2003-03-15 Glen Nakamura <glen@imodulo.com>
[official-gcc.git] / gcc / df.c
blob4c9598566e6d7579ef4ca2ed0a1fc618f921f83b
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
4 mhayes@redhat.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA.
24 OVERVIEW:
26 This file provides some dataflow routines for computing reaching defs,
27 upward exposed uses, live variables, def-use chains, and use-def
28 chains. The global dataflow is performed using simple iterative
29 methods with a worklist and could be sped up by ordering the blocks
30 with a depth first search order.
32 A `struct ref' data structure (ref) is allocated for every register
33 reference (def or use) and this records the insn and bb the ref is
34 found within. The refs are linked together in chains of uses and defs
35 for each insn and for each register. Each ref also has a chain field
36 that links all the use refs for a def or all the def refs for a use.
37 This is used to create use-def or def-use chains.
40 USAGE:
42 Here's an example of using the dataflow routines.
44 struct df *df;
46 df = df_init ();
48 df_analyse (df, 0, DF_ALL);
50 df_dump (df, DF_ALL, stderr);
52 df_finish (df);
55 df_init simply creates a poor man's object (df) that needs to be
56 passed to all the dataflow routines. df_finish destroys this
57 object and frees up any allocated memory. DF_ALL says to analyse
58 everything.
60 df_analyse performs the following:
62 1. Records defs and uses by scanning the insns in each basic block
63 or by scanning the insns queued by df_insn_modify.
64 2. Links defs and uses into insn-def and insn-use chains.
65 3. Links defs and uses into reg-def and reg-use chains.
66 4. Assigns LUIDs to each insn (for modified blocks).
67 5. Calculates local reaching definitions.
68 6. Calculates global reaching definitions.
69 7. Creates use-def chains.
70 8. Calculates local reaching uses (upwards exposed uses).
71 9. Calculates global reaching uses.
72 10. Creates def-use chains.
73 11. Calculates local live registers.
74 12. Calculates global live registers.
75 13. Calculates register lifetimes and determines local registers.
78 PHILOSOPHY:
80 Note that the dataflow information is not updated for every newly
81 deleted or created insn. If the dataflow information requires
82 updating then all the changed, new, or deleted insns needs to be
83 marked with df_insn_modify (or df_insns_modify) either directly or
84 indirectly (say through calling df_insn_delete). df_insn_modify
85 marks all the modified insns to get processed the next time df_analyse
86 is called.
88 Beware that tinkering with insns may invalidate the dataflow information.
89 The philosophy behind these routines is that once the dataflow
90 information has been gathered, the user should store what they require
91 before they tinker with any insn. Once a reg is replaced, for example,
92 then the reg-def/reg-use chains will point to the wrong place. Once a
93 whole lot of changes have been made, df_analyse can be called again
94 to update the dataflow information. Currently, this is not very smart
95 with regard to propagating changes to the dataflow so it should not
96 be called very often.
99 DATA STRUCTURES:
101 The basic object is a REF (reference) and this may either be a DEF
102 (definition) or a USE of a register.
104 These are linked into a variety of lists; namely reg-def, reg-use,
105 insn-def, insn-use, def-use, and use-def lists. For example,
106 the reg-def lists contain all the refs that define a given register
107 while the insn-use lists contain all the refs used by an insn.
109 Note that the reg-def and reg-use chains are generally short (except for the
110 hard registers) and thus it is much faster to search these chains
111 rather than searching the def or use bitmaps.
113 If the insns are in SSA form then the reg-def and use-def lists
114 should only contain the single defining ref.
117 TODO:
119 1) Incremental dataflow analysis.
121 Note that if a loop invariant insn is hoisted (or sunk), we do not
122 need to change the def-use or use-def chains. All we have to do is to
123 change the bb field for all the associated defs and uses and to
124 renumber the LUIDs for the original and new basic blocks of the insn.
126 When shadowing loop mems we create new uses and defs for new pseudos
127 so we do not affect the existing dataflow information.
129 My current strategy is to queue up all modified, created, or deleted
130 insns so when df_analyse is called we can easily determine all the new
131 or deleted refs. Currently the global dataflow information is
132 recomputed from scratch but this could be propagated more efficiently.
134 2) Reduced memory requirements.
136 We could operate a pool of ref structures. When a ref is deleted it
137 gets returned to the pool (say by linking on to a chain of free refs).
138 This will require a pair of bitmaps for defs and uses so that we can
139 tell which ones have been changed. Alternatively, we could
140 periodically squeeze the def and use tables and associated bitmaps and
141 renumber the def and use ids.
143 3) Ordering of reg-def and reg-use lists.
145 Should the first entry in the def list be the first def (within a BB)?
146 Similarly, should the first entry in the use list be the last use
147 (within a BB)?
149 4) Working with a sub-CFG.
151 Often the whole CFG does not need to be analyzed, for example,
152 when optimising a loop, only certain registers are of interest.
153 Perhaps there should be a bitmap argument to df_analyse to specify
154 which registers should be analyzed?
157 NOTES:
159 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
160 both a use and a def. These are both marked read/write to show that they
161 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
162 will generate a use of reg 42 followed by a def of reg 42 (both marked
163 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
164 generates a use of reg 41 then a def of reg 41 (both marked read/write),
165 even though reg 41 is decremented before it is used for the memory
166 address in this second example.
168 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
169 a read-modify write operation. We generate both a use and a def
170 and again mark them read/write.
173 #include "config.h"
174 #include "system.h"
175 #include "coretypes.h"
176 #include "tm.h"
177 #include "rtl.h"
178 #include "tm_p.h"
179 #include "insn-config.h"
180 #include "recog.h"
181 #include "function.h"
182 #include "regs.h"
183 #include "obstack.h"
184 #include "hard-reg-set.h"
185 #include "basic-block.h"
186 #include "sbitmap.h"
187 #include "bitmap.h"
188 #include "df.h"
189 #include "fibheap.h"
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
192 do \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;}); \
198 while (0)
200 static struct obstack df_ref_obstack;
201 static struct df *ddf;
203 static void df_reg_table_realloc PARAMS((struct df *, int));
204 static void df_insn_table_realloc PARAMS((struct df *, unsigned int));
205 static void df_bitmaps_alloc PARAMS((struct df *, int));
206 static void df_bitmaps_free PARAMS((struct df *, int));
207 static void df_free PARAMS((struct df *));
208 static void df_alloc PARAMS((struct df *, int));
210 static rtx df_reg_clobber_gen PARAMS((unsigned int));
211 static rtx df_reg_use_gen PARAMS((unsigned int));
213 static inline struct df_link *df_link_create PARAMS((struct ref *,
214 struct df_link *));
215 static struct df_link *df_ref_unlink PARAMS((struct df_link **, struct ref *));
216 static void df_def_unlink PARAMS((struct df *, struct ref *));
217 static void df_use_unlink PARAMS((struct df *, struct ref *));
218 static void df_insn_refs_unlink PARAMS ((struct df *, basic_block, rtx));
219 #if 0
220 static void df_bb_refs_unlink PARAMS ((struct df *, basic_block));
221 static void df_refs_unlink PARAMS ((struct df *, bitmap));
222 #endif
224 static struct ref *df_ref_create PARAMS((struct df *,
225 rtx, rtx *, rtx,
226 enum df_ref_type, enum df_ref_flags));
227 static void df_ref_record_1 PARAMS((struct df *, rtx, rtx *,
228 rtx, enum df_ref_type,
229 enum df_ref_flags));
230 static void df_ref_record PARAMS((struct df *, rtx, rtx *,
231 rtx, enum df_ref_type,
232 enum df_ref_flags));
233 static void df_def_record_1 PARAMS((struct df *, rtx, basic_block, rtx));
234 static void df_defs_record PARAMS((struct df *, rtx, basic_block, rtx));
235 static void df_uses_record PARAMS((struct df *, rtx *,
236 enum df_ref_type, basic_block, rtx,
237 enum df_ref_flags));
238 static void df_insn_refs_record PARAMS((struct df *, basic_block, rtx));
239 static void df_bb_refs_record PARAMS((struct df *, basic_block));
240 static void df_refs_record PARAMS((struct df *, bitmap));
242 static void df_bb_reg_def_chain_create PARAMS((struct df *, basic_block));
243 static void df_reg_def_chain_create PARAMS((struct df *, bitmap));
244 static void df_bb_reg_use_chain_create PARAMS((struct df *, basic_block));
245 static void df_reg_use_chain_create PARAMS((struct df *, bitmap));
246 static void df_bb_du_chain_create PARAMS((struct df *, basic_block, bitmap));
247 static void df_du_chain_create PARAMS((struct df *, bitmap));
248 static void df_bb_ud_chain_create PARAMS((struct df *, basic_block));
249 static void df_ud_chain_create PARAMS((struct df *, bitmap));
250 static void df_bb_rd_local_compute PARAMS((struct df *, basic_block));
251 static void df_rd_local_compute PARAMS((struct df *, bitmap));
252 static void df_bb_ru_local_compute PARAMS((struct df *, basic_block));
253 static void df_ru_local_compute PARAMS((struct df *, bitmap));
254 static void df_bb_lr_local_compute PARAMS((struct df *, basic_block));
255 static void df_lr_local_compute PARAMS((struct df *, bitmap));
256 static void df_bb_reg_info_compute PARAMS((struct df *, basic_block, bitmap));
257 static void df_reg_info_compute PARAMS((struct df *, bitmap));
259 static int df_bb_luids_set PARAMS((struct df *df, basic_block));
260 static int df_luids_set PARAMS((struct df *df, bitmap));
262 static int df_modified_p PARAMS ((struct df *, bitmap));
263 static int df_refs_queue PARAMS ((struct df *));
264 static int df_refs_process PARAMS ((struct df *));
265 static int df_bb_refs_update PARAMS ((struct df *, basic_block));
266 static int df_refs_update PARAMS ((struct df *));
267 static void df_analyse_1 PARAMS((struct df *, bitmap, int, int));
269 static void df_insns_modify PARAMS((struct df *, basic_block,
270 rtx, rtx));
271 static int df_rtx_mem_replace PARAMS ((rtx *, void *));
272 static int df_rtx_reg_replace PARAMS ((rtx *, void *));
273 void df_refs_reg_replace PARAMS ((struct df *, bitmap,
274 struct df_link *, rtx, rtx));
276 static int df_def_dominates_all_uses_p PARAMS((struct df *, struct ref *def));
277 static int df_def_dominates_uses_p PARAMS((struct df *,
278 struct ref *def, bitmap));
279 static struct ref *df_bb_regno_last_use_find PARAMS((struct df *, basic_block,
280 unsigned int));
281 static struct ref *df_bb_regno_first_def_find PARAMS((struct df *, basic_block,
282 unsigned int));
283 static struct ref *df_bb_insn_regno_last_use_find PARAMS((struct df *,
284 basic_block,
285 rtx, unsigned int));
286 static struct ref *df_bb_insn_regno_first_def_find PARAMS((struct df *,
287 basic_block,
288 rtx, unsigned int));
290 static void df_chain_dump PARAMS((struct df_link *, FILE *file));
291 static void df_chain_dump_regno PARAMS((struct df_link *, FILE *file));
292 static void df_regno_debug PARAMS ((struct df *, unsigned int, FILE *));
293 static void df_ref_debug PARAMS ((struct df *, struct ref *, FILE *));
294 static void df_rd_transfer_function PARAMS ((int, int *, bitmap, bitmap,
295 bitmap, bitmap, void *));
296 static void df_ru_transfer_function PARAMS ((int, int *, bitmap, bitmap,
297 bitmap, bitmap, void *));
298 static void df_lr_transfer_function PARAMS ((int, int *, bitmap, bitmap,
299 bitmap, bitmap, void *));
300 static void hybrid_search_bitmap PARAMS ((basic_block, bitmap *, bitmap *,
301 bitmap *, bitmap *, enum df_flow_dir,
302 enum df_confluence_op,
303 transfer_function_bitmap,
304 sbitmap, sbitmap, void *));
305 static void hybrid_search_sbitmap PARAMS ((basic_block, sbitmap *, sbitmap *,
306 sbitmap *, sbitmap *, enum df_flow_dir,
307 enum df_confluence_op,
308 transfer_function_sbitmap,
309 sbitmap, sbitmap, void *));
312 /* Local memory allocation/deallocation routines. */
315 /* Increase the insn info table to have space for at least SIZE + 1
316 elements. */
317 static void
318 df_insn_table_realloc (df, size)
319 struct df *df;
320 unsigned int size;
322 size++;
323 if (size <= df->insn_size)
324 return;
326 /* Make the table a little larger than requested, so we do not need
327 to enlarge it so often. */
328 size += df->insn_size / 4;
330 df->insns = (struct insn_info *)
331 xrealloc (df->insns, size * sizeof (struct insn_info));
333 memset (df->insns + df->insn_size, 0,
334 (size - df->insn_size) * sizeof (struct insn_info));
336 df->insn_size = size;
338 if (! df->insns_modified)
340 df->insns_modified = BITMAP_XMALLOC ();
341 bitmap_zero (df->insns_modified);
346 /* Increase the reg info table by SIZE more elements. */
347 static void
348 df_reg_table_realloc (df, size)
349 struct df *df;
350 int size;
352 /* Make table 25 percent larger by default. */
353 if (! size)
354 size = df->reg_size / 4;
356 size += df->reg_size;
357 if (size < max_reg_num ())
358 size = max_reg_num ();
360 df->regs = (struct reg_info *)
361 xrealloc (df->regs, size * sizeof (struct reg_info));
363 /* Zero the new entries. */
364 memset (df->regs + df->reg_size, 0,
365 (size - df->reg_size) * sizeof (struct reg_info));
367 df->reg_size = size;
371 /* Allocate bitmaps for each basic block. */
372 static void
373 df_bitmaps_alloc (df, flags)
374 struct df *df;
375 int flags;
377 int dflags = 0;
378 basic_block bb;
380 /* Free the bitmaps if they need resizing. */
381 if ((flags & DF_LR) && df->n_regs < (unsigned int) max_reg_num ())
382 dflags |= DF_LR | DF_RU;
383 if ((flags & DF_RU) && df->n_uses < df->use_id)
384 dflags |= DF_RU;
385 if ((flags & DF_RD) && df->n_defs < df->def_id)
386 dflags |= DF_RD;
388 if (dflags)
389 df_bitmaps_free (df, dflags);
391 df->n_defs = df->def_id;
392 df->n_uses = df->use_id;
394 FOR_EACH_BB (bb)
396 struct bb_info *bb_info = DF_BB_INFO (df, bb);
398 if (flags & DF_RD && ! bb_info->rd_in)
400 /* Allocate bitmaps for reaching definitions. */
401 bb_info->rd_kill = BITMAP_XMALLOC ();
402 bitmap_zero (bb_info->rd_kill);
403 bb_info->rd_gen = BITMAP_XMALLOC ();
404 bitmap_zero (bb_info->rd_gen);
405 bb_info->rd_in = BITMAP_XMALLOC ();
406 bb_info->rd_out = BITMAP_XMALLOC ();
407 bb_info->rd_valid = 0;
410 if (flags & DF_RU && ! bb_info->ru_in)
412 /* Allocate bitmaps for upward exposed uses. */
413 bb_info->ru_kill = BITMAP_XMALLOC ();
414 bitmap_zero (bb_info->ru_kill);
415 /* Note the lack of symmetry. */
416 bb_info->ru_gen = BITMAP_XMALLOC ();
417 bitmap_zero (bb_info->ru_gen);
418 bb_info->ru_in = BITMAP_XMALLOC ();
419 bb_info->ru_out = BITMAP_XMALLOC ();
420 bb_info->ru_valid = 0;
423 if (flags & DF_LR && ! bb_info->lr_in)
425 /* Allocate bitmaps for live variables. */
426 bb_info->lr_def = BITMAP_XMALLOC ();
427 bitmap_zero (bb_info->lr_def);
428 bb_info->lr_use = BITMAP_XMALLOC ();
429 bitmap_zero (bb_info->lr_use);
430 bb_info->lr_in = BITMAP_XMALLOC ();
431 bb_info->lr_out = BITMAP_XMALLOC ();
432 bb_info->lr_valid = 0;
438 /* Free bitmaps for each basic block. */
439 static void
440 df_bitmaps_free (df, flags)
441 struct df *df ATTRIBUTE_UNUSED;
442 int flags;
444 basic_block bb;
446 FOR_EACH_BB (bb)
448 struct bb_info *bb_info = DF_BB_INFO (df, bb);
450 if (!bb_info)
451 continue;
453 if ((flags & DF_RD) && bb_info->rd_in)
455 /* Free bitmaps for reaching definitions. */
456 BITMAP_XFREE (bb_info->rd_kill);
457 bb_info->rd_kill = NULL;
458 BITMAP_XFREE (bb_info->rd_gen);
459 bb_info->rd_gen = NULL;
460 BITMAP_XFREE (bb_info->rd_in);
461 bb_info->rd_in = NULL;
462 BITMAP_XFREE (bb_info->rd_out);
463 bb_info->rd_out = NULL;
466 if ((flags & DF_RU) && bb_info->ru_in)
468 /* Free bitmaps for upward exposed uses. */
469 BITMAP_XFREE (bb_info->ru_kill);
470 bb_info->ru_kill = NULL;
471 BITMAP_XFREE (bb_info->ru_gen);
472 bb_info->ru_gen = NULL;
473 BITMAP_XFREE (bb_info->ru_in);
474 bb_info->ru_in = NULL;
475 BITMAP_XFREE (bb_info->ru_out);
476 bb_info->ru_out = NULL;
479 if ((flags & DF_LR) && bb_info->lr_in)
481 /* Free bitmaps for live variables. */
482 BITMAP_XFREE (bb_info->lr_def);
483 bb_info->lr_def = NULL;
484 BITMAP_XFREE (bb_info->lr_use);
485 bb_info->lr_use = NULL;
486 BITMAP_XFREE (bb_info->lr_in);
487 bb_info->lr_in = NULL;
488 BITMAP_XFREE (bb_info->lr_out);
489 bb_info->lr_out = NULL;
492 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
496 /* Allocate and initialize dataflow memory. */
497 static void
498 df_alloc (df, n_regs)
499 struct df *df;
500 int n_regs;
502 int n_insns;
503 basic_block bb;
505 gcc_obstack_init (&df_ref_obstack);
507 /* Perhaps we should use LUIDs to save memory for the insn_refs
508 table. This is only a small saving; a few pointers. */
509 n_insns = get_max_uid () + 1;
511 df->def_id = 0;
512 df->n_defs = 0;
513 /* Approximate number of defs by number of insns. */
514 df->def_size = n_insns;
515 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
517 df->use_id = 0;
518 df->n_uses = 0;
519 /* Approximate number of uses by twice number of insns. */
520 df->use_size = n_insns * 2;
521 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
523 df->n_regs = n_regs;
524 df->n_bbs = last_basic_block;
526 /* Allocate temporary working array used during local dataflow analysis. */
527 df->reg_def_last = xmalloc (df->n_regs * sizeof (struct ref *));
529 df_insn_table_realloc (df, n_insns);
531 df_reg_table_realloc (df, df->n_regs);
533 df->bbs_modified = BITMAP_XMALLOC ();
534 bitmap_zero (df->bbs_modified);
536 df->flags = 0;
538 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
540 df->all_blocks = BITMAP_XMALLOC ();
541 FOR_EACH_BB (bb)
542 bitmap_set_bit (df->all_blocks, bb->index);
546 /* Free all the dataflow info. */
547 static void
548 df_free (df)
549 struct df *df;
551 df_bitmaps_free (df, DF_ALL);
553 if (df->bbs)
554 free (df->bbs);
555 df->bbs = 0;
557 if (df->insns)
558 free (df->insns);
559 df->insns = 0;
560 df->insn_size = 0;
562 if (df->defs)
563 free (df->defs);
564 df->defs = 0;
565 df->def_size = 0;
566 df->def_id = 0;
568 if (df->uses)
569 free (df->uses);
570 df->uses = 0;
571 df->use_size = 0;
572 df->use_id = 0;
574 if (df->regs)
575 free (df->regs);
576 df->regs = 0;
577 df->reg_size = 0;
579 if (df->bbs_modified)
580 BITMAP_XFREE (df->bbs_modified);
581 df->bbs_modified = 0;
583 if (df->insns_modified)
584 BITMAP_XFREE (df->insns_modified);
585 df->insns_modified = 0;
587 BITMAP_XFREE (df->all_blocks);
588 df->all_blocks = 0;
590 obstack_free (&df_ref_obstack, NULL);
593 /* Local miscellaneous routines. */
595 /* Return a USE for register REGNO. */
596 static rtx df_reg_use_gen (regno)
597 unsigned int regno;
599 rtx reg;
600 rtx use;
602 reg = regno_reg_rtx[regno];
604 use = gen_rtx_USE (GET_MODE (reg), reg);
605 return use;
609 /* Return a CLOBBER for register REGNO. */
610 static rtx df_reg_clobber_gen (regno)
611 unsigned int regno;
613 rtx reg;
614 rtx use;
616 reg = regno_reg_rtx[regno];
618 use = gen_rtx_CLOBBER (GET_MODE (reg), reg);
619 return use;
622 /* Local chain manipulation routines. */
624 /* Create a link in a def-use or use-def chain. */
625 static inline struct df_link *
626 df_link_create (ref, next)
627 struct ref *ref;
628 struct df_link *next;
630 struct df_link *link;
632 link = (struct df_link *) obstack_alloc (&df_ref_obstack,
633 sizeof (*link));
634 link->next = next;
635 link->ref = ref;
636 return link;
640 /* Add REF to chain head pointed to by PHEAD. */
641 static struct df_link *
642 df_ref_unlink (phead, ref)
643 struct df_link **phead;
644 struct ref *ref;
646 struct df_link *link = *phead;
648 if (link)
650 if (! link->next)
652 /* Only a single ref. It must be the one we want.
653 If not, the def-use and use-def chains are likely to
654 be inconsistent. */
655 if (link->ref != ref)
656 abort ();
657 /* Now have an empty chain. */
658 *phead = NULL;
660 else
662 /* Multiple refs. One of them must be us. */
663 if (link->ref == ref)
664 *phead = link->next;
665 else
667 /* Follow chain. */
668 for (; link->next; link = link->next)
670 if (link->next->ref == ref)
672 /* Unlink from list. */
673 link->next = link->next->next;
674 return link->next;
680 return link;
684 /* Unlink REF from all def-use/use-def chains, etc. */
686 df_ref_remove (df, ref)
687 struct df *df;
688 struct ref *ref;
690 if (DF_REF_REG_DEF_P (ref))
692 df_def_unlink (df, ref);
693 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
695 else
697 df_use_unlink (df, ref);
698 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
700 return 1;
704 /* Unlink DEF from use-def and reg-def chains. */
705 static void
706 df_def_unlink (df, def)
707 struct df *df ATTRIBUTE_UNUSED;
708 struct ref *def;
710 struct df_link *du_link;
711 unsigned int dregno = DF_REF_REGNO (def);
713 /* Follow def-use chain to find all the uses of this def. */
714 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
716 struct ref *use = du_link->ref;
718 /* Unlink this def from the use-def chain. */
719 df_ref_unlink (&DF_REF_CHAIN (use), def);
721 DF_REF_CHAIN (def) = 0;
723 /* Unlink def from reg-def chain. */
724 df_ref_unlink (&df->regs[dregno].defs, def);
726 df->defs[DF_REF_ID (def)] = 0;
730 /* Unlink use from def-use and reg-use chains. */
731 static void
732 df_use_unlink (df, use)
733 struct df *df ATTRIBUTE_UNUSED;
734 struct ref *use;
736 struct df_link *ud_link;
737 unsigned int uregno = DF_REF_REGNO (use);
739 /* Follow use-def chain to find all the defs of this use. */
740 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
742 struct ref *def = ud_link->ref;
744 /* Unlink this use from the def-use chain. */
745 df_ref_unlink (&DF_REF_CHAIN (def), use);
747 DF_REF_CHAIN (use) = 0;
749 /* Unlink use from reg-use chain. */
750 df_ref_unlink (&df->regs[uregno].uses, use);
752 df->uses[DF_REF_ID (use)] = 0;
755 /* Local routines for recording refs. */
758 /* Create a new ref of type DF_REF_TYPE for register REG at address
759 LOC within INSN of BB. */
760 static struct ref *
761 df_ref_create (df, reg, loc, insn, ref_type, ref_flags)
762 struct df *df;
763 rtx reg;
764 rtx *loc;
765 rtx insn;
766 enum df_ref_type ref_type;
767 enum df_ref_flags ref_flags;
769 struct ref *this_ref;
771 this_ref = (struct ref *) obstack_alloc (&df_ref_obstack,
772 sizeof (*this_ref));
773 DF_REF_REG (this_ref) = reg;
774 DF_REF_LOC (this_ref) = loc;
775 DF_REF_INSN (this_ref) = insn;
776 DF_REF_CHAIN (this_ref) = 0;
777 DF_REF_TYPE (this_ref) = ref_type;
778 DF_REF_FLAGS (this_ref) = ref_flags;
780 if (ref_type == DF_REF_REG_DEF)
782 if (df->def_id >= df->def_size)
784 /* Make table 25 percent larger. */
785 df->def_size += (df->def_size / 4);
786 df->defs = xrealloc (df->defs,
787 df->def_size * sizeof (*df->defs));
789 DF_REF_ID (this_ref) = df->def_id;
790 df->defs[df->def_id++] = this_ref;
792 else
794 if (df->use_id >= df->use_size)
796 /* Make table 25 percent larger. */
797 df->use_size += (df->use_size / 4);
798 df->uses = xrealloc (df->uses,
799 df->use_size * sizeof (*df->uses));
801 DF_REF_ID (this_ref) = df->use_id;
802 df->uses[df->use_id++] = this_ref;
804 return this_ref;
808 /* Create a new reference of type DF_REF_TYPE for a single register REG,
809 used inside the LOC rtx of INSN. */
810 static void
811 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags)
812 struct df *df;
813 rtx reg;
814 rtx *loc;
815 rtx insn;
816 enum df_ref_type ref_type;
817 enum df_ref_flags ref_flags;
819 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
823 /* Create new references of type DF_REF_TYPE for each part of register REG
824 at address LOC within INSN of BB. */
825 static void
826 df_ref_record (df, reg, loc, insn, ref_type, ref_flags)
827 struct df *df;
828 rtx reg;
829 rtx *loc;
830 rtx insn;
831 enum df_ref_type ref_type;
832 enum df_ref_flags ref_flags;
834 unsigned int regno;
836 if (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)
837 abort ();
839 /* For the reg allocator we are interested in some SUBREG rtx's, but not
840 all. Notably only those representing a word extraction from a multi-word
841 reg. As written in the docu those should have the form
842 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
843 XXX Is that true? We could also use the global word_mode variable. */
844 if (GET_CODE (reg) == SUBREG
845 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
846 || GET_MODE_SIZE (GET_MODE (reg))
847 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
849 loc = &SUBREG_REG (reg);
850 reg = *loc;
851 ref_flags |= DF_REF_STRIPPED;
854 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
855 if (regno < FIRST_PSEUDO_REGISTER)
857 int i;
858 int endregno;
860 if (! (df->flags & DF_HARD_REGS))
861 return;
863 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
864 for the mode, because we only want to add references to regs, which
865 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
866 reference the whole reg 0 in DI mode (which would also include
867 reg 1, at least, if 0 and 1 are SImode registers). */
868 endregno = HARD_REGNO_NREGS (regno, GET_MODE (reg));
869 if (GET_CODE (reg) == SUBREG)
870 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
871 SUBREG_BYTE (reg), GET_MODE (reg));
872 endregno += regno;
874 for (i = regno; i < endregno; i++)
875 df_ref_record_1 (df, regno_reg_rtx[i],
876 loc, insn, ref_type, ref_flags);
878 else
880 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
885 /* Return non-zero if writes to paradoxical SUBREGs, or SUBREGs which
886 are too narrow, are read-modify-write. */
887 bool
888 read_modify_subreg_p (x)
889 rtx x;
891 unsigned int isize, osize;
892 if (GET_CODE (x) != SUBREG)
893 return false;
894 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
895 osize = GET_MODE_SIZE (GET_MODE (x));
896 /* Paradoxical subreg writes don't leave a trace of the old content. */
897 return (isize > osize && isize > UNITS_PER_WORD);
901 /* Process all the registers defined in the rtx, X. */
902 static void
903 df_def_record_1 (df, x, bb, insn)
904 struct df *df;
905 rtx x;
906 basic_block bb;
907 rtx insn;
909 rtx *loc = &SET_DEST (x);
910 rtx dst = *loc;
911 enum df_ref_flags flags = 0;
913 /* Some targets place small structures in registers for
914 return values of functions. */
915 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
917 int i;
919 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
920 df_def_record_1 (df, XVECEXP (dst, 0, i), bb, insn);
921 return;
924 #ifdef CLASS_CANNOT_CHANGE_MODE
925 if (GET_CODE (dst) == SUBREG)
926 flags |= DF_REF_MODE_CHANGE;
927 #endif
929 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
930 be handy for the reg allocator. */
931 while (GET_CODE (dst) == STRICT_LOW_PART
932 || GET_CODE (dst) == ZERO_EXTRACT
933 || GET_CODE (dst) == SIGN_EXTRACT
934 || ((df->flags & DF_FOR_REGALLOC) == 0
935 && read_modify_subreg_p (dst)))
937 /* Strict low part always contains SUBREG, but we do not want to make
938 it appear outside, as whole register is always considered. */
939 if (GET_CODE (dst) == STRICT_LOW_PART)
941 loc = &XEXP (dst, 0);
942 dst = *loc;
944 #ifdef CLASS_CANNOT_CHANGE_MODE
945 if (GET_CODE (dst) == SUBREG)
946 flags |= DF_REF_MODE_CHANGE;
947 #endif
948 loc = &XEXP (dst, 0);
949 dst = *loc;
950 flags |= DF_REF_READ_WRITE;
953 if (GET_CODE (dst) == REG
954 || (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG))
955 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
959 /* Process all the registers defined in the pattern rtx, X. */
960 static void
961 df_defs_record (df, x, bb, insn)
962 struct df *df;
963 rtx x;
964 basic_block bb;
965 rtx insn;
967 RTX_CODE code = GET_CODE (x);
969 if (code == SET || code == CLOBBER)
971 /* Mark the single def within the pattern. */
972 df_def_record_1 (df, x, bb, insn);
974 else if (code == PARALLEL)
976 int i;
978 /* Mark the multiple defs within the pattern. */
979 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
981 code = GET_CODE (XVECEXP (x, 0, i));
982 if (code == SET || code == CLOBBER)
983 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
989 /* Process all the registers used in the rtx at address LOC. */
990 static void
991 df_uses_record (df, loc, ref_type, bb, insn, flags)
992 struct df *df;
993 rtx *loc;
994 enum df_ref_type ref_type;
995 basic_block bb;
996 rtx insn;
997 enum df_ref_flags flags;
999 RTX_CODE code;
1000 rtx x;
1001 retry:
1002 x = *loc;
1003 if (!x)
1004 return;
1005 code = GET_CODE (x);
1006 switch (code)
1008 case LABEL_REF:
1009 case SYMBOL_REF:
1010 case CONST_INT:
1011 case CONST:
1012 case CONST_DOUBLE:
1013 case CONST_VECTOR:
1014 case PC:
1015 case CC0:
1016 case ADDR_VEC:
1017 case ADDR_DIFF_VEC:
1018 return;
1020 case CLOBBER:
1021 /* If we are clobbering a MEM, mark any registers inside the address
1022 as being used. */
1023 if (GET_CODE (XEXP (x, 0)) == MEM)
1024 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
1025 DF_REF_REG_MEM_STORE, bb, insn, flags);
1027 /* If we're clobbering a REG then we have a def so ignore. */
1028 return;
1030 case MEM:
1031 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, flags);
1032 return;
1034 case SUBREG:
1035 /* While we're here, optimize this case. */
1037 /* In case the SUBREG is not of a REG, do not optimize. */
1038 if (GET_CODE (SUBREG_REG (x)) != REG)
1040 loc = &SUBREG_REG (x);
1041 df_uses_record (df, loc, ref_type, bb, insn, flags);
1042 return;
1044 #ifdef CLASS_CANNOT_CHANGE_MODE
1045 flags |= DF_REF_MODE_CHANGE;
1046 #endif
1048 /* ... Fall through ... */
1050 case REG:
1051 /* See a REG (or SUBREG) other than being set. */
1052 df_ref_record (df, x, loc, insn, ref_type, flags);
1053 return;
1055 case SET:
1057 rtx dst = SET_DEST (x);
1059 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1061 switch (GET_CODE (dst))
1063 enum df_ref_flags use_flags;
1064 case SUBREG:
1065 if ((df->flags & DF_FOR_REGALLOC) == 0
1066 && read_modify_subreg_p (dst))
1068 use_flags = DF_REF_READ_WRITE;
1069 #ifdef CLASS_CANNOT_CHANGE_MODE
1070 use_flags |= DF_REF_MODE_CHANGE;
1071 #endif
1072 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1073 insn, use_flags);
1074 break;
1076 /* ... FALLTHRU ... */
1077 case REG:
1078 case PARALLEL:
1079 case PC:
1080 case CC0:
1081 break;
1082 case MEM:
1083 df_uses_record (df, &XEXP (dst, 0),
1084 DF_REF_REG_MEM_STORE,
1085 bb, insn, 0);
1086 break;
1087 case STRICT_LOW_PART:
1088 /* A strict_low_part uses the whole REG and not just the SUBREG. */
1089 dst = XEXP (dst, 0);
1090 if (GET_CODE (dst) != SUBREG)
1091 abort ();
1092 use_flags = DF_REF_READ_WRITE;
1093 #ifdef CLASS_CANNOT_CHANGE_MODE
1094 use_flags |= DF_REF_MODE_CHANGE;
1095 #endif
1096 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1097 insn, use_flags);
1098 break;
1099 case ZERO_EXTRACT:
1100 case SIGN_EXTRACT:
1101 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1102 DF_REF_READ_WRITE);
1103 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1104 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1105 dst = XEXP (dst, 0);
1106 break;
1107 default:
1108 abort ();
1110 return;
1113 case RETURN:
1114 break;
1116 case ASM_OPERANDS:
1117 case UNSPEC_VOLATILE:
1118 case TRAP_IF:
1119 case ASM_INPUT:
1121 /* Traditional and volatile asm instructions must be considered to use
1122 and clobber all hard registers, all pseudo-registers and all of
1123 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1125 Consider for instance a volatile asm that changes the fpu rounding
1126 mode. An insn should not be moved across this even if it only uses
1127 pseudo-regs because it might give an incorrectly rounded result.
1129 For now, just mark any regs we can find in ASM_OPERANDS as
1130 used. */
1132 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1133 We can not just fall through here since then we would be confused
1134 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1135 traditional asms unlike their normal usage. */
1136 if (code == ASM_OPERANDS)
1138 int j;
1140 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1141 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1142 DF_REF_REG_USE, bb, insn, 0);
1143 return;
1145 break;
1148 case PRE_DEC:
1149 case POST_DEC:
1150 case PRE_INC:
1151 case POST_INC:
1152 case PRE_MODIFY:
1153 case POST_MODIFY:
1154 /* Catch the def of the register being modified. */
1155 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1157 /* ... Fall through to handle uses ... */
1159 default:
1160 break;
1163 /* Recursively scan the operands of this expression. */
1165 const char *fmt = GET_RTX_FORMAT (code);
1166 int i;
1168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1170 if (fmt[i] == 'e')
1172 /* Tail recursive case: save a function call level. */
1173 if (i == 0)
1175 loc = &XEXP (x, 0);
1176 goto retry;
1178 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1180 else if (fmt[i] == 'E')
1182 int j;
1183 for (j = 0; j < XVECLEN (x, i); j++)
1184 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1185 bb, insn, flags);
1192 /* Record all the df within INSN of basic block BB. */
1193 static void
1194 df_insn_refs_record (df, bb, insn)
1195 struct df *df;
1196 basic_block bb;
1197 rtx insn;
1199 int i;
1201 if (INSN_P (insn))
1203 rtx note;
1205 /* Record register defs */
1206 df_defs_record (df, PATTERN (insn), bb, insn);
1208 if (df->flags & DF_EQUIV_NOTES)
1209 for (note = REG_NOTES (insn); note;
1210 note = XEXP (note, 1))
1212 switch (REG_NOTE_KIND (note))
1214 case REG_EQUIV:
1215 case REG_EQUAL:
1216 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1217 bb, insn, 0);
1218 default:
1219 break;
1223 if (GET_CODE (insn) == CALL_INSN)
1225 rtx note;
1226 rtx x;
1228 /* Record the registers used to pass arguments. */
1229 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1230 note = XEXP (note, 1))
1232 if (GET_CODE (XEXP (note, 0)) == USE)
1233 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1234 bb, insn, 0);
1237 /* The stack ptr is used (honorarily) by a CALL insn. */
1238 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1239 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1241 if (df->flags & DF_HARD_REGS)
1243 /* Calls may also reference any of the global registers,
1244 so they are recorded as used. */
1245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1246 if (global_regs[i])
1248 x = df_reg_use_gen (i);
1249 df_uses_record (df, &SET_DEST (x),
1250 DF_REF_REG_USE, bb, insn, 0);
1255 /* Record the register uses. */
1256 df_uses_record (df, &PATTERN (insn),
1257 DF_REF_REG_USE, bb, insn, 0);
1259 if (GET_CODE (insn) == CALL_INSN)
1261 rtx note;
1263 if (df->flags & DF_HARD_REGS)
1265 /* Kill all registers invalidated by a call. */
1266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1267 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1269 rtx reg_clob = df_reg_clobber_gen (i);
1270 df_defs_record (df, reg_clob, bb, insn);
1274 /* There may be extra registers to be clobbered. */
1275 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1276 note;
1277 note = XEXP (note, 1))
1278 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1279 df_defs_record (df, XEXP (note, 0), bb, insn);
1285 /* Record all the refs within the basic block BB. */
1286 static void
1287 df_bb_refs_record (df, bb)
1288 struct df *df;
1289 basic_block bb;
1291 rtx insn;
1293 /* Scan the block an insn at a time from beginning to end. */
1294 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1296 if (INSN_P (insn))
1298 /* Record defs within INSN. */
1299 df_insn_refs_record (df, bb, insn);
1301 if (insn == bb->end)
1302 break;
1307 /* Record all the refs in the basic blocks specified by BLOCKS. */
1308 static void
1309 df_refs_record (df, blocks)
1310 struct df *df;
1311 bitmap blocks;
1313 basic_block bb;
1315 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1317 df_bb_refs_record (df, bb);
1321 /* Dataflow analysis routines. */
1324 /* Create reg-def chains for basic block BB. These are a list of
1325 definitions for each register. */
1326 static void
1327 df_bb_reg_def_chain_create (df, bb)
1328 struct df *df;
1329 basic_block bb;
1331 rtx insn;
1333 /* Perhaps the defs should be sorted using a depth first search
1334 of the CFG (or possibly a breadth first search). We currently
1335 scan the basic blocks in reverse order so that the first defs
1336 appear at the start of the chain. */
1338 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1339 insn = PREV_INSN (insn))
1341 struct df_link *link;
1342 unsigned int uid = INSN_UID (insn);
1344 if (! INSN_P (insn))
1345 continue;
1347 for (link = df->insns[uid].defs; link; link = link->next)
1349 struct ref *def = link->ref;
1350 unsigned int dregno = DF_REF_REGNO (def);
1352 /* Do not add ref's to the chain twice, i.e., only add new
1353 refs. XXX the same could be done by testing if the
1354 current insn is a modified (or a new) one. This would be
1355 faster. */
1356 if (DF_REF_ID (def) < df->def_id_save)
1357 continue;
1359 df->regs[dregno].defs
1360 = df_link_create (def, df->regs[dregno].defs);
1366 /* Create reg-def chains for each basic block within BLOCKS. These
1367 are a list of definitions for each register. */
1368 static void
1369 df_reg_def_chain_create (df, blocks)
1370 struct df *df;
1371 bitmap blocks;
1373 basic_block bb;
1375 FOR_EACH_BB_IN_BITMAP/*_REV*/ (blocks, 0, bb,
1377 df_bb_reg_def_chain_create (df, bb);
1382 /* Create reg-use chains for basic block BB. These are a list of uses
1383 for each register. */
1384 static void
1385 df_bb_reg_use_chain_create (df, bb)
1386 struct df *df;
1387 basic_block bb;
1389 rtx insn;
1391 /* Scan in forward order so that the last uses appear at the start
1392 of the chain. */
1394 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1395 insn = NEXT_INSN (insn))
1397 struct df_link *link;
1398 unsigned int uid = INSN_UID (insn);
1400 if (! INSN_P (insn))
1401 continue;
1403 for (link = df->insns[uid].uses; link; link = link->next)
1405 struct ref *use = link->ref;
1406 unsigned int uregno = DF_REF_REGNO (use);
1408 /* Do not add ref's to the chain twice, i.e., only add new
1409 refs. XXX the same could be done by testing if the
1410 current insn is a modified (or a new) one. This would be
1411 faster. */
1412 if (DF_REF_ID (use) < df->use_id_save)
1413 continue;
1415 df->regs[uregno].uses
1416 = df_link_create (use, df->regs[uregno].uses);
1422 /* Create reg-use chains for each basic block within BLOCKS. These
1423 are a list of uses for each register. */
1424 static void
1425 df_reg_use_chain_create (df, blocks)
1426 struct df *df;
1427 bitmap blocks;
1429 basic_block bb;
1431 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1433 df_bb_reg_use_chain_create (df, bb);
1438 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1439 static void
1440 df_bb_du_chain_create (df, bb, ru)
1441 struct df *df;
1442 basic_block bb;
1443 bitmap ru;
1445 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1446 rtx insn;
1448 bitmap_copy (ru, bb_info->ru_out);
1450 /* For each def in BB create a linked list (chain) of uses
1451 reached from the def. */
1452 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1453 insn = PREV_INSN (insn))
1455 struct df_link *def_link;
1456 struct df_link *use_link;
1457 unsigned int uid = INSN_UID (insn);
1459 if (! INSN_P (insn))
1460 continue;
1462 /* For each def in insn... */
1463 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1465 struct ref *def = def_link->ref;
1466 unsigned int dregno = DF_REF_REGNO (def);
1468 DF_REF_CHAIN (def) = 0;
1470 /* While the reg-use chains are not essential, it
1471 is _much_ faster to search these short lists rather
1472 than all the reaching uses, especially for large functions. */
1473 for (use_link = df->regs[dregno].uses; use_link;
1474 use_link = use_link->next)
1476 struct ref *use = use_link->ref;
1478 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1480 DF_REF_CHAIN (def)
1481 = df_link_create (use, DF_REF_CHAIN (def));
1483 bitmap_clear_bit (ru, DF_REF_ID (use));
1488 /* For each use in insn... */
1489 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1491 struct ref *use = use_link->ref;
1492 bitmap_set_bit (ru, DF_REF_ID (use));
1498 /* Create def-use chains from reaching use bitmaps for basic blocks
1499 in BLOCKS. */
1500 static void
1501 df_du_chain_create (df, blocks)
1502 struct df *df;
1503 bitmap blocks;
1505 bitmap ru;
1506 basic_block bb;
1508 ru = BITMAP_XMALLOC ();
1510 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1512 df_bb_du_chain_create (df, bb, ru);
1515 BITMAP_XFREE (ru);
1519 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1520 static void
1521 df_bb_ud_chain_create (df, bb)
1522 struct df *df;
1523 basic_block bb;
1525 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1526 struct ref **reg_def_last = df->reg_def_last;
1527 rtx insn;
1529 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1531 /* For each use in BB create a linked list (chain) of defs
1532 that reach the use. */
1533 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1534 insn = NEXT_INSN (insn))
1536 unsigned int uid = INSN_UID (insn);
1537 struct df_link *use_link;
1538 struct df_link *def_link;
1540 if (! INSN_P (insn))
1541 continue;
1543 /* For each use in insn... */
1544 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1546 struct ref *use = use_link->ref;
1547 unsigned int regno = DF_REF_REGNO (use);
1549 DF_REF_CHAIN (use) = 0;
1551 /* Has regno been defined in this BB yet? If so, use
1552 the last def as the single entry for the use-def
1553 chain for this use. Otherwise, we need to add all
1554 the defs using this regno that reach the start of
1555 this BB. */
1556 if (reg_def_last[regno])
1558 DF_REF_CHAIN (use)
1559 = df_link_create (reg_def_last[regno], 0);
1561 else
1563 /* While the reg-def chains are not essential, it is
1564 _much_ faster to search these short lists rather than
1565 all the reaching defs, especially for large
1566 functions. */
1567 for (def_link = df->regs[regno].defs; def_link;
1568 def_link = def_link->next)
1570 struct ref *def = def_link->ref;
1572 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1574 DF_REF_CHAIN (use)
1575 = df_link_create (def, DF_REF_CHAIN (use));
1582 /* For each def in insn... record the last def of each reg. */
1583 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1585 struct ref *def = def_link->ref;
1586 int dregno = DF_REF_REGNO (def);
1588 reg_def_last[dregno] = def;
1594 /* Create use-def chains from reaching def bitmaps for basic blocks
1595 within BLOCKS. */
1596 static void
1597 df_ud_chain_create (df, blocks)
1598 struct df *df;
1599 bitmap blocks;
1601 basic_block bb;
1603 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1605 df_bb_ud_chain_create (df, bb);
1611 static void
1612 df_rd_transfer_function (bb, changed, in, out, gen, kill, data)
1613 int bb ATTRIBUTE_UNUSED;
1614 int *changed;
1615 bitmap in, out, gen, kill;
1616 void *data ATTRIBUTE_UNUSED;
1618 *changed = bitmap_union_of_diff (out, gen, in, kill);
1622 static void
1623 df_ru_transfer_function (bb, changed, in, out, gen, kill, data)
1624 int bb ATTRIBUTE_UNUSED;
1625 int *changed;
1626 bitmap in, out, gen, kill;
1627 void *data ATTRIBUTE_UNUSED;
1629 *changed = bitmap_union_of_diff (in, gen, out, kill);
1633 static void
1634 df_lr_transfer_function (bb, changed, in, out, use, def, data)
1635 int bb ATTRIBUTE_UNUSED;
1636 int *changed;
1637 bitmap in, out, use, def;
1638 void *data ATTRIBUTE_UNUSED;
1640 *changed = bitmap_union_of_diff (in, use, out, def);
1644 /* Compute local reaching def info for basic block BB. */
1645 static void
1646 df_bb_rd_local_compute (df, bb)
1647 struct df *df;
1648 basic_block bb;
1650 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1651 rtx insn;
1653 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1654 insn = NEXT_INSN (insn))
1656 unsigned int uid = INSN_UID (insn);
1657 struct df_link *def_link;
1659 if (! INSN_P (insn))
1660 continue;
1662 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1664 struct ref *def = def_link->ref;
1665 unsigned int regno = DF_REF_REGNO (def);
1666 struct df_link *def2_link;
1668 for (def2_link = df->regs[regno].defs; def2_link;
1669 def2_link = def2_link->next)
1671 struct ref *def2 = def2_link->ref;
1673 /* Add all defs of this reg to the set of kills. This
1674 is greedy since many of these defs will not actually
1675 be killed by this BB but it keeps things a lot
1676 simpler. */
1677 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1679 /* Zap from the set of gens for this BB. */
1680 bitmap_clear_bit (bb_info->rd_gen, DF_REF_ID (def2));
1683 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1687 bb_info->rd_valid = 1;
1691 /* Compute local reaching def info for each basic block within BLOCKS. */
1692 static void
1693 df_rd_local_compute (df, blocks)
1694 struct df *df;
1695 bitmap blocks;
1697 basic_block bb;
1699 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1701 df_bb_rd_local_compute (df, bb);
1706 /* Compute local reaching use (upward exposed use) info for basic
1707 block BB. */
1708 static void
1709 df_bb_ru_local_compute (df, bb)
1710 struct df *df;
1711 basic_block bb;
1713 /* This is much more tricky than computing reaching defs. With
1714 reaching defs, defs get killed by other defs. With upwards
1715 exposed uses, these get killed by defs with the same regno. */
1717 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1718 rtx insn;
1721 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1722 insn = PREV_INSN (insn))
1724 unsigned int uid = INSN_UID (insn);
1725 struct df_link *def_link;
1726 struct df_link *use_link;
1728 if (! INSN_P (insn))
1729 continue;
1731 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1733 struct ref *def = def_link->ref;
1734 unsigned int dregno = DF_REF_REGNO (def);
1736 for (use_link = df->regs[dregno].uses; use_link;
1737 use_link = use_link->next)
1739 struct ref *use = use_link->ref;
1741 /* Add all uses of this reg to the set of kills. This
1742 is greedy since many of these uses will not actually
1743 be killed by this BB but it keeps things a lot
1744 simpler. */
1745 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1747 /* Zap from the set of gens for this BB. */
1748 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1752 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1754 struct ref *use = use_link->ref;
1755 /* Add use to set of gens in this BB. */
1756 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1759 bb_info->ru_valid = 1;
1763 /* Compute local reaching use (upward exposed use) info for each basic
1764 block within BLOCKS. */
1765 static void
1766 df_ru_local_compute (df, blocks)
1767 struct df *df;
1768 bitmap blocks;
1770 basic_block bb;
1772 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1774 df_bb_ru_local_compute (df, bb);
1779 /* Compute local live variable info for basic block BB. */
1780 static void
1781 df_bb_lr_local_compute (df, bb)
1782 struct df *df;
1783 basic_block bb;
1785 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1786 rtx insn;
1788 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1789 insn = PREV_INSN (insn))
1791 unsigned int uid = INSN_UID (insn);
1792 struct df_link *link;
1794 if (! INSN_P (insn))
1795 continue;
1797 for (link = df->insns[uid].defs; link; link = link->next)
1799 struct ref *def = link->ref;
1800 unsigned int dregno = DF_REF_REGNO (def);
1802 /* Add def to set of defs in this BB. */
1803 bitmap_set_bit (bb_info->lr_def, dregno);
1805 bitmap_clear_bit (bb_info->lr_use, dregno);
1808 for (link = df->insns[uid].uses; link; link = link->next)
1810 struct ref *use = link->ref;
1811 /* Add use to set of uses in this BB. */
1812 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1815 bb_info->lr_valid = 1;
1819 /* Compute local live variable info for each basic block within BLOCKS. */
1820 static void
1821 df_lr_local_compute (df, blocks)
1822 struct df *df;
1823 bitmap blocks;
1825 basic_block bb;
1827 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1829 df_bb_lr_local_compute (df, bb);
1834 /* Compute register info: lifetime, bb, and number of defs and uses
1835 for basic block BB. */
1836 static void
1837 df_bb_reg_info_compute (df, bb, live)
1838 struct df *df;
1839 basic_block bb;
1840 bitmap live;
1842 struct reg_info *reg_info = df->regs;
1843 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1844 rtx insn;
1846 bitmap_copy (live, bb_info->lr_out);
1848 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1849 insn = PREV_INSN (insn))
1851 unsigned int uid = INSN_UID (insn);
1852 unsigned int regno;
1853 struct df_link *link;
1855 if (! INSN_P (insn))
1856 continue;
1858 for (link = df->insns[uid].defs; link; link = link->next)
1860 struct ref *def = link->ref;
1861 unsigned int dregno = DF_REF_REGNO (def);
1863 /* Kill this register. */
1864 bitmap_clear_bit (live, dregno);
1865 reg_info[dregno].n_defs++;
1868 for (link = df->insns[uid].uses; link; link = link->next)
1870 struct ref *use = link->ref;
1871 unsigned int uregno = DF_REF_REGNO (use);
1873 /* This register is now live. */
1874 bitmap_set_bit (live, uregno);
1875 reg_info[uregno].n_uses++;
1878 /* Increment lifetimes of all live registers. */
1879 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1881 reg_info[regno].lifetime++;
1887 /* Compute register info: lifetime, bb, and number of defs and uses. */
1888 static void
1889 df_reg_info_compute (df, blocks)
1890 struct df *df;
1891 bitmap blocks;
1893 basic_block bb;
1894 bitmap live;
1896 live = BITMAP_XMALLOC ();
1898 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1900 df_bb_reg_info_compute (df, bb, live);
1903 BITMAP_XFREE (live);
1907 /* Assign LUIDs for BB. */
1908 static int
1909 df_bb_luids_set (df, bb)
1910 struct df *df;
1911 basic_block bb;
1913 rtx insn;
1914 int luid = 0;
1916 /* The LUIDs are monotonically increasing for each basic block. */
1918 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1920 if (INSN_P (insn))
1921 DF_INSN_LUID (df, insn) = luid++;
1922 DF_INSN_LUID (df, insn) = luid;
1924 if (insn == bb->end)
1925 break;
1927 return luid;
1931 /* Assign LUIDs for each basic block within BLOCKS. */
1932 static int
1933 df_luids_set (df, blocks)
1934 struct df *df;
1935 bitmap blocks;
1937 basic_block bb;
1938 int total = 0;
1940 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1942 total += df_bb_luids_set (df, bb);
1944 return total;
1948 /* Perform dataflow analysis using existing DF structure for blocks
1949 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1950 static void
1951 df_analyse_1 (df, blocks, flags, update)
1952 struct df *df;
1953 bitmap blocks;
1954 int flags;
1955 int update;
1957 int aflags;
1958 int dflags;
1959 int i;
1960 basic_block bb;
1962 dflags = 0;
1963 aflags = flags;
1964 if (flags & DF_UD_CHAIN)
1965 aflags |= DF_RD | DF_RD_CHAIN;
1967 if (flags & DF_DU_CHAIN)
1968 aflags |= DF_RU;
1970 if (flags & DF_RU)
1971 aflags |= DF_RU_CHAIN;
1973 if (flags & DF_REG_INFO)
1974 aflags |= DF_LR;
1976 if (! blocks)
1977 blocks = df->all_blocks;
1979 df->flags = flags;
1980 if (update)
1982 df_refs_update (df);
1983 /* More fine grained incremental dataflow analysis would be
1984 nice. For now recompute the whole shebang for the
1985 modified blocks. */
1986 #if 0
1987 df_refs_unlink (df, blocks);
1988 #endif
1989 /* All the def-use, use-def chains can be potentially
1990 modified by changes in one block. The size of the
1991 bitmaps can also change. */
1993 else
1995 /* Scan the function for all register defs and uses. */
1996 df_refs_queue (df);
1997 df_refs_record (df, blocks);
1999 /* Link all the new defs and uses to the insns. */
2000 df_refs_process (df);
2003 /* Allocate the bitmaps now the total number of defs and uses are
2004 known. If the number of defs or uses have changed, then
2005 these bitmaps need to be reallocated. */
2006 df_bitmaps_alloc (df, aflags);
2008 /* Set the LUIDs for each specified basic block. */
2009 df_luids_set (df, blocks);
2011 /* Recreate reg-def and reg-use chains from scratch so that first
2012 def is at the head of the reg-def chain and the last use is at
2013 the head of the reg-use chain. This is only important for
2014 regs local to a basic block as it speeds up searching. */
2015 if (aflags & DF_RD_CHAIN)
2017 df_reg_def_chain_create (df, blocks);
2020 if (aflags & DF_RU_CHAIN)
2022 df_reg_use_chain_create (df, blocks);
2025 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2026 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2027 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2028 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
2029 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
2030 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2032 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2033 flow_reverse_top_sort_order_compute (df->rts_order);
2034 for (i = 0; i < n_basic_blocks; i++)
2036 df->inverse_dfs_map[df->dfs_order[i]] = i;
2037 df->inverse_rc_map[df->rc_order[i]] = i;
2038 df->inverse_rts_map[df->rts_order[i]] = i;
2040 if (aflags & DF_RD)
2042 /* Compute the sets of gens and kills for the defs of each bb. */
2043 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2045 bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
2046 bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
2047 bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
2048 bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
2049 FOR_EACH_BB (bb)
2051 in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2052 out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2053 gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2054 kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2056 iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2057 DF_FORWARD, DF_UNION, df_rd_transfer_function,
2058 df->inverse_rc_map, NULL);
2059 free (in);
2060 free (out);
2061 free (gen);
2062 free (kill);
2066 if (aflags & DF_UD_CHAIN)
2068 /* Create use-def chains. */
2069 df_ud_chain_create (df, df->all_blocks);
2071 if (! (flags & DF_RD))
2072 dflags |= DF_RD;
2075 if (aflags & DF_RU)
2077 /* Compute the sets of gens and kills for the upwards exposed
2078 uses in each bb. */
2079 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2081 bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
2082 bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
2083 bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
2084 bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
2085 FOR_EACH_BB (bb)
2087 in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2088 out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2089 gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2090 kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2092 iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2093 DF_BACKWARD, DF_UNION, df_ru_transfer_function,
2094 df->inverse_rts_map, NULL);
2095 free (in);
2096 free (out);
2097 free (gen);
2098 free (kill);
2102 if (aflags & DF_DU_CHAIN)
2104 /* Create def-use chains. */
2105 df_du_chain_create (df, df->all_blocks);
2107 if (! (flags & DF_RU))
2108 dflags |= DF_RU;
2111 /* Free up bitmaps that are no longer required. */
2112 if (dflags)
2113 df_bitmaps_free (df, dflags);
2115 if (aflags & DF_LR)
2117 /* Compute the sets of defs and uses of live variables. */
2118 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2120 bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
2121 bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
2122 bitmap *use = xmalloc (sizeof (bitmap) * last_basic_block);
2123 bitmap *def = xmalloc (sizeof (bitmap) * last_basic_block);
2124 FOR_EACH_BB (bb)
2126 in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2127 out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2128 use[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2129 def[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2131 iterative_dataflow_bitmap (in, out, use, def, df->all_blocks,
2132 DF_BACKWARD, DF_UNION, df_lr_transfer_function,
2133 df->inverse_rts_map, NULL);
2134 free (in);
2135 free (out);
2136 free (use);
2137 free (def);
2141 if (aflags & DF_REG_INFO)
2143 df_reg_info_compute (df, df->all_blocks);
2145 free (df->dfs_order);
2146 free (df->rc_order);
2147 free (df->rts_order);
2148 free (df->inverse_rc_map);
2149 free (df->inverse_dfs_map);
2150 free (df->inverse_rts_map);
2154 /* Initialize dataflow analysis. */
2155 struct df *
2156 df_init ()
2158 struct df *df;
2160 df = xcalloc (1, sizeof (struct df));
2162 /* Squirrel away a global for debugging. */
2163 ddf = df;
2165 return df;
2169 /* Start queuing refs. */
2170 static int
2171 df_refs_queue (df)
2172 struct df *df;
2174 df->def_id_save = df->def_id;
2175 df->use_id_save = df->use_id;
2176 /* ???? Perhaps we should save current obstack state so that we can
2177 unwind it. */
2178 return 0;
2182 /* Process queued refs. */
2183 static int
2184 df_refs_process (df)
2185 struct df *df;
2187 unsigned int i;
2189 /* Build new insn-def chains. */
2190 for (i = df->def_id_save; i != df->def_id; i++)
2192 struct ref *def = df->defs[i];
2193 unsigned int uid = DF_REF_INSN_UID (def);
2195 /* Add def to head of def list for INSN. */
2196 df->insns[uid].defs
2197 = df_link_create (def, df->insns[uid].defs);
2200 /* Build new insn-use chains. */
2201 for (i = df->use_id_save; i != df->use_id; i++)
2203 struct ref *use = df->uses[i];
2204 unsigned int uid = DF_REF_INSN_UID (use);
2206 /* Add use to head of use list for INSN. */
2207 df->insns[uid].uses
2208 = df_link_create (use, df->insns[uid].uses);
2210 return 0;
2214 /* Update refs for basic block BB. */
2215 static int
2216 df_bb_refs_update (df, bb)
2217 struct df *df;
2218 basic_block bb;
2220 rtx insn;
2221 int count = 0;
2223 /* While we have to scan the chain of insns for this BB, we do not
2224 need to allocate and queue a long chain of BB/INSN pairs. Using
2225 a bitmap for insns_modified saves memory and avoids queuing
2226 duplicates. */
2228 for (insn = bb->head; ; insn = NEXT_INSN (insn))
2230 unsigned int uid;
2232 uid = INSN_UID (insn);
2234 if (bitmap_bit_p (df->insns_modified, uid))
2236 /* Delete any allocated refs of this insn. MPH, FIXME. */
2237 df_insn_refs_unlink (df, bb, insn);
2239 /* Scan the insn for refs. */
2240 df_insn_refs_record (df, bb, insn);
2242 count++;
2244 if (insn == bb->end)
2245 break;
2247 return count;
2251 /* Process all the modified/deleted insns that were queued. */
2252 static int
2253 df_refs_update (df)
2254 struct df *df;
2256 basic_block bb;
2257 int count = 0;
2259 if ((unsigned int) max_reg_num () >= df->reg_size)
2260 df_reg_table_realloc (df, 0);
2262 df_refs_queue (df);
2264 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2266 count += df_bb_refs_update (df, bb);
2269 df_refs_process (df);
2270 return count;
2274 /* Return nonzero if any of the requested blocks in the bitmap
2275 BLOCKS have been modified. */
2276 static int
2277 df_modified_p (df, blocks)
2278 struct df *df;
2279 bitmap blocks;
2281 int update = 0;
2282 basic_block bb;
2284 if (!df->n_bbs)
2285 return 0;
2287 FOR_EACH_BB (bb)
2288 if (bitmap_bit_p (df->bbs_modified, bb->index)
2289 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2291 update = 1;
2292 break;
2295 return update;
2299 /* Analyze dataflow info for the basic blocks specified by the bitmap
2300 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2301 modified blocks if BLOCKS is -1. */
2303 df_analyse (df, blocks, flags)
2304 struct df *df;
2305 bitmap blocks;
2306 int flags;
2308 int update;
2310 /* We could deal with additional basic blocks being created by
2311 rescanning everything again. */
2312 if (df->n_bbs && df->n_bbs != (unsigned int) last_basic_block)
2313 abort ();
2315 update = df_modified_p (df, blocks);
2316 if (update || (flags != df->flags))
2318 if (! blocks)
2320 if (df->n_bbs)
2322 /* Recompute everything from scratch. */
2323 df_free (df);
2325 /* Allocate and initialize data structures. */
2326 df_alloc (df, max_reg_num ());
2327 df_analyse_1 (df, 0, flags, 0);
2328 update = 1;
2330 else
2332 if (blocks == (bitmap) -1)
2333 blocks = df->bbs_modified;
2335 if (! df->n_bbs)
2336 abort ();
2338 df_analyse_1 (df, blocks, flags, 1);
2339 bitmap_zero (df->bbs_modified);
2340 bitmap_zero (df->insns_modified);
2343 return update;
2347 /* Free all the dataflow info and the DF structure. */
2348 void
2349 df_finish (df)
2350 struct df *df;
2352 df_free (df);
2353 free (df);
2357 /* Unlink INSN from its reference information. */
2358 static void
2359 df_insn_refs_unlink (df, bb, insn)
2360 struct df *df;
2361 basic_block bb ATTRIBUTE_UNUSED;
2362 rtx insn;
2364 struct df_link *link;
2365 unsigned int uid;
2367 uid = INSN_UID (insn);
2369 /* Unlink all refs defined by this insn. */
2370 for (link = df->insns[uid].defs; link; link = link->next)
2371 df_def_unlink (df, link->ref);
2373 /* Unlink all refs used by this insn. */
2374 for (link = df->insns[uid].uses; link; link = link->next)
2375 df_use_unlink (df, link->ref);
2377 df->insns[uid].defs = 0;
2378 df->insns[uid].uses = 0;
2382 #if 0
2383 /* Unlink all the insns within BB from their reference information. */
2384 static void
2385 df_bb_refs_unlink (df, bb)
2386 struct df *df;
2387 basic_block bb;
2389 rtx insn;
2391 /* Scan the block an insn at a time from beginning to end. */
2392 for (insn = bb->head; ; insn = NEXT_INSN (insn))
2394 if (INSN_P (insn))
2396 /* Unlink refs for INSN. */
2397 df_insn_refs_unlink (df, bb, insn);
2399 if (insn == bb->end)
2400 break;
2405 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2406 Not currently used. */
2407 static void
2408 df_refs_unlink (df, blocks)
2409 struct df *df;
2410 bitmap blocks;
2412 basic_block bb;
2414 if (blocks)
2416 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2418 df_bb_refs_unlink (df, bb);
2421 else
2423 FOR_EACH_BB (bb)
2424 df_bb_refs_unlink (df, bb);
2427 #endif
2429 /* Functions to modify insns. */
2432 /* Delete INSN and all its reference information. */
2434 df_insn_delete (df, bb, insn)
2435 struct df *df;
2436 basic_block bb ATTRIBUTE_UNUSED;
2437 rtx insn;
2439 /* If the insn is a jump, we should perhaps call delete_insn to
2440 handle the JUMP_LABEL? */
2442 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2443 if (insn == bb->head)
2444 abort ();
2446 /* Delete the insn. */
2447 delete_insn (insn);
2449 df_insn_modify (df, bb, insn);
2451 return NEXT_INSN (insn);
2455 /* Mark that INSN within BB may have changed (created/modified/deleted).
2456 This may be called multiple times for the same insn. There is no
2457 harm calling this function if the insn wasn't changed; it will just
2458 slow down the rescanning of refs. */
2459 void
2460 df_insn_modify (df, bb, insn)
2461 struct df *df;
2462 basic_block bb;
2463 rtx insn;
2465 unsigned int uid;
2467 uid = INSN_UID (insn);
2468 if (uid >= df->insn_size)
2469 df_insn_table_realloc (df, uid);
2471 bitmap_set_bit (df->bbs_modified, bb->index);
2472 bitmap_set_bit (df->insns_modified, uid);
2474 /* For incremental updating on the fly, perhaps we could make a copy
2475 of all the refs of the original insn and turn them into
2476 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2477 the original refs. If validate_change fails then these anti-refs
2478 will just get ignored. */
2482 typedef struct replace_args
2484 rtx match;
2485 rtx replacement;
2486 rtx insn;
2487 int modified;
2488 } replace_args;
2491 /* Replace mem pointed to by PX with its associated pseudo register.
2492 DATA is actually a pointer to a structure describing the
2493 instruction currently being scanned and the MEM we are currently
2494 replacing. */
2495 static int
2496 df_rtx_mem_replace (px, data)
2497 rtx *px;
2498 void *data;
2500 replace_args *args = (replace_args *) data;
2501 rtx mem = *px;
2503 if (mem == NULL_RTX)
2504 return 0;
2506 switch (GET_CODE (mem))
2508 case MEM:
2509 break;
2511 case CONST_DOUBLE:
2512 /* We're not interested in the MEM associated with a
2513 CONST_DOUBLE, so there's no need to traverse into one. */
2514 return -1;
2516 default:
2517 /* This is not a MEM. */
2518 return 0;
2521 if (!rtx_equal_p (args->match, mem))
2522 /* This is not the MEM we are currently replacing. */
2523 return 0;
2525 /* Actually replace the MEM. */
2526 validate_change (args->insn, px, args->replacement, 1);
2527 args->modified++;
2529 return 0;
2534 df_insn_mem_replace (df, bb, insn, mem, reg)
2535 struct df *df;
2536 basic_block bb;
2537 rtx insn;
2538 rtx mem;
2539 rtx reg;
2541 replace_args args;
2543 args.insn = insn;
2544 args.match = mem;
2545 args.replacement = reg;
2546 args.modified = 0;
2548 /* Search and replace all matching mems within insn. */
2549 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2551 if (args.modified)
2552 df_insn_modify (df, bb, insn);
2554 /* ???? FIXME. We may have a new def or one or more new uses of REG
2555 in INSN. REG should be a new pseudo so it won't affect the
2556 dataflow information that we currently have. We should add
2557 the new uses and defs to INSN and then recreate the chains
2558 when df_analyse is called. */
2559 return args.modified;
2563 /* Replace one register with another. Called through for_each_rtx; PX
2564 points to the rtx being scanned. DATA is actually a pointer to a
2565 structure of arguments. */
2566 static int
2567 df_rtx_reg_replace (px, data)
2568 rtx *px;
2569 void *data;
2571 rtx x = *px;
2572 replace_args *args = (replace_args *) data;
2574 if (x == NULL_RTX)
2575 return 0;
2577 if (x == args->match)
2579 validate_change (args->insn, px, args->replacement, 1);
2580 args->modified++;
2583 return 0;
2587 /* Replace the reg within every ref on CHAIN that is within the set
2588 BLOCKS of basic blocks with NEWREG. Also update the regs within
2589 REG_NOTES. */
2590 void
2591 df_refs_reg_replace (df, blocks, chain, oldreg, newreg)
2592 struct df *df;
2593 bitmap blocks;
2594 struct df_link *chain;
2595 rtx oldreg;
2596 rtx newreg;
2598 struct df_link *link;
2599 replace_args args;
2601 if (! blocks)
2602 blocks = df->all_blocks;
2604 args.match = oldreg;
2605 args.replacement = newreg;
2606 args.modified = 0;
2608 for (link = chain; link; link = link->next)
2610 struct ref *ref = link->ref;
2611 rtx insn = DF_REF_INSN (ref);
2613 if (! INSN_P (insn))
2614 continue;
2616 if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
2618 df_ref_reg_replace (df, ref, oldreg, newreg);
2620 /* Replace occurrences of the reg within the REG_NOTES. */
2621 if ((! link->next || DF_REF_INSN (ref)
2622 != DF_REF_INSN (link->next->ref))
2623 && REG_NOTES (insn))
2625 args.insn = insn;
2626 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2629 else
2631 /* Temporary check to ensure that we have a grip on which
2632 regs should be replaced. */
2633 abort ();
2639 /* Replace all occurrences of register OLDREG with register NEWREG in
2640 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2641 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2642 routine expects the reg-use and reg-def chains to be valid. */
2644 df_reg_replace (df, blocks, oldreg, newreg)
2645 struct df *df;
2646 bitmap blocks;
2647 rtx oldreg;
2648 rtx newreg;
2650 unsigned int oldregno = REGNO (oldreg);
2652 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2653 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2654 return 1;
2658 /* Try replacing the reg within REF with NEWREG. Do not modify
2659 def-use/use-def chains. */
2661 df_ref_reg_replace (df, ref, oldreg, newreg)
2662 struct df *df;
2663 struct ref *ref;
2664 rtx oldreg;
2665 rtx newreg;
2667 /* Check that insn was deleted by being converted into a NOTE. If
2668 so ignore this insn. */
2669 if (! INSN_P (DF_REF_INSN (ref)))
2670 return 0;
2672 if (oldreg && oldreg != DF_REF_REG (ref))
2673 abort ();
2675 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2676 return 0;
2678 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2679 return 1;
2683 struct ref*
2684 df_bb_def_use_swap (df, bb, def_insn, use_insn, regno)
2685 struct df * df;
2686 basic_block bb;
2687 rtx def_insn;
2688 rtx use_insn;
2689 unsigned int regno;
2691 struct ref *def;
2692 struct ref *use;
2693 int def_uid;
2694 int use_uid;
2695 struct df_link *link;
2697 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2698 if (! def)
2699 return 0;
2701 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2702 if (! use)
2703 return 0;
2705 /* The USE no longer exists. */
2706 use_uid = INSN_UID (use_insn);
2707 df_use_unlink (df, use);
2708 df_ref_unlink (&df->insns[use_uid].uses, use);
2710 /* The DEF requires shifting so remove it from DEF_INSN
2711 and add it to USE_INSN by reusing LINK. */
2712 def_uid = INSN_UID (def_insn);
2713 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2714 link->ref = def;
2715 link->next = df->insns[use_uid].defs;
2716 df->insns[use_uid].defs = link;
2718 #if 0
2719 link = df_ref_unlink (&df->regs[regno].defs, def);
2720 link->ref = def;
2721 link->next = df->regs[regno].defs;
2722 df->insns[regno].defs = link;
2723 #endif
2725 DF_REF_INSN (def) = use_insn;
2726 return def;
2730 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2731 insns must be processed by this routine. */
2732 static void
2733 df_insns_modify (df, bb, first_insn, last_insn)
2734 struct df *df;
2735 basic_block bb;
2736 rtx first_insn;
2737 rtx last_insn;
2739 rtx insn;
2741 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2743 unsigned int uid;
2745 /* A non-const call should not have slipped through the net. If
2746 it does, we need to create a new basic block. Ouch. The
2747 same applies for a label. */
2748 if ((GET_CODE (insn) == CALL_INSN
2749 && ! CONST_OR_PURE_CALL_P (insn))
2750 || GET_CODE (insn) == CODE_LABEL)
2751 abort ();
2753 uid = INSN_UID (insn);
2755 if (uid >= df->insn_size)
2756 df_insn_table_realloc (df, uid);
2758 df_insn_modify (df, bb, insn);
2760 if (insn == last_insn)
2761 break;
2766 /* Emit PATTERN before INSN within BB. */
2768 df_pattern_emit_before (df, pattern, bb, insn)
2769 struct df *df ATTRIBUTE_UNUSED;
2770 rtx pattern;
2771 basic_block bb;
2772 rtx insn;
2774 rtx ret_insn;
2775 rtx prev_insn = PREV_INSN (insn);
2777 /* We should not be inserting before the start of the block. */
2778 if (insn == bb->head)
2779 abort ();
2780 ret_insn = emit_insn_before (pattern, insn);
2781 if (ret_insn == insn)
2782 return ret_insn;
2784 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2785 return ret_insn;
2789 /* Emit PATTERN after INSN within BB. */
2791 df_pattern_emit_after (df, pattern, bb, insn)
2792 struct df *df;
2793 rtx pattern;
2794 basic_block bb;
2795 rtx insn;
2797 rtx ret_insn;
2799 ret_insn = emit_insn_after (pattern, insn);
2800 if (ret_insn == insn)
2801 return ret_insn;
2803 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2804 return ret_insn;
2808 /* Emit jump PATTERN after INSN within BB. */
2810 df_jump_pattern_emit_after (df, pattern, bb, insn)
2811 struct df *df;
2812 rtx pattern;
2813 basic_block bb;
2814 rtx insn;
2816 rtx ret_insn;
2818 ret_insn = emit_jump_insn_after (pattern, insn);
2819 if (ret_insn == insn)
2820 return ret_insn;
2822 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2823 return ret_insn;
2827 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2829 This function should only be used to move loop invariant insns
2830 out of a loop where it has been proven that the def-use info
2831 will still be valid. */
2833 df_insn_move_before (df, bb, insn, before_bb, before_insn)
2834 struct df *df;
2835 basic_block bb;
2836 rtx insn;
2837 basic_block before_bb;
2838 rtx before_insn;
2840 struct df_link *link;
2841 unsigned int uid;
2843 if (! bb)
2844 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2846 uid = INSN_UID (insn);
2848 /* Change bb for all df defined and used by this insn. */
2849 for (link = df->insns[uid].defs; link; link = link->next)
2850 DF_REF_BB (link->ref) = before_bb;
2851 for (link = df->insns[uid].uses; link; link = link->next)
2852 DF_REF_BB (link->ref) = before_bb;
2854 /* The lifetimes of the registers used in this insn will be reduced
2855 while the lifetimes of the registers defined in this insn
2856 are likely to be increased. */
2858 /* ???? Perhaps all the insns moved should be stored on a list
2859 which df_analyse removes when it recalculates data flow. */
2861 return emit_insn_before (insn, before_insn);
2864 /* Functions to query dataflow information. */
2868 df_insn_regno_def_p (df, bb, insn, regno)
2869 struct df *df;
2870 basic_block bb ATTRIBUTE_UNUSED;
2871 rtx insn;
2872 unsigned int regno;
2874 unsigned int uid;
2875 struct df_link *link;
2877 uid = INSN_UID (insn);
2879 for (link = df->insns[uid].defs; link; link = link->next)
2881 struct ref *def = link->ref;
2883 if (DF_REF_REGNO (def) == regno)
2884 return 1;
2887 return 0;
2891 static int
2892 df_def_dominates_all_uses_p (df, def)
2893 struct df *df ATTRIBUTE_UNUSED;
2894 struct ref *def;
2896 struct df_link *du_link;
2898 /* Follow def-use chain to find all the uses of this def. */
2899 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
2901 struct ref *use = du_link->ref;
2902 struct df_link *ud_link;
2904 /* Follow use-def chain to check all the defs for this use. */
2905 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
2906 if (ud_link->ref != def)
2907 return 0;
2909 return 1;
2914 df_insn_dominates_all_uses_p (df, bb, insn)
2915 struct df *df;
2916 basic_block bb ATTRIBUTE_UNUSED;
2917 rtx insn;
2919 unsigned int uid;
2920 struct df_link *link;
2922 uid = INSN_UID (insn);
2924 for (link = df->insns[uid].defs; link; link = link->next)
2926 struct ref *def = link->ref;
2928 if (! df_def_dominates_all_uses_p (df, def))
2929 return 0;
2932 return 1;
2936 /* Return nonzero if all DF dominates all the uses within the bitmap
2937 BLOCKS. */
2938 static int
2939 df_def_dominates_uses_p (df, def, blocks)
2940 struct df *df ATTRIBUTE_UNUSED;
2941 struct ref *def;
2942 bitmap blocks;
2944 struct df_link *du_link;
2946 /* Follow def-use chain to find all the uses of this def. */
2947 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
2949 struct ref *use = du_link->ref;
2950 struct df_link *ud_link;
2952 /* Only worry about the uses within BLOCKS. For example,
2953 consider a register defined within a loop that is live at the
2954 loop exits. */
2955 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
2957 /* Follow use-def chain to check all the defs for this use. */
2958 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
2959 if (ud_link->ref != def)
2960 return 0;
2963 return 1;
2967 /* Return nonzero if all the defs of INSN within BB dominates
2968 all the corresponding uses. */
2970 df_insn_dominates_uses_p (df, bb, insn, blocks)
2971 struct df *df;
2972 basic_block bb ATTRIBUTE_UNUSED;
2973 rtx insn;
2974 bitmap blocks;
2976 unsigned int uid;
2977 struct df_link *link;
2979 uid = INSN_UID (insn);
2981 for (link = df->insns[uid].defs; link; link = link->next)
2983 struct ref *def = link->ref;
2985 /* Only consider the defs within BLOCKS. */
2986 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
2987 && ! df_def_dominates_uses_p (df, def, blocks))
2988 return 0;
2990 return 1;
2994 /* Return the basic block that REG referenced in or NULL if referenced
2995 in multiple basic blocks. */
2996 basic_block
2997 df_regno_bb (df, regno)
2998 struct df *df;
2999 unsigned int regno;
3001 struct df_link *defs = df->regs[regno].defs;
3002 struct df_link *uses = df->regs[regno].uses;
3003 struct ref *def = defs ? defs->ref : 0;
3004 struct ref *use = uses ? uses->ref : 0;
3005 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3006 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3008 /* Compare blocks of first def and last use. ???? FIXME. What if
3009 the reg-def and reg-use lists are not correctly ordered. */
3010 return bb_def == bb_use ? bb_def : 0;
3014 /* Return nonzero if REG used in multiple basic blocks. */
3016 df_reg_global_p (df, reg)
3017 struct df *df;
3018 rtx reg;
3020 return df_regno_bb (df, REGNO (reg)) != 0;
3024 /* Return total lifetime (in insns) of REG. */
3026 df_reg_lifetime (df, reg)
3027 struct df *df;
3028 rtx reg;
3030 return df->regs[REGNO (reg)].lifetime;
3034 /* Return nonzero if REG live at start of BB. */
3036 df_bb_reg_live_start_p (df, bb, reg)
3037 struct df *df ATTRIBUTE_UNUSED;
3038 basic_block bb;
3039 rtx reg;
3041 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3043 #ifdef ENABLE_CHECKING
3044 if (! bb_info->lr_in)
3045 abort ();
3046 #endif
3048 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3052 /* Return nonzero if REG live at end of BB. */
3054 df_bb_reg_live_end_p (df, bb, reg)
3055 struct df *df ATTRIBUTE_UNUSED;
3056 basic_block bb;
3057 rtx reg;
3059 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3061 #ifdef ENABLE_CHECKING
3062 if (! bb_info->lr_in)
3063 abort ();
3064 #endif
3066 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3070 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3071 after life of REG2, or 0, if the lives overlap. */
3073 df_bb_regs_lives_compare (df, bb, reg1, reg2)
3074 struct df *df;
3075 basic_block bb;
3076 rtx reg1;
3077 rtx reg2;
3079 unsigned int regno1 = REGNO (reg1);
3080 unsigned int regno2 = REGNO (reg2);
3081 struct ref *def1;
3082 struct ref *use1;
3083 struct ref *def2;
3084 struct ref *use2;
3087 /* The regs must be local to BB. */
3088 if (df_regno_bb (df, regno1) != bb
3089 || df_regno_bb (df, regno2) != bb)
3090 abort ();
3092 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3093 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3095 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3096 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3097 return -1;
3099 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3100 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3102 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3103 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3104 return 1;
3106 return 0;
3110 /* Return last use of REGNO within BB. */
3111 static struct ref *
3112 df_bb_regno_last_use_find (df, bb, regno)
3113 struct df * df;
3114 basic_block bb ATTRIBUTE_UNUSED;
3115 unsigned int regno;
3117 struct df_link *link;
3119 /* This assumes that the reg-use list is ordered such that for any
3120 BB, the last use is found first. However, since the BBs are not
3121 ordered, the first use in the chain is not necessarily the last
3122 use in the function. */
3123 for (link = df->regs[regno].uses; link; link = link->next)
3125 struct ref *use = link->ref;
3127 if (DF_REF_BB (use) == bb)
3128 return use;
3130 return 0;
3134 /* Return first def of REGNO within BB. */
3135 static struct ref *
3136 df_bb_regno_first_def_find (df, bb, regno)
3137 struct df * df;
3138 basic_block bb ATTRIBUTE_UNUSED;
3139 unsigned int regno;
3141 struct df_link *link;
3143 /* This assumes that the reg-def list is ordered such that for any
3144 BB, the first def is found first. However, since the BBs are not
3145 ordered, the first def in the chain is not necessarily the first
3146 def in the function. */
3147 for (link = df->regs[regno].defs; link; link = link->next)
3149 struct ref *def = link->ref;
3151 if (DF_REF_BB (def) == bb)
3152 return def;
3154 return 0;
3158 /* Return first use of REGNO inside INSN within BB. */
3159 static struct ref *
3160 df_bb_insn_regno_last_use_find (df, bb, insn, regno)
3161 struct df * df;
3162 basic_block bb ATTRIBUTE_UNUSED;
3163 rtx insn;
3164 unsigned int regno;
3166 unsigned int uid;
3167 struct df_link *link;
3169 uid = INSN_UID (insn);
3171 for (link = df->insns[uid].uses; link; link = link->next)
3173 struct ref *use = link->ref;
3175 if (DF_REF_REGNO (use) == regno)
3176 return use;
3179 return 0;
3183 /* Return first def of REGNO inside INSN within BB. */
3184 static struct ref *
3185 df_bb_insn_regno_first_def_find (df, bb, insn, regno)
3186 struct df * df;
3187 basic_block bb ATTRIBUTE_UNUSED;
3188 rtx insn;
3189 unsigned int regno;
3191 unsigned int uid;
3192 struct df_link *link;
3194 uid = INSN_UID (insn);
3196 for (link = df->insns[uid].defs; link; link = link->next)
3198 struct ref *def = link->ref;
3200 if (DF_REF_REGNO (def) == regno)
3201 return def;
3204 return 0;
3208 /* Return insn using REG if the BB contains only a single
3209 use and def of REG. */
3211 df_bb_single_def_use_insn_find (df, bb, insn, reg)
3212 struct df * df;
3213 basic_block bb;
3214 rtx insn;
3215 rtx reg;
3217 struct ref *def;
3218 struct ref *use;
3219 struct df_link *du_link;
3221 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3223 if (! def)
3224 abort ();
3226 du_link = DF_REF_CHAIN (def);
3228 if (! du_link)
3229 return NULL_RTX;
3231 use = du_link->ref;
3233 /* Check if def is dead. */
3234 if (! use)
3235 return NULL_RTX;
3237 /* Check for multiple uses. */
3238 if (du_link->next)
3239 return NULL_RTX;
3241 return DF_REF_INSN (use);
3244 /* Functions for debugging/dumping dataflow information. */
3247 /* Dump a def-use or use-def chain for REF to FILE. */
3248 static void
3249 df_chain_dump (link, file)
3250 struct df_link *link;
3251 FILE *file;
3253 fprintf (file, "{ ");
3254 for (; link; link = link->next)
3256 fprintf (file, "%c%d ",
3257 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3258 DF_REF_ID (link->ref));
3260 fprintf (file, "}");
3264 /* Dump a chain of refs with the associated regno. */
3265 static void
3266 df_chain_dump_regno (link, file)
3267 struct df_link *link;
3268 FILE *file;
3270 fprintf (file, "{ ");
3271 for (; link; link = link->next)
3273 fprintf (file, "%c%d(%d) ",
3274 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3275 DF_REF_ID (link->ref),
3276 DF_REF_REGNO (link->ref));
3278 fprintf (file, "}");
3282 /* Dump dataflow info. */
3283 void
3284 df_dump (df, flags, file)
3285 struct df *df;
3286 int flags;
3287 FILE *file;
3289 unsigned int j;
3290 basic_block bb;
3292 if (! df || ! file)
3293 return;
3295 fprintf (file, "\nDataflow summary:\n");
3296 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3297 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3299 if (flags & DF_RD)
3301 basic_block bb;
3303 fprintf (file, "Reaching defs:\n");
3304 FOR_EACH_BB (bb)
3306 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3308 if (! bb_info->rd_in)
3309 continue;
3311 fprintf (file, "bb %d in \t", bb->index);
3312 dump_bitmap (file, bb_info->rd_in);
3313 fprintf (file, "bb %d gen \t", bb->index);
3314 dump_bitmap (file, bb_info->rd_gen);
3315 fprintf (file, "bb %d kill\t", bb->index);
3316 dump_bitmap (file, bb_info->rd_kill);
3317 fprintf (file, "bb %d out \t", bb->index);
3318 dump_bitmap (file, bb_info->rd_out);
3322 if (flags & DF_UD_CHAIN)
3324 fprintf (file, "Use-def chains:\n");
3325 for (j = 0; j < df->n_defs; j++)
3327 if (df->defs[j])
3329 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3330 j, DF_REF_BBNO (df->defs[j]),
3331 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3332 DF_REF_INSN_UID (df->defs[j]),
3333 DF_REF_REGNO (df->defs[j]));
3334 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3335 fprintf (file, "read/write ");
3336 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3337 fprintf (file, "\n");
3342 if (flags & DF_RU)
3344 fprintf (file, "Reaching uses:\n");
3345 FOR_EACH_BB (bb)
3347 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3349 if (! bb_info->ru_in)
3350 continue;
3352 fprintf (file, "bb %d in \t", bb->index);
3353 dump_bitmap (file, bb_info->ru_in);
3354 fprintf (file, "bb %d gen \t", bb->index);
3355 dump_bitmap (file, bb_info->ru_gen);
3356 fprintf (file, "bb %d kill\t", bb->index);
3357 dump_bitmap (file, bb_info->ru_kill);
3358 fprintf (file, "bb %d out \t", bb->index);
3359 dump_bitmap (file, bb_info->ru_out);
3363 if (flags & DF_DU_CHAIN)
3365 fprintf (file, "Def-use chains:\n");
3366 for (j = 0; j < df->n_uses; j++)
3368 if (df->uses[j])
3370 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3371 j, DF_REF_BBNO (df->uses[j]),
3372 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3373 DF_REF_INSN_UID (df->uses[j]),
3374 DF_REF_REGNO (df->uses[j]));
3375 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3376 fprintf (file, "read/write ");
3377 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3378 fprintf (file, "\n");
3383 if (flags & DF_LR)
3385 fprintf (file, "Live regs:\n");
3386 FOR_EACH_BB (bb)
3388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3390 if (! bb_info->lr_in)
3391 continue;
3393 fprintf (file, "bb %d in \t", bb->index);
3394 dump_bitmap (file, bb_info->lr_in);
3395 fprintf (file, "bb %d use \t", bb->index);
3396 dump_bitmap (file, bb_info->lr_use);
3397 fprintf (file, "bb %d def \t", bb->index);
3398 dump_bitmap (file, bb_info->lr_def);
3399 fprintf (file, "bb %d out \t", bb->index);
3400 dump_bitmap (file, bb_info->lr_out);
3404 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3406 struct reg_info *reg_info = df->regs;
3408 fprintf (file, "Register info:\n");
3409 for (j = 0; j < df->n_regs; j++)
3411 if (((flags & DF_REG_INFO)
3412 && (reg_info[j].n_uses || reg_info[j].n_defs))
3413 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3414 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3416 fprintf (file, "reg %d", j);
3417 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3419 basic_block bb = df_regno_bb (df, j);
3421 if (bb)
3422 fprintf (file, " bb %d", bb->index);
3423 else
3424 fprintf (file, " bb ?");
3426 if (flags & DF_REG_INFO)
3428 fprintf (file, " life %d", reg_info[j].lifetime);
3431 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3433 fprintf (file, " defs ");
3434 if (flags & DF_REG_INFO)
3435 fprintf (file, "%d ", reg_info[j].n_defs);
3436 if (flags & DF_RD_CHAIN)
3437 df_chain_dump (reg_info[j].defs, file);
3440 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3442 fprintf (file, " uses ");
3443 if (flags & DF_REG_INFO)
3444 fprintf (file, "%d ", reg_info[j].n_uses);
3445 if (flags & DF_RU_CHAIN)
3446 df_chain_dump (reg_info[j].uses, file);
3449 fprintf (file, "\n");
3453 fprintf (file, "\n");
3457 void
3458 df_insn_debug (df, insn, file)
3459 struct df *df;
3460 rtx insn;
3461 FILE *file;
3463 unsigned int uid;
3464 int bbi;
3466 uid = INSN_UID (insn);
3467 if (uid >= df->insn_size)
3468 return;
3470 if (df->insns[uid].defs)
3471 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3472 else if (df->insns[uid].uses)
3473 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3474 else
3475 bbi = -1;
3477 fprintf (file, "insn %d bb %d luid %d defs ",
3478 uid, bbi, DF_INSN_LUID (df, insn));
3479 df_chain_dump (df->insns[uid].defs, file);
3480 fprintf (file, " uses ");
3481 df_chain_dump (df->insns[uid].uses, file);
3482 fprintf (file, "\n");
3486 void
3487 df_insn_debug_regno (df, insn, file)
3488 struct df *df;
3489 rtx insn;
3490 FILE *file;
3492 unsigned int uid;
3493 int bbi;
3495 uid = INSN_UID (insn);
3496 if (uid >= df->insn_size)
3497 return;
3499 if (df->insns[uid].defs)
3500 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3501 else if (df->insns[uid].uses)
3502 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3503 else
3504 bbi = -1;
3506 fprintf (file, "insn %d bb %d luid %d defs ",
3507 uid, bbi, DF_INSN_LUID (df, insn));
3508 df_chain_dump_regno (df->insns[uid].defs, file);
3509 fprintf (file, " uses ");
3510 df_chain_dump_regno (df->insns[uid].uses, file);
3511 fprintf (file, "\n");
3515 static void
3516 df_regno_debug (df, regno, file)
3517 struct df *df;
3518 unsigned int regno;
3519 FILE *file;
3521 if (regno >= df->reg_size)
3522 return;
3524 fprintf (file, "reg %d life %d defs ",
3525 regno, df->regs[regno].lifetime);
3526 df_chain_dump (df->regs[regno].defs, file);
3527 fprintf (file, " uses ");
3528 df_chain_dump (df->regs[regno].uses, file);
3529 fprintf (file, "\n");
3533 static void
3534 df_ref_debug (df, ref, file)
3535 struct df *df;
3536 struct ref *ref;
3537 FILE *file;
3539 fprintf (file, "%c%d ",
3540 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3541 DF_REF_ID (ref));
3542 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3543 DF_REF_REGNO (ref),
3544 DF_REF_BBNO (ref),
3545 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3546 INSN_UID (DF_REF_INSN (ref)));
3547 df_chain_dump (DF_REF_CHAIN (ref), file);
3548 fprintf (file, "\n");
3551 /* Functions for debugging from GDB. */
3553 void
3554 debug_df_insn (insn)
3555 rtx insn;
3557 df_insn_debug (ddf, insn, stderr);
3558 debug_rtx (insn);
3562 void
3563 debug_df_reg (reg)
3564 rtx reg;
3566 df_regno_debug (ddf, REGNO (reg), stderr);
3570 void
3571 debug_df_regno (regno)
3572 unsigned int regno;
3574 df_regno_debug (ddf, regno, stderr);
3578 void
3579 debug_df_ref (ref)
3580 struct ref *ref;
3582 df_ref_debug (ddf, ref, stderr);
3586 void
3587 debug_df_defno (defno)
3588 unsigned int defno;
3590 df_ref_debug (ddf, ddf->defs[defno], stderr);
3594 void
3595 debug_df_useno (defno)
3596 unsigned int defno;
3598 df_ref_debug (ddf, ddf->uses[defno], stderr);
3602 void
3603 debug_df_chain (link)
3604 struct df_link *link;
3606 df_chain_dump (link, stderr);
3607 fputc ('\n', stderr);
3611 /* Hybrid search algorithm from "Implementation Techniques for
3612 Efficient Data-Flow Analysis of Large Programs". */
3613 static void
3614 hybrid_search_bitmap (block, in, out, gen, kill, dir,
3615 conf_op, transfun, visited, pending,
3616 data)
3617 basic_block block;
3618 bitmap *in, *out, *gen, *kill;
3619 enum df_flow_dir dir;
3620 enum df_confluence_op conf_op;
3621 transfer_function_bitmap transfun;
3622 sbitmap visited;
3623 sbitmap pending;
3624 void *data;
3626 int changed;
3627 int i = block->index;
3628 edge e;
3629 basic_block bb = block;
3631 SET_BIT (visited, block->index);
3632 if (TEST_BIT (pending, block->index))
3634 if (dir == DF_FORWARD)
3636 /* Calculate <conf_op> of predecessor_outs. */
3637 bitmap_zero (in[i]);
3638 for (e = bb->pred; e != 0; e = e->pred_next)
3640 if (e->src == ENTRY_BLOCK_PTR)
3641 continue;
3642 switch (conf_op)
3644 case DF_UNION:
3645 bitmap_a_or_b (in[i], in[i], out[e->src->index]);
3646 break;
3647 case DF_INTERSECTION:
3648 bitmap_a_and_b (in[i], in[i], out[e->src->index]);
3649 break;
3653 else
3655 /* Calculate <conf_op> of successor ins. */
3656 bitmap_zero (out[i]);
3657 for (e = bb->succ; e != 0; e = e->succ_next)
3659 if (e->dest == EXIT_BLOCK_PTR)
3660 continue;
3661 switch (conf_op)
3663 case DF_UNION:
3664 bitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3665 break;
3666 case DF_INTERSECTION:
3667 bitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3668 break;
3672 /* Common part */
3673 (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3674 RESET_BIT (pending, i);
3675 if (changed)
3677 if (dir == DF_FORWARD)
3679 for (e = bb->succ; e != 0; e = e->succ_next)
3681 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3682 continue;
3683 SET_BIT (pending, e->dest->index);
3686 else
3688 for (e = bb->pred; e != 0; e = e->pred_next)
3690 if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3691 continue;
3692 SET_BIT (pending, e->src->index);
3697 if (dir == DF_FORWARD)
3699 for (e = bb->succ; e != 0; e = e->succ_next)
3701 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3702 continue;
3703 if (!TEST_BIT (visited, e->dest->index))
3704 hybrid_search_bitmap (e->dest, in, out, gen, kill, dir,
3705 conf_op, transfun, visited, pending,
3706 data);
3709 else
3711 for (e = bb->pred; e != 0; e = e->pred_next)
3713 if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3714 continue;
3715 if (!TEST_BIT (visited, e->src->index))
3716 hybrid_search_bitmap (e->src, in, out, gen, kill, dir,
3717 conf_op, transfun, visited, pending,
3718 data);
3724 /* Hybrid search for sbitmaps, rather than bitmaps. */
3725 static void
3726 hybrid_search_sbitmap (block, in, out, gen, kill, dir,
3727 conf_op, transfun, visited, pending,
3728 data)
3729 basic_block block;
3730 sbitmap *in, *out, *gen, *kill;
3731 enum df_flow_dir dir;
3732 enum df_confluence_op conf_op;
3733 transfer_function_sbitmap transfun;
3734 sbitmap visited;
3735 sbitmap pending;
3736 void *data;
3738 int changed;
3739 int i = block->index;
3740 edge e;
3741 basic_block bb = block;
3743 SET_BIT (visited, block->index);
3744 if (TEST_BIT (pending, block->index))
3746 if (dir == DF_FORWARD)
3748 /* Calculate <conf_op> of predecessor_outs. */
3749 sbitmap_zero (in[i]);
3750 for (e = bb->pred; e != 0; e = e->pred_next)
3752 if (e->src == ENTRY_BLOCK_PTR)
3753 continue;
3754 switch (conf_op)
3756 case DF_UNION:
3757 sbitmap_a_or_b (in[i], in[i], out[e->src->index]);
3758 break;
3759 case DF_INTERSECTION:
3760 sbitmap_a_and_b (in[i], in[i], out[e->src->index]);
3761 break;
3765 else
3767 /* Calculate <conf_op> of successor ins. */
3768 sbitmap_zero (out[i]);
3769 for (e = bb->succ; e != 0; e = e->succ_next)
3771 if (e->dest == EXIT_BLOCK_PTR)
3772 continue;
3773 switch (conf_op)
3775 case DF_UNION:
3776 sbitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3777 break;
3778 case DF_INTERSECTION:
3779 sbitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3780 break;
3784 /* Common part. */
3785 (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3786 RESET_BIT (pending, i);
3787 if (changed)
3789 if (dir == DF_FORWARD)
3791 for (e = bb->succ; e != 0; e = e->succ_next)
3793 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3794 continue;
3795 SET_BIT (pending, e->dest->index);
3798 else
3800 for (e = bb->pred; e != 0; e = e->pred_next)
3802 if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3803 continue;
3804 SET_BIT (pending, e->src->index);
3809 if (dir == DF_FORWARD)
3811 for (e = bb->succ; e != 0; e = e->succ_next)
3813 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3814 continue;
3815 if (!TEST_BIT (visited, e->dest->index))
3816 hybrid_search_sbitmap (e->dest, in, out, gen, kill, dir,
3817 conf_op, transfun, visited, pending,
3818 data);
3821 else
3823 for (e = bb->pred; e != 0; e = e->pred_next)
3825 if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3826 continue;
3827 if (!TEST_BIT (visited, e->src->index))
3828 hybrid_search_sbitmap (e->src, in, out, gen, kill, dir,
3829 conf_op, transfun, visited, pending,
3830 data);
3836 /* gen = GEN set.
3837 kill = KILL set.
3838 in, out = Filled in by function.
3839 blocks = Blocks to analyze.
3840 dir = Dataflow direction.
3841 conf_op = Confluence operation.
3842 transfun = Transfer function.
3843 order = Order to iterate in. (Should map block numbers -> order)
3844 data = Whatever you want. It's passed to the transfer function.
3846 This function will perform iterative bitvector dataflow, producing
3847 the in and out sets. Even if you only want to perform it for a
3848 small number of blocks, the vectors for in and out must be large
3849 enough for *all* blocks, because changing one block might affect
3850 others. However, it'll only put what you say to analyze on the
3851 initial worklist.
3853 For forward problems, you probably want to pass in a mapping of
3854 block number to rc_order (like df->inverse_rc_map).
3856 void
3857 iterative_dataflow_sbitmap (in, out, gen, kill, blocks,
3858 dir, conf_op, transfun, order, data)
3859 sbitmap *in, *out, *gen, *kill;
3860 bitmap blocks;
3861 enum df_flow_dir dir;
3862 enum df_confluence_op conf_op;
3863 transfer_function_sbitmap transfun;
3864 int *order;
3865 void *data;
3867 int i;
3868 fibheap_t worklist;
3869 basic_block bb;
3870 sbitmap visited, pending;
3872 pending = sbitmap_alloc (last_basic_block);
3873 visited = sbitmap_alloc (last_basic_block);
3874 sbitmap_zero (pending);
3875 sbitmap_zero (visited);
3876 worklist = fibheap_new ();
3878 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3880 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3881 SET_BIT (pending, i);
3882 if (dir == DF_FORWARD)
3883 sbitmap_copy (out[i], gen[i]);
3884 else
3885 sbitmap_copy (in[i], gen[i]);
3888 while (sbitmap_first_set_bit (pending) != -1)
3890 while (!fibheap_empty (worklist))
3892 i = (size_t) fibheap_extract_min (worklist);
3893 bb = BASIC_BLOCK (i);
3894 if (!TEST_BIT (visited, bb->index))
3895 hybrid_search_sbitmap (bb, in, out, gen, kill, dir,
3896 conf_op, transfun, visited, pending, data);
3899 if (sbitmap_first_set_bit (pending) != -1)
3901 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3903 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3905 sbitmap_zero (visited);
3907 else
3909 break;
3913 sbitmap_free (pending);
3914 sbitmap_free (visited);
3915 fibheap_delete (worklist);
3919 /* Exactly the same as iterative_dataflow_sbitmap, except it works on
3920 bitmaps instead. */
3921 void
3922 iterative_dataflow_bitmap (in, out, gen, kill, blocks,
3923 dir, conf_op, transfun, order, data)
3924 bitmap *in, *out, *gen, *kill;
3925 bitmap blocks;
3926 enum df_flow_dir dir;
3927 enum df_confluence_op conf_op;
3928 transfer_function_bitmap transfun;
3929 int *order;
3930 void *data;
3932 int i;
3933 fibheap_t worklist;
3934 basic_block bb;
3935 sbitmap visited, pending;
3937 pending = sbitmap_alloc (last_basic_block);
3938 visited = sbitmap_alloc (last_basic_block);
3939 sbitmap_zero (pending);
3940 sbitmap_zero (visited);
3941 worklist = fibheap_new ();
3943 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3945 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3946 SET_BIT (pending, i);
3947 if (dir == DF_FORWARD)
3948 bitmap_copy (out[i], gen[i]);
3949 else
3950 bitmap_copy (in[i], gen[i]);
3953 while (sbitmap_first_set_bit (pending) != -1)
3955 while (!fibheap_empty (worklist))
3957 i = (size_t) fibheap_extract_min (worklist);
3958 bb = BASIC_BLOCK (i);
3959 if (!TEST_BIT (visited, bb->index))
3960 hybrid_search_bitmap (bb, in, out, gen, kill, dir,
3961 conf_op, transfun, visited, pending, data);
3964 if (sbitmap_first_set_bit (pending) != -1)
3966 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3968 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3970 sbitmap_zero (visited);
3972 else
3974 break;
3977 sbitmap_free (pending);
3978 sbitmap_free (visited);
3979 fibheap_delete (worklist);