1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993-2018 Free Software Foundation, Inc.
7 This file is part of the GNU C Library.
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Lesser General Public
11 License as published by the Free Software Foundation; either
12 version 2.1 of the License, or (at your option) any later version.
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Lesser General Public License for more details.
19 You should have received a copy of the GNU Lesser General Public
20 License along with the GNU C Library; if not, write to the Free
21 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 /* This file has been modified for usage in libiberty. It includes "xregex.h"
25 instead of <regex.h>. The "xregex.h" header file renames all external
26 routines with an "x" prefix so they do not collide with the native regex
27 routines or with other components regex routines. */
28 /* AIX requires this to be the first thing in the file. */
29 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
36 #ifndef INSIDE_RECURSION
44 #ifndef INSIDE_RECURSION
46 # if defined STDC_HEADERS && !defined emacs
48 # define PTR_INT_TYPE ptrdiff_t
50 /* We need this for `regex.h', and perhaps for the Emacs include files. */
51 # include <sys/types.h>
52 # define PTR_INT_TYPE long
55 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 # if defined _LIBC || WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87 # define btowc __btowc
89 /* We are also using some library internals. */
90 # include <locale/localeinfo.h>
91 # include <locale/elem-hash.h>
92 # include <langinfo.h>
93 # include <locale/coll-lookup.h>
96 /* This is for other GNU distributions with internationalized messages. */
97 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
101 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
104 # define gettext(msgid) (msgid)
107 # ifndef gettext_noop
108 /* This define is so xgettext can find the internationalizable
110 # define gettext_noop(String) String
113 /* The `emacs' switch turns on certain matching commands
114 that make sense only in Emacs. */
121 # else /* not emacs */
123 /* If we are not linking with Emacs proper,
124 we can't use the relocating allocator
125 even if config.h says that we can. */
128 # if defined STDC_HEADERS || defined _LIBC
135 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
136 If nothing else has been done, use the method below. */
137 # ifdef INHIBIT_STRING_HEADER
138 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
139 # if !defined bzero && !defined bcopy
140 # undef INHIBIT_STRING_HEADER
145 /* This is the normal way of making sure we have a bcopy and a bzero.
146 This is used in most programs--a few other programs avoid this
147 by defining INHIBIT_STRING_HEADER. */
148 # ifndef INHIBIT_STRING_HEADER
149 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
153 # define bzero(s, n) ((void) memset (s, '\0', n))
155 # define bzero(s, n) __bzero (s, n)
159 # include <strings.h>
161 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
164 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
169 /* Define the syntax stuff for \<, \>, etc. */
171 /* This must be nonzero for the wordchar and notwordchar pattern
172 commands in re_match_2. */
177 # ifdef SWITCH_ENUM_BUG
178 # define SWITCH_ENUM_CAST(x) ((int)(x))
180 # define SWITCH_ENUM_CAST(x) (x)
183 # endif /* not emacs */
185 # if defined _LIBC || HAVE_LIMITS_H
190 # define MB_LEN_MAX 1
193 /* Get the interface, including the syntax bits. */
194 # include "xregex.h" /* change for libiberty */
196 /* isalpha etc. are used for the character classes. */
199 /* Jim Meyering writes:
201 "... Some ctype macros are valid only for character codes that
202 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
203 using /bin/cc or gcc but without giving an ansi option). So, all
204 ctype uses should be through macros like ISPRINT... If
205 STDC_HEADERS is defined, then autoconf has verified that the ctype
206 macros don't need to be guarded with references to isascii. ...
207 Defining isascii to 1 should let any compiler worth its salt
208 eliminate the && through constant folding."
209 Solaris defines some of these symbols so we must undefine them first. */
212 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
213 # define ISASCII(c) 1
215 # define ISASCII(c) isascii(c)
219 # define ISBLANK(c) (ISASCII (c) && isblank (c))
221 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
224 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
230 # define ISPRINT(c) (ISASCII (c) && isprint (c))
231 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
232 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
233 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
234 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
235 # define ISLOWER(c) (ISASCII (c) && islower (c))
236 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
237 # define ISSPACE(c) (ISASCII (c) && isspace (c))
238 # define ISUPPER(c) (ISASCII (c) && isupper (c))
239 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
242 # define TOLOWER(c) _tolower(c)
244 # define TOLOWER(c) tolower(c)
248 # define NULL (void *)0
251 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
252 since ours (we hope) works properly with all combinations of
253 machines, compilers, `char' and `unsigned char' argument types.
254 (Per Bothner suggested the basic approach.) */
255 # undef SIGN_EXTEND_CHAR
257 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
258 # else /* not __STDC__ */
259 /* As in Harbison and Steele. */
260 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
264 /* How many characters in the character set. */
265 # define CHAR_SET_SIZE 256
269 extern char *re_syntax_table
;
271 # else /* not SYNTAX_TABLE */
273 static char re_syntax_table
[CHAR_SET_SIZE
];
275 static void init_syntax_once (void);
278 init_syntax_once (void)
285 bzero (re_syntax_table
, sizeof re_syntax_table
);
287 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
289 re_syntax_table
[c
] = Sword
;
291 re_syntax_table
['_'] = Sword
;
296 # endif /* not SYNTAX_TABLE */
298 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
302 /* Integer type for pointers. */
303 # if !defined _LIBC && !defined HAVE_UINTPTR_T
304 typedef unsigned long int uintptr_t;
307 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
308 use `alloca' instead of `malloc'. This is because using malloc in
309 re_search* or re_match* could cause memory leaks when C-g is used in
310 Emacs; also, malloc is slower and causes storage fragmentation. On
311 the other hand, malloc is more portable, and easier to debug.
313 Because we sometimes use alloca, some routines have to be macros,
314 not functions -- `alloca'-allocated space disappears at the end of the
315 function it is called in. */
319 # define REGEX_ALLOCATE malloc
320 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
321 # define REGEX_FREE free
323 # else /* not REGEX_MALLOC */
325 /* Emacs already defines alloca, sometimes. */
328 /* Make alloca work the best possible way. */
330 # define alloca __builtin_alloca
331 # else /* not __GNUC__ */
334 # endif /* HAVE_ALLOCA_H */
335 # endif /* not __GNUC__ */
337 # endif /* not alloca */
339 # define REGEX_ALLOCATE alloca
341 /* Assumes a `char *destination' variable. */
342 # define REGEX_REALLOCATE(source, osize, nsize) \
343 (destination = (char *) alloca (nsize), \
344 memcpy (destination, source, osize))
346 /* No need to do anything to free, after alloca. */
347 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
349 # endif /* not REGEX_MALLOC */
351 /* Define how to allocate the failure stack. */
353 # if defined REL_ALLOC && defined REGEX_MALLOC
355 # define REGEX_ALLOCATE_STACK(size) \
356 r_alloc (&failure_stack_ptr, (size))
357 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
358 r_re_alloc (&failure_stack_ptr, (nsize))
359 # define REGEX_FREE_STACK(ptr) \
360 r_alloc_free (&failure_stack_ptr)
362 # else /* not using relocating allocator */
366 # define REGEX_ALLOCATE_STACK malloc
367 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
368 # define REGEX_FREE_STACK free
370 # else /* not REGEX_MALLOC */
372 # define REGEX_ALLOCATE_STACK alloca
374 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
375 REGEX_REALLOCATE (source, osize, nsize)
376 /* No need to explicitly free anything. */
377 # define REGEX_FREE_STACK(arg)
379 # endif /* not REGEX_MALLOC */
380 # endif /* not using relocating allocator */
383 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
384 `string1' or just past its end. This works if PTR is NULL, which is
386 # define FIRST_STRING_P(ptr) \
387 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389 /* (Re)Allocate N items of type T using malloc, or fail. */
390 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
391 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
392 # define RETALLOC_IF(addr, n, t) \
393 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
394 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396 # define BYTEWIDTH 8 /* In bits. */
398 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
402 # define MAX(a, b) ((a) > (b) ? (a) : (b))
403 # define MIN(a, b) ((a) < (b) ? (a) : (b))
405 typedef char boolean
;
409 static reg_errcode_t
byte_regex_compile (const char *pattern
, size_t size
,
411 struct re_pattern_buffer
*bufp
);
413 static int byte_re_match_2_internal (struct re_pattern_buffer
*bufp
,
414 const char *string1
, int size1
,
415 const char *string2
, int size2
,
417 struct re_registers
*regs
,
419 static int byte_re_search_2 (struct re_pattern_buffer
*bufp
,
420 const char *string1
, int size1
,
421 const char *string2
, int size2
,
422 int startpos
, int range
,
423 struct re_registers
*regs
, int stop
);
424 static int byte_re_compile_fastmap (struct re_pattern_buffer
*bufp
);
427 static reg_errcode_t
wcs_regex_compile (const char *pattern
, size_t size
,
429 struct re_pattern_buffer
*bufp
);
432 static int wcs_re_match_2_internal (struct re_pattern_buffer
*bufp
,
433 const char *cstring1
, int csize1
,
434 const char *cstring2
, int csize2
,
436 struct re_registers
*regs
,
438 wchar_t *string1
, int size1
,
439 wchar_t *string2
, int size2
,
440 int *mbs_offset1
, int *mbs_offset2
);
441 static int wcs_re_search_2 (struct re_pattern_buffer
*bufp
,
442 const char *string1
, int size1
,
443 const char *string2
, int size2
,
444 int startpos
, int range
,
445 struct re_registers
*regs
, int stop
);
446 static int wcs_re_compile_fastmap (struct re_pattern_buffer
*bufp
);
449 /* These are the command codes that appear in compiled regular
450 expressions. Some opcodes are followed by argument bytes. A
451 command code can specify any interpretation whatsoever for its
452 arguments. Zero bytes may appear in the compiled regular expression. */
458 /* Succeed right away--no more backtracking. */
461 /* Followed by one byte giving n, then by n literal bytes. */
465 /* Same as exactn, but contains binary data. */
469 /* Matches any (more or less) character. */
472 /* Matches any one char belonging to specified set. First
473 following byte is number of bitmap bytes. Then come bytes
474 for a bitmap saying which chars are in. Bits in each byte
475 are ordered low-bit-first. A character is in the set if its
476 bit is 1. A character too large to have a bit in the map is
477 automatically not in the set. */
478 /* ifdef MBS_SUPPORT, following element is length of character
479 classes, length of collating symbols, length of equivalence
480 classes, length of character ranges, and length of characters.
481 Next, character class element, collating symbols elements,
482 equivalence class elements, range elements, and character
484 See regex_compile function. */
487 /* Same parameters as charset, but match any character that is
488 not one of those specified. */
491 /* Start remembering the text that is matched, for storing in a
492 register. Followed by one byte with the register number, in
493 the range 0 to one less than the pattern buffer's re_nsub
494 field. Then followed by one byte with the number of groups
495 inner to this one. (This last has to be part of the
496 start_memory only because we need it in the on_failure_jump
500 /* Stop remembering the text that is matched and store it in a
501 memory register. Followed by one byte with the register
502 number, in the range 0 to one less than `re_nsub' in the
503 pattern buffer, and one byte with the number of inner groups,
504 just like `start_memory'. (We need the number of inner
505 groups here because we don't have any easy way of finding the
506 corresponding start_memory when we're at a stop_memory.) */
509 /* Match a duplicate of something remembered. Followed by one
510 byte containing the register number. */
513 /* Fail unless at beginning of line. */
516 /* Fail unless at end of line. */
519 /* Succeeds if at beginning of buffer (if emacs) or at beginning
520 of string to be matched (if not). */
523 /* Analogously, for end of buffer/string. */
526 /* Followed by two byte relative address to which to jump. */
529 /* Same as jump, but marks the end of an alternative. */
532 /* Followed by two-byte relative address of place to resume at
533 in case of failure. */
534 /* ifdef MBS_SUPPORT, the size of address is 1. */
537 /* Like on_failure_jump, but pushes a placeholder instead of the
538 current string position when executed. */
539 on_failure_keep_string_jump
,
541 /* Throw away latest failure point and then jump to following
542 two-byte relative address. */
543 /* ifdef MBS_SUPPORT, the size of address is 1. */
546 /* Change to pop_failure_jump if know won't have to backtrack to
547 match; otherwise change to jump. This is used to jump
548 back to the beginning of a repeat. If what follows this jump
549 clearly won't match what the repeat does, such that we can be
550 sure that there is no use backtracking out of repetitions
551 already matched, then we change it to a pop_failure_jump.
552 Followed by two-byte address. */
553 /* ifdef MBS_SUPPORT, the size of address is 1. */
556 /* Jump to following two-byte address, and push a dummy failure
557 point. This failure point will be thrown away if an attempt
558 is made to use it for a failure. A `+' construct makes this
559 before the first repeat. Also used as an intermediary kind
560 of jump when compiling an alternative. */
561 /* ifdef MBS_SUPPORT, the size of address is 1. */
564 /* Push a dummy failure point and continue. Used at the end of
568 /* Followed by two-byte relative address and two-byte number n.
569 After matching N times, jump to the address upon failure. */
570 /* ifdef MBS_SUPPORT, the size of address is 1. */
573 /* Followed by two-byte relative address, and two-byte number n.
574 Jump to the address N times, then fail. */
575 /* ifdef MBS_SUPPORT, the size of address is 1. */
578 /* Set the following two-byte relative address to the
579 subsequent two-byte number. The address *includes* the two
581 /* ifdef MBS_SUPPORT, the size of address is 1. */
584 wordchar
, /* Matches any word-constituent character. */
585 notwordchar
, /* Matches any char that is not a word-constituent. */
587 wordbeg
, /* Succeeds if at word beginning. */
588 wordend
, /* Succeeds if at word end. */
590 wordbound
, /* Succeeds if at a word boundary. */
591 notwordbound
/* Succeeds if not at a word boundary. */
594 ,before_dot
, /* Succeeds if before point. */
595 at_dot
, /* Succeeds if at point. */
596 after_dot
, /* Succeeds if after point. */
598 /* Matches any character whose syntax is specified. Followed by
599 a byte which contains a syntax code, e.g., Sword. */
602 /* Matches any character whose syntax is not that specified. */
606 #endif /* not INSIDE_RECURSION */
611 # define UCHAR_T unsigned char
612 # define COMPILED_BUFFER_VAR bufp->buffer
613 # define OFFSET_ADDRESS_SIZE 2
614 # define PREFIX(name) byte_##name
615 # define ARG_PREFIX(name) name
616 # define PUT_CHAR(c) putchar (c)
619 # define CHAR_T wchar_t
620 # define UCHAR_T wchar_t
621 # define COMPILED_BUFFER_VAR wc_buffer
622 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
623 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
624 # define PREFIX(name) wcs_##name
625 # define ARG_PREFIX(name) c##name
626 /* Should we use wide stream?? */
627 # define PUT_CHAR(c) printf ("%C", c);
633 # define INSIDE_RECURSION
635 # undef INSIDE_RECURSION
638 # define INSIDE_RECURSION
640 # undef INSIDE_RECURSION
644 #ifdef INSIDE_RECURSION
645 /* Common operations on the compiled pattern. */
647 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
648 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
651 # define STORE_NUMBER(destination, number) \
653 *(destination) = (UCHAR_T)(number); \
656 # define STORE_NUMBER(destination, number) \
658 (destination)[0] = (number) & 0377; \
659 (destination)[1] = (number) >> 8; \
663 /* Same as STORE_NUMBER, except increment DESTINATION to
664 the byte after where the number is stored. Therefore, DESTINATION
665 must be an lvalue. */
666 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
668 # define STORE_NUMBER_AND_INCR(destination, number) \
670 STORE_NUMBER (destination, number); \
671 (destination) += OFFSET_ADDRESS_SIZE; \
674 /* Put into DESTINATION a number stored in two contiguous bytes starting
676 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
679 # define EXTRACT_NUMBER(destination, source) \
681 (destination) = *(source); \
684 # define EXTRACT_NUMBER(destination, source) \
686 (destination) = *(source) & 0377; \
687 (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
692 static void PREFIX(extract_number
) (int *dest
, UCHAR_T
*source
);
694 PREFIX(extract_number
) (int *dest
, UCHAR_T
*source
)
699 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
700 *dest
= *source
& 0377;
705 # ifndef EXTRACT_MACROS /* To debug the macros. */
706 # undef EXTRACT_NUMBER
707 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
708 # endif /* not EXTRACT_MACROS */
712 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
713 SOURCE must be an lvalue. */
715 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
717 EXTRACT_NUMBER (destination, source); \
718 (source) += OFFSET_ADDRESS_SIZE; \
722 static void PREFIX(extract_number_and_incr
) (int *destination
,
725 PREFIX(extract_number_and_incr
) (int *destination
, UCHAR_T
**source
)
727 PREFIX(extract_number
) (destination
, *source
);
728 *source
+= OFFSET_ADDRESS_SIZE
;
731 # ifndef EXTRACT_MACROS
732 # undef EXTRACT_NUMBER_AND_INCR
733 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
734 PREFIX(extract_number_and_incr) (&dest, &src)
735 # endif /* not EXTRACT_MACROS */
741 /* If DEBUG is defined, Regex prints many voluminous messages about what
742 it is doing (if the variable `debug' is nonzero). If linked with the
743 main program in `iregex.c', you can enter patterns and strings
744 interactively. And if linked with the main program in `main.c' and
745 the other test files, you can run the already-written tests. */
749 # ifndef DEFINED_ONCE
751 /* We use standard I/O for debugging. */
754 /* It is useful to test things that ``must'' be true when debugging. */
759 # define DEBUG_STATEMENT(e) e
760 # define DEBUG_PRINT1(x) if (debug) printf (x)
761 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
762 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
763 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
764 # endif /* not DEFINED_ONCE */
766 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
767 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
768 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
769 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
772 /* Print the fastmap in human-readable form. */
774 # ifndef DEFINED_ONCE
776 print_fastmap (char *fastmap
)
778 unsigned was_a_range
= 0;
781 while (i
< (1 << BYTEWIDTH
))
787 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
801 # endif /* not DEFINED_ONCE */
804 /* Print a compiled pattern string in human-readable form, starting at
805 the START pointer into it and ending just before the pointer END. */
808 PREFIX(print_partial_compiled_pattern
) (UCHAR_T
*start
, UCHAR_T
*end
)
821 /* Loop over pattern commands. */
825 printf ("%td:\t", p
- start
);
827 printf ("%ld:\t", (long int) (p
- start
));
830 switch ((re_opcode_t
) *p
++)
838 printf ("/exactn/%d", mcnt
);
850 printf ("/exactn_bin/%d", mcnt
);
853 printf("/%lx", (long int) *p
++);
857 # endif /* MBS_SUPPORT */
861 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
866 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
870 printf ("/duplicate/%ld", (long int) *p
++);
883 printf ("/charset [%s",
884 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
886 length
= *workp
++; /* the length of char_classes */
887 for (i
=0 ; i
<length
; i
++)
888 printf("[:%lx:]", (long int) *p
++);
889 length
= *workp
++; /* the length of collating_symbol */
890 for (i
=0 ; i
<length
;)
894 PUT_CHAR((i
++,*p
++));
898 length
= *workp
++; /* the length of equivalence_class */
899 for (i
=0 ; i
<length
;)
903 PUT_CHAR((i
++,*p
++));
907 length
= *workp
++; /* the length of char_range */
908 for (i
=0 ; i
<length
; i
++)
910 wchar_t range_start
= *p
++;
911 wchar_t range_end
= *p
++;
912 printf("%C-%C", range_start
, range_end
);
914 length
= *workp
++; /* the length of char */
915 for (i
=0 ; i
<length
; i
++)
919 register int c
, last
= -100;
920 register int in_range
= 0;
922 printf ("/charset [%s",
923 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
925 assert (p
+ *p
< pend
);
927 for (c
= 0; c
< 256; c
++)
929 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
931 /* Are we starting a range? */
932 if (last
+ 1 == c
&& ! in_range
)
937 /* Have we broken a range? */
938 else if (last
+ 1 != c
&& in_range
)
968 case on_failure_jump
:
969 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
971 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
973 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
977 case on_failure_keep_string_jump
:
978 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
980 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
982 printf ("/on_failure_keep_string_jump to %ld",
983 (long int) (p
+ mcnt
- start
));
987 case dummy_failure_jump
:
988 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
990 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
992 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
996 case push_dummy_failure
:
997 printf ("/push_dummy_failure");
1000 case maybe_pop_jump
:
1001 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1003 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
1005 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
1009 case pop_failure_jump
:
1010 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1012 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
1014 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1019 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1021 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
1023 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
1028 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1030 printf ("/jump to %td", p
+ mcnt
- start
);
1032 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
1037 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1039 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1041 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
1043 printf ("/succeed_n to %ld, %d times",
1044 (long int) (p1
- start
), mcnt2
);
1049 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1051 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1052 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1056 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1058 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1060 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1062 printf ("/set_number_at location %ld to %d",
1063 (long int) (p1
- start
), mcnt2
);
1068 printf ("/wordbound");
1072 printf ("/notwordbound");
1076 printf ("/wordbeg");
1080 printf ("/wordend");
1085 printf ("/before_dot");
1093 printf ("/after_dot");
1097 printf ("/syntaxspec");
1099 printf ("/%d", mcnt
);
1103 printf ("/notsyntaxspec");
1105 printf ("/%d", mcnt
);
1110 printf ("/wordchar");
1114 printf ("/notwordchar");
1126 printf ("?%ld", (long int) *(p
-1));
1133 printf ("%td:\tend of pattern.\n", p
- start
);
1135 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1141 PREFIX(print_compiled_pattern
) (struct re_pattern_buffer
*bufp
)
1143 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1145 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1146 + bufp
->used
/ sizeof(UCHAR_T
));
1147 printf ("%ld bytes used/%ld bytes allocated.\n",
1148 bufp
->used
, bufp
->allocated
);
1150 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1152 printf ("fastmap: ");
1153 print_fastmap (bufp
->fastmap
);
1157 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1159 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1161 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1162 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1163 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1164 printf ("no_sub: %d\t", bufp
->no_sub
);
1165 printf ("not_bol: %d\t", bufp
->not_bol
);
1166 printf ("not_eol: %d\t", bufp
->not_eol
);
1167 printf ("syntax: %lx\n", bufp
->syntax
);
1168 /* Perhaps we should print the translate table? */
1173 PREFIX(print_double_string
) (const CHAR_T
*where
, const CHAR_T
*string1
,
1174 int size1
, const CHAR_T
*string2
, int size2
)
1184 if (FIRST_STRING_P (where
))
1186 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1187 PUT_CHAR (string1
[this_char
]);
1193 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1195 PUT_CHAR (string2
[this_char
]);
1198 fputs ("...", stdout
);
1205 # ifndef DEFINED_ONCE
1213 # else /* not DEBUG */
1215 # ifndef DEFINED_ONCE
1219 # define DEBUG_STATEMENT(e)
1220 # define DEBUG_PRINT1(x)
1221 # define DEBUG_PRINT2(x1, x2)
1222 # define DEBUG_PRINT3(x1, x2, x3)
1223 # define DEBUG_PRINT4(x1, x2, x3, x4)
1224 # endif /* not DEFINED_ONCE */
1225 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1226 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1228 # endif /* not DEBUG */
1233 /* This convert a multibyte string to a wide character string.
1234 And write their correspondances to offset_buffer(see below)
1235 and write whether each wchar_t is binary data to is_binary.
1236 This assume invalid multibyte sequences as binary data.
1237 We assume offset_buffer and is_binary is already allocated
1240 static size_t convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char* src
,
1241 size_t len
, int *offset_buffer
,
1244 convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char*src
, size_t len
,
1245 int *offset_buffer
, char *is_binary
)
1246 /* It hold correspondances between src(char string) and
1247 dest(wchar_t string) for optimization.
1249 dest = {'X', 'Y', 'Z'}
1250 (each "xxx", "y" and "zz" represent one multibyte character
1251 corresponding to 'X', 'Y' and 'Z'.)
1252 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1256 wchar_t *pdest
= dest
;
1257 const unsigned char *psrc
= src
;
1258 size_t wc_count
= 0;
1262 size_t mb_remain
= len
;
1263 size_t mb_count
= 0;
1265 /* Initialize the conversion state. */
1266 memset (&mbs
, 0, sizeof (mbstate_t));
1268 offset_buffer
[0] = 0;
1269 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1273 consumed
= __mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1275 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1279 /* failed to convert. maybe src contains binary data.
1280 So we consume 1 byte manualy. */
1284 is_binary
[wc_count
] = TRUE
;
1287 is_binary
[wc_count
] = FALSE
;
1288 /* In sjis encoding, we use yen sign as escape character in
1289 place of reverse solidus. So we convert 0x5c(yen sign in
1290 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1291 solidus in UCS2). */
1292 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1293 *pdest
= (wchar_t) *psrc
;
1295 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1298 /* Fill remain of the buffer with sentinel. */
1299 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1300 offset_buffer
[i
] = mb_count
+ 1;
1307 #else /* not INSIDE_RECURSION */
1309 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1310 also be assigned to arbitrarily: each pattern buffer stores its own
1311 syntax, so it can be changed between regex compilations. */
1312 /* This has no initializer because initialized variables in Emacs
1313 become read-only after dumping. */
1314 reg_syntax_t re_syntax_options
;
1317 /* Specify the precise syntax of regexps for compilation. This provides
1318 for compatibility for various utilities which historically have
1319 different, incompatible syntaxes.
1321 The argument SYNTAX is a bit mask comprised of the various bits
1322 defined in regex.h. We return the old syntax. */
1325 re_set_syntax (reg_syntax_t syntax
)
1327 reg_syntax_t ret
= re_syntax_options
;
1329 re_syntax_options
= syntax
;
1331 if (syntax
& RE_DEBUG
)
1333 else if (debug
) /* was on but now is not */
1339 weak_alias (__re_set_syntax
, re_set_syntax
)
1342 /* This table gives an error message for each of the error codes listed
1343 in regex.h. Obviously the order here has to be same as there.
1344 POSIX doesn't require that we do anything for REG_NOERROR,
1345 but why not be nice? */
1347 static const char *re_error_msgid
[] =
1349 gettext_noop ("Success"), /* REG_NOERROR */
1350 gettext_noop ("No match"), /* REG_NOMATCH */
1351 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1352 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1353 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1354 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1355 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1356 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1357 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1358 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1359 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1360 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1361 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1362 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1363 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1364 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1365 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1368 #endif /* INSIDE_RECURSION */
1370 #ifndef DEFINED_ONCE
1371 /* Avoiding alloca during matching, to placate r_alloc. */
1373 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1374 searching and matching functions should not call alloca. On some
1375 systems, alloca is implemented in terms of malloc, and if we're
1376 using the relocating allocator routines, then malloc could cause a
1377 relocation, which might (if the strings being searched are in the
1378 ralloc heap) shift the data out from underneath the regexp
1381 Here's another reason to avoid allocation: Emacs
1382 processes input from X in a signal handler; processing X input may
1383 call malloc; if input arrives while a matching routine is calling
1384 malloc, then we're scrod. But Emacs can't just block input while
1385 calling matching routines; then we don't notice interrupts when
1386 they come in. So, Emacs blocks input around all regexp calls
1387 except the matching calls, which it leaves unprotected, in the
1388 faith that they will not malloc. */
1390 /* Normally, this is fine. */
1391 # define MATCH_MAY_ALLOCATE
1393 /* When using GNU C, we are not REALLY using the C alloca, no matter
1394 what config.h may say. So don't take precautions for it. */
1399 /* The match routines may not allocate if (1) they would do it with malloc
1400 and (2) it's not safe for them to use malloc.
1401 Note that if REL_ALLOC is defined, matching would not use malloc for the
1402 failure stack, but we would still use it for the register vectors;
1403 so REL_ALLOC should not affect this. */
1404 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1405 # undef MATCH_MAY_ALLOCATE
1407 #endif /* not DEFINED_ONCE */
1409 #ifdef INSIDE_RECURSION
1410 /* Failure stack declarations and macros; both re_compile_fastmap and
1411 re_match_2 use a failure stack. These have to be macros because of
1412 REGEX_ALLOCATE_STACK. */
1415 /* Number of failure points for which to initially allocate space
1416 when matching. If this number is exceeded, we allocate more
1417 space, so it is not a hard limit. */
1418 # ifndef INIT_FAILURE_ALLOC
1419 # define INIT_FAILURE_ALLOC 5
1422 /* Roughly the maximum number of failure points on the stack. Would be
1423 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1424 This is a variable only so users of regex can assign to it; we never
1425 change it ourselves. */
1427 # ifdef INT_IS_16BIT
1429 # ifndef DEFINED_ONCE
1430 # if defined MATCH_MAY_ALLOCATE
1431 /* 4400 was enough to cause a crash on Alpha OSF/1,
1432 whose default stack limit is 2mb. */
1433 long int re_max_failures
= 4000;
1435 long int re_max_failures
= 2000;
1439 union PREFIX(fail_stack_elt
)
1445 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1449 PREFIX(fail_stack_elt_t
) *stack
;
1450 unsigned long int size
;
1451 unsigned long int avail
; /* Offset of next open position. */
1452 } PREFIX(fail_stack_type
);
1454 # else /* not INT_IS_16BIT */
1456 # ifndef DEFINED_ONCE
1457 # if defined MATCH_MAY_ALLOCATE
1458 /* 4400 was enough to cause a crash on Alpha OSF/1,
1459 whose default stack limit is 2mb. */
1460 int re_max_failures
= 4000;
1462 int re_max_failures
= 2000;
1466 union PREFIX(fail_stack_elt
)
1472 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1476 PREFIX(fail_stack_elt_t
) *stack
;
1478 unsigned avail
; /* Offset of next open position. */
1479 } PREFIX(fail_stack_type
);
1481 # endif /* INT_IS_16BIT */
1483 # ifndef DEFINED_ONCE
1484 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1485 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1486 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1490 /* Define macros to initialize and free the failure stack.
1491 Do `return -2' if the alloc fails. */
1493 # ifdef MATCH_MAY_ALLOCATE
1494 # define INIT_FAIL_STACK() \
1496 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1497 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1499 if (fail_stack.stack == NULL) \
1502 fail_stack.size = INIT_FAILURE_ALLOC; \
1503 fail_stack.avail = 0; \
1506 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1508 # define INIT_FAIL_STACK() \
1510 fail_stack.avail = 0; \
1513 # define RESET_FAIL_STACK()
1517 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1519 Return 1 if succeeds, and 0 if either ran out of memory
1520 allocating space for it or it was already too large.
1522 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1524 # define DOUBLE_FAIL_STACK(fail_stack) \
1525 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1527 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1528 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1529 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1530 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1532 (fail_stack).stack == NULL \
1534 : ((fail_stack).size <<= 1, \
1538 /* Push pointer POINTER on FAIL_STACK.
1539 Return 1 if was able to do so and 0 if ran out of memory allocating
1541 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1542 ((FAIL_STACK_FULL () \
1543 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1545 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1548 /* Push a pointer value onto the failure stack.
1549 Assumes the variable `fail_stack'. Probably should only
1550 be called from within `PUSH_FAILURE_POINT'. */
1551 # define PUSH_FAILURE_POINTER(item) \
1552 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1554 /* This pushes an integer-valued item onto the failure stack.
1555 Assumes the variable `fail_stack'. Probably should only
1556 be called from within `PUSH_FAILURE_POINT'. */
1557 # define PUSH_FAILURE_INT(item) \
1558 fail_stack.stack[fail_stack.avail++].integer = (item)
1560 /* Push a fail_stack_elt_t value onto the failure stack.
1561 Assumes the variable `fail_stack'. Probably should only
1562 be called from within `PUSH_FAILURE_POINT'. */
1563 # define PUSH_FAILURE_ELT(item) \
1564 fail_stack.stack[fail_stack.avail++] = (item)
1566 /* These three POP... operations complement the three PUSH... operations.
1567 All assume that `fail_stack' is nonempty. */
1568 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1569 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1570 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1572 /* Used to omit pushing failure point id's when we're not debugging. */
1574 # define DEBUG_PUSH PUSH_FAILURE_INT
1575 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1577 # define DEBUG_PUSH(item)
1578 # define DEBUG_POP(item_addr)
1582 /* Push the information about the state we will need
1583 if we ever fail back to it.
1585 Requires variables fail_stack, regstart, regend, reg_info, and
1586 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1589 Does `return FAILURE_CODE' if runs out of memory. */
1591 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1593 char *destination; \
1594 /* Must be int, so when we don't save any registers, the arithmetic \
1595 of 0 + -1 isn't done as unsigned. */ \
1596 /* Can't be int, since there is not a shred of a guarantee that int \
1597 is wide enough to hold a value of something to which pointer can \
1599 active_reg_t this_reg; \
1601 DEBUG_STATEMENT (failure_id++); \
1602 DEBUG_STATEMENT (nfailure_points_pushed++); \
1603 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1604 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1605 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1607 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1608 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1610 /* Ensure we have enough space allocated for what we will push. */ \
1611 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1613 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1614 return failure_code; \
1616 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1617 (fail_stack).size); \
1618 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1621 /* Push the info, starting with the registers. */ \
1622 DEBUG_PRINT1 ("\n"); \
1625 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1628 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1629 DEBUG_STATEMENT (num_regs_pushed++); \
1631 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1632 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1634 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1635 PUSH_FAILURE_POINTER (regend[this_reg]); \
1637 DEBUG_PRINT2 (" info: %p\n ", \
1638 reg_info[this_reg].word.pointer); \
1639 DEBUG_PRINT2 (" match_null=%d", \
1640 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1641 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1642 DEBUG_PRINT2 (" matched_something=%d", \
1643 MATCHED_SOMETHING (reg_info[this_reg])); \
1644 DEBUG_PRINT2 (" ever_matched=%d", \
1645 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1646 DEBUG_PRINT1 ("\n"); \
1647 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1650 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1651 PUSH_FAILURE_INT (lowest_active_reg); \
1653 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1654 PUSH_FAILURE_INT (highest_active_reg); \
1656 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1657 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1658 PUSH_FAILURE_POINTER (pattern_place); \
1660 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1661 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1663 DEBUG_PRINT1 ("'\n"); \
1664 PUSH_FAILURE_POINTER (string_place); \
1666 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1667 DEBUG_PUSH (failure_id); \
1670 # ifndef DEFINED_ONCE
1671 /* This is the number of items that are pushed and popped on the stack
1672 for each register. */
1673 # define NUM_REG_ITEMS 3
1675 /* Individual items aside from the registers. */
1677 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1679 # define NUM_NONREG_ITEMS 4
1682 /* We push at most this many items on the stack. */
1683 /* We used to use (num_regs - 1), which is the number of registers
1684 this regexp will save; but that was changed to 5
1685 to avoid stack overflow for a regexp with lots of parens. */
1686 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1688 /* We actually push this many items. */
1689 # define NUM_FAILURE_ITEMS \
1691 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1695 /* How many items can still be added to the stack without overflowing it. */
1696 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1697 # endif /* not DEFINED_ONCE */
1700 /* Pops what PUSH_FAIL_STACK pushes.
1702 We restore into the parameters, all of which should be lvalues:
1703 STR -- the saved data position.
1704 PAT -- the saved pattern position.
1705 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1706 REGSTART, REGEND -- arrays of string positions.
1707 REG_INFO -- array of information about each subexpression.
1709 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1710 `pend', `string1', `size1', `string2', and `size2'. */
1711 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1713 DEBUG_STATEMENT (unsigned failure_id;) \
1714 active_reg_t this_reg; \
1715 const UCHAR_T *string_temp; \
1717 assert (!FAIL_STACK_EMPTY ()); \
1719 /* Remove failure points and point to how many regs pushed. */ \
1720 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1721 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1722 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1724 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1726 DEBUG_POP (&failure_id); \
1727 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1729 /* If the saved string location is NULL, it came from an \
1730 on_failure_keep_string_jump opcode, and we want to throw away the \
1731 saved NULL, thus retaining our current position in the string. */ \
1732 string_temp = POP_FAILURE_POINTER (); \
1733 if (string_temp != NULL) \
1734 str = (const CHAR_T *) string_temp; \
1736 DEBUG_PRINT2 (" Popping string %p: `", str); \
1737 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1738 DEBUG_PRINT1 ("'\n"); \
1740 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1741 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1742 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1744 /* Restore register info. */ \
1745 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1746 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1748 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1749 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1752 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1754 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1756 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1757 DEBUG_PRINT2 (" info: %p\n", \
1758 reg_info[this_reg].word.pointer); \
1760 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1761 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1763 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1764 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1768 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1770 reg_info[this_reg].word.integer = 0; \
1771 regend[this_reg] = 0; \
1772 regstart[this_reg] = 0; \
1774 highest_active_reg = high_reg; \
1777 set_regs_matched_done = 0; \
1778 DEBUG_STATEMENT (nfailure_points_popped++); \
1779 } /* POP_FAILURE_POINT */
1781 /* Structure for per-register (a.k.a. per-group) information.
1782 Other register information, such as the
1783 starting and ending positions (which are addresses), and the list of
1784 inner groups (which is a bits list) are maintained in separate
1787 We are making a (strictly speaking) nonportable assumption here: that
1788 the compiler will pack our bit fields into something that fits into
1789 the type of `word', i.e., is something that fits into one item on the
1793 /* Declarations and macros for re_match_2. */
1797 PREFIX(fail_stack_elt_t
) word
;
1800 /* This field is one if this group can match the empty string,
1801 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1802 # define MATCH_NULL_UNSET_VALUE 3
1803 unsigned match_null_string_p
: 2;
1804 unsigned is_active
: 1;
1805 unsigned matched_something
: 1;
1806 unsigned ever_matched_something
: 1;
1808 } PREFIX(register_info_type
);
1810 # ifndef DEFINED_ONCE
1811 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1812 # define IS_ACTIVE(R) ((R).bits.is_active)
1813 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1814 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1817 /* Call this when have matched a real character; it sets `matched' flags
1818 for the subexpressions which we are currently inside. Also records
1819 that those subexprs have matched. */
1820 # define SET_REGS_MATCHED() \
1823 if (!set_regs_matched_done) \
1826 set_regs_matched_done = 1; \
1827 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1829 MATCHED_SOMETHING (reg_info[r]) \
1830 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1836 # endif /* not DEFINED_ONCE */
1838 /* Registers are set to a sentinel when they haven't yet matched. */
1839 static CHAR_T
PREFIX(reg_unset_dummy
);
1840 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1841 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1843 /* Subroutine declarations and macros for regex_compile. */
1844 static void PREFIX(store_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
);
1845 static void PREFIX(store_op2
) (re_opcode_t op
, UCHAR_T
*loc
,
1846 int arg1
, int arg2
);
1847 static void PREFIX(insert_op1
) (re_opcode_t op
, UCHAR_T
*loc
,
1848 int arg
, UCHAR_T
*end
);
1849 static void PREFIX(insert_op2
) (re_opcode_t op
, UCHAR_T
*loc
,
1850 int arg1
, int arg2
, UCHAR_T
*end
);
1851 static boolean
PREFIX(at_begline_loc_p
) (const CHAR_T
*pattern
,
1853 reg_syntax_t syntax
);
1854 static boolean
PREFIX(at_endline_loc_p
) (const CHAR_T
*p
,
1856 reg_syntax_t syntax
);
1858 static reg_errcode_t
wcs_compile_range (CHAR_T range_start
,
1859 const CHAR_T
**p_ptr
,
1862 reg_syntax_t syntax
,
1865 static void insert_space (int num
, CHAR_T
*loc
, CHAR_T
*end
);
1867 static reg_errcode_t
byte_compile_range (unsigned int range_start
,
1871 reg_syntax_t syntax
,
1875 /* Fetch the next character in the uncompiled pattern---translating it
1876 if necessary. Also cast from a signed character in the constant
1877 string passed to us by the user to an unsigned char that we can use
1878 as an array index (in, e.g., `translate'). */
1879 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1880 because it is impossible to allocate 4GB array for some encodings
1881 which have 4 byte character_set like UCS4. */
1884 # define PATFETCH(c) \
1885 do {if (p == pend) return REG_EEND; \
1886 c = (UCHAR_T) *p++; \
1887 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1890 # define PATFETCH(c) \
1891 do {if (p == pend) return REG_EEND; \
1892 c = (unsigned char) *p++; \
1893 if (translate) c = (unsigned char) translate[c]; \
1898 /* Fetch the next character in the uncompiled pattern, with no
1900 # define PATFETCH_RAW(c) \
1901 do {if (p == pend) return REG_EEND; \
1902 c = (UCHAR_T) *p++; \
1905 /* Go backwards one character in the pattern. */
1906 # define PATUNFETCH p--
1909 /* If `translate' is non-null, return translate[D], else just D. We
1910 cast the subscript to translate because some data is declared as
1911 `char *', to avoid warnings when a string constant is passed. But
1912 when we use a character as a subscript we must make it unsigned. */
1913 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1914 because it is impossible to allocate 4GB array for some encodings
1915 which have 4 byte character_set like UCS4. */
1919 # define TRANSLATE(d) \
1920 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1921 ? (char) translate[(unsigned char) (d)] : (d))
1923 # define TRANSLATE(d) \
1924 (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1929 /* Macros for outputting the compiled pattern into `buffer'. */
1931 /* If the buffer isn't allocated when it comes in, use this. */
1932 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1934 /* Make sure we have at least N more bytes of space in buffer. */
1936 # define GET_BUFFER_SPACE(n) \
1937 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1938 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1941 # define GET_BUFFER_SPACE(n) \
1942 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1946 /* Make sure we have one more byte of buffer space and then add C to it. */
1947 # define BUF_PUSH(c) \
1949 GET_BUFFER_SPACE (1); \
1950 *b++ = (UCHAR_T) (c); \
1954 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1955 # define BUF_PUSH_2(c1, c2) \
1957 GET_BUFFER_SPACE (2); \
1958 *b++ = (UCHAR_T) (c1); \
1959 *b++ = (UCHAR_T) (c2); \
1963 /* As with BUF_PUSH_2, except for three bytes. */
1964 # define BUF_PUSH_3(c1, c2, c3) \
1966 GET_BUFFER_SPACE (3); \
1967 *b++ = (UCHAR_T) (c1); \
1968 *b++ = (UCHAR_T) (c2); \
1969 *b++ = (UCHAR_T) (c3); \
1972 /* Store a jump with opcode OP at LOC to location TO. We store a
1973 relative address offset by the three bytes the jump itself occupies. */
1974 # define STORE_JUMP(op, loc, to) \
1975 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1977 /* Likewise, for a two-argument jump. */
1978 # define STORE_JUMP2(op, loc, to, arg) \
1979 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1981 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1982 # define INSERT_JUMP(op, loc, to) \
1983 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1985 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1986 # define INSERT_JUMP2(op, loc, to, arg) \
1987 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1990 /* This is not an arbitrary limit: the arguments which represent offsets
1991 into the pattern are two bytes long. So if 2^16 bytes turns out to
1992 be too small, many things would have to change. */
1993 /* Any other compiler which, like MSC, has allocation limit below 2^16
1994 bytes will have to use approach similar to what was done below for
1995 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1996 reallocating to 0 bytes. Such thing is not going to work too well.
1997 You have been warned!! */
1998 # ifndef DEFINED_ONCE
1999 # if defined _MSC_VER && !defined WIN32
2000 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2001 The REALLOC define eliminates a flurry of conversion warnings,
2002 but is not required. */
2003 # define MAX_BUF_SIZE 65500L
2004 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2006 # define MAX_BUF_SIZE (1L << 16)
2007 # define REALLOC(p,s) realloc ((p), (s))
2010 /* Extend the buffer by twice its current size via realloc and
2011 reset the pointers that pointed into the old block to point to the
2012 correct places in the new one. If extending the buffer results in it
2013 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2014 # if __BOUNDED_POINTERS__
2015 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2016 # define MOVE_BUFFER_POINTER(P) \
2017 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2018 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2021 SET_HIGH_BOUND (b); \
2022 SET_HIGH_BOUND (begalt); \
2023 if (fixup_alt_jump) \
2024 SET_HIGH_BOUND (fixup_alt_jump); \
2026 SET_HIGH_BOUND (laststart); \
2027 if (pending_exact) \
2028 SET_HIGH_BOUND (pending_exact); \
2031 # define MOVE_BUFFER_POINTER(P) (P) += incr
2032 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2034 # endif /* not DEFINED_ONCE */
2037 # define EXTEND_BUFFER() \
2039 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2041 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2043 bufp->allocated <<= 1; \
2044 if (bufp->allocated > MAX_BUF_SIZE) \
2045 bufp->allocated = MAX_BUF_SIZE; \
2046 /* How many characters the new buffer can have? */ \
2047 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2048 if (wchar_count == 0) wchar_count = 1; \
2049 /* Truncate the buffer to CHAR_T align. */ \
2050 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2051 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2052 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2053 if (COMPILED_BUFFER_VAR == NULL) \
2054 return REG_ESPACE; \
2055 /* If the buffer moved, move all the pointers into it. */ \
2056 if (old_buffer != COMPILED_BUFFER_VAR) \
2058 PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \
2059 MOVE_BUFFER_POINTER (b); \
2060 MOVE_BUFFER_POINTER (begalt); \
2061 if (fixup_alt_jump) \
2062 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2064 MOVE_BUFFER_POINTER (laststart); \
2065 if (pending_exact) \
2066 MOVE_BUFFER_POINTER (pending_exact); \
2068 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2071 # define EXTEND_BUFFER() \
2073 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2074 if (bufp->allocated == MAX_BUF_SIZE) \
2076 bufp->allocated <<= 1; \
2077 if (bufp->allocated > MAX_BUF_SIZE) \
2078 bufp->allocated = MAX_BUF_SIZE; \
2079 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2081 if (COMPILED_BUFFER_VAR == NULL) \
2082 return REG_ESPACE; \
2083 /* If the buffer moved, move all the pointers into it. */ \
2084 if (old_buffer != COMPILED_BUFFER_VAR) \
2086 PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \
2087 MOVE_BUFFER_POINTER (b); \
2088 MOVE_BUFFER_POINTER (begalt); \
2089 if (fixup_alt_jump) \
2090 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2092 MOVE_BUFFER_POINTER (laststart); \
2093 if (pending_exact) \
2094 MOVE_BUFFER_POINTER (pending_exact); \
2096 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2100 # ifndef DEFINED_ONCE
2101 /* Since we have one byte reserved for the register number argument to
2102 {start,stop}_memory, the maximum number of groups we can report
2103 things about is what fits in that byte. */
2104 # define MAX_REGNUM 255
2106 /* But patterns can have more than `MAX_REGNUM' registers. We just
2107 ignore the excess. */
2108 typedef unsigned regnum_t
;
2111 /* Macros for the compile stack. */
2113 /* Since offsets can go either forwards or backwards, this type needs to
2114 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2115 /* int may be not enough when sizeof(int) == 2. */
2116 typedef long pattern_offset_t
;
2120 pattern_offset_t begalt_offset
;
2121 pattern_offset_t fixup_alt_jump
;
2122 pattern_offset_t inner_group_offset
;
2123 pattern_offset_t laststart_offset
;
2125 } compile_stack_elt_t
;
2130 compile_stack_elt_t
*stack
;
2132 unsigned avail
; /* Offset of next open position. */
2133 } compile_stack_type
;
2136 # define INIT_COMPILE_STACK_SIZE 32
2138 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2139 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2141 /* The next available element. */
2142 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2144 # endif /* not DEFINED_ONCE */
2146 /* Set the bit for character C in a list. */
2147 # ifndef DEFINED_ONCE
2148 # define SET_LIST_BIT(c) \
2149 (b[((unsigned char) (c)) / BYTEWIDTH] \
2150 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2151 # endif /* DEFINED_ONCE */
2153 /* Get the next unsigned number in the uncompiled pattern. */
2154 # define GET_UNSIGNED_NUMBER(num) \
2159 if (c < '0' || c > '9') \
2161 if (num <= RE_DUP_MAX) \
2165 num = num * 10 + c - '0'; \
2170 # ifndef DEFINED_ONCE
2171 # if defined _LIBC || WIDE_CHAR_SUPPORT
2172 /* The GNU C library provides support for user-defined character classes
2173 and the functions from ISO C amendement 1. */
2174 # ifdef CHARCLASS_NAME_MAX
2175 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2177 /* This shouldn't happen but some implementation might still have this
2178 problem. Use a reasonable default value. */
2179 # define CHAR_CLASS_MAX_LENGTH 256
2183 # define IS_CHAR_CLASS(string) __wctype (string)
2185 # define IS_CHAR_CLASS(string) wctype (string)
2188 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2190 # define IS_CHAR_CLASS(string) \
2191 (STREQ (string, "alpha") || STREQ (string, "upper") \
2192 || STREQ (string, "lower") || STREQ (string, "digit") \
2193 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2194 || STREQ (string, "space") || STREQ (string, "print") \
2195 || STREQ (string, "punct") || STREQ (string, "graph") \
2196 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2198 # endif /* DEFINED_ONCE */
2200 # ifndef MATCH_MAY_ALLOCATE
2202 /* If we cannot allocate large objects within re_match_2_internal,
2203 we make the fail stack and register vectors global.
2204 The fail stack, we grow to the maximum size when a regexp
2206 The register vectors, we adjust in size each time we
2207 compile a regexp, according to the number of registers it needs. */
2209 static PREFIX(fail_stack_type
) fail_stack
;
2211 /* Size with which the following vectors are currently allocated.
2212 That is so we can make them bigger as needed,
2213 but never make them smaller. */
2214 # ifdef DEFINED_ONCE
2215 static int regs_allocated_size
;
2217 static const char ** regstart
, ** regend
;
2218 static const char ** old_regstart
, ** old_regend
;
2219 static const char **best_regstart
, **best_regend
;
2220 static const char **reg_dummy
;
2221 # endif /* DEFINED_ONCE */
2223 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2224 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2226 /* Make the register vectors big enough for NUM_REGS registers,
2227 but don't make them smaller. */
2230 PREFIX(regex_grow_registers
) (int num_regs
)
2232 if (num_regs
> regs_allocated_size
)
2234 RETALLOC_IF (regstart
, num_regs
, const char *);
2235 RETALLOC_IF (regend
, num_regs
, const char *);
2236 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2237 RETALLOC_IF (old_regend
, num_regs
, const char *);
2238 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2239 RETALLOC_IF (best_regend
, num_regs
, const char *);
2240 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2241 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2242 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2244 regs_allocated_size
= num_regs
;
2248 # endif /* not MATCH_MAY_ALLOCATE */
2250 # ifndef DEFINED_ONCE
2251 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2253 # endif /* not DEFINED_ONCE */
2255 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2256 Returns one of error codes defined in `regex.h', or zero for success.
2258 Assumes the `allocated' (and perhaps `buffer') and `translate'
2259 fields are set in BUFP on entry.
2261 If it succeeds, results are put in BUFP (if it returns an error, the
2262 contents of BUFP are undefined):
2263 `buffer' is the compiled pattern;
2264 `syntax' is set to SYNTAX;
2265 `used' is set to the length of the compiled pattern;
2266 `fastmap_accurate' is zero;
2267 `re_nsub' is the number of subexpressions in PATTERN;
2268 `not_bol' and `not_eol' are zero;
2270 The `fastmap' and `newline_anchor' fields are neither
2271 examined nor set. */
2273 /* Return, freeing storage we allocated. */
2275 # define FREE_STACK_RETURN(value) \
2276 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2278 # define FREE_STACK_RETURN(value) \
2279 return (free (compile_stack.stack), value)
2282 static reg_errcode_t
2283 PREFIX(regex_compile
) (const char *ARG_PREFIX(pattern
),
2284 size_t ARG_PREFIX(size
), reg_syntax_t syntax
,
2285 struct re_pattern_buffer
*bufp
)
2287 /* We fetch characters from PATTERN here. Even though PATTERN is
2288 `char *' (i.e., signed), we declare these variables as unsigned, so
2289 they can be reliably used as array indices. */
2290 register UCHAR_T c
, c1
;
2293 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2294 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2296 /* offset buffer for optimization. See convert_mbs_to_wc. */
2297 int *mbs_offset
= NULL
;
2298 /* It hold whether each wchar_t is binary data or not. */
2299 char *is_binary
= NULL
;
2300 /* A flag whether exactn is handling binary data or not. */
2301 char is_exactn_bin
= FALSE
;
2304 /* A random temporary spot in PATTERN. */
2307 /* Points to the end of the buffer, where we should append. */
2308 register UCHAR_T
*b
;
2310 /* Keeps track of unclosed groups. */
2311 compile_stack_type compile_stack
;
2313 /* Points to the current (ending) position in the pattern. */
2318 const CHAR_T
*p
= pattern
;
2319 const CHAR_T
*pend
= pattern
+ size
;
2322 /* How to translate the characters in the pattern. */
2323 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2325 /* Address of the count-byte of the most recently inserted `exactn'
2326 command. This makes it possible to tell if a new exact-match
2327 character can be added to that command or if the character requires
2328 a new `exactn' command. */
2329 UCHAR_T
*pending_exact
= 0;
2331 /* Address of start of the most recently finished expression.
2332 This tells, e.g., postfix * where to find the start of its
2333 operand. Reset at the beginning of groups and alternatives. */
2334 UCHAR_T
*laststart
= 0;
2336 /* Address of beginning of regexp, or inside of last group. */
2339 /* Address of the place where a forward jump should go to the end of
2340 the containing expression. Each alternative of an `or' -- except the
2341 last -- ends with a forward jump of this sort. */
2342 UCHAR_T
*fixup_alt_jump
= 0;
2344 /* Counts open-groups as they are encountered. Remembered for the
2345 matching close-group on the compile stack, so the same register
2346 number is put in the stop_memory as the start_memory. */
2347 regnum_t regnum
= 0;
2350 /* Initialize the wchar_t PATTERN and offset_buffer. */
2351 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2352 mbs_offset
= TALLOC(csize
+ 1, int);
2353 is_binary
= TALLOC(csize
+ 1, char);
2354 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2361 pattern
[csize
] = L
'\0'; /* sentinel */
2362 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2374 DEBUG_PRINT1 ("\nCompiling pattern: ");
2377 unsigned debug_count
;
2379 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2380 PUT_CHAR (pattern
[debug_count
]);
2385 /* Initialize the compile stack. */
2386 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2387 if (compile_stack
.stack
== NULL
)
2397 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2398 compile_stack
.avail
= 0;
2400 /* Initialize the pattern buffer. */
2401 bufp
->syntax
= syntax
;
2402 bufp
->fastmap_accurate
= 0;
2403 bufp
->not_bol
= bufp
->not_eol
= 0;
2405 /* Set `used' to zero, so that if we return an error, the pattern
2406 printer (for debugging) will think there's no pattern. We reset it
2410 /* Always count groups, whether or not bufp->no_sub is set. */
2413 #if !defined emacs && !defined SYNTAX_TABLE
2414 /* Initialize the syntax table. */
2415 init_syntax_once ();
2418 if (bufp
->allocated
== 0)
2421 { /* If zero allocated, but buffer is non-null, try to realloc
2422 enough space. This loses if buffer's address is bogus, but
2423 that is the user's responsibility. */
2425 /* Free bufp->buffer and allocate an array for wchar_t pattern
2428 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2431 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2435 { /* Caller did not allocate a buffer. Do it for them. */
2436 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2440 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2442 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2444 bufp
->allocated
= INIT_BUF_SIZE
;
2448 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2451 begalt
= b
= COMPILED_BUFFER_VAR
;
2453 /* Loop through the uncompiled pattern until we're at the end. */
2462 if ( /* If at start of pattern, it's an operator. */
2464 /* If context independent, it's an operator. */
2465 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2466 /* Otherwise, depends on what's come before. */
2467 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2477 if ( /* If at end of pattern, it's an operator. */
2479 /* If context independent, it's an operator. */
2480 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2481 /* Otherwise, depends on what's next. */
2482 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2492 if ((syntax
& RE_BK_PLUS_QM
)
2493 || (syntax
& RE_LIMITED_OPS
))
2498 /* If there is no previous pattern... */
2501 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2502 FREE_STACK_RETURN (REG_BADRPT
);
2503 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2508 /* Are we optimizing this jump? */
2509 boolean keep_string_p
= false;
2511 /* 1 means zero (many) matches is allowed. */
2512 char zero_times_ok
= 0, many_times_ok
= 0;
2514 /* If there is a sequence of repetition chars, collapse it
2515 down to just one (the right one). We can't combine
2516 interval operators with these because of, e.g., `a{2}*',
2517 which should only match an even number of `a's. */
2521 zero_times_ok
|= c
!= '+';
2522 many_times_ok
|= c
!= '?';
2530 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2533 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2535 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2538 if (!(c1
== '+' || c1
== '?'))
2553 /* If we get here, we found another repeat character. */
2556 /* Star, etc. applied to an empty pattern is equivalent
2557 to an empty pattern. */
2561 /* Now we know whether or not zero matches is allowed
2562 and also whether or not two or more matches is allowed. */
2564 { /* More than one repetition is allowed, so put in at the
2565 end a backward relative jump from `b' to before the next
2566 jump we're going to put in below (which jumps from
2567 laststart to after this jump).
2569 But if we are at the `*' in the exact sequence `.*\n',
2570 insert an unconditional jump backwards to the .,
2571 instead of the beginning of the loop. This way we only
2572 push a failure point once, instead of every time
2573 through the loop. */
2574 assert (p
- 1 > pattern
);
2576 /* Allocate the space for the jump. */
2577 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2579 /* We know we are not at the first character of the pattern,
2580 because laststart was nonzero. And we've already
2581 incremented `p', by the way, to be the character after
2582 the `*'. Do we have to do something analogous here
2583 for null bytes, because of RE_DOT_NOT_NULL? */
2584 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2586 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2587 && !(syntax
& RE_DOT_NEWLINE
))
2588 { /* We have .*\n. */
2589 STORE_JUMP (jump
, b
, laststart
);
2590 keep_string_p
= true;
2593 /* Anything else. */
2594 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2595 (1 + OFFSET_ADDRESS_SIZE
));
2597 /* We've added more stuff to the buffer. */
2598 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2601 /* On failure, jump from laststart to b + 3, which will be the
2602 end of the buffer after this jump is inserted. */
2603 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2605 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2606 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2608 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2610 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2614 /* At least one repetition is required, so insert a
2615 `dummy_failure_jump' before the initial
2616 `on_failure_jump' instruction of the loop. This
2617 effects a skip over that instruction the first time
2618 we hit that loop. */
2619 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2620 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2621 2 + 2 * OFFSET_ADDRESS_SIZE
);
2622 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2636 boolean had_char_class
= false;
2638 CHAR_T range_start
= 0xffffffff;
2640 unsigned int range_start
= 0xffffffff;
2642 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2645 /* We assume a charset(_not) structure as a wchar_t array.
2646 charset[0] = (re_opcode_t) charset(_not)
2647 charset[1] = l (= length of char_classes)
2648 charset[2] = m (= length of collating_symbols)
2649 charset[3] = n (= length of equivalence_classes)
2650 charset[4] = o (= length of char_ranges)
2651 charset[5] = p (= length of chars)
2653 charset[6] = char_class (wctype_t)
2654 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2656 charset[l+5] = char_class (wctype_t)
2658 charset[l+6] = collating_symbol (wchar_t)
2660 charset[l+m+5] = collating_symbol (wchar_t)
2661 ifdef _LIBC we use the index if
2662 _NL_COLLATE_SYMB_EXTRAMB instead of
2665 charset[l+m+6] = equivalence_classes (wchar_t)
2667 charset[l+m+n+5] = equivalence_classes (wchar_t)
2668 ifdef _LIBC we use the index in
2669 _NL_COLLATE_WEIGHT instead of
2672 charset[l+m+n+6] = range_start
2673 charset[l+m+n+7] = range_end
2675 charset[l+m+n+2o+4] = range_start
2676 charset[l+m+n+2o+5] = range_end
2677 ifdef _LIBC we use the value looked up
2678 in _NL_COLLATE_COLLSEQ instead of
2681 charset[l+m+n+2o+6] = char
2683 charset[l+m+n+2o+p+5] = char
2687 /* We need at least 6 spaces: the opcode, the length of
2688 char_classes, the length of collating_symbols, the length of
2689 equivalence_classes, the length of char_ranges, the length of
2691 GET_BUFFER_SPACE (6);
2693 /* Save b as laststart. And We use laststart as the pointer
2694 to the first element of the charset here.
2695 In other words, laststart[i] indicates charset[i]. */
2698 /* We test `*p == '^' twice, instead of using an if
2699 statement, so we only need one BUF_PUSH. */
2700 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2704 /* Push the length of char_classes, the length of
2705 collating_symbols, the length of equivalence_classes, the
2706 length of char_ranges and the length of chars. */
2707 BUF_PUSH_3 (0, 0, 0);
2710 /* Remember the first position in the bracket expression. */
2713 /* charset_not matches newline according to a syntax bit. */
2714 if ((re_opcode_t
) b
[-6] == charset_not
2715 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2718 laststart
[5]++; /* Update the length of characters */
2721 /* Read in characters and ranges, setting map bits. */
2724 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2728 /* \ might escape characters inside [...] and [^...]. */
2729 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2731 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2735 laststart
[5]++; /* Update the length of chars */
2740 /* Could be the end of the bracket expression. If it's
2741 not (i.e., when the bracket expression is `[]' so
2742 far), the ']' character bit gets set way below. */
2743 if (c
== ']' && p
!= p1
+ 1)
2746 /* Look ahead to see if it's a range when the last thing
2747 was a character class. */
2748 if (had_char_class
&& c
== '-' && *p
!= ']')
2749 FREE_STACK_RETURN (REG_ERANGE
);
2751 /* Look ahead to see if it's a range when the last thing
2752 was a character: if this is a hyphen not at the
2753 beginning or the end of a list, then it's the range
2756 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2757 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2761 /* Allocate the space for range_start and range_end. */
2762 GET_BUFFER_SPACE (2);
2763 /* Update the pointer to indicate end of buffer. */
2765 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2766 syntax
, b
, laststart
);
2767 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2768 range_start
= 0xffffffff;
2770 else if (p
[0] == '-' && p
[1] != ']')
2771 { /* This handles ranges made up of characters only. */
2774 /* Move past the `-'. */
2776 /* Allocate the space for range_start and range_end. */
2777 GET_BUFFER_SPACE (2);
2778 /* Update the pointer to indicate end of buffer. */
2780 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2782 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2783 range_start
= 0xffffffff;
2786 /* See if we're at the beginning of a possible character
2788 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2789 { /* Leave room for the null. */
2790 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2795 /* If pattern is `[[:'. */
2796 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2801 if ((c
== ':' && *p
== ']') || p
== pend
)
2803 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2806 /* This is in any case an invalid class name. */
2811 /* If isn't a word bracketed by `[:' and `:]':
2812 undo the ending character, the letters, and leave
2813 the leading `:' and `[' (but store them as character). */
2814 if (c
== ':' && *p
== ']')
2819 /* Query the character class as wctype_t. */
2820 wt
= IS_CHAR_CLASS (str
);
2822 FREE_STACK_RETURN (REG_ECTYPE
);
2824 /* Throw away the ] at the end of the character
2828 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2830 /* Allocate the space for character class. */
2831 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2832 /* Update the pointer to indicate end of buffer. */
2833 b
+= CHAR_CLASS_SIZE
;
2834 /* Move data which follow character classes
2835 not to violate the data. */
2836 insert_space(CHAR_CLASS_SIZE
,
2837 laststart
+ 6 + laststart
[1],
2839 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2840 + __alignof__(wctype_t) - 1)
2841 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2842 /* Store the character class. */
2843 *((wctype_t*)alignedp
) = wt
;
2844 /* Update length of char_classes */
2845 laststart
[1] += CHAR_CLASS_SIZE
;
2847 had_char_class
= true;
2856 laststart
[5] += 2; /* Update the length of characters */
2858 had_char_class
= false;
2861 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2864 CHAR_T str
[128]; /* Should be large enough. */
2865 CHAR_T delim
= *p
; /* '=' or '.' */
2868 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2873 /* If pattern is `[[=' or '[[.'. */
2874 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2879 if ((c
== delim
&& *p
== ']') || p
== pend
)
2881 if (c1
< sizeof (str
) - 1)
2884 /* This is in any case an invalid class name. */
2889 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2891 unsigned int i
, offset
;
2892 /* If we have no collation data we use the default
2893 collation in which each character is in a class
2894 by itself. It also means that ASCII is the
2895 character set and therefore we cannot have character
2896 with more than one byte in the multibyte
2899 /* If not defined _LIBC, we push the name and
2900 `\0' for the sake of matching performance. */
2901 int datasize
= c1
+ 1;
2909 FREE_STACK_RETURN (REG_ECOLLATE
);
2914 const int32_t *table
;
2915 const int32_t *weights
;
2916 const int32_t *extra
;
2917 const int32_t *indirect
;
2920 /* This #include defines a local function! */
2921 # include <locale/weightwc.h>
2925 /* We push the index for equivalence class. */
2928 table
= (const int32_t *)
2929 _NL_CURRENT (LC_COLLATE
,
2930 _NL_COLLATE_TABLEWC
);
2931 weights
= (const int32_t *)
2932 _NL_CURRENT (LC_COLLATE
,
2933 _NL_COLLATE_WEIGHTWC
);
2934 extra
= (const int32_t *)
2935 _NL_CURRENT (LC_COLLATE
,
2936 _NL_COLLATE_EXTRAWC
);
2937 indirect
= (const int32_t *)
2938 _NL_CURRENT (LC_COLLATE
,
2939 _NL_COLLATE_INDIRECTWC
);
2941 idx
= findidx ((const wint_t**)&cp
);
2942 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
2943 /* This is no valid character. */
2944 FREE_STACK_RETURN (REG_ECOLLATE
);
2946 str
[0] = (wchar_t)idx
;
2948 else /* delim == '.' */
2950 /* We push collation sequence value
2951 for collating symbol. */
2953 const int32_t *symb_table
;
2954 const unsigned char *extra
;
2961 /* We have to convert the name to a single-byte
2962 string. This is possible since the names
2963 consist of ASCII characters and the internal
2964 representation is UCS4. */
2965 for (i
= 0; i
< c1
; ++i
)
2966 char_str
[i
] = str
[i
];
2969 _NL_CURRENT_WORD (LC_COLLATE
,
2970 _NL_COLLATE_SYMB_HASH_SIZEMB
);
2971 symb_table
= (const int32_t *)
2972 _NL_CURRENT (LC_COLLATE
,
2973 _NL_COLLATE_SYMB_TABLEMB
);
2974 extra
= (const unsigned char *)
2975 _NL_CURRENT (LC_COLLATE
,
2976 _NL_COLLATE_SYMB_EXTRAMB
);
2978 /* Locate the character in the hashing table. */
2979 hash
= elem_hash (char_str
, c1
);
2982 elem
= hash
% table_size
;
2983 second
= hash
% (table_size
- 2);
2984 while (symb_table
[2 * elem
] != 0)
2986 /* First compare the hashing value. */
2987 if (symb_table
[2 * elem
] == hash
2988 && c1
== extra
[symb_table
[2 * elem
+ 1]]
2989 && memcmp (char_str
,
2990 &extra
[symb_table
[2 * elem
+ 1]
2993 /* Yep, this is the entry. */
2994 idx
= symb_table
[2 * elem
+ 1];
2995 idx
+= 1 + extra
[idx
];
3003 if (symb_table
[2 * elem
] != 0)
3005 /* Compute the index of the byte sequence
3007 idx
+= 1 + extra
[idx
];
3008 /* Adjust for the alignment. */
3009 idx
= (idx
+ 3) & ~3;
3011 str
[0] = (wchar_t) idx
+ 4;
3013 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3015 /* No valid character. Match it as a
3016 single byte character. */
3017 had_char_class
= false;
3019 /* Update the length of characters */
3021 range_start
= str
[0];
3023 /* Throw away the ] at the end of the
3024 collating symbol. */
3026 /* exit from the switch block. */
3030 FREE_STACK_RETURN (REG_ECOLLATE
);
3035 /* Throw away the ] at the end of the equivalence
3036 class (or collating symbol). */
3039 /* Allocate the space for the equivalence class
3040 (or collating symbol) (and '\0' if needed). */
3041 GET_BUFFER_SPACE(datasize
);
3042 /* Update the pointer to indicate end of buffer. */
3046 { /* equivalence class */
3047 /* Calculate the offset of char_ranges,
3048 which is next to equivalence_classes. */
3049 offset
= laststart
[1] + laststart
[2]
3052 insert_space(datasize
, laststart
+ offset
, b
- 1);
3054 /* Write the equivalence_class and \0. */
3055 for (i
= 0 ; i
< datasize
; i
++)
3056 laststart
[offset
+ i
] = str
[i
];
3058 /* Update the length of equivalence_classes. */
3059 laststart
[3] += datasize
;
3060 had_char_class
= true;
3062 else /* delim == '.' */
3063 { /* collating symbol */
3064 /* Calculate the offset of the equivalence_classes,
3065 which is next to collating_symbols. */
3066 offset
= laststart
[1] + laststart
[2] + 6;
3067 /* Insert space and write the collationg_symbol
3069 insert_space(datasize
, laststart
+ offset
, b
-1);
3070 for (i
= 0 ; i
< datasize
; i
++)
3071 laststart
[offset
+ i
] = str
[i
];
3073 /* In re_match_2_internal if range_start < -1, we
3074 assume -range_start is the offset of the
3075 collating symbol which is specified as
3076 the character of the range start. So we assign
3077 -(laststart[1] + laststart[2] + 6) to
3079 range_start
= -(laststart
[1] + laststart
[2] + 6);
3080 /* Update the length of collating_symbol. */
3081 laststart
[2] += datasize
;
3082 had_char_class
= false;
3092 laststart
[5] += 2; /* Update the length of characters */
3093 range_start
= delim
;
3094 had_char_class
= false;
3099 had_char_class
= false;
3101 laststart
[5]++; /* Update the length of characters */
3107 /* Ensure that we have enough space to push a charset: the
3108 opcode, the length count, and the bitset; 34 bytes in all. */
3109 GET_BUFFER_SPACE (34);
3113 /* We test `*p == '^' twice, instead of using an if
3114 statement, so we only need one BUF_PUSH. */
3115 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3119 /* Remember the first position in the bracket expression. */
3122 /* Push the number of bytes in the bitmap. */
3123 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3125 /* Clear the whole map. */
3126 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3128 /* charset_not matches newline according to a syntax bit. */
3129 if ((re_opcode_t
) b
[-2] == charset_not
3130 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3131 SET_LIST_BIT ('\n');
3133 /* Read in characters and ranges, setting map bits. */
3136 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3140 /* \ might escape characters inside [...] and [^...]. */
3141 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3143 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3151 /* Could be the end of the bracket expression. If it's
3152 not (i.e., when the bracket expression is `[]' so
3153 far), the ']' character bit gets set way below. */
3154 if (c
== ']' && p
!= p1
+ 1)
3157 /* Look ahead to see if it's a range when the last thing
3158 was a character class. */
3159 if (had_char_class
&& c
== '-' && *p
!= ']')
3160 FREE_STACK_RETURN (REG_ERANGE
);
3162 /* Look ahead to see if it's a range when the last thing
3163 was a character: if this is a hyphen not at the
3164 beginning or the end of a list, then it's the range
3167 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3168 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3172 = byte_compile_range (range_start
, &p
, pend
, translate
,
3174 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3175 range_start
= 0xffffffff;
3178 else if (p
[0] == '-' && p
[1] != ']')
3179 { /* This handles ranges made up of characters only. */
3182 /* Move past the `-'. */
3185 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3186 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3187 range_start
= 0xffffffff;
3190 /* See if we're at the beginning of a possible character
3193 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3194 { /* Leave room for the null. */
3195 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3200 /* If pattern is `[[:'. */
3201 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3206 if ((c
== ':' && *p
== ']') || p
== pend
)
3208 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3211 /* This is in any case an invalid class name. */
3216 /* If isn't a word bracketed by `[:' and `:]':
3217 undo the ending character, the letters, and leave
3218 the leading `:' and `[' (but set bits for them). */
3219 if (c
== ':' && *p
== ']')
3221 # if defined _LIBC || WIDE_CHAR_SUPPORT
3222 boolean is_lower
= STREQ (str
, "lower");
3223 boolean is_upper
= STREQ (str
, "upper");
3227 wt
= IS_CHAR_CLASS (str
);
3229 FREE_STACK_RETURN (REG_ECTYPE
);
3231 /* Throw away the ] at the end of the character
3235 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3237 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3240 if (__iswctype (__btowc (ch
), wt
))
3243 if (iswctype (btowc (ch
), wt
))
3247 if (translate
&& (is_upper
|| is_lower
)
3248 && (ISUPPER (ch
) || ISLOWER (ch
)))
3252 had_char_class
= true;
3255 boolean is_alnum
= STREQ (str
, "alnum");
3256 boolean is_alpha
= STREQ (str
, "alpha");
3257 boolean is_blank
= STREQ (str
, "blank");
3258 boolean is_cntrl
= STREQ (str
, "cntrl");
3259 boolean is_digit
= STREQ (str
, "digit");
3260 boolean is_graph
= STREQ (str
, "graph");
3261 boolean is_lower
= STREQ (str
, "lower");
3262 boolean is_print
= STREQ (str
, "print");
3263 boolean is_punct
= STREQ (str
, "punct");
3264 boolean is_space
= STREQ (str
, "space");
3265 boolean is_upper
= STREQ (str
, "upper");
3266 boolean is_xdigit
= STREQ (str
, "xdigit");
3268 if (!IS_CHAR_CLASS (str
))
3269 FREE_STACK_RETURN (REG_ECTYPE
);
3271 /* Throw away the ] at the end of the character
3275 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3277 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3279 /* This was split into 3 if's to
3280 avoid an arbitrary limit in some compiler. */
3281 if ( (is_alnum
&& ISALNUM (ch
))
3282 || (is_alpha
&& ISALPHA (ch
))
3283 || (is_blank
&& ISBLANK (ch
))
3284 || (is_cntrl
&& ISCNTRL (ch
)))
3286 if ( (is_digit
&& ISDIGIT (ch
))
3287 || (is_graph
&& ISGRAPH (ch
))
3288 || (is_lower
&& ISLOWER (ch
))
3289 || (is_print
&& ISPRINT (ch
)))
3291 if ( (is_punct
&& ISPUNCT (ch
))
3292 || (is_space
&& ISSPACE (ch
))
3293 || (is_upper
&& ISUPPER (ch
))
3294 || (is_xdigit
&& ISXDIGIT (ch
)))
3296 if ( translate
&& (is_upper
|| is_lower
)
3297 && (ISUPPER (ch
) || ISLOWER (ch
)))
3300 had_char_class
= true;
3301 # endif /* libc || wctype.h */
3311 had_char_class
= false;
3314 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3316 unsigned char str
[MB_LEN_MAX
+ 1];
3319 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3325 /* If pattern is `[[='. */
3326 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3331 if ((c
== '=' && *p
== ']') || p
== pend
)
3333 if (c1
< MB_LEN_MAX
)
3336 /* This is in any case an invalid class name. */
3341 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3343 /* If we have no collation data we use the default
3344 collation in which each character is in a class
3345 by itself. It also means that ASCII is the
3346 character set and therefore we cannot have character
3347 with more than one byte in the multibyte
3354 FREE_STACK_RETURN (REG_ECOLLATE
);
3356 /* Throw away the ] at the end of the equivalence
3360 /* Set the bit for the character. */
3361 SET_LIST_BIT (str
[0]);
3366 /* Try to match the byte sequence in `str' against
3367 those known to the collate implementation.
3368 First find out whether the bytes in `str' are
3369 actually from exactly one character. */
3370 const int32_t *table
;
3371 const unsigned char *weights
;
3372 const unsigned char *extra
;
3373 const int32_t *indirect
;
3375 const unsigned char *cp
= str
;
3378 /* This #include defines a local function! */
3379 # include <locale/weight.h>
3381 table
= (const int32_t *)
3382 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3383 weights
= (const unsigned char *)
3384 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3385 extra
= (const unsigned char *)
3386 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3387 indirect
= (const int32_t *)
3388 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3390 idx
= findidx (&cp
);
3391 if (idx
== 0 || cp
< str
+ c1
)
3392 /* This is no valid character. */
3393 FREE_STACK_RETURN (REG_ECOLLATE
);
3395 /* Throw away the ] at the end of the equivalence
3399 /* Now we have to go through the whole table
3400 and find all characters which have the same
3403 XXX Note that this is not entirely correct.
3404 we would have to match multibyte sequences
3405 but this is not possible with the current
3407 for (ch
= 1; ch
< 256; ++ch
)
3408 /* XXX This test would have to be changed if we
3409 would allow matching multibyte sequences. */
3412 int32_t idx2
= table
[ch
];
3413 size_t len
= weights
[idx2
];
3415 /* Test whether the lenghts match. */
3416 if (weights
[idx
] == len
)
3418 /* They do. New compare the bytes of
3423 && (weights
[idx
+ 1 + cnt
]
3424 == weights
[idx2
+ 1 + cnt
]))
3428 /* They match. Mark the character as
3435 had_char_class
= true;
3445 had_char_class
= false;
3448 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3450 unsigned char str
[128]; /* Should be large enough. */
3453 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3459 /* If pattern is `[[.'. */
3460 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3465 if ((c
== '.' && *p
== ']') || p
== pend
)
3467 if (c1
< sizeof (str
))
3470 /* This is in any case an invalid class name. */
3475 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3477 /* If we have no collation data we use the default
3478 collation in which each character is the name
3479 for its own class which contains only the one
3480 character. It also means that ASCII is the
3481 character set and therefore we cannot have character
3482 with more than one byte in the multibyte
3489 FREE_STACK_RETURN (REG_ECOLLATE
);
3491 /* Throw away the ] at the end of the equivalence
3495 /* Set the bit for the character. */
3496 SET_LIST_BIT (str
[0]);
3497 range_start
= ((const unsigned char *) str
)[0];
3502 /* Try to match the byte sequence in `str' against
3503 those known to the collate implementation.
3504 First find out whether the bytes in `str' are
3505 actually from exactly one character. */
3507 const int32_t *symb_table
;
3508 const unsigned char *extra
;
3515 _NL_CURRENT_WORD (LC_COLLATE
,
3516 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3517 symb_table
= (const int32_t *)
3518 _NL_CURRENT (LC_COLLATE
,
3519 _NL_COLLATE_SYMB_TABLEMB
);
3520 extra
= (const unsigned char *)
3521 _NL_CURRENT (LC_COLLATE
,
3522 _NL_COLLATE_SYMB_EXTRAMB
);
3524 /* Locate the character in the hashing table. */
3525 hash
= elem_hash (str
, c1
);
3528 elem
= hash
% table_size
;
3529 second
= hash
% (table_size
- 2);
3530 while (symb_table
[2 * elem
] != 0)
3532 /* First compare the hashing value. */
3533 if (symb_table
[2 * elem
] == hash
3534 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3536 &extra
[symb_table
[2 * elem
+ 1]
3540 /* Yep, this is the entry. */
3541 idx
= symb_table
[2 * elem
+ 1];
3542 idx
+= 1 + extra
[idx
];
3550 if (symb_table
[2 * elem
] == 0)
3551 /* This is no valid character. */
3552 FREE_STACK_RETURN (REG_ECOLLATE
);
3554 /* Throw away the ] at the end of the equivalence
3558 /* Now add the multibyte character(s) we found
3561 XXX Note that this is not entirely correct.
3562 we would have to match multibyte sequences
3563 but this is not possible with the current
3564 implementation. Also, we have to match
3565 collating symbols, which expand to more than
3566 one file, as a whole and not allow the
3567 individual bytes. */
3570 range_start
= extra
[idx
];
3573 SET_LIST_BIT (extra
[idx
]);
3578 had_char_class
= false;
3588 had_char_class
= false;
3593 had_char_class
= false;
3599 /* Discard any (non)matching list bytes that are all 0 at the
3600 end of the map. Decrease the map-length byte too. */
3601 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3610 if (syntax
& RE_NO_BK_PARENS
)
3617 if (syntax
& RE_NO_BK_PARENS
)
3624 if (syntax
& RE_NEWLINE_ALT
)
3631 if (syntax
& RE_NO_BK_VBAR
)
3638 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3639 goto handle_interval
;
3645 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3647 /* Do not translate the character after the \, so that we can
3648 distinguish, e.g., \B from \b, even if we normally would
3649 translate, e.g., B to b. */
3655 if (syntax
& RE_NO_BK_PARENS
)
3656 goto normal_backslash
;
3662 if (COMPILE_STACK_FULL
)
3664 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3665 compile_stack_elt_t
);
3666 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3668 compile_stack
.size
<<= 1;
3671 /* These are the values to restore when we hit end of this
3672 group. They are all relative offsets, so that if the
3673 whole pattern moves because of realloc, they will still
3675 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3676 COMPILE_STACK_TOP
.fixup_alt_jump
3677 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3678 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3679 COMPILE_STACK_TOP
.regnum
= regnum
;
3681 /* We will eventually replace the 0 with the number of
3682 groups inner to this one. But do not push a
3683 start_memory for groups beyond the last one we can
3684 represent in the compiled pattern. */
3685 if (regnum
<= MAX_REGNUM
)
3687 COMPILE_STACK_TOP
.inner_group_offset
= b
3688 - COMPILED_BUFFER_VAR
+ 2;
3689 BUF_PUSH_3 (start_memory
, regnum
, 0);
3692 compile_stack
.avail
++;
3697 /* If we've reached MAX_REGNUM groups, then this open
3698 won't actually generate any code, so we'll have to
3699 clear pending_exact explicitly. */
3705 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3707 if (COMPILE_STACK_EMPTY
)
3709 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3710 goto normal_backslash
;
3712 FREE_STACK_RETURN (REG_ERPAREN
);
3717 { /* Push a dummy failure point at the end of the
3718 alternative for a possible future
3719 `pop_failure_jump' to pop. See comments at
3720 `push_dummy_failure' in `re_match_2'. */
3721 BUF_PUSH (push_dummy_failure
);
3723 /* We allocated space for this jump when we assigned
3724 to `fixup_alt_jump', in the `handle_alt' case below. */
3725 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3728 /* See similar code for backslashed left paren above. */
3729 if (COMPILE_STACK_EMPTY
)
3731 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3734 FREE_STACK_RETURN (REG_ERPAREN
);
3737 /* Since we just checked for an empty stack above, this
3738 ``can't happen''. */
3739 assert (compile_stack
.avail
!= 0);
3741 /* We don't just want to restore into `regnum', because
3742 later groups should continue to be numbered higher,
3743 as in `(ab)c(de)' -- the second group is #2. */
3744 regnum_t this_group_regnum
;
3746 compile_stack
.avail
--;
3747 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3749 = COMPILE_STACK_TOP
.fixup_alt_jump
3750 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3752 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3753 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3754 /* If we've reached MAX_REGNUM groups, then this open
3755 won't actually generate any code, so we'll have to
3756 clear pending_exact explicitly. */
3759 /* We're at the end of the group, so now we know how many
3760 groups were inside this one. */
3761 if (this_group_regnum
<= MAX_REGNUM
)
3763 UCHAR_T
*inner_group_loc
3764 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3766 *inner_group_loc
= regnum
- this_group_regnum
;
3767 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3768 regnum
- this_group_regnum
);
3774 case '|': /* `\|'. */
3775 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3776 goto normal_backslash
;
3778 if (syntax
& RE_LIMITED_OPS
)
3781 /* Insert before the previous alternative a jump which
3782 jumps to this alternative if the former fails. */
3783 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3784 INSERT_JUMP (on_failure_jump
, begalt
,
3785 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3787 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3789 /* The alternative before this one has a jump after it
3790 which gets executed if it gets matched. Adjust that
3791 jump so it will jump to this alternative's analogous
3792 jump (put in below, which in turn will jump to the next
3793 (if any) alternative's such jump, etc.). The last such
3794 jump jumps to the correct final destination. A picture:
3800 If we are at `b', then fixup_alt_jump right now points to a
3801 three-byte space after `a'. We'll put in the jump, set
3802 fixup_alt_jump to right after `b', and leave behind three
3803 bytes which we'll fill in when we get to after `c'. */
3806 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3808 /* Mark and leave space for a jump after this alternative,
3809 to be filled in later either by next alternative or
3810 when know we're at the end of a series of alternatives. */
3812 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3813 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3821 /* If \{ is a literal. */
3822 if (!(syntax
& RE_INTERVALS
)
3823 /* If we're at `\{' and it's not the open-interval
3825 || (syntax
& RE_NO_BK_BRACES
))
3826 goto normal_backslash
;
3830 /* If got here, then the syntax allows intervals. */
3832 /* At least (most) this many matches must be made. */
3833 int lower_bound
= -1, upper_bound
= -1;
3835 /* Place in the uncompiled pattern (i.e., just after
3836 the '{') to go back to if the interval is invalid. */
3837 const CHAR_T
*beg_interval
= p
;
3840 goto invalid_interval
;
3842 GET_UNSIGNED_NUMBER (lower_bound
);
3846 GET_UNSIGNED_NUMBER (upper_bound
);
3847 if (upper_bound
< 0)
3848 upper_bound
= RE_DUP_MAX
;
3851 /* Interval such as `{1}' => match exactly once. */
3852 upper_bound
= lower_bound
;
3854 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3855 goto invalid_interval
;
3857 if (!(syntax
& RE_NO_BK_BRACES
))
3859 if (c
!= '\\' || p
== pend
)
3860 goto invalid_interval
;
3865 goto invalid_interval
;
3867 /* If it's invalid to have no preceding re. */
3870 if (syntax
& RE_CONTEXT_INVALID_OPS
3871 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3872 FREE_STACK_RETURN (REG_BADRPT
);
3873 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3876 goto unfetch_interval
;
3879 /* We just parsed a valid interval. */
3881 if (RE_DUP_MAX
< upper_bound
)
3882 FREE_STACK_RETURN (REG_BADBR
);
3884 /* If the upper bound is zero, don't want to succeed at
3885 all; jump from `laststart' to `b + 3', which will be
3886 the end of the buffer after we insert the jump. */
3887 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3888 instead of 'b + 3'. */
3889 if (upper_bound
== 0)
3891 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3892 INSERT_JUMP (jump
, laststart
, b
+ 1
3893 + OFFSET_ADDRESS_SIZE
);
3894 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3897 /* Otherwise, we have a nontrivial interval. When
3898 we're all done, the pattern will look like:
3899 set_number_at <jump count> <upper bound>
3900 set_number_at <succeed_n count> <lower bound>
3901 succeed_n <after jump addr> <succeed_n count>
3903 jump_n <succeed_n addr> <jump count>
3904 (The upper bound and `jump_n' are omitted if
3905 `upper_bound' is 1, though.) */
3907 { /* If the upper bound is > 1, we need to insert
3908 more at the end of the loop. */
3909 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3910 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3912 GET_BUFFER_SPACE (nbytes
);
3914 /* Initialize lower bound of the `succeed_n', even
3915 though it will be set during matching by its
3916 attendant `set_number_at' (inserted next),
3917 because `re_compile_fastmap' needs to know.
3918 Jump to the `jump_n' we might insert below. */
3919 INSERT_JUMP2 (succeed_n
, laststart
,
3920 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3921 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
3923 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3925 /* Code to initialize the lower bound. Insert
3926 before the `succeed_n'. The `5' is the last two
3927 bytes of this `set_number_at', plus 3 bytes of
3928 the following `succeed_n'. */
3929 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3930 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3931 of the following `succeed_n'. */
3932 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
3933 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
3934 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3936 if (upper_bound
> 1)
3937 { /* More than one repetition is allowed, so
3938 append a backward jump to the `succeed_n'
3939 that starts this interval.
3941 When we've reached this during matching,
3942 we'll have matched the interval once, so
3943 jump back only `upper_bound - 1' times. */
3944 STORE_JUMP2 (jump_n
, b
, laststart
3945 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
3947 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3949 /* The location we want to set is the second
3950 parameter of the `jump_n'; that is `b-2' as
3951 an absolute address. `laststart' will be
3952 the `set_number_at' we're about to insert;
3953 `laststart+3' the number to set, the source
3954 for the relative address. But we are
3955 inserting into the middle of the pattern --
3956 so everything is getting moved up by 5.
3957 Conclusion: (b - 2) - (laststart + 3) + 5,
3958 i.e., b - laststart.
3960 We insert this at the beginning of the loop
3961 so that if we fail during matching, we'll
3962 reinitialize the bounds. */
3963 PREFIX(insert_op2
) (set_number_at
, laststart
,
3965 upper_bound
- 1, b
);
3966 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3973 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
3974 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
3976 /* Match the characters as literals. */
3979 if (syntax
& RE_NO_BK_BRACES
)
3982 goto normal_backslash
;
3986 /* There is no way to specify the before_dot and after_dot
3987 operators. rms says this is ok. --karl */
3995 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
4001 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4007 if (syntax
& RE_NO_GNU_OPS
)
4010 BUF_PUSH (wordchar
);
4015 if (syntax
& RE_NO_GNU_OPS
)
4018 BUF_PUSH (notwordchar
);
4023 if (syntax
& RE_NO_GNU_OPS
)
4029 if (syntax
& RE_NO_GNU_OPS
)
4035 if (syntax
& RE_NO_GNU_OPS
)
4037 BUF_PUSH (wordbound
);
4041 if (syntax
& RE_NO_GNU_OPS
)
4043 BUF_PUSH (notwordbound
);
4047 if (syntax
& RE_NO_GNU_OPS
)
4053 if (syntax
& RE_NO_GNU_OPS
)
4058 case '1': case '2': case '3': case '4': case '5':
4059 case '6': case '7': case '8': case '9':
4060 if (syntax
& RE_NO_BK_REFS
)
4066 FREE_STACK_RETURN (REG_ESUBREG
);
4068 /* Can't back reference to a subexpression if inside of it. */
4069 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4073 BUF_PUSH_2 (duplicate
, c1
);
4079 if (syntax
& RE_BK_PLUS_QM
)
4082 goto normal_backslash
;
4086 /* You might think it would be useful for \ to mean
4087 not to translate; but if we don't translate it
4088 it will never match anything. */
4096 /* Expects the character in `c'. */
4098 /* If no exactn currently being built. */
4101 /* If last exactn handle binary(or character) and
4102 new exactn handle character(or binary). */
4103 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4106 /* If last exactn not at current position. */
4107 || pending_exact
+ *pending_exact
+ 1 != b
4109 /* We have only one byte following the exactn for the count. */
4110 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4112 /* If followed by a repetition operator. */
4113 || *p
== '*' || *p
== '^'
4114 || ((syntax
& RE_BK_PLUS_QM
)
4115 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4116 : (*p
== '+' || *p
== '?'))
4117 || ((syntax
& RE_INTERVALS
)
4118 && ((syntax
& RE_NO_BK_BRACES
)
4120 : (p
[0] == '\\' && p
[1] == '{'))))
4122 /* Start building a new exactn. */
4127 /* Is this exactn binary data or character? */
4128 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4130 BUF_PUSH_2 (exactn_bin
, 0);
4132 BUF_PUSH_2 (exactn
, 0);
4134 BUF_PUSH_2 (exactn
, 0);
4136 pending_exact
= b
- 1;
4143 } /* while p != pend */
4146 /* Through the pattern now. */
4149 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4151 if (!COMPILE_STACK_EMPTY
)
4152 FREE_STACK_RETURN (REG_EPAREN
);
4154 /* If we don't want backtracking, force success
4155 the first time we reach the end of the compiled pattern. */
4156 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4164 free (compile_stack
.stack
);
4166 /* We have succeeded; set the length of the buffer. */
4168 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4170 bufp
->used
= b
- bufp
->buffer
;
4176 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4177 PREFIX(print_compiled_pattern
) (bufp
);
4181 #ifndef MATCH_MAY_ALLOCATE
4182 /* Initialize the failure stack to the largest possible stack. This
4183 isn't necessary unless we're trying to avoid calling alloca in
4184 the search and match routines. */
4186 int num_regs
= bufp
->re_nsub
+ 1;
4188 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4189 is strictly greater than re_max_failures, the largest possible stack
4190 is 2 * re_max_failures failure points. */
4191 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4193 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4196 if (! fail_stack
.stack
)
4198 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4199 * sizeof (PREFIX(fail_stack_elt_t
)));
4202 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4204 * sizeof (PREFIX(fail_stack_elt_t
))));
4205 # else /* not emacs */
4206 if (! fail_stack
.stack
)
4208 = (PREFIX(fail_stack_elt_t
) *) malloc (fail_stack
.size
4209 * sizeof (PREFIX(fail_stack_elt_t
)));
4212 = (PREFIX(fail_stack_elt_t
) *) realloc (fail_stack
.stack
,
4214 * sizeof (PREFIX(fail_stack_elt_t
))));
4215 # endif /* not emacs */
4218 PREFIX(regex_grow_registers
) (num_regs
);
4220 #endif /* not MATCH_MAY_ALLOCATE */
4223 } /* regex_compile */
4225 /* Subroutines for `regex_compile'. */
4227 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4228 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4231 PREFIX(store_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
)
4233 *loc
= (UCHAR_T
) op
;
4234 STORE_NUMBER (loc
+ 1, arg
);
4238 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4239 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4242 PREFIX(store_op2
) (re_opcode_t op
, UCHAR_T
*loc
, int arg1
, int arg2
)
4244 *loc
= (UCHAR_T
) op
;
4245 STORE_NUMBER (loc
+ 1, arg1
);
4246 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4250 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4251 for OP followed by two-byte integer parameter ARG. */
4252 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4255 PREFIX(insert_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
, UCHAR_T
*end
)
4257 register UCHAR_T
*pfrom
= end
;
4258 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4260 while (pfrom
!= loc
)
4263 PREFIX(store_op1
) (op
, loc
, arg
);
4267 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4268 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4271 PREFIX(insert_op2
) (re_opcode_t op
, UCHAR_T
*loc
, int arg1
,
4272 int arg2
, UCHAR_T
*end
)
4274 register UCHAR_T
*pfrom
= end
;
4275 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4277 while (pfrom
!= loc
)
4280 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4284 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4285 after an alternative or a begin-subexpression. We assume there is at
4286 least one character before the ^. */
4289 PREFIX(at_begline_loc_p
) (const CHAR_T
*pattern
, const CHAR_T
*p
,
4290 reg_syntax_t syntax
)
4292 const CHAR_T
*prev
= p
- 2;
4293 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4296 /* After a subexpression? */
4297 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4298 /* After an alternative? */
4299 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4303 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4304 at least one character after the $, i.e., `P < PEND'. */
4307 PREFIX(at_endline_loc_p
) (const CHAR_T
*p
, const CHAR_T
*pend
,
4308 reg_syntax_t syntax
)
4310 const CHAR_T
*next
= p
;
4311 boolean next_backslash
= *next
== '\\';
4312 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4315 /* Before a subexpression? */
4316 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4317 : next_backslash
&& next_next
&& *next_next
== ')')
4318 /* Before an alternative? */
4319 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4320 : next_backslash
&& next_next
&& *next_next
== '|');
4323 #else /* not INSIDE_RECURSION */
4325 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4326 false if it's not. */
4329 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
4333 for (this_element
= compile_stack
.avail
- 1;
4336 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4341 #endif /* not INSIDE_RECURSION */
4343 #ifdef INSIDE_RECURSION
4346 /* This insert space, which size is "num", into the pattern at "loc".
4347 "end" must point the end of the allocated buffer. */
4349 insert_space (int num
, CHAR_T
*loc
, CHAR_T
*end
)
4351 register CHAR_T
*pto
= end
;
4352 register CHAR_T
*pfrom
= end
- num
;
4354 while (pfrom
>= loc
)
4360 static reg_errcode_t
4361 wcs_compile_range (CHAR_T range_start_char
, const CHAR_T
**p_ptr
,
4362 const CHAR_T
*pend
, RE_TRANSLATE_TYPE translate
,
4363 reg_syntax_t syntax
, CHAR_T
*b
, CHAR_T
*char_set
)
4365 const CHAR_T
*p
= *p_ptr
;
4366 CHAR_T range_start
, range_end
;
4370 uint32_t start_val
, end_val
;
4376 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4379 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4380 _NL_COLLATE_COLLSEQWC
);
4381 const unsigned char *extra
= (const unsigned char *)
4382 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4384 if (range_start_char
< -1)
4386 /* range_start is a collating symbol. */
4388 /* Retreive the index and get collation sequence value. */
4389 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4390 start_val
= wextra
[1 + *wextra
];
4393 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4395 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4397 /* Report an error if the range is empty and the syntax prohibits
4399 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4400 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4402 /* Insert space to the end of the char_ranges. */
4403 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4404 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4405 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4406 char_set
[4]++; /* ranges_index */
4411 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4413 range_end
= TRANSLATE (p
[0]);
4414 /* Report an error if the range is empty and the syntax prohibits
4416 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4417 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4419 /* Insert space to the end of the char_ranges. */
4420 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4421 *(b
- char_set
[5] - 2) = range_start
;
4422 *(b
- char_set
[5] - 1) = range_end
;
4423 char_set
[4]++; /* ranges_index */
4425 /* Have to increment the pointer into the pattern string, so the
4426 caller isn't still at the ending character. */
4432 /* Read the ending character of a range (in a bracket expression) from the
4433 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4434 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4435 Then we set the translation of all bits between the starting and
4436 ending characters (inclusive) in the compiled pattern B.
4438 Return an error code.
4440 We use these short variable names so we can use the same macros as
4441 `regex_compile' itself. */
4443 static reg_errcode_t
4444 byte_compile_range (unsigned int range_start_char
, const char **p_ptr
,
4445 const char *pend
, RE_TRANSLATE_TYPE translate
,
4446 reg_syntax_t syntax
, unsigned char *b
)
4449 const char *p
= *p_ptr
;
4452 const unsigned char *collseq
;
4453 unsigned int start_colseq
;
4454 unsigned int end_colseq
;
4462 /* Have to increment the pointer into the pattern string, so the
4463 caller isn't still at the ending character. */
4466 /* Report an error if the range is empty and the syntax prohibits this. */
4467 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4470 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4471 _NL_COLLATE_COLLSEQMB
);
4473 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4474 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4475 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4477 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4479 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4481 SET_LIST_BIT (TRANSLATE (this_char
));
4486 /* Here we see why `this_char' has to be larger than an `unsigned
4487 char' -- we would otherwise go into an infinite loop, since all
4488 characters <= 0xff. */
4489 range_start_char
= TRANSLATE (range_start_char
);
4490 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4491 and some compilers cast it to int implicitly, so following for_loop
4492 may fall to (almost) infinite loop.
4493 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4494 To avoid this, we cast p[0] to unsigned int and truncate it. */
4495 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4497 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4499 SET_LIST_BIT (TRANSLATE (this_char
));
4508 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4509 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4510 characters can start a string that matches the pattern. This fastmap
4511 is used by re_search to skip quickly over impossible starting points.
4513 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4514 area as BUFP->fastmap.
4516 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4519 Returns 0 if we succeed, -2 if an internal error. */
4522 /* local function for re_compile_fastmap.
4523 truncate wchar_t character to char. */
4524 static unsigned char truncate_wchar (CHAR_T c
);
4526 static unsigned char
4527 truncate_wchar (CHAR_T c
)
4529 unsigned char buf
[MB_CUR_MAX
];
4532 memset (&state
, '\0', sizeof (state
));
4534 retval
= __wcrtomb (buf
, c
, &state
);
4536 retval
= wcrtomb (buf
, c
, &state
);
4538 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4543 PREFIX(re_compile_fastmap
) (struct re_pattern_buffer
*bufp
)
4546 #ifdef MATCH_MAY_ALLOCATE
4547 PREFIX(fail_stack_type
) fail_stack
;
4549 #ifndef REGEX_MALLOC
4553 register char *fastmap
= bufp
->fastmap
;
4556 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4557 pattern to (char*) in regex_compile. */
4558 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4559 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4561 UCHAR_T
*pattern
= bufp
->buffer
;
4562 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4564 UCHAR_T
*p
= pattern
;
4567 /* This holds the pointer to the failure stack, when
4568 it is allocated relocatably. */
4569 fail_stack_elt_t
*failure_stack_ptr
;
4572 /* Assume that each path through the pattern can be null until
4573 proven otherwise. We set this false at the bottom of switch
4574 statement, to which we get only if a particular path doesn't
4575 match the empty string. */
4576 boolean path_can_be_null
= true;
4578 /* We aren't doing a `succeed_n' to begin with. */
4579 boolean succeed_n_p
= false;
4581 assert (fastmap
!= NULL
&& p
!= NULL
);
4584 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4585 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4586 bufp
->can_be_null
= 0;
4590 if (p
== pend
|| *p
== (UCHAR_T
) succeed
)
4592 /* We have reached the (effective) end of pattern. */
4593 if (!FAIL_STACK_EMPTY ())
4595 bufp
->can_be_null
|= path_can_be_null
;
4597 /* Reset for next path. */
4598 path_can_be_null
= true;
4600 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4608 /* We should never be about to go beyond the end of the pattern. */
4611 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4614 /* I guess the idea here is to simply not bother with a fastmap
4615 if a backreference is used, since it's too hard to figure out
4616 the fastmap for the corresponding group. Setting
4617 `can_be_null' stops `re_search_2' from using the fastmap, so
4618 that is all we do. */
4620 bufp
->can_be_null
= 1;
4624 /* Following are the cases which match a character. These end
4629 fastmap
[truncate_wchar(p
[1])] = 1;
4643 /* It is hard to distinguish fastmap from (multi byte) characters
4644 which depends on current locale. */
4649 bufp
->can_be_null
= 1;
4653 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4654 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4660 /* Chars beyond end of map must be allowed. */
4661 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4664 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4665 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4671 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4672 if (SYNTAX (j
) == Sword
)
4678 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4679 if (SYNTAX (j
) != Sword
)
4686 int fastmap_newline
= fastmap
['\n'];
4688 /* `.' matches anything ... */
4689 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4692 /* ... except perhaps newline. */
4693 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4694 fastmap
['\n'] = fastmap_newline
;
4696 /* Return if we have already set `can_be_null'; if we have,
4697 then the fastmap is irrelevant. Something's wrong here. */
4698 else if (bufp
->can_be_null
)
4701 /* Otherwise, have to check alternative paths. */
4708 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4709 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4716 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4717 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4722 /* All cases after this match the empty string. These end with
4742 case push_dummy_failure
:
4747 case pop_failure_jump
:
4748 case maybe_pop_jump
:
4751 case dummy_failure_jump
:
4752 EXTRACT_NUMBER_AND_INCR (j
, p
);
4757 /* Jump backward implies we just went through the body of a
4758 loop and matched nothing. Opcode jumped to should be
4759 `on_failure_jump' or `succeed_n'. Just treat it like an
4760 ordinary jump. For a * loop, it has pushed its failure
4761 point already; if so, discard that as redundant. */
4762 if ((re_opcode_t
) *p
!= on_failure_jump
4763 && (re_opcode_t
) *p
!= succeed_n
)
4767 EXTRACT_NUMBER_AND_INCR (j
, p
);
4770 /* If what's on the stack is where we are now, pop it. */
4771 if (!FAIL_STACK_EMPTY ()
4772 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4778 case on_failure_jump
:
4779 case on_failure_keep_string_jump
:
4780 handle_on_failure_jump
:
4781 EXTRACT_NUMBER_AND_INCR (j
, p
);
4783 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4784 end of the pattern. We don't want to push such a point,
4785 since when we restore it above, entering the switch will
4786 increment `p' past the end of the pattern. We don't need
4787 to push such a point since we obviously won't find any more
4788 fastmap entries beyond `pend'. Such a pattern can match
4789 the null string, though. */
4792 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4794 RESET_FAIL_STACK ();
4799 bufp
->can_be_null
= 1;
4803 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4804 succeed_n_p
= false;
4811 /* Get to the number of times to succeed. */
4812 p
+= OFFSET_ADDRESS_SIZE
;
4814 /* Increment p past the n for when k != 0. */
4815 EXTRACT_NUMBER_AND_INCR (k
, p
);
4818 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4819 succeed_n_p
= true; /* Spaghetti code alert. */
4820 goto handle_on_failure_jump
;
4826 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4837 abort (); /* We have listed all the cases. */
4840 /* Getting here means we have found the possible starting
4841 characters for one path of the pattern -- and that the empty
4842 string does not match. We need not follow this path further.
4843 Instead, look at the next alternative (remembered on the
4844 stack), or quit if no more. The test at the top of the loop
4845 does these things. */
4846 path_can_be_null
= false;
4850 /* Set `can_be_null' for the last path (also the first path, if the
4851 pattern is empty). */
4852 bufp
->can_be_null
|= path_can_be_null
;
4855 RESET_FAIL_STACK ();
4859 #else /* not INSIDE_RECURSION */
4862 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4865 if (MB_CUR_MAX
!= 1)
4866 return wcs_re_compile_fastmap(bufp
);
4869 return byte_re_compile_fastmap(bufp
);
4870 } /* re_compile_fastmap */
4872 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4876 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4877 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4878 this memory for recording register information. STARTS and ENDS
4879 must be allocated using the malloc library routine, and must each
4880 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4882 If NUM_REGS == 0, then subsequent matches should allocate their own
4885 Unless this function is called, the first search or match using
4886 PATTERN_BUFFER will allocate its own register data, without
4887 freeing the old data. */
4890 re_set_registers (struct re_pattern_buffer
*bufp
,
4891 struct re_registers
*regs
, unsigned num_regs
,
4892 regoff_t
*starts
, regoff_t
*ends
)
4896 bufp
->regs_allocated
= REGS_REALLOCATE
;
4897 regs
->num_regs
= num_regs
;
4898 regs
->start
= starts
;
4903 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4905 regs
->start
= regs
->end
= (regoff_t
*) 0;
4909 weak_alias (__re_set_registers
, re_set_registers
)
4912 /* Searching routines. */
4914 /* Like re_search_2, below, but only one string is specified, and
4915 doesn't let you say where to stop matching. */
4918 re_search (struct re_pattern_buffer
*bufp
, const char *string
, int size
,
4919 int startpos
, int range
, struct re_registers
*regs
)
4921 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4925 weak_alias (__re_search
, re_search
)
4929 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4930 virtual concatenation of STRING1 and STRING2, starting first at index
4931 STARTPOS, then at STARTPOS + 1, and so on.
4933 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4935 RANGE is how far to scan while trying to match. RANGE = 0 means try
4936 only at STARTPOS; in general, the last start tried is STARTPOS +
4939 In REGS, return the indices of the virtual concatenation of STRING1
4940 and STRING2 that matched the entire BUFP->buffer and its contained
4943 Do not consider matching one past the index STOP in the virtual
4944 concatenation of STRING1 and STRING2.
4946 We return either the position in the strings at which the match was
4947 found, -1 if no match, or -2 if error (such as failure
4951 re_search_2 (struct re_pattern_buffer
*bufp
, const char *string1
, int size1
,
4952 const char *string2
, int size2
, int startpos
, int range
,
4953 struct re_registers
*regs
, int stop
)
4956 if (MB_CUR_MAX
!= 1)
4957 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
4961 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
4965 weak_alias (__re_search_2
, re_search_2
)
4968 #endif /* not INSIDE_RECURSION */
4970 #ifdef INSIDE_RECURSION
4972 #ifdef MATCH_MAY_ALLOCATE
4973 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4975 # define FREE_VAR(var) free (var); var = NULL
4979 # define MAX_ALLOCA_SIZE 2000
4981 # define FREE_WCS_BUFFERS() \
4983 if (size1 > MAX_ALLOCA_SIZE) \
4985 free (wcs_string1); \
4986 free (mbs_offset1); \
4990 FREE_VAR (wcs_string1); \
4991 FREE_VAR (mbs_offset1); \
4993 if (size2 > MAX_ALLOCA_SIZE) \
4995 free (wcs_string2); \
4996 free (mbs_offset2); \
5000 FREE_VAR (wcs_string2); \
5001 FREE_VAR (mbs_offset2); \
5009 PREFIX(re_search_2
) (struct re_pattern_buffer
*bufp
, const char *string1
,
5010 int size1
, const char *string2
, int size2
,
5011 int startpos
, int range
,
5012 struct re_registers
*regs
, int stop
)
5015 register char *fastmap
= bufp
->fastmap
;
5016 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5017 int total_size
= size1
+ size2
;
5018 int endpos
= startpos
+ range
;
5020 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5021 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5022 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5023 int wcs_size1
= 0, wcs_size2
= 0;
5024 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5025 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5026 /* They hold whether each wchar_t is binary data or not. */
5027 char *is_binary
= NULL
;
5030 /* Check for out-of-range STARTPOS. */
5031 if (startpos
< 0 || startpos
> total_size
)
5034 /* Fix up RANGE if it might eventually take us outside
5035 the virtual concatenation of STRING1 and STRING2.
5036 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5038 range
= 0 - startpos
;
5039 else if (endpos
> total_size
)
5040 range
= total_size
- startpos
;
5042 /* If the search isn't to be a backwards one, don't waste time in a
5043 search for a pattern that must be anchored. */
5044 if (bufp
->used
> 0 && range
> 0
5045 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5046 /* `begline' is like `begbuf' if it cannot match at newlines. */
5047 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5048 && !bufp
->newline_anchor
)))
5057 /* In a forward search for something that starts with \=.
5058 don't keep searching past point. */
5059 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5061 range
= PT
- startpos
;
5067 /* Update the fastmap now if not correct already. */
5068 if (fastmap
&& !bufp
->fastmap_accurate
)
5069 if (re_compile_fastmap (bufp
) == -2)
5073 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5074 fill them with converted string. */
5077 if (size1
> MAX_ALLOCA_SIZE
)
5079 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5080 mbs_offset1
= TALLOC (size1
+ 1, int);
5081 is_binary
= TALLOC (size1
+ 1, char);
5085 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5086 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5087 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5089 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5091 if (size1
> MAX_ALLOCA_SIZE
)
5099 FREE_VAR (wcs_string1
);
5100 FREE_VAR (mbs_offset1
);
5101 FREE_VAR (is_binary
);
5105 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5106 mbs_offset1
, is_binary
);
5107 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5108 if (size1
> MAX_ALLOCA_SIZE
)
5111 FREE_VAR (is_binary
);
5115 if (size2
> MAX_ALLOCA_SIZE
)
5117 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5118 mbs_offset2
= TALLOC (size2
+ 1, int);
5119 is_binary
= TALLOC (size2
+ 1, char);
5123 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5124 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5125 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5127 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5129 FREE_WCS_BUFFERS ();
5130 if (size2
> MAX_ALLOCA_SIZE
)
5133 FREE_VAR (is_binary
);
5136 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5137 mbs_offset2
, is_binary
);
5138 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5139 if (size2
> MAX_ALLOCA_SIZE
)
5142 FREE_VAR (is_binary
);
5147 /* Loop through the string, looking for a place to start matching. */
5150 /* If a fastmap is supplied, skip quickly over characters that
5151 cannot be the start of a match. If the pattern can match the
5152 null string, however, we don't need to skip characters; we want
5153 the first null string. */
5154 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5156 if (range
> 0) /* Searching forwards. */
5158 register const char *d
;
5159 register int lim
= 0;
5162 if (startpos
< size1
&& startpos
+ range
>= size1
)
5163 lim
= range
- (size1
- startpos
);
5165 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5167 /* Written out as an if-else to avoid testing `translate'
5171 && !fastmap
[(unsigned char)
5172 translate
[(unsigned char) *d
++]])
5175 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5178 startpos
+= irange
- range
;
5180 else /* Searching backwards. */
5182 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5183 ? string2
[startpos
- size1
]
5184 : string1
[startpos
]);
5186 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5191 /* If can't match the null string, and that's all we have left, fail. */
5192 if (range
>= 0 && startpos
== total_size
&& fastmap
5193 && !bufp
->can_be_null
)
5196 FREE_WCS_BUFFERS ();
5202 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5203 size2
, startpos
, regs
, stop
,
5204 wcs_string1
, wcs_size1
,
5205 wcs_string2
, wcs_size2
,
5206 mbs_offset1
, mbs_offset2
);
5208 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5209 size2
, startpos
, regs
, stop
);
5212 #ifndef REGEX_MALLOC
5221 FREE_WCS_BUFFERS ();
5229 FREE_WCS_BUFFERS ();
5249 FREE_WCS_BUFFERS ();
5255 /* This converts PTR, a pointer into one of the search wchar_t strings
5256 `string1' and `string2' into an multibyte string offset from the
5257 beginning of that string. We use mbs_offset to optimize.
5258 See convert_mbs_to_wcs. */
5259 # define POINTER_TO_OFFSET(ptr) \
5260 (FIRST_STRING_P (ptr) \
5261 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5262 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5265 /* This converts PTR, a pointer into one of the search strings `string1'
5266 and `string2' into an offset from the beginning of that string. */
5267 # define POINTER_TO_OFFSET(ptr) \
5268 (FIRST_STRING_P (ptr) \
5269 ? ((regoff_t) ((ptr) - string1)) \
5270 : ((regoff_t) ((ptr) - string2 + size1)))
5273 /* Macros for dealing with the split strings in re_match_2. */
5275 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5277 /* Call before fetching a character with *d. This switches over to
5278 string2 if necessary. */
5279 #define PREFETCH() \
5282 /* End of string2 => fail. */ \
5283 if (dend == end_match_2) \
5285 /* End of string1 => advance to string2. */ \
5287 dend = end_match_2; \
5290 /* Test if at very beginning or at very end of the virtual concatenation
5291 of `string1' and `string2'. If only one string, it's `string2'. */
5292 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5293 #define AT_STRINGS_END(d) ((d) == end2)
5296 /* Test if D points to a character which is word-constituent. We have
5297 two special cases to check for: if past the end of string1, look at
5298 the first character in string2; and if before the beginning of
5299 string2, look at the last character in string1. */
5301 /* Use internationalized API instead of SYNTAX. */
5302 # define WORDCHAR_P(d) \
5303 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5304 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5305 || ((d) == end1 ? *string2 \
5306 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5308 # define WORDCHAR_P(d) \
5309 (SYNTAX ((d) == end1 ? *string2 \
5310 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5314 /* Disabled due to a compiler bug -- see comment at case wordbound */
5316 /* Test if the character before D and the one at D differ with respect
5317 to being word-constituent. */
5318 #define AT_WORD_BOUNDARY(d) \
5319 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5320 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5323 /* Free everything we malloc. */
5324 #ifdef MATCH_MAY_ALLOCATE
5326 # define FREE_VARIABLES() \
5328 REGEX_FREE_STACK (fail_stack.stack); \
5329 FREE_VAR (regstart); \
5330 FREE_VAR (regend); \
5331 FREE_VAR (old_regstart); \
5332 FREE_VAR (old_regend); \
5333 FREE_VAR (best_regstart); \
5334 FREE_VAR (best_regend); \
5335 FREE_VAR (reg_info); \
5336 FREE_VAR (reg_dummy); \
5337 FREE_VAR (reg_info_dummy); \
5338 if (!cant_free_wcs_buf) \
5340 FREE_VAR (string1); \
5341 FREE_VAR (string2); \
5342 FREE_VAR (mbs_offset1); \
5343 FREE_VAR (mbs_offset2); \
5347 # define FREE_VARIABLES() \
5349 REGEX_FREE_STACK (fail_stack.stack); \
5350 FREE_VAR (regstart); \
5351 FREE_VAR (regend); \
5352 FREE_VAR (old_regstart); \
5353 FREE_VAR (old_regend); \
5354 FREE_VAR (best_regstart); \
5355 FREE_VAR (best_regend); \
5356 FREE_VAR (reg_info); \
5357 FREE_VAR (reg_dummy); \
5358 FREE_VAR (reg_info_dummy); \
5363 # define FREE_VARIABLES() \
5365 if (!cant_free_wcs_buf) \
5367 FREE_VAR (string1); \
5368 FREE_VAR (string2); \
5369 FREE_VAR (mbs_offset1); \
5370 FREE_VAR (mbs_offset2); \
5374 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5376 #endif /* not MATCH_MAY_ALLOCATE */
5378 /* These values must meet several constraints. They must not be valid
5379 register values; since we have a limit of 255 registers (because
5380 we use only one byte in the pattern for the register number), we can
5381 use numbers larger than 255. They must differ by 1, because of
5382 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5383 be larger than the value for the highest register, so we do not try
5384 to actually save any registers when none are active. */
5385 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5386 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5388 #else /* not INSIDE_RECURSION */
5389 /* Matching routines. */
5391 #ifndef emacs /* Emacs never uses this. */
5392 /* re_match is like re_match_2 except it takes only a single string. */
5395 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
5396 int size
, int pos
, struct re_registers
*regs
)
5400 if (MB_CUR_MAX
!= 1)
5401 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5403 NULL
, 0, NULL
, 0, NULL
, NULL
);
5406 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5408 # ifndef REGEX_MALLOC
5416 weak_alias (__re_match
, re_match
)
5418 #endif /* not emacs */
5420 #endif /* not INSIDE_RECURSION */
5422 #ifdef INSIDE_RECURSION
5423 static boolean
PREFIX(group_match_null_string_p
) (UCHAR_T
**p
,
5425 PREFIX(register_info_type
) *reg_info
);
5426 static boolean
PREFIX(alt_match_null_string_p
) (UCHAR_T
*p
,
5428 PREFIX(register_info_type
) *reg_info
);
5429 static boolean
PREFIX(common_op_match_null_string_p
) (UCHAR_T
**p
,
5431 PREFIX(register_info_type
) *reg_info
);
5432 static int PREFIX(bcmp_translate
) (const CHAR_T
*s1
, const CHAR_T
*s2
,
5433 int len
, char *translate
);
5434 #else /* not INSIDE_RECURSION */
5436 /* re_match_2 matches the compiled pattern in BUFP against the
5437 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5438 and SIZE2, respectively). We start matching at POS, and stop
5441 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5442 store offsets for the substring each group matched in REGS. See the
5443 documentation for exactly how many groups we fill.
5445 We return -1 if no match, -2 if an internal error (such as the
5446 failure stack overflowing). Otherwise, we return the length of the
5447 matched substring. */
5450 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
, int size1
,
5451 const char *string2
, int size2
, int pos
,
5452 struct re_registers
*regs
, int stop
)
5456 if (MB_CUR_MAX
!= 1)
5457 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5459 NULL
, 0, NULL
, 0, NULL
, NULL
);
5462 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5465 #ifndef REGEX_MALLOC
5473 weak_alias (__re_match_2
, re_match_2
)
5476 #endif /* not INSIDE_RECURSION */
5478 #ifdef INSIDE_RECURSION
5481 static int count_mbs_length (int *, int);
5483 /* This check the substring (from 0, to length) of the multibyte string,
5484 to which offset_buffer correspond. And count how many wchar_t_characters
5485 the substring occupy. We use offset_buffer to optimization.
5486 See convert_mbs_to_wcs. */
5489 count_mbs_length(int *offset_buffer
, int length
)
5493 /* Check whether the size is valid. */
5497 if (offset_buffer
== NULL
)
5500 /* If there are no multibyte character, offset_buffer[i] == i.
5501 Optmize for this case. */
5502 if (offset_buffer
[length
] == length
)
5505 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5511 int middle
= (lower
+ upper
) / 2;
5512 if (middle
== lower
|| middle
== upper
)
5514 if (offset_buffer
[middle
] > length
)
5516 else if (offset_buffer
[middle
] < length
)
5526 /* This is a separate function so that we can force an alloca cleanup
5530 wcs_re_match_2_internal (struct re_pattern_buffer
*bufp
,
5531 const char *cstring1
, int csize1
,
5532 const char *cstring2
, int csize2
,
5534 struct re_registers
*regs
,
5536 /* string1 == string2 == NULL means string1/2, size1/2 and
5537 mbs_offset1/2 need seting up in this function. */
5538 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5539 wchar_t *string1
, int size1
,
5540 wchar_t *string2
, int size2
,
5541 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5542 int *mbs_offset1
, int *mbs_offset2
)
5545 byte_re_match_2_internal (struct re_pattern_buffer
*bufp
,
5546 const char *string1
, int size1
,
5547 const char *string2
, int size2
,
5549 struct re_registers
*regs
, int stop
)
5552 /* General temporaries. */
5556 /* They hold whether each wchar_t is binary data or not. */
5557 char *is_binary
= NULL
;
5558 /* If true, we can't free string1/2, mbs_offset1/2. */
5559 int cant_free_wcs_buf
= 1;
5562 /* Just past the end of the corresponding string. */
5563 const CHAR_T
*end1
, *end2
;
5565 /* Pointers into string1 and string2, just past the last characters in
5566 each to consider matching. */
5567 const CHAR_T
*end_match_1
, *end_match_2
;
5569 /* Where we are in the data, and the end of the current string. */
5570 const CHAR_T
*d
, *dend
;
5572 /* Where we are in the pattern, and the end of the pattern. */
5574 UCHAR_T
*pattern
, *p
;
5575 register UCHAR_T
*pend
;
5577 UCHAR_T
*p
= bufp
->buffer
;
5578 register UCHAR_T
*pend
= p
+ bufp
->used
;
5581 /* Mark the opcode just after a start_memory, so we can test for an
5582 empty subpattern when we get to the stop_memory. */
5583 UCHAR_T
*just_past_start_mem
= 0;
5585 /* We use this to map every character in the string. */
5586 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5588 /* Failure point stack. Each place that can handle a failure further
5589 down the line pushes a failure point on this stack. It consists of
5590 restart, regend, and reg_info for all registers corresponding to
5591 the subexpressions we're currently inside, plus the number of such
5592 registers, and, finally, two char *'s. The first char * is where
5593 to resume scanning the pattern; the second one is where to resume
5594 scanning the strings. If the latter is zero, the failure point is
5595 a ``dummy''; if a failure happens and the failure point is a dummy,
5596 it gets discarded and the next next one is tried. */
5597 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5598 PREFIX(fail_stack_type
) fail_stack
;
5601 static unsigned failure_id
;
5602 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5606 /* This holds the pointer to the failure stack, when
5607 it is allocated relocatably. */
5608 fail_stack_elt_t
*failure_stack_ptr
;
5611 /* We fill all the registers internally, independent of what we
5612 return, for use in backreferences. The number here includes
5613 an element for register zero. */
5614 size_t num_regs
= bufp
->re_nsub
+ 1;
5616 /* The currently active registers. */
5617 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5618 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5620 /* Information on the contents of registers. These are pointers into
5621 the input strings; they record just what was matched (on this
5622 attempt) by a subexpression part of the pattern, that is, the
5623 regnum-th regstart pointer points to where in the pattern we began
5624 matching and the regnum-th regend points to right after where we
5625 stopped matching the regnum-th subexpression. (The zeroth register
5626 keeps track of what the whole pattern matches.) */
5627 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5628 const CHAR_T
**regstart
, **regend
;
5631 /* If a group that's operated upon by a repetition operator fails to
5632 match anything, then the register for its start will need to be
5633 restored because it will have been set to wherever in the string we
5634 are when we last see its open-group operator. Similarly for a
5636 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5637 const CHAR_T
**old_regstart
, **old_regend
;
5640 /* The is_active field of reg_info helps us keep track of which (possibly
5641 nested) subexpressions we are currently in. The matched_something
5642 field of reg_info[reg_num] helps us tell whether or not we have
5643 matched any of the pattern so far this time through the reg_num-th
5644 subexpression. These two fields get reset each time through any
5645 loop their register is in. */
5646 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5647 PREFIX(register_info_type
) *reg_info
;
5650 /* The following record the register info as found in the above
5651 variables when we find a match better than any we've seen before.
5652 This happens as we backtrack through the failure points, which in
5653 turn happens only if we have not yet matched the entire string. */
5654 unsigned best_regs_set
= false;
5655 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5656 const CHAR_T
**best_regstart
, **best_regend
;
5659 /* Logically, this is `best_regend[0]'. But we don't want to have to
5660 allocate space for that if we're not allocating space for anything
5661 else (see below). Also, we never need info about register 0 for
5662 any of the other register vectors, and it seems rather a kludge to
5663 treat `best_regend' differently than the rest. So we keep track of
5664 the end of the best match so far in a separate variable. We
5665 initialize this to NULL so that when we backtrack the first time
5666 and need to test it, it's not garbage. */
5667 const CHAR_T
*match_end
= NULL
;
5669 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5670 int set_regs_matched_done
= 0;
5672 /* Used when we pop values we don't care about. */
5673 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5674 const CHAR_T
**reg_dummy
;
5675 PREFIX(register_info_type
) *reg_info_dummy
;
5679 /* Counts the total number of registers pushed. */
5680 unsigned num_regs_pushed
= 0;
5683 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5687 #ifdef MATCH_MAY_ALLOCATE
5688 /* Do not bother to initialize all the register variables if there are
5689 no groups in the pattern, as it takes a fair amount of time. If
5690 there are groups, we include space for register 0 (the whole
5691 pattern), even though we never use it, since it simplifies the
5692 array indexing. We should fix this. */
5695 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5696 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5697 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5698 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5699 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5700 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5701 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5702 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5703 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5705 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5706 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5714 /* We must initialize all our variables to NULL, so that
5715 `FREE_VARIABLES' doesn't try to free them. */
5716 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5717 = best_regend
= reg_dummy
= NULL
;
5718 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5720 #endif /* MATCH_MAY_ALLOCATE */
5722 /* The starting position is bogus. */
5724 if (pos
< 0 || pos
> csize1
+ csize2
)
5726 if (pos
< 0 || pos
> size1
+ size2
)
5734 /* Allocate wchar_t array for string1 and string2 and
5735 fill them with converted string. */
5736 if (string1
== NULL
&& string2
== NULL
)
5738 /* We need seting up buffers here. */
5740 /* We must free wcs buffers in this function. */
5741 cant_free_wcs_buf
= 0;
5745 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5746 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5747 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5748 if (!string1
|| !mbs_offset1
|| !is_binary
)
5751 FREE_VAR (mbs_offset1
);
5752 FREE_VAR (is_binary
);
5758 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5759 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5760 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5761 if (!string2
|| !mbs_offset2
|| !is_binary
)
5764 FREE_VAR (mbs_offset1
);
5766 FREE_VAR (mbs_offset2
);
5767 FREE_VAR (is_binary
);
5770 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5771 mbs_offset2
, is_binary
);
5772 string2
[size2
] = L
'\0'; /* for a sentinel */
5773 FREE_VAR (is_binary
);
5777 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5778 pattern to (char*) in regex_compile. */
5779 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5780 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5784 /* Initialize subexpression text positions to -1 to mark ones that no
5785 start_memory/stop_memory has been seen for. Also initialize the
5786 register information struct. */
5787 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5789 regstart
[mcnt
] = regend
[mcnt
]
5790 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5792 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5793 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5794 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5795 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5798 /* We move `string1' into `string2' if the latter's empty -- but not if
5799 `string1' is null. */
5800 if (size2
== 0 && string1
!= NULL
)
5807 mbs_offset2
= mbs_offset1
;
5813 end1
= string1
+ size1
;
5814 end2
= string2
+ size2
;
5816 /* Compute where to stop matching, within the two strings. */
5820 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5821 end_match_1
= string1
+ mcnt
;
5822 end_match_2
= string2
;
5826 if (stop
> csize1
+ csize2
)
5827 stop
= csize1
+ csize2
;
5829 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5830 end_match_2
= string2
+ mcnt
;
5833 { /* count_mbs_length return error. */
5840 end_match_1
= string1
+ stop
;
5841 end_match_2
= string2
;
5846 end_match_2
= string2
+ stop
- size1
;
5850 /* `p' scans through the pattern as `d' scans through the data.
5851 `dend' is the end of the input string that `d' points within. `d'
5852 is advanced into the following input string whenever necessary, but
5853 this happens before fetching; therefore, at the beginning of the
5854 loop, `d' can be pointing at the end of a string, but it cannot
5857 if (size1
> 0 && pos
<= csize1
)
5859 mcnt
= count_mbs_length(mbs_offset1
, pos
);
5865 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
5871 { /* count_mbs_length return error. */
5876 if (size1
> 0 && pos
<= size1
)
5883 d
= string2
+ pos
- size1
;
5888 DEBUG_PRINT1 ("The compiled pattern is:\n");
5889 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5890 DEBUG_PRINT1 ("The string to match is: `");
5891 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5892 DEBUG_PRINT1 ("'\n");
5894 /* This loops over pattern commands. It exits by returning from the
5895 function if the match is complete, or it drops through if the match
5896 fails at this starting point in the input data. */
5900 DEBUG_PRINT2 ("\n%p: ", p
);
5902 DEBUG_PRINT2 ("\n0x%x: ", p
);
5906 { /* End of pattern means we might have succeeded. */
5907 DEBUG_PRINT1 ("end of pattern ... ");
5909 /* If we haven't matched the entire string, and we want the
5910 longest match, try backtracking. */
5911 if (d
!= end_match_2
)
5913 /* 1 if this match ends in the same string (string1 or string2)
5914 as the best previous match. */
5917 /* 1 if this match is the best seen so far. */
5918 boolean best_match_p
;
5920 same_str_p
= (FIRST_STRING_P (match_end
)
5921 == MATCHING_IN_FIRST_STRING
);
5923 /* AIX compiler got confused when this was combined
5924 with the previous declaration. */
5926 best_match_p
= d
> match_end
;
5928 best_match_p
= !MATCHING_IN_FIRST_STRING
;
5930 DEBUG_PRINT1 ("backtracking.\n");
5932 if (!FAIL_STACK_EMPTY ())
5933 { /* More failure points to try. */
5935 /* If exceeds best match so far, save it. */
5936 if (!best_regs_set
|| best_match_p
)
5938 best_regs_set
= true;
5941 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5943 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5945 best_regstart
[mcnt
] = regstart
[mcnt
];
5946 best_regend
[mcnt
] = regend
[mcnt
];
5952 /* If no failure points, don't restore garbage. And if
5953 last match is real best match, don't restore second
5955 else if (best_regs_set
&& !best_match_p
)
5958 /* Restore best match. It may happen that `dend ==
5959 end_match_1' while the restored d is in string2.
5960 For example, the pattern `x.*y.*z' against the
5961 strings `x-' and `y-z-', if the two strings are
5962 not consecutive in memory. */
5963 DEBUG_PRINT1 ("Restoring best registers.\n");
5966 dend
= ((d
>= string1
&& d
<= end1
)
5967 ? end_match_1
: end_match_2
);
5969 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5971 regstart
[mcnt
] = best_regstart
[mcnt
];
5972 regend
[mcnt
] = best_regend
[mcnt
];
5975 } /* d != end_match_2 */
5978 DEBUG_PRINT1 ("Accepting match.\n");
5979 /* If caller wants register contents data back, do it. */
5980 if (regs
&& !bufp
->no_sub
)
5982 /* Have the register data arrays been allocated? */
5983 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5984 { /* No. So allocate them with malloc. We need one
5985 extra element beyond `num_regs' for the `-1' marker
5987 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5988 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5989 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5990 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5995 bufp
->regs_allocated
= REGS_REALLOCATE
;
5997 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5998 { /* Yes. If we need more elements than were already
5999 allocated, reallocate them. If we need fewer, just
6001 if (regs
->num_regs
< num_regs
+ 1)
6003 regs
->num_regs
= num_regs
+ 1;
6004 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6005 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6006 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6015 /* These braces fend off a "empty body in an else-statement"
6016 warning under GCC when assert expands to nothing. */
6017 assert (bufp
->regs_allocated
== REGS_FIXED
);
6020 /* Convert the pointer data in `regstart' and `regend' to
6021 indices. Register zero has to be set differently,
6022 since we haven't kept track of any info for it. */
6023 if (regs
->num_regs
> 0)
6025 regs
->start
[0] = pos
;
6027 if (MATCHING_IN_FIRST_STRING
)
6028 regs
->end
[0] = mbs_offset1
!= NULL
?
6029 mbs_offset1
[d
-string1
] : 0;
6031 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
?
6032 mbs_offset2
[d
-string2
] : 0);
6034 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6035 ? ((regoff_t
) (d
- string1
))
6036 : ((regoff_t
) (d
- string2
+ size1
)));
6040 /* Go through the first `min (num_regs, regs->num_regs)'
6041 registers, since that is all we initialized. */
6042 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6045 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6046 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6050 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6052 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6056 /* If the regs structure we return has more elements than
6057 were in the pattern, set the extra elements to -1. If
6058 we (re)allocated the registers, this is the case,
6059 because we always allocate enough to have at least one
6061 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6062 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6063 } /* regs && !bufp->no_sub */
6065 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6066 nfailure_points_pushed
, nfailure_points_popped
,
6067 nfailure_points_pushed
- nfailure_points_popped
);
6068 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6071 if (MATCHING_IN_FIRST_STRING
)
6072 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6074 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6078 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6083 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6089 /* Otherwise match next pattern command. */
6090 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6092 /* Ignore these. Used to ignore the n of succeed_n's which
6093 currently have n == 0. */
6095 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6099 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6102 /* Match the next n pattern characters exactly. The following
6103 byte in the pattern defines n, and the n bytes after that
6104 are the characters to match. */
6110 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6112 /* This is written out as an if-else so we don't waste time
6113 testing `translate' inside the loop. */
6122 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6128 if (*d
++ != (CHAR_T
) *p
++)
6132 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6144 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6148 SET_REGS_MATCHED ();
6152 /* Match any character except possibly a newline or a null. */
6154 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6158 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6159 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6162 SET_REGS_MATCHED ();
6163 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6173 unsigned int i
, char_class_length
, coll_symbol_length
,
6174 equiv_class_length
, ranges_length
, chars_length
, length
;
6175 CHAR_T
*workp
, *workp2
, *charset_top
;
6176 #define WORK_BUFFER_SIZE 128
6177 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6182 boolean negate
= (re_opcode_t
) *(p
- 1) == charset_not
;
6184 DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate
? "_not" : "");
6186 c
= TRANSLATE (*d
); /* The character to match. */
6189 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6191 charset_top
= p
- 1;
6192 char_class_length
= *p
++;
6193 coll_symbol_length
= *p
++;
6194 equiv_class_length
= *p
++;
6195 ranges_length
= *p
++;
6196 chars_length
= *p
++;
6197 /* p points charset[6], so the address of the next instruction
6198 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6199 where l=length of char_classes, m=length of collating_symbol,
6200 n=equivalence_class, o=length of char_range,
6201 p'=length of character. */
6203 /* Update p to indicate the next instruction. */
6204 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6205 2*ranges_length
+ chars_length
;
6207 /* match with char_class? */
6208 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6211 uintptr_t alignedp
= ((uintptr_t)workp
6212 + __alignof__(wctype_t) - 1)
6213 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6214 wctype
= *((wctype_t*)alignedp
);
6215 workp
+= CHAR_CLASS_SIZE
;
6217 if (__iswctype((wint_t)c
, wctype
))
6218 goto char_set_matched
;
6220 if (iswctype((wint_t)c
, wctype
))
6221 goto char_set_matched
;
6225 /* match with collating_symbol? */
6229 const unsigned char *extra
= (const unsigned char *)
6230 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6232 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6236 wextra
= (int32_t*)(extra
+ *workp
++);
6237 for (i
= 0; i
< *wextra
; ++i
)
6238 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6243 /* Update d, however d will be incremented at
6244 char_set_matched:, we decrement d here. */
6246 goto char_set_matched
;
6250 else /* (nrules == 0) */
6252 /* If we can't look up collation data, we use wcscoll
6255 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6257 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6259 length
= __wcslen (workp
);
6261 length
= wcslen (workp
);
6264 /* If wcscoll(the collating symbol, whole string) > 0,
6265 any substring of the string never match with the
6266 collating symbol. */
6268 if (__wcscoll (workp
, d
) > 0)
6270 if (wcscoll (workp
, d
) > 0)
6273 workp
+= length
+ 1;
6277 /* First, we compare the collating symbol with
6278 the first character of the string.
6279 If it don't match, we add the next character to
6280 the compare buffer in turn. */
6281 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6286 if (dend
== end_match_2
)
6292 /* add next character to the compare buffer. */
6293 str_buf
[i
] = TRANSLATE(*d
);
6294 str_buf
[i
+1] = '\0';
6297 match
= __wcscoll (workp
, str_buf
);
6299 match
= wcscoll (workp
, str_buf
);
6302 goto char_set_matched
;
6305 /* (str_buf > workp) indicate (str_buf + X > workp),
6306 because for all X (str_buf + X > str_buf).
6307 So we don't need continue this loop. */
6310 /* Otherwise(str_buf < workp),
6311 (str_buf+next_character) may equals (workp).
6312 So we continue this loop. */
6317 workp
+= length
+ 1;
6320 /* match with equivalence_class? */
6324 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6325 /* Try to match the equivalence class against
6326 those known to the collate implementation. */
6327 const int32_t *table
;
6328 const int32_t *weights
;
6329 const int32_t *extra
;
6330 const int32_t *indirect
;
6335 /* This #include defines a local function! */
6336 # include <locale/weightwc.h>
6338 table
= (const int32_t *)
6339 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6340 weights
= (const wint_t *)
6341 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6342 extra
= (const wint_t *)
6343 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6344 indirect
= (const int32_t *)
6345 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6347 /* Write 1 collating element to str_buf, and
6351 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6353 cp
= (wint_t*)str_buf
;
6356 if (dend
== end_match_2
)
6361 str_buf
[i
] = TRANSLATE(*(d
+i
));
6362 str_buf
[i
+1] = '\0'; /* sentinel */
6363 idx2
= findidx ((const wint_t**)&cp
);
6366 /* Update d, however d will be incremented at
6367 char_set_matched:, we decrement d here. */
6368 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6371 if (dend
== end_match_2
)
6380 len
= weights
[idx2
];
6382 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6385 idx
= (int32_t)*workp
;
6386 /* We already checked idx != 0 in regex_compile. */
6388 if (idx2
!= 0 && len
== weights
[idx
])
6391 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6392 == weights
[idx2
+ 1 + cnt
]))
6396 goto char_set_matched
;
6403 else /* (nrules == 0) */
6405 /* If we can't look up collation data, we use wcscoll
6408 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6410 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6412 length
= __wcslen (workp
);
6414 length
= wcslen (workp
);
6417 /* If wcscoll(the collating symbol, whole string) > 0,
6418 any substring of the string never match with the
6419 collating symbol. */
6421 if (__wcscoll (workp
, d
) > 0)
6423 if (wcscoll (workp
, d
) > 0)
6426 workp
+= length
+ 1;
6430 /* First, we compare the equivalence class with
6431 the first character of the string.
6432 If it don't match, we add the next character to
6433 the compare buffer in turn. */
6434 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6439 if (dend
== end_match_2
)
6445 /* add next character to the compare buffer. */
6446 str_buf
[i
] = TRANSLATE(*d
);
6447 str_buf
[i
+1] = '\0';
6450 match
= __wcscoll (workp
, str_buf
);
6452 match
= wcscoll (workp
, str_buf
);
6456 goto char_set_matched
;
6459 /* (str_buf > workp) indicate (str_buf + X > workp),
6460 because for all X (str_buf + X > str_buf).
6461 So we don't need continue this loop. */
6464 /* Otherwise(str_buf < workp),
6465 (str_buf+next_character) may equals (workp).
6466 So we continue this loop. */
6471 workp
+= length
+ 1;
6475 /* match with char_range? */
6479 uint32_t collseqval
;
6480 const char *collseq
= (const char *)
6481 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6483 collseqval
= collseq_table_lookup (collseq
, c
);
6485 for (; workp
< p
- chars_length
;)
6487 uint32_t start_val
, end_val
;
6489 /* We already compute the collation sequence value
6490 of the characters (or collating symbols). */
6491 start_val
= (uint32_t) *workp
++; /* range_start */
6492 end_val
= (uint32_t) *workp
++; /* range_end */
6494 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6495 goto char_set_matched
;
6501 /* We set range_start_char at str_buf[0], range_end_char
6502 at str_buf[4], and compared char at str_buf[2]. */
6507 for (; workp
< p
- chars_length
;)
6509 wchar_t *range_start_char
, *range_end_char
;
6511 /* match if (range_start_char <= c <= range_end_char). */
6513 /* If range_start(or end) < 0, we assume -range_start(end)
6514 is the offset of the collating symbol which is specified
6515 as the character of the range start(end). */
6519 range_start_char
= charset_top
- (*workp
++);
6522 str_buf
[0] = *workp
++;
6523 range_start_char
= str_buf
;
6528 range_end_char
= charset_top
- (*workp
++);
6531 str_buf
[4] = *workp
++;
6532 range_end_char
= str_buf
+ 4;
6536 if (__wcscoll (range_start_char
, str_buf
+2) <= 0
6537 && __wcscoll (str_buf
+2, range_end_char
) <= 0)
6539 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6540 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6542 goto char_set_matched
;
6546 /* match with char? */
6547 for (; workp
< p
; workp
++)
6549 goto char_set_matched
;
6554 if (negate
) goto fail
;
6556 /* Cast to `unsigned' instead of `unsigned char' in case the
6557 bit list is a full 32 bytes long. */
6558 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6559 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6564 if (!negate
) goto fail
;
6565 #undef WORK_BUFFER_SIZE
6567 SET_REGS_MATCHED ();
6573 /* The beginning of a group is represented by start_memory.
6574 The arguments are the register number in the next byte, and the
6575 number of groups inner to this one in the next. The text
6576 matched within the group is recorded (in the internal
6577 registers data structure) under the register number. */
6579 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6580 (long int) *p
, (long int) p
[1]);
6582 /* Find out if this group can match the empty string. */
6583 p1
= p
; /* To send to group_match_null_string_p. */
6585 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6586 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6587 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6589 /* Save the position in the string where we were the last time
6590 we were at this open-group operator in case the group is
6591 operated upon by a repetition operator, e.g., with `(a*)*b'
6592 against `ab'; then we want to ignore where we are now in
6593 the string in case this attempt to match fails. */
6594 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6595 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6597 DEBUG_PRINT2 (" old_regstart: %d\n",
6598 POINTER_TO_OFFSET (old_regstart
[*p
]));
6601 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6603 IS_ACTIVE (reg_info
[*p
]) = 1;
6604 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6606 /* Clear this whenever we change the register activity status. */
6607 set_regs_matched_done
= 0;
6609 /* This is the new highest active register. */
6610 highest_active_reg
= *p
;
6612 /* If nothing was active before, this is the new lowest active
6614 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6615 lowest_active_reg
= *p
;
6617 /* Move past the register number and inner group count. */
6619 just_past_start_mem
= p
;
6624 /* The stop_memory opcode represents the end of a group. Its
6625 arguments are the same as start_memory's: the register
6626 number, and the number of inner groups. */
6628 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6629 (long int) *p
, (long int) p
[1]);
6631 /* We need to save the string position the last time we were at
6632 this close-group operator in case the group is operated
6633 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6634 against `aba'; then we want to ignore where we are now in
6635 the string in case this attempt to match fails. */
6636 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6637 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6639 DEBUG_PRINT2 (" old_regend: %d\n",
6640 POINTER_TO_OFFSET (old_regend
[*p
]));
6643 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6645 /* This register isn't active anymore. */
6646 IS_ACTIVE (reg_info
[*p
]) = 0;
6648 /* Clear this whenever we change the register activity status. */
6649 set_regs_matched_done
= 0;
6651 /* If this was the only register active, nothing is active
6653 if (lowest_active_reg
== highest_active_reg
)
6655 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6656 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6659 { /* We must scan for the new highest active register, since
6660 it isn't necessarily one less than now: consider
6661 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6662 new highest active register is 1. */
6664 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6667 /* If we end up at register zero, that means that we saved
6668 the registers as the result of an `on_failure_jump', not
6669 a `start_memory', and we jumped to past the innermost
6670 `stop_memory'. For example, in ((.)*) we save
6671 registers 1 and 2 as a result of the *, but when we pop
6672 back to the second ), we are at the stop_memory 1.
6673 Thus, nothing is active. */
6676 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6677 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6680 highest_active_reg
= r
;
6683 /* If just failed to match something this time around with a
6684 group that's operated on by a repetition operator, try to
6685 force exit from the ``loop'', and restore the register
6686 information for this group that we had before trying this
6688 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6689 || just_past_start_mem
== p
- 1)
6692 boolean is_a_jump_n
= false;
6696 switch ((re_opcode_t
) *p1
++)
6701 case pop_failure_jump
:
6702 case maybe_pop_jump
:
6704 case dummy_failure_jump
:
6705 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6707 p1
+= OFFSET_ADDRESS_SIZE
;
6715 /* If the next operation is a jump backwards in the pattern
6716 to an on_failure_jump right before the start_memory
6717 corresponding to this stop_memory, exit from the loop
6718 by forcing a failure after pushing on the stack the
6719 on_failure_jump's jump in the pattern, and d. */
6720 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6721 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6722 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6724 /* If this group ever matched anything, then restore
6725 what its registers were before trying this last
6726 failed match, e.g., with `(a*)*b' against `ab' for
6727 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6728 against `aba' for regend[3].
6730 Also restore the registers for inner groups for,
6731 e.g., `((a*)(b*))*' against `aba' (register 3 would
6732 otherwise get trashed). */
6734 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6738 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6740 /* Restore this and inner groups' (if any) registers. */
6741 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6744 regstart
[r
] = old_regstart
[r
];
6746 /* xx why this test? */
6747 if (old_regend
[r
] >= regstart
[r
])
6748 regend
[r
] = old_regend
[r
];
6752 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6753 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6759 /* Move past the register number and the inner group count. */
6764 /* \<digit> has been turned into a `duplicate' command which is
6765 followed by the numeric value of <digit> as the register number. */
6768 register const CHAR_T
*d2
, *dend2
;
6769 int regno
= *p
++; /* Get which register to match against. */
6770 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6772 /* Can't back reference a group which we've never matched. */
6773 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6776 /* Where in input to try to start matching. */
6777 d2
= regstart
[regno
];
6779 /* Where to stop matching; if both the place to start and
6780 the place to stop matching are in the same string, then
6781 set to the place to stop, otherwise, for now have to use
6782 the end of the first string. */
6784 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6785 == FIRST_STRING_P (regend
[regno
]))
6786 ? regend
[regno
] : end_match_1
);
6789 /* If necessary, advance to next segment in register
6793 if (dend2
== end_match_2
) break;
6794 if (dend2
== regend
[regno
]) break;
6796 /* End of string1 => advance to string2. */
6798 dend2
= regend
[regno
];
6800 /* At end of register contents => success */
6801 if (d2
== dend2
) break;
6803 /* If necessary, advance to next segment in data. */
6806 /* How many characters left in this segment to match. */
6809 /* Want how many consecutive characters we can match in
6810 one shot, so, if necessary, adjust the count. */
6811 if (mcnt
> dend2
- d2
)
6814 /* Compare that many; failure if mismatch, else move
6817 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6818 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
6820 d
+= mcnt
, d2
+= mcnt
;
6822 /* Do this because we've match some characters. */
6823 SET_REGS_MATCHED ();
6829 /* begline matches the empty string at the beginning of the string
6830 (unless `not_bol' is set in `bufp'), and, if
6831 `newline_anchor' is set, after newlines. */
6833 DEBUG_PRINT1 ("EXECUTING begline.\n");
6835 if (AT_STRINGS_BEG (d
))
6837 if (!bufp
->not_bol
) break;
6839 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6843 /* In all other cases, we fail. */
6847 /* endline is the dual of begline. */
6849 DEBUG_PRINT1 ("EXECUTING endline.\n");
6851 if (AT_STRINGS_END (d
))
6853 if (!bufp
->not_eol
) break;
6856 /* We have to ``prefetch'' the next character. */
6857 else if ((d
== end1
? *string2
: *d
) == '\n'
6858 && bufp
->newline_anchor
)
6865 /* Match at the very beginning of the data. */
6867 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6868 if (AT_STRINGS_BEG (d
))
6873 /* Match at the very end of the data. */
6875 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6876 if (AT_STRINGS_END (d
))
6881 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6882 pushes NULL as the value for the string on the stack. Then
6883 `pop_failure_point' will keep the current value for the
6884 string, instead of restoring it. To see why, consider
6885 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6886 then the . fails against the \n. But the next thing we want
6887 to do is match the \n against the \n; if we restored the
6888 string value, we would be back at the foo.
6890 Because this is used only in specific cases, we don't need to
6891 check all the things that `on_failure_jump' does, to make
6892 sure the right things get saved on the stack. Hence we don't
6893 share its code. The only reason to push anything on the
6894 stack at all is that otherwise we would have to change
6895 `anychar's code to do something besides goto fail in this
6896 case; that seems worse than this. */
6897 case on_failure_keep_string_jump
:
6898 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6900 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6902 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
6904 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
6907 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
6911 /* Uses of on_failure_jump:
6913 Each alternative starts with an on_failure_jump that points
6914 to the beginning of the next alternative. Each alternative
6915 except the last ends with a jump that in effect jumps past
6916 the rest of the alternatives. (They really jump to the
6917 ending jump of the following alternative, because tensioning
6918 these jumps is a hassle.)
6920 Repeats start with an on_failure_jump that points past both
6921 the repetition text and either the following jump or
6922 pop_failure_jump back to this on_failure_jump. */
6923 case on_failure_jump
:
6925 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6927 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6929 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
6931 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
6934 /* If this on_failure_jump comes right before a group (i.e.,
6935 the original * applied to a group), save the information
6936 for that group and all inner ones, so that if we fail back
6937 to this point, the group's information will be correct.
6938 For example, in \(a*\)*\1, we need the preceding group,
6939 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6941 /* We can't use `p' to check ahead because we push
6942 a failure point to `p + mcnt' after we do this. */
6945 /* We need to skip no_op's before we look for the
6946 start_memory in case this on_failure_jump is happening as
6947 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6949 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
6952 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
6954 /* We have a new highest active register now. This will
6955 get reset at the start_memory we are about to get to,
6956 but we will have saved all the registers relevant to
6957 this repetition op, as described above. */
6958 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
6959 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6960 lowest_active_reg
= *(p1
+ 1);
6963 DEBUG_PRINT1 (":\n");
6964 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
6968 /* A smart repeat ends with `maybe_pop_jump'.
6969 We change it to either `pop_failure_jump' or `jump'. */
6970 case maybe_pop_jump
:
6971 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6972 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
6974 register UCHAR_T
*p2
= p
;
6976 /* Compare the beginning of the repeat with what in the
6977 pattern follows its end. If we can establish that there
6978 is nothing that they would both match, i.e., that we
6979 would have to backtrack because of (as in, e.g., `a*a')
6980 then we can change to pop_failure_jump, because we'll
6981 never have to backtrack.
6983 This is not true in the case of alternatives: in
6984 `(a|ab)*' we do need to backtrack to the `ab' alternative
6985 (e.g., if the string was `ab'). But instead of trying to
6986 detect that here, the alternative has put on a dummy
6987 failure point which is what we will end up popping. */
6989 /* Skip over open/close-group commands.
6990 If what follows this loop is a ...+ construct,
6991 look at what begins its body, since we will have to
6992 match at least one of that. */
6996 && ((re_opcode_t
) *p2
== stop_memory
6997 || (re_opcode_t
) *p2
== start_memory
))
6999 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
7000 && (re_opcode_t
) *p2
== dummy_failure_jump
)
7001 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7007 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7008 to the `maybe_finalize_jump' of this case. Examine what
7011 /* If we're at the end of the pattern, we can change. */
7014 /* Consider what happens when matching ":\(.*\)"
7015 against ":/". I don't really understand this code
7017 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7020 (" End of pattern: change to `pop_failure_jump'.\n");
7023 else if ((re_opcode_t
) *p2
== exactn
7025 || (re_opcode_t
) *p2
== exactn_bin
7027 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7030 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7032 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7034 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7036 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7038 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7041 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7043 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7045 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7047 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7052 else if ((re_opcode_t
) p1
[3] == charset
7053 || (re_opcode_t
) p1
[3] == charset_not
)
7055 int negate
= (re_opcode_t
) p1
[3] == charset_not
;
7057 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7058 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7061 /* `negate' is equal to 1 if c would match, which means
7062 that we can't change to pop_failure_jump. */
7065 p
[-3] = (unsigned char) pop_failure_jump
;
7066 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7069 #endif /* not WCHAR */
7072 else if ((re_opcode_t
) *p2
== charset
)
7074 /* We win if the first character of the loop is not part
7076 if ((re_opcode_t
) p1
[3] == exactn
7077 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7078 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7079 & (1 << (p1
[5] % BYTEWIDTH
)))))
7081 p
[-3] = (unsigned char) pop_failure_jump
;
7082 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7085 else if ((re_opcode_t
) p1
[3] == charset_not
)
7088 /* We win if the charset_not inside the loop
7089 lists every character listed in the charset after. */
7090 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7091 if (! (p2
[2 + idx
] == 0
7092 || (idx
< (int) p1
[4]
7093 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7098 p
[-3] = (unsigned char) pop_failure_jump
;
7099 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7102 else if ((re_opcode_t
) p1
[3] == charset
)
7105 /* We win if the charset inside the loop
7106 has no overlap with the one after the loop. */
7108 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7110 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7113 if (idx
== p2
[1] || idx
== p1
[4])
7115 p
[-3] = (unsigned char) pop_failure_jump
;
7116 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7120 #endif /* not WCHAR */
7122 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7123 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7125 p
[-1] = (UCHAR_T
) jump
;
7126 DEBUG_PRINT1 (" Match => jump.\n");
7127 goto unconditional_jump
;
7132 /* The end of a simple repeat has a pop_failure_jump back to
7133 its matching on_failure_jump, where the latter will push a
7134 failure point. The pop_failure_jump takes off failure
7135 points put on by this pop_failure_jump's matching
7136 on_failure_jump; we got through the pattern to here from the
7137 matching on_failure_jump, so didn't fail. */
7138 case pop_failure_jump
:
7140 /* We need to pass separate storage for the lowest and
7141 highest registers, even though we don't care about the
7142 actual values. Otherwise, we will restore only one
7143 register from the stack, since lowest will == highest in
7144 `pop_failure_point'. */
7145 active_reg_t dummy_low_reg
, dummy_high_reg
;
7146 UCHAR_T
*pdummy ATTRIBUTE_UNUSED
= NULL
;
7147 const CHAR_T
*sdummy ATTRIBUTE_UNUSED
= NULL
;
7149 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7150 POP_FAILURE_POINT (sdummy
, pdummy
,
7151 dummy_low_reg
, dummy_high_reg
,
7152 reg_dummy
, reg_dummy
, reg_info_dummy
);
7158 DEBUG_PRINT2 ("\n%p: ", p
);
7160 DEBUG_PRINT2 ("\n0x%x: ", p
);
7162 /* Note fall through. */
7164 /* Unconditionally jump (without popping any failure points). */
7166 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7167 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7168 p
+= mcnt
; /* Do the jump. */
7170 DEBUG_PRINT2 ("(to %p).\n", p
);
7172 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7177 /* We need this opcode so we can detect where alternatives end
7178 in `group_match_null_string_p' et al. */
7180 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7181 goto unconditional_jump
;
7184 /* Normally, the on_failure_jump pushes a failure point, which
7185 then gets popped at pop_failure_jump. We will end up at
7186 pop_failure_jump, also, and with a pattern of, say, `a+', we
7187 are skipping over the on_failure_jump, so we have to push
7188 something meaningless for pop_failure_jump to pop. */
7189 case dummy_failure_jump
:
7190 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7191 /* It doesn't matter what we push for the string here. What
7192 the code at `fail' tests is the value for the pattern. */
7193 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7194 goto unconditional_jump
;
7197 /* At the end of an alternative, we need to push a dummy failure
7198 point in case we are followed by a `pop_failure_jump', because
7199 we don't want the failure point for the alternative to be
7200 popped. For example, matching `(a|ab)*' against `aab'
7201 requires that we match the `ab' alternative. */
7202 case push_dummy_failure
:
7203 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7204 /* See comments just above at `dummy_failure_jump' about the
7206 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7209 /* Have to succeed matching what follows at least n times.
7210 After that, handle like `on_failure_jump'. */
7212 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7213 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7216 /* Originally, this is how many times we HAVE to succeed. */
7220 p
+= OFFSET_ADDRESS_SIZE
;
7221 STORE_NUMBER_AND_INCR (p
, mcnt
);
7223 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7226 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7233 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7234 p
+ OFFSET_ADDRESS_SIZE
);
7236 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7237 p
+ OFFSET_ADDRESS_SIZE
);
7241 p
[1] = (UCHAR_T
) no_op
;
7243 p
[2] = (UCHAR_T
) no_op
;
7244 p
[3] = (UCHAR_T
) no_op
;
7251 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7252 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7254 /* Originally, this is how many times we CAN jump. */
7258 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7261 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7264 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7267 goto unconditional_jump
;
7269 /* If don't have to jump any more, skip over the rest of command. */
7271 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7276 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7278 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7280 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7282 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7284 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7286 STORE_NUMBER (p1
, mcnt
);
7291 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7292 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7293 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7294 macro and introducing temporary variables works around the bug. */
7297 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7298 if (AT_WORD_BOUNDARY (d
))
7303 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7304 if (AT_WORD_BOUNDARY (d
))
7310 boolean prevchar
, thischar
;
7312 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7313 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7316 prevchar
= WORDCHAR_P (d
- 1);
7317 thischar
= WORDCHAR_P (d
);
7318 if (prevchar
!= thischar
)
7325 boolean prevchar
, thischar
;
7327 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7328 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7331 prevchar
= WORDCHAR_P (d
- 1);
7332 thischar
= WORDCHAR_P (d
);
7333 if (prevchar
!= thischar
)
7340 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7341 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7342 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7347 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7348 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7349 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7355 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7356 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7361 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7362 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7367 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7368 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7373 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7378 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7382 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7384 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7386 SET_REGS_MATCHED ();
7390 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7392 goto matchnotsyntax
;
7395 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7399 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7401 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7403 SET_REGS_MATCHED ();
7406 #else /* not emacs */
7408 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7410 if (!WORDCHAR_P (d
))
7412 SET_REGS_MATCHED ();
7417 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7421 SET_REGS_MATCHED ();
7424 #endif /* not emacs */
7429 continue; /* Successfully executed one pattern command; keep going. */
7432 /* We goto here if a matching operation fails. */
7434 if (!FAIL_STACK_EMPTY ())
7435 { /* A restart point is known. Restore to that state. */
7436 DEBUG_PRINT1 ("\nFAIL:\n");
7437 POP_FAILURE_POINT (d
, p
,
7438 lowest_active_reg
, highest_active_reg
,
7439 regstart
, regend
, reg_info
);
7441 /* If this failure point is a dummy, try the next one. */
7445 /* If we failed to the end of the pattern, don't examine *p. */
7449 boolean is_a_jump_n
= false;
7451 /* If failed to a backwards jump that's part of a repetition
7452 loop, need to pop this failure point and use the next one. */
7453 switch ((re_opcode_t
) *p
)
7458 case maybe_pop_jump
:
7459 case pop_failure_jump
:
7462 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7465 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7467 && (re_opcode_t
) *p1
== on_failure_jump
))
7475 if (d
>= string1
&& d
<= end1
)
7479 break; /* Matching at this starting point really fails. */
7483 goto restore_best_regs
;
7487 return -1; /* Failure to match. */
7490 /* Subroutine definitions for re_match_2. */
7493 /* We are passed P pointing to a register number after a start_memory.
7495 Return true if the pattern up to the corresponding stop_memory can
7496 match the empty string, and false otherwise.
7498 If we find the matching stop_memory, sets P to point to one past its number.
7499 Otherwise, sets P to an undefined byte less than or equal to END.
7501 We don't handle duplicates properly (yet). */
7504 PREFIX(group_match_null_string_p
) (UCHAR_T
**p
, UCHAR_T
*end
,
7505 PREFIX(register_info_type
) *reg_info
)
7508 /* Point to after the args to the start_memory. */
7509 UCHAR_T
*p1
= *p
+ 2;
7513 /* Skip over opcodes that can match nothing, and return true or
7514 false, as appropriate, when we get to one that can't, or to the
7515 matching stop_memory. */
7517 switch ((re_opcode_t
) *p1
)
7519 /* Could be either a loop or a series of alternatives. */
7520 case on_failure_jump
:
7522 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7524 /* If the next operation is not a jump backwards in the
7529 /* Go through the on_failure_jumps of the alternatives,
7530 seeing if any of the alternatives cannot match nothing.
7531 The last alternative starts with only a jump,
7532 whereas the rest start with on_failure_jump and end
7533 with a jump, e.g., here is the pattern for `a|b|c':
7535 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7536 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7539 So, we have to first go through the first (n-1)
7540 alternatives and then deal with the last one separately. */
7543 /* Deal with the first (n-1) alternatives, which start
7544 with an on_failure_jump (see above) that jumps to right
7545 past a jump_past_alt. */
7547 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7550 /* `mcnt' holds how many bytes long the alternative
7551 is, including the ending `jump_past_alt' and
7554 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7555 (1 + OFFSET_ADDRESS_SIZE
),
7559 /* Move to right after this alternative, including the
7563 /* Break if it's the beginning of an n-th alternative
7564 that doesn't begin with an on_failure_jump. */
7565 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7568 /* Still have to check that it's not an n-th
7569 alternative that starts with an on_failure_jump. */
7571 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7572 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7575 /* Get to the beginning of the n-th alternative. */
7576 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7581 /* Deal with the last alternative: go back and get number
7582 of the `jump_past_alt' just before it. `mcnt' contains
7583 the length of the alternative. */
7584 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7586 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7589 p1
+= mcnt
; /* Get past the n-th alternative. */
7595 assert (p1
[1] == **p
);
7601 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7604 } /* while p1 < end */
7607 } /* group_match_null_string_p */
7610 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7611 It expects P to be the first byte of a single alternative and END one
7612 byte past the last. The alternative can contain groups. */
7615 PREFIX(alt_match_null_string_p
) (UCHAR_T
*p
, UCHAR_T
*end
,
7616 PREFIX(register_info_type
) *reg_info
)
7623 /* Skip over opcodes that can match nothing, and break when we get
7624 to one that can't. */
7626 switch ((re_opcode_t
) *p1
)
7629 case on_failure_jump
:
7631 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7636 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7639 } /* while p1 < end */
7642 } /* alt_match_null_string_p */
7645 /* Deals with the ops common to group_match_null_string_p and
7646 alt_match_null_string_p.
7648 Sets P to one after the op and its arguments, if any. */
7651 PREFIX(common_op_match_null_string_p
) (UCHAR_T
**p
, UCHAR_T
*end
,
7652 PREFIX(register_info_type
) *reg_info
)
7659 switch ((re_opcode_t
) *p1
++)
7679 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7680 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7682 /* Have to set this here in case we're checking a group which
7683 contains a group and a back reference to it. */
7685 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7686 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7692 /* If this is an optimized succeed_n for zero times, make the jump. */
7694 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7702 /* Get to the number of times to succeed. */
7703 p1
+= OFFSET_ADDRESS_SIZE
;
7704 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7708 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7709 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7717 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7722 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7726 /* All other opcodes mean we cannot match the empty string. */
7732 } /* common_op_match_null_string_p */
7735 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7736 bytes; nonzero otherwise. */
7739 PREFIX(bcmp_translate
) (const CHAR_T
*s1
, const CHAR_T
*s2
, register int len
,
7740 RE_TRANSLATE_TYPE translate
)
7742 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7743 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7747 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7748 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7751 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7759 #else /* not INSIDE_RECURSION */
7761 /* Entry points for GNU code. */
7763 /* re_compile_pattern is the GNU regular expression compiler: it
7764 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7765 Returns 0 if the pattern was valid, otherwise an error string.
7767 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7768 are set in BUFP on entry.
7770 We call regex_compile to do the actual compilation. */
7773 re_compile_pattern (const char *pattern
, size_t length
,
7774 struct re_pattern_buffer
*bufp
)
7778 /* GNU code is written to assume at least RE_NREGS registers will be set
7779 (and at least one extra will be -1). */
7780 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7782 /* And GNU code determines whether or not to get register information
7783 by passing null for the REGS argument to re_match, etc., not by
7787 /* Match anchors at newline. */
7788 bufp
->newline_anchor
= 1;
7791 if (MB_CUR_MAX
!= 1)
7792 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7795 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7799 return gettext (re_error_msgid
[(int) ret
]);
7802 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7805 /* Entry points compatible with 4.2 BSD regex library. We don't define
7806 them unless specifically requested. */
7808 #if defined _REGEX_RE_COMP || defined _LIBC
7810 /* BSD has one and only one pattern buffer. */
7811 static struct re_pattern_buffer re_comp_buf
;
7815 /* Make these definitions weak in libc, so POSIX programs can redefine
7816 these names if they don't use our functions, and still use
7817 regcomp/regexec below without link errors. */
7820 re_comp (const char *s
)
7826 if (!re_comp_buf
.buffer
)
7827 return (char *) gettext ("No previous regular expression");
7831 if (!re_comp_buf
.buffer
)
7833 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
7834 if (re_comp_buf
.buffer
== NULL
)
7835 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
7836 re_comp_buf
.allocated
= 200;
7838 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7839 if (re_comp_buf
.fastmap
== NULL
)
7840 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
7843 /* Since `re_exec' always passes NULL for the `regs' argument, we
7844 don't need to initialize the pattern buffer fields which affect it. */
7846 /* Match anchors at newlines. */
7847 re_comp_buf
.newline_anchor
= 1;
7850 if (MB_CUR_MAX
!= 1)
7851 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7854 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7859 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7860 return (char *) gettext (re_error_msgid
[(int) ret
]);
7868 re_exec (const char *s
)
7870 const int len
= strlen (s
);
7872 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
7875 #endif /* _REGEX_RE_COMP */
7877 /* POSIX.2 functions. Don't define these for Emacs. */
7881 /* regcomp takes a regular expression as a string and compiles it.
7883 PREG is a regex_t *. We do not expect any fields to be initialized,
7884 since POSIX says we shouldn't. Thus, we set
7886 `buffer' to the compiled pattern;
7887 `used' to the length of the compiled pattern;
7888 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7889 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7890 RE_SYNTAX_POSIX_BASIC;
7891 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7892 `fastmap' to an allocated space for the fastmap;
7893 `fastmap_accurate' to zero;
7894 `re_nsub' to the number of subexpressions in PATTERN.
7896 PATTERN is the address of the pattern string.
7898 CFLAGS is a series of bits which affect compilation.
7900 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7901 use POSIX basic syntax.
7903 If REG_NEWLINE is set, then . and [^...] don't match newline.
7904 Also, regexec will try a match beginning after every newline.
7906 If REG_ICASE is set, then we considers upper- and lowercase
7907 versions of letters to be equivalent when matching.
7909 If REG_NOSUB is set, then when PREG is passed to regexec, that
7910 routine will report only success or failure, and nothing about the
7913 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7914 the return codes and their meanings.) */
7917 regcomp (regex_t
*preg
, const char *pattern
, int cflags
)
7921 = (cflags
& REG_EXTENDED
) ?
7922 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
7924 /* regex_compile will allocate the space for the compiled pattern. */
7926 preg
->allocated
= 0;
7929 /* Try to allocate space for the fastmap. */
7930 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7932 if (cflags
& REG_ICASE
)
7937 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
7938 * sizeof (*(RE_TRANSLATE_TYPE
)0));
7939 if (preg
->translate
== NULL
)
7940 return (int) REG_ESPACE
;
7942 /* Map uppercase characters to corresponding lowercase ones. */
7943 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
7944 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
7947 preg
->translate
= NULL
;
7949 /* If REG_NEWLINE is set, newlines are treated differently. */
7950 if (cflags
& REG_NEWLINE
)
7951 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7952 syntax
&= ~RE_DOT_NEWLINE
;
7953 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
7954 /* It also changes the matching behavior. */
7955 preg
->newline_anchor
= 1;
7958 preg
->newline_anchor
= 0;
7960 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
7962 /* POSIX says a null character in the pattern terminates it, so we
7963 can use strlen here in compiling the pattern. */
7965 if (MB_CUR_MAX
!= 1)
7966 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
7969 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
7971 /* POSIX doesn't distinguish between an unmatched open-group and an
7972 unmatched close-group: both are REG_EPAREN. */
7973 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
7975 if (ret
== REG_NOERROR
&& preg
->fastmap
)
7977 /* Compute the fastmap now, since regexec cannot modify the pattern
7979 if (re_compile_fastmap (preg
) == -2)
7981 /* Some error occurred while computing the fastmap, just forget
7983 free (preg
->fastmap
);
7984 preg
->fastmap
= NULL
;
7991 weak_alias (__regcomp
, regcomp
)
7995 /* regexec searches for a given pattern, specified by PREG, in the
7998 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7999 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8000 least NMATCH elements, and we set them to the offsets of the
8001 corresponding matched substrings.
8003 EFLAGS specifies `execution flags' which affect matching: if
8004 REG_NOTBOL is set, then ^ does not match at the beginning of the
8005 string; if REG_NOTEOL is set, then $ does not match at the end.
8007 We return 0 if we find a match and REG_NOMATCH if not. */
8010 regexec (const regex_t
*preg
, const char *string
, size_t nmatch
,
8011 regmatch_t pmatch
[], int eflags
)
8014 struct re_registers regs
;
8015 regex_t private_preg
;
8016 int len
= strlen (string
);
8017 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8019 private_preg
= *preg
;
8021 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8022 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8024 /* The user has told us exactly how many registers to return
8025 information about, via `nmatch'. We have to pass that on to the
8026 matching routines. */
8027 private_preg
.regs_allocated
= REGS_FIXED
;
8031 regs
.num_regs
= nmatch
;
8032 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8033 if (regs
.start
== NULL
)
8034 return (int) REG_NOMATCH
;
8035 regs
.end
= regs
.start
+ nmatch
;
8038 /* Perform the searching operation. */
8039 ret
= re_search (&private_preg
, string
, len
,
8040 /* start: */ 0, /* range: */ len
,
8041 want_reg_info
? ®s
: (struct re_registers
*) 0);
8043 /* Copy the register information to the POSIX structure. */
8050 for (r
= 0; r
< nmatch
; r
++)
8052 pmatch
[r
].rm_so
= regs
.start
[r
];
8053 pmatch
[r
].rm_eo
= regs
.end
[r
];
8057 /* If we needed the temporary register info, free the space now. */
8061 /* We want zero return to mean success, unlike `re_search'. */
8062 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8065 weak_alias (__regexec
, regexec
)
8069 /* Returns a message corresponding to an error code, ERRCODE, returned
8070 from either regcomp or regexec. We don't use PREG here. */
8073 regerror (int errcode
, const regex_t
*preg ATTRIBUTE_UNUSED
,
8074 char *errbuf
, size_t errbuf_size
)
8080 || errcode
>= (int) (sizeof (re_error_msgid
)
8081 / sizeof (re_error_msgid
[0])))
8082 /* Only error codes returned by the rest of the code should be passed
8083 to this routine. If we are given anything else, or if other regex
8084 code generates an invalid error code, then the program has a bug.
8085 Dump core so we can fix it. */
8088 msg
= gettext (re_error_msgid
[errcode
]);
8090 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8092 if (errbuf_size
!= 0)
8094 if (msg_size
> errbuf_size
)
8096 #if defined HAVE_MEMPCPY || defined _LIBC
8097 *((char *) mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8099 (void) memcpy (errbuf
, msg
, errbuf_size
- 1);
8100 errbuf
[errbuf_size
- 1] = 0;
8104 (void) memcpy (errbuf
, msg
, msg_size
);
8110 weak_alias (__regerror
, regerror
)
8114 /* Free dynamically allocated space used by PREG. */
8117 regfree (regex_t
*preg
)
8119 free (preg
->buffer
);
8120 preg
->buffer
= NULL
;
8122 preg
->allocated
= 0;
8125 free (preg
->fastmap
);
8126 preg
->fastmap
= NULL
;
8127 preg
->fastmap_accurate
= 0;
8129 free (preg
->translate
);
8130 preg
->translate
= NULL
;
8133 weak_alias (__regfree
, regfree
)
8136 #endif /* not emacs */
8138 #endif /* not INSIDE_RECURSION */
8142 #undef STORE_NUMBER_AND_INCR
8143 #undef EXTRACT_NUMBER
8144 #undef EXTRACT_NUMBER_AND_INCR
8146 #undef DEBUG_PRINT_COMPILED_PATTERN
8147 #undef DEBUG_PRINT_DOUBLE_STRING
8149 #undef INIT_FAIL_STACK
8150 #undef RESET_FAIL_STACK
8151 #undef DOUBLE_FAIL_STACK
8152 #undef PUSH_PATTERN_OP
8153 #undef PUSH_FAILURE_POINTER
8154 #undef PUSH_FAILURE_INT
8155 #undef PUSH_FAILURE_ELT
8156 #undef POP_FAILURE_POINTER
8157 #undef POP_FAILURE_INT
8158 #undef POP_FAILURE_ELT
8161 #undef PUSH_FAILURE_POINT
8162 #undef POP_FAILURE_POINT
8164 #undef REG_UNSET_VALUE
8172 #undef INIT_BUF_SIZE
8173 #undef GET_BUFFER_SPACE
8181 #undef EXTEND_BUFFER
8182 #undef GET_UNSIGNED_NUMBER
8183 #undef FREE_STACK_RETURN
8185 # undef POINTER_TO_OFFSET
8186 # undef MATCHING_IN_FRST_STRING
8188 # undef AT_STRINGS_BEG
8189 # undef AT_STRINGS_END
8192 # undef FREE_VARIABLES
8193 # undef NO_HIGHEST_ACTIVE_REG
8194 # undef NO_LOWEST_ACTIVE_REG
8198 # undef COMPILED_BUFFER_VAR
8199 # undef OFFSET_ADDRESS_SIZE
8200 # undef CHAR_CLASS_SIZE
8207 # define DEFINED_ONCE