PR libstdc++/87308 adjust regex used in std::any pretty printer
[official-gcc.git] / gcc / ada / sem_attr.adb
blob30cdc95eb65fefdec2c89ad5feb5bbf5845676bc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
28 with Atree; use Atree;
29 with Casing; use Casing;
30 with Checks; use Checks;
31 with Debug; use Debug;
32 with Einfo; use Einfo;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Eval_Fat;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Util; use Exp_Util;
38 with Expander; use Expander;
39 with Freeze; use Freeze;
40 with Gnatvsn; use Gnatvsn;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sdefault;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Cat; use Sem_Cat;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch10; use Sem_Ch10;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Elab; use Sem_Elab;
60 with Sem_Elim; use Sem_Elim;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Type; use Sem_Type;
65 with Sem_Util; use Sem_Util;
66 with Sem_Warn;
67 with Stand; use Stand;
68 with Sinfo; use Sinfo;
69 with Sinput; use Sinput;
70 with System;
71 with Stringt; use Stringt;
72 with Style;
73 with Stylesw; use Stylesw;
74 with Targparm; use Targparm;
75 with Ttypes; use Ttypes;
76 with Tbuild; use Tbuild;
77 with Uintp; use Uintp;
78 with Uname; use Uname;
79 with Urealp; use Urealp;
81 with System.CRC32; use System.CRC32;
83 package body Sem_Attr is
85 True_Value : constant Uint := Uint_1;
86 False_Value : constant Uint := Uint_0;
87 -- Synonyms to be used when these constants are used as Boolean values
89 Bad_Attribute : exception;
90 -- Exception raised if an error is detected during attribute processing,
91 -- used so that we can abandon the processing so we don't run into
92 -- trouble with cascaded errors.
94 -- The following array is the list of attributes defined in the Ada 83 RM.
95 -- In Ada 83 mode, these are the only recognized attributes. In other Ada
96 -- modes all these attributes are recognized, even if removed in Ada 95.
98 Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
99 Attribute_Address |
100 Attribute_Aft |
101 Attribute_Alignment |
102 Attribute_Base |
103 Attribute_Callable |
104 Attribute_Constrained |
105 Attribute_Count |
106 Attribute_Delta |
107 Attribute_Digits |
108 Attribute_Emax |
109 Attribute_Epsilon |
110 Attribute_First |
111 Attribute_First_Bit |
112 Attribute_Fore |
113 Attribute_Image |
114 Attribute_Large |
115 Attribute_Last |
116 Attribute_Last_Bit |
117 Attribute_Leading_Part |
118 Attribute_Length |
119 Attribute_Machine_Emax |
120 Attribute_Machine_Emin |
121 Attribute_Machine_Mantissa |
122 Attribute_Machine_Overflows |
123 Attribute_Machine_Radix |
124 Attribute_Machine_Rounds |
125 Attribute_Mantissa |
126 Attribute_Pos |
127 Attribute_Position |
128 Attribute_Pred |
129 Attribute_Range |
130 Attribute_Safe_Emax |
131 Attribute_Safe_Large |
132 Attribute_Safe_Small |
133 Attribute_Size |
134 Attribute_Small |
135 Attribute_Storage_Size |
136 Attribute_Succ |
137 Attribute_Terminated |
138 Attribute_Val |
139 Attribute_Value |
140 Attribute_Width => True,
141 others => False);
143 -- The following array is the list of attributes defined in the Ada 2005
144 -- RM which are not defined in Ada 95. These are recognized in Ada 95 mode,
145 -- but in Ada 95 they are considered to be implementation defined.
147 Attribute_05 : constant Attribute_Class_Array := Attribute_Class_Array'(
148 Attribute_Machine_Rounding |
149 Attribute_Mod |
150 Attribute_Priority |
151 Attribute_Stream_Size |
152 Attribute_Wide_Wide_Width => True,
153 others => False);
155 -- The following array is the list of attributes defined in the Ada 2012
156 -- RM which are not defined in Ada 2005. These are recognized in Ada 95
157 -- and Ada 2005 modes, but are considered to be implementation defined.
159 Attribute_12 : constant Attribute_Class_Array := Attribute_Class_Array'(
160 Attribute_First_Valid |
161 Attribute_Has_Same_Storage |
162 Attribute_Last_Valid |
163 Attribute_Max_Alignment_For_Allocation => True,
164 others => False);
166 -- The following array contains all attributes that imply a modification
167 -- of their prefixes or result in an access value. Such prefixes can be
168 -- considered as lvalues.
170 Attribute_Name_Implies_Lvalue_Prefix : constant Attribute_Class_Array :=
171 Attribute_Class_Array'(
172 Attribute_Access |
173 Attribute_Address |
174 Attribute_Input |
175 Attribute_Read |
176 Attribute_Unchecked_Access |
177 Attribute_Unrestricted_Access => True,
178 others => False);
180 -----------------------
181 -- Local_Subprograms --
182 -----------------------
184 procedure Eval_Attribute (N : Node_Id);
185 -- Performs compile time evaluation of attributes where possible, leaving
186 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
187 -- set, and replacing the node with a literal node if the value can be
188 -- computed at compile time. All static attribute references are folded,
189 -- as well as a number of cases of non-static attributes that can always
190 -- be computed at compile time (e.g. floating-point model attributes that
191 -- are applied to non-static subtypes). Of course in such cases, the
192 -- Is_Static_Expression flag will not be set on the resulting literal.
193 -- Note that the only required action of this procedure is to catch the
194 -- static expression cases as described in the RM. Folding of other cases
195 -- is done where convenient, but some additional non-static folding is in
196 -- Expand_N_Attribute_Reference in cases where this is more convenient.
198 function Is_Anonymous_Tagged_Base
199 (Anon : Entity_Id;
200 Typ : Entity_Id) return Boolean;
201 -- For derived tagged types that constrain parent discriminants we build
202 -- an anonymous unconstrained base type. We need to recognize the relation
203 -- between the two when analyzing an access attribute for a constrained
204 -- component, before the full declaration for Typ has been analyzed, and
205 -- where therefore the prefix of the attribute does not match the enclosing
206 -- scope.
208 procedure Set_Boolean_Result (N : Node_Id; B : Boolean);
209 -- Rewrites node N with an occurrence of either Standard_False or
210 -- Standard_True, depending on the value of the parameter B. The
211 -- result is marked as a static expression.
213 function Statically_Denotes_Object (N : Node_Id) return Boolean;
214 -- Predicate used to check the legality of the prefix to 'Loop_Entry and
215 -- 'Old, when the prefix is not an entity name. Current RM specfies that
216 -- the prefix must be a direct or expanded name, but it has been proposed
217 -- that the prefix be allowed to be a selected component that does not
218 -- depend on a discriminant, or an indexed component with static indices.
219 -- Current code for this predicate implements this more permissive
220 -- implementation.
222 -----------------------
223 -- Analyze_Attribute --
224 -----------------------
226 procedure Analyze_Attribute (N : Node_Id) is
227 Loc : constant Source_Ptr := Sloc (N);
228 Aname : constant Name_Id := Attribute_Name (N);
229 P : constant Node_Id := Prefix (N);
230 Exprs : constant List_Id := Expressions (N);
231 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
232 E1 : Node_Id;
233 E2 : Node_Id;
235 P_Type : Entity_Id := Empty;
236 -- Type of prefix after analysis
238 P_Base_Type : Entity_Id := Empty;
239 -- Base type of prefix after analysis
241 -----------------------
242 -- Local Subprograms --
243 -----------------------
245 procedure Address_Checks;
246 -- Semantic checks for valid use of Address attribute. This was made
247 -- a separate routine with the idea of using it for unrestricted access
248 -- which seems like it should follow the same rules, but that turned
249 -- out to be impractical. So now this is only used for Address.
251 procedure Analyze_Access_Attribute;
252 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
253 -- Internally, Id distinguishes which of the three cases is involved.
255 procedure Analyze_Attribute_Old_Result
256 (Legal : out Boolean;
257 Spec_Id : out Entity_Id);
258 -- Common processing for attributes 'Old and 'Result. The routine checks
259 -- that the attribute appears in a postcondition-like aspect or pragma
260 -- associated with a suitable subprogram or a body. Flag Legal is set
261 -- when the above criteria are met. Spec_Id denotes the entity of the
262 -- subprogram [body] or Empty if the attribute is illegal.
264 procedure Analyze_Image_Attribute (Str_Typ : Entity_Id);
265 -- Common processing for attributes 'Img, 'Image, 'Wide_Image, and
266 -- 'Wide_Wide_Image. The routine checks that the prefix is valid and
267 -- sets the type of the attribute to the one specified by Str_Typ (e.g.
268 -- Standard_String for 'Image and Standard_Wide_String for 'Wide_Image).
270 procedure Bad_Attribute_For_Predicate;
271 -- Output error message for use of a predicate (First, Last, Range) not
272 -- allowed with a type that has predicates. If the type is a generic
273 -- actual, then the message is a warning, and we generate code to raise
274 -- program error with an appropriate reason. No error message is given
275 -- for internally generated uses of the attributes. This legality rule
276 -- only applies to scalar types.
278 procedure Check_Array_Or_Scalar_Type;
279 -- Common procedure used by First, Last, Range attribute to check
280 -- that the prefix is a constrained array or scalar type, or a name
281 -- of an array object, and that an argument appears only if appropriate
282 -- (i.e. only in the array case).
284 procedure Check_Array_Type;
285 -- Common semantic checks for all array attributes. Checks that the
286 -- prefix is a constrained array type or the name of an array object.
287 -- The error message for non-arrays is specialized appropriately.
289 procedure Check_Asm_Attribute;
290 -- Common semantic checks for Asm_Input and Asm_Output attributes
292 procedure Check_Component;
293 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
294 -- Position. Checks prefix is an appropriate selected component.
296 procedure Check_Decimal_Fixed_Point_Type;
297 -- Check that prefix of attribute N is a decimal fixed-point type
299 procedure Check_Dereference;
300 -- If the prefix of attribute is an object of an access type, then
301 -- introduce an explicit dereference, and adjust P_Type accordingly.
303 procedure Check_Discrete_Type;
304 -- Verify that prefix of attribute N is a discrete type
306 procedure Check_E0;
307 -- Check that no attribute arguments are present
309 procedure Check_Either_E0_Or_E1;
310 -- Check that there are zero or one attribute arguments present
312 procedure Check_E1;
313 -- Check that exactly one attribute argument is present
315 procedure Check_E2;
316 -- Check that two attribute arguments are present
318 procedure Check_Enum_Image;
319 -- If the prefix type of 'Image is an enumeration type, set all its
320 -- literals as referenced, since the image function could possibly end
321 -- up referencing any of the literals indirectly. Same for Enum_Val.
322 -- Set the flag only if the reference is in the main code unit. Same
323 -- restriction when resolving 'Value; otherwise an improperly set
324 -- reference when analyzing an inlined body will lose a proper
325 -- warning on a useless with_clause.
327 procedure Check_First_Last_Valid;
328 -- Perform all checks for First_Valid and Last_Valid attributes
330 procedure Check_Fixed_Point_Type;
331 -- Verify that prefix of attribute N is a fixed type
333 procedure Check_Fixed_Point_Type_0;
334 -- Verify that prefix of attribute N is a fixed type and that
335 -- no attribute expressions are present.
337 procedure Check_Floating_Point_Type;
338 -- Verify that prefix of attribute N is a float type
340 procedure Check_Floating_Point_Type_0;
341 -- Verify that prefix of attribute N is a float type and that
342 -- no attribute expressions are present.
344 procedure Check_Floating_Point_Type_1;
345 -- Verify that prefix of attribute N is a float type and that
346 -- exactly one attribute expression is present.
348 procedure Check_Floating_Point_Type_2;
349 -- Verify that prefix of attribute N is a float type and that
350 -- two attribute expressions are present
352 procedure Check_SPARK_05_Restriction_On_Attribute;
353 -- Issue an error in formal mode because attribute N is allowed
355 procedure Check_Integer_Type;
356 -- Verify that prefix of attribute N is an integer type
358 procedure Check_Modular_Integer_Type;
359 -- Verify that prefix of attribute N is a modular integer type
361 procedure Check_Not_CPP_Type;
362 -- Check that P (the prefix of the attribute) is not an CPP type
363 -- for which no Ada predefined primitive is available.
365 procedure Check_Not_Incomplete_Type;
366 -- Check that P (the prefix of the attribute) is not an incomplete
367 -- type or a private type for which no full view has been given.
369 procedure Check_Object_Reference (P : Node_Id);
370 -- Check that P is an object reference
372 procedure Check_PolyORB_Attribute;
373 -- Validity checking for PolyORB/DSA attribute
375 procedure Check_Program_Unit;
376 -- Verify that prefix of attribute N is a program unit
378 procedure Check_Real_Type;
379 -- Verify that prefix of attribute N is fixed or float type
381 procedure Check_Scalar_Type;
382 -- Verify that prefix of attribute N is a scalar type
384 procedure Check_Standard_Prefix;
385 -- Verify that prefix of attribute N is package Standard. Also checks
386 -- that there are no arguments.
388 procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
389 -- Validity checking for stream attribute. Nam is the TSS name of the
390 -- corresponding possible defined attribute function (e.g. for the
391 -- Read attribute, Nam will be TSS_Stream_Read).
393 procedure Check_System_Prefix;
394 -- Verify that prefix of attribute N is package System
396 procedure Check_Task_Prefix;
397 -- Verify that prefix of attribute N is a task or task type
399 procedure Check_Type;
400 -- Verify that the prefix of attribute N is a type
402 procedure Check_Unit_Name (Nod : Node_Id);
403 -- Check that Nod is of the form of a library unit name, i.e that
404 -- it is an identifier, or a selected component whose prefix is
405 -- itself of the form of a library unit name. Note that this is
406 -- quite different from Check_Program_Unit, since it only checks
407 -- the syntactic form of the name, not the semantic identity. This
408 -- is because it is used with attributes (Elab_Body, Elab_Spec and
409 -- Elaborated) which can refer to non-visible unit.
411 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
412 pragma No_Return (Error_Attr);
413 procedure Error_Attr;
414 pragma No_Return (Error_Attr);
415 -- Posts error using Error_Msg_N at given node, sets type of attribute
416 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
417 -- semantic processing. The message typically contains a % insertion
418 -- character which is replaced by the attribute name. The call with
419 -- no arguments is used when the caller has already generated the
420 -- required error messages.
422 procedure Error_Attr_P (Msg : String);
423 pragma No_Return (Error_Attr_P);
424 -- Like Error_Attr, but error is posted at the start of the prefix
426 procedure Legal_Formal_Attribute;
427 -- Common processing for attributes Definite and Has_Discriminants.
428 -- Checks that prefix is generic indefinite formal type.
430 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
431 -- Common processing for attributes Max_Alignment_For_Allocation and
432 -- Max_Size_In_Storage_Elements.
434 procedure Min_Max;
435 -- Common processing for attributes Max and Min
437 procedure Standard_Attribute (Val : Int);
438 -- Used to process attributes whose prefix is package Standard which
439 -- yield values of type Universal_Integer. The attribute reference
440 -- node is rewritten with an integer literal of the given value which
441 -- is marked as static.
443 procedure Uneval_Old_Msg;
444 -- Called when Loop_Entry or Old is used in a potentially unevaluated
445 -- expression. Generates appropriate message or warning depending on
446 -- the setting of Opt.Uneval_Old (or flags in an N_Aspect_Specification
447 -- node in the aspect case).
449 procedure Unexpected_Argument (En : Node_Id);
450 pragma No_Return (Unexpected_Argument);
451 -- Signal unexpected attribute argument (En is the argument), and then
452 -- raises Bad_Attribute to avoid any further semantic processing.
454 procedure Validate_Non_Static_Attribute_Function_Call;
455 -- Called when processing an attribute that is a function call to a
456 -- non-static function, i.e. an attribute function that either takes
457 -- non-scalar arguments or returns a non-scalar result. Verifies that
458 -- such a call does not appear in a preelaborable context.
460 --------------------
461 -- Address_Checks --
462 --------------------
464 procedure Address_Checks is
465 begin
466 -- An Address attribute created by expansion is legal even when it
467 -- applies to other entity-denoting expressions.
469 if not Comes_From_Source (N) then
470 return;
472 -- Address attribute on a protected object self reference is legal
474 elsif Is_Protected_Self_Reference (P) then
475 return;
477 -- Address applied to an entity
479 elsif Is_Entity_Name (P) then
480 declare
481 Ent : constant Entity_Id := Entity (P);
483 begin
484 if Is_Subprogram (Ent) then
485 Set_Address_Taken (Ent);
486 Kill_Current_Values (Ent);
488 -- An Address attribute is accepted when generated by the
489 -- compiler for dispatching operation, and an error is
490 -- issued once the subprogram is frozen (to avoid confusing
491 -- errors about implicit uses of Address in the dispatch
492 -- table initialization).
494 if Has_Pragma_Inline_Always (Entity (P))
495 and then Comes_From_Source (P)
496 then
497 Error_Attr_P
498 ("prefix of % attribute cannot be Inline_Always "
499 & "subprogram");
501 -- It is illegal to apply 'Address to an intrinsic
502 -- subprogram. This is now formalized in AI05-0095.
503 -- In an instance, an attempt to obtain 'Address of an
504 -- intrinsic subprogram (e.g the renaming of a predefined
505 -- operator that is an actual) raises Program_Error.
507 elsif Convention (Ent) = Convention_Intrinsic then
508 if In_Instance then
509 Rewrite (N,
510 Make_Raise_Program_Error (Loc,
511 Reason => PE_Address_Of_Intrinsic));
513 else
514 Error_Msg_Name_1 := Aname;
515 Error_Msg_N
516 ("cannot take % of intrinsic subprogram", N);
517 end if;
519 -- Issue an error if prefix denotes an eliminated subprogram
521 else
522 Check_For_Eliminated_Subprogram (P, Ent);
523 end if;
525 -- Object or label reference
527 elsif Is_Object (Ent) or else Ekind (Ent) = E_Label then
528 Set_Address_Taken (Ent);
530 -- Deal with No_Implicit_Aliasing restriction
532 if Restriction_Check_Required (No_Implicit_Aliasing) then
533 if not Is_Aliased_View (P) then
534 Check_Restriction (No_Implicit_Aliasing, P);
535 else
536 Check_No_Implicit_Aliasing (P);
537 end if;
538 end if;
540 -- If we have an address of an object, and the attribute
541 -- comes from source, then set the object as potentially
542 -- source modified. We do this because the resulting address
543 -- can potentially be used to modify the variable and we
544 -- might not detect this, leading to some junk warnings.
546 Set_Never_Set_In_Source (Ent, False);
548 -- Allow Address to be applied to task or protected type,
549 -- returning null address (what is that about???)
551 elsif (Is_Concurrent_Type (Etype (Ent))
552 and then Etype (Ent) = Base_Type (Ent))
553 or else Ekind (Ent) = E_Package
554 or else Is_Generic_Unit (Ent)
555 then
556 Rewrite (N,
557 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
559 -- Anything else is illegal
561 else
562 Error_Attr ("invalid prefix for % attribute", P);
563 end if;
564 end;
566 -- Object is OK
568 elsif Is_Object_Reference (P) then
569 return;
571 -- Subprogram called using dot notation
573 elsif Nkind (P) = N_Selected_Component
574 and then Is_Subprogram (Entity (Selector_Name (P)))
575 then
576 return;
578 -- What exactly are we allowing here ??? and is this properly
579 -- documented in the sinfo documentation for this node ???
581 elsif Relaxed_RM_Semantics
582 and then Nkind (P) = N_Attribute_Reference
583 then
584 return;
586 -- All other non-entity name cases are illegal
588 else
589 Error_Attr ("invalid prefix for % attribute", P);
590 end if;
591 end Address_Checks;
593 ------------------------------
594 -- Analyze_Access_Attribute --
595 ------------------------------
597 procedure Analyze_Access_Attribute is
598 Acc_Type : Entity_Id;
600 Scop : Entity_Id;
601 Typ : Entity_Id;
603 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
604 -- Build an access-to-object type whose designated type is DT,
605 -- and whose Ekind is appropriate to the attribute type. The
606 -- type that is constructed is returned as the result.
608 procedure Build_Access_Subprogram_Type (P : Node_Id);
609 -- Build an access to subprogram whose designated type is the type of
610 -- the prefix. If prefix is overloaded, so is the node itself. The
611 -- result is stored in Acc_Type.
613 function OK_Self_Reference return Boolean;
614 -- An access reference whose prefix is a type can legally appear
615 -- within an aggregate, where it is obtained by expansion of
616 -- a defaulted aggregate. The enclosing aggregate that contains
617 -- the self-referenced is flagged so that the self-reference can
618 -- be expanded into a reference to the target object (see exp_aggr).
620 ------------------------------
621 -- Build_Access_Object_Type --
622 ------------------------------
624 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
625 Typ : constant Entity_Id :=
626 New_Internal_Entity
627 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
628 begin
629 Set_Etype (Typ, Typ);
630 Set_Is_Itype (Typ);
631 Set_Associated_Node_For_Itype (Typ, N);
632 Set_Directly_Designated_Type (Typ, DT);
633 return Typ;
634 end Build_Access_Object_Type;
636 ----------------------------------
637 -- Build_Access_Subprogram_Type --
638 ----------------------------------
640 procedure Build_Access_Subprogram_Type (P : Node_Id) is
641 Index : Interp_Index;
642 It : Interp;
644 procedure Check_Local_Access (E : Entity_Id);
645 -- Deal with possible access to local subprogram. If we have such
646 -- an access, we set a flag to kill all tracked values on any call
647 -- because this access value may be passed around, and any called
648 -- code might use it to access a local procedure which clobbers a
649 -- tracked value. If the scope is a loop or block, indicate that
650 -- value tracking is disabled for the enclosing subprogram.
652 function Get_Kind (E : Entity_Id) return Entity_Kind;
653 -- Distinguish between access to regular/protected subprograms
655 ------------------------
656 -- Check_Local_Access --
657 ------------------------
659 procedure Check_Local_Access (E : Entity_Id) is
660 begin
661 if not Is_Library_Level_Entity (E) then
662 Set_Suppress_Value_Tracking_On_Call (Current_Scope);
663 Set_Suppress_Value_Tracking_On_Call
664 (Nearest_Dynamic_Scope (Current_Scope));
665 end if;
666 end Check_Local_Access;
668 --------------
669 -- Get_Kind --
670 --------------
672 function Get_Kind (E : Entity_Id) return Entity_Kind is
673 begin
674 if Convention (E) = Convention_Protected then
675 return E_Access_Protected_Subprogram_Type;
676 else
677 return E_Access_Subprogram_Type;
678 end if;
679 end Get_Kind;
681 -- Start of processing for Build_Access_Subprogram_Type
683 begin
684 -- In the case of an access to subprogram, use the name of the
685 -- subprogram itself as the designated type. Type-checking in
686 -- this case compares the signatures of the designated types.
688 -- Note: This fragment of the tree is temporarily malformed
689 -- because the correct tree requires an E_Subprogram_Type entity
690 -- as the designated type. In most cases this designated type is
691 -- later overridden by the semantics with the type imposed by the
692 -- context during the resolution phase. In the specific case of
693 -- the expression Address!(Prim'Unrestricted_Access), used to
694 -- initialize slots of dispatch tables, this work will be done by
695 -- the expander (see Exp_Aggr).
697 -- The reason to temporarily add this kind of node to the tree
698 -- instead of a proper E_Subprogram_Type itype, is the following:
699 -- in case of errors found in the source file we report better
700 -- error messages. For example, instead of generating the
701 -- following error:
703 -- "expected access to subprogram with profile
704 -- defined at line X"
706 -- we currently generate:
708 -- "expected access to function Z defined at line X"
710 Set_Etype (N, Any_Type);
712 if not Is_Overloaded (P) then
713 Check_Local_Access (Entity (P));
715 if not Is_Intrinsic_Subprogram (Entity (P)) then
716 Acc_Type := Create_Itype (Get_Kind (Entity (P)), N);
717 Set_Is_Public (Acc_Type, False);
718 Set_Etype (Acc_Type, Acc_Type);
719 Set_Convention (Acc_Type, Convention (Entity (P)));
720 Set_Directly_Designated_Type (Acc_Type, Entity (P));
721 Set_Etype (N, Acc_Type);
722 Freeze_Before (N, Acc_Type);
723 end if;
725 else
726 Get_First_Interp (P, Index, It);
727 while Present (It.Nam) loop
728 Check_Local_Access (It.Nam);
730 if not Is_Intrinsic_Subprogram (It.Nam) then
731 Acc_Type := Create_Itype (Get_Kind (It.Nam), N);
732 Set_Is_Public (Acc_Type, False);
733 Set_Etype (Acc_Type, Acc_Type);
734 Set_Convention (Acc_Type, Convention (It.Nam));
735 Set_Directly_Designated_Type (Acc_Type, It.Nam);
736 Add_One_Interp (N, Acc_Type, Acc_Type);
737 Freeze_Before (N, Acc_Type);
738 end if;
740 Get_Next_Interp (Index, It);
741 end loop;
742 end if;
744 -- Cannot be applied to intrinsic. Looking at the tests above,
745 -- the only way Etype (N) can still be set to Any_Type is if
746 -- Is_Intrinsic_Subprogram was True for some referenced entity.
748 if Etype (N) = Any_Type then
749 Error_Attr_P ("prefix of % attribute cannot be intrinsic");
750 end if;
751 end Build_Access_Subprogram_Type;
753 ----------------------
754 -- OK_Self_Reference --
755 ----------------------
757 function OK_Self_Reference return Boolean is
758 Par : Node_Id;
760 begin
761 Par := Parent (N);
762 while Present (Par)
763 and then
764 (Nkind (Par) = N_Component_Association
765 or else Nkind (Par) in N_Subexpr)
766 loop
767 if Nkind_In (Par, N_Aggregate, N_Extension_Aggregate) then
768 if Etype (Par) = Typ then
769 Set_Has_Self_Reference (Par);
771 -- Check the context: the aggregate must be part of the
772 -- initialization of a type or component, or it is the
773 -- resulting expansion in an initialization procedure.
775 if Is_Init_Proc (Current_Scope) then
776 return True;
777 else
778 Par := Parent (Par);
779 while Present (Par) loop
780 if Nkind (Par) = N_Full_Type_Declaration then
781 return True;
782 end if;
784 Par := Parent (Par);
785 end loop;
786 end if;
788 return False;
789 end if;
790 end if;
792 Par := Parent (Par);
793 end loop;
795 -- No enclosing aggregate, or not a self-reference
797 return False;
798 end OK_Self_Reference;
800 -- Start of processing for Analyze_Access_Attribute
802 begin
803 Check_SPARK_05_Restriction_On_Attribute;
804 Check_E0;
806 if Nkind (P) = N_Character_Literal then
807 Error_Attr_P
808 ("prefix of % attribute cannot be enumeration literal");
809 end if;
811 -- Preserve relevant elaboration-related attributes of the context
812 -- which are no longer available or very expensive to recompute once
813 -- analysis, resolution, and expansion are over.
815 Mark_Elaboration_Attributes
816 (N_Id => N,
817 Checks => True,
818 Modes => True,
819 Warnings => True);
821 -- Save the scenario for later examination by the ABE Processing
822 -- phase.
824 Record_Elaboration_Scenario (N);
826 -- Case of access to subprogram
828 if Is_Entity_Name (P) and then Is_Overloadable (Entity (P)) then
829 if Has_Pragma_Inline_Always (Entity (P)) then
830 Error_Attr_P
831 ("prefix of % attribute cannot be Inline_Always subprogram");
833 elsif Aname = Name_Unchecked_Access then
834 Error_Attr ("attribute% cannot be applied to a subprogram", P);
835 end if;
837 -- Issue an error if the prefix denotes an eliminated subprogram
839 Check_For_Eliminated_Subprogram (P, Entity (P));
841 -- Check for obsolescent subprogram reference
843 Check_Obsolescent_2005_Entity (Entity (P), P);
845 -- Build the appropriate subprogram type
847 Build_Access_Subprogram_Type (P);
849 -- For P'Access or P'Unrestricted_Access, where P is a nested
850 -- subprogram, we might be passing P to another subprogram (but we
851 -- don't check that here), which might call P. P could modify
852 -- local variables, so we need to kill current values. It is
853 -- important not to do this for library-level subprograms, because
854 -- Kill_Current_Values is very inefficient in the case of library
855 -- level packages with lots of tagged types.
857 if Is_Library_Level_Entity (Entity (Prefix (N))) then
858 null;
860 -- Do not kill values on nodes initializing dispatch tables
861 -- slots. The construct Prim_Ptr!(Prim'Unrestricted_Access)
862 -- is currently generated by the expander only for this
863 -- purpose. Done to keep the quality of warnings currently
864 -- generated by the compiler (otherwise any declaration of
865 -- a tagged type cleans constant indications from its scope).
867 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
868 and then (Etype (Parent (N)) = RTE (RE_Prim_Ptr)
869 or else
870 Etype (Parent (N)) = RTE (RE_Size_Ptr))
871 and then Is_Dispatching_Operation
872 (Directly_Designated_Type (Etype (N)))
873 then
874 null;
876 else
877 Kill_Current_Values;
878 end if;
880 -- In the static elaboration model, treat the attribute reference
881 -- as a subprogram call for elaboration purposes. Suppress this
882 -- treatment under debug flag. In any case, we are all done.
884 if Legacy_Elaboration_Checks
885 and not Dynamic_Elaboration_Checks
886 and not Debug_Flag_Dot_UU
887 then
888 Check_Elab_Call (N);
889 end if;
891 return;
893 -- Component is an operation of a protected type
895 elsif Nkind (P) = N_Selected_Component
896 and then Is_Overloadable (Entity (Selector_Name (P)))
897 then
898 if Ekind (Entity (Selector_Name (P))) = E_Entry then
899 Error_Attr_P ("prefix of % attribute must be subprogram");
900 end if;
902 Build_Access_Subprogram_Type (Selector_Name (P));
903 return;
904 end if;
906 -- Deal with incorrect reference to a type, but note that some
907 -- accesses are allowed: references to the current type instance,
908 -- or in Ada 2005 self-referential pointer in a default-initialized
909 -- aggregate.
911 if Is_Entity_Name (P) then
912 Typ := Entity (P);
914 -- The reference may appear in an aggregate that has been expanded
915 -- into a loop. Locate scope of type definition, if any.
917 Scop := Current_Scope;
918 while Ekind (Scop) = E_Loop loop
919 Scop := Scope (Scop);
920 end loop;
922 if Is_Type (Typ) then
924 -- OK if we are within the scope of a limited type
925 -- let's mark the component as having per object constraint
927 if Is_Anonymous_Tagged_Base (Scop, Typ) then
928 Typ := Scop;
929 Set_Entity (P, Typ);
930 Set_Etype (P, Typ);
931 end if;
933 if Typ = Scop then
934 declare
935 Q : Node_Id := Parent (N);
937 begin
938 while Present (Q)
939 and then Nkind (Q) /= N_Component_Declaration
940 loop
941 Q := Parent (Q);
942 end loop;
944 if Present (Q) then
945 Set_Has_Per_Object_Constraint
946 (Defining_Identifier (Q), True);
947 end if;
948 end;
950 if Nkind (P) = N_Expanded_Name then
951 Error_Msg_F
952 ("current instance prefix must be a direct name", P);
953 end if;
955 -- If a current instance attribute appears in a component
956 -- constraint it must appear alone; other contexts (spec-
957 -- expressions, within a task body) are not subject to this
958 -- restriction.
960 if not In_Spec_Expression
961 and then not Has_Completion (Scop)
962 and then not
963 Nkind_In (Parent (N), N_Discriminant_Association,
964 N_Index_Or_Discriminant_Constraint)
965 then
966 Error_Msg_N
967 ("current instance attribute must appear alone", N);
968 end if;
970 if Is_CPP_Class (Root_Type (Typ)) then
971 Error_Msg_N
972 ("??current instance unsupported for derivations of "
973 & "'C'P'P types", N);
974 end if;
976 -- OK if we are in initialization procedure for the type
977 -- in question, in which case the reference to the type
978 -- is rewritten as a reference to the current object.
980 elsif Ekind (Scop) = E_Procedure
981 and then Is_Init_Proc (Scop)
982 and then Etype (First_Formal (Scop)) = Typ
983 then
984 Rewrite (N,
985 Make_Attribute_Reference (Loc,
986 Prefix => Make_Identifier (Loc, Name_uInit),
987 Attribute_Name => Name_Unrestricted_Access));
988 Analyze (N);
989 return;
991 -- OK if a task type, this test needs sharpening up ???
993 elsif Is_Task_Type (Typ) then
994 null;
996 -- OK if self-reference in an aggregate in Ada 2005, and
997 -- the reference comes from a copied default expression.
999 -- Note that we check legality of self-reference even if the
1000 -- expression comes from source, e.g. when a single component
1001 -- association in an aggregate has a box association.
1003 elsif Ada_Version >= Ada_2005
1004 and then OK_Self_Reference
1005 then
1006 null;
1008 -- OK if reference to current instance of a protected object
1010 elsif Is_Protected_Self_Reference (P) then
1011 null;
1013 -- Otherwise we have an error case
1015 else
1016 Error_Attr ("% attribute cannot be applied to type", P);
1017 return;
1018 end if;
1019 end if;
1020 end if;
1022 -- If we fall through, we have a normal access to object case
1024 -- Unrestricted_Access is (for now) legal wherever an allocator would
1025 -- be legal, so its Etype is set to E_Allocator. The expected type
1026 -- of the other attributes is a general access type, and therefore
1027 -- we label them with E_Access_Attribute_Type.
1029 if not Is_Overloaded (P) then
1030 Acc_Type := Build_Access_Object_Type (P_Type);
1031 Set_Etype (N, Acc_Type);
1033 else
1034 declare
1035 Index : Interp_Index;
1036 It : Interp;
1037 begin
1038 Set_Etype (N, Any_Type);
1039 Get_First_Interp (P, Index, It);
1040 while Present (It.Typ) loop
1041 Acc_Type := Build_Access_Object_Type (It.Typ);
1042 Add_One_Interp (N, Acc_Type, Acc_Type);
1043 Get_Next_Interp (Index, It);
1044 end loop;
1045 end;
1046 end if;
1048 -- Special cases when we can find a prefix that is an entity name
1050 declare
1051 PP : Node_Id;
1052 Ent : Entity_Id;
1054 begin
1055 PP := P;
1056 loop
1057 if Is_Entity_Name (PP) then
1058 Ent := Entity (PP);
1060 -- If we have an access to an object, and the attribute
1061 -- comes from source, then set the object as potentially
1062 -- source modified. We do this because the resulting access
1063 -- pointer can be used to modify the variable, and we might
1064 -- not detect this, leading to some junk warnings.
1066 -- We only do this for source references, since otherwise
1067 -- we can suppress warnings, e.g. from the unrestricted
1068 -- access generated for validity checks in -gnatVa mode.
1070 if Comes_From_Source (N) then
1071 Set_Never_Set_In_Source (Ent, False);
1072 end if;
1074 -- Mark entity as address taken in the case of
1075 -- 'Unrestricted_Access or subprograms, and kill current
1076 -- values.
1078 if Aname = Name_Unrestricted_Access
1079 or else Is_Subprogram (Ent)
1080 then
1081 Set_Address_Taken (Ent);
1082 end if;
1084 Kill_Current_Values (Ent);
1085 exit;
1087 elsif Nkind_In (PP, N_Selected_Component,
1088 N_Indexed_Component)
1089 then
1090 PP := Prefix (PP);
1092 else
1093 exit;
1094 end if;
1095 end loop;
1096 end;
1097 end Analyze_Access_Attribute;
1099 ----------------------------------
1100 -- Analyze_Attribute_Old_Result --
1101 ----------------------------------
1103 procedure Analyze_Attribute_Old_Result
1104 (Legal : out Boolean;
1105 Spec_Id : out Entity_Id)
1107 procedure Check_Placement_In_Check (Prag : Node_Id);
1108 -- Verify that the attribute appears within pragma Check that mimics
1109 -- a postcondition.
1111 procedure Check_Placement_In_Contract_Cases (Prag : Node_Id);
1112 -- Verify that the attribute appears within a consequence of aspect
1113 -- or pragma Contract_Cases denoted by Prag.
1115 procedure Check_Placement_In_Test_Case (Prag : Node_Id);
1116 -- Verify that the attribute appears within the "Ensures" argument of
1117 -- aspect or pragma Test_Case denoted by Prag.
1119 function Is_Within
1120 (Nod : Node_Id;
1121 Encl_Nod : Node_Id) return Boolean;
1122 -- Subsidiary to Check_Placemenet_In_XXX. Determine whether arbitrary
1123 -- node Nod is within enclosing node Encl_Nod.
1125 procedure Placement_Error;
1126 pragma No_Return (Placement_Error);
1127 -- Emit a general error when the attributes does not appear in a
1128 -- postcondition-like aspect or pragma, and then raises Bad_Attribute
1129 -- to avoid any further semantic processing.
1131 ------------------------------
1132 -- Check_Placement_In_Check --
1133 ------------------------------
1135 procedure Check_Placement_In_Check (Prag : Node_Id) is
1136 Args : constant List_Id := Pragma_Argument_Associations (Prag);
1137 Nam : constant Name_Id := Chars (Get_Pragma_Arg (First (Args)));
1139 begin
1140 -- The "Name" argument of pragma Check denotes a postcondition
1142 if Nam_In (Nam, Name_Post,
1143 Name_Post_Class,
1144 Name_Postcondition,
1145 Name_Refined_Post)
1146 then
1147 null;
1149 -- Otherwise the placement of the attribute is illegal
1151 else
1152 Placement_Error;
1153 end if;
1154 end Check_Placement_In_Check;
1156 ---------------------------------------
1157 -- Check_Placement_In_Contract_Cases --
1158 ---------------------------------------
1160 procedure Check_Placement_In_Contract_Cases (Prag : Node_Id) is
1161 Arg : Node_Id;
1162 Cases : Node_Id;
1163 CCase : Node_Id;
1165 begin
1166 -- Obtain the argument of the aspect or pragma
1168 if Nkind (Prag) = N_Aspect_Specification then
1169 Arg := Prag;
1170 else
1171 Arg := First (Pragma_Argument_Associations (Prag));
1172 end if;
1174 Cases := Expression (Arg);
1176 if Present (Component_Associations (Cases)) then
1177 CCase := First (Component_Associations (Cases));
1178 while Present (CCase) loop
1180 -- Detect whether the attribute appears within the
1181 -- consequence of the current contract case.
1183 if Nkind (CCase) = N_Component_Association
1184 and then Is_Within (N, Expression (CCase))
1185 then
1186 return;
1187 end if;
1189 Next (CCase);
1190 end loop;
1191 end if;
1193 -- Otherwise aspect or pragma Contract_Cases is either malformed
1194 -- or the attribute does not appear within a consequence.
1196 Error_Attr
1197 ("attribute % must appear in the consequence of a contract case",
1199 end Check_Placement_In_Contract_Cases;
1201 ----------------------------------
1202 -- Check_Placement_In_Test_Case --
1203 ----------------------------------
1205 procedure Check_Placement_In_Test_Case (Prag : Node_Id) is
1206 Arg : constant Node_Id :=
1207 Test_Case_Arg
1208 (Prag => Prag,
1209 Arg_Nam => Name_Ensures,
1210 From_Aspect => Nkind (Prag) = N_Aspect_Specification);
1212 begin
1213 -- Detect whether the attribute appears within the "Ensures"
1214 -- expression of aspect or pragma Test_Case.
1216 if Present (Arg) and then Is_Within (N, Arg) then
1217 null;
1219 else
1220 Error_Attr
1221 ("attribute % must appear in the ensures expression of a "
1222 & "test case", P);
1223 end if;
1224 end Check_Placement_In_Test_Case;
1226 ---------------
1227 -- Is_Within --
1228 ---------------
1230 function Is_Within
1231 (Nod : Node_Id;
1232 Encl_Nod : Node_Id) return Boolean
1234 Par : Node_Id;
1236 begin
1237 Par := Nod;
1238 while Present (Par) loop
1239 if Par = Encl_Nod then
1240 return True;
1242 -- Prevent the search from going too far
1244 elsif Is_Body_Or_Package_Declaration (Par) then
1245 exit;
1246 end if;
1248 Par := Parent (Par);
1249 end loop;
1251 return False;
1252 end Is_Within;
1254 ---------------------
1255 -- Placement_Error --
1256 ---------------------
1258 procedure Placement_Error is
1259 begin
1260 if Aname = Name_Old then
1261 Error_Attr ("attribute % can only appear in postcondition", P);
1263 -- Specialize the error message for attribute 'Result
1265 else
1266 Error_Attr
1267 ("attribute % can only appear in postcondition of function",
1269 end if;
1270 end Placement_Error;
1272 -- Local variables
1274 Prag : Node_Id;
1275 Prag_Nam : Name_Id;
1276 Subp_Decl : Node_Id;
1278 -- Start of processing for Analyze_Attribute_Old_Result
1280 begin
1281 -- Assume that the attribute is illegal
1283 Legal := False;
1284 Spec_Id := Empty;
1286 -- Traverse the parent chain to find the aspect or pragma where the
1287 -- attribute resides.
1289 Prag := N;
1290 while Present (Prag) loop
1291 if Nkind_In (Prag, N_Aspect_Specification, N_Pragma) then
1292 exit;
1294 -- Prevent the search from going too far
1296 elsif Is_Body_Or_Package_Declaration (Prag) then
1297 exit;
1298 end if;
1300 Prag := Parent (Prag);
1301 end loop;
1303 -- The attribute is allowed to appear only in postcondition-like
1304 -- aspects or pragmas.
1306 if Nkind_In (Prag, N_Aspect_Specification, N_Pragma) then
1307 if Nkind (Prag) = N_Aspect_Specification then
1308 Prag_Nam := Chars (Identifier (Prag));
1309 else
1310 Prag_Nam := Pragma_Name (Prag);
1311 end if;
1313 if Prag_Nam = Name_Check then
1314 Check_Placement_In_Check (Prag);
1316 elsif Prag_Nam = Name_Contract_Cases then
1317 Check_Placement_In_Contract_Cases (Prag);
1319 -- Attribute 'Result is allowed to appear in aspect or pragma
1320 -- [Refined_]Depends (SPARK RM 6.1.5(11)).
1322 elsif Nam_In (Prag_Nam, Name_Depends, Name_Refined_Depends)
1323 and then Aname = Name_Result
1324 then
1325 null;
1327 elsif Nam_In (Prag_Nam, Name_Post,
1328 Name_Post_Class,
1329 Name_Postcondition,
1330 Name_Refined_Post)
1331 then
1332 null;
1334 elsif Prag_Nam = Name_Test_Case then
1335 Check_Placement_In_Test_Case (Prag);
1337 else
1338 Placement_Error;
1339 return;
1340 end if;
1342 -- Otherwise the placement of the attribute is illegal
1344 else
1345 Placement_Error;
1346 return;
1347 end if;
1349 -- Find the related subprogram subject to the aspect or pragma
1351 if Nkind (Prag) = N_Aspect_Specification then
1352 Subp_Decl := Parent (Prag);
1353 else
1354 Subp_Decl := Find_Related_Declaration_Or_Body (Prag);
1355 end if;
1357 -- The aspect or pragma where the attribute resides should be
1358 -- associated with a subprogram declaration or a body. If this is not
1359 -- the case, then the aspect or pragma is illegal. Return as analysis
1360 -- cannot be carried out. Note that it is legal to have the aspect
1361 -- appear on a subprogram renaming, when the renamed entity is an
1362 -- attribute reference.
1364 -- Generating C code the internally built nested _postcondition
1365 -- subprograms are inlined; after expanded, inlined aspects are
1366 -- located in the internal block generated by the frontend.
1368 if Nkind (Subp_Decl) = N_Block_Statement
1369 and then Modify_Tree_For_C
1370 and then In_Inlined_Body
1371 then
1372 null;
1374 elsif not Nkind_In (Subp_Decl, N_Abstract_Subprogram_Declaration,
1375 N_Entry_Declaration,
1376 N_Expression_Function,
1377 N_Generic_Subprogram_Declaration,
1378 N_Subprogram_Body,
1379 N_Subprogram_Body_Stub,
1380 N_Subprogram_Declaration,
1381 N_Subprogram_Renaming_Declaration)
1382 then
1383 return;
1384 end if;
1386 -- If we get here, then the attribute is legal
1388 Legal := True;
1389 Spec_Id := Unique_Defining_Entity (Subp_Decl);
1391 -- When generating C code, nested _postcondition subprograms are
1392 -- inlined by the front end to avoid problems (when unnested) with
1393 -- referenced itypes. Handle that here, since as part of inlining the
1394 -- expander nests subprogram within a dummy procedure named _parent
1395 -- (see Build_Postconditions_Procedure and Build_Body_To_Inline).
1396 -- Hence, in this context, the spec_id of _postconditions is the
1397 -- enclosing scope.
1399 if Modify_Tree_For_C
1400 and then Chars (Spec_Id) = Name_uParent
1401 and then Chars (Scope (Spec_Id)) = Name_uPostconditions
1402 then
1403 -- This situation occurs only when preanalyzing the inlined body
1405 pragma Assert (not Full_Analysis);
1407 Spec_Id := Scope (Spec_Id);
1408 pragma Assert (Is_Inlined (Spec_Id));
1409 end if;
1410 end Analyze_Attribute_Old_Result;
1412 -----------------------------
1413 -- Analyze_Image_Attribute --
1414 -----------------------------
1416 procedure Analyze_Image_Attribute (Str_Typ : Entity_Id) is
1417 begin
1418 Check_SPARK_05_Restriction_On_Attribute;
1420 -- AI12-00124: The ARG has adopted the GNAT semantics of 'Img for
1421 -- scalar types, so that the prefix can be an object, a named value,
1422 -- or a type, and there is no need for an argument in this case.
1424 if Attr_Id = Attribute_Img
1425 or else (Ada_Version > Ada_2005 and then Is_Object_Image (P))
1426 then
1427 Check_E0;
1428 Set_Etype (N, Str_Typ);
1430 if Attr_Id = Attribute_Img and then not Is_Object_Image (P) then
1431 Error_Attr_P
1432 ("prefix of % attribute must be a scalar object name");
1433 end if;
1434 else
1435 Check_E1;
1436 Set_Etype (N, Str_Typ);
1438 -- Check that the prefix type is scalar - much in the same way as
1439 -- Check_Scalar_Type but with custom error messages to denote the
1440 -- variants of 'Image attributes.
1442 if Is_Entity_Name (P)
1443 and then Is_Type (Entity (P))
1444 and then Ekind (Entity (P)) = E_Incomplete_Type
1445 and then Present (Full_View (Entity (P)))
1446 then
1447 P_Type := Full_View (Entity (P));
1448 Set_Entity (P, P_Type);
1449 end if;
1451 if not Is_Entity_Name (P)
1452 or else not Is_Type (Entity (P))
1453 or else not Is_Scalar_Type (P_Type)
1454 then
1455 if Ada_Version > Ada_2005 then
1456 Error_Attr_P
1457 ("prefix of % attribute must be a scalar type or a scalar "
1458 & "object name");
1459 else
1460 Error_Attr_P ("prefix of % attribute must be a scalar type");
1461 end if;
1463 elsif Is_Protected_Self_Reference (P) then
1464 Error_Attr_P
1465 ("prefix of % attribute denotes current instance "
1466 & "(RM 9.4(21/2))");
1467 end if;
1469 Resolve (E1, P_Base_Type);
1470 Validate_Non_Static_Attribute_Function_Call;
1471 end if;
1473 Check_Enum_Image;
1475 -- Check restriction No_Fixed_IO. Note the check of Comes_From_Source
1476 -- to avoid giving a duplicate message for when Image attributes
1477 -- applied to object references get expanded into type-based Image
1478 -- attributes.
1480 if Restriction_Check_Required (No_Fixed_IO)
1481 and then Comes_From_Source (N)
1482 and then Is_Fixed_Point_Type (P_Type)
1483 then
1484 Check_Restriction (No_Fixed_IO, P);
1485 end if;
1486 end Analyze_Image_Attribute;
1488 ---------------------------------
1489 -- Bad_Attribute_For_Predicate --
1490 ---------------------------------
1492 procedure Bad_Attribute_For_Predicate is
1493 begin
1494 if Is_Scalar_Type (P_Type)
1495 and then Comes_From_Source (N)
1496 then
1497 Error_Msg_Name_1 := Aname;
1498 Bad_Predicated_Subtype_Use
1499 ("type& has predicates, attribute % not allowed", N, P_Type);
1500 end if;
1501 end Bad_Attribute_For_Predicate;
1503 --------------------------------
1504 -- Check_Array_Or_Scalar_Type --
1505 --------------------------------
1507 procedure Check_Array_Or_Scalar_Type is
1508 function In_Aspect_Specification return Boolean;
1509 -- A current instance of a type in an aspect specification is an
1510 -- object and not a type, and therefore cannot be of a scalar type
1511 -- in the prefix of one of the array attributes if the attribute
1512 -- reference is part of an aspect expression.
1514 -----------------------------
1515 -- In_Aspect_Specification --
1516 -----------------------------
1518 function In_Aspect_Specification return Boolean is
1519 P : Node_Id;
1521 begin
1522 P := Parent (N);
1523 while Present (P) loop
1524 if Nkind (P) = N_Aspect_Specification then
1525 return P_Type = Entity (P);
1527 elsif Nkind (P) in N_Declaration then
1528 return False;
1529 end if;
1531 P := Parent (P);
1532 end loop;
1534 return False;
1535 end In_Aspect_Specification;
1537 -- Local variables
1539 Dims : Int;
1540 Index : Entity_Id;
1542 -- Start of processing for Check_Array_Or_Scalar_Type
1544 begin
1545 -- Case of string literal or string literal subtype. These cases
1546 -- cannot arise from legal Ada code, but the expander is allowed
1547 -- to generate them. They require special handling because string
1548 -- literal subtypes do not have standard bounds (the whole idea
1549 -- of these subtypes is to avoid having to generate the bounds)
1551 if Ekind (P_Type) = E_String_Literal_Subtype then
1552 Set_Etype (N, Etype (First_Index (P_Base_Type)));
1553 return;
1555 -- Scalar types
1557 elsif Is_Scalar_Type (P_Type) then
1558 Check_Type;
1560 if Present (E1) then
1561 Error_Attr ("invalid argument in % attribute", E1);
1563 elsif In_Aspect_Specification then
1564 Error_Attr
1565 ("prefix of % attribute cannot be the current instance of a "
1566 & "scalar type", P);
1568 else
1569 Set_Etype (N, P_Base_Type);
1570 return;
1571 end if;
1573 -- The following is a special test to allow 'First to apply to
1574 -- private scalar types if the attribute comes from generated
1575 -- code. This occurs in the case of Normalize_Scalars code.
1577 elsif Is_Private_Type (P_Type)
1578 and then Present (Full_View (P_Type))
1579 and then Is_Scalar_Type (Full_View (P_Type))
1580 and then not Comes_From_Source (N)
1581 then
1582 Set_Etype (N, Implementation_Base_Type (P_Type));
1584 -- Array types other than string literal subtypes handled above
1586 else
1587 Check_Array_Type;
1589 -- We know prefix is an array type, or the name of an array
1590 -- object, and that the expression, if present, is static
1591 -- and within the range of the dimensions of the type.
1593 pragma Assert (Is_Array_Type (P_Type));
1594 Index := First_Index (P_Base_Type);
1596 if No (E1) then
1598 -- First dimension assumed
1600 Set_Etype (N, Base_Type (Etype (Index)));
1602 else
1603 Dims := UI_To_Int (Intval (E1));
1605 for J in 1 .. Dims - 1 loop
1606 Next_Index (Index);
1607 end loop;
1609 Set_Etype (N, Base_Type (Etype (Index)));
1610 Set_Etype (E1, Standard_Integer);
1611 end if;
1612 end if;
1613 end Check_Array_Or_Scalar_Type;
1615 ----------------------
1616 -- Check_Array_Type --
1617 ----------------------
1619 procedure Check_Array_Type is
1620 D : Int;
1621 -- Dimension number for array attributes
1623 begin
1624 -- If the type is a string literal type, then this must be generated
1625 -- internally, and no further check is required on its legality.
1627 if Ekind (P_Type) = E_String_Literal_Subtype then
1628 return;
1630 -- If the type is a composite, it is an illegal aggregate, no point
1631 -- in going on.
1633 elsif P_Type = Any_Composite then
1634 raise Bad_Attribute;
1635 end if;
1637 -- Normal case of array type or subtype
1639 Check_Either_E0_Or_E1;
1640 Check_Dereference;
1642 if Is_Array_Type (P_Type) then
1643 if not Is_Constrained (P_Type)
1644 and then Is_Entity_Name (P)
1645 and then Is_Type (Entity (P))
1646 then
1647 -- Note: we do not call Error_Attr here, since we prefer to
1648 -- continue, using the relevant index type of the array,
1649 -- even though it is unconstrained. This gives better error
1650 -- recovery behavior.
1652 Error_Msg_Name_1 := Aname;
1653 Error_Msg_F
1654 ("prefix for % attribute must be constrained array", P);
1655 end if;
1657 -- The attribute reference freezes the type, and thus the
1658 -- component type, even if the attribute may not depend on the
1659 -- component. Diagnose arrays with incomplete components now.
1660 -- If the prefix is an access to array, this does not freeze
1661 -- the designated type.
1663 if Nkind (P) /= N_Explicit_Dereference then
1664 Check_Fully_Declared (Component_Type (P_Type), P);
1665 end if;
1667 D := Number_Dimensions (P_Type);
1669 else
1670 if Is_Private_Type (P_Type) then
1671 Error_Attr_P ("prefix for % attribute may not be private type");
1673 elsif Is_Access_Type (P_Type)
1674 and then Is_Array_Type (Designated_Type (P_Type))
1675 and then Is_Entity_Name (P)
1676 and then Is_Type (Entity (P))
1677 then
1678 Error_Attr_P ("prefix of % attribute cannot be access type");
1680 elsif Attr_Id = Attribute_First
1681 or else
1682 Attr_Id = Attribute_Last
1683 then
1684 Error_Attr ("invalid prefix for % attribute", P);
1686 else
1687 Error_Attr_P ("prefix for % attribute must be array");
1688 end if;
1689 end if;
1691 if Present (E1) then
1692 Resolve (E1, Any_Integer);
1693 Set_Etype (E1, Standard_Integer);
1695 if not Is_OK_Static_Expression (E1)
1696 or else Raises_Constraint_Error (E1)
1697 then
1698 Flag_Non_Static_Expr
1699 ("expression for dimension must be static!", E1);
1700 Error_Attr;
1702 elsif UI_To_Int (Expr_Value (E1)) > D
1703 or else UI_To_Int (Expr_Value (E1)) < 1
1704 then
1705 Error_Attr ("invalid dimension number for array type", E1);
1706 end if;
1707 end if;
1709 if (Style_Check and Style_Check_Array_Attribute_Index)
1710 and then Comes_From_Source (N)
1711 then
1712 Style.Check_Array_Attribute_Index (N, E1, D);
1713 end if;
1714 end Check_Array_Type;
1716 -------------------------
1717 -- Check_Asm_Attribute --
1718 -------------------------
1720 procedure Check_Asm_Attribute is
1721 begin
1722 Check_Type;
1723 Check_E2;
1725 -- Check first argument is static string expression
1727 Analyze_And_Resolve (E1, Standard_String);
1729 if Etype (E1) = Any_Type then
1730 return;
1732 elsif not Is_OK_Static_Expression (E1) then
1733 Flag_Non_Static_Expr
1734 ("constraint argument must be static string expression!", E1);
1735 Error_Attr;
1736 end if;
1738 -- Check second argument is right type
1740 Analyze_And_Resolve (E2, Entity (P));
1742 -- Note: that is all we need to do, we don't need to check
1743 -- that it appears in a correct context. The Ada type system
1744 -- will do that for us.
1746 end Check_Asm_Attribute;
1748 ---------------------
1749 -- Check_Component --
1750 ---------------------
1752 procedure Check_Component is
1753 begin
1754 Check_E0;
1756 if Nkind (P) /= N_Selected_Component
1757 or else
1758 (Ekind (Entity (Selector_Name (P))) /= E_Component
1759 and then
1760 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
1761 then
1762 Error_Attr_P ("prefix for % attribute must be selected component");
1763 end if;
1764 end Check_Component;
1766 ------------------------------------
1767 -- Check_Decimal_Fixed_Point_Type --
1768 ------------------------------------
1770 procedure Check_Decimal_Fixed_Point_Type is
1771 begin
1772 Check_Type;
1774 if not Is_Decimal_Fixed_Point_Type (P_Type) then
1775 Error_Attr_P ("prefix of % attribute must be decimal type");
1776 end if;
1777 end Check_Decimal_Fixed_Point_Type;
1779 -----------------------
1780 -- Check_Dereference --
1781 -----------------------
1783 procedure Check_Dereference is
1784 begin
1786 -- Case of a subtype mark
1788 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
1789 return;
1790 end if;
1792 -- Case of an expression
1794 Resolve (P);
1796 if Is_Access_Type (P_Type) then
1798 -- If there is an implicit dereference, then we must freeze the
1799 -- designated type of the access type, since the type of the
1800 -- referenced array is this type (see AI95-00106).
1802 -- As done elsewhere, freezing must not happen when preanalyzing
1803 -- a pre- or postcondition or a default value for an object or for
1804 -- a formal parameter.
1806 if not In_Spec_Expression then
1807 Freeze_Before (N, Designated_Type (P_Type));
1808 end if;
1810 Rewrite (P,
1811 Make_Explicit_Dereference (Sloc (P),
1812 Prefix => Relocate_Node (P)));
1814 Analyze_And_Resolve (P);
1815 P_Type := Etype (P);
1817 if P_Type = Any_Type then
1818 raise Bad_Attribute;
1819 end if;
1821 P_Base_Type := Base_Type (P_Type);
1822 end if;
1823 end Check_Dereference;
1825 -------------------------
1826 -- Check_Discrete_Type --
1827 -------------------------
1829 procedure Check_Discrete_Type is
1830 begin
1831 Check_Type;
1833 if not Is_Discrete_Type (P_Type) then
1834 Error_Attr_P ("prefix of % attribute must be discrete type");
1835 end if;
1836 end Check_Discrete_Type;
1838 --------------
1839 -- Check_E0 --
1840 --------------
1842 procedure Check_E0 is
1843 begin
1844 if Present (E1) then
1845 Unexpected_Argument (E1);
1846 end if;
1847 end Check_E0;
1849 --------------
1850 -- Check_E1 --
1851 --------------
1853 procedure Check_E1 is
1854 begin
1855 Check_Either_E0_Or_E1;
1857 if No (E1) then
1859 -- Special-case attributes that are functions and that appear as
1860 -- the prefix of another attribute. Error is posted on parent.
1862 if Nkind (Parent (N)) = N_Attribute_Reference
1863 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
1864 Name_Code_Address,
1865 Name_Access)
1866 then
1867 Error_Msg_Name_1 := Attribute_Name (Parent (N));
1868 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
1869 Set_Etype (Parent (N), Any_Type);
1870 Set_Entity (Parent (N), Any_Type);
1871 raise Bad_Attribute;
1873 else
1874 Error_Attr ("missing argument for % attribute", N);
1875 end if;
1876 end if;
1877 end Check_E1;
1879 --------------
1880 -- Check_E2 --
1881 --------------
1883 procedure Check_E2 is
1884 begin
1885 if No (E1) then
1886 Error_Attr ("missing arguments for % attribute (2 required)", N);
1887 elsif No (E2) then
1888 Error_Attr ("missing argument for % attribute (2 required)", N);
1889 end if;
1890 end Check_E2;
1892 ---------------------------
1893 -- Check_Either_E0_Or_E1 --
1894 ---------------------------
1896 procedure Check_Either_E0_Or_E1 is
1897 begin
1898 if Present (E2) then
1899 Unexpected_Argument (E2);
1900 end if;
1901 end Check_Either_E0_Or_E1;
1903 ----------------------
1904 -- Check_Enum_Image --
1905 ----------------------
1907 procedure Check_Enum_Image is
1908 Lit : Entity_Id;
1910 begin
1911 -- When an enumeration type appears in an attribute reference, all
1912 -- literals of the type are marked as referenced. This must only be
1913 -- done if the attribute reference appears in the current source.
1914 -- Otherwise the information on references may differ between a
1915 -- normal compilation and one that performs inlining.
1917 if Is_Enumeration_Type (P_Base_Type)
1918 and then In_Extended_Main_Code_Unit (N)
1919 then
1920 Lit := First_Literal (P_Base_Type);
1921 while Present (Lit) loop
1922 Set_Referenced (Lit);
1923 Next_Literal (Lit);
1924 end loop;
1925 end if;
1926 end Check_Enum_Image;
1928 ----------------------------
1929 -- Check_First_Last_Valid --
1930 ----------------------------
1932 procedure Check_First_Last_Valid is
1933 begin
1934 Check_Discrete_Type;
1936 -- Freeze the subtype now, so that the following test for predicates
1937 -- works (we set the predicates stuff up at freeze time)
1939 Insert_Actions (N, Freeze_Entity (P_Type, P));
1941 -- Now test for dynamic predicate
1943 if Has_Predicates (P_Type)
1944 and then not (Has_Static_Predicate (P_Type))
1945 then
1946 Error_Attr_P
1947 ("prefix of % attribute may not have dynamic predicate");
1948 end if;
1950 -- Check non-static subtype
1952 if not Is_OK_Static_Subtype (P_Type) then
1953 Error_Attr_P ("prefix of % attribute must be a static subtype");
1954 end if;
1956 -- Test case for no values
1958 if Expr_Value (Type_Low_Bound (P_Type)) >
1959 Expr_Value (Type_High_Bound (P_Type))
1960 or else (Has_Predicates (P_Type)
1961 and then
1962 Is_Empty_List (Static_Discrete_Predicate (P_Type)))
1963 then
1964 Error_Attr_P
1965 ("prefix of % attribute must be subtype with at least one "
1966 & "value");
1967 end if;
1968 end Check_First_Last_Valid;
1970 ----------------------------
1971 -- Check_Fixed_Point_Type --
1972 ----------------------------
1974 procedure Check_Fixed_Point_Type is
1975 begin
1976 Check_Type;
1978 if not Is_Fixed_Point_Type (P_Type) then
1979 Error_Attr_P ("prefix of % attribute must be fixed point type");
1980 end if;
1981 end Check_Fixed_Point_Type;
1983 ------------------------------
1984 -- Check_Fixed_Point_Type_0 --
1985 ------------------------------
1987 procedure Check_Fixed_Point_Type_0 is
1988 begin
1989 Check_Fixed_Point_Type;
1990 Check_E0;
1991 end Check_Fixed_Point_Type_0;
1993 -------------------------------
1994 -- Check_Floating_Point_Type --
1995 -------------------------------
1997 procedure Check_Floating_Point_Type is
1998 begin
1999 Check_Type;
2001 if not Is_Floating_Point_Type (P_Type) then
2002 Error_Attr_P ("prefix of % attribute must be float type");
2003 end if;
2004 end Check_Floating_Point_Type;
2006 ---------------------------------
2007 -- Check_Floating_Point_Type_0 --
2008 ---------------------------------
2010 procedure Check_Floating_Point_Type_0 is
2011 begin
2012 Check_Floating_Point_Type;
2013 Check_E0;
2014 end Check_Floating_Point_Type_0;
2016 ---------------------------------
2017 -- Check_Floating_Point_Type_1 --
2018 ---------------------------------
2020 procedure Check_Floating_Point_Type_1 is
2021 begin
2022 Check_Floating_Point_Type;
2023 Check_E1;
2024 end Check_Floating_Point_Type_1;
2026 ---------------------------------
2027 -- Check_Floating_Point_Type_2 --
2028 ---------------------------------
2030 procedure Check_Floating_Point_Type_2 is
2031 begin
2032 Check_Floating_Point_Type;
2033 Check_E2;
2034 end Check_Floating_Point_Type_2;
2036 ------------------------
2037 -- Check_Integer_Type --
2038 ------------------------
2040 procedure Check_Integer_Type is
2041 begin
2042 Check_Type;
2044 if not Is_Integer_Type (P_Type) then
2045 Error_Attr_P ("prefix of % attribute must be integer type");
2046 end if;
2047 end Check_Integer_Type;
2049 --------------------------------
2050 -- Check_Modular_Integer_Type --
2051 --------------------------------
2053 procedure Check_Modular_Integer_Type is
2054 begin
2055 Check_Type;
2057 if not Is_Modular_Integer_Type (P_Type) then
2058 Error_Attr_P
2059 ("prefix of % attribute must be modular integer type");
2060 end if;
2061 end Check_Modular_Integer_Type;
2063 ------------------------
2064 -- Check_Not_CPP_Type --
2065 ------------------------
2067 procedure Check_Not_CPP_Type is
2068 begin
2069 if Is_Tagged_Type (Etype (P))
2070 and then Convention (Etype (P)) = Convention_CPP
2071 and then Is_CPP_Class (Root_Type (Etype (P)))
2072 then
2073 Error_Attr_P
2074 ("invalid use of % attribute with 'C'P'P tagged type");
2075 end if;
2076 end Check_Not_CPP_Type;
2078 -------------------------------
2079 -- Check_Not_Incomplete_Type --
2080 -------------------------------
2082 procedure Check_Not_Incomplete_Type is
2083 E : Entity_Id;
2084 Typ : Entity_Id;
2086 begin
2087 -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
2088 -- dereference we have to check wrong uses of incomplete types
2089 -- (other wrong uses are checked at their freezing point).
2091 -- In Ada 2012, incomplete types can appear in subprogram
2092 -- profiles, but formals with incomplete types cannot be the
2093 -- prefix of attributes.
2095 -- Example 1: Limited-with
2097 -- limited with Pkg;
2098 -- package P is
2099 -- type Acc is access Pkg.T;
2100 -- X : Acc;
2101 -- S : Integer := X.all'Size; -- ERROR
2102 -- end P;
2104 -- Example 2: Tagged incomplete
2106 -- type T is tagged;
2107 -- type Acc is access all T;
2108 -- X : Acc;
2109 -- S : constant Integer := X.all'Size; -- ERROR
2110 -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
2112 if Ada_Version >= Ada_2005
2113 and then Nkind (P) = N_Explicit_Dereference
2114 then
2115 E := P;
2116 while Nkind (E) = N_Explicit_Dereference loop
2117 E := Prefix (E);
2118 end loop;
2120 Typ := Etype (E);
2122 if From_Limited_With (Typ) then
2123 Error_Attr_P
2124 ("prefix of % attribute cannot be an incomplete type");
2126 -- If the prefix is an access type check the designated type
2128 elsif Is_Access_Type (Typ)
2129 and then Nkind (P) = N_Explicit_Dereference
2130 then
2131 Typ := Directly_Designated_Type (Typ);
2132 end if;
2134 if Is_Class_Wide_Type (Typ) then
2135 Typ := Root_Type (Typ);
2136 end if;
2138 -- A legal use of a shadow entity occurs only when the unit where
2139 -- the non-limited view resides is imported via a regular with
2140 -- clause in the current body. Such references to shadow entities
2141 -- may occur in subprogram formals.
2143 if Is_Incomplete_Type (Typ)
2144 and then From_Limited_With (Typ)
2145 and then Present (Non_Limited_View (Typ))
2146 and then Is_Legal_Shadow_Entity_In_Body (Typ)
2147 then
2148 Typ := Non_Limited_View (Typ);
2149 end if;
2151 -- If still incomplete, it can be a local incomplete type, or a
2152 -- limited view whose scope is also a limited view.
2154 if Ekind (Typ) = E_Incomplete_Type then
2155 if not From_Limited_With (Typ)
2156 and then No (Full_View (Typ))
2157 then
2158 Error_Attr_P
2159 ("prefix of % attribute cannot be an incomplete type");
2161 -- The limited view may be available indirectly through
2162 -- an intermediate unit. If the non-limited view is available
2163 -- the attribute reference is legal.
2165 elsif From_Limited_With (Typ)
2166 and then
2167 (No (Non_Limited_View (Typ))
2168 or else Is_Incomplete_Type (Non_Limited_View (Typ)))
2169 then
2170 Error_Attr_P
2171 ("prefix of % attribute cannot be an incomplete type");
2172 end if;
2173 end if;
2175 -- Ada 2012 : formals in bodies may be incomplete, but no attribute
2176 -- legally applies.
2178 elsif Is_Entity_Name (P)
2179 and then Is_Formal (Entity (P))
2180 and then Is_Incomplete_Type (Etype (Etype (P)))
2181 then
2182 Error_Attr_P
2183 ("prefix of % attribute cannot be an incomplete type");
2184 end if;
2186 if not Is_Entity_Name (P)
2187 or else not Is_Type (Entity (P))
2188 or else In_Spec_Expression
2189 then
2190 return;
2191 else
2192 Check_Fully_Declared (P_Type, P);
2193 end if;
2194 end Check_Not_Incomplete_Type;
2196 ----------------------------
2197 -- Check_Object_Reference --
2198 ----------------------------
2200 procedure Check_Object_Reference (P : Node_Id) is
2201 Rtyp : Entity_Id;
2203 begin
2204 -- If we need an object, and we have a prefix that is the name of a
2205 -- function entity, convert it into a function call.
2207 if Is_Entity_Name (P)
2208 and then Ekind (Entity (P)) = E_Function
2209 then
2210 Rtyp := Etype (Entity (P));
2212 Rewrite (P,
2213 Make_Function_Call (Sloc (P),
2214 Name => Relocate_Node (P)));
2216 Analyze_And_Resolve (P, Rtyp);
2218 -- Otherwise we must have an object reference
2220 elsif not Is_Object_Reference (P) then
2221 Error_Attr_P ("prefix of % attribute must be object");
2222 end if;
2223 end Check_Object_Reference;
2225 ----------------------------
2226 -- Check_PolyORB_Attribute --
2227 ----------------------------
2229 procedure Check_PolyORB_Attribute is
2230 begin
2231 Validate_Non_Static_Attribute_Function_Call;
2233 Check_Type;
2234 Check_Not_CPP_Type;
2236 if Get_PCS_Name /= Name_PolyORB_DSA then
2237 Error_Attr
2238 ("attribute% requires the 'Poly'O'R'B 'P'C'S", N);
2239 end if;
2240 end Check_PolyORB_Attribute;
2242 ------------------------
2243 -- Check_Program_Unit --
2244 ------------------------
2246 procedure Check_Program_Unit is
2247 begin
2248 if Is_Entity_Name (P) then
2249 declare
2250 K : constant Entity_Kind := Ekind (Entity (P));
2251 T : constant Entity_Id := Etype (Entity (P));
2253 begin
2254 if K in Subprogram_Kind
2255 or else K in Task_Kind
2256 or else K in Protected_Kind
2257 or else K = E_Package
2258 or else K in Generic_Unit_Kind
2259 or else (K = E_Variable
2260 and then
2261 (Is_Task_Type (T)
2262 or else
2263 Is_Protected_Type (T)))
2264 then
2265 return;
2266 end if;
2267 end;
2268 end if;
2270 Error_Attr_P ("prefix of % attribute must be program unit");
2271 end Check_Program_Unit;
2273 ---------------------
2274 -- Check_Real_Type --
2275 ---------------------
2277 procedure Check_Real_Type is
2278 begin
2279 Check_Type;
2281 if not Is_Real_Type (P_Type) then
2282 Error_Attr_P ("prefix of % attribute must be real type");
2283 end if;
2284 end Check_Real_Type;
2286 -----------------------
2287 -- Check_Scalar_Type --
2288 -----------------------
2290 procedure Check_Scalar_Type is
2291 begin
2292 Check_Type;
2294 if not Is_Scalar_Type (P_Type) then
2295 Error_Attr_P ("prefix of % attribute must be scalar type");
2296 end if;
2297 end Check_Scalar_Type;
2299 ------------------------------------------
2300 -- Check_SPARK_05_Restriction_On_Attribute --
2301 ------------------------------------------
2303 procedure Check_SPARK_05_Restriction_On_Attribute is
2304 begin
2305 Error_Msg_Name_1 := Aname;
2306 Check_SPARK_05_Restriction ("attribute % is not allowed", P);
2307 end Check_SPARK_05_Restriction_On_Attribute;
2309 ---------------------------
2310 -- Check_Standard_Prefix --
2311 ---------------------------
2313 procedure Check_Standard_Prefix is
2314 begin
2315 Check_E0;
2317 if Nkind (P) /= N_Identifier or else Chars (P) /= Name_Standard then
2318 Error_Attr ("only allowed prefix for % attribute is Standard", P);
2319 end if;
2320 end Check_Standard_Prefix;
2322 ----------------------------
2323 -- Check_Stream_Attribute --
2324 ----------------------------
2326 procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
2327 Etyp : Entity_Id;
2328 Btyp : Entity_Id;
2330 In_Shared_Var_Procs : Boolean;
2331 -- True when compiling System.Shared_Storage.Shared_Var_Procs body.
2332 -- For this runtime package (always compiled in GNAT mode), we allow
2333 -- stream attributes references for limited types for the case where
2334 -- shared passive objects are implemented using stream attributes,
2335 -- which is the default in GNAT's persistent storage implementation.
2337 begin
2338 Validate_Non_Static_Attribute_Function_Call;
2340 -- With the exception of 'Input, Stream attributes are procedures,
2341 -- and can only appear at the position of procedure calls. We check
2342 -- for this here, before they are rewritten, to give a more precise
2343 -- diagnostic.
2345 if Nam = TSS_Stream_Input then
2346 null;
2348 elsif Is_List_Member (N)
2349 and then not Nkind_In (Parent (N), N_Procedure_Call_Statement,
2350 N_Aggregate)
2351 then
2352 null;
2354 else
2355 Error_Attr
2356 ("invalid context for attribute%, which is a procedure", N);
2357 end if;
2359 Check_Type;
2360 Btyp := Implementation_Base_Type (P_Type);
2362 -- Stream attributes not allowed on limited types unless the
2363 -- attribute reference was generated by the expander (in which
2364 -- case the underlying type will be used, as described in Sinfo),
2365 -- or the attribute was specified explicitly for the type itself
2366 -- or one of its ancestors (taking visibility rules into account if
2367 -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
2368 -- (with no visibility restriction).
2370 declare
2371 Gen_Body : constant Node_Id := Enclosing_Generic_Body (N);
2372 begin
2373 if Present (Gen_Body) then
2374 In_Shared_Var_Procs :=
2375 Is_RTE (Corresponding_Spec (Gen_Body), RE_Shared_Var_Procs);
2376 else
2377 In_Shared_Var_Procs := False;
2378 end if;
2379 end;
2381 if (Comes_From_Source (N)
2382 and then not (In_Shared_Var_Procs or In_Instance))
2383 and then not Stream_Attribute_Available (P_Type, Nam)
2384 and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
2385 then
2386 Error_Msg_Name_1 := Aname;
2388 if Is_Limited_Type (P_Type) then
2389 Error_Msg_NE
2390 ("limited type& has no% attribute", P, P_Type);
2391 Explain_Limited_Type (P_Type, P);
2392 else
2393 Error_Msg_NE
2394 ("attribute% for type& is not available", P, P_Type);
2395 end if;
2396 end if;
2398 -- Check for no stream operations allowed from No_Tagged_Streams
2400 if Is_Tagged_Type (P_Type)
2401 and then Present (No_Tagged_Streams_Pragma (P_Type))
2402 then
2403 Error_Msg_Sloc := Sloc (No_Tagged_Streams_Pragma (P_Type));
2404 Error_Msg_NE
2405 ("no stream operations for & (No_Tagged_Streams #)", N, P_Type);
2406 return;
2407 end if;
2409 -- Check restriction violations
2411 -- First check the No_Streams restriction, which prohibits the use
2412 -- of explicit stream attributes in the source program. We do not
2413 -- prevent the occurrence of stream attributes in generated code,
2414 -- for instance those generated implicitly for dispatching purposes.
2416 if Comes_From_Source (N) then
2417 Check_Restriction (No_Streams, P);
2418 end if;
2420 -- AI05-0057: if restriction No_Default_Stream_Attributes is active,
2421 -- it is illegal to use a predefined elementary type stream attribute
2422 -- either by itself, or more importantly as part of the attribute
2423 -- subprogram for a composite type. However, if the broader
2424 -- restriction No_Streams is active, stream operations are not
2425 -- generated, and there is no error.
2427 if Restriction_Active (No_Default_Stream_Attributes)
2428 and then not Restriction_Active (No_Streams)
2429 then
2430 declare
2431 T : Entity_Id;
2433 begin
2434 if Nam = TSS_Stream_Input
2435 or else
2436 Nam = TSS_Stream_Read
2437 then
2438 T :=
2439 Type_Without_Stream_Operation (P_Type, TSS_Stream_Read);
2440 else
2441 T :=
2442 Type_Without_Stream_Operation (P_Type, TSS_Stream_Write);
2443 end if;
2445 if Present (T) then
2446 Check_Restriction (No_Default_Stream_Attributes, N);
2448 Error_Msg_NE
2449 ("missing user-defined Stream Read or Write for type&",
2450 N, T);
2451 if not Is_Elementary_Type (P_Type) then
2452 Error_Msg_NE
2453 ("\which is a component of type&", N, P_Type);
2454 end if;
2455 end if;
2456 end;
2457 end if;
2459 -- Check special case of Exception_Id and Exception_Occurrence which
2460 -- are not allowed for restriction No_Exception_Registration.
2462 if Restriction_Check_Required (No_Exception_Registration)
2463 and then (Is_RTE (P_Type, RE_Exception_Id)
2464 or else
2465 Is_RTE (P_Type, RE_Exception_Occurrence))
2466 then
2467 Check_Restriction (No_Exception_Registration, P);
2468 end if;
2470 -- Here we must check that the first argument is an access type
2471 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
2473 Analyze_And_Resolve (E1);
2474 Etyp := Etype (E1);
2476 -- Note: the double call to Root_Type here is needed because the
2477 -- root type of a class-wide type is the corresponding type (e.g.
2478 -- X for X'Class, and we really want to go to the root.)
2480 if not Is_Access_Type (Etyp)
2481 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
2482 RTE (RE_Root_Stream_Type)
2483 then
2484 Error_Attr
2485 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
2486 end if;
2488 -- Check that the second argument is of the right type if there is
2489 -- one (the Input attribute has only one argument so this is skipped)
2491 if Present (E2) then
2492 Analyze (E2);
2494 if Nam = TSS_Stream_Read
2495 and then not Is_OK_Variable_For_Out_Formal (E2)
2496 then
2497 Error_Attr
2498 ("second argument of % attribute must be a variable", E2);
2499 end if;
2501 Resolve (E2, P_Type);
2502 end if;
2504 Check_Not_CPP_Type;
2505 end Check_Stream_Attribute;
2507 -------------------------
2508 -- Check_System_Prefix --
2509 -------------------------
2511 procedure Check_System_Prefix is
2512 begin
2513 if Nkind (P) /= N_Identifier or else Chars (P) /= Name_System then
2514 Error_Attr ("only allowed prefix for % attribute is System", P);
2515 end if;
2516 end Check_System_Prefix;
2518 -----------------------
2519 -- Check_Task_Prefix --
2520 -----------------------
2522 procedure Check_Task_Prefix is
2523 begin
2524 Analyze (P);
2526 -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
2527 -- task interface class-wide types.
2529 if Is_Task_Type (Etype (P))
2530 or else (Is_Access_Type (Etype (P))
2531 and then Is_Task_Type (Designated_Type (Etype (P))))
2532 or else (Ada_Version >= Ada_2005
2533 and then Ekind (Etype (P)) = E_Class_Wide_Type
2534 and then Is_Interface (Etype (P))
2535 and then Is_Task_Interface (Etype (P)))
2536 then
2537 Resolve (P);
2539 else
2540 if Ada_Version >= Ada_2005 then
2541 Error_Attr_P
2542 ("prefix of % attribute must be a task or a task " &
2543 "interface class-wide object");
2545 else
2546 Error_Attr_P ("prefix of % attribute must be a task");
2547 end if;
2548 end if;
2549 end Check_Task_Prefix;
2551 ----------------
2552 -- Check_Type --
2553 ----------------
2555 -- The possibilities are an entity name denoting a type, or an
2556 -- attribute reference that denotes a type (Base or Class). If
2557 -- the type is incomplete, replace it with its full view.
2559 procedure Check_Type is
2560 begin
2561 if not Is_Entity_Name (P)
2562 or else not Is_Type (Entity (P))
2563 then
2564 Error_Attr_P ("prefix of % attribute must be a type");
2566 elsif Is_Protected_Self_Reference (P) then
2567 Error_Attr_P
2568 ("prefix of % attribute denotes current instance "
2569 & "(RM 9.4(21/2))");
2571 elsif Ekind (Entity (P)) = E_Incomplete_Type
2572 and then Present (Full_View (Entity (P)))
2573 then
2574 P_Type := Full_View (Entity (P));
2575 Set_Entity (P, P_Type);
2576 end if;
2577 end Check_Type;
2579 ---------------------
2580 -- Check_Unit_Name --
2581 ---------------------
2583 procedure Check_Unit_Name (Nod : Node_Id) is
2584 begin
2585 if Nkind (Nod) = N_Identifier then
2586 return;
2588 elsif Nkind_In (Nod, N_Selected_Component, N_Expanded_Name) then
2589 Check_Unit_Name (Prefix (Nod));
2591 if Nkind (Selector_Name (Nod)) = N_Identifier then
2592 return;
2593 end if;
2594 end if;
2596 Error_Attr ("argument for % attribute must be unit name", P);
2597 end Check_Unit_Name;
2599 ----------------
2600 -- Error_Attr --
2601 ----------------
2603 procedure Error_Attr is
2604 begin
2605 Set_Etype (N, Any_Type);
2606 Set_Entity (N, Any_Type);
2607 raise Bad_Attribute;
2608 end Error_Attr;
2610 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
2611 begin
2612 Error_Msg_Name_1 := Aname;
2613 Error_Msg_N (Msg, Error_Node);
2614 Error_Attr;
2615 end Error_Attr;
2617 ------------------
2618 -- Error_Attr_P --
2619 ------------------
2621 procedure Error_Attr_P (Msg : String) is
2622 begin
2623 Error_Msg_Name_1 := Aname;
2624 Error_Msg_F (Msg, P);
2625 Error_Attr;
2626 end Error_Attr_P;
2628 ----------------------------
2629 -- Legal_Formal_Attribute --
2630 ----------------------------
2632 procedure Legal_Formal_Attribute is
2633 begin
2634 Check_E0;
2636 if not Is_Entity_Name (P)
2637 or else not Is_Type (Entity (P))
2638 then
2639 Error_Attr_P ("prefix of % attribute must be generic type");
2641 elsif Is_Generic_Actual_Type (Entity (P))
2642 or else In_Instance
2643 or else In_Inlined_Body
2644 then
2645 null;
2647 elsif Is_Generic_Type (Entity (P)) then
2648 if Is_Definite_Subtype (Entity (P)) then
2649 Error_Attr_P
2650 ("prefix of % attribute must be indefinite generic type");
2651 end if;
2653 else
2654 Error_Attr_P
2655 ("prefix of % attribute must be indefinite generic type");
2656 end if;
2658 Set_Etype (N, Standard_Boolean);
2659 end Legal_Formal_Attribute;
2661 ---------------------------------------------------------------
2662 -- Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements --
2663 ---------------------------------------------------------------
2665 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements is
2666 begin
2667 Check_E0;
2668 Check_Type;
2669 Check_Not_Incomplete_Type;
2670 Set_Etype (N, Universal_Integer);
2671 end Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
2673 -------------
2674 -- Min_Max --
2675 -------------
2677 procedure Min_Max is
2678 begin
2679 Check_E2;
2680 Check_Scalar_Type;
2681 Resolve (E1, P_Base_Type);
2682 Resolve (E2, P_Base_Type);
2683 Set_Etype (N, P_Base_Type);
2685 -- Check for comparison on unordered enumeration type
2687 if Bad_Unordered_Enumeration_Reference (N, P_Base_Type) then
2688 Error_Msg_Sloc := Sloc (P_Base_Type);
2689 Error_Msg_NE
2690 ("comparison on unordered enumeration type& declared#?U?",
2691 N, P_Base_Type);
2692 end if;
2693 end Min_Max;
2695 ------------------------
2696 -- Standard_Attribute --
2697 ------------------------
2699 procedure Standard_Attribute (Val : Int) is
2700 begin
2701 Check_Standard_Prefix;
2702 Rewrite (N, Make_Integer_Literal (Loc, Val));
2703 Analyze (N);
2704 Set_Is_Static_Expression (N, True);
2705 end Standard_Attribute;
2707 --------------------
2708 -- Uneval_Old_Msg --
2709 --------------------
2711 procedure Uneval_Old_Msg is
2712 Uneval_Old_Setting : Character;
2713 Prag : Node_Id;
2715 begin
2716 -- If from aspect, then Uneval_Old_Setting comes from flags in the
2717 -- N_Aspect_Specification node that corresponds to the attribute.
2719 -- First find the pragma in which we appear (note that at this stage,
2720 -- even if we appeared originally within an aspect specification, we
2721 -- are now within the corresponding pragma).
2723 Prag := N;
2724 loop
2725 Prag := Parent (Prag);
2726 exit when No (Prag) or else Nkind (Prag) = N_Pragma;
2727 end loop;
2729 if Present (Prag) then
2730 if Uneval_Old_Accept (Prag) then
2731 Uneval_Old_Setting := 'A';
2732 elsif Uneval_Old_Warn (Prag) then
2733 Uneval_Old_Setting := 'W';
2734 else
2735 Uneval_Old_Setting := 'E';
2736 end if;
2738 -- If we did not find the pragma, that's odd, just use the setting
2739 -- from Opt.Uneval_Old. Perhaps this is due to a previous error?
2741 else
2742 Uneval_Old_Setting := Opt.Uneval_Old;
2743 end if;
2745 -- Processing depends on the setting of Uneval_Old
2747 case Uneval_Old_Setting is
2748 when 'E' =>
2749 Error_Attr_P
2750 ("prefix of attribute % that is potentially "
2751 & "unevaluated must denote an entity");
2753 when 'W' =>
2754 Error_Msg_Name_1 := Aname;
2755 Error_Msg_F
2756 ("??prefix of attribute % appears in potentially "
2757 & "unevaluated context, exception may be raised", P);
2759 when 'A' =>
2760 null;
2762 when others =>
2763 raise Program_Error;
2764 end case;
2765 end Uneval_Old_Msg;
2767 -------------------------
2768 -- Unexpected Argument --
2769 -------------------------
2771 procedure Unexpected_Argument (En : Node_Id) is
2772 begin
2773 Error_Attr ("unexpected argument for % attribute", En);
2774 end Unexpected_Argument;
2776 -------------------------------------------------
2777 -- Validate_Non_Static_Attribute_Function_Call --
2778 -------------------------------------------------
2780 -- This function should be moved to Sem_Dist ???
2782 procedure Validate_Non_Static_Attribute_Function_Call is
2783 begin
2784 if In_Preelaborated_Unit
2785 and then not In_Subprogram_Or_Concurrent_Unit
2786 then
2787 Flag_Non_Static_Expr
2788 ("non-static function call in preelaborated unit!", N);
2789 end if;
2790 end Validate_Non_Static_Attribute_Function_Call;
2792 -- Start of processing for Analyze_Attribute
2794 begin
2795 -- Immediate return if unrecognized attribute (already diagnosed by
2796 -- parser, so there is nothing more that we need to do).
2798 if not Is_Attribute_Name (Aname) then
2799 raise Bad_Attribute;
2800 end if;
2802 Check_Restriction_No_Use_Of_Attribute (N);
2804 -- Deal with Ada 83 issues
2806 if Comes_From_Source (N) then
2807 if not Attribute_83 (Attr_Id) then
2808 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2809 Error_Msg_Name_1 := Aname;
2810 Error_Msg_N ("(Ada 83) attribute% is not standard??", N);
2811 end if;
2813 if Attribute_Impl_Def (Attr_Id) then
2814 Check_Restriction (No_Implementation_Attributes, N);
2815 end if;
2816 end if;
2817 end if;
2819 -- Deal with Ada 2005 attributes that are implementation attributes
2820 -- because they appear in a version of Ada before Ada 2005, and
2821 -- similarly for Ada 2012 attributes appearing in an earlier version.
2823 if (Attribute_05 (Attr_Id) and then Ada_Version < Ada_2005)
2824 or else
2825 (Attribute_12 (Attr_Id) and then Ada_Version < Ada_2012)
2826 then
2827 Check_Restriction (No_Implementation_Attributes, N);
2828 end if;
2830 -- Remote access to subprogram type access attribute reference needs
2831 -- unanalyzed copy for tree transformation. The analyzed copy is used
2832 -- for its semantic information (whether prefix is a remote subprogram
2833 -- name), the unanalyzed copy is used to construct new subtree rooted
2834 -- with N_Aggregate which represents a fat pointer aggregate.
2836 if Aname = Name_Access then
2837 Discard_Node (Copy_Separate_Tree (N));
2838 end if;
2840 -- Analyze prefix and exit if error in analysis. If the prefix is an
2841 -- incomplete type, use full view if available. Note that there are
2842 -- some attributes for which we do not analyze the prefix, since the
2843 -- prefix is not a normal name, or else needs special handling.
2845 if Aname /= Name_Elab_Body and then
2846 Aname /= Name_Elab_Spec and then
2847 Aname /= Name_Elab_Subp_Body and then
2848 Aname /= Name_Enabled and then
2849 Aname /= Name_Old
2850 then
2851 Analyze (P);
2852 P_Type := Etype (P);
2854 if Is_Entity_Name (P)
2855 and then Present (Entity (P))
2856 and then Is_Type (Entity (P))
2857 then
2858 if Ekind (Entity (P)) = E_Incomplete_Type then
2859 P_Type := Get_Full_View (P_Type);
2860 Set_Entity (P, P_Type);
2861 Set_Etype (P, P_Type);
2863 elsif Entity (P) = Current_Scope
2864 and then Is_Record_Type (Entity (P))
2865 then
2866 -- Use of current instance within the type. Verify that if the
2867 -- attribute appears within a constraint, it yields an access
2868 -- type, other uses are illegal.
2870 declare
2871 Par : Node_Id;
2873 begin
2874 Par := Parent (N);
2875 while Present (Par)
2876 and then Nkind (Parent (Par)) /= N_Component_Definition
2877 loop
2878 Par := Parent (Par);
2879 end loop;
2881 if Present (Par)
2882 and then Nkind (Par) = N_Subtype_Indication
2883 then
2884 if Attr_Id /= Attribute_Access
2885 and then Attr_Id /= Attribute_Unchecked_Access
2886 and then Attr_Id /= Attribute_Unrestricted_Access
2887 then
2888 Error_Msg_N
2889 ("in a constraint the current instance can only "
2890 & "be used with an access attribute", N);
2891 end if;
2892 end if;
2893 end;
2894 end if;
2895 end if;
2897 if P_Type = Any_Type then
2898 raise Bad_Attribute;
2899 end if;
2901 P_Base_Type := Base_Type (P_Type);
2902 end if;
2904 -- Analyze expressions that may be present, exiting if an error occurs
2906 if No (Exprs) then
2907 E1 := Empty;
2908 E2 := Empty;
2910 else
2911 E1 := First (Exprs);
2913 -- Skip analysis for case of Restriction_Set, we do not expect
2914 -- the argument to be analyzed in this case.
2916 if Aname /= Name_Restriction_Set then
2917 Analyze (E1);
2919 -- Check for missing/bad expression (result of previous error)
2921 if No (E1) or else Etype (E1) = Any_Type then
2922 raise Bad_Attribute;
2923 end if;
2924 end if;
2926 E2 := Next (E1);
2928 if Present (E2) then
2929 Analyze (E2);
2931 if Etype (E2) = Any_Type then
2932 raise Bad_Attribute;
2933 end if;
2935 if Present (Next (E2)) then
2936 Unexpected_Argument (Next (E2));
2937 end if;
2938 end if;
2939 end if;
2941 -- Cases where prefix must be resolvable by itself
2943 if Is_Overloaded (P)
2944 and then Aname /= Name_Access
2945 and then Aname /= Name_Address
2946 and then Aname /= Name_Code_Address
2947 and then Aname /= Name_Result
2948 and then Aname /= Name_Unchecked_Access
2949 then
2950 -- The prefix must be resolvable by itself, without reference to the
2951 -- attribute. One case that requires special handling is a prefix
2952 -- that is a function name, where one interpretation may be a
2953 -- parameterless call. Entry attributes are handled specially below.
2955 if Is_Entity_Name (P)
2956 and then not Nam_In (Aname, Name_Count, Name_Caller)
2957 then
2958 Check_Parameterless_Call (P);
2959 end if;
2961 if Is_Overloaded (P) then
2963 -- Ada 2005 (AI-345): Since protected and task types have
2964 -- primitive entry wrappers, the attributes Count, and Caller
2965 -- require a context check
2967 if Nam_In (Aname, Name_Count, Name_Caller) then
2968 declare
2969 Count : Natural := 0;
2970 I : Interp_Index;
2971 It : Interp;
2973 begin
2974 Get_First_Interp (P, I, It);
2975 while Present (It.Nam) loop
2976 if Comes_From_Source (It.Nam) then
2977 Count := Count + 1;
2978 else
2979 Remove_Interp (I);
2980 end if;
2982 Get_Next_Interp (I, It);
2983 end loop;
2985 if Count > 1 then
2986 Error_Attr ("ambiguous prefix for % attribute", P);
2987 else
2988 Set_Is_Overloaded (P, False);
2989 end if;
2990 end;
2992 else
2993 Error_Attr ("ambiguous prefix for % attribute", P);
2994 end if;
2995 end if;
2996 end if;
2998 -- In SPARK, attributes of private types are only allowed if the full
2999 -- type declaration is visible.
3001 -- Note: the check for Present (Entity (P)) defends against some error
3002 -- conditions where the Entity field is not set.
3004 if Is_Entity_Name (P) and then Present (Entity (P))
3005 and then Is_Type (Entity (P))
3006 and then Is_Private_Type (P_Type)
3007 and then not In_Open_Scopes (Scope (P_Type))
3008 and then not In_Spec_Expression
3009 then
3010 Check_SPARK_05_Restriction ("invisible attribute of type", N);
3011 end if;
3013 -- Remaining processing depends on attribute
3015 case Attr_Id is
3017 -- Attributes related to Ada 2012 iterators. Attribute specifications
3018 -- exist for these, but they cannot be queried.
3020 when Attribute_Constant_Indexing
3021 | Attribute_Default_Iterator
3022 | Attribute_Implicit_Dereference
3023 | Attribute_Iterator_Element
3024 | Attribute_Iterable
3025 | Attribute_Variable_Indexing
3027 Error_Msg_N ("illegal attribute", N);
3029 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
3030 -- were already rejected by the parser. Thus they shouldn't appear here.
3032 when Internal_Attribute_Id =>
3033 raise Program_Error;
3035 ------------------
3036 -- Abort_Signal --
3037 ------------------
3039 when Attribute_Abort_Signal =>
3040 Check_Standard_Prefix;
3041 Rewrite (N, New_Occurrence_Of (Stand.Abort_Signal, Loc));
3042 Analyze (N);
3044 ------------
3045 -- Access --
3046 ------------
3048 when Attribute_Access =>
3049 Analyze_Access_Attribute;
3050 Check_Not_Incomplete_Type;
3052 -------------
3053 -- Address --
3054 -------------
3056 when Attribute_Address =>
3057 Check_E0;
3058 Address_Checks;
3059 Check_Not_Incomplete_Type;
3060 Set_Etype (N, RTE (RE_Address));
3062 ------------------
3063 -- Address_Size --
3064 ------------------
3066 when Attribute_Address_Size =>
3067 Standard_Attribute (System_Address_Size);
3069 --------------
3070 -- Adjacent --
3071 --------------
3073 when Attribute_Adjacent =>
3074 Check_Floating_Point_Type_2;
3075 Set_Etype (N, P_Base_Type);
3076 Resolve (E1, P_Base_Type);
3077 Resolve (E2, P_Base_Type);
3079 ---------
3080 -- Aft --
3081 ---------
3083 when Attribute_Aft =>
3084 Check_Fixed_Point_Type_0;
3085 Set_Etype (N, Universal_Integer);
3087 ---------------
3088 -- Alignment --
3089 ---------------
3091 when Attribute_Alignment =>
3093 -- Don't we need more checking here, cf Size ???
3095 Check_E0;
3096 Check_Not_Incomplete_Type;
3097 Check_Not_CPP_Type;
3098 Set_Etype (N, Universal_Integer);
3100 ---------------
3101 -- Asm_Input --
3102 ---------------
3104 when Attribute_Asm_Input =>
3105 Check_Asm_Attribute;
3107 -- The back end may need to take the address of E2
3109 if Is_Entity_Name (E2) then
3110 Set_Address_Taken (Entity (E2));
3111 end if;
3113 Set_Etype (N, RTE (RE_Asm_Input_Operand));
3115 ----------------
3116 -- Asm_Output --
3117 ----------------
3119 when Attribute_Asm_Output =>
3120 Check_Asm_Attribute;
3122 if Etype (E2) = Any_Type then
3123 return;
3125 elsif Aname = Name_Asm_Output then
3126 if not Is_Variable (E2) then
3127 Error_Attr
3128 ("second argument for Asm_Output is not variable", E2);
3129 end if;
3130 end if;
3132 Note_Possible_Modification (E2, Sure => True);
3134 -- The back end may need to take the address of E2
3136 if Is_Entity_Name (E2) then
3137 Set_Address_Taken (Entity (E2));
3138 end if;
3140 Set_Etype (N, RTE (RE_Asm_Output_Operand));
3142 -----------------------------
3143 -- Atomic_Always_Lock_Free --
3144 -----------------------------
3146 when Attribute_Atomic_Always_Lock_Free =>
3147 Check_E0;
3148 Check_Type;
3149 Set_Etype (N, Standard_Boolean);
3151 ----------
3152 -- Base --
3153 ----------
3155 -- Note: when the base attribute appears in the context of a subtype
3156 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
3157 -- the following circuit.
3159 when Attribute_Base => Base : declare
3160 Typ : Entity_Id;
3162 begin
3163 Check_E0;
3164 Find_Type (P);
3165 Typ := Entity (P);
3167 if Ada_Version >= Ada_95
3168 and then not Is_Scalar_Type (Typ)
3169 and then not Is_Generic_Type (Typ)
3170 then
3171 Error_Attr_P ("prefix of Base attribute must be scalar type");
3173 elsif Sloc (Typ) = Standard_Location
3174 and then Base_Type (Typ) = Typ
3175 and then Warn_On_Redundant_Constructs
3176 then
3177 Error_Msg_NE -- CODEFIX
3178 ("?r?redundant attribute, & is its own base type", N, Typ);
3179 end if;
3181 if Nkind (Parent (N)) /= N_Attribute_Reference then
3182 Error_Msg_Name_1 := Aname;
3183 Check_SPARK_05_Restriction
3184 ("attribute% is only allowed as prefix of another attribute", P);
3185 end if;
3187 Set_Etype (N, Base_Type (Entity (P)));
3188 Set_Entity (N, Base_Type (Entity (P)));
3189 Rewrite (N, New_Occurrence_Of (Entity (N), Loc));
3190 Analyze (N);
3191 end Base;
3193 ---------
3194 -- Bit --
3195 ---------
3197 when Attribute_Bit =>
3198 Check_E0;
3200 if not Is_Object_Reference (P) then
3201 Error_Attr_P ("prefix for % attribute must be object");
3203 -- What about the access object cases ???
3205 else
3206 null;
3207 end if;
3209 Set_Etype (N, Universal_Integer);
3211 ---------------
3212 -- Bit_Order --
3213 ---------------
3215 when Attribute_Bit_Order =>
3216 Check_E0;
3217 Check_Type;
3219 if not Is_Record_Type (P_Type) then
3220 Error_Attr_P ("prefix of % attribute must be record type");
3221 end if;
3223 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
3224 Rewrite (N,
3225 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
3226 else
3227 Rewrite (N,
3228 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
3229 end if;
3231 Set_Etype (N, RTE (RE_Bit_Order));
3232 Resolve (N);
3234 -- Reset incorrect indication of staticness
3236 Set_Is_Static_Expression (N, False);
3238 ------------------
3239 -- Bit_Position --
3240 ------------------
3242 -- Note: in generated code, we can have a Bit_Position attribute
3243 -- applied to a (naked) record component (i.e. the prefix is an
3244 -- identifier that references an E_Component or E_Discriminant
3245 -- entity directly, and this is interpreted as expected by Gigi.
3246 -- The following code will not tolerate such usage, but when the
3247 -- expander creates this special case, it marks it as analyzed
3248 -- immediately and sets an appropriate type.
3250 when Attribute_Bit_Position =>
3251 if Comes_From_Source (N) then
3252 Check_Component;
3253 end if;
3255 Set_Etype (N, Universal_Integer);
3257 ------------------
3258 -- Body_Version --
3259 ------------------
3261 when Attribute_Body_Version =>
3262 Check_E0;
3263 Check_Program_Unit;
3264 Set_Etype (N, RTE (RE_Version_String));
3266 --------------
3267 -- Callable --
3268 --------------
3270 when Attribute_Callable =>
3271 Check_E0;
3272 Set_Etype (N, Standard_Boolean);
3273 Check_Task_Prefix;
3275 ------------
3276 -- Caller --
3277 ------------
3279 when Attribute_Caller => Caller : declare
3280 Ent : Entity_Id;
3281 S : Entity_Id;
3283 begin
3284 Check_E0;
3286 if Nkind_In (P, N_Identifier, N_Expanded_Name) then
3287 Ent := Entity (P);
3289 if not Is_Entry (Ent) then
3290 Error_Attr ("invalid entry name", N);
3291 end if;
3293 else
3294 Error_Attr ("invalid entry name", N);
3295 return;
3296 end if;
3298 for J in reverse 0 .. Scope_Stack.Last loop
3299 S := Scope_Stack.Table (J).Entity;
3301 if S = Scope (Ent) then
3302 Error_Attr ("Caller must appear in matching accept or body", N);
3303 elsif S = Ent then
3304 exit;
3305 end if;
3306 end loop;
3308 Set_Etype (N, RTE (RO_AT_Task_Id));
3309 end Caller;
3311 -------------
3312 -- Ceiling --
3313 -------------
3315 when Attribute_Ceiling =>
3316 Check_Floating_Point_Type_1;
3317 Set_Etype (N, P_Base_Type);
3318 Resolve (E1, P_Base_Type);
3320 -----------
3321 -- Class --
3322 -----------
3324 when Attribute_Class =>
3325 Check_Restriction (No_Dispatch, N);
3326 Check_E0;
3327 Find_Type (N);
3329 -- Applying Class to untagged incomplete type is obsolescent in Ada
3330 -- 2005. Note that we can't test Is_Tagged_Type here on P_Type, since
3331 -- this flag gets set by Find_Type in this situation.
3333 if Restriction_Check_Required (No_Obsolescent_Features)
3334 and then Ada_Version >= Ada_2005
3335 and then Ekind (P_Type) = E_Incomplete_Type
3336 then
3337 declare
3338 DN : constant Node_Id := Declaration_Node (P_Type);
3339 begin
3340 if Nkind (DN) = N_Incomplete_Type_Declaration
3341 and then not Tagged_Present (DN)
3342 then
3343 Check_Restriction (No_Obsolescent_Features, P);
3344 end if;
3345 end;
3346 end if;
3348 ------------------
3349 -- Code_Address --
3350 ------------------
3352 when Attribute_Code_Address =>
3353 Check_E0;
3355 if Nkind (P) = N_Attribute_Reference
3356 and then Nam_In (Attribute_Name (P), Name_Elab_Body, Name_Elab_Spec)
3357 then
3358 null;
3360 elsif not Is_Entity_Name (P)
3361 or else (Ekind (Entity (P)) /= E_Function
3362 and then
3363 Ekind (Entity (P)) /= E_Procedure)
3364 then
3365 Error_Attr ("invalid prefix for % attribute", P);
3366 Set_Address_Taken (Entity (P));
3368 -- Issue an error if the prefix denotes an eliminated subprogram
3370 else
3371 Check_For_Eliminated_Subprogram (P, Entity (P));
3372 end if;
3374 Set_Etype (N, RTE (RE_Address));
3376 ----------------------
3377 -- Compiler_Version --
3378 ----------------------
3380 when Attribute_Compiler_Version =>
3381 Check_E0;
3382 Check_Standard_Prefix;
3383 Rewrite (N, Make_String_Literal (Loc, "GNAT " & Gnat_Version_String));
3384 Analyze_And_Resolve (N, Standard_String);
3385 Set_Is_Static_Expression (N, True);
3387 --------------------
3388 -- Component_Size --
3389 --------------------
3391 when Attribute_Component_Size =>
3392 Check_E0;
3393 Set_Etype (N, Universal_Integer);
3395 -- Note: unlike other array attributes, unconstrained arrays are OK
3397 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
3398 null;
3399 else
3400 Check_Array_Type;
3401 end if;
3403 -------------
3404 -- Compose --
3405 -------------
3407 when Attribute_Compose =>
3408 Check_Floating_Point_Type_2;
3409 Set_Etype (N, P_Base_Type);
3410 Resolve (E1, P_Base_Type);
3411 Resolve (E2, Any_Integer);
3413 -----------------
3414 -- Constrained --
3415 -----------------
3417 when Attribute_Constrained =>
3418 Check_E0;
3419 Set_Etype (N, Standard_Boolean);
3421 -- Case from RM J.4(2) of constrained applied to private type
3423 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
3424 Check_Restriction (No_Obsolescent_Features, P);
3426 if Warn_On_Obsolescent_Feature then
3427 Error_Msg_N
3428 ("constrained for private type is an obsolescent feature "
3429 & "(RM J.4)?j?", N);
3430 end if;
3432 -- If we are within an instance, the attribute must be legal
3433 -- because it was valid in the generic unit. Ditto if this is
3434 -- an inlining of a function declared in an instance.
3436 if In_Instance or else In_Inlined_Body then
3437 return;
3439 -- For sure OK if we have a real private type itself, but must
3440 -- be completed, cannot apply Constrained to incomplete type.
3442 elsif Is_Private_Type (Entity (P)) then
3444 -- Note: this is one of the Annex J features that does not
3445 -- generate a warning from -gnatwj, since in fact it seems
3446 -- very useful, and is used in the GNAT runtime.
3448 Check_Not_Incomplete_Type;
3449 return;
3450 end if;
3452 -- Normal (non-obsolescent case) of application to object of
3453 -- a discriminated type.
3455 else
3456 Check_Object_Reference (P);
3458 -- If N does not come from source, then we allow the
3459 -- the attribute prefix to be of a private type whose
3460 -- full type has discriminants. This occurs in cases
3461 -- involving expanded calls to stream attributes.
3463 if not Comes_From_Source (N) then
3464 P_Type := Underlying_Type (P_Type);
3465 end if;
3467 -- Must have discriminants or be an access type designating a type
3468 -- with discriminants. If it is a class-wide type it has unknown
3469 -- discriminants.
3471 if Has_Discriminants (P_Type)
3472 or else Has_Unknown_Discriminants (P_Type)
3473 or else
3474 (Is_Access_Type (P_Type)
3475 and then Has_Discriminants (Designated_Type (P_Type)))
3476 then
3477 return;
3479 -- The rule given in 3.7.2 is part of static semantics, but the
3480 -- intent is clearly that it be treated as a legality rule, and
3481 -- rechecked in the visible part of an instance. Nevertheless
3482 -- the intent also seems to be it should legally apply to the
3483 -- actual of a formal with unknown discriminants, regardless of
3484 -- whether the actual has discriminants, in which case the value
3485 -- of the attribute is determined using the J.4 rules. This choice
3486 -- seems the most useful, and is compatible with existing tests.
3488 elsif In_Instance then
3489 return;
3491 -- Also allow an object of a generic type if extensions allowed
3492 -- and allow this for any type at all. (this may be obsolete ???)
3494 elsif (Is_Generic_Type (P_Type)
3495 or else Is_Generic_Actual_Type (P_Type))
3496 and then Extensions_Allowed
3497 then
3498 return;
3499 end if;
3500 end if;
3502 -- Fall through if bad prefix
3504 Error_Attr_P
3505 ("prefix of % attribute must be object of discriminated type");
3507 ---------------
3508 -- Copy_Sign --
3509 ---------------
3511 when Attribute_Copy_Sign =>
3512 Check_Floating_Point_Type_2;
3513 Set_Etype (N, P_Base_Type);
3514 Resolve (E1, P_Base_Type);
3515 Resolve (E2, P_Base_Type);
3517 -----------
3518 -- Count --
3519 -----------
3521 when Attribute_Count => Count : declare
3522 Ent : Entity_Id;
3523 S : Entity_Id;
3524 Tsk : Entity_Id;
3526 begin
3527 Check_E0;
3529 if Nkind_In (P, N_Identifier, N_Expanded_Name) then
3530 Ent := Entity (P);
3532 if Ekind (Ent) /= E_Entry then
3533 Error_Attr ("invalid entry name", N);
3534 end if;
3536 elsif Nkind (P) = N_Indexed_Component then
3537 if not Is_Entity_Name (Prefix (P))
3538 or else No (Entity (Prefix (P)))
3539 or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
3540 then
3541 if Nkind (Prefix (P)) = N_Selected_Component
3542 and then Present (Entity (Selector_Name (Prefix (P))))
3543 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
3544 E_Entry_Family
3545 then
3546 Error_Attr
3547 ("attribute % must apply to entry of current task", P);
3549 else
3550 Error_Attr ("invalid entry family name", P);
3551 end if;
3552 return;
3554 else
3555 Ent := Entity (Prefix (P));
3556 end if;
3558 elsif Nkind (P) = N_Selected_Component
3559 and then Present (Entity (Selector_Name (P)))
3560 and then Ekind (Entity (Selector_Name (P))) = E_Entry
3561 then
3562 Error_Attr
3563 ("attribute % must apply to entry of current task", P);
3565 else
3566 Error_Attr ("invalid entry name", N);
3567 return;
3568 end if;
3570 for J in reverse 0 .. Scope_Stack.Last loop
3571 S := Scope_Stack.Table (J).Entity;
3573 if S = Scope (Ent) then
3574 if Nkind (P) = N_Expanded_Name then
3575 Tsk := Entity (Prefix (P));
3577 -- The prefix denotes either the task type, or else a
3578 -- single task whose task type is being analyzed.
3580 if (Is_Type (Tsk) and then Tsk = S)
3581 or else (not Is_Type (Tsk)
3582 and then Etype (Tsk) = S
3583 and then not (Comes_From_Source (S)))
3584 then
3585 null;
3586 else
3587 Error_Attr
3588 ("Attribute % must apply to entry of current task", N);
3589 end if;
3590 end if;
3592 exit;
3594 elsif Ekind (Scope (Ent)) in Task_Kind
3595 and then not Ekind_In (S, E_Block,
3596 E_Entry,
3597 E_Entry_Family,
3598 E_Loop)
3599 then
3600 Error_Attr ("Attribute % cannot appear in inner unit", N);
3602 elsif Ekind (Scope (Ent)) = E_Protected_Type
3603 and then not Has_Completion (Scope (Ent))
3604 then
3605 Error_Attr ("attribute % can only be used inside body", N);
3606 end if;
3607 end loop;
3609 if Is_Overloaded (P) then
3610 declare
3611 Index : Interp_Index;
3612 It : Interp;
3614 begin
3615 Get_First_Interp (P, Index, It);
3616 while Present (It.Nam) loop
3617 if It.Nam = Ent then
3618 null;
3620 -- Ada 2005 (AI-345): Do not consider primitive entry
3621 -- wrappers generated for task or protected types.
3623 elsif Ada_Version >= Ada_2005
3624 and then not Comes_From_Source (It.Nam)
3625 then
3626 null;
3628 else
3629 Error_Attr ("ambiguous entry name", N);
3630 end if;
3632 Get_Next_Interp (Index, It);
3633 end loop;
3634 end;
3635 end if;
3637 Set_Etype (N, Universal_Integer);
3638 end Count;
3640 -----------------------
3641 -- Default_Bit_Order --
3642 -----------------------
3644 when Attribute_Default_Bit_Order => Default_Bit_Order : declare
3645 Target_Default_Bit_Order : System.Bit_Order;
3647 begin
3648 Check_Standard_Prefix;
3650 if Bytes_Big_Endian then
3651 Target_Default_Bit_Order := System.High_Order_First;
3652 else
3653 Target_Default_Bit_Order := System.Low_Order_First;
3654 end if;
3656 Rewrite (N,
3657 Make_Integer_Literal (Loc,
3658 UI_From_Int (System.Bit_Order'Pos (Target_Default_Bit_Order))));
3660 Set_Etype (N, Universal_Integer);
3661 Set_Is_Static_Expression (N);
3662 end Default_Bit_Order;
3664 ----------------------------------
3665 -- Default_Scalar_Storage_Order --
3666 ----------------------------------
3668 when Attribute_Default_Scalar_Storage_Order => Default_SSO : declare
3669 RE_Default_SSO : RE_Id;
3671 begin
3672 Check_Standard_Prefix;
3674 case Opt.Default_SSO is
3675 when ' ' =>
3676 if Bytes_Big_Endian then
3677 RE_Default_SSO := RE_High_Order_First;
3678 else
3679 RE_Default_SSO := RE_Low_Order_First;
3680 end if;
3682 when 'H' =>
3683 RE_Default_SSO := RE_High_Order_First;
3685 when 'L' =>
3686 RE_Default_SSO := RE_Low_Order_First;
3688 when others =>
3689 raise Program_Error;
3690 end case;
3692 Rewrite (N, New_Occurrence_Of (RTE (RE_Default_SSO), Loc));
3693 end Default_SSO;
3695 --------------
3696 -- Definite --
3697 --------------
3699 when Attribute_Definite =>
3700 Legal_Formal_Attribute;
3702 -----------
3703 -- Delta --
3704 -----------
3706 when Attribute_Delta =>
3707 Check_Fixed_Point_Type_0;
3708 Set_Etype (N, Universal_Real);
3710 ------------
3711 -- Denorm --
3712 ------------
3714 when Attribute_Denorm =>
3715 Check_Floating_Point_Type_0;
3716 Set_Etype (N, Standard_Boolean);
3718 -----------
3719 -- Deref --
3720 -----------
3722 when Attribute_Deref =>
3723 Check_Type;
3724 Check_E1;
3725 Resolve (E1, RTE (RE_Address));
3726 Set_Etype (N, P_Type);
3728 ---------------------
3729 -- Descriptor_Size --
3730 ---------------------
3732 when Attribute_Descriptor_Size =>
3733 Check_E0;
3735 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
3736 Error_Attr_P ("prefix of attribute % must denote a type");
3737 end if;
3739 Set_Etype (N, Universal_Integer);
3741 ------------
3742 -- Digits --
3743 ------------
3745 when Attribute_Digits =>
3746 Check_E0;
3747 Check_Type;
3749 if not Is_Floating_Point_Type (P_Type)
3750 and then not Is_Decimal_Fixed_Point_Type (P_Type)
3751 then
3752 Error_Attr_P
3753 ("prefix of % attribute must be float or decimal type");
3754 end if;
3756 Set_Etype (N, Universal_Integer);
3758 ---------------
3759 -- Elab_Body --
3760 ---------------
3762 -- Also handles processing for Elab_Spec and Elab_Subp_Body
3764 when Attribute_Elab_Body
3765 | Attribute_Elab_Spec
3766 | Attribute_Elab_Subp_Body
3768 Check_E0;
3769 Check_Unit_Name (P);
3770 Set_Etype (N, Standard_Void_Type);
3772 -- We have to manually call the expander in this case to get
3773 -- the necessary expansion (normally attributes that return
3774 -- entities are not expanded).
3776 Expand (N);
3778 ---------------
3779 -- Elab_Spec --
3780 ---------------
3782 -- Shares processing with Elab_Body
3784 ----------------
3785 -- Elaborated --
3786 ----------------
3788 when Attribute_Elaborated =>
3789 Check_E0;
3790 Check_Unit_Name (P);
3791 Set_Etype (N, Standard_Boolean);
3793 ----------
3794 -- Emax --
3795 ----------
3797 when Attribute_Emax =>
3798 Check_Floating_Point_Type_0;
3799 Set_Etype (N, Universal_Integer);
3801 -------------
3802 -- Enabled --
3803 -------------
3805 when Attribute_Enabled =>
3806 Check_Either_E0_Or_E1;
3808 if Present (E1) then
3809 if not Is_Entity_Name (E1) or else No (Entity (E1)) then
3810 Error_Msg_N ("entity name expected for Enabled attribute", E1);
3811 E1 := Empty;
3812 end if;
3813 end if;
3815 if Nkind (P) /= N_Identifier then
3816 Error_Msg_N ("identifier expected (check name)", P);
3817 elsif Get_Check_Id (Chars (P)) = No_Check_Id then
3818 Error_Msg_N ("& is not a recognized check name", P);
3819 end if;
3821 Set_Etype (N, Standard_Boolean);
3823 --------------
3824 -- Enum_Rep --
3825 --------------
3827 when Attribute_Enum_Rep =>
3829 -- T'Enum_Rep (X) case
3831 if Present (E1) then
3832 Check_E1;
3833 Check_Discrete_Type;
3834 Resolve (E1, P_Base_Type);
3836 -- X'Enum_Rep case. X must be an object or enumeration literal, and
3837 -- it must be of a discrete type.
3839 elsif not
3840 ((Is_Object_Reference (P)
3841 or else
3842 (Is_Entity_Name (P)
3843 and then Ekind (Entity (P)) = E_Enumeration_Literal))
3844 and then Is_Discrete_Type (Etype (P)))
3845 then
3846 Error_Attr_P ("prefix of % attribute must be discrete object");
3847 end if;
3849 Set_Etype (N, Universal_Integer);
3851 --------------
3852 -- Enum_Val --
3853 --------------
3855 when Attribute_Enum_Val =>
3856 Check_E1;
3857 Check_Type;
3859 if not Is_Enumeration_Type (P_Type) then
3860 Error_Attr_P ("prefix of % attribute must be enumeration type");
3861 end if;
3863 -- If the enumeration type has a standard representation, the effect
3864 -- is the same as 'Val, so rewrite the attribute as a 'Val.
3866 if not Has_Non_Standard_Rep (P_Base_Type) then
3867 Rewrite (N,
3868 Make_Attribute_Reference (Loc,
3869 Prefix => Relocate_Node (Prefix (N)),
3870 Attribute_Name => Name_Val,
3871 Expressions => New_List (Relocate_Node (E1))));
3872 Analyze_And_Resolve (N, P_Base_Type);
3874 -- Non-standard representation case (enumeration with holes)
3876 else
3877 Check_Enum_Image;
3878 Resolve (E1, Any_Integer);
3879 Set_Etype (N, P_Base_Type);
3880 end if;
3882 -------------
3883 -- Epsilon --
3884 -------------
3886 when Attribute_Epsilon =>
3887 Check_Floating_Point_Type_0;
3888 Set_Etype (N, Universal_Real);
3890 --------------
3891 -- Exponent --
3892 --------------
3894 when Attribute_Exponent =>
3895 Check_Floating_Point_Type_1;
3896 Set_Etype (N, Universal_Integer);
3897 Resolve (E1, P_Base_Type);
3899 ------------------
3900 -- External_Tag --
3901 ------------------
3903 when Attribute_External_Tag =>
3904 Check_E0;
3905 Check_Type;
3907 Set_Etype (N, Standard_String);
3909 if not Is_Tagged_Type (P_Type) then
3910 Error_Attr_P ("prefix of % attribute must be tagged");
3911 end if;
3913 ---------------
3914 -- Fast_Math --
3915 ---------------
3917 when Attribute_Fast_Math =>
3918 Check_Standard_Prefix;
3919 Rewrite (N, New_Occurrence_Of (Boolean_Literals (Fast_Math), Loc));
3921 -----------------------
3922 -- Finalization_Size --
3923 -----------------------
3925 when Attribute_Finalization_Size =>
3926 Check_E0;
3928 -- The prefix denotes an object
3930 if Is_Object_Reference (P) then
3931 Check_Object_Reference (P);
3933 -- The prefix denotes a type
3935 elsif Is_Entity_Name (P) and then Is_Type (Entity (P)) then
3936 Check_Type;
3937 Check_Not_Incomplete_Type;
3939 -- Attribute 'Finalization_Size is not defined for class-wide
3940 -- types because it is not possible to know statically whether
3941 -- a definite type will have controlled components or not.
3943 if Is_Class_Wide_Type (Etype (P)) then
3944 Error_Attr_P
3945 ("prefix of % attribute cannot denote a class-wide type");
3946 end if;
3948 -- The prefix denotes an illegal construct
3950 else
3951 Error_Attr_P
3952 ("prefix of % attribute must be a definite type or an object");
3953 end if;
3955 Set_Etype (N, Universal_Integer);
3957 -----------
3958 -- First --
3959 -----------
3961 when Attribute_First =>
3962 Check_Array_Or_Scalar_Type;
3963 Bad_Attribute_For_Predicate;
3965 ---------------
3966 -- First_Bit --
3967 ---------------
3969 when Attribute_First_Bit =>
3970 Check_Component;
3971 Set_Etype (N, Universal_Integer);
3973 -----------------
3974 -- First_Valid --
3975 -----------------
3977 when Attribute_First_Valid =>
3978 Check_First_Last_Valid;
3979 Set_Etype (N, P_Type);
3981 -----------------
3982 -- Fixed_Value --
3983 -----------------
3985 when Attribute_Fixed_Value =>
3986 Check_E1;
3987 Check_Fixed_Point_Type;
3988 Resolve (E1, Any_Integer);
3989 Set_Etype (N, P_Base_Type);
3991 -----------
3992 -- Floor --
3993 -----------
3995 when Attribute_Floor =>
3996 Check_Floating_Point_Type_1;
3997 Set_Etype (N, P_Base_Type);
3998 Resolve (E1, P_Base_Type);
4000 ----------
4001 -- Fore --
4002 ----------
4004 when Attribute_Fore =>
4005 Check_Fixed_Point_Type_0;
4006 Set_Etype (N, Universal_Integer);
4008 --------------
4009 -- Fraction --
4010 --------------
4012 when Attribute_Fraction =>
4013 Check_Floating_Point_Type_1;
4014 Set_Etype (N, P_Base_Type);
4015 Resolve (E1, P_Base_Type);
4017 --------------
4018 -- From_Any --
4019 --------------
4021 when Attribute_From_Any =>
4022 Check_E1;
4023 Check_PolyORB_Attribute;
4024 Set_Etype (N, P_Base_Type);
4026 -----------------------
4027 -- Has_Access_Values --
4028 -----------------------
4030 when Attribute_Has_Access_Values =>
4031 Check_Type;
4032 Check_E0;
4033 Set_Etype (N, Standard_Boolean);
4035 ----------------------
4036 -- Has_Same_Storage --
4037 ----------------------
4039 when Attribute_Has_Same_Storage =>
4040 Check_E1;
4042 -- The arguments must be objects of any type
4044 Analyze_And_Resolve (P);
4045 Analyze_And_Resolve (E1);
4046 Check_Object_Reference (P);
4047 Check_Object_Reference (E1);
4048 Set_Etype (N, Standard_Boolean);
4050 -----------------------
4051 -- Has_Tagged_Values --
4052 -----------------------
4054 when Attribute_Has_Tagged_Values =>
4055 Check_Type;
4056 Check_E0;
4057 Set_Etype (N, Standard_Boolean);
4059 -----------------------
4060 -- Has_Discriminants --
4061 -----------------------
4063 when Attribute_Has_Discriminants =>
4064 Legal_Formal_Attribute;
4066 --------------
4067 -- Identity --
4068 --------------
4070 when Attribute_Identity =>
4071 Check_E0;
4072 Analyze (P);
4074 if Etype (P) = Standard_Exception_Type then
4075 Set_Etype (N, RTE (RE_Exception_Id));
4077 -- Ada 2005 (AI-345): Attribute 'Identity may be applied to task
4078 -- interface class-wide types.
4080 elsif Is_Task_Type (Etype (P))
4081 or else (Is_Access_Type (Etype (P))
4082 and then Is_Task_Type (Designated_Type (Etype (P))))
4083 or else (Ada_Version >= Ada_2005
4084 and then Ekind (Etype (P)) = E_Class_Wide_Type
4085 and then Is_Interface (Etype (P))
4086 and then Is_Task_Interface (Etype (P)))
4087 then
4088 Resolve (P);
4089 Set_Etype (N, RTE (RO_AT_Task_Id));
4091 else
4092 if Ada_Version >= Ada_2005 then
4093 Error_Attr_P
4094 ("prefix of % attribute must be an exception, a task or a "
4095 & "task interface class-wide object");
4096 else
4097 Error_Attr_P
4098 ("prefix of % attribute must be a task or an exception");
4099 end if;
4100 end if;
4102 -----------
4103 -- Image --
4104 -----------
4106 when Attribute_Image =>
4107 if Is_Real_Type (P_Type) then
4108 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4109 Error_Msg_Name_1 := Aname;
4110 Error_Msg_N
4111 ("(Ada 83) % attribute not allowed for real types", N);
4112 end if;
4113 end if;
4115 Analyze_Image_Attribute (Standard_String);
4117 ---------
4118 -- Img --
4119 ---------
4121 when Attribute_Img =>
4122 Analyze_Image_Attribute (Standard_String);
4124 -----------
4125 -- Input --
4126 -----------
4128 when Attribute_Input =>
4129 Check_E1;
4130 Check_Stream_Attribute (TSS_Stream_Input);
4131 Set_Etype (N, P_Base_Type);
4133 -------------------
4134 -- Integer_Value --
4135 -------------------
4137 when Attribute_Integer_Value =>
4138 Check_E1;
4139 Check_Integer_Type;
4140 Resolve (E1, Any_Fixed);
4142 -- Signal an error if argument type is not a specific fixed-point
4143 -- subtype. An error has been signalled already if the argument
4144 -- was not of a fixed-point type.
4146 if Etype (E1) = Any_Fixed and then not Error_Posted (E1) then
4147 Error_Attr ("argument of % must be of a fixed-point type", E1);
4148 end if;
4150 Set_Etype (N, P_Base_Type);
4152 -------------------
4153 -- Invalid_Value --
4154 -------------------
4156 when Attribute_Invalid_Value =>
4157 Check_E0;
4158 Check_Scalar_Type;
4159 Set_Etype (N, P_Base_Type);
4160 Invalid_Value_Used := True;
4162 -----------
4163 -- Large --
4164 -----------
4166 when Attribute_Large =>
4167 Check_E0;
4168 Check_Real_Type;
4169 Set_Etype (N, Universal_Real);
4171 ----------
4172 -- Last --
4173 ----------
4175 when Attribute_Last =>
4176 Check_Array_Or_Scalar_Type;
4177 Bad_Attribute_For_Predicate;
4179 --------------
4180 -- Last_Bit --
4181 --------------
4183 when Attribute_Last_Bit =>
4184 Check_Component;
4185 Set_Etype (N, Universal_Integer);
4187 ----------------
4188 -- Last_Valid --
4189 ----------------
4191 when Attribute_Last_Valid =>
4192 Check_First_Last_Valid;
4193 Set_Etype (N, P_Type);
4195 ------------------
4196 -- Leading_Part --
4197 ------------------
4199 when Attribute_Leading_Part =>
4200 Check_Floating_Point_Type_2;
4201 Set_Etype (N, P_Base_Type);
4202 Resolve (E1, P_Base_Type);
4203 Resolve (E2, Any_Integer);
4205 ------------
4206 -- Length --
4207 ------------
4209 when Attribute_Length =>
4210 Check_Array_Type;
4211 Set_Etype (N, Universal_Integer);
4213 -------------------
4214 -- Library_Level --
4215 -------------------
4217 when Attribute_Library_Level =>
4218 Check_E0;
4220 if not Is_Entity_Name (P) then
4221 Error_Attr_P ("prefix of % attribute must be an entity name");
4222 end if;
4224 if not Inside_A_Generic then
4225 Set_Boolean_Result (N,
4226 Is_Library_Level_Entity (Entity (P)));
4227 end if;
4229 Set_Etype (N, Standard_Boolean);
4231 ---------------
4232 -- Lock_Free --
4233 ---------------
4235 when Attribute_Lock_Free =>
4236 Check_E0;
4237 Set_Etype (N, Standard_Boolean);
4239 if not Is_Protected_Type (P_Type) then
4240 Error_Attr_P
4241 ("prefix of % attribute must be a protected object");
4242 end if;
4244 ----------------
4245 -- Loop_Entry --
4246 ----------------
4248 when Attribute_Loop_Entry => Loop_Entry : declare
4249 procedure Check_References_In_Prefix (Loop_Id : Entity_Id);
4250 -- Inspect the prefix for any uses of entities declared within the
4251 -- related loop. Loop_Id denotes the loop identifier.
4253 --------------------------------
4254 -- Check_References_In_Prefix --
4255 --------------------------------
4257 procedure Check_References_In_Prefix (Loop_Id : Entity_Id) is
4258 Loop_Decl : constant Node_Id := Label_Construct (Parent (Loop_Id));
4260 function Check_Reference (Nod : Node_Id) return Traverse_Result;
4261 -- Determine whether a reference mentions an entity declared
4262 -- within the related loop.
4264 function Declared_Within (Nod : Node_Id) return Boolean;
4265 -- Determine whether Nod appears in the subtree of Loop_Decl
4267 ---------------------
4268 -- Check_Reference --
4269 ---------------------
4271 function Check_Reference (Nod : Node_Id) return Traverse_Result is
4272 begin
4273 if Nkind (Nod) = N_Identifier
4274 and then Present (Entity (Nod))
4275 and then Declared_Within (Declaration_Node (Entity (Nod)))
4276 then
4277 Error_Attr
4278 ("prefix of attribute % cannot reference local entities",
4279 Nod);
4280 return Abandon;
4281 else
4282 return OK;
4283 end if;
4284 end Check_Reference;
4286 procedure Check_References is new Traverse_Proc (Check_Reference);
4288 ---------------------
4289 -- Declared_Within --
4290 ---------------------
4292 function Declared_Within (Nod : Node_Id) return Boolean is
4293 Stmt : Node_Id;
4295 begin
4296 Stmt := Nod;
4297 while Present (Stmt) loop
4298 if Stmt = Loop_Decl then
4299 return True;
4301 -- Prevent the search from going too far
4303 elsif Is_Body_Or_Package_Declaration (Stmt) then
4304 exit;
4305 end if;
4307 Stmt := Parent (Stmt);
4308 end loop;
4310 return False;
4311 end Declared_Within;
4313 -- Start of processing for Check_Prefix_For_Local_References
4315 begin
4316 Check_References (P);
4317 end Check_References_In_Prefix;
4319 -- Local variables
4321 Context : constant Node_Id := Parent (N);
4322 Attr : Node_Id;
4323 Encl_Loop : Node_Id := Empty;
4324 Encl_Prag : Node_Id := Empty;
4325 Loop_Id : Entity_Id := Empty;
4326 Scop : Entity_Id;
4327 Stmt : Node_Id;
4329 -- Start of processing for Loop_Entry
4331 begin
4332 Attr := N;
4334 -- Set the type of the attribute now to ensure the successful
4335 -- continuation of analysis even if the attribute is misplaced.
4337 Set_Etype (Attr, P_Type);
4339 -- Attribute 'Loop_Entry may appear in several flavors:
4341 -- * Prefix'Loop_Entry - in this form, the attribute applies to the
4342 -- nearest enclosing loop.
4344 -- * Prefix'Loop_Entry (Expr) - depending on what Expr denotes, the
4345 -- attribute may be related to a loop denoted by label Expr or
4346 -- the prefix may denote an array object and Expr may act as an
4347 -- indexed component.
4349 -- * Prefix'Loop_Entry (Expr1, ..., ExprN) - the attribute applies
4350 -- to the nearest enclosing loop, all expressions are part of
4351 -- an indexed component.
4353 -- * Prefix'Loop_Entry (Expr) (...) (...) - depending on what Expr
4354 -- denotes, the attribute may be related to a loop denoted by
4355 -- label Expr or the prefix may denote a multidimensional array
4356 -- array object and Expr along with the rest of the expressions
4357 -- may act as indexed components.
4359 -- Regardless of variations, the attribute reference does not have an
4360 -- expression list. Instead, all available expressions are stored as
4361 -- indexed components.
4363 -- When the attribute is part of an indexed component, find the first
4364 -- expression as it will determine the semantics of 'Loop_Entry.
4366 -- If the attribute is itself an index in an indexed component, i.e.
4367 -- a member of a list, the context itself is not relevant (the code
4368 -- below would lead to an infinite loop) and the attribute applies
4369 -- to the enclosing loop.
4371 if Nkind (Context) = N_Indexed_Component
4372 and then not Is_List_Member (N)
4373 then
4374 E1 := First (Expressions (Context));
4375 E2 := Next (E1);
4377 -- The attribute reference appears in the following form:
4379 -- Prefix'Loop_Entry (Exp1, Expr2, ..., ExprN) [(...)]
4381 -- In this case, the loop name is omitted and no rewriting is
4382 -- required.
4384 if Present (E2) then
4385 null;
4387 -- The form of the attribute is:
4389 -- Prefix'Loop_Entry (Expr) [(...)]
4391 -- If Expr denotes a loop entry, the whole attribute and indexed
4392 -- component will have to be rewritten to reflect this relation.
4394 else
4395 pragma Assert (Present (E1));
4397 -- Do not expand the expression as it may have side effects.
4398 -- Simply preanalyze to determine whether it is a loop name or
4399 -- something else.
4401 Preanalyze_And_Resolve (E1);
4403 if Is_Entity_Name (E1)
4404 and then Present (Entity (E1))
4405 and then Ekind (Entity (E1)) = E_Loop
4406 then
4407 Loop_Id := Entity (E1);
4409 -- Transform the attribute and enclosing indexed component
4411 Set_Expressions (N, Expressions (Context));
4412 Rewrite (Context, N);
4413 Set_Etype (Context, P_Type);
4415 Attr := Context;
4416 end if;
4417 end if;
4418 end if;
4420 -- The prefix must denote an object
4422 if not Is_Object_Reference (P) then
4423 Error_Attr_P ("prefix of attribute % must denote an object");
4424 end if;
4426 -- The prefix cannot be of a limited type because the expansion of
4427 -- Loop_Entry must create a constant initialized by the evaluated
4428 -- prefix.
4430 if Is_Limited_View (Etype (P)) then
4431 Error_Attr_P ("prefix of attribute % cannot be limited");
4432 end if;
4434 -- Climb the parent chain to verify the location of the attribute and
4435 -- find the enclosing loop.
4437 Stmt := Attr;
4438 while Present (Stmt) loop
4440 -- Locate the corresponding enclosing pragma. Note that in the
4441 -- case of Assert[And_Cut] and Assume, we have already checked
4442 -- that the pragma appears in an appropriate loop location.
4444 if Nkind (Original_Node (Stmt)) = N_Pragma
4445 and then Nam_In (Pragma_Name_Unmapped (Original_Node (Stmt)),
4446 Name_Loop_Invariant,
4447 Name_Loop_Variant,
4448 Name_Assert,
4449 Name_Assert_And_Cut,
4450 Name_Assume)
4451 then
4452 Encl_Prag := Original_Node (Stmt);
4454 -- Locate the enclosing loop (if any). Note that Ada 2012 array
4455 -- iteration may be expanded into several nested loops, we are
4456 -- interested in the outermost one which has the loop identifier,
4457 -- and comes from source.
4459 elsif Nkind (Stmt) = N_Loop_Statement
4460 and then Present (Identifier (Stmt))
4461 and then Comes_From_Source (Original_Node (Stmt))
4462 and then Nkind (Original_Node (Stmt)) = N_Loop_Statement
4463 then
4464 Encl_Loop := Stmt;
4466 -- The original attribute reference may lack a loop name. Use
4467 -- the name of the enclosing loop because it is the related
4468 -- loop.
4470 if No (Loop_Id) then
4471 Loop_Id := Entity (Identifier (Encl_Loop));
4472 end if;
4474 exit;
4476 -- Prevent the search from going too far
4478 elsif Is_Body_Or_Package_Declaration (Stmt) then
4479 exit;
4480 end if;
4482 Stmt := Parent (Stmt);
4483 end loop;
4485 -- Loop_Entry must appear within a Loop_Assertion pragma (Assert,
4486 -- Assert_And_Cut, Assume count as loop assertion pragmas for this
4487 -- purpose if they appear in an appropriate location in a loop,
4488 -- which was already checked by the top level pragma circuit).
4490 -- Loop_Entry also denotes a value and as such can appear within an
4491 -- expression that is an argument for another loop aspect. In that
4492 -- case it will have been expanded into the corresponding assignment.
4494 if Expander_Active
4495 and then Nkind (Parent (N)) = N_Assignment_Statement
4496 and then not Comes_From_Source (Parent (N))
4497 then
4498 null;
4500 elsif No (Encl_Prag) then
4501 Error_Attr ("attribute% must appear within appropriate pragma", N);
4502 end if;
4504 -- A Loop_Entry that applies to a given loop statement must not
4505 -- appear within a body of accept statement, if this construct is
4506 -- itself enclosed by the given loop statement.
4508 for Index in reverse 0 .. Scope_Stack.Last loop
4509 Scop := Scope_Stack.Table (Index).Entity;
4511 if Ekind (Scop) = E_Loop and then Scop = Loop_Id then
4512 exit;
4513 elsif Ekind_In (Scop, E_Block, E_Loop, E_Return_Statement) then
4514 null;
4515 else
4516 Error_Attr
4517 ("attribute % cannot appear in body or accept statement", N);
4518 exit;
4519 end if;
4520 end loop;
4522 -- The prefix cannot mention entities declared within the related
4523 -- loop because they will not be visible once the prefix is moved
4524 -- outside the loop.
4526 Check_References_In_Prefix (Loop_Id);
4528 -- The prefix must denote a static entity if the pragma does not
4529 -- apply to the innermost enclosing loop statement, or if it appears
4530 -- within a potentially unevaluated epxression.
4532 if Is_Entity_Name (P)
4533 or else Nkind (Parent (P)) = N_Object_Renaming_Declaration
4534 or else Statically_Denotes_Object (P)
4535 then
4536 null;
4538 elsif Present (Encl_Loop)
4539 and then Entity (Identifier (Encl_Loop)) /= Loop_Id
4540 then
4541 Error_Attr_P
4542 ("prefix of attribute % that applies to outer loop must denote "
4543 & "an entity");
4545 elsif Is_Potentially_Unevaluated (P) then
4546 Uneval_Old_Msg;
4547 end if;
4549 -- Replace the Loop_Entry attribute reference by its prefix if the
4550 -- related pragma is ignored. This transformation is OK with respect
4551 -- to typing because Loop_Entry's type is that of its prefix. This
4552 -- early transformation also avoids the generation of a useless loop
4553 -- entry constant.
4555 if Present (Encl_Prag) and then Is_Ignored (Encl_Prag) then
4556 Rewrite (N, Relocate_Node (P));
4557 Preanalyze_And_Resolve (N);
4559 else
4560 Preanalyze_And_Resolve (P);
4561 end if;
4562 end Loop_Entry;
4564 -------------
4565 -- Machine --
4566 -------------
4568 when Attribute_Machine =>
4569 Check_Floating_Point_Type_1;
4570 Set_Etype (N, P_Base_Type);
4571 Resolve (E1, P_Base_Type);
4573 ------------------
4574 -- Machine_Emax --
4575 ------------------
4577 when Attribute_Machine_Emax =>
4578 Check_Floating_Point_Type_0;
4579 Set_Etype (N, Universal_Integer);
4581 ------------------
4582 -- Machine_Emin --
4583 ------------------
4585 when Attribute_Machine_Emin =>
4586 Check_Floating_Point_Type_0;
4587 Set_Etype (N, Universal_Integer);
4589 ----------------------
4590 -- Machine_Mantissa --
4591 ----------------------
4593 when Attribute_Machine_Mantissa =>
4594 Check_Floating_Point_Type_0;
4595 Set_Etype (N, Universal_Integer);
4597 -----------------------
4598 -- Machine_Overflows --
4599 -----------------------
4601 when Attribute_Machine_Overflows =>
4602 Check_Real_Type;
4603 Check_E0;
4604 Set_Etype (N, Standard_Boolean);
4606 -------------------
4607 -- Machine_Radix --
4608 -------------------
4610 when Attribute_Machine_Radix =>
4611 Check_Real_Type;
4612 Check_E0;
4613 Set_Etype (N, Universal_Integer);
4615 ----------------------
4616 -- Machine_Rounding --
4617 ----------------------
4619 when Attribute_Machine_Rounding =>
4620 Check_Floating_Point_Type_1;
4621 Set_Etype (N, P_Base_Type);
4622 Resolve (E1, P_Base_Type);
4624 --------------------
4625 -- Machine_Rounds --
4626 --------------------
4628 when Attribute_Machine_Rounds =>
4629 Check_Real_Type;
4630 Check_E0;
4631 Set_Etype (N, Standard_Boolean);
4633 ------------------
4634 -- Machine_Size --
4635 ------------------
4637 when Attribute_Machine_Size =>
4638 Check_E0;
4639 Check_Type;
4640 Check_Not_Incomplete_Type;
4641 Set_Etype (N, Universal_Integer);
4643 --------------
4644 -- Mantissa --
4645 --------------
4647 when Attribute_Mantissa =>
4648 Check_E0;
4649 Check_Real_Type;
4650 Set_Etype (N, Universal_Integer);
4652 ---------
4653 -- Max --
4654 ---------
4656 when Attribute_Max =>
4657 Min_Max;
4659 ----------------------------------
4660 -- Max_Alignment_For_Allocation --
4661 ----------------------------------
4663 when Attribute_Max_Size_In_Storage_Elements =>
4664 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
4666 ----------------------------------
4667 -- Max_Size_In_Storage_Elements --
4668 ----------------------------------
4670 when Attribute_Max_Alignment_For_Allocation =>
4671 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
4673 -----------------------
4674 -- Maximum_Alignment --
4675 -----------------------
4677 when Attribute_Maximum_Alignment =>
4678 Standard_Attribute (Ttypes.Maximum_Alignment);
4680 --------------------
4681 -- Mechanism_Code --
4682 --------------------
4684 when Attribute_Mechanism_Code =>
4685 if not Is_Entity_Name (P)
4686 or else not Is_Subprogram (Entity (P))
4687 then
4688 Error_Attr_P ("prefix of % attribute must be subprogram");
4689 end if;
4691 Check_Either_E0_Or_E1;
4693 if Present (E1) then
4694 Resolve (E1, Any_Integer);
4695 Set_Etype (E1, Standard_Integer);
4697 if not Is_OK_Static_Expression (E1) then
4698 Flag_Non_Static_Expr
4699 ("expression for parameter number must be static!", E1);
4700 Error_Attr;
4702 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
4703 or else UI_To_Int (Intval (E1)) < 0
4704 then
4705 Error_Attr ("invalid parameter number for % attribute", E1);
4706 end if;
4707 end if;
4709 Set_Etype (N, Universal_Integer);
4711 ---------
4712 -- Min --
4713 ---------
4715 when Attribute_Min =>
4716 Min_Max;
4718 ---------
4719 -- Mod --
4720 ---------
4722 when Attribute_Mod =>
4724 -- Note: this attribute is only allowed in Ada 2005 mode, but
4725 -- we do not need to test that here, since Mod is only recognized
4726 -- as an attribute name in Ada 2005 mode during the parse.
4728 Check_E1;
4729 Check_Modular_Integer_Type;
4730 Resolve (E1, Any_Integer);
4731 Set_Etype (N, P_Base_Type);
4733 -----------
4734 -- Model --
4735 -----------
4737 when Attribute_Model =>
4738 Check_Floating_Point_Type_1;
4739 Set_Etype (N, P_Base_Type);
4740 Resolve (E1, P_Base_Type);
4742 ----------------
4743 -- Model_Emin --
4744 ----------------
4746 when Attribute_Model_Emin =>
4747 Check_Floating_Point_Type_0;
4748 Set_Etype (N, Universal_Integer);
4750 -------------------
4751 -- Model_Epsilon --
4752 -------------------
4754 when Attribute_Model_Epsilon =>
4755 Check_Floating_Point_Type_0;
4756 Set_Etype (N, Universal_Real);
4758 --------------------
4759 -- Model_Mantissa --
4760 --------------------
4762 when Attribute_Model_Mantissa =>
4763 Check_Floating_Point_Type_0;
4764 Set_Etype (N, Universal_Integer);
4766 -----------------
4767 -- Model_Small --
4768 -----------------
4770 when Attribute_Model_Small =>
4771 Check_Floating_Point_Type_0;
4772 Set_Etype (N, Universal_Real);
4774 -------------
4775 -- Modulus --
4776 -------------
4778 when Attribute_Modulus =>
4779 Check_E0;
4780 Check_Modular_Integer_Type;
4781 Set_Etype (N, Universal_Integer);
4783 --------------------
4784 -- Null_Parameter --
4785 --------------------
4787 when Attribute_Null_Parameter => Null_Parameter : declare
4788 Parnt : constant Node_Id := Parent (N);
4789 GParnt : constant Node_Id := Parent (Parnt);
4791 procedure Bad_Null_Parameter (Msg : String);
4792 -- Used if bad Null parameter attribute node is found. Issues
4793 -- given error message, and also sets the type to Any_Type to
4794 -- avoid blowups later on from dealing with a junk node.
4796 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
4797 -- Called to check that Proc_Ent is imported subprogram
4799 ------------------------
4800 -- Bad_Null_Parameter --
4801 ------------------------
4803 procedure Bad_Null_Parameter (Msg : String) is
4804 begin
4805 Error_Msg_N (Msg, N);
4806 Set_Etype (N, Any_Type);
4807 end Bad_Null_Parameter;
4809 ----------------------
4810 -- Must_Be_Imported --
4811 ----------------------
4813 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
4814 Pent : constant Entity_Id := Ultimate_Alias (Proc_Ent);
4816 begin
4817 -- Ignore check if procedure not frozen yet (we will get
4818 -- another chance when the default parameter is reanalyzed)
4820 if not Is_Frozen (Pent) then
4821 return;
4823 elsif not Is_Imported (Pent) then
4824 Bad_Null_Parameter
4825 ("Null_Parameter can only be used with imported subprogram");
4827 else
4828 return;
4829 end if;
4830 end Must_Be_Imported;
4832 -- Start of processing for Null_Parameter
4834 begin
4835 Check_Type;
4836 Check_E0;
4837 Set_Etype (N, P_Type);
4839 -- Case of attribute used as default expression
4841 if Nkind (Parnt) = N_Parameter_Specification then
4842 Must_Be_Imported (Defining_Entity (GParnt));
4844 -- Case of attribute used as actual for subprogram (positional)
4846 elsif Nkind (Parnt) in N_Subprogram_Call
4847 and then Is_Entity_Name (Name (Parnt))
4848 then
4849 Must_Be_Imported (Entity (Name (Parnt)));
4851 -- Case of attribute used as actual for subprogram (named)
4853 elsif Nkind (Parnt) = N_Parameter_Association
4854 and then Nkind (GParnt) in N_Subprogram_Call
4855 and then Is_Entity_Name (Name (GParnt))
4856 then
4857 Must_Be_Imported (Entity (Name (GParnt)));
4859 -- Not an allowed case
4861 else
4862 Bad_Null_Parameter
4863 ("Null_Parameter must be actual or default parameter");
4864 end if;
4865 end Null_Parameter;
4867 -----------------
4868 -- Object_Size --
4869 -----------------
4871 when Attribute_Object_Size =>
4872 Check_E0;
4873 Check_Type;
4874 Check_Not_Incomplete_Type;
4875 Set_Etype (N, Universal_Integer);
4877 ---------
4878 -- Old --
4879 ---------
4881 when Attribute_Old => Old : declare
4882 procedure Check_References_In_Prefix (Subp_Id : Entity_Id);
4883 -- Inspect the contents of the prefix and detect illegal uses of a
4884 -- nested 'Old, attribute 'Result or a use of an entity declared in
4885 -- the related postcondition expression. Subp_Id is the subprogram to
4886 -- which the related postcondition applies.
4888 --------------------------------
4889 -- Check_References_In_Prefix --
4890 --------------------------------
4892 procedure Check_References_In_Prefix (Subp_Id : Entity_Id) is
4893 function Check_Reference (Nod : Node_Id) return Traverse_Result;
4894 -- Detect attribute 'Old, attribute 'Result of a use of an entity
4895 -- and perform the appropriate semantic check.
4897 ---------------------
4898 -- Check_Reference --
4899 ---------------------
4901 function Check_Reference (Nod : Node_Id) return Traverse_Result is
4902 begin
4903 -- Attributes 'Old and 'Result cannot appear in the prefix of
4904 -- another attribute 'Old.
4906 if Nkind (Nod) = N_Attribute_Reference
4907 and then Nam_In (Attribute_Name (Nod), Name_Old,
4908 Name_Result)
4909 then
4910 Error_Msg_Name_1 := Attribute_Name (Nod);
4911 Error_Msg_Name_2 := Name_Old;
4912 Error_Msg_N
4913 ("attribute % cannot appear in the prefix of attribute %",
4914 Nod);
4915 return Abandon;
4917 -- Entities mentioned within the prefix of attribute 'Old must
4918 -- be global to the related postcondition. If this is not the
4919 -- case, then the scope of the local entity is nested within
4920 -- that of the subprogram.
4922 elsif Is_Entity_Name (Nod)
4923 and then Present (Entity (Nod))
4924 and then Scope_Within (Scope (Entity (Nod)), Subp_Id)
4925 then
4926 Error_Attr
4927 ("prefix of attribute % cannot reference local entities",
4928 Nod);
4929 return Abandon;
4931 -- Otherwise keep inspecting the prefix
4933 else
4934 return OK;
4935 end if;
4936 end Check_Reference;
4938 procedure Check_References is new Traverse_Proc (Check_Reference);
4940 -- Start of processing for Check_References_In_Prefix
4942 begin
4943 Check_References (P);
4944 end Check_References_In_Prefix;
4946 -- Local variables
4948 Legal : Boolean;
4949 Pref_Id : Entity_Id;
4950 Pref_Typ : Entity_Id;
4951 Spec_Id : Entity_Id;
4953 -- Start of processing for Old
4955 begin
4956 -- The attribute reference is a primary. If any expressions follow,
4957 -- then the attribute reference is an indexable object. Transform the
4958 -- attribute into an indexed component and analyze it.
4960 if Present (E1) then
4961 Rewrite (N,
4962 Make_Indexed_Component (Loc,
4963 Prefix =>
4964 Make_Attribute_Reference (Loc,
4965 Prefix => Relocate_Node (P),
4966 Attribute_Name => Name_Old),
4967 Expressions => Expressions (N)));
4968 Analyze (N);
4969 return;
4970 end if;
4972 Analyze_Attribute_Old_Result (Legal, Spec_Id);
4974 -- The aspect or pragma where attribute 'Old resides should be
4975 -- associated with a subprogram declaration or a body. If this is not
4976 -- the case, then the aspect or pragma is illegal. Return as analysis
4977 -- cannot be carried out.
4979 -- The exception to this rule is when generating C since in this case
4980 -- postconditions are inlined.
4982 if No (Spec_Id)
4983 and then Modify_Tree_For_C
4984 and then In_Inlined_Body
4985 then
4986 Spec_Id := Entity (P);
4988 elsif not Legal then
4989 return;
4990 end if;
4992 -- The prefix must be preanalyzed as the full analysis will take
4993 -- place during expansion.
4995 Preanalyze_And_Resolve (P);
4997 -- Ensure that the prefix does not contain attributes 'Old or 'Result
4999 Check_References_In_Prefix (Spec_Id);
5001 -- Set the type of the attribute now to prevent cascaded errors
5003 Pref_Typ := Etype (P);
5004 Set_Etype (N, Pref_Typ);
5006 -- Legality checks
5008 if Is_Limited_Type (Pref_Typ) then
5009 Error_Attr ("attribute % cannot apply to limited objects", P);
5010 end if;
5012 -- The prefix is a simple name
5014 if Is_Entity_Name (P) and then Present (Entity (P)) then
5015 Pref_Id := Entity (P);
5017 -- Emit a warning when the prefix is a constant. Note that the use
5018 -- of Error_Attr would reset the type of N to Any_Type even though
5019 -- this is a warning. Use Error_Msg_XXX instead.
5021 if Is_Constant_Object (Pref_Id) then
5022 Error_Msg_Name_1 := Name_Old;
5023 Error_Msg_N
5024 ("??attribute % applied to constant has no effect", P);
5025 end if;
5027 -- Otherwise the prefix is not a simple name
5029 else
5030 -- Ensure that the prefix of attribute 'Old is an entity when it
5031 -- is potentially unevaluated (6.1.1 (27/3)).
5033 if Is_Potentially_Unevaluated (N)
5034 and then not Statically_Denotes_Object (P)
5035 then
5036 Uneval_Old_Msg;
5038 -- Detect a possible infinite recursion when the prefix denotes
5039 -- the related function.
5041 -- function Func (...) return ...
5042 -- with Post => Func'Old ...;
5044 -- The function may be specified in qualified form X.Y where X is
5045 -- a protected object and Y is a protected function. In that case
5046 -- ensure that the qualified form has an entity.
5048 elsif Nkind (P) = N_Function_Call
5049 and then Nkind (Name (P)) in N_Has_Entity
5050 then
5051 Pref_Id := Entity (Name (P));
5053 if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
5054 and then Pref_Id = Spec_Id
5055 then
5056 Error_Msg_Warn := SPARK_Mode /= On;
5057 Error_Msg_N ("!possible infinite recursion<<", P);
5058 Error_Msg_N ("\!??Storage_Error ]<<", P);
5059 end if;
5060 end if;
5062 -- The prefix of attribute 'Old may refer to a component of a
5063 -- formal parameter. In this case its expansion may generate
5064 -- actual subtypes that are referenced in an inner context and
5065 -- that must be elaborated within the subprogram itself. If the
5066 -- prefix includes a function call, it may involve finalization
5067 -- actions that should be inserted when the attribute has been
5068 -- rewritten as a declaration. Create a declaration for the prefix
5069 -- and insert it at the start of the enclosing subprogram. This is
5070 -- an expansion activity that has to be performed now to prevent
5071 -- out-of-order issues.
5073 -- This expansion is both harmful and not needed in SPARK mode,
5074 -- since the formal verification back end relies on the types of
5075 -- nodes (hence is not robust w.r.t. a change to base type here),
5076 -- and does not suffer from the out-of-order issue described
5077 -- above. Thus, this expansion is skipped in SPARK mode.
5079 -- The expansion is not relevant for discrete types, which will
5080 -- not generate extra declarations, and where use of the base type
5081 -- may lead to spurious errors if context is a case.
5083 if not GNATprove_Mode then
5084 if not Is_Discrete_Type (Pref_Typ) then
5085 Pref_Typ := Base_Type (Pref_Typ);
5086 end if;
5088 Set_Etype (N, Pref_Typ);
5089 Set_Etype (P, Pref_Typ);
5091 Analyze_Dimension (N);
5092 Expand (N);
5093 end if;
5094 end if;
5095 end Old;
5097 ----------------------
5098 -- Overlaps_Storage --
5099 ----------------------
5101 when Attribute_Overlaps_Storage =>
5102 Check_E1;
5104 -- Both arguments must be objects of any type
5106 Analyze_And_Resolve (P);
5107 Analyze_And_Resolve (E1);
5108 Check_Object_Reference (P);
5109 Check_Object_Reference (E1);
5110 Set_Etype (N, Standard_Boolean);
5112 ------------
5113 -- Output --
5114 ------------
5116 when Attribute_Output =>
5117 Check_E2;
5118 Check_Stream_Attribute (TSS_Stream_Output);
5119 Set_Etype (N, Standard_Void_Type);
5120 Resolve (N, Standard_Void_Type);
5122 ------------------
5123 -- Partition_ID --
5124 ------------------
5126 when Attribute_Partition_ID =>
5127 Check_E0;
5129 if P_Type /= Any_Type then
5130 if not Is_Library_Level_Entity (Entity (P)) then
5131 Error_Attr_P
5132 ("prefix of % attribute must be library-level entity");
5134 -- The defining entity of prefix should not be declared inside a
5135 -- Pure unit. RM E.1(8). Is_Pure was set during declaration.
5137 elsif Is_Entity_Name (P)
5138 and then Is_Pure (Entity (P))
5139 then
5140 Error_Attr_P ("prefix of% attribute must not be declared pure");
5141 end if;
5142 end if;
5144 Set_Etype (N, Universal_Integer);
5146 -------------------------
5147 -- Passed_By_Reference --
5148 -------------------------
5150 when Attribute_Passed_By_Reference =>
5151 Check_E0;
5152 Check_Type;
5153 Set_Etype (N, Standard_Boolean);
5155 ------------------
5156 -- Pool_Address --
5157 ------------------
5159 when Attribute_Pool_Address =>
5160 Check_E0;
5161 Set_Etype (N, RTE (RE_Address));
5163 ---------
5164 -- Pos --
5165 ---------
5167 when Attribute_Pos =>
5168 Check_Discrete_Type;
5169 Check_E1;
5171 if Is_Boolean_Type (P_Type) then
5172 Error_Msg_Name_1 := Aname;
5173 Error_Msg_Name_2 := Chars (P_Type);
5174 Check_SPARK_05_Restriction
5175 ("attribute% is not allowed for type%", P);
5176 end if;
5178 Resolve (E1, P_Base_Type);
5179 Set_Etype (N, Universal_Integer);
5181 --------------
5182 -- Position --
5183 --------------
5185 when Attribute_Position =>
5186 Check_Component;
5187 Set_Etype (N, Universal_Integer);
5189 ----------
5190 -- Pred --
5191 ----------
5193 when Attribute_Pred =>
5194 Check_Scalar_Type;
5195 Check_E1;
5197 if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
5198 Error_Msg_Name_1 := Aname;
5199 Error_Msg_Name_2 := Chars (P_Type);
5200 Check_SPARK_05_Restriction
5201 ("attribute% is not allowed for type%", P);
5202 end if;
5204 Resolve (E1, P_Base_Type);
5205 Set_Etype (N, P_Base_Type);
5207 -- Since Pred works on the base type, we normally do no check for the
5208 -- floating-point case, since the base type is unconstrained. But we
5209 -- make an exception in Check_Float_Overflow mode.
5211 if Is_Floating_Point_Type (P_Type) then
5212 if not Range_Checks_Suppressed (P_Base_Type) then
5213 Set_Do_Range_Check (E1);
5214 end if;
5216 -- If not modular type, test for overflow check required
5218 else
5219 if not Is_Modular_Integer_Type (P_Type)
5220 and then not Range_Checks_Suppressed (P_Base_Type)
5221 then
5222 Enable_Range_Check (E1);
5223 end if;
5224 end if;
5226 --------------
5227 -- Priority --
5228 --------------
5230 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5232 when Attribute_Priority =>
5233 if Ada_Version < Ada_2005 then
5234 Error_Attr ("% attribute is allowed only in Ada 2005 mode", P);
5235 end if;
5237 Check_E0;
5239 Check_Restriction (No_Dynamic_Priorities, N);
5241 -- The prefix must be a protected object (AARM D.5.2 (2/2))
5243 Analyze (P);
5245 if Is_Protected_Type (Etype (P))
5246 or else (Is_Access_Type (Etype (P))
5247 and then Is_Protected_Type (Designated_Type (Etype (P))))
5248 then
5249 Resolve (P, Etype (P));
5250 else
5251 Error_Attr_P ("prefix of % attribute must be a protected object");
5252 end if;
5254 Set_Etype (N, Standard_Integer);
5256 -- Must be called from within a protected procedure or entry of the
5257 -- protected object.
5259 declare
5260 S : Entity_Id;
5262 begin
5263 S := Current_Scope;
5264 while S /= Etype (P)
5265 and then S /= Standard_Standard
5266 loop
5267 S := Scope (S);
5268 end loop;
5270 if S = Standard_Standard then
5271 Error_Attr ("the attribute % is only allowed inside protected "
5272 & "operations", P);
5273 end if;
5274 end;
5276 Validate_Non_Static_Attribute_Function_Call;
5278 -----------
5279 -- Range --
5280 -----------
5282 when Attribute_Range =>
5283 Check_Array_Or_Scalar_Type;
5284 Bad_Attribute_For_Predicate;
5286 if Ada_Version = Ada_83
5287 and then Is_Scalar_Type (P_Type)
5288 and then Comes_From_Source (N)
5289 then
5290 Error_Attr
5291 ("(Ada 83) % attribute not allowed for scalar type", P);
5292 end if;
5294 ------------
5295 -- Result --
5296 ------------
5298 when Attribute_Result => Result : declare
5299 function Denote_Same_Function
5300 (Pref_Id : Entity_Id;
5301 Spec_Id : Entity_Id) return Boolean;
5302 -- Determine whether the entity of the prefix Pref_Id denotes the
5303 -- same entity as that of the related subprogram Spec_Id.
5305 --------------------------
5306 -- Denote_Same_Function --
5307 --------------------------
5309 function Denote_Same_Function
5310 (Pref_Id : Entity_Id;
5311 Spec_Id : Entity_Id) return Boolean
5313 Over_Id : constant Entity_Id := Overridden_Operation (Spec_Id);
5314 Subp_Spec : constant Node_Id := Parent (Spec_Id);
5316 begin
5317 -- The prefix denotes the related subprogram
5319 if Pref_Id = Spec_Id then
5320 return True;
5322 -- Account for a special case when attribute 'Result appears in
5323 -- the postcondition of a generic function.
5325 -- generic
5326 -- function Gen_Func return ...
5327 -- with Post => Gen_Func'Result ...;
5329 -- When the generic function is instantiated, the Chars field of
5330 -- the instantiated prefix still denotes the name of the generic
5331 -- function. Note that any preemptive transformation is impossible
5332 -- without a proper analysis. The structure of the wrapper package
5333 -- is as follows:
5335 -- package Anon_Gen_Pack is
5336 -- <subtypes and renamings>
5337 -- function Subp_Decl return ...; -- (!)
5338 -- pragma Postcondition (Gen_Func'Result ...); -- (!)
5339 -- function Gen_Func ... renames Subp_Decl;
5340 -- end Anon_Gen_Pack;
5342 elsif Nkind (Subp_Spec) = N_Function_Specification
5343 and then Present (Generic_Parent (Subp_Spec))
5344 and then Ekind_In (Pref_Id, E_Generic_Function, E_Function)
5345 then
5346 if Generic_Parent (Subp_Spec) = Pref_Id then
5347 return True;
5349 elsif Present (Alias (Pref_Id))
5350 and then Alias (Pref_Id) = Spec_Id
5351 then
5352 return True;
5353 end if;
5355 -- Account for a special case where a primitive of a tagged type
5356 -- inherits a class-wide postcondition from a parent type. In this
5357 -- case the prefix of attribute 'Result denotes the overriding
5358 -- primitive.
5360 elsif Present (Over_Id) and then Pref_Id = Over_Id then
5361 return True;
5362 end if;
5364 -- Otherwise the prefix does not denote the related subprogram
5366 return False;
5367 end Denote_Same_Function;
5369 -- Local variables
5371 In_Inlined_C_Postcondition : constant Boolean :=
5372 Modify_Tree_For_C
5373 and then In_Inlined_Body;
5375 Legal : Boolean;
5376 Pref_Id : Entity_Id;
5377 Spec_Id : Entity_Id;
5379 -- Start of processing for Result
5381 begin
5382 -- The attribute reference is a primary. If any expressions follow,
5383 -- then the attribute reference is an indexable object. Transform the
5384 -- attribute into an indexed component and analyze it.
5386 if Present (E1) then
5387 Rewrite (N,
5388 Make_Indexed_Component (Loc,
5389 Prefix =>
5390 Make_Attribute_Reference (Loc,
5391 Prefix => Relocate_Node (P),
5392 Attribute_Name => Name_Result),
5393 Expressions => Expressions (N)));
5394 Analyze (N);
5395 return;
5396 end if;
5398 Analyze_Attribute_Old_Result (Legal, Spec_Id);
5400 -- The aspect or pragma where attribute 'Result resides should be
5401 -- associated with a subprogram declaration or a body. If this is not
5402 -- the case, then the aspect or pragma is illegal. Return as analysis
5403 -- cannot be carried out.
5405 -- The exception to this rule is when generating C since in this case
5406 -- postconditions are inlined.
5408 if No (Spec_Id) and then In_Inlined_C_Postcondition then
5409 Spec_Id := Entity (P);
5411 elsif not Legal then
5412 return;
5413 end if;
5415 -- Attribute 'Result is part of a _Postconditions procedure. There is
5416 -- no need to perform the semantic checks below as they were already
5417 -- verified when the attribute was analyzed in its original context.
5418 -- Instead, rewrite the attribute as a reference to formal parameter
5419 -- _Result of the _Postconditions procedure.
5421 if Chars (Spec_Id) = Name_uPostconditions
5422 or else
5423 (In_Inlined_C_Postcondition
5424 and then Nkind (Parent (Spec_Id)) = N_Block_Statement)
5425 then
5426 Rewrite (N, Make_Identifier (Loc, Name_uResult));
5428 -- The type of formal parameter _Result is that of the function
5429 -- encapsulating the _Postconditions procedure. Resolution must
5430 -- be carried out against the function return type.
5432 Analyze_And_Resolve (N, Etype (Scope (Spec_Id)));
5434 -- Otherwise attribute 'Result appears in its original context and
5435 -- all semantic checks should be carried out.
5437 else
5438 -- Verify the legality of the prefix. It must denotes the entity
5439 -- of the related [generic] function.
5441 if Is_Entity_Name (P) then
5442 Pref_Id := Entity (P);
5444 if Ekind_In (Pref_Id, E_Function, E_Generic_Function)
5445 and then Ekind (Spec_Id) = Ekind (Pref_Id)
5446 then
5447 if Denote_Same_Function (Pref_Id, Spec_Id) then
5449 -- Correct the prefix of the attribute when the context
5450 -- is a generic function.
5452 if Pref_Id /= Spec_Id then
5453 Rewrite (P, New_Occurrence_Of (Spec_Id, Loc));
5454 Analyze (P);
5455 end if;
5457 Set_Etype (N, Etype (Spec_Id));
5459 -- Otherwise the prefix denotes some unrelated function
5461 else
5462 Error_Msg_Name_2 := Chars (Spec_Id);
5463 Error_Attr
5464 ("incorrect prefix for attribute %, expected %", P);
5465 end if;
5467 -- Otherwise the prefix denotes some other form of subprogram
5468 -- entity.
5470 else
5471 Error_Attr
5472 ("attribute % can only appear in postcondition of "
5473 & "function", P);
5474 end if;
5476 -- Otherwise the prefix is illegal
5478 else
5479 Error_Msg_Name_2 := Chars (Spec_Id);
5480 Error_Attr ("incorrect prefix for attribute %, expected %", P);
5481 end if;
5482 end if;
5483 end Result;
5485 ------------------
5486 -- Range_Length --
5487 ------------------
5489 when Attribute_Range_Length =>
5490 Check_E0;
5491 Check_Discrete_Type;
5492 Set_Etype (N, Universal_Integer);
5494 ----------
5495 -- Read --
5496 ----------
5498 when Attribute_Read =>
5499 Check_E2;
5500 Check_Stream_Attribute (TSS_Stream_Read);
5501 Set_Etype (N, Standard_Void_Type);
5502 Resolve (N, Standard_Void_Type);
5503 Note_Possible_Modification (E2, Sure => True);
5505 ---------
5506 -- Ref --
5507 ---------
5509 when Attribute_Ref =>
5510 Check_E1;
5511 Analyze (P);
5513 if Nkind (P) /= N_Expanded_Name
5514 or else not Is_RTE (P_Type, RE_Address)
5515 then
5516 Error_Attr_P ("prefix of % attribute must be System.Address");
5517 end if;
5519 Analyze_And_Resolve (E1, Any_Integer);
5520 Set_Etype (N, RTE (RE_Address));
5522 ---------------
5523 -- Remainder --
5524 ---------------
5526 when Attribute_Remainder =>
5527 Check_Floating_Point_Type_2;
5528 Set_Etype (N, P_Base_Type);
5529 Resolve (E1, P_Base_Type);
5530 Resolve (E2, P_Base_Type);
5532 ---------------------
5533 -- Restriction_Set --
5534 ---------------------
5536 when Attribute_Restriction_Set => Restriction_Set : declare
5537 R : Restriction_Id;
5538 U : Node_Id;
5539 Unam : Unit_Name_Type;
5541 begin
5542 Check_E1;
5543 Analyze (P);
5544 Check_System_Prefix;
5546 -- No_Dependence case
5548 if Nkind (E1) = N_Parameter_Association then
5549 pragma Assert (Chars (Selector_Name (E1)) = Name_No_Dependence);
5550 U := Explicit_Actual_Parameter (E1);
5552 if not OK_No_Dependence_Unit_Name (U) then
5553 Set_Boolean_Result (N, False);
5554 Error_Attr;
5555 end if;
5557 -- See if there is an entry already in the table. That's the
5558 -- case in which we can return True.
5560 for J in No_Dependences.First .. No_Dependences.Last loop
5561 if Designate_Same_Unit (U, No_Dependences.Table (J).Unit)
5562 and then No_Dependences.Table (J).Warn = False
5563 then
5564 Set_Boolean_Result (N, True);
5565 return;
5566 end if;
5567 end loop;
5569 -- If not in the No_Dependence table, result is False
5571 Set_Boolean_Result (N, False);
5573 -- In this case, we must ensure that the binder will reject any
5574 -- other unit in the partition that sets No_Dependence for this
5575 -- unit. We do that by making an entry in the special table kept
5576 -- for this purpose (if the entry is not there already).
5578 Unam := Get_Spec_Name (Get_Unit_Name (U));
5580 for J in Restriction_Set_Dependences.First ..
5581 Restriction_Set_Dependences.Last
5582 loop
5583 if Restriction_Set_Dependences.Table (J) = Unam then
5584 return;
5585 end if;
5586 end loop;
5588 Restriction_Set_Dependences.Append (Unam);
5590 -- Normal restriction case
5592 else
5593 if Nkind (E1) /= N_Identifier then
5594 Set_Boolean_Result (N, False);
5595 Error_Attr ("attribute % requires restriction identifier", E1);
5597 else
5598 R := Get_Restriction_Id (Process_Restriction_Synonyms (E1));
5600 if R = Not_A_Restriction_Id then
5601 Set_Boolean_Result (N, False);
5602 Error_Msg_Node_1 := E1;
5603 Error_Attr ("invalid restriction identifier &", E1);
5605 elsif R not in Partition_Boolean_Restrictions then
5606 Set_Boolean_Result (N, False);
5607 Error_Msg_Node_1 := E1;
5608 Error_Attr
5609 ("& is not a boolean partition-wide restriction", E1);
5610 end if;
5612 if Restriction_Active (R) then
5613 Set_Boolean_Result (N, True);
5614 else
5615 Check_Restriction (R, N);
5616 Set_Boolean_Result (N, False);
5617 end if;
5618 end if;
5619 end if;
5620 end Restriction_Set;
5622 -----------
5623 -- Round --
5624 -----------
5626 when Attribute_Round =>
5627 Check_E1;
5628 Check_Decimal_Fixed_Point_Type;
5629 Set_Etype (N, P_Base_Type);
5631 -- Because the context is universal_real (3.5.10(12)) it is a
5632 -- legal context for a universal fixed expression. This is the
5633 -- only attribute whose functional description involves U_R.
5635 if Etype (E1) = Universal_Fixed then
5636 declare
5637 Conv : constant Node_Id := Make_Type_Conversion (Loc,
5638 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
5639 Expression => Relocate_Node (E1));
5641 begin
5642 Rewrite (E1, Conv);
5643 Analyze (E1);
5644 end;
5645 end if;
5647 Resolve (E1, Any_Real);
5649 --------------
5650 -- Rounding --
5651 --------------
5653 when Attribute_Rounding =>
5654 Check_Floating_Point_Type_1;
5655 Set_Etype (N, P_Base_Type);
5656 Resolve (E1, P_Base_Type);
5658 ---------------
5659 -- Safe_Emax --
5660 ---------------
5662 when Attribute_Safe_Emax =>
5663 Check_Floating_Point_Type_0;
5664 Set_Etype (N, Universal_Integer);
5666 ----------------
5667 -- Safe_First --
5668 ----------------
5670 when Attribute_Safe_First =>
5671 Check_Floating_Point_Type_0;
5672 Set_Etype (N, Universal_Real);
5674 ----------------
5675 -- Safe_Large --
5676 ----------------
5678 when Attribute_Safe_Large =>
5679 Check_E0;
5680 Check_Real_Type;
5681 Set_Etype (N, Universal_Real);
5683 ---------------
5684 -- Safe_Last --
5685 ---------------
5687 when Attribute_Safe_Last =>
5688 Check_Floating_Point_Type_0;
5689 Set_Etype (N, Universal_Real);
5691 ----------------
5692 -- Safe_Small --
5693 ----------------
5695 when Attribute_Safe_Small =>
5696 Check_E0;
5697 Check_Real_Type;
5698 Set_Etype (N, Universal_Real);
5700 --------------------------
5701 -- Scalar_Storage_Order --
5702 --------------------------
5704 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5705 Ent : Entity_Id := Empty;
5707 begin
5708 Check_E0;
5709 Check_Type;
5711 if not (Is_Record_Type (P_Type) or else Is_Array_Type (P_Type)) then
5713 -- The attribute applies to generic private types (in which case
5714 -- the legality rule is applied in the instance) as well as to
5715 -- composite types. For noncomposite types it always returns the
5716 -- default bit order for the target.
5717 -- Allowing formal private types was originally introduced in
5718 -- GNAT_Mode only, to compile instances of Sequential_IO, but
5719 -- users find it more generally useful in generic units.
5721 if not (Is_Generic_Type (P_Type) and then Is_Private_Type (P_Type))
5722 and then not In_Instance
5723 then
5724 Error_Attr_P
5725 ("prefix of % attribute must be record or array type");
5727 elsif not Is_Generic_Type (P_Type) then
5728 if Bytes_Big_Endian then
5729 Ent := RTE (RE_High_Order_First);
5730 else
5731 Ent := RTE (RE_Low_Order_First);
5732 end if;
5733 end if;
5735 elsif Bytes_Big_Endian xor Reverse_Storage_Order (P_Type) then
5736 Ent := RTE (RE_High_Order_First);
5738 else
5739 Ent := RTE (RE_Low_Order_First);
5740 end if;
5742 if Present (Ent) then
5743 Rewrite (N, New_Occurrence_Of (Ent, Loc));
5744 end if;
5746 Set_Etype (N, RTE (RE_Bit_Order));
5747 Resolve (N);
5749 -- Reset incorrect indication of staticness
5751 Set_Is_Static_Expression (N, False);
5752 end Scalar_Storage_Order;
5754 -----------
5755 -- Scale --
5756 -----------
5758 when Attribute_Scale =>
5759 Check_E0;
5760 Check_Decimal_Fixed_Point_Type;
5761 Set_Etype (N, Universal_Integer);
5763 -------------
5764 -- Scaling --
5765 -------------
5767 when Attribute_Scaling =>
5768 Check_Floating_Point_Type_2;
5769 Set_Etype (N, P_Base_Type);
5770 Resolve (E1, P_Base_Type);
5772 ------------------
5773 -- Signed_Zeros --
5774 ------------------
5776 when Attribute_Signed_Zeros =>
5777 Check_Floating_Point_Type_0;
5778 Set_Etype (N, Standard_Boolean);
5780 ----------
5781 -- Size --
5782 ----------
5784 when Attribute_Size
5785 | Attribute_VADS_Size
5787 Check_E0;
5789 -- If prefix is parameterless function call, rewrite and resolve
5790 -- as such.
5792 if Is_Entity_Name (P)
5793 and then Ekind (Entity (P)) = E_Function
5794 then
5795 Resolve (P);
5797 -- Similar processing for a protected function call
5799 elsif Nkind (P) = N_Selected_Component
5800 and then Ekind (Entity (Selector_Name (P))) = E_Function
5801 then
5802 Resolve (P);
5803 end if;
5805 if Is_Object_Reference (P) then
5806 Check_Object_Reference (P);
5808 elsif Is_Entity_Name (P)
5809 and then (Is_Type (Entity (P))
5810 or else Ekind (Entity (P)) = E_Enumeration_Literal)
5811 then
5812 null;
5814 elsif Nkind (P) = N_Type_Conversion
5815 and then not Comes_From_Source (P)
5816 then
5817 null;
5819 -- Some other compilers allow dubious use of X'???'Size
5821 elsif Relaxed_RM_Semantics
5822 and then Nkind (P) = N_Attribute_Reference
5823 then
5824 null;
5826 else
5827 Error_Attr_P ("invalid prefix for % attribute");
5828 end if;
5830 Check_Not_Incomplete_Type;
5831 Check_Not_CPP_Type;
5832 Set_Etype (N, Universal_Integer);
5834 -- If we are processing pragmas Compile_Time_Warning and Compile_
5835 -- Time_Errors after the back end has been called and this occurrence
5836 -- of 'Size is known at compile time then it is safe to perform this
5837 -- evaluation. Needed to perform the static evaluation of the full
5838 -- boolean expression of these pragmas.
5840 if In_Compile_Time_Warning_Or_Error
5841 and then Is_Entity_Name (P)
5842 and then (Is_Type (Entity (P))
5843 or else Ekind (Entity (P)) = E_Enumeration_Literal)
5844 and then Size_Known_At_Compile_Time (Entity (P))
5845 then
5846 Rewrite (N, Make_Integer_Literal (Sloc (N), Esize (Entity (P))));
5847 Analyze (N);
5848 end if;
5850 -----------
5851 -- Small --
5852 -----------
5854 when Attribute_Small =>
5855 Check_E0;
5856 Check_Real_Type;
5857 Set_Etype (N, Universal_Real);
5859 ------------------
5860 -- Storage_Pool --
5861 ------------------
5863 when Attribute_Storage_Pool
5864 | Attribute_Simple_Storage_Pool
5866 Check_E0;
5868 if Is_Access_Type (P_Type) then
5869 if Ekind (P_Type) = E_Access_Subprogram_Type then
5870 Error_Attr_P
5871 ("cannot use % attribute for access-to-subprogram type");
5872 end if;
5874 -- Set appropriate entity
5876 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
5877 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
5878 else
5879 Set_Entity (N, RTE (RE_Global_Pool_Object));
5880 end if;
5882 if Attr_Id = Attribute_Storage_Pool then
5883 if Present (Get_Rep_Pragma (Etype (Entity (N)),
5884 Name_Simple_Storage_Pool_Type))
5885 then
5886 Error_Msg_Name_1 := Aname;
5887 Error_Msg_Warn := SPARK_Mode /= On;
5888 Error_Msg_N
5889 ("cannot use % attribute for type with simple storage "
5890 & "pool<<", N);
5891 Error_Msg_N ("\Program_Error [<<", N);
5893 Rewrite
5894 (N, Make_Raise_Program_Error
5895 (Sloc (N), Reason => PE_Explicit_Raise));
5896 end if;
5898 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5900 -- In the Simple_Storage_Pool case, verify that the pool entity is
5901 -- actually of a simple storage pool type, and set the attribute's
5902 -- type to the pool object's type.
5904 else
5905 if not Present (Get_Rep_Pragma (Etype (Entity (N)),
5906 Name_Simple_Storage_Pool_Type))
5907 then
5908 Error_Attr_P
5909 ("cannot use % attribute for type without simple " &
5910 "storage pool");
5911 end if;
5913 Set_Etype (N, Etype (Entity (N)));
5914 end if;
5916 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5917 -- Storage_Pool since this attribute is not defined for such
5918 -- types (RM E.2.3(22)).
5920 Validate_Remote_Access_To_Class_Wide_Type (N);
5922 else
5923 Error_Attr_P ("prefix of % attribute must be access type");
5924 end if;
5926 ------------------
5927 -- Storage_Size --
5928 ------------------
5930 when Attribute_Storage_Size =>
5931 Check_E0;
5933 if Is_Task_Type (P_Type) then
5934 Set_Etype (N, Universal_Integer);
5936 -- Use with tasks is an obsolescent feature
5938 Check_Restriction (No_Obsolescent_Features, P);
5940 elsif Is_Access_Type (P_Type) then
5941 if Ekind (P_Type) = E_Access_Subprogram_Type then
5942 Error_Attr_P
5943 ("cannot use % attribute for access-to-subprogram type");
5944 end if;
5946 if Is_Entity_Name (P)
5947 and then Is_Type (Entity (P))
5948 then
5949 Check_Type;
5950 Set_Etype (N, Universal_Integer);
5952 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5953 -- Storage_Size since this attribute is not defined for
5954 -- such types (RM E.2.3(22)).
5956 Validate_Remote_Access_To_Class_Wide_Type (N);
5958 -- The prefix is allowed to be an implicit dereference of an
5959 -- access value designating a task.
5961 else
5962 Check_Task_Prefix;
5963 Set_Etype (N, Universal_Integer);
5964 end if;
5966 else
5967 Error_Attr_P ("prefix of % attribute must be access or task type");
5968 end if;
5970 ------------------
5971 -- Storage_Unit --
5972 ------------------
5974 when Attribute_Storage_Unit =>
5975 Standard_Attribute (Ttypes.System_Storage_Unit);
5977 -----------------
5978 -- Stream_Size --
5979 -----------------
5981 when Attribute_Stream_Size =>
5982 Check_E0;
5983 Check_Type;
5985 if Is_Entity_Name (P)
5986 and then Is_Elementary_Type (Entity (P))
5987 then
5988 Set_Etype (N, Universal_Integer);
5989 else
5990 Error_Attr_P ("invalid prefix for % attribute");
5991 end if;
5993 ---------------
5994 -- Stub_Type --
5995 ---------------
5997 when Attribute_Stub_Type =>
5998 Check_Type;
5999 Check_E0;
6001 if Is_Remote_Access_To_Class_Wide_Type (Base_Type (P_Type)) then
6003 -- For a real RACW [sub]type, use corresponding stub type
6005 if not Is_Generic_Type (P_Type) then
6006 Rewrite (N,
6007 New_Occurrence_Of
6008 (Corresponding_Stub_Type (Base_Type (P_Type)), Loc));
6010 -- For a generic type (that has been marked as an RACW using the
6011 -- Remote_Access_Type aspect or pragma), use a generic RACW stub
6012 -- type. Note that if the actual is not a remote access type, the
6013 -- instantiation will fail.
6015 else
6016 -- Note: we go to the underlying type here because the view
6017 -- returned by RTE (RE_RACW_Stub_Type) might be incomplete.
6019 Rewrite (N,
6020 New_Occurrence_Of
6021 (Underlying_Type (RTE (RE_RACW_Stub_Type)), Loc));
6022 end if;
6024 else
6025 Error_Attr_P
6026 ("prefix of% attribute must be remote access-to-class-wide");
6027 end if;
6029 ----------
6030 -- Succ --
6031 ----------
6033 when Attribute_Succ =>
6034 Check_Scalar_Type;
6035 Check_E1;
6037 if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
6038 Error_Msg_Name_1 := Aname;
6039 Error_Msg_Name_2 := Chars (P_Type);
6040 Check_SPARK_05_Restriction
6041 ("attribute% is not allowed for type%", P);
6042 end if;
6044 Resolve (E1, P_Base_Type);
6045 Set_Etype (N, P_Base_Type);
6047 -- Since Pred works on the base type, we normally do no check for the
6048 -- floating-point case, since the base type is unconstrained. But we
6049 -- make an exception in Check_Float_Overflow mode.
6051 if Is_Floating_Point_Type (P_Type) then
6052 if not Range_Checks_Suppressed (P_Base_Type) then
6053 Set_Do_Range_Check (E1);
6054 end if;
6056 -- If not modular type, test for overflow check required
6058 else
6059 if not Is_Modular_Integer_Type (P_Type)
6060 and then not Range_Checks_Suppressed (P_Base_Type)
6061 then
6062 Enable_Range_Check (E1);
6063 end if;
6064 end if;
6066 --------------------------------
6067 -- System_Allocator_Alignment --
6068 --------------------------------
6070 when Attribute_System_Allocator_Alignment =>
6071 Standard_Attribute (Ttypes.System_Allocator_Alignment);
6073 ---------
6074 -- Tag --
6075 ---------
6077 when Attribute_Tag =>
6078 Check_E0;
6079 Check_Dereference;
6081 if not Is_Tagged_Type (P_Type) then
6082 Error_Attr_P ("prefix of % attribute must be tagged");
6084 -- Next test does not apply to generated code why not, and what does
6085 -- the illegal reference mean???
6087 elsif Is_Object_Reference (P)
6088 and then not Is_Class_Wide_Type (P_Type)
6089 and then Comes_From_Source (N)
6090 then
6091 Error_Attr_P
6092 ("% attribute can only be applied to objects " &
6093 "of class - wide type");
6094 end if;
6096 -- The prefix cannot be an incomplete type. However, references to
6097 -- 'Tag can be generated when expanding interface conversions, and
6098 -- this is legal.
6100 if Comes_From_Source (N) then
6101 Check_Not_Incomplete_Type;
6102 end if;
6104 -- Set appropriate type
6106 Set_Etype (N, RTE (RE_Tag));
6108 -----------------
6109 -- Target_Name --
6110 -----------------
6112 when Attribute_Target_Name => Target_Name : declare
6113 TN : constant String := Sdefault.Target_Name.all;
6114 TL : Natural;
6116 begin
6117 Check_Standard_Prefix;
6119 TL := TN'Last;
6121 if TN (TL) = '/' or else TN (TL) = '\' then
6122 TL := TL - 1;
6123 end if;
6125 Rewrite (N,
6126 Make_String_Literal (Loc,
6127 Strval => TN (TN'First .. TL)));
6128 Analyze_And_Resolve (N, Standard_String);
6129 Set_Is_Static_Expression (N, True);
6130 end Target_Name;
6132 ----------------
6133 -- Terminated --
6134 ----------------
6136 when Attribute_Terminated =>
6137 Check_E0;
6138 Set_Etype (N, Standard_Boolean);
6139 Check_Task_Prefix;
6141 ----------------
6142 -- To_Address --
6143 ----------------
6145 when Attribute_To_Address => To_Address : declare
6146 Val : Uint;
6147 begin
6148 Check_E1;
6149 Analyze (P);
6150 Check_System_Prefix;
6152 Generate_Reference (RTE (RE_Address), P);
6153 Analyze_And_Resolve (E1, Any_Integer);
6154 Set_Etype (N, RTE (RE_Address));
6155 Set_Is_Static_Expression (N, Is_Static_Expression (E1));
6157 -- OK static expression case, check range and set appropriate type
6159 if Is_OK_Static_Expression (E1) then
6160 Val := Expr_Value (E1);
6162 if Val < -(2 ** UI_From_Int (Standard'Address_Size - 1))
6163 or else
6164 Val > 2 ** UI_From_Int (Standard'Address_Size) - 1
6165 then
6166 Error_Attr ("address value out of range for % attribute", E1);
6167 end if;
6169 -- In most cases the expression is a numeric literal or some other
6170 -- address expression, but if it is a declared constant it may be
6171 -- of a compatible type that must be left on the node.
6173 if Is_Entity_Name (E1) then
6174 null;
6176 -- Set type to universal integer if negative
6178 elsif Val < 0 then
6179 Set_Etype (E1, Universal_Integer);
6181 -- Otherwise set type to Unsigned_64 to accommodate max values
6183 else
6184 Set_Etype (E1, Standard_Unsigned_64);
6185 end if;
6186 end if;
6187 end To_Address;
6189 ------------
6190 -- To_Any --
6191 ------------
6193 when Attribute_To_Any =>
6194 Check_E1;
6195 Check_PolyORB_Attribute;
6196 Set_Etype (N, RTE (RE_Any));
6198 ----------------
6199 -- Truncation --
6200 ----------------
6202 when Attribute_Truncation =>
6203 Check_Floating_Point_Type_1;
6204 Resolve (E1, P_Base_Type);
6205 Set_Etype (N, P_Base_Type);
6207 ----------------
6208 -- Type_Class --
6209 ----------------
6211 when Attribute_Type_Class =>
6212 Check_E0;
6213 Check_Type;
6214 Check_Not_Incomplete_Type;
6215 Set_Etype (N, RTE (RE_Type_Class));
6217 --------------
6218 -- TypeCode --
6219 --------------
6221 when Attribute_TypeCode =>
6222 Check_E0;
6223 Check_PolyORB_Attribute;
6224 Set_Etype (N, RTE (RE_TypeCode));
6226 --------------
6227 -- Type_Key --
6228 --------------
6230 when Attribute_Type_Key => Type_Key : declare
6231 Full_Name : constant String_Id :=
6232 Fully_Qualified_Name_String (Entity (P));
6234 CRC : CRC32;
6235 -- The computed signature for the type
6237 Deref : Boolean;
6238 -- To simplify the handling of mutually recursive types, follow a
6239 -- single dereference link in a composite type.
6241 procedure Compute_Type_Key (T : Entity_Id);
6242 -- Create a CRC integer from the declaration of the type. For a
6243 -- composite type, fold in the representation of its components in
6244 -- recursive fashion. We use directly the source representation of
6245 -- the types involved.
6247 ----------------------
6248 -- Compute_Type_Key --
6249 ----------------------
6251 procedure Compute_Type_Key (T : Entity_Id) is
6252 Buffer : Source_Buffer_Ptr;
6253 P_Max : Source_Ptr;
6254 P_Min : Source_Ptr;
6255 Rep : Node_Id;
6256 SFI : Source_File_Index;
6258 procedure Process_One_Declaration;
6259 -- Update CRC with the characters of one type declaration, or a
6260 -- representation pragma that applies to the type.
6262 -----------------------------
6263 -- Process_One_Declaration --
6264 -----------------------------
6266 procedure Process_One_Declaration is
6267 begin
6268 -- Scan type declaration, skipping blanks
6270 for Ptr in P_Min .. P_Max loop
6271 if Buffer (Ptr) /= ' ' then
6272 System.CRC32.Update (CRC, Buffer (Ptr));
6273 end if;
6274 end loop;
6275 end Process_One_Declaration;
6277 -- Start of processing for Compute_Type_Key
6279 begin
6280 if Is_Itype (T) then
6281 return;
6282 end if;
6284 -- If the type is declared in Standard, there is no source, so
6285 -- just use its name.
6287 if Scope (T) = Standard_Standard then
6288 declare
6289 Name : constant String := Get_Name_String (Chars (T));
6290 begin
6291 for J in Name'Range loop
6292 System.CRC32.Update (CRC, Name (J));
6293 end loop;
6294 end;
6296 return;
6297 end if;
6299 Sloc_Range (Enclosing_Declaration (T), P_Min, P_Max);
6300 SFI := Get_Source_File_Index (P_Min);
6301 pragma Assert (SFI = Get_Source_File_Index (P_Max));
6302 Buffer := Source_Text (SFI);
6304 Process_One_Declaration;
6306 -- Recurse on relevant component types
6308 if Is_Array_Type (T) then
6309 Compute_Type_Key (Component_Type (T));
6311 elsif Is_Access_Type (T) then
6312 if not Deref then
6313 Deref := True;
6314 Compute_Type_Key (Designated_Type (T));
6315 end if;
6317 elsif Is_Derived_Type (T) then
6318 Compute_Type_Key (Etype (T));
6320 elsif Is_Record_Type (T) then
6321 declare
6322 Comp : Entity_Id;
6323 begin
6324 Comp := First_Component (T);
6325 while Present (Comp) loop
6326 Compute_Type_Key (Etype (Comp));
6327 Next_Component (Comp);
6328 end loop;
6329 end;
6330 end if;
6332 if Is_First_Subtype (T) then
6334 -- Fold in representation aspects for the type, which appear in
6335 -- the same source buffer. If the representation aspects are in
6336 -- a different source file, then skip them; they apply to some
6337 -- other type, perhaps one we're derived from.
6339 Rep := First_Rep_Item (T);
6341 while Present (Rep) loop
6342 if Comes_From_Source (Rep) then
6343 Sloc_Range (Rep, P_Min, P_Max);
6345 if SFI = Get_Source_File_Index (P_Min) then
6346 pragma Assert (SFI = Get_Source_File_Index (P_Max));
6347 Process_One_Declaration;
6348 end if;
6349 end if;
6351 Rep := Next_Rep_Item (Rep);
6352 end loop;
6353 end if;
6354 end Compute_Type_Key;
6356 -- Start of processing for Type_Key
6358 begin
6359 Check_E0;
6360 Check_Type;
6362 Start_String;
6363 Deref := False;
6365 -- Copy all characters in Full_Name but the trailing NUL
6367 for J in 1 .. String_Length (Full_Name) - 1 loop
6368 Store_String_Char (Get_String_Char (Full_Name, Pos (J)));
6369 end loop;
6371 -- Compute CRC and convert it to string one character at a time, so
6372 -- as not to use Image within the compiler.
6374 Initialize (CRC);
6375 Compute_Type_Key (Entity (P));
6377 if not Is_Frozen (Entity (P)) then
6378 Error_Msg_N ("premature usage of Type_Key?", N);
6379 end if;
6381 while CRC > 0 loop
6382 Store_String_Char (Character'Val (48 + (CRC rem 10)));
6383 CRC := CRC / 10;
6384 end loop;
6386 Rewrite (N, Make_String_Literal (Loc, End_String));
6387 Analyze_And_Resolve (N, Standard_String);
6388 end Type_Key;
6390 -----------------------
6391 -- Unbiased_Rounding --
6392 -----------------------
6394 when Attribute_Unbiased_Rounding =>
6395 Check_Floating_Point_Type_1;
6396 Set_Etype (N, P_Base_Type);
6397 Resolve (E1, P_Base_Type);
6399 ----------------------
6400 -- Unchecked_Access --
6401 ----------------------
6403 when Attribute_Unchecked_Access =>
6404 if Comes_From_Source (N) then
6405 Check_Restriction (No_Unchecked_Access, N);
6406 end if;
6408 Analyze_Access_Attribute;
6409 Check_Not_Incomplete_Type;
6411 -------------------------
6412 -- Unconstrained_Array --
6413 -------------------------
6415 when Attribute_Unconstrained_Array =>
6416 Check_E0;
6417 Check_Type;
6418 Check_Not_Incomplete_Type;
6419 Set_Etype (N, Standard_Boolean);
6420 Set_Is_Static_Expression (N, True);
6422 ------------------------------
6423 -- Universal_Literal_String --
6424 ------------------------------
6426 -- This is a GNAT specific attribute whose prefix must be a named
6427 -- number where the expression is either a single numeric literal,
6428 -- or a numeric literal immediately preceded by a minus sign. The
6429 -- result is equivalent to a string literal containing the text of
6430 -- the literal as it appeared in the source program with a possible
6431 -- leading minus sign.
6433 when Attribute_Universal_Literal_String =>
6434 Check_E0;
6436 if not Is_Entity_Name (P)
6437 or else Ekind (Entity (P)) not in Named_Kind
6438 then
6439 Error_Attr_P ("prefix for % attribute must be named number");
6441 else
6442 declare
6443 Expr : Node_Id;
6444 Negative : Boolean;
6445 S : Source_Ptr;
6446 Src : Source_Buffer_Ptr;
6448 begin
6449 Expr := Original_Node (Expression (Parent (Entity (P))));
6451 if Nkind (Expr) = N_Op_Minus then
6452 Negative := True;
6453 Expr := Original_Node (Right_Opnd (Expr));
6454 else
6455 Negative := False;
6456 end if;
6458 if not Nkind_In (Expr, N_Integer_Literal, N_Real_Literal) then
6459 Error_Attr
6460 ("named number for % attribute must be simple literal", N);
6461 end if;
6463 -- Build string literal corresponding to source literal text
6465 Start_String;
6467 if Negative then
6468 Store_String_Char (Get_Char_Code ('-'));
6469 end if;
6471 S := Sloc (Expr);
6472 Src := Source_Text (Get_Source_File_Index (S));
6474 while Src (S) /= ';' and then Src (S) /= ' ' loop
6475 Store_String_Char (Get_Char_Code (Src (S)));
6476 S := S + 1;
6477 end loop;
6479 -- Now we rewrite the attribute with the string literal
6481 Rewrite (N,
6482 Make_String_Literal (Loc, End_String));
6483 Analyze (N);
6484 Set_Is_Static_Expression (N, True);
6485 end;
6486 end if;
6488 -------------------------
6489 -- Unrestricted_Access --
6490 -------------------------
6492 -- This is a GNAT specific attribute which is like Access except that
6493 -- all scope checks and checks for aliased views are omitted. It is
6494 -- documented as being equivalent to the use of the Address attribute
6495 -- followed by an unchecked conversion to the target access type.
6497 when Attribute_Unrestricted_Access =>
6499 -- If from source, deal with relevant restrictions
6501 if Comes_From_Source (N) then
6502 Check_Restriction (No_Unchecked_Access, N);
6504 if Nkind (P) in N_Has_Entity
6505 and then Present (Entity (P))
6506 and then Is_Object (Entity (P))
6507 then
6508 Check_Restriction (No_Implicit_Aliasing, N);
6509 end if;
6510 end if;
6512 if Is_Entity_Name (P) then
6513 Set_Address_Taken (Entity (P));
6514 end if;
6516 -- It might seem reasonable to call Address_Checks here to apply the
6517 -- same set of semantic checks that we enforce for 'Address (after
6518 -- all we document Unrestricted_Access as being equivalent to the
6519 -- use of Address followed by an Unchecked_Conversion). However, if
6520 -- we do enable these checks, we get multiple failures in both the
6521 -- compiler run-time and in our regression test suite, so we leave
6522 -- out these checks for now. To be investigated further some time???
6524 -- Address_Checks;
6526 -- Now complete analysis using common access processing
6528 Analyze_Access_Attribute;
6530 ------------
6531 -- Update --
6532 ------------
6534 when Attribute_Update => Update : declare
6535 Common_Typ : Entity_Id;
6536 -- The common type of a multiple component update for a record
6538 Comps : Elist_Id := No_Elist;
6539 -- A list used in the resolution of a record update. It contains the
6540 -- entities of all record components processed so far.
6542 procedure Analyze_Array_Component_Update (Assoc : Node_Id);
6543 -- Analyze and resolve array_component_association Assoc against the
6544 -- index of array type P_Type.
6546 procedure Analyze_Record_Component_Update (Comp : Node_Id);
6547 -- Analyze and resolve record_component_association Comp against
6548 -- record type P_Type.
6550 ------------------------------------
6551 -- Analyze_Array_Component_Update --
6552 ------------------------------------
6554 procedure Analyze_Array_Component_Update (Assoc : Node_Id) is
6555 Expr : Node_Id;
6556 High : Node_Id;
6557 Index : Node_Id;
6558 Index_Typ : Entity_Id;
6559 Low : Node_Id;
6561 begin
6562 -- The current association contains a sequence of indexes denoting
6563 -- an element of a multidimensional array:
6565 -- (Index_1, ..., Index_N)
6567 -- Examine each individual index and resolve it against the proper
6568 -- index type of the array.
6570 if Nkind (First (Choices (Assoc))) = N_Aggregate then
6571 Expr := First (Choices (Assoc));
6572 while Present (Expr) loop
6574 -- The use of others is illegal (SPARK RM 4.4.1(12))
6576 if Nkind (Expr) = N_Others_Choice then
6577 Error_Attr
6578 ("others choice not allowed in attribute %", Expr);
6580 -- Otherwise analyze and resolve all indexes
6582 else
6583 Index := First (Expressions (Expr));
6584 Index_Typ := First_Index (P_Type);
6585 while Present (Index) and then Present (Index_Typ) loop
6586 Analyze_And_Resolve (Index, Etype (Index_Typ));
6587 Next (Index);
6588 Next_Index (Index_Typ);
6589 end loop;
6591 -- Detect a case where the association either lacks an
6592 -- index or contains an extra index.
6594 if Present (Index) or else Present (Index_Typ) then
6595 Error_Msg_N
6596 ("dimension mismatch in index list", Assoc);
6597 end if;
6598 end if;
6600 Next (Expr);
6601 end loop;
6603 -- The current association denotes either a single component or a
6604 -- range of components of a one dimensional array:
6606 -- 1, 2 .. 5
6608 -- Resolve the index or its high and low bounds (if range) against
6609 -- the proper index type of the array.
6611 else
6612 Index := First (Choices (Assoc));
6613 Index_Typ := First_Index (P_Type);
6615 if Present (Next_Index (Index_Typ)) then
6616 Error_Msg_N ("too few subscripts in array reference", Assoc);
6617 end if;
6619 while Present (Index) loop
6621 -- The use of others is illegal (SPARK RM 4.4.1(12))
6623 if Nkind (Index) = N_Others_Choice then
6624 Error_Attr
6625 ("others choice not allowed in attribute %", Index);
6627 -- The index denotes a range of elements
6629 elsif Nkind (Index) = N_Range then
6630 Low := Low_Bound (Index);
6631 High := High_Bound (Index);
6633 Analyze_And_Resolve (Low, Etype (Index_Typ));
6634 Analyze_And_Resolve (High, Etype (Index_Typ));
6636 -- Add a range check to ensure that the bounds of the
6637 -- range are within the index type when this cannot be
6638 -- determined statically.
6640 if not Is_OK_Static_Expression (Low) then
6641 Set_Do_Range_Check (Low);
6642 end if;
6644 if not Is_OK_Static_Expression (High) then
6645 Set_Do_Range_Check (High);
6646 end if;
6648 -- Otherwise the index denotes a single element
6650 else
6651 Analyze_And_Resolve (Index, Etype (Index_Typ));
6653 -- Add a range check to ensure that the index is within
6654 -- the index type when it is not possible to determine
6655 -- this statically.
6657 if not Is_OK_Static_Expression (Index) then
6658 Set_Do_Range_Check (Index);
6659 end if;
6660 end if;
6662 Next (Index);
6663 end loop;
6664 end if;
6665 end Analyze_Array_Component_Update;
6667 -------------------------------------
6668 -- Analyze_Record_Component_Update --
6669 -------------------------------------
6671 procedure Analyze_Record_Component_Update (Comp : Node_Id) is
6672 Comp_Name : constant Name_Id := Chars (Comp);
6673 Base_Typ : Entity_Id;
6674 Comp_Or_Discr : Entity_Id;
6676 begin
6677 -- Find the discriminant or component whose name corresponds to
6678 -- Comp. A simple character comparison is sufficient because all
6679 -- visible names within a record type are unique.
6681 Comp_Or_Discr := First_Entity (P_Type);
6682 while Present (Comp_Or_Discr) loop
6683 if Chars (Comp_Or_Discr) = Comp_Name then
6685 -- Decorate the component reference by setting its entity
6686 -- and type for resolution purposes.
6688 Set_Entity (Comp, Comp_Or_Discr);
6689 Set_Etype (Comp, Etype (Comp_Or_Discr));
6690 exit;
6691 end if;
6693 Comp_Or_Discr := Next_Entity (Comp_Or_Discr);
6694 end loop;
6696 -- Diagnose an illegal reference
6698 if Present (Comp_Or_Discr) then
6699 if Ekind (Comp_Or_Discr) = E_Discriminant then
6700 Error_Attr
6701 ("attribute % may not modify record discriminants", Comp);
6703 else pragma Assert (Ekind (Comp_Or_Discr) = E_Component);
6704 if Contains (Comps, Comp_Or_Discr) then
6705 Error_Msg_N ("component & already updated", Comp);
6707 -- Mark this component as processed
6709 else
6710 Append_New_Elmt (Comp_Or_Discr, Comps);
6711 end if;
6712 end if;
6714 -- The update aggregate mentions an entity that does not belong to
6715 -- the record type.
6717 else
6718 Error_Msg_N ("& is not a component of aggregate subtype", Comp);
6719 end if;
6721 -- Verify the consistency of types when the current component is
6722 -- part of a miltiple component update.
6724 -- Comp_1, ..., Comp_N => <value>
6726 if Present (Etype (Comp)) then
6727 Base_Typ := Base_Type (Etype (Comp));
6729 -- Save the type of the first component reference as the
6730 -- remaning references (if any) must resolve to this type.
6732 if No (Common_Typ) then
6733 Common_Typ := Base_Typ;
6735 elsif Base_Typ /= Common_Typ then
6736 Error_Msg_N
6737 ("components in choice list must have same type", Comp);
6738 end if;
6739 end if;
6740 end Analyze_Record_Component_Update;
6742 -- Local variables
6744 Assoc : Node_Id;
6745 Comp : Node_Id;
6747 -- Start of processing for Update
6749 begin
6750 Check_E1;
6752 if not Is_Object_Reference (P) then
6753 Error_Attr_P ("prefix of attribute % must denote an object");
6755 elsif not Is_Array_Type (P_Type)
6756 and then not Is_Record_Type (P_Type)
6757 then
6758 Error_Attr_P ("prefix of attribute % must be a record or array");
6760 elsif Is_Limited_View (P_Type) then
6761 Error_Attr ("prefix of attribute % cannot be limited", N);
6763 elsif Nkind (E1) /= N_Aggregate then
6764 Error_Attr ("attribute % requires component association list", N);
6765 end if;
6767 -- Inspect the update aggregate, looking at all the associations and
6768 -- choices. Perform the following checks:
6770 -- 1) Legality of "others" in all cases
6771 -- 2) Legality of <>
6772 -- 3) Component legality for arrays
6773 -- 4) Component legality for records
6775 -- The remaining checks are performed on the expanded attribute
6777 Assoc := First (Component_Associations (E1));
6778 while Present (Assoc) loop
6780 -- The use of <> is illegal (SPARK RM 4.4.1(1))
6782 if Box_Present (Assoc) then
6783 Error_Attr
6784 ("default initialization not allowed in attribute %", Assoc);
6786 -- Otherwise process the association
6788 else
6789 Analyze (Expression (Assoc));
6791 if Is_Array_Type (P_Type) then
6792 Analyze_Array_Component_Update (Assoc);
6794 elsif Is_Record_Type (P_Type) then
6796 -- Reset the common type used in a multiple component update
6797 -- as we are processing the contents of a new association.
6799 Common_Typ := Empty;
6801 Comp := First (Choices (Assoc));
6802 while Present (Comp) loop
6803 if Nkind (Comp) = N_Identifier then
6804 Analyze_Record_Component_Update (Comp);
6806 -- The use of others is illegal (SPARK RM 4.4.1(5))
6808 elsif Nkind (Comp) = N_Others_Choice then
6809 Error_Attr
6810 ("others choice not allowed in attribute %", Comp);
6812 -- The name of a record component cannot appear in any
6813 -- other form.
6815 else
6816 Error_Msg_N
6817 ("name should be identifier or OTHERS", Comp);
6818 end if;
6820 Next (Comp);
6821 end loop;
6822 end if;
6823 end if;
6825 Next (Assoc);
6826 end loop;
6828 -- The type of attribute 'Update is that of the prefix
6830 Set_Etype (N, P_Type);
6832 Sem_Warn.Warn_On_Suspicious_Update (N);
6833 end Update;
6835 ---------
6836 -- Val --
6837 ---------
6839 when Attribute_Val =>
6840 Check_E1;
6841 Check_Discrete_Type;
6843 if Is_Boolean_Type (P_Type) then
6844 Error_Msg_Name_1 := Aname;
6845 Error_Msg_Name_2 := Chars (P_Type);
6846 Check_SPARK_05_Restriction
6847 ("attribute% is not allowed for type%", P);
6848 end if;
6850 -- Note, we need a range check in general, but we wait for the
6851 -- Resolve call to do this, since we want to let Eval_Attribute
6852 -- have a chance to find an static illegality first.
6854 Resolve (E1, Any_Integer);
6855 Set_Etype (N, P_Base_Type);
6857 -----------
6858 -- Valid --
6859 -----------
6861 when Attribute_Valid => Valid : declare
6862 Pred_Func : constant Entity_Id := Predicate_Function (P_Type);
6864 begin
6865 Check_E0;
6867 -- Ignore check for object if we have a 'Valid reference generated
6868 -- by the expanded code, since in some cases valid checks can occur
6869 -- on items that are names, but are not objects (e.g. attributes).
6871 if Comes_From_Source (N) then
6872 Check_Object_Reference (P);
6874 if not Is_Scalar_Type (P_Type) then
6875 Error_Attr_P ("object for % attribute must be of scalar type");
6876 end if;
6878 -- If the attribute appears within the subtype's own predicate
6879 -- function, then issue a warning that this will cause infinite
6880 -- recursion.
6882 if Present (Pred_Func) and then Current_Scope = Pred_Func then
6883 Error_Msg_N ("attribute Valid requires a predicate check??", N);
6884 Error_Msg_N ("\and will result in infinite recursion??", N);
6885 end if;
6886 end if;
6888 Set_Etype (N, Standard_Boolean);
6889 end Valid;
6891 -------------------
6892 -- Valid_Scalars --
6893 -------------------
6895 when Attribute_Valid_Scalars => Valid_Scalars : declare
6896 begin
6897 Check_E0;
6899 if Comes_From_Source (N) then
6900 Check_Object_Reference (P);
6902 -- Do not emit any diagnostics related to private types to avoid
6903 -- disclosing the structure of the type.
6905 if Is_Private_Type (P_Type) then
6907 -- Attribute 'Valid_Scalars is not supported on private tagged
6908 -- types due to a code generation issue. Is_Visible_Component
6909 -- does not allow for a component of a private tagged type to
6910 -- be successfully retrieved.
6912 -- Do not use Error_Attr_P because this bypasses any subsequent
6913 -- processing and leaves the attribute with type Any_Type. This
6914 -- in turn prevents the proper expansion of the attribute into
6915 -- True.
6917 if Is_Tagged_Type (P_Type) then
6918 Error_Msg_Name_1 := Aname;
6919 Error_Msg_N ("??effects of attribute % are ignored", N);
6920 end if;
6922 -- Otherwise the type is not private
6924 else
6925 if not Scalar_Part_Present (P_Type) then
6926 Error_Msg_Name_1 := Aname;
6927 Error_Msg_F
6928 ("??attribute % always True, no scalars to check", P);
6929 Set_Boolean_Result (N, True);
6930 end if;
6932 -- Attribute 'Valid_Scalars is illegal on unchecked union types
6933 -- because it is not always guaranteed that the components are
6934 -- retrievable based on whether the discriminants are inferable
6936 if Has_Unchecked_Union (P_Type) then
6937 Error_Attr_P
6938 ("attribute % not allowed for Unchecked_Union type");
6939 end if;
6940 end if;
6941 end if;
6943 Set_Etype (N, Standard_Boolean);
6944 end Valid_Scalars;
6946 -----------
6947 -- Value --
6948 -----------
6950 when Attribute_Value =>
6951 Check_SPARK_05_Restriction_On_Attribute;
6952 Check_E1;
6953 Check_Scalar_Type;
6955 -- Case of enumeration type
6957 -- When an enumeration type appears in an attribute reference, all
6958 -- literals of the type are marked as referenced. This must only be
6959 -- done if the attribute reference appears in the current source.
6960 -- Otherwise the information on references may differ between a
6961 -- normal compilation and one that performs inlining.
6963 if Is_Enumeration_Type (P_Type)
6964 and then In_Extended_Main_Code_Unit (N)
6965 then
6966 Check_Restriction (No_Enumeration_Maps, N);
6968 -- Mark all enumeration literals as referenced, since the use of
6969 -- the Value attribute can implicitly reference any of the
6970 -- literals of the enumeration base type.
6972 declare
6973 Ent : Entity_Id := First_Literal (P_Base_Type);
6974 begin
6975 while Present (Ent) loop
6976 Set_Referenced (Ent);
6977 Next_Literal (Ent);
6978 end loop;
6979 end;
6980 end if;
6982 -- Set Etype before resolving expression because expansion of
6983 -- expression may require enclosing type. Note that the type
6984 -- returned by 'Value is the base type of the prefix type.
6986 Set_Etype (N, P_Base_Type);
6987 Validate_Non_Static_Attribute_Function_Call;
6989 -- Check restriction No_Fixed_IO
6991 if Restriction_Check_Required (No_Fixed_IO)
6992 and then Is_Fixed_Point_Type (P_Type)
6993 then
6994 Check_Restriction (No_Fixed_IO, P);
6995 end if;
6997 ----------------
6998 -- Value_Size --
6999 ----------------
7001 when Attribute_Value_Size =>
7002 Check_E0;
7003 Check_Type;
7004 Check_Not_Incomplete_Type;
7005 Set_Etype (N, Universal_Integer);
7007 -------------
7008 -- Version --
7009 -------------
7011 when Attribute_Version =>
7012 Check_E0;
7013 Check_Program_Unit;
7014 Set_Etype (N, RTE (RE_Version_String));
7016 ------------------
7017 -- Wchar_T_Size --
7018 ------------------
7020 when Attribute_Wchar_T_Size =>
7021 Standard_Attribute (Interfaces_Wchar_T_Size);
7023 ----------------
7024 -- Wide_Image --
7025 ----------------
7027 when Attribute_Wide_Image =>
7028 Analyze_Image_Attribute (Standard_Wide_String);
7030 ---------------------
7031 -- Wide_Wide_Image --
7032 ---------------------
7034 when Attribute_Wide_Wide_Image =>
7035 Analyze_Image_Attribute (Standard_Wide_Wide_String);
7037 ----------------
7038 -- Wide_Value --
7039 ----------------
7041 when Attribute_Wide_Value =>
7042 Check_SPARK_05_Restriction_On_Attribute;
7043 Check_E1;
7044 Check_Scalar_Type;
7046 -- Set Etype before resolving expression because expansion
7047 -- of expression may require enclosing type.
7049 Set_Etype (N, P_Type);
7050 Validate_Non_Static_Attribute_Function_Call;
7052 -- Check restriction No_Fixed_IO
7054 if Restriction_Check_Required (No_Fixed_IO)
7055 and then Is_Fixed_Point_Type (P_Type)
7056 then
7057 Check_Restriction (No_Fixed_IO, P);
7058 end if;
7060 ---------------------
7061 -- Wide_Wide_Value --
7062 ---------------------
7064 when Attribute_Wide_Wide_Value =>
7065 Check_E1;
7066 Check_Scalar_Type;
7068 -- Set Etype before resolving expression because expansion
7069 -- of expression may require enclosing type.
7071 Set_Etype (N, P_Type);
7072 Validate_Non_Static_Attribute_Function_Call;
7074 -- Check restriction No_Fixed_IO
7076 if Restriction_Check_Required (No_Fixed_IO)
7077 and then Is_Fixed_Point_Type (P_Type)
7078 then
7079 Check_Restriction (No_Fixed_IO, P);
7080 end if;
7082 ---------------------
7083 -- Wide_Wide_Width --
7084 ---------------------
7086 when Attribute_Wide_Wide_Width =>
7087 Check_E0;
7088 Check_Scalar_Type;
7089 Set_Etype (N, Universal_Integer);
7091 ----------------
7092 -- Wide_Width --
7093 ----------------
7095 when Attribute_Wide_Width =>
7096 Check_SPARK_05_Restriction_On_Attribute;
7097 Check_E0;
7098 Check_Scalar_Type;
7099 Set_Etype (N, Universal_Integer);
7101 -----------
7102 -- Width --
7103 -----------
7105 when Attribute_Width =>
7106 Check_SPARK_05_Restriction_On_Attribute;
7107 Check_E0;
7108 Check_Scalar_Type;
7109 Set_Etype (N, Universal_Integer);
7111 ---------------
7112 -- Word_Size --
7113 ---------------
7115 when Attribute_Word_Size =>
7116 Standard_Attribute (System_Word_Size);
7118 -----------
7119 -- Write --
7120 -----------
7122 when Attribute_Write =>
7123 Check_E2;
7124 Check_Stream_Attribute (TSS_Stream_Write);
7125 Set_Etype (N, Standard_Void_Type);
7126 Resolve (N, Standard_Void_Type);
7128 end case;
7130 -- In SPARK certain attributes (see below) depend on Tasking_State.
7131 -- Ensure that the entity is available for gnat2why by loading it.
7132 -- See SPARK RM 9(18) for the relevant rule.
7134 if GNATprove_Mode then
7135 declare
7136 Unused : Entity_Id;
7138 begin
7139 case Attr_Id is
7140 when Attribute_Callable
7141 | Attribute_Caller
7142 | Attribute_Count
7143 | Attribute_Terminated
7145 Unused := RTE (RE_Tasking_State);
7147 when others =>
7148 null;
7149 end case;
7150 end;
7151 end if;
7153 -- All errors raise Bad_Attribute, so that we get out before any further
7154 -- damage occurs when an error is detected (for example, if we check for
7155 -- one attribute expression, and the check succeeds, we want to be able
7156 -- to proceed securely assuming that an expression is in fact present.
7158 -- Note: we set the attribute analyzed in this case to prevent any
7159 -- attempt at reanalysis which could generate spurious error msgs.
7161 exception
7162 when Bad_Attribute =>
7163 Set_Analyzed (N);
7164 Set_Etype (N, Any_Type);
7165 return;
7166 end Analyze_Attribute;
7168 --------------------
7169 -- Eval_Attribute --
7170 --------------------
7172 procedure Eval_Attribute (N : Node_Id) is
7173 Loc : constant Source_Ptr := Sloc (N);
7174 Aname : constant Name_Id := Attribute_Name (N);
7175 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
7176 P : constant Node_Id := Prefix (N);
7178 C_Type : constant Entity_Id := Etype (N);
7179 -- The type imposed by the context
7181 E1 : Node_Id;
7182 -- First expression, or Empty if none
7184 E2 : Node_Id;
7185 -- Second expression, or Empty if none
7187 P_Entity : Entity_Id;
7188 -- Entity denoted by prefix
7190 P_Type : Entity_Id;
7191 -- The type of the prefix
7193 P_Base_Type : Entity_Id;
7194 -- The base type of the prefix type
7196 P_Root_Type : Entity_Id;
7197 -- The root type of the prefix type
7199 Static : Boolean := False;
7200 -- True if the result is Static. This is set by the general processing
7201 -- to true if the prefix is static, and all expressions are static. It
7202 -- can be reset as processing continues for particular attributes. This
7203 -- flag can still be True if the reference raises a constraint error.
7204 -- Is_Static_Expression (N) is set to follow this value as it is set
7205 -- and we could always reference this, but it is convenient to have a
7206 -- simple short name to use, since it is frequently referenced.
7208 Lo_Bound, Hi_Bound : Node_Id;
7209 -- Expressions for low and high bounds of type or array index referenced
7210 -- by First, Last, or Length attribute for array, set by Set_Bounds.
7212 CE_Node : Node_Id;
7213 -- Constraint error node used if we have an attribute reference has
7214 -- an argument that raises a constraint error. In this case we replace
7215 -- the attribute with a raise constraint_error node. This is important
7216 -- processing, since otherwise gigi might see an attribute which it is
7217 -- unprepared to deal with.
7219 procedure Check_Concurrent_Discriminant (Bound : Node_Id);
7220 -- If Bound is a reference to a discriminant of a task or protected type
7221 -- occurring within the object's body, rewrite attribute reference into
7222 -- a reference to the corresponding discriminal. Use for the expansion
7223 -- of checks against bounds of entry family index subtypes.
7225 procedure Check_Expressions;
7226 -- In case where the attribute is not foldable, the expressions, if
7227 -- any, of the attribute, are in a non-static context. This procedure
7228 -- performs the required additional checks.
7230 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
7231 -- Determines if the given type has compile time known bounds. Note
7232 -- that we enter the case statement even in cases where the prefix
7233 -- type does NOT have known bounds, so it is important to guard any
7234 -- attempt to evaluate both bounds with a call to this function.
7236 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
7237 -- This procedure is called when the attribute N has a non-static
7238 -- but compile time known value given by Val. It includes the
7239 -- necessary checks for out of range values.
7241 function Fore_Value return Nat;
7242 -- Computes the Fore value for the current attribute prefix, which is
7243 -- known to be a static fixed-point type. Used by Fore and Width.
7245 function Mantissa return Uint;
7246 -- Returns the Mantissa value for the prefix type
7248 procedure Set_Bounds;
7249 -- Used for First, Last and Length attributes applied to an array or
7250 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
7251 -- and high bound expressions for the index referenced by the attribute
7252 -- designator (i.e. the first index if no expression is present, and the
7253 -- N'th index if the value N is present as an expression). Also used for
7254 -- First and Last of scalar types and for First_Valid and Last_Valid.
7255 -- Static is reset to False if the type or index type is not statically
7256 -- constrained.
7258 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
7259 -- Verify that the prefix of a potentially static array attribute
7260 -- satisfies the conditions of 4.9 (14).
7262 -----------------------------------
7263 -- Check_Concurrent_Discriminant --
7264 -----------------------------------
7266 procedure Check_Concurrent_Discriminant (Bound : Node_Id) is
7267 Tsk : Entity_Id;
7268 -- The concurrent (task or protected) type
7270 begin
7271 if Nkind (Bound) = N_Identifier
7272 and then Ekind (Entity (Bound)) = E_Discriminant
7273 and then Is_Concurrent_Record_Type (Scope (Entity (Bound)))
7274 then
7275 Tsk := Corresponding_Concurrent_Type (Scope (Entity (Bound)));
7277 if In_Open_Scopes (Tsk) and then Has_Completion (Tsk) then
7279 -- Find discriminant of original concurrent type, and use
7280 -- its current discriminal, which is the renaming within
7281 -- the task/protected body.
7283 Rewrite (N,
7284 New_Occurrence_Of
7285 (Find_Body_Discriminal (Entity (Bound)), Loc));
7286 end if;
7287 end if;
7288 end Check_Concurrent_Discriminant;
7290 -----------------------
7291 -- Check_Expressions --
7292 -----------------------
7294 procedure Check_Expressions is
7295 E : Node_Id;
7296 begin
7297 E := E1;
7298 while Present (E) loop
7299 Check_Non_Static_Context (E);
7300 Next (E);
7301 end loop;
7302 end Check_Expressions;
7304 ----------------------------------
7305 -- Compile_Time_Known_Attribute --
7306 ----------------------------------
7308 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
7309 T : constant Entity_Id := Etype (N);
7311 begin
7312 Fold_Uint (N, Val, False);
7314 -- Check that result is in bounds of the type if it is static
7316 if Is_In_Range (N, T, Assume_Valid => False) then
7317 null;
7319 elsif Is_Out_Of_Range (N, T) then
7320 Apply_Compile_Time_Constraint_Error
7321 (N, "value not in range of}??", CE_Range_Check_Failed);
7323 elsif not Range_Checks_Suppressed (T) then
7324 Enable_Range_Check (N);
7326 else
7327 Set_Do_Range_Check (N, False);
7328 end if;
7329 end Compile_Time_Known_Attribute;
7331 -------------------------------
7332 -- Compile_Time_Known_Bounds --
7333 -------------------------------
7335 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
7336 begin
7337 return
7338 Compile_Time_Known_Value (Type_Low_Bound (Typ))
7339 and then
7340 Compile_Time_Known_Value (Type_High_Bound (Typ));
7341 end Compile_Time_Known_Bounds;
7343 ----------------
7344 -- Fore_Value --
7345 ----------------
7347 -- Note that the Fore calculation is based on the actual values
7348 -- of the bounds, and does not take into account possible rounding.
7350 function Fore_Value return Nat is
7351 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
7352 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
7353 Small : constant Ureal := Small_Value (P_Type);
7354 Lo_Real : constant Ureal := Lo * Small;
7355 Hi_Real : constant Ureal := Hi * Small;
7356 T : Ureal;
7357 R : Nat;
7359 begin
7360 -- Bounds are given in terms of small units, so first compute
7361 -- proper values as reals.
7363 T := UR_Max (abs Lo_Real, abs Hi_Real);
7364 R := 2;
7366 -- Loop to compute proper value if more than one digit required
7368 while T >= Ureal_10 loop
7369 R := R + 1;
7370 T := T / Ureal_10;
7371 end loop;
7373 return R;
7374 end Fore_Value;
7376 --------------
7377 -- Mantissa --
7378 --------------
7380 -- Table of mantissa values accessed by function Computed using
7381 -- the relation:
7383 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
7385 -- where D is T'Digits (RM83 3.5.7)
7387 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
7388 1 => 5,
7389 2 => 8,
7390 3 => 11,
7391 4 => 15,
7392 5 => 18,
7393 6 => 21,
7394 7 => 25,
7395 8 => 28,
7396 9 => 31,
7397 10 => 35,
7398 11 => 38,
7399 12 => 41,
7400 13 => 45,
7401 14 => 48,
7402 15 => 51,
7403 16 => 55,
7404 17 => 58,
7405 18 => 61,
7406 19 => 65,
7407 20 => 68,
7408 21 => 71,
7409 22 => 75,
7410 23 => 78,
7411 24 => 81,
7412 25 => 85,
7413 26 => 88,
7414 27 => 91,
7415 28 => 95,
7416 29 => 98,
7417 30 => 101,
7418 31 => 104,
7419 32 => 108,
7420 33 => 111,
7421 34 => 114,
7422 35 => 118,
7423 36 => 121,
7424 37 => 124,
7425 38 => 128,
7426 39 => 131,
7427 40 => 134);
7429 function Mantissa return Uint is
7430 begin
7431 return
7432 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
7433 end Mantissa;
7435 ----------------
7436 -- Set_Bounds --
7437 ----------------
7439 procedure Set_Bounds is
7440 Ndim : Nat;
7441 Indx : Node_Id;
7442 Ityp : Entity_Id;
7444 begin
7445 -- For a string literal subtype, we have to construct the bounds.
7446 -- Valid Ada code never applies attributes to string literals, but
7447 -- it is convenient to allow the expander to generate attribute
7448 -- references of this type (e.g. First and Last applied to a string
7449 -- literal).
7451 -- Note that the whole point of the E_String_Literal_Subtype is to
7452 -- avoid this construction of bounds, but the cases in which we
7453 -- have to materialize them are rare enough that we don't worry.
7455 -- The low bound is simply the low bound of the base type. The
7456 -- high bound is computed from the length of the string and this
7457 -- low bound.
7459 if Ekind (P_Type) = E_String_Literal_Subtype then
7460 Ityp := Etype (First_Index (Base_Type (P_Type)));
7461 Lo_Bound := Type_Low_Bound (Ityp);
7463 Hi_Bound :=
7464 Make_Integer_Literal (Sloc (P),
7465 Intval =>
7466 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
7468 Set_Parent (Hi_Bound, P);
7469 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
7470 return;
7472 -- For non-array case, just get bounds of scalar type
7474 elsif Is_Scalar_Type (P_Type) then
7475 Ityp := P_Type;
7477 -- For a fixed-point type, we must freeze to get the attributes
7478 -- of the fixed-point type set now so we can reference them.
7480 if Is_Fixed_Point_Type (P_Type)
7481 and then not Is_Frozen (Base_Type (P_Type))
7482 and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
7483 and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
7484 then
7485 Freeze_Fixed_Point_Type (Base_Type (P_Type));
7486 end if;
7488 -- For array case, get type of proper index
7490 else
7491 if No (E1) then
7492 Ndim := 1;
7493 else
7494 Ndim := UI_To_Int (Expr_Value (E1));
7495 end if;
7497 Indx := First_Index (P_Type);
7498 for J in 1 .. Ndim - 1 loop
7499 Next_Index (Indx);
7500 end loop;
7502 -- If no index type, get out (some other error occurred, and
7503 -- we don't have enough information to complete the job).
7505 if No (Indx) then
7506 Lo_Bound := Error;
7507 Hi_Bound := Error;
7508 return;
7509 end if;
7511 Ityp := Etype (Indx);
7512 end if;
7514 -- A discrete range in an index constraint is allowed to be a
7515 -- subtype indication. This is syntactically a pain, but should
7516 -- not propagate to the entity for the corresponding index subtype.
7517 -- After checking that the subtype indication is legal, the range
7518 -- of the subtype indication should be transfered to the entity.
7519 -- The attributes for the bounds should remain the simple retrievals
7520 -- that they are now.
7522 Lo_Bound := Type_Low_Bound (Ityp);
7523 Hi_Bound := Type_High_Bound (Ityp);
7525 -- If subtype is non-static, result is definitely non-static
7527 if not Is_Static_Subtype (Ityp) then
7528 Static := False;
7529 Set_Is_Static_Expression (N, False);
7531 -- Subtype is static, does it raise CE?
7533 elsif not Is_OK_Static_Subtype (Ityp) then
7534 Set_Raises_Constraint_Error (N);
7535 end if;
7536 end Set_Bounds;
7538 -------------------------------
7539 -- Statically_Denotes_Entity --
7540 -------------------------------
7542 function Statically_Denotes_Entity (N : Node_Id) return Boolean is
7543 E : Entity_Id;
7545 begin
7546 if not Is_Entity_Name (N) then
7547 return False;
7548 else
7549 E := Entity (N);
7550 end if;
7552 return
7553 Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7554 or else Statically_Denotes_Entity (Renamed_Object (E));
7555 end Statically_Denotes_Entity;
7557 -- Start of processing for Eval_Attribute
7559 begin
7560 -- The To_Address attribute can be static, but it cannot be evaluated at
7561 -- compile time, so just return.
7563 if Id = Attribute_To_Address then
7564 return;
7565 end if;
7567 -- Initialize result as non-static, will be reset if appropriate
7569 Set_Is_Static_Expression (N, False);
7571 -- Acquire first two expressions (at the moment, no attributes take more
7572 -- than two expressions in any case).
7574 if Present (Expressions (N)) then
7575 E1 := First (Expressions (N));
7576 E2 := Next (E1);
7577 else
7578 E1 := Empty;
7579 E2 := Empty;
7580 end if;
7582 -- Special processing for Enabled attribute. This attribute has a very
7583 -- special prefix, and the easiest way to avoid lots of special checks
7584 -- to protect this special prefix from causing trouble is to deal with
7585 -- this attribute immediately and be done with it.
7587 if Id = Attribute_Enabled then
7589 -- We skip evaluation if the expander is not active. This is not just
7590 -- an optimization. It is of key importance that we not rewrite the
7591 -- attribute in a generic template, since we want to pick up the
7592 -- setting of the check in the instance, Testing Expander_Active
7593 -- might seem an easy way of doing this, but we need to account for
7594 -- ASIS needs, so check explicitly for a generic context.
7596 if not Inside_A_Generic then
7597 declare
7598 C : constant Check_Id := Get_Check_Id (Chars (P));
7599 R : Boolean;
7601 begin
7602 if No (E1) then
7603 if C in Predefined_Check_Id then
7604 R := Scope_Suppress.Suppress (C);
7605 else
7606 R := Is_Check_Suppressed (Empty, C);
7607 end if;
7609 else
7610 R := Is_Check_Suppressed (Entity (E1), C);
7611 end if;
7613 Rewrite (N, New_Occurrence_Of (Boolean_Literals (not R), Loc));
7614 end;
7615 end if;
7617 return;
7618 end if;
7620 -- Attribute 'Img applied to a static enumeration value is static, and
7621 -- we will do the folding right here (things get confused if we let this
7622 -- case go through the normal circuitry).
7624 if Attribute_Name (N) = Name_Img
7625 and then Is_Entity_Name (P)
7626 and then Is_Enumeration_Type (Etype (Entity (P)))
7627 and then Is_OK_Static_Expression (P)
7628 then
7629 declare
7630 Lit : constant Entity_Id := Expr_Value_E (P);
7631 Str : String_Id;
7633 begin
7634 Start_String;
7635 Get_Unqualified_Decoded_Name_String (Chars (Lit));
7636 Set_Casing (All_Upper_Case);
7637 Store_String_Chars (Name_Buffer (1 .. Name_Len));
7638 Str := End_String;
7640 Rewrite (N, Make_String_Literal (Loc, Strval => Str));
7641 Analyze_And_Resolve (N, Standard_String);
7642 Set_Is_Static_Expression (N, True);
7643 end;
7645 return;
7646 end if;
7648 -- Special processing for cases where the prefix is an object. For this
7649 -- purpose, a string literal counts as an object (attributes of string
7650 -- literals can only appear in generated code).
7652 if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
7654 -- For Component_Size, the prefix is an array object, and we apply
7655 -- the attribute to the type of the object. This is allowed for both
7656 -- unconstrained and constrained arrays, since the bounds have no
7657 -- influence on the value of this attribute.
7659 if Id = Attribute_Component_Size then
7660 P_Entity := Etype (P);
7662 -- For Enum_Rep, evaluation depends on the nature of the prefix and
7663 -- the optional argument.
7665 elsif Id = Attribute_Enum_Rep then
7666 if Is_Entity_Name (P) then
7668 declare
7669 Enum_Expr : Node_Id;
7670 -- The enumeration-type expression of interest
7672 begin
7673 -- P'Enum_Rep case
7675 if Ekind_In (Entity (P), E_Constant,
7676 E_Enumeration_Literal)
7677 then
7678 Enum_Expr := P;
7680 -- Enum_Type'Enum_Rep (E1) case
7682 elsif Is_Enumeration_Type (Entity (P)) then
7683 Enum_Expr := E1;
7685 -- Otherwise the attribute must be expanded into a
7686 -- conversion and evaluated at run time.
7688 else
7689 Check_Expressions;
7690 return;
7691 end if;
7693 -- We can fold if the expression is an enumeration
7694 -- literal, or if it denotes a constant whose value
7695 -- is known at compile time.
7697 if Nkind (Enum_Expr) in N_Has_Entity
7698 and then (Ekind (Entity (Enum_Expr)) =
7699 E_Enumeration_Literal
7700 or else
7701 (Ekind (Entity (Enum_Expr)) = E_Constant
7702 and then Nkind (Parent (Entity (Enum_Expr))) =
7703 N_Object_Declaration
7704 and then Compile_Time_Known_Value
7705 (Expression (Parent (Entity (P))))))
7706 then
7707 P_Entity := Etype (P);
7708 else
7709 Check_Expressions;
7710 return;
7711 end if;
7712 end;
7714 -- Otherwise the attribute is illegal, do not attempt to perform
7715 -- any kind of folding.
7717 else
7718 return;
7719 end if;
7721 -- For First and Last, the prefix is an array object, and we apply
7722 -- the attribute to the type of the array, but we need a constrained
7723 -- type for this, so we use the actual subtype if available.
7725 elsif Id = Attribute_First or else
7726 Id = Attribute_Last or else
7727 Id = Attribute_Length
7728 then
7729 declare
7730 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
7732 begin
7733 if Present (AS) and then Is_Constrained (AS) then
7734 P_Entity := AS;
7736 -- If we have an unconstrained type we cannot fold
7738 else
7739 Check_Expressions;
7740 return;
7741 end if;
7742 end;
7744 -- For Size, give size of object if available, otherwise we
7745 -- cannot fold Size.
7747 elsif Id = Attribute_Size then
7748 if Is_Entity_Name (P)
7749 and then Known_Esize (Entity (P))
7750 then
7751 Compile_Time_Known_Attribute (N, Esize (Entity (P)));
7752 return;
7754 else
7755 Check_Expressions;
7756 return;
7757 end if;
7759 -- For Alignment, give size of object if available, otherwise we
7760 -- cannot fold Alignment.
7762 elsif Id = Attribute_Alignment then
7763 if Is_Entity_Name (P)
7764 and then Known_Alignment (Entity (P))
7765 then
7766 Fold_Uint (N, Alignment (Entity (P)), Static);
7767 return;
7769 else
7770 Check_Expressions;
7771 return;
7772 end if;
7774 -- For Lock_Free, we apply the attribute to the type of the object.
7775 -- This is allowed since we have already verified that the type is a
7776 -- protected type.
7778 elsif Id = Attribute_Lock_Free then
7779 P_Entity := Etype (P);
7781 -- No other attributes for objects are folded
7783 else
7784 Check_Expressions;
7785 return;
7786 end if;
7788 -- Cases where P is not an object. Cannot do anything if P is not the
7789 -- name of an entity.
7791 elsif not Is_Entity_Name (P) then
7792 Check_Expressions;
7793 return;
7795 -- Otherwise get prefix entity
7797 else
7798 P_Entity := Entity (P);
7799 end if;
7801 -- If we are asked to evaluate an attribute where the prefix is a
7802 -- non-frozen generic actual type whose RM_Size is still set to zero,
7803 -- then abandon the effort.
7805 if Is_Type (P_Entity)
7806 and then (not Is_Frozen (P_Entity)
7807 and then Is_Generic_Actual_Type (P_Entity)
7808 and then RM_Size (P_Entity) = 0)
7810 -- However, the attribute Unconstrained_Array must be evaluated,
7811 -- since it is documented to be a static attribute (and can for
7812 -- example appear in a Compile_Time_Warning pragma). The frozen
7813 -- status of the type does not affect its evaluation.
7815 and then Id /= Attribute_Unconstrained_Array
7816 then
7817 return;
7818 end if;
7820 -- At this stage P_Entity is the entity to which the attribute
7821 -- is to be applied. This is usually simply the entity of the
7822 -- prefix, except in some cases of attributes for objects, where
7823 -- as described above, we apply the attribute to the object type.
7825 -- Here is where we make sure that static attributes are properly
7826 -- marked as such. These are attributes whose prefix is a static
7827 -- scalar subtype, whose result is scalar, and whose arguments, if
7828 -- present, are static scalar expressions. Note that such references
7829 -- are static expressions even if they raise Constraint_Error.
7831 -- For example, Boolean'Pos (1/0 = 0) is a static expression, even
7832 -- though evaluating it raises constraint error. This means that a
7833 -- declaration like:
7835 -- X : constant := (if True then 1 else Boolean'Pos (1/0 = 0));
7837 -- is legal, since here this expression appears in a statically
7838 -- unevaluated position, so it does not actually raise an exception.
7840 if Is_Scalar_Type (P_Entity)
7841 and then (not Is_Generic_Type (P_Entity))
7842 and then Is_Static_Subtype (P_Entity)
7843 and then Is_Scalar_Type (Etype (N))
7844 and then
7845 (No (E1)
7846 or else (Is_Static_Expression (E1)
7847 and then Is_Scalar_Type (Etype (E1))))
7848 and then
7849 (No (E2)
7850 or else (Is_Static_Expression (E2)
7851 and then Is_Scalar_Type (Etype (E1))))
7852 then
7853 Static := True;
7854 Set_Is_Static_Expression (N, True);
7855 end if;
7857 -- First foldable possibility is a scalar or array type (RM 4.9(7))
7858 -- that is not generic (generic types are eliminated by RM 4.9(25)).
7859 -- Note we allow non-static non-generic types at this stage as further
7860 -- described below.
7862 if Is_Type (P_Entity)
7863 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
7864 and then (not Is_Generic_Type (P_Entity))
7865 then
7866 P_Type := P_Entity;
7868 -- Second foldable possibility is an array object (RM 4.9(8))
7870 elsif Ekind_In (P_Entity, E_Variable, E_Constant)
7871 and then Is_Array_Type (Etype (P_Entity))
7872 and then (not Is_Generic_Type (Etype (P_Entity)))
7873 then
7874 P_Type := Etype (P_Entity);
7876 -- If the entity is an array constant with an unconstrained nominal
7877 -- subtype then get the type from the initial value. If the value has
7878 -- been expanded into assignments, there is no expression and the
7879 -- attribute reference remains dynamic.
7881 -- We could do better here and retrieve the type ???
7883 if Ekind (P_Entity) = E_Constant
7884 and then not Is_Constrained (P_Type)
7885 then
7886 if No (Constant_Value (P_Entity)) then
7887 return;
7888 else
7889 P_Type := Etype (Constant_Value (P_Entity));
7890 end if;
7891 end if;
7893 -- Definite must be folded if the prefix is not a generic type, that
7894 -- is to say if we are within an instantiation. Same processing applies
7895 -- to the GNAT attributes Atomic_Always_Lock_Free, Has_Discriminants,
7896 -- Lock_Free, Type_Class, Has_Tagged_Value, and Unconstrained_Array.
7898 elsif (Id = Attribute_Atomic_Always_Lock_Free or else
7899 Id = Attribute_Definite or else
7900 Id = Attribute_Has_Access_Values or else
7901 Id = Attribute_Has_Discriminants or else
7902 Id = Attribute_Has_Tagged_Values or else
7903 Id = Attribute_Lock_Free or else
7904 Id = Attribute_Type_Class or else
7905 Id = Attribute_Unconstrained_Array or else
7906 Id = Attribute_Max_Alignment_For_Allocation)
7907 and then not Is_Generic_Type (P_Entity)
7908 then
7909 P_Type := P_Entity;
7911 -- We can fold 'Size applied to a type if the size is known (as happens
7912 -- for a size from an attribute definition clause). At this stage, this
7913 -- can happen only for types (e.g. record types) for which the size is
7914 -- always non-static. We exclude generic types from consideration (since
7915 -- they have bogus sizes set within templates).
7917 elsif Id = Attribute_Size
7918 and then Is_Type (P_Entity)
7919 and then (not Is_Generic_Type (P_Entity))
7920 and then Known_Static_RM_Size (P_Entity)
7921 then
7922 Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
7923 return;
7925 -- We can fold 'Alignment applied to a type if the alignment is known
7926 -- (as happens for an alignment from an attribute definition clause).
7927 -- At this stage, this can happen only for types (e.g. record types) for
7928 -- which the size is always non-static. We exclude generic types from
7929 -- consideration (since they have bogus sizes set within templates).
7931 elsif Id = Attribute_Alignment
7932 and then Is_Type (P_Entity)
7933 and then (not Is_Generic_Type (P_Entity))
7934 and then Known_Alignment (P_Entity)
7935 then
7936 Compile_Time_Known_Attribute (N, Alignment (P_Entity));
7937 return;
7939 -- If this is an access attribute that is known to fail accessibility
7940 -- check, rewrite accordingly.
7942 elsif Attribute_Name (N) = Name_Access
7943 and then Raises_Constraint_Error (N)
7944 then
7945 Rewrite (N,
7946 Make_Raise_Program_Error (Loc,
7947 Reason => PE_Accessibility_Check_Failed));
7948 Set_Etype (N, C_Type);
7949 return;
7951 -- No other cases are foldable (they certainly aren't static, and at
7952 -- the moment we don't try to fold any cases other than the ones above).
7954 else
7955 Check_Expressions;
7956 return;
7957 end if;
7959 -- If either attribute or the prefix is Any_Type, then propagate
7960 -- Any_Type to the result and don't do anything else at all.
7962 if P_Type = Any_Type
7963 or else (Present (E1) and then Etype (E1) = Any_Type)
7964 or else (Present (E2) and then Etype (E2) = Any_Type)
7965 then
7966 Set_Etype (N, Any_Type);
7967 return;
7968 end if;
7970 -- Scalar subtype case. We have not yet enforced the static requirement
7971 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
7972 -- of non-static attribute references (e.g. S'Digits for a non-static
7973 -- floating-point type, which we can compute at compile time).
7975 -- Note: this folding of non-static attributes is not simply a case of
7976 -- optimization. For many of the attributes affected, Gigi cannot handle
7977 -- the attribute and depends on the front end having folded them away.
7979 -- Note: although we don't require staticness at this stage, we do set
7980 -- the Static variable to record the staticness, for easy reference by
7981 -- those attributes where it matters (e.g. Succ and Pred), and also to
7982 -- be used to ensure that non-static folded things are not marked as
7983 -- being static (a check that is done right at the end).
7985 P_Root_Type := Root_Type (P_Type);
7986 P_Base_Type := Base_Type (P_Type);
7988 -- If the root type or base type is generic, then we cannot fold. This
7989 -- test is needed because subtypes of generic types are not always
7990 -- marked as being generic themselves (which seems odd???)
7992 if Is_Generic_Type (P_Root_Type)
7993 or else Is_Generic_Type (P_Base_Type)
7994 then
7995 return;
7996 end if;
7998 if Is_Scalar_Type (P_Type) then
7999 if not Is_Static_Subtype (P_Type) then
8000 Static := False;
8001 Set_Is_Static_Expression (N, False);
8002 elsif not Is_OK_Static_Subtype (P_Type) then
8003 Set_Raises_Constraint_Error (N);
8004 end if;
8006 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
8007 -- since we can't do anything with unconstrained arrays. In addition,
8008 -- only the First, Last and Length attributes are possibly static.
8010 -- Atomic_Always_Lock_Free, Definite, Has_Access_Values,
8011 -- Has_Discriminants, Has_Tagged_Values, Lock_Free, Type_Class, and
8012 -- Unconstrained_Array are again exceptions, because they apply as well
8013 -- to unconstrained types.
8015 -- In addition Component_Size is an exception since it is possibly
8016 -- foldable, even though it is never static, and it does apply to
8017 -- unconstrained arrays. Furthermore, it is essential to fold this
8018 -- in the packed case, since otherwise the value will be incorrect.
8020 elsif Id = Attribute_Atomic_Always_Lock_Free or else
8021 Id = Attribute_Definite or else
8022 Id = Attribute_Has_Access_Values or else
8023 Id = Attribute_Has_Discriminants or else
8024 Id = Attribute_Has_Tagged_Values or else
8025 Id = Attribute_Lock_Free or else
8026 Id = Attribute_Type_Class or else
8027 Id = Attribute_Unconstrained_Array or else
8028 Id = Attribute_Component_Size
8029 then
8030 Static := False;
8031 Set_Is_Static_Expression (N, False);
8033 elsif Id /= Attribute_Max_Alignment_For_Allocation then
8034 if not Is_Constrained (P_Type)
8035 or else (Id /= Attribute_First and then
8036 Id /= Attribute_Last and then
8037 Id /= Attribute_Length)
8038 then
8039 Check_Expressions;
8040 return;
8041 end if;
8043 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
8044 -- scalar case, we hold off on enforcing staticness, since there are
8045 -- cases which we can fold at compile time even though they are not
8046 -- static (e.g. 'Length applied to a static index, even though other
8047 -- non-static indexes make the array type non-static). This is only
8048 -- an optimization, but it falls out essentially free, so why not.
8049 -- Again we compute the variable Static for easy reference later
8050 -- (note that no array attributes are static in Ada 83).
8052 -- We also need to set Static properly for subsequent legality checks
8053 -- which might otherwise accept non-static constants in contexts
8054 -- where they are not legal.
8056 Static :=
8057 Ada_Version >= Ada_95 and then Statically_Denotes_Entity (P);
8058 Set_Is_Static_Expression (N, Static);
8060 declare
8061 Nod : Node_Id;
8063 begin
8064 Nod := First_Index (P_Type);
8066 -- The expression is static if the array type is constrained
8067 -- by given bounds, and not by an initial expression. Constant
8068 -- strings are static in any case.
8070 if Root_Type (P_Type) /= Standard_String then
8071 Static :=
8072 Static and then not Is_Constr_Subt_For_U_Nominal (P_Type);
8073 Set_Is_Static_Expression (N, Static);
8074 end if;
8076 while Present (Nod) loop
8077 if not Is_Static_Subtype (Etype (Nod)) then
8078 Static := False;
8079 Set_Is_Static_Expression (N, False);
8081 elsif not Is_OK_Static_Subtype (Etype (Nod)) then
8082 Set_Raises_Constraint_Error (N);
8083 Static := False;
8084 Set_Is_Static_Expression (N, False);
8085 end if;
8087 -- If however the index type is generic, or derived from
8088 -- one, attributes cannot be folded.
8090 if Is_Generic_Type (Root_Type (Etype (Nod)))
8091 and then Id /= Attribute_Component_Size
8092 then
8093 return;
8094 end if;
8096 Next_Index (Nod);
8097 end loop;
8098 end;
8099 end if;
8101 -- Check any expressions that are present. Note that these expressions,
8102 -- depending on the particular attribute type, are either part of the
8103 -- attribute designator, or they are arguments in a case where the
8104 -- attribute reference returns a function. In the latter case, the
8105 -- rule in (RM 4.9(22)) applies and in particular requires the type
8106 -- of the expressions to be scalar in order for the attribute to be
8107 -- considered to be static.
8109 declare
8110 E : Node_Id;
8112 begin
8113 E := E1;
8115 while Present (E) loop
8117 -- If expression is not static, then the attribute reference
8118 -- result certainly cannot be static.
8120 if not Is_Static_Expression (E) then
8121 Static := False;
8122 Set_Is_Static_Expression (N, False);
8123 end if;
8125 if Raises_Constraint_Error (E) then
8126 Set_Raises_Constraint_Error (N);
8127 end if;
8129 -- If the result is not known at compile time, or is not of
8130 -- a scalar type, then the result is definitely not static,
8131 -- so we can quit now.
8133 if not Compile_Time_Known_Value (E)
8134 or else not Is_Scalar_Type (Etype (E))
8135 then
8136 -- An odd special case, if this is a Pos attribute, this
8137 -- is where we need to apply a range check since it does
8138 -- not get done anywhere else.
8140 if Id = Attribute_Pos then
8141 if Is_Integer_Type (Etype (E)) then
8142 Apply_Range_Check (E, Etype (N));
8143 end if;
8144 end if;
8146 Check_Expressions;
8147 return;
8149 -- If the expression raises a constraint error, then so does
8150 -- the attribute reference. We keep going in this case because
8151 -- we are still interested in whether the attribute reference
8152 -- is static even if it is not static.
8154 elsif Raises_Constraint_Error (E) then
8155 Set_Raises_Constraint_Error (N);
8156 end if;
8158 Next (E);
8159 end loop;
8161 if Raises_Constraint_Error (Prefix (N)) then
8162 Set_Is_Static_Expression (N, False);
8163 return;
8164 end if;
8165 end;
8167 -- Deal with the case of a static attribute reference that raises
8168 -- constraint error. The Raises_Constraint_Error flag will already
8169 -- have been set, and the Static flag shows whether the attribute
8170 -- reference is static. In any case we certainly can't fold such an
8171 -- attribute reference.
8173 -- Note that the rewriting of the attribute node with the constraint
8174 -- error node is essential in this case, because otherwise Gigi might
8175 -- blow up on one of the attributes it never expects to see.
8177 -- The constraint_error node must have the type imposed by the context,
8178 -- to avoid spurious errors in the enclosing expression.
8180 if Raises_Constraint_Error (N) then
8181 CE_Node :=
8182 Make_Raise_Constraint_Error (Sloc (N),
8183 Reason => CE_Range_Check_Failed);
8184 Set_Etype (CE_Node, Etype (N));
8185 Set_Raises_Constraint_Error (CE_Node);
8186 Check_Expressions;
8187 Rewrite (N, Relocate_Node (CE_Node));
8188 Set_Raises_Constraint_Error (N, True);
8189 return;
8190 end if;
8192 -- At this point we have a potentially foldable attribute reference.
8193 -- If Static is set, then the attribute reference definitely obeys
8194 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
8195 -- folded. If Static is not set, then the attribute may or may not
8196 -- be foldable, and the individual attribute processing routines
8197 -- test Static as required in cases where it makes a difference.
8199 -- In the case where Static is not set, we do know that all the
8200 -- expressions present are at least known at compile time (we assumed
8201 -- above that if this was not the case, then there was no hope of static
8202 -- evaluation). However, we did not require that the bounds of the
8203 -- prefix type be compile time known, let alone static). That's because
8204 -- there are many attributes that can be computed at compile time on
8205 -- non-static subtypes, even though such references are not static
8206 -- expressions.
8208 -- For VAX float, the root type is an IEEE type. So make sure to use the
8209 -- base type instead of the root-type for floating point attributes.
8211 case Id is
8213 -- Attributes related to Ada 2012 iterators; nothing to evaluate for
8214 -- these.
8216 when Attribute_Constant_Indexing
8217 | Attribute_Default_Iterator
8218 | Attribute_Implicit_Dereference
8219 | Attribute_Iterator_Element
8220 | Attribute_Iterable
8221 | Attribute_Variable_Indexing
8223 null;
8225 -- Internal attributes used to deal with Ada 2012 delayed aspects.
8226 -- These were already rejected by the parser. Thus they shouldn't
8227 -- appear here.
8229 when Internal_Attribute_Id =>
8230 raise Program_Error;
8232 --------------
8233 -- Adjacent --
8234 --------------
8236 when Attribute_Adjacent =>
8237 Fold_Ureal
8239 Eval_Fat.Adjacent
8240 (P_Base_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
8241 Static);
8243 ---------
8244 -- Aft --
8245 ---------
8247 when Attribute_Aft =>
8248 Fold_Uint (N, Aft_Value (P_Type), Static);
8250 ---------------
8251 -- Alignment --
8252 ---------------
8254 when Attribute_Alignment => Alignment_Block : declare
8255 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
8257 begin
8258 -- Fold if alignment is set and not otherwise
8260 if Known_Alignment (P_TypeA) then
8261 Fold_Uint (N, Alignment (P_TypeA), Static);
8262 end if;
8263 end Alignment_Block;
8265 -----------------------------
8266 -- Atomic_Always_Lock_Free --
8267 -----------------------------
8269 -- Atomic_Always_Lock_Free attribute is a Boolean, thus no need to fold
8270 -- here.
8272 when Attribute_Atomic_Always_Lock_Free => Atomic_Always_Lock_Free :
8273 declare
8274 V : constant Entity_Id :=
8275 Boolean_Literals
8276 (Support_Atomic_Primitives_On_Target
8277 and then Support_Atomic_Primitives (P_Type));
8279 begin
8280 Rewrite (N, New_Occurrence_Of (V, Loc));
8282 -- Analyze and resolve as boolean. Note that this attribute is a
8283 -- static attribute in GNAT.
8285 Analyze_And_Resolve (N, Standard_Boolean);
8286 Static := True;
8287 Set_Is_Static_Expression (N, True);
8288 end Atomic_Always_Lock_Free;
8290 ---------
8291 -- Bit --
8292 ---------
8294 -- Bit can never be folded
8296 when Attribute_Bit =>
8297 null;
8299 ------------------
8300 -- Body_Version --
8301 ------------------
8303 -- Body_version can never be static
8305 when Attribute_Body_Version =>
8306 null;
8308 -------------
8309 -- Ceiling --
8310 -------------
8312 when Attribute_Ceiling =>
8313 Fold_Ureal
8314 (N, Eval_Fat.Ceiling (P_Base_Type, Expr_Value_R (E1)), Static);
8316 --------------------
8317 -- Component_Size --
8318 --------------------
8320 when Attribute_Component_Size =>
8321 if Known_Static_Component_Size (P_Type) then
8322 Fold_Uint (N, Component_Size (P_Type), Static);
8323 end if;
8325 -------------
8326 -- Compose --
8327 -------------
8329 when Attribute_Compose =>
8330 Fold_Ureal
8332 Eval_Fat.Compose (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
8333 Static);
8335 -----------------
8336 -- Constrained --
8337 -----------------
8339 -- Constrained is never folded for now, there may be cases that
8340 -- could be handled at compile time. To be looked at later.
8342 when Attribute_Constrained =>
8344 -- The expander might fold it and set the static flag accordingly,
8345 -- but with expansion disabled (as in ASIS), it remains as an
8346 -- attribute reference, and this reference is not static.
8348 Set_Is_Static_Expression (N, False);
8350 ---------------
8351 -- Copy_Sign --
8352 ---------------
8354 when Attribute_Copy_Sign =>
8355 Fold_Ureal
8357 Eval_Fat.Copy_Sign
8358 (P_Base_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
8359 Static);
8361 --------------
8362 -- Definite --
8363 --------------
8365 when Attribute_Definite =>
8366 Rewrite (N, New_Occurrence_Of (
8367 Boolean_Literals (Is_Definite_Subtype (P_Entity)), Loc));
8368 Analyze_And_Resolve (N, Standard_Boolean);
8370 -----------
8371 -- Delta --
8372 -----------
8374 when Attribute_Delta =>
8375 Fold_Ureal (N, Delta_Value (P_Type), True);
8377 ------------
8378 -- Denorm --
8379 ------------
8381 when Attribute_Denorm =>
8382 Fold_Uint
8383 (N, UI_From_Int (Boolean'Pos (Has_Denormals (P_Type))), Static);
8385 ---------------------
8386 -- Descriptor_Size --
8387 ---------------------
8389 when Attribute_Descriptor_Size =>
8390 null;
8392 ------------
8393 -- Digits --
8394 ------------
8396 when Attribute_Digits =>
8397 Fold_Uint (N, Digits_Value (P_Type), Static);
8399 ----------
8400 -- Emax --
8401 ----------
8403 when Attribute_Emax =>
8405 -- Ada 83 attribute is defined as (RM83 3.5.8)
8407 -- T'Emax = 4 * T'Mantissa
8409 Fold_Uint (N, 4 * Mantissa, Static);
8411 --------------
8412 -- Enum_Rep --
8413 --------------
8415 when Attribute_Enum_Rep => Enum_Rep : declare
8416 Val : Node_Id;
8418 begin
8419 -- The attribute appears in the form:
8421 -- Enum_Typ'Enum_Rep (Const)
8422 -- Enum_Typ'Enum_Rep (Enum_Lit)
8424 if Present (E1) then
8425 Val := E1;
8427 -- Otherwise the prefix denotes a constant or enumeration literal:
8429 -- Const'Enum_Rep
8430 -- Enum_Lit'Enum_Rep
8432 else
8433 Val := P;
8434 end if;
8436 -- For an enumeration type with a non-standard representation use
8437 -- the Enumeration_Rep field of the proper constant. Note that this
8438 -- will not work for types Character/Wide_[Wide-]Character, since no
8439 -- real entities are created for the enumeration literals, but that
8440 -- does not matter since these two types do not have non-standard
8441 -- representations anyway.
8443 if Is_Enumeration_Type (P_Type)
8444 and then Has_Non_Standard_Rep (P_Type)
8445 then
8446 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (Val)), Static);
8448 -- For enumeration types with standard representations and all other
8449 -- cases (i.e. all integer and modular types), Enum_Rep is equivalent
8450 -- to Pos.
8452 else
8453 Fold_Uint (N, Expr_Value (Val), Static);
8454 end if;
8455 end Enum_Rep;
8457 --------------
8458 -- Enum_Val --
8459 --------------
8461 when Attribute_Enum_Val => Enum_Val : declare
8462 Lit : Node_Id;
8464 begin
8465 -- We have something like Enum_Type'Enum_Val (23), so search for a
8466 -- corresponding value in the list of Enum_Rep values for the type.
8468 Lit := First_Literal (P_Base_Type);
8469 loop
8470 if Enumeration_Rep (Lit) = Expr_Value (E1) then
8471 Fold_Uint (N, Enumeration_Pos (Lit), Static);
8472 exit;
8473 end if;
8475 Next_Literal (Lit);
8477 if No (Lit) then
8478 Apply_Compile_Time_Constraint_Error
8479 (N, "no representation value matches",
8480 CE_Range_Check_Failed,
8481 Warn => not Static);
8482 exit;
8483 end if;
8484 end loop;
8485 end Enum_Val;
8487 -------------
8488 -- Epsilon --
8489 -------------
8491 when Attribute_Epsilon =>
8493 -- Ada 83 attribute is defined as (RM83 3.5.8)
8495 -- T'Epsilon = 2.0**(1 - T'Mantissa)
8497 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
8499 --------------
8500 -- Exponent --
8501 --------------
8503 when Attribute_Exponent =>
8504 Fold_Uint (N,
8505 Eval_Fat.Exponent (P_Base_Type, Expr_Value_R (E1)), Static);
8507 -----------------------
8508 -- Finalization_Size --
8509 -----------------------
8511 when Attribute_Finalization_Size =>
8512 null;
8514 -----------
8515 -- First --
8516 -----------
8518 when Attribute_First =>
8519 Set_Bounds;
8521 if Compile_Time_Known_Value (Lo_Bound) then
8522 if Is_Real_Type (P_Type) then
8523 Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
8524 else
8525 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
8526 end if;
8528 else
8529 Check_Concurrent_Discriminant (Lo_Bound);
8530 end if;
8532 -----------------
8533 -- First_Valid --
8534 -----------------
8536 when Attribute_First_Valid =>
8537 if Has_Predicates (P_Type)
8538 and then Has_Static_Predicate (P_Type)
8539 then
8540 declare
8541 FirstN : constant Node_Id :=
8542 First (Static_Discrete_Predicate (P_Type));
8543 begin
8544 if Nkind (FirstN) = N_Range then
8545 Fold_Uint (N, Expr_Value (Low_Bound (FirstN)), Static);
8546 else
8547 Fold_Uint (N, Expr_Value (FirstN), Static);
8548 end if;
8549 end;
8551 else
8552 Set_Bounds;
8553 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
8554 end if;
8556 -----------------
8557 -- Fixed_Value --
8558 -----------------
8560 when Attribute_Fixed_Value =>
8561 null;
8563 -----------
8564 -- Floor --
8565 -----------
8567 when Attribute_Floor =>
8568 Fold_Ureal
8569 (N, Eval_Fat.Floor (P_Base_Type, Expr_Value_R (E1)), Static);
8571 ----------
8572 -- Fore --
8573 ----------
8575 when Attribute_Fore =>
8576 if Compile_Time_Known_Bounds (P_Type) then
8577 Fold_Uint (N, UI_From_Int (Fore_Value), Static);
8578 end if;
8580 --------------
8581 -- Fraction --
8582 --------------
8584 when Attribute_Fraction =>
8585 Fold_Ureal
8586 (N, Eval_Fat.Fraction (P_Base_Type, Expr_Value_R (E1)), Static);
8588 -----------------------
8589 -- Has_Access_Values --
8590 -----------------------
8592 when Attribute_Has_Access_Values =>
8593 Rewrite (N, New_Occurrence_Of
8594 (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
8595 Analyze_And_Resolve (N, Standard_Boolean);
8597 -----------------------
8598 -- Has_Discriminants --
8599 -----------------------
8601 when Attribute_Has_Discriminants =>
8602 Rewrite (N, New_Occurrence_Of (
8603 Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
8604 Analyze_And_Resolve (N, Standard_Boolean);
8606 ----------------------
8607 -- Has_Same_Storage --
8608 ----------------------
8610 when Attribute_Has_Same_Storage =>
8611 null;
8613 -----------------------
8614 -- Has_Tagged_Values --
8615 -----------------------
8617 when Attribute_Has_Tagged_Values =>
8618 Rewrite (N, New_Occurrence_Of
8619 (Boolean_Literals (Has_Tagged_Component (P_Root_Type)), Loc));
8620 Analyze_And_Resolve (N, Standard_Boolean);
8622 --------------
8623 -- Identity --
8624 --------------
8626 when Attribute_Identity =>
8627 null;
8629 -----------
8630 -- Image --
8631 -----------
8633 -- Image is a scalar attribute, but is never static, because it is
8634 -- not a static function (having a non-scalar argument (RM 4.9(22))
8635 -- However, we can constant-fold the image of an enumeration literal
8636 -- if names are available.
8638 when Attribute_Image =>
8639 if Is_Entity_Name (E1)
8640 and then Ekind (Entity (E1)) = E_Enumeration_Literal
8641 and then not Discard_Names (First_Subtype (Etype (E1)))
8642 and then not Global_Discard_Names
8643 then
8644 declare
8645 Lit : constant Entity_Id := Entity (E1);
8646 Str : String_Id;
8647 begin
8648 Start_String;
8649 Get_Unqualified_Decoded_Name_String (Chars (Lit));
8650 Set_Casing (All_Upper_Case);
8651 Store_String_Chars (Name_Buffer (1 .. Name_Len));
8652 Str := End_String;
8653 Rewrite (N, Make_String_Literal (Loc, Strval => Str));
8654 Analyze_And_Resolve (N, Standard_String);
8655 Set_Is_Static_Expression (N, False);
8656 end;
8657 end if;
8659 -------------------
8660 -- Integer_Value --
8661 -------------------
8663 -- We never try to fold Integer_Value (though perhaps we could???)
8665 when Attribute_Integer_Value =>
8666 null;
8668 -------------------
8669 -- Invalid_Value --
8670 -------------------
8672 -- Invalid_Value is a scalar attribute that is never static, because
8673 -- the value is by design out of range.
8675 when Attribute_Invalid_Value =>
8676 null;
8678 -----------
8679 -- Large --
8680 -----------
8682 when Attribute_Large =>
8684 -- For fixed-point, we use the identity:
8686 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
8688 if Is_Fixed_Point_Type (P_Type) then
8689 Rewrite (N,
8690 Make_Op_Multiply (Loc,
8691 Left_Opnd =>
8692 Make_Op_Subtract (Loc,
8693 Left_Opnd =>
8694 Make_Op_Expon (Loc,
8695 Left_Opnd =>
8696 Make_Real_Literal (Loc, Ureal_2),
8697 Right_Opnd =>
8698 Make_Attribute_Reference (Loc,
8699 Prefix => P,
8700 Attribute_Name => Name_Mantissa)),
8701 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
8703 Right_Opnd =>
8704 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
8706 Analyze_And_Resolve (N, C_Type);
8708 -- Floating-point (Ada 83 compatibility)
8710 else
8711 -- Ada 83 attribute is defined as (RM83 3.5.8)
8713 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
8715 -- where
8717 -- T'Emax = 4 * T'Mantissa
8719 Fold_Ureal
8721 Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
8722 True);
8723 end if;
8725 ---------------
8726 -- Lock_Free --
8727 ---------------
8729 when Attribute_Lock_Free => Lock_Free : declare
8730 V : constant Entity_Id := Boolean_Literals (Uses_Lock_Free (P_Type));
8732 begin
8733 Rewrite (N, New_Occurrence_Of (V, Loc));
8735 -- Analyze and resolve as boolean. Note that this attribute is a
8736 -- static attribute in GNAT.
8738 Analyze_And_Resolve (N, Standard_Boolean);
8739 Static := True;
8740 Set_Is_Static_Expression (N, True);
8741 end Lock_Free;
8743 ----------
8744 -- Last --
8745 ----------
8747 when Attribute_Last =>
8748 Set_Bounds;
8750 if Compile_Time_Known_Value (Hi_Bound) then
8751 if Is_Real_Type (P_Type) then
8752 Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
8753 else
8754 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
8755 end if;
8757 else
8758 Check_Concurrent_Discriminant (Hi_Bound);
8759 end if;
8761 ----------------
8762 -- Last_Valid --
8763 ----------------
8765 when Attribute_Last_Valid =>
8766 if Has_Predicates (P_Type)
8767 and then Has_Static_Predicate (P_Type)
8768 then
8769 declare
8770 LastN : constant Node_Id :=
8771 Last (Static_Discrete_Predicate (P_Type));
8772 begin
8773 if Nkind (LastN) = N_Range then
8774 Fold_Uint (N, Expr_Value (High_Bound (LastN)), Static);
8775 else
8776 Fold_Uint (N, Expr_Value (LastN), Static);
8777 end if;
8778 end;
8780 else
8781 Set_Bounds;
8782 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
8783 end if;
8785 ------------------
8786 -- Leading_Part --
8787 ------------------
8789 when Attribute_Leading_Part =>
8790 Fold_Ureal
8792 Eval_Fat.Leading_Part
8793 (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
8794 Static);
8796 ------------
8797 -- Length --
8798 ------------
8800 when Attribute_Length => Length : declare
8801 Ind : Node_Id;
8803 begin
8804 -- If any index type is a formal type, or derived from one, the
8805 -- bounds are not static. Treating them as static can produce
8806 -- spurious warnings or improper constant folding.
8808 Ind := First_Index (P_Type);
8809 while Present (Ind) loop
8810 if Is_Generic_Type (Root_Type (Etype (Ind))) then
8811 return;
8812 end if;
8814 Next_Index (Ind);
8815 end loop;
8817 Set_Bounds;
8819 -- For two compile time values, we can compute length
8821 if Compile_Time_Known_Value (Lo_Bound)
8822 and then Compile_Time_Known_Value (Hi_Bound)
8823 then
8824 Fold_Uint (N,
8825 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
8826 Static);
8827 end if;
8829 -- One more case is where Hi_Bound and Lo_Bound are compile-time
8830 -- comparable, and we can figure out the difference between them.
8832 declare
8833 Diff : aliased Uint;
8835 begin
8836 case
8837 Compile_Time_Compare
8838 (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
8840 when EQ =>
8841 Fold_Uint (N, Uint_1, Static);
8843 when GT =>
8844 Fold_Uint (N, Uint_0, Static);
8846 when LT =>
8847 if Diff /= No_Uint then
8848 Fold_Uint (N, Diff + 1, Static);
8849 end if;
8851 when others =>
8852 null;
8853 end case;
8854 end;
8855 end Length;
8857 ----------------
8858 -- Loop_Entry --
8859 ----------------
8861 -- Loop_Entry acts as an alias of a constant initialized to the prefix
8862 -- of the said attribute at the point of entry into the related loop. As
8863 -- such, the attribute reference does not need to be evaluated because
8864 -- the prefix is the one that is evaluted.
8866 when Attribute_Loop_Entry =>
8867 null;
8869 -------------
8870 -- Machine --
8871 -------------
8873 when Attribute_Machine =>
8874 Fold_Ureal
8876 Eval_Fat.Machine
8877 (P_Base_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
8878 Static);
8880 ------------------
8881 -- Machine_Emax --
8882 ------------------
8884 when Attribute_Machine_Emax =>
8885 Fold_Uint (N, Machine_Emax_Value (P_Type), Static);
8887 ------------------
8888 -- Machine_Emin --
8889 ------------------
8891 when Attribute_Machine_Emin =>
8892 Fold_Uint (N, Machine_Emin_Value (P_Type), Static);
8894 ----------------------
8895 -- Machine_Mantissa --
8896 ----------------------
8898 when Attribute_Machine_Mantissa =>
8899 Fold_Uint (N, Machine_Mantissa_Value (P_Type), Static);
8901 -----------------------
8902 -- Machine_Overflows --
8903 -----------------------
8905 when Attribute_Machine_Overflows =>
8907 -- Always true for fixed-point
8909 if Is_Fixed_Point_Type (P_Type) then
8910 Fold_Uint (N, True_Value, Static);
8912 -- Floating point case
8914 else
8915 Fold_Uint (N,
8916 UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
8917 Static);
8918 end if;
8920 -------------------
8921 -- Machine_Radix --
8922 -------------------
8924 when Attribute_Machine_Radix =>
8925 if Is_Fixed_Point_Type (P_Type) then
8926 if Is_Decimal_Fixed_Point_Type (P_Type)
8927 and then Machine_Radix_10 (P_Type)
8928 then
8929 Fold_Uint (N, Uint_10, Static);
8930 else
8931 Fold_Uint (N, Uint_2, Static);
8932 end if;
8934 -- All floating-point type always have radix 2
8936 else
8937 Fold_Uint (N, Uint_2, Static);
8938 end if;
8940 ----------------------
8941 -- Machine_Rounding --
8942 ----------------------
8944 -- Note: for the folding case, it is fine to treat Machine_Rounding
8945 -- exactly the same way as Rounding, since this is one of the allowed
8946 -- behaviors, and performance is not an issue here. It might be a bit
8947 -- better to give the same result as it would give at run time, even
8948 -- though the non-determinism is certainly permitted.
8950 when Attribute_Machine_Rounding =>
8951 Fold_Ureal
8952 (N, Eval_Fat.Rounding (P_Base_Type, Expr_Value_R (E1)), Static);
8954 --------------------
8955 -- Machine_Rounds --
8956 --------------------
8958 when Attribute_Machine_Rounds =>
8960 -- Always False for fixed-point
8962 if Is_Fixed_Point_Type (P_Type) then
8963 Fold_Uint (N, False_Value, Static);
8965 -- Else yield proper floating-point result
8967 else
8968 Fold_Uint
8969 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)),
8970 Static);
8971 end if;
8973 ------------------
8974 -- Machine_Size --
8975 ------------------
8977 -- Note: Machine_Size is identical to Object_Size
8979 when Attribute_Machine_Size => Machine_Size : declare
8980 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
8982 begin
8983 if Known_Esize (P_TypeA) then
8984 Fold_Uint (N, Esize (P_TypeA), Static);
8985 end if;
8986 end Machine_Size;
8988 --------------
8989 -- Mantissa --
8990 --------------
8992 when Attribute_Mantissa =>
8994 -- Fixed-point mantissa
8996 if Is_Fixed_Point_Type (P_Type) then
8998 -- Compile time foldable case
9000 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
9001 and then
9002 Compile_Time_Known_Value (Type_High_Bound (P_Type))
9003 then
9004 -- The calculation of the obsolete Ada 83 attribute Mantissa
9005 -- is annoying, because of AI00143, quoted here:
9007 -- !question 84-01-10
9009 -- Consider the model numbers for F:
9011 -- type F is delta 1.0 range -7.0 .. 8.0;
9013 -- The wording requires that F'MANTISSA be the SMALLEST
9014 -- integer number for which each bound of the specified
9015 -- range is either a model number or lies at most small
9016 -- distant from a model number. This means F'MANTISSA
9017 -- is required to be 3 since the range -7.0 .. 7.0 fits
9018 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
9019 -- number, namely, 7. Is this analysis correct? Note that
9020 -- this implies the upper bound of the range is not
9021 -- represented as a model number.
9023 -- !response 84-03-17
9025 -- The analysis is correct. The upper and lower bounds for
9026 -- a fixed point type can lie outside the range of model
9027 -- numbers.
9029 declare
9030 Siz : Uint;
9031 LBound : Ureal;
9032 UBound : Ureal;
9033 Bound : Ureal;
9034 Max_Man : Uint;
9036 begin
9037 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
9038 UBound := Expr_Value_R (Type_High_Bound (P_Type));
9039 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
9040 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
9042 -- If the Bound is exactly a model number, i.e. a multiple
9043 -- of Small, then we back it off by one to get the integer
9044 -- value that must be representable.
9046 if Small_Value (P_Type) * Max_Man = Bound then
9047 Max_Man := Max_Man - 1;
9048 end if;
9050 -- Now find corresponding size = Mantissa value
9052 Siz := Uint_0;
9053 while 2 ** Siz < Max_Man loop
9054 Siz := Siz + 1;
9055 end loop;
9057 Fold_Uint (N, Siz, Static);
9058 end;
9060 else
9061 -- The case of dynamic bounds cannot be evaluated at compile
9062 -- time. Instead we use a runtime routine (see Exp_Attr).
9064 null;
9065 end if;
9067 -- Floating-point Mantissa
9069 else
9070 Fold_Uint (N, Mantissa, Static);
9071 end if;
9073 ---------
9074 -- Max --
9075 ---------
9077 when Attribute_Max =>
9078 if Is_Real_Type (P_Type) then
9079 Fold_Ureal
9080 (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
9081 else
9082 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
9083 end if;
9085 ----------------------------------
9086 -- Max_Alignment_For_Allocation --
9087 ----------------------------------
9089 -- Max_Alignment_For_Allocation is usually the Alignment. However,
9090 -- arrays are allocated with dope, so we need to take into account both
9091 -- the alignment of the array, which comes from the component alignment,
9092 -- and the alignment of the dope. Also, if the alignment is unknown, we
9093 -- use the max (it's OK to be pessimistic).
9095 when Attribute_Max_Alignment_For_Allocation => Max_Align : declare
9096 A : Uint := UI_From_Int (Ttypes.Maximum_Alignment);
9097 begin
9098 if Known_Alignment (P_Type)
9099 and then (not Is_Array_Type (P_Type) or else Alignment (P_Type) > A)
9100 then
9101 A := Alignment (P_Type);
9102 end if;
9104 Fold_Uint (N, A, Static);
9105 end Max_Align;
9107 ----------------------------------
9108 -- Max_Size_In_Storage_Elements --
9109 ----------------------------------
9111 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
9112 -- Storage_Unit boundary. We can fold any cases for which the size
9113 -- is known by the front end.
9115 when Attribute_Max_Size_In_Storage_Elements =>
9116 if Known_Esize (P_Type) then
9117 Fold_Uint (N,
9118 (Esize (P_Type) + System_Storage_Unit - 1) /
9119 System_Storage_Unit,
9120 Static);
9121 end if;
9123 --------------------
9124 -- Mechanism_Code --
9125 --------------------
9127 when Attribute_Mechanism_Code => Mechanism_Code : declare
9128 Formal : Entity_Id;
9129 Mech : Mechanism_Type;
9130 Val : Int;
9132 begin
9133 if No (E1) then
9134 Mech := Mechanism (P_Entity);
9136 else
9137 Val := UI_To_Int (Expr_Value (E1));
9139 Formal := First_Formal (P_Entity);
9140 for J in 1 .. Val - 1 loop
9141 Next_Formal (Formal);
9142 end loop;
9144 Mech := Mechanism (Formal);
9145 end if;
9147 if Mech < 0 then
9148 Fold_Uint (N, UI_From_Int (Int (-Mech)), Static);
9149 end if;
9150 end Mechanism_Code;
9152 ---------
9153 -- Min --
9154 ---------
9156 when Attribute_Min =>
9157 if Is_Real_Type (P_Type) then
9158 Fold_Ureal
9159 (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
9160 else
9161 Fold_Uint
9162 (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
9163 end if;
9165 ---------
9166 -- Mod --
9167 ---------
9169 when Attribute_Mod =>
9170 Fold_Uint
9171 (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
9173 -----------
9174 -- Model --
9175 -----------
9177 when Attribute_Model =>
9178 Fold_Ureal
9179 (N, Eval_Fat.Model (P_Base_Type, Expr_Value_R (E1)), Static);
9181 ----------------
9182 -- Model_Emin --
9183 ----------------
9185 when Attribute_Model_Emin =>
9186 Fold_Uint (N, Model_Emin_Value (P_Base_Type), Static);
9188 -------------------
9189 -- Model_Epsilon --
9190 -------------------
9192 when Attribute_Model_Epsilon =>
9193 Fold_Ureal (N, Model_Epsilon_Value (P_Base_Type), Static);
9195 --------------------
9196 -- Model_Mantissa --
9197 --------------------
9199 when Attribute_Model_Mantissa =>
9200 Fold_Uint (N, Model_Mantissa_Value (P_Base_Type), Static);
9202 -----------------
9203 -- Model_Small --
9204 -----------------
9206 when Attribute_Model_Small =>
9207 Fold_Ureal (N, Model_Small_Value (P_Base_Type), Static);
9209 -------------
9210 -- Modulus --
9211 -------------
9213 when Attribute_Modulus =>
9214 Fold_Uint (N, Modulus (P_Type), Static);
9216 --------------------
9217 -- Null_Parameter --
9218 --------------------
9220 -- Cannot fold, we know the value sort of, but the whole point is
9221 -- that there is no way to talk about this imaginary value except
9222 -- by using the attribute, so we leave it the way it is.
9224 when Attribute_Null_Parameter =>
9225 null;
9227 -----------------
9228 -- Object_Size --
9229 -----------------
9231 -- The Object_Size attribute for a type returns the Esize of the
9232 -- type and can be folded if this value is known.
9234 when Attribute_Object_Size => Object_Size : declare
9235 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9237 begin
9238 if Known_Esize (P_TypeA) then
9239 Fold_Uint (N, Esize (P_TypeA), Static);
9240 end if;
9241 end Object_Size;
9243 ----------------------
9244 -- Overlaps_Storage --
9245 ----------------------
9247 when Attribute_Overlaps_Storage =>
9248 null;
9250 -------------------------
9251 -- Passed_By_Reference --
9252 -------------------------
9254 -- Scalar types are never passed by reference
9256 when Attribute_Passed_By_Reference =>
9257 Fold_Uint (N, False_Value, Static);
9259 ---------
9260 -- Pos --
9261 ---------
9263 when Attribute_Pos =>
9264 Fold_Uint (N, Expr_Value (E1), Static);
9266 ----------
9267 -- Pred --
9268 ----------
9270 when Attribute_Pred =>
9272 -- Floating-point case
9274 if Is_Floating_Point_Type (P_Type) then
9275 Fold_Ureal
9276 (N, Eval_Fat.Pred (P_Base_Type, Expr_Value_R (E1)), Static);
9278 -- Fixed-point case
9280 elsif Is_Fixed_Point_Type (P_Type) then
9281 Fold_Ureal
9282 (N, Expr_Value_R (E1) - Small_Value (P_Type), True);
9284 -- Modular integer case (wraps)
9286 elsif Is_Modular_Integer_Type (P_Type) then
9287 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
9289 -- Other scalar cases
9291 else
9292 pragma Assert (Is_Scalar_Type (P_Type));
9294 if Is_Enumeration_Type (P_Type)
9295 and then Expr_Value (E1) =
9296 Expr_Value (Type_Low_Bound (P_Base_Type))
9297 then
9298 Apply_Compile_Time_Constraint_Error
9299 (N, "Pred of `&''First`",
9300 CE_Overflow_Check_Failed,
9301 Ent => P_Base_Type,
9302 Warn => not Static);
9304 Check_Expressions;
9305 return;
9306 end if;
9308 Fold_Uint (N, Expr_Value (E1) - 1, Static);
9309 end if;
9311 -----------
9312 -- Range --
9313 -----------
9315 -- No processing required, because by this stage, Range has been
9316 -- replaced by First .. Last, so this branch can never be taken.
9318 when Attribute_Range =>
9319 raise Program_Error;
9321 ------------------
9322 -- Range_Length --
9323 ------------------
9325 when Attribute_Range_Length => Range_Length : declare
9326 Diff : aliased Uint;
9328 begin
9329 Set_Bounds;
9331 -- Can fold if both bounds are compile time known
9333 if Compile_Time_Known_Value (Hi_Bound)
9334 and then Compile_Time_Known_Value (Lo_Bound)
9335 then
9336 Fold_Uint (N,
9337 UI_Max
9338 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
9339 Static);
9340 end if;
9342 -- One more case is where Hi_Bound and Lo_Bound are compile-time
9343 -- comparable, and we can figure out the difference between them.
9345 case Compile_Time_Compare
9346 (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
9348 when EQ =>
9349 Fold_Uint (N, Uint_1, Static);
9351 when GT =>
9352 Fold_Uint (N, Uint_0, Static);
9354 when LT =>
9355 if Diff /= No_Uint then
9356 Fold_Uint (N, Diff + 1, Static);
9357 end if;
9359 when others =>
9360 null;
9361 end case;
9362 end Range_Length;
9364 ---------
9365 -- Ref --
9366 ---------
9368 when Attribute_Ref =>
9369 Fold_Uint (N, Expr_Value (E1), Static);
9371 ---------------
9372 -- Remainder --
9373 ---------------
9375 when Attribute_Remainder => Remainder : declare
9376 X : constant Ureal := Expr_Value_R (E1);
9377 Y : constant Ureal := Expr_Value_R (E2);
9379 begin
9380 if UR_Is_Zero (Y) then
9381 Apply_Compile_Time_Constraint_Error
9382 (N, "division by zero in Remainder",
9383 CE_Overflow_Check_Failed,
9384 Warn => not Static);
9386 Check_Expressions;
9387 return;
9388 end if;
9390 Fold_Ureal (N, Eval_Fat.Remainder (P_Base_Type, X, Y), Static);
9391 end Remainder;
9393 -----------------
9394 -- Restriction --
9395 -----------------
9397 when Attribute_Restriction_Set =>
9398 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
9399 Set_Is_Static_Expression (N);
9401 -----------
9402 -- Round --
9403 -----------
9405 when Attribute_Round => Round : declare
9406 Sr : Ureal;
9407 Si : Uint;
9409 begin
9410 -- First we get the (exact result) in units of small
9412 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
9414 -- Now round that exactly to an integer
9416 Si := UR_To_Uint (Sr);
9418 -- Finally the result is obtained by converting back to real
9420 Fold_Ureal (N, Si * Small_Value (C_Type), Static);
9421 end Round;
9423 --------------
9424 -- Rounding --
9425 --------------
9427 when Attribute_Rounding =>
9428 Fold_Ureal
9429 (N, Eval_Fat.Rounding (P_Base_Type, Expr_Value_R (E1)), Static);
9431 ---------------
9432 -- Safe_Emax --
9433 ---------------
9435 when Attribute_Safe_Emax =>
9436 Fold_Uint (N, Safe_Emax_Value (P_Type), Static);
9438 ----------------
9439 -- Safe_First --
9440 ----------------
9442 when Attribute_Safe_First =>
9443 Fold_Ureal (N, Safe_First_Value (P_Type), Static);
9445 ----------------
9446 -- Safe_Large --
9447 ----------------
9449 when Attribute_Safe_Large =>
9450 if Is_Fixed_Point_Type (P_Type) then
9451 Fold_Ureal
9452 (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
9453 else
9454 Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
9455 end if;
9457 ---------------
9458 -- Safe_Last --
9459 ---------------
9461 when Attribute_Safe_Last =>
9462 Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
9464 ----------------
9465 -- Safe_Small --
9466 ----------------
9468 when Attribute_Safe_Small =>
9470 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
9471 -- for fixed-point, since is the same as Small, but we implement
9472 -- it for backwards compatibility.
9474 if Is_Fixed_Point_Type (P_Type) then
9475 Fold_Ureal (N, Small_Value (P_Type), Static);
9477 -- Ada 83 Safe_Small for floating-point cases
9479 else
9480 Fold_Ureal (N, Model_Small_Value (P_Type), Static);
9481 end if;
9483 -----------
9484 -- Scale --
9485 -----------
9487 when Attribute_Scale =>
9488 Fold_Uint (N, Scale_Value (P_Type), Static);
9490 -------------
9491 -- Scaling --
9492 -------------
9494 when Attribute_Scaling =>
9495 Fold_Ureal
9497 Eval_Fat.Scaling
9498 (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
9499 Static);
9501 ------------------
9502 -- Signed_Zeros --
9503 ------------------
9505 when Attribute_Signed_Zeros =>
9506 Fold_Uint
9507 (N, UI_From_Int (Boolean'Pos (Has_Signed_Zeros (P_Type))), Static);
9509 ----------
9510 -- Size --
9511 ----------
9513 -- Size attribute returns the RM size. All scalar types can be folded,
9514 -- as well as any types for which the size is known by the front end,
9515 -- including any type for which a size attribute is specified. This is
9516 -- one of the places where it is annoying that a size of zero means two
9517 -- things (zero size for scalars, unspecified size for non-scalars).
9519 when Attribute_Size
9520 | Attribute_VADS_Size
9522 Size : declare
9523 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9525 begin
9526 if Is_Scalar_Type (P_TypeA)
9527 or else RM_Size (P_TypeA) /= Uint_0
9528 then
9529 -- VADS_Size case
9531 if Id = Attribute_VADS_Size or else Use_VADS_Size then
9532 declare
9533 S : constant Node_Id := Size_Clause (P_TypeA);
9535 begin
9536 -- If a size clause applies, then use the size from it.
9537 -- This is one of the rare cases where we can use the
9538 -- Size_Clause field for a subtype when Has_Size_Clause
9539 -- is False. Consider:
9541 -- type x is range 1 .. 64;
9542 -- for x'size use 12;
9543 -- subtype y is x range 0 .. 3;
9545 -- Here y has a size clause inherited from x, but
9546 -- normally it does not apply, and y'size is 2. However,
9547 -- y'VADS_Size is indeed 12 and not 2.
9549 if Present (S)
9550 and then Is_OK_Static_Expression (Expression (S))
9551 then
9552 Fold_Uint (N, Expr_Value (Expression (S)), Static);
9554 -- If no size is specified, then we simply use the object
9555 -- size in the VADS_Size case (e.g. Natural'Size is equal
9556 -- to Integer'Size, not one less).
9558 else
9559 Fold_Uint (N, Esize (P_TypeA), Static);
9560 end if;
9561 end;
9563 -- Normal case (Size) in which case we want the RM_Size
9565 else
9566 Fold_Uint (N, RM_Size (P_TypeA), Static);
9567 end if;
9568 end if;
9569 end Size;
9571 -----------
9572 -- Small --
9573 -----------
9575 when Attribute_Small =>
9577 -- The floating-point case is present only for Ada 83 compatibility.
9578 -- Note that strictly this is an illegal addition, since we are
9579 -- extending an Ada 95 defined attribute, but we anticipate an
9580 -- ARG ruling that will permit this.
9582 if Is_Floating_Point_Type (P_Type) then
9584 -- Ada 83 attribute is defined as (RM83 3.5.8)
9586 -- T'Small = 2.0**(-T'Emax - 1)
9588 -- where
9590 -- T'Emax = 4 * T'Mantissa
9592 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
9594 -- Normal Ada 95 fixed-point case
9596 else
9597 Fold_Ureal (N, Small_Value (P_Type), True);
9598 end if;
9600 -----------------
9601 -- Stream_Size --
9602 -----------------
9604 when Attribute_Stream_Size =>
9605 null;
9607 ----------
9608 -- Succ --
9609 ----------
9611 when Attribute_Succ =>
9612 -- Floating-point case
9614 if Is_Floating_Point_Type (P_Type) then
9615 Fold_Ureal
9616 (N, Eval_Fat.Succ (P_Base_Type, Expr_Value_R (E1)), Static);
9618 -- Fixed-point case
9620 elsif Is_Fixed_Point_Type (P_Type) then
9621 Fold_Ureal (N, Expr_Value_R (E1) + Small_Value (P_Type), Static);
9623 -- Modular integer case (wraps)
9625 elsif Is_Modular_Integer_Type (P_Type) then
9626 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
9628 -- Other scalar cases
9630 else
9631 pragma Assert (Is_Scalar_Type (P_Type));
9633 if Is_Enumeration_Type (P_Type)
9634 and then Expr_Value (E1) =
9635 Expr_Value (Type_High_Bound (P_Base_Type))
9636 then
9637 Apply_Compile_Time_Constraint_Error
9638 (N, "Succ of `&''Last`",
9639 CE_Overflow_Check_Failed,
9640 Ent => P_Base_Type,
9641 Warn => not Static);
9643 Check_Expressions;
9644 return;
9645 else
9646 Fold_Uint (N, Expr_Value (E1) + 1, Static);
9647 end if;
9648 end if;
9650 ----------------
9651 -- Truncation --
9652 ----------------
9654 when Attribute_Truncation =>
9655 Fold_Ureal
9657 Eval_Fat.Truncation (P_Base_Type, Expr_Value_R (E1)),
9658 Static);
9660 ----------------
9661 -- Type_Class --
9662 ----------------
9664 when Attribute_Type_Class => Type_Class : declare
9665 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
9666 Id : RE_Id;
9668 begin
9669 if Is_Descendant_Of_Address (Typ) then
9670 Id := RE_Type_Class_Address;
9672 elsif Is_Enumeration_Type (Typ) then
9673 Id := RE_Type_Class_Enumeration;
9675 elsif Is_Integer_Type (Typ) then
9676 Id := RE_Type_Class_Integer;
9678 elsif Is_Fixed_Point_Type (Typ) then
9679 Id := RE_Type_Class_Fixed_Point;
9681 elsif Is_Floating_Point_Type (Typ) then
9682 Id := RE_Type_Class_Floating_Point;
9684 elsif Is_Array_Type (Typ) then
9685 Id := RE_Type_Class_Array;
9687 elsif Is_Record_Type (Typ) then
9688 Id := RE_Type_Class_Record;
9690 elsif Is_Access_Type (Typ) then
9691 Id := RE_Type_Class_Access;
9693 elsif Is_Task_Type (Typ) then
9694 Id := RE_Type_Class_Task;
9696 -- We treat protected types like task types. It would make more
9697 -- sense to have another enumeration value, but after all the
9698 -- whole point of this feature is to be exactly DEC compatible,
9699 -- and changing the type Type_Class would not meet this requirement.
9701 elsif Is_Protected_Type (Typ) then
9702 Id := RE_Type_Class_Task;
9704 -- Not clear if there are any other possibilities, but if there
9705 -- are, then we will treat them as the address case.
9707 else
9708 Id := RE_Type_Class_Address;
9709 end if;
9711 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
9712 end Type_Class;
9714 -----------------------
9715 -- Unbiased_Rounding --
9716 -----------------------
9718 when Attribute_Unbiased_Rounding =>
9719 Fold_Ureal
9721 Eval_Fat.Unbiased_Rounding (P_Base_Type, Expr_Value_R (E1)),
9722 Static);
9724 -------------------------
9725 -- Unconstrained_Array --
9726 -------------------------
9728 when Attribute_Unconstrained_Array => Unconstrained_Array : declare
9729 Typ : constant Entity_Id := Underlying_Type (P_Type);
9731 begin
9732 Rewrite (N, New_Occurrence_Of (
9733 Boolean_Literals (
9734 Is_Array_Type (P_Type)
9735 and then not Is_Constrained (Typ)), Loc));
9737 -- Analyze and resolve as boolean, note that this attribute is
9738 -- a static attribute in GNAT.
9740 Analyze_And_Resolve (N, Standard_Boolean);
9741 Static := True;
9742 Set_Is_Static_Expression (N, True);
9743 end Unconstrained_Array;
9745 -- Attribute Update is never static
9747 when Attribute_Update =>
9748 return;
9750 ---------------
9751 -- VADS_Size --
9752 ---------------
9754 -- Processing is shared with Size
9756 ---------
9757 -- Val --
9758 ---------
9760 when Attribute_Val =>
9761 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
9762 or else
9763 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
9764 then
9765 Apply_Compile_Time_Constraint_Error
9766 (N, "Val expression out of range",
9767 CE_Range_Check_Failed,
9768 Warn => not Static);
9770 Check_Expressions;
9771 return;
9773 else
9774 Fold_Uint (N, Expr_Value (E1), Static);
9775 end if;
9777 ----------------
9778 -- Value_Size --
9779 ----------------
9781 -- The Value_Size attribute for a type returns the RM size of the type.
9782 -- This an always be folded for scalar types, and can also be folded for
9783 -- non-scalar types if the size is set. This is one of the places where
9784 -- it is annoying that a size of zero means two things!
9786 when Attribute_Value_Size => Value_Size : declare
9787 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9789 begin
9790 if Is_Scalar_Type (P_TypeA) or else RM_Size (P_TypeA) /= Uint_0 then
9791 Fold_Uint (N, RM_Size (P_TypeA), Static);
9792 end if;
9793 end Value_Size;
9795 -------------
9796 -- Version --
9797 -------------
9799 -- Version can never be static
9801 when Attribute_Version =>
9802 null;
9804 ----------------
9805 -- Wide_Image --
9806 ----------------
9808 -- Wide_Image is a scalar attribute, but is never static, because it
9809 -- is not a static function (having a non-scalar argument (RM 4.9(22))
9811 when Attribute_Wide_Image =>
9812 null;
9814 ---------------------
9815 -- Wide_Wide_Image --
9816 ---------------------
9818 -- Wide_Wide_Image is a scalar attribute but is never static, because it
9819 -- is not a static function (having a non-scalar argument (RM 4.9(22)).
9821 when Attribute_Wide_Wide_Image =>
9822 null;
9824 ---------------------
9825 -- Wide_Wide_Width --
9826 ---------------------
9828 -- Processing for Wide_Wide_Width is combined with Width
9830 ----------------
9831 -- Wide_Width --
9832 ----------------
9834 -- Processing for Wide_Width is combined with Width
9836 -----------
9837 -- Width --
9838 -----------
9840 -- This processing also handles the case of Wide_[Wide_]Width
9842 when Attribute_Width
9843 | Attribute_Wide_Width
9844 | Attribute_Wide_Wide_Width
9846 if Compile_Time_Known_Bounds (P_Type) then
9848 -- Floating-point types
9850 if Is_Floating_Point_Type (P_Type) then
9852 -- Width is zero for a null range (RM 3.5 (38))
9854 if Expr_Value_R (Type_High_Bound (P_Type)) <
9855 Expr_Value_R (Type_Low_Bound (P_Type))
9856 then
9857 Fold_Uint (N, Uint_0, Static);
9859 else
9860 -- For floating-point, we have +N.dddE+nnn where length
9861 -- of ddd is determined by type'Digits - 1, but is one
9862 -- if Digits is one (RM 3.5 (33)).
9864 -- nnn is set to 2 for Short_Float and Float (32 bit
9865 -- floats), and 3 for Long_Float and Long_Long_Float.
9866 -- For machines where Long_Long_Float is the IEEE
9867 -- extended precision type, the exponent takes 4 digits.
9869 declare
9870 Len : Int :=
9871 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
9873 begin
9874 if Esize (P_Type) <= 32 then
9875 Len := Len + 6;
9876 elsif Esize (P_Type) = 64 then
9877 Len := Len + 7;
9878 else
9879 Len := Len + 8;
9880 end if;
9882 Fold_Uint (N, UI_From_Int (Len), Static);
9883 end;
9884 end if;
9886 -- Fixed-point types
9888 elsif Is_Fixed_Point_Type (P_Type) then
9890 -- Width is zero for a null range (RM 3.5 (38))
9892 if Expr_Value (Type_High_Bound (P_Type)) <
9893 Expr_Value (Type_Low_Bound (P_Type))
9894 then
9895 Fold_Uint (N, Uint_0, Static);
9897 -- The non-null case depends on the specific real type
9899 else
9900 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
9902 Fold_Uint
9903 (N, UI_From_Int (Fore_Value + 1) + Aft_Value (P_Type),
9904 Static);
9905 end if;
9907 -- Discrete types
9909 else
9910 declare
9911 R : constant Entity_Id := Root_Type (P_Type);
9912 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
9913 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
9914 W : Nat;
9915 Wt : Nat;
9916 T : Uint;
9917 L : Node_Id;
9918 C : Character;
9920 begin
9921 -- Empty ranges
9923 if Lo > Hi then
9924 W := 0;
9926 -- Width for types derived from Standard.Character
9927 -- and Standard.Wide_[Wide_]Character.
9929 elsif Is_Standard_Character_Type (P_Type) then
9930 W := 0;
9932 -- Set W larger if needed
9934 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
9936 -- All wide characters look like Hex_hhhhhhhh
9938 if J > 255 then
9940 -- No need to compute this more than once
9942 exit;
9944 else
9945 C := Character'Val (J);
9947 -- Test for all cases where Character'Image
9948 -- yields an image that is longer than three
9949 -- characters. First the cases of Reserved_xxx
9950 -- names (length = 12).
9952 case C is
9953 when Reserved_128
9954 | Reserved_129
9955 | Reserved_132
9956 | Reserved_153
9958 Wt := 12;
9960 when BS
9961 | CR
9962 | EM
9963 | FF
9964 | FS
9965 | GS
9966 | HT
9967 | LF
9968 | MW
9969 | PM
9970 | RI
9971 | RS
9972 | SI
9973 | SO
9974 | ST
9975 | US
9976 | VT
9978 Wt := 2;
9980 when ACK
9981 | APC
9982 | BEL
9983 | BPH
9984 | CAN
9985 | CCH
9986 | CSI
9987 | DC1
9988 | DC2
9989 | DC3
9990 | DC4
9991 | DCS
9992 | DEL
9993 | DLE
9994 | ENQ
9995 | EOT
9996 | EPA
9997 | ESA
9998 | ESC
9999 | ETB
10000 | ETX
10001 | HTJ
10002 | HTS
10003 | NAK
10004 | NBH
10005 | NEL
10006 | NUL
10007 | OSC
10008 | PLD
10009 | PLU
10010 | PU1
10011 | PU2
10012 | SCI
10013 | SOH
10014 | SOS
10015 | SPA
10016 | SS2
10017 | SS3
10018 | SSA
10019 | STS
10020 | STX
10021 | SUB
10022 | SYN
10023 | VTS
10025 Wt := 3;
10027 when Space .. Tilde
10028 | No_Break_Space .. LC_Y_Diaeresis
10030 -- Special case of soft hyphen in Ada 2005
10032 if C = Character'Val (16#AD#)
10033 and then Ada_Version >= Ada_2005
10034 then
10035 Wt := 11;
10036 else
10037 Wt := 3;
10038 end if;
10039 end case;
10041 W := Int'Max (W, Wt);
10042 end if;
10043 end loop;
10045 -- Width for types derived from Standard.Boolean
10047 elsif R = Standard_Boolean then
10048 if Lo = 0 then
10049 W := 5; -- FALSE
10050 else
10051 W := 4; -- TRUE
10052 end if;
10054 -- Width for integer types
10056 elsif Is_Integer_Type (P_Type) then
10057 T := UI_Max (abs Lo, abs Hi);
10059 W := 2;
10060 while T >= 10 loop
10061 W := W + 1;
10062 T := T / 10;
10063 end loop;
10065 -- User declared enum type with discard names
10067 elsif Discard_Names (R) then
10069 -- If range is null, result is zero, that has already
10070 -- been dealt with, so what we need is the power of ten
10071 -- that accommodates the Pos of the largest value, which
10072 -- is the high bound of the range + one for the space.
10074 W := 1;
10075 T := Hi;
10076 while T /= 0 loop
10077 T := T / 10;
10078 W := W + 1;
10079 end loop;
10081 -- Only remaining possibility is user declared enum type
10082 -- with normal case of Discard_Names not active.
10084 else
10085 pragma Assert (Is_Enumeration_Type (P_Type));
10087 W := 0;
10088 L := First_Literal (P_Type);
10089 while Present (L) loop
10091 -- Only pay attention to in range characters
10093 if Lo <= Enumeration_Pos (L)
10094 and then Enumeration_Pos (L) <= Hi
10095 then
10096 -- For Width case, use decoded name
10098 if Id = Attribute_Width then
10099 Get_Decoded_Name_String (Chars (L));
10100 Wt := Nat (Name_Len);
10102 -- For Wide_[Wide_]Width, use encoded name, and
10103 -- then adjust for the encoding.
10105 else
10106 Get_Name_String (Chars (L));
10108 -- Character literals are always of length 3
10110 if Name_Buffer (1) = 'Q' then
10111 Wt := 3;
10113 -- Otherwise loop to adjust for upper/wide chars
10115 else
10116 Wt := Nat (Name_Len);
10118 for J in 1 .. Name_Len loop
10119 if Name_Buffer (J) = 'U' then
10120 Wt := Wt - 2;
10121 elsif Name_Buffer (J) = 'W' then
10122 Wt := Wt - 4;
10123 end if;
10124 end loop;
10125 end if;
10126 end if;
10128 W := Int'Max (W, Wt);
10129 end if;
10131 Next_Literal (L);
10132 end loop;
10133 end if;
10135 Fold_Uint (N, UI_From_Int (W), Static);
10136 end;
10137 end if;
10138 end if;
10140 -- The following attributes denote functions that cannot be folded
10142 when Attribute_From_Any
10143 | Attribute_To_Any
10144 | Attribute_TypeCode
10146 null;
10148 -- The following attributes can never be folded, and furthermore we
10149 -- should not even have entered the case statement for any of these.
10150 -- Note that in some cases, the values have already been folded as
10151 -- a result of the processing in Analyze_Attribute or earlier in
10152 -- this procedure.
10154 when Attribute_Abort_Signal
10155 | Attribute_Access
10156 | Attribute_Address
10157 | Attribute_Address_Size
10158 | Attribute_Asm_Input
10159 | Attribute_Asm_Output
10160 | Attribute_Base
10161 | Attribute_Bit_Order
10162 | Attribute_Bit_Position
10163 | Attribute_Callable
10164 | Attribute_Caller
10165 | Attribute_Class
10166 | Attribute_Code_Address
10167 | Attribute_Compiler_Version
10168 | Attribute_Count
10169 | Attribute_Default_Bit_Order
10170 | Attribute_Default_Scalar_Storage_Order
10171 | Attribute_Deref
10172 | Attribute_Elaborated
10173 | Attribute_Elab_Body
10174 | Attribute_Elab_Spec
10175 | Attribute_Elab_Subp_Body
10176 | Attribute_Enabled
10177 | Attribute_External_Tag
10178 | Attribute_Fast_Math
10179 | Attribute_First_Bit
10180 | Attribute_Img
10181 | Attribute_Input
10182 | Attribute_Last_Bit
10183 | Attribute_Library_Level
10184 | Attribute_Maximum_Alignment
10185 | Attribute_Old
10186 | Attribute_Output
10187 | Attribute_Partition_ID
10188 | Attribute_Pool_Address
10189 | Attribute_Position
10190 | Attribute_Priority
10191 | Attribute_Read
10192 | Attribute_Result
10193 | Attribute_Scalar_Storage_Order
10194 | Attribute_Simple_Storage_Pool
10195 | Attribute_Storage_Pool
10196 | Attribute_Storage_Size
10197 | Attribute_Storage_Unit
10198 | Attribute_Stub_Type
10199 | Attribute_System_Allocator_Alignment
10200 | Attribute_Tag
10201 | Attribute_Target_Name
10202 | Attribute_Terminated
10203 | Attribute_To_Address
10204 | Attribute_Type_Key
10205 | Attribute_Unchecked_Access
10206 | Attribute_Universal_Literal_String
10207 | Attribute_Unrestricted_Access
10208 | Attribute_Valid
10209 | Attribute_Valid_Scalars
10210 | Attribute_Value
10211 | Attribute_Wchar_T_Size
10212 | Attribute_Wide_Value
10213 | Attribute_Wide_Wide_Value
10214 | Attribute_Word_Size
10215 | Attribute_Write
10217 raise Program_Error;
10218 end case;
10220 -- At the end of the case, one more check. If we did a static evaluation
10221 -- so that the result is now a literal, then set Is_Static_Expression
10222 -- in the constant only if the prefix type is a static subtype. For
10223 -- non-static subtypes, the folding is still OK, but not static.
10225 -- An exception is the GNAT attribute Constrained_Array which is
10226 -- defined to be a static attribute in all cases.
10228 if Nkind_In (N, N_Integer_Literal,
10229 N_Real_Literal,
10230 N_Character_Literal,
10231 N_String_Literal)
10232 or else (Is_Entity_Name (N)
10233 and then Ekind (Entity (N)) = E_Enumeration_Literal)
10234 then
10235 Set_Is_Static_Expression (N, Static);
10237 -- If this is still an attribute reference, then it has not been folded
10238 -- and that means that its expressions are in a non-static context.
10240 elsif Nkind (N) = N_Attribute_Reference then
10241 Check_Expressions;
10243 -- Note: the else case not covered here are odd cases where the
10244 -- processing has transformed the attribute into something other
10245 -- than a constant. Nothing more to do in such cases.
10247 else
10248 null;
10249 end if;
10250 end Eval_Attribute;
10252 ------------------------------
10253 -- Is_Anonymous_Tagged_Base --
10254 ------------------------------
10256 function Is_Anonymous_Tagged_Base
10257 (Anon : Entity_Id;
10258 Typ : Entity_Id) return Boolean
10260 begin
10261 return
10262 Anon = Current_Scope
10263 and then Is_Itype (Anon)
10264 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
10265 end Is_Anonymous_Tagged_Base;
10267 --------------------------------
10268 -- Name_Implies_Lvalue_Prefix --
10269 --------------------------------
10271 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean is
10272 pragma Assert (Is_Attribute_Name (Nam));
10273 begin
10274 return Attribute_Name_Implies_Lvalue_Prefix (Get_Attribute_Id (Nam));
10275 end Name_Implies_Lvalue_Prefix;
10277 -----------------------
10278 -- Resolve_Attribute --
10279 -----------------------
10281 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
10282 Loc : constant Source_Ptr := Sloc (N);
10283 P : constant Node_Id := Prefix (N);
10284 Aname : constant Name_Id := Attribute_Name (N);
10285 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
10286 Btyp : constant Entity_Id := Base_Type (Typ);
10287 Des_Btyp : Entity_Id;
10288 Index : Interp_Index;
10289 It : Interp;
10290 Nom_Subt : Entity_Id;
10292 procedure Accessibility_Message;
10293 -- Error, or warning within an instance, if the static accessibility
10294 -- rules of 3.10.2 are violated.
10296 function Declared_Within_Generic_Unit
10297 (Entity : Entity_Id;
10298 Generic_Unit : Node_Id) return Boolean;
10299 -- Returns True if Declared_Entity is declared within the declarative
10300 -- region of Generic_Unit; otherwise returns False.
10302 ---------------------------
10303 -- Accessibility_Message --
10304 ---------------------------
10306 procedure Accessibility_Message is
10307 Indic : Node_Id := Parent (Parent (N));
10309 begin
10310 -- In an instance, this is a runtime check, but one we
10311 -- know will fail, so generate an appropriate warning.
10313 if In_Instance_Body then
10314 Error_Msg_Warn := SPARK_Mode /= On;
10315 Error_Msg_F
10316 ("non-local pointer cannot point to local object<<", P);
10317 Error_Msg_F ("\Program_Error [<<", P);
10318 Rewrite (N,
10319 Make_Raise_Program_Error (Loc,
10320 Reason => PE_Accessibility_Check_Failed));
10321 Set_Etype (N, Typ);
10322 return;
10324 else
10325 Error_Msg_F ("non-local pointer cannot point to local object", P);
10327 -- Check for case where we have a missing access definition
10329 if Is_Record_Type (Current_Scope)
10330 and then
10331 Nkind_In (Parent (N), N_Discriminant_Association,
10332 N_Index_Or_Discriminant_Constraint)
10333 then
10334 Indic := Parent (Parent (N));
10335 while Present (Indic)
10336 and then Nkind (Indic) /= N_Subtype_Indication
10337 loop
10338 Indic := Parent (Indic);
10339 end loop;
10341 if Present (Indic) then
10342 Error_Msg_NE
10343 ("\use an access definition for" &
10344 " the access discriminant of&",
10345 N, Entity (Subtype_Mark (Indic)));
10346 end if;
10347 end if;
10348 end if;
10349 end Accessibility_Message;
10351 ----------------------------------
10352 -- Declared_Within_Generic_Unit --
10353 ----------------------------------
10355 function Declared_Within_Generic_Unit
10356 (Entity : Entity_Id;
10357 Generic_Unit : Node_Id) return Boolean
10359 Generic_Encloser : Node_Id := Enclosing_Generic_Unit (Entity);
10361 begin
10362 while Present (Generic_Encloser) loop
10363 if Generic_Encloser = Generic_Unit then
10364 return True;
10365 end if;
10367 -- We have to step to the scope of the generic's entity, because
10368 -- otherwise we'll just get back the same generic.
10370 Generic_Encloser :=
10371 Enclosing_Generic_Unit
10372 (Scope (Defining_Entity (Generic_Encloser)));
10373 end loop;
10375 return False;
10376 end Declared_Within_Generic_Unit;
10378 -- Start of processing for Resolve_Attribute
10380 begin
10381 -- If error during analysis, no point in continuing, except for array
10382 -- types, where we get better recovery by using unconstrained indexes
10383 -- than nothing at all (see Check_Array_Type).
10385 if Error_Posted (N)
10386 and then Attr_Id /= Attribute_First
10387 and then Attr_Id /= Attribute_Last
10388 and then Attr_Id /= Attribute_Length
10389 and then Attr_Id /= Attribute_Range
10390 then
10391 return;
10392 end if;
10394 -- If attribute was universal type, reset to actual type
10396 if Etype (N) = Universal_Integer
10397 or else Etype (N) = Universal_Real
10398 then
10399 Set_Etype (N, Typ);
10400 end if;
10402 -- Remaining processing depends on attribute
10404 case Attr_Id is
10406 ------------
10407 -- Access --
10408 ------------
10410 -- For access attributes, if the prefix denotes an entity, it is
10411 -- interpreted as a name, never as a call. It may be overloaded,
10412 -- in which case resolution uses the profile of the context type.
10413 -- Otherwise prefix must be resolved.
10415 when Attribute_Access
10416 | Attribute_Unchecked_Access
10417 | Attribute_Unrestricted_Access
10419 -- Note possible modification if we have a variable
10421 if Is_Variable (P) then
10422 declare
10423 PN : constant Node_Id := Parent (N);
10424 Nm : Node_Id;
10426 Note : Boolean := True;
10427 -- Skip this for the case of Unrestricted_Access occuring in
10428 -- the context of a Valid check, since this otherwise leads
10429 -- to a missed warning (the Valid check does not really
10430 -- modify!) If this case, Note will be reset to False.
10432 -- Skip it as well if the type is an Acccess_To_Constant,
10433 -- given that no use of the value can modify the prefix.
10435 begin
10436 if Attr_Id = Attribute_Unrestricted_Access
10437 and then Nkind (PN) = N_Function_Call
10438 then
10439 Nm := Name (PN);
10441 if Nkind (Nm) = N_Expanded_Name
10442 and then Chars (Nm) = Name_Valid
10443 and then Nkind (Prefix (Nm)) = N_Identifier
10444 and then Chars (Prefix (Nm)) = Name_Attr_Long_Float
10445 then
10446 Note := False;
10447 end if;
10449 elsif Is_Access_Constant (Typ) then
10450 Note := False;
10451 end if;
10453 if Note then
10454 Note_Possible_Modification (P, Sure => False);
10455 end if;
10456 end;
10457 end if;
10459 -- The following comes from a query concerning improper use of
10460 -- universal_access in equality tests involving anonymous access
10461 -- types. Another good reason for 'Ref, but for now disable the
10462 -- test, which breaks several filed tests???
10464 if Ekind (Typ) = E_Anonymous_Access_Type
10465 and then Nkind_In (Parent (N), N_Op_Eq, N_Op_Ne)
10466 and then False
10467 then
10468 Error_Msg_N ("need unique type to resolve 'Access", N);
10469 Error_Msg_N ("\qualify attribute with some access type", N);
10470 end if;
10472 -- Case where prefix is an entity name
10474 if Is_Entity_Name (P) then
10476 -- Deal with case where prefix itself is overloaded
10478 if Is_Overloaded (P) then
10479 Get_First_Interp (P, Index, It);
10480 while Present (It.Nam) loop
10481 if Type_Conformant (Designated_Type (Typ), It.Nam) then
10482 Set_Entity (P, It.Nam);
10484 -- The prefix is definitely NOT overloaded anymore at
10485 -- this point, so we reset the Is_Overloaded flag to
10486 -- avoid any confusion when reanalyzing the node.
10488 Set_Is_Overloaded (P, False);
10489 Set_Is_Overloaded (N, False);
10490 Generate_Reference (Entity (P), P);
10491 exit;
10492 end if;
10494 Get_Next_Interp (Index, It);
10495 end loop;
10497 -- If Prefix is a subprogram name, this reference freezes,
10498 -- but not if within spec expression mode. The profile of
10499 -- the subprogram is not frozen at this point.
10501 if not In_Spec_Expression then
10502 Freeze_Before (N, Entity (P), Do_Freeze_Profile => False);
10503 end if;
10505 -- If it is a type, there is nothing to resolve.
10506 -- If it is a subprogram, do not freeze its profile.
10507 -- If it is an object, complete its resolution.
10509 elsif Is_Overloadable (Entity (P)) then
10510 if not In_Spec_Expression then
10511 Freeze_Before (N, Entity (P), Do_Freeze_Profile => False);
10512 end if;
10514 -- Nothing to do if prefix is a type name
10516 elsif Is_Type (Entity (P)) then
10517 null;
10519 -- Otherwise non-overloaded other case, resolve the prefix
10521 else
10522 Resolve (P);
10523 end if;
10525 -- Some further error checks
10527 Error_Msg_Name_1 := Aname;
10529 if not Is_Entity_Name (P) then
10530 null;
10532 elsif Is_Overloadable (Entity (P))
10533 and then Is_Abstract_Subprogram (Entity (P))
10534 then
10535 Error_Msg_F ("prefix of % attribute cannot be abstract", P);
10536 Set_Etype (N, Any_Type);
10538 elsif Ekind (Entity (P)) = E_Enumeration_Literal then
10539 Error_Msg_F
10540 ("prefix of % attribute cannot be enumeration literal", P);
10541 Set_Etype (N, Any_Type);
10543 -- An attempt to take 'Access of a function that renames an
10544 -- enumeration literal. Issue a specialized error message.
10546 elsif Ekind (Entity (P)) = E_Function
10547 and then Present (Alias (Entity (P)))
10548 and then Ekind (Alias (Entity (P))) = E_Enumeration_Literal
10549 then
10550 Error_Msg_F
10551 ("prefix of % attribute cannot be function renaming "
10552 & "an enumeration literal", P);
10553 Set_Etype (N, Any_Type);
10555 elsif Convention (Entity (P)) = Convention_Intrinsic then
10556 Error_Msg_F ("prefix of % attribute cannot be intrinsic", P);
10557 Set_Etype (N, Any_Type);
10558 end if;
10560 -- Assignments, return statements, components of aggregates,
10561 -- generic instantiations will require convention checks if
10562 -- the type is an access to subprogram. Given that there will
10563 -- also be accessibility checks on those, this is where the
10564 -- checks can eventually be centralized ???
10566 if Ekind_In (Btyp, E_Access_Protected_Subprogram_Type,
10567 E_Access_Subprogram_Type,
10568 E_Anonymous_Access_Protected_Subprogram_Type,
10569 E_Anonymous_Access_Subprogram_Type)
10570 then
10571 -- Deal with convention mismatch
10573 if Convention (Designated_Type (Btyp)) /=
10574 Convention (Entity (P))
10575 then
10576 -- The rule in 6.3.1 (8) deserves a special error
10577 -- message.
10579 if Convention (Btyp) = Convention_Intrinsic
10580 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
10581 and then Is_Entity_Name (Name (Parent (N)))
10582 and then Inside_A_Generic
10583 then
10584 declare
10585 Subp : constant Entity_Id :=
10586 Entity (Name (Parent (N)));
10587 begin
10588 if Convention (Subp) = Convention_Intrinsic then
10589 Error_Msg_FE
10590 ("?subprogram and its formal access "
10591 & "parameters have convention Intrinsic",
10592 Parent (N), Subp);
10593 Error_Msg_N
10594 ("actual cannot be access attribute", N);
10595 end if;
10596 end;
10598 else
10599 Error_Msg_FE
10600 ("subprogram & has wrong convention", P, Entity (P));
10601 Error_Msg_Sloc := Sloc (Btyp);
10602 Error_Msg_FE ("\does not match & declared#", P, Btyp);
10603 end if;
10605 if not Is_Itype (Btyp)
10606 and then not Has_Convention_Pragma (Btyp)
10607 then
10608 Error_Msg_FE
10609 ("\probable missing pragma Convention for &",
10610 P, Btyp);
10611 end if;
10613 else
10614 Check_Subtype_Conformant
10615 (New_Id => Entity (P),
10616 Old_Id => Designated_Type (Btyp),
10617 Err_Loc => P);
10618 end if;
10620 if Attr_Id = Attribute_Unchecked_Access then
10621 Error_Msg_Name_1 := Aname;
10622 Error_Msg_F
10623 ("attribute% cannot be applied to a subprogram", P);
10625 elsif Aname = Name_Unrestricted_Access then
10626 null; -- Nothing to check
10628 -- Check the static accessibility rule of 3.10.2(32).
10629 -- This rule also applies within the private part of an
10630 -- instantiation. This rule does not apply to anonymous
10631 -- access-to-subprogram types in access parameters.
10633 elsif Attr_Id = Attribute_Access
10634 and then not In_Instance_Body
10635 and then
10636 (Ekind (Btyp) = E_Access_Subprogram_Type
10637 or else Is_Local_Anonymous_Access (Btyp))
10638 and then Subprogram_Access_Level (Entity (P)) >
10639 Type_Access_Level (Btyp)
10640 then
10641 Error_Msg_F
10642 ("subprogram must not be deeper than access type", P);
10644 -- Check the restriction of 3.10.2(32) that disallows the
10645 -- access attribute within a generic body when the ultimate
10646 -- ancestor of the type of the attribute is declared outside
10647 -- of the generic unit and the subprogram is declared within
10648 -- that generic unit. This includes any such attribute that
10649 -- occurs within the body of a generic unit that is a child
10650 -- of the generic unit where the subprogram is declared.
10652 -- The rule also prohibits applying the attribute when the
10653 -- access type is a generic formal access type (since the
10654 -- level of the actual type is not known). This restriction
10655 -- does not apply when the attribute type is an anonymous
10656 -- access-to-subprogram type. Note that this check was
10657 -- revised by AI-229, because the original Ada 95 rule
10658 -- was too lax. The original rule only applied when the
10659 -- subprogram was declared within the body of the generic,
10660 -- which allowed the possibility of dangling references).
10661 -- The rule was also too strict in some cases, in that it
10662 -- didn't permit the access to be declared in the generic
10663 -- spec, whereas the revised rule does (as long as it's not
10664 -- a formal type).
10666 -- There are a couple of subtleties of the test for applying
10667 -- the check that are worth noting. First, we only apply it
10668 -- when the levels of the subprogram and access type are the
10669 -- same (the case where the subprogram is statically deeper
10670 -- was applied above, and the case where the type is deeper
10671 -- is always safe). Second, we want the check to apply
10672 -- within nested generic bodies and generic child unit
10673 -- bodies, but not to apply to an attribute that appears in
10674 -- the generic unit's specification. This is done by testing
10675 -- that the attribute's innermost enclosing generic body is
10676 -- not the same as the innermost generic body enclosing the
10677 -- generic unit where the subprogram is declared (we don't
10678 -- want the check to apply when the access attribute is in
10679 -- the spec and there's some other generic body enclosing
10680 -- generic). Finally, there's no point applying the check
10681 -- when within an instance, because any violations will have
10682 -- been caught by the compilation of the generic unit.
10684 -- We relax this check in Relaxed_RM_Semantics mode for
10685 -- compatibility with legacy code for use by Ada source
10686 -- code analyzers (e.g. CodePeer).
10688 elsif Attr_Id = Attribute_Access
10689 and then not Relaxed_RM_Semantics
10690 and then not In_Instance
10691 and then Present (Enclosing_Generic_Unit (Entity (P)))
10692 and then Present (Enclosing_Generic_Body (N))
10693 and then Enclosing_Generic_Body (N) /=
10694 Enclosing_Generic_Body
10695 (Enclosing_Generic_Unit (Entity (P)))
10696 and then Subprogram_Access_Level (Entity (P)) =
10697 Type_Access_Level (Btyp)
10698 and then Ekind (Btyp) /=
10699 E_Anonymous_Access_Subprogram_Type
10700 and then Ekind (Btyp) /=
10701 E_Anonymous_Access_Protected_Subprogram_Type
10702 then
10703 -- The attribute type's ultimate ancestor must be
10704 -- declared within the same generic unit as the
10705 -- subprogram is declared (including within another
10706 -- nested generic unit). The error message is
10707 -- specialized to say "ancestor" for the case where the
10708 -- access type is not its own ancestor, since saying
10709 -- simply "access type" would be very confusing.
10711 if not Declared_Within_Generic_Unit
10712 (Root_Type (Btyp),
10713 Enclosing_Generic_Unit (Entity (P)))
10714 then
10715 Error_Msg_N
10716 ("''Access attribute not allowed in generic body",
10719 if Root_Type (Btyp) = Btyp then
10720 Error_Msg_NE
10721 ("\because " &
10722 "access type & is declared outside " &
10723 "generic unit (RM 3.10.2(32))", N, Btyp);
10724 else
10725 Error_Msg_NE
10726 ("\because ancestor of " &
10727 "access type & is declared outside " &
10728 "generic unit (RM 3.10.2(32))", N, Btyp);
10729 end if;
10731 Error_Msg_NE
10732 ("\move ''Access to private part, or " &
10733 "(Ada 2005) use anonymous access type instead of &",
10734 N, Btyp);
10736 -- If the ultimate ancestor of the attribute's type is
10737 -- a formal type, then the attribute is illegal because
10738 -- the actual type might be declared at a higher level.
10739 -- The error message is specialized to say "ancestor"
10740 -- for the case where the access type is not its own
10741 -- ancestor, since saying simply "access type" would be
10742 -- very confusing.
10744 elsif Is_Generic_Type (Root_Type (Btyp)) then
10745 if Root_Type (Btyp) = Btyp then
10746 Error_Msg_N
10747 ("access type must not be a generic formal type",
10749 else
10750 Error_Msg_N
10751 ("ancestor access type must not be a generic " &
10752 "formal type", N);
10753 end if;
10754 end if;
10755 end if;
10756 end if;
10758 -- If this is a renaming, an inherited operation, or a
10759 -- subprogram instance, use the original entity. This may make
10760 -- the node type-inconsistent, so this transformation can only
10761 -- be done if the node will not be reanalyzed. In particular,
10762 -- if it is within a default expression, the transformation
10763 -- must be delayed until the default subprogram is created for
10764 -- it, when the enclosing subprogram is frozen.
10766 if Is_Entity_Name (P)
10767 and then Is_Overloadable (Entity (P))
10768 and then Present (Alias (Entity (P)))
10769 and then Expander_Active
10770 then
10771 Rewrite (P,
10772 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
10773 end if;
10775 elsif Nkind (P) = N_Selected_Component
10776 and then Is_Overloadable (Entity (Selector_Name (P)))
10777 then
10778 -- Protected operation. If operation is overloaded, must
10779 -- disambiguate. Prefix that denotes protected object itself
10780 -- is resolved with its own type.
10782 if Attr_Id = Attribute_Unchecked_Access then
10783 Error_Msg_Name_1 := Aname;
10784 Error_Msg_F
10785 ("attribute% cannot be applied to protected operation", P);
10786 end if;
10788 Resolve (Prefix (P));
10789 Generate_Reference (Entity (Selector_Name (P)), P);
10791 -- Implement check implied by 3.10.2 (18.1/2) : F.all'access is
10792 -- statically illegal if F is an anonymous access to subprogram.
10794 elsif Nkind (P) = N_Explicit_Dereference
10795 and then Is_Entity_Name (Prefix (P))
10796 and then Ekind (Etype (Entity (Prefix (P)))) =
10797 E_Anonymous_Access_Subprogram_Type
10798 then
10799 Error_Msg_N ("anonymous access to subprogram "
10800 & "has deeper accessibility than any master", P);
10802 elsif Is_Overloaded (P) then
10804 -- Use the designated type of the context to disambiguate
10805 -- Note that this was not strictly conformant to Ada 95,
10806 -- but was the implementation adopted by most Ada 95 compilers.
10807 -- The use of the context type to resolve an Access attribute
10808 -- reference is now mandated in AI-235 for Ada 2005.
10810 declare
10811 Index : Interp_Index;
10812 It : Interp;
10814 begin
10815 Get_First_Interp (P, Index, It);
10816 while Present (It.Typ) loop
10817 if Covers (Designated_Type (Typ), It.Typ) then
10818 Resolve (P, It.Typ);
10819 exit;
10820 end if;
10822 Get_Next_Interp (Index, It);
10823 end loop;
10824 end;
10825 else
10826 Resolve (P);
10827 end if;
10829 -- X'Access is illegal if X denotes a constant and the access type
10830 -- is access-to-variable. Same for 'Unchecked_Access. The rule
10831 -- does not apply to 'Unrestricted_Access. If the reference is a
10832 -- default-initialized aggregate component for a self-referential
10833 -- type the reference is legal.
10835 if not (Ekind (Btyp) = E_Access_Subprogram_Type
10836 or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
10837 or else (Is_Record_Type (Btyp)
10838 and then
10839 Present (Corresponding_Remote_Type (Btyp)))
10840 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
10841 or else Ekind (Btyp)
10842 = E_Anonymous_Access_Protected_Subprogram_Type
10843 or else Is_Access_Constant (Btyp)
10844 or else Is_Variable (P)
10845 or else Attr_Id = Attribute_Unrestricted_Access)
10846 then
10847 if Is_Entity_Name (P)
10848 and then Is_Type (Entity (P))
10849 then
10850 -- Legality of a self-reference through an access
10851 -- attribute has been verified in Analyze_Access_Attribute.
10853 null;
10855 elsif Comes_From_Source (N) then
10856 Error_Msg_F ("access-to-variable designates constant", P);
10857 end if;
10858 end if;
10860 Des_Btyp := Designated_Type (Btyp);
10862 if Ada_Version >= Ada_2005
10863 and then Is_Incomplete_Type (Des_Btyp)
10864 then
10865 -- Ada 2005 (AI-412): If the (sub)type is a limited view of an
10866 -- imported entity, and the non-limited view is visible, make
10867 -- use of it. If it is an incomplete subtype, use the base type
10868 -- in any case.
10870 if From_Limited_With (Des_Btyp)
10871 and then Present (Non_Limited_View (Des_Btyp))
10872 then
10873 Des_Btyp := Non_Limited_View (Des_Btyp);
10875 elsif Ekind (Des_Btyp) = E_Incomplete_Subtype then
10876 Des_Btyp := Etype (Des_Btyp);
10877 end if;
10878 end if;
10880 if (Attr_Id = Attribute_Access
10881 or else
10882 Attr_Id = Attribute_Unchecked_Access)
10883 and then (Ekind (Btyp) = E_General_Access_Type
10884 or else Ekind (Btyp) = E_Anonymous_Access_Type)
10885 then
10886 -- Ada 2005 (AI-230): Check the accessibility of anonymous
10887 -- access types for stand-alone objects, record and array
10888 -- components, and return objects. For a component definition
10889 -- the level is the same of the enclosing composite type.
10891 if Ada_Version >= Ada_2005
10892 and then (Is_Local_Anonymous_Access (Btyp)
10894 -- Handle cases where Btyp is the anonymous access
10895 -- type of an Ada 2012 stand-alone object.
10897 or else Nkind (Associated_Node_For_Itype (Btyp)) =
10898 N_Object_Declaration)
10899 and then
10900 Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10901 and then Attr_Id = Attribute_Access
10902 then
10903 -- In an instance, this is a runtime check, but one we know
10904 -- will fail, so generate an appropriate warning. As usual,
10905 -- this kind of warning is an error in SPARK mode.
10907 if In_Instance_Body then
10908 Error_Msg_Warn := SPARK_Mode /= On;
10909 Error_Msg_F
10910 ("non-local pointer cannot point to local object<<", P);
10911 Error_Msg_F ("\Program_Error [<<", P);
10913 Rewrite (N,
10914 Make_Raise_Program_Error (Loc,
10915 Reason => PE_Accessibility_Check_Failed));
10916 Set_Etype (N, Typ);
10918 else
10919 Error_Msg_F
10920 ("non-local pointer cannot point to local object", P);
10921 end if;
10922 end if;
10924 if Is_Dependent_Component_Of_Mutable_Object (P) then
10925 Error_Msg_F
10926 ("illegal attribute for discriminant-dependent component",
10928 end if;
10930 -- Check static matching rule of 3.10.2(27). Nominal subtype
10931 -- of the prefix must statically match the designated type.
10933 Nom_Subt := Etype (P);
10935 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
10936 Nom_Subt := Base_Type (Nom_Subt);
10937 end if;
10939 if Is_Tagged_Type (Designated_Type (Typ)) then
10941 -- If the attribute is in the context of an access
10942 -- parameter, then the prefix is allowed to be of
10943 -- the class-wide type (by AI-127).
10945 if Ekind (Typ) = E_Anonymous_Access_Type then
10946 if not Covers (Designated_Type (Typ), Nom_Subt)
10947 and then not Covers (Nom_Subt, Designated_Type (Typ))
10948 then
10949 declare
10950 Desig : Entity_Id;
10952 begin
10953 Desig := Designated_Type (Typ);
10955 if Is_Class_Wide_Type (Desig) then
10956 Desig := Etype (Desig);
10957 end if;
10959 if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
10960 null;
10962 else
10963 Error_Msg_FE
10964 ("type of prefix: & not compatible",
10965 P, Nom_Subt);
10966 Error_Msg_FE
10967 ("\with &, the expected designated type",
10968 P, Designated_Type (Typ));
10969 end if;
10970 end;
10971 end if;
10973 elsif not Covers (Designated_Type (Typ), Nom_Subt)
10974 or else
10975 (not Is_Class_Wide_Type (Designated_Type (Typ))
10976 and then Is_Class_Wide_Type (Nom_Subt))
10977 then
10978 Error_Msg_FE
10979 ("type of prefix: & is not covered", P, Nom_Subt);
10980 Error_Msg_FE
10981 ("\by &, the expected designated type" &
10982 " (RM 3.10.2 (27))", P, Designated_Type (Typ));
10983 end if;
10985 if Is_Class_Wide_Type (Designated_Type (Typ))
10986 and then Has_Discriminants (Etype (Designated_Type (Typ)))
10987 and then Is_Constrained (Etype (Designated_Type (Typ)))
10988 and then Designated_Type (Typ) /= Nom_Subt
10989 then
10990 Apply_Discriminant_Check
10991 (N, Etype (Designated_Type (Typ)));
10992 end if;
10994 -- Ada 2005 (AI-363): Require static matching when designated
10995 -- type has discriminants and a constrained partial view, since
10996 -- in general objects of such types are mutable, so we can't
10997 -- allow the access value to designate a constrained object
10998 -- (because access values must be assumed to designate mutable
10999 -- objects when designated type does not impose a constraint).
11001 elsif Subtypes_Statically_Match (Des_Btyp, Nom_Subt) then
11002 null;
11004 elsif Has_Discriminants (Designated_Type (Typ))
11005 and then not Is_Constrained (Des_Btyp)
11006 and then
11007 (Ada_Version < Ada_2005
11008 or else
11009 not Object_Type_Has_Constrained_Partial_View
11010 (Typ => Designated_Type (Base_Type (Typ)),
11011 Scop => Current_Scope))
11012 then
11013 null;
11015 else
11016 Error_Msg_F
11017 ("object subtype must statically match "
11018 & "designated subtype", P);
11020 if Is_Entity_Name (P)
11021 and then Is_Array_Type (Designated_Type (Typ))
11022 then
11023 declare
11024 D : constant Node_Id := Declaration_Node (Entity (P));
11025 begin
11026 Error_Msg_N
11027 ("aliased object has explicit bounds??", D);
11028 Error_Msg_N
11029 ("\declare without bounds (and with explicit "
11030 & "initialization)??", D);
11031 Error_Msg_N
11032 ("\for use with unconstrained access??", D);
11033 end;
11034 end if;
11035 end if;
11037 -- Check the static accessibility rule of 3.10.2(28). Note that
11038 -- this check is not performed for the case of an anonymous
11039 -- access type, since the access attribute is always legal
11040 -- in such a context.
11042 if Attr_Id /= Attribute_Unchecked_Access
11043 and then Ekind (Btyp) = E_General_Access_Type
11044 and then
11045 Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
11046 then
11047 Accessibility_Message;
11048 return;
11049 end if;
11050 end if;
11052 if Ekind_In (Btyp, E_Access_Protected_Subprogram_Type,
11053 E_Anonymous_Access_Protected_Subprogram_Type)
11054 then
11055 if Is_Entity_Name (P)
11056 and then not Is_Protected_Type (Scope (Entity (P)))
11057 then
11058 Error_Msg_F ("context requires a protected subprogram", P);
11060 -- Check accessibility of protected object against that of the
11061 -- access type, but only on user code, because the expander
11062 -- creates access references for handlers. If the context is an
11063 -- anonymous_access_to_protected, there are no accessibility
11064 -- checks either. Omit check entirely for Unrestricted_Access.
11066 elsif Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
11067 and then Comes_From_Source (N)
11068 and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
11069 and then Attr_Id /= Attribute_Unrestricted_Access
11070 then
11071 Accessibility_Message;
11072 return;
11074 -- AI05-0225: If the context is not an access to protected
11075 -- function, the prefix must be a variable, given that it may
11076 -- be used subsequently in a protected call.
11078 elsif Nkind (P) = N_Selected_Component
11079 and then not Is_Variable (Prefix (P))
11080 and then Ekind (Entity (Selector_Name (P))) /= E_Function
11081 then
11082 Error_Msg_N
11083 ("target object of access to protected procedure "
11084 & "must be variable", N);
11086 elsif Is_Entity_Name (P) then
11087 Check_Internal_Protected_Use (N, Entity (P));
11088 end if;
11090 elsif Ekind_In (Btyp, E_Access_Subprogram_Type,
11091 E_Anonymous_Access_Subprogram_Type)
11092 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
11093 then
11094 Error_Msg_F ("context requires a non-protected subprogram", P);
11095 end if;
11097 -- The context cannot be a pool-specific type, but this is a
11098 -- legality rule, not a resolution rule, so it must be checked
11099 -- separately, after possibly disambiguation (see AI-245).
11101 if Ekind (Btyp) = E_Access_Type
11102 and then Attr_Id /= Attribute_Unrestricted_Access
11103 then
11104 Wrong_Type (N, Typ);
11105 end if;
11107 -- The context may be a constrained access type (however ill-
11108 -- advised such subtypes might be) so in order to generate a
11109 -- constraint check we need to set the type of the attribute
11110 -- reference to the base type of the context.
11112 Set_Etype (N, Btyp);
11114 -- Check for incorrect atomic/volatile reference (RM C.6(12))
11116 if Attr_Id /= Attribute_Unrestricted_Access then
11117 if Is_Atomic_Object (P)
11118 and then not Is_Atomic (Designated_Type (Typ))
11119 then
11120 Error_Msg_F
11121 ("access to atomic object cannot yield access-to-" &
11122 "non-atomic type", P);
11124 elsif Is_Volatile_Object (P)
11125 and then not Is_Volatile (Designated_Type (Typ))
11126 then
11127 Error_Msg_F
11128 ("access to volatile object cannot yield access-to-" &
11129 "non-volatile type", P);
11130 end if;
11131 end if;
11133 -- Check for aliased view. We allow a nonaliased prefix when in
11134 -- an instance because the prefix may have been a tagged formal
11135 -- object, which is defined to be aliased even when the actual
11136 -- might not be (other instance cases will have been caught in
11137 -- the generic). Similarly, within an inlined body we know that
11138 -- the attribute is legal in the original subprogram, therefore
11139 -- legal in the expansion.
11141 if not (Is_Entity_Name (P)
11142 and then Is_Overloadable (Entity (P)))
11143 and then not (Nkind (P) = N_Selected_Component
11144 and then
11145 Is_Overloadable (Entity (Selector_Name (P))))
11146 and then not Is_Aliased_View (Original_Node (P))
11147 and then not In_Instance
11148 and then not In_Inlined_Body
11149 and then Comes_From_Source (N)
11150 then
11151 -- Here we have a non-aliased view. This is illegal unless we
11152 -- have the case of Unrestricted_Access, where for now we allow
11153 -- this (we will reject later if expected type is access to an
11154 -- unconstrained array with a thin pointer).
11156 -- No need for an error message on a generated access reference
11157 -- for the controlling argument in a dispatching call: error
11158 -- will be reported when resolving the call.
11160 if Attr_Id /= Attribute_Unrestricted_Access then
11161 Error_Msg_N ("prefix of % attribute must be aliased", P);
11163 -- Check for unrestricted access where expected type is a thin
11164 -- pointer to an unconstrained array.
11166 elsif Has_Size_Clause (Typ)
11167 and then RM_Size (Typ) = System_Address_Size
11168 then
11169 declare
11170 DT : constant Entity_Id := Designated_Type (Typ);
11171 begin
11172 if Is_Array_Type (DT)
11173 and then not Is_Constrained (DT)
11174 then
11175 Error_Msg_N
11176 ("illegal use of Unrestricted_Access attribute", P);
11177 Error_Msg_N
11178 ("\attempt to generate thin pointer to unaliased "
11179 & "object", P);
11180 end if;
11181 end;
11182 end if;
11183 end if;
11185 -- Mark that address of entity is taken in case of
11186 -- 'Unrestricted_Access or in case of a subprogram.
11188 if Is_Entity_Name (P)
11189 and then (Attr_Id = Attribute_Unrestricted_Access
11190 or else Is_Subprogram (Entity (P)))
11191 then
11192 Set_Address_Taken (Entity (P));
11193 end if;
11195 -- Deal with possible elaboration check
11197 if Is_Entity_Name (P) and then Is_Subprogram (Entity (P)) then
11198 declare
11199 Subp_Id : constant Entity_Id := Entity (P);
11200 Scop : constant Entity_Id := Scope (Subp_Id);
11201 Subp_Decl : constant Node_Id :=
11202 Unit_Declaration_Node (Subp_Id);
11203 Flag_Id : Entity_Id;
11204 Subp_Body : Node_Id;
11206 -- If the access has been taken and the body of the subprogram
11207 -- has not been see yet, indirect calls must be protected with
11208 -- elaboration checks. We have the proper elaboration machinery
11209 -- for subprograms declared in packages, but within a block or
11210 -- a subprogram the body will appear in the same declarative
11211 -- part, and we must insert a check in the eventual body itself
11212 -- using the elaboration flag that we generate now. The check
11213 -- is then inserted when the body is expanded. This processing
11214 -- is not needed for a stand alone expression function because
11215 -- the internally generated spec and body are always inserted
11216 -- as a pair in the same declarative list.
11218 begin
11219 if Expander_Active
11220 and then Comes_From_Source (Subp_Id)
11221 and then Comes_From_Source (N)
11222 and then In_Open_Scopes (Scop)
11223 and then Ekind_In (Scop, E_Block, E_Procedure, E_Function)
11224 and then not Has_Completion (Subp_Id)
11225 and then No (Elaboration_Entity (Subp_Id))
11226 and then Nkind (Subp_Decl) = N_Subprogram_Declaration
11227 and then Nkind (Original_Node (Subp_Decl)) /=
11228 N_Expression_Function
11229 then
11230 -- Create elaboration variable for it
11232 Flag_Id := Make_Temporary (Loc, 'E');
11233 Set_Elaboration_Entity (Subp_Id, Flag_Id);
11234 Set_Is_Frozen (Flag_Id);
11236 -- Insert declaration for flag after subprogram
11237 -- declaration. Note that attribute reference may
11238 -- appear within a nested scope.
11240 Insert_After_And_Analyze (Subp_Decl,
11241 Make_Object_Declaration (Loc,
11242 Defining_Identifier => Flag_Id,
11243 Object_Definition =>
11244 New_Occurrence_Of (Standard_Short_Integer, Loc),
11245 Expression =>
11246 Make_Integer_Literal (Loc, Uint_0)));
11248 -- The above sets the Scope of the flag entity to the
11249 -- current scope, in which the attribute appears, but
11250 -- the flag declaration has been inserted after that
11251 -- of Subp_Id, so the scope of the flag is the same as
11252 -- that of Subp_Id. This is relevant when unnesting,
11253 -- where processing depends on correct scope setting.
11255 Set_Scope (Flag_Id, Scop);
11256 end if;
11258 -- Taking the 'Access of an expression function freezes its
11259 -- expression (RM 13.14 10.3/3). This does not apply to an
11260 -- expression function that acts as a completion because the
11261 -- generated body is immediately analyzed and the expression
11262 -- is automatically frozen.
11264 if Is_Expression_Function (Subp_Id)
11265 and then Present (Corresponding_Body (Subp_Decl))
11266 then
11267 Subp_Body :=
11268 Unit_Declaration_Node (Corresponding_Body (Subp_Decl));
11270 -- The body has already been analyzed when the expression
11271 -- function acts as a completion.
11273 if Analyzed (Subp_Body) then
11274 null;
11276 -- Attribute 'Access may appear within the generated body
11277 -- of the expression function subject to the attribute:
11279 -- function F is (... F'Access ...);
11281 -- If the expression function is on the scope stack, then
11282 -- the body is currently being analyzed. Do not reanalyze
11283 -- it because this will lead to infinite recursion.
11285 elsif In_Open_Scopes (Subp_Id) then
11286 null;
11288 -- If reference to the expression function appears in an
11289 -- inner scope, for example as an actual in an instance,
11290 -- this is not a freeze point either.
11292 elsif Scope (Subp_Id) /= Current_Scope then
11293 null;
11295 -- Analyze the body of the expression function to freeze
11296 -- the expression. This takes care of the case where the
11297 -- 'Access is part of dispatch table initialization and
11298 -- the generated body of the expression function has not
11299 -- been analyzed yet.
11301 else
11302 Analyze (Subp_Body);
11303 end if;
11304 end if;
11305 end;
11306 end if;
11308 -------------
11309 -- Address --
11310 -------------
11312 -- Deal with resolving the type for Address attribute, overloading
11313 -- is not permitted here, since there is no context to resolve it.
11315 when Attribute_Address
11316 | Attribute_Code_Address
11318 -- To be safe, assume that if the address of a variable is taken,
11319 -- it may be modified via this address, so note modification.
11321 if Is_Variable (P) then
11322 Note_Possible_Modification (P, Sure => False);
11323 end if;
11325 if Nkind (P) in N_Subexpr
11326 and then Is_Overloaded (P)
11327 then
11328 Get_First_Interp (P, Index, It);
11329 Get_Next_Interp (Index, It);
11331 if Present (It.Nam) then
11332 Error_Msg_Name_1 := Aname;
11333 Error_Msg_F
11334 ("prefix of % attribute cannot be overloaded", P);
11335 end if;
11336 end if;
11338 if not Is_Entity_Name (P)
11339 or else not Is_Overloadable (Entity (P))
11340 then
11341 if not Is_Task_Type (Etype (P))
11342 or else Nkind (P) = N_Explicit_Dereference
11343 then
11344 Resolve (P);
11345 end if;
11346 end if;
11348 -- If this is the name of a derived subprogram, or that of a
11349 -- generic actual, the address is that of the original entity.
11351 if Is_Entity_Name (P)
11352 and then Is_Overloadable (Entity (P))
11353 and then Present (Alias (Entity (P)))
11354 then
11355 Rewrite (P,
11356 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
11357 end if;
11359 if Is_Entity_Name (P) then
11360 Set_Address_Taken (Entity (P));
11361 end if;
11363 if Nkind (P) = N_Slice then
11365 -- Arr (X .. Y)'address is identical to Arr (X)'address,
11366 -- even if the array is packed and the slice itself is not
11367 -- addressable. Transform the prefix into an indexed component.
11369 -- Note that the transformation is safe only if we know that
11370 -- the slice is non-null. That is because a null slice can have
11371 -- an out of bounds index value.
11373 -- Right now, gigi blows up if given 'Address on a slice as a
11374 -- result of some incorrect freeze nodes generated by the front
11375 -- end, and this covers up that bug in one case, but the bug is
11376 -- likely still there in the cases not handled by this code ???
11378 -- It's not clear what 'Address *should* return for a null
11379 -- slice with out of bounds indexes, this might be worth an ARG
11380 -- discussion ???
11382 -- One approach would be to do a length check unconditionally,
11383 -- and then do the transformation below unconditionally, but
11384 -- analyze with checks off, avoiding the problem of the out of
11385 -- bounds index. This approach would interpret the address of
11386 -- an out of bounds null slice as being the address where the
11387 -- array element would be if there was one, which is probably
11388 -- as reasonable an interpretation as any ???
11390 declare
11391 Loc : constant Source_Ptr := Sloc (P);
11392 D : constant Node_Id := Discrete_Range (P);
11393 Lo : Node_Id;
11395 begin
11396 if Is_Entity_Name (D)
11397 and then
11398 Not_Null_Range
11399 (Type_Low_Bound (Entity (D)),
11400 Type_High_Bound (Entity (D)))
11401 then
11402 Lo :=
11403 Make_Attribute_Reference (Loc,
11404 Prefix => (New_Occurrence_Of (Entity (D), Loc)),
11405 Attribute_Name => Name_First);
11407 elsif Nkind (D) = N_Range
11408 and then Not_Null_Range (Low_Bound (D), High_Bound (D))
11409 then
11410 Lo := Low_Bound (D);
11412 else
11413 Lo := Empty;
11414 end if;
11416 if Present (Lo) then
11417 Rewrite (P,
11418 Make_Indexed_Component (Loc,
11419 Prefix => Relocate_Node (Prefix (P)),
11420 Expressions => New_List (Lo)));
11422 Analyze_And_Resolve (P);
11423 end if;
11424 end;
11425 end if;
11427 ------------------
11428 -- Body_Version --
11429 ------------------
11431 -- Prefix of Body_Version attribute can be a subprogram name which
11432 -- must not be resolved, since this is not a call.
11434 when Attribute_Body_Version =>
11435 null;
11437 ------------
11438 -- Caller --
11439 ------------
11441 -- Prefix of Caller attribute is an entry name which must not
11442 -- be resolved, since this is definitely not an entry call.
11444 when Attribute_Caller =>
11445 null;
11447 ------------------
11448 -- Code_Address --
11449 ------------------
11451 -- Shares processing with Address attribute
11453 -----------
11454 -- Count --
11455 -----------
11457 -- If the prefix of the Count attribute is an entry name it must not
11458 -- be resolved, since this is definitely not an entry call. However,
11459 -- if it is an element of an entry family, the index itself may
11460 -- have to be resolved because it can be a general expression.
11462 when Attribute_Count =>
11463 if Nkind (P) = N_Indexed_Component
11464 and then Is_Entity_Name (Prefix (P))
11465 then
11466 declare
11467 Indx : constant Node_Id := First (Expressions (P));
11468 Fam : constant Entity_Id := Entity (Prefix (P));
11469 begin
11470 Resolve (Indx, Entry_Index_Type (Fam));
11471 Apply_Range_Check (Indx, Entry_Index_Type (Fam));
11472 end;
11473 end if;
11475 ----------------
11476 -- Elaborated --
11477 ----------------
11479 -- Prefix of the Elaborated attribute is a subprogram name which
11480 -- must not be resolved, since this is definitely not a call. Note
11481 -- that it is a library unit, so it cannot be overloaded here.
11483 when Attribute_Elaborated =>
11484 null;
11486 -------------
11487 -- Enabled --
11488 -------------
11490 -- Prefix of Enabled attribute is a check name, which must be treated
11491 -- specially and not touched by Resolve.
11493 when Attribute_Enabled =>
11494 null;
11496 ----------------
11497 -- Loop_Entry --
11498 ----------------
11500 -- Do not resolve the prefix of Loop_Entry, instead wait until the
11501 -- attribute has been expanded (see Expand_Loop_Entry_Attributes).
11502 -- The delay ensures that any generated checks or temporaries are
11503 -- inserted before the relocated prefix.
11505 when Attribute_Loop_Entry =>
11506 null;
11508 --------------------
11509 -- Mechanism_Code --
11510 --------------------
11512 -- Prefix of the Mechanism_Code attribute is a function name
11513 -- which must not be resolved. Should we check for overloaded ???
11515 when Attribute_Mechanism_Code =>
11516 null;
11518 ------------------
11519 -- Partition_ID --
11520 ------------------
11522 -- Most processing is done in sem_dist, after determining the
11523 -- context type. Node is rewritten as a conversion to a runtime call.
11525 when Attribute_Partition_ID =>
11526 Process_Partition_Id (N);
11527 return;
11529 ------------------
11530 -- Pool_Address --
11531 ------------------
11533 when Attribute_Pool_Address =>
11534 Resolve (P);
11536 -----------
11537 -- Range --
11538 -----------
11540 -- We replace the Range attribute node with a range expression whose
11541 -- bounds are the 'First and 'Last attributes applied to the same
11542 -- prefix. The reason that we do this transformation here instead of
11543 -- in the expander is that it simplifies other parts of the semantic
11544 -- analysis which assume that the Range has been replaced; thus it
11545 -- must be done even when in semantic-only mode (note that the RM
11546 -- specifically mentions this equivalence, we take care that the
11547 -- prefix is only evaluated once).
11549 when Attribute_Range => Range_Attribute : declare
11550 Dims : List_Id;
11551 HB : Node_Id;
11552 LB : Node_Id;
11554 begin
11555 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
11556 Resolve (P);
11557 end if;
11559 Dims := Expressions (N);
11561 HB :=
11562 Make_Attribute_Reference (Loc,
11563 Prefix => Duplicate_Subexpr (P, Name_Req => True),
11564 Attribute_Name => Name_Last,
11565 Expressions => Dims);
11567 LB :=
11568 Make_Attribute_Reference (Loc,
11569 Prefix => P,
11570 Attribute_Name => Name_First,
11571 Expressions => (Dims));
11573 -- Do not share the dimension indicator, if present. Even though
11574 -- it is a static constant, its source location may be modified
11575 -- when printing expanded code and node sharing will lead to chaos
11576 -- in Sprint.
11578 if Present (Dims) then
11579 Set_Expressions (LB, New_List (New_Copy_Tree (First (Dims))));
11580 end if;
11582 -- If the original was marked as Must_Not_Freeze (see code in
11583 -- Sem_Ch3.Make_Index), then make sure the rewriting does not
11584 -- freeze either.
11586 if Must_Not_Freeze (N) then
11587 Set_Must_Not_Freeze (HB);
11588 Set_Must_Not_Freeze (LB);
11589 Set_Must_Not_Freeze (Prefix (HB));
11590 Set_Must_Not_Freeze (Prefix (LB));
11591 end if;
11593 if Raises_Constraint_Error (Prefix (N)) then
11595 -- Preserve Sloc of prefix in the new bounds, so that the
11596 -- posted warning can be removed if we are within unreachable
11597 -- code.
11599 Set_Sloc (LB, Sloc (Prefix (N)));
11600 Set_Sloc (HB, Sloc (Prefix (N)));
11601 end if;
11603 Rewrite (N, Make_Range (Loc, LB, HB));
11604 Analyze_And_Resolve (N, Typ);
11606 -- Ensure that the expanded range does not have side effects
11608 Force_Evaluation (LB);
11609 Force_Evaluation (HB);
11611 -- Normally after resolving attribute nodes, Eval_Attribute
11612 -- is called to do any possible static evaluation of the node.
11613 -- However, here since the Range attribute has just been
11614 -- transformed into a range expression it is no longer an
11615 -- attribute node and therefore the call needs to be avoided
11616 -- and is accomplished by simply returning from the procedure.
11618 return;
11619 end Range_Attribute;
11621 ------------
11622 -- Result --
11623 ------------
11625 -- We will only come here during the prescan of a spec expression
11626 -- containing a Result attribute. In that case the proper Etype has
11627 -- already been set, and nothing more needs to be done here.
11629 when Attribute_Result =>
11630 null;
11632 ----------------------
11633 -- Unchecked_Access --
11634 ----------------------
11636 -- Processing is shared with Access
11638 -------------------------
11639 -- Unrestricted_Access --
11640 -------------------------
11642 -- Processing is shared with Access
11644 ------------
11645 -- Update --
11646 ------------
11648 -- Resolve aggregate components in component associations
11650 when Attribute_Update => Update : declare
11651 Aggr : constant Node_Id := First (Expressions (N));
11652 Typ : constant Entity_Id := Etype (Prefix (N));
11653 Assoc : Node_Id;
11654 Comp : Node_Id;
11655 Expr : Node_Id;
11657 begin
11658 -- Set the Etype of the aggregate to that of the prefix, even
11659 -- though the aggregate may not be a proper representation of a
11660 -- value of the type (missing or duplicated associations, etc.)
11661 -- Complete resolution of the prefix. Note that in Ada 2012 it
11662 -- can be a qualified expression that is e.g. an aggregate.
11664 Set_Etype (Aggr, Typ);
11665 Resolve (Prefix (N), Typ);
11667 -- For an array type, resolve expressions with the component type
11668 -- of the array, and apply constraint checks when needed.
11670 if Is_Array_Type (Typ) then
11671 Assoc := First (Component_Associations (Aggr));
11672 while Present (Assoc) loop
11673 Expr := Expression (Assoc);
11674 Resolve (Expr, Component_Type (Typ));
11676 -- For scalar array components set Do_Range_Check when
11677 -- needed. Constraint checking on non-scalar components
11678 -- is done in Aggregate_Constraint_Checks, but only if
11679 -- full analysis is enabled. These flags are not set in
11680 -- the front-end in GnatProve mode.
11682 if Is_Scalar_Type (Component_Type (Typ))
11683 and then not Is_OK_Static_Expression (Expr)
11684 and then not Range_Checks_Suppressed (Component_Type (Typ))
11685 then
11686 if Is_Entity_Name (Expr)
11687 and then Etype (Expr) = Component_Type (Typ)
11688 then
11689 null;
11691 else
11692 Set_Do_Range_Check (Expr);
11693 end if;
11694 end if;
11696 -- The choices in the association are static constants,
11697 -- or static aggregates each of whose components belongs
11698 -- to the proper index type. However, they must also
11699 -- belong to the index subtype (s) of the prefix, which
11700 -- may be a subtype (e.g. given by a slice).
11702 -- Choices may also be identifiers with no staticness
11703 -- requirements, in which case they must resolve to the
11704 -- index type.
11706 declare
11707 C : Node_Id;
11708 C_E : Node_Id;
11709 Indx : Node_Id;
11711 begin
11712 C := First (Choices (Assoc));
11713 while Present (C) loop
11714 Indx := First_Index (Etype (Prefix (N)));
11716 if Nkind (C) /= N_Aggregate then
11717 Analyze_And_Resolve (C, Etype (Indx));
11718 Apply_Constraint_Check (C, Etype (Indx));
11719 Check_Non_Static_Context (C);
11721 else
11722 C_E := First (Expressions (C));
11723 while Present (C_E) loop
11724 Analyze_And_Resolve (C_E, Etype (Indx));
11725 Apply_Constraint_Check (C_E, Etype (Indx));
11726 Check_Non_Static_Context (C_E);
11728 Next (C_E);
11729 Next_Index (Indx);
11730 end loop;
11731 end if;
11733 Next (C);
11734 end loop;
11735 end;
11737 Next (Assoc);
11738 end loop;
11740 -- For a record type, use type of each component, which is
11741 -- recorded during analysis.
11743 else
11744 Assoc := First (Component_Associations (Aggr));
11745 while Present (Assoc) loop
11746 Comp := First (Choices (Assoc));
11747 Expr := Expression (Assoc);
11749 if Nkind (Comp) /= N_Others_Choice
11750 and then not Error_Posted (Comp)
11751 then
11752 Resolve (Expr, Etype (Entity (Comp)));
11754 if Is_Scalar_Type (Etype (Entity (Comp)))
11755 and then not Is_OK_Static_Expression (Expr)
11756 and then not Range_Checks_Suppressed
11757 (Etype (Entity (Comp)))
11758 then
11759 Set_Do_Range_Check (Expr);
11760 end if;
11761 end if;
11763 Next (Assoc);
11764 end loop;
11765 end if;
11766 end Update;
11768 ---------
11769 -- Val --
11770 ---------
11772 -- Apply range check. Note that we did not do this during the
11773 -- analysis phase, since we wanted Eval_Attribute to have a
11774 -- chance at finding an illegal out of range value.
11776 when Attribute_Val =>
11778 -- Note that we do our own Eval_Attribute call here rather than
11779 -- use the common one, because we need to do processing after
11780 -- the call, as per above comment.
11782 Eval_Attribute (N);
11784 -- Eval_Attribute may replace the node with a raise CE, or
11785 -- fold it to a constant. Obviously we only apply a scalar
11786 -- range check if this did not happen.
11788 if Nkind (N) = N_Attribute_Reference
11789 and then Attribute_Name (N) = Name_Val
11790 then
11791 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
11792 end if;
11794 return;
11796 -------------
11797 -- Version --
11798 -------------
11800 -- Prefix of Version attribute can be a subprogram name which
11801 -- must not be resolved, since this is not a call.
11803 when Attribute_Version =>
11804 null;
11806 ----------------------
11807 -- Other Attributes --
11808 ----------------------
11810 -- For other attributes, resolve prefix unless it is a type. If
11811 -- the attribute reference itself is a type name ('Base and 'Class)
11812 -- then this is only legal within a task or protected record.
11814 when others =>
11815 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
11816 Resolve (P);
11817 end if;
11819 -- If the attribute reference itself is a type name ('Base,
11820 -- 'Class) then this is only legal within a task or protected
11821 -- record. What is this all about ???
11823 if Is_Entity_Name (N) and then Is_Type (Entity (N)) then
11824 if Is_Concurrent_Type (Entity (N))
11825 and then In_Open_Scopes (Entity (P))
11826 then
11827 null;
11828 else
11829 Error_Msg_N
11830 ("invalid use of subtype name in expression or call", N);
11831 end if;
11832 end if;
11834 -- For attributes whose argument may be a string, complete
11835 -- resolution of argument now. This avoids premature expansion
11836 -- (and the creation of transient scopes) before the attribute
11837 -- reference is resolved.
11839 case Attr_Id is
11840 when Attribute_Value =>
11841 Resolve (First (Expressions (N)), Standard_String);
11843 when Attribute_Wide_Value =>
11844 Resolve (First (Expressions (N)), Standard_Wide_String);
11846 when Attribute_Wide_Wide_Value =>
11847 Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
11849 when others => null;
11850 end case;
11852 -- If the prefix of the attribute is a class-wide type then it
11853 -- will be expanded into a dispatching call to a predefined
11854 -- primitive. Therefore we must check for potential violation
11855 -- of such restriction.
11857 if Is_Class_Wide_Type (Etype (P)) then
11858 Check_Restriction (No_Dispatching_Calls, N);
11859 end if;
11860 end case;
11862 -- Mark use clauses of the original prefix if the attribute is applied
11863 -- to an entity.
11865 if Nkind (Original_Node (P)) in N_Has_Entity
11866 and then Present (Entity (Original_Node (P)))
11867 then
11868 Mark_Use_Clauses (Original_Node (P));
11869 end if;
11871 -- Normally the Freezing is done by Resolve but sometimes the Prefix
11872 -- is not resolved, in which case the freezing must be done now.
11874 -- For an elaboration check on a subprogram, we do not freeze its type.
11875 -- It may be declared in an unrelated scope, in particular in the case
11876 -- of a generic function whose type may remain unelaborated.
11878 if Attr_Id = Attribute_Elaborated then
11879 null;
11881 -- Should this be restricted to Expander_Active???
11883 else
11884 Freeze_Expression (P);
11885 end if;
11887 -- Finally perform static evaluation on the attribute reference
11889 Analyze_Dimension (N);
11890 Eval_Attribute (N);
11891 end Resolve_Attribute;
11893 ------------------------
11894 -- Set_Boolean_Result --
11895 ------------------------
11897 procedure Set_Boolean_Result (N : Node_Id; B : Boolean) is
11898 Loc : constant Source_Ptr := Sloc (N);
11899 begin
11900 if B then
11901 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
11902 else
11903 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
11904 end if;
11905 end Set_Boolean_Result;
11907 -------------------------------
11908 -- Statically_Denotes_Object --
11909 -------------------------------
11911 function Statically_Denotes_Object (N : Node_Id) return Boolean is
11912 Indx : Node_Id;
11914 begin
11915 if Is_Entity_Name (N) then
11916 return True;
11918 elsif Nkind (N) = N_Selected_Component
11919 and then Statically_Denotes_Object (Prefix (N))
11920 and then Present (Entity (Selector_Name (N)))
11921 then
11922 declare
11923 Sel_Id : constant Entity_Id := Entity (Selector_Name (N));
11924 Comp_Decl : constant Node_Id := Parent (Sel_Id);
11926 begin
11927 if Depends_On_Discriminant (Sel_Id) then
11928 return False;
11930 elsif Nkind (Parent (Parent (Comp_Decl))) = N_Variant then
11931 return False;
11933 else
11934 return True;
11935 end if;
11936 end;
11938 elsif Nkind (N) = N_Indexed_Component
11939 and then Statically_Denotes_Object (Prefix (N))
11940 and then Is_Constrained (Etype (Prefix (N)))
11941 then
11942 Indx := First (Expressions (N));
11943 while Present (Indx) loop
11944 if not Compile_Time_Known_Value (Indx)
11945 or else Do_Range_Check (Indx)
11946 then
11947 return False;
11948 end if;
11950 Next (Indx);
11951 end loop;
11953 return True;
11955 else
11956 return False;
11957 end if;
11958 end Statically_Denotes_Object;
11960 --------------------------------
11961 -- Stream_Attribute_Available --
11962 --------------------------------
11964 function Stream_Attribute_Available
11965 (Typ : Entity_Id;
11966 Nam : TSS_Name_Type;
11967 Partial_View : Node_Id := Empty) return Boolean
11969 Etyp : Entity_Id := Typ;
11971 -- Start of processing for Stream_Attribute_Available
11973 begin
11974 -- We need some comments in this body ???
11976 if Has_Stream_Attribute_Definition (Typ, Nam) then
11977 return True;
11978 end if;
11980 if Is_Class_Wide_Type (Typ) then
11981 return not Is_Limited_Type (Typ)
11982 or else Stream_Attribute_Available (Etype (Typ), Nam);
11983 end if;
11985 if Nam = TSS_Stream_Input
11986 and then Is_Abstract_Type (Typ)
11987 and then not Is_Class_Wide_Type (Typ)
11988 then
11989 return False;
11990 end if;
11992 if not (Is_Limited_Type (Typ)
11993 or else (Present (Partial_View)
11994 and then Is_Limited_Type (Partial_View)))
11995 then
11996 return True;
11997 end if;
11999 -- In Ada 2005, Input can invoke Read, and Output can invoke Write
12001 if Nam = TSS_Stream_Input
12002 and then Ada_Version >= Ada_2005
12003 and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
12004 then
12005 return True;
12007 elsif Nam = TSS_Stream_Output
12008 and then Ada_Version >= Ada_2005
12009 and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
12010 then
12011 return True;
12012 end if;
12014 -- Case of Read and Write: check for attribute definition clause that
12015 -- applies to an ancestor type.
12017 while Etype (Etyp) /= Etyp loop
12018 Etyp := Etype (Etyp);
12020 if Has_Stream_Attribute_Definition (Etyp, Nam) then
12021 return True;
12022 end if;
12023 end loop;
12025 if Ada_Version < Ada_2005 then
12027 -- In Ada 95 mode, also consider a non-visible definition
12029 declare
12030 Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
12031 begin
12032 return Btyp /= Typ
12033 and then Stream_Attribute_Available
12034 (Btyp, Nam, Partial_View => Typ);
12035 end;
12036 end if;
12038 return False;
12039 end Stream_Attribute_Available;
12041 end Sem_Attr;