PR libstdc++/87308 adjust regex used in std::any pretty printer
[official-gcc.git] / gcc / ada / exp_unst.adb
blob882866e38e0cb856344a568231c0243409b824e5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U N S T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2014-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Lib; use Lib;
31 with Namet; use Namet;
32 with Nlists; use Nlists;
33 with Nmake; use Nmake;
34 with Opt;
35 with Output; use Output;
36 with Rtsfind; use Rtsfind;
37 with Sem; use Sem;
38 with Sem_Aux; use Sem_Aux;
39 with Sem_Ch8; use Sem_Ch8;
40 with Sem_Mech; use Sem_Mech;
41 with Sem_Res; use Sem_Res;
42 with Sem_Util; use Sem_Util;
43 with Sinfo; use Sinfo;
44 with Sinput; use Sinput;
45 with Snames; use Snames;
46 with Stand; use Stand;
47 with Tbuild; use Tbuild;
48 with Uintp; use Uintp;
50 package body Exp_Unst is
52 -----------------------
53 -- Local Subprograms --
54 -----------------------
56 procedure Unnest_Subprogram (Subp : Entity_Id; Subp_Body : Node_Id);
57 -- Subp is a library-level subprogram which has nested subprograms, and
58 -- Subp_Body is the corresponding N_Subprogram_Body node. This procedure
59 -- declares the AREC types and objects, adds assignments to the AREC record
60 -- as required, defines the xxxPTR types for uplevel referenced objects,
61 -- adds the ARECP parameter to all nested subprograms which need it, and
62 -- modifies all uplevel references appropriately.
64 -----------
65 -- Calls --
66 -----------
68 -- Table to record calls within the nest being analyzed. These are the
69 -- calls which may need to have an AREC actual added. This table is built
70 -- new for each subprogram nest and cleared at the end of processing each
71 -- subprogram nest.
73 type Call_Entry is record
74 N : Node_Id;
75 -- The actual call
77 Caller : Entity_Id;
78 -- Entity of the subprogram containing the call (can be at any level)
80 Callee : Entity_Id;
81 -- Entity of the subprogram called (always at level 2 or higher). Note
82 -- that in accordance with the basic rules of nesting, the level of To
83 -- is either less than or equal to the level of From, or one greater.
84 end record;
86 package Calls is new Table.Table (
87 Table_Component_Type => Call_Entry,
88 Table_Index_Type => Nat,
89 Table_Low_Bound => 1,
90 Table_Initial => 100,
91 Table_Increment => 200,
92 Table_Name => "Unnest_Calls");
93 -- Records each call within the outer subprogram and all nested subprograms
94 -- that are to other subprograms nested within the outer subprogram. These
95 -- are the calls that may need an additional parameter.
97 procedure Append_Unique_Call (Call : Call_Entry);
98 -- Append a call entry to the Calls table. A check is made to see if the
99 -- table already contains this entry and if so it has no effect.
101 ----------------------------------
102 -- Subprograms For Fat Pointers --
103 ----------------------------------
105 function Build_Access_Type_Decl
106 (E : Entity_Id;
107 Scop : Entity_Id) return Node_Id;
108 -- For an uplevel reference that involves an unconstrained array type,
109 -- build an access type declaration for the corresponding activation
110 -- record component. The relevant attributes of the access type are
111 -- set here to avoid a full analysis that would require a scope stack.
113 function Needs_Fat_Pointer (E : Entity_Id) return Boolean;
114 -- A formal parameter of an unconstrained array type that appears in an
115 -- uplevel reference requires the construction of an access type, to be
116 -- used in the corresponding component declaration.
118 -----------
119 -- Urefs --
120 -----------
122 -- Table to record explicit uplevel references to objects (variables,
123 -- constants, formal parameters). These are the references that will
124 -- need rewriting to use the activation table (AREC) pointers. Also
125 -- included are implicit and explicit uplevel references to types, but
126 -- these do not get rewritten by the front end. This table is built new
127 -- for each subprogram nest and cleared at the end of processing each
128 -- subprogram nest.
130 type Uref_Entry is record
131 Ref : Node_Id;
132 -- The reference itself. For objects this is always an entity reference
133 -- and the referenced entity will have its Is_Uplevel_Referenced_Entity
134 -- flag set and will appear in the Uplevel_Referenced_Entities list of
135 -- the subprogram declaring this entity.
137 Ent : Entity_Id;
138 -- The Entity_Id of the uplevel referenced object or type
140 Caller : Entity_Id;
141 -- The entity for the subprogram immediately containing this entity
143 Callee : Entity_Id;
144 -- The entity for the subprogram containing the referenced entity. Note
145 -- that the level of Callee must be less than the level of Caller, since
146 -- this is an uplevel reference.
147 end record;
149 package Urefs is new Table.Table (
150 Table_Component_Type => Uref_Entry,
151 Table_Index_Type => Nat,
152 Table_Low_Bound => 1,
153 Table_Initial => 100,
154 Table_Increment => 200,
155 Table_Name => "Unnest_Urefs");
157 ------------------------
158 -- Append_Unique_Call --
159 ------------------------
161 procedure Append_Unique_Call (Call : Call_Entry) is
162 begin
163 for J in Calls.First .. Calls.Last loop
164 if Calls.Table (J) = Call then
165 return;
166 end if;
167 end loop;
169 Calls.Append (Call);
170 end Append_Unique_Call;
172 -----------------------------
173 -- Build_Access_Type_Decl --
174 -----------------------------
176 function Build_Access_Type_Decl
177 (E : Entity_Id;
178 Scop : Entity_Id) return Node_Id
180 Loc : constant Source_Ptr := Sloc (E);
181 Typ : Entity_Id;
183 begin
184 Typ := Make_Temporary (Loc, 'S');
185 Set_Ekind (Typ, E_General_Access_Type);
186 Set_Etype (Typ, Typ);
187 Set_Scope (Typ, Scop);
188 Set_Directly_Designated_Type (Typ, Etype (E));
190 return
191 Make_Full_Type_Declaration (Loc,
192 Defining_Identifier => Typ,
193 Type_Definition =>
194 Make_Access_To_Object_Definition (Loc,
195 Subtype_Indication => New_Occurrence_Of (Etype (E), Loc)));
196 end Build_Access_Type_Decl;
198 ---------------
199 -- Get_Level --
200 ---------------
202 function Get_Level (Subp : Entity_Id; Sub : Entity_Id) return Nat is
203 Lev : Nat;
204 S : Entity_Id;
206 begin
207 Lev := 1;
208 S := Sub;
209 loop
210 if S = Subp then
211 return Lev;
212 else
213 Lev := Lev + 1;
214 S := Enclosing_Subprogram (S);
215 end if;
216 end loop;
217 end Get_Level;
219 --------------------------
220 -- In_Synchronized_Unit --
221 --------------------------
223 function In_Synchronized_Unit (Subp : Entity_Id) return Boolean is
224 S : Entity_Id := Scope (Subp);
226 begin
227 while Present (S) and then S /= Standard_Standard loop
228 if Is_Concurrent_Type (S) then
229 return True;
231 elsif Is_Private_Type (S)
232 and then Present (Full_View (S))
233 and then Is_Concurrent_Type (Full_View (S))
234 then
235 return True;
236 end if;
238 S := Scope (S);
239 end loop;
241 return False;
242 end In_Synchronized_Unit;
244 -----------------------
245 -- Needs_Fat_Pointer --
246 -----------------------
248 function Needs_Fat_Pointer (E : Entity_Id) return Boolean is
249 begin
250 return Is_Formal (E)
251 and then Is_Array_Type (Etype (E))
252 and then not Is_Constrained (Etype (E));
253 end Needs_Fat_Pointer;
255 ----------------
256 -- Subp_Index --
257 ----------------
259 function Subp_Index (Sub : Entity_Id) return SI_Type is
260 E : Entity_Id := Sub;
262 begin
263 pragma Assert (Is_Subprogram (E));
265 if Subps_Index (E) = Uint_0 then
266 E := Ultimate_Alias (E);
268 -- The body of a protected operation has a different name and
269 -- has been scanned at this point, and thus has an entry in the
270 -- subprogram table.
272 if E = Sub and then Convention (E) = Convention_Protected then
273 E := Protected_Body_Subprogram (E);
274 end if;
276 if Ekind (E) = E_Function
277 and then Rewritten_For_C (E)
278 and then Present (Corresponding_Procedure (E))
279 then
280 E := Corresponding_Procedure (E);
281 end if;
282 end if;
284 pragma Assert (Subps_Index (E) /= Uint_0);
285 return SI_Type (UI_To_Int (Subps_Index (E)));
286 end Subp_Index;
288 -----------------------
289 -- Unnest_Subprogram --
290 -----------------------
292 procedure Unnest_Subprogram (Subp : Entity_Id; Subp_Body : Node_Id) is
293 function AREC_Name (J : Pos; S : String) return Name_Id;
294 -- Returns name for string ARECjS, where j is the decimal value of j
296 function Enclosing_Subp (Subp : SI_Type) return SI_Type;
297 -- Subp is the index of a subprogram which has a Lev greater than 1.
298 -- This function returns the index of the enclosing subprogram which
299 -- will have a Lev value one less than this.
301 function Img_Pos (N : Pos) return String;
302 -- Return image of N without leading blank
304 function Upref_Name
305 (Ent : Entity_Id;
306 Index : Pos;
307 Clist : List_Id) return Name_Id;
308 -- This function returns the name to be used in the activation record to
309 -- reference the variable uplevel. Clist is the list of components that
310 -- have been created in the activation record so far. Normally the name
311 -- is just a copy of the Chars field of the entity. The exception is
312 -- when the name has already been used, in which case we suffix the name
313 -- with the index value Index to avoid duplication. This happens with
314 -- declare blocks and generic parameters at least.
316 ---------------
317 -- AREC_Name --
318 ---------------
320 function AREC_Name (J : Pos; S : String) return Name_Id is
321 begin
322 return Name_Find ("AREC" & Img_Pos (J) & S);
323 end AREC_Name;
325 --------------------
326 -- Enclosing_Subp --
327 --------------------
329 function Enclosing_Subp (Subp : SI_Type) return SI_Type is
330 STJ : Subp_Entry renames Subps.Table (Subp);
331 Ret : constant SI_Type := Subp_Index (Enclosing_Subprogram (STJ.Ent));
332 begin
333 pragma Assert (STJ.Lev > 1);
334 pragma Assert (Subps.Table (Ret).Lev = STJ.Lev - 1);
335 return Ret;
336 end Enclosing_Subp;
338 -------------
339 -- Img_Pos --
340 -------------
342 function Img_Pos (N : Pos) return String is
343 Buf : String (1 .. 20);
344 Ptr : Natural;
345 NV : Nat;
347 begin
348 Ptr := Buf'Last;
349 NV := N;
350 while NV /= 0 loop
351 Buf (Ptr) := Character'Val (48 + NV mod 10);
352 Ptr := Ptr - 1;
353 NV := NV / 10;
354 end loop;
356 return Buf (Ptr + 1 .. Buf'Last);
357 end Img_Pos;
359 ----------------
360 -- Upref_Name --
361 ----------------
363 function Upref_Name
364 (Ent : Entity_Id;
365 Index : Pos;
366 Clist : List_Id) return Name_Id
368 C : Node_Id;
369 begin
370 C := First (Clist);
371 loop
372 if No (C) then
373 return Chars (Ent);
375 elsif Chars (Defining_Identifier (C)) = Chars (Ent) then
376 return
377 Name_Find (Get_Name_String (Chars (Ent)) & Img_Pos (Index));
378 else
379 Next (C);
380 end if;
381 end loop;
382 end Upref_Name;
384 -- Start of processing for Unnest_Subprogram
386 begin
387 -- Nothing to do inside a generic (all processing is for instance)
389 if Inside_A_Generic then
390 return;
391 end if;
393 -- If the main unit is a package body then we need to examine the spec
394 -- to determine whether the main unit is generic (the scope stack is not
395 -- present when this is called on the main unit).
397 if Ekind (Cunit_Entity (Main_Unit)) = E_Package_Body
398 and then Is_Generic_Unit (Spec_Entity (Cunit_Entity (Main_Unit)))
399 then
400 return;
401 end if;
403 -- Only unnest when generating code for the main source unit
405 if not In_Extended_Main_Code_Unit (Subp_Body) then
406 return;
407 end if;
409 -- This routine is called late, after the scope stack is gone. The
410 -- following creates a suitable dummy scope stack to be used for the
411 -- analyze/expand calls made from this routine.
413 Push_Scope (Subp);
415 -- First step, we must mark all nested subprograms that require a static
416 -- link (activation record) because either they contain explicit uplevel
417 -- references (as indicated by Is_Uplevel_Referenced_Entity being set at
418 -- this point), or they make calls to other subprograms in the same nest
419 -- that require a static link (in which case we set this flag).
421 -- This is a recursive definition, and to implement this, we have to
422 -- build a call graph for the set of nested subprograms, and then go
423 -- over this graph to implement recursively the invariant that if a
424 -- subprogram has a call to a subprogram requiring a static link, then
425 -- the calling subprogram requires a static link.
427 -- First populate the above tables
429 Subps_First := Subps.Last + 1;
430 Calls.Init;
431 Urefs.Init;
433 Build_Tables : declare
434 Current_Subprogram : Entity_Id;
435 -- When we scan a subprogram body, we set Current_Subprogram to the
436 -- corresponding entity. This gets recursively saved and restored.
438 function Visit_Node (N : Node_Id) return Traverse_Result;
439 -- Visit a single node in Subp
441 -----------
442 -- Visit --
443 -----------
445 procedure Visit is new Traverse_Proc (Visit_Node);
446 -- Used to traverse the body of Subp, populating the tables
448 ----------------
449 -- Visit_Node --
450 ----------------
452 function Visit_Node (N : Node_Id) return Traverse_Result is
453 Ent : Entity_Id;
454 Caller : Entity_Id;
455 Callee : Entity_Id;
457 procedure Check_Static_Type
458 (T : Entity_Id; N : Node_Id; DT : in out Boolean);
459 -- Given a type T, checks if it is a static type defined as a type
460 -- with no dynamic bounds in sight. If so, the only action is to
461 -- set Is_Static_Type True for T. If T is not a static type, then
462 -- all types with dynamic bounds associated with T are detected,
463 -- and their bounds are marked as uplevel referenced if not at the
464 -- library level, and DT is set True. If N is specified, it's the
465 -- node that will need to be replaced. If not specified, it means
466 -- we can't do a replacement because the bound is implicit.
468 procedure Note_Uplevel_Ref
469 (E : Entity_Id;
470 N : Node_Id;
471 Caller : Entity_Id;
472 Callee : Entity_Id);
473 -- Called when we detect an explicit or implicit uplevel reference
474 -- from within Caller to entity E declared in Callee. E can be a
475 -- an object or a type.
477 procedure Register_Subprogram (E : Entity_Id; Bod : Node_Id);
478 -- Enter a subprogram whose body is visible or which is a
479 -- subprogram instance into the subprogram table.
481 -----------------------
482 -- Check_Static_Type --
483 -----------------------
485 procedure Check_Static_Type
486 (T : Entity_Id; N : Node_Id; DT : in out Boolean)
488 procedure Note_Uplevel_Bound (N : Node_Id; Ref : Node_Id);
489 -- N is the bound of a dynamic type. This procedure notes that
490 -- this bound is uplevel referenced, it can handle references
491 -- to entities (typically _FIRST and _LAST entities), and also
492 -- attribute references of the form T'name (name is typically
493 -- FIRST or LAST) where T is the uplevel referenced bound.
494 -- Ref, if Present, is the location of the reference to
495 -- replace.
497 ------------------------
498 -- Note_Uplevel_Bound --
499 ------------------------
501 procedure Note_Uplevel_Bound (N : Node_Id; Ref : Node_Id) is
502 begin
503 -- Entity name case. Make sure that the entity is declared
504 -- in a subprogram. This may not be the case for for a type
505 -- in a loop appearing in a precondition.
506 -- Exclude explicitly discriminants (that can appear
507 -- in bounds of discriminated components).
509 if Is_Entity_Name (N) then
510 if Present (Entity (N))
511 and then not Is_Type (Entity (N))
512 and then Present (Enclosing_Subprogram (Entity (N)))
513 and then Ekind (Entity (N)) /= E_Discriminant
514 then
515 Note_Uplevel_Ref
516 (E => Entity (N),
517 N => Empty,
518 Caller => Current_Subprogram,
519 Callee => Enclosing_Subprogram (Entity (N)));
520 end if;
522 -- Attribute or indexed component case
524 elsif Nkind_In (N, N_Attribute_Reference,
525 N_Indexed_Component)
526 then
527 Note_Uplevel_Bound (Prefix (N), Ref);
529 -- The indices of the indexed components, or the
530 -- associated expressions of an attribute reference,
531 -- may also involve uplevel references.
533 declare
534 Expr : Node_Id;
536 begin
537 Expr := First (Expressions (N));
538 while Present (Expr) loop
539 Note_Uplevel_Bound (Expr, Ref);
540 Next (Expr);
541 end loop;
542 end;
544 -- The type of the prefix may be have an uplevel
545 -- reference if this needs bounds.
547 if Nkind (N) = N_Attribute_Reference then
548 declare
549 Attr : constant Attribute_Id :=
550 Get_Attribute_Id (Attribute_Name (N));
551 DT : Boolean := False;
553 begin
554 if (Attr = Attribute_First
555 or else Attr = Attribute_Last
556 or else Attr = Attribute_Length)
557 and then Is_Constrained (Etype (Prefix (N)))
558 then
559 Check_Static_Type
560 (Etype (Prefix (N)), Empty, DT);
561 end if;
562 end;
563 end if;
565 -- Binary operator cases. These can apply to arrays for
566 -- which we may need bounds.
568 elsif Nkind (N) in N_Binary_Op then
569 Note_Uplevel_Bound (Left_Opnd (N), Ref);
570 Note_Uplevel_Bound (Right_Opnd (N), Ref);
572 -- Unary operator case
574 elsif Nkind (N) in N_Unary_Op then
575 Note_Uplevel_Bound (Right_Opnd (N), Ref);
577 -- Explicit dereference and selected component case
579 elsif Nkind_In (N, N_Explicit_Dereference,
580 N_Selected_Component)
581 then
582 Note_Uplevel_Bound (Prefix (N), Ref);
584 -- Conversion case
586 elsif Nkind (N) = N_Type_Conversion then
587 Note_Uplevel_Bound (Expression (N), Ref);
588 end if;
589 end Note_Uplevel_Bound;
591 -- Start of processing for Check_Static_Type
593 begin
594 -- If already marked static, immediate return
596 if Is_Static_Type (T) then
597 return;
598 end if;
600 -- If the type is at library level, always consider it static,
601 -- since such uplevel references are irrelevant.
603 if Is_Library_Level_Entity (T) then
604 Set_Is_Static_Type (T);
605 return;
606 end if;
608 -- Otherwise figure out what the story is with this type
610 -- For a scalar type, check bounds
612 if Is_Scalar_Type (T) then
614 -- If both bounds static, then this is a static type
616 declare
617 LB : constant Node_Id := Type_Low_Bound (T);
618 UB : constant Node_Id := Type_High_Bound (T);
620 begin
621 if not Is_Static_Expression (LB) then
622 Note_Uplevel_Bound (LB, N);
623 DT := True;
624 end if;
626 if not Is_Static_Expression (UB) then
627 Note_Uplevel_Bound (UB, N);
628 DT := True;
629 end if;
630 end;
632 -- For record type, check all components and discriminant
633 -- constraints if present.
635 elsif Is_Record_Type (T) then
636 declare
637 C : Entity_Id;
638 D : Elmt_Id;
640 begin
641 C := First_Component_Or_Discriminant (T);
642 while Present (C) loop
643 Check_Static_Type (Etype (C), N, DT);
644 Next_Component_Or_Discriminant (C);
645 end loop;
647 if Has_Discriminants (T)
648 and then Present (Discriminant_Constraint (T))
649 then
650 D := First_Elmt (Discriminant_Constraint (T));
651 while Present (D) loop
652 if not Is_Static_Expression (Node (D)) then
653 Note_Uplevel_Bound (Node (D), N);
654 DT := True;
655 end if;
657 Next_Elmt (D);
658 end loop;
659 end if;
660 end;
662 -- For array type, check index types and component type
664 elsif Is_Array_Type (T) then
665 declare
666 IX : Node_Id;
667 begin
668 Check_Static_Type (Component_Type (T), N, DT);
670 IX := First_Index (T);
671 while Present (IX) loop
672 Check_Static_Type (Etype (IX), N, DT);
673 Next_Index (IX);
674 end loop;
675 end;
677 -- For private type, examine whether full view is static
679 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
680 Check_Static_Type (Full_View (T), N, DT);
682 if Is_Static_Type (Full_View (T)) then
683 Set_Is_Static_Type (T);
684 end if;
686 -- For now, ignore other types
688 else
689 return;
690 end if;
692 if not DT then
693 Set_Is_Static_Type (T);
694 end if;
695 end Check_Static_Type;
697 ----------------------
698 -- Note_Uplevel_Ref --
699 ----------------------
701 procedure Note_Uplevel_Ref
702 (E : Entity_Id;
703 N : Node_Id;
704 Caller : Entity_Id;
705 Callee : Entity_Id)
707 Full_E : Entity_Id := E;
708 begin
709 -- Nothing to do for static type
711 if Is_Static_Type (E) then
712 return;
713 end if;
715 -- Nothing to do if Caller and Callee are the same
717 if Caller = Callee then
718 return;
720 -- Callee may be a function that returns an array, and that has
721 -- been rewritten as a procedure. If caller is that procedure,
722 -- nothing to do either.
724 elsif Ekind (Callee) = E_Function
725 and then Rewritten_For_C (Callee)
726 and then Corresponding_Procedure (Callee) = Caller
727 then
728 return;
730 elsif Ekind_In (Callee, E_Entry, E_Entry_Family) then
731 return;
732 end if;
734 -- We have a new uplevel referenced entity
736 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
737 Full_E := Full_View (E);
738 end if;
740 -- All we do at this stage is to add the uplevel reference to
741 -- the table. It's too early to do anything else, since this
742 -- uplevel reference may come from an unreachable subprogram
743 -- in which case the entry will be deleted.
745 Urefs.Append ((N, Full_E, Caller, Callee));
746 end Note_Uplevel_Ref;
748 -------------------------
749 -- Register_Subprogram --
750 -------------------------
752 procedure Register_Subprogram (E : Entity_Id; Bod : Node_Id) is
753 L : constant Nat := Get_Level (Subp, E);
755 begin
756 -- Subprograms declared in tasks and protected types cannot be
757 -- eliminated because calls to them may be in other units, so
758 -- they must be treated as reachable.
760 Subps.Append
761 ((Ent => E,
762 Bod => Bod,
763 Lev => L,
764 Reachable => In_Synchronized_Unit (E),
765 Uplevel_Ref => L,
766 Declares_AREC => False,
767 Uents => No_Elist,
768 Last => 0,
769 ARECnF => Empty,
770 ARECn => Empty,
771 ARECnT => Empty,
772 ARECnPT => Empty,
773 ARECnP => Empty,
774 ARECnU => Empty));
776 Set_Subps_Index (E, UI_From_Int (Subps.Last));
778 -- If we marked this reachable because it's in a synchronized
779 -- unit, we have to mark all enclosing subprograms as reachable
780 -- as well.
782 if In_Synchronized_Unit (E) then
783 declare
784 S : Entity_Id := E;
786 begin
787 for J in reverse 1 .. L - 1 loop
788 S := Enclosing_Subprogram (S);
789 Subps.Table (Subp_Index (S)).Reachable := True;
790 end loop;
791 end;
792 end if;
793 end Register_Subprogram;
795 -- Start of processing for Visit_Node
797 begin
798 case Nkind (N) is
800 -- Record a subprogram call
802 when N_Function_Call
803 | N_Procedure_Call_Statement
805 -- We are only interested in direct calls, not indirect
806 -- calls (where Name (N) is an explicit dereference) at
807 -- least for now!
809 if Nkind (Name (N)) in N_Has_Entity then
810 Ent := Entity (Name (N));
812 -- We are only interested in calls to subprograms nested
813 -- within Subp. Calls to Subp itself or to subprograms
814 -- outside the nested structure do not affect us.
816 if Scope_Within (Ent, Subp)
817 and then Is_Subprogram (Ent)
818 and then not Is_Imported (Ent)
819 then
820 Append_Unique_Call ((N, Current_Subprogram, Ent));
821 end if;
822 end if;
824 -- For all calls where the formal is an unconstrained array
825 -- and the actual is constrained we need to check the bounds
826 -- for uplevel references.
828 declare
829 Actual : Entity_Id;
830 DT : Boolean := False;
831 Formal : Node_Id;
832 Subp : Entity_Id;
834 begin
835 if Nkind (Name (N)) = N_Explicit_Dereference then
836 Subp := Etype (Name (N));
837 else
838 Subp := Entity (Name (N));
839 end if;
841 Actual := First_Actual (N);
842 Formal := First_Formal_With_Extras (Subp);
843 while Present (Actual) loop
844 if Is_Array_Type (Etype (Formal))
845 and then not Is_Constrained (Etype (Formal))
846 and then Is_Constrained (Etype (Actual))
847 then
848 Check_Static_Type (Etype (Actual), Empty, DT);
849 end if;
851 Next_Actual (Actual);
852 Next_Formal_With_Extras (Formal);
853 end loop;
854 end;
856 -- An At_End_Proc in a statement sequence indicates that there
857 -- is a call from the enclosing construct or block to that
858 -- subprogram. As above, the called entity must be local and
859 -- not imported.
861 when N_Handled_Sequence_Of_Statements =>
862 if Present (At_End_Proc (N))
863 and then Scope_Within (Entity (At_End_Proc (N)), Subp)
864 and then not Is_Imported (Entity (At_End_Proc (N)))
865 then
866 Append_Unique_Call
867 ((N, Current_Subprogram, Entity (At_End_Proc (N))));
868 end if;
870 -- Similarly, the following constructs include a semantic
871 -- attribute Procedure_To_Call that must be handled like
872 -- other calls. Likewise for attribute Storage_Pool.
874 when N_Allocator
875 | N_Extended_Return_Statement
876 | N_Free_Statement
877 | N_Simple_Return_Statement
879 declare
880 Pool : constant Entity_Id := Storage_Pool (N);
881 Proc : constant Entity_Id := Procedure_To_Call (N);
883 begin
884 if Present (Proc)
885 and then Scope_Within (Proc, Subp)
886 and then not Is_Imported (Proc)
887 then
888 Append_Unique_Call ((N, Current_Subprogram, Proc));
889 end if;
891 if Present (Pool)
892 and then not Is_Library_Level_Entity (Pool)
893 and then Scope_Within_Or_Same (Scope (Pool), Subp)
894 then
895 Caller := Current_Subprogram;
896 Callee := Enclosing_Subprogram (Pool);
898 if Callee /= Caller then
899 Note_Uplevel_Ref (Pool, Empty, Caller, Callee);
900 end if;
901 end if;
902 end;
904 -- For an allocator with a qualified expression, check type
905 -- of expression being qualified. The explicit type name is
906 -- handled as an entity reference.
908 if Nkind (N) = N_Allocator
909 and then Nkind (Expression (N)) = N_Qualified_Expression
910 then
911 declare
912 DT : Boolean := False;
913 begin
914 Check_Static_Type
915 (Etype (Expression (Expression (N))), Empty, DT);
916 end;
918 -- For a Return or Free (all other nodes we handle here),
919 -- we usually need the size of the object, so we need to be
920 -- sure that any nonstatic bounds of the expression's type
921 -- that are uplevel are handled.
923 elsif Nkind (N) /= N_Allocator
924 and then Present (Expression (N))
925 then
926 declare
927 DT : Boolean := False;
928 begin
929 Check_Static_Type (Etype (Expression (N)), Empty, DT);
930 end;
931 end if;
933 -- A 'Access reference is a (potential) call. So is 'Address,
934 -- in particular on imported subprograms. Other attributes
935 -- require special handling.
937 when N_Attribute_Reference =>
938 declare
939 Attr : constant Attribute_Id :=
940 Get_Attribute_Id (Attribute_Name (N));
941 begin
942 case Attr is
943 when Attribute_Access
944 | Attribute_Unchecked_Access
945 | Attribute_Unrestricted_Access
946 | Attribute_Address
948 if Nkind (Prefix (N)) in N_Has_Entity then
949 Ent := Entity (Prefix (N));
951 -- We only need to examine calls to subprograms
952 -- nested within current Subp.
954 if Scope_Within (Ent, Subp) then
955 if Is_Imported (Ent) then
956 null;
958 elsif Is_Subprogram (Ent) then
959 Append_Unique_Call
960 ((N, Current_Subprogram, Ent));
961 end if;
962 end if;
963 end if;
965 -- References to bounds can be uplevel references if
966 -- the type isn't static.
968 when Attribute_First
969 | Attribute_Last
970 | Attribute_Length
972 -- Special-case attributes of objects whose bounds
973 -- may be uplevel references. More complex prefixes
974 -- handled during full traversal. Note that if the
975 -- nominal subtype of the prefix is unconstrained,
976 -- the bound must be obtained from the object, not
977 -- from the (possibly) uplevel reference.
979 if Is_Constrained (Etype (Prefix (N))) then
980 declare
981 DT : Boolean := False;
982 begin
983 Check_Static_Type
984 (Etype (Prefix (N)), Empty, DT);
985 end;
987 return OK;
988 end if;
990 when others =>
991 null;
992 end case;
993 end;
995 -- Component associations in aggregates are either static or
996 -- else the aggregate will be expanded into assignments, in
997 -- which case the expression is analyzed later and provides
998 -- no relevant code generation.
1000 when N_Component_Association =>
1001 if No (Expression (N))
1002 or else No (Etype (Expression (N)))
1003 then
1004 return Skip;
1005 end if;
1007 -- Generic associations are not analyzed: the actuals are
1008 -- transferred to renaming and subtype declarations that
1009 -- are the ones that must be examined.
1011 when N_Generic_Association =>
1012 return Skip;
1014 -- Indexed references can be uplevel if the type isn't static
1015 -- and if the lower bound (or an inner bound for a multi-
1016 -- dimensional array) is uplevel.
1018 when N_Indexed_Component
1019 | N_Slice
1021 if Is_Constrained (Etype (Prefix (N))) then
1022 declare
1023 DT : Boolean := False;
1024 begin
1025 Check_Static_Type (Etype (Prefix (N)), Empty, DT);
1026 end;
1027 end if;
1029 -- A selected component can have an implicit up-level
1030 -- reference due to the bounds of previous fields in the
1031 -- record. We simplify the processing here by examining
1032 -- all components of the record.
1034 -- Selected components appear as unit names and end labels
1035 -- for child units. Prefixes of these nodes denote parent
1036 -- units and carry no type information so they are skipped.
1038 when N_Selected_Component =>
1039 if Present (Etype (Prefix (N))) then
1040 declare
1041 DT : Boolean := False;
1042 begin
1043 Check_Static_Type (Etype (Prefix (N)), Empty, DT);
1044 end;
1045 end if;
1047 -- For EQ/NE comparisons, we need the type of the operands
1048 -- in order to do the comparison, which means we need the
1049 -- bounds.
1051 when N_Op_Eq
1052 | N_Op_Ne
1054 declare
1055 DT : Boolean := False;
1056 begin
1057 Check_Static_Type (Etype (Left_Opnd (N)), Empty, DT);
1058 Check_Static_Type (Etype (Right_Opnd (N)), Empty, DT);
1059 end;
1061 -- Likewise we need the sizes to compute how much to move in
1062 -- an assignment.
1064 when N_Assignment_Statement =>
1065 declare
1066 DT : Boolean := False;
1067 begin
1068 Check_Static_Type (Etype (Name (N)), Empty, DT);
1069 Check_Static_Type (Etype (Expression (N)), Empty, DT);
1070 end;
1072 -- Record a subprogram. We record a subprogram body that acts
1073 -- as a spec. Otherwise we record a subprogram declaration,
1074 -- providing that it has a corresponding body we can get hold
1075 -- of. The case of no corresponding body being available is
1076 -- ignored for now.
1078 when N_Subprogram_Body =>
1079 Ent := Unique_Defining_Entity (N);
1081 -- Ignore generic subprogram
1083 if Is_Generic_Subprogram (Ent) then
1084 return Skip;
1085 end if;
1087 -- Make new entry in subprogram table if not already made
1089 Register_Subprogram (Ent, N);
1091 -- We make a recursive call to scan the subprogram body, so
1092 -- that we can save and restore Current_Subprogram.
1094 declare
1095 Save_CS : constant Entity_Id := Current_Subprogram;
1096 Decl : Node_Id;
1098 begin
1099 Current_Subprogram := Ent;
1101 -- Scan declarations
1103 Decl := First (Declarations (N));
1104 while Present (Decl) loop
1105 Visit (Decl);
1106 Next (Decl);
1107 end loop;
1109 -- Scan statements
1111 Visit (Handled_Statement_Sequence (N));
1113 -- Restore current subprogram setting
1115 Current_Subprogram := Save_CS;
1116 end;
1118 -- Now at this level, return skipping the subprogram body
1119 -- descendants, since we already took care of them!
1121 return Skip;
1123 -- If we have a body stub, visit the associated subunit, which
1124 -- is a semantic descendant of the stub.
1126 when N_Body_Stub =>
1127 Visit (Library_Unit (N));
1129 -- A declaration of a wrapper package indicates a subprogram
1130 -- instance for which there is no explicit body. Enter the
1131 -- subprogram instance in the table.
1133 when N_Package_Declaration =>
1134 if Is_Wrapper_Package (Defining_Entity (N)) then
1135 Register_Subprogram
1136 (Related_Instance (Defining_Entity (N)), Empty);
1137 end if;
1139 -- Skip generic declarations
1141 when N_Generic_Declaration =>
1142 return Skip;
1144 -- Skip generic package body
1146 when N_Package_Body =>
1147 if Present (Corresponding_Spec (N))
1148 and then Ekind (Corresponding_Spec (N)) = E_Generic_Package
1149 then
1150 return Skip;
1151 end if;
1153 -- Pragmas and component declarations are ignored. Quantified
1154 -- expressions are expanded into explicit loops and the
1155 -- original epression must be ignored.
1157 when N_Component_Declaration
1158 | N_Pragma
1159 | N_Quantified_Expression
1161 return Skip;
1163 -- We want to skip the function spec for a generic function
1164 -- to avoid looking at any generic types that might be in
1165 -- its formals.
1167 when N_Function_Specification =>
1168 if Is_Generic_Subprogram (Unique_Defining_Entity (N)) then
1169 return Skip;
1170 end if;
1172 -- Otherwise record an uplevel reference in a local identifier
1174 when others =>
1175 if Nkind (N) in N_Has_Entity
1176 and then Present (Entity (N))
1177 then
1178 Ent := Entity (N);
1180 -- Only interested in entities declared within our nest
1182 if not Is_Library_Level_Entity (Ent)
1183 and then Scope_Within_Or_Same (Scope (Ent), Subp)
1185 -- Skip entities defined in inlined subprograms
1187 and then
1188 Chars (Enclosing_Subprogram (Ent)) /= Name_uParent
1190 -- Constants and variables are potentially uplevel
1191 -- references to global declarations.
1193 and then
1194 (Ekind_In (Ent, E_Constant,
1195 E_Loop_Parameter,
1196 E_Variable)
1198 -- Formals are interesting, but not if being used
1199 -- as mere names of parameters for name notation
1200 -- calls.
1202 or else
1203 (Is_Formal (Ent)
1204 and then not
1205 (Nkind (Parent (N)) = N_Parameter_Association
1206 and then Selector_Name (Parent (N)) = N))
1208 -- Types other than known Is_Static types are
1209 -- potentially interesting.
1211 or else
1212 (Is_Type (Ent) and then not Is_Static_Type (Ent)))
1213 then
1214 -- Here we have a potentially interesting uplevel
1215 -- reference to examine.
1217 if Is_Type (Ent) then
1218 declare
1219 DT : Boolean := False;
1221 begin
1222 Check_Static_Type (Ent, N, DT);
1223 return OK;
1224 end;
1225 end if;
1227 Caller := Current_Subprogram;
1228 Callee := Enclosing_Subprogram (Ent);
1230 if Callee /= Caller
1231 and then (not Is_Static_Type (Ent)
1232 or else Needs_Fat_Pointer (Ent))
1233 then
1234 Note_Uplevel_Ref (Ent, N, Caller, Callee);
1236 -- Check the type of a formal parameter of the current
1237 -- subprogram, whose formal type may be an uplevel
1238 -- reference.
1240 elsif Is_Formal (Ent)
1241 and then Scope (Ent) = Current_Subprogram
1242 then
1243 declare
1244 DT : Boolean := False;
1246 begin
1247 Check_Static_Type (Etype (Ent), Empty, DT);
1248 end;
1249 end if;
1250 end if;
1251 end if;
1252 end case;
1254 -- Fall through to continue scanning children of this node
1256 return OK;
1257 end Visit_Node;
1259 -- Start of processing for Build_Tables
1261 begin
1262 -- Traverse the body to get subprograms, calls and uplevel references
1264 Visit (Subp_Body);
1265 end Build_Tables;
1267 -- Now do the first transitive closure which determines which
1268 -- subprograms in the nest are actually reachable.
1270 Reachable_Closure : declare
1271 Modified : Boolean;
1273 begin
1274 Subps.Table (Subps_First).Reachable := True;
1276 -- We use a simple minded algorithm as follows (obviously this can
1277 -- be done more efficiently, using one of the standard algorithms
1278 -- for efficient transitive closure computation, but this is simple
1279 -- and most likely fast enough that its speed does not matter).
1281 -- Repeatedly scan the list of calls. Any time we find a call from
1282 -- A to B, where A is reachable, but B is not, then B is reachable,
1283 -- and note that we have made a change by setting Modified True. We
1284 -- repeat this until we make a pass with no modifications.
1286 Outer : loop
1287 Modified := False;
1288 Inner : for J in Calls.First .. Calls.Last loop
1289 declare
1290 CTJ : Call_Entry renames Calls.Table (J);
1292 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
1293 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
1295 SUBF : Subp_Entry renames Subps.Table (SINF);
1296 SUBT : Subp_Entry renames Subps.Table (SINT);
1298 begin
1299 if SUBF.Reachable and then not SUBT.Reachable then
1300 SUBT.Reachable := True;
1301 Modified := True;
1302 end if;
1303 end;
1304 end loop Inner;
1306 exit Outer when not Modified;
1307 end loop Outer;
1308 end Reachable_Closure;
1310 -- Remove calls from unreachable subprograms
1312 declare
1313 New_Index : Nat;
1315 begin
1316 New_Index := 0;
1317 for J in Calls.First .. Calls.Last loop
1318 declare
1319 CTJ : Call_Entry renames Calls.Table (J);
1321 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
1322 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
1324 SUBF : Subp_Entry renames Subps.Table (SINF);
1325 SUBT : Subp_Entry renames Subps.Table (SINT);
1327 begin
1328 if SUBF.Reachable then
1329 pragma Assert (SUBT.Reachable);
1330 New_Index := New_Index + 1;
1331 Calls.Table (New_Index) := Calls.Table (J);
1332 end if;
1333 end;
1334 end loop;
1336 Calls.Set_Last (New_Index);
1337 end;
1339 -- Remove uplevel references from unreachable subprograms
1341 declare
1342 New_Index : Nat;
1344 begin
1345 New_Index := 0;
1346 for J in Urefs.First .. Urefs.Last loop
1347 declare
1348 URJ : Uref_Entry renames Urefs.Table (J);
1350 SINF : constant SI_Type := Subp_Index (URJ.Caller);
1351 SINT : constant SI_Type := Subp_Index (URJ.Callee);
1353 SUBF : Subp_Entry renames Subps.Table (SINF);
1354 SUBT : Subp_Entry renames Subps.Table (SINT);
1356 S : Entity_Id;
1358 begin
1359 -- Keep reachable reference
1361 if SUBF.Reachable then
1362 New_Index := New_Index + 1;
1363 Urefs.Table (New_Index) := Urefs.Table (J);
1365 -- And since we know we are keeping this one, this is a good
1366 -- place to fill in information for a good reference.
1368 -- Mark all enclosing subprograms need to declare AREC
1370 S := URJ.Caller;
1371 loop
1372 S := Enclosing_Subprogram (S);
1374 -- If we are at the top level, as can happen with
1375 -- references to formals in aspects of nested subprogram
1376 -- declarations, there are no further subprograms to mark
1377 -- as requiring activation records.
1379 exit when No (S);
1381 declare
1382 SUBI : Subp_Entry renames Subps.Table (Subp_Index (S));
1383 begin
1384 SUBI.Declares_AREC := True;
1386 -- If this entity was marked reachable because it is
1387 -- in a task or protected type, there may not appear
1388 -- to be any calls to it, which would normally adjust
1389 -- the levels of the parent subprograms. So we need to
1390 -- be sure that the uplevel reference of that entity
1391 -- takes into account possible calls.
1393 if In_Synchronized_Unit (SUBF.Ent)
1394 and then SUBT.Lev < SUBI.Uplevel_Ref
1395 then
1396 SUBI.Uplevel_Ref := SUBT.Lev;
1397 end if;
1398 end;
1400 exit when S = URJ.Callee;
1401 end loop;
1403 -- Add to list of uplevel referenced entities for Callee.
1404 -- We do not add types to this list, only actual references
1405 -- to objects that will be referenced uplevel, and we use
1406 -- the flag Is_Uplevel_Referenced_Entity to avoid making
1407 -- duplicate entries in the list. Discriminants are also
1408 -- excluded, only the enclosing object can appear in the
1409 -- list.
1411 if not Is_Uplevel_Referenced_Entity (URJ.Ent)
1412 and then Ekind (URJ.Ent) /= E_Discriminant
1413 then
1414 Set_Is_Uplevel_Referenced_Entity (URJ.Ent);
1415 Append_New_Elmt (URJ.Ent, SUBT.Uents);
1416 end if;
1418 -- And set uplevel indication for caller
1420 if SUBT.Lev < SUBF.Uplevel_Ref then
1421 SUBF.Uplevel_Ref := SUBT.Lev;
1422 end if;
1423 end if;
1424 end;
1425 end loop;
1427 Urefs.Set_Last (New_Index);
1428 end;
1430 -- Remove unreachable subprograms from Subps table. Note that we do
1431 -- this after eliminating entries from the other two tables, since
1432 -- those elimination steps depend on referencing the Subps table.
1434 declare
1435 New_SI : SI_Type;
1437 begin
1438 New_SI := Subps_First - 1;
1439 for J in Subps_First .. Subps.Last loop
1440 declare
1441 STJ : Subp_Entry renames Subps.Table (J);
1442 Spec : Node_Id;
1443 Decl : Node_Id;
1445 begin
1446 -- Subprogram is reachable, copy and reset index
1448 if STJ.Reachable then
1449 New_SI := New_SI + 1;
1450 Subps.Table (New_SI) := STJ;
1451 Set_Subps_Index (STJ.Ent, UI_From_Int (New_SI));
1453 -- Subprogram is not reachable
1455 else
1456 -- Clear index, since no longer active
1458 Set_Subps_Index (Subps.Table (J).Ent, Uint_0);
1460 -- Output debug information if -gnatd.3 set
1462 if Debug_Flag_Dot_3 then
1463 Write_Str ("Eliminate ");
1464 Write_Name (Chars (Subps.Table (J).Ent));
1465 Write_Str (" at ");
1466 Write_Location (Sloc (Subps.Table (J).Ent));
1467 Write_Str (" (not referenced)");
1468 Write_Eol;
1469 end if;
1471 -- Rewrite declaration, body, and corresponding freeze node
1472 -- to null statements.
1474 -- A subprogram instantiation does not have an explicit
1475 -- body. If unused, we could remove the corresponding
1476 -- wrapper package and its body (TBD).
1478 if Present (STJ.Bod) then
1479 Spec := Corresponding_Spec (STJ.Bod);
1481 if Present (Spec) then
1482 Decl := Parent (Declaration_Node (Spec));
1483 Rewrite (Decl, Make_Null_Statement (Sloc (Decl)));
1485 if Present (Freeze_Node (Spec)) then
1486 Rewrite (Freeze_Node (Spec),
1487 Make_Null_Statement (Sloc (Decl)));
1488 end if;
1489 end if;
1491 Rewrite (STJ.Bod, Make_Null_Statement (Sloc (STJ.Bod)));
1492 end if;
1493 end if;
1494 end;
1495 end loop;
1497 Subps.Set_Last (New_SI);
1498 end;
1500 -- Now it is time for the second transitive closure, which follows calls
1501 -- and makes sure that A calls B, and B has uplevel references, then A
1502 -- is also marked as having uplevel references.
1504 Closure_Uplevel : declare
1505 Modified : Boolean;
1507 begin
1508 -- We use a simple minded algorithm as follows (obviously this can
1509 -- be done more efficiently, using one of the standard algorithms
1510 -- for efficient transitive closure computation, but this is simple
1511 -- and most likely fast enough that its speed does not matter).
1513 -- Repeatedly scan the list of calls. Any time we find a call from
1514 -- A to B, where B has uplevel references, make sure that A is marked
1515 -- as having at least the same level of uplevel referencing.
1517 Outer2 : loop
1518 Modified := False;
1519 Inner2 : for J in Calls.First .. Calls.Last loop
1520 declare
1521 CTJ : Call_Entry renames Calls.Table (J);
1522 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
1523 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
1524 SUBF : Subp_Entry renames Subps.Table (SINF);
1525 SUBT : Subp_Entry renames Subps.Table (SINT);
1526 begin
1527 if SUBT.Lev > SUBT.Uplevel_Ref
1528 and then SUBF.Uplevel_Ref > SUBT.Uplevel_Ref
1529 then
1530 SUBF.Uplevel_Ref := SUBT.Uplevel_Ref;
1531 Modified := True;
1532 end if;
1533 end;
1534 end loop Inner2;
1536 exit Outer2 when not Modified;
1537 end loop Outer2;
1538 end Closure_Uplevel;
1540 -- We have one more step before the tables are complete. An uplevel
1541 -- call from subprogram A to subprogram B where subprogram B has uplevel
1542 -- references is in effect an uplevel reference, and must arrange for
1543 -- the proper activation link to be passed.
1545 for J in Calls.First .. Calls.Last loop
1546 declare
1547 CTJ : Call_Entry renames Calls.Table (J);
1549 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
1550 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
1552 SUBF : Subp_Entry renames Subps.Table (SINF);
1553 SUBT : Subp_Entry renames Subps.Table (SINT);
1555 A : Entity_Id;
1557 begin
1558 -- If callee has uplevel references
1560 if SUBT.Uplevel_Ref < SUBT.Lev
1562 -- And this is an uplevel call
1564 and then SUBT.Lev < SUBF.Lev
1565 then
1566 -- We need to arrange for finding the uplink
1568 A := CTJ.Caller;
1569 loop
1570 A := Enclosing_Subprogram (A);
1571 Subps.Table (Subp_Index (A)).Declares_AREC := True;
1572 exit when A = CTJ.Callee;
1574 -- In any case exit when we get to the outer level. This
1575 -- happens in some odd cases with generics (in particular
1576 -- sem_ch3.adb does not compile without this kludge ???).
1578 exit when A = Subp;
1579 end loop;
1580 end if;
1581 end;
1582 end loop;
1584 -- The tables are now complete, so we can record the last index in the
1585 -- Subps table for later reference in Cprint.
1587 Subps.Table (Subps_First).Last := Subps.Last;
1589 -- Next step, create the entities for code we will insert. We do this
1590 -- at the start so that all the entities are defined, regardless of the
1591 -- order in which we do the code insertions.
1593 Create_Entities : for J in Subps_First .. Subps.Last loop
1594 declare
1595 STJ : Subp_Entry renames Subps.Table (J);
1596 Loc : constant Source_Ptr := Sloc (STJ.Bod);
1598 begin
1599 -- First we create the ARECnF entity for the additional formal for
1600 -- all subprograms which need an activation record passed.
1602 if STJ.Uplevel_Ref < STJ.Lev then
1603 STJ.ARECnF :=
1604 Make_Defining_Identifier (Loc, Chars => AREC_Name (J, "F"));
1605 end if;
1607 -- Define the AREC entities for the activation record if needed
1609 if STJ.Declares_AREC then
1610 STJ.ARECn :=
1611 Make_Defining_Identifier (Loc, AREC_Name (J, ""));
1612 STJ.ARECnT :=
1613 Make_Defining_Identifier (Loc, AREC_Name (J, "T"));
1614 STJ.ARECnPT :=
1615 Make_Defining_Identifier (Loc, AREC_Name (J, "PT"));
1616 STJ.ARECnP :=
1617 Make_Defining_Identifier (Loc, AREC_Name (J, "P"));
1619 -- Define uplink component entity if inner nesting case
1621 if Present (STJ.ARECnF) then
1622 STJ.ARECnU :=
1623 Make_Defining_Identifier (Loc, AREC_Name (J, "U"));
1624 end if;
1625 end if;
1626 end;
1627 end loop Create_Entities;
1629 -- Loop through subprograms
1631 Subp_Loop : declare
1632 Addr : Entity_Id := Empty;
1634 begin
1635 for J in Subps_First .. Subps.Last loop
1636 declare
1637 STJ : Subp_Entry renames Subps.Table (J);
1639 begin
1640 -- First add the extra formal if needed. This applies to all
1641 -- nested subprograms that require an activation record to be
1642 -- passed, as indicated by ARECnF being defined.
1644 if Present (STJ.ARECnF) then
1646 -- Here we need the extra formal. We do the expansion and
1647 -- analysis of this manually, since it is fairly simple,
1648 -- and it is not obvious how we can get what we want if we
1649 -- try to use the normal Analyze circuit.
1651 Add_Extra_Formal : declare
1652 Encl : constant SI_Type := Enclosing_Subp (J);
1653 STJE : Subp_Entry renames Subps.Table (Encl);
1654 -- Index and Subp_Entry for enclosing routine
1656 Form : constant Entity_Id := STJ.ARECnF;
1657 -- The formal to be added. Note that n here is one less
1658 -- than the level of the subprogram itself (STJ.Ent).
1660 procedure Add_Form_To_Spec (F : Entity_Id; S : Node_Id);
1661 -- S is an N_Function/Procedure_Specification node, and F
1662 -- is the new entity to add to this subprogramn spec as
1663 -- the last Extra_Formal.
1665 ----------------------
1666 -- Add_Form_To_Spec --
1667 ----------------------
1669 procedure Add_Form_To_Spec (F : Entity_Id; S : Node_Id) is
1670 Sub : constant Entity_Id := Defining_Entity (S);
1671 Ent : Entity_Id;
1673 begin
1674 -- Case of at least one Extra_Formal is present, set
1675 -- ARECnF as the new last entry in the list.
1677 if Present (Extra_Formals (Sub)) then
1678 Ent := Extra_Formals (Sub);
1679 while Present (Extra_Formal (Ent)) loop
1680 Ent := Extra_Formal (Ent);
1681 end loop;
1683 Set_Extra_Formal (Ent, F);
1685 -- No Extra formals present
1687 else
1688 Set_Extra_Formals (Sub, F);
1689 Ent := Last_Formal (Sub);
1691 if Present (Ent) then
1692 Set_Extra_Formal (Ent, F);
1693 end if;
1694 end if;
1695 end Add_Form_To_Spec;
1697 -- Start of processing for Add_Extra_Formal
1699 begin
1700 -- Decorate the new formal entity
1702 Set_Scope (Form, STJ.Ent);
1703 Set_Ekind (Form, E_In_Parameter);
1704 Set_Etype (Form, STJE.ARECnPT);
1705 Set_Mechanism (Form, By_Copy);
1706 Set_Never_Set_In_Source (Form, True);
1707 Set_Analyzed (Form, True);
1708 Set_Comes_From_Source (Form, False);
1709 Set_Is_Activation_Record (Form, True);
1711 -- Case of only body present
1713 if Acts_As_Spec (STJ.Bod) then
1714 Add_Form_To_Spec (Form, Specification (STJ.Bod));
1716 -- Case of separate spec
1718 else
1719 Add_Form_To_Spec (Form, Parent (STJ.Ent));
1720 end if;
1721 end Add_Extra_Formal;
1722 end if;
1724 -- Processing for subprograms that declare an activation record
1726 if Present (STJ.ARECn) then
1728 -- Local declarations for one such subprogram
1730 declare
1731 Loc : constant Source_Ptr := Sloc (STJ.Bod);
1733 Decls : constant List_Id := New_List;
1734 -- List of new declarations we create
1736 Clist : List_Id;
1737 Comp : Entity_Id;
1739 Decl_Assign : Node_Id;
1740 -- Assigment to set uplink, Empty if none
1742 Decl_ARECnT : Node_Id;
1743 Decl_ARECnPT : Node_Id;
1744 Decl_ARECn : Node_Id;
1745 Decl_ARECnP : Node_Id;
1746 -- Declaration nodes for the AREC entities we build
1748 begin
1749 -- Build list of component declarations for ARECnT and
1750 -- load System.Address.
1752 Clist := Empty_List;
1754 if No (Addr) then
1755 Addr := RTE (RE_Address);
1756 end if;
1758 -- If we are in a subprogram that has a static link that
1759 -- is passed in (as indicated by ARECnF being defined),
1760 -- then include ARECnU : ARECmPT where ARECmPT comes from
1761 -- the level one higher than the current level, and the
1762 -- entity ARECnPT comes from the enclosing subprogram.
1764 if Present (STJ.ARECnF) then
1765 declare
1766 STJE : Subp_Entry
1767 renames Subps.Table (Enclosing_Subp (J));
1768 begin
1769 Append_To (Clist,
1770 Make_Component_Declaration (Loc,
1771 Defining_Identifier => STJ.ARECnU,
1772 Component_Definition =>
1773 Make_Component_Definition (Loc,
1774 Subtype_Indication =>
1775 New_Occurrence_Of (STJE.ARECnPT, Loc))));
1776 end;
1777 end if;
1779 -- Add components for uplevel referenced entities
1781 if Present (STJ.Uents) then
1782 declare
1783 Elmt : Elmt_Id;
1784 Ptr_Decl : Node_Id;
1785 Uent : Entity_Id;
1787 Indx : Nat;
1788 -- 1's origin of index in list of elements. This is
1789 -- used to uniquify names if needed in Upref_Name.
1791 begin
1792 Elmt := First_Elmt (STJ.Uents);
1793 Indx := 0;
1794 while Present (Elmt) loop
1795 Uent := Node (Elmt);
1796 Indx := Indx + 1;
1798 Comp :=
1799 Make_Defining_Identifier (Loc,
1800 Chars => Upref_Name (Uent, Indx, Clist));
1802 Set_Activation_Record_Component
1803 (Uent, Comp);
1805 if Needs_Fat_Pointer (Uent) then
1807 -- Build corresponding access type
1809 Ptr_Decl :=
1810 Build_Access_Type_Decl
1811 (Etype (Uent), STJ.Ent);
1812 Append_To (Decls, Ptr_Decl);
1814 -- And use its type in the corresponding
1815 -- component.
1817 Append_To (Clist,
1818 Make_Component_Declaration (Loc,
1819 Defining_Identifier => Comp,
1820 Component_Definition =>
1821 Make_Component_Definition (Loc,
1822 Subtype_Indication =>
1823 New_Occurrence_Of
1824 (Defining_Identifier (Ptr_Decl),
1825 Loc))));
1826 else
1827 Append_To (Clist,
1828 Make_Component_Declaration (Loc,
1829 Defining_Identifier => Comp,
1830 Component_Definition =>
1831 Make_Component_Definition (Loc,
1832 Subtype_Indication =>
1833 New_Occurrence_Of (Addr, Loc))));
1834 end if;
1835 Next_Elmt (Elmt);
1836 end loop;
1837 end;
1838 end if;
1840 -- Now we can insert the AREC declarations into the body
1841 -- type ARECnT is record .. end record;
1842 -- pragma Suppress_Initialization (ARECnT);
1844 -- Note that we need to set the Suppress_Initialization
1845 -- flag after Decl_ARECnT has been analyzed.
1847 Decl_ARECnT :=
1848 Make_Full_Type_Declaration (Loc,
1849 Defining_Identifier => STJ.ARECnT,
1850 Type_Definition =>
1851 Make_Record_Definition (Loc,
1852 Component_List =>
1853 Make_Component_List (Loc,
1854 Component_Items => Clist)));
1855 Append_To (Decls, Decl_ARECnT);
1857 -- type ARECnPT is access all ARECnT;
1859 Decl_ARECnPT :=
1860 Make_Full_Type_Declaration (Loc,
1861 Defining_Identifier => STJ.ARECnPT,
1862 Type_Definition =>
1863 Make_Access_To_Object_Definition (Loc,
1864 All_Present => True,
1865 Subtype_Indication =>
1866 New_Occurrence_Of (STJ.ARECnT, Loc)));
1867 Append_To (Decls, Decl_ARECnPT);
1869 -- ARECn : aliased ARECnT;
1871 Decl_ARECn :=
1872 Make_Object_Declaration (Loc,
1873 Defining_Identifier => STJ.ARECn,
1874 Aliased_Present => True,
1875 Object_Definition =>
1876 New_Occurrence_Of (STJ.ARECnT, Loc));
1877 Append_To (Decls, Decl_ARECn);
1879 -- ARECnP : constant ARECnPT := ARECn'Access;
1881 Decl_ARECnP :=
1882 Make_Object_Declaration (Loc,
1883 Defining_Identifier => STJ.ARECnP,
1884 Constant_Present => True,
1885 Object_Definition =>
1886 New_Occurrence_Of (STJ.ARECnPT, Loc),
1887 Expression =>
1888 Make_Attribute_Reference (Loc,
1889 Prefix =>
1890 New_Occurrence_Of (STJ.ARECn, Loc),
1891 Attribute_Name => Name_Access));
1892 Append_To (Decls, Decl_ARECnP);
1894 -- If we are in a subprogram that has a static link that
1895 -- is passed in (as indicated by ARECnF being defined),
1896 -- then generate ARECn.ARECmU := ARECmF where m is
1897 -- one less than the current level to set the uplink.
1899 if Present (STJ.ARECnF) then
1900 Decl_Assign :=
1901 Make_Assignment_Statement (Loc,
1902 Name =>
1903 Make_Selected_Component (Loc,
1904 Prefix =>
1905 New_Occurrence_Of (STJ.ARECn, Loc),
1906 Selector_Name =>
1907 New_Occurrence_Of (STJ.ARECnU, Loc)),
1908 Expression =>
1909 New_Occurrence_Of (STJ.ARECnF, Loc));
1910 Append_To (Decls, Decl_Assign);
1912 else
1913 Decl_Assign := Empty;
1914 end if;
1916 if No (Declarations (STJ.Bod)) then
1917 Set_Declarations (STJ.Bod, Decls);
1918 else
1919 Prepend_List_To (Declarations (STJ.Bod), Decls);
1920 end if;
1922 -- Analyze the newly inserted declarations. Note that we
1923 -- do not need to establish the whole scope stack, since
1924 -- we have already set all entity fields (so there will
1925 -- be no searching of upper scopes to resolve names). But
1926 -- we do set the scope of the current subprogram, so that
1927 -- newly created entities go in the right entity chain.
1929 -- We analyze with all checks suppressed (since we do
1930 -- not expect any exceptions).
1932 Push_Scope (STJ.Ent);
1933 Analyze (Decl_ARECnT, Suppress => All_Checks);
1935 -- Note that we need to call Set_Suppress_Initialization
1936 -- after Decl_ARECnT has been analyzed, but before
1937 -- analyzing Decl_ARECnP so that the flag is properly
1938 -- taking into account.
1940 Set_Suppress_Initialization (STJ.ARECnT);
1942 Analyze (Decl_ARECnPT, Suppress => All_Checks);
1943 Analyze (Decl_ARECn, Suppress => All_Checks);
1944 Analyze (Decl_ARECnP, Suppress => All_Checks);
1946 if Present (Decl_Assign) then
1947 Analyze (Decl_Assign, Suppress => All_Checks);
1948 end if;
1950 Pop_Scope;
1952 -- Next step, for each uplevel referenced entity, add
1953 -- assignment operations to set the component in the
1954 -- activation record.
1956 if Present (STJ.Uents) then
1957 declare
1958 Elmt : Elmt_Id;
1960 begin
1961 Elmt := First_Elmt (STJ.Uents);
1962 while Present (Elmt) loop
1963 declare
1964 Ent : constant Entity_Id := Node (Elmt);
1965 Loc : constant Source_Ptr := Sloc (Ent);
1966 Dec : constant Node_Id :=
1967 Declaration_Node (Ent);
1969 Asn : Node_Id;
1970 Attr : Name_Id;
1971 Comp : Entity_Id;
1972 Ins : Node_Id;
1973 Rhs : Node_Id;
1975 begin
1976 -- For parameters, we insert the assignment
1977 -- right after the declaration of ARECnP.
1978 -- For all other entities, we insert the
1979 -- assignment immediately after the
1980 -- declaration of the entity or after the
1981 -- freeze node if present.
1983 -- Note: we don't need to mark the entity
1984 -- as being aliased, because the address
1985 -- attribute will mark it as Address_Taken,
1986 -- and that is good enough.
1988 if Is_Formal (Ent) then
1989 Ins := Decl_ARECnP;
1991 elsif Has_Delayed_Freeze (Ent) then
1992 Ins := Freeze_Node (Ent);
1994 else
1995 Ins := Dec;
1996 end if;
1998 -- Build and insert the assignment:
1999 -- ARECn.nam := nam'Address
2000 -- or else 'Access for unconstrained array
2002 if Needs_Fat_Pointer (Ent) then
2003 Attr := Name_Access;
2004 else
2005 Attr := Name_Address;
2006 end if;
2008 Rhs :=
2009 Make_Attribute_Reference (Loc,
2010 Prefix =>
2011 New_Occurrence_Of (Ent, Loc),
2012 Attribute_Name => Attr);
2014 -- If the entity is an unconstrained formal
2015 -- we wrap the attribute reference in an
2016 -- unchecked conversion to the type of the
2017 -- activation record component, to prevent
2018 -- spurious subtype conformance errors within
2019 -- instances.
2021 if Is_Formal (Ent)
2022 and then not Is_Constrained (Etype (Ent))
2023 then
2024 -- Find target component and its type
2026 Comp := First_Component (STJ.ARECnT);
2027 while Chars (Comp) /= Chars (Ent) loop
2028 Comp := Next_Component (Comp);
2029 end loop;
2031 Rhs :=
2032 Unchecked_Convert_To (Etype (Comp), Rhs);
2033 end if;
2035 Asn :=
2036 Make_Assignment_Statement (Loc,
2037 Name =>
2038 Make_Selected_Component (Loc,
2039 Prefix =>
2040 New_Occurrence_Of (STJ.ARECn, Loc),
2041 Selector_Name =>
2042 New_Occurrence_Of
2043 (Activation_Record_Component
2044 (Ent),
2045 Loc)),
2046 Expression => Rhs);
2048 -- If we have a loop parameter, we have
2049 -- to insert before the first statement
2050 -- of the loop. Ins points to the
2051 -- N_Loop_Parameter_Specification or to
2052 -- an N_Iterator_Specification.
2054 if Nkind_In
2055 (Ins, N_Iterator_Specification,
2056 N_Loop_Parameter_Specification)
2057 then
2058 -- Quantified expression are rewritten as
2059 -- loops during expansion.
2061 if Nkind (Parent (Ins)) =
2062 N_Quantified_Expression
2063 then
2064 null;
2066 else
2067 Ins :=
2068 First
2069 (Statements
2070 (Parent (Parent (Ins))));
2071 Insert_Before (Ins, Asn);
2072 end if;
2074 else
2075 Insert_After (Ins, Asn);
2076 end if;
2078 -- Analyze the assignment statement. We do
2079 -- not need to establish the relevant scope
2080 -- stack entries here, because we have
2081 -- already set the correct entity references,
2082 -- so no name resolution is required, and no
2083 -- new entities are created, so we don't even
2084 -- need to set the current scope.
2086 -- We analyze with all checks suppressed
2087 -- (since we do not expect any exceptions).
2089 Analyze (Asn, Suppress => All_Checks);
2090 end;
2092 Next_Elmt (Elmt);
2093 end loop;
2094 end;
2095 end if;
2096 end;
2097 end if;
2098 end;
2099 end loop;
2100 end Subp_Loop;
2102 -- Next step, process uplevel references. This has to be done in a
2103 -- separate pass, after completing the processing in Sub_Loop because we
2104 -- need all the AREC declarations generated, inserted, and analyzed so
2105 -- that the uplevel references can be successfully analyzed.
2107 Uplev_Refs : for J in Urefs.First .. Urefs.Last loop
2108 declare
2109 UPJ : Uref_Entry renames Urefs.Table (J);
2111 begin
2112 -- Ignore type references, these are implicit references that do
2113 -- not need rewriting (e.g. the appearence in a conversion).
2114 -- Also ignore if no reference was specified or if the rewriting
2115 -- has already been done (this can happen if the N_Identifier
2116 -- occurs more than one time in the tree).
2118 if No (UPJ.Ref)
2119 or else not Is_Entity_Name (UPJ.Ref)
2120 or else not Present (Entity (UPJ.Ref))
2121 then
2122 goto Continue;
2123 end if;
2125 -- Rewrite one reference
2127 Rewrite_One_Ref : declare
2128 Loc : constant Source_Ptr := Sloc (UPJ.Ref);
2129 -- Source location for the reference
2131 Typ : constant Entity_Id := Etype (UPJ.Ent);
2132 -- The type of the referenced entity
2134 Atyp : Entity_Id;
2135 -- The actual subtype of the reference
2137 RS_Caller : constant SI_Type := Subp_Index (UPJ.Caller);
2138 -- Subp_Index for caller containing reference
2140 STJR : Subp_Entry renames Subps.Table (RS_Caller);
2141 -- Subp_Entry for subprogram containing reference
2143 RS_Callee : constant SI_Type := Subp_Index (UPJ.Callee);
2144 -- Subp_Index for subprogram containing referenced entity
2146 STJE : Subp_Entry renames Subps.Table (RS_Callee);
2147 -- Subp_Entry for subprogram containing referenced entity
2149 Pfx : Node_Id;
2150 Comp : Entity_Id;
2151 SI : SI_Type;
2153 begin
2154 Atyp := Etype (UPJ.Ref);
2156 if Ekind (Atyp) /= E_Record_Subtype then
2157 Atyp := Get_Actual_Subtype (UPJ.Ref);
2158 end if;
2160 -- Ignore if no ARECnF entity for enclosing subprogram which
2161 -- probably happens as a result of not properly treating
2162 -- instance bodies. To be examined ???
2164 -- If this test is omitted, then the compilation of freeze.adb
2165 -- and inline.adb fail in unnesting mode.
2167 if No (STJR.ARECnF) then
2168 goto Continue;
2169 end if;
2171 -- Push the current scope, so that the pointer type Tnn, and
2172 -- any subsidiary entities resulting from the analysis of the
2173 -- rewritten reference, go in the right entity chain.
2175 Push_Scope (STJR.Ent);
2177 -- Now we need to rewrite the reference. We have a reference
2178 -- from level STJR.Lev to level STJE.Lev. The general form of
2179 -- the rewritten reference for entity X is:
2181 -- Typ'Deref (ARECaF.ARECbU.ARECcU.ARECdU....ARECmU.X)
2183 -- where a,b,c,d .. m =
2184 -- STJR.Lev - 1, STJR.Lev - 2, .. STJE.Lev
2186 pragma Assert (STJR.Lev > STJE.Lev);
2188 -- Compute the prefix of X. Here are examples to make things
2189 -- clear (with parens to show groupings, the prefix is
2190 -- everything except the .X at the end).
2192 -- level 2 to level 1
2194 -- AREC1F.X
2196 -- level 3 to level 1
2198 -- (AREC2F.AREC1U).X
2200 -- level 4 to level 1
2202 -- ((AREC3F.AREC2U).AREC1U).X
2204 -- level 6 to level 2
2206 -- (((AREC5F.AREC4U).AREC3U).AREC2U).X
2208 -- In the above, ARECnF and ARECnU are pointers, so there are
2209 -- explicit dereferences required for these occurrences.
2211 Pfx :=
2212 Make_Explicit_Dereference (Loc,
2213 Prefix => New_Occurrence_Of (STJR.ARECnF, Loc));
2214 SI := RS_Caller;
2215 for L in STJE.Lev .. STJR.Lev - 2 loop
2216 SI := Enclosing_Subp (SI);
2217 Pfx :=
2218 Make_Explicit_Dereference (Loc,
2219 Prefix =>
2220 Make_Selected_Component (Loc,
2221 Prefix => Pfx,
2222 Selector_Name =>
2223 New_Occurrence_Of (Subps.Table (SI).ARECnU, Loc)));
2224 end loop;
2226 -- Get activation record component (must exist)
2228 Comp := Activation_Record_Component (UPJ.Ent);
2229 pragma Assert (Present (Comp));
2231 -- Do the replacement. If the component type is an access type,
2232 -- this is an uplevel reference for an entity that requires a
2233 -- fat pointer, so dereference the component.
2235 if Is_Access_Type (Etype (Comp)) then
2236 Rewrite (UPJ.Ref,
2237 Make_Explicit_Dereference (Loc,
2238 Prefix =>
2239 Make_Selected_Component (Loc,
2240 Prefix => Pfx,
2241 Selector_Name =>
2242 New_Occurrence_Of (Comp, Loc))));
2244 else
2245 Rewrite (UPJ.Ref,
2246 Make_Attribute_Reference (Loc,
2247 Prefix => New_Occurrence_Of (Atyp, Loc),
2248 Attribute_Name => Name_Deref,
2249 Expressions => New_List (
2250 Make_Selected_Component (Loc,
2251 Prefix => Pfx,
2252 Selector_Name =>
2253 New_Occurrence_Of (Comp, Loc)))));
2254 end if;
2256 -- Analyze and resolve the new expression. We do not need to
2257 -- establish the relevant scope stack entries here, because we
2258 -- have already set all the correct entity references, so no
2259 -- name resolution is needed. We have already set the current
2260 -- scope, so that any new entities created will be in the right
2261 -- scope.
2263 -- We analyze with all checks suppressed (since we do not
2264 -- expect any exceptions)
2266 Analyze_And_Resolve (UPJ.Ref, Typ, Suppress => All_Checks);
2267 Pop_Scope;
2268 end Rewrite_One_Ref;
2269 end;
2271 <<Continue>>
2272 null;
2273 end loop Uplev_Refs;
2275 -- Finally, loop through all calls adding extra actual for the
2276 -- activation record where it is required.
2278 Adjust_Calls : for J in Calls.First .. Calls.Last loop
2280 -- Process a single call, we are only interested in a call to a
2281 -- subprogram that actually needs a pointer to an activation record,
2282 -- as indicated by the ARECnF entity being set. This excludes the
2283 -- top level subprogram, and any subprogram not having uplevel refs.
2285 Adjust_One_Call : declare
2286 CTJ : Call_Entry renames Calls.Table (J);
2287 STF : Subp_Entry renames Subps.Table (Subp_Index (CTJ.Caller));
2288 STT : Subp_Entry renames Subps.Table (Subp_Index (CTJ.Callee));
2290 Loc : constant Source_Ptr := Sloc (CTJ.N);
2292 Extra : Node_Id;
2293 ExtraP : Node_Id;
2294 SubX : SI_Type;
2295 Act : Node_Id;
2297 begin
2298 if Present (STT.ARECnF)
2299 and then Nkind (CTJ.N) in N_Subprogram_Call
2300 then
2301 -- CTJ.N is a call to a subprogram which may require a pointer
2302 -- to an activation record. The subprogram containing the call
2303 -- is CTJ.From and the subprogram being called is CTJ.To, so we
2304 -- have a call from level STF.Lev to level STT.Lev.
2306 -- There are three possibilities:
2308 -- For a call to the same level, we just pass the activation
2309 -- record passed to the calling subprogram.
2311 if STF.Lev = STT.Lev then
2312 Extra := New_Occurrence_Of (STF.ARECnF, Loc);
2314 -- For a call that goes down a level, we pass a pointer to the
2315 -- activation record constructed within the caller (which may
2316 -- be the outer-level subprogram, but also may be a more deeply
2317 -- nested caller).
2319 elsif STT.Lev = STF.Lev + 1 then
2320 Extra := New_Occurrence_Of (STF.ARECnP, Loc);
2322 -- Otherwise we must have an upcall (STT.Lev < STF.LEV),
2323 -- since it is not possible to do a downcall of more than
2324 -- one level.
2326 -- For a call from level STF.Lev to level STT.Lev, we
2327 -- have to find the activation record needed by the
2328 -- callee. This is as follows:
2330 -- ARECaF.ARECbU.ARECcU....ARECmU
2332 -- where a,b,c .. m =
2333 -- STF.Lev - 1, STF.Lev - 2, STF.Lev - 3 .. STT.Lev
2335 else
2336 pragma Assert (STT.Lev < STF.Lev);
2338 Extra := New_Occurrence_Of (STF.ARECnF, Loc);
2339 SubX := Subp_Index (CTJ.Caller);
2340 for K in reverse STT.Lev .. STF.Lev - 1 loop
2341 SubX := Enclosing_Subp (SubX);
2342 Extra :=
2343 Make_Selected_Component (Loc,
2344 Prefix => Extra,
2345 Selector_Name =>
2346 New_Occurrence_Of
2347 (Subps.Table (SubX).ARECnU, Loc));
2348 end loop;
2349 end if;
2351 -- Extra is the additional parameter to be added. Build a
2352 -- parameter association that we can append to the actuals.
2354 ExtraP :=
2355 Make_Parameter_Association (Loc,
2356 Selector_Name =>
2357 New_Occurrence_Of (STT.ARECnF, Loc),
2358 Explicit_Actual_Parameter => Extra);
2360 if No (Parameter_Associations (CTJ.N)) then
2361 Set_Parameter_Associations (CTJ.N, Empty_List);
2362 end if;
2364 Append (ExtraP, Parameter_Associations (CTJ.N));
2366 -- We need to deal with the actual parameter chain as well. The
2367 -- newly added parameter is always the last actual.
2369 Act := First_Named_Actual (CTJ.N);
2371 if No (Act) then
2372 Set_First_Named_Actual (CTJ.N, Extra);
2374 -- If call has been relocated (as with an expression in
2375 -- an aggregate), set First_Named pointer in original node
2376 -- as well, because that's the parent of the parameter list.
2378 Set_First_Named_Actual
2379 (Parent (List_Containing (ExtraP)), Extra);
2381 -- Here we must follow the chain and append the new entry
2383 else
2384 loop
2385 declare
2386 PAN : Node_Id;
2387 NNA : Node_Id;
2389 begin
2390 PAN := Parent (Act);
2391 pragma Assert (Nkind (PAN) = N_Parameter_Association);
2392 NNA := Next_Named_Actual (PAN);
2394 if No (NNA) then
2395 Set_Next_Named_Actual (PAN, Extra);
2396 exit;
2397 end if;
2399 Act := NNA;
2400 end;
2401 end loop;
2402 end if;
2404 -- Analyze and resolve the new actual. We do not need to
2405 -- establish the relevant scope stack entries here, because
2406 -- we have already set all the correct entity references, so
2407 -- no name resolution is needed.
2409 -- We analyze with all checks suppressed (since we do not
2410 -- expect any exceptions, and also we temporarily turn off
2411 -- Unested_Subprogram_Mode to avoid trying to mark uplevel
2412 -- references (not needed at this stage, and in fact causes
2413 -- a bit of recursive chaos).
2415 Opt.Unnest_Subprogram_Mode := False;
2416 Analyze_And_Resolve
2417 (Extra, Etype (STT.ARECnF), Suppress => All_Checks);
2418 Opt.Unnest_Subprogram_Mode := True;
2419 end if;
2420 end Adjust_One_Call;
2421 end loop Adjust_Calls;
2423 return;
2424 end Unnest_Subprogram;
2426 ------------------------
2427 -- Unnest_Subprograms --
2428 ------------------------
2430 procedure Unnest_Subprograms (N : Node_Id) is
2431 function Search_Subprograms (N : Node_Id) return Traverse_Result;
2432 -- Tree visitor that search for outer level procedures with nested
2433 -- subprograms and invokes Unnest_Subprogram()
2435 ---------------
2436 -- Do_Search --
2437 ---------------
2439 procedure Do_Search is new Traverse_Proc (Search_Subprograms);
2440 -- Subtree visitor instantiation
2442 ------------------------
2443 -- Search_Subprograms --
2444 ------------------------
2446 function Search_Subprograms (N : Node_Id) return Traverse_Result is
2447 begin
2448 if Nkind_In (N, N_Subprogram_Body, N_Subprogram_Body_Stub) then
2449 declare
2450 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
2452 begin
2453 -- We are only interested in subprograms (not generic
2454 -- subprograms), that have nested subprograms.
2456 if Is_Subprogram (Spec_Id)
2457 and then Has_Nested_Subprogram (Spec_Id)
2458 and then Is_Library_Level_Entity (Spec_Id)
2459 then
2460 Unnest_Subprogram (Spec_Id, N);
2461 end if;
2462 end;
2464 -- The proper body of a stub may contain nested subprograms, and
2465 -- therefore must be visited explicitly. Nested stubs are examined
2466 -- recursively in Visit_Node.
2468 elsif Nkind (N) in N_Body_Stub then
2469 Do_Search (Library_Unit (N));
2471 -- Skip generic packages
2473 elsif Nkind (N) = N_Package_Body
2474 and then Ekind (Corresponding_Spec (N)) = E_Generic_Package
2475 then
2476 return Skip;
2477 end if;
2479 return OK;
2480 end Search_Subprograms;
2482 -- Start of processing for Unnest_Subprograms
2484 begin
2485 if not Opt.Unnest_Subprogram_Mode or not Opt.Expander_Active then
2486 return;
2487 end if;
2489 -- A specification will contain bodies if it contains instantiations so
2490 -- examine package or subprogram declaration of the main unit, when it
2491 -- is present.
2493 if Nkind (Unit (N)) = N_Package_Body
2494 or else (Nkind (Unit (N)) = N_Subprogram_Body
2495 and then not Acts_As_Spec (N))
2496 then
2497 Do_Search (Library_Unit (N));
2498 end if;
2500 Do_Search (N);
2501 end Unnest_Subprograms;
2503 end Exp_Unst;