2_addr;
1799 int (*varies_p) PARAMS ((rtx, int));
1801 if (! flag_strict_aliasing)
1802 return NULL_RTX;
1804 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1805 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1806 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1807 varying address. */
1808 return mem1;
1810 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1811 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1812 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1813 varying address. */
1814 return mem2;
1816 return NULL_RTX;
1819 /* Returns nonzero if something about the mode or address format MEM1
1820 indicates that it might well alias *anything*. */
1822 static int
1823 aliases_everything_p (mem)
1824 rtx mem;
1826 if (GET_CODE (XEXP (mem, 0)) == AND)
1827 /* If the address is an AND, its very hard to know at what it is
1828 actually pointing. */
1829 return 1;
1831 return 0;
1834 /* Return true if we can determine that the fields referenced cannot
1835 overlap for any pair of objects. */
1837 static bool
1838 nonoverlapping_component_refs_p (x, y)
1839 tree x, y;
1841 tree fieldx, fieldy, typex, typey, orig_y;
1845 /* The comparison has to be done at a common type, since we don't
1846 know how the inheritance hierarchy works. */
1847 orig_y = y;
1850 fieldx = TREE_OPERAND (x, 1);
1851 typex = DECL_FIELD_CONTEXT (fieldx);
1853 y = orig_y;
1856 fieldy = TREE_OPERAND (y, 1);
1857 typey = DECL_FIELD_CONTEXT (fieldy);
1859 if (typex == typey)
1860 goto found;
1862 y = TREE_OPERAND (y, 0);
1864 while (y && TREE_CODE (y) == COMPONENT_REF);
1866 x = TREE_OPERAND (x, 0);
1868 while (x && TREE_CODE (x) == COMPONENT_REF);
1870 /* Never found a common type. */
1871 return false;
1873 found:
1874 /* If we're left with accessing different fields of a structure,
1875 then no overlap. */
1876 if (TREE_CODE (typex) == RECORD_TYPE
1877 && fieldx != fieldy)
1878 return true;
1880 /* The comparison on the current field failed. If we're accessing
1881 a very nested structure, look at the next outer level. */
1882 x = TREE_OPERAND (x, 0);
1883 y = TREE_OPERAND (y, 0);
1885 while (x && y
1886 && TREE_CODE (x) == COMPONENT_REF
1887 && TREE_CODE (y) == COMPONENT_REF);
1889 return false;
1892 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1894 static tree
1895 decl_for_component_ref (x)
1896 tree x;
1900 x = TREE_OPERAND (x, 0);
1902 while (x && TREE_CODE (x) == COMPONENT_REF);
1904 return x && DECL_P (x) ? x : NULL_TREE;
1907 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1908 offset of the field reference. */
1910 static rtx
1911 adjust_offset_for_component_ref (x, offset)
1912 tree x;
1913 rtx offset;
1915 HOST_WIDE_INT ioffset;
1917 if (! offset)
1918 return NULL_RTX;
1920 ioffset = INTVAL (offset);
1923 tree field = TREE_OPERAND (x, 1);
1925 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1926 return NULL_RTX;
1927 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1928 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1929 / BITS_PER_UNIT));
1931 x = TREE_OPERAND (x, 0);
1933 while (x && TREE_CODE (x) == COMPONENT_REF);
1935 return GEN_INT (ioffset);
1938 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1939 X and Y and they do not overlap. */
1941 static int
1942 nonoverlapping_memrefs_p (x, y)
1943 rtx x, y;
1945 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1946 rtx rtlx, rtly;
1947 rtx basex, basey;
1948 rtx moffsetx, moffsety;
1949 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1951 /* Unless both have exprs, we can't tell anything. */
1952 if (exprx == 0 || expry == 0)
1953 return 0;
1955 /* If both are field references, we may be able to determine something. */
1956 if (TREE_CODE (exprx) == COMPONENT_REF
1957 && TREE_CODE (expry) == COMPONENT_REF
1958 && nonoverlapping_component_refs_p (exprx, expry))
1959 return 1;
1961 /* If the field reference test failed, look at the DECLs involved. */
1962 moffsetx = MEM_OFFSET (x);
1963 if (TREE_CODE (exprx) == COMPONENT_REF)
1965 tree t = decl_for_component_ref (exprx);
1966 if (! t)
1967 return 0;
1968 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1969 exprx = t;
1971 else if (TREE_CODE (exprx) == INDIRECT_REF)
1973 exprx = TREE_OPERAND (exprx, 0);
1974 if (flag_argument_noalias < 2
1975 || TREE_CODE (exprx) != PARM_DECL)
1976 return 0;
1979 moffsety = MEM_OFFSET (y);
1980 if (TREE_CODE (expry) == COMPONENT_REF)
1982 tree t = decl_for_component_ref (expry);
1983 if (! t)
1984 return 0;
1985 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1986 expry = t;
1988 else if (TREE_CODE (expry) == INDIRECT_REF)
1990 expry = TREE_OPERAND (expry, 0);
1991 if (flag_argument_noalias < 2
1992 || TREE_CODE (expry) != PARM_DECL)
1993 return 0;
1996 if (! DECL_P (exprx) || ! DECL_P (expry))
1997 return 0;
1999 rtlx = DECL_RTL (exprx);
2000 rtly = DECL_RTL (expry);
2002 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2003 can't overlap unless they are the same because we never reuse that part
2004 of the stack frame used for locals for spilled pseudos. */
2005 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2006 && ! rtx_equal_p (rtlx, rtly))
2007 return 1;
2009 /* Get the base and offsets of both decls. If either is a register, we
2010 know both are and are the same, so use that as the base. The only
2011 we can avoid overlap is if we can deduce that they are nonoverlapping
2012 pieces of that decl, which is very rare. */
2013 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2014 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2015 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2017 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2018 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2019 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2021 /* If the bases are different, we know they do not overlap if both
2022 are constants or if one is a constant and the other a pointer into the
2023 stack frame. Otherwise a different base means we can't tell if they
2024 overlap or not. */
2025 if (! rtx_equal_p (basex, basey))
2026 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2027 || (CONSTANT_P (basex) && REG_P (basey)
2028 && REGNO_PTR_FRAME_P (REGNO (basey)))
2029 || (CONSTANT_P (basey) && REG_P (basex)
2030 && REGNO_PTR_FRAME_P (REGNO (basex))));
2032 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2033 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2034 : -1);
2035 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2036 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2037 -1);
2039 /* If we have an offset for either memref, it can update the values computed
2040 above. */
2041 if (moffsetx)
2042 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2043 if (moffsety)
2044 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2046 /* If a memref has both a size and an offset, we can use the smaller size.
2047 We can't do this if the offset isn't known because we must view this
2048 memref as being anywhere inside the DECL's MEM. */
2049 if (MEM_SIZE (x) && moffsetx)
2050 sizex = INTVAL (MEM_SIZE (x));
2051 if (MEM_SIZE (y) && moffsety)
2052 sizey = INTVAL (MEM_SIZE (y));
2054 /* Put the values of the memref with the lower offset in X's values. */
2055 if (offsetx > offsety)
2057 tem = offsetx, offsetx = offsety, offsety = tem;
2058 tem = sizex, sizex = sizey, sizey = tem;
2061 /* If we don't know the size of the lower-offset value, we can't tell
2062 if they conflict. Otherwise, we do the test. */
2063 return sizex >= 0 && offsety >= offsetx + sizex;
2066 /* True dependence: X is read after store in MEM takes place. */
2069 true_dependence (mem, mem_mode, x, varies)
2070 rtx mem;
2071 enum machine_mode mem_mode;
2072 rtx x;
2073 int (*varies) PARAMS ((rtx, int));
2075 rtx x_addr, mem_addr;
2076 rtx base;
2078 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2079 return 1;
2081 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2082 This is used in epilogue deallocation functions. */
2083 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2084 return 1;
2085 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2086 return 1;
2088 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2089 return 0;
2091 /* Unchanging memory can't conflict with non-unchanging memory.
2092 A non-unchanging read can conflict with a non-unchanging write.
2093 An unchanging read can conflict with an unchanging write since
2094 there may be a single store to this address to initialize it.
2095 Note that an unchanging store can conflict with a non-unchanging read
2096 since we have to make conservative assumptions when we have a
2097 record with readonly fields and we are copying the whole thing.
2098 Just fall through to the code below to resolve potential conflicts.
2099 This won't handle all cases optimally, but the possible performance
2100 loss should be negligible. */
2101 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2102 return 0;
2104 if (nonoverlapping_memrefs_p (mem, x))
2105 return 0;
2107 if (mem_mode == VOIDmode)
2108 mem_mode = GET_MODE (mem);
2110 x_addr = get_addr (XEXP (x, 0));
2111 mem_addr = get_addr (XEXP (mem, 0));
2113 base = find_base_term (x_addr);
2114 if (base && (GET_CODE (base) == LABEL_REF
2115 || (GET_CODE (base) == SYMBOL_REF
2116 && CONSTANT_POOL_ADDRESS_P (base))))
2117 return 0;
2119 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2120 return 0;
2122 x_addr = canon_rtx (x_addr);
2123 mem_addr = canon_rtx (mem_addr);
2125 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2126 SIZE_FOR_MODE (x), x_addr, 0))
2127 return 0;
2129 if (aliases_everything_p (x))
2130 return 1;
2132 /* We cannot use aliases_everything_p to test MEM, since we must look
2133 at MEM_MODE, rather than GET_MODE (MEM). */
2134 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2135 return 1;
2137 /* In true_dependence we also allow BLKmode to alias anything. Why
2138 don't we do this in anti_dependence and output_dependence? */
2139 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2140 return 1;
2142 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2143 varies);
2146 /* Canonical true dependence: X is read after store in MEM takes place.
2147 Variant of true_dependence which assumes MEM has already been
2148 canonicalized (hence we no longer do that here).
2149 The mem_addr argument has been added, since true_dependence computed
2150 this value prior to canonicalizing. */
2153 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2154 rtx mem, mem_addr, x;
2155 enum machine_mode mem_mode;
2156 int (*varies) PARAMS ((rtx, int));
2158 rtx x_addr;
2160 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2161 return 1;
2163 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2164 This is used in epilogue deallocation functions. */
2165 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2166 return 1;
2167 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2168 return 1;
2170 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2171 return 0;
2173 /* If X is an unchanging read, then it can't possibly conflict with any
2174 non-unchanging store. It may conflict with an unchanging write though,
2175 because there may be a single store to this address to initialize it.
2176 Just fall through to the code below to resolve the case where we have
2177 both an unchanging read and an unchanging write. This won't handle all
2178 cases optimally, but the possible performance loss should be
2179 negligible. */
2180 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2181 return 0;
2183 if (nonoverlapping_memrefs_p (x, mem))
2184 return 0;
2186 x_addr = get_addr (XEXP (x, 0));
2188 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2189 return 0;
2191 x_addr = canon_rtx (x_addr);
2192 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2193 SIZE_FOR_MODE (x), x_addr, 0))
2194 return 0;
2196 if (aliases_everything_p (x))
2197 return 1;
2199 /* We cannot use aliases_everything_p to test MEM, since we must look
2200 at MEM_MODE, rather than GET_MODE (MEM). */
2201 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2202 return 1;
2204 /* In true_dependence we also allow BLKmode to alias anything. Why
2205 don't we do this in anti_dependence and output_dependence? */
2206 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2207 return 1;
2209 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2210 varies);
2213 /* Returns nonzero if a write to X might alias a previous read from
2214 (or, if WRITEP is nonzero, a write to) MEM. */
2216 static int
2217 write_dependence_p (mem, x, writep)
2218 rtx mem;
2219 rtx x;
2220 int writep;
2222 rtx x_addr, mem_addr;
2223 rtx fixed_scalar;
2224 rtx base;
2226 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2227 return 1;
2229 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2230 This is used in epilogue deallocation functions. */
2231 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2232 return 1;
2233 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2234 return 1;
2236 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2237 return 0;
2239 /* Unchanging memory can't conflict with non-unchanging memory. */
2240 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2241 return 0;
2243 /* If MEM is an unchanging read, then it can't possibly conflict with
2244 the store to X, because there is at most one store to MEM, and it must
2245 have occurred somewhere before MEM. */
2246 if (! writep && RTX_UNCHANGING_P (mem))
2247 return 0;
2249 if (nonoverlapping_memrefs_p (x, mem))
2250 return 0;
2252 x_addr = get_addr (XEXP (x, 0));
2253 mem_addr = get_addr (XEXP (mem, 0));
2255 if (! writep)
2257 base = find_base_term (mem_addr);
2258 if (base && (GET_CODE (base) == LABEL_REF
2259 || (GET_CODE (base) == SYMBOL_REF
2260 && CONSTANT_POOL_ADDRESS_P (base))))
2261 return 0;
2264 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2265 GET_MODE (mem)))
2266 return 0;
2268 x_addr = canon_rtx (x_addr);
2269 mem_addr = canon_rtx (mem_addr);
2271 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2272 SIZE_FOR_MODE (x), x_addr, 0))
2273 return 0;
2275 fixed_scalar
2276 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2277 rtx_addr_varies_p);
2279 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2280 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2283 /* Anti dependence: X is written after read in MEM takes place. */
2286 anti_dependence (mem, x)
2287 rtx mem;
2288 rtx x;
2290 return write_dependence_p (mem, x, /*writep=*/0);
2293 /* Output dependence: X is written after store in MEM takes place. */
2296 output_dependence (mem, x)
2297 rtx mem;
2298 rtx x;
2300 return write_dependence_p (mem, x, /*writep=*/1);
2303 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2304 something which is not local to the function and is not constant. */
2306 static int
2307 nonlocal_mentioned_p_1 (loc, data)
2308 rtx *loc;
2309 void *data ATTRIBUTE_UNUSED;
2311 rtx x = *loc;
2312 rtx base;
2313 int regno;
2315 if (! x)
2316 return 0;
2318 switch (GET_CODE (x))
2320 case SUBREG:
2321 if (GET_CODE (SUBREG_REG (x)) == REG)
2323 /* Global registers are not local. */
2324 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2325 && global_regs[subreg_regno (x)])
2326 return 1;
2327 return 0;
2329 break;
2331 case REG:
2332 regno = REGNO (x);
2333 /* Global registers are not local. */
2334 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2335 return 1;
2336 return 0;
2338 case SCRATCH:
2339 case PC:
2340 case CC0:
2341 case CONST_INT:
2342 case CONST_DOUBLE:
2343 case CONST_VECTOR:
2344 case CONST:
2345 case LABEL_REF:
2346 return 0;
2348 case SYMBOL_REF:
2349 /* Constants in the function's constants pool are constant. */
2350 if (CONSTANT_POOL_ADDRESS_P (x))
2351 return 0;
2352 return 1;
2354 case CALL:
2355 /* Non-constant calls and recursion are not local. */
2356 return 1;
2358 case MEM:
2359 /* Be overly conservative and consider any volatile memory
2360 reference as not local. */
2361 if (MEM_VOLATILE_P (x))
2362 return 1;
2363 base = find_base_term (XEXP (x, 0));
2364 if (base)
2366 /* A Pmode ADDRESS could be a reference via the structure value
2367 address or static chain. Such memory references are nonlocal.
2369 Thus, we have to examine the contents of the ADDRESS to find
2370 out if this is a local reference or not. */
2371 if (GET_CODE (base) == ADDRESS
2372 && GET_MODE (base) == Pmode
2373 && (XEXP (base, 0) == stack_pointer_rtx
2374 || XEXP (base, 0) == arg_pointer_rtx
2375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2376 || XEXP (base, 0) == hard_frame_pointer_rtx
2377 #endif
2378 || XEXP (base, 0) == frame_pointer_rtx))
2379 return 0;
2380 /* Constants in the function's constant pool are constant. */
2381 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2382 return 0;
2384 return 1;
2386 case UNSPEC_VOLATILE:
2387 case ASM_INPUT:
2388 return 1;
2390 case ASM_OPERANDS:
2391 if (MEM_VOLATILE_P (x))
2392 return 1;
2394 /* FALLTHROUGH */
2396 default:
2397 break;
2400 return 0;
2403 /* Returns nonzero if X might mention something which is not
2404 local to the function and is not constant. */
2406 static int
2407 nonlocal_mentioned_p (x)
2408 rtx x;
2411 if (INSN_P (x))
2413 if (GET_CODE (x) == CALL_INSN)
2415 if (! CONST_OR_PURE_CALL_P (x))
2416 return 1;
2417 x = CALL_INSN_FUNCTION_USAGE (x);
2418 if (x == 0)
2419 return 0;
2421 else
2422 x = PATTERN (x);
2425 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2428 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2429 something which is not local to the function and is not constant. */
2431 static int
2432 nonlocal_referenced_p_1 (loc, data)
2433 rtx *loc;
2434 void *data ATTRIBUTE_UNUSED;
2436 rtx x = *loc;
2438 if (! x)
2439 return 0;
2441 switch (GET_CODE (x))
2443 case MEM:
2444 case REG:
2445 case SYMBOL_REF:
2446 case SUBREG:
2447 return nonlocal_mentioned_p (x);
2449 case CALL:
2450 /* Non-constant calls and recursion are not local. */
2451 return 1;
2453 case SET:
2454 if (nonlocal_mentioned_p (SET_SRC (x)))
2455 return 1;
2457 if (GET_CODE (SET_DEST (x)) == MEM)
2458 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2460 /* If the destination is anything other than a CC0, PC,
2461 MEM, REG, or a SUBREG of a REG that occupies all of
2462 the REG, then X references nonlocal memory if it is
2463 mentioned in the destination. */
2464 if (GET_CODE (SET_DEST (x)) != CC0
2465 && GET_CODE (SET_DEST (x)) != PC
2466 && GET_CODE (SET_DEST (x)) != REG
2467 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2468 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2469 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2470 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2471 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2472 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2473 return nonlocal_mentioned_p (SET_DEST (x));
2474 return 0;
2476 case CLOBBER:
2477 if (GET_CODE (XEXP (x, 0)) == MEM)
2478 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2479 return 0;
2481 case USE:
2482 return nonlocal_mentioned_p (XEXP (x, 0));
2484 case ASM_INPUT:
2485 case UNSPEC_VOLATILE:
2486 return 1;
2488 case ASM_OPERANDS:
2489 if (MEM_VOLATILE_P (x))
2490 return 1;
2492 /* FALLTHROUGH */
2494 default:
2495 break;
2498 return 0;
2501 /* Returns nonzero if X might reference something which is not
2502 local to the function and is not constant. */
2504 static int
2505 nonlocal_referenced_p (x)
2506 rtx x;
2509 if (INSN_P (x))
2511 if (GET_CODE (x) == CALL_INSN)
2513 if (! CONST_OR_PURE_CALL_P (x))
2514 return 1;
2515 x = CALL_INSN_FUNCTION_USAGE (x);
2516 if (x == 0)
2517 return 0;
2519 else
2520 x = PATTERN (x);
2523 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2526 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2527 something which is not local to the function and is not constant. */
2529 static int
2530 nonlocal_set_p_1 (loc, data)
2531 rtx *loc;
2532 void *data ATTRIBUTE_UNUSED;
2534 rtx x = *loc;
2536 if (! x)
2537 return 0;
2539 switch (GET_CODE (x))
2541 case CALL:
2542 /* Non-constant calls and recursion are not local. */
2543 return 1;
2545 case PRE_INC:
2546 case PRE_DEC:
2547 case POST_INC:
2548 case POST_DEC:
2549 case PRE_MODIFY:
2550 case POST_MODIFY:
2551 return nonlocal_mentioned_p (XEXP (x, 0));
2553 case SET:
2554 if (nonlocal_mentioned_p (SET_DEST (x)))
2555 return 1;
2556 return nonlocal_set_p (SET_SRC (x));
2558 case CLOBBER:
2559 return nonlocal_mentioned_p (XEXP (x, 0));
2561 case USE:
2562 return 0;
2564 case ASM_INPUT:
2565 case UNSPEC_VOLATILE:
2566 return 1;
2568 case ASM_OPERANDS:
2569 if (MEM_VOLATILE_P (x))
2570 return 1;
2572 /* FALLTHROUGH */
2574 default:
2575 break;
2578 return 0;
2581 /* Returns nonzero if X might set something which is not
2582 local to the function and is not constant. */
2584 static int
2585 nonlocal_set_p (x)
2586 rtx x;
2589 if (INSN_P (x))
2591 if (GET_CODE (x) == CALL_INSN)
2593 if (! CONST_OR_PURE_CALL_P (x))
2594 return 1;
2595 x = CALL_INSN_FUNCTION_USAGE (x);
2596 if (x == 0)
2597 return 0;
2599 else
2600 x = PATTERN (x);
2603 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2606 /* Mark the function if it is constant. */
2608 void
2609 mark_constant_function ()
2611 rtx insn;
2612 int nonlocal_memory_referenced;
2614 if (TREE_READONLY (current_function_decl)
2615 || DECL_IS_PURE (current_function_decl)
2616 || TREE_THIS_VOLATILE (current_function_decl)
2617 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode
2618 || current_function_has_nonlocal_goto
2619 || !(*targetm.binds_local_p) (current_function_decl))
2620 return;
2622 /* A loop might not return which counts as a side effect. */
2623 if (mark_dfs_back_edges ())
2624 return;
2626 nonlocal_memory_referenced = 0;
2628 init_alias_analysis ();
2630 /* Determine if this is a constant or pure function. */
2632 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2634 if (! INSN_P (insn))
2635 continue;
2637 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2638 || volatile_refs_p (PATTERN (insn)))
2639 break;
2641 if (! nonlocal_memory_referenced)
2642 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2645 end_alias_analysis ();
2647 /* Mark the function. */
2649 if (insn)
2651 else if (nonlocal_memory_referenced)
2652 DECL_IS_PURE (current_function_decl) = 1;
2653 else
2654 TREE_READONLY (current_function_decl) = 1;
2658 void
2659 init_alias_once ()
2661 int i;
2663 #ifndef OUTGOING_REGNO
2664 #define OUTGOING_REGNO(N) N
2665 #endif
2666 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2667 /* Check whether this register can hold an incoming pointer
2668 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2669 numbers, so translate if necessary due to register windows. */
2670 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2671 && HARD_REGNO_MODE_OK (i, Pmode))
2672 static_reg_base_value[i]
2673 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2675 static_reg_base_value[STACK_POINTER_REGNUM]
2676 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2677 static_reg_base_value[ARG_POINTER_REGNUM]
2678 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2679 static_reg_base_value[FRAME_POINTER_REGNUM]
2680 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2681 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2682 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2683 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2684 #endif
2686 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2689 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2690 array. */
2692 void
2693 init_alias_analysis ()
2695 int maxreg = max_reg_num ();
2696 int changed, pass;
2697 int i;
2698 unsigned int ui;
2699 rtx insn;
2701 reg_known_value_size = maxreg;
2703 reg_known_value
2704 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2705 - FIRST_PSEUDO_REGISTER;
2706 reg_known_equiv_p
2707 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2708 - FIRST_PSEUDO_REGISTER;
2710 /* Overallocate reg_base_value to allow some growth during loop
2711 optimization. Loop unrolling can create a large number of
2712 registers. */
2713 reg_base_value_size = maxreg * 2;
2714 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2715 * sizeof (rtx));
2717 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2718 reg_seen = (char *) xmalloc (reg_base_value_size);
2719 if (! reload_completed && flag_unroll_loops)
2721 /* ??? Why are we realloc'ing if we're just going to zero it? */
2722 alias_invariant = (rtx *)xrealloc (alias_invariant,
2723 reg_base_value_size * sizeof (rtx));
2724 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2727 /* The basic idea is that each pass through this loop will use the
2728 "constant" information from the previous pass to propagate alias
2729 information through another level of assignments.
2731 This could get expensive if the assignment chains are long. Maybe
2732 we should throttle the number of iterations, possibly based on
2733 the optimization level or flag_expensive_optimizations.
2735 We could propagate more information in the first pass by making use
2736 of REG_N_SETS to determine immediately that the alias information
2737 for a pseudo is "constant".
2739 A program with an uninitialized variable can cause an infinite loop
2740 here. Instead of doing a full dataflow analysis to detect such problems
2741 we just cap the number of iterations for the loop.
2743 The state of the arrays for the set chain in question does not matter
2744 since the program has undefined behavior. */
2746 pass = 0;
2749 /* Assume nothing will change this iteration of the loop. */
2750 changed = 0;
2752 /* We want to assign the same IDs each iteration of this loop, so
2753 start counting from zero each iteration of the loop. */
2754 unique_id = 0;
2756 /* We're at the start of the function each iteration through the
2757 loop, so we're copying arguments. */
2758 copying_arguments = true;
2760 /* Wipe the potential alias information clean for this pass. */
2761 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2763 /* Wipe the reg_seen array clean. */
2764 memset ((char *) reg_seen, 0, reg_base_value_size);
2766 /* Mark all hard registers which may contain an address.
2767 The stack, frame and argument pointers may contain an address.
2768 An argument register which can hold a Pmode value may contain
2769 an address even if it is not in BASE_REGS.
2771 The address expression is VOIDmode for an argument and
2772 Pmode for other registers. */
2774 memcpy (new_reg_base_value, static_reg_base_value,
2775 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2777 /* Walk the insns adding values to the new_reg_base_value array. */
2778 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2780 if (INSN_P (insn))
2782 rtx note, set;
2784 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2785 /* The prologue/epilogue insns are not threaded onto the
2786 insn chain until after reload has completed. Thus,
2787 there is no sense wasting time checking if INSN is in
2788 the prologue/epilogue until after reload has completed. */
2789 if (reload_completed
2790 && prologue_epilogue_contains (insn))
2791 continue;
2792 #endif
2794 /* If this insn has a noalias note, process it, Otherwise,
2795 scan for sets. A simple set will have no side effects
2796 which could change the base value of any other register. */
2798 if (GET_CODE (PATTERN (insn)) == SET
2799 && REG_NOTES (insn) != 0
2800 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2801 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2802 else
2803 note_stores (PATTERN (insn), record_set, NULL);
2805 set = single_set (insn);
2807 if (set != 0
2808 && GET_CODE (SET_DEST (set)) == REG
2809 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2811 unsigned int regno = REGNO (SET_DEST (set));
2812 rtx src = SET_SRC (set);
2814 if (REG_NOTES (insn) != 0
2815 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2816 && REG_N_SETS (regno) == 1)
2817 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2818 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2819 && ! rtx_varies_p (XEXP (note, 0), 1)
2820 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2822 reg_known_value[regno] = XEXP (note, 0);
2823 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2825 else if (REG_N_SETS (regno) == 1
2826 && GET_CODE (src) == PLUS
2827 && GET_CODE (XEXP (src, 0)) == REG
2828 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2829 && (reg_known_value[REGNO (XEXP (src, 0))])
2830 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2832 rtx op0 = XEXP (src, 0);
2833 op0 = reg_known_value[REGNO (op0)];
2834 reg_known_value[regno]
2835 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2836 reg_known_equiv_p[regno] = 0;
2838 else if (REG_N_SETS (regno) == 1
2839 && ! rtx_varies_p (src, 1))
2841 reg_known_value[regno] = src;
2842 reg_known_equiv_p[regno] = 0;
2846 else if (GET_CODE (insn) == NOTE
2847 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2848 copying_arguments = false;
2851 /* Now propagate values from new_reg_base_value to reg_base_value. */
2852 for (ui = 0; ui < reg_base_value_size; ui++)
2854 if (new_reg_base_value[ui]
2855 && new_reg_base_value[ui] != reg_base_value[ui]
2856 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2858 reg_base_value[ui] = new_reg_base_value[ui];
2859 changed = 1;
2863 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2865 /* Fill in the remaining entries. */
2866 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2867 if (reg_known_value[i] == 0)
2868 reg_known_value[i] = regno_reg_rtx[i];
2870 /* Simplify the reg_base_value array so that no register refers to
2871 another register, except to special registers indirectly through
2872 ADDRESS expressions.
2874 In theory this loop can take as long as O(registers^2), but unless
2875 there are very long dependency chains it will run in close to linear
2876 time.
2878 This loop may not be needed any longer now that the main loop does
2879 a better job at propagating alias information. */
2880 pass = 0;
2883 changed = 0;
2884 pass++;
2885 for (ui = 0; ui < reg_base_value_size; ui++)
2887 rtx base = reg_base_value[ui];
2888 if (base && GET_CODE (base) == REG)
2890 unsigned int base_regno = REGNO (base);
2891 if (base_regno == ui) /* register set from itself */
2892 reg_base_value[ui] = 0;
2893 else
2894 reg_base_value[ui] = reg_base_value[base_regno];
2895 changed = 1;
2899 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2901 /* Clean up. */
2902 free (new_reg_base_value);
2903 new_reg_base_value = 0;
2904 free (reg_seen);
2905 reg_seen = 0;
2908 void
2909 end_alias_analysis ()
2911 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2912 reg_known_value = 0;
2913 reg_known_value_size = 0;
2914 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2915 reg_known_equiv_p = 0;
2916 reg_base_value = 0;
2917 reg_base_value_size = 0;
2918 if (alias_invariant)
2920 free (alias_invariant);
2921 alias_invariant = 0;
2925 #include "gt-alias.h"