Remove trailing whitespace from libstdc++ headers
[official-gcc.git] / gcc / bt-load.c
blobaa02f6436e4ef22e49c1e5fba792d4151b10653a
1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "insn-config.h"
29 #include "regs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "diagnostic-core.h"
33 #include "expr.h"
34 #include "insn-attr.h"
35 #include "tree-pass.h"
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "cfgloop.h"
40 #include "rtl-iter.h"
41 #include "fibonacci_heap.h"
43 struct btr_def;
45 /* Target register optimizations - these are performed after reload. */
47 struct btr_def_group
49 btr_def_group *next;
50 rtx src;
51 btr_def *members;
54 struct btr_user
56 btr_user *next;
57 basic_block bb;
58 int luid;
59 rtx_insn *insn;
60 /* If INSN has a single use of a single branch register, then
61 USE points to it within INSN. If there is more than
62 one branch register use, or the use is in some way ambiguous,
63 then USE is NULL. */
64 rtx use;
65 int n_reaching_defs;
66 int first_reaching_def;
67 char other_use_this_block;
70 /* btr_def structs appear on three lists:
71 1. A list of all btr_def structures (head is
72 ALL_BTR_DEFS, linked by the NEXT field).
73 2. A list of branch reg definitions per basic block (head is
74 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
75 3. A list of all branch reg definitions belonging to the same
76 group (head is in a BTR_DEF_GROUP struct, linked by
77 NEXT_THIS_GROUP field). */
79 struct btr_def
81 btr_def *next_this_bb;
82 btr_def *next_this_group;
83 basic_block bb;
84 int luid;
85 rtx_insn *insn;
86 int btr;
87 int cost;
88 /* For a branch register setting insn that has a constant
89 source (i.e. a label), group links together all the
90 insns with the same source. For other branch register
91 setting insns, group is NULL. */
92 btr_def_group *group;
93 btr_user *uses;
94 /* If this def has a reaching use which is not a simple use
95 in a branch instruction, then has_ambiguous_use will be true,
96 and we will not attempt to migrate this definition. */
97 char has_ambiguous_use;
98 /* live_range is an approximation to the true live range for this
99 def/use web, because it records the set of blocks that contain
100 the live range. There could be other live ranges for the same
101 branch register in that set of blocks, either in the block
102 containing the def (before the def), or in a block containing
103 a use (after the use). If there are such other live ranges, then
104 other_btr_uses_before_def or other_btr_uses_after_use must be set true
105 as appropriate. */
106 char other_btr_uses_before_def;
107 char other_btr_uses_after_use;
108 /* We set own_end when we have moved a definition into a dominator.
109 Thus, when a later combination removes this definition again, we know
110 to clear out trs_live_at_end again. */
111 char own_end;
112 bitmap live_range;
115 typedef fibonacci_heap <long, btr_def> btr_heap_t;
116 typedef fibonacci_node <long, btr_def> btr_heap_node_t;
118 static int issue_rate;
120 static int basic_block_freq (const_basic_block);
121 static int insn_sets_btr_p (const rtx_insn *, int, int *);
122 static void find_btr_def_group (btr_def_group **, btr_def *);
123 static btr_def *add_btr_def (btr_heap_t *, basic_block, int, rtx_insn *,
124 unsigned int, int, btr_def_group **);
125 static btr_user *new_btr_user (basic_block, int, rtx_insn *);
126 static void dump_hard_reg_set (HARD_REG_SET);
127 static void dump_btrs_live (int);
128 static void note_other_use_this_block (unsigned int, btr_user *);
129 static void compute_defs_uses_and_gen (btr_heap_t *, btr_def **, btr_user **,
130 sbitmap *, sbitmap *, HARD_REG_SET *);
131 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
132 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
133 static void link_btr_uses (btr_def **, btr_user **, sbitmap *, sbitmap *, int);
134 static void build_btr_def_use_webs (btr_heap_t *);
135 static int block_at_edge_of_live_range_p (int, btr_def *);
136 static void clear_btr_from_live_range (btr_def *def);
137 static void add_btr_to_live_range (btr_def *, int);
138 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
139 basic_block, int);
140 static int choose_btr (HARD_REG_SET);
141 static void combine_btr_defs (btr_def *, HARD_REG_SET *);
142 static void btr_def_live_range (btr_def *, HARD_REG_SET *);
143 static void move_btr_def (basic_block, int, btr_def *, bitmap, HARD_REG_SET *);
144 static int migrate_btr_def (btr_def *, int);
145 static void migrate_btr_defs (enum reg_class, int);
146 static int can_move_up (const_basic_block, const rtx_insn *, int);
147 static void note_btr_set (rtx, const_rtx, void *);
149 /* The following code performs code motion of target load instructions
150 (instructions that set branch target registers), to move them
151 forward away from the branch instructions and out of loops (or,
152 more generally, from a more frequently executed place to a less
153 frequently executed place).
154 Moving target load instructions further in front of the branch
155 instruction that uses the target register value means that the hardware
156 has a better chance of preloading the instructions at the branch
157 target by the time the branch is reached. This avoids bubbles
158 when a taken branch needs to flush out the pipeline.
159 Moving target load instructions out of loops means they are executed
160 less frequently. */
162 /* An obstack to hold the def-use web data structures built up for
163 migrating branch target load instructions. */
164 static struct obstack migrate_btrl_obstack;
166 /* Array indexed by basic block number, giving the set of registers
167 live in that block. */
168 static HARD_REG_SET *btrs_live;
170 /* Array indexed by basic block number, giving the set of registers live at
171 the end of that block, including any uses by a final jump insn, if any. */
172 static HARD_REG_SET *btrs_live_at_end;
174 /* Set of all target registers that we are willing to allocate. */
175 static HARD_REG_SET all_btrs;
177 /* Provide lower and upper bounds for target register numbers, so that
178 we don't need to search through all the hard registers all the time. */
179 static int first_btr, last_btr;
183 /* Return an estimate of the frequency of execution of block bb. */
184 static int
185 basic_block_freq (const_basic_block bb)
187 return bb->frequency;
190 /* If the rtx at *XP references (sets or reads) any branch target
191 register, return one such register. If EXCLUDEP is set, disregard
192 any references within that location. */
193 static rtx *
194 find_btr_use (rtx *xp, rtx *excludep = 0)
196 subrtx_ptr_iterator::array_type array;
197 FOR_EACH_SUBRTX_PTR (iter, array, xp, NONCONST)
199 rtx *loc = *iter;
200 if (loc == excludep)
201 iter.skip_subrtxes ();
202 else
204 const_rtx x = *loc;
205 if (REG_P (x)
206 && overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
207 return loc;
210 return 0;
213 /* Return true if insn is an instruction that sets a target register.
214 if CHECK_CONST is true, only return true if the source is constant.
215 If such a set is found and REGNO is nonzero, assign the register number
216 of the destination register to *REGNO. */
217 static int
218 insn_sets_btr_p (const rtx_insn *insn, int check_const, int *regno)
220 rtx set;
222 if (NONJUMP_INSN_P (insn)
223 && (set = single_set (insn)))
225 rtx dest = SET_DEST (set);
226 rtx src = SET_SRC (set);
228 if (GET_CODE (dest) == SUBREG)
229 dest = XEXP (dest, 0);
231 if (REG_P (dest)
232 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
234 gcc_assert (!find_btr_use (&src));
236 if (!check_const || CONSTANT_P (src))
238 if (regno)
239 *regno = REGNO (dest);
240 return 1;
244 return 0;
247 /* Find the group that the target register definition DEF belongs
248 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
249 group exists, create one. Add def to the group. */
250 static void
251 find_btr_def_group (btr_def_group **all_btr_def_groups, btr_def *def)
253 if (insn_sets_btr_p (def->insn, 1, NULL))
255 btr_def_group *this_group;
256 rtx def_src = SET_SRC (single_set (def->insn));
258 /* ?? This linear search is an efficiency concern, particularly
259 as the search will almost always fail to find a match. */
260 for (this_group = *all_btr_def_groups;
261 this_group != NULL;
262 this_group = this_group->next)
263 if (rtx_equal_p (def_src, this_group->src))
264 break;
266 if (!this_group)
268 this_group = XOBNEW (&migrate_btrl_obstack, btr_def_group);
269 this_group->src = def_src;
270 this_group->members = NULL;
271 this_group->next = *all_btr_def_groups;
272 *all_btr_def_groups = this_group;
274 def->group = this_group;
275 def->next_this_group = this_group->members;
276 this_group->members = def;
278 else
279 def->group = NULL;
282 /* Create a new target register definition structure, for a definition in
283 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
284 the new definition. */
285 static btr_def *
286 add_btr_def (btr_heap_t *all_btr_defs, basic_block bb, int insn_luid,
287 rtx_insn *insn,
288 unsigned int dest_reg, int other_btr_uses_before_def,
289 btr_def_group **all_btr_def_groups)
291 btr_def *this_def = XOBNEW (&migrate_btrl_obstack, btr_def);
292 this_def->bb = bb;
293 this_def->luid = insn_luid;
294 this_def->insn = insn;
295 this_def->btr = dest_reg;
296 this_def->cost = basic_block_freq (bb);
297 this_def->has_ambiguous_use = 0;
298 this_def->other_btr_uses_before_def = other_btr_uses_before_def;
299 this_def->other_btr_uses_after_use = 0;
300 this_def->next_this_bb = NULL;
301 this_def->next_this_group = NULL;
302 this_def->uses = NULL;
303 this_def->live_range = NULL;
304 find_btr_def_group (all_btr_def_groups, this_def);
306 all_btr_defs->insert (-this_def->cost, this_def);
308 if (dump_file)
309 fprintf (dump_file,
310 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
311 dest_reg, bb->index, INSN_UID (insn),
312 (this_def->group ? "" : ":not const"), this_def->cost);
314 return this_def;
317 /* Create a new target register user structure, for a use in block BB,
318 instruction INSN. Return the new user. */
319 static btr_user *
320 new_btr_user (basic_block bb, int insn_luid, rtx_insn *insn)
322 /* This instruction reads target registers. We need
323 to decide whether we can replace all target register
324 uses easily.
326 rtx *usep = find_btr_use (&PATTERN (insn));
327 rtx use;
328 btr_user *user = NULL;
330 if (usep)
332 int unambiguous_single_use;
334 /* We want to ensure that USE is the only use of a target
335 register in INSN, so that we know that to rewrite INSN to use
336 a different target register, all we have to do is replace USE. */
337 unambiguous_single_use = !find_btr_use (&PATTERN (insn), usep);
338 if (!unambiguous_single_use)
339 usep = NULL;
341 use = usep ? *usep : NULL_RTX;
342 user = XOBNEW (&migrate_btrl_obstack, btr_user);
343 user->bb = bb;
344 user->luid = insn_luid;
345 user->insn = insn;
346 user->use = use;
347 user->other_use_this_block = 0;
348 user->next = NULL;
349 user->n_reaching_defs = 0;
350 user->first_reaching_def = -1;
352 if (dump_file)
354 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
355 bb->index, INSN_UID (insn));
357 if (user->use)
358 fprintf (dump_file, ": unambiguous use of reg %d\n",
359 REGNO (user->use));
362 return user;
365 /* Write the contents of S to the dump file. */
366 static void
367 dump_hard_reg_set (HARD_REG_SET s)
369 int reg;
370 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
371 if (TEST_HARD_REG_BIT (s, reg))
372 fprintf (dump_file, " %d", reg);
375 /* Write the set of target regs live in block BB to the dump file. */
376 static void
377 dump_btrs_live (int bb)
379 fprintf (dump_file, "BB%d live:", bb);
380 dump_hard_reg_set (btrs_live[bb]);
381 fprintf (dump_file, "\n");
384 /* REGNO is the number of a branch target register that is being used or
385 set. USERS_THIS_BB is a list of preceding branch target register users;
386 If any of them use the same register, set their other_use_this_block
387 flag. */
388 static void
389 note_other_use_this_block (unsigned int regno, btr_user *users_this_bb)
391 btr_user *user;
393 for (user = users_this_bb; user != NULL; user = user->next)
394 if (user->use && REGNO (user->use) == regno)
395 user->other_use_this_block = 1;
398 struct defs_uses_info {
399 btr_user *users_this_bb;
400 HARD_REG_SET btrs_written_in_block;
401 HARD_REG_SET btrs_live_in_block;
402 sbitmap bb_gen;
403 sbitmap *btr_defset;
406 /* Called via note_stores or directly to register stores into /
407 clobbers of a branch target register DEST that are not recognized as
408 straightforward definitions. DATA points to information about the
409 current basic block that needs updating. */
410 static void
411 note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
413 defs_uses_info *info = (defs_uses_info *) data;
414 int regno, end_regno;
416 if (!REG_P (dest))
417 return;
418 regno = REGNO (dest);
419 end_regno = END_REGNO (dest);
420 for (; regno < end_regno; regno++)
421 if (TEST_HARD_REG_BIT (all_btrs, regno))
423 note_other_use_this_block (regno, info->users_this_bb);
424 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
425 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
426 bitmap_and_compl (info->bb_gen, info->bb_gen,
427 info->btr_defset[regno - first_btr]);
431 static void
432 compute_defs_uses_and_gen (btr_heap_t *all_btr_defs, btr_def **def_array,
433 btr_user **use_array, sbitmap *btr_defset,
434 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
436 /* Scan the code building up the set of all defs and all uses.
437 For each target register, build the set of defs of that register.
438 For each block, calculate the set of target registers
439 written in that block.
440 Also calculate the set of btrs ever live in that block.
442 int i;
443 int insn_luid = 0;
444 btr_def_group *all_btr_def_groups = NULL;
445 defs_uses_info info;
447 bitmap_vector_clear (bb_gen, last_basic_block_for_fn (cfun));
448 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
450 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
451 int reg;
452 btr_def *defs_this_bb = NULL;
453 rtx_insn *insn;
454 rtx_insn *last;
455 int can_throw = 0;
457 info.users_this_bb = NULL;
458 info.bb_gen = bb_gen[i];
459 info.btr_defset = btr_defset;
461 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
462 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
463 for (reg = first_btr; reg <= last_btr; reg++)
464 if (TEST_HARD_REG_BIT (all_btrs, reg)
465 && REGNO_REG_SET_P (df_get_live_in (bb), reg))
466 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
468 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
469 insn != last;
470 insn = NEXT_INSN (insn), insn_luid++)
472 if (INSN_P (insn))
474 int regno;
475 int insn_uid = INSN_UID (insn);
477 if (insn_sets_btr_p (insn, 0, &regno))
479 btr_def *def = add_btr_def (
480 all_btr_defs, bb, insn_luid, insn, regno,
481 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
482 &all_btr_def_groups);
484 def_array[insn_uid] = def;
485 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
486 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
487 bitmap_and_compl (bb_gen[i], bb_gen[i],
488 btr_defset[regno - first_btr]);
489 bitmap_set_bit (bb_gen[i], insn_uid);
490 def->next_this_bb = defs_this_bb;
491 defs_this_bb = def;
492 bitmap_set_bit (btr_defset[regno - first_btr], insn_uid);
493 note_other_use_this_block (regno, info.users_this_bb);
495 /* Check for the blockage emitted by expand_nl_goto_receiver. */
496 else if (cfun->has_nonlocal_label
497 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
499 btr_user *user;
501 /* Do the equivalent of calling note_other_use_this_block
502 for every target register. */
503 for (user = info.users_this_bb; user != NULL;
504 user = user->next)
505 if (user->use)
506 user->other_use_this_block = 1;
507 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
508 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
509 bitmap_clear (info.bb_gen);
511 else
513 if (find_btr_use (&PATTERN (insn)))
515 btr_user *user = new_btr_user (bb, insn_luid, insn);
517 use_array[insn_uid] = user;
518 if (user->use)
519 SET_HARD_REG_BIT (info.btrs_live_in_block,
520 REGNO (user->use));
521 else
523 int reg;
524 for (reg = first_btr; reg <= last_btr; reg++)
525 if (TEST_HARD_REG_BIT (all_btrs, reg)
526 && refers_to_regno_p (reg, user->insn))
528 note_other_use_this_block (reg,
529 info.users_this_bb);
530 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
532 note_stores (PATTERN (insn), note_btr_set, &info);
534 user->next = info.users_this_bb;
535 info.users_this_bb = user;
537 if (CALL_P (insn))
539 HARD_REG_SET *clobbered = &call_used_reg_set;
540 HARD_REG_SET call_saved;
541 rtx pat = PATTERN (insn);
542 int i;
544 /* Check for sibcall. */
545 if (GET_CODE (pat) == PARALLEL)
546 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
547 if (ANY_RETURN_P (XVECEXP (pat, 0, i)))
549 COMPL_HARD_REG_SET (call_saved,
550 call_used_reg_set);
551 clobbered = &call_saved;
554 for (regno = first_btr; regno <= last_btr; regno++)
555 if (TEST_HARD_REG_BIT (*clobbered, regno))
556 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
562 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
563 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
565 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb));
566 /* If this block ends in a jump insn, add any uses or even clobbers
567 of branch target registers that it might have. */
568 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
569 insn = PREV_INSN (insn);
570 /* ??? for the fall-through edge, it would make sense to insert the
571 btr set on the edge, but that would require to split the block
572 early on so that we can distinguish between dominance from the fall
573 through edge - which can use the call-clobbered registers - from
574 dominance by the throw edge. */
575 if (can_throw_internal (insn))
577 HARD_REG_SET tmp;
579 COPY_HARD_REG_SET (tmp, call_used_reg_set);
580 AND_HARD_REG_SET (tmp, all_btrs);
581 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
582 can_throw = 1;
584 if (can_throw || JUMP_P (insn))
586 int regno;
588 for (regno = first_btr; regno <= last_btr; regno++)
589 if (refers_to_regno_p (regno, insn))
590 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
593 if (dump_file)
594 dump_btrs_live (i);
598 static void
599 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
600 HARD_REG_SET *btrs_written)
602 int i;
603 int regno;
605 /* For each basic block, form the set BB_KILL - the set
606 of definitions that the block kills. */
607 bitmap_vector_clear (bb_kill, last_basic_block_for_fn (cfun));
608 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
610 for (regno = first_btr; regno <= last_btr; regno++)
611 if (TEST_HARD_REG_BIT (all_btrs, regno)
612 && TEST_HARD_REG_BIT (btrs_written[i], regno))
613 bitmap_ior (bb_kill[i], bb_kill[i],
614 btr_defset[regno - first_btr]);
618 static void
619 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
621 /* Perform iterative dataflow:
622 Initially, for all blocks, BB_OUT = BB_GEN.
623 For each block,
624 BB_IN = union over predecessors of BB_OUT(pred)
625 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
626 Iterate until the bb_out sets stop growing. */
627 int i;
628 int changed;
629 sbitmap bb_in = sbitmap_alloc (max_uid);
631 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
632 bitmap_copy (bb_out[i], bb_gen[i]);
634 changed = 1;
635 while (changed)
637 changed = 0;
638 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
640 bitmap_union_of_preds (bb_in, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
641 changed |= bitmap_ior_and_compl (bb_out[i], bb_gen[i],
642 bb_in, bb_kill[i]);
645 sbitmap_free (bb_in);
648 static void
649 link_btr_uses (btr_def **def_array, btr_user **use_array, sbitmap *bb_out,
650 sbitmap *btr_defset, int max_uid)
652 int i;
653 sbitmap reaching_defs = sbitmap_alloc (max_uid);
655 /* Link uses to the uses lists of all of their reaching defs.
656 Count up the number of reaching defs of each use. */
657 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
659 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
660 rtx_insn *insn;
661 rtx_insn *last;
663 bitmap_union_of_preds (reaching_defs, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
664 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
665 insn != last;
666 insn = NEXT_INSN (insn))
668 if (INSN_P (insn))
670 int insn_uid = INSN_UID (insn);
672 btr_def *def = def_array[insn_uid];
673 btr_user *user = use_array[insn_uid];
674 if (def != NULL)
676 /* Remove all reaching defs of regno except
677 for this one. */
678 bitmap_and_compl (reaching_defs, reaching_defs,
679 btr_defset[def->btr - first_btr]);
680 bitmap_set_bit (reaching_defs, insn_uid);
683 if (user != NULL)
685 /* Find all the reaching defs for this use. */
686 sbitmap reaching_defs_of_reg = sbitmap_alloc (max_uid);
687 unsigned int uid = 0;
688 sbitmap_iterator sbi;
690 if (user->use)
691 bitmap_and (
692 reaching_defs_of_reg,
693 reaching_defs,
694 btr_defset[REGNO (user->use) - first_btr]);
695 else
697 int reg;
699 bitmap_clear (reaching_defs_of_reg);
700 for (reg = first_btr; reg <= last_btr; reg++)
701 if (TEST_HARD_REG_BIT (all_btrs, reg)
702 && refers_to_regno_p (reg, user->insn))
703 bitmap_or_and (reaching_defs_of_reg,
704 reaching_defs_of_reg,
705 reaching_defs,
706 btr_defset[reg - first_btr]);
708 EXECUTE_IF_SET_IN_BITMAP (reaching_defs_of_reg, 0, uid, sbi)
710 btr_def *def = def_array[uid];
712 /* We now know that def reaches user. */
714 if (dump_file)
715 fprintf (dump_file,
716 "Def in insn %d reaches use in insn %d\n",
717 uid, insn_uid);
719 user->n_reaching_defs++;
720 if (!user->use)
721 def->has_ambiguous_use = 1;
722 if (user->first_reaching_def != -1)
723 { /* There is more than one reaching def. This is
724 a rare case, so just give up on this def/use
725 web when it occurs. */
726 def->has_ambiguous_use = 1;
727 def_array[user->first_reaching_def]
728 ->has_ambiguous_use = 1;
729 if (dump_file)
730 fprintf (dump_file,
731 "(use %d has multiple reaching defs)\n",
732 insn_uid);
734 else
735 user->first_reaching_def = uid;
736 if (user->other_use_this_block)
737 def->other_btr_uses_after_use = 1;
738 user->next = def->uses;
739 def->uses = user;
741 sbitmap_free (reaching_defs_of_reg);
744 if (CALL_P (insn))
746 int regno;
748 for (regno = first_btr; regno <= last_btr; regno++)
749 if (TEST_HARD_REG_BIT (all_btrs, regno)
750 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
751 bitmap_and_compl (reaching_defs, reaching_defs,
752 btr_defset[regno - first_btr]);
757 sbitmap_free (reaching_defs);
760 static void
761 build_btr_def_use_webs (btr_heap_t *all_btr_defs)
763 const int max_uid = get_max_uid ();
764 btr_def **def_array = XCNEWVEC (btr_def *, max_uid);
765 btr_user **use_array = XCNEWVEC (btr_user *, max_uid);
766 sbitmap *btr_defset = sbitmap_vector_alloc (
767 (last_btr - first_btr) + 1, max_uid);
768 sbitmap *bb_gen = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
769 max_uid);
770 HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET,
771 last_basic_block_for_fn (cfun));
772 sbitmap *bb_kill;
773 sbitmap *bb_out;
775 bitmap_vector_clear (btr_defset, (last_btr - first_btr) + 1);
777 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
778 bb_gen, btrs_written);
780 bb_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
781 compute_kill (bb_kill, btr_defset, btrs_written);
782 free (btrs_written);
784 bb_out = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
785 compute_out (bb_out, bb_gen, bb_kill, max_uid);
787 sbitmap_vector_free (bb_gen);
788 sbitmap_vector_free (bb_kill);
790 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
792 sbitmap_vector_free (bb_out);
793 sbitmap_vector_free (btr_defset);
794 free (use_array);
795 free (def_array);
798 /* Return true if basic block BB contains the start or end of the
799 live range of the definition DEF, AND there are other live
800 ranges of the same target register that include BB. */
801 static int
802 block_at_edge_of_live_range_p (int bb, btr_def *def)
804 if (def->other_btr_uses_before_def
805 && BASIC_BLOCK_FOR_FN (cfun, bb) == def->bb)
806 return 1;
807 else if (def->other_btr_uses_after_use)
809 btr_user *user;
810 for (user = def->uses; user != NULL; user = user->next)
811 if (BASIC_BLOCK_FOR_FN (cfun, bb) == user->bb)
812 return 1;
814 return 0;
817 /* We are removing the def/use web DEF. The target register
818 used in this web is therefore no longer live in the live range
819 of this web, so remove it from the live set of all basic blocks
820 in the live range of the web.
821 Blocks at the boundary of the live range may contain other live
822 ranges for the same target register, so we have to be careful
823 to remove the target register from the live set of these blocks
824 only if they do not contain other live ranges for the same register. */
825 static void
826 clear_btr_from_live_range (btr_def *def)
828 unsigned bb;
829 bitmap_iterator bi;
831 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
833 if ((!def->other_btr_uses_before_def
834 && !def->other_btr_uses_after_use)
835 || !block_at_edge_of_live_range_p (bb, def))
837 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
838 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
839 if (dump_file)
840 dump_btrs_live (bb);
843 if (def->own_end)
844 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
848 /* We are adding the def/use web DEF. Add the target register used
849 in this web to the live set of all of the basic blocks that contain
850 the live range of the web.
851 If OWN_END is set, also show that the register is live from our
852 definitions at the end of the basic block where it is defined. */
853 static void
854 add_btr_to_live_range (btr_def *def, int own_end)
856 unsigned bb;
857 bitmap_iterator bi;
859 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
861 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
862 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
863 if (dump_file)
864 dump_btrs_live (bb);
866 if (own_end)
868 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
869 def->own_end = 1;
873 /* Update a live range to contain the basic block NEW_BLOCK, and all
874 blocks on paths between the existing live range and NEW_BLOCK.
875 HEAD is a block contained in the existing live range that dominates
876 all other blocks in the existing live range.
877 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
878 are live in the blocks that we add to the live range.
879 If FULL_RANGE is set, include the full live range of NEW_BB;
880 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
881 are life at the end of NEW_BB for NEW_BB itself.
882 It is a precondition that either NEW_BLOCK dominates HEAD,or
883 HEAD dom NEW_BLOCK. This is used to speed up the
884 implementation of this function. */
885 static void
886 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
887 basic_block head_bb, basic_block new_bb, int full_range)
889 basic_block *worklist, *tos;
891 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
893 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
895 if (new_bb == head_bb)
897 if (full_range)
898 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
899 free (tos);
900 return;
902 *tos++ = new_bb;
904 else
906 edge e;
907 edge_iterator ei;
908 int new_block = new_bb->index;
910 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
912 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
913 bitmap_set_bit (live_range, new_block);
914 /* A previous btr migration could have caused a register to be
915 live just at the end of new_block which we need in full, so
916 use trs_live_at_end even if full_range is set. */
917 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
918 if (full_range)
919 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
920 if (dump_file)
922 fprintf (dump_file,
923 "Adding end of block %d and rest of %d to live range\n",
924 new_block, head_bb->index);
925 fprintf (dump_file,"Now live btrs are ");
926 dump_hard_reg_set (*btrs_live_in_range);
927 fprintf (dump_file, "\n");
929 FOR_EACH_EDGE (e, ei, head_bb->preds)
930 *tos++ = e->src;
933 while (tos != worklist)
935 basic_block bb = *--tos;
936 if (!bitmap_bit_p (live_range, bb->index))
938 edge e;
939 edge_iterator ei;
941 bitmap_set_bit (live_range, bb->index);
942 IOR_HARD_REG_SET (*btrs_live_in_range,
943 btrs_live[bb->index]);
944 /* A previous btr migration could have caused a register to be
945 live just at the end of a block which we need in full. */
946 IOR_HARD_REG_SET (*btrs_live_in_range,
947 btrs_live_at_end[bb->index]);
948 if (dump_file)
950 fprintf (dump_file,
951 "Adding block %d to live range\n", bb->index);
952 fprintf (dump_file,"Now live btrs are ");
953 dump_hard_reg_set (*btrs_live_in_range);
954 fprintf (dump_file, "\n");
957 FOR_EACH_EDGE (e, ei, bb->preds)
959 basic_block pred = e->src;
960 if (!bitmap_bit_p (live_range, pred->index))
961 *tos++ = pred;
966 free (worklist);
969 /* Return the most desirable target register that is not in
970 the set USED_BTRS. */
971 static int
972 choose_btr (HARD_REG_SET used_btrs)
974 int i;
976 if (!hard_reg_set_subset_p (all_btrs, used_btrs))
977 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
979 #ifdef REG_ALLOC_ORDER
980 int regno = reg_alloc_order[i];
981 #else
982 int regno = i;
983 #endif
984 if (TEST_HARD_REG_BIT (all_btrs, regno)
985 && !TEST_HARD_REG_BIT (used_btrs, regno))
986 return regno;
988 return -1;
991 /* Calculate the set of basic blocks that contain the live range of
992 the def/use web DEF.
993 Also calculate the set of target registers that are live at time
994 in this live range, but ignore the live range represented by DEF
995 when calculating this set. */
996 static void
997 btr_def_live_range (btr_def *def, HARD_REG_SET *btrs_live_in_range)
999 if (!def->live_range)
1001 btr_user *user;
1003 def->live_range = BITMAP_ALLOC (NULL);
1005 bitmap_set_bit (def->live_range, def->bb->index);
1006 COPY_HARD_REG_SET (*btrs_live_in_range,
1007 (flag_btr_bb_exclusive
1008 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1010 for (user = def->uses; user != NULL; user = user->next)
1011 augment_live_range (def->live_range, btrs_live_in_range,
1012 def->bb, user->bb,
1013 (flag_btr_bb_exclusive
1014 || user->insn != BB_END (def->bb)
1015 || !JUMP_P (user->insn)));
1017 else
1019 /* def->live_range is accurate, but we need to recompute
1020 the set of target registers live over it, because migration
1021 of other PT instructions may have affected it.
1023 unsigned bb;
1024 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1025 bitmap_iterator bi;
1027 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1028 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1030 IOR_HARD_REG_SET (*btrs_live_in_range,
1031 (def_bb == bb
1032 ? btrs_live_at_end : btrs_live) [bb]);
1035 if (!def->other_btr_uses_before_def &&
1036 !def->other_btr_uses_after_use)
1037 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1040 /* Merge into the def/use web DEF any other def/use webs in the same
1041 group that are dominated by DEF, provided that there is a target
1042 register available to allocate to the merged web. */
1043 static void
1044 combine_btr_defs (btr_def *def, HARD_REG_SET *btrs_live_in_range)
1046 btr_def *other_def;
1048 for (other_def = def->group->members;
1049 other_def != NULL;
1050 other_def = other_def->next_this_group)
1052 if (other_def != def
1053 && other_def->uses != NULL
1054 && ! other_def->has_ambiguous_use
1055 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1057 /* def->bb dominates the other def, so def and other_def could
1058 be combined. */
1059 /* Merge their live ranges, and get the set of
1060 target registers live over the merged range. */
1061 int btr;
1062 HARD_REG_SET combined_btrs_live;
1063 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1064 btr_user *user;
1066 if (other_def->live_range == NULL)
1068 HARD_REG_SET dummy_btrs_live_in_range;
1069 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1071 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1072 bitmap_copy (combined_live_range, def->live_range);
1074 for (user = other_def->uses; user != NULL; user = user->next)
1075 augment_live_range (combined_live_range, &combined_btrs_live,
1076 def->bb, user->bb,
1077 (flag_btr_bb_exclusive
1078 || user->insn != BB_END (def->bb)
1079 || !JUMP_P (user->insn)));
1081 btr = choose_btr (combined_btrs_live);
1082 if (btr != -1)
1084 /* We can combine them. */
1085 if (dump_file)
1086 fprintf (dump_file,
1087 "Combining def in insn %d with def in insn %d\n",
1088 INSN_UID (other_def->insn), INSN_UID (def->insn));
1090 def->btr = btr;
1091 user = other_def->uses;
1092 while (user != NULL)
1094 btr_user *next = user->next;
1096 user->next = def->uses;
1097 def->uses = user;
1098 user = next;
1100 /* Combining def/use webs can make target registers live
1101 after uses where they previously were not. This means
1102 some REG_DEAD notes may no longer be correct. We could
1103 be more precise about this if we looked at the combined
1104 live range, but here I just delete any REG_DEAD notes
1105 in case they are no longer correct. */
1106 for (user = def->uses; user != NULL; user = user->next)
1107 remove_note (user->insn,
1108 find_regno_note (user->insn, REG_DEAD,
1109 REGNO (user->use)));
1110 clear_btr_from_live_range (other_def);
1111 other_def->uses = NULL;
1112 bitmap_copy (def->live_range, combined_live_range);
1113 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1114 def->other_btr_uses_after_use = 1;
1115 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1117 /* Delete the old target register initialization. */
1118 delete_insn (other_def->insn);
1121 BITMAP_FREE (combined_live_range);
1126 /* Move the definition DEF from its current position to basic
1127 block NEW_DEF_BB, and modify it to use branch target register BTR.
1128 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1129 Update all reaching uses of DEF in the RTL to use BTR.
1130 If this new position means that other defs in the
1131 same group can be combined with DEF then combine them. */
1132 static void
1133 move_btr_def (basic_block new_def_bb, int btr, btr_def *def, bitmap live_range,
1134 HARD_REG_SET *btrs_live_in_range)
1136 /* We can move the instruction.
1137 Set a target register in block NEW_DEF_BB to the value
1138 needed for this target register definition.
1139 Replace all uses of the old target register definition by
1140 uses of the new definition. Delete the old definition. */
1141 basic_block b = new_def_bb;
1142 rtx_insn *insp = BB_HEAD (b);
1143 rtx_insn *old_insn = def->insn;
1144 rtx src;
1145 rtx btr_rtx;
1146 rtx_insn *new_insn;
1147 machine_mode btr_mode;
1148 btr_user *user;
1149 rtx set;
1151 if (dump_file)
1152 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1153 new_def_bb->index, btr);
1155 clear_btr_from_live_range (def);
1156 def->btr = btr;
1157 def->bb = new_def_bb;
1158 def->luid = 0;
1159 def->cost = basic_block_freq (new_def_bb);
1160 bitmap_copy (def->live_range, live_range);
1161 combine_btr_defs (def, btrs_live_in_range);
1162 btr = def->btr;
1163 def->other_btr_uses_before_def
1164 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1165 add_btr_to_live_range (def, 1);
1166 if (LABEL_P (insp))
1167 insp = NEXT_INSN (insp);
1168 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1169 optimizations can result in insp being both first and last insn of
1170 its basic block. */
1171 /* ?? some assertions to check that insp is sensible? */
1173 if (def->other_btr_uses_before_def)
1175 insp = BB_END (b);
1176 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1177 gcc_assert (insp != BB_HEAD (b));
1179 if (JUMP_P (insp) || can_throw_internal (insp))
1180 insp = PREV_INSN (insp);
1183 set = single_set (old_insn);
1184 src = SET_SRC (set);
1185 btr_mode = GET_MODE (SET_DEST (set));
1186 btr_rtx = gen_rtx_REG (btr_mode, btr);
1188 new_insn = gen_move_insn (btr_rtx, src);
1190 /* Insert target register initialization at head of basic block. */
1191 def->insn = emit_insn_after (new_insn, insp);
1193 df_set_regs_ever_live (btr, true);
1195 if (dump_file)
1196 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1197 INSN_UID (def->insn), INSN_UID (insp));
1199 /* Delete the old target register initialization. */
1200 delete_insn (old_insn);
1202 /* Replace each use of the old target register by a use of the new target
1203 register. */
1204 for (user = def->uses; user != NULL; user = user->next)
1206 /* Some extra work here to ensure consistent modes, because
1207 it seems that a target register REG rtx can be given a different
1208 mode depending on the context (surely that should not be
1209 the case?). */
1210 rtx replacement_rtx;
1211 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1212 || GET_MODE (user->use) == VOIDmode)
1213 replacement_rtx = btr_rtx;
1214 else
1215 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1216 validate_replace_rtx (user->use, replacement_rtx, user->insn);
1217 user->use = replacement_rtx;
1221 /* We anticipate intra-block scheduling to be done. See if INSN could move
1222 up within BB by N_INSNS. */
1223 static int
1224 can_move_up (const_basic_block bb, const rtx_insn *insn, int n_insns)
1226 while (insn != BB_HEAD (bb) && n_insns > 0)
1228 insn = PREV_INSN (insn);
1229 /* ??? What if we have an anti-dependency that actually prevents the
1230 scheduler from doing the move? We'd like to re-allocate the register,
1231 but not necessarily put the load into another basic block. */
1232 if (INSN_P (insn))
1233 n_insns--;
1235 return n_insns <= 0;
1238 /* Attempt to migrate the target register definition DEF to an
1239 earlier point in the flowgraph.
1241 It is a precondition of this function that DEF is migratable:
1242 i.e. it has a constant source, and all uses are unambiguous.
1244 Only migrations that reduce the cost of DEF will be made.
1245 MIN_COST is the lower bound on the cost of the DEF after migration.
1246 If we migrate DEF so that its cost falls below MIN_COST,
1247 then we do not attempt to migrate further. The idea is that
1248 we migrate definitions in a priority order based on their cost,
1249 when the cost of this definition falls below MIN_COST, then
1250 there is another definition with cost == MIN_COST which now
1251 has a higher priority than this definition.
1253 Return nonzero if there may be benefit from attempting to
1254 migrate this DEF further (i.e. we have reduced the cost below
1255 MIN_COST, but we may be able to reduce it further).
1256 Return zero if no further migration is possible. */
1257 static int
1258 migrate_btr_def (btr_def *def, int min_cost)
1260 bitmap live_range;
1261 HARD_REG_SET btrs_live_in_range;
1262 int btr_used_near_def = 0;
1263 int def_basic_block_freq;
1264 basic_block attempt;
1265 int give_up = 0;
1266 int def_moved = 0;
1267 btr_user *user;
1268 int def_latency;
1270 if (dump_file)
1271 fprintf (dump_file,
1272 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1273 INSN_UID (def->insn), def->cost, min_cost);
1275 if (!def->group || def->has_ambiguous_use)
1276 /* These defs are not migratable. */
1278 if (dump_file)
1279 fprintf (dump_file, "it's not migratable\n");
1280 return 0;
1283 if (!def->uses)
1284 /* We have combined this def with another in the same group, so
1285 no need to consider it further.
1288 if (dump_file)
1289 fprintf (dump_file, "it's already combined with another pt\n");
1290 return 0;
1293 btr_def_live_range (def, &btrs_live_in_range);
1294 live_range = BITMAP_ALLOC (NULL);
1295 bitmap_copy (live_range, def->live_range);
1297 #ifdef INSN_SCHEDULING
1298 def_latency = insn_default_latency (def->insn) * issue_rate;
1299 #else
1300 def_latency = issue_rate;
1301 #endif
1303 for (user = def->uses; user != NULL; user = user->next)
1305 if (user->bb == def->bb
1306 && user->luid > def->luid
1307 && (def->luid + def_latency) > user->luid
1308 && ! can_move_up (def->bb, def->insn,
1309 (def->luid + def_latency) - user->luid))
1311 btr_used_near_def = 1;
1312 break;
1316 def_basic_block_freq = basic_block_freq (def->bb);
1318 for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1319 !give_up && attempt && attempt != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1320 && def->cost >= min_cost;
1321 attempt = get_immediate_dominator (CDI_DOMINATORS, attempt))
1323 /* Try to move the instruction that sets the target register into
1324 basic block ATTEMPT. */
1325 int try_freq = basic_block_freq (attempt);
1326 edge_iterator ei;
1327 edge e;
1329 /* If ATTEMPT has abnormal edges, skip it. */
1330 FOR_EACH_EDGE (e, ei, attempt->succs)
1331 if (e->flags & EDGE_COMPLEX)
1332 break;
1333 if (e)
1334 continue;
1336 if (dump_file)
1337 fprintf (dump_file, "trying block %d ...", attempt->index);
1339 if (try_freq < def_basic_block_freq
1340 || (try_freq == def_basic_block_freq && btr_used_near_def))
1342 int btr;
1343 augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt,
1344 flag_btr_bb_exclusive);
1345 if (dump_file)
1347 fprintf (dump_file, "Now btrs live in range are: ");
1348 dump_hard_reg_set (btrs_live_in_range);
1349 fprintf (dump_file, "\n");
1351 btr = choose_btr (btrs_live_in_range);
1352 if (btr != -1)
1354 move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range);
1355 bitmap_copy (live_range, def->live_range);
1356 btr_used_near_def = 0;
1357 def_moved = 1;
1358 def_basic_block_freq = basic_block_freq (def->bb);
1360 else
1362 /* There are no free target registers available to move
1363 this far forward, so give up */
1364 give_up = 1;
1365 if (dump_file)
1366 fprintf (dump_file,
1367 "giving up because there are no free target registers\n");
1372 if (!def_moved)
1374 give_up = 1;
1375 if (dump_file)
1376 fprintf (dump_file, "failed to move\n");
1378 BITMAP_FREE (live_range);
1379 return !give_up;
1382 /* Attempt to move instructions that set target registers earlier
1383 in the flowgraph, away from their corresponding uses. */
1384 static void
1385 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1387 btr_heap_t all_btr_defs (LONG_MIN);
1388 int reg;
1390 gcc_obstack_init (&migrate_btrl_obstack);
1391 if (dump_file)
1393 int i;
1395 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
1397 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1398 fprintf (dump_file,
1399 "Basic block %d: count = %" PRId64
1400 " loop-depth = %d idom = %d\n",
1401 i, (int64_t) bb->count, bb_loop_depth (bb),
1402 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1406 CLEAR_HARD_REG_SET (all_btrs);
1407 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1408 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1409 && (allow_callee_save || call_used_regs[reg]
1410 || df_regs_ever_live_p (reg)))
1412 SET_HARD_REG_BIT (all_btrs, reg);
1413 last_btr = reg;
1414 if (first_btr < 0)
1415 first_btr = reg;
1418 btrs_live = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
1419 btrs_live_at_end = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
1421 build_btr_def_use_webs (&all_btr_defs);
1423 while (!all_btr_defs.empty ())
1425 int min_cost = -all_btr_defs.min_key ();
1426 btr_def *def = all_btr_defs.extract_min ();
1427 if (migrate_btr_def (def, min_cost))
1429 all_btr_defs.insert (-def->cost, def);
1430 if (dump_file)
1432 fprintf (dump_file,
1433 "Putting insn %d back on queue with priority %d\n",
1434 INSN_UID (def->insn), def->cost);
1437 else
1438 BITMAP_FREE (def->live_range);
1441 free (btrs_live);
1442 free (btrs_live_at_end);
1443 obstack_free (&migrate_btrl_obstack, NULL);
1446 static void
1447 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1449 enum reg_class klass
1450 = (enum reg_class) targetm.branch_target_register_class ();
1451 if (klass != NO_REGS)
1453 /* Initialize issue_rate. */
1454 if (targetm.sched.issue_rate)
1455 issue_rate = targetm.sched.issue_rate ();
1456 else
1457 issue_rate = 1;
1459 if (!after_prologue_epilogue_gen)
1461 /* Build the CFG for migrate_btr_defs. */
1462 #if 1
1463 /* This may or may not be needed, depending on where we
1464 run this phase. */
1465 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1466 #endif
1468 df_analyze ();
1471 /* Dominator info is also needed for migrate_btr_def. */
1472 calculate_dominance_info (CDI_DOMINATORS);
1473 migrate_btr_defs (klass,
1474 (targetm.branch_target_register_callee_saved
1475 (after_prologue_epilogue_gen)));
1477 free_dominance_info (CDI_DOMINATORS);
1481 namespace {
1483 const pass_data pass_data_branch_target_load_optimize1 =
1485 RTL_PASS, /* type */
1486 "btl1", /* name */
1487 OPTGROUP_NONE, /* optinfo_flags */
1488 TV_NONE, /* tv_id */
1489 0, /* properties_required */
1490 0, /* properties_provided */
1491 0, /* properties_destroyed */
1492 0, /* todo_flags_start */
1493 0, /* todo_flags_finish */
1496 class pass_branch_target_load_optimize1 : public rtl_opt_pass
1498 public:
1499 pass_branch_target_load_optimize1 (gcc::context *ctxt)
1500 : rtl_opt_pass (pass_data_branch_target_load_optimize1, ctxt)
1503 /* opt_pass methods: */
1504 virtual bool gate (function *) { return flag_branch_target_load_optimize; }
1505 virtual unsigned int execute (function *)
1507 branch_target_load_optimize (epilogue_completed);
1508 return 0;
1511 }; // class pass_branch_target_load_optimize1
1513 } // anon namespace
1515 rtl_opt_pass *
1516 make_pass_branch_target_load_optimize1 (gcc::context *ctxt)
1518 return new pass_branch_target_load_optimize1 (ctxt);
1522 namespace {
1524 const pass_data pass_data_branch_target_load_optimize2 =
1526 RTL_PASS, /* type */
1527 "btl2", /* name */
1528 OPTGROUP_NONE, /* optinfo_flags */
1529 TV_NONE, /* tv_id */
1530 0, /* properties_required */
1531 0, /* properties_provided */
1532 0, /* properties_destroyed */
1533 0, /* todo_flags_start */
1534 0, /* todo_flags_finish */
1537 class pass_branch_target_load_optimize2 : public rtl_opt_pass
1539 public:
1540 pass_branch_target_load_optimize2 (gcc::context *ctxt)
1541 : rtl_opt_pass (pass_data_branch_target_load_optimize2, ctxt)
1544 /* opt_pass methods: */
1545 virtual bool gate (function *)
1547 return (optimize > 0 && flag_branch_target_load_optimize2);
1550 virtual unsigned int execute (function *);
1552 }; // class pass_branch_target_load_optimize2
1554 unsigned int
1555 pass_branch_target_load_optimize2::execute (function *)
1557 static int warned = 0;
1559 /* Leave this a warning for now so that it is possible to experiment
1560 with running this pass twice. In 3.6, we should either make this
1561 an error, or use separate dump files. */
1562 if (flag_branch_target_load_optimize
1563 && flag_branch_target_load_optimize2
1564 && !warned)
1566 warning (0, "branch target register load optimization is not intended "
1567 "to be run twice");
1569 warned = 1;
1572 branch_target_load_optimize (epilogue_completed);
1573 return 0;
1576 } // anon namespace
1578 rtl_opt_pass *
1579 make_pass_branch_target_load_optimize2 (gcc::context *ctxt)
1581 return new pass_branch_target_load_optimize2 (ctxt);