PR libstdc++/87308 adjust regex used in std::any pretty printer
[official-gcc.git] / gcc / ira-costs.c
blob6c1d9ddde5627ecbca54f26093c98ffb3cc9d92f
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
38 /* The flags is set up every time when we calculate pseudo register
39 classes through function ira_set_pseudo_classes. */
40 static bool pseudo_classes_defined_p = false;
42 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
43 static bool allocno_p;
45 /* Number of elements in array `costs'. */
46 static int cost_elements_num;
48 /* The `costs' struct records the cost of using hard registers of each
49 class considered for the calculation and of using memory for each
50 allocno or pseudo. */
51 struct costs
53 int mem_cost;
54 /* Costs for register classes start here. We process only some
55 allocno classes. */
56 int cost[1];
59 #define max_struct_costs_size \
60 (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62 (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64 (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66 (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68 (this_target_ira_int->x_this_op_costs)
70 /* Costs of each class for each allocno or pseudo. */
71 static struct costs *costs;
73 /* Accumulated costs of each class for each allocno. */
74 static struct costs *total_allocno_costs;
76 /* It is the current size of struct costs. */
77 static size_t struct_costs_size;
79 /* Return pointer to structure containing costs of allocno or pseudo
80 with given NUM in array ARR. */
81 #define COSTS(arr, num) \
82 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
84 /* Return index in COSTS when processing reg with REGNO. */
85 #define COST_INDEX(regno) (allocno_p \
86 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 : (int) regno)
89 /* Record register class preferences of each allocno or pseudo. Null
90 value means no preferences. It happens on the 1st iteration of the
91 cost calculation. */
92 static enum reg_class *pref;
94 /* Allocated buffers for pref. */
95 static enum reg_class *pref_buffer;
97 /* Record allocno class of each allocno with the same regno. */
98 static enum reg_class *regno_aclass;
100 /* Record cost gains for not allocating a register with an invariant
101 equivalence. */
102 static int *regno_equiv_gains;
104 /* Execution frequency of the current insn. */
105 static int frequency;
109 /* Info about reg classes whose costs are calculated for a pseudo. */
110 struct cost_classes
112 /* Number of the cost classes in the subsequent array. */
113 int num;
114 /* Container of the cost classes. */
115 enum reg_class classes[N_REG_CLASSES];
116 /* Map reg class -> index of the reg class in the previous array.
117 -1 if it is not a cost class. */
118 int index[N_REG_CLASSES];
119 /* Map hard regno index of first class in array CLASSES containing
120 the hard regno, -1 otherwise. */
121 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124 /* Types of pointers to the structure above. */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
128 /* Info about cost classes for each pseudo. */
129 static cost_classes_t *regno_cost_classes;
131 /* Helper for cost_classes hashing. */
133 struct cost_classes_hasher : pointer_hash <cost_classes>
135 static inline hashval_t hash (const cost_classes *);
136 static inline bool equal (const cost_classes *, const cost_classes *);
137 static inline void remove (cost_classes *);
140 /* Returns hash value for cost classes info HV. */
141 inline hashval_t
142 cost_classes_hasher::hash (const cost_classes *hv)
144 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147 /* Compares cost classes info HV1 and HV2. */
148 inline bool
149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
151 return (hv1->num == hv2->num
152 && memcmp (hv1->classes, hv2->classes,
153 sizeof (enum reg_class) * hv1->num) == 0);
156 /* Delete cost classes info V from the hash table. */
157 inline void
158 cost_classes_hasher::remove (cost_classes *v)
160 ira_free (v);
163 /* Hash table of unique cost classes. */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
166 /* Map allocno class -> cost classes for pseudo of given allocno
167 class. */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
170 /* Map mode -> cost classes for pseudo of give mode. */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
173 /* Cost classes that include all classes in ira_important_classes. */
174 static cost_classes all_cost_classes;
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177 the structure. */
178 static void
179 complete_cost_classes (cost_classes_t classes_ptr)
181 for (int i = 0; i < N_REG_CLASSES; i++)
182 classes_ptr->index[i] = -1;
183 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184 classes_ptr->hard_regno_index[i] = -1;
185 for (int i = 0; i < classes_ptr->num; i++)
187 enum reg_class cl = classes_ptr->classes[i];
188 classes_ptr->index[cl] = i;
189 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
191 unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 classes_ptr->hard_regno_index[hard_regno] = i;
198 /* Initialize info about the cost classes for each pseudo. */
199 static void
200 initiate_regno_cost_classes (void)
202 int size = sizeof (cost_classes_t) * max_reg_num ();
204 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205 memset (regno_cost_classes, 0, size);
206 memset (cost_classes_aclass_cache, 0,
207 sizeof (cost_classes_t) * N_REG_CLASSES);
208 memset (cost_classes_mode_cache, 0,
209 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211 all_cost_classes.num = ira_important_classes_num;
212 for (int i = 0; i < ira_important_classes_num; i++)
213 all_cost_classes.classes[i] = ira_important_classes[i];
214 complete_cost_classes (&all_cost_classes);
217 /* Create new cost classes from cost classes FROM and set up members
218 index and hard_regno_index. Return the new classes. The function
219 implements some common code of two functions
220 setup_regno_cost_classes_by_aclass and
221 setup_regno_cost_classes_by_mode. */
222 static cost_classes_t
223 setup_cost_classes (cost_classes_t from)
225 cost_classes_t classes_ptr;
227 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228 classes_ptr->num = from->num;
229 for (int i = 0; i < from->num; i++)
230 classes_ptr->classes[i] = from->classes[i];
231 complete_cost_classes (classes_ptr);
232 return classes_ptr;
235 /* Return a version of FULL that only considers registers in REGS that are
236 valid for mode MODE. Both FULL and the returned class are globally
237 allocated. */
238 static cost_classes_t
239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 const HARD_REG_SET &regs)
242 static struct cost_classes narrow;
243 int map[N_REG_CLASSES];
244 narrow.num = 0;
245 for (int i = 0; i < full->num; i++)
247 /* Assume that we'll drop the class. */
248 map[i] = -1;
250 /* Ignore classes that are too small for the mode. */
251 enum reg_class cl = full->classes[i];
252 if (!contains_reg_of_mode[cl][mode])
253 continue;
255 /* Calculate the set of registers in CL that belong to REGS and
256 are valid for MODE. */
257 HARD_REG_SET valid_for_cl;
258 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
259 AND_HARD_REG_SET (valid_for_cl, regs);
260 AND_COMPL_HARD_REG_SET (valid_for_cl,
261 ira_prohibited_class_mode_regs[cl][mode]);
262 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
263 if (hard_reg_set_empty_p (valid_for_cl))
264 continue;
266 /* Don't use this class if the set of valid registers is a subset
267 of an existing class. For example, suppose we have two classes
268 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
269 that the mode changes allowed by FR_REGS are not as general as
270 the mode changes allowed by GR_REGS.
272 In this situation, the mode changes for GR_AND_FR_REGS could
273 either be seen as the union or the intersection of the mode
274 changes allowed by the two subclasses. The justification for
275 the union-based definition would be that, if you want a mode
276 change that's only allowed by GR_REGS, you can pick a register
277 from the GR_REGS subclass. The justification for the
278 intersection-based definition would be that every register
279 from the class would allow the mode change.
281 However, if we have a register that needs to be in GR_REGS,
282 using GR_AND_FR_REGS with the intersection-based definition
283 would be too pessimistic, since it would bring in restrictions
284 that only apply to FR_REGS. Conversely, if we have a register
285 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
286 union-based definition would lose the extra restrictions
287 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
288 for cases where GR_REGS and FP_REGS are both valid. */
289 int pos;
290 for (pos = 0; pos < narrow.num; ++pos)
292 enum reg_class cl2 = narrow.classes[pos];
293 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
294 break;
296 map[i] = pos;
297 if (pos == narrow.num)
299 /* If several classes are equivalent, prefer to use the one
300 that was chosen as the allocno class. */
301 enum reg_class cl2 = ira_allocno_class_translate[cl];
302 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
303 cl = cl2;
304 narrow.classes[narrow.num++] = cl;
307 if (narrow.num == full->num)
308 return full;
310 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
311 if (*slot == NULL)
313 cost_classes_t classes = setup_cost_classes (&narrow);
314 /* Map equivalent classes to the representative that we chose above. */
315 for (int i = 0; i < ira_important_classes_num; i++)
317 enum reg_class cl = ira_important_classes[i];
318 int index = full->index[cl];
319 if (index >= 0)
320 classes->index[cl] = map[index];
322 *slot = classes;
324 return *slot;
327 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
328 This function is used when we know an initial approximation of
329 allocno class of the pseudo already, e.g. on the second iteration
330 of class cost calculation or after class cost calculation in
331 register-pressure sensitive insn scheduling or register-pressure
332 sensitive loop-invariant motion. */
333 static void
334 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
336 static struct cost_classes classes;
337 cost_classes_t classes_ptr;
338 enum reg_class cl;
339 int i;
340 cost_classes **slot;
341 HARD_REG_SET temp, temp2;
342 bool exclude_p;
344 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
346 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
347 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
348 /* We exclude classes from consideration which are subsets of
349 ACLASS only if ACLASS is an uniform class. */
350 exclude_p = ira_uniform_class_p[aclass];
351 classes.num = 0;
352 for (i = 0; i < ira_important_classes_num; i++)
354 cl = ira_important_classes[i];
355 if (exclude_p)
357 /* Exclude non-uniform classes which are subsets of
358 ACLASS. */
359 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
360 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
361 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
362 continue;
364 classes.classes[classes.num++] = cl;
366 slot = cost_classes_htab->find_slot (&classes, INSERT);
367 if (*slot == NULL)
369 classes_ptr = setup_cost_classes (&classes);
370 *slot = classes_ptr;
372 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
374 if (regno_reg_rtx[regno] != NULL_RTX)
376 /* Restrict the classes to those that are valid for REGNO's mode
377 (which might for example exclude singleton classes if the mode
378 requires two registers). Also restrict the classes to those that
379 are valid for subregs of REGNO. */
380 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
381 if (!valid_regs)
382 valid_regs = &reg_class_contents[ALL_REGS];
383 classes_ptr = restrict_cost_classes (classes_ptr,
384 PSEUDO_REGNO_MODE (regno),
385 *valid_regs);
387 regno_cost_classes[regno] = classes_ptr;
390 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
391 decrease number of cost classes for the pseudo, if hard registers
392 of some important classes can not hold a value of MODE. So the
393 pseudo can not get hard register of some important classes and cost
394 calculation for such important classes is only wasting CPU
395 time. */
396 static void
397 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
399 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
400 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
401 mode, *valid_regs);
402 else
404 if (cost_classes_mode_cache[mode] == NULL)
405 cost_classes_mode_cache[mode]
406 = restrict_cost_classes (&all_cost_classes, mode,
407 reg_class_contents[ALL_REGS]);
408 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
412 /* Finalize info about the cost classes for each pseudo. */
413 static void
414 finish_regno_cost_classes (void)
416 ira_free (regno_cost_classes);
417 delete cost_classes_htab;
418 cost_classes_htab = NULL;
423 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
424 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
425 be a pseudo register. */
426 static int
427 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
428 secondary_reload_info *prev_sri)
430 secondary_reload_info sri;
431 reg_class_t secondary_class = NO_REGS;
433 /* If X is a SCRATCH, there is actually nothing to move since we are
434 assuming optimal allocation. */
435 if (GET_CODE (x) == SCRATCH)
436 return 0;
438 /* Get the class we will actually use for a reload. */
439 rclass = targetm.preferred_reload_class (x, rclass);
441 /* If we need a secondary reload for an intermediate, the cost is
442 that to load the input into the intermediate register, then to
443 copy it. */
444 sri.prev_sri = prev_sri;
445 sri.extra_cost = 0;
446 /* PR 68770: Secondary reload might examine the t_icode field. */
447 sri.t_icode = CODE_FOR_nothing;
449 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
451 if (secondary_class != NO_REGS)
453 ira_init_register_move_cost_if_necessary (mode);
454 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
455 + sri.extra_cost
456 + copy_cost (x, mode, secondary_class, to_p, &sri));
459 /* For memory, use the memory move cost, for (hard) registers, use
460 the cost to move between the register classes, and use 2 for
461 everything else (constants). */
462 if (MEM_P (x) || rclass == NO_REGS)
463 return sri.extra_cost
464 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
465 else if (REG_P (x))
467 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
469 ira_init_register_move_cost_if_necessary (mode);
470 return (sri.extra_cost
471 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
473 else
474 /* If this is a constant, we may eventually want to call rtx_cost
475 here. */
476 return sri.extra_cost + COSTS_N_INSNS (1);
481 /* Record the cost of using memory or hard registers of various
482 classes for the operands in INSN.
484 N_ALTS is the number of alternatives.
485 N_OPS is the number of operands.
486 OPS is an array of the operands.
487 MODES are the modes of the operands, in case any are VOIDmode.
488 CONSTRAINTS are the constraints to use for the operands. This array
489 is modified by this procedure.
491 This procedure works alternative by alternative. For each
492 alternative we assume that we will be able to allocate all allocnos
493 to their ideal register class and calculate the cost of using that
494 alternative. Then we compute, for each operand that is a
495 pseudo-register, the cost of having the allocno allocated to each
496 register class and using it in that alternative. To this cost is
497 added the cost of the alternative.
499 The cost of each class for this insn is its lowest cost among all
500 the alternatives. */
501 static void
502 record_reg_classes (int n_alts, int n_ops, rtx *ops,
503 machine_mode *modes, const char **constraints,
504 rtx_insn *insn, enum reg_class *pref)
506 int alt;
507 int i, j, k;
508 int insn_allows_mem[MAX_RECOG_OPERANDS];
509 move_table *move_in_cost, *move_out_cost;
510 short (*mem_cost)[2];
512 for (i = 0; i < n_ops; i++)
513 insn_allows_mem[i] = 0;
515 /* Process each alternative, each time minimizing an operand's cost
516 with the cost for each operand in that alternative. */
517 alternative_mask preferred = get_preferred_alternatives (insn);
518 for (alt = 0; alt < n_alts; alt++)
520 enum reg_class classes[MAX_RECOG_OPERANDS];
521 int allows_mem[MAX_RECOG_OPERANDS];
522 enum reg_class rclass;
523 int alt_fail = 0;
524 int alt_cost = 0, op_cost_add;
526 if (!TEST_BIT (preferred, alt))
528 for (i = 0; i < recog_data.n_operands; i++)
529 constraints[i] = skip_alternative (constraints[i]);
531 continue;
534 for (i = 0; i < n_ops; i++)
536 unsigned char c;
537 const char *p = constraints[i];
538 rtx op = ops[i];
539 machine_mode mode = modes[i];
540 int allows_addr = 0;
541 int win = 0;
543 /* Initially show we know nothing about the register class. */
544 classes[i] = NO_REGS;
545 allows_mem[i] = 0;
547 /* If this operand has no constraints at all, we can
548 conclude nothing about it since anything is valid. */
549 if (*p == 0)
551 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
552 memset (this_op_costs[i], 0, struct_costs_size);
553 continue;
556 /* If this alternative is only relevant when this operand
557 matches a previous operand, we do different things
558 depending on whether this operand is a allocno-reg or not.
559 We must process any modifiers for the operand before we
560 can make this test. */
561 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
562 p++;
564 if (p[0] >= '0' && p[0] <= '0' + i)
566 /* Copy class and whether memory is allowed from the
567 matching alternative. Then perform any needed cost
568 computations and/or adjustments. */
569 j = p[0] - '0';
570 classes[i] = classes[j];
571 allows_mem[i] = allows_mem[j];
572 if (allows_mem[i])
573 insn_allows_mem[i] = 1;
575 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
577 /* If this matches the other operand, we have no
578 added cost and we win. */
579 if (rtx_equal_p (ops[j], op))
580 win = 1;
581 /* If we can put the other operand into a register,
582 add to the cost of this alternative the cost to
583 copy this operand to the register used for the
584 other operand. */
585 else if (classes[j] != NO_REGS)
587 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
588 win = 1;
591 else if (! REG_P (ops[j])
592 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
594 /* This op is an allocno but the one it matches is
595 not. */
597 /* If we can't put the other operand into a
598 register, this alternative can't be used. */
600 if (classes[j] == NO_REGS)
601 alt_fail = 1;
602 /* Otherwise, add to the cost of this alternative
603 the cost to copy the other operand to the hard
604 register used for this operand. */
605 else
606 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
608 else
610 /* The costs of this operand are not the same as the
611 other operand since move costs are not symmetric.
612 Moreover, if we cannot tie them, this alternative
613 needs to do a copy, which is one insn. */
614 struct costs *pp = this_op_costs[i];
615 int *pp_costs = pp->cost;
616 cost_classes_t cost_classes_ptr
617 = regno_cost_classes[REGNO (op)];
618 enum reg_class *cost_classes = cost_classes_ptr->classes;
619 bool in_p = recog_data.operand_type[i] != OP_OUT;
620 bool out_p = recog_data.operand_type[i] != OP_IN;
621 enum reg_class op_class = classes[i];
623 ira_init_register_move_cost_if_necessary (mode);
624 if (! in_p)
626 ira_assert (out_p);
627 if (op_class == NO_REGS)
629 mem_cost = ira_memory_move_cost[mode];
630 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
632 rclass = cost_classes[k];
633 pp_costs[k] = mem_cost[rclass][0] * frequency;
636 else
638 move_out_cost = ira_may_move_out_cost[mode];
639 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
641 rclass = cost_classes[k];
642 pp_costs[k]
643 = move_out_cost[op_class][rclass] * frequency;
647 else if (! out_p)
649 ira_assert (in_p);
650 if (op_class == NO_REGS)
652 mem_cost = ira_memory_move_cost[mode];
653 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
655 rclass = cost_classes[k];
656 pp_costs[k] = mem_cost[rclass][1] * frequency;
659 else
661 move_in_cost = ira_may_move_in_cost[mode];
662 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
664 rclass = cost_classes[k];
665 pp_costs[k]
666 = move_in_cost[rclass][op_class] * frequency;
670 else
672 if (op_class == NO_REGS)
674 mem_cost = ira_memory_move_cost[mode];
675 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
677 rclass = cost_classes[k];
678 pp_costs[k] = ((mem_cost[rclass][0]
679 + mem_cost[rclass][1])
680 * frequency);
683 else
685 move_in_cost = ira_may_move_in_cost[mode];
686 move_out_cost = ira_may_move_out_cost[mode];
687 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
689 rclass = cost_classes[k];
690 pp_costs[k] = ((move_in_cost[rclass][op_class]
691 + move_out_cost[op_class][rclass])
692 * frequency);
697 /* If the alternative actually allows memory, make
698 things a bit cheaper since we won't need an extra
699 insn to load it. */
700 pp->mem_cost
701 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
702 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
703 - allows_mem[i]) * frequency;
705 /* If we have assigned a class to this allocno in
706 our first pass, add a cost to this alternative
707 corresponding to what we would add if this
708 allocno were not in the appropriate class. */
709 if (pref)
711 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
713 if (pref_class == NO_REGS)
714 alt_cost
715 += ((out_p
716 ? ira_memory_move_cost[mode][op_class][0] : 0)
717 + (in_p
718 ? ira_memory_move_cost[mode][op_class][1]
719 : 0));
720 else if (ira_reg_class_intersect
721 [pref_class][op_class] == NO_REGS)
722 alt_cost
723 += ira_register_move_cost[mode][pref_class][op_class];
725 if (REGNO (ops[i]) != REGNO (ops[j])
726 && ! find_reg_note (insn, REG_DEAD, op))
727 alt_cost += 2;
729 p++;
733 /* Scan all the constraint letters. See if the operand
734 matches any of the constraints. Collect the valid
735 register classes and see if this operand accepts
736 memory. */
737 while ((c = *p))
739 switch (c)
741 case '*':
742 /* Ignore the next letter for this pass. */
743 c = *++p;
744 break;
746 case '^':
747 alt_cost += 2;
748 break;
750 case '?':
751 alt_cost += 2;
752 break;
754 case 'g':
755 if (MEM_P (op)
756 || (CONSTANT_P (op)
757 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
758 win = 1;
759 insn_allows_mem[i] = allows_mem[i] = 1;
760 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
761 break;
763 default:
764 enum constraint_num cn = lookup_constraint (p);
765 enum reg_class cl;
766 switch (get_constraint_type (cn))
768 case CT_REGISTER:
769 cl = reg_class_for_constraint (cn);
770 if (cl != NO_REGS)
771 classes[i] = ira_reg_class_subunion[classes[i]][cl];
772 break;
774 case CT_CONST_INT:
775 if (CONST_INT_P (op)
776 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
777 win = 1;
778 break;
780 case CT_MEMORY:
781 /* Every MEM can be reloaded to fit. */
782 insn_allows_mem[i] = allows_mem[i] = 1;
783 if (MEM_P (op))
784 win = 1;
785 break;
787 case CT_SPECIAL_MEMORY:
788 insn_allows_mem[i] = allows_mem[i] = 1;
789 if (MEM_P (op) && constraint_satisfied_p (op, cn))
790 win = 1;
791 break;
793 case CT_ADDRESS:
794 /* Every address can be reloaded to fit. */
795 allows_addr = 1;
796 if (address_operand (op, GET_MODE (op))
797 || constraint_satisfied_p (op, cn))
798 win = 1;
799 /* We know this operand is an address, so we
800 want it to be allocated to a hard register
801 that can be the base of an address,
802 i.e. BASE_REG_CLASS. */
803 classes[i]
804 = ira_reg_class_subunion[classes[i]]
805 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
806 ADDRESS, SCRATCH)];
807 break;
809 case CT_FIXED_FORM:
810 if (constraint_satisfied_p (op, cn))
811 win = 1;
812 break;
814 break;
816 p += CONSTRAINT_LEN (c, p);
817 if (c == ',')
818 break;
821 constraints[i] = p;
823 if (alt_fail)
824 break;
826 /* How we account for this operand now depends on whether it
827 is a pseudo register or not. If it is, we first check if
828 any register classes are valid. If not, we ignore this
829 alternative, since we want to assume that all allocnos get
830 allocated for register preferencing. If some register
831 class is valid, compute the costs of moving the allocno
832 into that class. */
833 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
835 if (classes[i] == NO_REGS && ! allows_mem[i])
837 /* We must always fail if the operand is a REG, but
838 we did not find a suitable class and memory is
839 not allowed.
841 Otherwise we may perform an uninitialized read
842 from this_op_costs after the `continue' statement
843 below. */
844 alt_fail = 1;
846 else
848 unsigned int regno = REGNO (op);
849 struct costs *pp = this_op_costs[i];
850 int *pp_costs = pp->cost;
851 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
852 enum reg_class *cost_classes = cost_classes_ptr->classes;
853 bool in_p = recog_data.operand_type[i] != OP_OUT;
854 bool out_p = recog_data.operand_type[i] != OP_IN;
855 enum reg_class op_class = classes[i];
857 ira_init_register_move_cost_if_necessary (mode);
858 if (! in_p)
860 ira_assert (out_p);
861 if (op_class == NO_REGS)
863 mem_cost = ira_memory_move_cost[mode];
864 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
866 rclass = cost_classes[k];
867 pp_costs[k] = mem_cost[rclass][0] * frequency;
870 else
872 move_out_cost = ira_may_move_out_cost[mode];
873 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
875 rclass = cost_classes[k];
876 pp_costs[k]
877 = move_out_cost[op_class][rclass] * frequency;
881 else if (! out_p)
883 ira_assert (in_p);
884 if (op_class == NO_REGS)
886 mem_cost = ira_memory_move_cost[mode];
887 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
889 rclass = cost_classes[k];
890 pp_costs[k] = mem_cost[rclass][1] * frequency;
893 else
895 move_in_cost = ira_may_move_in_cost[mode];
896 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
898 rclass = cost_classes[k];
899 pp_costs[k]
900 = move_in_cost[rclass][op_class] * frequency;
904 else
906 if (op_class == NO_REGS)
908 mem_cost = ira_memory_move_cost[mode];
909 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
911 rclass = cost_classes[k];
912 pp_costs[k] = ((mem_cost[rclass][0]
913 + mem_cost[rclass][1])
914 * frequency);
917 else
919 move_in_cost = ira_may_move_in_cost[mode];
920 move_out_cost = ira_may_move_out_cost[mode];
921 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
923 rclass = cost_classes[k];
924 pp_costs[k] = ((move_in_cost[rclass][op_class]
925 + move_out_cost[op_class][rclass])
926 * frequency);
931 if (op_class == NO_REGS)
932 /* Although we don't need insn to reload from
933 memory, still accessing memory is usually more
934 expensive than a register. */
935 pp->mem_cost = frequency;
936 else
937 /* If the alternative actually allows memory, make
938 things a bit cheaper since we won't need an
939 extra insn to load it. */
940 pp->mem_cost
941 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
942 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
943 - allows_mem[i]) * frequency;
944 /* If we have assigned a class to this allocno in
945 our first pass, add a cost to this alternative
946 corresponding to what we would add if this
947 allocno were not in the appropriate class. */
948 if (pref)
950 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
952 if (pref_class == NO_REGS)
954 if (op_class != NO_REGS)
955 alt_cost
956 += ((out_p
957 ? ira_memory_move_cost[mode][op_class][0]
958 : 0)
959 + (in_p
960 ? ira_memory_move_cost[mode][op_class][1]
961 : 0));
963 else if (op_class == NO_REGS)
964 alt_cost
965 += ((out_p
966 ? ira_memory_move_cost[mode][pref_class][1]
967 : 0)
968 + (in_p
969 ? ira_memory_move_cost[mode][pref_class][0]
970 : 0));
971 else if (ira_reg_class_intersect[pref_class][op_class]
972 == NO_REGS)
973 alt_cost += (ira_register_move_cost
974 [mode][pref_class][op_class]);
979 /* Otherwise, if this alternative wins, either because we
980 have already determined that or if we have a hard
981 register of the proper class, there is no cost for this
982 alternative. */
983 else if (win || (REG_P (op)
984 && reg_fits_class_p (op, classes[i],
985 0, GET_MODE (op))))
988 /* If registers are valid, the cost of this alternative
989 includes copying the object to and/or from a
990 register. */
991 else if (classes[i] != NO_REGS)
993 if (recog_data.operand_type[i] != OP_OUT)
994 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
996 if (recog_data.operand_type[i] != OP_IN)
997 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
999 /* The only other way this alternative can be used is if
1000 this is a constant that could be placed into memory. */
1001 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1002 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1003 else
1004 alt_fail = 1;
1006 if (alt_fail)
1007 break;
1010 if (alt_fail)
1012 /* The loop above might have exited early once the failure
1013 was seen. Skip over the constraints for the remaining
1014 operands. */
1015 i += 1;
1016 for (; i < n_ops; ++i)
1017 constraints[i] = skip_alternative (constraints[i]);
1018 continue;
1021 op_cost_add = alt_cost * frequency;
1022 /* Finally, update the costs with the information we've
1023 calculated about this alternative. */
1024 for (i = 0; i < n_ops; i++)
1025 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1027 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1028 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1029 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1030 cost_classes_t cost_classes_ptr
1031 = regno_cost_classes[REGNO (ops[i])];
1033 pp->mem_cost = MIN (pp->mem_cost,
1034 (qq->mem_cost + op_cost_add) * scale);
1036 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1037 pp_costs[k]
1038 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1042 if (allocno_p)
1043 for (i = 0; i < n_ops; i++)
1045 ira_allocno_t a;
1046 rtx op = ops[i];
1048 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1049 continue;
1050 a = ira_curr_regno_allocno_map [REGNO (op)];
1051 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1052 ALLOCNO_BAD_SPILL_P (a) = true;
1059 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1060 static inline bool
1061 ok_for_index_p_nonstrict (rtx reg)
1063 unsigned regno = REGNO (reg);
1065 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1068 /* A version of regno_ok_for_base_p for use here, when all
1069 pseudo-registers should count as OK. Arguments as for
1070 regno_ok_for_base_p. */
1071 static inline bool
1072 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1073 enum rtx_code outer_code, enum rtx_code index_code)
1075 unsigned regno = REGNO (reg);
1077 if (regno >= FIRST_PSEUDO_REGISTER)
1078 return true;
1079 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1082 /* Record the pseudo registers we must reload into hard registers in a
1083 subexpression of a memory address, X.
1085 If CONTEXT is 0, we are looking at the base part of an address,
1086 otherwise we are looking at the index part.
1088 MODE and AS are the mode and address space of the memory reference;
1089 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1090 These four arguments are passed down to base_reg_class.
1092 SCALE is twice the amount to multiply the cost by (it is twice so
1093 we can represent half-cost adjustments). */
1094 static void
1095 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1096 int context, enum rtx_code outer_code,
1097 enum rtx_code index_code, int scale)
1099 enum rtx_code code = GET_CODE (x);
1100 enum reg_class rclass;
1102 if (context == 1)
1103 rclass = INDEX_REG_CLASS;
1104 else
1105 rclass = base_reg_class (mode, as, outer_code, index_code);
1107 switch (code)
1109 case CONST_INT:
1110 case CONST:
1111 case CC0:
1112 case PC:
1113 case SYMBOL_REF:
1114 case LABEL_REF:
1115 return;
1117 case PLUS:
1118 /* When we have an address that is a sum, we must determine
1119 whether registers are "base" or "index" regs. If there is a
1120 sum of two registers, we must choose one to be the "base".
1121 Luckily, we can use the REG_POINTER to make a good choice
1122 most of the time. We only need to do this on machines that
1123 can have two registers in an address and where the base and
1124 index register classes are different.
1126 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1127 but that seems bogus since it should only be set when we are
1128 sure the register is being used as a pointer. */
1130 rtx arg0 = XEXP (x, 0);
1131 rtx arg1 = XEXP (x, 1);
1132 enum rtx_code code0 = GET_CODE (arg0);
1133 enum rtx_code code1 = GET_CODE (arg1);
1135 /* Look inside subregs. */
1136 if (code0 == SUBREG)
1137 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1138 if (code1 == SUBREG)
1139 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1141 /* If index registers do not appear, or coincide with base registers,
1142 just record registers in any non-constant operands. We
1143 assume here, as well as in the tests below, that all
1144 addresses are in canonical form. */
1145 if (MAX_REGS_PER_ADDRESS == 1
1146 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1148 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1149 if (! CONSTANT_P (arg1))
1150 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1153 /* If the second operand is a constant integer, it doesn't
1154 change what class the first operand must be. */
1155 else if (CONST_SCALAR_INT_P (arg1))
1156 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1157 /* If the second operand is a symbolic constant, the first
1158 operand must be an index register. */
1159 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1160 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1161 /* If both operands are registers but one is already a hard
1162 register of index or reg-base class, give the other the
1163 class that the hard register is not. */
1164 else if (code0 == REG && code1 == REG
1165 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1166 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1167 || ok_for_index_p_nonstrict (arg0)))
1168 record_address_regs (mode, as, arg1,
1169 ok_for_base_p_nonstrict (arg0, mode, as,
1170 PLUS, REG) ? 1 : 0,
1171 PLUS, REG, scale);
1172 else if (code0 == REG && code1 == REG
1173 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1174 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1175 || ok_for_index_p_nonstrict (arg1)))
1176 record_address_regs (mode, as, arg0,
1177 ok_for_base_p_nonstrict (arg1, mode, as,
1178 PLUS, REG) ? 1 : 0,
1179 PLUS, REG, scale);
1180 /* If one operand is known to be a pointer, it must be the
1181 base with the other operand the index. Likewise if the
1182 other operand is a MULT. */
1183 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1185 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1186 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1188 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1190 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1191 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1193 /* Otherwise, count equal chances that each might be a base or
1194 index register. This case should be rare. */
1195 else
1197 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1198 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1199 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1200 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1203 break;
1205 /* Double the importance of an allocno that is incremented or
1206 decremented, since it would take two extra insns if it ends
1207 up in the wrong place. */
1208 case POST_MODIFY:
1209 case PRE_MODIFY:
1210 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1211 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1212 if (REG_P (XEXP (XEXP (x, 1), 1)))
1213 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1214 2 * scale);
1215 break;
1217 case POST_INC:
1218 case PRE_INC:
1219 case POST_DEC:
1220 case PRE_DEC:
1221 /* Double the importance of an allocno that is incremented or
1222 decremented, since it would take two extra insns if it ends
1223 up in the wrong place. */
1224 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1225 break;
1227 case REG:
1229 struct costs *pp;
1230 int *pp_costs;
1231 enum reg_class i;
1232 int k, regno, add_cost;
1233 cost_classes_t cost_classes_ptr;
1234 enum reg_class *cost_classes;
1235 move_table *move_in_cost;
1237 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1238 break;
1240 regno = REGNO (x);
1241 if (allocno_p)
1242 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1243 pp = COSTS (costs, COST_INDEX (regno));
1244 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1245 if (INT_MAX - add_cost < pp->mem_cost)
1246 pp->mem_cost = INT_MAX;
1247 else
1248 pp->mem_cost += add_cost;
1249 cost_classes_ptr = regno_cost_classes[regno];
1250 cost_classes = cost_classes_ptr->classes;
1251 pp_costs = pp->cost;
1252 ira_init_register_move_cost_if_necessary (Pmode);
1253 move_in_cost = ira_may_move_in_cost[Pmode];
1254 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1256 i = cost_classes[k];
1257 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1258 if (INT_MAX - add_cost < pp_costs[k])
1259 pp_costs[k] = INT_MAX;
1260 else
1261 pp_costs[k] += add_cost;
1264 break;
1266 default:
1268 const char *fmt = GET_RTX_FORMAT (code);
1269 int i;
1270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1271 if (fmt[i] == 'e')
1272 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1273 scale);
1280 /* Calculate the costs of insn operands. */
1281 static void
1282 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1284 const char *constraints[MAX_RECOG_OPERANDS];
1285 machine_mode modes[MAX_RECOG_OPERANDS];
1286 rtx set;
1287 int i;
1289 if ((set = single_set (insn)) != NULL_RTX
1290 /* In rare cases the single set insn might have less 2 operands
1291 as the source can be a fixed special reg. */
1292 && recog_data.n_operands > 1
1293 && recog_data.operand[0] == SET_DEST (set)
1294 && recog_data.operand[1] == SET_SRC (set))
1296 int regno, other_regno;
1297 rtx dest = SET_DEST (set);
1298 rtx src = SET_SRC (set);
1300 if (GET_CODE (dest) == SUBREG
1301 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1302 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1303 dest = SUBREG_REG (dest);
1304 if (GET_CODE (src) == SUBREG
1305 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1306 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1307 src = SUBREG_REG (src);
1308 if (REG_P (src) && REG_P (dest)
1309 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1310 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1311 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1312 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1314 machine_mode mode = GET_MODE (SET_SRC (set));
1315 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1316 enum reg_class *cost_classes = cost_classes_ptr->classes;
1317 reg_class_t rclass, hard_reg_class, pref_class;
1318 int cost, k;
1319 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1321 hard_reg_class = REGNO_REG_CLASS (other_regno);
1322 i = regno == (int) REGNO (src) ? 1 : 0;
1323 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1325 rclass = cost_classes[k];
1326 cost = ((i == 0
1327 ? ira_register_move_cost[mode][hard_reg_class][rclass]
1328 : ira_register_move_cost[mode][rclass][hard_reg_class])
1329 * frequency);
1330 op_costs[i]->cost[k] = cost;
1331 /* If we have assigned a class to this allocno in our
1332 first pass, add a cost to this alternative
1333 corresponding to what we would add if this allocno
1334 were not in the appropriate class. */
1335 if (pref)
1337 if ((pref_class = pref[COST_INDEX (regno)]) == NO_REGS)
1338 op_costs[i]->cost[k]
1339 += ((i == 0 ? ira_memory_move_cost[mode][rclass][0] : 0)
1340 + (i == 1 ? ira_memory_move_cost[mode][rclass][1] : 0)
1341 * frequency);
1342 else if (ira_reg_class_intersect[pref_class][rclass]
1343 == NO_REGS)
1344 op_costs[i]->cost[k]
1345 += (ira_register_move_cost[mode][pref_class][rclass]
1346 * frequency);
1348 /* If this insn is a single set copying operand 1 to
1349 operand 0 and one operand is an allocno with the
1350 other a hard reg or an allocno that prefers a hard
1351 register that is in its own register class then we
1352 may want to adjust the cost of that register class to
1355 Avoid the adjustment if the source does not die to
1356 avoid stressing of register allocator by preferencing
1357 two colliding registers into single class. */
1358 if (dead_p
1359 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1360 && (reg_class_size[(int) rclass]
1361 == (ira_reg_class_max_nregs
1362 [(int) rclass][(int) GET_MODE(src)])))
1364 if (reg_class_size[rclass] == 1)
1365 op_costs[i]->cost[k] = -frequency;
1366 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1367 GET_MODE(src), other_regno))
1368 op_costs[i]->cost[k] = -frequency;
1371 op_costs[i]->mem_cost
1372 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1373 if (pref && (pref_class = pref[COST_INDEX (regno)]) != NO_REGS)
1374 op_costs[i]->mem_cost
1375 += ira_memory_move_cost[mode][pref_class][i] * frequency;
1376 return;
1380 for (i = 0; i < recog_data.n_operands; i++)
1382 constraints[i] = recog_data.constraints[i];
1383 modes[i] = recog_data.operand_mode[i];
1386 /* If we get here, we are set up to record the costs of all the
1387 operands for this insn. Start by initializing the costs. Then
1388 handle any address registers. Finally record the desired classes
1389 for any allocnos, doing it twice if some pair of operands are
1390 commutative. */
1391 for (i = 0; i < recog_data.n_operands; i++)
1393 memcpy (op_costs[i], init_cost, struct_costs_size);
1395 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1396 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1398 if (MEM_P (recog_data.operand[i]))
1399 record_address_regs (GET_MODE (recog_data.operand[i]),
1400 MEM_ADDR_SPACE (recog_data.operand[i]),
1401 XEXP (recog_data.operand[i], 0),
1402 0, MEM, SCRATCH, frequency * 2);
1403 else if (constraints[i][0] == 'p'
1404 || (insn_extra_address_constraint
1405 (lookup_constraint (constraints[i]))))
1406 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1407 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1408 frequency * 2);
1411 /* Check for commutative in a separate loop so everything will have
1412 been initialized. We must do this even if one operand is a
1413 constant--see addsi3 in m68k.md. */
1414 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1415 if (constraints[i][0] == '%')
1417 const char *xconstraints[MAX_RECOG_OPERANDS];
1418 int j;
1420 /* Handle commutative operands by swapping the
1421 constraints. We assume the modes are the same. */
1422 for (j = 0; j < recog_data.n_operands; j++)
1423 xconstraints[j] = constraints[j];
1425 xconstraints[i] = constraints[i+1];
1426 xconstraints[i+1] = constraints[i];
1427 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1428 recog_data.operand, modes,
1429 xconstraints, insn, pref);
1431 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1432 recog_data.operand, modes,
1433 constraints, insn, pref);
1438 /* Process one insn INSN. Scan it and record each time it would save
1439 code to put a certain allocnos in a certain class. Return the last
1440 insn processed, so that the scan can be continued from there. */
1441 static rtx_insn *
1442 scan_one_insn (rtx_insn *insn)
1444 enum rtx_code pat_code;
1445 rtx set, note;
1446 int i, k;
1447 bool counted_mem;
1449 if (!NONDEBUG_INSN_P (insn))
1450 return insn;
1452 pat_code = GET_CODE (PATTERN (insn));
1453 if (pat_code == ASM_INPUT)
1454 return insn;
1456 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1457 and initialize the register move costs of mode M.
1459 The pseudo may be related to another pseudo via a copy (implicit or
1460 explicit) and if there are no mode M uses/sets of the original
1461 pseudo, then we may leave the register move costs uninitialized for
1462 mode M. */
1463 if (pat_code == USE || pat_code == CLOBBER)
1465 rtx x = XEXP (PATTERN (insn), 0);
1466 if (GET_CODE (x) == REG
1467 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1468 && have_regs_of_mode[GET_MODE (x)])
1469 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1470 return insn;
1473 if (pat_code == CLOBBER_HIGH)
1475 gcc_assert (REG_P (XEXP (PATTERN (insn), 0))
1476 && HARD_REGISTER_P (XEXP (PATTERN (insn), 0)));
1477 return insn;
1480 counted_mem = false;
1481 set = single_set (insn);
1482 extract_insn (insn);
1484 /* If this insn loads a parameter from its stack slot, then it
1485 represents a savings, rather than a cost, if the parameter is
1486 stored in memory. Record this fact.
1488 Similarly if we're loading other constants from memory (constant
1489 pool, TOC references, small data areas, etc) and this is the only
1490 assignment to the destination pseudo.
1492 Don't do this if SET_SRC (set) isn't a general operand, if it is
1493 a memory requiring special instructions to load it, decreasing
1494 mem_cost might result in it being loaded using the specialized
1495 instruction into a register, then stored into stack and loaded
1496 again from the stack. See PR52208.
1498 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1499 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1500 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1501 && ((MEM_P (XEXP (note, 0))
1502 && !side_effects_p (SET_SRC (set)))
1503 || (CONSTANT_P (XEXP (note, 0))
1504 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1505 XEXP (note, 0))
1506 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1507 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1508 /* LRA does not use equiv with a symbol for PIC code. */
1509 && (! ira_use_lra_p || ! pic_offset_table_rtx
1510 || ! contains_symbol_ref_p (XEXP (note, 0))))
1512 enum reg_class cl = GENERAL_REGS;
1513 rtx reg = SET_DEST (set);
1514 int num = COST_INDEX (REGNO (reg));
1516 COSTS (costs, num)->mem_cost
1517 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1518 record_address_regs (GET_MODE (SET_SRC (set)),
1519 MEM_ADDR_SPACE (SET_SRC (set)),
1520 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1521 frequency * 2);
1522 counted_mem = true;
1525 record_operand_costs (insn, pref);
1527 /* Now add the cost for each operand to the total costs for its
1528 allocno. */
1529 for (i = 0; i < recog_data.n_operands; i++)
1530 if (REG_P (recog_data.operand[i])
1531 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1533 int regno = REGNO (recog_data.operand[i]);
1534 struct costs *p = COSTS (costs, COST_INDEX (regno));
1535 struct costs *q = op_costs[i];
1536 int *p_costs = p->cost, *q_costs = q->cost;
1537 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1538 int add_cost;
1540 /* If the already accounted for the memory "cost" above, don't
1541 do so again. */
1542 if (!counted_mem)
1544 add_cost = q->mem_cost;
1545 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1546 p->mem_cost = INT_MAX;
1547 else
1548 p->mem_cost += add_cost;
1550 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1552 add_cost = q_costs[k];
1553 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1554 p_costs[k] = INT_MAX;
1555 else
1556 p_costs[k] += add_cost;
1560 return insn;
1565 /* Print allocnos costs to file F. */
1566 static void
1567 print_allocno_costs (FILE *f)
1569 int k;
1570 ira_allocno_t a;
1571 ira_allocno_iterator ai;
1573 ira_assert (allocno_p);
1574 fprintf (f, "\n");
1575 FOR_EACH_ALLOCNO (a, ai)
1577 int i, rclass;
1578 basic_block bb;
1579 int regno = ALLOCNO_REGNO (a);
1580 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1581 enum reg_class *cost_classes = cost_classes_ptr->classes;
1583 i = ALLOCNO_NUM (a);
1584 fprintf (f, " a%d(r%d,", i, regno);
1585 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1586 fprintf (f, "b%d", bb->index);
1587 else
1588 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1589 fprintf (f, ") costs:");
1590 for (k = 0; k < cost_classes_ptr->num; k++)
1592 rclass = cost_classes[k];
1593 fprintf (f, " %s:%d", reg_class_names[rclass],
1594 COSTS (costs, i)->cost[k]);
1595 if (flag_ira_region == IRA_REGION_ALL
1596 || flag_ira_region == IRA_REGION_MIXED)
1597 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1599 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1600 if (flag_ira_region == IRA_REGION_ALL
1601 || flag_ira_region == IRA_REGION_MIXED)
1602 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1603 fprintf (f, "\n");
1607 /* Print pseudo costs to file F. */
1608 static void
1609 print_pseudo_costs (FILE *f)
1611 int regno, k;
1612 int rclass;
1613 cost_classes_t cost_classes_ptr;
1614 enum reg_class *cost_classes;
1616 ira_assert (! allocno_p);
1617 fprintf (f, "\n");
1618 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1620 if (REG_N_REFS (regno) <= 0)
1621 continue;
1622 cost_classes_ptr = regno_cost_classes[regno];
1623 cost_classes = cost_classes_ptr->classes;
1624 fprintf (f, " r%d costs:", regno);
1625 for (k = 0; k < cost_classes_ptr->num; k++)
1627 rclass = cost_classes[k];
1628 fprintf (f, " %s:%d", reg_class_names[rclass],
1629 COSTS (costs, regno)->cost[k]);
1631 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1635 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1636 costs. */
1637 static void
1638 process_bb_for_costs (basic_block bb)
1640 rtx_insn *insn;
1642 frequency = REG_FREQ_FROM_BB (bb);
1643 if (frequency == 0)
1644 frequency = 1;
1645 FOR_BB_INSNS (bb, insn)
1646 insn = scan_one_insn (insn);
1649 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1650 costs. */
1651 static void
1652 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1654 basic_block bb;
1656 bb = loop_tree_node->bb;
1657 if (bb != NULL)
1658 process_bb_for_costs (bb);
1661 /* Find costs of register classes and memory for allocnos or pseudos
1662 and their best costs. Set up preferred, alternative and allocno
1663 classes for pseudos. */
1664 static void
1665 find_costs_and_classes (FILE *dump_file)
1667 int i, k, start, max_cost_classes_num;
1668 int pass;
1669 basic_block bb;
1670 enum reg_class *regno_best_class, new_class;
1672 init_recog ();
1673 regno_best_class
1674 = (enum reg_class *) ira_allocate (max_reg_num ()
1675 * sizeof (enum reg_class));
1676 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1677 regno_best_class[i] = NO_REGS;
1678 if (!resize_reg_info () && allocno_p
1679 && pseudo_classes_defined_p && flag_expensive_optimizations)
1681 ira_allocno_t a;
1682 ira_allocno_iterator ai;
1684 pref = pref_buffer;
1685 max_cost_classes_num = 1;
1686 FOR_EACH_ALLOCNO (a, ai)
1688 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1689 setup_regno_cost_classes_by_aclass
1690 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1691 max_cost_classes_num
1692 = MAX (max_cost_classes_num,
1693 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1695 start = 1;
1697 else
1699 pref = NULL;
1700 max_cost_classes_num = ira_important_classes_num;
1701 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1702 if (regno_reg_rtx[i] != NULL_RTX)
1703 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1704 else
1705 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1706 start = 0;
1708 if (allocno_p)
1709 /* Clear the flag for the next compiled function. */
1710 pseudo_classes_defined_p = false;
1711 /* Normally we scan the insns once and determine the best class to
1712 use for each allocno. However, if -fexpensive-optimizations are
1713 on, we do so twice, the second time using the tentative best
1714 classes to guide the selection. */
1715 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1717 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1718 fprintf (dump_file,
1719 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1721 if (pass != start)
1723 max_cost_classes_num = 1;
1724 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1726 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1727 max_cost_classes_num
1728 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1732 struct_costs_size
1733 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1734 /* Zero out our accumulation of the cost of each class for each
1735 allocno. */
1736 memset (costs, 0, cost_elements_num * struct_costs_size);
1738 if (allocno_p)
1740 /* Scan the instructions and record each time it would save code
1741 to put a certain allocno in a certain class. */
1742 ira_traverse_loop_tree (true, ira_loop_tree_root,
1743 process_bb_node_for_costs, NULL);
1745 memcpy (total_allocno_costs, costs,
1746 max_struct_costs_size * ira_allocnos_num);
1748 else
1750 basic_block bb;
1752 FOR_EACH_BB_FN (bb, cfun)
1753 process_bb_for_costs (bb);
1756 if (pass == 0)
1757 pref = pref_buffer;
1759 /* Now for each allocno look at how desirable each class is and
1760 find which class is preferred. */
1761 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1763 ira_allocno_t a, parent_a;
1764 int rclass, a_num, parent_a_num, add_cost;
1765 ira_loop_tree_node_t parent;
1766 int best_cost, allocno_cost;
1767 enum reg_class best, alt_class;
1768 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1769 enum reg_class *cost_classes;
1770 int *i_costs = temp_costs->cost;
1771 int i_mem_cost;
1772 int equiv_savings = regno_equiv_gains[i];
1774 if (! allocno_p)
1776 if (regno_reg_rtx[i] == NULL_RTX)
1777 continue;
1778 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1779 i_mem_cost = temp_costs->mem_cost;
1780 cost_classes = cost_classes_ptr->classes;
1782 else
1784 if (ira_regno_allocno_map[i] == NULL)
1785 continue;
1786 memset (temp_costs, 0, struct_costs_size);
1787 i_mem_cost = 0;
1788 cost_classes = cost_classes_ptr->classes;
1789 /* Find cost of all allocnos with the same regno. */
1790 for (a = ira_regno_allocno_map[i];
1791 a != NULL;
1792 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1794 int *a_costs, *p_costs;
1796 a_num = ALLOCNO_NUM (a);
1797 if ((flag_ira_region == IRA_REGION_ALL
1798 || flag_ira_region == IRA_REGION_MIXED)
1799 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1800 && (parent_a = parent->regno_allocno_map[i]) != NULL
1801 /* There are no caps yet. */
1802 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1803 (a)->border_allocnos,
1804 ALLOCNO_NUM (a)))
1806 /* Propagate costs to upper levels in the region
1807 tree. */
1808 parent_a_num = ALLOCNO_NUM (parent_a);
1809 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1810 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1811 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1813 add_cost = a_costs[k];
1814 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1815 p_costs[k] = INT_MAX;
1816 else
1817 p_costs[k] += add_cost;
1819 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1820 if (add_cost > 0
1821 && (INT_MAX - add_cost
1822 < COSTS (total_allocno_costs,
1823 parent_a_num)->mem_cost))
1824 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1825 = INT_MAX;
1826 else
1827 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1828 += add_cost;
1830 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1831 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1833 a_costs = COSTS (costs, a_num)->cost;
1834 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1836 add_cost = a_costs[k];
1837 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1838 i_costs[k] = INT_MAX;
1839 else
1840 i_costs[k] += add_cost;
1842 add_cost = COSTS (costs, a_num)->mem_cost;
1843 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1844 i_mem_cost = INT_MAX;
1845 else
1846 i_mem_cost += add_cost;
1849 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1850 i_mem_cost = 0;
1851 else if (equiv_savings < 0)
1852 i_mem_cost = -equiv_savings;
1853 else if (equiv_savings > 0)
1855 i_mem_cost = 0;
1856 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1857 i_costs[k] += equiv_savings;
1860 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1861 best = ALL_REGS;
1862 alt_class = NO_REGS;
1863 /* Find best common class for all allocnos with the same
1864 regno. */
1865 for (k = 0; k < cost_classes_ptr->num; k++)
1867 rclass = cost_classes[k];
1868 if (i_costs[k] < best_cost)
1870 best_cost = i_costs[k];
1871 best = (enum reg_class) rclass;
1873 else if (i_costs[k] == best_cost)
1874 best = ira_reg_class_subunion[best][rclass];
1875 if (pass == flag_expensive_optimizations
1876 /* We still prefer registers to memory even at this
1877 stage if their costs are the same. We will make
1878 a final decision during assigning hard registers
1879 when we have all info including more accurate
1880 costs which might be affected by assigning hard
1881 registers to other pseudos because the pseudos
1882 involved in moves can be coalesced. */
1883 && i_costs[k] <= i_mem_cost
1884 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1885 > reg_class_size[alt_class]))
1886 alt_class = reg_class_subunion[alt_class][rclass];
1888 alt_class = ira_allocno_class_translate[alt_class];
1889 if (best_cost > i_mem_cost
1890 && ! non_spilled_static_chain_regno_p (i))
1891 regno_aclass[i] = NO_REGS;
1892 else if (!optimize && !targetm.class_likely_spilled_p (best))
1893 /* Registers in the alternative class are likely to need
1894 longer or slower sequences than registers in the best class.
1895 When optimizing we make some effort to use the best class
1896 over the alternative class where possible, but at -O0 we
1897 effectively give the alternative class equal weight.
1898 We then run the risk of using slower alternative registers
1899 when plenty of registers from the best class are still free.
1900 This is especially true because live ranges tend to be very
1901 short in -O0 code and so register pressure tends to be low.
1903 Avoid that by ignoring the alternative class if the best
1904 class has plenty of registers.
1906 The union class arrays give important classes and only
1907 part of it are allocno classes. So translate them into
1908 allocno classes. */
1909 regno_aclass[i] = ira_allocno_class_translate[best];
1910 else
1912 /* Make the common class the biggest class of best and
1913 alt_class. Translate the common class into an
1914 allocno class too. */
1915 regno_aclass[i] = (ira_allocno_class_translate
1916 [ira_reg_class_superunion[best][alt_class]]);
1917 ira_assert (regno_aclass[i] != NO_REGS
1918 && ira_reg_allocno_class_p[regno_aclass[i]]);
1920 if ((new_class
1921 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1922 (i, regno_aclass[i], best))) != regno_aclass[i])
1924 regno_aclass[i] = new_class;
1925 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1926 reg_class_contents[best]))
1927 best = new_class;
1928 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1929 reg_class_contents[alt_class]))
1930 alt_class = new_class;
1932 if (pass == flag_expensive_optimizations)
1934 if (best_cost > i_mem_cost
1935 /* Do not assign NO_REGS to static chain pointer
1936 pseudo when non-local goto is used. */
1937 && ! non_spilled_static_chain_regno_p (i))
1938 best = alt_class = NO_REGS;
1939 else if (best == alt_class)
1940 alt_class = NO_REGS;
1941 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1942 if ((!allocno_p || internal_flag_ira_verbose > 2)
1943 && dump_file != NULL)
1944 fprintf (dump_file,
1945 " r%d: preferred %s, alternative %s, allocno %s\n",
1946 i, reg_class_names[best], reg_class_names[alt_class],
1947 reg_class_names[regno_aclass[i]]);
1949 regno_best_class[i] = best;
1950 if (! allocno_p)
1952 pref[i] = (best_cost > i_mem_cost
1953 && ! non_spilled_static_chain_regno_p (i)
1954 ? NO_REGS : best);
1955 continue;
1957 for (a = ira_regno_allocno_map[i];
1958 a != NULL;
1959 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1961 enum reg_class aclass = regno_aclass[i];
1962 int a_num = ALLOCNO_NUM (a);
1963 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1964 int *a_costs = COSTS (costs, a_num)->cost;
1966 if (aclass == NO_REGS)
1967 best = NO_REGS;
1968 else
1970 /* Finding best class which is subset of the common
1971 class. */
1972 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1973 allocno_cost = best_cost;
1974 best = ALL_REGS;
1975 for (k = 0; k < cost_classes_ptr->num; k++)
1977 rclass = cost_classes[k];
1978 if (! ira_class_subset_p[rclass][aclass])
1979 continue;
1980 if (total_a_costs[k] < best_cost)
1982 best_cost = total_a_costs[k];
1983 allocno_cost = a_costs[k];
1984 best = (enum reg_class) rclass;
1986 else if (total_a_costs[k] == best_cost)
1988 best = ira_reg_class_subunion[best][rclass];
1989 allocno_cost = MAX (allocno_cost, a_costs[k]);
1992 ALLOCNO_CLASS_COST (a) = allocno_cost;
1994 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1995 && (pass == 0 || pref[a_num] != best))
1997 fprintf (dump_file, " a%d (r%d,", a_num, i);
1998 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1999 fprintf (dump_file, "b%d", bb->index);
2000 else
2001 fprintf (dump_file, "l%d",
2002 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2003 fprintf (dump_file, ") best %s, allocno %s\n",
2004 reg_class_names[best],
2005 reg_class_names[aclass]);
2007 pref[a_num] = best;
2008 if (pass == flag_expensive_optimizations && best != aclass
2009 && ira_class_hard_regs_num[best] > 0
2010 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2011 >= ira_class_hard_regs_num[best]))
2013 int ind = cost_classes_ptr->index[aclass];
2015 ira_assert (ind >= 0);
2016 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2017 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2018 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2019 / (ira_register_move_cost
2020 [ALLOCNO_MODE (a)][best][aclass]));
2021 for (k = 0; k < cost_classes_ptr->num; k++)
2022 if (ira_class_subset_p[cost_classes[k]][best])
2023 a_costs[k] = a_costs[ind];
2028 if (internal_flag_ira_verbose > 4 && dump_file)
2030 if (allocno_p)
2031 print_allocno_costs (dump_file);
2032 else
2033 print_pseudo_costs (dump_file);
2034 fprintf (dump_file,"\n");
2037 ira_free (regno_best_class);
2042 /* Process moves involving hard regs to modify allocno hard register
2043 costs. We can do this only after determining allocno class. If a
2044 hard register forms a register class, then moves with the hard
2045 register are already taken into account in class costs for the
2046 allocno. */
2047 static void
2048 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2050 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2051 bool to_p;
2052 ira_allocno_t a, curr_a;
2053 ira_loop_tree_node_t curr_loop_tree_node;
2054 enum reg_class rclass;
2055 basic_block bb;
2056 rtx_insn *insn;
2057 rtx set, src, dst;
2059 bb = loop_tree_node->bb;
2060 if (bb == NULL)
2061 return;
2062 freq = REG_FREQ_FROM_BB (bb);
2063 if (freq == 0)
2064 freq = 1;
2065 FOR_BB_INSNS (bb, insn)
2067 if (!NONDEBUG_INSN_P (insn))
2068 continue;
2069 set = single_set (insn);
2070 if (set == NULL_RTX)
2071 continue;
2072 dst = SET_DEST (set);
2073 src = SET_SRC (set);
2074 if (! REG_P (dst) || ! REG_P (src))
2075 continue;
2076 dst_regno = REGNO (dst);
2077 src_regno = REGNO (src);
2078 if (dst_regno >= FIRST_PSEUDO_REGISTER
2079 && src_regno < FIRST_PSEUDO_REGISTER)
2081 hard_regno = src_regno;
2082 a = ira_curr_regno_allocno_map[dst_regno];
2083 to_p = true;
2085 else if (src_regno >= FIRST_PSEUDO_REGISTER
2086 && dst_regno < FIRST_PSEUDO_REGISTER)
2088 hard_regno = dst_regno;
2089 a = ira_curr_regno_allocno_map[src_regno];
2090 to_p = false;
2092 else
2093 continue;
2094 rclass = ALLOCNO_CLASS (a);
2095 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2096 continue;
2097 i = ira_class_hard_reg_index[rclass][hard_regno];
2098 if (i < 0)
2099 continue;
2100 a_regno = ALLOCNO_REGNO (a);
2101 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2102 curr_loop_tree_node != NULL;
2103 curr_loop_tree_node = curr_loop_tree_node->parent)
2104 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2105 ira_add_allocno_pref (curr_a, hard_regno, freq);
2107 int cost;
2108 enum reg_class hard_reg_class;
2109 machine_mode mode;
2111 mode = ALLOCNO_MODE (a);
2112 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2113 ira_init_register_move_cost_if_necessary (mode);
2114 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2115 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2116 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2117 ALLOCNO_CLASS_COST (a));
2118 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2119 rclass, 0);
2120 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2121 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2122 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2123 ALLOCNO_HARD_REG_COSTS (a)[i]);
2128 /* After we find hard register and memory costs for allocnos, define
2129 its class and modify hard register cost because insns moving
2130 allocno to/from hard registers. */
2131 static void
2132 setup_allocno_class_and_costs (void)
2134 int i, j, n, regno, hard_regno, num;
2135 int *reg_costs;
2136 enum reg_class aclass, rclass;
2137 ira_allocno_t a;
2138 ira_allocno_iterator ai;
2139 cost_classes_t cost_classes_ptr;
2141 ira_assert (allocno_p);
2142 FOR_EACH_ALLOCNO (a, ai)
2144 i = ALLOCNO_NUM (a);
2145 regno = ALLOCNO_REGNO (a);
2146 aclass = regno_aclass[regno];
2147 cost_classes_ptr = regno_cost_classes[regno];
2148 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2149 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2150 ira_set_allocno_class (a, aclass);
2151 if (aclass == NO_REGS)
2152 continue;
2153 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2155 n = ira_class_hard_regs_num[aclass];
2156 ALLOCNO_HARD_REG_COSTS (a)
2157 = reg_costs = ira_allocate_cost_vector (aclass);
2158 for (j = n - 1; j >= 0; j--)
2160 hard_regno = ira_class_hard_regs[aclass][j];
2161 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2162 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2163 else
2165 rclass = REGNO_REG_CLASS (hard_regno);
2166 num = cost_classes_ptr->index[rclass];
2167 if (num < 0)
2169 num = cost_classes_ptr->hard_regno_index[hard_regno];
2170 ira_assert (num >= 0);
2172 reg_costs[j] = COSTS (costs, i)->cost[num];
2177 if (optimize)
2178 ira_traverse_loop_tree (true, ira_loop_tree_root,
2179 process_bb_node_for_hard_reg_moves, NULL);
2184 /* Function called once during compiler work. */
2185 void
2186 ira_init_costs_once (void)
2188 int i;
2190 init_cost = NULL;
2191 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2193 op_costs[i] = NULL;
2194 this_op_costs[i] = NULL;
2196 temp_costs = NULL;
2199 /* Free allocated temporary cost vectors. */
2200 void
2201 target_ira_int::free_ira_costs ()
2203 int i;
2205 free (x_init_cost);
2206 x_init_cost = NULL;
2207 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2209 free (x_op_costs[i]);
2210 free (x_this_op_costs[i]);
2211 x_op_costs[i] = x_this_op_costs[i] = NULL;
2213 free (x_temp_costs);
2214 x_temp_costs = NULL;
2217 /* This is called each time register related information is
2218 changed. */
2219 void
2220 ira_init_costs (void)
2222 int i;
2224 this_target_ira_int->free_ira_costs ();
2225 max_struct_costs_size
2226 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2227 /* Don't use ira_allocate because vectors live through several IRA
2228 calls. */
2229 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2230 init_cost->mem_cost = 1000000;
2231 for (i = 0; i < ira_important_classes_num; i++)
2232 init_cost->cost[i] = 1000000;
2233 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2235 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2236 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2238 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2243 /* Common initialization function for ira_costs and
2244 ira_set_pseudo_classes. */
2245 static void
2246 init_costs (void)
2248 init_subregs_of_mode ();
2249 costs = (struct costs *) ira_allocate (max_struct_costs_size
2250 * cost_elements_num);
2251 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2252 * cost_elements_num);
2253 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2254 * max_reg_num ());
2255 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2256 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2259 /* Common finalization function for ira_costs and
2260 ira_set_pseudo_classes. */
2261 static void
2262 finish_costs (void)
2264 finish_subregs_of_mode ();
2265 ira_free (regno_equiv_gains);
2266 ira_free (regno_aclass);
2267 ira_free (pref_buffer);
2268 ira_free (costs);
2271 /* Entry function which defines register class, memory and hard
2272 register costs for each allocno. */
2273 void
2274 ira_costs (void)
2276 allocno_p = true;
2277 cost_elements_num = ira_allocnos_num;
2278 init_costs ();
2279 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2280 * ira_allocnos_num);
2281 initiate_regno_cost_classes ();
2282 calculate_elim_costs_all_insns ();
2283 find_costs_and_classes (ira_dump_file);
2284 setup_allocno_class_and_costs ();
2285 finish_regno_cost_classes ();
2286 finish_costs ();
2287 ira_free (total_allocno_costs);
2290 /* Entry function which defines classes for pseudos.
2291 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2292 void
2293 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2295 allocno_p = false;
2296 internal_flag_ira_verbose = flag_ira_verbose;
2297 cost_elements_num = max_reg_num ();
2298 init_costs ();
2299 initiate_regno_cost_classes ();
2300 find_costs_and_classes (dump_file);
2301 finish_regno_cost_classes ();
2302 if (define_pseudo_classes)
2303 pseudo_classes_defined_p = true;
2305 finish_costs ();
2310 /* Change hard register costs for allocnos which lives through
2311 function calls. This is called only when we found all intersected
2312 calls during building allocno live ranges. */
2313 void
2314 ira_tune_allocno_costs (void)
2316 int j, n, regno;
2317 int cost, min_cost, *reg_costs;
2318 enum reg_class aclass, rclass;
2319 machine_mode mode;
2320 ira_allocno_t a;
2321 ira_allocno_iterator ai;
2322 ira_allocno_object_iterator oi;
2323 ira_object_t obj;
2324 bool skip_p;
2325 HARD_REG_SET *crossed_calls_clobber_regs;
2327 FOR_EACH_ALLOCNO (a, ai)
2329 aclass = ALLOCNO_CLASS (a);
2330 if (aclass == NO_REGS)
2331 continue;
2332 mode = ALLOCNO_MODE (a);
2333 n = ira_class_hard_regs_num[aclass];
2334 min_cost = INT_MAX;
2335 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2336 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2338 ira_allocate_and_set_costs
2339 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2340 ALLOCNO_CLASS_COST (a));
2341 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2342 for (j = n - 1; j >= 0; j--)
2344 regno = ira_class_hard_regs[aclass][j];
2345 skip_p = false;
2346 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2348 if (ira_hard_reg_set_intersection_p (regno, mode,
2349 OBJECT_CONFLICT_HARD_REGS
2350 (obj)))
2352 skip_p = true;
2353 break;
2356 if (skip_p)
2357 continue;
2358 rclass = REGNO_REG_CLASS (regno);
2359 cost = 0;
2360 crossed_calls_clobber_regs
2361 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2362 if (ira_hard_reg_set_intersection_p (regno, mode,
2363 *crossed_calls_clobber_regs)
2364 && (ira_hard_reg_set_intersection_p (regno, mode,
2365 call_used_reg_set)
2366 || targetm.hard_regno_call_part_clobbered (regno,
2367 mode)))
2368 cost += (ALLOCNO_CALL_FREQ (a)
2369 * (ira_memory_move_cost[mode][rclass][0]
2370 + ira_memory_move_cost[mode][rclass][1]));
2371 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2372 cost += ((ira_memory_move_cost[mode][rclass][0]
2373 + ira_memory_move_cost[mode][rclass][1])
2374 * ALLOCNO_FREQ (a)
2375 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2376 #endif
2377 if (INT_MAX - cost < reg_costs[j])
2378 reg_costs[j] = INT_MAX;
2379 else
2380 reg_costs[j] += cost;
2381 if (min_cost > reg_costs[j])
2382 min_cost = reg_costs[j];
2385 if (min_cost != INT_MAX)
2386 ALLOCNO_CLASS_COST (a) = min_cost;
2388 /* Some targets allow pseudos to be allocated to unaligned sequences
2389 of hard registers. However, selecting an unaligned sequence can
2390 unnecessarily restrict later allocations. So increase the cost of
2391 unaligned hard regs to encourage the use of aligned hard regs. */
2393 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2395 if (nregs > 1)
2397 ira_allocate_and_set_costs
2398 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2399 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2400 for (j = n - 1; j >= 0; j--)
2402 regno = ira_non_ordered_class_hard_regs[aclass][j];
2403 if ((regno % nregs) != 0)
2405 int index = ira_class_hard_reg_index[aclass][regno];
2406 ira_assert (index != -1);
2407 reg_costs[index] += ALLOCNO_FREQ (a);
2415 /* Add COST to the estimated gain for eliminating REGNO with its
2416 equivalence. If COST is zero, record that no such elimination is
2417 possible. */
2419 void
2420 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2422 if (cost == 0)
2423 regno_equiv_gains[regno] = 0;
2424 else
2425 regno_equiv_gains[regno] += cost;
2428 void
2429 ira_costs_c_finalize (void)
2431 this_target_ira_int->free_ira_costs ();