1 /* Tail merging for gimple.
2 Copyright (C) 2011 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
181 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
185 #include "coretypes.h"
189 #include "basic-block.h"
192 #include "function.h"
193 #include "tree-flow.h"
196 #include "tree-ssa-alias.h"
198 #include "tree-pretty-print.h"
200 #include "gimple-pretty-print.h"
201 #include "tree-ssa-sccvn.h"
202 #include "tree-dump.h"
204 /* Describes a group of bbs with the same successors. The successor bbs are
205 cached in succs, and the successor edge flags are cached in succ_flags.
206 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
207 it's marked in inverse.
208 Additionally, the hash value for the struct is cached in hashval, and
209 in_worklist indicates whether it's currently part of worklist. */
213 /* The bbs that have the same successor bbs. */
215 /* The successor bbs. */
217 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
220 /* The edge flags for each of the successor bbs. */
221 VEC (int, heap
) *succ_flags
;
222 /* Indicates whether the struct is currently in the worklist. */
224 /* The hash value of the struct. */
227 typedef struct same_succ_def
*same_succ
;
228 typedef const struct same_succ_def
*const_same_succ
;
230 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
232 struct bb_cluster_def
234 /* The bbs in the cluster. */
236 /* The preds of the bbs in the cluster. */
238 /* Index in all_clusters vector. */
240 /* The bb to replace the cluster with. */
243 typedef struct bb_cluster_def
*bb_cluster
;
244 typedef const struct bb_cluster_def
*const_bb_cluster
;
250 /* The number of non-debug statements in the bb. */
252 /* The same_succ that this bb is a member of. */
253 same_succ bb_same_succ
;
254 /* The cluster that this bb is a member of. */
256 /* The vop state at the exit of a bb. This is shortlived data, used to
257 communicate data between update_block_by and update_vuses. */
259 /* The bb that either contains or is dominated by the dependencies of the
264 /* Macros to access the fields of struct aux_bb_info. */
266 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
267 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
268 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
269 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
270 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
272 /* VAL1 and VAL2 are either:
273 - uses in BB1 and BB2, or
274 - phi alternatives for BB1 and BB2.
275 Return true if the uses have the same gvn value. */
278 gvn_uses_equal (tree val1
, tree val2
)
280 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
285 if (vn_valueize (val1
) != vn_valueize (val2
))
288 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
289 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
292 /* Prints E to FILE. */
295 same_succ_print (FILE *file
, const same_succ e
)
298 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
299 bitmap_print (file
, e
->succs
, "succs:", "\n");
300 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
301 fprintf (file
, "flags:");
302 for (i
= 0; i
< VEC_length (int, e
->succ_flags
); ++i
)
303 fprintf (file
, " %x", VEC_index (int, e
->succ_flags
, i
));
304 fprintf (file
, "\n");
307 /* Prints same_succ VE to VFILE. */
310 same_succ_print_traverse (void **ve
, void *vfile
)
312 const same_succ e
= *((const same_succ
*)ve
);
313 FILE *file
= ((FILE*)vfile
);
314 same_succ_print (file
, e
);
318 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
321 update_dep_bb (basic_block use_bb
, tree val
)
326 if (TREE_CODE (val
) != SSA_NAME
)
329 /* Skip use of global def. */
330 if (SSA_NAME_IS_DEFAULT_DEF (val
))
333 /* Skip use of local def. */
334 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
335 if (dep_bb
== use_bb
)
338 if (BB_DEP_BB (use_bb
) == NULL
339 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
340 BB_DEP_BB (use_bb
) = dep_bb
;
343 /* Update BB_DEP_BB, given the dependencies in STMT. */
346 stmt_update_dep_bb (gimple stmt
)
351 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
352 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
355 /* Returns whether VAL is used in the same bb as in which it is defined, or
356 in the phi of a successor bb. */
361 gimple stmt
, def_stmt
;
362 basic_block bb
, def_bb
;
363 imm_use_iterator iter
;
366 if (TREE_CODE (val
) != SSA_NAME
)
368 def_stmt
= SSA_NAME_DEF_STMT (val
);
369 def_bb
= gimple_bb (def_stmt
);
372 FOR_EACH_IMM_USE_STMT (stmt
, iter
, val
)
374 bb
= gimple_bb (stmt
);
377 if (gimple_code (stmt
) == GIMPLE_PHI
378 && find_edge (def_bb
, bb
))
381 BREAK_FROM_IMM_USE_STMT (iter
);
386 /* Calculates hash value for same_succ VE. */
389 same_succ_hash (const void *ve
)
391 const_same_succ e
= (const_same_succ
)ve
;
392 hashval_t hashval
= bitmap_hash (e
->succs
);
395 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
396 basic_block bb
= BASIC_BLOCK (first
);
398 gimple_stmt_iterator gsi
;
404 for (gsi
= gsi_start_nondebug_bb (bb
);
405 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
407 stmt
= gsi_stmt (gsi
);
408 stmt_update_dep_bb (stmt
);
409 if (is_gimple_assign (stmt
) && local_def (gimple_get_lhs (stmt
))
410 && !gimple_has_side_effects (stmt
))
414 hashval
= iterative_hash_hashval_t (gimple_code (stmt
), hashval
);
415 if (is_gimple_assign (stmt
))
416 hashval
= iterative_hash_hashval_t (gimple_assign_rhs_code (stmt
),
418 if (!is_gimple_call (stmt
))
420 if (gimple_call_internal_p (stmt
))
421 hashval
= iterative_hash_hashval_t
422 ((hashval_t
) gimple_call_internal_fn (stmt
), hashval
);
424 hashval
= iterative_hash_expr (gimple_call_fn (stmt
), hashval
);
425 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
427 arg
= gimple_call_arg (stmt
, i
);
428 arg
= vn_valueize (arg
);
429 hashval
= iterative_hash_expr (arg
, hashval
);
433 hashval
= iterative_hash_hashval_t (size
, hashval
);
436 for (i
= 0; i
< VEC_length (int, e
->succ_flags
); ++i
)
438 flags
= VEC_index (int, e
->succ_flags
, i
);
439 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
440 hashval
= iterative_hash_hashval_t (flags
, hashval
);
443 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
445 int n
= find_edge (bb
, BASIC_BLOCK (s
))->dest_idx
;
446 for (gsi
= gsi_start_phis (BASIC_BLOCK (s
)); !gsi_end_p (gsi
);
449 gimple phi
= gsi_stmt (gsi
);
450 tree lhs
= gimple_phi_result (phi
);
451 tree val
= gimple_phi_arg_def (phi
, n
);
453 if (!is_gimple_reg (lhs
))
455 update_dep_bb (bb
, val
);
462 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
463 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
464 the other edge flags. */
467 inverse_flags (const_same_succ e1
, const_same_succ e2
)
469 int f1a
, f1b
, f2a
, f2b
;
470 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
472 if (VEC_length (int, e1
->succ_flags
) != 2)
475 f1a
= VEC_index (int, e1
->succ_flags
, 0);
476 f1b
= VEC_index (int, e1
->succ_flags
, 1);
477 f2a
= VEC_index (int, e2
->succ_flags
, 0);
478 f2b
= VEC_index (int, e2
->succ_flags
, 1);
480 if (f1a
== f2a
&& f1b
== f2b
)
483 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
486 /* Compares SAME_SUCCs VE1 and VE2. */
489 same_succ_equal (const void *ve1
, const void *ve2
)
491 const_same_succ e1
= (const_same_succ
)ve1
;
492 const_same_succ e2
= (const_same_succ
)ve2
;
493 unsigned int i
, first1
, first2
;
494 gimple_stmt_iterator gsi1
, gsi2
;
496 basic_block bb1
, bb2
;
498 if (e1
->hashval
!= e2
->hashval
)
501 if (VEC_length (int, e1
->succ_flags
) != VEC_length (int, e2
->succ_flags
))
504 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
507 if (!inverse_flags (e1
, e2
))
509 for (i
= 0; i
< VEC_length (int, e1
->succ_flags
); ++i
)
510 if (VEC_index (int, e1
->succ_flags
, i
)
511 != VEC_index (int, e1
->succ_flags
, i
))
515 first1
= bitmap_first_set_bit (e1
->bbs
);
516 first2
= bitmap_first_set_bit (e2
->bbs
);
518 bb1
= BASIC_BLOCK (first1
);
519 bb2
= BASIC_BLOCK (first2
);
521 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
524 gsi1
= gsi_start_nondebug_bb (bb1
);
525 gsi2
= gsi_start_nondebug_bb (bb2
);
526 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
528 s1
= gsi_stmt (gsi1
);
529 s2
= gsi_stmt (gsi2
);
530 if (gimple_code (s1
) != gimple_code (s2
))
532 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
534 gsi_next_nondebug (&gsi1
);
535 gsi_next_nondebug (&gsi2
);
541 /* Alloc and init a new SAME_SUCC. */
544 same_succ_alloc (void)
546 same_succ same
= XNEW (struct same_succ_def
);
548 same
->bbs
= BITMAP_ALLOC (NULL
);
549 same
->succs
= BITMAP_ALLOC (NULL
);
550 same
->inverse
= BITMAP_ALLOC (NULL
);
551 same
->succ_flags
= VEC_alloc (int, heap
, 10);
552 same
->in_worklist
= false;
557 /* Delete same_succ VE. */
560 same_succ_delete (void *ve
)
562 same_succ e
= (same_succ
)ve
;
564 BITMAP_FREE (e
->bbs
);
565 BITMAP_FREE (e
->succs
);
566 BITMAP_FREE (e
->inverse
);
567 VEC_free (int, heap
, e
->succ_flags
);
572 /* Reset same_succ SAME. */
575 same_succ_reset (same_succ same
)
577 bitmap_clear (same
->bbs
);
578 bitmap_clear (same
->succs
);
579 bitmap_clear (same
->inverse
);
580 VEC_truncate (int, same
->succ_flags
, 0);
583 /* Hash table with all same_succ entries. */
585 static htab_t same_succ_htab
;
587 /* Array that is used to store the edge flags for a successor. */
589 static int *same_succ_edge_flags
;
591 /* Bitmap that is used to mark bbs that are recently deleted. */
593 static bitmap deleted_bbs
;
595 /* Bitmap that is used to mark predecessors of bbs that are
598 static bitmap deleted_bb_preds
;
600 /* Prints same_succ_htab to stderr. */
602 extern void debug_same_succ (void);
604 debug_same_succ ( void)
606 htab_traverse (same_succ_htab
, same_succ_print_traverse
, stderr
);
609 DEF_VEC_P (same_succ
);
610 DEF_VEC_ALLOC_P (same_succ
, heap
);
612 /* Vector of bbs to process. */
614 static VEC (same_succ
, heap
) *worklist
;
616 /* Prints worklist to FILE. */
619 print_worklist (FILE *file
)
622 for (i
= 0; i
< VEC_length (same_succ
, worklist
); ++i
)
623 same_succ_print (file
, VEC_index (same_succ
, worklist
, i
));
626 /* Adds SAME to worklist. */
629 add_to_worklist (same_succ same
)
631 if (same
->in_worklist
)
634 if (bitmap_count_bits (same
->bbs
) < 2)
637 same
->in_worklist
= true;
638 VEC_safe_push (same_succ
, heap
, worklist
, same
);
641 /* Add BB to same_succ_htab. */
644 find_same_succ_bb (basic_block bb
, same_succ
*same_p
)
648 same_succ same
= *same_p
;
655 bitmap_set_bit (same
->bbs
, bb
->index
);
656 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
658 int index
= e
->dest
->index
;
659 bitmap_set_bit (same
->succs
, index
);
660 same_succ_edge_flags
[index
] = e
->flags
;
662 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
663 VEC_safe_push (int, heap
, same
->succ_flags
, same_succ_edge_flags
[j
]);
665 same
->hashval
= same_succ_hash (same
);
667 slot
= (same_succ
*) htab_find_slot_with_hash (same_succ_htab
, same
,
668 same
->hashval
, INSERT
);
672 BB_SAME_SUCC (bb
) = same
;
673 add_to_worklist (same
);
678 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
679 BB_SAME_SUCC (bb
) = *slot
;
680 add_to_worklist (*slot
);
681 if (inverse_flags (same
, *slot
))
682 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
683 same_succ_reset (same
);
687 /* Find bbs with same successors. */
690 find_same_succ (void)
692 same_succ same
= same_succ_alloc ();
697 find_same_succ_bb (bb
, &same
);
699 same
= same_succ_alloc ();
702 same_succ_delete (same
);
705 /* Initializes worklist administration. */
710 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
712 = htab_create (n_basic_blocks
, same_succ_hash
, same_succ_equal
,
714 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block
);
715 deleted_bbs
= BITMAP_ALLOC (NULL
);
716 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
717 worklist
= VEC_alloc (same_succ
, heap
, n_basic_blocks
);
720 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
722 fprintf (dump_file
, "initial worklist:\n");
723 print_worklist (dump_file
);
727 /* Deletes worklist administration. */
730 delete_worklist (void)
732 free_aux_for_blocks ();
733 htab_delete (same_succ_htab
);
734 same_succ_htab
= NULL
;
735 XDELETEVEC (same_succ_edge_flags
);
736 same_succ_edge_flags
= NULL
;
737 BITMAP_FREE (deleted_bbs
);
738 BITMAP_FREE (deleted_bb_preds
);
739 VEC_free (same_succ
, heap
, worklist
);
742 /* Mark BB as deleted, and mark its predecessors. */
745 mark_basic_block_deleted (basic_block bb
)
750 bitmap_set_bit (deleted_bbs
, bb
->index
);
752 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
753 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
756 /* Removes BB from its corresponding same_succ. */
759 same_succ_flush_bb (basic_block bb
)
761 same_succ same
= BB_SAME_SUCC (bb
);
762 BB_SAME_SUCC (bb
) = NULL
;
763 if (bitmap_single_bit_set_p (same
->bbs
))
764 htab_remove_elt_with_hash (same_succ_htab
, same
, same
->hashval
);
766 bitmap_clear_bit (same
->bbs
, bb
->index
);
769 /* Removes all bbs in BBS from their corresponding same_succ. */
772 same_succ_flush_bbs (bitmap bbs
)
777 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
778 same_succ_flush_bb (BASIC_BLOCK (i
));
781 /* Release the last vdef in BB, either normal or phi result. */
784 release_last_vdef (basic_block bb
)
786 gimple_stmt_iterator i
;
788 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
); gsi_prev_nondebug (&i
))
790 gimple stmt
= gsi_stmt (i
);
791 if (gimple_vdef (stmt
) == NULL_TREE
)
794 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
798 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
800 gimple phi
= gsi_stmt (i
);
801 tree res
= gimple_phi_result (phi
);
803 if (is_gimple_reg (res
))
806 mark_virtual_phi_result_for_renaming (phi
);
812 /* For deleted_bb_preds, find bbs with same successors. */
815 update_worklist (void)
822 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
823 bitmap_clear (deleted_bbs
);
825 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
826 same_succ_flush_bbs (deleted_bb_preds
);
828 same
= same_succ_alloc ();
829 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
831 bb
= BASIC_BLOCK (i
);
832 gcc_assert (bb
!= NULL
);
833 find_same_succ_bb (bb
, &same
);
835 same
= same_succ_alloc ();
837 same_succ_delete (same
);
838 bitmap_clear (deleted_bb_preds
);
841 /* Prints cluster C to FILE. */
844 print_cluster (FILE *file
, bb_cluster c
)
848 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
849 bitmap_print (file
, c
->preds
, "preds:", "\n");
852 /* Prints cluster C to stderr. */
854 extern void debug_cluster (bb_cluster
);
856 debug_cluster (bb_cluster c
)
858 print_cluster (stderr
, c
);
861 /* Update C->rep_bb, given that BB is added to the cluster. */
864 update_rep_bb (bb_cluster c
, basic_block bb
)
867 if (c
->rep_bb
== NULL
)
873 /* Current needs no deps, keep it. */
874 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
877 /* Bb needs no deps, change rep_bb. */
878 if (BB_DEP_BB (bb
) == NULL
)
884 /* Bb needs last deps earlier than current, change rep_bb. A potential
885 problem with this, is that the first deps might also be earlier, which
886 would mean we prefer longer lifetimes for the deps. To be able to check
887 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
888 BB_DEP_BB, which is really BB_LAST_DEP_BB.
889 The benefit of choosing the bb with last deps earlier, is that it can
890 potentially be used as replacement for more bbs. */
891 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
895 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
898 add_bb_to_cluster (bb_cluster c
, basic_block bb
)
903 bitmap_set_bit (c
->bbs
, bb
->index
);
905 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
906 bitmap_set_bit (c
->preds
, e
->src
->index
);
908 update_rep_bb (c
, bb
);
911 /* Allocate and init new cluster. */
917 c
= XCNEW (struct bb_cluster_def
);
918 c
->bbs
= BITMAP_ALLOC (NULL
);
919 c
->preds
= BITMAP_ALLOC (NULL
);
924 /* Delete clusters. */
927 delete_cluster (bb_cluster c
)
931 BITMAP_FREE (c
->bbs
);
932 BITMAP_FREE (c
->preds
);
936 DEF_VEC_P (bb_cluster
);
937 DEF_VEC_ALLOC_P (bb_cluster
, heap
);
939 /* Array that contains all clusters. */
941 static VEC (bb_cluster
, heap
) *all_clusters
;
943 /* Allocate all cluster vectors. */
946 alloc_cluster_vectors (void)
948 all_clusters
= VEC_alloc (bb_cluster
, heap
, n_basic_blocks
);
951 /* Reset all cluster vectors. */
954 reset_cluster_vectors (void)
958 for (i
= 0; i
< VEC_length (bb_cluster
, all_clusters
); ++i
)
959 delete_cluster (VEC_index (bb_cluster
, all_clusters
, i
));
960 VEC_truncate (bb_cluster
, all_clusters
, 0);
962 BB_CLUSTER (bb
) = NULL
;
965 /* Delete all cluster vectors. */
968 delete_cluster_vectors (void)
971 for (i
= 0; i
< VEC_length (bb_cluster
, all_clusters
); ++i
)
972 delete_cluster (VEC_index (bb_cluster
, all_clusters
, i
));
973 VEC_free (bb_cluster
, heap
, all_clusters
);
976 /* Merge cluster C2 into C1. */
979 merge_clusters (bb_cluster c1
, bb_cluster c2
)
981 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
982 bitmap_ior_into (c1
->preds
, c2
->preds
);
985 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
986 all_clusters, or merge c with existing cluster. */
989 set_cluster (basic_block bb1
, basic_block bb2
)
991 basic_block merge_bb
, other_bb
;
992 bb_cluster merge
, old
, c
;
994 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
997 add_bb_to_cluster (c
, bb1
);
998 add_bb_to_cluster (c
, bb2
);
999 BB_CLUSTER (bb1
) = c
;
1000 BB_CLUSTER (bb2
) = c
;
1001 c
->index
= VEC_length (bb_cluster
, all_clusters
);
1002 VEC_safe_push (bb_cluster
, heap
, all_clusters
, c
);
1004 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1006 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1007 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1008 merge
= BB_CLUSTER (merge_bb
);
1009 add_bb_to_cluster (merge
, other_bb
);
1010 BB_CLUSTER (other_bb
) = merge
;
1012 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1017 old
= BB_CLUSTER (bb2
);
1018 merge
= BB_CLUSTER (bb1
);
1019 merge_clusters (merge
, old
);
1020 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1021 BB_CLUSTER (BASIC_BLOCK (i
)) = merge
;
1022 VEC_replace (bb_cluster
, all_clusters
, old
->index
, NULL
);
1023 update_rep_bb (merge
, old
->rep_bb
);
1024 delete_cluster (old
);
1030 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1031 gimple_bb (s2) are members of SAME_SUCC. */
1034 gimple_equal_p (same_succ same_succ
, gimple s1
, gimple s2
)
1038 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1040 bool equal
, inv_cond
;
1041 enum tree_code code1
, code2
;
1043 if (gimple_code (s1
) != gimple_code (s2
))
1046 switch (gimple_code (s1
))
1049 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1051 if (!gimple_call_same_target_p (s1
, s2
))
1054 /* Eventually, we'll significantly complicate the CFG by adding
1055 back edges to properly model the effects of transaction restart.
1056 For the bulk of optimization this does not matter, but what we
1057 cannot recover from is tail merging blocks between two separate
1058 transactions. Avoid that by making commit not match. */
1059 if (gimple_call_builtin_p (s1
, BUILT_IN_TM_COMMIT
))
1063 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1065 t1
= gimple_call_arg (s1
, i
);
1066 t2
= gimple_call_arg (s2
, i
);
1067 if (operand_equal_p (t1
, t2
, 0))
1069 if (gvn_uses_equal (t1
, t2
))
1077 lhs1
= gimple_get_lhs (s1
);
1078 lhs2
= gimple_get_lhs (s2
);
1079 return (lhs1
!= NULL_TREE
&& lhs2
!= NULL_TREE
1080 && TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
1081 && vn_valueize (lhs1
) == vn_valueize (lhs2
));
1084 lhs1
= gimple_get_lhs (s1
);
1085 lhs2
= gimple_get_lhs (s2
);
1086 return (TREE_CODE (lhs1
) == SSA_NAME
1087 && TREE_CODE (lhs2
) == SSA_NAME
1088 && vn_valueize (lhs1
) == vn_valueize (lhs2
));
1091 t1
= gimple_cond_lhs (s1
);
1092 t2
= gimple_cond_lhs (s2
);
1093 if (!operand_equal_p (t1
, t2
, 0)
1094 && !gvn_uses_equal (t1
, t2
))
1097 t1
= gimple_cond_rhs (s1
);
1098 t2
= gimple_cond_rhs (s2
);
1099 if (!operand_equal_p (t1
, t2
, 0)
1100 && !gvn_uses_equal (t1
, t2
))
1103 code1
= gimple_expr_code (s1
);
1104 code2
= gimple_expr_code (s2
);
1105 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1106 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1110 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1
))));
1111 code2
= invert_tree_comparison (code2
, honor_nans
);
1113 return code1
== code2
;
1120 /* Let GSI skip backwards over local defs. */
1123 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
1129 if (gsi_end_p (*gsi
))
1131 stmt
= gsi_stmt (*gsi
);
1132 if (!(is_gimple_assign (stmt
) && local_def (gimple_get_lhs (stmt
))
1133 && !gimple_has_side_effects (stmt
)))
1135 gsi_prev_nondebug (gsi
);
1139 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1143 find_duplicate (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1145 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1146 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1148 gsi_advance_bw_nondebug_nonlocal (&gsi1
);
1149 gsi_advance_bw_nondebug_nonlocal (&gsi2
);
1151 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1153 if (!gimple_equal_p (same_succ
, gsi_stmt (gsi1
), gsi_stmt (gsi2
)))
1156 gsi_prev_nondebug (&gsi1
);
1157 gsi_prev_nondebug (&gsi2
);
1158 gsi_advance_bw_nondebug_nonlocal (&gsi1
);
1159 gsi_advance_bw_nondebug_nonlocal (&gsi2
);
1162 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1166 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1167 bb1
->index
, bb2
->index
);
1169 set_cluster (bb1
, bb2
);
1172 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1176 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1178 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1179 gimple_stmt_iterator gsi
;
1181 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1183 gimple phi
= gsi_stmt (gsi
);
1184 tree lhs
= gimple_phi_result (phi
);
1185 tree val1
= gimple_phi_arg_def (phi
, n1
);
1186 tree val2
= gimple_phi_arg_def (phi
, n2
);
1188 if (!is_gimple_reg (lhs
))
1191 if (operand_equal_for_phi_arg_p (val1
, val2
))
1193 if (gvn_uses_equal (val1
, val2
))
1202 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1203 phi alternatives for BB1 and BB2 are equal. */
1206 same_phi_alternatives (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1213 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1215 succ
= BASIC_BLOCK (s
);
1216 e1
= find_edge (bb1
, succ
);
1217 e2
= find_edge (bb2
, succ
);
1218 if (e1
->flags
& EDGE_COMPLEX
1219 || e2
->flags
& EDGE_COMPLEX
)
1222 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1224 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1231 /* Return true if BB has non-vop phis. */
1234 bb_has_non_vop_phi (basic_block bb
)
1236 gimple_seq phis
= phi_nodes (bb
);
1242 if (!gimple_seq_singleton_p (phis
))
1245 phi
= gimple_seq_first_stmt (phis
);
1246 return is_gimple_reg (gimple_phi_result (phi
));
1249 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1250 invariant that uses in FROM are dominates by their defs. */
1253 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1255 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1258 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1263 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1264 bitmap_set_bit (from_preds
, e
->src
->index
);
1265 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1266 BITMAP_FREE (from_preds
);
1268 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1271 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1272 replacement bb) and vice versa maintains the invariant that uses in the
1273 replacement are dominates by their defs. */
1276 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1278 if (BB_CLUSTER (bb1
) != NULL
)
1279 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1281 if (BB_CLUSTER (bb2
) != NULL
)
1282 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1284 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1285 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1288 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1291 find_clusters_1 (same_succ same_succ
)
1293 basic_block bb1
, bb2
;
1295 bitmap_iterator bi
, bj
;
1297 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1299 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1301 bb1
= BASIC_BLOCK (i
);
1303 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1304 phi-nodes in bb1 and bb2, with the same alternatives for the same
1306 if (bb_has_non_vop_phi (bb1
))
1310 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1312 bb2
= BASIC_BLOCK (j
);
1314 if (bb_has_non_vop_phi (bb2
))
1317 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1320 /* Limit quadratic behaviour. */
1322 if (nr_comparisons
> max_comparisons
)
1325 /* This is a conservative dependency check. We could test more
1326 precise for allowed replacement direction. */
1327 if (!deps_ok_for_redirect (bb1
, bb2
))
1330 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1333 find_duplicate (same_succ
, bb1
, bb2
);
1338 /* Find clusters of bbs which can be merged. */
1341 find_clusters (void)
1345 while (!VEC_empty (same_succ
, worklist
))
1347 same
= VEC_pop (same_succ
, worklist
);
1348 same
->in_worklist
= false;
1349 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1351 fprintf (dump_file
, "processing worklist entry\n");
1352 same_succ_print (dump_file
, same
);
1354 find_clusters_1 (same
);
1358 /* Returns the vop phi of BB, if any. */
1361 vop_phi (basic_block bb
)
1364 gimple_stmt_iterator gsi
;
1365 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1367 stmt
= gsi_stmt (gsi
);
1368 if (is_gimple_reg (gimple_phi_result (stmt
)))
1375 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1378 replace_block_by (basic_block bb1
, basic_block bb2
)
1384 bb2_phi
= vop_phi (bb2
);
1386 /* Mark the basic block as deleted. */
1387 mark_basic_block_deleted (bb1
);
1389 /* Redirect the incoming edges of bb1 to bb2. */
1390 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1392 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1393 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1394 gcc_assert (pred_edge
!= NULL
);
1396 if (bb2_phi
== NULL
)
1399 /* The phi might have run out of capacity when the redirect added an
1400 argument, which means it could have been replaced. Refresh it. */
1401 bb2_phi
= vop_phi (bb2
);
1403 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1404 pred_edge
, UNKNOWN_LOCATION
);
1407 bb2
->frequency
+= bb1
->frequency
;
1408 if (bb2
->frequency
> BB_FREQ_MAX
)
1409 bb2
->frequency
= BB_FREQ_MAX
;
1412 /* Do updates that use bb1, before deleting bb1. */
1413 release_last_vdef (bb1
);
1414 same_succ_flush_bb (bb1
);
1416 delete_basic_block (bb1
);
1419 /* Bbs for which update_debug_stmt need to be called. */
1421 static bitmap update_bbs
;
1423 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1424 number of bbs removed. */
1427 apply_clusters (void)
1429 basic_block bb1
, bb2
;
1433 int nr_bbs_removed
= 0;
1435 for (i
= 0; i
< VEC_length (bb_cluster
, all_clusters
); ++i
)
1437 c
= VEC_index (bb_cluster
, all_clusters
, i
);
1442 bitmap_set_bit (update_bbs
, bb2
->index
);
1444 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1445 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1447 bb1
= BASIC_BLOCK (j
);
1448 bitmap_clear_bit (update_bbs
, bb1
->index
);
1450 replace_block_by (bb1
, bb2
);
1455 return nr_bbs_removed
;
1458 /* Resets debug statement STMT if it has uses that are not dominated by their
1462 update_debug_stmt (gimple stmt
)
1464 use_operand_p use_p
;
1466 basic_block bbdef
, bbuse
;
1470 if (!gimple_debug_bind_p (stmt
))
1473 bbuse
= gimple_bb (stmt
);
1474 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1476 name
= USE_FROM_PTR (use_p
);
1477 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1479 def_stmt
= SSA_NAME_DEF_STMT (name
);
1480 gcc_assert (def_stmt
!= NULL
);
1482 bbdef
= gimple_bb (def_stmt
);
1483 if (bbdef
== NULL
|| bbuse
== bbdef
1484 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1487 gimple_debug_bind_reset_value (stmt
);
1492 /* Resets all debug statements that have uses that are not
1493 dominated by their defs. */
1496 update_debug_stmts (void)
1502 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1505 gimple_stmt_iterator gsi
;
1507 bb
= BASIC_BLOCK (i
);
1508 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1510 stmt
= gsi_stmt (gsi
);
1511 if (!is_gimple_debug (stmt
))
1513 update_debug_stmt (stmt
);
1518 /* Runs tail merge optimization. */
1521 tail_merge_optimize (unsigned int todo
)
1523 int nr_bbs_removed_total
= 0;
1525 bool loop_entered
= false;
1526 int iteration_nr
= 0;
1527 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1529 if (!flag_tree_tail_merge
|| max_iterations
== 0)
1532 timevar_push (TV_TREE_TAIL_MERGE
);
1534 calculate_dominance_info (CDI_DOMINATORS
);
1537 while (!VEC_empty (same_succ
, worklist
))
1541 loop_entered
= true;
1542 alloc_cluster_vectors ();
1543 update_bbs
= BITMAP_ALLOC (NULL
);
1546 reset_cluster_vectors ();
1549 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1550 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1553 gcc_assert (VEC_empty (same_succ
, worklist
));
1554 if (VEC_empty (bb_cluster
, all_clusters
))
1557 nr_bbs_removed
= apply_clusters ();
1558 nr_bbs_removed_total
+= nr_bbs_removed
;
1559 if (nr_bbs_removed
== 0)
1562 free_dominance_info (CDI_DOMINATORS
);
1564 if (iteration_nr
== max_iterations
)
1567 calculate_dominance_info (CDI_DOMINATORS
);
1571 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1572 fprintf (dump_file
, "htab collision / search: %f\n",
1573 htab_collisions (same_succ_htab
));
1575 if (nr_bbs_removed_total
> 0)
1577 if (MAY_HAVE_DEBUG_STMTS
)
1579 calculate_dominance_info (CDI_DOMINATORS
);
1580 update_debug_stmts ();
1583 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1585 fprintf (dump_file
, "Before TODOs.\n");
1586 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1589 todo
|= (TODO_verify_ssa
| TODO_verify_stmts
| TODO_verify_flow
1591 mark_sym_for_renaming (gimple_vop (cfun
));
1597 delete_cluster_vectors ();
1598 BITMAP_FREE (update_bbs
);
1601 timevar_pop (TV_TREE_TAIL_MERGE
);