2009-04-21 Taras Glek <tglek@mozilla.com>
[official-gcc.git] / gcc / config / rs6000 / rs6000.c
blobc785bf83863a9efccbbe28ef90860e39ccada594
1 /* Subroutines used for code generation on IBM RS/6000.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "real.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-attr.h"
34 #include "flags.h"
35 #include "recog.h"
36 #include "obstack.h"
37 #include "tree.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "except.h"
41 #include "function.h"
42 #include "output.h"
43 #include "basic-block.h"
44 #include "integrate.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "hashtab.h"
48 #include "tm_p.h"
49 #include "target.h"
50 #include "target-def.h"
51 #include "langhooks.h"
52 #include "reload.h"
53 #include "cfglayout.h"
54 #include "sched-int.h"
55 #include "gimple.h"
56 #include "tree-flow.h"
57 #include "intl.h"
58 #include "params.h"
59 #include "tm-constrs.h"
60 #if TARGET_XCOFF
61 #include "xcoffout.h" /* get declarations of xcoff_*_section_name */
62 #endif
63 #if TARGET_MACHO
64 #include "gstab.h" /* for N_SLINE */
65 #endif
67 #ifndef TARGET_NO_PROTOTYPE
68 #define TARGET_NO_PROTOTYPE 0
69 #endif
71 #define min(A,B) ((A) < (B) ? (A) : (B))
72 #define max(A,B) ((A) > (B) ? (A) : (B))
74 /* Structure used to define the rs6000 stack */
75 typedef struct rs6000_stack {
76 int first_gp_reg_save; /* first callee saved GP register used */
77 int first_fp_reg_save; /* first callee saved FP register used */
78 int first_altivec_reg_save; /* first callee saved AltiVec register used */
79 int lr_save_p; /* true if the link reg needs to be saved */
80 int cr_save_p; /* true if the CR reg needs to be saved */
81 unsigned int vrsave_mask; /* mask of vec registers to save */
82 int push_p; /* true if we need to allocate stack space */
83 int calls_p; /* true if the function makes any calls */
84 int world_save_p; /* true if we're saving *everything*:
85 r13-r31, cr, f14-f31, vrsave, v20-v31 */
86 enum rs6000_abi abi; /* which ABI to use */
87 int gp_save_offset; /* offset to save GP regs from initial SP */
88 int fp_save_offset; /* offset to save FP regs from initial SP */
89 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
90 int lr_save_offset; /* offset to save LR from initial SP */
91 int cr_save_offset; /* offset to save CR from initial SP */
92 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
93 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
94 int varargs_save_offset; /* offset to save the varargs registers */
95 int ehrd_offset; /* offset to EH return data */
96 int reg_size; /* register size (4 or 8) */
97 HOST_WIDE_INT vars_size; /* variable save area size */
98 int parm_size; /* outgoing parameter size */
99 int save_size; /* save area size */
100 int fixed_size; /* fixed size of stack frame */
101 int gp_size; /* size of saved GP registers */
102 int fp_size; /* size of saved FP registers */
103 int altivec_size; /* size of saved AltiVec registers */
104 int cr_size; /* size to hold CR if not in save_size */
105 int vrsave_size; /* size to hold VRSAVE if not in save_size */
106 int altivec_padding_size; /* size of altivec alignment padding if
107 not in save_size */
108 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
109 int spe_padding_size;
110 HOST_WIDE_INT total_size; /* total bytes allocated for stack */
111 int spe_64bit_regs_used;
112 } rs6000_stack_t;
114 /* A C structure for machine-specific, per-function data.
115 This is added to the cfun structure. */
116 typedef struct GTY(()) machine_function
118 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
119 int ra_needs_full_frame;
120 /* Some local-dynamic symbol. */
121 const char *some_ld_name;
122 /* Whether the instruction chain has been scanned already. */
123 int insn_chain_scanned_p;
124 /* Flags if __builtin_return_address (0) was used. */
125 int ra_need_lr;
126 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
127 varargs save area. */
128 HOST_WIDE_INT varargs_save_offset;
129 /* Temporary stack slot to use for SDmode copies. This slot is
130 64-bits wide and is allocated early enough so that the offset
131 does not overflow the 16-bit load/store offset field. */
132 rtx sdmode_stack_slot;
133 } machine_function;
135 /* Target cpu type */
137 enum processor_type rs6000_cpu;
138 struct rs6000_cpu_select rs6000_select[3] =
140 /* switch name, tune arch */
141 { (const char *)0, "--with-cpu=", 1, 1 },
142 { (const char *)0, "-mcpu=", 1, 1 },
143 { (const char *)0, "-mtune=", 1, 0 },
146 /* Always emit branch hint bits. */
147 static GTY(()) bool rs6000_always_hint;
149 /* Schedule instructions for group formation. */
150 static GTY(()) bool rs6000_sched_groups;
152 /* Align branch targets. */
153 static GTY(()) bool rs6000_align_branch_targets;
155 /* Support for -msched-costly-dep option. */
156 const char *rs6000_sched_costly_dep_str;
157 enum rs6000_dependence_cost rs6000_sched_costly_dep;
159 /* Support for -minsert-sched-nops option. */
160 const char *rs6000_sched_insert_nops_str;
161 enum rs6000_nop_insertion rs6000_sched_insert_nops;
163 /* Support targetm.vectorize.builtin_mask_for_load. */
164 static GTY(()) tree altivec_builtin_mask_for_load;
166 /* Size of long double. */
167 int rs6000_long_double_type_size;
169 /* IEEE quad extended precision long double. */
170 int rs6000_ieeequad;
172 /* Nonzero to use AltiVec ABI. */
173 int rs6000_altivec_abi;
175 /* Nonzero if we want SPE SIMD instructions. */
176 int rs6000_spe;
178 /* Nonzero if we want SPE ABI extensions. */
179 int rs6000_spe_abi;
181 /* Nonzero to use isel instructions. */
182 int rs6000_isel;
184 /* Nonzero if floating point operations are done in the GPRs. */
185 int rs6000_float_gprs = 0;
187 /* Nonzero if we want Darwin's struct-by-value-in-regs ABI. */
188 int rs6000_darwin64_abi;
190 /* Set to nonzero once AIX common-mode calls have been defined. */
191 static GTY(()) int common_mode_defined;
193 /* Save information from a "cmpxx" operation until the branch or scc is
194 emitted. */
195 rtx rs6000_compare_op0, rs6000_compare_op1;
196 int rs6000_compare_fp_p;
198 /* Label number of label created for -mrelocatable, to call to so we can
199 get the address of the GOT section */
200 int rs6000_pic_labelno;
202 #ifdef USING_ELFOS_H
203 /* Which abi to adhere to */
204 const char *rs6000_abi_name;
206 /* Semantics of the small data area */
207 enum rs6000_sdata_type rs6000_sdata = SDATA_DATA;
209 /* Which small data model to use */
210 const char *rs6000_sdata_name = (char *)0;
212 /* Counter for labels which are to be placed in .fixup. */
213 int fixuplabelno = 0;
214 #endif
216 /* Bit size of immediate TLS offsets and string from which it is decoded. */
217 int rs6000_tls_size = 32;
218 const char *rs6000_tls_size_string;
220 /* ABI enumeration available for subtarget to use. */
221 enum rs6000_abi rs6000_current_abi;
223 /* Whether to use variant of AIX ABI for PowerPC64 Linux. */
224 int dot_symbols;
226 /* Debug flags */
227 const char *rs6000_debug_name;
228 int rs6000_debug_stack; /* debug stack applications */
229 int rs6000_debug_arg; /* debug argument handling */
231 /* Value is TRUE if register/mode pair is acceptable. */
232 bool rs6000_hard_regno_mode_ok_p[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
234 /* Built in types. */
236 tree rs6000_builtin_types[RS6000_BTI_MAX];
237 tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
239 const char *rs6000_traceback_name;
240 static enum {
241 traceback_default = 0,
242 traceback_none,
243 traceback_part,
244 traceback_full
245 } rs6000_traceback;
247 /* Flag to say the TOC is initialized */
248 int toc_initialized;
249 char toc_label_name[10];
251 /* Cached value of rs6000_variable_issue. This is cached in
252 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
253 static short cached_can_issue_more;
255 static GTY(()) section *read_only_data_section;
256 static GTY(()) section *private_data_section;
257 static GTY(()) section *read_only_private_data_section;
258 static GTY(()) section *sdata2_section;
259 static GTY(()) section *toc_section;
261 /* Control alignment for fields within structures. */
262 /* String from -malign-XXXXX. */
263 int rs6000_alignment_flags;
265 /* True for any options that were explicitly set. */
266 struct {
267 bool aix_struct_ret; /* True if -maix-struct-ret was used. */
268 bool alignment; /* True if -malign- was used. */
269 bool spe_abi; /* True if -mabi=spe/no-spe was used. */
270 bool altivec_abi; /* True if -mabi=altivec/no-altivec used. */
271 bool spe; /* True if -mspe= was used. */
272 bool float_gprs; /* True if -mfloat-gprs= was used. */
273 bool isel; /* True if -misel was used. */
274 bool long_double; /* True if -mlong-double- was used. */
275 bool ieee; /* True if -mabi=ieee/ibmlongdouble used. */
276 bool vrsave; /* True if -mvrsave was used. */
277 } rs6000_explicit_options;
279 struct builtin_description
281 /* mask is not const because we're going to alter it below. This
282 nonsense will go away when we rewrite the -march infrastructure
283 to give us more target flag bits. */
284 unsigned int mask;
285 const enum insn_code icode;
286 const char *const name;
287 const enum rs6000_builtins code;
290 /* Target cpu costs. */
292 struct processor_costs {
293 const int mulsi; /* cost of SImode multiplication. */
294 const int mulsi_const; /* cost of SImode multiplication by constant. */
295 const int mulsi_const9; /* cost of SImode mult by short constant. */
296 const int muldi; /* cost of DImode multiplication. */
297 const int divsi; /* cost of SImode division. */
298 const int divdi; /* cost of DImode division. */
299 const int fp; /* cost of simple SFmode and DFmode insns. */
300 const int dmul; /* cost of DFmode multiplication (and fmadd). */
301 const int sdiv; /* cost of SFmode division (fdivs). */
302 const int ddiv; /* cost of DFmode division (fdiv). */
303 const int cache_line_size; /* cache line size in bytes. */
304 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
305 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
306 const int simultaneous_prefetches; /* number of parallel prefetch
307 operations. */
310 const struct processor_costs *rs6000_cost;
312 /* Processor costs (relative to an add) */
314 /* Instruction size costs on 32bit processors. */
315 static const
316 struct processor_costs size32_cost = {
317 COSTS_N_INSNS (1), /* mulsi */
318 COSTS_N_INSNS (1), /* mulsi_const */
319 COSTS_N_INSNS (1), /* mulsi_const9 */
320 COSTS_N_INSNS (1), /* muldi */
321 COSTS_N_INSNS (1), /* divsi */
322 COSTS_N_INSNS (1), /* divdi */
323 COSTS_N_INSNS (1), /* fp */
324 COSTS_N_INSNS (1), /* dmul */
325 COSTS_N_INSNS (1), /* sdiv */
326 COSTS_N_INSNS (1), /* ddiv */
333 /* Instruction size costs on 64bit processors. */
334 static const
335 struct processor_costs size64_cost = {
336 COSTS_N_INSNS (1), /* mulsi */
337 COSTS_N_INSNS (1), /* mulsi_const */
338 COSTS_N_INSNS (1), /* mulsi_const9 */
339 COSTS_N_INSNS (1), /* muldi */
340 COSTS_N_INSNS (1), /* divsi */
341 COSTS_N_INSNS (1), /* divdi */
342 COSTS_N_INSNS (1), /* fp */
343 COSTS_N_INSNS (1), /* dmul */
344 COSTS_N_INSNS (1), /* sdiv */
345 COSTS_N_INSNS (1), /* ddiv */
346 128,
352 /* Instruction costs on RIOS1 processors. */
353 static const
354 struct processor_costs rios1_cost = {
355 COSTS_N_INSNS (5), /* mulsi */
356 COSTS_N_INSNS (4), /* mulsi_const */
357 COSTS_N_INSNS (3), /* mulsi_const9 */
358 COSTS_N_INSNS (5), /* muldi */
359 COSTS_N_INSNS (19), /* divsi */
360 COSTS_N_INSNS (19), /* divdi */
361 COSTS_N_INSNS (2), /* fp */
362 COSTS_N_INSNS (2), /* dmul */
363 COSTS_N_INSNS (19), /* sdiv */
364 COSTS_N_INSNS (19), /* ddiv */
365 128, /* cache line size */
366 64, /* l1 cache */
367 512, /* l2 cache */
368 0, /* streams */
371 /* Instruction costs on RIOS2 processors. */
372 static const
373 struct processor_costs rios2_cost = {
374 COSTS_N_INSNS (2), /* mulsi */
375 COSTS_N_INSNS (2), /* mulsi_const */
376 COSTS_N_INSNS (2), /* mulsi_const9 */
377 COSTS_N_INSNS (2), /* muldi */
378 COSTS_N_INSNS (13), /* divsi */
379 COSTS_N_INSNS (13), /* divdi */
380 COSTS_N_INSNS (2), /* fp */
381 COSTS_N_INSNS (2), /* dmul */
382 COSTS_N_INSNS (17), /* sdiv */
383 COSTS_N_INSNS (17), /* ddiv */
384 256, /* cache line size */
385 256, /* l1 cache */
386 1024, /* l2 cache */
387 0, /* streams */
390 /* Instruction costs on RS64A processors. */
391 static const
392 struct processor_costs rs64a_cost = {
393 COSTS_N_INSNS (20), /* mulsi */
394 COSTS_N_INSNS (12), /* mulsi_const */
395 COSTS_N_INSNS (8), /* mulsi_const9 */
396 COSTS_N_INSNS (34), /* muldi */
397 COSTS_N_INSNS (65), /* divsi */
398 COSTS_N_INSNS (67), /* divdi */
399 COSTS_N_INSNS (4), /* fp */
400 COSTS_N_INSNS (4), /* dmul */
401 COSTS_N_INSNS (31), /* sdiv */
402 COSTS_N_INSNS (31), /* ddiv */
403 128, /* cache line size */
404 128, /* l1 cache */
405 2048, /* l2 cache */
406 1, /* streams */
409 /* Instruction costs on MPCCORE processors. */
410 static const
411 struct processor_costs mpccore_cost = {
412 COSTS_N_INSNS (2), /* mulsi */
413 COSTS_N_INSNS (2), /* mulsi_const */
414 COSTS_N_INSNS (2), /* mulsi_const9 */
415 COSTS_N_INSNS (2), /* muldi */
416 COSTS_N_INSNS (6), /* divsi */
417 COSTS_N_INSNS (6), /* divdi */
418 COSTS_N_INSNS (4), /* fp */
419 COSTS_N_INSNS (5), /* dmul */
420 COSTS_N_INSNS (10), /* sdiv */
421 COSTS_N_INSNS (17), /* ddiv */
422 32, /* cache line size */
423 4, /* l1 cache */
424 16, /* l2 cache */
425 1, /* streams */
428 /* Instruction costs on PPC403 processors. */
429 static const
430 struct processor_costs ppc403_cost = {
431 COSTS_N_INSNS (4), /* mulsi */
432 COSTS_N_INSNS (4), /* mulsi_const */
433 COSTS_N_INSNS (4), /* mulsi_const9 */
434 COSTS_N_INSNS (4), /* muldi */
435 COSTS_N_INSNS (33), /* divsi */
436 COSTS_N_INSNS (33), /* divdi */
437 COSTS_N_INSNS (11), /* fp */
438 COSTS_N_INSNS (11), /* dmul */
439 COSTS_N_INSNS (11), /* sdiv */
440 COSTS_N_INSNS (11), /* ddiv */
441 32, /* cache line size */
442 4, /* l1 cache */
443 16, /* l2 cache */
444 1, /* streams */
447 /* Instruction costs on PPC405 processors. */
448 static const
449 struct processor_costs ppc405_cost = {
450 COSTS_N_INSNS (5), /* mulsi */
451 COSTS_N_INSNS (4), /* mulsi_const */
452 COSTS_N_INSNS (3), /* mulsi_const9 */
453 COSTS_N_INSNS (5), /* muldi */
454 COSTS_N_INSNS (35), /* divsi */
455 COSTS_N_INSNS (35), /* divdi */
456 COSTS_N_INSNS (11), /* fp */
457 COSTS_N_INSNS (11), /* dmul */
458 COSTS_N_INSNS (11), /* sdiv */
459 COSTS_N_INSNS (11), /* ddiv */
460 32, /* cache line size */
461 16, /* l1 cache */
462 128, /* l2 cache */
463 1, /* streams */
466 /* Instruction costs on PPC440 processors. */
467 static const
468 struct processor_costs ppc440_cost = {
469 COSTS_N_INSNS (3), /* mulsi */
470 COSTS_N_INSNS (2), /* mulsi_const */
471 COSTS_N_INSNS (2), /* mulsi_const9 */
472 COSTS_N_INSNS (3), /* muldi */
473 COSTS_N_INSNS (34), /* divsi */
474 COSTS_N_INSNS (34), /* divdi */
475 COSTS_N_INSNS (5), /* fp */
476 COSTS_N_INSNS (5), /* dmul */
477 COSTS_N_INSNS (19), /* sdiv */
478 COSTS_N_INSNS (33), /* ddiv */
479 32, /* cache line size */
480 32, /* l1 cache */
481 256, /* l2 cache */
482 1, /* streams */
485 /* Instruction costs on PPC601 processors. */
486 static const
487 struct processor_costs ppc601_cost = {
488 COSTS_N_INSNS (5), /* mulsi */
489 COSTS_N_INSNS (5), /* mulsi_const */
490 COSTS_N_INSNS (5), /* mulsi_const9 */
491 COSTS_N_INSNS (5), /* muldi */
492 COSTS_N_INSNS (36), /* divsi */
493 COSTS_N_INSNS (36), /* divdi */
494 COSTS_N_INSNS (4), /* fp */
495 COSTS_N_INSNS (5), /* dmul */
496 COSTS_N_INSNS (17), /* sdiv */
497 COSTS_N_INSNS (31), /* ddiv */
498 32, /* cache line size */
499 32, /* l1 cache */
500 256, /* l2 cache */
501 1, /* streams */
504 /* Instruction costs on PPC603 processors. */
505 static const
506 struct processor_costs ppc603_cost = {
507 COSTS_N_INSNS (5), /* mulsi */
508 COSTS_N_INSNS (3), /* mulsi_const */
509 COSTS_N_INSNS (2), /* mulsi_const9 */
510 COSTS_N_INSNS (5), /* muldi */
511 COSTS_N_INSNS (37), /* divsi */
512 COSTS_N_INSNS (37), /* divdi */
513 COSTS_N_INSNS (3), /* fp */
514 COSTS_N_INSNS (4), /* dmul */
515 COSTS_N_INSNS (18), /* sdiv */
516 COSTS_N_INSNS (33), /* ddiv */
517 32, /* cache line size */
518 8, /* l1 cache */
519 64, /* l2 cache */
520 1, /* streams */
523 /* Instruction costs on PPC604 processors. */
524 static const
525 struct processor_costs ppc604_cost = {
526 COSTS_N_INSNS (4), /* mulsi */
527 COSTS_N_INSNS (4), /* mulsi_const */
528 COSTS_N_INSNS (4), /* mulsi_const9 */
529 COSTS_N_INSNS (4), /* muldi */
530 COSTS_N_INSNS (20), /* divsi */
531 COSTS_N_INSNS (20), /* divdi */
532 COSTS_N_INSNS (3), /* fp */
533 COSTS_N_INSNS (3), /* dmul */
534 COSTS_N_INSNS (18), /* sdiv */
535 COSTS_N_INSNS (32), /* ddiv */
536 32, /* cache line size */
537 16, /* l1 cache */
538 512, /* l2 cache */
539 1, /* streams */
542 /* Instruction costs on PPC604e processors. */
543 static const
544 struct processor_costs ppc604e_cost = {
545 COSTS_N_INSNS (2), /* mulsi */
546 COSTS_N_INSNS (2), /* mulsi_const */
547 COSTS_N_INSNS (2), /* mulsi_const9 */
548 COSTS_N_INSNS (2), /* muldi */
549 COSTS_N_INSNS (20), /* divsi */
550 COSTS_N_INSNS (20), /* divdi */
551 COSTS_N_INSNS (3), /* fp */
552 COSTS_N_INSNS (3), /* dmul */
553 COSTS_N_INSNS (18), /* sdiv */
554 COSTS_N_INSNS (32), /* ddiv */
555 32, /* cache line size */
556 32, /* l1 cache */
557 1024, /* l2 cache */
558 1, /* streams */
561 /* Instruction costs on PPC620 processors. */
562 static const
563 struct processor_costs ppc620_cost = {
564 COSTS_N_INSNS (5), /* mulsi */
565 COSTS_N_INSNS (4), /* mulsi_const */
566 COSTS_N_INSNS (3), /* mulsi_const9 */
567 COSTS_N_INSNS (7), /* muldi */
568 COSTS_N_INSNS (21), /* divsi */
569 COSTS_N_INSNS (37), /* divdi */
570 COSTS_N_INSNS (3), /* fp */
571 COSTS_N_INSNS (3), /* dmul */
572 COSTS_N_INSNS (18), /* sdiv */
573 COSTS_N_INSNS (32), /* ddiv */
574 128, /* cache line size */
575 32, /* l1 cache */
576 1024, /* l2 cache */
577 1, /* streams */
580 /* Instruction costs on PPC630 processors. */
581 static const
582 struct processor_costs ppc630_cost = {
583 COSTS_N_INSNS (5), /* mulsi */
584 COSTS_N_INSNS (4), /* mulsi_const */
585 COSTS_N_INSNS (3), /* mulsi_const9 */
586 COSTS_N_INSNS (7), /* muldi */
587 COSTS_N_INSNS (21), /* divsi */
588 COSTS_N_INSNS (37), /* divdi */
589 COSTS_N_INSNS (3), /* fp */
590 COSTS_N_INSNS (3), /* dmul */
591 COSTS_N_INSNS (17), /* sdiv */
592 COSTS_N_INSNS (21), /* ddiv */
593 128, /* cache line size */
594 64, /* l1 cache */
595 1024, /* l2 cache */
596 1, /* streams */
599 /* Instruction costs on Cell processor. */
600 /* COSTS_N_INSNS (1) ~ one add. */
601 static const
602 struct processor_costs ppccell_cost = {
603 COSTS_N_INSNS (9/2)+2, /* mulsi */
604 COSTS_N_INSNS (6/2), /* mulsi_const */
605 COSTS_N_INSNS (6/2), /* mulsi_const9 */
606 COSTS_N_INSNS (15/2)+2, /* muldi */
607 COSTS_N_INSNS (38/2), /* divsi */
608 COSTS_N_INSNS (70/2), /* divdi */
609 COSTS_N_INSNS (10/2), /* fp */
610 COSTS_N_INSNS (10/2), /* dmul */
611 COSTS_N_INSNS (74/2), /* sdiv */
612 COSTS_N_INSNS (74/2), /* ddiv */
613 128, /* cache line size */
614 32, /* l1 cache */
615 512, /* l2 cache */
616 6, /* streams */
619 /* Instruction costs on PPC750 and PPC7400 processors. */
620 static const
621 struct processor_costs ppc750_cost = {
622 COSTS_N_INSNS (5), /* mulsi */
623 COSTS_N_INSNS (3), /* mulsi_const */
624 COSTS_N_INSNS (2), /* mulsi_const9 */
625 COSTS_N_INSNS (5), /* muldi */
626 COSTS_N_INSNS (17), /* divsi */
627 COSTS_N_INSNS (17), /* divdi */
628 COSTS_N_INSNS (3), /* fp */
629 COSTS_N_INSNS (3), /* dmul */
630 COSTS_N_INSNS (17), /* sdiv */
631 COSTS_N_INSNS (31), /* ddiv */
632 32, /* cache line size */
633 32, /* l1 cache */
634 512, /* l2 cache */
635 1, /* streams */
638 /* Instruction costs on PPC7450 processors. */
639 static const
640 struct processor_costs ppc7450_cost = {
641 COSTS_N_INSNS (4), /* mulsi */
642 COSTS_N_INSNS (3), /* mulsi_const */
643 COSTS_N_INSNS (3), /* mulsi_const9 */
644 COSTS_N_INSNS (4), /* muldi */
645 COSTS_N_INSNS (23), /* divsi */
646 COSTS_N_INSNS (23), /* divdi */
647 COSTS_N_INSNS (5), /* fp */
648 COSTS_N_INSNS (5), /* dmul */
649 COSTS_N_INSNS (21), /* sdiv */
650 COSTS_N_INSNS (35), /* ddiv */
651 32, /* cache line size */
652 32, /* l1 cache */
653 1024, /* l2 cache */
654 1, /* streams */
657 /* Instruction costs on PPC8540 processors. */
658 static const
659 struct processor_costs ppc8540_cost = {
660 COSTS_N_INSNS (4), /* mulsi */
661 COSTS_N_INSNS (4), /* mulsi_const */
662 COSTS_N_INSNS (4), /* mulsi_const9 */
663 COSTS_N_INSNS (4), /* muldi */
664 COSTS_N_INSNS (19), /* divsi */
665 COSTS_N_INSNS (19), /* divdi */
666 COSTS_N_INSNS (4), /* fp */
667 COSTS_N_INSNS (4), /* dmul */
668 COSTS_N_INSNS (29), /* sdiv */
669 COSTS_N_INSNS (29), /* ddiv */
670 32, /* cache line size */
671 32, /* l1 cache */
672 256, /* l2 cache */
673 1, /* prefetch streams /*/
676 /* Instruction costs on E300C2 and E300C3 cores. */
677 static const
678 struct processor_costs ppce300c2c3_cost = {
679 COSTS_N_INSNS (4), /* mulsi */
680 COSTS_N_INSNS (4), /* mulsi_const */
681 COSTS_N_INSNS (4), /* mulsi_const9 */
682 COSTS_N_INSNS (4), /* muldi */
683 COSTS_N_INSNS (19), /* divsi */
684 COSTS_N_INSNS (19), /* divdi */
685 COSTS_N_INSNS (3), /* fp */
686 COSTS_N_INSNS (4), /* dmul */
687 COSTS_N_INSNS (18), /* sdiv */
688 COSTS_N_INSNS (33), /* ddiv */
690 16, /* l1 cache */
691 16, /* l2 cache */
692 1, /* prefetch streams /*/
695 /* Instruction costs on PPCE500MC processors. */
696 static const
697 struct processor_costs ppce500mc_cost = {
698 COSTS_N_INSNS (4), /* mulsi */
699 COSTS_N_INSNS (4), /* mulsi_const */
700 COSTS_N_INSNS (4), /* mulsi_const9 */
701 COSTS_N_INSNS (4), /* muldi */
702 COSTS_N_INSNS (14), /* divsi */
703 COSTS_N_INSNS (14), /* divdi */
704 COSTS_N_INSNS (8), /* fp */
705 COSTS_N_INSNS (10), /* dmul */
706 COSTS_N_INSNS (36), /* sdiv */
707 COSTS_N_INSNS (66), /* ddiv */
708 64, /* cache line size */
709 32, /* l1 cache */
710 128, /* l2 cache */
711 1, /* prefetch streams /*/
714 /* Instruction costs on POWER4 and POWER5 processors. */
715 static const
716 struct processor_costs power4_cost = {
717 COSTS_N_INSNS (3), /* mulsi */
718 COSTS_N_INSNS (2), /* mulsi_const */
719 COSTS_N_INSNS (2), /* mulsi_const9 */
720 COSTS_N_INSNS (4), /* muldi */
721 COSTS_N_INSNS (18), /* divsi */
722 COSTS_N_INSNS (34), /* divdi */
723 COSTS_N_INSNS (3), /* fp */
724 COSTS_N_INSNS (3), /* dmul */
725 COSTS_N_INSNS (17), /* sdiv */
726 COSTS_N_INSNS (17), /* ddiv */
727 128, /* cache line size */
728 32, /* l1 cache */
729 1024, /* l2 cache */
730 8, /* prefetch streams /*/
733 /* Instruction costs on POWER6 processors. */
734 static const
735 struct processor_costs power6_cost = {
736 COSTS_N_INSNS (8), /* mulsi */
737 COSTS_N_INSNS (8), /* mulsi_const */
738 COSTS_N_INSNS (8), /* mulsi_const9 */
739 COSTS_N_INSNS (8), /* muldi */
740 COSTS_N_INSNS (22), /* divsi */
741 COSTS_N_INSNS (28), /* divdi */
742 COSTS_N_INSNS (3), /* fp */
743 COSTS_N_INSNS (3), /* dmul */
744 COSTS_N_INSNS (13), /* sdiv */
745 COSTS_N_INSNS (16), /* ddiv */
746 128, /* cache line size */
747 64, /* l1 cache */
748 2048, /* l2 cache */
749 16, /* prefetch streams */
753 static bool rs6000_function_ok_for_sibcall (tree, tree);
754 static const char *rs6000_invalid_within_doloop (const_rtx);
755 static rtx rs6000_generate_compare (enum rtx_code);
756 static void rs6000_emit_stack_tie (void);
757 static void rs6000_frame_related (rtx, rtx, HOST_WIDE_INT, rtx, rtx);
758 static bool spe_func_has_64bit_regs_p (void);
759 static void emit_frame_save (rtx, rtx, enum machine_mode, unsigned int,
760 int, HOST_WIDE_INT);
761 static rtx gen_frame_mem_offset (enum machine_mode, rtx, int);
762 static void rs6000_emit_allocate_stack (HOST_WIDE_INT, int, int);
763 static unsigned rs6000_hash_constant (rtx);
764 static unsigned toc_hash_function (const void *);
765 static int toc_hash_eq (const void *, const void *);
766 static bool constant_pool_expr_p (rtx);
767 static bool legitimate_small_data_p (enum machine_mode, rtx);
768 static bool legitimate_lo_sum_address_p (enum machine_mode, rtx, int);
769 static struct machine_function * rs6000_init_machine_status (void);
770 static bool rs6000_assemble_integer (rtx, unsigned int, int);
771 static bool no_global_regs_above (int, bool);
772 #ifdef HAVE_GAS_HIDDEN
773 static void rs6000_assemble_visibility (tree, int);
774 #endif
775 static int rs6000_ra_ever_killed (void);
776 static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
777 static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
778 static bool rs6000_ms_bitfield_layout_p (const_tree);
779 static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
780 static void rs6000_eliminate_indexed_memrefs (rtx operands[2]);
781 static const char *rs6000_mangle_type (const_tree);
782 extern const struct attribute_spec rs6000_attribute_table[];
783 static void rs6000_set_default_type_attributes (tree);
784 static rtx rs6000_savres_routine_sym (rs6000_stack_t *, bool, bool, bool);
785 static void rs6000_emit_stack_reset (rs6000_stack_t *, rtx, rtx, int, bool);
786 static rtx rs6000_make_savres_rtx (rs6000_stack_t *, rtx, int,
787 enum machine_mode, bool, bool, bool);
788 static bool rs6000_reg_live_or_pic_offset_p (int);
789 static int rs6000_savres_strategy (rs6000_stack_t *, bool, int, int);
790 static void rs6000_restore_saved_cr (rtx, int);
791 static void rs6000_output_function_prologue (FILE *, HOST_WIDE_INT);
792 static void rs6000_output_function_epilogue (FILE *, HOST_WIDE_INT);
793 static void rs6000_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
794 tree);
795 static rtx rs6000_emit_set_long_const (rtx, HOST_WIDE_INT, HOST_WIDE_INT);
796 static bool rs6000_return_in_memory (const_tree, const_tree);
797 static void rs6000_file_start (void);
798 #if TARGET_ELF
799 static int rs6000_elf_reloc_rw_mask (void);
800 static void rs6000_elf_asm_out_constructor (rtx, int);
801 static void rs6000_elf_asm_out_destructor (rtx, int);
802 static void rs6000_elf_end_indicate_exec_stack (void) ATTRIBUTE_UNUSED;
803 static void rs6000_elf_asm_init_sections (void);
804 static section *rs6000_elf_select_rtx_section (enum machine_mode, rtx,
805 unsigned HOST_WIDE_INT);
806 static void rs6000_elf_encode_section_info (tree, rtx, int)
807 ATTRIBUTE_UNUSED;
808 #endif
809 static bool rs6000_use_blocks_for_constant_p (enum machine_mode, const_rtx);
810 static void rs6000_alloc_sdmode_stack_slot (void);
811 static void rs6000_instantiate_decls (void);
812 #if TARGET_XCOFF
813 static void rs6000_xcoff_asm_output_anchor (rtx);
814 static void rs6000_xcoff_asm_globalize_label (FILE *, const char *);
815 static void rs6000_xcoff_asm_init_sections (void);
816 static int rs6000_xcoff_reloc_rw_mask (void);
817 static void rs6000_xcoff_asm_named_section (const char *, unsigned int, tree);
818 static section *rs6000_xcoff_select_section (tree, int,
819 unsigned HOST_WIDE_INT);
820 static void rs6000_xcoff_unique_section (tree, int);
821 static section *rs6000_xcoff_select_rtx_section
822 (enum machine_mode, rtx, unsigned HOST_WIDE_INT);
823 static const char * rs6000_xcoff_strip_name_encoding (const char *);
824 static unsigned int rs6000_xcoff_section_type_flags (tree, const char *, int);
825 static void rs6000_xcoff_file_start (void);
826 static void rs6000_xcoff_file_end (void);
827 #endif
828 static int rs6000_variable_issue (FILE *, int, rtx, int);
829 static bool rs6000_rtx_costs (rtx, int, int, int *, bool);
830 static int rs6000_adjust_cost (rtx, rtx, rtx, int);
831 static void rs6000_sched_init (FILE *, int, int);
832 static bool is_microcoded_insn (rtx);
833 static bool is_nonpipeline_insn (rtx);
834 static bool is_cracked_insn (rtx);
835 static bool is_branch_slot_insn (rtx);
836 static bool is_load_insn (rtx);
837 static rtx get_store_dest (rtx pat);
838 static bool is_store_insn (rtx);
839 static bool set_to_load_agen (rtx,rtx);
840 static bool adjacent_mem_locations (rtx,rtx);
841 static int rs6000_adjust_priority (rtx, int);
842 static int rs6000_issue_rate (void);
843 static bool rs6000_is_costly_dependence (dep_t, int, int);
844 static rtx get_next_active_insn (rtx, rtx);
845 static bool insn_terminates_group_p (rtx , enum group_termination);
846 static bool insn_must_be_first_in_group (rtx);
847 static bool insn_must_be_last_in_group (rtx);
848 static bool is_costly_group (rtx *, rtx);
849 static int force_new_group (int, FILE *, rtx *, rtx, bool *, int, int *);
850 static int redefine_groups (FILE *, int, rtx, rtx);
851 static int pad_groups (FILE *, int, rtx, rtx);
852 static void rs6000_sched_finish (FILE *, int);
853 static int rs6000_sched_reorder (FILE *, int, rtx *, int *, int);
854 static int rs6000_sched_reorder2 (FILE *, int, rtx *, int *, int);
855 static int rs6000_use_sched_lookahead (void);
856 static int rs6000_use_sched_lookahead_guard (rtx);
857 static void * rs6000_alloc_sched_context (void);
858 static void rs6000_init_sched_context (void *, bool);
859 static void rs6000_set_sched_context (void *);
860 static void rs6000_free_sched_context (void *);
861 static tree rs6000_builtin_reciprocal (unsigned int, bool, bool);
862 static tree rs6000_builtin_mask_for_load (void);
863 static tree rs6000_builtin_mul_widen_even (tree);
864 static tree rs6000_builtin_mul_widen_odd (tree);
865 static tree rs6000_builtin_conversion (enum tree_code, tree);
866 static tree rs6000_builtin_vec_perm (tree, tree *);
868 static void def_builtin (int, const char *, tree, int);
869 static bool rs6000_vector_alignment_reachable (const_tree, bool);
870 static void rs6000_init_builtins (void);
871 static rtx rs6000_expand_unop_builtin (enum insn_code, tree, rtx);
872 static rtx rs6000_expand_binop_builtin (enum insn_code, tree, rtx);
873 static rtx rs6000_expand_ternop_builtin (enum insn_code, tree, rtx);
874 static rtx rs6000_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
875 static void altivec_init_builtins (void);
876 static void rs6000_common_init_builtins (void);
877 static void rs6000_init_libfuncs (void);
879 static void paired_init_builtins (void);
880 static rtx paired_expand_builtin (tree, rtx, bool *);
881 static rtx paired_expand_lv_builtin (enum insn_code, tree, rtx);
882 static rtx paired_expand_stv_builtin (enum insn_code, tree);
883 static rtx paired_expand_predicate_builtin (enum insn_code, tree, rtx);
885 static void enable_mask_for_builtins (struct builtin_description *, int,
886 enum rs6000_builtins,
887 enum rs6000_builtins);
888 static void spe_init_builtins (void);
889 static rtx spe_expand_builtin (tree, rtx, bool *);
890 static rtx spe_expand_stv_builtin (enum insn_code, tree);
891 static rtx spe_expand_predicate_builtin (enum insn_code, tree, rtx);
892 static rtx spe_expand_evsel_builtin (enum insn_code, tree, rtx);
893 static int rs6000_emit_int_cmove (rtx, rtx, rtx, rtx);
894 static rs6000_stack_t *rs6000_stack_info (void);
895 static void debug_stack_info (rs6000_stack_t *);
897 static rtx altivec_expand_builtin (tree, rtx, bool *);
898 static rtx altivec_expand_ld_builtin (tree, rtx, bool *);
899 static rtx altivec_expand_st_builtin (tree, rtx, bool *);
900 static rtx altivec_expand_dst_builtin (tree, rtx, bool *);
901 static rtx altivec_expand_abs_builtin (enum insn_code, tree, rtx);
902 static rtx altivec_expand_predicate_builtin (enum insn_code,
903 const char *, tree, rtx);
904 static rtx altivec_expand_stv_builtin (enum insn_code, tree);
905 static rtx altivec_expand_vec_init_builtin (tree, tree, rtx);
906 static rtx altivec_expand_vec_set_builtin (tree);
907 static rtx altivec_expand_vec_ext_builtin (tree, rtx);
908 static int get_element_number (tree, tree);
909 static bool rs6000_handle_option (size_t, const char *, int);
910 static void rs6000_parse_tls_size_option (void);
911 static void rs6000_parse_yes_no_option (const char *, const char *, int *);
912 static int first_altivec_reg_to_save (void);
913 static unsigned int compute_vrsave_mask (void);
914 static void compute_save_world_info (rs6000_stack_t *info_ptr);
915 static void is_altivec_return_reg (rtx, void *);
916 static rtx generate_set_vrsave (rtx, rs6000_stack_t *, int);
917 int easy_vector_constant (rtx, enum machine_mode);
918 static rtx rs6000_dwarf_register_span (rtx);
919 static void rs6000_init_dwarf_reg_sizes_extra (tree);
920 static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
921 static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
922 static rtx rs6000_tls_get_addr (void);
923 static rtx rs6000_got_sym (void);
924 static int rs6000_tls_symbol_ref_1 (rtx *, void *);
925 static const char *rs6000_get_some_local_dynamic_name (void);
926 static int rs6000_get_some_local_dynamic_name_1 (rtx *, void *);
927 static rtx rs6000_complex_function_value (enum machine_mode);
928 static rtx rs6000_spe_function_arg (CUMULATIVE_ARGS *,
929 enum machine_mode, tree);
930 static void rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *,
931 HOST_WIDE_INT);
932 static void rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *,
933 tree, HOST_WIDE_INT);
934 static void rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *,
935 HOST_WIDE_INT,
936 rtx[], int *);
937 static void rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *,
938 const_tree, HOST_WIDE_INT,
939 rtx[], int *);
940 static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree, int, bool);
941 static rtx rs6000_mixed_function_arg (enum machine_mode, tree, int);
942 static void rs6000_move_block_from_reg (int regno, rtx x, int nregs);
943 static void setup_incoming_varargs (CUMULATIVE_ARGS *,
944 enum machine_mode, tree,
945 int *, int);
946 static bool rs6000_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
947 const_tree, bool);
948 static int rs6000_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
949 tree, bool);
950 static const char *invalid_arg_for_unprototyped_fn (const_tree, const_tree, const_tree);
951 #if TARGET_MACHO
952 static void macho_branch_islands (void);
953 static int no_previous_def (tree function_name);
954 static tree get_prev_label (tree function_name);
955 static void rs6000_darwin_file_start (void);
956 #endif
958 static tree rs6000_build_builtin_va_list (void);
959 static void rs6000_va_start (tree, rtx);
960 static tree rs6000_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
961 static bool rs6000_must_pass_in_stack (enum machine_mode, const_tree);
962 static bool rs6000_scalar_mode_supported_p (enum machine_mode);
963 static bool rs6000_vector_mode_supported_p (enum machine_mode);
964 static int get_vec_cmp_insn (enum rtx_code, enum machine_mode,
965 enum machine_mode);
966 static rtx rs6000_emit_vector_compare (enum rtx_code, rtx, rtx,
967 enum machine_mode);
968 static int get_vsel_insn (enum machine_mode);
969 static void rs6000_emit_vector_select (rtx, rtx, rtx, rtx);
970 static tree rs6000_stack_protect_fail (void);
972 const int INSN_NOT_AVAILABLE = -1;
973 static enum machine_mode rs6000_eh_return_filter_mode (void);
975 /* Hash table stuff for keeping track of TOC entries. */
977 struct GTY(()) toc_hash_struct
979 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
980 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
981 rtx key;
982 enum machine_mode key_mode;
983 int labelno;
986 static GTY ((param_is (struct toc_hash_struct))) htab_t toc_hash_table;
988 /* Default register names. */
989 char rs6000_reg_names[][8] =
991 "0", "1", "2", "3", "4", "5", "6", "7",
992 "8", "9", "10", "11", "12", "13", "14", "15",
993 "16", "17", "18", "19", "20", "21", "22", "23",
994 "24", "25", "26", "27", "28", "29", "30", "31",
995 "0", "1", "2", "3", "4", "5", "6", "7",
996 "8", "9", "10", "11", "12", "13", "14", "15",
997 "16", "17", "18", "19", "20", "21", "22", "23",
998 "24", "25", "26", "27", "28", "29", "30", "31",
999 "mq", "lr", "ctr","ap",
1000 "0", "1", "2", "3", "4", "5", "6", "7",
1001 "xer",
1002 /* AltiVec registers. */
1003 "0", "1", "2", "3", "4", "5", "6", "7",
1004 "8", "9", "10", "11", "12", "13", "14", "15",
1005 "16", "17", "18", "19", "20", "21", "22", "23",
1006 "24", "25", "26", "27", "28", "29", "30", "31",
1007 "vrsave", "vscr",
1008 /* SPE registers. */
1009 "spe_acc", "spefscr",
1010 /* Soft frame pointer. */
1011 "sfp"
1014 #ifdef TARGET_REGNAMES
1015 static const char alt_reg_names[][8] =
1017 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1018 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1019 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1020 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1021 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1022 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1023 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1024 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1025 "mq", "lr", "ctr", "ap",
1026 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
1027 "xer",
1028 /* AltiVec registers. */
1029 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
1030 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1031 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1032 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1033 "vrsave", "vscr",
1034 /* SPE registers. */
1035 "spe_acc", "spefscr",
1036 /* Soft frame pointer. */
1037 "sfp"
1039 #endif
1041 #ifndef MASK_STRICT_ALIGN
1042 #define MASK_STRICT_ALIGN 0
1043 #endif
1044 #ifndef TARGET_PROFILE_KERNEL
1045 #define TARGET_PROFILE_KERNEL 0
1046 #endif
1048 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1049 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
1051 /* Initialize the GCC target structure. */
1052 #undef TARGET_ATTRIBUTE_TABLE
1053 #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
1054 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1055 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
1057 #undef TARGET_ASM_ALIGNED_DI_OP
1058 #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1060 /* Default unaligned ops are only provided for ELF. Find the ops needed
1061 for non-ELF systems. */
1062 #ifndef OBJECT_FORMAT_ELF
1063 #if TARGET_XCOFF
1064 /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
1065 64-bit targets. */
1066 #undef TARGET_ASM_UNALIGNED_HI_OP
1067 #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1068 #undef TARGET_ASM_UNALIGNED_SI_OP
1069 #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1070 #undef TARGET_ASM_UNALIGNED_DI_OP
1071 #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1072 #else
1073 /* For Darwin. */
1074 #undef TARGET_ASM_UNALIGNED_HI_OP
1075 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1076 #undef TARGET_ASM_UNALIGNED_SI_OP
1077 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
1078 #undef TARGET_ASM_UNALIGNED_DI_OP
1079 #define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1080 #undef TARGET_ASM_ALIGNED_DI_OP
1081 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
1082 #endif
1083 #endif
1085 /* This hook deals with fixups for relocatable code and DI-mode objects
1086 in 64-bit code. */
1087 #undef TARGET_ASM_INTEGER
1088 #define TARGET_ASM_INTEGER rs6000_assemble_integer
1090 #ifdef HAVE_GAS_HIDDEN
1091 #undef TARGET_ASM_ASSEMBLE_VISIBILITY
1092 #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1093 #endif
1095 #undef TARGET_HAVE_TLS
1096 #define TARGET_HAVE_TLS HAVE_AS_TLS
1098 #undef TARGET_CANNOT_FORCE_CONST_MEM
1099 #define TARGET_CANNOT_FORCE_CONST_MEM rs6000_tls_referenced_p
1101 #undef TARGET_ASM_FUNCTION_PROLOGUE
1102 #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1103 #undef TARGET_ASM_FUNCTION_EPILOGUE
1104 #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1106 #undef TARGET_SCHED_VARIABLE_ISSUE
1107 #define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1109 #undef TARGET_SCHED_ISSUE_RATE
1110 #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1111 #undef TARGET_SCHED_ADJUST_COST
1112 #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1113 #undef TARGET_SCHED_ADJUST_PRIORITY
1114 #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
1115 #undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
1116 #define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
1117 #undef TARGET_SCHED_INIT
1118 #define TARGET_SCHED_INIT rs6000_sched_init
1119 #undef TARGET_SCHED_FINISH
1120 #define TARGET_SCHED_FINISH rs6000_sched_finish
1121 #undef TARGET_SCHED_REORDER
1122 #define TARGET_SCHED_REORDER rs6000_sched_reorder
1123 #undef TARGET_SCHED_REORDER2
1124 #define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
1126 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1127 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1129 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1130 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1132 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1133 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1134 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
1135 #define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1136 #undef TARGET_SCHED_SET_SCHED_CONTEXT
1137 #define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1138 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
1139 #define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1141 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1142 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
1143 #undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN
1144 #define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN rs6000_builtin_mul_widen_even
1145 #undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD
1146 #define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD rs6000_builtin_mul_widen_odd
1147 #undef TARGET_VECTORIZE_BUILTIN_CONVERSION
1148 #define TARGET_VECTORIZE_BUILTIN_CONVERSION rs6000_builtin_conversion
1149 #undef TARGET_VECTORIZE_BUILTIN_VEC_PERM
1150 #define TARGET_VECTORIZE_BUILTIN_VEC_PERM rs6000_builtin_vec_perm
1152 #undef TARGET_VECTOR_ALIGNMENT_REACHABLE
1153 #define TARGET_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1155 #undef TARGET_INIT_BUILTINS
1156 #define TARGET_INIT_BUILTINS rs6000_init_builtins
1158 #undef TARGET_EXPAND_BUILTIN
1159 #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1161 #undef TARGET_MANGLE_TYPE
1162 #define TARGET_MANGLE_TYPE rs6000_mangle_type
1164 #undef TARGET_INIT_LIBFUNCS
1165 #define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1167 #if TARGET_MACHO
1168 #undef TARGET_BINDS_LOCAL_P
1169 #define TARGET_BINDS_LOCAL_P darwin_binds_local_p
1170 #endif
1172 #undef TARGET_MS_BITFIELD_LAYOUT_P
1173 #define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1175 #undef TARGET_ASM_OUTPUT_MI_THUNK
1176 #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1178 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1179 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1181 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1182 #define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1184 #undef TARGET_INVALID_WITHIN_DOLOOP
1185 #define TARGET_INVALID_WITHIN_DOLOOP rs6000_invalid_within_doloop
1187 #undef TARGET_RTX_COSTS
1188 #define TARGET_RTX_COSTS rs6000_rtx_costs
1189 #undef TARGET_ADDRESS_COST
1190 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
1192 #undef TARGET_DWARF_REGISTER_SPAN
1193 #define TARGET_DWARF_REGISTER_SPAN rs6000_dwarf_register_span
1195 #undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1196 #define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1198 /* On rs6000, function arguments are promoted, as are function return
1199 values. */
1200 #undef TARGET_PROMOTE_FUNCTION_ARGS
1201 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
1202 #undef TARGET_PROMOTE_FUNCTION_RETURN
1203 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
1205 #undef TARGET_RETURN_IN_MEMORY
1206 #define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1208 #undef TARGET_SETUP_INCOMING_VARARGS
1209 #define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1211 /* Always strict argument naming on rs6000. */
1212 #undef TARGET_STRICT_ARGUMENT_NAMING
1213 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1214 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1215 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
1216 #undef TARGET_SPLIT_COMPLEX_ARG
1217 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
1218 #undef TARGET_MUST_PASS_IN_STACK
1219 #define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
1220 #undef TARGET_PASS_BY_REFERENCE
1221 #define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
1222 #undef TARGET_ARG_PARTIAL_BYTES
1223 #define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
1225 #undef TARGET_BUILD_BUILTIN_VA_LIST
1226 #define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1228 #undef TARGET_EXPAND_BUILTIN_VA_START
1229 #define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1231 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1232 #define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1234 #undef TARGET_EH_RETURN_FILTER_MODE
1235 #define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1237 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1238 #define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1240 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1241 #define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1243 #undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1244 #define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1246 #undef TARGET_HANDLE_OPTION
1247 #define TARGET_HANDLE_OPTION rs6000_handle_option
1249 #undef TARGET_DEFAULT_TARGET_FLAGS
1250 #define TARGET_DEFAULT_TARGET_FLAGS \
1251 (TARGET_DEFAULT)
1253 #undef TARGET_STACK_PROTECT_FAIL
1254 #define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1256 /* MPC604EUM 3.5.2 Weak Consistency between Multiple Processors
1257 The PowerPC architecture requires only weak consistency among
1258 processors--that is, memory accesses between processors need not be
1259 sequentially consistent and memory accesses among processors can occur
1260 in any order. The ability to order memory accesses weakly provides
1261 opportunities for more efficient use of the system bus. Unless a
1262 dependency exists, the 604e allows read operations to precede store
1263 operations. */
1264 #undef TARGET_RELAXED_ORDERING
1265 #define TARGET_RELAXED_ORDERING true
1267 #ifdef HAVE_AS_TLS
1268 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1269 #define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1270 #endif
1272 /* Use a 32-bit anchor range. This leads to sequences like:
1274 addis tmp,anchor,high
1275 add dest,tmp,low
1277 where tmp itself acts as an anchor, and can be shared between
1278 accesses to the same 64k page. */
1279 #undef TARGET_MIN_ANCHOR_OFFSET
1280 #define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1281 #undef TARGET_MAX_ANCHOR_OFFSET
1282 #define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1283 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1284 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1286 #undef TARGET_BUILTIN_RECIPROCAL
1287 #define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1289 #undef TARGET_EXPAND_TO_RTL_HOOK
1290 #define TARGET_EXPAND_TO_RTL_HOOK rs6000_alloc_sdmode_stack_slot
1292 #undef TARGET_INSTANTIATE_DECLS
1293 #define TARGET_INSTANTIATE_DECLS rs6000_instantiate_decls
1295 struct gcc_target targetm = TARGET_INITIALIZER;
1298 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1299 MODE. */
1300 static int
1301 rs6000_hard_regno_mode_ok (int regno, enum machine_mode mode)
1303 /* The GPRs can hold any mode, but values bigger than one register
1304 cannot go past R31. */
1305 if (INT_REGNO_P (regno))
1306 return INT_REGNO_P (regno + HARD_REGNO_NREGS (regno, mode) - 1);
1308 /* The float registers can only hold floating modes and DImode.
1309 This excludes the 32-bit decimal float mode for now. */
1310 if (FP_REGNO_P (regno))
1311 return
1312 ((SCALAR_FLOAT_MODE_P (mode)
1313 && (mode != TDmode || (regno % 2) == 0)
1314 && FP_REGNO_P (regno + HARD_REGNO_NREGS (regno, mode) - 1))
1315 || (GET_MODE_CLASS (mode) == MODE_INT
1316 && GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
1317 || (PAIRED_SIMD_REGNO_P (regno) && TARGET_PAIRED_FLOAT
1318 && PAIRED_VECTOR_MODE (mode)));
1320 /* The CR register can only hold CC modes. */
1321 if (CR_REGNO_P (regno))
1322 return GET_MODE_CLASS (mode) == MODE_CC;
1324 if (XER_REGNO_P (regno))
1325 return mode == PSImode;
1327 /* AltiVec only in AldyVec registers. */
1328 if (ALTIVEC_REGNO_P (regno))
1329 return ALTIVEC_VECTOR_MODE (mode);
1331 /* ...but GPRs can hold SIMD data on the SPE in one register. */
1332 if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
1333 return 1;
1335 /* We cannot put TImode anywhere except general register and it must be
1336 able to fit within the register set. */
1338 return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
1341 /* Initialize rs6000_hard_regno_mode_ok_p table. */
1342 static void
1343 rs6000_init_hard_regno_mode_ok (void)
1345 int r, m;
1347 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
1348 for (m = 0; m < NUM_MACHINE_MODES; ++m)
1349 if (rs6000_hard_regno_mode_ok (r, (enum machine_mode) m))
1350 rs6000_hard_regno_mode_ok_p[m][r] = true;
1353 #if TARGET_MACHO
1354 /* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
1356 static void
1357 darwin_rs6000_override_options (void)
1359 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
1360 off. */
1361 rs6000_altivec_abi = 1;
1362 TARGET_ALTIVEC_VRSAVE = 1;
1363 if (DEFAULT_ABI == ABI_DARWIN)
1365 if (MACHO_DYNAMIC_NO_PIC_P)
1367 if (flag_pic)
1368 warning (0, "-mdynamic-no-pic overrides -fpic or -fPIC");
1369 flag_pic = 0;
1371 else if (flag_pic == 1)
1373 flag_pic = 2;
1376 if (TARGET_64BIT && ! TARGET_POWERPC64)
1378 target_flags |= MASK_POWERPC64;
1379 warning (0, "-m64 requires PowerPC64 architecture, enabling");
1381 if (flag_mkernel)
1383 rs6000_default_long_calls = 1;
1384 target_flags |= MASK_SOFT_FLOAT;
1387 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
1388 Altivec. */
1389 if (!flag_mkernel && !flag_apple_kext
1390 && TARGET_64BIT
1391 && ! (target_flags_explicit & MASK_ALTIVEC))
1392 target_flags |= MASK_ALTIVEC;
1394 /* Unless the user (not the configurer) has explicitly overridden
1395 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
1396 G4 unless targetting the kernel. */
1397 if (!flag_mkernel
1398 && !flag_apple_kext
1399 && strverscmp (darwin_macosx_version_min, "10.5") >= 0
1400 && ! (target_flags_explicit & MASK_ALTIVEC)
1401 && ! rs6000_select[1].string)
1403 target_flags |= MASK_ALTIVEC;
1406 #endif
1408 /* If not otherwise specified by a target, make 'long double' equivalent to
1409 'double'. */
1411 #ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
1412 #define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
1413 #endif
1415 /* Override command line options. Mostly we process the processor
1416 type and sometimes adjust other TARGET_ options. */
1418 void
1419 rs6000_override_options (const char *default_cpu)
1421 size_t i, j;
1422 struct rs6000_cpu_select *ptr;
1423 int set_masks;
1425 /* Simplifications for entries below. */
1427 enum {
1428 POWERPC_BASE_MASK = MASK_POWERPC | MASK_NEW_MNEMONICS,
1429 POWERPC_7400_MASK = POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_ALTIVEC
1432 /* This table occasionally claims that a processor does not support
1433 a particular feature even though it does, but the feature is slower
1434 than the alternative. Thus, it shouldn't be relied on as a
1435 complete description of the processor's support.
1437 Please keep this list in order, and don't forget to update the
1438 documentation in invoke.texi when adding a new processor or
1439 flag. */
1440 static struct ptt
1442 const char *const name; /* Canonical processor name. */
1443 const enum processor_type processor; /* Processor type enum value. */
1444 const int target_enable; /* Target flags to enable. */
1445 } const processor_target_table[]
1446 = {{"401", PROCESSOR_PPC403, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1447 {"403", PROCESSOR_PPC403,
1448 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_STRICT_ALIGN},
1449 {"405", PROCESSOR_PPC405,
1450 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1451 {"405fp", PROCESSOR_PPC405,
1452 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
1453 {"440", PROCESSOR_PPC440,
1454 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1455 {"440fp", PROCESSOR_PPC440,
1456 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
1457 {"464", PROCESSOR_PPC440,
1458 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1459 {"464fp", PROCESSOR_PPC440,
1460 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
1461 {"505", PROCESSOR_MPCCORE, POWERPC_BASE_MASK},
1462 {"601", PROCESSOR_PPC601,
1463 MASK_POWER | POWERPC_BASE_MASK | MASK_MULTIPLE | MASK_STRING},
1464 {"602", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1465 {"603", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1466 {"603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1467 {"604", PROCESSOR_PPC604, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1468 {"604e", PROCESSOR_PPC604e, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1469 {"620", PROCESSOR_PPC620,
1470 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1471 {"630", PROCESSOR_PPC630,
1472 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1473 {"740", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1474 {"7400", PROCESSOR_PPC7400, POWERPC_7400_MASK},
1475 {"7450", PROCESSOR_PPC7450, POWERPC_7400_MASK},
1476 {"750", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1477 {"801", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1478 {"821", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1479 {"823", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1480 {"8540", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN},
1481 /* 8548 has a dummy entry for now. */
1482 {"8548", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN},
1483 {"e300c2", PROCESSOR_PPCE300C2, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1484 {"e300c3", PROCESSOR_PPCE300C3, POWERPC_BASE_MASK},
1485 {"e500mc", PROCESSOR_PPCE500MC, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1486 {"860", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1487 {"970", PROCESSOR_POWER4,
1488 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1489 {"cell", PROCESSOR_CELL,
1490 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1491 {"common", PROCESSOR_COMMON, MASK_NEW_MNEMONICS},
1492 {"ec603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1493 {"G3", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1494 {"G4", PROCESSOR_PPC7450, POWERPC_7400_MASK},
1495 {"G5", PROCESSOR_POWER4,
1496 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1497 {"power", PROCESSOR_POWER, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1498 {"power2", PROCESSOR_POWER,
1499 MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
1500 {"power3", PROCESSOR_PPC630,
1501 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1502 {"power4", PROCESSOR_POWER4,
1503 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1504 | MASK_MFCRF},
1505 {"power5", PROCESSOR_POWER5,
1506 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1507 | MASK_MFCRF | MASK_POPCNTB},
1508 {"power5+", PROCESSOR_POWER5,
1509 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1510 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND},
1511 {"power6", PROCESSOR_POWER6,
1512 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1513 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
1514 {"power6x", PROCESSOR_POWER6,
1515 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1516 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP
1517 | MASK_MFPGPR},
1518 {"power7", PROCESSOR_POWER5,
1519 POWERPC_7400_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_MFCRF
1520 | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
1521 {"powerpc", PROCESSOR_POWERPC, POWERPC_BASE_MASK},
1522 {"powerpc64", PROCESSOR_POWERPC64,
1523 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1524 {"rios", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1525 {"rios1", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1526 {"rios2", PROCESSOR_RIOS2,
1527 MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
1528 {"rsc", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1529 {"rsc1", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1530 {"rs64", PROCESSOR_RS64A,
1531 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64}
1534 const size_t ptt_size = ARRAY_SIZE (processor_target_table);
1536 /* Some OSs don't support saving the high part of 64-bit registers on
1537 context switch. Other OSs don't support saving Altivec registers.
1538 On those OSs, we don't touch the MASK_POWERPC64 or MASK_ALTIVEC
1539 settings; if the user wants either, the user must explicitly specify
1540 them and we won't interfere with the user's specification. */
1542 enum {
1543 POWER_MASKS = MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING,
1544 POWERPC_MASKS = (POWERPC_BASE_MASK | MASK_PPC_GPOPT | MASK_STRICT_ALIGN
1545 | MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_ALTIVEC
1546 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_MULHW
1547 | MASK_DLMZB | MASK_CMPB | MASK_MFPGPR | MASK_DFP)
1550 set_masks = POWER_MASKS | POWERPC_MASKS | MASK_SOFT_FLOAT;
1551 #ifdef OS_MISSING_POWERPC64
1552 if (OS_MISSING_POWERPC64)
1553 set_masks &= ~MASK_POWERPC64;
1554 #endif
1555 #ifdef OS_MISSING_ALTIVEC
1556 if (OS_MISSING_ALTIVEC)
1557 set_masks &= ~MASK_ALTIVEC;
1558 #endif
1560 /* Don't override by the processor default if given explicitly. */
1561 set_masks &= ~target_flags_explicit;
1563 /* Identify the processor type. */
1564 rs6000_select[0].string = default_cpu;
1565 rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;
1567 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
1569 ptr = &rs6000_select[i];
1570 if (ptr->string != (char *)0 && ptr->string[0] != '\0')
1572 for (j = 0; j < ptt_size; j++)
1573 if (! strcmp (ptr->string, processor_target_table[j].name))
1575 if (ptr->set_tune_p)
1576 rs6000_cpu = processor_target_table[j].processor;
1578 if (ptr->set_arch_p)
1580 target_flags &= ~set_masks;
1581 target_flags |= (processor_target_table[j].target_enable
1582 & set_masks);
1584 break;
1587 if (j == ptt_size)
1588 error ("bad value (%s) for %s switch", ptr->string, ptr->name);
1592 if ((TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC)
1593 && !rs6000_explicit_options.isel)
1594 rs6000_isel = 1;
1596 if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
1597 || rs6000_cpu == PROCESSOR_PPCE500MC)
1599 if (TARGET_ALTIVEC)
1600 error ("AltiVec not supported in this target");
1601 if (TARGET_SPE)
1602 error ("Spe not supported in this target");
1605 /* Disable Cell microcode if we are optimizing for the Cell
1606 and not optimizing for size. */
1607 if (rs6000_gen_cell_microcode == -1)
1608 rs6000_gen_cell_microcode = !(rs6000_cpu == PROCESSOR_CELL
1609 && !optimize_size);
1611 /* If we are optimizing big endian systems for space, use the load/store
1612 multiple and string instructions unless we are not generating
1613 Cell microcode. */
1614 if (BYTES_BIG_ENDIAN && optimize_size && !rs6000_gen_cell_microcode)
1615 target_flags |= ~target_flags_explicit & (MASK_MULTIPLE | MASK_STRING);
1617 /* Don't allow -mmultiple or -mstring on little endian systems
1618 unless the cpu is a 750, because the hardware doesn't support the
1619 instructions used in little endian mode, and causes an alignment
1620 trap. The 750 does not cause an alignment trap (except when the
1621 target is unaligned). */
1623 if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750)
1625 if (TARGET_MULTIPLE)
1627 target_flags &= ~MASK_MULTIPLE;
1628 if ((target_flags_explicit & MASK_MULTIPLE) != 0)
1629 warning (0, "-mmultiple is not supported on little endian systems");
1632 if (TARGET_STRING)
1634 target_flags &= ~MASK_STRING;
1635 if ((target_flags_explicit & MASK_STRING) != 0)
1636 warning (0, "-mstring is not supported on little endian systems");
1640 /* Set debug flags */
1641 if (rs6000_debug_name)
1643 if (! strcmp (rs6000_debug_name, "all"))
1644 rs6000_debug_stack = rs6000_debug_arg = 1;
1645 else if (! strcmp (rs6000_debug_name, "stack"))
1646 rs6000_debug_stack = 1;
1647 else if (! strcmp (rs6000_debug_name, "arg"))
1648 rs6000_debug_arg = 1;
1649 else
1650 error ("unknown -mdebug-%s switch", rs6000_debug_name);
1653 if (rs6000_traceback_name)
1655 if (! strncmp (rs6000_traceback_name, "full", 4))
1656 rs6000_traceback = traceback_full;
1657 else if (! strncmp (rs6000_traceback_name, "part", 4))
1658 rs6000_traceback = traceback_part;
1659 else if (! strncmp (rs6000_traceback_name, "no", 2))
1660 rs6000_traceback = traceback_none;
1661 else
1662 error ("unknown -mtraceback arg %qs; expecting %<full%>, %<partial%> or %<none%>",
1663 rs6000_traceback_name);
1666 if (!rs6000_explicit_options.long_double)
1667 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
1669 #ifndef POWERPC_LINUX
1670 if (!rs6000_explicit_options.ieee)
1671 rs6000_ieeequad = 1;
1672 #endif
1674 /* Enable Altivec ABI for AIX -maltivec. */
1675 if (TARGET_XCOFF && TARGET_ALTIVEC)
1676 rs6000_altivec_abi = 1;
1678 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
1679 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
1680 be explicitly overridden in either case. */
1681 if (TARGET_ELF)
1683 if (!rs6000_explicit_options.altivec_abi
1684 && (TARGET_64BIT || TARGET_ALTIVEC))
1685 rs6000_altivec_abi = 1;
1687 /* Enable VRSAVE for AltiVec ABI, unless explicitly overridden. */
1688 if (!rs6000_explicit_options.vrsave)
1689 TARGET_ALTIVEC_VRSAVE = rs6000_altivec_abi;
1692 /* Set the Darwin64 ABI as default for 64-bit Darwin. */
1693 if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
1695 rs6000_darwin64_abi = 1;
1696 #if TARGET_MACHO
1697 darwin_one_byte_bool = 1;
1698 #endif
1699 /* Default to natural alignment, for better performance. */
1700 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
1703 /* Place FP constants in the constant pool instead of TOC
1704 if section anchors enabled. */
1705 if (flag_section_anchors)
1706 TARGET_NO_FP_IN_TOC = 1;
1708 /* Handle -mtls-size option. */
1709 rs6000_parse_tls_size_option ();
1711 #ifdef SUBTARGET_OVERRIDE_OPTIONS
1712 SUBTARGET_OVERRIDE_OPTIONS;
1713 #endif
1714 #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
1715 SUBSUBTARGET_OVERRIDE_OPTIONS;
1716 #endif
1717 #ifdef SUB3TARGET_OVERRIDE_OPTIONS
1718 SUB3TARGET_OVERRIDE_OPTIONS;
1719 #endif
1721 if (TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC)
1723 /* The e500 and e500mc do not have string instructions, and we set
1724 MASK_STRING above when optimizing for size. */
1725 if ((target_flags & MASK_STRING) != 0)
1726 target_flags = target_flags & ~MASK_STRING;
1728 else if (rs6000_select[1].string != NULL)
1730 /* For the powerpc-eabispe configuration, we set all these by
1731 default, so let's unset them if we manually set another
1732 CPU that is not the E500. */
1733 if (!rs6000_explicit_options.spe_abi)
1734 rs6000_spe_abi = 0;
1735 if (!rs6000_explicit_options.spe)
1736 rs6000_spe = 0;
1737 if (!rs6000_explicit_options.float_gprs)
1738 rs6000_float_gprs = 0;
1739 if (!rs6000_explicit_options.isel)
1740 rs6000_isel = 0;
1743 /* Detect invalid option combinations with E500. */
1744 CHECK_E500_OPTIONS;
1746 rs6000_always_hint = (rs6000_cpu != PROCESSOR_POWER4
1747 && rs6000_cpu != PROCESSOR_POWER5
1748 && rs6000_cpu != PROCESSOR_POWER6
1749 && rs6000_cpu != PROCESSOR_CELL);
1750 rs6000_sched_groups = (rs6000_cpu == PROCESSOR_POWER4
1751 || rs6000_cpu == PROCESSOR_POWER5);
1752 rs6000_align_branch_targets = (rs6000_cpu == PROCESSOR_POWER4
1753 || rs6000_cpu == PROCESSOR_POWER5
1754 || rs6000_cpu == PROCESSOR_POWER6);
1756 rs6000_sched_restricted_insns_priority
1757 = (rs6000_sched_groups ? 1 : 0);
1759 /* Handle -msched-costly-dep option. */
1760 rs6000_sched_costly_dep
1761 = (rs6000_sched_groups ? store_to_load_dep_costly : no_dep_costly);
1763 if (rs6000_sched_costly_dep_str)
1765 if (! strcmp (rs6000_sched_costly_dep_str, "no"))
1766 rs6000_sched_costly_dep = no_dep_costly;
1767 else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
1768 rs6000_sched_costly_dep = all_deps_costly;
1769 else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
1770 rs6000_sched_costly_dep = true_store_to_load_dep_costly;
1771 else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
1772 rs6000_sched_costly_dep = store_to_load_dep_costly;
1773 else
1774 rs6000_sched_costly_dep = atoi (rs6000_sched_costly_dep_str);
1777 /* Handle -minsert-sched-nops option. */
1778 rs6000_sched_insert_nops
1779 = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);
1781 if (rs6000_sched_insert_nops_str)
1783 if (! strcmp (rs6000_sched_insert_nops_str, "no"))
1784 rs6000_sched_insert_nops = sched_finish_none;
1785 else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
1786 rs6000_sched_insert_nops = sched_finish_pad_groups;
1787 else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
1788 rs6000_sched_insert_nops = sched_finish_regroup_exact;
1789 else
1790 rs6000_sched_insert_nops = atoi (rs6000_sched_insert_nops_str);
1793 #ifdef TARGET_REGNAMES
1794 /* If the user desires alternate register names, copy in the
1795 alternate names now. */
1796 if (TARGET_REGNAMES)
1797 memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
1798 #endif
1800 /* Set aix_struct_return last, after the ABI is determined.
1801 If -maix-struct-return or -msvr4-struct-return was explicitly
1802 used, don't override with the ABI default. */
1803 if (!rs6000_explicit_options.aix_struct_ret)
1804 aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);
1806 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
1807 REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;
1809 if (TARGET_TOC)
1810 ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);
1812 /* We can only guarantee the availability of DI pseudo-ops when
1813 assembling for 64-bit targets. */
1814 if (!TARGET_64BIT)
1816 targetm.asm_out.aligned_op.di = NULL;
1817 targetm.asm_out.unaligned_op.di = NULL;
1820 /* Set branch target alignment, if not optimizing for size. */
1821 if (!optimize_size)
1823 /* Cell wants to be aligned 8byte for dual issue. */
1824 if (rs6000_cpu == PROCESSOR_CELL)
1826 if (align_functions <= 0)
1827 align_functions = 8;
1828 if (align_jumps <= 0)
1829 align_jumps = 8;
1830 if (align_loops <= 0)
1831 align_loops = 8;
1833 if (rs6000_align_branch_targets)
1835 if (align_functions <= 0)
1836 align_functions = 16;
1837 if (align_jumps <= 0)
1838 align_jumps = 16;
1839 if (align_loops <= 0)
1840 align_loops = 16;
1842 if (align_jumps_max_skip <= 0)
1843 align_jumps_max_skip = 15;
1844 if (align_loops_max_skip <= 0)
1845 align_loops_max_skip = 15;
1848 /* Arrange to save and restore machine status around nested functions. */
1849 init_machine_status = rs6000_init_machine_status;
1851 /* We should always be splitting complex arguments, but we can't break
1852 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
1853 if (DEFAULT_ABI != ABI_AIX)
1854 targetm.calls.split_complex_arg = NULL;
1856 /* Initialize rs6000_cost with the appropriate target costs. */
1857 if (optimize_size)
1858 rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
1859 else
1860 switch (rs6000_cpu)
1862 case PROCESSOR_RIOS1:
1863 rs6000_cost = &rios1_cost;
1864 break;
1866 case PROCESSOR_RIOS2:
1867 rs6000_cost = &rios2_cost;
1868 break;
1870 case PROCESSOR_RS64A:
1871 rs6000_cost = &rs64a_cost;
1872 break;
1874 case PROCESSOR_MPCCORE:
1875 rs6000_cost = &mpccore_cost;
1876 break;
1878 case PROCESSOR_PPC403:
1879 rs6000_cost = &ppc403_cost;
1880 break;
1882 case PROCESSOR_PPC405:
1883 rs6000_cost = &ppc405_cost;
1884 break;
1886 case PROCESSOR_PPC440:
1887 rs6000_cost = &ppc440_cost;
1888 break;
1890 case PROCESSOR_PPC601:
1891 rs6000_cost = &ppc601_cost;
1892 break;
1894 case PROCESSOR_PPC603:
1895 rs6000_cost = &ppc603_cost;
1896 break;
1898 case PROCESSOR_PPC604:
1899 rs6000_cost = &ppc604_cost;
1900 break;
1902 case PROCESSOR_PPC604e:
1903 rs6000_cost = &ppc604e_cost;
1904 break;
1906 case PROCESSOR_PPC620:
1907 rs6000_cost = &ppc620_cost;
1908 break;
1910 case PROCESSOR_PPC630:
1911 rs6000_cost = &ppc630_cost;
1912 break;
1914 case PROCESSOR_CELL:
1915 rs6000_cost = &ppccell_cost;
1916 break;
1918 case PROCESSOR_PPC750:
1919 case PROCESSOR_PPC7400:
1920 rs6000_cost = &ppc750_cost;
1921 break;
1923 case PROCESSOR_PPC7450:
1924 rs6000_cost = &ppc7450_cost;
1925 break;
1927 case PROCESSOR_PPC8540:
1928 rs6000_cost = &ppc8540_cost;
1929 break;
1931 case PROCESSOR_PPCE300C2:
1932 case PROCESSOR_PPCE300C3:
1933 rs6000_cost = &ppce300c2c3_cost;
1934 break;
1936 case PROCESSOR_PPCE500MC:
1937 rs6000_cost = &ppce500mc_cost;
1938 break;
1940 case PROCESSOR_POWER4:
1941 case PROCESSOR_POWER5:
1942 rs6000_cost = &power4_cost;
1943 break;
1945 case PROCESSOR_POWER6:
1946 rs6000_cost = &power6_cost;
1947 break;
1949 default:
1950 gcc_unreachable ();
1953 if (!PARAM_SET_P (PARAM_SIMULTANEOUS_PREFETCHES))
1954 set_param_value ("simultaneous-prefetches",
1955 rs6000_cost->simultaneous_prefetches);
1956 if (!PARAM_SET_P (PARAM_L1_CACHE_SIZE))
1957 set_param_value ("l1-cache-size", rs6000_cost->l1_cache_size);
1958 if (!PARAM_SET_P (PARAM_L1_CACHE_LINE_SIZE))
1959 set_param_value ("l1-cache-line-size", rs6000_cost->cache_line_size);
1960 if (!PARAM_SET_P (PARAM_L2_CACHE_SIZE))
1961 set_param_value ("l2-cache-size", rs6000_cost->l2_cache_size);
1963 /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
1964 can be optimized to ap = __builtin_next_arg (0). */
1965 if (DEFAULT_ABI != ABI_V4)
1966 targetm.expand_builtin_va_start = NULL;
1968 /* Set up single/double float flags.
1969 If TARGET_HARD_FLOAT is set, but neither single or double is set,
1970 then set both flags. */
1971 if (TARGET_HARD_FLOAT && TARGET_FPRS
1972 && rs6000_single_float == 0 && rs6000_double_float == 0)
1973 rs6000_single_float = rs6000_double_float = 1;
1975 /* Reset single and double FP flags if target is E500. */
1976 if (TARGET_E500)
1978 rs6000_single_float = rs6000_double_float = 0;
1979 if (TARGET_E500_SINGLE)
1980 rs6000_single_float = 1;
1981 if (TARGET_E500_DOUBLE)
1982 rs6000_single_float = rs6000_double_float = 1;
1985 /* If not explicitly specified via option, decide whether to generate indexed
1986 load/store instructions. */
1987 if (TARGET_AVOID_XFORM == -1)
1988 /* Avoid indexed addressing when targeting Power6 in order to avoid
1989 the DERAT mispredict penalty. */
1990 TARGET_AVOID_XFORM = (rs6000_cpu == PROCESSOR_POWER6 && TARGET_CMPB);
1992 rs6000_init_hard_regno_mode_ok ();
1995 /* Implement targetm.vectorize.builtin_mask_for_load. */
1996 static tree
1997 rs6000_builtin_mask_for_load (void)
1999 if (TARGET_ALTIVEC)
2000 return altivec_builtin_mask_for_load;
2001 else
2002 return 0;
2005 /* Implement targetm.vectorize.builtin_conversion.
2006 Returns a decl of a function that implements conversion of an integer vector
2007 into a floating-point vector, or vice-versa. TYPE is the type of the integer
2008 side of the conversion.
2009 Return NULL_TREE if it is not available. */
2010 static tree
2011 rs6000_builtin_conversion (enum tree_code code, tree type)
2013 if (!TARGET_ALTIVEC)
2014 return NULL_TREE;
2016 switch (code)
2018 case FIX_TRUNC_EXPR:
2019 switch (TYPE_MODE (type))
2021 case V4SImode:
2022 return TYPE_UNSIGNED (type)
2023 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VCTUXS]
2024 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VCTSXS];
2025 default:
2026 return NULL_TREE;
2029 case FLOAT_EXPR:
2030 switch (TYPE_MODE (type))
2032 case V4SImode:
2033 return TYPE_UNSIGNED (type)
2034 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VCFUX]
2035 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VCFSX];
2036 default:
2037 return NULL_TREE;
2040 default:
2041 return NULL_TREE;
2045 /* Implement targetm.vectorize.builtin_mul_widen_even. */
2046 static tree
2047 rs6000_builtin_mul_widen_even (tree type)
2049 if (!TARGET_ALTIVEC)
2050 return NULL_TREE;
2052 switch (TYPE_MODE (type))
2054 case V8HImode:
2055 return TYPE_UNSIGNED (type)
2056 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUH]
2057 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESH];
2059 case V16QImode:
2060 return TYPE_UNSIGNED (type)
2061 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUB]
2062 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESB];
2063 default:
2064 return NULL_TREE;
2068 /* Implement targetm.vectorize.builtin_mul_widen_odd. */
2069 static tree
2070 rs6000_builtin_mul_widen_odd (tree type)
2072 if (!TARGET_ALTIVEC)
2073 return NULL_TREE;
2075 switch (TYPE_MODE (type))
2077 case V8HImode:
2078 return TYPE_UNSIGNED (type)
2079 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUH]
2080 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSH];
2082 case V16QImode:
2083 return TYPE_UNSIGNED (type)
2084 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUB]
2085 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSB];
2086 default:
2087 return NULL_TREE;
2092 /* Return true iff, data reference of TYPE can reach vector alignment (16)
2093 after applying N number of iterations. This routine does not determine
2094 how may iterations are required to reach desired alignment. */
2096 static bool
2097 rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
2099 if (is_packed)
2100 return false;
2102 if (TARGET_32BIT)
2104 if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
2105 return true;
2107 if (rs6000_alignment_flags == MASK_ALIGN_POWER)
2108 return true;
2110 return false;
2112 else
2114 if (TARGET_MACHO)
2115 return false;
2117 /* Assuming that all other types are naturally aligned. CHECKME! */
2118 return true;
2122 /* Implement targetm.vectorize.builtin_vec_perm. */
2123 tree
2124 rs6000_builtin_vec_perm (tree type, tree *mask_element_type)
2126 tree d;
2128 *mask_element_type = unsigned_char_type_node;
2130 switch (TYPE_MODE (type))
2132 case V16QImode:
2133 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_16QI];
2134 break;
2136 case V8HImode:
2137 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_8HI];
2138 break;
2140 case V4SImode:
2141 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SI];
2142 break;
2144 case V4SFmode:
2145 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SF];
2146 break;
2148 default:
2149 return NULL_TREE;
2152 gcc_assert (d);
2153 return d;
2156 /* Handle generic options of the form -mfoo=yes/no.
2157 NAME is the option name.
2158 VALUE is the option value.
2159 FLAG is the pointer to the flag where to store a 1 or 0, depending on
2160 whether the option value is 'yes' or 'no' respectively. */
2161 static void
2162 rs6000_parse_yes_no_option (const char *name, const char *value, int *flag)
2164 if (value == 0)
2165 return;
2166 else if (!strcmp (value, "yes"))
2167 *flag = 1;
2168 else if (!strcmp (value, "no"))
2169 *flag = 0;
2170 else
2171 error ("unknown -m%s= option specified: '%s'", name, value);
2174 /* Validate and record the size specified with the -mtls-size option. */
2176 static void
2177 rs6000_parse_tls_size_option (void)
2179 if (rs6000_tls_size_string == 0)
2180 return;
2181 else if (strcmp (rs6000_tls_size_string, "16") == 0)
2182 rs6000_tls_size = 16;
2183 else if (strcmp (rs6000_tls_size_string, "32") == 0)
2184 rs6000_tls_size = 32;
2185 else if (strcmp (rs6000_tls_size_string, "64") == 0)
2186 rs6000_tls_size = 64;
2187 else
2188 error ("bad value %qs for -mtls-size switch", rs6000_tls_size_string);
2191 void
2192 optimization_options (int level ATTRIBUTE_UNUSED, int size ATTRIBUTE_UNUSED)
2194 if (DEFAULT_ABI == ABI_DARWIN)
2195 /* The Darwin libraries never set errno, so we might as well
2196 avoid calling them when that's the only reason we would. */
2197 flag_errno_math = 0;
2199 /* Double growth factor to counter reduced min jump length. */
2200 set_param_value ("max-grow-copy-bb-insns", 16);
2202 /* Enable section anchors by default.
2203 Skip section anchors for Objective C and Objective C++
2204 until front-ends fixed. */
2205 if (!TARGET_MACHO && lang_hooks.name[4] != 'O')
2206 flag_section_anchors = 2;
2209 static enum fpu_type_t
2210 rs6000_parse_fpu_option (const char *option)
2212 if (!strcmp("none", option)) return FPU_NONE;
2213 if (!strcmp("sp_lite", option)) return FPU_SF_LITE;
2214 if (!strcmp("dp_lite", option)) return FPU_DF_LITE;
2215 if (!strcmp("sp_full", option)) return FPU_SF_FULL;
2216 if (!strcmp("dp_full", option)) return FPU_DF_FULL;
2217 error("unknown value %s for -mfpu", option);
2218 return FPU_NONE;
2221 /* Implement TARGET_HANDLE_OPTION. */
2223 static bool
2224 rs6000_handle_option (size_t code, const char *arg, int value)
2226 enum fpu_type_t fpu_type = FPU_NONE;
2228 switch (code)
2230 case OPT_mno_power:
2231 target_flags &= ~(MASK_POWER | MASK_POWER2
2232 | MASK_MULTIPLE | MASK_STRING);
2233 target_flags_explicit |= (MASK_POWER | MASK_POWER2
2234 | MASK_MULTIPLE | MASK_STRING);
2235 break;
2236 case OPT_mno_powerpc:
2237 target_flags &= ~(MASK_POWERPC | MASK_PPC_GPOPT
2238 | MASK_PPC_GFXOPT | MASK_POWERPC64);
2239 target_flags_explicit |= (MASK_POWERPC | MASK_PPC_GPOPT
2240 | MASK_PPC_GFXOPT | MASK_POWERPC64);
2241 break;
2242 case OPT_mfull_toc:
2243 target_flags &= ~MASK_MINIMAL_TOC;
2244 TARGET_NO_FP_IN_TOC = 0;
2245 TARGET_NO_SUM_IN_TOC = 0;
2246 target_flags_explicit |= MASK_MINIMAL_TOC;
2247 #ifdef TARGET_USES_SYSV4_OPT
2248 /* Note, V.4 no longer uses a normal TOC, so make -mfull-toc, be
2249 just the same as -mminimal-toc. */
2250 target_flags |= MASK_MINIMAL_TOC;
2251 target_flags_explicit |= MASK_MINIMAL_TOC;
2252 #endif
2253 break;
2255 #ifdef TARGET_USES_SYSV4_OPT
2256 case OPT_mtoc:
2257 /* Make -mtoc behave like -mminimal-toc. */
2258 target_flags |= MASK_MINIMAL_TOC;
2259 target_flags_explicit |= MASK_MINIMAL_TOC;
2260 break;
2261 #endif
2263 #ifdef TARGET_USES_AIX64_OPT
2264 case OPT_maix64:
2265 #else
2266 case OPT_m64:
2267 #endif
2268 target_flags |= MASK_POWERPC64 | MASK_POWERPC;
2269 target_flags |= ~target_flags_explicit & MASK_PPC_GFXOPT;
2270 target_flags_explicit |= MASK_POWERPC64 | MASK_POWERPC;
2271 break;
2273 #ifdef TARGET_USES_AIX64_OPT
2274 case OPT_maix32:
2275 #else
2276 case OPT_m32:
2277 #endif
2278 target_flags &= ~MASK_POWERPC64;
2279 target_flags_explicit |= MASK_POWERPC64;
2280 break;
2282 case OPT_minsert_sched_nops_:
2283 rs6000_sched_insert_nops_str = arg;
2284 break;
2286 case OPT_mminimal_toc:
2287 if (value == 1)
2289 TARGET_NO_FP_IN_TOC = 0;
2290 TARGET_NO_SUM_IN_TOC = 0;
2292 break;
2294 case OPT_mpower:
2295 if (value == 1)
2297 target_flags |= (MASK_MULTIPLE | MASK_STRING);
2298 target_flags_explicit |= (MASK_MULTIPLE | MASK_STRING);
2300 break;
2302 case OPT_mpower2:
2303 if (value == 1)
2305 target_flags |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
2306 target_flags_explicit |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
2308 break;
2310 case OPT_mpowerpc_gpopt:
2311 case OPT_mpowerpc_gfxopt:
2312 if (value == 1)
2314 target_flags |= MASK_POWERPC;
2315 target_flags_explicit |= MASK_POWERPC;
2317 break;
2319 case OPT_maix_struct_return:
2320 case OPT_msvr4_struct_return:
2321 rs6000_explicit_options.aix_struct_ret = true;
2322 break;
2324 case OPT_mvrsave:
2325 rs6000_explicit_options.vrsave = true;
2326 TARGET_ALTIVEC_VRSAVE = value;
2327 break;
2329 case OPT_mvrsave_:
2330 rs6000_explicit_options.vrsave = true;
2331 rs6000_parse_yes_no_option ("vrsave", arg, &(TARGET_ALTIVEC_VRSAVE));
2332 break;
2334 case OPT_misel:
2335 rs6000_explicit_options.isel = true;
2336 rs6000_isel = value;
2337 break;
2339 case OPT_misel_:
2340 rs6000_explicit_options.isel = true;
2341 rs6000_parse_yes_no_option ("isel", arg, &(rs6000_isel));
2342 break;
2344 case OPT_mspe:
2345 rs6000_explicit_options.spe = true;
2346 rs6000_spe = value;
2347 break;
2349 case OPT_mspe_:
2350 rs6000_explicit_options.spe = true;
2351 rs6000_parse_yes_no_option ("spe", arg, &(rs6000_spe));
2352 break;
2354 case OPT_mdebug_:
2355 rs6000_debug_name = arg;
2356 break;
2358 #ifdef TARGET_USES_SYSV4_OPT
2359 case OPT_mcall_:
2360 rs6000_abi_name = arg;
2361 break;
2363 case OPT_msdata_:
2364 rs6000_sdata_name = arg;
2365 break;
2367 case OPT_mtls_size_:
2368 rs6000_tls_size_string = arg;
2369 break;
2371 case OPT_mrelocatable:
2372 if (value == 1)
2374 target_flags |= MASK_MINIMAL_TOC;
2375 target_flags_explicit |= MASK_MINIMAL_TOC;
2376 TARGET_NO_FP_IN_TOC = 1;
2378 break;
2380 case OPT_mrelocatable_lib:
2381 if (value == 1)
2383 target_flags |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
2384 target_flags_explicit |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
2385 TARGET_NO_FP_IN_TOC = 1;
2387 else
2389 target_flags &= ~MASK_RELOCATABLE;
2390 target_flags_explicit |= MASK_RELOCATABLE;
2392 break;
2393 #endif
2395 case OPT_mabi_:
2396 if (!strcmp (arg, "altivec"))
2398 rs6000_explicit_options.altivec_abi = true;
2399 rs6000_altivec_abi = 1;
2401 /* Enabling the AltiVec ABI turns off the SPE ABI. */
2402 rs6000_spe_abi = 0;
2404 else if (! strcmp (arg, "no-altivec"))
2406 rs6000_explicit_options.altivec_abi = true;
2407 rs6000_altivec_abi = 0;
2409 else if (! strcmp (arg, "spe"))
2411 rs6000_explicit_options.spe_abi = true;
2412 rs6000_spe_abi = 1;
2413 rs6000_altivec_abi = 0;
2414 if (!TARGET_SPE_ABI)
2415 error ("not configured for ABI: '%s'", arg);
2417 else if (! strcmp (arg, "no-spe"))
2419 rs6000_explicit_options.spe_abi = true;
2420 rs6000_spe_abi = 0;
2423 /* These are here for testing during development only, do not
2424 document in the manual please. */
2425 else if (! strcmp (arg, "d64"))
2427 rs6000_darwin64_abi = 1;
2428 warning (0, "Using darwin64 ABI");
2430 else if (! strcmp (arg, "d32"))
2432 rs6000_darwin64_abi = 0;
2433 warning (0, "Using old darwin ABI");
2436 else if (! strcmp (arg, "ibmlongdouble"))
2438 rs6000_explicit_options.ieee = true;
2439 rs6000_ieeequad = 0;
2440 warning (0, "Using IBM extended precision long double");
2442 else if (! strcmp (arg, "ieeelongdouble"))
2444 rs6000_explicit_options.ieee = true;
2445 rs6000_ieeequad = 1;
2446 warning (0, "Using IEEE extended precision long double");
2449 else
2451 error ("unknown ABI specified: '%s'", arg);
2452 return false;
2454 break;
2456 case OPT_mcpu_:
2457 rs6000_select[1].string = arg;
2458 break;
2460 case OPT_mtune_:
2461 rs6000_select[2].string = arg;
2462 break;
2464 case OPT_mtraceback_:
2465 rs6000_traceback_name = arg;
2466 break;
2468 case OPT_mfloat_gprs_:
2469 rs6000_explicit_options.float_gprs = true;
2470 if (! strcmp (arg, "yes") || ! strcmp (arg, "single"))
2471 rs6000_float_gprs = 1;
2472 else if (! strcmp (arg, "double"))
2473 rs6000_float_gprs = 2;
2474 else if (! strcmp (arg, "no"))
2475 rs6000_float_gprs = 0;
2476 else
2478 error ("invalid option for -mfloat-gprs: '%s'", arg);
2479 return false;
2481 break;
2483 case OPT_mlong_double_:
2484 rs6000_explicit_options.long_double = true;
2485 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
2486 if (value != 64 && value != 128)
2488 error ("Unknown switch -mlong-double-%s", arg);
2489 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
2490 return false;
2492 else
2493 rs6000_long_double_type_size = value;
2494 break;
2496 case OPT_msched_costly_dep_:
2497 rs6000_sched_costly_dep_str = arg;
2498 break;
2500 case OPT_malign_:
2501 rs6000_explicit_options.alignment = true;
2502 if (! strcmp (arg, "power"))
2504 /* On 64-bit Darwin, power alignment is ABI-incompatible with
2505 some C library functions, so warn about it. The flag may be
2506 useful for performance studies from time to time though, so
2507 don't disable it entirely. */
2508 if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
2509 warning (0, "-malign-power is not supported for 64-bit Darwin;"
2510 " it is incompatible with the installed C and C++ libraries");
2511 rs6000_alignment_flags = MASK_ALIGN_POWER;
2513 else if (! strcmp (arg, "natural"))
2514 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
2515 else
2517 error ("unknown -malign-XXXXX option specified: '%s'", arg);
2518 return false;
2520 break;
2522 case OPT_msingle_float:
2523 if (!TARGET_SINGLE_FPU)
2524 warning (0, "-msingle-float option equivalent to -mhard-float");
2525 /* -msingle-float implies -mno-double-float and TARGET_HARD_FLOAT. */
2526 rs6000_double_float = 0;
2527 target_flags &= ~MASK_SOFT_FLOAT;
2528 target_flags_explicit |= MASK_SOFT_FLOAT;
2529 break;
2531 case OPT_mdouble_float:
2532 /* -mdouble-float implies -msingle-float and TARGET_HARD_FLOAT. */
2533 rs6000_single_float = 1;
2534 target_flags &= ~MASK_SOFT_FLOAT;
2535 target_flags_explicit |= MASK_SOFT_FLOAT;
2536 break;
2538 case OPT_msimple_fpu:
2539 if (!TARGET_SINGLE_FPU)
2540 warning (0, "-msimple-fpu option ignored");
2541 break;
2543 case OPT_mhard_float:
2544 /* -mhard_float implies -msingle-float and -mdouble-float. */
2545 rs6000_single_float = rs6000_double_float = 1;
2546 break;
2548 case OPT_msoft_float:
2549 /* -msoft_float implies -mnosingle-float and -mnodouble-float. */
2550 rs6000_single_float = rs6000_double_float = 0;
2551 break;
2553 case OPT_mfpu_:
2554 fpu_type = rs6000_parse_fpu_option(arg);
2555 if (fpu_type != FPU_NONE)
2556 /* If -mfpu is not none, then turn off SOFT_FLOAT, turn on HARD_FLOAT. */
2558 target_flags &= ~MASK_SOFT_FLOAT;
2559 target_flags_explicit |= MASK_SOFT_FLOAT;
2560 rs6000_xilinx_fpu = 1;
2561 if (fpu_type == FPU_SF_LITE || fpu_type == FPU_SF_FULL)
2562 rs6000_single_float = 1;
2563 if (fpu_type == FPU_DF_LITE || fpu_type == FPU_DF_FULL)
2564 rs6000_single_float = rs6000_double_float = 1;
2565 if (fpu_type == FPU_SF_LITE || fpu_type == FPU_DF_LITE)
2566 rs6000_simple_fpu = 1;
2568 else
2570 /* -mfpu=none is equivalent to -msoft-float */
2571 target_flags |= MASK_SOFT_FLOAT;
2572 target_flags_explicit |= MASK_SOFT_FLOAT;
2573 rs6000_single_float = rs6000_double_float = 0;
2575 break;
2577 return true;
2580 /* Do anything needed at the start of the asm file. */
2582 static void
2583 rs6000_file_start (void)
2585 size_t i;
2586 char buffer[80];
2587 const char *start = buffer;
2588 struct rs6000_cpu_select *ptr;
2589 const char *default_cpu = TARGET_CPU_DEFAULT;
2590 FILE *file = asm_out_file;
2592 default_file_start ();
2594 #ifdef TARGET_BI_ARCH
2595 if ((TARGET_DEFAULT ^ target_flags) & MASK_64BIT)
2596 default_cpu = 0;
2597 #endif
2599 if (flag_verbose_asm)
2601 sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
2602 rs6000_select[0].string = default_cpu;
2604 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
2606 ptr = &rs6000_select[i];
2607 if (ptr->string != (char *)0 && ptr->string[0] != '\0')
2609 fprintf (file, "%s %s%s", start, ptr->name, ptr->string);
2610 start = "";
2614 if (PPC405_ERRATUM77)
2616 fprintf (file, "%s PPC405CR_ERRATUM77", start);
2617 start = "";
2620 #ifdef USING_ELFOS_H
2621 switch (rs6000_sdata)
2623 case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
2624 case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
2625 case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
2626 case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
2629 if (rs6000_sdata && g_switch_value)
2631 fprintf (file, "%s -G " HOST_WIDE_INT_PRINT_UNSIGNED, start,
2632 g_switch_value);
2633 start = "";
2635 #endif
2637 if (*start == '\0')
2638 putc ('\n', file);
2641 #ifdef HAVE_AS_GNU_ATTRIBUTE
2642 if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
2644 fprintf (file, "\t.gnu_attribute 4, %d\n",
2645 ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT) ? 1
2646 : (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_SINGLE_FLOAT) ? 3
2647 : 2));
2648 fprintf (file, "\t.gnu_attribute 8, %d\n",
2649 (TARGET_ALTIVEC_ABI ? 2
2650 : TARGET_SPE_ABI ? 3
2651 : 1));
2652 fprintf (file, "\t.gnu_attribute 12, %d\n",
2653 aix_struct_return ? 2 : 1);
2656 #endif
2658 if (DEFAULT_ABI == ABI_AIX || (TARGET_ELF && flag_pic == 2))
2660 switch_to_section (toc_section);
2661 switch_to_section (text_section);
2666 /* Return nonzero if this function is known to have a null epilogue. */
2669 direct_return (void)
2671 if (reload_completed)
2673 rs6000_stack_t *info = rs6000_stack_info ();
2675 if (info->first_gp_reg_save == 32
2676 && info->first_fp_reg_save == 64
2677 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
2678 && ! info->lr_save_p
2679 && ! info->cr_save_p
2680 && info->vrsave_mask == 0
2681 && ! info->push_p)
2682 return 1;
2685 return 0;
2688 /* Return the number of instructions it takes to form a constant in an
2689 integer register. */
2692 num_insns_constant_wide (HOST_WIDE_INT value)
2694 /* signed constant loadable with {cal|addi} */
2695 if ((unsigned HOST_WIDE_INT) (value + 0x8000) < 0x10000)
2696 return 1;
2698 /* constant loadable with {cau|addis} */
2699 else if ((value & 0xffff) == 0
2700 && (value >> 31 == -1 || value >> 31 == 0))
2701 return 1;
2703 #if HOST_BITS_PER_WIDE_INT == 64
2704 else if (TARGET_POWERPC64)
2706 HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
2707 HOST_WIDE_INT high = value >> 31;
2709 if (high == 0 || high == -1)
2710 return 2;
2712 high >>= 1;
2714 if (low == 0)
2715 return num_insns_constant_wide (high) + 1;
2716 else
2717 return (num_insns_constant_wide (high)
2718 + num_insns_constant_wide (low) + 1);
2720 #endif
2722 else
2723 return 2;
2727 num_insns_constant (rtx op, enum machine_mode mode)
2729 HOST_WIDE_INT low, high;
2731 switch (GET_CODE (op))
2733 case CONST_INT:
2734 #if HOST_BITS_PER_WIDE_INT == 64
2735 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
2736 && mask64_operand (op, mode))
2737 return 2;
2738 else
2739 #endif
2740 return num_insns_constant_wide (INTVAL (op));
2742 case CONST_DOUBLE:
2743 if (mode == SFmode || mode == SDmode)
2745 long l;
2746 REAL_VALUE_TYPE rv;
2748 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
2749 if (DECIMAL_FLOAT_MODE_P (mode))
2750 REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
2751 else
2752 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
2753 return num_insns_constant_wide ((HOST_WIDE_INT) l);
2756 if (mode == VOIDmode || mode == DImode)
2758 high = CONST_DOUBLE_HIGH (op);
2759 low = CONST_DOUBLE_LOW (op);
2761 else
2763 long l[2];
2764 REAL_VALUE_TYPE rv;
2766 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
2767 if (DECIMAL_FLOAT_MODE_P (mode))
2768 REAL_VALUE_TO_TARGET_DECIMAL64 (rv, l);
2769 else
2770 REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
2771 high = l[WORDS_BIG_ENDIAN == 0];
2772 low = l[WORDS_BIG_ENDIAN != 0];
2775 if (TARGET_32BIT)
2776 return (num_insns_constant_wide (low)
2777 + num_insns_constant_wide (high));
2778 else
2780 if ((high == 0 && low >= 0)
2781 || (high == -1 && low < 0))
2782 return num_insns_constant_wide (low);
2784 else if (mask64_operand (op, mode))
2785 return 2;
2787 else if (low == 0)
2788 return num_insns_constant_wide (high) + 1;
2790 else
2791 return (num_insns_constant_wide (high)
2792 + num_insns_constant_wide (low) + 1);
2795 default:
2796 gcc_unreachable ();
2800 /* Interpret element ELT of the CONST_VECTOR OP as an integer value.
2801 If the mode of OP is MODE_VECTOR_INT, this simply returns the
2802 corresponding element of the vector, but for V4SFmode and V2SFmode,
2803 the corresponding "float" is interpreted as an SImode integer. */
2805 HOST_WIDE_INT
2806 const_vector_elt_as_int (rtx op, unsigned int elt)
2808 rtx tmp = CONST_VECTOR_ELT (op, elt);
2809 if (GET_MODE (op) == V4SFmode
2810 || GET_MODE (op) == V2SFmode)
2811 tmp = gen_lowpart (SImode, tmp);
2812 return INTVAL (tmp);
2815 /* Return true if OP can be synthesized with a particular vspltisb, vspltish
2816 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
2817 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
2818 all items are set to the same value and contain COPIES replicas of the
2819 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
2820 operand and the others are set to the value of the operand's msb. */
2822 static bool
2823 vspltis_constant (rtx op, unsigned step, unsigned copies)
2825 enum machine_mode mode = GET_MODE (op);
2826 enum machine_mode inner = GET_MODE_INNER (mode);
2828 unsigned i;
2829 unsigned nunits = GET_MODE_NUNITS (mode);
2830 unsigned bitsize = GET_MODE_BITSIZE (inner);
2831 unsigned mask = GET_MODE_MASK (inner);
2833 HOST_WIDE_INT val = const_vector_elt_as_int (op, nunits - 1);
2834 HOST_WIDE_INT splat_val = val;
2835 HOST_WIDE_INT msb_val = val > 0 ? 0 : -1;
2837 /* Construct the value to be splatted, if possible. If not, return 0. */
2838 for (i = 2; i <= copies; i *= 2)
2840 HOST_WIDE_INT small_val;
2841 bitsize /= 2;
2842 small_val = splat_val >> bitsize;
2843 mask >>= bitsize;
2844 if (splat_val != ((small_val << bitsize) | (small_val & mask)))
2845 return false;
2846 splat_val = small_val;
2849 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
2850 if (EASY_VECTOR_15 (splat_val))
2853 /* Also check if we can splat, and then add the result to itself. Do so if
2854 the value is positive, of if the splat instruction is using OP's mode;
2855 for splat_val < 0, the splat and the add should use the same mode. */
2856 else if (EASY_VECTOR_15_ADD_SELF (splat_val)
2857 && (splat_val >= 0 || (step == 1 && copies == 1)))
2860 else
2861 return false;
2863 /* Check if VAL is present in every STEP-th element, and the
2864 other elements are filled with its most significant bit. */
2865 for (i = 0; i < nunits - 1; ++i)
2867 HOST_WIDE_INT desired_val;
2868 if (((i + 1) & (step - 1)) == 0)
2869 desired_val = val;
2870 else
2871 desired_val = msb_val;
2873 if (desired_val != const_vector_elt_as_int (op, i))
2874 return false;
2877 return true;
2881 /* Return true if OP is of the given MODE and can be synthesized
2882 with a vspltisb, vspltish or vspltisw. */
2884 bool
2885 easy_altivec_constant (rtx op, enum machine_mode mode)
2887 unsigned step, copies;
2889 if (mode == VOIDmode)
2890 mode = GET_MODE (op);
2891 else if (mode != GET_MODE (op))
2892 return false;
2894 /* Start with a vspltisw. */
2895 step = GET_MODE_NUNITS (mode) / 4;
2896 copies = 1;
2898 if (vspltis_constant (op, step, copies))
2899 return true;
2901 /* Then try with a vspltish. */
2902 if (step == 1)
2903 copies <<= 1;
2904 else
2905 step >>= 1;
2907 if (vspltis_constant (op, step, copies))
2908 return true;
2910 /* And finally a vspltisb. */
2911 if (step == 1)
2912 copies <<= 1;
2913 else
2914 step >>= 1;
2916 if (vspltis_constant (op, step, copies))
2917 return true;
2919 return false;
2922 /* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
2923 result is OP. Abort if it is not possible. */
2926 gen_easy_altivec_constant (rtx op)
2928 enum machine_mode mode = GET_MODE (op);
2929 int nunits = GET_MODE_NUNITS (mode);
2930 rtx last = CONST_VECTOR_ELT (op, nunits - 1);
2931 unsigned step = nunits / 4;
2932 unsigned copies = 1;
2934 /* Start with a vspltisw. */
2935 if (vspltis_constant (op, step, copies))
2936 return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, last));
2938 /* Then try with a vspltish. */
2939 if (step == 1)
2940 copies <<= 1;
2941 else
2942 step >>= 1;
2944 if (vspltis_constant (op, step, copies))
2945 return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, last));
2947 /* And finally a vspltisb. */
2948 if (step == 1)
2949 copies <<= 1;
2950 else
2951 step >>= 1;
2953 if (vspltis_constant (op, step, copies))
2954 return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, last));
2956 gcc_unreachable ();
2959 const char *
2960 output_vec_const_move (rtx *operands)
2962 int cst, cst2;
2963 enum machine_mode mode;
2964 rtx dest, vec;
2966 dest = operands[0];
2967 vec = operands[1];
2968 mode = GET_MODE (dest);
2970 if (TARGET_ALTIVEC)
2972 rtx splat_vec;
2973 if (zero_constant (vec, mode))
2974 return "vxor %0,%0,%0";
2976 splat_vec = gen_easy_altivec_constant (vec);
2977 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
2978 operands[1] = XEXP (splat_vec, 0);
2979 if (!EASY_VECTOR_15 (INTVAL (operands[1])))
2980 return "#";
2982 switch (GET_MODE (splat_vec))
2984 case V4SImode:
2985 return "vspltisw %0,%1";
2987 case V8HImode:
2988 return "vspltish %0,%1";
2990 case V16QImode:
2991 return "vspltisb %0,%1";
2993 default:
2994 gcc_unreachable ();
2998 gcc_assert (TARGET_SPE);
3000 /* Vector constant 0 is handled as a splitter of V2SI, and in the
3001 pattern of V1DI, V4HI, and V2SF.
3003 FIXME: We should probably return # and add post reload
3004 splitters for these, but this way is so easy ;-). */
3005 cst = INTVAL (CONST_VECTOR_ELT (vec, 0));
3006 cst2 = INTVAL (CONST_VECTOR_ELT (vec, 1));
3007 operands[1] = CONST_VECTOR_ELT (vec, 0);
3008 operands[2] = CONST_VECTOR_ELT (vec, 1);
3009 if (cst == cst2)
3010 return "li %0,%1\n\tevmergelo %0,%0,%0";
3011 else
3012 return "li %0,%1\n\tevmergelo %0,%0,%0\n\tli %0,%2";
3015 /* Initialize TARGET of vector PAIRED to VALS. */
3017 void
3018 paired_expand_vector_init (rtx target, rtx vals)
3020 enum machine_mode mode = GET_MODE (target);
3021 int n_elts = GET_MODE_NUNITS (mode);
3022 int n_var = 0;
3023 rtx x, new_rtx, tmp, constant_op, op1, op2;
3024 int i;
3026 for (i = 0; i < n_elts; ++i)
3028 x = XVECEXP (vals, 0, i);
3029 if (!CONSTANT_P (x))
3030 ++n_var;
3032 if (n_var == 0)
3034 /* Load from constant pool. */
3035 emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
3036 return;
3039 if (n_var == 2)
3041 /* The vector is initialized only with non-constants. */
3042 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, XVECEXP (vals, 0, 0),
3043 XVECEXP (vals, 0, 1));
3045 emit_move_insn (target, new_rtx);
3046 return;
3049 /* One field is non-constant and the other one is a constant. Load the
3050 constant from the constant pool and use ps_merge instruction to
3051 construct the whole vector. */
3052 op1 = XVECEXP (vals, 0, 0);
3053 op2 = XVECEXP (vals, 0, 1);
3055 constant_op = (CONSTANT_P (op1)) ? op1 : op2;
3057 tmp = gen_reg_rtx (GET_MODE (constant_op));
3058 emit_move_insn (tmp, constant_op);
3060 if (CONSTANT_P (op1))
3061 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, tmp, op2);
3062 else
3063 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, op1, tmp);
3065 emit_move_insn (target, new_rtx);
3068 void
3069 paired_expand_vector_move (rtx operands[])
3071 rtx op0 = operands[0], op1 = operands[1];
3073 emit_move_insn (op0, op1);
3076 /* Emit vector compare for code RCODE. DEST is destination, OP1 and
3077 OP2 are two VEC_COND_EXPR operands, CC_OP0 and CC_OP1 are the two
3078 operands for the relation operation COND. This is a recursive
3079 function. */
3081 static void
3082 paired_emit_vector_compare (enum rtx_code rcode,
3083 rtx dest, rtx op0, rtx op1,
3084 rtx cc_op0, rtx cc_op1)
3086 rtx tmp = gen_reg_rtx (V2SFmode);
3087 rtx tmp1, max, min, equal_zero;
3089 gcc_assert (TARGET_PAIRED_FLOAT);
3090 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
3092 switch (rcode)
3094 case LT:
3095 case LTU:
3096 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
3097 return;
3098 case GE:
3099 case GEU:
3100 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
3101 emit_insn (gen_selv2sf4 (dest, tmp, op0, op1, CONST0_RTX (SFmode)));
3102 return;
3103 case LE:
3104 case LEU:
3105 paired_emit_vector_compare (GE, dest, op0, op1, cc_op1, cc_op0);
3106 return;
3107 case GT:
3108 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
3109 return;
3110 case EQ:
3111 tmp1 = gen_reg_rtx (V2SFmode);
3112 max = gen_reg_rtx (V2SFmode);
3113 min = gen_reg_rtx (V2SFmode);
3114 equal_zero = gen_reg_rtx (V2SFmode);
3116 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
3117 emit_insn (gen_selv2sf4
3118 (max, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
3119 emit_insn (gen_subv2sf3 (tmp, cc_op1, cc_op0));
3120 emit_insn (gen_selv2sf4
3121 (min, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
3122 emit_insn (gen_subv2sf3 (tmp1, min, max));
3123 emit_insn (gen_selv2sf4 (dest, tmp1, op0, op1, CONST0_RTX (SFmode)));
3124 return;
3125 case NE:
3126 paired_emit_vector_compare (EQ, dest, op1, op0, cc_op0, cc_op1);
3127 return;
3128 case UNLE:
3129 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
3130 return;
3131 case UNLT:
3132 paired_emit_vector_compare (LT, dest, op1, op0, cc_op0, cc_op1);
3133 return;
3134 case UNGE:
3135 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
3136 return;
3137 case UNGT:
3138 paired_emit_vector_compare (GT, dest, op1, op0, cc_op0, cc_op1);
3139 return;
3140 default:
3141 gcc_unreachable ();
3144 return;
3147 /* Emit vector conditional expression.
3148 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
3149 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
3152 paired_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
3153 rtx cond, rtx cc_op0, rtx cc_op1)
3155 enum rtx_code rcode = GET_CODE (cond);
3157 if (!TARGET_PAIRED_FLOAT)
3158 return 0;
3160 paired_emit_vector_compare (rcode, dest, op1, op2, cc_op0, cc_op1);
3162 return 1;
3165 /* Initialize vector TARGET to VALS. */
3167 void
3168 rs6000_expand_vector_init (rtx target, rtx vals)
3170 enum machine_mode mode = GET_MODE (target);
3171 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3172 int n_elts = GET_MODE_NUNITS (mode);
3173 int n_var = 0, one_var = -1;
3174 bool all_same = true, all_const_zero = true;
3175 rtx x, mem;
3176 int i;
3178 for (i = 0; i < n_elts; ++i)
3180 x = XVECEXP (vals, 0, i);
3181 if (!CONSTANT_P (x))
3182 ++n_var, one_var = i;
3183 else if (x != CONST0_RTX (inner_mode))
3184 all_const_zero = false;
3186 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
3187 all_same = false;
3190 if (n_var == 0)
3192 rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
3193 if (mode != V4SFmode && all_const_zero)
3195 /* Zero register. */
3196 emit_insn (gen_rtx_SET (VOIDmode, target,
3197 gen_rtx_XOR (mode, target, target)));
3198 return;
3200 else if (mode != V4SFmode && easy_vector_constant (const_vec, mode))
3202 /* Splat immediate. */
3203 emit_insn (gen_rtx_SET (VOIDmode, target, const_vec));
3204 return;
3206 else if (all_same)
3207 ; /* Splat vector element. */
3208 else
3210 /* Load from constant pool. */
3211 emit_move_insn (target, const_vec);
3212 return;
3216 /* Store value to stack temp. Load vector element. Splat. */
3217 if (all_same)
3219 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
3220 emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
3221 XVECEXP (vals, 0, 0));
3222 x = gen_rtx_UNSPEC (VOIDmode,
3223 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
3224 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3225 gen_rtvec (2,
3226 gen_rtx_SET (VOIDmode,
3227 target, mem),
3228 x)));
3229 x = gen_rtx_VEC_SELECT (inner_mode, target,
3230 gen_rtx_PARALLEL (VOIDmode,
3231 gen_rtvec (1, const0_rtx)));
3232 emit_insn (gen_rtx_SET (VOIDmode, target,
3233 gen_rtx_VEC_DUPLICATE (mode, x)));
3234 return;
3237 /* One field is non-constant. Load constant then overwrite
3238 varying field. */
3239 if (n_var == 1)
3241 rtx copy = copy_rtx (vals);
3243 /* Load constant part of vector, substitute neighboring value for
3244 varying element. */
3245 XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
3246 rs6000_expand_vector_init (target, copy);
3248 /* Insert variable. */
3249 rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
3250 return;
3253 /* Construct the vector in memory one field at a time
3254 and load the whole vector. */
3255 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
3256 for (i = 0; i < n_elts; i++)
3257 emit_move_insn (adjust_address_nv (mem, inner_mode,
3258 i * GET_MODE_SIZE (inner_mode)),
3259 XVECEXP (vals, 0, i));
3260 emit_move_insn (target, mem);
3263 /* Set field ELT of TARGET to VAL. */
3265 void
3266 rs6000_expand_vector_set (rtx target, rtx val, int elt)
3268 enum machine_mode mode = GET_MODE (target);
3269 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3270 rtx reg = gen_reg_rtx (mode);
3271 rtx mask, mem, x;
3272 int width = GET_MODE_SIZE (inner_mode);
3273 int i;
3275 /* Load single variable value. */
3276 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
3277 emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
3278 x = gen_rtx_UNSPEC (VOIDmode,
3279 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
3280 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3281 gen_rtvec (2,
3282 gen_rtx_SET (VOIDmode,
3283 reg, mem),
3284 x)));
3286 /* Linear sequence. */
3287 mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
3288 for (i = 0; i < 16; ++i)
3289 XVECEXP (mask, 0, i) = GEN_INT (i);
3291 /* Set permute mask to insert element into target. */
3292 for (i = 0; i < width; ++i)
3293 XVECEXP (mask, 0, elt*width + i)
3294 = GEN_INT (i + 0x10);
3295 x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
3296 x = gen_rtx_UNSPEC (mode,
3297 gen_rtvec (3, target, reg,
3298 force_reg (V16QImode, x)),
3299 UNSPEC_VPERM);
3300 emit_insn (gen_rtx_SET (VOIDmode, target, x));
3303 /* Extract field ELT from VEC into TARGET. */
3305 void
3306 rs6000_expand_vector_extract (rtx target, rtx vec, int elt)
3308 enum machine_mode mode = GET_MODE (vec);
3309 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3310 rtx mem, x;
3312 /* Allocate mode-sized buffer. */
3313 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
3315 /* Add offset to field within buffer matching vector element. */
3316 mem = adjust_address_nv (mem, mode, elt * GET_MODE_SIZE (inner_mode));
3318 /* Store single field into mode-sized buffer. */
3319 x = gen_rtx_UNSPEC (VOIDmode,
3320 gen_rtvec (1, const0_rtx), UNSPEC_STVE);
3321 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3322 gen_rtvec (2,
3323 gen_rtx_SET (VOIDmode,
3324 mem, vec),
3325 x)));
3326 emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
3329 /* Generates shifts and masks for a pair of rldicl or rldicr insns to
3330 implement ANDing by the mask IN. */
3331 void
3332 build_mask64_2_operands (rtx in, rtx *out)
3334 #if HOST_BITS_PER_WIDE_INT >= 64
3335 unsigned HOST_WIDE_INT c, lsb, m1, m2;
3336 int shift;
3338 gcc_assert (GET_CODE (in) == CONST_INT);
3340 c = INTVAL (in);
3341 if (c & 1)
3343 /* Assume c initially something like 0x00fff000000fffff. The idea
3344 is to rotate the word so that the middle ^^^^^^ group of zeros
3345 is at the MS end and can be cleared with an rldicl mask. We then
3346 rotate back and clear off the MS ^^ group of zeros with a
3347 second rldicl. */
3348 c = ~c; /* c == 0xff000ffffff00000 */
3349 lsb = c & -c; /* lsb == 0x0000000000100000 */
3350 m1 = -lsb; /* m1 == 0xfffffffffff00000 */
3351 c = ~c; /* c == 0x00fff000000fffff */
3352 c &= -lsb; /* c == 0x00fff00000000000 */
3353 lsb = c & -c; /* lsb == 0x0000100000000000 */
3354 c = ~c; /* c == 0xff000fffffffffff */
3355 c &= -lsb; /* c == 0xff00000000000000 */
3356 shift = 0;
3357 while ((lsb >>= 1) != 0)
3358 shift++; /* shift == 44 on exit from loop */
3359 m1 <<= 64 - shift; /* m1 == 0xffffff0000000000 */
3360 m1 = ~m1; /* m1 == 0x000000ffffffffff */
3361 m2 = ~c; /* m2 == 0x00ffffffffffffff */
3363 else
3365 /* Assume c initially something like 0xff000f0000000000. The idea
3366 is to rotate the word so that the ^^^ middle group of zeros
3367 is at the LS end and can be cleared with an rldicr mask. We then
3368 rotate back and clear off the LS group of ^^^^^^^^^^ zeros with
3369 a second rldicr. */
3370 lsb = c & -c; /* lsb == 0x0000010000000000 */
3371 m2 = -lsb; /* m2 == 0xffffff0000000000 */
3372 c = ~c; /* c == 0x00fff0ffffffffff */
3373 c &= -lsb; /* c == 0x00fff00000000000 */
3374 lsb = c & -c; /* lsb == 0x0000100000000000 */
3375 c = ~c; /* c == 0xff000fffffffffff */
3376 c &= -lsb; /* c == 0xff00000000000000 */
3377 shift = 0;
3378 while ((lsb >>= 1) != 0)
3379 shift++; /* shift == 44 on exit from loop */
3380 m1 = ~c; /* m1 == 0x00ffffffffffffff */
3381 m1 >>= shift; /* m1 == 0x0000000000000fff */
3382 m1 = ~m1; /* m1 == 0xfffffffffffff000 */
3385 /* Note that when we only have two 0->1 and 1->0 transitions, one of the
3386 masks will be all 1's. We are guaranteed more than one transition. */
3387 out[0] = GEN_INT (64 - shift);
3388 out[1] = GEN_INT (m1);
3389 out[2] = GEN_INT (shift);
3390 out[3] = GEN_INT (m2);
3391 #else
3392 (void)in;
3393 (void)out;
3394 gcc_unreachable ();
3395 #endif
3398 /* Return TRUE if OP is an invalid SUBREG operation on the e500. */
3400 bool
3401 invalid_e500_subreg (rtx op, enum machine_mode mode)
3403 if (TARGET_E500_DOUBLE)
3405 /* Reject (subreg:SI (reg:DF)); likewise with subreg:DI or
3406 subreg:TI and reg:TF. Decimal float modes are like integer
3407 modes (only low part of each register used) for this
3408 purpose. */
3409 if (GET_CODE (op) == SUBREG
3410 && (mode == SImode || mode == DImode || mode == TImode
3411 || mode == DDmode || mode == TDmode)
3412 && REG_P (SUBREG_REG (op))
3413 && (GET_MODE (SUBREG_REG (op)) == DFmode
3414 || GET_MODE (SUBREG_REG (op)) == TFmode))
3415 return true;
3417 /* Reject (subreg:DF (reg:DI)); likewise with subreg:TF and
3418 reg:TI. */
3419 if (GET_CODE (op) == SUBREG
3420 && (mode == DFmode || mode == TFmode)
3421 && REG_P (SUBREG_REG (op))
3422 && (GET_MODE (SUBREG_REG (op)) == DImode
3423 || GET_MODE (SUBREG_REG (op)) == TImode
3424 || GET_MODE (SUBREG_REG (op)) == DDmode
3425 || GET_MODE (SUBREG_REG (op)) == TDmode))
3426 return true;
3429 if (TARGET_SPE
3430 && GET_CODE (op) == SUBREG
3431 && mode == SImode
3432 && REG_P (SUBREG_REG (op))
3433 && SPE_VECTOR_MODE (GET_MODE (SUBREG_REG (op))))
3434 return true;
3436 return false;
3439 /* AIX increases natural record alignment to doubleword if the first
3440 field is an FP double while the FP fields remain word aligned. */
3442 unsigned int
3443 rs6000_special_round_type_align (tree type, unsigned int computed,
3444 unsigned int specified)
3446 unsigned int align = MAX (computed, specified);
3447 tree field = TYPE_FIELDS (type);
3449 /* Skip all non field decls */
3450 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
3451 field = TREE_CHAIN (field);
3453 if (field != NULL && field != type)
3455 type = TREE_TYPE (field);
3456 while (TREE_CODE (type) == ARRAY_TYPE)
3457 type = TREE_TYPE (type);
3459 if (type != error_mark_node && TYPE_MODE (type) == DFmode)
3460 align = MAX (align, 64);
3463 return align;
3466 /* Darwin increases record alignment to the natural alignment of
3467 the first field. */
3469 unsigned int
3470 darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
3471 unsigned int specified)
3473 unsigned int align = MAX (computed, specified);
3475 if (TYPE_PACKED (type))
3476 return align;
3478 /* Find the first field, looking down into aggregates. */
3479 do {
3480 tree field = TYPE_FIELDS (type);
3481 /* Skip all non field decls */
3482 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
3483 field = TREE_CHAIN (field);
3484 if (! field)
3485 break;
3486 type = TREE_TYPE (field);
3487 while (TREE_CODE (type) == ARRAY_TYPE)
3488 type = TREE_TYPE (type);
3489 } while (AGGREGATE_TYPE_P (type));
3491 if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
3492 align = MAX (align, TYPE_ALIGN (type));
3494 return align;
3497 /* Return 1 for an operand in small memory on V.4/eabi. */
3500 small_data_operand (rtx op ATTRIBUTE_UNUSED,
3501 enum machine_mode mode ATTRIBUTE_UNUSED)
3503 #if TARGET_ELF
3504 rtx sym_ref;
3506 if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
3507 return 0;
3509 if (DEFAULT_ABI != ABI_V4)
3510 return 0;
3512 /* Vector and float memory instructions have a limited offset on the
3513 SPE, so using a vector or float variable directly as an operand is
3514 not useful. */
3515 if (TARGET_SPE
3516 && (SPE_VECTOR_MODE (mode) || FLOAT_MODE_P (mode)))
3517 return 0;
3519 if (GET_CODE (op) == SYMBOL_REF)
3520 sym_ref = op;
3522 else if (GET_CODE (op) != CONST
3523 || GET_CODE (XEXP (op, 0)) != PLUS
3524 || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
3525 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
3526 return 0;
3528 else
3530 rtx sum = XEXP (op, 0);
3531 HOST_WIDE_INT summand;
3533 /* We have to be careful here, because it is the referenced address
3534 that must be 32k from _SDA_BASE_, not just the symbol. */
3535 summand = INTVAL (XEXP (sum, 1));
3536 if (summand < 0 || (unsigned HOST_WIDE_INT) summand > g_switch_value)
3537 return 0;
3539 sym_ref = XEXP (sum, 0);
3542 return SYMBOL_REF_SMALL_P (sym_ref);
3543 #else
3544 return 0;
3545 #endif
3548 /* Return true if either operand is a general purpose register. */
3550 bool
3551 gpr_or_gpr_p (rtx op0, rtx op1)
3553 return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
3554 || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
3558 /* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address. */
3560 static bool
3561 constant_pool_expr_p (rtx op)
3563 rtx base, offset;
3565 split_const (op, &base, &offset);
3566 return (GET_CODE (base) == SYMBOL_REF
3567 && CONSTANT_POOL_ADDRESS_P (base)
3568 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
3571 bool
3572 toc_relative_expr_p (rtx op)
3574 rtx base, offset;
3576 if (GET_CODE (op) != CONST)
3577 return false;
3579 split_const (op, &base, &offset);
3580 return (GET_CODE (base) == UNSPEC
3581 && XINT (base, 1) == UNSPEC_TOCREL);
3584 bool
3585 legitimate_constant_pool_address_p (rtx x)
3587 return (TARGET_TOC
3588 && GET_CODE (x) == PLUS
3589 && GET_CODE (XEXP (x, 0)) == REG
3590 && (TARGET_MINIMAL_TOC || REGNO (XEXP (x, 0)) == TOC_REGISTER)
3591 && toc_relative_expr_p (XEXP (x, 1)));
3594 static bool
3595 legitimate_small_data_p (enum machine_mode mode, rtx x)
3597 return (DEFAULT_ABI == ABI_V4
3598 && !flag_pic && !TARGET_TOC
3599 && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
3600 && small_data_operand (x, mode));
3603 /* SPE offset addressing is limited to 5-bits worth of double words. */
3604 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
3606 bool
3607 rs6000_legitimate_offset_address_p (enum machine_mode mode, rtx x, int strict)
3609 unsigned HOST_WIDE_INT offset, extra;
3611 if (GET_CODE (x) != PLUS)
3612 return false;
3613 if (GET_CODE (XEXP (x, 0)) != REG)
3614 return false;
3615 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
3616 return false;
3617 if (legitimate_constant_pool_address_p (x))
3618 return true;
3619 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
3620 return false;
3622 offset = INTVAL (XEXP (x, 1));
3623 extra = 0;
3624 switch (mode)
3626 case V16QImode:
3627 case V8HImode:
3628 case V4SFmode:
3629 case V4SImode:
3630 /* AltiVec vector modes. Only reg+reg addressing is valid and
3631 constant offset zero should not occur due to canonicalization. */
3632 return false;
3634 case V4HImode:
3635 case V2SImode:
3636 case V1DImode:
3637 case V2SFmode:
3638 /* Paired vector modes. Only reg+reg addressing is valid and
3639 constant offset zero should not occur due to canonicalization. */
3640 if (TARGET_PAIRED_FLOAT)
3641 return false;
3642 /* SPE vector modes. */
3643 return SPE_CONST_OFFSET_OK (offset);
3645 case DFmode:
3646 if (TARGET_E500_DOUBLE)
3647 return SPE_CONST_OFFSET_OK (offset);
3649 case DDmode:
3650 case DImode:
3651 /* On e500v2, we may have:
3653 (subreg:DF (mem:DI (plus (reg) (const_int))) 0).
3655 Which gets addressed with evldd instructions. */
3656 if (TARGET_E500_DOUBLE)
3657 return SPE_CONST_OFFSET_OK (offset);
3659 if (mode == DFmode || mode == DDmode || !TARGET_POWERPC64)
3660 extra = 4;
3661 else if (offset & 3)
3662 return false;
3663 break;
3665 case TFmode:
3666 if (TARGET_E500_DOUBLE)
3667 return (SPE_CONST_OFFSET_OK (offset)
3668 && SPE_CONST_OFFSET_OK (offset + 8));
3670 case TDmode:
3671 case TImode:
3672 if (mode == TFmode || mode == TDmode || !TARGET_POWERPC64)
3673 extra = 12;
3674 else if (offset & 3)
3675 return false;
3676 else
3677 extra = 8;
3678 break;
3680 default:
3681 break;
3684 offset += 0x8000;
3685 return (offset < 0x10000) && (offset + extra < 0x10000);
3688 bool
3689 legitimate_indexed_address_p (rtx x, int strict)
3691 rtx op0, op1;
3693 if (GET_CODE (x) != PLUS)
3694 return false;
3696 op0 = XEXP (x, 0);
3697 op1 = XEXP (x, 1);
3699 /* Recognize the rtl generated by reload which we know will later be
3700 replaced with proper base and index regs. */
3701 if (!strict
3702 && reload_in_progress
3703 && (REG_P (op0) || GET_CODE (op0) == PLUS)
3704 && REG_P (op1))
3705 return true;
3707 return (REG_P (op0) && REG_P (op1)
3708 && ((INT_REG_OK_FOR_BASE_P (op0, strict)
3709 && INT_REG_OK_FOR_INDEX_P (op1, strict))
3710 || (INT_REG_OK_FOR_BASE_P (op1, strict)
3711 && INT_REG_OK_FOR_INDEX_P (op0, strict))));
3714 bool
3715 avoiding_indexed_address_p (enum machine_mode mode)
3717 /* Avoid indexed addressing for modes that have non-indexed
3718 load/store instruction forms. */
3719 return TARGET_AVOID_XFORM && !ALTIVEC_VECTOR_MODE (mode);
3722 inline bool
3723 legitimate_indirect_address_p (rtx x, int strict)
3725 return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
3728 bool
3729 macho_lo_sum_memory_operand (rtx x, enum machine_mode mode)
3731 if (!TARGET_MACHO || !flag_pic
3732 || mode != SImode || GET_CODE (x) != MEM)
3733 return false;
3734 x = XEXP (x, 0);
3736 if (GET_CODE (x) != LO_SUM)
3737 return false;
3738 if (GET_CODE (XEXP (x, 0)) != REG)
3739 return false;
3740 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
3741 return false;
3742 x = XEXP (x, 1);
3744 return CONSTANT_P (x);
3747 static bool
3748 legitimate_lo_sum_address_p (enum machine_mode mode, rtx x, int strict)
3750 if (GET_CODE (x) != LO_SUM)
3751 return false;
3752 if (GET_CODE (XEXP (x, 0)) != REG)
3753 return false;
3754 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
3755 return false;
3756 /* Restrict addressing for DI because of our SUBREG hackery. */
3757 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
3758 || mode == DDmode || mode == TDmode
3759 || mode == DImode))
3760 return false;
3761 x = XEXP (x, 1);
3763 if (TARGET_ELF || TARGET_MACHO)
3765 if (DEFAULT_ABI != ABI_AIX && DEFAULT_ABI != ABI_DARWIN && flag_pic)
3766 return false;
3767 if (TARGET_TOC)
3768 return false;
3769 if (GET_MODE_NUNITS (mode) != 1)
3770 return false;
3771 if (GET_MODE_BITSIZE (mode) > 64
3772 || (GET_MODE_BITSIZE (mode) > 32 && !TARGET_POWERPC64
3773 && !(TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
3774 && (mode == DFmode || mode == DDmode))))
3775 return false;
3777 return CONSTANT_P (x);
3780 return false;
3784 /* Try machine-dependent ways of modifying an illegitimate address
3785 to be legitimate. If we find one, return the new, valid address.
3786 This is used from only one place: `memory_address' in explow.c.
3788 OLDX is the address as it was before break_out_memory_refs was
3789 called. In some cases it is useful to look at this to decide what
3790 needs to be done.
3792 MODE is passed so that this function can use GO_IF_LEGITIMATE_ADDRESS.
3794 It is always safe for this function to do nothing. It exists to
3795 recognize opportunities to optimize the output.
3797 On RS/6000, first check for the sum of a register with a constant
3798 integer that is out of range. If so, generate code to add the
3799 constant with the low-order 16 bits masked to the register and force
3800 this result into another register (this can be done with `cau').
3801 Then generate an address of REG+(CONST&0xffff), allowing for the
3802 possibility of bit 16 being a one.
3804 Then check for the sum of a register and something not constant, try to
3805 load the other things into a register and return the sum. */
3808 rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3809 enum machine_mode mode)
3811 if (GET_CODE (x) == SYMBOL_REF)
3813 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
3814 if (model != 0)
3815 return rs6000_legitimize_tls_address (x, model);
3818 if (GET_CODE (x) == PLUS
3819 && GET_CODE (XEXP (x, 0)) == REG
3820 && GET_CODE (XEXP (x, 1)) == CONST_INT
3821 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000) >= 0x10000
3822 && !((TARGET_POWERPC64
3823 && (mode == DImode || mode == TImode)
3824 && (INTVAL (XEXP (x, 1)) & 3) != 0)
3825 || SPE_VECTOR_MODE (mode)
3826 || ALTIVEC_VECTOR_MODE (mode)
3827 || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
3828 || mode == DImode || mode == DDmode
3829 || mode == TDmode))))
3831 HOST_WIDE_INT high_int, low_int;
3832 rtx sum;
3833 low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
3834 high_int = INTVAL (XEXP (x, 1)) - low_int;
3835 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
3836 GEN_INT (high_int)), 0);
3837 return gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int));
3839 else if (GET_CODE (x) == PLUS
3840 && GET_CODE (XEXP (x, 0)) == REG
3841 && GET_CODE (XEXP (x, 1)) != CONST_INT
3842 && GET_MODE_NUNITS (mode) == 1
3843 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
3844 || TARGET_POWERPC64
3845 || ((mode != DImode && mode != DFmode && mode != DDmode)
3846 || (TARGET_E500_DOUBLE && mode != DDmode)))
3847 && (TARGET_POWERPC64 || mode != DImode)
3848 && !avoiding_indexed_address_p (mode)
3849 && mode != TImode
3850 && mode != TFmode
3851 && mode != TDmode)
3853 return gen_rtx_PLUS (Pmode, XEXP (x, 0),
3854 force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
3856 else if (ALTIVEC_VECTOR_MODE (mode))
3858 rtx reg;
3860 /* Make sure both operands are registers. */
3861 if (GET_CODE (x) == PLUS)
3862 return gen_rtx_PLUS (Pmode, force_reg (Pmode, XEXP (x, 0)),
3863 force_reg (Pmode, XEXP (x, 1)));
3865 reg = force_reg (Pmode, x);
3866 return reg;
3868 else if (SPE_VECTOR_MODE (mode)
3869 || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
3870 || mode == DDmode || mode == TDmode
3871 || mode == DImode)))
3873 if (mode == DImode)
3874 return NULL_RTX;
3875 /* We accept [reg + reg] and [reg + OFFSET]. */
3877 if (GET_CODE (x) == PLUS)
3879 rtx op1 = XEXP (x, 0);
3880 rtx op2 = XEXP (x, 1);
3881 rtx y;
3883 op1 = force_reg (Pmode, op1);
3885 if (GET_CODE (op2) != REG
3886 && (GET_CODE (op2) != CONST_INT
3887 || !SPE_CONST_OFFSET_OK (INTVAL (op2))
3888 || (GET_MODE_SIZE (mode) > 8
3889 && !SPE_CONST_OFFSET_OK (INTVAL (op2) + 8))))
3890 op2 = force_reg (Pmode, op2);
3892 /* We can't always do [reg + reg] for these, because [reg +
3893 reg + offset] is not a legitimate addressing mode. */
3894 y = gen_rtx_PLUS (Pmode, op1, op2);
3896 if ((GET_MODE_SIZE (mode) > 8 || mode == DDmode) && REG_P (op2))
3897 return force_reg (Pmode, y);
3898 else
3899 return y;
3902 return force_reg (Pmode, x);
3904 else if (TARGET_ELF
3905 && TARGET_32BIT
3906 && TARGET_NO_TOC
3907 && ! flag_pic
3908 && GET_CODE (x) != CONST_INT
3909 && GET_CODE (x) != CONST_DOUBLE
3910 && CONSTANT_P (x)
3911 && GET_MODE_NUNITS (mode) == 1
3912 && (GET_MODE_BITSIZE (mode) <= 32
3913 || ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
3914 && (mode == DFmode || mode == DDmode))))
3916 rtx reg = gen_reg_rtx (Pmode);
3917 emit_insn (gen_elf_high (reg, x));
3918 return gen_rtx_LO_SUM (Pmode, reg, x);
3920 else if (TARGET_MACHO && TARGET_32BIT && TARGET_NO_TOC
3921 && ! flag_pic
3922 #if TARGET_MACHO
3923 && ! MACHO_DYNAMIC_NO_PIC_P
3924 #endif
3925 && GET_CODE (x) != CONST_INT
3926 && GET_CODE (x) != CONST_DOUBLE
3927 && CONSTANT_P (x)
3928 && GET_MODE_NUNITS (mode) == 1
3929 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
3930 || (mode != DFmode && mode != DDmode))
3931 && mode != DImode
3932 && mode != TImode)
3934 rtx reg = gen_reg_rtx (Pmode);
3935 emit_insn (gen_macho_high (reg, x));
3936 return gen_rtx_LO_SUM (Pmode, reg, x);
3938 else if (TARGET_TOC
3939 && GET_CODE (x) == SYMBOL_REF
3940 && constant_pool_expr_p (x)
3941 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
3943 return create_TOC_reference (x);
3945 else
3946 return NULL_RTX;
3949 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
3950 We need to emit DTP-relative relocations. */
3952 static void
3953 rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
3955 switch (size)
3957 case 4:
3958 fputs ("\t.long\t", file);
3959 break;
3960 case 8:
3961 fputs (DOUBLE_INT_ASM_OP, file);
3962 break;
3963 default:
3964 gcc_unreachable ();
3966 output_addr_const (file, x);
3967 fputs ("@dtprel+0x8000", file);
3970 /* Construct the SYMBOL_REF for the tls_get_addr function. */
3972 static GTY(()) rtx rs6000_tls_symbol;
3973 static rtx
3974 rs6000_tls_get_addr (void)
3976 if (!rs6000_tls_symbol)
3977 rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");
3979 return rs6000_tls_symbol;
3982 /* Construct the SYMBOL_REF for TLS GOT references. */
3984 static GTY(()) rtx rs6000_got_symbol;
3985 static rtx
3986 rs6000_got_sym (void)
3988 if (!rs6000_got_symbol)
3990 rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
3991 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
3992 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
3995 return rs6000_got_symbol;
3998 /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
3999 this (thread-local) address. */
4001 static rtx
4002 rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
4004 rtx dest, insn;
4006 dest = gen_reg_rtx (Pmode);
4007 if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
4009 rtx tlsreg;
4011 if (TARGET_64BIT)
4013 tlsreg = gen_rtx_REG (Pmode, 13);
4014 insn = gen_tls_tprel_64 (dest, tlsreg, addr);
4016 else
4018 tlsreg = gen_rtx_REG (Pmode, 2);
4019 insn = gen_tls_tprel_32 (dest, tlsreg, addr);
4021 emit_insn (insn);
4023 else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
4025 rtx tlsreg, tmp;
4027 tmp = gen_reg_rtx (Pmode);
4028 if (TARGET_64BIT)
4030 tlsreg = gen_rtx_REG (Pmode, 13);
4031 insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
4033 else
4035 tlsreg = gen_rtx_REG (Pmode, 2);
4036 insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
4038 emit_insn (insn);
4039 if (TARGET_64BIT)
4040 insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
4041 else
4042 insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
4043 emit_insn (insn);
4045 else
4047 rtx r3, got, tga, tmp1, tmp2, eqv;
4049 /* We currently use relocations like @got@tlsgd for tls, which
4050 means the linker will handle allocation of tls entries, placing
4051 them in the .got section. So use a pointer to the .got section,
4052 not one to secondary TOC sections used by 64-bit -mminimal-toc,
4053 or to secondary GOT sections used by 32-bit -fPIC. */
4054 if (TARGET_64BIT)
4055 got = gen_rtx_REG (Pmode, 2);
4056 else
4058 if (flag_pic == 1)
4059 got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
4060 else
4062 rtx gsym = rs6000_got_sym ();
4063 got = gen_reg_rtx (Pmode);
4064 if (flag_pic == 0)
4065 rs6000_emit_move (got, gsym, Pmode);
4066 else
4068 rtx tmp3, mem;
4069 rtx first, last;
4071 tmp1 = gen_reg_rtx (Pmode);
4072 tmp2 = gen_reg_rtx (Pmode);
4073 tmp3 = gen_reg_rtx (Pmode);
4074 mem = gen_const_mem (Pmode, tmp1);
4076 first = emit_insn (gen_load_toc_v4_PIC_1b (gsym));
4077 emit_move_insn (tmp1,
4078 gen_rtx_REG (Pmode, LR_REGNO));
4079 emit_move_insn (tmp2, mem);
4080 emit_insn (gen_addsi3 (tmp3, tmp1, tmp2));
4081 last = emit_move_insn (got, tmp3);
4082 set_unique_reg_note (last, REG_EQUAL, gsym);
4087 if (model == TLS_MODEL_GLOBAL_DYNAMIC)
4089 r3 = gen_rtx_REG (Pmode, 3);
4090 tga = rs6000_tls_get_addr ();
4092 if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
4093 insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
4094 else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
4095 insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
4096 else if (DEFAULT_ABI == ABI_V4)
4097 insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
4098 else
4099 gcc_unreachable ();
4101 start_sequence ();
4102 insn = emit_call_insn (insn);
4103 RTL_CONST_CALL_P (insn) = 1;
4104 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
4105 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
4106 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
4107 insn = get_insns ();
4108 end_sequence ();
4109 emit_libcall_block (insn, dest, r3, addr);
4111 else if (model == TLS_MODEL_LOCAL_DYNAMIC)
4113 r3 = gen_rtx_REG (Pmode, 3);
4114 tga = rs6000_tls_get_addr ();
4116 if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
4117 insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
4118 else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
4119 insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
4120 else if (DEFAULT_ABI == ABI_V4)
4121 insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
4122 else
4123 gcc_unreachable ();
4125 start_sequence ();
4126 insn = emit_call_insn (insn);
4127 RTL_CONST_CALL_P (insn) = 1;
4128 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
4129 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
4130 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
4131 insn = get_insns ();
4132 end_sequence ();
4133 tmp1 = gen_reg_rtx (Pmode);
4134 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
4135 UNSPEC_TLSLD);
4136 emit_libcall_block (insn, tmp1, r3, eqv);
4137 if (rs6000_tls_size == 16)
4139 if (TARGET_64BIT)
4140 insn = gen_tls_dtprel_64 (dest, tmp1, addr);
4141 else
4142 insn = gen_tls_dtprel_32 (dest, tmp1, addr);
4144 else if (rs6000_tls_size == 32)
4146 tmp2 = gen_reg_rtx (Pmode);
4147 if (TARGET_64BIT)
4148 insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
4149 else
4150 insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
4151 emit_insn (insn);
4152 if (TARGET_64BIT)
4153 insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
4154 else
4155 insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
4157 else
4159 tmp2 = gen_reg_rtx (Pmode);
4160 if (TARGET_64BIT)
4161 insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
4162 else
4163 insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
4164 emit_insn (insn);
4165 insn = gen_rtx_SET (Pmode, dest,
4166 gen_rtx_PLUS (Pmode, tmp2, tmp1));
4168 emit_insn (insn);
4170 else
4172 /* IE, or 64-bit offset LE. */
4173 tmp2 = gen_reg_rtx (Pmode);
4174 if (TARGET_64BIT)
4175 insn = gen_tls_got_tprel_64 (tmp2, got, addr);
4176 else
4177 insn = gen_tls_got_tprel_32 (tmp2, got, addr);
4178 emit_insn (insn);
4179 if (TARGET_64BIT)
4180 insn = gen_tls_tls_64 (dest, tmp2, addr);
4181 else
4182 insn = gen_tls_tls_32 (dest, tmp2, addr);
4183 emit_insn (insn);
4187 return dest;
4190 /* Return 1 if X contains a thread-local symbol. */
4192 bool
4193 rs6000_tls_referenced_p (rtx x)
4195 if (! TARGET_HAVE_TLS)
4196 return false;
4198 return for_each_rtx (&x, &rs6000_tls_symbol_ref_1, 0);
4201 /* Return 1 if *X is a thread-local symbol. This is the same as
4202 rs6000_tls_symbol_ref except for the type of the unused argument. */
4204 static int
4205 rs6000_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
4207 return RS6000_SYMBOL_REF_TLS_P (*x);
4210 /* The convention appears to be to define this wherever it is used.
4211 With legitimize_reload_address now defined here, REG_MODE_OK_FOR_BASE_P
4212 is now used here. */
4213 #ifndef REG_MODE_OK_FOR_BASE_P
4214 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
4215 #endif
4217 /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
4218 replace the input X, or the original X if no replacement is called for.
4219 The output parameter *WIN is 1 if the calling macro should goto WIN,
4220 0 if it should not.
4222 For RS/6000, we wish to handle large displacements off a base
4223 register by splitting the addend across an addiu/addis and the mem insn.
4224 This cuts number of extra insns needed from 3 to 1.
4226 On Darwin, we use this to generate code for floating point constants.
4227 A movsf_low is generated so we wind up with 2 instructions rather than 3.
4228 The Darwin code is inside #if TARGET_MACHO because only then are the
4229 machopic_* functions defined. */
4231 rs6000_legitimize_reload_address (rtx x, enum machine_mode mode,
4232 int opnum, int type,
4233 int ind_levels ATTRIBUTE_UNUSED, int *win)
4235 /* We must recognize output that we have already generated ourselves. */
4236 if (GET_CODE (x) == PLUS
4237 && GET_CODE (XEXP (x, 0)) == PLUS
4238 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
4239 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4240 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4242 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4243 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4244 opnum, (enum reload_type)type);
4245 *win = 1;
4246 return x;
4249 #if TARGET_MACHO
4250 if (DEFAULT_ABI == ABI_DARWIN && flag_pic
4251 && GET_CODE (x) == LO_SUM
4252 && GET_CODE (XEXP (x, 0)) == PLUS
4253 && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
4254 && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
4255 && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
4256 && machopic_operand_p (XEXP (x, 1)))
4258 /* Result of previous invocation of this function on Darwin
4259 floating point constant. */
4260 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4261 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
4262 opnum, (enum reload_type)type);
4263 *win = 1;
4264 return x;
4266 #endif
4268 /* Force ld/std non-word aligned offset into base register by wrapping
4269 in offset 0. */
4270 if (GET_CODE (x) == PLUS
4271 && GET_CODE (XEXP (x, 0)) == REG
4272 && REGNO (XEXP (x, 0)) < 32
4273 && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode)
4274 && GET_CODE (XEXP (x, 1)) == CONST_INT
4275 && (INTVAL (XEXP (x, 1)) & 3) != 0
4276 && !ALTIVEC_VECTOR_MODE (mode)
4277 && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
4278 && TARGET_POWERPC64)
4280 x = gen_rtx_PLUS (GET_MODE (x), x, GEN_INT (0));
4281 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4282 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4283 opnum, (enum reload_type) type);
4284 *win = 1;
4285 return x;
4288 if (GET_CODE (x) == PLUS
4289 && GET_CODE (XEXP (x, 0)) == REG
4290 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
4291 && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode)
4292 && GET_CODE (XEXP (x, 1)) == CONST_INT
4293 && !SPE_VECTOR_MODE (mode)
4294 && !(TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
4295 || mode == DDmode || mode == TDmode
4296 || mode == DImode))
4297 && !ALTIVEC_VECTOR_MODE (mode))
4299 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
4300 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
4301 HOST_WIDE_INT high
4302 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
4304 /* Check for 32-bit overflow. */
4305 if (high + low != val)
4307 *win = 0;
4308 return x;
4311 /* Reload the high part into a base reg; leave the low part
4312 in the mem directly. */
4314 x = gen_rtx_PLUS (GET_MODE (x),
4315 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
4316 GEN_INT (high)),
4317 GEN_INT (low));
4319 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4320 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4321 opnum, (enum reload_type)type);
4322 *win = 1;
4323 return x;
4326 if (GET_CODE (x) == SYMBOL_REF
4327 && !ALTIVEC_VECTOR_MODE (mode)
4328 && !SPE_VECTOR_MODE (mode)
4329 #if TARGET_MACHO
4330 && DEFAULT_ABI == ABI_DARWIN
4331 && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
4332 #else
4333 && DEFAULT_ABI == ABI_V4
4334 && !flag_pic
4335 #endif
4336 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
4337 The same goes for DImode without 64-bit gprs and DFmode and DDmode
4338 without fprs. */
4339 && mode != TFmode
4340 && mode != TDmode
4341 && (mode != DImode || TARGET_POWERPC64)
4342 && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
4343 || (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)))
4345 #if TARGET_MACHO
4346 if (flag_pic)
4348 rtx offset = machopic_gen_offset (x);
4349 x = gen_rtx_LO_SUM (GET_MODE (x),
4350 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
4351 gen_rtx_HIGH (Pmode, offset)), offset);
4353 else
4354 #endif
4355 x = gen_rtx_LO_SUM (GET_MODE (x),
4356 gen_rtx_HIGH (Pmode, x), x);
4358 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4359 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
4360 opnum, (enum reload_type)type);
4361 *win = 1;
4362 return x;
4365 /* Reload an offset address wrapped by an AND that represents the
4366 masking of the lower bits. Strip the outer AND and let reload
4367 convert the offset address into an indirect address. */
4368 if (TARGET_ALTIVEC
4369 && ALTIVEC_VECTOR_MODE (mode)
4370 && GET_CODE (x) == AND
4371 && GET_CODE (XEXP (x, 0)) == PLUS
4372 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
4373 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4374 && GET_CODE (XEXP (x, 1)) == CONST_INT
4375 && INTVAL (XEXP (x, 1)) == -16)
4377 x = XEXP (x, 0);
4378 *win = 1;
4379 return x;
4382 if (TARGET_TOC
4383 && GET_CODE (x) == SYMBOL_REF
4384 && constant_pool_expr_p (x)
4385 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), mode))
4387 x = create_TOC_reference (x);
4388 *win = 1;
4389 return x;
4391 *win = 0;
4392 return x;
4395 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
4396 that is a valid memory address for an instruction.
4397 The MODE argument is the machine mode for the MEM expression
4398 that wants to use this address.
4400 On the RS/6000, there are four valid address: a SYMBOL_REF that
4401 refers to a constant pool entry of an address (or the sum of it
4402 plus a constant), a short (16-bit signed) constant plus a register,
4403 the sum of two registers, or a register indirect, possibly with an
4404 auto-increment. For DFmode, DDmode and DImode with a constant plus
4405 register, we must ensure that both words are addressable or PowerPC64
4406 with offset word aligned.
4408 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
4409 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
4410 because adjacent memory cells are accessed by adding word-sized offsets
4411 during assembly output. */
4413 rs6000_legitimate_address (enum machine_mode mode, rtx x, int reg_ok_strict)
4415 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
4416 if (TARGET_ALTIVEC
4417 && ALTIVEC_VECTOR_MODE (mode)
4418 && GET_CODE (x) == AND
4419 && GET_CODE (XEXP (x, 1)) == CONST_INT
4420 && INTVAL (XEXP (x, 1)) == -16)
4421 x = XEXP (x, 0);
4423 if (RS6000_SYMBOL_REF_TLS_P (x))
4424 return 0;
4425 if (legitimate_indirect_address_p (x, reg_ok_strict))
4426 return 1;
4427 if ((GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
4428 && !ALTIVEC_VECTOR_MODE (mode)
4429 && !SPE_VECTOR_MODE (mode)
4430 && mode != TFmode
4431 && mode != TDmode
4432 /* Restrict addressing for DI because of our SUBREG hackery. */
4433 && !(TARGET_E500_DOUBLE
4434 && (mode == DFmode || mode == DDmode || mode == DImode))
4435 && TARGET_UPDATE
4436 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
4437 return 1;
4438 if (legitimate_small_data_p (mode, x))
4439 return 1;
4440 if (legitimate_constant_pool_address_p (x))
4441 return 1;
4442 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
4443 if (! reg_ok_strict
4444 && GET_CODE (x) == PLUS
4445 && GET_CODE (XEXP (x, 0)) == REG
4446 && (XEXP (x, 0) == virtual_stack_vars_rtx
4447 || XEXP (x, 0) == arg_pointer_rtx)
4448 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4449 return 1;
4450 if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict))
4451 return 1;
4452 if (mode != TImode
4453 && mode != TFmode
4454 && mode != TDmode
4455 && ((TARGET_HARD_FLOAT && TARGET_FPRS)
4456 || TARGET_POWERPC64
4457 || (mode != DFmode && mode != DDmode)
4458 || (TARGET_E500_DOUBLE && mode != DDmode))
4459 && (TARGET_POWERPC64 || mode != DImode)
4460 && !avoiding_indexed_address_p (mode)
4461 && legitimate_indexed_address_p (x, reg_ok_strict))
4462 return 1;
4463 if (GET_CODE (x) == PRE_MODIFY
4464 && mode != TImode
4465 && mode != TFmode
4466 && mode != TDmode
4467 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
4468 || TARGET_POWERPC64
4469 || ((mode != DFmode && mode != DDmode) || TARGET_E500_DOUBLE))
4470 && (TARGET_POWERPC64 || mode != DImode)
4471 && !ALTIVEC_VECTOR_MODE (mode)
4472 && !SPE_VECTOR_MODE (mode)
4473 /* Restrict addressing for DI because of our SUBREG hackery. */
4474 && !(TARGET_E500_DOUBLE
4475 && (mode == DFmode || mode == DDmode || mode == DImode))
4476 && TARGET_UPDATE
4477 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
4478 && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1), reg_ok_strict)
4479 || (!avoiding_indexed_address_p (mode)
4480 && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
4481 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4482 return 1;
4483 if (legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
4484 return 1;
4485 return 0;
4488 /* Go to LABEL if ADDR (a legitimate address expression)
4489 has an effect that depends on the machine mode it is used for.
4491 On the RS/6000 this is true of all integral offsets (since AltiVec
4492 modes don't allow them) or is a pre-increment or decrement.
4494 ??? Except that due to conceptual problems in offsettable_address_p
4495 we can't really report the problems of integral offsets. So leave
4496 this assuming that the adjustable offset must be valid for the
4497 sub-words of a TFmode operand, which is what we had before. */
4499 bool
4500 rs6000_mode_dependent_address (rtx addr)
4502 switch (GET_CODE (addr))
4504 case PLUS:
4505 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
4507 unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
4508 return val + 12 + 0x8000 >= 0x10000;
4510 break;
4512 case LO_SUM:
4513 return true;
4515 /* Auto-increment cases are now treated generically in recog.c. */
4516 case PRE_MODIFY:
4517 return TARGET_UPDATE;
4519 default:
4520 break;
4523 return false;
4526 /* Implement FIND_BASE_TERM. */
4529 rs6000_find_base_term (rtx op)
4531 rtx base, offset;
4533 split_const (op, &base, &offset);
4534 if (GET_CODE (base) == UNSPEC)
4535 switch (XINT (base, 1))
4537 case UNSPEC_TOCREL:
4538 case UNSPEC_MACHOPIC_OFFSET:
4539 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
4540 for aliasing purposes. */
4541 return XVECEXP (base, 0, 0);
4544 return op;
4547 /* More elaborate version of recog's offsettable_memref_p predicate
4548 that works around the ??? note of rs6000_mode_dependent_address.
4549 In particular it accepts
4551 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
4553 in 32-bit mode, that the recog predicate rejects. */
4555 bool
4556 rs6000_offsettable_memref_p (rtx op)
4558 if (!MEM_P (op))
4559 return false;
4561 /* First mimic offsettable_memref_p. */
4562 if (offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)))
4563 return true;
4565 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
4566 the latter predicate knows nothing about the mode of the memory
4567 reference and, therefore, assumes that it is the largest supported
4568 mode (TFmode). As a consequence, legitimate offsettable memory
4569 references are rejected. rs6000_legitimate_offset_address_p contains
4570 the correct logic for the PLUS case of rs6000_mode_dependent_address. */
4571 return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0), 1);
4574 /* Return number of consecutive hard regs needed starting at reg REGNO
4575 to hold something of mode MODE.
4576 This is ordinarily the length in words of a value of mode MODE
4577 but can be less for certain modes in special long registers.
4579 For the SPE, GPRs are 64 bits but only 32 bits are visible in
4580 scalar instructions. The upper 32 bits are only available to the
4581 SIMD instructions.
4583 POWER and PowerPC GPRs hold 32 bits worth;
4584 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
4587 rs6000_hard_regno_nregs (int regno, enum machine_mode mode)
4589 if (FP_REGNO_P (regno))
4590 return (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
4592 if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
4593 return (GET_MODE_SIZE (mode) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD;
4595 if (ALTIVEC_REGNO_P (regno))
4596 return
4597 (GET_MODE_SIZE (mode) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD;
4599 /* The value returned for SCmode in the E500 double case is 2 for
4600 ABI compatibility; storing an SCmode value in a single register
4601 would require function_arg and rs6000_spe_function_arg to handle
4602 SCmode so as to pass the value correctly in a pair of
4603 registers. */
4604 if (TARGET_E500_DOUBLE && FLOAT_MODE_P (mode) && mode != SCmode
4605 && !DECIMAL_FLOAT_MODE_P (mode))
4606 return (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
4608 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
4611 /* Change register usage conditional on target flags. */
4612 void
4613 rs6000_conditional_register_usage (void)
4615 int i;
4617 /* Set MQ register fixed (already call_used) if not POWER
4618 architecture (RIOS1, RIOS2, RSC, and PPC601) so that it will not
4619 be allocated. */
4620 if (! TARGET_POWER)
4621 fixed_regs[64] = 1;
4623 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
4624 if (TARGET_64BIT)
4625 fixed_regs[13] = call_used_regs[13]
4626 = call_really_used_regs[13] = 1;
4628 /* Conditionally disable FPRs. */
4629 if (TARGET_SOFT_FLOAT || !TARGET_FPRS)
4630 for (i = 32; i < 64; i++)
4631 fixed_regs[i] = call_used_regs[i]
4632 = call_really_used_regs[i] = 1;
4634 /* The TOC register is not killed across calls in a way that is
4635 visible to the compiler. */
4636 if (DEFAULT_ABI == ABI_AIX)
4637 call_really_used_regs[2] = 0;
4639 if (DEFAULT_ABI == ABI_V4
4640 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4641 && flag_pic == 2)
4642 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4644 if (DEFAULT_ABI == ABI_V4
4645 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4646 && flag_pic == 1)
4647 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4648 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4649 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4651 if (DEFAULT_ABI == ABI_DARWIN
4652 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4653 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4654 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4655 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4657 if (TARGET_TOC && TARGET_MINIMAL_TOC)
4658 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4659 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4661 if (TARGET_SPE)
4663 global_regs[SPEFSCR_REGNO] = 1;
4664 /* We used to use r14 as FIXED_SCRATCH to address SPE 64-bit
4665 registers in prologues and epilogues. We no longer use r14
4666 for FIXED_SCRATCH, but we're keeping r14 out of the allocation
4667 pool for link-compatibility with older versions of GCC. Once
4668 "old" code has died out, we can return r14 to the allocation
4669 pool. */
4670 fixed_regs[14]
4671 = call_used_regs[14]
4672 = call_really_used_regs[14] = 1;
4675 if (!TARGET_ALTIVEC)
4677 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
4678 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
4679 call_really_used_regs[VRSAVE_REGNO] = 1;
4682 if (TARGET_ALTIVEC)
4683 global_regs[VSCR_REGNO] = 1;
4685 if (TARGET_ALTIVEC_ABI)
4687 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
4688 call_used_regs[i] = call_really_used_regs[i] = 1;
4690 /* AIX reserves VR20:31 in non-extended ABI mode. */
4691 if (TARGET_XCOFF)
4692 for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
4693 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
4697 /* Try to output insns to set TARGET equal to the constant C if it can
4698 be done in less than N insns. Do all computations in MODE.
4699 Returns the place where the output has been placed if it can be
4700 done and the insns have been emitted. If it would take more than N
4701 insns, zero is returned and no insns and emitted. */
4704 rs6000_emit_set_const (rtx dest, enum machine_mode mode,
4705 rtx source, int n ATTRIBUTE_UNUSED)
4707 rtx result, insn, set;
4708 HOST_WIDE_INT c0, c1;
4710 switch (mode)
4712 case QImode:
4713 case HImode:
4714 if (dest == NULL)
4715 dest = gen_reg_rtx (mode);
4716 emit_insn (gen_rtx_SET (VOIDmode, dest, source));
4717 return dest;
4719 case SImode:
4720 result = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);
4722 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (result),
4723 GEN_INT (INTVAL (source)
4724 & (~ (HOST_WIDE_INT) 0xffff))));
4725 emit_insn (gen_rtx_SET (VOIDmode, dest,
4726 gen_rtx_IOR (SImode, copy_rtx (result),
4727 GEN_INT (INTVAL (source) & 0xffff))));
4728 result = dest;
4729 break;
4731 case DImode:
4732 switch (GET_CODE (source))
4734 case CONST_INT:
4735 c0 = INTVAL (source);
4736 c1 = -(c0 < 0);
4737 break;
4739 case CONST_DOUBLE:
4740 #if HOST_BITS_PER_WIDE_INT >= 64
4741 c0 = CONST_DOUBLE_LOW (source);
4742 c1 = -(c0 < 0);
4743 #else
4744 c0 = CONST_DOUBLE_LOW (source);
4745 c1 = CONST_DOUBLE_HIGH (source);
4746 #endif
4747 break;
4749 default:
4750 gcc_unreachable ();
4753 result = rs6000_emit_set_long_const (dest, c0, c1);
4754 break;
4756 default:
4757 gcc_unreachable ();
4760 insn = get_last_insn ();
4761 set = single_set (insn);
4762 if (! CONSTANT_P (SET_SRC (set)))
4763 set_unique_reg_note (insn, REG_EQUAL, source);
4765 return result;
4768 /* Having failed to find a 3 insn sequence in rs6000_emit_set_const,
4769 fall back to a straight forward decomposition. We do this to avoid
4770 exponential run times encountered when looking for longer sequences
4771 with rs6000_emit_set_const. */
4772 static rtx
4773 rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
4775 if (!TARGET_POWERPC64)
4777 rtx operand1, operand2;
4779 operand1 = operand_subword_force (dest, WORDS_BIG_ENDIAN == 0,
4780 DImode);
4781 operand2 = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN != 0,
4782 DImode);
4783 emit_move_insn (operand1, GEN_INT (c1));
4784 emit_move_insn (operand2, GEN_INT (c2));
4786 else
4788 HOST_WIDE_INT ud1, ud2, ud3, ud4;
4790 ud1 = c1 & 0xffff;
4791 ud2 = (c1 & 0xffff0000) >> 16;
4792 #if HOST_BITS_PER_WIDE_INT >= 64
4793 c2 = c1 >> 32;
4794 #endif
4795 ud3 = c2 & 0xffff;
4796 ud4 = (c2 & 0xffff0000) >> 16;
4798 if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
4799 || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
4801 if (ud1 & 0x8000)
4802 emit_move_insn (dest, GEN_INT (((ud1 ^ 0x8000) - 0x8000)));
4803 else
4804 emit_move_insn (dest, GEN_INT (ud1));
4807 else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
4808 || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
4810 if (ud2 & 0x8000)
4811 emit_move_insn (dest, GEN_INT (((ud2 << 16) ^ 0x80000000)
4812 - 0x80000000));
4813 else
4814 emit_move_insn (dest, GEN_INT (ud2 << 16));
4815 if (ud1 != 0)
4816 emit_move_insn (copy_rtx (dest),
4817 gen_rtx_IOR (DImode, copy_rtx (dest),
4818 GEN_INT (ud1)));
4820 else if ((ud4 == 0xffff && (ud3 & 0x8000))
4821 || (ud4 == 0 && ! (ud3 & 0x8000)))
4823 if (ud3 & 0x8000)
4824 emit_move_insn (dest, GEN_INT (((ud3 << 16) ^ 0x80000000)
4825 - 0x80000000));
4826 else
4827 emit_move_insn (dest, GEN_INT (ud3 << 16));
4829 if (ud2 != 0)
4830 emit_move_insn (copy_rtx (dest),
4831 gen_rtx_IOR (DImode, copy_rtx (dest),
4832 GEN_INT (ud2)));
4833 emit_move_insn (copy_rtx (dest),
4834 gen_rtx_ASHIFT (DImode, copy_rtx (dest),
4835 GEN_INT (16)));
4836 if (ud1 != 0)
4837 emit_move_insn (copy_rtx (dest),
4838 gen_rtx_IOR (DImode, copy_rtx (dest),
4839 GEN_INT (ud1)));
4841 else
4843 if (ud4 & 0x8000)
4844 emit_move_insn (dest, GEN_INT (((ud4 << 16) ^ 0x80000000)
4845 - 0x80000000));
4846 else
4847 emit_move_insn (dest, GEN_INT (ud4 << 16));
4849 if (ud3 != 0)
4850 emit_move_insn (copy_rtx (dest),
4851 gen_rtx_IOR (DImode, copy_rtx (dest),
4852 GEN_INT (ud3)));
4854 emit_move_insn (copy_rtx (dest),
4855 gen_rtx_ASHIFT (DImode, copy_rtx (dest),
4856 GEN_INT (32)));
4857 if (ud2 != 0)
4858 emit_move_insn (copy_rtx (dest),
4859 gen_rtx_IOR (DImode, copy_rtx (dest),
4860 GEN_INT (ud2 << 16)));
4861 if (ud1 != 0)
4862 emit_move_insn (copy_rtx (dest),
4863 gen_rtx_IOR (DImode, copy_rtx (dest), GEN_INT (ud1)));
4866 return dest;
4869 /* Helper for the following. Get rid of [r+r] memory refs
4870 in cases where it won't work (TImode, TFmode, TDmode). */
4872 static void
4873 rs6000_eliminate_indexed_memrefs (rtx operands[2])
4875 if (GET_CODE (operands[0]) == MEM
4876 && GET_CODE (XEXP (operands[0], 0)) != REG
4877 && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0))
4878 && ! reload_in_progress)
4879 operands[0]
4880 = replace_equiv_address (operands[0],
4881 copy_addr_to_reg (XEXP (operands[0], 0)));
4883 if (GET_CODE (operands[1]) == MEM
4884 && GET_CODE (XEXP (operands[1], 0)) != REG
4885 && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0))
4886 && ! reload_in_progress)
4887 operands[1]
4888 = replace_equiv_address (operands[1],
4889 copy_addr_to_reg (XEXP (operands[1], 0)));
4892 /* Emit a move from SOURCE to DEST in mode MODE. */
4893 void
4894 rs6000_emit_move (rtx dest, rtx source, enum machine_mode mode)
4896 rtx operands[2];
4897 operands[0] = dest;
4898 operands[1] = source;
4900 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
4901 if (GET_CODE (operands[1]) == CONST_DOUBLE
4902 && ! FLOAT_MODE_P (mode)
4903 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4905 /* FIXME. This should never happen. */
4906 /* Since it seems that it does, do the safe thing and convert
4907 to a CONST_INT. */
4908 operands[1] = gen_int_mode (CONST_DOUBLE_LOW (operands[1]), mode);
4910 gcc_assert (GET_CODE (operands[1]) != CONST_DOUBLE
4911 || FLOAT_MODE_P (mode)
4912 || ((CONST_DOUBLE_HIGH (operands[1]) != 0
4913 || CONST_DOUBLE_LOW (operands[1]) < 0)
4914 && (CONST_DOUBLE_HIGH (operands[1]) != -1
4915 || CONST_DOUBLE_LOW (operands[1]) >= 0)));
4917 /* Check if GCC is setting up a block move that will end up using FP
4918 registers as temporaries. We must make sure this is acceptable. */
4919 if (GET_CODE (operands[0]) == MEM
4920 && GET_CODE (operands[1]) == MEM
4921 && mode == DImode
4922 && (SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[0]))
4923 || SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[1])))
4924 && ! (SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[0]) > 32
4925 ? 32 : MEM_ALIGN (operands[0])))
4926 || SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[1]) > 32
4927 ? 32
4928 : MEM_ALIGN (operands[1]))))
4929 && ! MEM_VOLATILE_P (operands [0])
4930 && ! MEM_VOLATILE_P (operands [1]))
4932 emit_move_insn (adjust_address (operands[0], SImode, 0),
4933 adjust_address (operands[1], SImode, 0));
4934 emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
4935 adjust_address (copy_rtx (operands[1]), SImode, 4));
4936 return;
4939 if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
4940 && !gpc_reg_operand (operands[1], mode))
4941 operands[1] = force_reg (mode, operands[1]);
4943 if (mode == SFmode && ! TARGET_POWERPC
4944 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
4945 && GET_CODE (operands[0]) == MEM)
4947 int regnum;
4949 if (reload_in_progress || reload_completed)
4950 regnum = true_regnum (operands[1]);
4951 else if (GET_CODE (operands[1]) == REG)
4952 regnum = REGNO (operands[1]);
4953 else
4954 regnum = -1;
4956 /* If operands[1] is a register, on POWER it may have
4957 double-precision data in it, so truncate it to single
4958 precision. */
4959 if (FP_REGNO_P (regnum) || regnum >= FIRST_PSEUDO_REGISTER)
4961 rtx newreg;
4962 newreg = (!can_create_pseudo_p () ? copy_rtx (operands[1])
4963 : gen_reg_rtx (mode));
4964 emit_insn (gen_aux_truncdfsf2 (newreg, operands[1]));
4965 operands[1] = newreg;
4969 /* Recognize the case where operand[1] is a reference to thread-local
4970 data and load its address to a register. */
4971 if (rs6000_tls_referenced_p (operands[1]))
4973 enum tls_model model;
4974 rtx tmp = operands[1];
4975 rtx addend = NULL;
4977 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
4979 addend = XEXP (XEXP (tmp, 0), 1);
4980 tmp = XEXP (XEXP (tmp, 0), 0);
4983 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
4984 model = SYMBOL_REF_TLS_MODEL (tmp);
4985 gcc_assert (model != 0);
4987 tmp = rs6000_legitimize_tls_address (tmp, model);
4988 if (addend)
4990 tmp = gen_rtx_PLUS (mode, tmp, addend);
4991 tmp = force_operand (tmp, operands[0]);
4993 operands[1] = tmp;
4996 /* Handle the case where reload calls us with an invalid address. */
4997 if (reload_in_progress && mode == Pmode
4998 && (! general_operand (operands[1], mode)
4999 || ! nonimmediate_operand (operands[0], mode)))
5000 goto emit_set;
5002 /* 128-bit constant floating-point values on Darwin should really be
5003 loaded as two parts. */
5004 if (!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
5005 && mode == TFmode && GET_CODE (operands[1]) == CONST_DOUBLE)
5007 /* DImode is used, not DFmode, because simplify_gen_subreg doesn't
5008 know how to get a DFmode SUBREG of a TFmode. */
5009 enum machine_mode imode = (TARGET_E500_DOUBLE ? DFmode : DImode);
5010 rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode, 0),
5011 simplify_gen_subreg (imode, operands[1], mode, 0),
5012 imode);
5013 rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode,
5014 GET_MODE_SIZE (imode)),
5015 simplify_gen_subreg (imode, operands[1], mode,
5016 GET_MODE_SIZE (imode)),
5017 imode);
5018 return;
5021 if (reload_in_progress && cfun->machine->sdmode_stack_slot != NULL_RTX)
5022 cfun->machine->sdmode_stack_slot =
5023 eliminate_regs (cfun->machine->sdmode_stack_slot, VOIDmode, NULL_RTX);
5025 if (reload_in_progress
5026 && mode == SDmode
5027 && MEM_P (operands[0])
5028 && rtx_equal_p (operands[0], cfun->machine->sdmode_stack_slot)
5029 && REG_P (operands[1]))
5031 if (FP_REGNO_P (REGNO (operands[1])))
5033 rtx mem = adjust_address_nv (operands[0], DDmode, 0);
5034 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5035 emit_insn (gen_movsd_store (mem, operands[1]));
5037 else if (INT_REGNO_P (REGNO (operands[1])))
5039 rtx mem = adjust_address_nv (operands[0], mode, 4);
5040 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5041 emit_insn (gen_movsd_hardfloat (mem, operands[1]));
5043 else
5044 gcc_unreachable();
5045 return;
5047 if (reload_in_progress
5048 && mode == SDmode
5049 && REG_P (operands[0])
5050 && MEM_P (operands[1])
5051 && rtx_equal_p (operands[1], cfun->machine->sdmode_stack_slot))
5053 if (FP_REGNO_P (REGNO (operands[0])))
5055 rtx mem = adjust_address_nv (operands[1], DDmode, 0);
5056 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5057 emit_insn (gen_movsd_load (operands[0], mem));
5059 else if (INT_REGNO_P (REGNO (operands[0])))
5061 rtx mem = adjust_address_nv (operands[1], mode, 4);
5062 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5063 emit_insn (gen_movsd_hardfloat (operands[0], mem));
5065 else
5066 gcc_unreachable();
5067 return;
5070 /* FIXME: In the long term, this switch statement should go away
5071 and be replaced by a sequence of tests based on things like
5072 mode == Pmode. */
5073 switch (mode)
5075 case HImode:
5076 case QImode:
5077 if (CONSTANT_P (operands[1])
5078 && GET_CODE (operands[1]) != CONST_INT)
5079 operands[1] = force_const_mem (mode, operands[1]);
5080 break;
5082 case TFmode:
5083 case TDmode:
5084 rs6000_eliminate_indexed_memrefs (operands);
5085 /* fall through */
5087 case DFmode:
5088 case DDmode:
5089 case SFmode:
5090 case SDmode:
5091 if (CONSTANT_P (operands[1])
5092 && ! easy_fp_constant (operands[1], mode))
5093 operands[1] = force_const_mem (mode, operands[1]);
5094 break;
5096 case V16QImode:
5097 case V8HImode:
5098 case V4SFmode:
5099 case V4SImode:
5100 case V4HImode:
5101 case V2SFmode:
5102 case V2SImode:
5103 case V1DImode:
5104 if (CONSTANT_P (operands[1])
5105 && !easy_vector_constant (operands[1], mode))
5106 operands[1] = force_const_mem (mode, operands[1]);
5107 break;
5109 case SImode:
5110 case DImode:
5111 /* Use default pattern for address of ELF small data */
5112 if (TARGET_ELF
5113 && mode == Pmode
5114 && DEFAULT_ABI == ABI_V4
5115 && (GET_CODE (operands[1]) == SYMBOL_REF
5116 || GET_CODE (operands[1]) == CONST)
5117 && small_data_operand (operands[1], mode))
5119 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5120 return;
5123 if (DEFAULT_ABI == ABI_V4
5124 && mode == Pmode && mode == SImode
5125 && flag_pic == 1 && got_operand (operands[1], mode))
5127 emit_insn (gen_movsi_got (operands[0], operands[1]));
5128 return;
5131 if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
5132 && TARGET_NO_TOC
5133 && ! flag_pic
5134 && mode == Pmode
5135 && CONSTANT_P (operands[1])
5136 && GET_CODE (operands[1]) != HIGH
5137 && GET_CODE (operands[1]) != CONST_INT)
5139 rtx target = (!can_create_pseudo_p ()
5140 ? operands[0]
5141 : gen_reg_rtx (mode));
5143 /* If this is a function address on -mcall-aixdesc,
5144 convert it to the address of the descriptor. */
5145 if (DEFAULT_ABI == ABI_AIX
5146 && GET_CODE (operands[1]) == SYMBOL_REF
5147 && XSTR (operands[1], 0)[0] == '.')
5149 const char *name = XSTR (operands[1], 0);
5150 rtx new_ref;
5151 while (*name == '.')
5152 name++;
5153 new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
5154 CONSTANT_POOL_ADDRESS_P (new_ref)
5155 = CONSTANT_POOL_ADDRESS_P (operands[1]);
5156 SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
5157 SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
5158 SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
5159 operands[1] = new_ref;
5162 if (DEFAULT_ABI == ABI_DARWIN)
5164 #if TARGET_MACHO
5165 if (MACHO_DYNAMIC_NO_PIC_P)
5167 /* Take care of any required data indirection. */
5168 operands[1] = rs6000_machopic_legitimize_pic_address (
5169 operands[1], mode, operands[0]);
5170 if (operands[0] != operands[1])
5171 emit_insn (gen_rtx_SET (VOIDmode,
5172 operands[0], operands[1]));
5173 return;
5175 #endif
5176 emit_insn (gen_macho_high (target, operands[1]));
5177 emit_insn (gen_macho_low (operands[0], target, operands[1]));
5178 return;
5181 emit_insn (gen_elf_high (target, operands[1]));
5182 emit_insn (gen_elf_low (operands[0], target, operands[1]));
5183 return;
5186 /* If this is a SYMBOL_REF that refers to a constant pool entry,
5187 and we have put it in the TOC, we just need to make a TOC-relative
5188 reference to it. */
5189 if (TARGET_TOC
5190 && GET_CODE (operands[1]) == SYMBOL_REF
5191 && constant_pool_expr_p (operands[1])
5192 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (operands[1]),
5193 get_pool_mode (operands[1])))
5195 operands[1] = create_TOC_reference (operands[1]);
5197 else if (mode == Pmode
5198 && CONSTANT_P (operands[1])
5199 && ((GET_CODE (operands[1]) != CONST_INT
5200 && ! easy_fp_constant (operands[1], mode))
5201 || (GET_CODE (operands[1]) == CONST_INT
5202 && num_insns_constant (operands[1], mode) > 2)
5203 || (GET_CODE (operands[0]) == REG
5204 && FP_REGNO_P (REGNO (operands[0]))))
5205 && GET_CODE (operands[1]) != HIGH
5206 && ! legitimate_constant_pool_address_p (operands[1])
5207 && ! toc_relative_expr_p (operands[1]))
5209 /* Emit a USE operation so that the constant isn't deleted if
5210 expensive optimizations are turned on because nobody
5211 references it. This should only be done for operands that
5212 contain SYMBOL_REFs with CONSTANT_POOL_ADDRESS_P set.
5213 This should not be done for operands that contain LABEL_REFs.
5214 For now, we just handle the obvious case. */
5215 if (GET_CODE (operands[1]) != LABEL_REF)
5216 emit_use (operands[1]);
5218 #if TARGET_MACHO
5219 /* Darwin uses a special PIC legitimizer. */
5220 if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
5222 operands[1] =
5223 rs6000_machopic_legitimize_pic_address (operands[1], mode,
5224 operands[0]);
5225 if (operands[0] != operands[1])
5226 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5227 return;
5229 #endif
5231 /* If we are to limit the number of things we put in the TOC and
5232 this is a symbol plus a constant we can add in one insn,
5233 just put the symbol in the TOC and add the constant. Don't do
5234 this if reload is in progress. */
5235 if (GET_CODE (operands[1]) == CONST
5236 && TARGET_NO_SUM_IN_TOC && ! reload_in_progress
5237 && GET_CODE (XEXP (operands[1], 0)) == PLUS
5238 && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
5239 && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
5240 || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
5241 && ! side_effects_p (operands[0]))
5243 rtx sym =
5244 force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
5245 rtx other = XEXP (XEXP (operands[1], 0), 1);
5247 sym = force_reg (mode, sym);
5248 if (mode == SImode)
5249 emit_insn (gen_addsi3 (operands[0], sym, other));
5250 else
5251 emit_insn (gen_adddi3 (operands[0], sym, other));
5252 return;
5255 operands[1] = force_const_mem (mode, operands[1]);
5257 if (TARGET_TOC
5258 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
5259 && constant_pool_expr_p (XEXP (operands[1], 0))
5260 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (
5261 get_pool_constant (XEXP (operands[1], 0)),
5262 get_pool_mode (XEXP (operands[1], 0))))
5264 operands[1]
5265 = gen_const_mem (mode,
5266 create_TOC_reference (XEXP (operands[1], 0)));
5267 set_mem_alias_set (operands[1], get_TOC_alias_set ());
5270 break;
5272 case TImode:
5273 rs6000_eliminate_indexed_memrefs (operands);
5275 if (TARGET_POWER)
5277 emit_insn (gen_rtx_PARALLEL (VOIDmode,
5278 gen_rtvec (2,
5279 gen_rtx_SET (VOIDmode,
5280 operands[0], operands[1]),
5281 gen_rtx_CLOBBER (VOIDmode,
5282 gen_rtx_SCRATCH (SImode)))));
5283 return;
5285 break;
5287 default:
5288 gcc_unreachable ();
5291 /* Above, we may have called force_const_mem which may have returned
5292 an invalid address. If we can, fix this up; otherwise, reload will
5293 have to deal with it. */
5294 if (GET_CODE (operands[1]) == MEM && ! reload_in_progress)
5295 operands[1] = validize_mem (operands[1]);
5297 emit_set:
5298 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5301 /* Nonzero if we can use a floating-point register to pass this arg. */
5302 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
5303 (SCALAR_FLOAT_MODE_P (MODE) \
5304 && (CUM)->fregno <= FP_ARG_MAX_REG \
5305 && TARGET_HARD_FLOAT && TARGET_FPRS)
5307 /* Nonzero if we can use an AltiVec register to pass this arg. */
5308 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE,NAMED) \
5309 (ALTIVEC_VECTOR_MODE (MODE) \
5310 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
5311 && TARGET_ALTIVEC_ABI \
5312 && (NAMED))
5314 /* Return a nonzero value to say to return the function value in
5315 memory, just as large structures are always returned. TYPE will be
5316 the data type of the value, and FNTYPE will be the type of the
5317 function doing the returning, or @code{NULL} for libcalls.
5319 The AIX ABI for the RS/6000 specifies that all structures are
5320 returned in memory. The Darwin ABI does the same. The SVR4 ABI
5321 specifies that structures <= 8 bytes are returned in r3/r4, but a
5322 draft put them in memory, and GCC used to implement the draft
5323 instead of the final standard. Therefore, aix_struct_return
5324 controls this instead of DEFAULT_ABI; V.4 targets needing backward
5325 compatibility can change DRAFT_V4_STRUCT_RET to override the
5326 default, and -m switches get the final word. See
5327 rs6000_override_options for more details.
5329 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
5330 long double support is enabled. These values are returned in memory.
5332 int_size_in_bytes returns -1 for variable size objects, which go in
5333 memory always. The cast to unsigned makes -1 > 8. */
5335 static bool
5336 rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5338 /* In the darwin64 abi, try to use registers for larger structs
5339 if possible. */
5340 if (rs6000_darwin64_abi
5341 && TREE_CODE (type) == RECORD_TYPE
5342 && int_size_in_bytes (type) > 0)
5344 CUMULATIVE_ARGS valcum;
5345 rtx valret;
5347 valcum.words = 0;
5348 valcum.fregno = FP_ARG_MIN_REG;
5349 valcum.vregno = ALTIVEC_ARG_MIN_REG;
5350 /* Do a trial code generation as if this were going to be passed
5351 as an argument; if any part goes in memory, we return NULL. */
5352 valret = rs6000_darwin64_record_arg (&valcum, type, 1, true);
5353 if (valret)
5354 return false;
5355 /* Otherwise fall through to more conventional ABI rules. */
5358 if (AGGREGATE_TYPE_P (type)
5359 && (aix_struct_return
5360 || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
5361 return true;
5363 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
5364 modes only exist for GCC vector types if -maltivec. */
5365 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
5366 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
5367 return false;
5369 /* Return synthetic vectors in memory. */
5370 if (TREE_CODE (type) == VECTOR_TYPE
5371 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
5373 static bool warned_for_return_big_vectors = false;
5374 if (!warned_for_return_big_vectors)
5376 warning (0, "GCC vector returned by reference: "
5377 "non-standard ABI extension with no compatibility guarantee");
5378 warned_for_return_big_vectors = true;
5380 return true;
5383 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && TYPE_MODE (type) == TFmode)
5384 return true;
5386 return false;
5389 /* Initialize a variable CUM of type CUMULATIVE_ARGS
5390 for a call to a function whose data type is FNTYPE.
5391 For a library call, FNTYPE is 0.
5393 For incoming args we set the number of arguments in the prototype large
5394 so we never return a PARALLEL. */
5396 void
5397 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
5398 rtx libname ATTRIBUTE_UNUSED, int incoming,
5399 int libcall, int n_named_args)
5401 static CUMULATIVE_ARGS zero_cumulative;
5403 *cum = zero_cumulative;
5404 cum->words = 0;
5405 cum->fregno = FP_ARG_MIN_REG;
5406 cum->vregno = ALTIVEC_ARG_MIN_REG;
5407 cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
5408 cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
5409 ? CALL_LIBCALL : CALL_NORMAL);
5410 cum->sysv_gregno = GP_ARG_MIN_REG;
5411 cum->stdarg = fntype
5412 && (TYPE_ARG_TYPES (fntype) != 0
5413 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
5414 != void_type_node));
5416 cum->nargs_prototype = 0;
5417 if (incoming || cum->prototype)
5418 cum->nargs_prototype = n_named_args;
5420 /* Check for a longcall attribute. */
5421 if ((!fntype && rs6000_default_long_calls)
5422 || (fntype
5423 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
5424 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
5425 cum->call_cookie |= CALL_LONG;
5427 if (TARGET_DEBUG_ARG)
5429 fprintf (stderr, "\ninit_cumulative_args:");
5430 if (fntype)
5432 tree ret_type = TREE_TYPE (fntype);
5433 fprintf (stderr, " ret code = %s,",
5434 tree_code_name[ (int)TREE_CODE (ret_type) ]);
5437 if (cum->call_cookie & CALL_LONG)
5438 fprintf (stderr, " longcall,");
5440 fprintf (stderr, " proto = %d, nargs = %d\n",
5441 cum->prototype, cum->nargs_prototype);
5444 if (fntype
5445 && !TARGET_ALTIVEC
5446 && TARGET_ALTIVEC_ABI
5447 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
5449 error ("cannot return value in vector register because"
5450 " altivec instructions are disabled, use -maltivec"
5451 " to enable them");
5455 /* Return true if TYPE must be passed on the stack and not in registers. */
5457 static bool
5458 rs6000_must_pass_in_stack (enum machine_mode mode, const_tree type)
5460 if (DEFAULT_ABI == ABI_AIX || TARGET_64BIT)
5461 return must_pass_in_stack_var_size (mode, type);
5462 else
5463 return must_pass_in_stack_var_size_or_pad (mode, type);
5466 /* If defined, a C expression which determines whether, and in which
5467 direction, to pad out an argument with extra space. The value
5468 should be of type `enum direction': either `upward' to pad above
5469 the argument, `downward' to pad below, or `none' to inhibit
5470 padding.
5472 For the AIX ABI structs are always stored left shifted in their
5473 argument slot. */
5475 enum direction
5476 function_arg_padding (enum machine_mode mode, const_tree type)
5478 #ifndef AGGREGATE_PADDING_FIXED
5479 #define AGGREGATE_PADDING_FIXED 0
5480 #endif
5481 #ifndef AGGREGATES_PAD_UPWARD_ALWAYS
5482 #define AGGREGATES_PAD_UPWARD_ALWAYS 0
5483 #endif
5485 if (!AGGREGATE_PADDING_FIXED)
5487 /* GCC used to pass structures of the same size as integer types as
5488 if they were in fact integers, ignoring FUNCTION_ARG_PADDING.
5489 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
5490 passed padded downward, except that -mstrict-align further
5491 muddied the water in that multi-component structures of 2 and 4
5492 bytes in size were passed padded upward.
5494 The following arranges for best compatibility with previous
5495 versions of gcc, but removes the -mstrict-align dependency. */
5496 if (BYTES_BIG_ENDIAN)
5498 HOST_WIDE_INT size = 0;
5500 if (mode == BLKmode)
5502 if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
5503 size = int_size_in_bytes (type);
5505 else
5506 size = GET_MODE_SIZE (mode);
5508 if (size == 1 || size == 2 || size == 4)
5509 return downward;
5511 return upward;
5514 if (AGGREGATES_PAD_UPWARD_ALWAYS)
5516 if (type != 0 && AGGREGATE_TYPE_P (type))
5517 return upward;
5520 /* Fall back to the default. */
5521 return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
5524 /* If defined, a C expression that gives the alignment boundary, in bits,
5525 of an argument with the specified mode and type. If it is not defined,
5526 PARM_BOUNDARY is used for all arguments.
5528 V.4 wants long longs and doubles to be double word aligned. Just
5529 testing the mode size is a boneheaded way to do this as it means
5530 that other types such as complex int are also double word aligned.
5531 However, we're stuck with this because changing the ABI might break
5532 existing library interfaces.
5534 Doubleword align SPE vectors.
5535 Quadword align Altivec vectors.
5536 Quadword align large synthetic vector types. */
5539 function_arg_boundary (enum machine_mode mode, tree type)
5541 if (DEFAULT_ABI == ABI_V4
5542 && (GET_MODE_SIZE (mode) == 8
5543 || (TARGET_HARD_FLOAT
5544 && TARGET_FPRS
5545 && (mode == TFmode || mode == TDmode))))
5546 return 64;
5547 else if (SPE_VECTOR_MODE (mode)
5548 || (type && TREE_CODE (type) == VECTOR_TYPE
5549 && int_size_in_bytes (type) >= 8
5550 && int_size_in_bytes (type) < 16))
5551 return 64;
5552 else if (ALTIVEC_VECTOR_MODE (mode)
5553 || (type && TREE_CODE (type) == VECTOR_TYPE
5554 && int_size_in_bytes (type) >= 16))
5555 return 128;
5556 else if (rs6000_darwin64_abi && mode == BLKmode
5557 && type && TYPE_ALIGN (type) > 64)
5558 return 128;
5559 else
5560 return PARM_BOUNDARY;
5563 /* For a function parm of MODE and TYPE, return the starting word in
5564 the parameter area. NWORDS of the parameter area are already used. */
5566 static unsigned int
5567 rs6000_parm_start (enum machine_mode mode, tree type, unsigned int nwords)
5569 unsigned int align;
5570 unsigned int parm_offset;
5572 align = function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
5573 parm_offset = DEFAULT_ABI == ABI_V4 ? 2 : 6;
5574 return nwords + (-(parm_offset + nwords) & align);
5577 /* Compute the size (in words) of a function argument. */
5579 static unsigned long
5580 rs6000_arg_size (enum machine_mode mode, tree type)
5582 unsigned long size;
5584 if (mode != BLKmode)
5585 size = GET_MODE_SIZE (mode);
5586 else
5587 size = int_size_in_bytes (type);
5589 if (TARGET_32BIT)
5590 return (size + 3) >> 2;
5591 else
5592 return (size + 7) >> 3;
5595 /* Use this to flush pending int fields. */
5597 static void
5598 rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
5599 HOST_WIDE_INT bitpos)
5601 unsigned int startbit, endbit;
5602 int intregs, intoffset;
5603 enum machine_mode mode;
5605 if (cum->intoffset == -1)
5606 return;
5608 intoffset = cum->intoffset;
5609 cum->intoffset = -1;
5611 if (intoffset % BITS_PER_WORD != 0)
5613 mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
5614 MODE_INT, 0);
5615 if (mode == BLKmode)
5617 /* We couldn't find an appropriate mode, which happens,
5618 e.g., in packed structs when there are 3 bytes to load.
5619 Back intoffset back to the beginning of the word in this
5620 case. */
5621 intoffset = intoffset & -BITS_PER_WORD;
5625 startbit = intoffset & -BITS_PER_WORD;
5626 endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
5627 intregs = (endbit - startbit) / BITS_PER_WORD;
5628 cum->words += intregs;
5631 /* The darwin64 ABI calls for us to recurse down through structs,
5632 looking for elements passed in registers. Unfortunately, we have
5633 to track int register count here also because of misalignments
5634 in powerpc alignment mode. */
5636 static void
5637 rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
5638 tree type,
5639 HOST_WIDE_INT startbitpos)
5641 tree f;
5643 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5644 if (TREE_CODE (f) == FIELD_DECL)
5646 HOST_WIDE_INT bitpos = startbitpos;
5647 tree ftype = TREE_TYPE (f);
5648 enum machine_mode mode;
5649 if (ftype == error_mark_node)
5650 continue;
5651 mode = TYPE_MODE (ftype);
5653 if (DECL_SIZE (f) != 0
5654 && host_integerp (bit_position (f), 1))
5655 bitpos += int_bit_position (f);
5657 /* ??? FIXME: else assume zero offset. */
5659 if (TREE_CODE (ftype) == RECORD_TYPE)
5660 rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
5661 else if (USE_FP_FOR_ARG_P (cum, mode, ftype))
5663 rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
5664 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5665 cum->words += (GET_MODE_SIZE (mode) + 7) >> 3;
5667 else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, 1))
5669 rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
5670 cum->vregno++;
5671 cum->words += 2;
5673 else if (cum->intoffset == -1)
5674 cum->intoffset = bitpos;
5678 /* Update the data in CUM to advance over an argument
5679 of mode MODE and data type TYPE.
5680 (TYPE is null for libcalls where that information may not be available.)
5682 Note that for args passed by reference, function_arg will be called
5683 with MODE and TYPE set to that of the pointer to the arg, not the arg
5684 itself. */
5686 void
5687 function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
5688 tree type, int named, int depth)
5690 int size;
5692 /* Only tick off an argument if we're not recursing. */
5693 if (depth == 0)
5694 cum->nargs_prototype--;
5696 if (TARGET_ALTIVEC_ABI
5697 && (ALTIVEC_VECTOR_MODE (mode)
5698 || (type && TREE_CODE (type) == VECTOR_TYPE
5699 && int_size_in_bytes (type) == 16)))
5701 bool stack = false;
5703 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
5705 cum->vregno++;
5706 if (!TARGET_ALTIVEC)
5707 error ("cannot pass argument in vector register because"
5708 " altivec instructions are disabled, use -maltivec"
5709 " to enable them");
5711 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
5712 even if it is going to be passed in a vector register.
5713 Darwin does the same for variable-argument functions. */
5714 if ((DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
5715 || (cum->stdarg && DEFAULT_ABI != ABI_V4))
5716 stack = true;
5718 else
5719 stack = true;
5721 if (stack)
5723 int align;
5725 /* Vector parameters must be 16-byte aligned. This places
5726 them at 2 mod 4 in terms of words in 32-bit mode, since
5727 the parameter save area starts at offset 24 from the
5728 stack. In 64-bit mode, they just have to start on an
5729 even word, since the parameter save area is 16-byte
5730 aligned. Space for GPRs is reserved even if the argument
5731 will be passed in memory. */
5732 if (TARGET_32BIT)
5733 align = (2 - cum->words) & 3;
5734 else
5735 align = cum->words & 1;
5736 cum->words += align + rs6000_arg_size (mode, type);
5738 if (TARGET_DEBUG_ARG)
5740 fprintf (stderr, "function_adv: words = %2d, align=%d, ",
5741 cum->words, align);
5742 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
5743 cum->nargs_prototype, cum->prototype,
5744 GET_MODE_NAME (mode));
5748 else if (TARGET_SPE_ABI && TARGET_SPE && SPE_VECTOR_MODE (mode)
5749 && !cum->stdarg
5750 && cum->sysv_gregno <= GP_ARG_MAX_REG)
5751 cum->sysv_gregno++;
5753 else if (rs6000_darwin64_abi
5754 && mode == BLKmode
5755 && TREE_CODE (type) == RECORD_TYPE
5756 && (size = int_size_in_bytes (type)) > 0)
5758 /* Variable sized types have size == -1 and are
5759 treated as if consisting entirely of ints.
5760 Pad to 16 byte boundary if needed. */
5761 if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
5762 && (cum->words % 2) != 0)
5763 cum->words++;
5764 /* For varargs, we can just go up by the size of the struct. */
5765 if (!named)
5766 cum->words += (size + 7) / 8;
5767 else
5769 /* It is tempting to say int register count just goes up by
5770 sizeof(type)/8, but this is wrong in a case such as
5771 { int; double; int; } [powerpc alignment]. We have to
5772 grovel through the fields for these too. */
5773 cum->intoffset = 0;
5774 rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
5775 rs6000_darwin64_record_arg_advance_flush (cum,
5776 size * BITS_PER_UNIT);
5779 else if (DEFAULT_ABI == ABI_V4)
5781 if (TARGET_HARD_FLOAT && TARGET_FPRS
5782 && ((TARGET_SINGLE_FLOAT && mode == SFmode)
5783 || (TARGET_DOUBLE_FLOAT && mode == DFmode)
5784 || (mode == TFmode && !TARGET_IEEEQUAD)
5785 || mode == SDmode || mode == DDmode || mode == TDmode))
5787 /* _Decimal128 must use an even/odd register pair. This assumes
5788 that the register number is odd when fregno is odd. */
5789 if (mode == TDmode && (cum->fregno % 2) == 1)
5790 cum->fregno++;
5792 if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
5793 <= FP_ARG_V4_MAX_REG)
5794 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5795 else
5797 cum->fregno = FP_ARG_V4_MAX_REG + 1;
5798 if (mode == DFmode || mode == TFmode
5799 || mode == DDmode || mode == TDmode)
5800 cum->words += cum->words & 1;
5801 cum->words += rs6000_arg_size (mode, type);
5804 else
5806 int n_words = rs6000_arg_size (mode, type);
5807 int gregno = cum->sysv_gregno;
5809 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
5810 (r7,r8) or (r9,r10). As does any other 2 word item such
5811 as complex int due to a historical mistake. */
5812 if (n_words == 2)
5813 gregno += (1 - gregno) & 1;
5815 /* Multi-reg args are not split between registers and stack. */
5816 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
5818 /* Long long and SPE vectors are aligned on the stack.
5819 So are other 2 word items such as complex int due to
5820 a historical mistake. */
5821 if (n_words == 2)
5822 cum->words += cum->words & 1;
5823 cum->words += n_words;
5826 /* Note: continuing to accumulate gregno past when we've started
5827 spilling to the stack indicates the fact that we've started
5828 spilling to the stack to expand_builtin_saveregs. */
5829 cum->sysv_gregno = gregno + n_words;
5832 if (TARGET_DEBUG_ARG)
5834 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
5835 cum->words, cum->fregno);
5836 fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
5837 cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
5838 fprintf (stderr, "mode = %4s, named = %d\n",
5839 GET_MODE_NAME (mode), named);
5842 else
5844 int n_words = rs6000_arg_size (mode, type);
5845 int start_words = cum->words;
5846 int align_words = rs6000_parm_start (mode, type, start_words);
5848 cum->words = align_words + n_words;
5850 if (SCALAR_FLOAT_MODE_P (mode)
5851 && TARGET_HARD_FLOAT && TARGET_FPRS)
5853 /* _Decimal128 must be passed in an even/odd float register pair.
5854 This assumes that the register number is odd when fregno is
5855 odd. */
5856 if (mode == TDmode && (cum->fregno % 2) == 1)
5857 cum->fregno++;
5858 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5861 if (TARGET_DEBUG_ARG)
5863 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
5864 cum->words, cum->fregno);
5865 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
5866 cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
5867 fprintf (stderr, "named = %d, align = %d, depth = %d\n",
5868 named, align_words - start_words, depth);
5873 static rtx
5874 spe_build_register_parallel (enum machine_mode mode, int gregno)
5876 rtx r1, r3, r5, r7;
5878 switch (mode)
5880 case DFmode:
5881 r1 = gen_rtx_REG (DImode, gregno);
5882 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5883 return gen_rtx_PARALLEL (mode, gen_rtvec (1, r1));
5885 case DCmode:
5886 case TFmode:
5887 r1 = gen_rtx_REG (DImode, gregno);
5888 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5889 r3 = gen_rtx_REG (DImode, gregno + 2);
5890 r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
5891 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r3));
5893 case TCmode:
5894 r1 = gen_rtx_REG (DImode, gregno);
5895 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5896 r3 = gen_rtx_REG (DImode, gregno + 2);
5897 r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
5898 r5 = gen_rtx_REG (DImode, gregno + 4);
5899 r5 = gen_rtx_EXPR_LIST (VOIDmode, r5, GEN_INT (16));
5900 r7 = gen_rtx_REG (DImode, gregno + 6);
5901 r7 = gen_rtx_EXPR_LIST (VOIDmode, r7, GEN_INT (24));
5902 return gen_rtx_PARALLEL (mode, gen_rtvec (4, r1, r3, r5, r7));
5904 default:
5905 gcc_unreachable ();
5909 /* Determine where to put a SIMD argument on the SPE. */
5910 static rtx
5911 rs6000_spe_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
5912 tree type)
5914 int gregno = cum->sysv_gregno;
5916 /* On E500 v2, double arithmetic is done on the full 64-bit GPR, but
5917 are passed and returned in a pair of GPRs for ABI compatibility. */
5918 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
5919 || mode == DCmode || mode == TCmode))
5921 int n_words = rs6000_arg_size (mode, type);
5923 /* Doubles go in an odd/even register pair (r5/r6, etc). */
5924 if (mode == DFmode)
5925 gregno += (1 - gregno) & 1;
5927 /* Multi-reg args are not split between registers and stack. */
5928 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
5929 return NULL_RTX;
5931 return spe_build_register_parallel (mode, gregno);
5933 if (cum->stdarg)
5935 int n_words = rs6000_arg_size (mode, type);
5937 /* SPE vectors are put in odd registers. */
5938 if (n_words == 2 && (gregno & 1) == 0)
5939 gregno += 1;
5941 if (gregno + n_words - 1 <= GP_ARG_MAX_REG)
5943 rtx r1, r2;
5944 enum machine_mode m = SImode;
5946 r1 = gen_rtx_REG (m, gregno);
5947 r1 = gen_rtx_EXPR_LIST (m, r1, const0_rtx);
5948 r2 = gen_rtx_REG (m, gregno + 1);
5949 r2 = gen_rtx_EXPR_LIST (m, r2, GEN_INT (4));
5950 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
5952 else
5953 return NULL_RTX;
5955 else
5957 if (gregno <= GP_ARG_MAX_REG)
5958 return gen_rtx_REG (mode, gregno);
5959 else
5960 return NULL_RTX;
5964 /* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
5965 structure between cum->intoffset and bitpos to integer registers. */
5967 static void
5968 rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
5969 HOST_WIDE_INT bitpos, rtx rvec[], int *k)
5971 enum machine_mode mode;
5972 unsigned int regno;
5973 unsigned int startbit, endbit;
5974 int this_regno, intregs, intoffset;
5975 rtx reg;
5977 if (cum->intoffset == -1)
5978 return;
5980 intoffset = cum->intoffset;
5981 cum->intoffset = -1;
5983 /* If this is the trailing part of a word, try to only load that
5984 much into the register. Otherwise load the whole register. Note
5985 that in the latter case we may pick up unwanted bits. It's not a
5986 problem at the moment but may wish to revisit. */
5988 if (intoffset % BITS_PER_WORD != 0)
5990 mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
5991 MODE_INT, 0);
5992 if (mode == BLKmode)
5994 /* We couldn't find an appropriate mode, which happens,
5995 e.g., in packed structs when there are 3 bytes to load.
5996 Back intoffset back to the beginning of the word in this
5997 case. */
5998 intoffset = intoffset & -BITS_PER_WORD;
5999 mode = word_mode;
6002 else
6003 mode = word_mode;
6005 startbit = intoffset & -BITS_PER_WORD;
6006 endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
6007 intregs = (endbit - startbit) / BITS_PER_WORD;
6008 this_regno = cum->words + intoffset / BITS_PER_WORD;
6010 if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
6011 cum->use_stack = 1;
6013 intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
6014 if (intregs <= 0)
6015 return;
6017 intoffset /= BITS_PER_UNIT;
6020 regno = GP_ARG_MIN_REG + this_regno;
6021 reg = gen_rtx_REG (mode, regno);
6022 rvec[(*k)++] =
6023 gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
6025 this_regno += 1;
6026 intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
6027 mode = word_mode;
6028 intregs -= 1;
6030 while (intregs > 0);
6033 /* Recursive workhorse for the following. */
6035 static void
6036 rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
6037 HOST_WIDE_INT startbitpos, rtx rvec[],
6038 int *k)
6040 tree f;
6042 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
6043 if (TREE_CODE (f) == FIELD_DECL)
6045 HOST_WIDE_INT bitpos = startbitpos;
6046 tree ftype = TREE_TYPE (f);
6047 enum machine_mode mode;
6048 if (ftype == error_mark_node)
6049 continue;
6050 mode = TYPE_MODE (ftype);
6052 if (DECL_SIZE (f) != 0
6053 && host_integerp (bit_position (f), 1))
6054 bitpos += int_bit_position (f);
6056 /* ??? FIXME: else assume zero offset. */
6058 if (TREE_CODE (ftype) == RECORD_TYPE)
6059 rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
6060 else if (cum->named && USE_FP_FOR_ARG_P (cum, mode, ftype))
6062 #if 0
6063 switch (mode)
6065 case SCmode: mode = SFmode; break;
6066 case DCmode: mode = DFmode; break;
6067 case TCmode: mode = TFmode; break;
6068 default: break;
6070 #endif
6071 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
6072 rvec[(*k)++]
6073 = gen_rtx_EXPR_LIST (VOIDmode,
6074 gen_rtx_REG (mode, cum->fregno++),
6075 GEN_INT (bitpos / BITS_PER_UNIT));
6076 if (mode == TFmode || mode == TDmode)
6077 cum->fregno++;
6079 else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, ftype, 1))
6081 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
6082 rvec[(*k)++]
6083 = gen_rtx_EXPR_LIST (VOIDmode,
6084 gen_rtx_REG (mode, cum->vregno++),
6085 GEN_INT (bitpos / BITS_PER_UNIT));
6087 else if (cum->intoffset == -1)
6088 cum->intoffset = bitpos;
6092 /* For the darwin64 ABI, we want to construct a PARALLEL consisting of
6093 the register(s) to be used for each field and subfield of a struct
6094 being passed by value, along with the offset of where the
6095 register's value may be found in the block. FP fields go in FP
6096 register, vector fields go in vector registers, and everything
6097 else goes in int registers, packed as in memory.
6099 This code is also used for function return values. RETVAL indicates
6100 whether this is the case.
6102 Much of this is taken from the SPARC V9 port, which has a similar
6103 calling convention. */
6105 static rtx
6106 rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
6107 int named, bool retval)
6109 rtx rvec[FIRST_PSEUDO_REGISTER];
6110 int k = 1, kbase = 1;
6111 HOST_WIDE_INT typesize = int_size_in_bytes (type);
6112 /* This is a copy; modifications are not visible to our caller. */
6113 CUMULATIVE_ARGS copy_cum = *orig_cum;
6114 CUMULATIVE_ARGS *cum = &copy_cum;
6116 /* Pad to 16 byte boundary if needed. */
6117 if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
6118 && (cum->words % 2) != 0)
6119 cum->words++;
6121 cum->intoffset = 0;
6122 cum->use_stack = 0;
6123 cum->named = named;
6125 /* Put entries into rvec[] for individual FP and vector fields, and
6126 for the chunks of memory that go in int regs. Note we start at
6127 element 1; 0 is reserved for an indication of using memory, and
6128 may or may not be filled in below. */
6129 rs6000_darwin64_record_arg_recurse (cum, type, 0, rvec, &k);
6130 rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);
6132 /* If any part of the struct went on the stack put all of it there.
6133 This hack is because the generic code for
6134 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
6135 parts of the struct are not at the beginning. */
6136 if (cum->use_stack)
6138 if (retval)
6139 return NULL_RTX; /* doesn't go in registers at all */
6140 kbase = 0;
6141 rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6143 if (k > 1 || cum->use_stack)
6144 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
6145 else
6146 return NULL_RTX;
6149 /* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
6151 static rtx
6152 rs6000_mixed_function_arg (enum machine_mode mode, tree type, int align_words)
6154 int n_units;
6155 int i, k;
6156 rtx rvec[GP_ARG_NUM_REG + 1];
6158 if (align_words >= GP_ARG_NUM_REG)
6159 return NULL_RTX;
6161 n_units = rs6000_arg_size (mode, type);
6163 /* Optimize the simple case where the arg fits in one gpr, except in
6164 the case of BLKmode due to assign_parms assuming that registers are
6165 BITS_PER_WORD wide. */
6166 if (n_units == 0
6167 || (n_units == 1 && mode != BLKmode))
6168 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6170 k = 0;
6171 if (align_words + n_units > GP_ARG_NUM_REG)
6172 /* Not all of the arg fits in gprs. Say that it goes in memory too,
6173 using a magic NULL_RTX component.
6174 This is not strictly correct. Only some of the arg belongs in
6175 memory, not all of it. However, the normal scheme using
6176 function_arg_partial_nregs can result in unusual subregs, eg.
6177 (subreg:SI (reg:DF) 4), which are not handled well. The code to
6178 store the whole arg to memory is often more efficient than code
6179 to store pieces, and we know that space is available in the right
6180 place for the whole arg. */
6181 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6183 i = 0;
6186 rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
6187 rtx off = GEN_INT (i++ * 4);
6188 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
6190 while (++align_words < GP_ARG_NUM_REG && --n_units != 0);
6192 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
6195 /* Determine where to put an argument to a function.
6196 Value is zero to push the argument on the stack,
6197 or a hard register in which to store the argument.
6199 MODE is the argument's machine mode.
6200 TYPE is the data type of the argument (as a tree).
6201 This is null for libcalls where that information may
6202 not be available.
6203 CUM is a variable of type CUMULATIVE_ARGS which gives info about
6204 the preceding args and about the function being called. It is
6205 not modified in this routine.
6206 NAMED is nonzero if this argument is a named parameter
6207 (otherwise it is an extra parameter matching an ellipsis).
6209 On RS/6000 the first eight words of non-FP are normally in registers
6210 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
6211 Under V.4, the first 8 FP args are in registers.
6213 If this is floating-point and no prototype is specified, we use
6214 both an FP and integer register (or possibly FP reg and stack). Library
6215 functions (when CALL_LIBCALL is set) always have the proper types for args,
6216 so we can pass the FP value just in one register. emit_library_function
6217 doesn't support PARALLEL anyway.
6219 Note that for args passed by reference, function_arg will be called
6220 with MODE and TYPE set to that of the pointer to the arg, not the arg
6221 itself. */
6224 function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6225 tree type, int named)
6227 enum rs6000_abi abi = DEFAULT_ABI;
6229 /* Return a marker to indicate whether CR1 needs to set or clear the
6230 bit that V.4 uses to say fp args were passed in registers.
6231 Assume that we don't need the marker for software floating point,
6232 or compiler generated library calls. */
6233 if (mode == VOIDmode)
6235 if (abi == ABI_V4
6236 && (cum->call_cookie & CALL_LIBCALL) == 0
6237 && (cum->stdarg
6238 || (cum->nargs_prototype < 0
6239 && (cum->prototype || TARGET_NO_PROTOTYPE))))
6241 /* For the SPE, we need to crxor CR6 always. */
6242 if (TARGET_SPE_ABI)
6243 return GEN_INT (cum->call_cookie | CALL_V4_SET_FP_ARGS);
6244 else if (TARGET_HARD_FLOAT && TARGET_FPRS)
6245 return GEN_INT (cum->call_cookie
6246 | ((cum->fregno == FP_ARG_MIN_REG)
6247 ? CALL_V4_SET_FP_ARGS
6248 : CALL_V4_CLEAR_FP_ARGS));
6251 return GEN_INT (cum->call_cookie);
6254 if (rs6000_darwin64_abi && mode == BLKmode
6255 && TREE_CODE (type) == RECORD_TYPE)
6257 rtx rslt = rs6000_darwin64_record_arg (cum, type, named, false);
6258 if (rslt != NULL_RTX)
6259 return rslt;
6260 /* Else fall through to usual handling. */
6263 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
6264 if (TARGET_64BIT && ! cum->prototype)
6266 /* Vector parameters get passed in vector register
6267 and also in GPRs or memory, in absence of prototype. */
6268 int align_words;
6269 rtx slot;
6270 align_words = (cum->words + 1) & ~1;
6272 if (align_words >= GP_ARG_NUM_REG)
6274 slot = NULL_RTX;
6276 else
6278 slot = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6280 return gen_rtx_PARALLEL (mode,
6281 gen_rtvec (2,
6282 gen_rtx_EXPR_LIST (VOIDmode,
6283 slot, const0_rtx),
6284 gen_rtx_EXPR_LIST (VOIDmode,
6285 gen_rtx_REG (mode, cum->vregno),
6286 const0_rtx)));
6288 else
6289 return gen_rtx_REG (mode, cum->vregno);
6290 else if (TARGET_ALTIVEC_ABI
6291 && (ALTIVEC_VECTOR_MODE (mode)
6292 || (type && TREE_CODE (type) == VECTOR_TYPE
6293 && int_size_in_bytes (type) == 16)))
6295 if (named || abi == ABI_V4)
6296 return NULL_RTX;
6297 else
6299 /* Vector parameters to varargs functions under AIX or Darwin
6300 get passed in memory and possibly also in GPRs. */
6301 int align, align_words, n_words;
6302 enum machine_mode part_mode;
6304 /* Vector parameters must be 16-byte aligned. This places them at
6305 2 mod 4 in terms of words in 32-bit mode, since the parameter
6306 save area starts at offset 24 from the stack. In 64-bit mode,
6307 they just have to start on an even word, since the parameter
6308 save area is 16-byte aligned. */
6309 if (TARGET_32BIT)
6310 align = (2 - cum->words) & 3;
6311 else
6312 align = cum->words & 1;
6313 align_words = cum->words + align;
6315 /* Out of registers? Memory, then. */
6316 if (align_words >= GP_ARG_NUM_REG)
6317 return NULL_RTX;
6319 if (TARGET_32BIT && TARGET_POWERPC64)
6320 return rs6000_mixed_function_arg (mode, type, align_words);
6322 /* The vector value goes in GPRs. Only the part of the
6323 value in GPRs is reported here. */
6324 part_mode = mode;
6325 n_words = rs6000_arg_size (mode, type);
6326 if (align_words + n_words > GP_ARG_NUM_REG)
6327 /* Fortunately, there are only two possibilities, the value
6328 is either wholly in GPRs or half in GPRs and half not. */
6329 part_mode = DImode;
6331 return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
6334 else if (TARGET_SPE_ABI && TARGET_SPE
6335 && (SPE_VECTOR_MODE (mode)
6336 || (TARGET_E500_DOUBLE && (mode == DFmode
6337 || mode == DCmode
6338 || mode == TFmode
6339 || mode == TCmode))))
6340 return rs6000_spe_function_arg (cum, mode, type);
6342 else if (abi == ABI_V4)
6344 if (TARGET_HARD_FLOAT && TARGET_FPRS
6345 && ((TARGET_SINGLE_FLOAT && mode == SFmode)
6346 || (TARGET_DOUBLE_FLOAT && mode == DFmode)
6347 || (mode == TFmode && !TARGET_IEEEQUAD)
6348 || mode == SDmode || mode == DDmode || mode == TDmode))
6350 /* _Decimal128 must use an even/odd register pair. This assumes
6351 that the register number is odd when fregno is odd. */
6352 if (mode == TDmode && (cum->fregno % 2) == 1)
6353 cum->fregno++;
6355 if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
6356 <= FP_ARG_V4_MAX_REG)
6357 return gen_rtx_REG (mode, cum->fregno);
6358 else
6359 return NULL_RTX;
6361 else
6363 int n_words = rs6000_arg_size (mode, type);
6364 int gregno = cum->sysv_gregno;
6366 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
6367 (r7,r8) or (r9,r10). As does any other 2 word item such
6368 as complex int due to a historical mistake. */
6369 if (n_words == 2)
6370 gregno += (1 - gregno) & 1;
6372 /* Multi-reg args are not split between registers and stack. */
6373 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
6374 return NULL_RTX;
6376 if (TARGET_32BIT && TARGET_POWERPC64)
6377 return rs6000_mixed_function_arg (mode, type,
6378 gregno - GP_ARG_MIN_REG);
6379 return gen_rtx_REG (mode, gregno);
6382 else
6384 int align_words = rs6000_parm_start (mode, type, cum->words);
6386 /* _Decimal128 must be passed in an even/odd float register pair.
6387 This assumes that the register number is odd when fregno is odd. */
6388 if (mode == TDmode && (cum->fregno % 2) == 1)
6389 cum->fregno++;
6391 if (USE_FP_FOR_ARG_P (cum, mode, type))
6393 rtx rvec[GP_ARG_NUM_REG + 1];
6394 rtx r;
6395 int k;
6396 bool needs_psave;
6397 enum machine_mode fmode = mode;
6398 unsigned long n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;
6400 if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
6402 /* Currently, we only ever need one reg here because complex
6403 doubles are split. */
6404 gcc_assert (cum->fregno == FP_ARG_MAX_REG
6405 && (fmode == TFmode || fmode == TDmode));
6407 /* Long double or _Decimal128 split over regs and memory. */
6408 fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
6411 /* Do we also need to pass this arg in the parameter save
6412 area? */
6413 needs_psave = (type
6414 && (cum->nargs_prototype <= 0
6415 || (DEFAULT_ABI == ABI_AIX
6416 && TARGET_XL_COMPAT
6417 && align_words >= GP_ARG_NUM_REG)));
6419 if (!needs_psave && mode == fmode)
6420 return gen_rtx_REG (fmode, cum->fregno);
6422 k = 0;
6423 if (needs_psave)
6425 /* Describe the part that goes in gprs or the stack.
6426 This piece must come first, before the fprs. */
6427 if (align_words < GP_ARG_NUM_REG)
6429 unsigned long n_words = rs6000_arg_size (mode, type);
6431 if (align_words + n_words > GP_ARG_NUM_REG
6432 || (TARGET_32BIT && TARGET_POWERPC64))
6434 /* If this is partially on the stack, then we only
6435 include the portion actually in registers here. */
6436 enum machine_mode rmode = TARGET_32BIT ? SImode : DImode;
6437 rtx off;
6438 int i = 0;
6439 if (align_words + n_words > GP_ARG_NUM_REG)
6440 /* Not all of the arg fits in gprs. Say that it
6441 goes in memory too, using a magic NULL_RTX
6442 component. Also see comment in
6443 rs6000_mixed_function_arg for why the normal
6444 function_arg_partial_nregs scheme doesn't work
6445 in this case. */
6446 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX,
6447 const0_rtx);
6450 r = gen_rtx_REG (rmode,
6451 GP_ARG_MIN_REG + align_words);
6452 off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
6453 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
6455 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
6457 else
6459 /* The whole arg fits in gprs. */
6460 r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6461 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
6464 else
6465 /* It's entirely in memory. */
6466 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6469 /* Describe where this piece goes in the fprs. */
6470 r = gen_rtx_REG (fmode, cum->fregno);
6471 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
6473 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
6475 else if (align_words < GP_ARG_NUM_REG)
6477 if (TARGET_32BIT && TARGET_POWERPC64)
6478 return rs6000_mixed_function_arg (mode, type, align_words);
6480 if (mode == BLKmode)
6481 mode = Pmode;
6483 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6485 else
6486 return NULL_RTX;
6490 /* For an arg passed partly in registers and partly in memory, this is
6491 the number of bytes passed in registers. For args passed entirely in
6492 registers or entirely in memory, zero. When an arg is described by a
6493 PARALLEL, perhaps using more than one register type, this function
6494 returns the number of bytes used by the first element of the PARALLEL. */
6496 static int
6497 rs6000_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6498 tree type, bool named)
6500 int ret = 0;
6501 int align_words;
6503 if (DEFAULT_ABI == ABI_V4)
6504 return 0;
6506 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named)
6507 && cum->nargs_prototype >= 0)
6508 return 0;
6510 /* In this complicated case we just disable the partial_nregs code. */
6511 if (rs6000_darwin64_abi && mode == BLKmode
6512 && TREE_CODE (type) == RECORD_TYPE
6513 && int_size_in_bytes (type) > 0)
6514 return 0;
6516 align_words = rs6000_parm_start (mode, type, cum->words);
6518 if (USE_FP_FOR_ARG_P (cum, mode, type))
6520 /* If we are passing this arg in the fixed parameter save area
6521 (gprs or memory) as well as fprs, then this function should
6522 return the number of partial bytes passed in the parameter
6523 save area rather than partial bytes passed in fprs. */
6524 if (type
6525 && (cum->nargs_prototype <= 0
6526 || (DEFAULT_ABI == ABI_AIX
6527 && TARGET_XL_COMPAT
6528 && align_words >= GP_ARG_NUM_REG)))
6529 return 0;
6530 else if (cum->fregno + ((GET_MODE_SIZE (mode) + 7) >> 3)
6531 > FP_ARG_MAX_REG + 1)
6532 ret = (FP_ARG_MAX_REG + 1 - cum->fregno) * 8;
6533 else if (cum->nargs_prototype >= 0)
6534 return 0;
6537 if (align_words < GP_ARG_NUM_REG
6538 && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
6539 ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);
6541 if (ret != 0 && TARGET_DEBUG_ARG)
6542 fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);
6544 return ret;
6547 /* A C expression that indicates when an argument must be passed by
6548 reference. If nonzero for an argument, a copy of that argument is
6549 made in memory and a pointer to the argument is passed instead of
6550 the argument itself. The pointer is passed in whatever way is
6551 appropriate for passing a pointer to that type.
6553 Under V.4, aggregates and long double are passed by reference.
6555 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
6556 reference unless the AltiVec vector extension ABI is in force.
6558 As an extension to all ABIs, variable sized types are passed by
6559 reference. */
6561 static bool
6562 rs6000_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
6563 enum machine_mode mode, const_tree type,
6564 bool named ATTRIBUTE_UNUSED)
6566 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && mode == TFmode)
6568 if (TARGET_DEBUG_ARG)
6569 fprintf (stderr, "function_arg_pass_by_reference: V4 long double\n");
6570 return 1;
6573 if (!type)
6574 return 0;
6576 if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
6578 if (TARGET_DEBUG_ARG)
6579 fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
6580 return 1;
6583 if (int_size_in_bytes (type) < 0)
6585 if (TARGET_DEBUG_ARG)
6586 fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
6587 return 1;
6590 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
6591 modes only exist for GCC vector types if -maltivec. */
6592 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
6594 if (TARGET_DEBUG_ARG)
6595 fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
6596 return 1;
6599 /* Pass synthetic vectors in memory. */
6600 if (TREE_CODE (type) == VECTOR_TYPE
6601 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
6603 static bool warned_for_pass_big_vectors = false;
6604 if (TARGET_DEBUG_ARG)
6605 fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
6606 if (!warned_for_pass_big_vectors)
6608 warning (0, "GCC vector passed by reference: "
6609 "non-standard ABI extension with no compatibility guarantee");
6610 warned_for_pass_big_vectors = true;
6612 return 1;
6615 return 0;
6618 static void
6619 rs6000_move_block_from_reg (int regno, rtx x, int nregs)
6621 int i;
6622 enum machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;
6624 if (nregs == 0)
6625 return;
6627 for (i = 0; i < nregs; i++)
6629 rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
6630 if (reload_completed)
6632 if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
6633 tem = NULL_RTX;
6634 else
6635 tem = simplify_gen_subreg (reg_mode, x, BLKmode,
6636 i * GET_MODE_SIZE (reg_mode));
6638 else
6639 tem = replace_equiv_address (tem, XEXP (tem, 0));
6641 gcc_assert (tem);
6643 emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
6647 /* Perform any needed actions needed for a function that is receiving a
6648 variable number of arguments.
6650 CUM is as above.
6652 MODE and TYPE are the mode and type of the current parameter.
6654 PRETEND_SIZE is a variable that should be set to the amount of stack
6655 that must be pushed by the prolog to pretend that our caller pushed
6658 Normally, this macro will push all remaining incoming registers on the
6659 stack and set PRETEND_SIZE to the length of the registers pushed. */
6661 static void
6662 setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6663 tree type, int *pretend_size ATTRIBUTE_UNUSED,
6664 int no_rtl)
6666 CUMULATIVE_ARGS next_cum;
6667 int reg_size = TARGET_32BIT ? 4 : 8;
6668 rtx save_area = NULL_RTX, mem;
6669 int first_reg_offset;
6670 alias_set_type set;
6672 /* Skip the last named argument. */
6673 next_cum = *cum;
6674 function_arg_advance (&next_cum, mode, type, 1, 0);
6676 if (DEFAULT_ABI == ABI_V4)
6678 first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;
6680 if (! no_rtl)
6682 int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
6683 HOST_WIDE_INT offset = 0;
6685 /* Try to optimize the size of the varargs save area.
6686 The ABI requires that ap.reg_save_area is doubleword
6687 aligned, but we don't need to allocate space for all
6688 the bytes, only those to which we actually will save
6689 anything. */
6690 if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
6691 gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
6692 if (TARGET_HARD_FLOAT && TARGET_FPRS
6693 && next_cum.fregno <= FP_ARG_V4_MAX_REG
6694 && cfun->va_list_fpr_size)
6696 if (gpr_reg_num)
6697 fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
6698 * UNITS_PER_FP_WORD;
6699 if (cfun->va_list_fpr_size
6700 < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
6701 fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
6702 else
6703 fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
6704 * UNITS_PER_FP_WORD;
6706 if (gpr_reg_num)
6708 offset = -((first_reg_offset * reg_size) & ~7);
6709 if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
6711 gpr_reg_num = cfun->va_list_gpr_size;
6712 if (reg_size == 4 && (first_reg_offset & 1))
6713 gpr_reg_num++;
6715 gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
6717 else if (fpr_size)
6718 offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
6719 * UNITS_PER_FP_WORD
6720 - (int) (GP_ARG_NUM_REG * reg_size);
6722 if (gpr_size + fpr_size)
6724 rtx reg_save_area
6725 = assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
6726 gcc_assert (GET_CODE (reg_save_area) == MEM);
6727 reg_save_area = XEXP (reg_save_area, 0);
6728 if (GET_CODE (reg_save_area) == PLUS)
6730 gcc_assert (XEXP (reg_save_area, 0)
6731 == virtual_stack_vars_rtx);
6732 gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
6733 offset += INTVAL (XEXP (reg_save_area, 1));
6735 else
6736 gcc_assert (reg_save_area == virtual_stack_vars_rtx);
6739 cfun->machine->varargs_save_offset = offset;
6740 save_area = plus_constant (virtual_stack_vars_rtx, offset);
6743 else
6745 first_reg_offset = next_cum.words;
6746 save_area = virtual_incoming_args_rtx;
6748 if (targetm.calls.must_pass_in_stack (mode, type))
6749 first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
6752 set = get_varargs_alias_set ();
6753 if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
6754 && cfun->va_list_gpr_size)
6756 int nregs = GP_ARG_NUM_REG - first_reg_offset;
6758 if (va_list_gpr_counter_field)
6760 /* V4 va_list_gpr_size counts number of registers needed. */
6761 if (nregs > cfun->va_list_gpr_size)
6762 nregs = cfun->va_list_gpr_size;
6764 else
6766 /* char * va_list instead counts number of bytes needed. */
6767 if (nregs > cfun->va_list_gpr_size / reg_size)
6768 nregs = cfun->va_list_gpr_size / reg_size;
6771 mem = gen_rtx_MEM (BLKmode,
6772 plus_constant (save_area,
6773 first_reg_offset * reg_size));
6774 MEM_NOTRAP_P (mem) = 1;
6775 set_mem_alias_set (mem, set);
6776 set_mem_align (mem, BITS_PER_WORD);
6778 rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
6779 nregs);
6782 /* Save FP registers if needed. */
6783 if (DEFAULT_ABI == ABI_V4
6784 && TARGET_HARD_FLOAT && TARGET_FPRS
6785 && ! no_rtl
6786 && next_cum.fregno <= FP_ARG_V4_MAX_REG
6787 && cfun->va_list_fpr_size)
6789 int fregno = next_cum.fregno, nregs;
6790 rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
6791 rtx lab = gen_label_rtx ();
6792 int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
6793 * UNITS_PER_FP_WORD);
6795 emit_jump_insn
6796 (gen_rtx_SET (VOIDmode,
6797 pc_rtx,
6798 gen_rtx_IF_THEN_ELSE (VOIDmode,
6799 gen_rtx_NE (VOIDmode, cr1,
6800 const0_rtx),
6801 gen_rtx_LABEL_REF (VOIDmode, lab),
6802 pc_rtx)));
6804 for (nregs = 0;
6805 fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
6806 fregno++, off += UNITS_PER_FP_WORD, nregs++)
6808 mem = gen_rtx_MEM ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6809 ? DFmode : SFmode,
6810 plus_constant (save_area, off));
6811 MEM_NOTRAP_P (mem) = 1;
6812 set_mem_alias_set (mem, set);
6813 set_mem_align (mem, GET_MODE_ALIGNMENT (
6814 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6815 ? DFmode : SFmode));
6816 emit_move_insn (mem, gen_rtx_REG (
6817 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6818 ? DFmode : SFmode, fregno));
6821 emit_label (lab);
6825 /* Create the va_list data type. */
6827 static tree
6828 rs6000_build_builtin_va_list (void)
6830 tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;
6832 /* For AIX, prefer 'char *' because that's what the system
6833 header files like. */
6834 if (DEFAULT_ABI != ABI_V4)
6835 return build_pointer_type (char_type_node);
6837 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
6838 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
6840 f_gpr = build_decl (FIELD_DECL, get_identifier ("gpr"),
6841 unsigned_char_type_node);
6842 f_fpr = build_decl (FIELD_DECL, get_identifier ("fpr"),
6843 unsigned_char_type_node);
6844 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
6845 every user file. */
6846 f_res = build_decl (FIELD_DECL, get_identifier ("reserved"),
6847 short_unsigned_type_node);
6848 f_ovf = build_decl (FIELD_DECL, get_identifier ("overflow_arg_area"),
6849 ptr_type_node);
6850 f_sav = build_decl (FIELD_DECL, get_identifier ("reg_save_area"),
6851 ptr_type_node);
6853 va_list_gpr_counter_field = f_gpr;
6854 va_list_fpr_counter_field = f_fpr;
6856 DECL_FIELD_CONTEXT (f_gpr) = record;
6857 DECL_FIELD_CONTEXT (f_fpr) = record;
6858 DECL_FIELD_CONTEXT (f_res) = record;
6859 DECL_FIELD_CONTEXT (f_ovf) = record;
6860 DECL_FIELD_CONTEXT (f_sav) = record;
6862 TREE_CHAIN (record) = type_decl;
6863 TYPE_NAME (record) = type_decl;
6864 TYPE_FIELDS (record) = f_gpr;
6865 TREE_CHAIN (f_gpr) = f_fpr;
6866 TREE_CHAIN (f_fpr) = f_res;
6867 TREE_CHAIN (f_res) = f_ovf;
6868 TREE_CHAIN (f_ovf) = f_sav;
6870 layout_type (record);
6872 /* The correct type is an array type of one element. */
6873 return build_array_type (record, build_index_type (size_zero_node));
6876 /* Implement va_start. */
6878 static void
6879 rs6000_va_start (tree valist, rtx nextarg)
6881 HOST_WIDE_INT words, n_gpr, n_fpr;
6882 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
6883 tree gpr, fpr, ovf, sav, t;
6885 /* Only SVR4 needs something special. */
6886 if (DEFAULT_ABI != ABI_V4)
6888 std_expand_builtin_va_start (valist, nextarg);
6889 return;
6892 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
6893 f_fpr = TREE_CHAIN (f_gpr);
6894 f_res = TREE_CHAIN (f_fpr);
6895 f_ovf = TREE_CHAIN (f_res);
6896 f_sav = TREE_CHAIN (f_ovf);
6898 valist = build_va_arg_indirect_ref (valist);
6899 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
6900 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
6901 f_fpr, NULL_TREE);
6902 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
6903 f_ovf, NULL_TREE);
6904 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
6905 f_sav, NULL_TREE);
6907 /* Count number of gp and fp argument registers used. */
6908 words = crtl->args.info.words;
6909 n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
6910 GP_ARG_NUM_REG);
6911 n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
6912 FP_ARG_NUM_REG);
6914 if (TARGET_DEBUG_ARG)
6915 fprintf (stderr, "va_start: words = "HOST_WIDE_INT_PRINT_DEC", n_gpr = "
6916 HOST_WIDE_INT_PRINT_DEC", n_fpr = "HOST_WIDE_INT_PRINT_DEC"\n",
6917 words, n_gpr, n_fpr);
6919 if (cfun->va_list_gpr_size)
6921 t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
6922 build_int_cst (NULL_TREE, n_gpr));
6923 TREE_SIDE_EFFECTS (t) = 1;
6924 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6927 if (cfun->va_list_fpr_size)
6929 t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
6930 build_int_cst (NULL_TREE, n_fpr));
6931 TREE_SIDE_EFFECTS (t) = 1;
6932 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6935 /* Find the overflow area. */
6936 t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
6937 if (words != 0)
6938 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), t,
6939 size_int (words * UNITS_PER_WORD));
6940 t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
6941 TREE_SIDE_EFFECTS (t) = 1;
6942 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6944 /* If there were no va_arg invocations, don't set up the register
6945 save area. */
6946 if (!cfun->va_list_gpr_size
6947 && !cfun->va_list_fpr_size
6948 && n_gpr < GP_ARG_NUM_REG
6949 && n_fpr < FP_ARG_V4_MAX_REG)
6950 return;
6952 /* Find the register save area. */
6953 t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
6954 if (cfun->machine->varargs_save_offset)
6955 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (sav), t,
6956 size_int (cfun->machine->varargs_save_offset));
6957 t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
6958 TREE_SIDE_EFFECTS (t) = 1;
6959 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6962 /* Implement va_arg. */
6964 tree
6965 rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
6966 gimple_seq *post_p)
6968 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
6969 tree gpr, fpr, ovf, sav, reg, t, u;
6970 int size, rsize, n_reg, sav_ofs, sav_scale;
6971 tree lab_false, lab_over, addr;
6972 int align;
6973 tree ptrtype = build_pointer_type (type);
6974 int regalign = 0;
6975 gimple stmt;
6977 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
6979 t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
6980 return build_va_arg_indirect_ref (t);
6983 if (DEFAULT_ABI != ABI_V4)
6985 if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
6987 tree elem_type = TREE_TYPE (type);
6988 enum machine_mode elem_mode = TYPE_MODE (elem_type);
6989 int elem_size = GET_MODE_SIZE (elem_mode);
6991 if (elem_size < UNITS_PER_WORD)
6993 tree real_part, imag_part;
6994 gimple_seq post = NULL;
6996 real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
6997 &post);
6998 /* Copy the value into a temporary, lest the formal temporary
6999 be reused out from under us. */
7000 real_part = get_initialized_tmp_var (real_part, pre_p, &post);
7001 gimple_seq_add_seq (pre_p, post);
7003 imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
7004 post_p);
7006 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
7010 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
7013 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
7014 f_fpr = TREE_CHAIN (f_gpr);
7015 f_res = TREE_CHAIN (f_fpr);
7016 f_ovf = TREE_CHAIN (f_res);
7017 f_sav = TREE_CHAIN (f_ovf);
7019 valist = build_va_arg_indirect_ref (valist);
7020 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
7021 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
7022 f_fpr, NULL_TREE);
7023 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
7024 f_ovf, NULL_TREE);
7025 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
7026 f_sav, NULL_TREE);
7028 size = int_size_in_bytes (type);
7029 rsize = (size + 3) / 4;
7030 align = 1;
7032 if (TARGET_HARD_FLOAT && TARGET_FPRS
7033 && ((TARGET_SINGLE_FLOAT && TYPE_MODE (type) == SFmode)
7034 || (TARGET_DOUBLE_FLOAT
7035 && (TYPE_MODE (type) == DFmode
7036 || TYPE_MODE (type) == TFmode
7037 || TYPE_MODE (type) == SDmode
7038 || TYPE_MODE (type) == DDmode
7039 || TYPE_MODE (type) == TDmode))))
7041 /* FP args go in FP registers, if present. */
7042 reg = fpr;
7043 n_reg = (size + 7) / 8;
7044 sav_ofs = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4) * 4;
7045 sav_scale = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4);
7046 if (TYPE_MODE (type) != SFmode && TYPE_MODE (type) != SDmode)
7047 align = 8;
7049 else
7051 /* Otherwise into GP registers. */
7052 reg = gpr;
7053 n_reg = rsize;
7054 sav_ofs = 0;
7055 sav_scale = 4;
7056 if (n_reg == 2)
7057 align = 8;
7060 /* Pull the value out of the saved registers.... */
7062 lab_over = NULL;
7063 addr = create_tmp_var (ptr_type_node, "addr");
7064 DECL_POINTER_ALIAS_SET (addr) = get_varargs_alias_set ();
7066 /* AltiVec vectors never go in registers when -mabi=altivec. */
7067 if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
7068 align = 16;
7069 else
7071 lab_false = create_artificial_label ();
7072 lab_over = create_artificial_label ();
7074 /* Long long and SPE vectors are aligned in the registers.
7075 As are any other 2 gpr item such as complex int due to a
7076 historical mistake. */
7077 u = reg;
7078 if (n_reg == 2 && reg == gpr)
7080 regalign = 1;
7081 u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
7082 build_int_cst (TREE_TYPE (reg), n_reg - 1));
7083 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
7084 unshare_expr (reg), u);
7086 /* _Decimal128 is passed in even/odd fpr pairs; the stored
7087 reg number is 0 for f1, so we want to make it odd. */
7088 else if (reg == fpr && TYPE_MODE (type) == TDmode)
7090 t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
7091 build_int_cst (TREE_TYPE (reg), 1));
7092 u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
7095 t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
7096 t = build2 (GE_EXPR, boolean_type_node, u, t);
7097 u = build1 (GOTO_EXPR, void_type_node, lab_false);
7098 t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
7099 gimplify_and_add (t, pre_p);
7101 t = sav;
7102 if (sav_ofs)
7103 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, size_int (sav_ofs));
7105 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
7106 build_int_cst (TREE_TYPE (reg), n_reg));
7107 u = fold_convert (sizetype, u);
7108 u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
7109 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, u);
7111 /* _Decimal32 varargs are located in the second word of the 64-bit
7112 FP register for 32-bit binaries. */
7113 if (!TARGET_POWERPC64
7114 && TARGET_HARD_FLOAT && TARGET_FPRS
7115 && TYPE_MODE (type) == SDmode)
7116 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
7118 gimplify_assign (addr, t, pre_p);
7120 gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
7122 stmt = gimple_build_label (lab_false);
7123 gimple_seq_add_stmt (pre_p, stmt);
7125 if ((n_reg == 2 && !regalign) || n_reg > 2)
7127 /* Ensure that we don't find any more args in regs.
7128 Alignment has taken care of for special cases. */
7129 gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
7133 /* ... otherwise out of the overflow area. */
7135 /* Care for on-stack alignment if needed. */
7136 t = ovf;
7137 if (align != 1)
7139 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (align - 1));
7140 t = fold_convert (sizetype, t);
7141 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
7142 size_int (-align));
7143 t = fold_convert (TREE_TYPE (ovf), t);
7145 gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
7147 gimplify_assign (unshare_expr (addr), t, pre_p);
7149 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
7150 gimplify_assign (unshare_expr (ovf), t, pre_p);
7152 if (lab_over)
7154 stmt = gimple_build_label (lab_over);
7155 gimple_seq_add_stmt (pre_p, stmt);
7158 if (STRICT_ALIGNMENT
7159 && (TYPE_ALIGN (type)
7160 > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
7162 /* The value (of type complex double, for example) may not be
7163 aligned in memory in the saved registers, so copy via a
7164 temporary. (This is the same code as used for SPARC.) */
7165 tree tmp = create_tmp_var (type, "va_arg_tmp");
7166 tree dest_addr = build_fold_addr_expr (tmp);
7168 tree copy = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY],
7169 3, dest_addr, addr, size_int (rsize * 4));
7171 gimplify_and_add (copy, pre_p);
7172 addr = dest_addr;
7175 addr = fold_convert (ptrtype, addr);
7176 return build_va_arg_indirect_ref (addr);
7179 /* Builtins. */
7181 static void
7182 def_builtin (int mask, const char *name, tree type, int code)
7184 if ((mask & target_flags) || TARGET_PAIRED_FLOAT)
7186 if (rs6000_builtin_decls[code])
7187 abort ();
7189 rs6000_builtin_decls[code] =
7190 add_builtin_function (name, type, code, BUILT_IN_MD,
7191 NULL, NULL_TREE);
7195 /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
7197 static const struct builtin_description bdesc_3arg[] =
7199 { MASK_ALTIVEC, CODE_FOR_altivec_vmaddfp, "__builtin_altivec_vmaddfp", ALTIVEC_BUILTIN_VMADDFP },
7200 { MASK_ALTIVEC, CODE_FOR_altivec_vmhaddshs, "__builtin_altivec_vmhaddshs", ALTIVEC_BUILTIN_VMHADDSHS },
7201 { MASK_ALTIVEC, CODE_FOR_altivec_vmhraddshs, "__builtin_altivec_vmhraddshs", ALTIVEC_BUILTIN_VMHRADDSHS },
7202 { MASK_ALTIVEC, CODE_FOR_altivec_vmladduhm, "__builtin_altivec_vmladduhm", ALTIVEC_BUILTIN_VMLADDUHM},
7203 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumubm, "__builtin_altivec_vmsumubm", ALTIVEC_BUILTIN_VMSUMUBM },
7204 { MASK_ALTIVEC, CODE_FOR_altivec_vmsummbm, "__builtin_altivec_vmsummbm", ALTIVEC_BUILTIN_VMSUMMBM },
7205 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhm, "__builtin_altivec_vmsumuhm", ALTIVEC_BUILTIN_VMSUMUHM },
7206 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshm, "__builtin_altivec_vmsumshm", ALTIVEC_BUILTIN_VMSUMSHM },
7207 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhs, "__builtin_altivec_vmsumuhs", ALTIVEC_BUILTIN_VMSUMUHS },
7208 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshs, "__builtin_altivec_vmsumshs", ALTIVEC_BUILTIN_VMSUMSHS },
7209 { MASK_ALTIVEC, CODE_FOR_altivec_vnmsubfp, "__builtin_altivec_vnmsubfp", ALTIVEC_BUILTIN_VNMSUBFP },
7210 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4sf, "__builtin_altivec_vperm_4sf", ALTIVEC_BUILTIN_VPERM_4SF },
7211 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4si, "__builtin_altivec_vperm_4si", ALTIVEC_BUILTIN_VPERM_4SI },
7212 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v8hi, "__builtin_altivec_vperm_8hi", ALTIVEC_BUILTIN_VPERM_8HI },
7213 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v16qi, "__builtin_altivec_vperm_16qi", ALTIVEC_BUILTIN_VPERM_16QI },
7214 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v4sf, "__builtin_altivec_vsel_4sf", ALTIVEC_BUILTIN_VSEL_4SF },
7215 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v4si, "__builtin_altivec_vsel_4si", ALTIVEC_BUILTIN_VSEL_4SI },
7216 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v8hi, "__builtin_altivec_vsel_8hi", ALTIVEC_BUILTIN_VSEL_8HI },
7217 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v16qi, "__builtin_altivec_vsel_16qi", ALTIVEC_BUILTIN_VSEL_16QI },
7218 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v16qi, "__builtin_altivec_vsldoi_16qi", ALTIVEC_BUILTIN_VSLDOI_16QI },
7219 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v8hi, "__builtin_altivec_vsldoi_8hi", ALTIVEC_BUILTIN_VSLDOI_8HI },
7220 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4si, "__builtin_altivec_vsldoi_4si", ALTIVEC_BUILTIN_VSLDOI_4SI },
7221 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4sf, "__builtin_altivec_vsldoi_4sf", ALTIVEC_BUILTIN_VSLDOI_4SF },
7223 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madd", ALTIVEC_BUILTIN_VEC_MADD },
7224 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madds", ALTIVEC_BUILTIN_VEC_MADDS },
7225 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mladd", ALTIVEC_BUILTIN_VEC_MLADD },
7226 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mradds", ALTIVEC_BUILTIN_VEC_MRADDS },
7227 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msum", ALTIVEC_BUILTIN_VEC_MSUM },
7228 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshm", ALTIVEC_BUILTIN_VEC_VMSUMSHM },
7229 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhm", ALTIVEC_BUILTIN_VEC_VMSUMUHM },
7230 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsummbm", ALTIVEC_BUILTIN_VEC_VMSUMMBM },
7231 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumubm", ALTIVEC_BUILTIN_VEC_VMSUMUBM },
7232 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msums", ALTIVEC_BUILTIN_VEC_MSUMS },
7233 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshs", ALTIVEC_BUILTIN_VEC_VMSUMSHS },
7234 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhs", ALTIVEC_BUILTIN_VEC_VMSUMUHS },
7235 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nmsub", ALTIVEC_BUILTIN_VEC_NMSUB },
7236 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_perm", ALTIVEC_BUILTIN_VEC_PERM },
7237 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sel", ALTIVEC_BUILTIN_VEC_SEL },
7239 { 0, CODE_FOR_paired_msub, "__builtin_paired_msub", PAIRED_BUILTIN_MSUB },
7240 { 0, CODE_FOR_paired_madd, "__builtin_paired_madd", PAIRED_BUILTIN_MADD },
7241 { 0, CODE_FOR_paired_madds0, "__builtin_paired_madds0", PAIRED_BUILTIN_MADDS0 },
7242 { 0, CODE_FOR_paired_madds1, "__builtin_paired_madds1", PAIRED_BUILTIN_MADDS1 },
7243 { 0, CODE_FOR_paired_nmsub, "__builtin_paired_nmsub", PAIRED_BUILTIN_NMSUB },
7244 { 0, CODE_FOR_paired_nmadd, "__builtin_paired_nmadd", PAIRED_BUILTIN_NMADD },
7245 { 0, CODE_FOR_paired_sum0, "__builtin_paired_sum0", PAIRED_BUILTIN_SUM0 },
7246 { 0, CODE_FOR_paired_sum1, "__builtin_paired_sum1", PAIRED_BUILTIN_SUM1 },
7247 { 0, CODE_FOR_selv2sf4, "__builtin_paired_selv2sf4", PAIRED_BUILTIN_SELV2SF4 },
7250 /* DST operations: void foo (void *, const int, const char). */
7252 static const struct builtin_description bdesc_dst[] =
7254 { MASK_ALTIVEC, CODE_FOR_altivec_dst, "__builtin_altivec_dst", ALTIVEC_BUILTIN_DST },
7255 { MASK_ALTIVEC, CODE_FOR_altivec_dstt, "__builtin_altivec_dstt", ALTIVEC_BUILTIN_DSTT },
7256 { MASK_ALTIVEC, CODE_FOR_altivec_dstst, "__builtin_altivec_dstst", ALTIVEC_BUILTIN_DSTST },
7257 { MASK_ALTIVEC, CODE_FOR_altivec_dststt, "__builtin_altivec_dststt", ALTIVEC_BUILTIN_DSTSTT },
7259 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dst", ALTIVEC_BUILTIN_VEC_DST },
7260 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstt", ALTIVEC_BUILTIN_VEC_DSTT },
7261 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstst", ALTIVEC_BUILTIN_VEC_DSTST },
7262 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dststt", ALTIVEC_BUILTIN_VEC_DSTSTT }
7265 /* Simple binary operations: VECc = foo (VECa, VECb). */
7267 static struct builtin_description bdesc_2arg[] =
7269 { MASK_ALTIVEC, CODE_FOR_addv16qi3, "__builtin_altivec_vaddubm", ALTIVEC_BUILTIN_VADDUBM },
7270 { MASK_ALTIVEC, CODE_FOR_addv8hi3, "__builtin_altivec_vadduhm", ALTIVEC_BUILTIN_VADDUHM },
7271 { MASK_ALTIVEC, CODE_FOR_addv4si3, "__builtin_altivec_vadduwm", ALTIVEC_BUILTIN_VADDUWM },
7272 { MASK_ALTIVEC, CODE_FOR_addv4sf3, "__builtin_altivec_vaddfp", ALTIVEC_BUILTIN_VADDFP },
7273 { MASK_ALTIVEC, CODE_FOR_altivec_vaddcuw, "__builtin_altivec_vaddcuw", ALTIVEC_BUILTIN_VADDCUW },
7274 { MASK_ALTIVEC, CODE_FOR_altivec_vaddubs, "__builtin_altivec_vaddubs", ALTIVEC_BUILTIN_VADDUBS },
7275 { MASK_ALTIVEC, CODE_FOR_altivec_vaddsbs, "__builtin_altivec_vaddsbs", ALTIVEC_BUILTIN_VADDSBS },
7276 { MASK_ALTIVEC, CODE_FOR_altivec_vadduhs, "__builtin_altivec_vadduhs", ALTIVEC_BUILTIN_VADDUHS },
7277 { MASK_ALTIVEC, CODE_FOR_altivec_vaddshs, "__builtin_altivec_vaddshs", ALTIVEC_BUILTIN_VADDSHS },
7278 { MASK_ALTIVEC, CODE_FOR_altivec_vadduws, "__builtin_altivec_vadduws", ALTIVEC_BUILTIN_VADDUWS },
7279 { MASK_ALTIVEC, CODE_FOR_altivec_vaddsws, "__builtin_altivec_vaddsws", ALTIVEC_BUILTIN_VADDSWS },
7280 { MASK_ALTIVEC, CODE_FOR_andv4si3, "__builtin_altivec_vand", ALTIVEC_BUILTIN_VAND },
7281 { MASK_ALTIVEC, CODE_FOR_andcv4si3, "__builtin_altivec_vandc", ALTIVEC_BUILTIN_VANDC },
7282 { MASK_ALTIVEC, CODE_FOR_altivec_vavgub, "__builtin_altivec_vavgub", ALTIVEC_BUILTIN_VAVGUB },
7283 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsb, "__builtin_altivec_vavgsb", ALTIVEC_BUILTIN_VAVGSB },
7284 { MASK_ALTIVEC, CODE_FOR_altivec_vavguh, "__builtin_altivec_vavguh", ALTIVEC_BUILTIN_VAVGUH },
7285 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsh, "__builtin_altivec_vavgsh", ALTIVEC_BUILTIN_VAVGSH },
7286 { MASK_ALTIVEC, CODE_FOR_altivec_vavguw, "__builtin_altivec_vavguw", ALTIVEC_BUILTIN_VAVGUW },
7287 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsw, "__builtin_altivec_vavgsw", ALTIVEC_BUILTIN_VAVGSW },
7288 { MASK_ALTIVEC, CODE_FOR_altivec_vcfux, "__builtin_altivec_vcfux", ALTIVEC_BUILTIN_VCFUX },
7289 { MASK_ALTIVEC, CODE_FOR_altivec_vcfsx, "__builtin_altivec_vcfsx", ALTIVEC_BUILTIN_VCFSX },
7290 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpbfp, "__builtin_altivec_vcmpbfp", ALTIVEC_BUILTIN_VCMPBFP },
7291 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequb, "__builtin_altivec_vcmpequb", ALTIVEC_BUILTIN_VCMPEQUB },
7292 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequh, "__builtin_altivec_vcmpequh", ALTIVEC_BUILTIN_VCMPEQUH },
7293 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequw, "__builtin_altivec_vcmpequw", ALTIVEC_BUILTIN_VCMPEQUW },
7294 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpeqfp, "__builtin_altivec_vcmpeqfp", ALTIVEC_BUILTIN_VCMPEQFP },
7295 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgefp, "__builtin_altivec_vcmpgefp", ALTIVEC_BUILTIN_VCMPGEFP },
7296 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtub, "__builtin_altivec_vcmpgtub", ALTIVEC_BUILTIN_VCMPGTUB },
7297 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsb, "__builtin_altivec_vcmpgtsb", ALTIVEC_BUILTIN_VCMPGTSB },
7298 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuh, "__builtin_altivec_vcmpgtuh", ALTIVEC_BUILTIN_VCMPGTUH },
7299 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsh, "__builtin_altivec_vcmpgtsh", ALTIVEC_BUILTIN_VCMPGTSH },
7300 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuw, "__builtin_altivec_vcmpgtuw", ALTIVEC_BUILTIN_VCMPGTUW },
7301 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsw, "__builtin_altivec_vcmpgtsw", ALTIVEC_BUILTIN_VCMPGTSW },
7302 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtfp, "__builtin_altivec_vcmpgtfp", ALTIVEC_BUILTIN_VCMPGTFP },
7303 { MASK_ALTIVEC, CODE_FOR_altivec_vctsxs, "__builtin_altivec_vctsxs", ALTIVEC_BUILTIN_VCTSXS },
7304 { MASK_ALTIVEC, CODE_FOR_altivec_vctuxs, "__builtin_altivec_vctuxs", ALTIVEC_BUILTIN_VCTUXS },
7305 { MASK_ALTIVEC, CODE_FOR_umaxv16qi3, "__builtin_altivec_vmaxub", ALTIVEC_BUILTIN_VMAXUB },
7306 { MASK_ALTIVEC, CODE_FOR_smaxv16qi3, "__builtin_altivec_vmaxsb", ALTIVEC_BUILTIN_VMAXSB },
7307 { MASK_ALTIVEC, CODE_FOR_umaxv8hi3, "__builtin_altivec_vmaxuh", ALTIVEC_BUILTIN_VMAXUH },
7308 { MASK_ALTIVEC, CODE_FOR_smaxv8hi3, "__builtin_altivec_vmaxsh", ALTIVEC_BUILTIN_VMAXSH },
7309 { MASK_ALTIVEC, CODE_FOR_umaxv4si3, "__builtin_altivec_vmaxuw", ALTIVEC_BUILTIN_VMAXUW },
7310 { MASK_ALTIVEC, CODE_FOR_smaxv4si3, "__builtin_altivec_vmaxsw", ALTIVEC_BUILTIN_VMAXSW },
7311 { MASK_ALTIVEC, CODE_FOR_smaxv4sf3, "__builtin_altivec_vmaxfp", ALTIVEC_BUILTIN_VMAXFP },
7312 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghb, "__builtin_altivec_vmrghb", ALTIVEC_BUILTIN_VMRGHB },
7313 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghh, "__builtin_altivec_vmrghh", ALTIVEC_BUILTIN_VMRGHH },
7314 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghw, "__builtin_altivec_vmrghw", ALTIVEC_BUILTIN_VMRGHW },
7315 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglb, "__builtin_altivec_vmrglb", ALTIVEC_BUILTIN_VMRGLB },
7316 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglh, "__builtin_altivec_vmrglh", ALTIVEC_BUILTIN_VMRGLH },
7317 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglw, "__builtin_altivec_vmrglw", ALTIVEC_BUILTIN_VMRGLW },
7318 { MASK_ALTIVEC, CODE_FOR_uminv16qi3, "__builtin_altivec_vminub", ALTIVEC_BUILTIN_VMINUB },
7319 { MASK_ALTIVEC, CODE_FOR_sminv16qi3, "__builtin_altivec_vminsb", ALTIVEC_BUILTIN_VMINSB },
7320 { MASK_ALTIVEC, CODE_FOR_uminv8hi3, "__builtin_altivec_vminuh", ALTIVEC_BUILTIN_VMINUH },
7321 { MASK_ALTIVEC, CODE_FOR_sminv8hi3, "__builtin_altivec_vminsh", ALTIVEC_BUILTIN_VMINSH },
7322 { MASK_ALTIVEC, CODE_FOR_uminv4si3, "__builtin_altivec_vminuw", ALTIVEC_BUILTIN_VMINUW },
7323 { MASK_ALTIVEC, CODE_FOR_sminv4si3, "__builtin_altivec_vminsw", ALTIVEC_BUILTIN_VMINSW },
7324 { MASK_ALTIVEC, CODE_FOR_sminv4sf3, "__builtin_altivec_vminfp", ALTIVEC_BUILTIN_VMINFP },
7325 { MASK_ALTIVEC, CODE_FOR_altivec_vmuleub, "__builtin_altivec_vmuleub", ALTIVEC_BUILTIN_VMULEUB },
7326 { MASK_ALTIVEC, CODE_FOR_altivec_vmulesb, "__builtin_altivec_vmulesb", ALTIVEC_BUILTIN_VMULESB },
7327 { MASK_ALTIVEC, CODE_FOR_altivec_vmuleuh, "__builtin_altivec_vmuleuh", ALTIVEC_BUILTIN_VMULEUH },
7328 { MASK_ALTIVEC, CODE_FOR_altivec_vmulesh, "__builtin_altivec_vmulesh", ALTIVEC_BUILTIN_VMULESH },
7329 { MASK_ALTIVEC, CODE_FOR_altivec_vmuloub, "__builtin_altivec_vmuloub", ALTIVEC_BUILTIN_VMULOUB },
7330 { MASK_ALTIVEC, CODE_FOR_altivec_vmulosb, "__builtin_altivec_vmulosb", ALTIVEC_BUILTIN_VMULOSB },
7331 { MASK_ALTIVEC, CODE_FOR_altivec_vmulouh, "__builtin_altivec_vmulouh", ALTIVEC_BUILTIN_VMULOUH },
7332 { MASK_ALTIVEC, CODE_FOR_altivec_vmulosh, "__builtin_altivec_vmulosh", ALTIVEC_BUILTIN_VMULOSH },
7333 { MASK_ALTIVEC, CODE_FOR_altivec_norv4si3, "__builtin_altivec_vnor", ALTIVEC_BUILTIN_VNOR },
7334 { MASK_ALTIVEC, CODE_FOR_iorv4si3, "__builtin_altivec_vor", ALTIVEC_BUILTIN_VOR },
7335 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum, "__builtin_altivec_vpkuhum", ALTIVEC_BUILTIN_VPKUHUM },
7336 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum, "__builtin_altivec_vpkuwum", ALTIVEC_BUILTIN_VPKUWUM },
7337 { MASK_ALTIVEC, CODE_FOR_altivec_vpkpx, "__builtin_altivec_vpkpx", ALTIVEC_BUILTIN_VPKPX },
7338 { MASK_ALTIVEC, CODE_FOR_altivec_vpkshss, "__builtin_altivec_vpkshss", ALTIVEC_BUILTIN_VPKSHSS },
7339 { MASK_ALTIVEC, CODE_FOR_altivec_vpkswss, "__builtin_altivec_vpkswss", ALTIVEC_BUILTIN_VPKSWSS },
7340 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhus, "__builtin_altivec_vpkuhus", ALTIVEC_BUILTIN_VPKUHUS },
7341 { MASK_ALTIVEC, CODE_FOR_altivec_vpkshus, "__builtin_altivec_vpkshus", ALTIVEC_BUILTIN_VPKSHUS },
7342 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwus, "__builtin_altivec_vpkuwus", ALTIVEC_BUILTIN_VPKUWUS },
7343 { MASK_ALTIVEC, CODE_FOR_altivec_vpkswus, "__builtin_altivec_vpkswus", ALTIVEC_BUILTIN_VPKSWUS },
7344 { MASK_ALTIVEC, CODE_FOR_altivec_vrlb, "__builtin_altivec_vrlb", ALTIVEC_BUILTIN_VRLB },
7345 { MASK_ALTIVEC, CODE_FOR_altivec_vrlh, "__builtin_altivec_vrlh", ALTIVEC_BUILTIN_VRLH },
7346 { MASK_ALTIVEC, CODE_FOR_altivec_vrlw, "__builtin_altivec_vrlw", ALTIVEC_BUILTIN_VRLW },
7347 { MASK_ALTIVEC, CODE_FOR_vashlv16qi3, "__builtin_altivec_vslb", ALTIVEC_BUILTIN_VSLB },
7348 { MASK_ALTIVEC, CODE_FOR_vashlv8hi3, "__builtin_altivec_vslh", ALTIVEC_BUILTIN_VSLH },
7349 { MASK_ALTIVEC, CODE_FOR_vashlv4si3, "__builtin_altivec_vslw", ALTIVEC_BUILTIN_VSLW },
7350 { MASK_ALTIVEC, CODE_FOR_altivec_vsl, "__builtin_altivec_vsl", ALTIVEC_BUILTIN_VSL },
7351 { MASK_ALTIVEC, CODE_FOR_altivec_vslo, "__builtin_altivec_vslo", ALTIVEC_BUILTIN_VSLO },
7352 { MASK_ALTIVEC, CODE_FOR_altivec_vspltb, "__builtin_altivec_vspltb", ALTIVEC_BUILTIN_VSPLTB },
7353 { MASK_ALTIVEC, CODE_FOR_altivec_vsplth, "__builtin_altivec_vsplth", ALTIVEC_BUILTIN_VSPLTH },
7354 { MASK_ALTIVEC, CODE_FOR_altivec_vspltw, "__builtin_altivec_vspltw", ALTIVEC_BUILTIN_VSPLTW },
7355 { MASK_ALTIVEC, CODE_FOR_vlshrv16qi3, "__builtin_altivec_vsrb", ALTIVEC_BUILTIN_VSRB },
7356 { MASK_ALTIVEC, CODE_FOR_vlshrv8hi3, "__builtin_altivec_vsrh", ALTIVEC_BUILTIN_VSRH },
7357 { MASK_ALTIVEC, CODE_FOR_vlshrv4si3, "__builtin_altivec_vsrw", ALTIVEC_BUILTIN_VSRW },
7358 { MASK_ALTIVEC, CODE_FOR_vashrv16qi3, "__builtin_altivec_vsrab", ALTIVEC_BUILTIN_VSRAB },
7359 { MASK_ALTIVEC, CODE_FOR_vashrv8hi3, "__builtin_altivec_vsrah", ALTIVEC_BUILTIN_VSRAH },
7360 { MASK_ALTIVEC, CODE_FOR_vashrv4si3, "__builtin_altivec_vsraw", ALTIVEC_BUILTIN_VSRAW },
7361 { MASK_ALTIVEC, CODE_FOR_altivec_vsr, "__builtin_altivec_vsr", ALTIVEC_BUILTIN_VSR },
7362 { MASK_ALTIVEC, CODE_FOR_altivec_vsro, "__builtin_altivec_vsro", ALTIVEC_BUILTIN_VSRO },
7363 { MASK_ALTIVEC, CODE_FOR_subv16qi3, "__builtin_altivec_vsububm", ALTIVEC_BUILTIN_VSUBUBM },
7364 { MASK_ALTIVEC, CODE_FOR_subv8hi3, "__builtin_altivec_vsubuhm", ALTIVEC_BUILTIN_VSUBUHM },
7365 { MASK_ALTIVEC, CODE_FOR_subv4si3, "__builtin_altivec_vsubuwm", ALTIVEC_BUILTIN_VSUBUWM },
7366 { MASK_ALTIVEC, CODE_FOR_subv4sf3, "__builtin_altivec_vsubfp", ALTIVEC_BUILTIN_VSUBFP },
7367 { MASK_ALTIVEC, CODE_FOR_altivec_vsubcuw, "__builtin_altivec_vsubcuw", ALTIVEC_BUILTIN_VSUBCUW },
7368 { MASK_ALTIVEC, CODE_FOR_altivec_vsububs, "__builtin_altivec_vsububs", ALTIVEC_BUILTIN_VSUBUBS },
7369 { MASK_ALTIVEC, CODE_FOR_altivec_vsubsbs, "__builtin_altivec_vsubsbs", ALTIVEC_BUILTIN_VSUBSBS },
7370 { MASK_ALTIVEC, CODE_FOR_altivec_vsubuhs, "__builtin_altivec_vsubuhs", ALTIVEC_BUILTIN_VSUBUHS },
7371 { MASK_ALTIVEC, CODE_FOR_altivec_vsubshs, "__builtin_altivec_vsubshs", ALTIVEC_BUILTIN_VSUBSHS },
7372 { MASK_ALTIVEC, CODE_FOR_altivec_vsubuws, "__builtin_altivec_vsubuws", ALTIVEC_BUILTIN_VSUBUWS },
7373 { MASK_ALTIVEC, CODE_FOR_altivec_vsubsws, "__builtin_altivec_vsubsws", ALTIVEC_BUILTIN_VSUBSWS },
7374 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4ubs, "__builtin_altivec_vsum4ubs", ALTIVEC_BUILTIN_VSUM4UBS },
7375 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4sbs, "__builtin_altivec_vsum4sbs", ALTIVEC_BUILTIN_VSUM4SBS },
7376 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4shs, "__builtin_altivec_vsum4shs", ALTIVEC_BUILTIN_VSUM4SHS },
7377 { MASK_ALTIVEC, CODE_FOR_altivec_vsum2sws, "__builtin_altivec_vsum2sws", ALTIVEC_BUILTIN_VSUM2SWS },
7378 { MASK_ALTIVEC, CODE_FOR_altivec_vsumsws, "__builtin_altivec_vsumsws", ALTIVEC_BUILTIN_VSUMSWS },
7379 { MASK_ALTIVEC, CODE_FOR_xorv4si3, "__builtin_altivec_vxor", ALTIVEC_BUILTIN_VXOR },
7381 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_add", ALTIVEC_BUILTIN_VEC_ADD },
7382 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddfp", ALTIVEC_BUILTIN_VEC_VADDFP },
7383 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduwm", ALTIVEC_BUILTIN_VEC_VADDUWM },
7384 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhm", ALTIVEC_BUILTIN_VEC_VADDUHM },
7385 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubm", ALTIVEC_BUILTIN_VEC_VADDUBM },
7386 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_addc", ALTIVEC_BUILTIN_VEC_ADDC },
7387 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_adds", ALTIVEC_BUILTIN_VEC_ADDS },
7388 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsws", ALTIVEC_BUILTIN_VEC_VADDSWS },
7389 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduws", ALTIVEC_BUILTIN_VEC_VADDUWS },
7390 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddshs", ALTIVEC_BUILTIN_VEC_VADDSHS },
7391 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhs", ALTIVEC_BUILTIN_VEC_VADDUHS },
7392 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsbs", ALTIVEC_BUILTIN_VEC_VADDSBS },
7393 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubs", ALTIVEC_BUILTIN_VEC_VADDUBS },
7394 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_and", ALTIVEC_BUILTIN_VEC_AND },
7395 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_andc", ALTIVEC_BUILTIN_VEC_ANDC },
7396 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_avg", ALTIVEC_BUILTIN_VEC_AVG },
7397 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsw", ALTIVEC_BUILTIN_VEC_VAVGSW },
7398 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguw", ALTIVEC_BUILTIN_VEC_VAVGUW },
7399 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsh", ALTIVEC_BUILTIN_VEC_VAVGSH },
7400 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguh", ALTIVEC_BUILTIN_VEC_VAVGUH },
7401 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsb", ALTIVEC_BUILTIN_VEC_VAVGSB },
7402 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgub", ALTIVEC_BUILTIN_VEC_VAVGUB },
7403 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpb", ALTIVEC_BUILTIN_VEC_CMPB },
7404 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpeq", ALTIVEC_BUILTIN_VEC_CMPEQ },
7405 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpeqfp", ALTIVEC_BUILTIN_VEC_VCMPEQFP },
7406 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequw", ALTIVEC_BUILTIN_VEC_VCMPEQUW },
7407 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequh", ALTIVEC_BUILTIN_VEC_VCMPEQUH },
7408 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequb", ALTIVEC_BUILTIN_VEC_VCMPEQUB },
7409 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpge", ALTIVEC_BUILTIN_VEC_CMPGE },
7410 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpgt", ALTIVEC_BUILTIN_VEC_CMPGT },
7411 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtfp", ALTIVEC_BUILTIN_VEC_VCMPGTFP },
7412 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsw", ALTIVEC_BUILTIN_VEC_VCMPGTSW },
7413 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuw", ALTIVEC_BUILTIN_VEC_VCMPGTUW },
7414 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsh", ALTIVEC_BUILTIN_VEC_VCMPGTSH },
7415 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuh", ALTIVEC_BUILTIN_VEC_VCMPGTUH },
7416 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsb", ALTIVEC_BUILTIN_VEC_VCMPGTSB },
7417 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtub", ALTIVEC_BUILTIN_VEC_VCMPGTUB },
7418 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmple", ALTIVEC_BUILTIN_VEC_CMPLE },
7419 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmplt", ALTIVEC_BUILTIN_VEC_CMPLT },
7420 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_max", ALTIVEC_BUILTIN_VEC_MAX },
7421 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxfp", ALTIVEC_BUILTIN_VEC_VMAXFP },
7422 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsw", ALTIVEC_BUILTIN_VEC_VMAXSW },
7423 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuw", ALTIVEC_BUILTIN_VEC_VMAXUW },
7424 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsh", ALTIVEC_BUILTIN_VEC_VMAXSH },
7425 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuh", ALTIVEC_BUILTIN_VEC_VMAXUH },
7426 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsb", ALTIVEC_BUILTIN_VEC_VMAXSB },
7427 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxub", ALTIVEC_BUILTIN_VEC_VMAXUB },
7428 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergeh", ALTIVEC_BUILTIN_VEC_MERGEH },
7429 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghw", ALTIVEC_BUILTIN_VEC_VMRGHW },
7430 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghh", ALTIVEC_BUILTIN_VEC_VMRGHH },
7431 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghb", ALTIVEC_BUILTIN_VEC_VMRGHB },
7432 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergel", ALTIVEC_BUILTIN_VEC_MERGEL },
7433 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglw", ALTIVEC_BUILTIN_VEC_VMRGLW },
7434 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglh", ALTIVEC_BUILTIN_VEC_VMRGLH },
7435 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglb", ALTIVEC_BUILTIN_VEC_VMRGLB },
7436 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_min", ALTIVEC_BUILTIN_VEC_MIN },
7437 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminfp", ALTIVEC_BUILTIN_VEC_VMINFP },
7438 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsw", ALTIVEC_BUILTIN_VEC_VMINSW },
7439 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuw", ALTIVEC_BUILTIN_VEC_VMINUW },
7440 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsh", ALTIVEC_BUILTIN_VEC_VMINSH },
7441 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuh", ALTIVEC_BUILTIN_VEC_VMINUH },
7442 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsb", ALTIVEC_BUILTIN_VEC_VMINSB },
7443 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminub", ALTIVEC_BUILTIN_VEC_VMINUB },
7444 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mule", ALTIVEC_BUILTIN_VEC_MULE },
7445 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleub", ALTIVEC_BUILTIN_VEC_VMULEUB },
7446 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesb", ALTIVEC_BUILTIN_VEC_VMULESB },
7447 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleuh", ALTIVEC_BUILTIN_VEC_VMULEUH },
7448 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesh", ALTIVEC_BUILTIN_VEC_VMULESH },
7449 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mulo", ALTIVEC_BUILTIN_VEC_MULO },
7450 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosh", ALTIVEC_BUILTIN_VEC_VMULOSH },
7451 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulouh", ALTIVEC_BUILTIN_VEC_VMULOUH },
7452 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosb", ALTIVEC_BUILTIN_VEC_VMULOSB },
7453 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuloub", ALTIVEC_BUILTIN_VEC_VMULOUB },
7454 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nor", ALTIVEC_BUILTIN_VEC_NOR },
7455 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_or", ALTIVEC_BUILTIN_VEC_OR },
7456 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_pack", ALTIVEC_BUILTIN_VEC_PACK },
7457 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwum", ALTIVEC_BUILTIN_VEC_VPKUWUM },
7458 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhum", ALTIVEC_BUILTIN_VEC_VPKUHUM },
7459 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packpx", ALTIVEC_BUILTIN_VEC_PACKPX },
7460 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packs", ALTIVEC_BUILTIN_VEC_PACKS },
7461 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswss", ALTIVEC_BUILTIN_VEC_VPKSWSS },
7462 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwus", ALTIVEC_BUILTIN_VEC_VPKUWUS },
7463 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshss", ALTIVEC_BUILTIN_VEC_VPKSHSS },
7464 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhus", ALTIVEC_BUILTIN_VEC_VPKUHUS },
7465 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packsu", ALTIVEC_BUILTIN_VEC_PACKSU },
7466 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswus", ALTIVEC_BUILTIN_VEC_VPKSWUS },
7467 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshus", ALTIVEC_BUILTIN_VEC_VPKSHUS },
7468 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rl", ALTIVEC_BUILTIN_VEC_RL },
7469 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlw", ALTIVEC_BUILTIN_VEC_VRLW },
7470 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlh", ALTIVEC_BUILTIN_VEC_VRLH },
7471 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlb", ALTIVEC_BUILTIN_VEC_VRLB },
7472 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sl", ALTIVEC_BUILTIN_VEC_SL },
7473 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslw", ALTIVEC_BUILTIN_VEC_VSLW },
7474 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslh", ALTIVEC_BUILTIN_VEC_VSLH },
7475 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslb", ALTIVEC_BUILTIN_VEC_VSLB },
7476 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sll", ALTIVEC_BUILTIN_VEC_SLL },
7477 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_slo", ALTIVEC_BUILTIN_VEC_SLO },
7478 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sr", ALTIVEC_BUILTIN_VEC_SR },
7479 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrw", ALTIVEC_BUILTIN_VEC_VSRW },
7480 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrh", ALTIVEC_BUILTIN_VEC_VSRH },
7481 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrb", ALTIVEC_BUILTIN_VEC_VSRB },
7482 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sra", ALTIVEC_BUILTIN_VEC_SRA },
7483 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsraw", ALTIVEC_BUILTIN_VEC_VSRAW },
7484 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrah", ALTIVEC_BUILTIN_VEC_VSRAH },
7485 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrab", ALTIVEC_BUILTIN_VEC_VSRAB },
7486 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_srl", ALTIVEC_BUILTIN_VEC_SRL },
7487 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sro", ALTIVEC_BUILTIN_VEC_SRO },
7488 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sub", ALTIVEC_BUILTIN_VEC_SUB },
7489 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubfp", ALTIVEC_BUILTIN_VEC_VSUBFP },
7490 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuwm", ALTIVEC_BUILTIN_VEC_VSUBUWM },
7491 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhm", ALTIVEC_BUILTIN_VEC_VSUBUHM },
7492 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububm", ALTIVEC_BUILTIN_VEC_VSUBUBM },
7493 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subc", ALTIVEC_BUILTIN_VEC_SUBC },
7494 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subs", ALTIVEC_BUILTIN_VEC_SUBS },
7495 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsws", ALTIVEC_BUILTIN_VEC_VSUBSWS },
7496 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuws", ALTIVEC_BUILTIN_VEC_VSUBUWS },
7497 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubshs", ALTIVEC_BUILTIN_VEC_VSUBSHS },
7498 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhs", ALTIVEC_BUILTIN_VEC_VSUBUHS },
7499 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsbs", ALTIVEC_BUILTIN_VEC_VSUBSBS },
7500 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububs", ALTIVEC_BUILTIN_VEC_VSUBUBS },
7501 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum4s", ALTIVEC_BUILTIN_VEC_SUM4S },
7502 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4shs", ALTIVEC_BUILTIN_VEC_VSUM4SHS },
7503 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4sbs", ALTIVEC_BUILTIN_VEC_VSUM4SBS },
7504 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4ubs", ALTIVEC_BUILTIN_VEC_VSUM4UBS },
7505 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum2s", ALTIVEC_BUILTIN_VEC_SUM2S },
7506 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sums", ALTIVEC_BUILTIN_VEC_SUMS },
7507 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_xor", ALTIVEC_BUILTIN_VEC_XOR },
7509 { 0, CODE_FOR_divv2sf3, "__builtin_paired_divv2sf3", PAIRED_BUILTIN_DIVV2SF3 },
7510 { 0, CODE_FOR_addv2sf3, "__builtin_paired_addv2sf3", PAIRED_BUILTIN_ADDV2SF3 },
7511 { 0, CODE_FOR_subv2sf3, "__builtin_paired_subv2sf3", PAIRED_BUILTIN_SUBV2SF3 },
7512 { 0, CODE_FOR_mulv2sf3, "__builtin_paired_mulv2sf3", PAIRED_BUILTIN_MULV2SF3 },
7513 { 0, CODE_FOR_paired_muls0, "__builtin_paired_muls0", PAIRED_BUILTIN_MULS0 },
7514 { 0, CODE_FOR_paired_muls1, "__builtin_paired_muls1", PAIRED_BUILTIN_MULS1 },
7515 { 0, CODE_FOR_paired_merge00, "__builtin_paired_merge00", PAIRED_BUILTIN_MERGE00 },
7516 { 0, CODE_FOR_paired_merge01, "__builtin_paired_merge01", PAIRED_BUILTIN_MERGE01 },
7517 { 0, CODE_FOR_paired_merge10, "__builtin_paired_merge10", PAIRED_BUILTIN_MERGE10 },
7518 { 0, CODE_FOR_paired_merge11, "__builtin_paired_merge11", PAIRED_BUILTIN_MERGE11 },
7520 /* Place holder, leave as first spe builtin. */
7521 { 0, CODE_FOR_spe_evaddw, "__builtin_spe_evaddw", SPE_BUILTIN_EVADDW },
7522 { 0, CODE_FOR_spe_evand, "__builtin_spe_evand", SPE_BUILTIN_EVAND },
7523 { 0, CODE_FOR_spe_evandc, "__builtin_spe_evandc", SPE_BUILTIN_EVANDC },
7524 { 0, CODE_FOR_spe_evdivws, "__builtin_spe_evdivws", SPE_BUILTIN_EVDIVWS },
7525 { 0, CODE_FOR_spe_evdivwu, "__builtin_spe_evdivwu", SPE_BUILTIN_EVDIVWU },
7526 { 0, CODE_FOR_spe_eveqv, "__builtin_spe_eveqv", SPE_BUILTIN_EVEQV },
7527 { 0, CODE_FOR_spe_evfsadd, "__builtin_spe_evfsadd", SPE_BUILTIN_EVFSADD },
7528 { 0, CODE_FOR_spe_evfsdiv, "__builtin_spe_evfsdiv", SPE_BUILTIN_EVFSDIV },
7529 { 0, CODE_FOR_spe_evfsmul, "__builtin_spe_evfsmul", SPE_BUILTIN_EVFSMUL },
7530 { 0, CODE_FOR_spe_evfssub, "__builtin_spe_evfssub", SPE_BUILTIN_EVFSSUB },
7531 { 0, CODE_FOR_spe_evmergehi, "__builtin_spe_evmergehi", SPE_BUILTIN_EVMERGEHI },
7532 { 0, CODE_FOR_spe_evmergehilo, "__builtin_spe_evmergehilo", SPE_BUILTIN_EVMERGEHILO },
7533 { 0, CODE_FOR_spe_evmergelo, "__builtin_spe_evmergelo", SPE_BUILTIN_EVMERGELO },
7534 { 0, CODE_FOR_spe_evmergelohi, "__builtin_spe_evmergelohi", SPE_BUILTIN_EVMERGELOHI },
7535 { 0, CODE_FOR_spe_evmhegsmfaa, "__builtin_spe_evmhegsmfaa", SPE_BUILTIN_EVMHEGSMFAA },
7536 { 0, CODE_FOR_spe_evmhegsmfan, "__builtin_spe_evmhegsmfan", SPE_BUILTIN_EVMHEGSMFAN },
7537 { 0, CODE_FOR_spe_evmhegsmiaa, "__builtin_spe_evmhegsmiaa", SPE_BUILTIN_EVMHEGSMIAA },
7538 { 0, CODE_FOR_spe_evmhegsmian, "__builtin_spe_evmhegsmian", SPE_BUILTIN_EVMHEGSMIAN },
7539 { 0, CODE_FOR_spe_evmhegumiaa, "__builtin_spe_evmhegumiaa", SPE_BUILTIN_EVMHEGUMIAA },
7540 { 0, CODE_FOR_spe_evmhegumian, "__builtin_spe_evmhegumian", SPE_BUILTIN_EVMHEGUMIAN },
7541 { 0, CODE_FOR_spe_evmhesmf, "__builtin_spe_evmhesmf", SPE_BUILTIN_EVMHESMF },
7542 { 0, CODE_FOR_spe_evmhesmfa, "__builtin_spe_evmhesmfa", SPE_BUILTIN_EVMHESMFA },
7543 { 0, CODE_FOR_spe_evmhesmfaaw, "__builtin_spe_evmhesmfaaw", SPE_BUILTIN_EVMHESMFAAW },
7544 { 0, CODE_FOR_spe_evmhesmfanw, "__builtin_spe_evmhesmfanw", SPE_BUILTIN_EVMHESMFANW },
7545 { 0, CODE_FOR_spe_evmhesmi, "__builtin_spe_evmhesmi", SPE_BUILTIN_EVMHESMI },
7546 { 0, CODE_FOR_spe_evmhesmia, "__builtin_spe_evmhesmia", SPE_BUILTIN_EVMHESMIA },
7547 { 0, CODE_FOR_spe_evmhesmiaaw, "__builtin_spe_evmhesmiaaw", SPE_BUILTIN_EVMHESMIAAW },
7548 { 0, CODE_FOR_spe_evmhesmianw, "__builtin_spe_evmhesmianw", SPE_BUILTIN_EVMHESMIANW },
7549 { 0, CODE_FOR_spe_evmhessf, "__builtin_spe_evmhessf", SPE_BUILTIN_EVMHESSF },
7550 { 0, CODE_FOR_spe_evmhessfa, "__builtin_spe_evmhessfa", SPE_BUILTIN_EVMHESSFA },
7551 { 0, CODE_FOR_spe_evmhessfaaw, "__builtin_spe_evmhessfaaw", SPE_BUILTIN_EVMHESSFAAW },
7552 { 0, CODE_FOR_spe_evmhessfanw, "__builtin_spe_evmhessfanw", SPE_BUILTIN_EVMHESSFANW },
7553 { 0, CODE_FOR_spe_evmhessiaaw, "__builtin_spe_evmhessiaaw", SPE_BUILTIN_EVMHESSIAAW },
7554 { 0, CODE_FOR_spe_evmhessianw, "__builtin_spe_evmhessianw", SPE_BUILTIN_EVMHESSIANW },
7555 { 0, CODE_FOR_spe_evmheumi, "__builtin_spe_evmheumi", SPE_BUILTIN_EVMHEUMI },
7556 { 0, CODE_FOR_spe_evmheumia, "__builtin_spe_evmheumia", SPE_BUILTIN_EVMHEUMIA },
7557 { 0, CODE_FOR_spe_evmheumiaaw, "__builtin_spe_evmheumiaaw", SPE_BUILTIN_EVMHEUMIAAW },
7558 { 0, CODE_FOR_spe_evmheumianw, "__builtin_spe_evmheumianw", SPE_BUILTIN_EVMHEUMIANW },
7559 { 0, CODE_FOR_spe_evmheusiaaw, "__builtin_spe_evmheusiaaw", SPE_BUILTIN_EVMHEUSIAAW },
7560 { 0, CODE_FOR_spe_evmheusianw, "__builtin_spe_evmheusianw", SPE_BUILTIN_EVMHEUSIANW },
7561 { 0, CODE_FOR_spe_evmhogsmfaa, "__builtin_spe_evmhogsmfaa", SPE_BUILTIN_EVMHOGSMFAA },
7562 { 0, CODE_FOR_spe_evmhogsmfan, "__builtin_spe_evmhogsmfan", SPE_BUILTIN_EVMHOGSMFAN },
7563 { 0, CODE_FOR_spe_evmhogsmiaa, "__builtin_spe_evmhogsmiaa", SPE_BUILTIN_EVMHOGSMIAA },
7564 { 0, CODE_FOR_spe_evmhogsmian, "__builtin_spe_evmhogsmian", SPE_BUILTIN_EVMHOGSMIAN },
7565 { 0, CODE_FOR_spe_evmhogumiaa, "__builtin_spe_evmhogumiaa", SPE_BUILTIN_EVMHOGUMIAA },
7566 { 0, CODE_FOR_spe_evmhogumian, "__builtin_spe_evmhogumian", SPE_BUILTIN_EVMHOGUMIAN },
7567 { 0, CODE_FOR_spe_evmhosmf, "__builtin_spe_evmhosmf", SPE_BUILTIN_EVMHOSMF },
7568 { 0, CODE_FOR_spe_evmhosmfa, "__builtin_spe_evmhosmfa", SPE_BUILTIN_EVMHOSMFA },
7569 { 0, CODE_FOR_spe_evmhosmfaaw, "__builtin_spe_evmhosmfaaw", SPE_BUILTIN_EVMHOSMFAAW },
7570 { 0, CODE_FOR_spe_evmhosmfanw, "__builtin_spe_evmhosmfanw", SPE_BUILTIN_EVMHOSMFANW },
7571 { 0, CODE_FOR_spe_evmhosmi, "__builtin_spe_evmhosmi", SPE_BUILTIN_EVMHOSMI },
7572 { 0, CODE_FOR_spe_evmhosmia, "__builtin_spe_evmhosmia", SPE_BUILTIN_EVMHOSMIA },
7573 { 0, CODE_FOR_spe_evmhosmiaaw, "__builtin_spe_evmhosmiaaw", SPE_BUILTIN_EVMHOSMIAAW },
7574 { 0, CODE_FOR_spe_evmhosmianw, "__builtin_spe_evmhosmianw", SPE_BUILTIN_EVMHOSMIANW },
7575 { 0, CODE_FOR_spe_evmhossf, "__builtin_spe_evmhossf", SPE_BUILTIN_EVMHOSSF },
7576 { 0, CODE_FOR_spe_evmhossfa, "__builtin_spe_evmhossfa", SPE_BUILTIN_EVMHOSSFA },
7577 { 0, CODE_FOR_spe_evmhossfaaw, "__builtin_spe_evmhossfaaw", SPE_BUILTIN_EVMHOSSFAAW },
7578 { 0, CODE_FOR_spe_evmhossfanw, "__builtin_spe_evmhossfanw", SPE_BUILTIN_EVMHOSSFANW },
7579 { 0, CODE_FOR_spe_evmhossiaaw, "__builtin_spe_evmhossiaaw", SPE_BUILTIN_EVMHOSSIAAW },
7580 { 0, CODE_FOR_spe_evmhossianw, "__builtin_spe_evmhossianw", SPE_BUILTIN_EVMHOSSIANW },
7581 { 0, CODE_FOR_spe_evmhoumi, "__builtin_spe_evmhoumi", SPE_BUILTIN_EVMHOUMI },
7582 { 0, CODE_FOR_spe_evmhoumia, "__builtin_spe_evmhoumia", SPE_BUILTIN_EVMHOUMIA },
7583 { 0, CODE_FOR_spe_evmhoumiaaw, "__builtin_spe_evmhoumiaaw", SPE_BUILTIN_EVMHOUMIAAW },
7584 { 0, CODE_FOR_spe_evmhoumianw, "__builtin_spe_evmhoumianw", SPE_BUILTIN_EVMHOUMIANW },
7585 { 0, CODE_FOR_spe_evmhousiaaw, "__builtin_spe_evmhousiaaw", SPE_BUILTIN_EVMHOUSIAAW },
7586 { 0, CODE_FOR_spe_evmhousianw, "__builtin_spe_evmhousianw", SPE_BUILTIN_EVMHOUSIANW },
7587 { 0, CODE_FOR_spe_evmwhsmf, "__builtin_spe_evmwhsmf", SPE_BUILTIN_EVMWHSMF },
7588 { 0, CODE_FOR_spe_evmwhsmfa, "__builtin_spe_evmwhsmfa", SPE_BUILTIN_EVMWHSMFA },
7589 { 0, CODE_FOR_spe_evmwhsmi, "__builtin_spe_evmwhsmi", SPE_BUILTIN_EVMWHSMI },
7590 { 0, CODE_FOR_spe_evmwhsmia, "__builtin_spe_evmwhsmia", SPE_BUILTIN_EVMWHSMIA },
7591 { 0, CODE_FOR_spe_evmwhssf, "__builtin_spe_evmwhssf", SPE_BUILTIN_EVMWHSSF },
7592 { 0, CODE_FOR_spe_evmwhssfa, "__builtin_spe_evmwhssfa", SPE_BUILTIN_EVMWHSSFA },
7593 { 0, CODE_FOR_spe_evmwhumi, "__builtin_spe_evmwhumi", SPE_BUILTIN_EVMWHUMI },
7594 { 0, CODE_FOR_spe_evmwhumia, "__builtin_spe_evmwhumia", SPE_BUILTIN_EVMWHUMIA },
7595 { 0, CODE_FOR_spe_evmwlsmiaaw, "__builtin_spe_evmwlsmiaaw", SPE_BUILTIN_EVMWLSMIAAW },
7596 { 0, CODE_FOR_spe_evmwlsmianw, "__builtin_spe_evmwlsmianw", SPE_BUILTIN_EVMWLSMIANW },
7597 { 0, CODE_FOR_spe_evmwlssiaaw, "__builtin_spe_evmwlssiaaw", SPE_BUILTIN_EVMWLSSIAAW },
7598 { 0, CODE_FOR_spe_evmwlssianw, "__builtin_spe_evmwlssianw", SPE_BUILTIN_EVMWLSSIANW },
7599 { 0, CODE_FOR_spe_evmwlumi, "__builtin_spe_evmwlumi", SPE_BUILTIN_EVMWLUMI },
7600 { 0, CODE_FOR_spe_evmwlumia, "__builtin_spe_evmwlumia", SPE_BUILTIN_EVMWLUMIA },
7601 { 0, CODE_FOR_spe_evmwlumiaaw, "__builtin_spe_evmwlumiaaw", SPE_BUILTIN_EVMWLUMIAAW },
7602 { 0, CODE_FOR_spe_evmwlumianw, "__builtin_spe_evmwlumianw", SPE_BUILTIN_EVMWLUMIANW },
7603 { 0, CODE_FOR_spe_evmwlusiaaw, "__builtin_spe_evmwlusiaaw", SPE_BUILTIN_EVMWLUSIAAW },
7604 { 0, CODE_FOR_spe_evmwlusianw, "__builtin_spe_evmwlusianw", SPE_BUILTIN_EVMWLUSIANW },
7605 { 0, CODE_FOR_spe_evmwsmf, "__builtin_spe_evmwsmf", SPE_BUILTIN_EVMWSMF },
7606 { 0, CODE_FOR_spe_evmwsmfa, "__builtin_spe_evmwsmfa", SPE_BUILTIN_EVMWSMFA },
7607 { 0, CODE_FOR_spe_evmwsmfaa, "__builtin_spe_evmwsmfaa", SPE_BUILTIN_EVMWSMFAA },
7608 { 0, CODE_FOR_spe_evmwsmfan, "__builtin_spe_evmwsmfan", SPE_BUILTIN_EVMWSMFAN },
7609 { 0, CODE_FOR_spe_evmwsmi, "__builtin_spe_evmwsmi", SPE_BUILTIN_EVMWSMI },
7610 { 0, CODE_FOR_spe_evmwsmia, "__builtin_spe_evmwsmia", SPE_BUILTIN_EVMWSMIA },
7611 { 0, CODE_FOR_spe_evmwsmiaa, "__builtin_spe_evmwsmiaa", SPE_BUILTIN_EVMWSMIAA },
7612 { 0, CODE_FOR_spe_evmwsmian, "__builtin_spe_evmwsmian", SPE_BUILTIN_EVMWSMIAN },
7613 { 0, CODE_FOR_spe_evmwssf, "__builtin_spe_evmwssf", SPE_BUILTIN_EVMWSSF },
7614 { 0, CODE_FOR_spe_evmwssfa, "__builtin_spe_evmwssfa", SPE_BUILTIN_EVMWSSFA },
7615 { 0, CODE_FOR_spe_evmwssfaa, "__builtin_spe_evmwssfaa", SPE_BUILTIN_EVMWSSFAA },
7616 { 0, CODE_FOR_spe_evmwssfan, "__builtin_spe_evmwssfan", SPE_BUILTIN_EVMWSSFAN },
7617 { 0, CODE_FOR_spe_evmwumi, "__builtin_spe_evmwumi", SPE_BUILTIN_EVMWUMI },
7618 { 0, CODE_FOR_spe_evmwumia, "__builtin_spe_evmwumia", SPE_BUILTIN_EVMWUMIA },
7619 { 0, CODE_FOR_spe_evmwumiaa, "__builtin_spe_evmwumiaa", SPE_BUILTIN_EVMWUMIAA },
7620 { 0, CODE_FOR_spe_evmwumian, "__builtin_spe_evmwumian", SPE_BUILTIN_EVMWUMIAN },
7621 { 0, CODE_FOR_spe_evnand, "__builtin_spe_evnand", SPE_BUILTIN_EVNAND },
7622 { 0, CODE_FOR_spe_evnor, "__builtin_spe_evnor", SPE_BUILTIN_EVNOR },
7623 { 0, CODE_FOR_spe_evor, "__builtin_spe_evor", SPE_BUILTIN_EVOR },
7624 { 0, CODE_FOR_spe_evorc, "__builtin_spe_evorc", SPE_BUILTIN_EVORC },
7625 { 0, CODE_FOR_spe_evrlw, "__builtin_spe_evrlw", SPE_BUILTIN_EVRLW },
7626 { 0, CODE_FOR_spe_evslw, "__builtin_spe_evslw", SPE_BUILTIN_EVSLW },
7627 { 0, CODE_FOR_spe_evsrws, "__builtin_spe_evsrws", SPE_BUILTIN_EVSRWS },
7628 { 0, CODE_FOR_spe_evsrwu, "__builtin_spe_evsrwu", SPE_BUILTIN_EVSRWU },
7629 { 0, CODE_FOR_spe_evsubfw, "__builtin_spe_evsubfw", SPE_BUILTIN_EVSUBFW },
7631 /* SPE binary operations expecting a 5-bit unsigned literal. */
7632 { 0, CODE_FOR_spe_evaddiw, "__builtin_spe_evaddiw", SPE_BUILTIN_EVADDIW },
7634 { 0, CODE_FOR_spe_evrlwi, "__builtin_spe_evrlwi", SPE_BUILTIN_EVRLWI },
7635 { 0, CODE_FOR_spe_evslwi, "__builtin_spe_evslwi", SPE_BUILTIN_EVSLWI },
7636 { 0, CODE_FOR_spe_evsrwis, "__builtin_spe_evsrwis", SPE_BUILTIN_EVSRWIS },
7637 { 0, CODE_FOR_spe_evsrwiu, "__builtin_spe_evsrwiu", SPE_BUILTIN_EVSRWIU },
7638 { 0, CODE_FOR_spe_evsubifw, "__builtin_spe_evsubifw", SPE_BUILTIN_EVSUBIFW },
7639 { 0, CODE_FOR_spe_evmwhssfaa, "__builtin_spe_evmwhssfaa", SPE_BUILTIN_EVMWHSSFAA },
7640 { 0, CODE_FOR_spe_evmwhssmaa, "__builtin_spe_evmwhssmaa", SPE_BUILTIN_EVMWHSSMAA },
7641 { 0, CODE_FOR_spe_evmwhsmfaa, "__builtin_spe_evmwhsmfaa", SPE_BUILTIN_EVMWHSMFAA },
7642 { 0, CODE_FOR_spe_evmwhsmiaa, "__builtin_spe_evmwhsmiaa", SPE_BUILTIN_EVMWHSMIAA },
7643 { 0, CODE_FOR_spe_evmwhusiaa, "__builtin_spe_evmwhusiaa", SPE_BUILTIN_EVMWHUSIAA },
7644 { 0, CODE_FOR_spe_evmwhumiaa, "__builtin_spe_evmwhumiaa", SPE_BUILTIN_EVMWHUMIAA },
7645 { 0, CODE_FOR_spe_evmwhssfan, "__builtin_spe_evmwhssfan", SPE_BUILTIN_EVMWHSSFAN },
7646 { 0, CODE_FOR_spe_evmwhssian, "__builtin_spe_evmwhssian", SPE_BUILTIN_EVMWHSSIAN },
7647 { 0, CODE_FOR_spe_evmwhsmfan, "__builtin_spe_evmwhsmfan", SPE_BUILTIN_EVMWHSMFAN },
7648 { 0, CODE_FOR_spe_evmwhsmian, "__builtin_spe_evmwhsmian", SPE_BUILTIN_EVMWHSMIAN },
7649 { 0, CODE_FOR_spe_evmwhusian, "__builtin_spe_evmwhusian", SPE_BUILTIN_EVMWHUSIAN },
7650 { 0, CODE_FOR_spe_evmwhumian, "__builtin_spe_evmwhumian", SPE_BUILTIN_EVMWHUMIAN },
7651 { 0, CODE_FOR_spe_evmwhgssfaa, "__builtin_spe_evmwhgssfaa", SPE_BUILTIN_EVMWHGSSFAA },
7652 { 0, CODE_FOR_spe_evmwhgsmfaa, "__builtin_spe_evmwhgsmfaa", SPE_BUILTIN_EVMWHGSMFAA },
7653 { 0, CODE_FOR_spe_evmwhgsmiaa, "__builtin_spe_evmwhgsmiaa", SPE_BUILTIN_EVMWHGSMIAA },
7654 { 0, CODE_FOR_spe_evmwhgumiaa, "__builtin_spe_evmwhgumiaa", SPE_BUILTIN_EVMWHGUMIAA },
7655 { 0, CODE_FOR_spe_evmwhgssfan, "__builtin_spe_evmwhgssfan", SPE_BUILTIN_EVMWHGSSFAN },
7656 { 0, CODE_FOR_spe_evmwhgsmfan, "__builtin_spe_evmwhgsmfan", SPE_BUILTIN_EVMWHGSMFAN },
7657 { 0, CODE_FOR_spe_evmwhgsmian, "__builtin_spe_evmwhgsmian", SPE_BUILTIN_EVMWHGSMIAN },
7658 { 0, CODE_FOR_spe_evmwhgumian, "__builtin_spe_evmwhgumian", SPE_BUILTIN_EVMWHGUMIAN },
7659 { 0, CODE_FOR_spe_brinc, "__builtin_spe_brinc", SPE_BUILTIN_BRINC },
7661 /* Place-holder. Leave as last binary SPE builtin. */
7662 { 0, CODE_FOR_xorv2si3, "__builtin_spe_evxor", SPE_BUILTIN_EVXOR }
7665 /* AltiVec predicates. */
7667 struct builtin_description_predicates
7669 const unsigned int mask;
7670 const enum insn_code icode;
7671 const char *opcode;
7672 const char *const name;
7673 const enum rs6000_builtins code;
7676 static const struct builtin_description_predicates bdesc_altivec_preds[] =
7678 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpbfp.", "__builtin_altivec_vcmpbfp_p", ALTIVEC_BUILTIN_VCMPBFP_P },
7679 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpeqfp.", "__builtin_altivec_vcmpeqfp_p", ALTIVEC_BUILTIN_VCMPEQFP_P },
7680 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgefp.", "__builtin_altivec_vcmpgefp_p", ALTIVEC_BUILTIN_VCMPGEFP_P },
7681 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgtfp.", "__builtin_altivec_vcmpgtfp_p", ALTIVEC_BUILTIN_VCMPGTFP_P },
7682 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpequw.", "__builtin_altivec_vcmpequw_p", ALTIVEC_BUILTIN_VCMPEQUW_P },
7683 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtsw.", "__builtin_altivec_vcmpgtsw_p", ALTIVEC_BUILTIN_VCMPGTSW_P },
7684 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtuw.", "__builtin_altivec_vcmpgtuw_p", ALTIVEC_BUILTIN_VCMPGTUW_P },
7685 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtuh.", "__builtin_altivec_vcmpgtuh_p", ALTIVEC_BUILTIN_VCMPGTUH_P },
7686 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtsh.", "__builtin_altivec_vcmpgtsh_p", ALTIVEC_BUILTIN_VCMPGTSH_P },
7687 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpequh.", "__builtin_altivec_vcmpequh_p", ALTIVEC_BUILTIN_VCMPEQUH_P },
7688 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpequb.", "__builtin_altivec_vcmpequb_p", ALTIVEC_BUILTIN_VCMPEQUB_P },
7689 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtsb.", "__builtin_altivec_vcmpgtsb_p", ALTIVEC_BUILTIN_VCMPGTSB_P },
7690 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtub.", "__builtin_altivec_vcmpgtub_p", ALTIVEC_BUILTIN_VCMPGTUB_P },
7692 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpeq_p", ALTIVEC_BUILTIN_VCMPEQ_P },
7693 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpgt_p", ALTIVEC_BUILTIN_VCMPGT_P },
7694 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpge_p", ALTIVEC_BUILTIN_VCMPGE_P }
7697 /* SPE predicates. */
7698 static struct builtin_description bdesc_spe_predicates[] =
7700 /* Place-holder. Leave as first. */
7701 { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evcmpeq", SPE_BUILTIN_EVCMPEQ },
7702 { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evcmpgts", SPE_BUILTIN_EVCMPGTS },
7703 { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evcmpgtu", SPE_BUILTIN_EVCMPGTU },
7704 { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evcmplts", SPE_BUILTIN_EVCMPLTS },
7705 { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evcmpltu", SPE_BUILTIN_EVCMPLTU },
7706 { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evfscmpeq", SPE_BUILTIN_EVFSCMPEQ },
7707 { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evfscmpgt", SPE_BUILTIN_EVFSCMPGT },
7708 { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evfscmplt", SPE_BUILTIN_EVFSCMPLT },
7709 { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evfststeq", SPE_BUILTIN_EVFSTSTEQ },
7710 { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evfststgt", SPE_BUILTIN_EVFSTSTGT },
7711 /* Place-holder. Leave as last. */
7712 { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evfststlt", SPE_BUILTIN_EVFSTSTLT },
7715 /* SPE evsel predicates. */
7716 static struct builtin_description bdesc_spe_evsel[] =
7718 /* Place-holder. Leave as first. */
7719 { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evsel_gts", SPE_BUILTIN_EVSEL_CMPGTS },
7720 { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evsel_gtu", SPE_BUILTIN_EVSEL_CMPGTU },
7721 { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evsel_lts", SPE_BUILTIN_EVSEL_CMPLTS },
7722 { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evsel_ltu", SPE_BUILTIN_EVSEL_CMPLTU },
7723 { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evsel_eq", SPE_BUILTIN_EVSEL_CMPEQ },
7724 { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evsel_fsgt", SPE_BUILTIN_EVSEL_FSCMPGT },
7725 { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evsel_fslt", SPE_BUILTIN_EVSEL_FSCMPLT },
7726 { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evsel_fseq", SPE_BUILTIN_EVSEL_FSCMPEQ },
7727 { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evsel_fststgt", SPE_BUILTIN_EVSEL_FSTSTGT },
7728 { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evsel_fststlt", SPE_BUILTIN_EVSEL_FSTSTLT },
7729 /* Place-holder. Leave as last. */
7730 { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evsel_fststeq", SPE_BUILTIN_EVSEL_FSTSTEQ },
7733 /* PAIRED predicates. */
7734 static const struct builtin_description bdesc_paired_preds[] =
7736 /* Place-holder. Leave as first. */
7737 { 0, CODE_FOR_paired_cmpu0, "__builtin_paired_cmpu0", PAIRED_BUILTIN_CMPU0 },
7738 /* Place-holder. Leave as last. */
7739 { 0, CODE_FOR_paired_cmpu1, "__builtin_paired_cmpu1", PAIRED_BUILTIN_CMPU1 },
7742 /* ABS* operations. */
7744 static const struct builtin_description bdesc_abs[] =
7746 { MASK_ALTIVEC, CODE_FOR_absv4si2, "__builtin_altivec_abs_v4si", ALTIVEC_BUILTIN_ABS_V4SI },
7747 { MASK_ALTIVEC, CODE_FOR_absv8hi2, "__builtin_altivec_abs_v8hi", ALTIVEC_BUILTIN_ABS_V8HI },
7748 { MASK_ALTIVEC, CODE_FOR_absv4sf2, "__builtin_altivec_abs_v4sf", ALTIVEC_BUILTIN_ABS_V4SF },
7749 { MASK_ALTIVEC, CODE_FOR_absv16qi2, "__builtin_altivec_abs_v16qi", ALTIVEC_BUILTIN_ABS_V16QI },
7750 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v4si, "__builtin_altivec_abss_v4si", ALTIVEC_BUILTIN_ABSS_V4SI },
7751 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v8hi, "__builtin_altivec_abss_v8hi", ALTIVEC_BUILTIN_ABSS_V8HI },
7752 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v16qi, "__builtin_altivec_abss_v16qi", ALTIVEC_BUILTIN_ABSS_V16QI }
7755 /* Simple unary operations: VECb = foo (unsigned literal) or VECb =
7756 foo (VECa). */
7758 static struct builtin_description bdesc_1arg[] =
7760 { MASK_ALTIVEC, CODE_FOR_altivec_vexptefp, "__builtin_altivec_vexptefp", ALTIVEC_BUILTIN_VEXPTEFP },
7761 { MASK_ALTIVEC, CODE_FOR_altivec_vlogefp, "__builtin_altivec_vlogefp", ALTIVEC_BUILTIN_VLOGEFP },
7762 { MASK_ALTIVEC, CODE_FOR_altivec_vrefp, "__builtin_altivec_vrefp", ALTIVEC_BUILTIN_VREFP },
7763 { MASK_ALTIVEC, CODE_FOR_altivec_vrfim, "__builtin_altivec_vrfim", ALTIVEC_BUILTIN_VRFIM },
7764 { MASK_ALTIVEC, CODE_FOR_altivec_vrfin, "__builtin_altivec_vrfin", ALTIVEC_BUILTIN_VRFIN },
7765 { MASK_ALTIVEC, CODE_FOR_altivec_vrfip, "__builtin_altivec_vrfip", ALTIVEC_BUILTIN_VRFIP },
7766 { MASK_ALTIVEC, CODE_FOR_ftruncv4sf2, "__builtin_altivec_vrfiz", ALTIVEC_BUILTIN_VRFIZ },
7767 { MASK_ALTIVEC, CODE_FOR_altivec_vrsqrtefp, "__builtin_altivec_vrsqrtefp", ALTIVEC_BUILTIN_VRSQRTEFP },
7768 { MASK_ALTIVEC, CODE_FOR_altivec_vspltisb, "__builtin_altivec_vspltisb", ALTIVEC_BUILTIN_VSPLTISB },
7769 { MASK_ALTIVEC, CODE_FOR_altivec_vspltish, "__builtin_altivec_vspltish", ALTIVEC_BUILTIN_VSPLTISH },
7770 { MASK_ALTIVEC, CODE_FOR_altivec_vspltisw, "__builtin_altivec_vspltisw", ALTIVEC_BUILTIN_VSPLTISW },
7771 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsb, "__builtin_altivec_vupkhsb", ALTIVEC_BUILTIN_VUPKHSB },
7772 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhpx, "__builtin_altivec_vupkhpx", ALTIVEC_BUILTIN_VUPKHPX },
7773 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsh, "__builtin_altivec_vupkhsh", ALTIVEC_BUILTIN_VUPKHSH },
7774 { MASK_ALTIVEC, CODE_FOR_altivec_vupklsb, "__builtin_altivec_vupklsb", ALTIVEC_BUILTIN_VUPKLSB },
7775 { MASK_ALTIVEC, CODE_FOR_altivec_vupklpx, "__builtin_altivec_vupklpx", ALTIVEC_BUILTIN_VUPKLPX },
7776 { MASK_ALTIVEC, CODE_FOR_altivec_vupklsh, "__builtin_altivec_vupklsh", ALTIVEC_BUILTIN_VUPKLSH },
7778 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abs", ALTIVEC_BUILTIN_VEC_ABS },
7779 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abss", ALTIVEC_BUILTIN_VEC_ABSS },
7780 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_ceil", ALTIVEC_BUILTIN_VEC_CEIL },
7781 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_expte", ALTIVEC_BUILTIN_VEC_EXPTE },
7782 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_floor", ALTIVEC_BUILTIN_VEC_FLOOR },
7783 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_loge", ALTIVEC_BUILTIN_VEC_LOGE },
7784 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mtvscr", ALTIVEC_BUILTIN_VEC_MTVSCR },
7785 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_re", ALTIVEC_BUILTIN_VEC_RE },
7786 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_round", ALTIVEC_BUILTIN_VEC_ROUND },
7787 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rsqrte", ALTIVEC_BUILTIN_VEC_RSQRTE },
7788 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_trunc", ALTIVEC_BUILTIN_VEC_TRUNC },
7789 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackh", ALTIVEC_BUILTIN_VEC_UNPACKH },
7790 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsh", ALTIVEC_BUILTIN_VEC_VUPKHSH },
7791 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhpx", ALTIVEC_BUILTIN_VEC_VUPKHPX },
7792 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsb", ALTIVEC_BUILTIN_VEC_VUPKHSB },
7793 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackl", ALTIVEC_BUILTIN_VEC_UNPACKL },
7794 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklpx", ALTIVEC_BUILTIN_VEC_VUPKLPX },
7795 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsh", ALTIVEC_BUILTIN_VEC_VUPKLSH },
7796 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsb", ALTIVEC_BUILTIN_VEC_VUPKLSB },
7798 /* The SPE unary builtins must start with SPE_BUILTIN_EVABS and
7799 end with SPE_BUILTIN_EVSUBFUSIAAW. */
7800 { 0, CODE_FOR_spe_evabs, "__builtin_spe_evabs", SPE_BUILTIN_EVABS },
7801 { 0, CODE_FOR_spe_evaddsmiaaw, "__builtin_spe_evaddsmiaaw", SPE_BUILTIN_EVADDSMIAAW },
7802 { 0, CODE_FOR_spe_evaddssiaaw, "__builtin_spe_evaddssiaaw", SPE_BUILTIN_EVADDSSIAAW },
7803 { 0, CODE_FOR_spe_evaddumiaaw, "__builtin_spe_evaddumiaaw", SPE_BUILTIN_EVADDUMIAAW },
7804 { 0, CODE_FOR_spe_evaddusiaaw, "__builtin_spe_evaddusiaaw", SPE_BUILTIN_EVADDUSIAAW },
7805 { 0, CODE_FOR_spe_evcntlsw, "__builtin_spe_evcntlsw", SPE_BUILTIN_EVCNTLSW },
7806 { 0, CODE_FOR_spe_evcntlzw, "__builtin_spe_evcntlzw", SPE_BUILTIN_EVCNTLZW },
7807 { 0, CODE_FOR_spe_evextsb, "__builtin_spe_evextsb", SPE_BUILTIN_EVEXTSB },
7808 { 0, CODE_FOR_spe_evextsh, "__builtin_spe_evextsh", SPE_BUILTIN_EVEXTSH },
7809 { 0, CODE_FOR_spe_evfsabs, "__builtin_spe_evfsabs", SPE_BUILTIN_EVFSABS },
7810 { 0, CODE_FOR_spe_evfscfsf, "__builtin_spe_evfscfsf", SPE_BUILTIN_EVFSCFSF },
7811 { 0, CODE_FOR_spe_evfscfsi, "__builtin_spe_evfscfsi", SPE_BUILTIN_EVFSCFSI },
7812 { 0, CODE_FOR_spe_evfscfuf, "__builtin_spe_evfscfuf", SPE_BUILTIN_EVFSCFUF },
7813 { 0, CODE_FOR_spe_evfscfui, "__builtin_spe_evfscfui", SPE_BUILTIN_EVFSCFUI },
7814 { 0, CODE_FOR_spe_evfsctsf, "__builtin_spe_evfsctsf", SPE_BUILTIN_EVFSCTSF },
7815 { 0, CODE_FOR_spe_evfsctsi, "__builtin_spe_evfsctsi", SPE_BUILTIN_EVFSCTSI },
7816 { 0, CODE_FOR_spe_evfsctsiz, "__builtin_spe_evfsctsiz", SPE_BUILTIN_EVFSCTSIZ },
7817 { 0, CODE_FOR_spe_evfsctuf, "__builtin_spe_evfsctuf", SPE_BUILTIN_EVFSCTUF },
7818 { 0, CODE_FOR_spe_evfsctui, "__builtin_spe_evfsctui", SPE_BUILTIN_EVFSCTUI },
7819 { 0, CODE_FOR_spe_evfsctuiz, "__builtin_spe_evfsctuiz", SPE_BUILTIN_EVFSCTUIZ },
7820 { 0, CODE_FOR_spe_evfsnabs, "__builtin_spe_evfsnabs", SPE_BUILTIN_EVFSNABS },
7821 { 0, CODE_FOR_spe_evfsneg, "__builtin_spe_evfsneg", SPE_BUILTIN_EVFSNEG },
7822 { 0, CODE_FOR_spe_evmra, "__builtin_spe_evmra", SPE_BUILTIN_EVMRA },
7823 { 0, CODE_FOR_negv2si2, "__builtin_spe_evneg", SPE_BUILTIN_EVNEG },
7824 { 0, CODE_FOR_spe_evrndw, "__builtin_spe_evrndw", SPE_BUILTIN_EVRNDW },
7825 { 0, CODE_FOR_spe_evsubfsmiaaw, "__builtin_spe_evsubfsmiaaw", SPE_BUILTIN_EVSUBFSMIAAW },
7826 { 0, CODE_FOR_spe_evsubfssiaaw, "__builtin_spe_evsubfssiaaw", SPE_BUILTIN_EVSUBFSSIAAW },
7827 { 0, CODE_FOR_spe_evsubfumiaaw, "__builtin_spe_evsubfumiaaw", SPE_BUILTIN_EVSUBFUMIAAW },
7829 /* Place-holder. Leave as last unary SPE builtin. */
7830 { 0, CODE_FOR_spe_evsubfusiaaw, "__builtin_spe_evsubfusiaaw", SPE_BUILTIN_EVSUBFUSIAAW },
7832 { 0, CODE_FOR_absv2sf2, "__builtin_paired_absv2sf2", PAIRED_BUILTIN_ABSV2SF2 },
7833 { 0, CODE_FOR_nabsv2sf2, "__builtin_paired_nabsv2sf2", PAIRED_BUILTIN_NABSV2SF2 },
7834 { 0, CODE_FOR_negv2sf2, "__builtin_paired_negv2sf2", PAIRED_BUILTIN_NEGV2SF2 },
7835 { 0, CODE_FOR_sqrtv2sf2, "__builtin_paired_sqrtv2sf2", PAIRED_BUILTIN_SQRTV2SF2 },
7836 { 0, CODE_FOR_resv2sf2, "__builtin_paired_resv2sf2", PAIRED_BUILTIN_RESV2SF2 }
7839 static rtx
7840 rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
7842 rtx pat;
7843 tree arg0 = CALL_EXPR_ARG (exp, 0);
7844 rtx op0 = expand_normal (arg0);
7845 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7846 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7848 if (icode == CODE_FOR_nothing)
7849 /* Builtin not supported on this processor. */
7850 return 0;
7852 /* If we got invalid arguments bail out before generating bad rtl. */
7853 if (arg0 == error_mark_node)
7854 return const0_rtx;
7856 if (icode == CODE_FOR_altivec_vspltisb
7857 || icode == CODE_FOR_altivec_vspltish
7858 || icode == CODE_FOR_altivec_vspltisw
7859 || icode == CODE_FOR_spe_evsplatfi
7860 || icode == CODE_FOR_spe_evsplati)
7862 /* Only allow 5-bit *signed* literals. */
7863 if (GET_CODE (op0) != CONST_INT
7864 || INTVAL (op0) > 15
7865 || INTVAL (op0) < -16)
7867 error ("argument 1 must be a 5-bit signed literal");
7868 return const0_rtx;
7872 if (target == 0
7873 || GET_MODE (target) != tmode
7874 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7875 target = gen_reg_rtx (tmode);
7877 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7878 op0 = copy_to_mode_reg (mode0, op0);
7880 pat = GEN_FCN (icode) (target, op0);
7881 if (! pat)
7882 return 0;
7883 emit_insn (pat);
7885 return target;
7888 static rtx
7889 altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
7891 rtx pat, scratch1, scratch2;
7892 tree arg0 = CALL_EXPR_ARG (exp, 0);
7893 rtx op0 = expand_normal (arg0);
7894 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7895 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7897 /* If we have invalid arguments, bail out before generating bad rtl. */
7898 if (arg0 == error_mark_node)
7899 return const0_rtx;
7901 if (target == 0
7902 || GET_MODE (target) != tmode
7903 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7904 target = gen_reg_rtx (tmode);
7906 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7907 op0 = copy_to_mode_reg (mode0, op0);
7909 scratch1 = gen_reg_rtx (mode0);
7910 scratch2 = gen_reg_rtx (mode0);
7912 pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
7913 if (! pat)
7914 return 0;
7915 emit_insn (pat);
7917 return target;
7920 static rtx
7921 rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
7923 rtx pat;
7924 tree arg0 = CALL_EXPR_ARG (exp, 0);
7925 tree arg1 = CALL_EXPR_ARG (exp, 1);
7926 rtx op0 = expand_normal (arg0);
7927 rtx op1 = expand_normal (arg1);
7928 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7929 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7930 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
7932 if (icode == CODE_FOR_nothing)
7933 /* Builtin not supported on this processor. */
7934 return 0;
7936 /* If we got invalid arguments bail out before generating bad rtl. */
7937 if (arg0 == error_mark_node || arg1 == error_mark_node)
7938 return const0_rtx;
7940 if (icode == CODE_FOR_altivec_vcfux
7941 || icode == CODE_FOR_altivec_vcfsx
7942 || icode == CODE_FOR_altivec_vctsxs
7943 || icode == CODE_FOR_altivec_vctuxs
7944 || icode == CODE_FOR_altivec_vspltb
7945 || icode == CODE_FOR_altivec_vsplth
7946 || icode == CODE_FOR_altivec_vspltw
7947 || icode == CODE_FOR_spe_evaddiw
7948 || icode == CODE_FOR_spe_evldd
7949 || icode == CODE_FOR_spe_evldh
7950 || icode == CODE_FOR_spe_evldw
7951 || icode == CODE_FOR_spe_evlhhesplat
7952 || icode == CODE_FOR_spe_evlhhossplat
7953 || icode == CODE_FOR_spe_evlhhousplat
7954 || icode == CODE_FOR_spe_evlwhe
7955 || icode == CODE_FOR_spe_evlwhos
7956 || icode == CODE_FOR_spe_evlwhou
7957 || icode == CODE_FOR_spe_evlwhsplat
7958 || icode == CODE_FOR_spe_evlwwsplat
7959 || icode == CODE_FOR_spe_evrlwi
7960 || icode == CODE_FOR_spe_evslwi
7961 || icode == CODE_FOR_spe_evsrwis
7962 || icode == CODE_FOR_spe_evsubifw
7963 || icode == CODE_FOR_spe_evsrwiu)
7965 /* Only allow 5-bit unsigned literals. */
7966 STRIP_NOPS (arg1);
7967 if (TREE_CODE (arg1) != INTEGER_CST
7968 || TREE_INT_CST_LOW (arg1) & ~0x1f)
7970 error ("argument 2 must be a 5-bit unsigned literal");
7971 return const0_rtx;
7975 if (target == 0
7976 || GET_MODE (target) != tmode
7977 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7978 target = gen_reg_rtx (tmode);
7980 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7981 op0 = copy_to_mode_reg (mode0, op0);
7982 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
7983 op1 = copy_to_mode_reg (mode1, op1);
7985 pat = GEN_FCN (icode) (target, op0, op1);
7986 if (! pat)
7987 return 0;
7988 emit_insn (pat);
7990 return target;
7993 static rtx
7994 altivec_expand_predicate_builtin (enum insn_code icode, const char *opcode,
7995 tree exp, rtx target)
7997 rtx pat, scratch;
7998 tree cr6_form = CALL_EXPR_ARG (exp, 0);
7999 tree arg0 = CALL_EXPR_ARG (exp, 1);
8000 tree arg1 = CALL_EXPR_ARG (exp, 2);
8001 rtx op0 = expand_normal (arg0);
8002 rtx op1 = expand_normal (arg1);
8003 enum machine_mode tmode = SImode;
8004 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
8005 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
8006 int cr6_form_int;
8008 if (TREE_CODE (cr6_form) != INTEGER_CST)
8010 error ("argument 1 of __builtin_altivec_predicate must be a constant");
8011 return const0_rtx;
8013 else
8014 cr6_form_int = TREE_INT_CST_LOW (cr6_form);
8016 gcc_assert (mode0 == mode1);
8018 /* If we have invalid arguments, bail out before generating bad rtl. */
8019 if (arg0 == error_mark_node || arg1 == error_mark_node)
8020 return const0_rtx;
8022 if (target == 0
8023 || GET_MODE (target) != tmode
8024 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8025 target = gen_reg_rtx (tmode);
8027 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8028 op0 = copy_to_mode_reg (mode0, op0);
8029 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
8030 op1 = copy_to_mode_reg (mode1, op1);
8032 scratch = gen_reg_rtx (mode0);
8034 pat = GEN_FCN (icode) (scratch, op0, op1,
8035 gen_rtx_SYMBOL_REF (Pmode, opcode));
8036 if (! pat)
8037 return 0;
8038 emit_insn (pat);
8040 /* The vec_any* and vec_all* predicates use the same opcodes for two
8041 different operations, but the bits in CR6 will be different
8042 depending on what information we want. So we have to play tricks
8043 with CR6 to get the right bits out.
8045 If you think this is disgusting, look at the specs for the
8046 AltiVec predicates. */
8048 switch (cr6_form_int)
8050 case 0:
8051 emit_insn (gen_cr6_test_for_zero (target));
8052 break;
8053 case 1:
8054 emit_insn (gen_cr6_test_for_zero_reverse (target));
8055 break;
8056 case 2:
8057 emit_insn (gen_cr6_test_for_lt (target));
8058 break;
8059 case 3:
8060 emit_insn (gen_cr6_test_for_lt_reverse (target));
8061 break;
8062 default:
8063 error ("argument 1 of __builtin_altivec_predicate is out of range");
8064 break;
8067 return target;
8070 static rtx
8071 paired_expand_lv_builtin (enum insn_code icode, tree exp, rtx target)
8073 rtx pat, addr;
8074 tree arg0 = CALL_EXPR_ARG (exp, 0);
8075 tree arg1 = CALL_EXPR_ARG (exp, 1);
8076 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8077 enum machine_mode mode0 = Pmode;
8078 enum machine_mode mode1 = Pmode;
8079 rtx op0 = expand_normal (arg0);
8080 rtx op1 = expand_normal (arg1);
8082 if (icode == CODE_FOR_nothing)
8083 /* Builtin not supported on this processor. */
8084 return 0;
8086 /* If we got invalid arguments bail out before generating bad rtl. */
8087 if (arg0 == error_mark_node || arg1 == error_mark_node)
8088 return const0_rtx;
8090 if (target == 0
8091 || GET_MODE (target) != tmode
8092 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8093 target = gen_reg_rtx (tmode);
8095 op1 = copy_to_mode_reg (mode1, op1);
8097 if (op0 == const0_rtx)
8099 addr = gen_rtx_MEM (tmode, op1);
8101 else
8103 op0 = copy_to_mode_reg (mode0, op0);
8104 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op0, op1));
8107 pat = GEN_FCN (icode) (target, addr);
8109 if (! pat)
8110 return 0;
8111 emit_insn (pat);
8113 return target;
8116 static rtx
8117 altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
8119 rtx pat, addr;
8120 tree arg0 = CALL_EXPR_ARG (exp, 0);
8121 tree arg1 = CALL_EXPR_ARG (exp, 1);
8122 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8123 enum machine_mode mode0 = Pmode;
8124 enum machine_mode mode1 = Pmode;
8125 rtx op0 = expand_normal (arg0);
8126 rtx op1 = expand_normal (arg1);
8128 if (icode == CODE_FOR_nothing)
8129 /* Builtin not supported on this processor. */
8130 return 0;
8132 /* If we got invalid arguments bail out before generating bad rtl. */
8133 if (arg0 == error_mark_node || arg1 == error_mark_node)
8134 return const0_rtx;
8136 if (target == 0
8137 || GET_MODE (target) != tmode
8138 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8139 target = gen_reg_rtx (tmode);
8141 op1 = copy_to_mode_reg (mode1, op1);
8143 if (op0 == const0_rtx)
8145 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
8147 else
8149 op0 = copy_to_mode_reg (mode0, op0);
8150 addr = gen_rtx_MEM (blk ? BLKmode : tmode, gen_rtx_PLUS (Pmode, op0, op1));
8153 pat = GEN_FCN (icode) (target, addr);
8155 if (! pat)
8156 return 0;
8157 emit_insn (pat);
8159 return target;
8162 static rtx
8163 spe_expand_stv_builtin (enum insn_code icode, tree exp)
8165 tree arg0 = CALL_EXPR_ARG (exp, 0);
8166 tree arg1 = CALL_EXPR_ARG (exp, 1);
8167 tree arg2 = CALL_EXPR_ARG (exp, 2);
8168 rtx op0 = expand_normal (arg0);
8169 rtx op1 = expand_normal (arg1);
8170 rtx op2 = expand_normal (arg2);
8171 rtx pat;
8172 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
8173 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
8174 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
8176 /* Invalid arguments. Bail before doing anything stoopid! */
8177 if (arg0 == error_mark_node
8178 || arg1 == error_mark_node
8179 || arg2 == error_mark_node)
8180 return const0_rtx;
8182 if (! (*insn_data[icode].operand[2].predicate) (op0, mode2))
8183 op0 = copy_to_mode_reg (mode2, op0);
8184 if (! (*insn_data[icode].operand[0].predicate) (op1, mode0))
8185 op1 = copy_to_mode_reg (mode0, op1);
8186 if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
8187 op2 = copy_to_mode_reg (mode1, op2);
8189 pat = GEN_FCN (icode) (op1, op2, op0);
8190 if (pat)
8191 emit_insn (pat);
8192 return NULL_RTX;
8195 static rtx
8196 paired_expand_stv_builtin (enum insn_code icode, tree exp)
8198 tree arg0 = CALL_EXPR_ARG (exp, 0);
8199 tree arg1 = CALL_EXPR_ARG (exp, 1);
8200 tree arg2 = CALL_EXPR_ARG (exp, 2);
8201 rtx op0 = expand_normal (arg0);
8202 rtx op1 = expand_normal (arg1);
8203 rtx op2 = expand_normal (arg2);
8204 rtx pat, addr;
8205 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8206 enum machine_mode mode1 = Pmode;
8207 enum machine_mode mode2 = Pmode;
8209 /* Invalid arguments. Bail before doing anything stoopid! */
8210 if (arg0 == error_mark_node
8211 || arg1 == error_mark_node
8212 || arg2 == error_mark_node)
8213 return const0_rtx;
8215 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
8216 op0 = copy_to_mode_reg (tmode, op0);
8218 op2 = copy_to_mode_reg (mode2, op2);
8220 if (op1 == const0_rtx)
8222 addr = gen_rtx_MEM (tmode, op2);
8224 else
8226 op1 = copy_to_mode_reg (mode1, op1);
8227 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
8230 pat = GEN_FCN (icode) (addr, op0);
8231 if (pat)
8232 emit_insn (pat);
8233 return NULL_RTX;
8236 static rtx
8237 altivec_expand_stv_builtin (enum insn_code icode, tree exp)
8239 tree arg0 = CALL_EXPR_ARG (exp, 0);
8240 tree arg1 = CALL_EXPR_ARG (exp, 1);
8241 tree arg2 = CALL_EXPR_ARG (exp, 2);
8242 rtx op0 = expand_normal (arg0);
8243 rtx op1 = expand_normal (arg1);
8244 rtx op2 = expand_normal (arg2);
8245 rtx pat, addr;
8246 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8247 enum machine_mode mode1 = Pmode;
8248 enum machine_mode mode2 = Pmode;
8250 /* Invalid arguments. Bail before doing anything stoopid! */
8251 if (arg0 == error_mark_node
8252 || arg1 == error_mark_node
8253 || arg2 == error_mark_node)
8254 return const0_rtx;
8256 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
8257 op0 = copy_to_mode_reg (tmode, op0);
8259 op2 = copy_to_mode_reg (mode2, op2);
8261 if (op1 == const0_rtx)
8263 addr = gen_rtx_MEM (tmode, op2);
8265 else
8267 op1 = copy_to_mode_reg (mode1, op1);
8268 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
8271 pat = GEN_FCN (icode) (addr, op0);
8272 if (pat)
8273 emit_insn (pat);
8274 return NULL_RTX;
8277 static rtx
8278 rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
8280 rtx pat;
8281 tree arg0 = CALL_EXPR_ARG (exp, 0);
8282 tree arg1 = CALL_EXPR_ARG (exp, 1);
8283 tree arg2 = CALL_EXPR_ARG (exp, 2);
8284 rtx op0 = expand_normal (arg0);
8285 rtx op1 = expand_normal (arg1);
8286 rtx op2 = expand_normal (arg2);
8287 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8288 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
8289 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
8290 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
8292 if (icode == CODE_FOR_nothing)
8293 /* Builtin not supported on this processor. */
8294 return 0;
8296 /* If we got invalid arguments bail out before generating bad rtl. */
8297 if (arg0 == error_mark_node
8298 || arg1 == error_mark_node
8299 || arg2 == error_mark_node)
8300 return const0_rtx;
8302 if (icode == CODE_FOR_altivec_vsldoi_v4sf
8303 || icode == CODE_FOR_altivec_vsldoi_v4si
8304 || icode == CODE_FOR_altivec_vsldoi_v8hi
8305 || icode == CODE_FOR_altivec_vsldoi_v16qi)
8307 /* Only allow 4-bit unsigned literals. */
8308 STRIP_NOPS (arg2);
8309 if (TREE_CODE (arg2) != INTEGER_CST
8310 || TREE_INT_CST_LOW (arg2) & ~0xf)
8312 error ("argument 3 must be a 4-bit unsigned literal");
8313 return const0_rtx;
8317 if (target == 0
8318 || GET_MODE (target) != tmode
8319 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8320 target = gen_reg_rtx (tmode);
8322 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8323 op0 = copy_to_mode_reg (mode0, op0);
8324 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
8325 op1 = copy_to_mode_reg (mode1, op1);
8326 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
8327 op2 = copy_to_mode_reg (mode2, op2);
8329 if (TARGET_PAIRED_FLOAT && icode == CODE_FOR_selv2sf4)
8330 pat = GEN_FCN (icode) (target, op0, op1, op2, CONST0_RTX (SFmode));
8331 else
8332 pat = GEN_FCN (icode) (target, op0, op1, op2);
8333 if (! pat)
8334 return 0;
8335 emit_insn (pat);
8337 return target;
8340 /* Expand the lvx builtins. */
8341 static rtx
8342 altivec_expand_ld_builtin (tree exp, rtx target, bool *expandedp)
8344 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8345 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8346 tree arg0;
8347 enum machine_mode tmode, mode0;
8348 rtx pat, op0;
8349 enum insn_code icode;
8351 switch (fcode)
8353 case ALTIVEC_BUILTIN_LD_INTERNAL_16qi:
8354 icode = CODE_FOR_altivec_lvx_v16qi;
8355 break;
8356 case ALTIVEC_BUILTIN_LD_INTERNAL_8hi:
8357 icode = CODE_FOR_altivec_lvx_v8hi;
8358 break;
8359 case ALTIVEC_BUILTIN_LD_INTERNAL_4si:
8360 icode = CODE_FOR_altivec_lvx_v4si;
8361 break;
8362 case ALTIVEC_BUILTIN_LD_INTERNAL_4sf:
8363 icode = CODE_FOR_altivec_lvx_v4sf;
8364 break;
8365 default:
8366 *expandedp = false;
8367 return NULL_RTX;
8370 *expandedp = true;
8372 arg0 = CALL_EXPR_ARG (exp, 0);
8373 op0 = expand_normal (arg0);
8374 tmode = insn_data[icode].operand[0].mode;
8375 mode0 = insn_data[icode].operand[1].mode;
8377 if (target == 0
8378 || GET_MODE (target) != tmode
8379 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8380 target = gen_reg_rtx (tmode);
8382 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8383 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
8385 pat = GEN_FCN (icode) (target, op0);
8386 if (! pat)
8387 return 0;
8388 emit_insn (pat);
8389 return target;
8392 /* Expand the stvx builtins. */
8393 static rtx
8394 altivec_expand_st_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
8395 bool *expandedp)
8397 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8398 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8399 tree arg0, arg1;
8400 enum machine_mode mode0, mode1;
8401 rtx pat, op0, op1;
8402 enum insn_code icode;
8404 switch (fcode)
8406 case ALTIVEC_BUILTIN_ST_INTERNAL_16qi:
8407 icode = CODE_FOR_altivec_stvx_v16qi;
8408 break;
8409 case ALTIVEC_BUILTIN_ST_INTERNAL_8hi:
8410 icode = CODE_FOR_altivec_stvx_v8hi;
8411 break;
8412 case ALTIVEC_BUILTIN_ST_INTERNAL_4si:
8413 icode = CODE_FOR_altivec_stvx_v4si;
8414 break;
8415 case ALTIVEC_BUILTIN_ST_INTERNAL_4sf:
8416 icode = CODE_FOR_altivec_stvx_v4sf;
8417 break;
8418 default:
8419 *expandedp = false;
8420 return NULL_RTX;
8423 arg0 = CALL_EXPR_ARG (exp, 0);
8424 arg1 = CALL_EXPR_ARG (exp, 1);
8425 op0 = expand_normal (arg0);
8426 op1 = expand_normal (arg1);
8427 mode0 = insn_data[icode].operand[0].mode;
8428 mode1 = insn_data[icode].operand[1].mode;
8430 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8431 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
8432 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
8433 op1 = copy_to_mode_reg (mode1, op1);
8435 pat = GEN_FCN (icode) (op0, op1);
8436 if (pat)
8437 emit_insn (pat);
8439 *expandedp = true;
8440 return NULL_RTX;
8443 /* Expand the dst builtins. */
8444 static rtx
8445 altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
8446 bool *expandedp)
8448 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8449 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8450 tree arg0, arg1, arg2;
8451 enum machine_mode mode0, mode1, mode2;
8452 rtx pat, op0, op1, op2;
8453 const struct builtin_description *d;
8454 size_t i;
8456 *expandedp = false;
8458 /* Handle DST variants. */
8459 d = bdesc_dst;
8460 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
8461 if (d->code == fcode)
8463 arg0 = CALL_EXPR_ARG (exp, 0);
8464 arg1 = CALL_EXPR_ARG (exp, 1);
8465 arg2 = CALL_EXPR_ARG (exp, 2);
8466 op0 = expand_normal (arg0);
8467 op1 = expand_normal (arg1);
8468 op2 = expand_normal (arg2);
8469 mode0 = insn_data[d->icode].operand[0].mode;
8470 mode1 = insn_data[d->icode].operand[1].mode;
8471 mode2 = insn_data[d->icode].operand[2].mode;
8473 /* Invalid arguments, bail out before generating bad rtl. */
8474 if (arg0 == error_mark_node
8475 || arg1 == error_mark_node
8476 || arg2 == error_mark_node)
8477 return const0_rtx;
8479 *expandedp = true;
8480 STRIP_NOPS (arg2);
8481 if (TREE_CODE (arg2) != INTEGER_CST
8482 || TREE_INT_CST_LOW (arg2) & ~0x3)
8484 error ("argument to %qs must be a 2-bit unsigned literal", d->name);
8485 return const0_rtx;
8488 if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
8489 op0 = copy_to_mode_reg (Pmode, op0);
8490 if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
8491 op1 = copy_to_mode_reg (mode1, op1);
8493 pat = GEN_FCN (d->icode) (op0, op1, op2);
8494 if (pat != 0)
8495 emit_insn (pat);
8497 return NULL_RTX;
8500 return NULL_RTX;
8503 /* Expand vec_init builtin. */
8504 static rtx
8505 altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
8507 enum machine_mode tmode = TYPE_MODE (type);
8508 enum machine_mode inner_mode = GET_MODE_INNER (tmode);
8509 int i, n_elt = GET_MODE_NUNITS (tmode);
8510 rtvec v = rtvec_alloc (n_elt);
8512 gcc_assert (VECTOR_MODE_P (tmode));
8513 gcc_assert (n_elt == call_expr_nargs (exp));
8515 for (i = 0; i < n_elt; ++i)
8517 rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
8518 RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
8521 if (!target || !register_operand (target, tmode))
8522 target = gen_reg_rtx (tmode);
8524 rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
8525 return target;
8528 /* Return the integer constant in ARG. Constrain it to be in the range
8529 of the subparts of VEC_TYPE; issue an error if not. */
8531 static int
8532 get_element_number (tree vec_type, tree arg)
8534 unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
8536 if (!host_integerp (arg, 1)
8537 || (elt = tree_low_cst (arg, 1), elt > max))
8539 error ("selector must be an integer constant in the range 0..%wi", max);
8540 return 0;
8543 return elt;
8546 /* Expand vec_set builtin. */
8547 static rtx
8548 altivec_expand_vec_set_builtin (tree exp)
8550 enum machine_mode tmode, mode1;
8551 tree arg0, arg1, arg2;
8552 int elt;
8553 rtx op0, op1;
8555 arg0 = CALL_EXPR_ARG (exp, 0);
8556 arg1 = CALL_EXPR_ARG (exp, 1);
8557 arg2 = CALL_EXPR_ARG (exp, 2);
8559 tmode = TYPE_MODE (TREE_TYPE (arg0));
8560 mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
8561 gcc_assert (VECTOR_MODE_P (tmode));
8563 op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
8564 op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
8565 elt = get_element_number (TREE_TYPE (arg0), arg2);
8567 if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
8568 op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
8570 op0 = force_reg (tmode, op0);
8571 op1 = force_reg (mode1, op1);
8573 rs6000_expand_vector_set (op0, op1, elt);
8575 return op0;
8578 /* Expand vec_ext builtin. */
8579 static rtx
8580 altivec_expand_vec_ext_builtin (tree exp, rtx target)
8582 enum machine_mode tmode, mode0;
8583 tree arg0, arg1;
8584 int elt;
8585 rtx op0;
8587 arg0 = CALL_EXPR_ARG (exp, 0);
8588 arg1 = CALL_EXPR_ARG (exp, 1);
8590 op0 = expand_normal (arg0);
8591 elt = get_element_number (TREE_TYPE (arg0), arg1);
8593 tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
8594 mode0 = TYPE_MODE (TREE_TYPE (arg0));
8595 gcc_assert (VECTOR_MODE_P (mode0));
8597 op0 = force_reg (mode0, op0);
8599 if (optimize || !target || !register_operand (target, tmode))
8600 target = gen_reg_rtx (tmode);
8602 rs6000_expand_vector_extract (target, op0, elt);
8604 return target;
8607 /* Expand the builtin in EXP and store the result in TARGET. Store
8608 true in *EXPANDEDP if we found a builtin to expand. */
8609 static rtx
8610 altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
8612 const struct builtin_description *d;
8613 const struct builtin_description_predicates *dp;
8614 size_t i;
8615 enum insn_code icode;
8616 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8617 tree arg0;
8618 rtx op0, pat;
8619 enum machine_mode tmode, mode0;
8620 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8622 if (fcode >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
8623 && fcode <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
8625 *expandedp = true;
8626 error ("unresolved overload for Altivec builtin %qF", fndecl);
8627 return const0_rtx;
8630 target = altivec_expand_ld_builtin (exp, target, expandedp);
8631 if (*expandedp)
8632 return target;
8634 target = altivec_expand_st_builtin (exp, target, expandedp);
8635 if (*expandedp)
8636 return target;
8638 target = altivec_expand_dst_builtin (exp, target, expandedp);
8639 if (*expandedp)
8640 return target;
8642 *expandedp = true;
8644 switch (fcode)
8646 case ALTIVEC_BUILTIN_STVX:
8647 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx, exp);
8648 case ALTIVEC_BUILTIN_STVEBX:
8649 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
8650 case ALTIVEC_BUILTIN_STVEHX:
8651 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
8652 case ALTIVEC_BUILTIN_STVEWX:
8653 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
8654 case ALTIVEC_BUILTIN_STVXL:
8655 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl, exp);
8657 case ALTIVEC_BUILTIN_STVLX:
8658 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
8659 case ALTIVEC_BUILTIN_STVLXL:
8660 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
8661 case ALTIVEC_BUILTIN_STVRX:
8662 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
8663 case ALTIVEC_BUILTIN_STVRXL:
8664 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);
8666 case ALTIVEC_BUILTIN_MFVSCR:
8667 icode = CODE_FOR_altivec_mfvscr;
8668 tmode = insn_data[icode].operand[0].mode;
8670 if (target == 0
8671 || GET_MODE (target) != tmode
8672 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8673 target = gen_reg_rtx (tmode);
8675 pat = GEN_FCN (icode) (target);
8676 if (! pat)
8677 return 0;
8678 emit_insn (pat);
8679 return target;
8681 case ALTIVEC_BUILTIN_MTVSCR:
8682 icode = CODE_FOR_altivec_mtvscr;
8683 arg0 = CALL_EXPR_ARG (exp, 0);
8684 op0 = expand_normal (arg0);
8685 mode0 = insn_data[icode].operand[0].mode;
8687 /* If we got invalid arguments bail out before generating bad rtl. */
8688 if (arg0 == error_mark_node)
8689 return const0_rtx;
8691 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8692 op0 = copy_to_mode_reg (mode0, op0);
8694 pat = GEN_FCN (icode) (op0);
8695 if (pat)
8696 emit_insn (pat);
8697 return NULL_RTX;
8699 case ALTIVEC_BUILTIN_DSSALL:
8700 emit_insn (gen_altivec_dssall ());
8701 return NULL_RTX;
8703 case ALTIVEC_BUILTIN_DSS:
8704 icode = CODE_FOR_altivec_dss;
8705 arg0 = CALL_EXPR_ARG (exp, 0);
8706 STRIP_NOPS (arg0);
8707 op0 = expand_normal (arg0);
8708 mode0 = insn_data[icode].operand[0].mode;
8710 /* If we got invalid arguments bail out before generating bad rtl. */
8711 if (arg0 == error_mark_node)
8712 return const0_rtx;
8714 if (TREE_CODE (arg0) != INTEGER_CST
8715 || TREE_INT_CST_LOW (arg0) & ~0x3)
8717 error ("argument to dss must be a 2-bit unsigned literal");
8718 return const0_rtx;
8721 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8722 op0 = copy_to_mode_reg (mode0, op0);
8724 emit_insn (gen_altivec_dss (op0));
8725 return NULL_RTX;
8727 case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
8728 case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
8729 case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
8730 case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
8731 return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
8733 case ALTIVEC_BUILTIN_VEC_SET_V4SI:
8734 case ALTIVEC_BUILTIN_VEC_SET_V8HI:
8735 case ALTIVEC_BUILTIN_VEC_SET_V16QI:
8736 case ALTIVEC_BUILTIN_VEC_SET_V4SF:
8737 return altivec_expand_vec_set_builtin (exp);
8739 case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
8740 case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
8741 case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
8742 case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
8743 return altivec_expand_vec_ext_builtin (exp, target);
8745 default:
8746 break;
8747 /* Fall through. */
8750 /* Expand abs* operations. */
8751 d = bdesc_abs;
8752 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
8753 if (d->code == fcode)
8754 return altivec_expand_abs_builtin (d->icode, exp, target);
8756 /* Expand the AltiVec predicates. */
8757 dp = bdesc_altivec_preds;
8758 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
8759 if (dp->code == fcode)
8760 return altivec_expand_predicate_builtin (dp->icode, dp->opcode,
8761 exp, target);
8763 /* LV* are funky. We initialized them differently. */
8764 switch (fcode)
8766 case ALTIVEC_BUILTIN_LVSL:
8767 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
8768 exp, target, false);
8769 case ALTIVEC_BUILTIN_LVSR:
8770 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
8771 exp, target, false);
8772 case ALTIVEC_BUILTIN_LVEBX:
8773 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
8774 exp, target, false);
8775 case ALTIVEC_BUILTIN_LVEHX:
8776 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
8777 exp, target, false);
8778 case ALTIVEC_BUILTIN_LVEWX:
8779 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
8780 exp, target, false);
8781 case ALTIVEC_BUILTIN_LVXL:
8782 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl,
8783 exp, target, false);
8784 case ALTIVEC_BUILTIN_LVX:
8785 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx,
8786 exp, target, false);
8787 case ALTIVEC_BUILTIN_LVLX:
8788 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
8789 exp, target, true);
8790 case ALTIVEC_BUILTIN_LVLXL:
8791 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
8792 exp, target, true);
8793 case ALTIVEC_BUILTIN_LVRX:
8794 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
8795 exp, target, true);
8796 case ALTIVEC_BUILTIN_LVRXL:
8797 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
8798 exp, target, true);
8799 default:
8800 break;
8801 /* Fall through. */
8804 *expandedp = false;
8805 return NULL_RTX;
8808 /* Expand the builtin in EXP and store the result in TARGET. Store
8809 true in *EXPANDEDP if we found a builtin to expand. */
8810 static rtx
8811 paired_expand_builtin (tree exp, rtx target, bool * expandedp)
8813 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8814 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8815 const struct builtin_description *d;
8816 size_t i;
8818 *expandedp = true;
8820 switch (fcode)
8822 case PAIRED_BUILTIN_STX:
8823 return paired_expand_stv_builtin (CODE_FOR_paired_stx, exp);
8824 case PAIRED_BUILTIN_LX:
8825 return paired_expand_lv_builtin (CODE_FOR_paired_lx, exp, target);
8826 default:
8827 break;
8828 /* Fall through. */
8831 /* Expand the paired predicates. */
8832 d = bdesc_paired_preds;
8833 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); i++, d++)
8834 if (d->code == fcode)
8835 return paired_expand_predicate_builtin (d->icode, exp, target);
8837 *expandedp = false;
8838 return NULL_RTX;
8841 /* Binops that need to be initialized manually, but can be expanded
8842 automagically by rs6000_expand_binop_builtin. */
8843 static struct builtin_description bdesc_2arg_spe[] =
8845 { 0, CODE_FOR_spe_evlddx, "__builtin_spe_evlddx", SPE_BUILTIN_EVLDDX },
8846 { 0, CODE_FOR_spe_evldwx, "__builtin_spe_evldwx", SPE_BUILTIN_EVLDWX },
8847 { 0, CODE_FOR_spe_evldhx, "__builtin_spe_evldhx", SPE_BUILTIN_EVLDHX },
8848 { 0, CODE_FOR_spe_evlwhex, "__builtin_spe_evlwhex", SPE_BUILTIN_EVLWHEX },
8849 { 0, CODE_FOR_spe_evlwhoux, "__builtin_spe_evlwhoux", SPE_BUILTIN_EVLWHOUX },
8850 { 0, CODE_FOR_spe_evlwhosx, "__builtin_spe_evlwhosx", SPE_BUILTIN_EVLWHOSX },
8851 { 0, CODE_FOR_spe_evlwwsplatx, "__builtin_spe_evlwwsplatx", SPE_BUILTIN_EVLWWSPLATX },
8852 { 0, CODE_FOR_spe_evlwhsplatx, "__builtin_spe_evlwhsplatx", SPE_BUILTIN_EVLWHSPLATX },
8853 { 0, CODE_FOR_spe_evlhhesplatx, "__builtin_spe_evlhhesplatx", SPE_BUILTIN_EVLHHESPLATX },
8854 { 0, CODE_FOR_spe_evlhhousplatx, "__builtin_spe_evlhhousplatx", SPE_BUILTIN_EVLHHOUSPLATX },
8855 { 0, CODE_FOR_spe_evlhhossplatx, "__builtin_spe_evlhhossplatx", SPE_BUILTIN_EVLHHOSSPLATX },
8856 { 0, CODE_FOR_spe_evldd, "__builtin_spe_evldd", SPE_BUILTIN_EVLDD },
8857 { 0, CODE_FOR_spe_evldw, "__builtin_spe_evldw", SPE_BUILTIN_EVLDW },
8858 { 0, CODE_FOR_spe_evldh, "__builtin_spe_evldh", SPE_BUILTIN_EVLDH },
8859 { 0, CODE_FOR_spe_evlwhe, "__builtin_spe_evlwhe", SPE_BUILTIN_EVLWHE },
8860 { 0, CODE_FOR_spe_evlwhou, "__builtin_spe_evlwhou", SPE_BUILTIN_EVLWHOU },
8861 { 0, CODE_FOR_spe_evlwhos, "__builtin_spe_evlwhos", SPE_BUILTIN_EVLWHOS },
8862 { 0, CODE_FOR_spe_evlwwsplat, "__builtin_spe_evlwwsplat", SPE_BUILTIN_EVLWWSPLAT },
8863 { 0, CODE_FOR_spe_evlwhsplat, "__builtin_spe_evlwhsplat", SPE_BUILTIN_EVLWHSPLAT },
8864 { 0, CODE_FOR_spe_evlhhesplat, "__builtin_spe_evlhhesplat", SPE_BUILTIN_EVLHHESPLAT },
8865 { 0, CODE_FOR_spe_evlhhousplat, "__builtin_spe_evlhhousplat", SPE_BUILTIN_EVLHHOUSPLAT },
8866 { 0, CODE_FOR_spe_evlhhossplat, "__builtin_spe_evlhhossplat", SPE_BUILTIN_EVLHHOSSPLAT }
8869 /* Expand the builtin in EXP and store the result in TARGET. Store
8870 true in *EXPANDEDP if we found a builtin to expand.
8872 This expands the SPE builtins that are not simple unary and binary
8873 operations. */
8874 static rtx
8875 spe_expand_builtin (tree exp, rtx target, bool *expandedp)
8877 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8878 tree arg1, arg0;
8879 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8880 enum insn_code icode;
8881 enum machine_mode tmode, mode0;
8882 rtx pat, op0;
8883 struct builtin_description *d;
8884 size_t i;
8886 *expandedp = true;
8888 /* Syntax check for a 5-bit unsigned immediate. */
8889 switch (fcode)
8891 case SPE_BUILTIN_EVSTDD:
8892 case SPE_BUILTIN_EVSTDH:
8893 case SPE_BUILTIN_EVSTDW:
8894 case SPE_BUILTIN_EVSTWHE:
8895 case SPE_BUILTIN_EVSTWHO:
8896 case SPE_BUILTIN_EVSTWWE:
8897 case SPE_BUILTIN_EVSTWWO:
8898 arg1 = CALL_EXPR_ARG (exp, 2);
8899 if (TREE_CODE (arg1) != INTEGER_CST
8900 || TREE_INT_CST_LOW (arg1) & ~0x1f)
8902 error ("argument 2 must be a 5-bit unsigned literal");
8903 return const0_rtx;
8905 break;
8906 default:
8907 break;
8910 /* The evsplat*i instructions are not quite generic. */
8911 switch (fcode)
8913 case SPE_BUILTIN_EVSPLATFI:
8914 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplatfi,
8915 exp, target);
8916 case SPE_BUILTIN_EVSPLATI:
8917 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplati,
8918 exp, target);
8919 default:
8920 break;
8923 d = (struct builtin_description *) bdesc_2arg_spe;
8924 for (i = 0; i < ARRAY_SIZE (bdesc_2arg_spe); ++i, ++d)
8925 if (d->code == fcode)
8926 return rs6000_expand_binop_builtin (d->icode, exp, target);
8928 d = (struct builtin_description *) bdesc_spe_predicates;
8929 for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, ++d)
8930 if (d->code == fcode)
8931 return spe_expand_predicate_builtin (d->icode, exp, target);
8933 d = (struct builtin_description *) bdesc_spe_evsel;
8934 for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, ++d)
8935 if (d->code == fcode)
8936 return spe_expand_evsel_builtin (d->icode, exp, target);
8938 switch (fcode)
8940 case SPE_BUILTIN_EVSTDDX:
8941 return spe_expand_stv_builtin (CODE_FOR_spe_evstddx, exp);
8942 case SPE_BUILTIN_EVSTDHX:
8943 return spe_expand_stv_builtin (CODE_FOR_spe_evstdhx, exp);
8944 case SPE_BUILTIN_EVSTDWX:
8945 return spe_expand_stv_builtin (CODE_FOR_spe_evstdwx, exp);
8946 case SPE_BUILTIN_EVSTWHEX:
8947 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhex, exp);
8948 case SPE_BUILTIN_EVSTWHOX:
8949 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhox, exp);
8950 case SPE_BUILTIN_EVSTWWEX:
8951 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwex, exp);
8952 case SPE_BUILTIN_EVSTWWOX:
8953 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwox, exp);
8954 case SPE_BUILTIN_EVSTDD:
8955 return spe_expand_stv_builtin (CODE_FOR_spe_evstdd, exp);
8956 case SPE_BUILTIN_EVSTDH:
8957 return spe_expand_stv_builtin (CODE_FOR_spe_evstdh, exp);
8958 case SPE_BUILTIN_EVSTDW:
8959 return spe_expand_stv_builtin (CODE_FOR_spe_evstdw, exp);
8960 case SPE_BUILTIN_EVSTWHE:
8961 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhe, exp);
8962 case SPE_BUILTIN_EVSTWHO:
8963 return spe_expand_stv_builtin (CODE_FOR_spe_evstwho, exp);
8964 case SPE_BUILTIN_EVSTWWE:
8965 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwe, exp);
8966 case SPE_BUILTIN_EVSTWWO:
8967 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwo, exp);
8968 case SPE_BUILTIN_MFSPEFSCR:
8969 icode = CODE_FOR_spe_mfspefscr;
8970 tmode = insn_data[icode].operand[0].mode;
8972 if (target == 0
8973 || GET_MODE (target) != tmode
8974 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8975 target = gen_reg_rtx (tmode);
8977 pat = GEN_FCN (icode) (target);
8978 if (! pat)
8979 return 0;
8980 emit_insn (pat);
8981 return target;
8982 case SPE_BUILTIN_MTSPEFSCR:
8983 icode = CODE_FOR_spe_mtspefscr;
8984 arg0 = CALL_EXPR_ARG (exp, 0);
8985 op0 = expand_normal (arg0);
8986 mode0 = insn_data[icode].operand[0].mode;
8988 if (arg0 == error_mark_node)
8989 return const0_rtx;
8991 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8992 op0 = copy_to_mode_reg (mode0, op0);
8994 pat = GEN_FCN (icode) (op0);
8995 if (pat)
8996 emit_insn (pat);
8997 return NULL_RTX;
8998 default:
8999 break;
9002 *expandedp = false;
9003 return NULL_RTX;
9006 static rtx
9007 paired_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
9009 rtx pat, scratch, tmp;
9010 tree form = CALL_EXPR_ARG (exp, 0);
9011 tree arg0 = CALL_EXPR_ARG (exp, 1);
9012 tree arg1 = CALL_EXPR_ARG (exp, 2);
9013 rtx op0 = expand_normal (arg0);
9014 rtx op1 = expand_normal (arg1);
9015 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9016 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9017 int form_int;
9018 enum rtx_code code;
9020 if (TREE_CODE (form) != INTEGER_CST)
9022 error ("argument 1 of __builtin_paired_predicate must be a constant");
9023 return const0_rtx;
9025 else
9026 form_int = TREE_INT_CST_LOW (form);
9028 gcc_assert (mode0 == mode1);
9030 if (arg0 == error_mark_node || arg1 == error_mark_node)
9031 return const0_rtx;
9033 if (target == 0
9034 || GET_MODE (target) != SImode
9035 || !(*insn_data[icode].operand[0].predicate) (target, SImode))
9036 target = gen_reg_rtx (SImode);
9037 if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
9038 op0 = copy_to_mode_reg (mode0, op0);
9039 if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
9040 op1 = copy_to_mode_reg (mode1, op1);
9042 scratch = gen_reg_rtx (CCFPmode);
9044 pat = GEN_FCN (icode) (scratch, op0, op1);
9045 if (!pat)
9046 return const0_rtx;
9048 emit_insn (pat);
9050 switch (form_int)
9052 /* LT bit. */
9053 case 0:
9054 code = LT;
9055 break;
9056 /* GT bit. */
9057 case 1:
9058 code = GT;
9059 break;
9060 /* EQ bit. */
9061 case 2:
9062 code = EQ;
9063 break;
9064 /* UN bit. */
9065 case 3:
9066 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
9067 return target;
9068 default:
9069 error ("argument 1 of __builtin_paired_predicate is out of range");
9070 return const0_rtx;
9073 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
9074 emit_move_insn (target, tmp);
9075 return target;
9078 static rtx
9079 spe_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
9081 rtx pat, scratch, tmp;
9082 tree form = CALL_EXPR_ARG (exp, 0);
9083 tree arg0 = CALL_EXPR_ARG (exp, 1);
9084 tree arg1 = CALL_EXPR_ARG (exp, 2);
9085 rtx op0 = expand_normal (arg0);
9086 rtx op1 = expand_normal (arg1);
9087 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9088 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9089 int form_int;
9090 enum rtx_code code;
9092 if (TREE_CODE (form) != INTEGER_CST)
9094 error ("argument 1 of __builtin_spe_predicate must be a constant");
9095 return const0_rtx;
9097 else
9098 form_int = TREE_INT_CST_LOW (form);
9100 gcc_assert (mode0 == mode1);
9102 if (arg0 == error_mark_node || arg1 == error_mark_node)
9103 return const0_rtx;
9105 if (target == 0
9106 || GET_MODE (target) != SImode
9107 || ! (*insn_data[icode].operand[0].predicate) (target, SImode))
9108 target = gen_reg_rtx (SImode);
9110 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
9111 op0 = copy_to_mode_reg (mode0, op0);
9112 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
9113 op1 = copy_to_mode_reg (mode1, op1);
9115 scratch = gen_reg_rtx (CCmode);
9117 pat = GEN_FCN (icode) (scratch, op0, op1);
9118 if (! pat)
9119 return const0_rtx;
9120 emit_insn (pat);
9122 /* There are 4 variants for each predicate: _any_, _all_, _upper_,
9123 _lower_. We use one compare, but look in different bits of the
9124 CR for each variant.
9126 There are 2 elements in each SPE simd type (upper/lower). The CR
9127 bits are set as follows:
9129 BIT0 | BIT 1 | BIT 2 | BIT 3
9130 U | L | (U | L) | (U & L)
9132 So, for an "all" relationship, BIT 3 would be set.
9133 For an "any" relationship, BIT 2 would be set. Etc.
9135 Following traditional nomenclature, these bits map to:
9137 BIT0 | BIT 1 | BIT 2 | BIT 3
9138 LT | GT | EQ | OV
9140 Later, we will generate rtl to look in the LT/EQ/EQ/OV bits.
9143 switch (form_int)
9145 /* All variant. OV bit. */
9146 case 0:
9147 /* We need to get to the OV bit, which is the ORDERED bit. We
9148 could generate (ordered:SI (reg:CC xx) (const_int 0)), but
9149 that's ugly and will make validate_condition_mode die.
9150 So let's just use another pattern. */
9151 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
9152 return target;
9153 /* Any variant. EQ bit. */
9154 case 1:
9155 code = EQ;
9156 break;
9157 /* Upper variant. LT bit. */
9158 case 2:
9159 code = LT;
9160 break;
9161 /* Lower variant. GT bit. */
9162 case 3:
9163 code = GT;
9164 break;
9165 default:
9166 error ("argument 1 of __builtin_spe_predicate is out of range");
9167 return const0_rtx;
9170 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
9171 emit_move_insn (target, tmp);
9173 return target;
9176 /* The evsel builtins look like this:
9178 e = __builtin_spe_evsel_OP (a, b, c, d);
9180 and work like this:
9182 e[upper] = a[upper] *OP* b[upper] ? c[upper] : d[upper];
9183 e[lower] = a[lower] *OP* b[lower] ? c[lower] : d[lower];
9186 static rtx
9187 spe_expand_evsel_builtin (enum insn_code icode, tree exp, rtx target)
9189 rtx pat, scratch;
9190 tree arg0 = CALL_EXPR_ARG (exp, 0);
9191 tree arg1 = CALL_EXPR_ARG (exp, 1);
9192 tree arg2 = CALL_EXPR_ARG (exp, 2);
9193 tree arg3 = CALL_EXPR_ARG (exp, 3);
9194 rtx op0 = expand_normal (arg0);
9195 rtx op1 = expand_normal (arg1);
9196 rtx op2 = expand_normal (arg2);
9197 rtx op3 = expand_normal (arg3);
9198 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9199 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9201 gcc_assert (mode0 == mode1);
9203 if (arg0 == error_mark_node || arg1 == error_mark_node
9204 || arg2 == error_mark_node || arg3 == error_mark_node)
9205 return const0_rtx;
9207 if (target == 0
9208 || GET_MODE (target) != mode0
9209 || ! (*insn_data[icode].operand[0].predicate) (target, mode0))
9210 target = gen_reg_rtx (mode0);
9212 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
9213 op0 = copy_to_mode_reg (mode0, op0);
9214 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
9215 op1 = copy_to_mode_reg (mode0, op1);
9216 if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
9217 op2 = copy_to_mode_reg (mode0, op2);
9218 if (! (*insn_data[icode].operand[1].predicate) (op3, mode1))
9219 op3 = copy_to_mode_reg (mode0, op3);
9221 /* Generate the compare. */
9222 scratch = gen_reg_rtx (CCmode);
9223 pat = GEN_FCN (icode) (scratch, op0, op1);
9224 if (! pat)
9225 return const0_rtx;
9226 emit_insn (pat);
9228 if (mode0 == V2SImode)
9229 emit_insn (gen_spe_evsel (target, op2, op3, scratch));
9230 else
9231 emit_insn (gen_spe_evsel_fs (target, op2, op3, scratch));
9233 return target;
9236 /* Expand an expression EXP that calls a built-in function,
9237 with result going to TARGET if that's convenient
9238 (and in mode MODE if that's convenient).
9239 SUBTARGET may be used as the target for computing one of EXP's operands.
9240 IGNORE is nonzero if the value is to be ignored. */
9242 static rtx
9243 rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
9244 enum machine_mode mode ATTRIBUTE_UNUSED,
9245 int ignore ATTRIBUTE_UNUSED)
9247 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
9248 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
9249 const struct builtin_description *d;
9250 size_t i;
9251 rtx ret;
9252 bool success;
9254 if (fcode == RS6000_BUILTIN_RECIP)
9255 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);
9257 if (fcode == RS6000_BUILTIN_RECIPF)
9258 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);
9260 if (fcode == RS6000_BUILTIN_RSQRTF)
9261 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);
9263 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_LOAD
9264 || fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
9266 int icode = (int) CODE_FOR_altivec_lvsr;
9267 enum machine_mode tmode = insn_data[icode].operand[0].mode;
9268 enum machine_mode mode = insn_data[icode].operand[1].mode;
9269 tree arg;
9270 rtx op, addr, pat;
9272 gcc_assert (TARGET_ALTIVEC);
9274 arg = CALL_EXPR_ARG (exp, 0);
9275 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == POINTER_TYPE);
9276 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
9277 addr = memory_address (mode, op);
9278 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
9279 op = addr;
9280 else
9282 /* For the load case need to negate the address. */
9283 op = gen_reg_rtx (GET_MODE (addr));
9284 emit_insn (gen_rtx_SET (VOIDmode, op,
9285 gen_rtx_NEG (GET_MODE (addr), addr)));
9287 op = gen_rtx_MEM (mode, op);
9289 if (target == 0
9290 || GET_MODE (target) != tmode
9291 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
9292 target = gen_reg_rtx (tmode);
9294 /*pat = gen_altivec_lvsr (target, op);*/
9295 pat = GEN_FCN (icode) (target, op);
9296 if (!pat)
9297 return 0;
9298 emit_insn (pat);
9300 return target;
9303 /* FIXME: There's got to be a nicer way to handle this case than
9304 constructing a new CALL_EXPR. */
9305 if (fcode == ALTIVEC_BUILTIN_VCFUX
9306 || fcode == ALTIVEC_BUILTIN_VCFSX
9307 || fcode == ALTIVEC_BUILTIN_VCTUXS
9308 || fcode == ALTIVEC_BUILTIN_VCTSXS)
9310 if (call_expr_nargs (exp) == 1)
9311 exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
9312 2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
9315 if (TARGET_ALTIVEC)
9317 ret = altivec_expand_builtin (exp, target, &success);
9319 if (success)
9320 return ret;
9322 if (TARGET_SPE)
9324 ret = spe_expand_builtin (exp, target, &success);
9326 if (success)
9327 return ret;
9329 if (TARGET_PAIRED_FLOAT)
9331 ret = paired_expand_builtin (exp, target, &success);
9333 if (success)
9334 return ret;
9337 gcc_assert (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT);
9339 /* Handle simple unary operations. */
9340 d = (struct builtin_description *) bdesc_1arg;
9341 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
9342 if (d->code == fcode)
9343 return rs6000_expand_unop_builtin (d->icode, exp, target);
9345 /* Handle simple binary operations. */
9346 d = (struct builtin_description *) bdesc_2arg;
9347 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
9348 if (d->code == fcode)
9349 return rs6000_expand_binop_builtin (d->icode, exp, target);
9351 /* Handle simple ternary operations. */
9352 d = bdesc_3arg;
9353 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
9354 if (d->code == fcode)
9355 return rs6000_expand_ternop_builtin (d->icode, exp, target);
9357 gcc_unreachable ();
9360 static void
9361 rs6000_init_builtins (void)
9363 tree tdecl;
9365 V2SI_type_node = build_vector_type (intSI_type_node, 2);
9366 V2SF_type_node = build_vector_type (float_type_node, 2);
9367 V4HI_type_node = build_vector_type (intHI_type_node, 4);
9368 V4SI_type_node = build_vector_type (intSI_type_node, 4);
9369 V4SF_type_node = build_vector_type (float_type_node, 4);
9370 V8HI_type_node = build_vector_type (intHI_type_node, 8);
9371 V16QI_type_node = build_vector_type (intQI_type_node, 16);
9373 unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
9374 unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
9375 unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
9377 opaque_V2SF_type_node = build_opaque_vector_type (float_type_node, 2);
9378 opaque_V2SI_type_node = build_opaque_vector_type (intSI_type_node, 2);
9379 opaque_p_V2SI_type_node = build_pointer_type (opaque_V2SI_type_node);
9380 opaque_V4SI_type_node = build_opaque_vector_type (intSI_type_node, 4);
9382 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
9383 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
9384 'vector unsigned short'. */
9386 bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
9387 bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
9388 bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
9389 pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
9391 long_integer_type_internal_node = long_integer_type_node;
9392 long_unsigned_type_internal_node = long_unsigned_type_node;
9393 intQI_type_internal_node = intQI_type_node;
9394 uintQI_type_internal_node = unsigned_intQI_type_node;
9395 intHI_type_internal_node = intHI_type_node;
9396 uintHI_type_internal_node = unsigned_intHI_type_node;
9397 intSI_type_internal_node = intSI_type_node;
9398 uintSI_type_internal_node = unsigned_intSI_type_node;
9399 float_type_internal_node = float_type_node;
9400 void_type_internal_node = void_type_node;
9402 tdecl = build_decl (TYPE_DECL, get_identifier ("__bool char"),
9403 bool_char_type_node);
9404 TYPE_NAME (bool_char_type_node) = tdecl;
9405 (*lang_hooks.decls.pushdecl) (tdecl);
9406 tdecl = build_decl (TYPE_DECL, get_identifier ("__bool short"),
9407 bool_short_type_node);
9408 TYPE_NAME (bool_short_type_node) = tdecl;
9409 (*lang_hooks.decls.pushdecl) (tdecl);
9410 tdecl = build_decl (TYPE_DECL, get_identifier ("__bool int"),
9411 bool_int_type_node);
9412 TYPE_NAME (bool_int_type_node) = tdecl;
9413 (*lang_hooks.decls.pushdecl) (tdecl);
9414 tdecl = build_decl (TYPE_DECL, get_identifier ("__pixel"),
9415 pixel_type_node);
9416 TYPE_NAME (pixel_type_node) = tdecl;
9417 (*lang_hooks.decls.pushdecl) (tdecl);
9419 bool_V16QI_type_node = build_vector_type (bool_char_type_node, 16);
9420 bool_V8HI_type_node = build_vector_type (bool_short_type_node, 8);
9421 bool_V4SI_type_node = build_vector_type (bool_int_type_node, 4);
9422 pixel_V8HI_type_node = build_vector_type (pixel_type_node, 8);
9424 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector unsigned char"),
9425 unsigned_V16QI_type_node);
9426 TYPE_NAME (unsigned_V16QI_type_node) = tdecl;
9427 (*lang_hooks.decls.pushdecl) (tdecl);
9428 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector signed char"),
9429 V16QI_type_node);
9430 TYPE_NAME (V16QI_type_node) = tdecl;
9431 (*lang_hooks.decls.pushdecl) (tdecl);
9432 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __bool char"),
9433 bool_V16QI_type_node);
9434 TYPE_NAME ( bool_V16QI_type_node) = tdecl;
9435 (*lang_hooks.decls.pushdecl) (tdecl);
9437 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector unsigned short"),
9438 unsigned_V8HI_type_node);
9439 TYPE_NAME (unsigned_V8HI_type_node) = tdecl;
9440 (*lang_hooks.decls.pushdecl) (tdecl);
9441 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector signed short"),
9442 V8HI_type_node);
9443 TYPE_NAME (V8HI_type_node) = tdecl;
9444 (*lang_hooks.decls.pushdecl) (tdecl);
9445 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __bool short"),
9446 bool_V8HI_type_node);
9447 TYPE_NAME (bool_V8HI_type_node) = tdecl;
9448 (*lang_hooks.decls.pushdecl) (tdecl);
9450 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector unsigned int"),
9451 unsigned_V4SI_type_node);
9452 TYPE_NAME (unsigned_V4SI_type_node) = tdecl;
9453 (*lang_hooks.decls.pushdecl) (tdecl);
9454 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector signed int"),
9455 V4SI_type_node);
9456 TYPE_NAME (V4SI_type_node) = tdecl;
9457 (*lang_hooks.decls.pushdecl) (tdecl);
9458 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __bool int"),
9459 bool_V4SI_type_node);
9460 TYPE_NAME (bool_V4SI_type_node) = tdecl;
9461 (*lang_hooks.decls.pushdecl) (tdecl);
9463 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector float"),
9464 V4SF_type_node);
9465 TYPE_NAME (V4SF_type_node) = tdecl;
9466 (*lang_hooks.decls.pushdecl) (tdecl);
9467 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __pixel"),
9468 pixel_V8HI_type_node);
9469 TYPE_NAME (pixel_V8HI_type_node) = tdecl;
9470 (*lang_hooks.decls.pushdecl) (tdecl);
9472 if (TARGET_PAIRED_FLOAT)
9473 paired_init_builtins ();
9474 if (TARGET_SPE)
9475 spe_init_builtins ();
9476 if (TARGET_ALTIVEC)
9477 altivec_init_builtins ();
9478 if (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT)
9479 rs6000_common_init_builtins ();
9480 if (TARGET_PPC_GFXOPT)
9482 tree ftype = build_function_type_list (float_type_node,
9483 float_type_node,
9484 float_type_node,
9485 NULL_TREE);
9486 def_builtin (MASK_PPC_GFXOPT, "__builtin_recipdivf", ftype,
9487 RS6000_BUILTIN_RECIPF);
9489 ftype = build_function_type_list (float_type_node,
9490 float_type_node,
9491 NULL_TREE);
9492 def_builtin (MASK_PPC_GFXOPT, "__builtin_rsqrtf", ftype,
9493 RS6000_BUILTIN_RSQRTF);
9495 if (TARGET_POPCNTB)
9497 tree ftype = build_function_type_list (double_type_node,
9498 double_type_node,
9499 double_type_node,
9500 NULL_TREE);
9501 def_builtin (MASK_POPCNTB, "__builtin_recipdiv", ftype,
9502 RS6000_BUILTIN_RECIP);
9506 #if TARGET_XCOFF
9507 /* AIX libm provides clog as __clog. */
9508 if (built_in_decls [BUILT_IN_CLOG])
9509 set_user_assembler_name (built_in_decls [BUILT_IN_CLOG], "__clog");
9510 #endif
9512 #ifdef SUBTARGET_INIT_BUILTINS
9513 SUBTARGET_INIT_BUILTINS;
9514 #endif
9517 /* Search through a set of builtins and enable the mask bits.
9518 DESC is an array of builtins.
9519 SIZE is the total number of builtins.
9520 START is the builtin enum at which to start.
9521 END is the builtin enum at which to end. */
9522 static void
9523 enable_mask_for_builtins (struct builtin_description *desc, int size,
9524 enum rs6000_builtins start,
9525 enum rs6000_builtins end)
9527 int i;
9529 for (i = 0; i < size; ++i)
9530 if (desc[i].code == start)
9531 break;
9533 if (i == size)
9534 return;
9536 for (; i < size; ++i)
9538 /* Flip all the bits on. */
9539 desc[i].mask = target_flags;
9540 if (desc[i].code == end)
9541 break;
9545 static void
9546 spe_init_builtins (void)
9548 tree endlink = void_list_node;
9549 tree puint_type_node = build_pointer_type (unsigned_type_node);
9550 tree pushort_type_node = build_pointer_type (short_unsigned_type_node);
9551 struct builtin_description *d;
9552 size_t i;
9554 tree v2si_ftype_4_v2si
9555 = build_function_type
9556 (opaque_V2SI_type_node,
9557 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9558 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9559 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9560 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9561 endlink)))));
9563 tree v2sf_ftype_4_v2sf
9564 = build_function_type
9565 (opaque_V2SF_type_node,
9566 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9567 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9568 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9569 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9570 endlink)))));
9572 tree int_ftype_int_v2si_v2si
9573 = build_function_type
9574 (integer_type_node,
9575 tree_cons (NULL_TREE, integer_type_node,
9576 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9577 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9578 endlink))));
9580 tree int_ftype_int_v2sf_v2sf
9581 = build_function_type
9582 (integer_type_node,
9583 tree_cons (NULL_TREE, integer_type_node,
9584 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9585 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9586 endlink))));
9588 tree void_ftype_v2si_puint_int
9589 = build_function_type (void_type_node,
9590 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9591 tree_cons (NULL_TREE, puint_type_node,
9592 tree_cons (NULL_TREE,
9593 integer_type_node,
9594 endlink))));
9596 tree void_ftype_v2si_puint_char
9597 = build_function_type (void_type_node,
9598 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9599 tree_cons (NULL_TREE, puint_type_node,
9600 tree_cons (NULL_TREE,
9601 char_type_node,
9602 endlink))));
9604 tree void_ftype_v2si_pv2si_int
9605 = build_function_type (void_type_node,
9606 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9607 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
9608 tree_cons (NULL_TREE,
9609 integer_type_node,
9610 endlink))));
9612 tree void_ftype_v2si_pv2si_char
9613 = build_function_type (void_type_node,
9614 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9615 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
9616 tree_cons (NULL_TREE,
9617 char_type_node,
9618 endlink))));
9620 tree void_ftype_int
9621 = build_function_type (void_type_node,
9622 tree_cons (NULL_TREE, integer_type_node, endlink));
9624 tree int_ftype_void
9625 = build_function_type (integer_type_node, endlink);
9627 tree v2si_ftype_pv2si_int
9628 = build_function_type (opaque_V2SI_type_node,
9629 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
9630 tree_cons (NULL_TREE, integer_type_node,
9631 endlink)));
9633 tree v2si_ftype_puint_int
9634 = build_function_type (opaque_V2SI_type_node,
9635 tree_cons (NULL_TREE, puint_type_node,
9636 tree_cons (NULL_TREE, integer_type_node,
9637 endlink)));
9639 tree v2si_ftype_pushort_int
9640 = build_function_type (opaque_V2SI_type_node,
9641 tree_cons (NULL_TREE, pushort_type_node,
9642 tree_cons (NULL_TREE, integer_type_node,
9643 endlink)));
9645 tree v2si_ftype_signed_char
9646 = build_function_type (opaque_V2SI_type_node,
9647 tree_cons (NULL_TREE, signed_char_type_node,
9648 endlink));
9650 /* The initialization of the simple binary and unary builtins is
9651 done in rs6000_common_init_builtins, but we have to enable the
9652 mask bits here manually because we have run out of `target_flags'
9653 bits. We really need to redesign this mask business. */
9655 enable_mask_for_builtins ((struct builtin_description *) bdesc_2arg,
9656 ARRAY_SIZE (bdesc_2arg),
9657 SPE_BUILTIN_EVADDW,
9658 SPE_BUILTIN_EVXOR);
9659 enable_mask_for_builtins ((struct builtin_description *) bdesc_1arg,
9660 ARRAY_SIZE (bdesc_1arg),
9661 SPE_BUILTIN_EVABS,
9662 SPE_BUILTIN_EVSUBFUSIAAW);
9663 enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_predicates,
9664 ARRAY_SIZE (bdesc_spe_predicates),
9665 SPE_BUILTIN_EVCMPEQ,
9666 SPE_BUILTIN_EVFSTSTLT);
9667 enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_evsel,
9668 ARRAY_SIZE (bdesc_spe_evsel),
9669 SPE_BUILTIN_EVSEL_CMPGTS,
9670 SPE_BUILTIN_EVSEL_FSTSTEQ);
9672 (*lang_hooks.decls.pushdecl)
9673 (build_decl (TYPE_DECL, get_identifier ("__ev64_opaque__"),
9674 opaque_V2SI_type_node));
9676 /* Initialize irregular SPE builtins. */
9678 def_builtin (target_flags, "__builtin_spe_mtspefscr", void_ftype_int, SPE_BUILTIN_MTSPEFSCR);
9679 def_builtin (target_flags, "__builtin_spe_mfspefscr", int_ftype_void, SPE_BUILTIN_MFSPEFSCR);
9680 def_builtin (target_flags, "__builtin_spe_evstddx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDDX);
9681 def_builtin (target_flags, "__builtin_spe_evstdhx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDHX);
9682 def_builtin (target_flags, "__builtin_spe_evstdwx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDWX);
9683 def_builtin (target_flags, "__builtin_spe_evstwhex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHEX);
9684 def_builtin (target_flags, "__builtin_spe_evstwhox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHOX);
9685 def_builtin (target_flags, "__builtin_spe_evstwwex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWEX);
9686 def_builtin (target_flags, "__builtin_spe_evstwwox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWOX);
9687 def_builtin (target_flags, "__builtin_spe_evstdd", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDD);
9688 def_builtin (target_flags, "__builtin_spe_evstdh", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDH);
9689 def_builtin (target_flags, "__builtin_spe_evstdw", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDW);
9690 def_builtin (target_flags, "__builtin_spe_evstwhe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHE);
9691 def_builtin (target_flags, "__builtin_spe_evstwho", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHO);
9692 def_builtin (target_flags, "__builtin_spe_evstwwe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWE);
9693 def_builtin (target_flags, "__builtin_spe_evstwwo", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWO);
9694 def_builtin (target_flags, "__builtin_spe_evsplatfi", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATFI);
9695 def_builtin (target_flags, "__builtin_spe_evsplati", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATI);
9697 /* Loads. */
9698 def_builtin (target_flags, "__builtin_spe_evlddx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDDX);
9699 def_builtin (target_flags, "__builtin_spe_evldwx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDWX);
9700 def_builtin (target_flags, "__builtin_spe_evldhx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDHX);
9701 def_builtin (target_flags, "__builtin_spe_evlwhex", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHEX);
9702 def_builtin (target_flags, "__builtin_spe_evlwhoux", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOUX);
9703 def_builtin (target_flags, "__builtin_spe_evlwhosx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOSX);
9704 def_builtin (target_flags, "__builtin_spe_evlwwsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLATX);
9705 def_builtin (target_flags, "__builtin_spe_evlwhsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLATX);
9706 def_builtin (target_flags, "__builtin_spe_evlhhesplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLATX);
9707 def_builtin (target_flags, "__builtin_spe_evlhhousplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLATX);
9708 def_builtin (target_flags, "__builtin_spe_evlhhossplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLATX);
9709 def_builtin (target_flags, "__builtin_spe_evldd", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDD);
9710 def_builtin (target_flags, "__builtin_spe_evldw", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDW);
9711 def_builtin (target_flags, "__builtin_spe_evldh", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDH);
9712 def_builtin (target_flags, "__builtin_spe_evlhhesplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLAT);
9713 def_builtin (target_flags, "__builtin_spe_evlhhossplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLAT);
9714 def_builtin (target_flags, "__builtin_spe_evlhhousplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLAT);
9715 def_builtin (target_flags, "__builtin_spe_evlwhe", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHE);
9716 def_builtin (target_flags, "__builtin_spe_evlwhos", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOS);
9717 def_builtin (target_flags, "__builtin_spe_evlwhou", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOU);
9718 def_builtin (target_flags, "__builtin_spe_evlwhsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLAT);
9719 def_builtin (target_flags, "__builtin_spe_evlwwsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLAT);
9721 /* Predicates. */
9722 d = (struct builtin_description *) bdesc_spe_predicates;
9723 for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, d++)
9725 tree type;
9727 switch (insn_data[d->icode].operand[1].mode)
9729 case V2SImode:
9730 type = int_ftype_int_v2si_v2si;
9731 break;
9732 case V2SFmode:
9733 type = int_ftype_int_v2sf_v2sf;
9734 break;
9735 default:
9736 gcc_unreachable ();
9739 def_builtin (d->mask, d->name, type, d->code);
9742 /* Evsel predicates. */
9743 d = (struct builtin_description *) bdesc_spe_evsel;
9744 for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, d++)
9746 tree type;
9748 switch (insn_data[d->icode].operand[1].mode)
9750 case V2SImode:
9751 type = v2si_ftype_4_v2si;
9752 break;
9753 case V2SFmode:
9754 type = v2sf_ftype_4_v2sf;
9755 break;
9756 default:
9757 gcc_unreachable ();
9760 def_builtin (d->mask, d->name, type, d->code);
9764 static void
9765 paired_init_builtins (void)
9767 const struct builtin_description *d;
9768 size_t i;
9769 tree endlink = void_list_node;
9771 tree int_ftype_int_v2sf_v2sf
9772 = build_function_type
9773 (integer_type_node,
9774 tree_cons (NULL_TREE, integer_type_node,
9775 tree_cons (NULL_TREE, V2SF_type_node,
9776 tree_cons (NULL_TREE, V2SF_type_node,
9777 endlink))));
9778 tree pcfloat_type_node =
9779 build_pointer_type (build_qualified_type
9780 (float_type_node, TYPE_QUAL_CONST));
9782 tree v2sf_ftype_long_pcfloat = build_function_type_list (V2SF_type_node,
9783 long_integer_type_node,
9784 pcfloat_type_node,
9785 NULL_TREE);
9786 tree void_ftype_v2sf_long_pcfloat =
9787 build_function_type_list (void_type_node,
9788 V2SF_type_node,
9789 long_integer_type_node,
9790 pcfloat_type_node,
9791 NULL_TREE);
9794 def_builtin (0, "__builtin_paired_lx", v2sf_ftype_long_pcfloat,
9795 PAIRED_BUILTIN_LX);
9798 def_builtin (0, "__builtin_paired_stx", void_ftype_v2sf_long_pcfloat,
9799 PAIRED_BUILTIN_STX);
9801 /* Predicates. */
9802 d = bdesc_paired_preds;
9803 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); ++i, d++)
9805 tree type;
9807 switch (insn_data[d->icode].operand[1].mode)
9809 case V2SFmode:
9810 type = int_ftype_int_v2sf_v2sf;
9811 break;
9812 default:
9813 gcc_unreachable ();
9816 def_builtin (d->mask, d->name, type, d->code);
9820 static void
9821 altivec_init_builtins (void)
9823 const struct builtin_description *d;
9824 const struct builtin_description_predicates *dp;
9825 size_t i;
9826 tree ftype;
9828 tree pfloat_type_node = build_pointer_type (float_type_node);
9829 tree pint_type_node = build_pointer_type (integer_type_node);
9830 tree pshort_type_node = build_pointer_type (short_integer_type_node);
9831 tree pchar_type_node = build_pointer_type (char_type_node);
9833 tree pvoid_type_node = build_pointer_type (void_type_node);
9835 tree pcfloat_type_node = build_pointer_type (build_qualified_type (float_type_node, TYPE_QUAL_CONST));
9836 tree pcint_type_node = build_pointer_type (build_qualified_type (integer_type_node, TYPE_QUAL_CONST));
9837 tree pcshort_type_node = build_pointer_type (build_qualified_type (short_integer_type_node, TYPE_QUAL_CONST));
9838 tree pcchar_type_node = build_pointer_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST));
9840 tree pcvoid_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST));
9842 tree int_ftype_opaque
9843 = build_function_type_list (integer_type_node,
9844 opaque_V4SI_type_node, NULL_TREE);
9845 tree opaque_ftype_opaque
9846 = build_function_type (integer_type_node,
9847 NULL_TREE);
9848 tree opaque_ftype_opaque_int
9849 = build_function_type_list (opaque_V4SI_type_node,
9850 opaque_V4SI_type_node, integer_type_node, NULL_TREE);
9851 tree opaque_ftype_opaque_opaque_int
9852 = build_function_type_list (opaque_V4SI_type_node,
9853 opaque_V4SI_type_node, opaque_V4SI_type_node,
9854 integer_type_node, NULL_TREE);
9855 tree int_ftype_int_opaque_opaque
9856 = build_function_type_list (integer_type_node,
9857 integer_type_node, opaque_V4SI_type_node,
9858 opaque_V4SI_type_node, NULL_TREE);
9859 tree int_ftype_int_v4si_v4si
9860 = build_function_type_list (integer_type_node,
9861 integer_type_node, V4SI_type_node,
9862 V4SI_type_node, NULL_TREE);
9863 tree v4sf_ftype_pcfloat
9864 = build_function_type_list (V4SF_type_node, pcfloat_type_node, NULL_TREE);
9865 tree void_ftype_pfloat_v4sf
9866 = build_function_type_list (void_type_node,
9867 pfloat_type_node, V4SF_type_node, NULL_TREE);
9868 tree v4si_ftype_pcint
9869 = build_function_type_list (V4SI_type_node, pcint_type_node, NULL_TREE);
9870 tree void_ftype_pint_v4si
9871 = build_function_type_list (void_type_node,
9872 pint_type_node, V4SI_type_node, NULL_TREE);
9873 tree v8hi_ftype_pcshort
9874 = build_function_type_list (V8HI_type_node, pcshort_type_node, NULL_TREE);
9875 tree void_ftype_pshort_v8hi
9876 = build_function_type_list (void_type_node,
9877 pshort_type_node, V8HI_type_node, NULL_TREE);
9878 tree v16qi_ftype_pcchar
9879 = build_function_type_list (V16QI_type_node, pcchar_type_node, NULL_TREE);
9880 tree void_ftype_pchar_v16qi
9881 = build_function_type_list (void_type_node,
9882 pchar_type_node, V16QI_type_node, NULL_TREE);
9883 tree void_ftype_v4si
9884 = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
9885 tree v8hi_ftype_void
9886 = build_function_type (V8HI_type_node, void_list_node);
9887 tree void_ftype_void
9888 = build_function_type (void_type_node, void_list_node);
9889 tree void_ftype_int
9890 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
9892 tree opaque_ftype_long_pcvoid
9893 = build_function_type_list (opaque_V4SI_type_node,
9894 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9895 tree v16qi_ftype_long_pcvoid
9896 = build_function_type_list (V16QI_type_node,
9897 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9898 tree v8hi_ftype_long_pcvoid
9899 = build_function_type_list (V8HI_type_node,
9900 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9901 tree v4si_ftype_long_pcvoid
9902 = build_function_type_list (V4SI_type_node,
9903 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9905 tree void_ftype_opaque_long_pvoid
9906 = build_function_type_list (void_type_node,
9907 opaque_V4SI_type_node, long_integer_type_node,
9908 pvoid_type_node, NULL_TREE);
9909 tree void_ftype_v4si_long_pvoid
9910 = build_function_type_list (void_type_node,
9911 V4SI_type_node, long_integer_type_node,
9912 pvoid_type_node, NULL_TREE);
9913 tree void_ftype_v16qi_long_pvoid
9914 = build_function_type_list (void_type_node,
9915 V16QI_type_node, long_integer_type_node,
9916 pvoid_type_node, NULL_TREE);
9917 tree void_ftype_v8hi_long_pvoid
9918 = build_function_type_list (void_type_node,
9919 V8HI_type_node, long_integer_type_node,
9920 pvoid_type_node, NULL_TREE);
9921 tree int_ftype_int_v8hi_v8hi
9922 = build_function_type_list (integer_type_node,
9923 integer_type_node, V8HI_type_node,
9924 V8HI_type_node, NULL_TREE);
9925 tree int_ftype_int_v16qi_v16qi
9926 = build_function_type_list (integer_type_node,
9927 integer_type_node, V16QI_type_node,
9928 V16QI_type_node, NULL_TREE);
9929 tree int_ftype_int_v4sf_v4sf
9930 = build_function_type_list (integer_type_node,
9931 integer_type_node, V4SF_type_node,
9932 V4SF_type_node, NULL_TREE);
9933 tree v4si_ftype_v4si
9934 = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
9935 tree v8hi_ftype_v8hi
9936 = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
9937 tree v16qi_ftype_v16qi
9938 = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
9939 tree v4sf_ftype_v4sf
9940 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
9941 tree void_ftype_pcvoid_int_int
9942 = build_function_type_list (void_type_node,
9943 pcvoid_type_node, integer_type_node,
9944 integer_type_node, NULL_TREE);
9946 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4sf", v4sf_ftype_pcfloat,
9947 ALTIVEC_BUILTIN_LD_INTERNAL_4sf);
9948 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4sf", void_ftype_pfloat_v4sf,
9949 ALTIVEC_BUILTIN_ST_INTERNAL_4sf);
9950 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4si", v4si_ftype_pcint,
9951 ALTIVEC_BUILTIN_LD_INTERNAL_4si);
9952 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4si", void_ftype_pint_v4si,
9953 ALTIVEC_BUILTIN_ST_INTERNAL_4si);
9954 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_8hi", v8hi_ftype_pcshort,
9955 ALTIVEC_BUILTIN_LD_INTERNAL_8hi);
9956 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_8hi", void_ftype_pshort_v8hi,
9957 ALTIVEC_BUILTIN_ST_INTERNAL_8hi);
9958 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_16qi", v16qi_ftype_pcchar,
9959 ALTIVEC_BUILTIN_LD_INTERNAL_16qi);
9960 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_16qi", void_ftype_pchar_v16qi,
9961 ALTIVEC_BUILTIN_ST_INTERNAL_16qi);
9962 def_builtin (MASK_ALTIVEC, "__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
9963 def_builtin (MASK_ALTIVEC, "__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
9964 def_builtin (MASK_ALTIVEC, "__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
9965 def_builtin (MASK_ALTIVEC, "__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
9966 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
9967 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
9968 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
9969 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
9970 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
9971 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
9972 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
9973 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
9974 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
9975 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
9976 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
9977 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
9978 def_builtin (MASK_ALTIVEC, "__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
9979 def_builtin (MASK_ALTIVEC, "__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
9980 def_builtin (MASK_ALTIVEC, "__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
9981 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
9982 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
9983 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
9984 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
9985 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
9986 def_builtin (MASK_ALTIVEC, "__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
9987 def_builtin (MASK_ALTIVEC, "__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
9988 def_builtin (MASK_ALTIVEC, "__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
9989 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
9990 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
9991 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);
9993 if (rs6000_cpu == PROCESSOR_CELL)
9995 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
9996 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
9997 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
9998 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);
10000 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
10001 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
10002 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
10003 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);
10005 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
10006 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
10007 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
10008 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);
10010 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
10011 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
10012 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
10013 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
10015 def_builtin (MASK_ALTIVEC, "__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
10016 def_builtin (MASK_ALTIVEC, "__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
10017 def_builtin (MASK_ALTIVEC, "__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);
10019 def_builtin (MASK_ALTIVEC, "__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
10020 def_builtin (MASK_ALTIVEC, "__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
10021 def_builtin (MASK_ALTIVEC, "__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
10022 def_builtin (MASK_ALTIVEC, "__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
10023 def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
10024 def_builtin (MASK_ALTIVEC, "__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
10025 def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
10026 def_builtin (MASK_ALTIVEC, "__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
10027 def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
10028 def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
10029 def_builtin (MASK_ALTIVEC, "__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
10030 def_builtin (MASK_ALTIVEC, "__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);
10032 /* Add the DST variants. */
10033 d = bdesc_dst;
10034 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
10035 def_builtin (d->mask, d->name, void_ftype_pcvoid_int_int, d->code);
10037 /* Initialize the predicates. */
10038 dp = bdesc_altivec_preds;
10039 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
10041 enum machine_mode mode1;
10042 tree type;
10043 bool is_overloaded = dp->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10044 && dp->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10046 if (is_overloaded)
10047 mode1 = VOIDmode;
10048 else
10049 mode1 = insn_data[dp->icode].operand[1].mode;
10051 switch (mode1)
10053 case VOIDmode:
10054 type = int_ftype_int_opaque_opaque;
10055 break;
10056 case V4SImode:
10057 type = int_ftype_int_v4si_v4si;
10058 break;
10059 case V8HImode:
10060 type = int_ftype_int_v8hi_v8hi;
10061 break;
10062 case V16QImode:
10063 type = int_ftype_int_v16qi_v16qi;
10064 break;
10065 case V4SFmode:
10066 type = int_ftype_int_v4sf_v4sf;
10067 break;
10068 default:
10069 gcc_unreachable ();
10072 def_builtin (dp->mask, dp->name, type, dp->code);
10075 /* Initialize the abs* operators. */
10076 d = bdesc_abs;
10077 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
10079 enum machine_mode mode0;
10080 tree type;
10082 mode0 = insn_data[d->icode].operand[0].mode;
10084 switch (mode0)
10086 case V4SImode:
10087 type = v4si_ftype_v4si;
10088 break;
10089 case V8HImode:
10090 type = v8hi_ftype_v8hi;
10091 break;
10092 case V16QImode:
10093 type = v16qi_ftype_v16qi;
10094 break;
10095 case V4SFmode:
10096 type = v4sf_ftype_v4sf;
10097 break;
10098 default:
10099 gcc_unreachable ();
10102 def_builtin (d->mask, d->name, type, d->code);
10105 if (TARGET_ALTIVEC)
10107 tree decl;
10109 /* Initialize target builtin that implements
10110 targetm.vectorize.builtin_mask_for_load. */
10112 decl = add_builtin_function ("__builtin_altivec_mask_for_load",
10113 v16qi_ftype_long_pcvoid,
10114 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
10115 BUILT_IN_MD, NULL, NULL_TREE);
10116 TREE_READONLY (decl) = 1;
10117 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
10118 altivec_builtin_mask_for_load = decl;
10121 /* Access to the vec_init patterns. */
10122 ftype = build_function_type_list (V4SI_type_node, integer_type_node,
10123 integer_type_node, integer_type_node,
10124 integer_type_node, NULL_TREE);
10125 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4si", ftype,
10126 ALTIVEC_BUILTIN_VEC_INIT_V4SI);
10128 ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
10129 short_integer_type_node,
10130 short_integer_type_node,
10131 short_integer_type_node,
10132 short_integer_type_node,
10133 short_integer_type_node,
10134 short_integer_type_node,
10135 short_integer_type_node, NULL_TREE);
10136 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v8hi", ftype,
10137 ALTIVEC_BUILTIN_VEC_INIT_V8HI);
10139 ftype = build_function_type_list (V16QI_type_node, char_type_node,
10140 char_type_node, char_type_node,
10141 char_type_node, char_type_node,
10142 char_type_node, char_type_node,
10143 char_type_node, char_type_node,
10144 char_type_node, char_type_node,
10145 char_type_node, char_type_node,
10146 char_type_node, char_type_node,
10147 char_type_node, NULL_TREE);
10148 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v16qi", ftype,
10149 ALTIVEC_BUILTIN_VEC_INIT_V16QI);
10151 ftype = build_function_type_list (V4SF_type_node, float_type_node,
10152 float_type_node, float_type_node,
10153 float_type_node, NULL_TREE);
10154 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4sf", ftype,
10155 ALTIVEC_BUILTIN_VEC_INIT_V4SF);
10157 /* Access to the vec_set patterns. */
10158 ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
10159 intSI_type_node,
10160 integer_type_node, NULL_TREE);
10161 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4si", ftype,
10162 ALTIVEC_BUILTIN_VEC_SET_V4SI);
10164 ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
10165 intHI_type_node,
10166 integer_type_node, NULL_TREE);
10167 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v8hi", ftype,
10168 ALTIVEC_BUILTIN_VEC_SET_V8HI);
10170 ftype = build_function_type_list (V8HI_type_node, V16QI_type_node,
10171 intQI_type_node,
10172 integer_type_node, NULL_TREE);
10173 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v16qi", ftype,
10174 ALTIVEC_BUILTIN_VEC_SET_V16QI);
10176 ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
10177 float_type_node,
10178 integer_type_node, NULL_TREE);
10179 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4sf", ftype,
10180 ALTIVEC_BUILTIN_VEC_SET_V4SF);
10182 /* Access to the vec_extract patterns. */
10183 ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
10184 integer_type_node, NULL_TREE);
10185 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4si", ftype,
10186 ALTIVEC_BUILTIN_VEC_EXT_V4SI);
10188 ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
10189 integer_type_node, NULL_TREE);
10190 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v8hi", ftype,
10191 ALTIVEC_BUILTIN_VEC_EXT_V8HI);
10193 ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
10194 integer_type_node, NULL_TREE);
10195 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v16qi", ftype,
10196 ALTIVEC_BUILTIN_VEC_EXT_V16QI);
10198 ftype = build_function_type_list (float_type_node, V4SF_type_node,
10199 integer_type_node, NULL_TREE);
10200 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4sf", ftype,
10201 ALTIVEC_BUILTIN_VEC_EXT_V4SF);
10204 static void
10205 rs6000_common_init_builtins (void)
10207 const struct builtin_description *d;
10208 size_t i;
10210 tree v2sf_ftype_v2sf_v2sf_v2sf
10211 = build_function_type_list (V2SF_type_node,
10212 V2SF_type_node, V2SF_type_node,
10213 V2SF_type_node, NULL_TREE);
10215 tree v4sf_ftype_v4sf_v4sf_v16qi
10216 = build_function_type_list (V4SF_type_node,
10217 V4SF_type_node, V4SF_type_node,
10218 V16QI_type_node, NULL_TREE);
10219 tree v4si_ftype_v4si_v4si_v16qi
10220 = build_function_type_list (V4SI_type_node,
10221 V4SI_type_node, V4SI_type_node,
10222 V16QI_type_node, NULL_TREE);
10223 tree v8hi_ftype_v8hi_v8hi_v16qi
10224 = build_function_type_list (V8HI_type_node,
10225 V8HI_type_node, V8HI_type_node,
10226 V16QI_type_node, NULL_TREE);
10227 tree v16qi_ftype_v16qi_v16qi_v16qi
10228 = build_function_type_list (V16QI_type_node,
10229 V16QI_type_node, V16QI_type_node,
10230 V16QI_type_node, NULL_TREE);
10231 tree v4si_ftype_int
10232 = build_function_type_list (V4SI_type_node, integer_type_node, NULL_TREE);
10233 tree v8hi_ftype_int
10234 = build_function_type_list (V8HI_type_node, integer_type_node, NULL_TREE);
10235 tree v16qi_ftype_int
10236 = build_function_type_list (V16QI_type_node, integer_type_node, NULL_TREE);
10237 tree v8hi_ftype_v16qi
10238 = build_function_type_list (V8HI_type_node, V16QI_type_node, NULL_TREE);
10239 tree v4sf_ftype_v4sf
10240 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
10242 tree v2si_ftype_v2si_v2si
10243 = build_function_type_list (opaque_V2SI_type_node,
10244 opaque_V2SI_type_node,
10245 opaque_V2SI_type_node, NULL_TREE);
10247 tree v2sf_ftype_v2sf_v2sf_spe
10248 = build_function_type_list (opaque_V2SF_type_node,
10249 opaque_V2SF_type_node,
10250 opaque_V2SF_type_node, NULL_TREE);
10252 tree v2sf_ftype_v2sf_v2sf
10253 = build_function_type_list (V2SF_type_node,
10254 V2SF_type_node,
10255 V2SF_type_node, NULL_TREE);
10258 tree v2si_ftype_int_int
10259 = build_function_type_list (opaque_V2SI_type_node,
10260 integer_type_node, integer_type_node,
10261 NULL_TREE);
10263 tree opaque_ftype_opaque
10264 = build_function_type_list (opaque_V4SI_type_node,
10265 opaque_V4SI_type_node, NULL_TREE);
10267 tree v2si_ftype_v2si
10268 = build_function_type_list (opaque_V2SI_type_node,
10269 opaque_V2SI_type_node, NULL_TREE);
10271 tree v2sf_ftype_v2sf_spe
10272 = build_function_type_list (opaque_V2SF_type_node,
10273 opaque_V2SF_type_node, NULL_TREE);
10275 tree v2sf_ftype_v2sf
10276 = build_function_type_list (V2SF_type_node,
10277 V2SF_type_node, NULL_TREE);
10279 tree v2sf_ftype_v2si
10280 = build_function_type_list (opaque_V2SF_type_node,
10281 opaque_V2SI_type_node, NULL_TREE);
10283 tree v2si_ftype_v2sf
10284 = build_function_type_list (opaque_V2SI_type_node,
10285 opaque_V2SF_type_node, NULL_TREE);
10287 tree v2si_ftype_v2si_char
10288 = build_function_type_list (opaque_V2SI_type_node,
10289 opaque_V2SI_type_node,
10290 char_type_node, NULL_TREE);
10292 tree v2si_ftype_int_char
10293 = build_function_type_list (opaque_V2SI_type_node,
10294 integer_type_node, char_type_node, NULL_TREE);
10296 tree v2si_ftype_char
10297 = build_function_type_list (opaque_V2SI_type_node,
10298 char_type_node, NULL_TREE);
10300 tree int_ftype_int_int
10301 = build_function_type_list (integer_type_node,
10302 integer_type_node, integer_type_node,
10303 NULL_TREE);
10305 tree opaque_ftype_opaque_opaque
10306 = build_function_type_list (opaque_V4SI_type_node,
10307 opaque_V4SI_type_node, opaque_V4SI_type_node, NULL_TREE);
10308 tree v4si_ftype_v4si_v4si
10309 = build_function_type_list (V4SI_type_node,
10310 V4SI_type_node, V4SI_type_node, NULL_TREE);
10311 tree v4sf_ftype_v4si_int
10312 = build_function_type_list (V4SF_type_node,
10313 V4SI_type_node, integer_type_node, NULL_TREE);
10314 tree v4si_ftype_v4sf_int
10315 = build_function_type_list (V4SI_type_node,
10316 V4SF_type_node, integer_type_node, NULL_TREE);
10317 tree v4si_ftype_v4si_int
10318 = build_function_type_list (V4SI_type_node,
10319 V4SI_type_node, integer_type_node, NULL_TREE);
10320 tree v8hi_ftype_v8hi_int
10321 = build_function_type_list (V8HI_type_node,
10322 V8HI_type_node, integer_type_node, NULL_TREE);
10323 tree v16qi_ftype_v16qi_int
10324 = build_function_type_list (V16QI_type_node,
10325 V16QI_type_node, integer_type_node, NULL_TREE);
10326 tree v16qi_ftype_v16qi_v16qi_int
10327 = build_function_type_list (V16QI_type_node,
10328 V16QI_type_node, V16QI_type_node,
10329 integer_type_node, NULL_TREE);
10330 tree v8hi_ftype_v8hi_v8hi_int
10331 = build_function_type_list (V8HI_type_node,
10332 V8HI_type_node, V8HI_type_node,
10333 integer_type_node, NULL_TREE);
10334 tree v4si_ftype_v4si_v4si_int
10335 = build_function_type_list (V4SI_type_node,
10336 V4SI_type_node, V4SI_type_node,
10337 integer_type_node, NULL_TREE);
10338 tree v4sf_ftype_v4sf_v4sf_int
10339 = build_function_type_list (V4SF_type_node,
10340 V4SF_type_node, V4SF_type_node,
10341 integer_type_node, NULL_TREE);
10342 tree v4sf_ftype_v4sf_v4sf
10343 = build_function_type_list (V4SF_type_node,
10344 V4SF_type_node, V4SF_type_node, NULL_TREE);
10345 tree opaque_ftype_opaque_opaque_opaque
10346 = build_function_type_list (opaque_V4SI_type_node,
10347 opaque_V4SI_type_node, opaque_V4SI_type_node,
10348 opaque_V4SI_type_node, NULL_TREE);
10349 tree v4sf_ftype_v4sf_v4sf_v4si
10350 = build_function_type_list (V4SF_type_node,
10351 V4SF_type_node, V4SF_type_node,
10352 V4SI_type_node, NULL_TREE);
10353 tree v4sf_ftype_v4sf_v4sf_v4sf
10354 = build_function_type_list (V4SF_type_node,
10355 V4SF_type_node, V4SF_type_node,
10356 V4SF_type_node, NULL_TREE);
10357 tree v4si_ftype_v4si_v4si_v4si
10358 = build_function_type_list (V4SI_type_node,
10359 V4SI_type_node, V4SI_type_node,
10360 V4SI_type_node, NULL_TREE);
10361 tree v8hi_ftype_v8hi_v8hi
10362 = build_function_type_list (V8HI_type_node,
10363 V8HI_type_node, V8HI_type_node, NULL_TREE);
10364 tree v8hi_ftype_v8hi_v8hi_v8hi
10365 = build_function_type_list (V8HI_type_node,
10366 V8HI_type_node, V8HI_type_node,
10367 V8HI_type_node, NULL_TREE);
10368 tree v4si_ftype_v8hi_v8hi_v4si
10369 = build_function_type_list (V4SI_type_node,
10370 V8HI_type_node, V8HI_type_node,
10371 V4SI_type_node, NULL_TREE);
10372 tree v4si_ftype_v16qi_v16qi_v4si
10373 = build_function_type_list (V4SI_type_node,
10374 V16QI_type_node, V16QI_type_node,
10375 V4SI_type_node, NULL_TREE);
10376 tree v16qi_ftype_v16qi_v16qi
10377 = build_function_type_list (V16QI_type_node,
10378 V16QI_type_node, V16QI_type_node, NULL_TREE);
10379 tree v4si_ftype_v4sf_v4sf
10380 = build_function_type_list (V4SI_type_node,
10381 V4SF_type_node, V4SF_type_node, NULL_TREE);
10382 tree v8hi_ftype_v16qi_v16qi
10383 = build_function_type_list (V8HI_type_node,
10384 V16QI_type_node, V16QI_type_node, NULL_TREE);
10385 tree v4si_ftype_v8hi_v8hi
10386 = build_function_type_list (V4SI_type_node,
10387 V8HI_type_node, V8HI_type_node, NULL_TREE);
10388 tree v8hi_ftype_v4si_v4si
10389 = build_function_type_list (V8HI_type_node,
10390 V4SI_type_node, V4SI_type_node, NULL_TREE);
10391 tree v16qi_ftype_v8hi_v8hi
10392 = build_function_type_list (V16QI_type_node,
10393 V8HI_type_node, V8HI_type_node, NULL_TREE);
10394 tree v4si_ftype_v16qi_v4si
10395 = build_function_type_list (V4SI_type_node,
10396 V16QI_type_node, V4SI_type_node, NULL_TREE);
10397 tree v4si_ftype_v16qi_v16qi
10398 = build_function_type_list (V4SI_type_node,
10399 V16QI_type_node, V16QI_type_node, NULL_TREE);
10400 tree v4si_ftype_v8hi_v4si
10401 = build_function_type_list (V4SI_type_node,
10402 V8HI_type_node, V4SI_type_node, NULL_TREE);
10403 tree v4si_ftype_v8hi
10404 = build_function_type_list (V4SI_type_node, V8HI_type_node, NULL_TREE);
10405 tree int_ftype_v4si_v4si
10406 = build_function_type_list (integer_type_node,
10407 V4SI_type_node, V4SI_type_node, NULL_TREE);
10408 tree int_ftype_v4sf_v4sf
10409 = build_function_type_list (integer_type_node,
10410 V4SF_type_node, V4SF_type_node, NULL_TREE);
10411 tree int_ftype_v16qi_v16qi
10412 = build_function_type_list (integer_type_node,
10413 V16QI_type_node, V16QI_type_node, NULL_TREE);
10414 tree int_ftype_v8hi_v8hi
10415 = build_function_type_list (integer_type_node,
10416 V8HI_type_node, V8HI_type_node, NULL_TREE);
10418 /* Add the simple ternary operators. */
10419 d = bdesc_3arg;
10420 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
10422 enum machine_mode mode0, mode1, mode2, mode3;
10423 tree type;
10424 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10425 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10427 if (is_overloaded)
10429 mode0 = VOIDmode;
10430 mode1 = VOIDmode;
10431 mode2 = VOIDmode;
10432 mode3 = VOIDmode;
10434 else
10436 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10437 continue;
10439 mode0 = insn_data[d->icode].operand[0].mode;
10440 mode1 = insn_data[d->icode].operand[1].mode;
10441 mode2 = insn_data[d->icode].operand[2].mode;
10442 mode3 = insn_data[d->icode].operand[3].mode;
10445 /* When all four are of the same mode. */
10446 if (mode0 == mode1 && mode1 == mode2 && mode2 == mode3)
10448 switch (mode0)
10450 case VOIDmode:
10451 type = opaque_ftype_opaque_opaque_opaque;
10452 break;
10453 case V4SImode:
10454 type = v4si_ftype_v4si_v4si_v4si;
10455 break;
10456 case V4SFmode:
10457 type = v4sf_ftype_v4sf_v4sf_v4sf;
10458 break;
10459 case V8HImode:
10460 type = v8hi_ftype_v8hi_v8hi_v8hi;
10461 break;
10462 case V16QImode:
10463 type = v16qi_ftype_v16qi_v16qi_v16qi;
10464 break;
10465 case V2SFmode:
10466 type = v2sf_ftype_v2sf_v2sf_v2sf;
10467 break;
10468 default:
10469 gcc_unreachable ();
10472 else if (mode0 == mode1 && mode1 == mode2 && mode3 == V16QImode)
10474 switch (mode0)
10476 case V4SImode:
10477 type = v4si_ftype_v4si_v4si_v16qi;
10478 break;
10479 case V4SFmode:
10480 type = v4sf_ftype_v4sf_v4sf_v16qi;
10481 break;
10482 case V8HImode:
10483 type = v8hi_ftype_v8hi_v8hi_v16qi;
10484 break;
10485 case V16QImode:
10486 type = v16qi_ftype_v16qi_v16qi_v16qi;
10487 break;
10488 default:
10489 gcc_unreachable ();
10492 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode
10493 && mode3 == V4SImode)
10494 type = v4si_ftype_v16qi_v16qi_v4si;
10495 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode
10496 && mode3 == V4SImode)
10497 type = v4si_ftype_v8hi_v8hi_v4si;
10498 else if (mode0 == V4SFmode && mode1 == V4SFmode && mode2 == V4SFmode
10499 && mode3 == V4SImode)
10500 type = v4sf_ftype_v4sf_v4sf_v4si;
10502 /* vchar, vchar, vchar, 4-bit literal. */
10503 else if (mode0 == V16QImode && mode1 == mode0 && mode2 == mode0
10504 && mode3 == QImode)
10505 type = v16qi_ftype_v16qi_v16qi_int;
10507 /* vshort, vshort, vshort, 4-bit literal. */
10508 else if (mode0 == V8HImode && mode1 == mode0 && mode2 == mode0
10509 && mode3 == QImode)
10510 type = v8hi_ftype_v8hi_v8hi_int;
10512 /* vint, vint, vint, 4-bit literal. */
10513 else if (mode0 == V4SImode && mode1 == mode0 && mode2 == mode0
10514 && mode3 == QImode)
10515 type = v4si_ftype_v4si_v4si_int;
10517 /* vfloat, vfloat, vfloat, 4-bit literal. */
10518 else if (mode0 == V4SFmode && mode1 == mode0 && mode2 == mode0
10519 && mode3 == QImode)
10520 type = v4sf_ftype_v4sf_v4sf_int;
10522 else
10523 gcc_unreachable ();
10525 def_builtin (d->mask, d->name, type, d->code);
10528 /* Add the simple binary operators. */
10529 d = (struct builtin_description *) bdesc_2arg;
10530 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
10532 enum machine_mode mode0, mode1, mode2;
10533 tree type;
10534 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10535 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10537 if (is_overloaded)
10539 mode0 = VOIDmode;
10540 mode1 = VOIDmode;
10541 mode2 = VOIDmode;
10543 else
10545 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10546 continue;
10548 mode0 = insn_data[d->icode].operand[0].mode;
10549 mode1 = insn_data[d->icode].operand[1].mode;
10550 mode2 = insn_data[d->icode].operand[2].mode;
10553 /* When all three operands are of the same mode. */
10554 if (mode0 == mode1 && mode1 == mode2)
10556 switch (mode0)
10558 case VOIDmode:
10559 type = opaque_ftype_opaque_opaque;
10560 break;
10561 case V4SFmode:
10562 type = v4sf_ftype_v4sf_v4sf;
10563 break;
10564 case V4SImode:
10565 type = v4si_ftype_v4si_v4si;
10566 break;
10567 case V16QImode:
10568 type = v16qi_ftype_v16qi_v16qi;
10569 break;
10570 case V8HImode:
10571 type = v8hi_ftype_v8hi_v8hi;
10572 break;
10573 case V2SImode:
10574 type = v2si_ftype_v2si_v2si;
10575 break;
10576 case V2SFmode:
10577 if (TARGET_PAIRED_FLOAT)
10578 type = v2sf_ftype_v2sf_v2sf;
10579 else
10580 type = v2sf_ftype_v2sf_v2sf_spe;
10581 break;
10582 case SImode:
10583 type = int_ftype_int_int;
10584 break;
10585 default:
10586 gcc_unreachable ();
10590 /* A few other combos we really don't want to do manually. */
10592 /* vint, vfloat, vfloat. */
10593 else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == V4SFmode)
10594 type = v4si_ftype_v4sf_v4sf;
10596 /* vshort, vchar, vchar. */
10597 else if (mode0 == V8HImode && mode1 == V16QImode && mode2 == V16QImode)
10598 type = v8hi_ftype_v16qi_v16qi;
10600 /* vint, vshort, vshort. */
10601 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode)
10602 type = v4si_ftype_v8hi_v8hi;
10604 /* vshort, vint, vint. */
10605 else if (mode0 == V8HImode && mode1 == V4SImode && mode2 == V4SImode)
10606 type = v8hi_ftype_v4si_v4si;
10608 /* vchar, vshort, vshort. */
10609 else if (mode0 == V16QImode && mode1 == V8HImode && mode2 == V8HImode)
10610 type = v16qi_ftype_v8hi_v8hi;
10612 /* vint, vchar, vint. */
10613 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V4SImode)
10614 type = v4si_ftype_v16qi_v4si;
10616 /* vint, vchar, vchar. */
10617 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode)
10618 type = v4si_ftype_v16qi_v16qi;
10620 /* vint, vshort, vint. */
10621 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V4SImode)
10622 type = v4si_ftype_v8hi_v4si;
10624 /* vint, vint, 5-bit literal. */
10625 else if (mode0 == V4SImode && mode1 == V4SImode && mode2 == QImode)
10626 type = v4si_ftype_v4si_int;
10628 /* vshort, vshort, 5-bit literal. */
10629 else if (mode0 == V8HImode && mode1 == V8HImode && mode2 == QImode)
10630 type = v8hi_ftype_v8hi_int;
10632 /* vchar, vchar, 5-bit literal. */
10633 else if (mode0 == V16QImode && mode1 == V16QImode && mode2 == QImode)
10634 type = v16qi_ftype_v16qi_int;
10636 /* vfloat, vint, 5-bit literal. */
10637 else if (mode0 == V4SFmode && mode1 == V4SImode && mode2 == QImode)
10638 type = v4sf_ftype_v4si_int;
10640 /* vint, vfloat, 5-bit literal. */
10641 else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == QImode)
10642 type = v4si_ftype_v4sf_int;
10644 else if (mode0 == V2SImode && mode1 == SImode && mode2 == SImode)
10645 type = v2si_ftype_int_int;
10647 else if (mode0 == V2SImode && mode1 == V2SImode && mode2 == QImode)
10648 type = v2si_ftype_v2si_char;
10650 else if (mode0 == V2SImode && mode1 == SImode && mode2 == QImode)
10651 type = v2si_ftype_int_char;
10653 else
10655 /* int, x, x. */
10656 gcc_assert (mode0 == SImode);
10657 switch (mode1)
10659 case V4SImode:
10660 type = int_ftype_v4si_v4si;
10661 break;
10662 case V4SFmode:
10663 type = int_ftype_v4sf_v4sf;
10664 break;
10665 case V16QImode:
10666 type = int_ftype_v16qi_v16qi;
10667 break;
10668 case V8HImode:
10669 type = int_ftype_v8hi_v8hi;
10670 break;
10671 default:
10672 gcc_unreachable ();
10676 def_builtin (d->mask, d->name, type, d->code);
10679 /* Add the simple unary operators. */
10680 d = (struct builtin_description *) bdesc_1arg;
10681 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
10683 enum machine_mode mode0, mode1;
10684 tree type;
10685 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10686 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10688 if (is_overloaded)
10690 mode0 = VOIDmode;
10691 mode1 = VOIDmode;
10693 else
10695 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10696 continue;
10698 mode0 = insn_data[d->icode].operand[0].mode;
10699 mode1 = insn_data[d->icode].operand[1].mode;
10702 if (mode0 == V4SImode && mode1 == QImode)
10703 type = v4si_ftype_int;
10704 else if (mode0 == V8HImode && mode1 == QImode)
10705 type = v8hi_ftype_int;
10706 else if (mode0 == V16QImode && mode1 == QImode)
10707 type = v16qi_ftype_int;
10708 else if (mode0 == VOIDmode && mode1 == VOIDmode)
10709 type = opaque_ftype_opaque;
10710 else if (mode0 == V4SFmode && mode1 == V4SFmode)
10711 type = v4sf_ftype_v4sf;
10712 else if (mode0 == V8HImode && mode1 == V16QImode)
10713 type = v8hi_ftype_v16qi;
10714 else if (mode0 == V4SImode && mode1 == V8HImode)
10715 type = v4si_ftype_v8hi;
10716 else if (mode0 == V2SImode && mode1 == V2SImode)
10717 type = v2si_ftype_v2si;
10718 else if (mode0 == V2SFmode && mode1 == V2SFmode)
10720 if (TARGET_PAIRED_FLOAT)
10721 type = v2sf_ftype_v2sf;
10722 else
10723 type = v2sf_ftype_v2sf_spe;
10725 else if (mode0 == V2SFmode && mode1 == V2SImode)
10726 type = v2sf_ftype_v2si;
10727 else if (mode0 == V2SImode && mode1 == V2SFmode)
10728 type = v2si_ftype_v2sf;
10729 else if (mode0 == V2SImode && mode1 == QImode)
10730 type = v2si_ftype_char;
10731 else
10732 gcc_unreachable ();
10734 def_builtin (d->mask, d->name, type, d->code);
10738 static void
10739 rs6000_init_libfuncs (void)
10741 if (DEFAULT_ABI != ABI_V4 && TARGET_XCOFF
10742 && !TARGET_POWER2 && !TARGET_POWERPC)
10744 /* AIX library routines for float->int conversion. */
10745 set_conv_libfunc (sfix_optab, SImode, DFmode, "__itrunc");
10746 set_conv_libfunc (ufix_optab, SImode, DFmode, "__uitrunc");
10747 set_conv_libfunc (sfix_optab, SImode, TFmode, "_qitrunc");
10748 set_conv_libfunc (ufix_optab, SImode, TFmode, "_quitrunc");
10751 if (!TARGET_IEEEQUAD)
10752 /* AIX/Darwin/64-bit Linux quad floating point routines. */
10753 if (!TARGET_XL_COMPAT)
10755 set_optab_libfunc (add_optab, TFmode, "__gcc_qadd");
10756 set_optab_libfunc (sub_optab, TFmode, "__gcc_qsub");
10757 set_optab_libfunc (smul_optab, TFmode, "__gcc_qmul");
10758 set_optab_libfunc (sdiv_optab, TFmode, "__gcc_qdiv");
10760 if (!(TARGET_HARD_FLOAT && (TARGET_FPRS || TARGET_E500_DOUBLE)))
10762 set_optab_libfunc (neg_optab, TFmode, "__gcc_qneg");
10763 set_optab_libfunc (eq_optab, TFmode, "__gcc_qeq");
10764 set_optab_libfunc (ne_optab, TFmode, "__gcc_qne");
10765 set_optab_libfunc (gt_optab, TFmode, "__gcc_qgt");
10766 set_optab_libfunc (ge_optab, TFmode, "__gcc_qge");
10767 set_optab_libfunc (lt_optab, TFmode, "__gcc_qlt");
10768 set_optab_libfunc (le_optab, TFmode, "__gcc_qle");
10770 set_conv_libfunc (sext_optab, TFmode, SFmode, "__gcc_stoq");
10771 set_conv_libfunc (sext_optab, TFmode, DFmode, "__gcc_dtoq");
10772 set_conv_libfunc (trunc_optab, SFmode, TFmode, "__gcc_qtos");
10773 set_conv_libfunc (trunc_optab, DFmode, TFmode, "__gcc_qtod");
10774 set_conv_libfunc (sfix_optab, SImode, TFmode, "__gcc_qtoi");
10775 set_conv_libfunc (ufix_optab, SImode, TFmode, "__gcc_qtou");
10776 set_conv_libfunc (sfloat_optab, TFmode, SImode, "__gcc_itoq");
10777 set_conv_libfunc (ufloat_optab, TFmode, SImode, "__gcc_utoq");
10780 if (!(TARGET_HARD_FLOAT && TARGET_FPRS))
10781 set_optab_libfunc (unord_optab, TFmode, "__gcc_qunord");
10783 else
10785 set_optab_libfunc (add_optab, TFmode, "_xlqadd");
10786 set_optab_libfunc (sub_optab, TFmode, "_xlqsub");
10787 set_optab_libfunc (smul_optab, TFmode, "_xlqmul");
10788 set_optab_libfunc (sdiv_optab, TFmode, "_xlqdiv");
10790 else
10792 /* 32-bit SVR4 quad floating point routines. */
10794 set_optab_libfunc (add_optab, TFmode, "_q_add");
10795 set_optab_libfunc (sub_optab, TFmode, "_q_sub");
10796 set_optab_libfunc (neg_optab, TFmode, "_q_neg");
10797 set_optab_libfunc (smul_optab, TFmode, "_q_mul");
10798 set_optab_libfunc (sdiv_optab, TFmode, "_q_div");
10799 if (TARGET_PPC_GPOPT || TARGET_POWER2)
10800 set_optab_libfunc (sqrt_optab, TFmode, "_q_sqrt");
10802 set_optab_libfunc (eq_optab, TFmode, "_q_feq");
10803 set_optab_libfunc (ne_optab, TFmode, "_q_fne");
10804 set_optab_libfunc (gt_optab, TFmode, "_q_fgt");
10805 set_optab_libfunc (ge_optab, TFmode, "_q_fge");
10806 set_optab_libfunc (lt_optab, TFmode, "_q_flt");
10807 set_optab_libfunc (le_optab, TFmode, "_q_fle");
10809 set_conv_libfunc (sext_optab, TFmode, SFmode, "_q_stoq");
10810 set_conv_libfunc (sext_optab, TFmode, DFmode, "_q_dtoq");
10811 set_conv_libfunc (trunc_optab, SFmode, TFmode, "_q_qtos");
10812 set_conv_libfunc (trunc_optab, DFmode, TFmode, "_q_qtod");
10813 set_conv_libfunc (sfix_optab, SImode, TFmode, "_q_qtoi");
10814 set_conv_libfunc (ufix_optab, SImode, TFmode, "_q_qtou");
10815 set_conv_libfunc (sfloat_optab, TFmode, SImode, "_q_itoq");
10816 set_conv_libfunc (ufloat_optab, TFmode, SImode, "_q_utoq");
10821 /* Expand a block clear operation, and return 1 if successful. Return 0
10822 if we should let the compiler generate normal code.
10824 operands[0] is the destination
10825 operands[1] is the length
10826 operands[3] is the alignment */
10829 expand_block_clear (rtx operands[])
10831 rtx orig_dest = operands[0];
10832 rtx bytes_rtx = operands[1];
10833 rtx align_rtx = operands[3];
10834 bool constp = (GET_CODE (bytes_rtx) == CONST_INT);
10835 HOST_WIDE_INT align;
10836 HOST_WIDE_INT bytes;
10837 int offset;
10838 int clear_bytes;
10839 int clear_step;
10841 /* If this is not a fixed size move, just call memcpy */
10842 if (! constp)
10843 return 0;
10845 /* This must be a fixed size alignment */
10846 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
10847 align = INTVAL (align_rtx) * BITS_PER_UNIT;
10849 /* Anything to clear? */
10850 bytes = INTVAL (bytes_rtx);
10851 if (bytes <= 0)
10852 return 1;
10854 /* Use the builtin memset after a point, to avoid huge code bloat.
10855 When optimize_size, avoid any significant code bloat; calling
10856 memset is about 4 instructions, so allow for one instruction to
10857 load zero and three to do clearing. */
10858 if (TARGET_ALTIVEC && align >= 128)
10859 clear_step = 16;
10860 else if (TARGET_POWERPC64 && align >= 32)
10861 clear_step = 8;
10862 else if (TARGET_SPE && align >= 64)
10863 clear_step = 8;
10864 else
10865 clear_step = 4;
10867 if (optimize_size && bytes > 3 * clear_step)
10868 return 0;
10869 if (! optimize_size && bytes > 8 * clear_step)
10870 return 0;
10872 for (offset = 0; bytes > 0; offset += clear_bytes, bytes -= clear_bytes)
10874 enum machine_mode mode = BLKmode;
10875 rtx dest;
10877 if (bytes >= 16 && TARGET_ALTIVEC && align >= 128)
10879 clear_bytes = 16;
10880 mode = V4SImode;
10882 else if (bytes >= 8 && TARGET_SPE && align >= 64)
10884 clear_bytes = 8;
10885 mode = V2SImode;
10887 else if (bytes >= 8 && TARGET_POWERPC64
10888 /* 64-bit loads and stores require word-aligned
10889 displacements. */
10890 && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
10892 clear_bytes = 8;
10893 mode = DImode;
10895 else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
10896 { /* move 4 bytes */
10897 clear_bytes = 4;
10898 mode = SImode;
10900 else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
10901 { /* move 2 bytes */
10902 clear_bytes = 2;
10903 mode = HImode;
10905 else /* move 1 byte at a time */
10907 clear_bytes = 1;
10908 mode = QImode;
10911 dest = adjust_address (orig_dest, mode, offset);
10913 emit_move_insn (dest, CONST0_RTX (mode));
10916 return 1;
10920 /* Expand a block move operation, and return 1 if successful. Return 0
10921 if we should let the compiler generate normal code.
10923 operands[0] is the destination
10924 operands[1] is the source
10925 operands[2] is the length
10926 operands[3] is the alignment */
10928 #define MAX_MOVE_REG 4
10931 expand_block_move (rtx operands[])
10933 rtx orig_dest = operands[0];
10934 rtx orig_src = operands[1];
10935 rtx bytes_rtx = operands[2];
10936 rtx align_rtx = operands[3];
10937 int constp = (GET_CODE (bytes_rtx) == CONST_INT);
10938 int align;
10939 int bytes;
10940 int offset;
10941 int move_bytes;
10942 rtx stores[MAX_MOVE_REG];
10943 int num_reg = 0;
10945 /* If this is not a fixed size move, just call memcpy */
10946 if (! constp)
10947 return 0;
10949 /* This must be a fixed size alignment */
10950 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
10951 align = INTVAL (align_rtx) * BITS_PER_UNIT;
10953 /* Anything to move? */
10954 bytes = INTVAL (bytes_rtx);
10955 if (bytes <= 0)
10956 return 1;
10958 /* store_one_arg depends on expand_block_move to handle at least the size of
10959 reg_parm_stack_space. */
10960 if (bytes > (TARGET_POWERPC64 ? 64 : 32))
10961 return 0;
10963 for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes)
10965 union {
10966 rtx (*movmemsi) (rtx, rtx, rtx, rtx);
10967 rtx (*mov) (rtx, rtx);
10968 } gen_func;
10969 enum machine_mode mode = BLKmode;
10970 rtx src, dest;
10972 /* Altivec first, since it will be faster than a string move
10973 when it applies, and usually not significantly larger. */
10974 if (TARGET_ALTIVEC && bytes >= 16 && align >= 128)
10976 move_bytes = 16;
10977 mode = V4SImode;
10978 gen_func.mov = gen_movv4si;
10980 else if (TARGET_SPE && bytes >= 8 && align >= 64)
10982 move_bytes = 8;
10983 mode = V2SImode;
10984 gen_func.mov = gen_movv2si;
10986 else if (TARGET_STRING
10987 && bytes > 24 /* move up to 32 bytes at a time */
10988 && ! fixed_regs[5]
10989 && ! fixed_regs[6]
10990 && ! fixed_regs[7]
10991 && ! fixed_regs[8]
10992 && ! fixed_regs[9]
10993 && ! fixed_regs[10]
10994 && ! fixed_regs[11]
10995 && ! fixed_regs[12])
10997 move_bytes = (bytes > 32) ? 32 : bytes;
10998 gen_func.movmemsi = gen_movmemsi_8reg;
11000 else if (TARGET_STRING
11001 && bytes > 16 /* move up to 24 bytes at a time */
11002 && ! fixed_regs[5]
11003 && ! fixed_regs[6]
11004 && ! fixed_regs[7]
11005 && ! fixed_regs[8]
11006 && ! fixed_regs[9]
11007 && ! fixed_regs[10])
11009 move_bytes = (bytes > 24) ? 24 : bytes;
11010 gen_func.movmemsi = gen_movmemsi_6reg;
11012 else if (TARGET_STRING
11013 && bytes > 8 /* move up to 16 bytes at a time */
11014 && ! fixed_regs[5]
11015 && ! fixed_regs[6]
11016 && ! fixed_regs[7]
11017 && ! fixed_regs[8])
11019 move_bytes = (bytes > 16) ? 16 : bytes;
11020 gen_func.movmemsi = gen_movmemsi_4reg;
11022 else if (bytes >= 8 && TARGET_POWERPC64
11023 /* 64-bit loads and stores require word-aligned
11024 displacements. */
11025 && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
11027 move_bytes = 8;
11028 mode = DImode;
11029 gen_func.mov = gen_movdi;
11031 else if (TARGET_STRING && bytes > 4 && !TARGET_POWERPC64)
11032 { /* move up to 8 bytes at a time */
11033 move_bytes = (bytes > 8) ? 8 : bytes;
11034 gen_func.movmemsi = gen_movmemsi_2reg;
11036 else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
11037 { /* move 4 bytes */
11038 move_bytes = 4;
11039 mode = SImode;
11040 gen_func.mov = gen_movsi;
11042 else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
11043 { /* move 2 bytes */
11044 move_bytes = 2;
11045 mode = HImode;
11046 gen_func.mov = gen_movhi;
11048 else if (TARGET_STRING && bytes > 1)
11049 { /* move up to 4 bytes at a time */
11050 move_bytes = (bytes > 4) ? 4 : bytes;
11051 gen_func.movmemsi = gen_movmemsi_1reg;
11053 else /* move 1 byte at a time */
11055 move_bytes = 1;
11056 mode = QImode;
11057 gen_func.mov = gen_movqi;
11060 src = adjust_address (orig_src, mode, offset);
11061 dest = adjust_address (orig_dest, mode, offset);
11063 if (mode != BLKmode)
11065 rtx tmp_reg = gen_reg_rtx (mode);
11067 emit_insn ((*gen_func.mov) (tmp_reg, src));
11068 stores[num_reg++] = (*gen_func.mov) (dest, tmp_reg);
11071 if (mode == BLKmode || num_reg >= MAX_MOVE_REG || bytes == move_bytes)
11073 int i;
11074 for (i = 0; i < num_reg; i++)
11075 emit_insn (stores[i]);
11076 num_reg = 0;
11079 if (mode == BLKmode)
11081 /* Move the address into scratch registers. The movmemsi
11082 patterns require zero offset. */
11083 if (!REG_P (XEXP (src, 0)))
11085 rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
11086 src = replace_equiv_address (src, src_reg);
11088 set_mem_size (src, GEN_INT (move_bytes));
11090 if (!REG_P (XEXP (dest, 0)))
11092 rtx dest_reg = copy_addr_to_reg (XEXP (dest, 0));
11093 dest = replace_equiv_address (dest, dest_reg);
11095 set_mem_size (dest, GEN_INT (move_bytes));
11097 emit_insn ((*gen_func.movmemsi) (dest, src,
11098 GEN_INT (move_bytes & 31),
11099 align_rtx));
11103 return 1;
11107 /* Return a string to perform a load_multiple operation.
11108 operands[0] is the vector.
11109 operands[1] is the source address.
11110 operands[2] is the first destination register. */
11112 const char *
11113 rs6000_output_load_multiple (rtx operands[3])
11115 /* We have to handle the case where the pseudo used to contain the address
11116 is assigned to one of the output registers. */
11117 int i, j;
11118 int words = XVECLEN (operands[0], 0);
11119 rtx xop[10];
11121 if (XVECLEN (operands[0], 0) == 1)
11122 return "{l|lwz} %2,0(%1)";
11124 for (i = 0; i < words; i++)
11125 if (refers_to_regno_p (REGNO (operands[2]) + i,
11126 REGNO (operands[2]) + i + 1, operands[1], 0))
11128 if (i == words-1)
11130 xop[0] = GEN_INT (4 * (words-1));
11131 xop[1] = operands[1];
11132 xop[2] = operands[2];
11133 output_asm_insn ("{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,%0(%1)", xop);
11134 return "";
11136 else if (i == 0)
11138 xop[0] = GEN_INT (4 * (words-1));
11139 xop[1] = operands[1];
11140 xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
11141 output_asm_insn ("{cal %1,4(%1)|addi %1,%1,4}\n\t{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,-4(%1)", xop);
11142 return "";
11144 else
11146 for (j = 0; j < words; j++)
11147 if (j != i)
11149 xop[0] = GEN_INT (j * 4);
11150 xop[1] = operands[1];
11151 xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + j);
11152 output_asm_insn ("{l|lwz} %2,%0(%1)", xop);
11154 xop[0] = GEN_INT (i * 4);
11155 xop[1] = operands[1];
11156 output_asm_insn ("{l|lwz} %1,%0(%1)", xop);
11157 return "";
11161 return "{lsi|lswi} %2,%1,%N0";
11165 /* A validation routine: say whether CODE, a condition code, and MODE
11166 match. The other alternatives either don't make sense or should
11167 never be generated. */
11169 void
11170 validate_condition_mode (enum rtx_code code, enum machine_mode mode)
11172 gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
11173 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
11174 && GET_MODE_CLASS (mode) == MODE_CC);
11176 /* These don't make sense. */
11177 gcc_assert ((code != GT && code != LT && code != GE && code != LE)
11178 || mode != CCUNSmode);
11180 gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
11181 || mode == CCUNSmode);
11183 gcc_assert (mode == CCFPmode
11184 || (code != ORDERED && code != UNORDERED
11185 && code != UNEQ && code != LTGT
11186 && code != UNGT && code != UNLT
11187 && code != UNGE && code != UNLE));
11189 /* These should never be generated except for
11190 flag_finite_math_only. */
11191 gcc_assert (mode != CCFPmode
11192 || flag_finite_math_only
11193 || (code != LE && code != GE
11194 && code != UNEQ && code != LTGT
11195 && code != UNGT && code != UNLT));
11197 /* These are invalid; the information is not there. */
11198 gcc_assert (mode != CCEQmode || code == EQ || code == NE);
11202 /* Return 1 if ANDOP is a mask that has no bits on that are not in the
11203 mask required to convert the result of a rotate insn into a shift
11204 left insn of SHIFTOP bits. Both are known to be SImode CONST_INT. */
11207 includes_lshift_p (rtx shiftop, rtx andop)
11209 unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;
11211 shift_mask <<= INTVAL (shiftop);
11213 return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
11216 /* Similar, but for right shift. */
11219 includes_rshift_p (rtx shiftop, rtx andop)
11221 unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;
11223 shift_mask >>= INTVAL (shiftop);
11225 return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
11228 /* Return 1 if ANDOP is a mask suitable for use with an rldic insn
11229 to perform a left shift. It must have exactly SHIFTOP least
11230 significant 0's, then one or more 1's, then zero or more 0's. */
11233 includes_rldic_lshift_p (rtx shiftop, rtx andop)
11235 if (GET_CODE (andop) == CONST_INT)
11237 HOST_WIDE_INT c, lsb, shift_mask;
11239 c = INTVAL (andop);
11240 if (c == 0 || c == ~0)
11241 return 0;
11243 shift_mask = ~0;
11244 shift_mask <<= INTVAL (shiftop);
11246 /* Find the least significant one bit. */
11247 lsb = c & -c;
11249 /* It must coincide with the LSB of the shift mask. */
11250 if (-lsb != shift_mask)
11251 return 0;
11253 /* Invert to look for the next transition (if any). */
11254 c = ~c;
11256 /* Remove the low group of ones (originally low group of zeros). */
11257 c &= -lsb;
11259 /* Again find the lsb, and check we have all 1's above. */
11260 lsb = c & -c;
11261 return c == -lsb;
11263 else if (GET_CODE (andop) == CONST_DOUBLE
11264 && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
11266 HOST_WIDE_INT low, high, lsb;
11267 HOST_WIDE_INT shift_mask_low, shift_mask_high;
11269 low = CONST_DOUBLE_LOW (andop);
11270 if (HOST_BITS_PER_WIDE_INT < 64)
11271 high = CONST_DOUBLE_HIGH (andop);
11273 if ((low == 0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == 0))
11274 || (low == ~0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0)))
11275 return 0;
11277 if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
11279 shift_mask_high = ~0;
11280 if (INTVAL (shiftop) > 32)
11281 shift_mask_high <<= INTVAL (shiftop) - 32;
11283 lsb = high & -high;
11285 if (-lsb != shift_mask_high || INTVAL (shiftop) < 32)
11286 return 0;
11288 high = ~high;
11289 high &= -lsb;
11291 lsb = high & -high;
11292 return high == -lsb;
11295 shift_mask_low = ~0;
11296 shift_mask_low <<= INTVAL (shiftop);
11298 lsb = low & -low;
11300 if (-lsb != shift_mask_low)
11301 return 0;
11303 if (HOST_BITS_PER_WIDE_INT < 64)
11304 high = ~high;
11305 low = ~low;
11306 low &= -lsb;
11308 if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
11310 lsb = high & -high;
11311 return high == -lsb;
11314 lsb = low & -low;
11315 return low == -lsb && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0);
11317 else
11318 return 0;
11321 /* Return 1 if ANDOP is a mask suitable for use with an rldicr insn
11322 to perform a left shift. It must have SHIFTOP or more least
11323 significant 0's, with the remainder of the word 1's. */
11326 includes_rldicr_lshift_p (rtx shiftop, rtx andop)
11328 if (GET_CODE (andop) == CONST_INT)
11330 HOST_WIDE_INT c, lsb, shift_mask;
11332 shift_mask = ~0;
11333 shift_mask <<= INTVAL (shiftop);
11334 c = INTVAL (andop);
11336 /* Find the least significant one bit. */
11337 lsb = c & -c;
11339 /* It must be covered by the shift mask.
11340 This test also rejects c == 0. */
11341 if ((lsb & shift_mask) == 0)
11342 return 0;
11344 /* Check we have all 1's above the transition, and reject all 1's. */
11345 return c == -lsb && lsb != 1;
11347 else if (GET_CODE (andop) == CONST_DOUBLE
11348 && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
11350 HOST_WIDE_INT low, lsb, shift_mask_low;
11352 low = CONST_DOUBLE_LOW (andop);
11354 if (HOST_BITS_PER_WIDE_INT < 64)
11356 HOST_WIDE_INT high, shift_mask_high;
11358 high = CONST_DOUBLE_HIGH (andop);
11360 if (low == 0)
11362 shift_mask_high = ~0;
11363 if (INTVAL (shiftop) > 32)
11364 shift_mask_high <<= INTVAL (shiftop) - 32;
11366 lsb = high & -high;
11368 if ((lsb & shift_mask_high) == 0)
11369 return 0;
11371 return high == -lsb;
11373 if (high != ~0)
11374 return 0;
11377 shift_mask_low = ~0;
11378 shift_mask_low <<= INTVAL (shiftop);
11380 lsb = low & -low;
11382 if ((lsb & shift_mask_low) == 0)
11383 return 0;
11385 return low == -lsb && lsb != 1;
11387 else
11388 return 0;
11391 /* Return 1 if operands will generate a valid arguments to rlwimi
11392 instruction for insert with right shift in 64-bit mode. The mask may
11393 not start on the first bit or stop on the last bit because wrap-around
11394 effects of instruction do not correspond to semantics of RTL insn. */
11397 insvdi_rshift_rlwimi_p (rtx sizeop, rtx startop, rtx shiftop)
11399 if (INTVAL (startop) > 32
11400 && INTVAL (startop) < 64
11401 && INTVAL (sizeop) > 1
11402 && INTVAL (sizeop) + INTVAL (startop) < 64
11403 && INTVAL (shiftop) > 0
11404 && INTVAL (sizeop) + INTVAL (shiftop) < 32
11405 && (64 - (INTVAL (shiftop) & 63)) >= INTVAL (sizeop))
11406 return 1;
11408 return 0;
11411 /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
11412 for lfq and stfq insns iff the registers are hard registers. */
11415 registers_ok_for_quad_peep (rtx reg1, rtx reg2)
11417 /* We might have been passed a SUBREG. */
11418 if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
11419 return 0;
11421 /* We might have been passed non floating point registers. */
11422 if (!FP_REGNO_P (REGNO (reg1))
11423 || !FP_REGNO_P (REGNO (reg2)))
11424 return 0;
11426 return (REGNO (reg1) == REGNO (reg2) - 1);
11429 /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
11430 addr1 and addr2 must be in consecutive memory locations
11431 (addr2 == addr1 + 8). */
11434 mems_ok_for_quad_peep (rtx mem1, rtx mem2)
11436 rtx addr1, addr2;
11437 unsigned int reg1, reg2;
11438 int offset1, offset2;
11440 /* The mems cannot be volatile. */
11441 if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
11442 return 0;
11444 addr1 = XEXP (mem1, 0);
11445 addr2 = XEXP (mem2, 0);
11447 /* Extract an offset (if used) from the first addr. */
11448 if (GET_CODE (addr1) == PLUS)
11450 /* If not a REG, return zero. */
11451 if (GET_CODE (XEXP (addr1, 0)) != REG)
11452 return 0;
11453 else
11455 reg1 = REGNO (XEXP (addr1, 0));
11456 /* The offset must be constant! */
11457 if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
11458 return 0;
11459 offset1 = INTVAL (XEXP (addr1, 1));
11462 else if (GET_CODE (addr1) != REG)
11463 return 0;
11464 else
11466 reg1 = REGNO (addr1);
11467 /* This was a simple (mem (reg)) expression. Offset is 0. */
11468 offset1 = 0;
11471 /* And now for the second addr. */
11472 if (GET_CODE (addr2) == PLUS)
11474 /* If not a REG, return zero. */
11475 if (GET_CODE (XEXP (addr2, 0)) != REG)
11476 return 0;
11477 else
11479 reg2 = REGNO (XEXP (addr2, 0));
11480 /* The offset must be constant. */
11481 if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
11482 return 0;
11483 offset2 = INTVAL (XEXP (addr2, 1));
11486 else if (GET_CODE (addr2) != REG)
11487 return 0;
11488 else
11490 reg2 = REGNO (addr2);
11491 /* This was a simple (mem (reg)) expression. Offset is 0. */
11492 offset2 = 0;
11495 /* Both of these must have the same base register. */
11496 if (reg1 != reg2)
11497 return 0;
11499 /* The offset for the second addr must be 8 more than the first addr. */
11500 if (offset2 != offset1 + 8)
11501 return 0;
11503 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
11504 instructions. */
11505 return 1;
11510 rs6000_secondary_memory_needed_rtx (enum machine_mode mode)
11512 static bool eliminated = false;
11513 if (mode != SDmode)
11514 return assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
11515 else
11517 rtx mem = cfun->machine->sdmode_stack_slot;
11518 gcc_assert (mem != NULL_RTX);
11520 if (!eliminated)
11522 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
11523 cfun->machine->sdmode_stack_slot = mem;
11524 eliminated = true;
11526 return mem;
11530 static tree
11531 rs6000_check_sdmode (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11533 /* Don't walk into types. */
11534 if (*tp == NULL_TREE || *tp == error_mark_node || TYPE_P (*tp))
11536 *walk_subtrees = 0;
11537 return NULL_TREE;
11540 switch (TREE_CODE (*tp))
11542 case VAR_DECL:
11543 case PARM_DECL:
11544 case FIELD_DECL:
11545 case RESULT_DECL:
11546 case REAL_CST:
11547 case INDIRECT_REF:
11548 case ALIGN_INDIRECT_REF:
11549 case MISALIGNED_INDIRECT_REF:
11550 case VIEW_CONVERT_EXPR:
11551 if (TYPE_MODE (TREE_TYPE (*tp)) == SDmode)
11552 return *tp;
11553 break;
11554 default:
11555 break;
11558 return NULL_TREE;
11562 /* Allocate a 64-bit stack slot to be used for copying SDmode
11563 values through if this function has any SDmode references. */
11565 static void
11566 rs6000_alloc_sdmode_stack_slot (void)
11568 tree t;
11569 basic_block bb;
11570 gimple_stmt_iterator gsi;
11572 gcc_assert (cfun->machine->sdmode_stack_slot == NULL_RTX);
11574 FOR_EACH_BB (bb)
11575 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
11577 tree ret = walk_gimple_op (gsi_stmt (gsi), rs6000_check_sdmode, NULL);
11578 if (ret)
11580 rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
11581 cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
11582 SDmode, 0);
11583 return;
11587 /* Check for any SDmode parameters of the function. */
11588 for (t = DECL_ARGUMENTS (cfun->decl); t; t = TREE_CHAIN (t))
11590 if (TREE_TYPE (t) == error_mark_node)
11591 continue;
11593 if (TYPE_MODE (TREE_TYPE (t)) == SDmode
11594 || TYPE_MODE (DECL_ARG_TYPE (t)) == SDmode)
11596 rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
11597 cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
11598 SDmode, 0);
11599 return;
11604 static void
11605 rs6000_instantiate_decls (void)
11607 if (cfun->machine->sdmode_stack_slot != NULL_RTX)
11608 instantiate_decl_rtl (cfun->machine->sdmode_stack_slot);
11611 /* Return the register class of a scratch register needed to copy IN into
11612 or out of a register in RCLASS in MODE. If it can be done directly,
11613 NO_REGS is returned. */
11615 enum reg_class
11616 rs6000_secondary_reload_class (enum reg_class rclass,
11617 enum machine_mode mode ATTRIBUTE_UNUSED,
11618 rtx in)
11620 int regno;
11622 if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
11623 #if TARGET_MACHO
11624 && MACHOPIC_INDIRECT
11625 #endif
11628 /* We cannot copy a symbolic operand directly into anything
11629 other than BASE_REGS for TARGET_ELF. So indicate that a
11630 register from BASE_REGS is needed as an intermediate
11631 register.
11633 On Darwin, pic addresses require a load from memory, which
11634 needs a base register. */
11635 if (rclass != BASE_REGS
11636 && (GET_CODE (in) == SYMBOL_REF
11637 || GET_CODE (in) == HIGH
11638 || GET_CODE (in) == LABEL_REF
11639 || GET_CODE (in) == CONST))
11640 return BASE_REGS;
11643 if (GET_CODE (in) == REG)
11645 regno = REGNO (in);
11646 if (regno >= FIRST_PSEUDO_REGISTER)
11648 regno = true_regnum (in);
11649 if (regno >= FIRST_PSEUDO_REGISTER)
11650 regno = -1;
11653 else if (GET_CODE (in) == SUBREG)
11655 regno = true_regnum (in);
11656 if (regno >= FIRST_PSEUDO_REGISTER)
11657 regno = -1;
11659 else
11660 regno = -1;
11662 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
11663 into anything. */
11664 if (rclass == GENERAL_REGS || rclass == BASE_REGS
11665 || (regno >= 0 && INT_REGNO_P (regno)))
11666 return NO_REGS;
11668 /* Constants, memory, and FP registers can go into FP registers. */
11669 if ((regno == -1 || FP_REGNO_P (regno))
11670 && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
11671 return (mode != SDmode) ? NO_REGS : GENERAL_REGS;
11673 /* Memory, and AltiVec registers can go into AltiVec registers. */
11674 if ((regno == -1 || ALTIVEC_REGNO_P (regno))
11675 && rclass == ALTIVEC_REGS)
11676 return NO_REGS;
11678 /* We can copy among the CR registers. */
11679 if ((rclass == CR_REGS || rclass == CR0_REGS)
11680 && regno >= 0 && CR_REGNO_P (regno))
11681 return NO_REGS;
11683 /* Otherwise, we need GENERAL_REGS. */
11684 return GENERAL_REGS;
11687 /* Given a comparison operation, return the bit number in CCR to test. We
11688 know this is a valid comparison.
11690 SCC_P is 1 if this is for an scc. That means that %D will have been
11691 used instead of %C, so the bits will be in different places.
11693 Return -1 if OP isn't a valid comparison for some reason. */
11696 ccr_bit (rtx op, int scc_p)
11698 enum rtx_code code = GET_CODE (op);
11699 enum machine_mode cc_mode;
11700 int cc_regnum;
11701 int base_bit;
11702 rtx reg;
11704 if (!COMPARISON_P (op))
11705 return -1;
11707 reg = XEXP (op, 0);
11709 gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));
11711 cc_mode = GET_MODE (reg);
11712 cc_regnum = REGNO (reg);
11713 base_bit = 4 * (cc_regnum - CR0_REGNO);
11715 validate_condition_mode (code, cc_mode);
11717 /* When generating a sCOND operation, only positive conditions are
11718 allowed. */
11719 gcc_assert (!scc_p
11720 || code == EQ || code == GT || code == LT || code == UNORDERED
11721 || code == GTU || code == LTU);
11723 switch (code)
11725 case NE:
11726 return scc_p ? base_bit + 3 : base_bit + 2;
11727 case EQ:
11728 return base_bit + 2;
11729 case GT: case GTU: case UNLE:
11730 return base_bit + 1;
11731 case LT: case LTU: case UNGE:
11732 return base_bit;
11733 case ORDERED: case UNORDERED:
11734 return base_bit + 3;
11736 case GE: case GEU:
11737 /* If scc, we will have done a cror to put the bit in the
11738 unordered position. So test that bit. For integer, this is ! LT
11739 unless this is an scc insn. */
11740 return scc_p ? base_bit + 3 : base_bit;
11742 case LE: case LEU:
11743 return scc_p ? base_bit + 3 : base_bit + 1;
11745 default:
11746 gcc_unreachable ();
11750 /* Return the GOT register. */
11753 rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
11755 /* The second flow pass currently (June 1999) can't update
11756 regs_ever_live without disturbing other parts of the compiler, so
11757 update it here to make the prolog/epilogue code happy. */
11758 if (!can_create_pseudo_p ()
11759 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
11760 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);
11762 crtl->uses_pic_offset_table = 1;
11764 return pic_offset_table_rtx;
11767 /* Function to init struct machine_function.
11768 This will be called, via a pointer variable,
11769 from push_function_context. */
11771 static struct machine_function *
11772 rs6000_init_machine_status (void)
11774 return GGC_CNEW (machine_function);
11777 /* These macros test for integers and extract the low-order bits. */
11778 #define INT_P(X) \
11779 ((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \
11780 && GET_MODE (X) == VOIDmode)
11782 #define INT_LOWPART(X) \
11783 (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))
11786 extract_MB (rtx op)
11788 int i;
11789 unsigned long val = INT_LOWPART (op);
11791 /* If the high bit is zero, the value is the first 1 bit we find
11792 from the left. */
11793 if ((val & 0x80000000) == 0)
11795 gcc_assert (val & 0xffffffff);
11797 i = 1;
11798 while (((val <<= 1) & 0x80000000) == 0)
11799 ++i;
11800 return i;
11803 /* If the high bit is set and the low bit is not, or the mask is all
11804 1's, the value is zero. */
11805 if ((val & 1) == 0 || (val & 0xffffffff) == 0xffffffff)
11806 return 0;
11808 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11809 from the right. */
11810 i = 31;
11811 while (((val >>= 1) & 1) != 0)
11812 --i;
11814 return i;
11818 extract_ME (rtx op)
11820 int i;
11821 unsigned long val = INT_LOWPART (op);
11823 /* If the low bit is zero, the value is the first 1 bit we find from
11824 the right. */
11825 if ((val & 1) == 0)
11827 gcc_assert (val & 0xffffffff);
11829 i = 30;
11830 while (((val >>= 1) & 1) == 0)
11831 --i;
11833 return i;
11836 /* If the low bit is set and the high bit is not, or the mask is all
11837 1's, the value is 31. */
11838 if ((val & 0x80000000) == 0 || (val & 0xffffffff) == 0xffffffff)
11839 return 31;
11841 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11842 from the left. */
11843 i = 0;
11844 while (((val <<= 1) & 0x80000000) != 0)
11845 ++i;
11847 return i;
11850 /* Locate some local-dynamic symbol still in use by this function
11851 so that we can print its name in some tls_ld pattern. */
11853 static const char *
11854 rs6000_get_some_local_dynamic_name (void)
11856 rtx insn;
11858 if (cfun->machine->some_ld_name)
11859 return cfun->machine->some_ld_name;
11861 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
11862 if (INSN_P (insn)
11863 && for_each_rtx (&PATTERN (insn),
11864 rs6000_get_some_local_dynamic_name_1, 0))
11865 return cfun->machine->some_ld_name;
11867 gcc_unreachable ();
11870 /* Helper function for rs6000_get_some_local_dynamic_name. */
11872 static int
11873 rs6000_get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
11875 rtx x = *px;
11877 if (GET_CODE (x) == SYMBOL_REF)
11879 const char *str = XSTR (x, 0);
11880 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
11882 cfun->machine->some_ld_name = str;
11883 return 1;
11887 return 0;
11890 /* Write out a function code label. */
11892 void
11893 rs6000_output_function_entry (FILE *file, const char *fname)
11895 if (fname[0] != '.')
11897 switch (DEFAULT_ABI)
11899 default:
11900 gcc_unreachable ();
11902 case ABI_AIX:
11903 if (DOT_SYMBOLS)
11904 putc ('.', file);
11905 else
11906 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
11907 break;
11909 case ABI_V4:
11910 case ABI_DARWIN:
11911 break;
11914 if (TARGET_AIX)
11915 RS6000_OUTPUT_BASENAME (file, fname);
11916 else
11917 assemble_name (file, fname);
11920 /* Print an operand. Recognize special options, documented below. */
11922 #if TARGET_ELF
11923 #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
11924 #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
11925 #else
11926 #define SMALL_DATA_RELOC "sda21"
11927 #define SMALL_DATA_REG 0
11928 #endif
11930 void
11931 print_operand (FILE *file, rtx x, int code)
11933 int i;
11934 HOST_WIDE_INT val;
11935 unsigned HOST_WIDE_INT uval;
11937 switch (code)
11939 case '.':
11940 /* Write out an instruction after the call which may be replaced
11941 with glue code by the loader. This depends on the AIX version. */
11942 asm_fprintf (file, RS6000_CALL_GLUE);
11943 return;
11945 /* %a is output_address. */
11947 case 'A':
11948 /* If X is a constant integer whose low-order 5 bits are zero,
11949 write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug
11950 in the AIX assembler where "sri" with a zero shift count
11951 writes a trash instruction. */
11952 if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0)
11953 putc ('l', file);
11954 else
11955 putc ('r', file);
11956 return;
11958 case 'b':
11959 /* If constant, low-order 16 bits of constant, unsigned.
11960 Otherwise, write normally. */
11961 if (INT_P (x))
11962 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 0xffff);
11963 else
11964 print_operand (file, x, 0);
11965 return;
11967 case 'B':
11968 /* If the low-order bit is zero, write 'r'; otherwise, write 'l'
11969 for 64-bit mask direction. */
11970 putc (((INT_LOWPART (x) & 1) == 0 ? 'r' : 'l'), file);
11971 return;
11973 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
11974 output_operand. */
11976 case 'c':
11977 /* X is a CR register. Print the number of the GT bit of the CR. */
11978 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11979 output_operand_lossage ("invalid %%E value");
11980 else
11981 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 1);
11982 return;
11984 case 'D':
11985 /* Like 'J' but get to the GT bit only. */
11986 gcc_assert (GET_CODE (x) == REG);
11988 /* Bit 1 is GT bit. */
11989 i = 4 * (REGNO (x) - CR0_REGNO) + 1;
11991 /* Add one for shift count in rlinm for scc. */
11992 fprintf (file, "%d", i + 1);
11993 return;
11995 case 'E':
11996 /* X is a CR register. Print the number of the EQ bit of the CR */
11997 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11998 output_operand_lossage ("invalid %%E value");
11999 else
12000 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
12001 return;
12003 case 'f':
12004 /* X is a CR register. Print the shift count needed to move it
12005 to the high-order four bits. */
12006 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12007 output_operand_lossage ("invalid %%f value");
12008 else
12009 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
12010 return;
12012 case 'F':
12013 /* Similar, but print the count for the rotate in the opposite
12014 direction. */
12015 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12016 output_operand_lossage ("invalid %%F value");
12017 else
12018 fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
12019 return;
12021 case 'G':
12022 /* X is a constant integer. If it is negative, print "m",
12023 otherwise print "z". This is to make an aze or ame insn. */
12024 if (GET_CODE (x) != CONST_INT)
12025 output_operand_lossage ("invalid %%G value");
12026 else if (INTVAL (x) >= 0)
12027 putc ('z', file);
12028 else
12029 putc ('m', file);
12030 return;
12032 case 'h':
12033 /* If constant, output low-order five bits. Otherwise, write
12034 normally. */
12035 if (INT_P (x))
12036 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 31);
12037 else
12038 print_operand (file, x, 0);
12039 return;
12041 case 'H':
12042 /* If constant, output low-order six bits. Otherwise, write
12043 normally. */
12044 if (INT_P (x))
12045 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 63);
12046 else
12047 print_operand (file, x, 0);
12048 return;
12050 case 'I':
12051 /* Print `i' if this is a constant, else nothing. */
12052 if (INT_P (x))
12053 putc ('i', file);
12054 return;
12056 case 'j':
12057 /* Write the bit number in CCR for jump. */
12058 i = ccr_bit (x, 0);
12059 if (i == -1)
12060 output_operand_lossage ("invalid %%j code");
12061 else
12062 fprintf (file, "%d", i);
12063 return;
12065 case 'J':
12066 /* Similar, but add one for shift count in rlinm for scc and pass
12067 scc flag to `ccr_bit'. */
12068 i = ccr_bit (x, 1);
12069 if (i == -1)
12070 output_operand_lossage ("invalid %%J code");
12071 else
12072 /* If we want bit 31, write a shift count of zero, not 32. */
12073 fprintf (file, "%d", i == 31 ? 0 : i + 1);
12074 return;
12076 case 'k':
12077 /* X must be a constant. Write the 1's complement of the
12078 constant. */
12079 if (! INT_P (x))
12080 output_operand_lossage ("invalid %%k value");
12081 else
12082 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INT_LOWPART (x));
12083 return;
12085 case 'K':
12086 /* X must be a symbolic constant on ELF. Write an
12087 expression suitable for an 'addi' that adds in the low 16
12088 bits of the MEM. */
12089 if (GET_CODE (x) != CONST)
12091 print_operand_address (file, x);
12092 fputs ("@l", file);
12094 else
12096 if (GET_CODE (XEXP (x, 0)) != PLUS
12097 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
12098 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
12099 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
12100 output_operand_lossage ("invalid %%K value");
12101 print_operand_address (file, XEXP (XEXP (x, 0), 0));
12102 fputs ("@l", file);
12103 /* For GNU as, there must be a non-alphanumeric character
12104 between 'l' and the number. The '-' is added by
12105 print_operand() already. */
12106 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
12107 fputs ("+", file);
12108 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
12110 return;
12112 /* %l is output_asm_label. */
12114 case 'L':
12115 /* Write second word of DImode or DFmode reference. Works on register
12116 or non-indexed memory only. */
12117 if (GET_CODE (x) == REG)
12118 fputs (reg_names[REGNO (x) + 1], file);
12119 else if (GET_CODE (x) == MEM)
12121 /* Handle possible auto-increment. Since it is pre-increment and
12122 we have already done it, we can just use an offset of word. */
12123 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12124 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
12125 output_address (plus_constant (XEXP (XEXP (x, 0), 0),
12126 UNITS_PER_WORD));
12127 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12128 output_address (plus_constant (XEXP (XEXP (x, 0), 0),
12129 UNITS_PER_WORD));
12130 else
12131 output_address (XEXP (adjust_address_nv (x, SImode,
12132 UNITS_PER_WORD),
12133 0));
12135 if (small_data_operand (x, GET_MODE (x)))
12136 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12137 reg_names[SMALL_DATA_REG]);
12139 return;
12141 case 'm':
12142 /* MB value for a mask operand. */
12143 if (! mask_operand (x, SImode))
12144 output_operand_lossage ("invalid %%m value");
12146 fprintf (file, "%d", extract_MB (x));
12147 return;
12149 case 'M':
12150 /* ME value for a mask operand. */
12151 if (! mask_operand (x, SImode))
12152 output_operand_lossage ("invalid %%M value");
12154 fprintf (file, "%d", extract_ME (x));
12155 return;
12157 /* %n outputs the negative of its operand. */
12159 case 'N':
12160 /* Write the number of elements in the vector times 4. */
12161 if (GET_CODE (x) != PARALLEL)
12162 output_operand_lossage ("invalid %%N value");
12163 else
12164 fprintf (file, "%d", XVECLEN (x, 0) * 4);
12165 return;
12167 case 'O':
12168 /* Similar, but subtract 1 first. */
12169 if (GET_CODE (x) != PARALLEL)
12170 output_operand_lossage ("invalid %%O value");
12171 else
12172 fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
12173 return;
12175 case 'p':
12176 /* X is a CONST_INT that is a power of two. Output the logarithm. */
12177 if (! INT_P (x)
12178 || INT_LOWPART (x) < 0
12179 || (i = exact_log2 (INT_LOWPART (x))) < 0)
12180 output_operand_lossage ("invalid %%p value");
12181 else
12182 fprintf (file, "%d", i);
12183 return;
12185 case 'P':
12186 /* The operand must be an indirect memory reference. The result
12187 is the register name. */
12188 if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
12189 || REGNO (XEXP (x, 0)) >= 32)
12190 output_operand_lossage ("invalid %%P value");
12191 else
12192 fputs (reg_names[REGNO (XEXP (x, 0))], file);
12193 return;
12195 case 'q':
12196 /* This outputs the logical code corresponding to a boolean
12197 expression. The expression may have one or both operands
12198 negated (if one, only the first one). For condition register
12199 logical operations, it will also treat the negated
12200 CR codes as NOTs, but not handle NOTs of them. */
12202 const char *const *t = 0;
12203 const char *s;
12204 enum rtx_code code = GET_CODE (x);
12205 static const char * const tbl[3][3] = {
12206 { "and", "andc", "nor" },
12207 { "or", "orc", "nand" },
12208 { "xor", "eqv", "xor" } };
12210 if (code == AND)
12211 t = tbl[0];
12212 else if (code == IOR)
12213 t = tbl[1];
12214 else if (code == XOR)
12215 t = tbl[2];
12216 else
12217 output_operand_lossage ("invalid %%q value");
12219 if (GET_CODE (XEXP (x, 0)) != NOT)
12220 s = t[0];
12221 else
12223 if (GET_CODE (XEXP (x, 1)) == NOT)
12224 s = t[2];
12225 else
12226 s = t[1];
12229 fputs (s, file);
12231 return;
12233 case 'Q':
12234 if (TARGET_MFCRF)
12235 fputc (',', file);
12236 /* FALLTHRU */
12237 else
12238 return;
12240 case 'R':
12241 /* X is a CR register. Print the mask for `mtcrf'. */
12242 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12243 output_operand_lossage ("invalid %%R value");
12244 else
12245 fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
12246 return;
12248 case 's':
12249 /* Low 5 bits of 32 - value */
12250 if (! INT_P (x))
12251 output_operand_lossage ("invalid %%s value");
12252 else
12253 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INT_LOWPART (x)) & 31);
12254 return;
12256 case 'S':
12257 /* PowerPC64 mask position. All 0's is excluded.
12258 CONST_INT 32-bit mask is considered sign-extended so any
12259 transition must occur within the CONST_INT, not on the boundary. */
12260 if (! mask64_operand (x, DImode))
12261 output_operand_lossage ("invalid %%S value");
12263 uval = INT_LOWPART (x);
12265 if (uval & 1) /* Clear Left */
12267 #if HOST_BITS_PER_WIDE_INT > 64
12268 uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
12269 #endif
12270 i = 64;
12272 else /* Clear Right */
12274 uval = ~uval;
12275 #if HOST_BITS_PER_WIDE_INT > 64
12276 uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
12277 #endif
12278 i = 63;
12280 while (uval != 0)
12281 --i, uval >>= 1;
12282 gcc_assert (i >= 0);
12283 fprintf (file, "%d", i);
12284 return;
12286 case 't':
12287 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
12288 gcc_assert (GET_CODE (x) == REG && GET_MODE (x) == CCmode);
12290 /* Bit 3 is OV bit. */
12291 i = 4 * (REGNO (x) - CR0_REGNO) + 3;
12293 /* If we want bit 31, write a shift count of zero, not 32. */
12294 fprintf (file, "%d", i == 31 ? 0 : i + 1);
12295 return;
12297 case 'T':
12298 /* Print the symbolic name of a branch target register. */
12299 if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
12300 && REGNO (x) != CTR_REGNO))
12301 output_operand_lossage ("invalid %%T value");
12302 else if (REGNO (x) == LR_REGNO)
12303 fputs (TARGET_NEW_MNEMONICS ? "lr" : "r", file);
12304 else
12305 fputs ("ctr", file);
12306 return;
12308 case 'u':
12309 /* High-order 16 bits of constant for use in unsigned operand. */
12310 if (! INT_P (x))
12311 output_operand_lossage ("invalid %%u value");
12312 else
12313 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
12314 (INT_LOWPART (x) >> 16) & 0xffff);
12315 return;
12317 case 'v':
12318 /* High-order 16 bits of constant for use in signed operand. */
12319 if (! INT_P (x))
12320 output_operand_lossage ("invalid %%v value");
12321 else
12322 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
12323 (INT_LOWPART (x) >> 16) & 0xffff);
12324 return;
12326 case 'U':
12327 /* Print `u' if this has an auto-increment or auto-decrement. */
12328 if (GET_CODE (x) == MEM
12329 && (GET_CODE (XEXP (x, 0)) == PRE_INC
12330 || GET_CODE (XEXP (x, 0)) == PRE_DEC
12331 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
12332 putc ('u', file);
12333 return;
12335 case 'V':
12336 /* Print the trap code for this operand. */
12337 switch (GET_CODE (x))
12339 case EQ:
12340 fputs ("eq", file); /* 4 */
12341 break;
12342 case NE:
12343 fputs ("ne", file); /* 24 */
12344 break;
12345 case LT:
12346 fputs ("lt", file); /* 16 */
12347 break;
12348 case LE:
12349 fputs ("le", file); /* 20 */
12350 break;
12351 case GT:
12352 fputs ("gt", file); /* 8 */
12353 break;
12354 case GE:
12355 fputs ("ge", file); /* 12 */
12356 break;
12357 case LTU:
12358 fputs ("llt", file); /* 2 */
12359 break;
12360 case LEU:
12361 fputs ("lle", file); /* 6 */
12362 break;
12363 case GTU:
12364 fputs ("lgt", file); /* 1 */
12365 break;
12366 case GEU:
12367 fputs ("lge", file); /* 5 */
12368 break;
12369 default:
12370 gcc_unreachable ();
12372 break;
12374 case 'w':
12375 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
12376 normally. */
12377 if (INT_P (x))
12378 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
12379 ((INT_LOWPART (x) & 0xffff) ^ 0x8000) - 0x8000);
12380 else
12381 print_operand (file, x, 0);
12382 return;
12384 case 'W':
12385 /* MB value for a PowerPC64 rldic operand. */
12386 val = (GET_CODE (x) == CONST_INT
12387 ? INTVAL (x) : CONST_DOUBLE_HIGH (x));
12389 if (val < 0)
12390 i = -1;
12391 else
12392 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
12393 if ((val <<= 1) < 0)
12394 break;
12396 #if HOST_BITS_PER_WIDE_INT == 32
12397 if (GET_CODE (x) == CONST_INT && i >= 0)
12398 i += 32; /* zero-extend high-part was all 0's */
12399 else if (GET_CODE (x) == CONST_DOUBLE && i == 32)
12401 val = CONST_DOUBLE_LOW (x);
12403 gcc_assert (val);
12404 if (val < 0)
12405 --i;
12406 else
12407 for ( ; i < 64; i++)
12408 if ((val <<= 1) < 0)
12409 break;
12411 #endif
12413 fprintf (file, "%d", i + 1);
12414 return;
12416 case 'X':
12417 if (GET_CODE (x) == MEM
12418 && (legitimate_indexed_address_p (XEXP (x, 0), 0)
12419 || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
12420 && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
12421 putc ('x', file);
12422 return;
12424 case 'Y':
12425 /* Like 'L', for third word of TImode */
12426 if (GET_CODE (x) == REG)
12427 fputs (reg_names[REGNO (x) + 2], file);
12428 else if (GET_CODE (x) == MEM)
12430 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12431 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
12432 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
12433 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12434 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
12435 else
12436 output_address (XEXP (adjust_address_nv (x, SImode, 8), 0));
12437 if (small_data_operand (x, GET_MODE (x)))
12438 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12439 reg_names[SMALL_DATA_REG]);
12441 return;
12443 case 'z':
12444 /* X is a SYMBOL_REF. Write out the name preceded by a
12445 period and without any trailing data in brackets. Used for function
12446 names. If we are configured for System V (or the embedded ABI) on
12447 the PowerPC, do not emit the period, since those systems do not use
12448 TOCs and the like. */
12449 gcc_assert (GET_CODE (x) == SYMBOL_REF);
12451 /* Mark the decl as referenced so that cgraph will output the
12452 function. */
12453 if (SYMBOL_REF_DECL (x))
12454 mark_decl_referenced (SYMBOL_REF_DECL (x));
12456 /* For macho, check to see if we need a stub. */
12457 if (TARGET_MACHO)
12459 const char *name = XSTR (x, 0);
12460 #if TARGET_MACHO
12461 if (MACHOPIC_INDIRECT
12462 && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
12463 name = machopic_indirection_name (x, /*stub_p=*/true);
12464 #endif
12465 assemble_name (file, name);
12467 else if (!DOT_SYMBOLS)
12468 assemble_name (file, XSTR (x, 0));
12469 else
12470 rs6000_output_function_entry (file, XSTR (x, 0));
12471 return;
12473 case 'Z':
12474 /* Like 'L', for last word of TImode. */
12475 if (GET_CODE (x) == REG)
12476 fputs (reg_names[REGNO (x) + 3], file);
12477 else if (GET_CODE (x) == MEM)
12479 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12480 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
12481 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
12482 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12483 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
12484 else
12485 output_address (XEXP (adjust_address_nv (x, SImode, 12), 0));
12486 if (small_data_operand (x, GET_MODE (x)))
12487 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12488 reg_names[SMALL_DATA_REG]);
12490 return;
12492 /* Print AltiVec or SPE memory operand. */
12493 case 'y':
12495 rtx tmp;
12497 gcc_assert (GET_CODE (x) == MEM);
12499 tmp = XEXP (x, 0);
12501 /* Ugly hack because %y is overloaded. */
12502 if ((TARGET_SPE || TARGET_E500_DOUBLE)
12503 && (GET_MODE_SIZE (GET_MODE (x)) == 8
12504 || GET_MODE (x) == TFmode
12505 || GET_MODE (x) == TImode))
12507 /* Handle [reg]. */
12508 if (GET_CODE (tmp) == REG)
12510 fprintf (file, "0(%s)", reg_names[REGNO (tmp)]);
12511 break;
12513 /* Handle [reg+UIMM]. */
12514 else if (GET_CODE (tmp) == PLUS &&
12515 GET_CODE (XEXP (tmp, 1)) == CONST_INT)
12517 int x;
12519 gcc_assert (GET_CODE (XEXP (tmp, 0)) == REG);
12521 x = INTVAL (XEXP (tmp, 1));
12522 fprintf (file, "%d(%s)", x, reg_names[REGNO (XEXP (tmp, 0))]);
12523 break;
12526 /* Fall through. Must be [reg+reg]. */
12528 if (TARGET_ALTIVEC
12529 && GET_CODE (tmp) == AND
12530 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
12531 && INTVAL (XEXP (tmp, 1)) == -16)
12532 tmp = XEXP (tmp, 0);
12533 if (GET_CODE (tmp) == REG)
12534 fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
12535 else
12537 if (!GET_CODE (tmp) == PLUS
12538 || !REG_P (XEXP (tmp, 0))
12539 || !REG_P (XEXP (tmp, 1)))
12541 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
12542 break;
12545 if (REGNO (XEXP (tmp, 0)) == 0)
12546 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
12547 reg_names[ REGNO (XEXP (tmp, 0)) ]);
12548 else
12549 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
12550 reg_names[ REGNO (XEXP (tmp, 1)) ]);
12552 break;
12555 case 0:
12556 if (GET_CODE (x) == REG)
12557 fprintf (file, "%s", reg_names[REGNO (x)]);
12558 else if (GET_CODE (x) == MEM)
12560 /* We need to handle PRE_INC and PRE_DEC here, since we need to
12561 know the width from the mode. */
12562 if (GET_CODE (XEXP (x, 0)) == PRE_INC)
12563 fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
12564 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
12565 else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
12566 fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
12567 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
12568 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12569 output_address (XEXP (XEXP (x, 0), 1));
12570 else
12571 output_address (XEXP (x, 0));
12573 else
12574 output_addr_const (file, x);
12575 return;
12577 case '&':
12578 assemble_name (file, rs6000_get_some_local_dynamic_name ());
12579 return;
12581 default:
12582 output_operand_lossage ("invalid %%xn code");
12586 /* Print the address of an operand. */
12588 void
12589 print_operand_address (FILE *file, rtx x)
12591 if (GET_CODE (x) == REG)
12592 fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
12593 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
12594 || GET_CODE (x) == LABEL_REF)
12596 output_addr_const (file, x);
12597 if (small_data_operand (x, GET_MODE (x)))
12598 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12599 reg_names[SMALL_DATA_REG]);
12600 else
12601 gcc_assert (!TARGET_TOC);
12603 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG)
12605 gcc_assert (REG_P (XEXP (x, 0)));
12606 if (REGNO (XEXP (x, 0)) == 0)
12607 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
12608 reg_names[ REGNO (XEXP (x, 0)) ]);
12609 else
12610 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
12611 reg_names[ REGNO (XEXP (x, 1)) ]);
12613 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
12614 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
12615 INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
12616 #if TARGET_ELF
12617 else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
12618 && CONSTANT_P (XEXP (x, 1)))
12620 output_addr_const (file, XEXP (x, 1));
12621 fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
12623 #endif
12624 #if TARGET_MACHO
12625 else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
12626 && CONSTANT_P (XEXP (x, 1)))
12628 fprintf (file, "lo16(");
12629 output_addr_const (file, XEXP (x, 1));
12630 fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
12632 #endif
12633 else if (legitimate_constant_pool_address_p (x))
12635 output_addr_const (file, XEXP (x, 1));
12636 fprintf (file, "(%s)", reg_names[REGNO (XEXP (x, 0))]);
12638 else
12639 gcc_unreachable ();
12642 /* Implement OUTPUT_ADDR_CONST_EXTRA for address X. */
12644 bool
12645 rs6000_output_addr_const_extra (FILE *file, rtx x)
12647 if (GET_CODE (x) == UNSPEC)
12648 switch (XINT (x, 1))
12650 case UNSPEC_TOCREL:
12651 x = XVECEXP (x, 0, 0);
12652 gcc_assert (GET_CODE (x) == SYMBOL_REF);
12653 output_addr_const (file, x);
12654 if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
12656 putc ('-', file);
12657 assemble_name (file, toc_label_name);
12659 else if (TARGET_ELF)
12660 fputs ("@toc", file);
12661 return true;
12663 #if TARGET_MACHO
12664 case UNSPEC_MACHOPIC_OFFSET:
12665 output_addr_const (file, XVECEXP (x, 0, 0));
12666 putc ('-', file);
12667 machopic_output_function_base_name (file);
12668 return true;
12669 #endif
12671 return false;
12674 /* Target hook for assembling integer objects. The PowerPC version has
12675 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
12676 is defined. It also needs to handle DI-mode objects on 64-bit
12677 targets. */
12679 static bool
12680 rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
12682 #ifdef RELOCATABLE_NEEDS_FIXUP
12683 /* Special handling for SI values. */
12684 if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
12686 static int recurse = 0;
12688 /* For -mrelocatable, we mark all addresses that need to be fixed up
12689 in the .fixup section. */
12690 if (TARGET_RELOCATABLE
12691 && in_section != toc_section
12692 && in_section != text_section
12693 && !unlikely_text_section_p (in_section)
12694 && !recurse
12695 && GET_CODE (x) != CONST_INT
12696 && GET_CODE (x) != CONST_DOUBLE
12697 && CONSTANT_P (x))
12699 char buf[256];
12701 recurse = 1;
12702 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
12703 fixuplabelno++;
12704 ASM_OUTPUT_LABEL (asm_out_file, buf);
12705 fprintf (asm_out_file, "\t.long\t(");
12706 output_addr_const (asm_out_file, x);
12707 fprintf (asm_out_file, ")@fixup\n");
12708 fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
12709 ASM_OUTPUT_ALIGN (asm_out_file, 2);
12710 fprintf (asm_out_file, "\t.long\t");
12711 assemble_name (asm_out_file, buf);
12712 fprintf (asm_out_file, "\n\t.previous\n");
12713 recurse = 0;
12714 return true;
12716 /* Remove initial .'s to turn a -mcall-aixdesc function
12717 address into the address of the descriptor, not the function
12718 itself. */
12719 else if (GET_CODE (x) == SYMBOL_REF
12720 && XSTR (x, 0)[0] == '.'
12721 && DEFAULT_ABI == ABI_AIX)
12723 const char *name = XSTR (x, 0);
12724 while (*name == '.')
12725 name++;
12727 fprintf (asm_out_file, "\t.long\t%s\n", name);
12728 return true;
12731 #endif /* RELOCATABLE_NEEDS_FIXUP */
12732 return default_assemble_integer (x, size, aligned_p);
12735 #ifdef HAVE_GAS_HIDDEN
12736 /* Emit an assembler directive to set symbol visibility for DECL to
12737 VISIBILITY_TYPE. */
12739 static void
12740 rs6000_assemble_visibility (tree decl, int vis)
12742 /* Functions need to have their entry point symbol visibility set as
12743 well as their descriptor symbol visibility. */
12744 if (DEFAULT_ABI == ABI_AIX
12745 && DOT_SYMBOLS
12746 && TREE_CODE (decl) == FUNCTION_DECL)
12748 static const char * const visibility_types[] = {
12749 NULL, "internal", "hidden", "protected"
12752 const char *name, *type;
12754 name = ((* targetm.strip_name_encoding)
12755 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
12756 type = visibility_types[vis];
12758 fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
12759 fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
12761 else
12762 default_assemble_visibility (decl, vis);
12764 #endif
12766 enum rtx_code
12767 rs6000_reverse_condition (enum machine_mode mode, enum rtx_code code)
12769 /* Reversal of FP compares takes care -- an ordered compare
12770 becomes an unordered compare and vice versa. */
12771 if (mode == CCFPmode
12772 && (!flag_finite_math_only
12773 || code == UNLT || code == UNLE || code == UNGT || code == UNGE
12774 || code == UNEQ || code == LTGT))
12775 return reverse_condition_maybe_unordered (code);
12776 else
12777 return reverse_condition (code);
12780 /* Generate a compare for CODE. Return a brand-new rtx that
12781 represents the result of the compare. */
12783 static rtx
12784 rs6000_generate_compare (enum rtx_code code)
12786 enum machine_mode comp_mode;
12787 rtx compare_result;
12789 if (rs6000_compare_fp_p)
12790 comp_mode = CCFPmode;
12791 else if (code == GTU || code == LTU
12792 || code == GEU || code == LEU)
12793 comp_mode = CCUNSmode;
12794 else if ((code == EQ || code == NE)
12795 && GET_CODE (rs6000_compare_op0) == SUBREG
12796 && GET_CODE (rs6000_compare_op1) == SUBREG
12797 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op0)
12798 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op1))
12799 /* These are unsigned values, perhaps there will be a later
12800 ordering compare that can be shared with this one.
12801 Unfortunately we cannot detect the signedness of the operands
12802 for non-subregs. */
12803 comp_mode = CCUNSmode;
12804 else
12805 comp_mode = CCmode;
12807 /* First, the compare. */
12808 compare_result = gen_reg_rtx (comp_mode);
12810 /* E500 FP compare instructions on the GPRs. Yuck! */
12811 if ((!TARGET_FPRS && TARGET_HARD_FLOAT)
12812 && rs6000_compare_fp_p)
12814 rtx cmp, or_result, compare_result2;
12815 enum machine_mode op_mode = GET_MODE (rs6000_compare_op0);
12817 if (op_mode == VOIDmode)
12818 op_mode = GET_MODE (rs6000_compare_op1);
12820 /* The E500 FP compare instructions toggle the GT bit (CR bit 1) only.
12821 This explains the following mess. */
12823 switch (code)
12825 case EQ: case UNEQ: case NE: case LTGT:
12826 switch (op_mode)
12828 case SFmode:
12829 cmp = (flag_finite_math_only && !flag_trapping_math)
12830 ? gen_tstsfeq_gpr (compare_result, rs6000_compare_op0,
12831 rs6000_compare_op1)
12832 : gen_cmpsfeq_gpr (compare_result, rs6000_compare_op0,
12833 rs6000_compare_op1);
12834 break;
12836 case DFmode:
12837 cmp = (flag_finite_math_only && !flag_trapping_math)
12838 ? gen_tstdfeq_gpr (compare_result, rs6000_compare_op0,
12839 rs6000_compare_op1)
12840 : gen_cmpdfeq_gpr (compare_result, rs6000_compare_op0,
12841 rs6000_compare_op1);
12842 break;
12844 case TFmode:
12845 cmp = (flag_finite_math_only && !flag_trapping_math)
12846 ? gen_tsttfeq_gpr (compare_result, rs6000_compare_op0,
12847 rs6000_compare_op1)
12848 : gen_cmptfeq_gpr (compare_result, rs6000_compare_op0,
12849 rs6000_compare_op1);
12850 break;
12852 default:
12853 gcc_unreachable ();
12855 break;
12857 case GT: case GTU: case UNGT: case UNGE: case GE: case GEU:
12858 switch (op_mode)
12860 case SFmode:
12861 cmp = (flag_finite_math_only && !flag_trapping_math)
12862 ? gen_tstsfgt_gpr (compare_result, rs6000_compare_op0,
12863 rs6000_compare_op1)
12864 : gen_cmpsfgt_gpr (compare_result, rs6000_compare_op0,
12865 rs6000_compare_op1);
12866 break;
12868 case DFmode:
12869 cmp = (flag_finite_math_only && !flag_trapping_math)
12870 ? gen_tstdfgt_gpr (compare_result, rs6000_compare_op0,
12871 rs6000_compare_op1)
12872 : gen_cmpdfgt_gpr (compare_result, rs6000_compare_op0,
12873 rs6000_compare_op1);
12874 break;
12876 case TFmode:
12877 cmp = (flag_finite_math_only && !flag_trapping_math)
12878 ? gen_tsttfgt_gpr (compare_result, rs6000_compare_op0,
12879 rs6000_compare_op1)
12880 : gen_cmptfgt_gpr (compare_result, rs6000_compare_op0,
12881 rs6000_compare_op1);
12882 break;
12884 default:
12885 gcc_unreachable ();
12887 break;
12889 case LT: case LTU: case UNLT: case UNLE: case LE: case LEU:
12890 switch (op_mode)
12892 case SFmode:
12893 cmp = (flag_finite_math_only && !flag_trapping_math)
12894 ? gen_tstsflt_gpr (compare_result, rs6000_compare_op0,
12895 rs6000_compare_op1)
12896 : gen_cmpsflt_gpr (compare_result, rs6000_compare_op0,
12897 rs6000_compare_op1);
12898 break;
12900 case DFmode:
12901 cmp = (flag_finite_math_only && !flag_trapping_math)
12902 ? gen_tstdflt_gpr (compare_result, rs6000_compare_op0,
12903 rs6000_compare_op1)
12904 : gen_cmpdflt_gpr (compare_result, rs6000_compare_op0,
12905 rs6000_compare_op1);
12906 break;
12908 case TFmode:
12909 cmp = (flag_finite_math_only && !flag_trapping_math)
12910 ? gen_tsttflt_gpr (compare_result, rs6000_compare_op0,
12911 rs6000_compare_op1)
12912 : gen_cmptflt_gpr (compare_result, rs6000_compare_op0,
12913 rs6000_compare_op1);
12914 break;
12916 default:
12917 gcc_unreachable ();
12919 break;
12920 default:
12921 gcc_unreachable ();
12924 /* Synthesize LE and GE from LT/GT || EQ. */
12925 if (code == LE || code == GE || code == LEU || code == GEU)
12927 emit_insn (cmp);
12929 switch (code)
12931 case LE: code = LT; break;
12932 case GE: code = GT; break;
12933 case LEU: code = LT; break;
12934 case GEU: code = GT; break;
12935 default: gcc_unreachable ();
12938 compare_result2 = gen_reg_rtx (CCFPmode);
12940 /* Do the EQ. */
12941 switch (op_mode)
12943 case SFmode:
12944 cmp = (flag_finite_math_only && !flag_trapping_math)
12945 ? gen_tstsfeq_gpr (compare_result2, rs6000_compare_op0,
12946 rs6000_compare_op1)
12947 : gen_cmpsfeq_gpr (compare_result2, rs6000_compare_op0,
12948 rs6000_compare_op1);
12949 break;
12951 case DFmode:
12952 cmp = (flag_finite_math_only && !flag_trapping_math)
12953 ? gen_tstdfeq_gpr (compare_result2, rs6000_compare_op0,
12954 rs6000_compare_op1)
12955 : gen_cmpdfeq_gpr (compare_result2, rs6000_compare_op0,
12956 rs6000_compare_op1);
12957 break;
12959 case TFmode:
12960 cmp = (flag_finite_math_only && !flag_trapping_math)
12961 ? gen_tsttfeq_gpr (compare_result2, rs6000_compare_op0,
12962 rs6000_compare_op1)
12963 : gen_cmptfeq_gpr (compare_result2, rs6000_compare_op0,
12964 rs6000_compare_op1);
12965 break;
12967 default:
12968 gcc_unreachable ();
12970 emit_insn (cmp);
12972 /* OR them together. */
12973 or_result = gen_reg_rtx (CCFPmode);
12974 cmp = gen_e500_cr_ior_compare (or_result, compare_result,
12975 compare_result2);
12976 compare_result = or_result;
12977 code = EQ;
12979 else
12981 if (code == NE || code == LTGT)
12982 code = NE;
12983 else
12984 code = EQ;
12987 emit_insn (cmp);
12989 else
12991 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
12992 CLOBBERs to match cmptf_internal2 pattern. */
12993 if (comp_mode == CCFPmode && TARGET_XL_COMPAT
12994 && GET_MODE (rs6000_compare_op0) == TFmode
12995 && !TARGET_IEEEQUAD
12996 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_LONG_DOUBLE_128)
12997 emit_insn (gen_rtx_PARALLEL (VOIDmode,
12998 gen_rtvec (9,
12999 gen_rtx_SET (VOIDmode,
13000 compare_result,
13001 gen_rtx_COMPARE (comp_mode,
13002 rs6000_compare_op0,
13003 rs6000_compare_op1)),
13004 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13005 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13006 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13007 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13008 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13009 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13010 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13011 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)))));
13012 else if (GET_CODE (rs6000_compare_op1) == UNSPEC
13013 && XINT (rs6000_compare_op1, 1) == UNSPEC_SP_TEST)
13015 rtx op1 = XVECEXP (rs6000_compare_op1, 0, 0);
13016 comp_mode = CCEQmode;
13017 compare_result = gen_reg_rtx (CCEQmode);
13018 if (TARGET_64BIT)
13019 emit_insn (gen_stack_protect_testdi (compare_result,
13020 rs6000_compare_op0, op1));
13021 else
13022 emit_insn (gen_stack_protect_testsi (compare_result,
13023 rs6000_compare_op0, op1));
13025 else
13026 emit_insn (gen_rtx_SET (VOIDmode, compare_result,
13027 gen_rtx_COMPARE (comp_mode,
13028 rs6000_compare_op0,
13029 rs6000_compare_op1)));
13032 /* Some kinds of FP comparisons need an OR operation;
13033 under flag_finite_math_only we don't bother. */
13034 if (rs6000_compare_fp_p
13035 && !flag_finite_math_only
13036 && !(TARGET_HARD_FLOAT && !TARGET_FPRS)
13037 && (code == LE || code == GE
13038 || code == UNEQ || code == LTGT
13039 || code == UNGT || code == UNLT))
13041 enum rtx_code or1, or2;
13042 rtx or1_rtx, or2_rtx, compare2_rtx;
13043 rtx or_result = gen_reg_rtx (CCEQmode);
13045 switch (code)
13047 case LE: or1 = LT; or2 = EQ; break;
13048 case GE: or1 = GT; or2 = EQ; break;
13049 case UNEQ: or1 = UNORDERED; or2 = EQ; break;
13050 case LTGT: or1 = LT; or2 = GT; break;
13051 case UNGT: or1 = UNORDERED; or2 = GT; break;
13052 case UNLT: or1 = UNORDERED; or2 = LT; break;
13053 default: gcc_unreachable ();
13055 validate_condition_mode (or1, comp_mode);
13056 validate_condition_mode (or2, comp_mode);
13057 or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
13058 or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
13059 compare2_rtx = gen_rtx_COMPARE (CCEQmode,
13060 gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
13061 const_true_rtx);
13062 emit_insn (gen_rtx_SET (VOIDmode, or_result, compare2_rtx));
13064 compare_result = or_result;
13065 code = EQ;
13068 validate_condition_mode (code, GET_MODE (compare_result));
13070 return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
13074 /* Emit the RTL for an sCOND pattern. */
13076 void
13077 rs6000_emit_sCOND (enum rtx_code code, rtx result)
13079 rtx condition_rtx;
13080 enum machine_mode op_mode;
13081 enum rtx_code cond_code;
13083 condition_rtx = rs6000_generate_compare (code);
13084 cond_code = GET_CODE (condition_rtx);
13086 if (rs6000_compare_fp_p
13087 && !TARGET_FPRS && TARGET_HARD_FLOAT)
13089 rtx t;
13091 PUT_MODE (condition_rtx, SImode);
13092 t = XEXP (condition_rtx, 0);
13094 gcc_assert (cond_code == NE || cond_code == EQ);
13096 if (cond_code == NE)
13097 emit_insn (gen_e500_flip_gt_bit (t, t));
13099 emit_insn (gen_move_from_CR_gt_bit (result, t));
13100 return;
13103 if (cond_code == NE
13104 || cond_code == GE || cond_code == LE
13105 || cond_code == GEU || cond_code == LEU
13106 || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
13108 rtx not_result = gen_reg_rtx (CCEQmode);
13109 rtx not_op, rev_cond_rtx;
13110 enum machine_mode cc_mode;
13112 cc_mode = GET_MODE (XEXP (condition_rtx, 0));
13114 rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
13115 SImode, XEXP (condition_rtx, 0), const0_rtx);
13116 not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
13117 emit_insn (gen_rtx_SET (VOIDmode, not_result, not_op));
13118 condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
13121 op_mode = GET_MODE (rs6000_compare_op0);
13122 if (op_mode == VOIDmode)
13123 op_mode = GET_MODE (rs6000_compare_op1);
13125 if (TARGET_POWERPC64 && (op_mode == DImode || rs6000_compare_fp_p))
13127 PUT_MODE (condition_rtx, DImode);
13128 convert_move (result, condition_rtx, 0);
13130 else
13132 PUT_MODE (condition_rtx, SImode);
13133 emit_insn (gen_rtx_SET (VOIDmode, result, condition_rtx));
13137 /* Emit a branch of kind CODE to location LOC. */
13139 void
13140 rs6000_emit_cbranch (enum rtx_code code, rtx loc)
13142 rtx condition_rtx, loc_ref;
13144 condition_rtx = rs6000_generate_compare (code);
13145 loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc);
13146 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
13147 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
13148 loc_ref, pc_rtx)));
13151 /* Return the string to output a conditional branch to LABEL, which is
13152 the operand number of the label, or -1 if the branch is really a
13153 conditional return.
13155 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
13156 condition code register and its mode specifies what kind of
13157 comparison we made.
13159 REVERSED is nonzero if we should reverse the sense of the comparison.
13161 INSN is the insn. */
13163 char *
13164 output_cbranch (rtx op, const char *label, int reversed, rtx insn)
13166 static char string[64];
13167 enum rtx_code code = GET_CODE (op);
13168 rtx cc_reg = XEXP (op, 0);
13169 enum machine_mode mode = GET_MODE (cc_reg);
13170 int cc_regno = REGNO (cc_reg) - CR0_REGNO;
13171 int need_longbranch = label != NULL && get_attr_length (insn) == 8;
13172 int really_reversed = reversed ^ need_longbranch;
13173 char *s = string;
13174 const char *ccode;
13175 const char *pred;
13176 rtx note;
13178 validate_condition_mode (code, mode);
13180 /* Work out which way this really branches. We could use
13181 reverse_condition_maybe_unordered here always but this
13182 makes the resulting assembler clearer. */
13183 if (really_reversed)
13185 /* Reversal of FP compares takes care -- an ordered compare
13186 becomes an unordered compare and vice versa. */
13187 if (mode == CCFPmode)
13188 code = reverse_condition_maybe_unordered (code);
13189 else
13190 code = reverse_condition (code);
13193 if ((!TARGET_FPRS && TARGET_HARD_FLOAT) && mode == CCFPmode)
13195 /* The efscmp/tst* instructions twiddle bit 2, which maps nicely
13196 to the GT bit. */
13197 switch (code)
13199 case EQ:
13200 /* Opposite of GT. */
13201 code = GT;
13202 break;
13204 case NE:
13205 code = UNLE;
13206 break;
13208 default:
13209 gcc_unreachable ();
13213 switch (code)
13215 /* Not all of these are actually distinct opcodes, but
13216 we distinguish them for clarity of the resulting assembler. */
13217 case NE: case LTGT:
13218 ccode = "ne"; break;
13219 case EQ: case UNEQ:
13220 ccode = "eq"; break;
13221 case GE: case GEU:
13222 ccode = "ge"; break;
13223 case GT: case GTU: case UNGT:
13224 ccode = "gt"; break;
13225 case LE: case LEU:
13226 ccode = "le"; break;
13227 case LT: case LTU: case UNLT:
13228 ccode = "lt"; break;
13229 case UNORDERED: ccode = "un"; break;
13230 case ORDERED: ccode = "nu"; break;
13231 case UNGE: ccode = "nl"; break;
13232 case UNLE: ccode = "ng"; break;
13233 default:
13234 gcc_unreachable ();
13237 /* Maybe we have a guess as to how likely the branch is.
13238 The old mnemonics don't have a way to specify this information. */
13239 pred = "";
13240 note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
13241 if (note != NULL_RTX)
13243 /* PROB is the difference from 50%. */
13244 int prob = INTVAL (XEXP (note, 0)) - REG_BR_PROB_BASE / 2;
13246 /* Only hint for highly probable/improbable branches on newer
13247 cpus as static prediction overrides processor dynamic
13248 prediction. For older cpus we may as well always hint, but
13249 assume not taken for branches that are very close to 50% as a
13250 mispredicted taken branch is more expensive than a
13251 mispredicted not-taken branch. */
13252 if (rs6000_always_hint
13253 || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
13254 && br_prob_note_reliable_p (note)))
13256 if (abs (prob) > REG_BR_PROB_BASE / 20
13257 && ((prob > 0) ^ need_longbranch))
13258 pred = "+";
13259 else
13260 pred = "-";
13264 if (label == NULL)
13265 s += sprintf (s, "{b%sr|b%slr%s} ", ccode, ccode, pred);
13266 else
13267 s += sprintf (s, "{b%s|b%s%s} ", ccode, ccode, pred);
13269 /* We need to escape any '%' characters in the reg_names string.
13270 Assume they'd only be the first character.... */
13271 if (reg_names[cc_regno + CR0_REGNO][0] == '%')
13272 *s++ = '%';
13273 s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);
13275 if (label != NULL)
13277 /* If the branch distance was too far, we may have to use an
13278 unconditional branch to go the distance. */
13279 if (need_longbranch)
13280 s += sprintf (s, ",$+8\n\tb %s", label);
13281 else
13282 s += sprintf (s, ",%s", label);
13285 return string;
13288 /* Return the string to flip the GT bit on a CR. */
13289 char *
13290 output_e500_flip_gt_bit (rtx dst, rtx src)
13292 static char string[64];
13293 int a, b;
13295 gcc_assert (GET_CODE (dst) == REG && CR_REGNO_P (REGNO (dst))
13296 && GET_CODE (src) == REG && CR_REGNO_P (REGNO (src)));
13298 /* GT bit. */
13299 a = 4 * (REGNO (dst) - CR0_REGNO) + 1;
13300 b = 4 * (REGNO (src) - CR0_REGNO) + 1;
13302 sprintf (string, "crnot %d,%d", a, b);
13303 return string;
13306 /* Return insn index for the vector compare instruction for given CODE,
13307 and DEST_MODE, OP_MODE. Return INSN_NOT_AVAILABLE if valid insn is
13308 not available. */
13310 static int
13311 get_vec_cmp_insn (enum rtx_code code,
13312 enum machine_mode dest_mode,
13313 enum machine_mode op_mode)
13315 if (!TARGET_ALTIVEC)
13316 return INSN_NOT_AVAILABLE;
13318 switch (code)
13320 case EQ:
13321 if (dest_mode == V16QImode && op_mode == V16QImode)
13322 return UNSPEC_VCMPEQUB;
13323 if (dest_mode == V8HImode && op_mode == V8HImode)
13324 return UNSPEC_VCMPEQUH;
13325 if (dest_mode == V4SImode && op_mode == V4SImode)
13326 return UNSPEC_VCMPEQUW;
13327 if (dest_mode == V4SImode && op_mode == V4SFmode)
13328 return UNSPEC_VCMPEQFP;
13329 break;
13330 case GE:
13331 if (dest_mode == V4SImode && op_mode == V4SFmode)
13332 return UNSPEC_VCMPGEFP;
13333 case GT:
13334 if (dest_mode == V16QImode && op_mode == V16QImode)
13335 return UNSPEC_VCMPGTSB;
13336 if (dest_mode == V8HImode && op_mode == V8HImode)
13337 return UNSPEC_VCMPGTSH;
13338 if (dest_mode == V4SImode && op_mode == V4SImode)
13339 return UNSPEC_VCMPGTSW;
13340 if (dest_mode == V4SImode && op_mode == V4SFmode)
13341 return UNSPEC_VCMPGTFP;
13342 break;
13343 case GTU:
13344 if (dest_mode == V16QImode && op_mode == V16QImode)
13345 return UNSPEC_VCMPGTUB;
13346 if (dest_mode == V8HImode && op_mode == V8HImode)
13347 return UNSPEC_VCMPGTUH;
13348 if (dest_mode == V4SImode && op_mode == V4SImode)
13349 return UNSPEC_VCMPGTUW;
13350 break;
13351 default:
13352 break;
13354 return INSN_NOT_AVAILABLE;
13357 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
13358 DMODE is expected destination mode. This is a recursive function. */
13360 static rtx
13361 rs6000_emit_vector_compare (enum rtx_code rcode,
13362 rtx op0, rtx op1,
13363 enum machine_mode dmode)
13365 int vec_cmp_insn;
13366 rtx mask;
13367 enum machine_mode dest_mode;
13368 enum machine_mode op_mode = GET_MODE (op1);
13370 gcc_assert (TARGET_ALTIVEC);
13371 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
13373 /* Floating point vector compare instructions uses destination V4SImode.
13374 Move destination to appropriate mode later. */
13375 if (dmode == V4SFmode)
13376 dest_mode = V4SImode;
13377 else
13378 dest_mode = dmode;
13380 mask = gen_reg_rtx (dest_mode);
13381 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
13383 if (vec_cmp_insn == INSN_NOT_AVAILABLE)
13385 bool swap_operands = false;
13386 bool try_again = false;
13387 switch (rcode)
13389 case LT:
13390 rcode = GT;
13391 swap_operands = true;
13392 try_again = true;
13393 break;
13394 case LTU:
13395 rcode = GTU;
13396 swap_operands = true;
13397 try_again = true;
13398 break;
13399 case NE:
13400 case UNLE:
13401 case UNLT:
13402 case UNGE:
13403 case UNGT:
13404 /* Invert condition and try again.
13405 e.g., A != B becomes ~(A==B). */
13407 enum rtx_code rev_code;
13408 enum insn_code nor_code;
13409 rtx eq_rtx;
13411 rev_code = reverse_condition_maybe_unordered (rcode);
13412 eq_rtx = rs6000_emit_vector_compare (rev_code, op0, op1,
13413 dest_mode);
13415 nor_code = optab_handler (one_cmpl_optab, (int)dest_mode)->insn_code;
13416 gcc_assert (nor_code != CODE_FOR_nothing);
13417 emit_insn (GEN_FCN (nor_code) (mask, eq_rtx));
13419 if (dmode != dest_mode)
13421 rtx temp = gen_reg_rtx (dest_mode);
13422 convert_move (temp, mask, 0);
13423 return temp;
13425 return mask;
13427 break;
13428 case GE:
13429 case GEU:
13430 case LE:
13431 case LEU:
13432 /* Try GT/GTU/LT/LTU OR EQ */
13434 rtx c_rtx, eq_rtx;
13435 enum insn_code ior_code;
13436 enum rtx_code new_code;
13438 switch (rcode)
13440 case GE:
13441 new_code = GT;
13442 break;
13444 case GEU:
13445 new_code = GTU;
13446 break;
13448 case LE:
13449 new_code = LT;
13450 break;
13452 case LEU:
13453 new_code = LTU;
13454 break;
13456 default:
13457 gcc_unreachable ();
13460 c_rtx = rs6000_emit_vector_compare (new_code,
13461 op0, op1, dest_mode);
13462 eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1,
13463 dest_mode);
13465 ior_code = optab_handler (ior_optab, (int)dest_mode)->insn_code;
13466 gcc_assert (ior_code != CODE_FOR_nothing);
13467 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
13468 if (dmode != dest_mode)
13470 rtx temp = gen_reg_rtx (dest_mode);
13471 convert_move (temp, mask, 0);
13472 return temp;
13474 return mask;
13476 break;
13477 default:
13478 gcc_unreachable ();
13481 if (try_again)
13483 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
13484 /* You only get two chances. */
13485 gcc_assert (vec_cmp_insn != INSN_NOT_AVAILABLE);
13488 if (swap_operands)
13490 rtx tmp;
13491 tmp = op0;
13492 op0 = op1;
13493 op1 = tmp;
13497 emit_insn (gen_rtx_SET (VOIDmode, mask,
13498 gen_rtx_UNSPEC (dest_mode,
13499 gen_rtvec (2, op0, op1),
13500 vec_cmp_insn)));
13501 if (dmode != dest_mode)
13503 rtx temp = gen_reg_rtx (dest_mode);
13504 convert_move (temp, mask, 0);
13505 return temp;
13507 return mask;
13510 /* Return vector select instruction for MODE. Return INSN_NOT_AVAILABLE, if
13511 valid insn doesn exist for given mode. */
13513 static int
13514 get_vsel_insn (enum machine_mode mode)
13516 switch (mode)
13518 case V4SImode:
13519 return UNSPEC_VSEL4SI;
13520 break;
13521 case V4SFmode:
13522 return UNSPEC_VSEL4SF;
13523 break;
13524 case V8HImode:
13525 return UNSPEC_VSEL8HI;
13526 break;
13527 case V16QImode:
13528 return UNSPEC_VSEL16QI;
13529 break;
13530 default:
13531 return INSN_NOT_AVAILABLE;
13532 break;
13534 return INSN_NOT_AVAILABLE;
13537 /* Emit vector select insn where DEST is destination using
13538 operands OP1, OP2 and MASK. */
13540 static void
13541 rs6000_emit_vector_select (rtx dest, rtx op1, rtx op2, rtx mask)
13543 rtx t, temp;
13544 enum machine_mode dest_mode = GET_MODE (dest);
13545 int vsel_insn_index = get_vsel_insn (GET_MODE (dest));
13547 temp = gen_reg_rtx (dest_mode);
13549 /* For each vector element, select op1 when mask is 1 otherwise
13550 select op2. */
13551 t = gen_rtx_SET (VOIDmode, temp,
13552 gen_rtx_UNSPEC (dest_mode,
13553 gen_rtvec (3, op2, op1, mask),
13554 vsel_insn_index));
13555 emit_insn (t);
13556 emit_move_insn (dest, temp);
13557 return;
13560 /* Emit vector conditional expression.
13561 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
13562 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
13565 rs6000_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
13566 rtx cond, rtx cc_op0, rtx cc_op1)
13568 enum machine_mode dest_mode = GET_MODE (dest);
13569 enum rtx_code rcode = GET_CODE (cond);
13570 rtx mask;
13572 if (!TARGET_ALTIVEC)
13573 return 0;
13575 /* Get the vector mask for the given relational operations. */
13576 mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);
13578 rs6000_emit_vector_select (dest, op1, op2, mask);
13580 return 1;
13583 /* Emit a conditional move: move TRUE_COND to DEST if OP of the
13584 operands of the last comparison is nonzero/true, FALSE_COND if it
13585 is zero/false. Return 0 if the hardware has no such operation. */
13588 rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
13590 enum rtx_code code = GET_CODE (op);
13591 rtx op0 = rs6000_compare_op0;
13592 rtx op1 = rs6000_compare_op1;
13593 REAL_VALUE_TYPE c1;
13594 enum machine_mode compare_mode = GET_MODE (op0);
13595 enum machine_mode result_mode = GET_MODE (dest);
13596 rtx temp;
13597 bool is_against_zero;
13599 /* These modes should always match. */
13600 if (GET_MODE (op1) != compare_mode
13601 /* In the isel case however, we can use a compare immediate, so
13602 op1 may be a small constant. */
13603 && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
13604 return 0;
13605 if (GET_MODE (true_cond) != result_mode)
13606 return 0;
13607 if (GET_MODE (false_cond) != result_mode)
13608 return 0;
13610 /* First, work out if the hardware can do this at all, or
13611 if it's too slow.... */
13612 if (! rs6000_compare_fp_p)
13614 if (TARGET_ISEL)
13615 return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
13616 return 0;
13618 else if (TARGET_HARD_FLOAT && !TARGET_FPRS
13619 && SCALAR_FLOAT_MODE_P (compare_mode))
13620 return 0;
13622 is_against_zero = op1 == CONST0_RTX (compare_mode);
13624 /* A floating-point subtract might overflow, underflow, or produce
13625 an inexact result, thus changing the floating-point flags, so it
13626 can't be generated if we care about that. It's safe if one side
13627 of the construct is zero, since then no subtract will be
13628 generated. */
13629 if (SCALAR_FLOAT_MODE_P (compare_mode)
13630 && flag_trapping_math && ! is_against_zero)
13631 return 0;
13633 /* Eliminate half of the comparisons by switching operands, this
13634 makes the remaining code simpler. */
13635 if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
13636 || code == LTGT || code == LT || code == UNLE)
13638 code = reverse_condition_maybe_unordered (code);
13639 temp = true_cond;
13640 true_cond = false_cond;
13641 false_cond = temp;
13644 /* UNEQ and LTGT take four instructions for a comparison with zero,
13645 it'll probably be faster to use a branch here too. */
13646 if (code == UNEQ && HONOR_NANS (compare_mode))
13647 return 0;
13649 if (GET_CODE (op1) == CONST_DOUBLE)
13650 REAL_VALUE_FROM_CONST_DOUBLE (c1, op1);
13652 /* We're going to try to implement comparisons by performing
13653 a subtract, then comparing against zero. Unfortunately,
13654 Inf - Inf is NaN which is not zero, and so if we don't
13655 know that the operand is finite and the comparison
13656 would treat EQ different to UNORDERED, we can't do it. */
13657 if (HONOR_INFINITIES (compare_mode)
13658 && code != GT && code != UNGE
13659 && (GET_CODE (op1) != CONST_DOUBLE || real_isinf (&c1))
13660 /* Constructs of the form (a OP b ? a : b) are safe. */
13661 && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
13662 || (! rtx_equal_p (op0, true_cond)
13663 && ! rtx_equal_p (op1, true_cond))))
13664 return 0;
13666 /* At this point we know we can use fsel. */
13668 /* Reduce the comparison to a comparison against zero. */
13669 if (! is_against_zero)
13671 temp = gen_reg_rtx (compare_mode);
13672 emit_insn (gen_rtx_SET (VOIDmode, temp,
13673 gen_rtx_MINUS (compare_mode, op0, op1)));
13674 op0 = temp;
13675 op1 = CONST0_RTX (compare_mode);
13678 /* If we don't care about NaNs we can reduce some of the comparisons
13679 down to faster ones. */
13680 if (! HONOR_NANS (compare_mode))
13681 switch (code)
13683 case GT:
13684 code = LE;
13685 temp = true_cond;
13686 true_cond = false_cond;
13687 false_cond = temp;
13688 break;
13689 case UNGE:
13690 code = GE;
13691 break;
13692 case UNEQ:
13693 code = EQ;
13694 break;
13695 default:
13696 break;
13699 /* Now, reduce everything down to a GE. */
13700 switch (code)
13702 case GE:
13703 break;
13705 case LE:
13706 temp = gen_reg_rtx (compare_mode);
13707 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
13708 op0 = temp;
13709 break;
13711 case ORDERED:
13712 temp = gen_reg_rtx (compare_mode);
13713 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_ABS (compare_mode, op0)));
13714 op0 = temp;
13715 break;
13717 case EQ:
13718 temp = gen_reg_rtx (compare_mode);
13719 emit_insn (gen_rtx_SET (VOIDmode, temp,
13720 gen_rtx_NEG (compare_mode,
13721 gen_rtx_ABS (compare_mode, op0))));
13722 op0 = temp;
13723 break;
13725 case UNGE:
13726 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
13727 temp = gen_reg_rtx (result_mode);
13728 emit_insn (gen_rtx_SET (VOIDmode, temp,
13729 gen_rtx_IF_THEN_ELSE (result_mode,
13730 gen_rtx_GE (VOIDmode,
13731 op0, op1),
13732 true_cond, false_cond)));
13733 false_cond = true_cond;
13734 true_cond = temp;
13736 temp = gen_reg_rtx (compare_mode);
13737 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
13738 op0 = temp;
13739 break;
13741 case GT:
13742 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
13743 temp = gen_reg_rtx (result_mode);
13744 emit_insn (gen_rtx_SET (VOIDmode, temp,
13745 gen_rtx_IF_THEN_ELSE (result_mode,
13746 gen_rtx_GE (VOIDmode,
13747 op0, op1),
13748 true_cond, false_cond)));
13749 true_cond = false_cond;
13750 false_cond = temp;
13752 temp = gen_reg_rtx (compare_mode);
13753 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
13754 op0 = temp;
13755 break;
13757 default:
13758 gcc_unreachable ();
13761 emit_insn (gen_rtx_SET (VOIDmode, dest,
13762 gen_rtx_IF_THEN_ELSE (result_mode,
13763 gen_rtx_GE (VOIDmode,
13764 op0, op1),
13765 true_cond, false_cond)));
13766 return 1;
13769 /* Same as above, but for ints (isel). */
13771 static int
13772 rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
13774 rtx condition_rtx, cr;
13776 /* All isel implementations thus far are 32-bits. */
13777 if (GET_MODE (rs6000_compare_op0) != SImode)
13778 return 0;
13780 /* We still have to do the compare, because isel doesn't do a
13781 compare, it just looks at the CRx bits set by a previous compare
13782 instruction. */
13783 condition_rtx = rs6000_generate_compare (GET_CODE (op));
13784 cr = XEXP (condition_rtx, 0);
13786 if (GET_MODE (cr) == CCmode)
13787 emit_insn (gen_isel_signed (dest, condition_rtx,
13788 true_cond, false_cond, cr));
13789 else
13790 emit_insn (gen_isel_unsigned (dest, condition_rtx,
13791 true_cond, false_cond, cr));
13793 return 1;
13796 const char *
13797 output_isel (rtx *operands)
13799 enum rtx_code code;
13801 code = GET_CODE (operands[1]);
13802 if (code == GE || code == GEU || code == LE || code == LEU || code == NE)
13804 PUT_CODE (operands[1], reverse_condition (code));
13805 return "isel %0,%3,%2,%j1";
13807 else
13808 return "isel %0,%2,%3,%j1";
13811 void
13812 rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
13814 enum machine_mode mode = GET_MODE (op0);
13815 enum rtx_code c;
13816 rtx target;
13818 if (code == SMAX || code == SMIN)
13819 c = GE;
13820 else
13821 c = GEU;
13823 if (code == SMAX || code == UMAX)
13824 target = emit_conditional_move (dest, c, op0, op1, mode,
13825 op0, op1, mode, 0);
13826 else
13827 target = emit_conditional_move (dest, c, op0, op1, mode,
13828 op1, op0, mode, 0);
13829 gcc_assert (target);
13830 if (target != dest)
13831 emit_move_insn (dest, target);
13834 /* Emit instructions to perform a load-reserved/store-conditional operation.
13835 The operation performed is an atomic
13836 (set M (CODE:MODE M OP))
13837 If not NULL, BEFORE is atomically set to M before the operation, and
13838 AFTER is set to M after the operation (that is, (CODE:MODE M OP)).
13839 If SYNC_P then a memory barrier is emitted before the operation.
13840 Either OP or M may be wrapped in a NOT operation. */
13842 void
13843 rs6000_emit_sync (enum rtx_code code, enum machine_mode mode,
13844 rtx m, rtx op, rtx before_param, rtx after_param,
13845 bool sync_p)
13847 enum machine_mode used_mode;
13848 rtx the_op, set_before, set_after, set_atomic, cc_scratch, before, after;
13849 rtx used_m;
13850 rtvec vec;
13851 HOST_WIDE_INT imask = GET_MODE_MASK (mode);
13852 rtx shift = NULL_RTX;
13854 if (sync_p)
13855 emit_insn (gen_lwsync ());
13857 used_m = m;
13859 /* If this is smaller than SImode, we'll have to use SImode with
13860 adjustments. */
13861 if (mode == QImode || mode == HImode)
13863 rtx newop, oldop;
13865 if (MEM_ALIGN (used_m) >= 32)
13867 int ishift = 0;
13868 if (BYTES_BIG_ENDIAN)
13869 ishift = GET_MODE_BITSIZE (SImode) - GET_MODE_BITSIZE (mode);
13871 shift = GEN_INT (ishift);
13872 used_m = change_address (used_m, SImode, 0);
13874 else
13876 rtx addrSI, aligned_addr;
13877 int shift_mask = mode == QImode ? 0x18 : 0x10;
13879 addrSI = gen_lowpart_common (SImode,
13880 force_reg (Pmode, XEXP (used_m, 0)));
13881 addrSI = force_reg (SImode, addrSI);
13882 shift = gen_reg_rtx (SImode);
13884 emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
13885 GEN_INT (shift_mask)));
13886 emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));
13888 aligned_addr = expand_binop (Pmode, and_optab,
13889 XEXP (used_m, 0),
13890 GEN_INT (-4), NULL_RTX,
13891 1, OPTAB_LIB_WIDEN);
13892 used_m = change_address (used_m, SImode, aligned_addr);
13893 set_mem_align (used_m, 32);
13895 /* It's safe to keep the old alias set of USED_M, because
13896 the operation is atomic and only affects the original
13897 USED_M. */
13898 m = used_m;
13900 if (GET_CODE (op) == NOT)
13902 oldop = lowpart_subreg (SImode, XEXP (op, 0), mode);
13903 oldop = gen_rtx_NOT (SImode, oldop);
13905 else
13906 oldop = lowpart_subreg (SImode, op, mode);
13908 switch (code)
13910 case IOR:
13911 case XOR:
13912 newop = expand_binop (SImode, and_optab,
13913 oldop, GEN_INT (imask), NULL_RTX,
13914 1, OPTAB_LIB_WIDEN);
13915 emit_insn (gen_ashlsi3 (newop, newop, shift));
13916 break;
13918 case NOT: /* NAND */
13919 newop = expand_binop (SImode, ior_optab,
13920 oldop, GEN_INT (~imask), NULL_RTX,
13921 1, OPTAB_LIB_WIDEN);
13922 emit_insn (gen_rotlsi3 (newop, newop, shift));
13923 break;
13925 case AND:
13926 newop = expand_binop (SImode, ior_optab,
13927 oldop, GEN_INT (~imask), NULL_RTX,
13928 1, OPTAB_LIB_WIDEN);
13929 emit_insn (gen_rotlsi3 (newop, newop, shift));
13930 break;
13932 case PLUS:
13933 case MINUS:
13935 rtx mask;
13937 newop = expand_binop (SImode, and_optab,
13938 oldop, GEN_INT (imask), NULL_RTX,
13939 1, OPTAB_LIB_WIDEN);
13940 emit_insn (gen_ashlsi3 (newop, newop, shift));
13942 mask = gen_reg_rtx (SImode);
13943 emit_move_insn (mask, GEN_INT (imask));
13944 emit_insn (gen_ashlsi3 (mask, mask, shift));
13946 if (code == PLUS)
13947 newop = gen_rtx_PLUS (SImode, m, newop);
13948 else
13949 newop = gen_rtx_MINUS (SImode, m, newop);
13950 newop = gen_rtx_AND (SImode, newop, mask);
13951 newop = gen_rtx_IOR (SImode, newop,
13952 gen_rtx_AND (SImode,
13953 gen_rtx_NOT (SImode, mask),
13954 m));
13955 break;
13958 default:
13959 gcc_unreachable ();
13962 op = newop;
13963 used_mode = SImode;
13964 before = gen_reg_rtx (used_mode);
13965 after = gen_reg_rtx (used_mode);
13967 else
13969 used_mode = mode;
13970 before = before_param;
13971 after = after_param;
13973 if (before == NULL_RTX)
13974 before = gen_reg_rtx (used_mode);
13975 if (after == NULL_RTX)
13976 after = gen_reg_rtx (used_mode);
13979 if ((code == PLUS || code == MINUS)
13980 && used_mode != mode)
13981 the_op = op; /* Computed above. */
13982 else if (GET_CODE (op) == NOT && GET_CODE (m) != NOT)
13983 the_op = gen_rtx_fmt_ee (code, used_mode, op, m);
13984 else if (code == NOT)
13985 the_op = gen_rtx_fmt_ee (IOR, used_mode,
13986 gen_rtx_NOT (used_mode, m),
13987 gen_rtx_NOT (used_mode, op));
13988 else
13989 the_op = gen_rtx_fmt_ee (code, used_mode, m, op);
13991 set_after = gen_rtx_SET (VOIDmode, after, the_op);
13992 set_before = gen_rtx_SET (VOIDmode, before, used_m);
13993 set_atomic = gen_rtx_SET (VOIDmode, used_m,
13994 gen_rtx_UNSPEC (used_mode,
13995 gen_rtvec (1, the_op),
13996 UNSPEC_SYNC_OP));
13997 cc_scratch = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
13999 if ((code == PLUS || code == MINUS) && used_mode != mode)
14000 vec = gen_rtvec (5, set_after, set_before, set_atomic, cc_scratch,
14001 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (SImode)));
14002 else
14003 vec = gen_rtvec (4, set_after, set_before, set_atomic, cc_scratch);
14004 emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));
14006 /* Shift and mask the return values properly. */
14007 if (used_mode != mode && before_param)
14009 emit_insn (gen_lshrsi3 (before, before, shift));
14010 convert_move (before_param, before, 1);
14013 if (used_mode != mode && after_param)
14015 emit_insn (gen_lshrsi3 (after, after, shift));
14016 convert_move (after_param, after, 1);
14019 /* The previous sequence will end with a branch that's dependent on
14020 the conditional store, so placing an isync will ensure that no
14021 other instructions (especially, no load or store instructions)
14022 can start before the atomic operation completes. */
14023 if (sync_p)
14024 emit_insn (gen_isync ());
14027 /* A subroutine of the atomic operation splitters. Jump to LABEL if
14028 COND is true. Mark the jump as unlikely to be taken. */
14030 static void
14031 emit_unlikely_jump (rtx cond, rtx label)
14033 rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
14034 rtx x;
14036 x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
14037 x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
14038 add_reg_note (x, REG_BR_PROB, very_unlikely);
14041 /* A subroutine of the atomic operation splitters. Emit a load-locked
14042 instruction in MODE. */
14044 static void
14045 emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
14047 rtx (*fn) (rtx, rtx) = NULL;
14048 if (mode == SImode)
14049 fn = gen_load_locked_si;
14050 else if (mode == DImode)
14051 fn = gen_load_locked_di;
14052 emit_insn (fn (reg, mem));
14055 /* A subroutine of the atomic operation splitters. Emit a store-conditional
14056 instruction in MODE. */
14058 static void
14059 emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
14061 rtx (*fn) (rtx, rtx, rtx) = NULL;
14062 if (mode == SImode)
14063 fn = gen_store_conditional_si;
14064 else if (mode == DImode)
14065 fn = gen_store_conditional_di;
14067 /* Emit sync before stwcx. to address PPC405 Erratum. */
14068 if (PPC405_ERRATUM77)
14069 emit_insn (gen_memory_barrier ());
14071 emit_insn (fn (res, mem, val));
14074 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
14075 to perform. MEM is the memory on which to operate. VAL is the second
14076 operand of the binary operator. BEFORE and AFTER are optional locations to
14077 return the value of MEM either before of after the operation. SCRATCH is
14078 a scratch register. */
14080 void
14081 rs6000_split_atomic_op (enum rtx_code code, rtx mem, rtx val,
14082 rtx before, rtx after, rtx scratch)
14084 enum machine_mode mode = GET_MODE (mem);
14085 rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14087 emit_insn (gen_lwsync ());
14089 label = gen_label_rtx ();
14090 emit_label (label);
14091 label = gen_rtx_LABEL_REF (VOIDmode, label);
14093 if (before == NULL_RTX)
14094 before = scratch;
14095 emit_load_locked (mode, before, mem);
14097 if (code == NOT)
14098 x = gen_rtx_IOR (mode,
14099 gen_rtx_NOT (mode, before),
14100 gen_rtx_NOT (mode, val));
14101 else if (code == AND)
14102 x = gen_rtx_UNSPEC (mode, gen_rtvec (2, before, val), UNSPEC_AND);
14103 else
14104 x = gen_rtx_fmt_ee (code, mode, before, val);
14106 if (after != NULL_RTX)
14107 emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
14108 emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
14110 emit_store_conditional (mode, cond, mem, scratch);
14112 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14113 emit_unlikely_jump (x, label);
14115 emit_insn (gen_isync ());
14118 /* Expand an atomic compare and swap operation. MEM is the memory on which
14119 to operate. OLDVAL is the old value to be compared. NEWVAL is the new
14120 value to be stored. SCRATCH is a scratch GPR. */
14122 void
14123 rs6000_split_compare_and_swap (rtx retval, rtx mem, rtx oldval, rtx newval,
14124 rtx scratch)
14126 enum machine_mode mode = GET_MODE (mem);
14127 rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14129 emit_insn (gen_lwsync ());
14131 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14132 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14133 emit_label (XEXP (label1, 0));
14135 emit_load_locked (mode, retval, mem);
14137 x = gen_rtx_COMPARE (CCmode, retval, oldval);
14138 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
14140 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14141 emit_unlikely_jump (x, label2);
14143 emit_move_insn (scratch, newval);
14144 emit_store_conditional (mode, cond, mem, scratch);
14146 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14147 emit_unlikely_jump (x, label1);
14149 emit_insn (gen_isync ());
14150 emit_label (XEXP (label2, 0));
14153 /* Expand an atomic test and set operation. MEM is the memory on which
14154 to operate. VAL is the value set. SCRATCH is a scratch GPR. */
14156 void
14157 rs6000_split_lock_test_and_set (rtx retval, rtx mem, rtx val, rtx scratch)
14159 enum machine_mode mode = GET_MODE (mem);
14160 rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14162 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14163 emit_label (XEXP (label, 0));
14165 emit_load_locked (mode, retval, mem);
14166 emit_move_insn (scratch, val);
14167 emit_store_conditional (mode, cond, mem, scratch);
14169 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14170 emit_unlikely_jump (x, label);
14172 emit_insn (gen_isync ());
14175 void
14176 rs6000_expand_compare_and_swapqhi (rtx dst, rtx mem, rtx oldval, rtx newval)
14178 enum machine_mode mode = GET_MODE (mem);
14179 rtx addrSI, align, wdst, shift, mask;
14180 HOST_WIDE_INT shift_mask = mode == QImode ? 0x18 : 0x10;
14181 HOST_WIDE_INT imask = GET_MODE_MASK (mode);
14183 /* Shift amount for subword relative to aligned word. */
14184 addrSI = force_reg (GET_MODE (XEXP (mem, 0)), XEXP (mem, 0));
14185 addrSI = force_reg (SImode, gen_lowpart_common (SImode, addrSI));
14186 shift = gen_reg_rtx (SImode);
14187 emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
14188 GEN_INT (shift_mask)));
14189 emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));
14191 /* Shift and mask old value into position within word. */
14192 oldval = convert_modes (SImode, mode, oldval, 1);
14193 oldval = expand_binop (SImode, and_optab,
14194 oldval, GEN_INT (imask), NULL_RTX,
14195 1, OPTAB_LIB_WIDEN);
14196 emit_insn (gen_ashlsi3 (oldval, oldval, shift));
14198 /* Shift and mask new value into position within word. */
14199 newval = convert_modes (SImode, mode, newval, 1);
14200 newval = expand_binop (SImode, and_optab,
14201 newval, GEN_INT (imask), NULL_RTX,
14202 1, OPTAB_LIB_WIDEN);
14203 emit_insn (gen_ashlsi3 (newval, newval, shift));
14205 /* Mask for insertion. */
14206 mask = gen_reg_rtx (SImode);
14207 emit_move_insn (mask, GEN_INT (imask));
14208 emit_insn (gen_ashlsi3 (mask, mask, shift));
14210 /* Address of aligned word containing subword. */
14211 align = expand_binop (Pmode, and_optab, XEXP (mem, 0), GEN_INT (-4),
14212 NULL_RTX, 1, OPTAB_LIB_WIDEN);
14213 mem = change_address (mem, SImode, align);
14214 set_mem_align (mem, 32);
14215 MEM_VOLATILE_P (mem) = 1;
14217 wdst = gen_reg_rtx (SImode);
14218 emit_insn (gen_sync_compare_and_swapqhi_internal (wdst, mask,
14219 oldval, newval, mem));
14221 /* Shift the result back. */
14222 emit_insn (gen_lshrsi3 (wdst, wdst, shift));
14224 emit_move_insn (dst, gen_lowpart (mode, wdst));
14227 void
14228 rs6000_split_compare_and_swapqhi (rtx dest, rtx mask,
14229 rtx oldval, rtx newval, rtx mem,
14230 rtx scratch)
14232 rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14234 emit_insn (gen_lwsync ());
14235 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14236 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14237 emit_label (XEXP (label1, 0));
14239 emit_load_locked (SImode, scratch, mem);
14241 /* Mask subword within loaded value for comparison with oldval.
14242 Use UNSPEC_AND to avoid clobber.*/
14243 emit_insn (gen_rtx_SET (SImode, dest,
14244 gen_rtx_UNSPEC (SImode,
14245 gen_rtvec (2, scratch, mask),
14246 UNSPEC_AND)));
14248 x = gen_rtx_COMPARE (CCmode, dest, oldval);
14249 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
14251 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14252 emit_unlikely_jump (x, label2);
14254 /* Clear subword within loaded value for insertion of new value. */
14255 emit_insn (gen_rtx_SET (SImode, scratch,
14256 gen_rtx_AND (SImode,
14257 gen_rtx_NOT (SImode, mask), scratch)));
14258 emit_insn (gen_iorsi3 (scratch, scratch, newval));
14259 emit_store_conditional (SImode, cond, mem, scratch);
14261 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14262 emit_unlikely_jump (x, label1);
14264 emit_insn (gen_isync ());
14265 emit_label (XEXP (label2, 0));
14269 /* Emit instructions to move SRC to DST. Called by splitters for
14270 multi-register moves. It will emit at most one instruction for
14271 each register that is accessed; that is, it won't emit li/lis pairs
14272 (or equivalent for 64-bit code). One of SRC or DST must be a hard
14273 register. */
14275 void
14276 rs6000_split_multireg_move (rtx dst, rtx src)
14278 /* The register number of the first register being moved. */
14279 int reg;
14280 /* The mode that is to be moved. */
14281 enum machine_mode mode;
14282 /* The mode that the move is being done in, and its size. */
14283 enum machine_mode reg_mode;
14284 int reg_mode_size;
14285 /* The number of registers that will be moved. */
14286 int nregs;
14288 reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
14289 mode = GET_MODE (dst);
14290 nregs = hard_regno_nregs[reg][mode];
14291 if (FP_REGNO_P (reg))
14292 reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
14293 ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? DFmode : SFmode);
14294 else if (ALTIVEC_REGNO_P (reg))
14295 reg_mode = V16QImode;
14296 else if (TARGET_E500_DOUBLE && mode == TFmode)
14297 reg_mode = DFmode;
14298 else
14299 reg_mode = word_mode;
14300 reg_mode_size = GET_MODE_SIZE (reg_mode);
14302 gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));
14304 if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
14306 /* Move register range backwards, if we might have destructive
14307 overlap. */
14308 int i;
14309 for (i = nregs - 1; i >= 0; i--)
14310 emit_insn (gen_rtx_SET (VOIDmode,
14311 simplify_gen_subreg (reg_mode, dst, mode,
14312 i * reg_mode_size),
14313 simplify_gen_subreg (reg_mode, src, mode,
14314 i * reg_mode_size)));
14316 else
14318 int i;
14319 int j = -1;
14320 bool used_update = false;
14322 if (MEM_P (src) && INT_REGNO_P (reg))
14324 rtx breg;
14326 if (GET_CODE (XEXP (src, 0)) == PRE_INC
14327 || GET_CODE (XEXP (src, 0)) == PRE_DEC)
14329 rtx delta_rtx;
14330 breg = XEXP (XEXP (src, 0), 0);
14331 delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
14332 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
14333 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
14334 emit_insn (TARGET_32BIT
14335 ? gen_addsi3 (breg, breg, delta_rtx)
14336 : gen_adddi3 (breg, breg, delta_rtx));
14337 src = replace_equiv_address (src, breg);
14339 else if (! rs6000_offsettable_memref_p (src))
14341 rtx basereg;
14342 basereg = gen_rtx_REG (Pmode, reg);
14343 emit_insn (gen_rtx_SET (VOIDmode, basereg, XEXP (src, 0)));
14344 src = replace_equiv_address (src, basereg);
14347 breg = XEXP (src, 0);
14348 if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
14349 breg = XEXP (breg, 0);
14351 /* If the base register we are using to address memory is
14352 also a destination reg, then change that register last. */
14353 if (REG_P (breg)
14354 && REGNO (breg) >= REGNO (dst)
14355 && REGNO (breg) < REGNO (dst) + nregs)
14356 j = REGNO (breg) - REGNO (dst);
14359 if (GET_CODE (dst) == MEM && INT_REGNO_P (reg))
14361 rtx breg;
14363 if (GET_CODE (XEXP (dst, 0)) == PRE_INC
14364 || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
14366 rtx delta_rtx;
14367 breg = XEXP (XEXP (dst, 0), 0);
14368 delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
14369 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
14370 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));
14372 /* We have to update the breg before doing the store.
14373 Use store with update, if available. */
14375 if (TARGET_UPDATE)
14377 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
14378 emit_insn (TARGET_32BIT
14379 ? (TARGET_POWERPC64
14380 ? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
14381 : gen_movsi_update (breg, breg, delta_rtx, nsrc))
14382 : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
14383 used_update = true;
14385 else
14386 emit_insn (TARGET_32BIT
14387 ? gen_addsi3 (breg, breg, delta_rtx)
14388 : gen_adddi3 (breg, breg, delta_rtx));
14389 dst = replace_equiv_address (dst, breg);
14391 else
14392 gcc_assert (rs6000_offsettable_memref_p (dst));
14395 for (i = 0; i < nregs; i++)
14397 /* Calculate index to next subword. */
14398 ++j;
14399 if (j == nregs)
14400 j = 0;
14402 /* If compiler already emitted move of first word by
14403 store with update, no need to do anything. */
14404 if (j == 0 && used_update)
14405 continue;
14407 emit_insn (gen_rtx_SET (VOIDmode,
14408 simplify_gen_subreg (reg_mode, dst, mode,
14409 j * reg_mode_size),
14410 simplify_gen_subreg (reg_mode, src, mode,
14411 j * reg_mode_size)));
14417 /* This page contains routines that are used to determine what the
14418 function prologue and epilogue code will do and write them out. */
14420 /* Return the first fixed-point register that is required to be
14421 saved. 32 if none. */
14424 first_reg_to_save (void)
14426 int first_reg;
14428 /* Find lowest numbered live register. */
14429 for (first_reg = 13; first_reg <= 31; first_reg++)
14430 if (df_regs_ever_live_p (first_reg)
14431 && (! call_used_regs[first_reg]
14432 || (first_reg == RS6000_PIC_OFFSET_TABLE_REGNUM
14433 && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
14434 || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
14435 || (TARGET_TOC && TARGET_MINIMAL_TOC)))))
14436 break;
14438 #if TARGET_MACHO
14439 if (flag_pic
14440 && crtl->uses_pic_offset_table
14441 && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
14442 return RS6000_PIC_OFFSET_TABLE_REGNUM;
14443 #endif
14445 return first_reg;
14448 /* Similar, for FP regs. */
14451 first_fp_reg_to_save (void)
14453 int first_reg;
14455 /* Find lowest numbered live register. */
14456 for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
14457 if (df_regs_ever_live_p (first_reg))
14458 break;
14460 return first_reg;
14463 /* Similar, for AltiVec regs. */
14465 static int
14466 first_altivec_reg_to_save (void)
14468 int i;
14470 /* Stack frame remains as is unless we are in AltiVec ABI. */
14471 if (! TARGET_ALTIVEC_ABI)
14472 return LAST_ALTIVEC_REGNO + 1;
14474 /* On Darwin, the unwind routines are compiled without
14475 TARGET_ALTIVEC, and use save_world to save/restore the
14476 altivec registers when necessary. */
14477 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
14478 && ! TARGET_ALTIVEC)
14479 return FIRST_ALTIVEC_REGNO + 20;
14481 /* Find lowest numbered live register. */
14482 for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
14483 if (df_regs_ever_live_p (i))
14484 break;
14486 return i;
14489 /* Return a 32-bit mask of the AltiVec registers we need to set in
14490 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
14491 the 32-bit word is 0. */
14493 static unsigned int
14494 compute_vrsave_mask (void)
14496 unsigned int i, mask = 0;
14498 /* On Darwin, the unwind routines are compiled without
14499 TARGET_ALTIVEC, and use save_world to save/restore the
14500 call-saved altivec registers when necessary. */
14501 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
14502 && ! TARGET_ALTIVEC)
14503 mask |= 0xFFF;
14505 /* First, find out if we use _any_ altivec registers. */
14506 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
14507 if (df_regs_ever_live_p (i))
14508 mask |= ALTIVEC_REG_BIT (i);
14510 if (mask == 0)
14511 return mask;
14513 /* Next, remove the argument registers from the set. These must
14514 be in the VRSAVE mask set by the caller, so we don't need to add
14515 them in again. More importantly, the mask we compute here is
14516 used to generate CLOBBERs in the set_vrsave insn, and we do not
14517 wish the argument registers to die. */
14518 for (i = crtl->args.info.vregno - 1; i >= ALTIVEC_ARG_MIN_REG; --i)
14519 mask &= ~ALTIVEC_REG_BIT (i);
14521 /* Similarly, remove the return value from the set. */
14523 bool yes = false;
14524 diddle_return_value (is_altivec_return_reg, &yes);
14525 if (yes)
14526 mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
14529 return mask;
14532 /* For a very restricted set of circumstances, we can cut down the
14533 size of prologues/epilogues by calling our own save/restore-the-world
14534 routines. */
14536 static void
14537 compute_save_world_info (rs6000_stack_t *info_ptr)
14539 info_ptr->world_save_p = 1;
14540 info_ptr->world_save_p
14541 = (WORLD_SAVE_P (info_ptr)
14542 && DEFAULT_ABI == ABI_DARWIN
14543 && ! (cfun->calls_setjmp && flag_exceptions)
14544 && info_ptr->first_fp_reg_save == FIRST_SAVED_FP_REGNO
14545 && info_ptr->first_gp_reg_save == FIRST_SAVED_GP_REGNO
14546 && info_ptr->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
14547 && info_ptr->cr_save_p);
14549 /* This will not work in conjunction with sibcalls. Make sure there
14550 are none. (This check is expensive, but seldom executed.) */
14551 if (WORLD_SAVE_P (info_ptr))
14553 rtx insn;
14554 for ( insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
14555 if ( GET_CODE (insn) == CALL_INSN
14556 && SIBLING_CALL_P (insn))
14558 info_ptr->world_save_p = 0;
14559 break;
14563 if (WORLD_SAVE_P (info_ptr))
14565 /* Even if we're not touching VRsave, make sure there's room on the
14566 stack for it, if it looks like we're calling SAVE_WORLD, which
14567 will attempt to save it. */
14568 info_ptr->vrsave_size = 4;
14570 /* If we are going to save the world, we need to save the link register too. */
14571 info_ptr->lr_save_p = 1;
14573 /* "Save" the VRsave register too if we're saving the world. */
14574 if (info_ptr->vrsave_mask == 0)
14575 info_ptr->vrsave_mask = compute_vrsave_mask ();
14577 /* Because the Darwin register save/restore routines only handle
14578 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
14579 check. */
14580 gcc_assert (info_ptr->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
14581 && (info_ptr->first_altivec_reg_save
14582 >= FIRST_SAVED_ALTIVEC_REGNO));
14584 return;
14588 static void
14589 is_altivec_return_reg (rtx reg, void *xyes)
14591 bool *yes = (bool *) xyes;
14592 if (REGNO (reg) == ALTIVEC_ARG_RETURN)
14593 *yes = true;
14597 /* Calculate the stack information for the current function. This is
14598 complicated by having two separate calling sequences, the AIX calling
14599 sequence and the V.4 calling sequence.
14601 AIX (and Darwin/Mac OS X) stack frames look like:
14602 32-bit 64-bit
14603 SP----> +---------------------------------------+
14604 | back chain to caller | 0 0
14605 +---------------------------------------+
14606 | saved CR | 4 8 (8-11)
14607 +---------------------------------------+
14608 | saved LR | 8 16
14609 +---------------------------------------+
14610 | reserved for compilers | 12 24
14611 +---------------------------------------+
14612 | reserved for binders | 16 32
14613 +---------------------------------------+
14614 | saved TOC pointer | 20 40
14615 +---------------------------------------+
14616 | Parameter save area (P) | 24 48
14617 +---------------------------------------+
14618 | Alloca space (A) | 24+P etc.
14619 +---------------------------------------+
14620 | Local variable space (L) | 24+P+A
14621 +---------------------------------------+
14622 | Float/int conversion temporary (X) | 24+P+A+L
14623 +---------------------------------------+
14624 | Save area for AltiVec registers (W) | 24+P+A+L+X
14625 +---------------------------------------+
14626 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
14627 +---------------------------------------+
14628 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
14629 +---------------------------------------+
14630 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
14631 +---------------------------------------+
14632 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
14633 +---------------------------------------+
14634 old SP->| back chain to caller's caller |
14635 +---------------------------------------+
14637 The required alignment for AIX configurations is two words (i.e., 8
14638 or 16 bytes).
14641 V.4 stack frames look like:
14643 SP----> +---------------------------------------+
14644 | back chain to caller | 0
14645 +---------------------------------------+
14646 | caller's saved LR | 4
14647 +---------------------------------------+
14648 | Parameter save area (P) | 8
14649 +---------------------------------------+
14650 | Alloca space (A) | 8+P
14651 +---------------------------------------+
14652 | Varargs save area (V) | 8+P+A
14653 +---------------------------------------+
14654 | Local variable space (L) | 8+P+A+V
14655 +---------------------------------------+
14656 | Float/int conversion temporary (X) | 8+P+A+V+L
14657 +---------------------------------------+
14658 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
14659 +---------------------------------------+
14660 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
14661 +---------------------------------------+
14662 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
14663 +---------------------------------------+
14664 | SPE: area for 64-bit GP registers |
14665 +---------------------------------------+
14666 | SPE alignment padding |
14667 +---------------------------------------+
14668 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
14669 +---------------------------------------+
14670 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
14671 +---------------------------------------+
14672 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
14673 +---------------------------------------+
14674 old SP->| back chain to caller's caller |
14675 +---------------------------------------+
14677 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
14678 given. (But note below and in sysv4.h that we require only 8 and
14679 may round up the size of our stack frame anyways. The historical
14680 reason is early versions of powerpc-linux which didn't properly
14681 align the stack at program startup. A happy side-effect is that
14682 -mno-eabi libraries can be used with -meabi programs.)
14684 The EABI configuration defaults to the V.4 layout. However,
14685 the stack alignment requirements may differ. If -mno-eabi is not
14686 given, the required stack alignment is 8 bytes; if -mno-eabi is
14687 given, the required alignment is 16 bytes. (But see V.4 comment
14688 above.) */
14690 #ifndef ABI_STACK_BOUNDARY
14691 #define ABI_STACK_BOUNDARY STACK_BOUNDARY
14692 #endif
14694 static rs6000_stack_t *
14695 rs6000_stack_info (void)
14697 static rs6000_stack_t info;
14698 rs6000_stack_t *info_ptr = &info;
14699 int reg_size = TARGET_32BIT ? 4 : 8;
14700 int ehrd_size;
14701 int save_align;
14702 int first_gp;
14703 HOST_WIDE_INT non_fixed_size;
14705 memset (&info, 0, sizeof (info));
14707 if (TARGET_SPE)
14709 /* Cache value so we don't rescan instruction chain over and over. */
14710 if (cfun->machine->insn_chain_scanned_p == 0)
14711 cfun->machine->insn_chain_scanned_p
14712 = spe_func_has_64bit_regs_p () + 1;
14713 info_ptr->spe_64bit_regs_used = cfun->machine->insn_chain_scanned_p - 1;
14716 /* Select which calling sequence. */
14717 info_ptr->abi = DEFAULT_ABI;
14719 /* Calculate which registers need to be saved & save area size. */
14720 info_ptr->first_gp_reg_save = first_reg_to_save ();
14721 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
14722 even if it currently looks like we won't. Reload may need it to
14723 get at a constant; if so, it will have already created a constant
14724 pool entry for it. */
14725 if (((TARGET_TOC && TARGET_MINIMAL_TOC)
14726 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
14727 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
14728 && crtl->uses_const_pool
14729 && info_ptr->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
14730 first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
14731 else
14732 first_gp = info_ptr->first_gp_reg_save;
14734 info_ptr->gp_size = reg_size * (32 - first_gp);
14736 /* For the SPE, we have an additional upper 32-bits on each GPR.
14737 Ideally we should save the entire 64-bits only when the upper
14738 half is used in SIMD instructions. Since we only record
14739 registers live (not the size they are used in), this proves
14740 difficult because we'd have to traverse the instruction chain at
14741 the right time, taking reload into account. This is a real pain,
14742 so we opt to save the GPRs in 64-bits always if but one register
14743 gets used in 64-bits. Otherwise, all the registers in the frame
14744 get saved in 32-bits.
14746 So... since when we save all GPRs (except the SP) in 64-bits, the
14747 traditional GP save area will be empty. */
14748 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
14749 info_ptr->gp_size = 0;
14751 info_ptr->first_fp_reg_save = first_fp_reg_to_save ();
14752 info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save);
14754 info_ptr->first_altivec_reg_save = first_altivec_reg_to_save ();
14755 info_ptr->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
14756 - info_ptr->first_altivec_reg_save);
14758 /* Does this function call anything? */
14759 info_ptr->calls_p = (! current_function_is_leaf
14760 || cfun->machine->ra_needs_full_frame);
14762 /* Determine if we need to save the link register. */
14763 if ((DEFAULT_ABI == ABI_AIX
14764 && crtl->profile
14765 && !TARGET_PROFILE_KERNEL)
14766 #ifdef TARGET_RELOCATABLE
14767 || (TARGET_RELOCATABLE && (get_pool_size () != 0))
14768 #endif
14769 || (info_ptr->first_fp_reg_save != 64
14770 && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save))
14771 || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
14772 || info_ptr->calls_p
14773 || rs6000_ra_ever_killed ())
14775 info_ptr->lr_save_p = 1;
14776 df_set_regs_ever_live (LR_REGNO, true);
14779 /* Determine if we need to save the condition code registers. */
14780 if (df_regs_ever_live_p (CR2_REGNO)
14781 || df_regs_ever_live_p (CR3_REGNO)
14782 || df_regs_ever_live_p (CR4_REGNO))
14784 info_ptr->cr_save_p = 1;
14785 if (DEFAULT_ABI == ABI_V4)
14786 info_ptr->cr_size = reg_size;
14789 /* If the current function calls __builtin_eh_return, then we need
14790 to allocate stack space for registers that will hold data for
14791 the exception handler. */
14792 if (crtl->calls_eh_return)
14794 unsigned int i;
14795 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
14796 continue;
14798 /* SPE saves EH registers in 64-bits. */
14799 ehrd_size = i * (TARGET_SPE_ABI
14800 && info_ptr->spe_64bit_regs_used != 0
14801 ? UNITS_PER_SPE_WORD : UNITS_PER_WORD);
14803 else
14804 ehrd_size = 0;
14806 /* Determine various sizes. */
14807 info_ptr->reg_size = reg_size;
14808 info_ptr->fixed_size = RS6000_SAVE_AREA;
14809 info_ptr->vars_size = RS6000_ALIGN (get_frame_size (), 8);
14810 info_ptr->parm_size = RS6000_ALIGN (crtl->outgoing_args_size,
14811 TARGET_ALTIVEC ? 16 : 8);
14812 if (FRAME_GROWS_DOWNWARD)
14813 info_ptr->vars_size
14814 += RS6000_ALIGN (info_ptr->fixed_size + info_ptr->vars_size
14815 + info_ptr->parm_size,
14816 ABI_STACK_BOUNDARY / BITS_PER_UNIT)
14817 - (info_ptr->fixed_size + info_ptr->vars_size
14818 + info_ptr->parm_size);
14820 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
14821 info_ptr->spe_gp_size = 8 * (32 - first_gp);
14822 else
14823 info_ptr->spe_gp_size = 0;
14825 if (TARGET_ALTIVEC_ABI)
14826 info_ptr->vrsave_mask = compute_vrsave_mask ();
14827 else
14828 info_ptr->vrsave_mask = 0;
14830 if (TARGET_ALTIVEC_VRSAVE && info_ptr->vrsave_mask)
14831 info_ptr->vrsave_size = 4;
14832 else
14833 info_ptr->vrsave_size = 0;
14835 compute_save_world_info (info_ptr);
14837 /* Calculate the offsets. */
14838 switch (DEFAULT_ABI)
14840 case ABI_NONE:
14841 default:
14842 gcc_unreachable ();
14844 case ABI_AIX:
14845 case ABI_DARWIN:
14846 info_ptr->fp_save_offset = - info_ptr->fp_size;
14847 info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
14849 if (TARGET_ALTIVEC_ABI)
14851 info_ptr->vrsave_save_offset
14852 = info_ptr->gp_save_offset - info_ptr->vrsave_size;
14854 /* Align stack so vector save area is on a quadword boundary.
14855 The padding goes above the vectors. */
14856 if (info_ptr->altivec_size != 0)
14857 info_ptr->altivec_padding_size
14858 = info_ptr->vrsave_save_offset & 0xF;
14859 else
14860 info_ptr->altivec_padding_size = 0;
14862 info_ptr->altivec_save_offset
14863 = info_ptr->vrsave_save_offset
14864 - info_ptr->altivec_padding_size
14865 - info_ptr->altivec_size;
14866 gcc_assert (info_ptr->altivec_size == 0
14867 || info_ptr->altivec_save_offset % 16 == 0);
14869 /* Adjust for AltiVec case. */
14870 info_ptr->ehrd_offset = info_ptr->altivec_save_offset - ehrd_size;
14872 else
14873 info_ptr->ehrd_offset = info_ptr->gp_save_offset - ehrd_size;
14874 info_ptr->cr_save_offset = reg_size; /* first word when 64-bit. */
14875 info_ptr->lr_save_offset = 2*reg_size;
14876 break;
14878 case ABI_V4:
14879 info_ptr->fp_save_offset = - info_ptr->fp_size;
14880 info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
14881 info_ptr->cr_save_offset = info_ptr->gp_save_offset - info_ptr->cr_size;
14883 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
14885 /* Align stack so SPE GPR save area is aligned on a
14886 double-word boundary. */
14887 if (info_ptr->spe_gp_size != 0 && info_ptr->cr_save_offset != 0)
14888 info_ptr->spe_padding_size
14889 = 8 - (-info_ptr->cr_save_offset % 8);
14890 else
14891 info_ptr->spe_padding_size = 0;
14893 info_ptr->spe_gp_save_offset
14894 = info_ptr->cr_save_offset
14895 - info_ptr->spe_padding_size
14896 - info_ptr->spe_gp_size;
14898 /* Adjust for SPE case. */
14899 info_ptr->ehrd_offset = info_ptr->spe_gp_save_offset;
14901 else if (TARGET_ALTIVEC_ABI)
14903 info_ptr->vrsave_save_offset
14904 = info_ptr->cr_save_offset - info_ptr->vrsave_size;
14906 /* Align stack so vector save area is on a quadword boundary. */
14907 if (info_ptr->altivec_size != 0)
14908 info_ptr->altivec_padding_size
14909 = 16 - (-info_ptr->vrsave_save_offset % 16);
14910 else
14911 info_ptr->altivec_padding_size = 0;
14913 info_ptr->altivec_save_offset
14914 = info_ptr->vrsave_save_offset
14915 - info_ptr->altivec_padding_size
14916 - info_ptr->altivec_size;
14918 /* Adjust for AltiVec case. */
14919 info_ptr->ehrd_offset = info_ptr->altivec_save_offset;
14921 else
14922 info_ptr->ehrd_offset = info_ptr->cr_save_offset;
14923 info_ptr->ehrd_offset -= ehrd_size;
14924 info_ptr->lr_save_offset = reg_size;
14925 break;
14928 save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
14929 info_ptr->save_size = RS6000_ALIGN (info_ptr->fp_size
14930 + info_ptr->gp_size
14931 + info_ptr->altivec_size
14932 + info_ptr->altivec_padding_size
14933 + info_ptr->spe_gp_size
14934 + info_ptr->spe_padding_size
14935 + ehrd_size
14936 + info_ptr->cr_size
14937 + info_ptr->vrsave_size,
14938 save_align);
14940 non_fixed_size = (info_ptr->vars_size
14941 + info_ptr->parm_size
14942 + info_ptr->save_size);
14944 info_ptr->total_size = RS6000_ALIGN (non_fixed_size + info_ptr->fixed_size,
14945 ABI_STACK_BOUNDARY / BITS_PER_UNIT);
14947 /* Determine if we need to allocate any stack frame:
14949 For AIX we need to push the stack if a frame pointer is needed
14950 (because the stack might be dynamically adjusted), if we are
14951 debugging, if we make calls, or if the sum of fp_save, gp_save,
14952 and local variables are more than the space needed to save all
14953 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
14954 + 18*8 = 288 (GPR13 reserved).
14956 For V.4 we don't have the stack cushion that AIX uses, but assume
14957 that the debugger can handle stackless frames. */
14959 if (info_ptr->calls_p)
14960 info_ptr->push_p = 1;
14962 else if (DEFAULT_ABI == ABI_V4)
14963 info_ptr->push_p = non_fixed_size != 0;
14965 else if (frame_pointer_needed)
14966 info_ptr->push_p = 1;
14968 else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
14969 info_ptr->push_p = 1;
14971 else
14972 info_ptr->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);
14974 /* Zero offsets if we're not saving those registers. */
14975 if (info_ptr->fp_size == 0)
14976 info_ptr->fp_save_offset = 0;
14978 if (info_ptr->gp_size == 0)
14979 info_ptr->gp_save_offset = 0;
14981 if (! TARGET_ALTIVEC_ABI || info_ptr->altivec_size == 0)
14982 info_ptr->altivec_save_offset = 0;
14984 if (! TARGET_ALTIVEC_ABI || info_ptr->vrsave_mask == 0)
14985 info_ptr->vrsave_save_offset = 0;
14987 if (! TARGET_SPE_ABI
14988 || info_ptr->spe_64bit_regs_used == 0
14989 || info_ptr->spe_gp_size == 0)
14990 info_ptr->spe_gp_save_offset = 0;
14992 if (! info_ptr->lr_save_p)
14993 info_ptr->lr_save_offset = 0;
14995 if (! info_ptr->cr_save_p)
14996 info_ptr->cr_save_offset = 0;
14998 return info_ptr;
15001 /* Return true if the current function uses any GPRs in 64-bit SIMD
15002 mode. */
15004 static bool
15005 spe_func_has_64bit_regs_p (void)
15007 rtx insns, insn;
15009 /* Functions that save and restore all the call-saved registers will
15010 need to save/restore the registers in 64-bits. */
15011 if (crtl->calls_eh_return
15012 || cfun->calls_setjmp
15013 || crtl->has_nonlocal_goto)
15014 return true;
15016 insns = get_insns ();
15018 for (insn = NEXT_INSN (insns); insn != NULL_RTX; insn = NEXT_INSN (insn))
15020 if (INSN_P (insn))
15022 rtx i;
15024 /* FIXME: This should be implemented with attributes...
15026 (set_attr "spe64" "true")....then,
15027 if (get_spe64(insn)) return true;
15029 It's the only reliable way to do the stuff below. */
15031 i = PATTERN (insn);
15032 if (GET_CODE (i) == SET)
15034 enum machine_mode mode = GET_MODE (SET_SRC (i));
15036 if (SPE_VECTOR_MODE (mode))
15037 return true;
15038 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode))
15039 return true;
15044 return false;
15047 static void
15048 debug_stack_info (rs6000_stack_t *info)
15050 const char *abi_string;
15052 if (! info)
15053 info = rs6000_stack_info ();
15055 fprintf (stderr, "\nStack information for function %s:\n",
15056 ((current_function_decl && DECL_NAME (current_function_decl))
15057 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
15058 : "<unknown>"));
15060 switch (info->abi)
15062 default: abi_string = "Unknown"; break;
15063 case ABI_NONE: abi_string = "NONE"; break;
15064 case ABI_AIX: abi_string = "AIX"; break;
15065 case ABI_DARWIN: abi_string = "Darwin"; break;
15066 case ABI_V4: abi_string = "V.4"; break;
15069 fprintf (stderr, "\tABI = %5s\n", abi_string);
15071 if (TARGET_ALTIVEC_ABI)
15072 fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");
15074 if (TARGET_SPE_ABI)
15075 fprintf (stderr, "\tSPE ABI extensions enabled.\n");
15077 if (info->first_gp_reg_save != 32)
15078 fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save);
15080 if (info->first_fp_reg_save != 64)
15081 fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save);
15083 if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
15084 fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
15085 info->first_altivec_reg_save);
15087 if (info->lr_save_p)
15088 fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p);
15090 if (info->cr_save_p)
15091 fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p);
15093 if (info->vrsave_mask)
15094 fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask);
15096 if (info->push_p)
15097 fprintf (stderr, "\tpush_p = %5d\n", info->push_p);
15099 if (info->calls_p)
15100 fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p);
15102 if (info->gp_save_offset)
15103 fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset);
15105 if (info->fp_save_offset)
15106 fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset);
15108 if (info->altivec_save_offset)
15109 fprintf (stderr, "\taltivec_save_offset = %5d\n",
15110 info->altivec_save_offset);
15112 if (info->spe_gp_save_offset)
15113 fprintf (stderr, "\tspe_gp_save_offset = %5d\n",
15114 info->spe_gp_save_offset);
15116 if (info->vrsave_save_offset)
15117 fprintf (stderr, "\tvrsave_save_offset = %5d\n",
15118 info->vrsave_save_offset);
15120 if (info->lr_save_offset)
15121 fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset);
15123 if (info->cr_save_offset)
15124 fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset);
15126 if (info->varargs_save_offset)
15127 fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);
15129 if (info->total_size)
15130 fprintf (stderr, "\ttotal_size = "HOST_WIDE_INT_PRINT_DEC"\n",
15131 info->total_size);
15133 if (info->vars_size)
15134 fprintf (stderr, "\tvars_size = "HOST_WIDE_INT_PRINT_DEC"\n",
15135 info->vars_size);
15137 if (info->parm_size)
15138 fprintf (stderr, "\tparm_size = %5d\n", info->parm_size);
15140 if (info->fixed_size)
15141 fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size);
15143 if (info->gp_size)
15144 fprintf (stderr, "\tgp_size = %5d\n", info->gp_size);
15146 if (info->spe_gp_size)
15147 fprintf (stderr, "\tspe_gp_size = %5d\n", info->spe_gp_size);
15149 if (info->fp_size)
15150 fprintf (stderr, "\tfp_size = %5d\n", info->fp_size);
15152 if (info->altivec_size)
15153 fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size);
15155 if (info->vrsave_size)
15156 fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size);
15158 if (info->altivec_padding_size)
15159 fprintf (stderr, "\taltivec_padding_size= %5d\n",
15160 info->altivec_padding_size);
15162 if (info->spe_padding_size)
15163 fprintf (stderr, "\tspe_padding_size = %5d\n",
15164 info->spe_padding_size);
15166 if (info->cr_size)
15167 fprintf (stderr, "\tcr_size = %5d\n", info->cr_size);
15169 if (info->save_size)
15170 fprintf (stderr, "\tsave_size = %5d\n", info->save_size);
15172 if (info->reg_size != 4)
15173 fprintf (stderr, "\treg_size = %5d\n", info->reg_size);
15175 fprintf (stderr, "\n");
15179 rs6000_return_addr (int count, rtx frame)
15181 /* Currently we don't optimize very well between prolog and body
15182 code and for PIC code the code can be actually quite bad, so
15183 don't try to be too clever here. */
15184 if (count != 0 || (DEFAULT_ABI != ABI_AIX && flag_pic))
15186 cfun->machine->ra_needs_full_frame = 1;
15188 return
15189 gen_rtx_MEM
15190 (Pmode,
15191 memory_address
15192 (Pmode,
15193 plus_constant (copy_to_reg
15194 (gen_rtx_MEM (Pmode,
15195 memory_address (Pmode, frame))),
15196 RETURN_ADDRESS_OFFSET)));
15199 cfun->machine->ra_need_lr = 1;
15200 return get_hard_reg_initial_val (Pmode, LR_REGNO);
15203 /* Say whether a function is a candidate for sibcall handling or not.
15204 We do not allow indirect calls to be optimized into sibling calls.
15205 Also, we can't do it if there are any vector parameters; there's
15206 nowhere to put the VRsave code so it works; note that functions with
15207 vector parameters are required to have a prototype, so the argument
15208 type info must be available here. (The tail recursion case can work
15209 with vector parameters, but there's no way to distinguish here.) */
15210 static bool
15211 rs6000_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
15213 tree type;
15214 if (decl)
15216 if (TARGET_ALTIVEC_VRSAVE)
15218 for (type = TYPE_ARG_TYPES (TREE_TYPE (decl));
15219 type; type = TREE_CHAIN (type))
15221 if (TREE_CODE (TREE_VALUE (type)) == VECTOR_TYPE)
15222 return false;
15225 if (DEFAULT_ABI == ABI_DARWIN
15226 || ((*targetm.binds_local_p) (decl)
15227 && (DEFAULT_ABI != ABI_AIX || !DECL_EXTERNAL (decl))))
15229 tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (decl));
15231 if (!lookup_attribute ("longcall", attr_list)
15232 || lookup_attribute ("shortcall", attr_list))
15233 return true;
15236 return false;
15239 /* NULL if INSN insn is valid within a low-overhead loop.
15240 Otherwise return why doloop cannot be applied.
15241 PowerPC uses the COUNT register for branch on table instructions. */
15243 static const char *
15244 rs6000_invalid_within_doloop (const_rtx insn)
15246 if (CALL_P (insn))
15247 return "Function call in the loop.";
15249 if (JUMP_P (insn)
15250 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
15251 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
15252 return "Computed branch in the loop.";
15254 return NULL;
15257 static int
15258 rs6000_ra_ever_killed (void)
15260 rtx top;
15261 rtx reg;
15262 rtx insn;
15264 if (cfun->is_thunk)
15265 return 0;
15267 /* regs_ever_live has LR marked as used if any sibcalls are present,
15268 but this should not force saving and restoring in the
15269 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
15270 clobbers LR, so that is inappropriate. */
15272 /* Also, the prologue can generate a store into LR that
15273 doesn't really count, like this:
15275 move LR->R0
15276 bcl to set PIC register
15277 move LR->R31
15278 move R0->LR
15280 When we're called from the epilogue, we need to avoid counting
15281 this as a store. */
15283 push_topmost_sequence ();
15284 top = get_insns ();
15285 pop_topmost_sequence ();
15286 reg = gen_rtx_REG (Pmode, LR_REGNO);
15288 for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
15290 if (INSN_P (insn))
15292 if (CALL_P (insn))
15294 if (!SIBLING_CALL_P (insn))
15295 return 1;
15297 else if (find_regno_note (insn, REG_INC, LR_REGNO))
15298 return 1;
15299 else if (set_of (reg, insn) != NULL_RTX
15300 && !prologue_epilogue_contains (insn))
15301 return 1;
15304 return 0;
15307 /* Emit instructions needed to load the TOC register.
15308 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
15309 a constant pool; or for SVR4 -fpic. */
15311 void
15312 rs6000_emit_load_toc_table (int fromprolog)
15314 rtx dest;
15315 dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
15317 if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI != ABI_AIX && flag_pic)
15319 char buf[30];
15320 rtx lab, tmp1, tmp2, got;
15322 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
15323 lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15324 if (flag_pic == 2)
15325 got = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
15326 else
15327 got = rs6000_got_sym ();
15328 tmp1 = tmp2 = dest;
15329 if (!fromprolog)
15331 tmp1 = gen_reg_rtx (Pmode);
15332 tmp2 = gen_reg_rtx (Pmode);
15334 emit_insn (gen_load_toc_v4_PIC_1 (lab));
15335 emit_move_insn (tmp1,
15336 gen_rtx_REG (Pmode, LR_REGNO));
15337 emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
15338 emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
15340 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
15342 emit_insn (gen_load_toc_v4_pic_si ());
15343 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
15345 else if (TARGET_ELF && DEFAULT_ABI != ABI_AIX && flag_pic == 2)
15347 char buf[30];
15348 rtx temp0 = (fromprolog
15349 ? gen_rtx_REG (Pmode, 0)
15350 : gen_reg_rtx (Pmode));
15352 if (fromprolog)
15354 rtx symF, symL;
15356 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
15357 symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15359 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
15360 symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15362 emit_insn (gen_load_toc_v4_PIC_1 (symF));
15363 emit_move_insn (dest,
15364 gen_rtx_REG (Pmode, LR_REGNO));
15365 emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
15367 else
15369 rtx tocsym;
15371 tocsym = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
15372 emit_insn (gen_load_toc_v4_PIC_1b (tocsym));
15373 emit_move_insn (dest,
15374 gen_rtx_REG (Pmode, LR_REGNO));
15375 emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
15377 emit_insn (gen_addsi3 (dest, temp0, dest));
15379 else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
15381 /* This is for AIX code running in non-PIC ELF32. */
15382 char buf[30];
15383 rtx realsym;
15384 ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
15385 realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15387 emit_insn (gen_elf_high (dest, realsym));
15388 emit_insn (gen_elf_low (dest, dest, realsym));
15390 else
15392 gcc_assert (DEFAULT_ABI == ABI_AIX);
15394 if (TARGET_32BIT)
15395 emit_insn (gen_load_toc_aix_si (dest));
15396 else
15397 emit_insn (gen_load_toc_aix_di (dest));
15401 /* Emit instructions to restore the link register after determining where
15402 its value has been stored. */
15404 void
15405 rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
15407 rs6000_stack_t *info = rs6000_stack_info ();
15408 rtx operands[2];
15410 operands[0] = source;
15411 operands[1] = scratch;
15413 if (info->lr_save_p)
15415 rtx frame_rtx = stack_pointer_rtx;
15416 HOST_WIDE_INT sp_offset = 0;
15417 rtx tmp;
15419 if (frame_pointer_needed
15420 || cfun->calls_alloca
15421 || info->total_size > 32767)
15423 tmp = gen_frame_mem (Pmode, frame_rtx);
15424 emit_move_insn (operands[1], tmp);
15425 frame_rtx = operands[1];
15427 else if (info->push_p)
15428 sp_offset = info->total_size;
15430 tmp = plus_constant (frame_rtx, info->lr_save_offset + sp_offset);
15431 tmp = gen_frame_mem (Pmode, tmp);
15432 emit_move_insn (tmp, operands[0]);
15434 else
15435 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
15438 static GTY(()) alias_set_type set = -1;
15440 alias_set_type
15441 get_TOC_alias_set (void)
15443 if (set == -1)
15444 set = new_alias_set ();
15445 return set;
15448 /* This returns nonzero if the current function uses the TOC. This is
15449 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
15450 is generated by the ABI_V4 load_toc_* patterns. */
15451 #if TARGET_ELF
15452 static int
15453 uses_TOC (void)
15455 rtx insn;
15457 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
15458 if (INSN_P (insn))
15460 rtx pat = PATTERN (insn);
15461 int i;
15463 if (GET_CODE (pat) == PARALLEL)
15464 for (i = 0; i < XVECLEN (pat, 0); i++)
15466 rtx sub = XVECEXP (pat, 0, i);
15467 if (GET_CODE (sub) == USE)
15469 sub = XEXP (sub, 0);
15470 if (GET_CODE (sub) == UNSPEC
15471 && XINT (sub, 1) == UNSPEC_TOC)
15472 return 1;
15476 return 0;
15478 #endif
15481 create_TOC_reference (rtx symbol)
15483 if (!can_create_pseudo_p ())
15484 df_set_regs_ever_live (TOC_REGISTER, true);
15485 return gen_rtx_PLUS (Pmode,
15486 gen_rtx_REG (Pmode, TOC_REGISTER),
15487 gen_rtx_CONST (Pmode,
15488 gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_TOCREL)));
15491 /* If _Unwind_* has been called from within the same module,
15492 toc register is not guaranteed to be saved to 40(1) on function
15493 entry. Save it there in that case. */
15495 void
15496 rs6000_aix_emit_builtin_unwind_init (void)
15498 rtx mem;
15499 rtx stack_top = gen_reg_rtx (Pmode);
15500 rtx opcode_addr = gen_reg_rtx (Pmode);
15501 rtx opcode = gen_reg_rtx (SImode);
15502 rtx tocompare = gen_reg_rtx (SImode);
15503 rtx no_toc_save_needed = gen_label_rtx ();
15505 mem = gen_frame_mem (Pmode, hard_frame_pointer_rtx);
15506 emit_move_insn (stack_top, mem);
15508 mem = gen_frame_mem (Pmode,
15509 gen_rtx_PLUS (Pmode, stack_top,
15510 GEN_INT (2 * GET_MODE_SIZE (Pmode))));
15511 emit_move_insn (opcode_addr, mem);
15512 emit_move_insn (opcode, gen_rtx_MEM (SImode, opcode_addr));
15513 emit_move_insn (tocompare, gen_int_mode (TARGET_32BIT ? 0x80410014
15514 : 0xE8410028, SImode));
15516 do_compare_rtx_and_jump (opcode, tocompare, EQ, 1,
15517 SImode, NULL_RTX, NULL_RTX,
15518 no_toc_save_needed);
15520 mem = gen_frame_mem (Pmode,
15521 gen_rtx_PLUS (Pmode, stack_top,
15522 GEN_INT (5 * GET_MODE_SIZE (Pmode))));
15523 emit_move_insn (mem, gen_rtx_REG (Pmode, 2));
15524 emit_label (no_toc_save_needed);
15527 /* This ties together stack memory (MEM with an alias set of frame_alias_set)
15528 and the change to the stack pointer. */
15530 static void
15531 rs6000_emit_stack_tie (void)
15533 rtx mem = gen_frame_mem (BLKmode,
15534 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM));
15536 emit_insn (gen_stack_tie (mem));
15539 /* Emit the correct code for allocating stack space, as insns.
15540 If COPY_R12, make sure a copy of the old frame is left in r12.
15541 If COPY_R11, make sure a copy of the old frame is left in r11,
15542 in preference to r12 if COPY_R12.
15543 The generated code may use hard register 0 as a temporary. */
15545 static void
15546 rs6000_emit_allocate_stack (HOST_WIDE_INT size, int copy_r12, int copy_r11)
15548 rtx insn;
15549 rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
15550 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
15551 rtx todec = gen_int_mode (-size, Pmode);
15552 rtx par, set, mem;
15554 if (INTVAL (todec) != -size)
15556 warning (0, "stack frame too large");
15557 emit_insn (gen_trap ());
15558 return;
15561 if (crtl->limit_stack)
15563 if (REG_P (stack_limit_rtx)
15564 && REGNO (stack_limit_rtx) > 1
15565 && REGNO (stack_limit_rtx) <= 31)
15567 emit_insn (TARGET_32BIT
15568 ? gen_addsi3 (tmp_reg,
15569 stack_limit_rtx,
15570 GEN_INT (size))
15571 : gen_adddi3 (tmp_reg,
15572 stack_limit_rtx,
15573 GEN_INT (size)));
15575 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
15576 const0_rtx));
15578 else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
15579 && TARGET_32BIT
15580 && DEFAULT_ABI == ABI_V4)
15582 rtx toload = gen_rtx_CONST (VOIDmode,
15583 gen_rtx_PLUS (Pmode,
15584 stack_limit_rtx,
15585 GEN_INT (size)));
15587 emit_insn (gen_elf_high (tmp_reg, toload));
15588 emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
15589 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
15590 const0_rtx));
15592 else
15593 warning (0, "stack limit expression is not supported");
15596 if (copy_r12 || copy_r11)
15597 emit_move_insn (copy_r11
15598 ? gen_rtx_REG (Pmode, 11)
15599 : gen_rtx_REG (Pmode, 12),
15600 stack_reg);
15602 if (size > 32767)
15604 /* Need a note here so that try_split doesn't get confused. */
15605 if (get_last_insn () == NULL_RTX)
15606 emit_note (NOTE_INSN_DELETED);
15607 insn = emit_move_insn (tmp_reg, todec);
15608 try_split (PATTERN (insn), insn, 0);
15609 todec = tmp_reg;
15612 insn = emit_insn (TARGET_32BIT
15613 ? gen_movsi_update_stack (stack_reg, stack_reg,
15614 todec, stack_reg)
15615 : gen_movdi_di_update_stack (stack_reg, stack_reg,
15616 todec, stack_reg));
15617 /* Since we didn't use gen_frame_mem to generate the MEM, grab
15618 it now and set the alias set/attributes. The above gen_*_update
15619 calls will generate a PARALLEL with the MEM set being the first
15620 operation. */
15621 par = PATTERN (insn);
15622 gcc_assert (GET_CODE (par) == PARALLEL);
15623 set = XVECEXP (par, 0, 0);
15624 gcc_assert (GET_CODE (set) == SET);
15625 mem = SET_DEST (set);
15626 gcc_assert (MEM_P (mem));
15627 MEM_NOTRAP_P (mem) = 1;
15628 set_mem_alias_set (mem, get_frame_alias_set ());
15630 RTX_FRAME_RELATED_P (insn) = 1;
15631 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
15632 gen_rtx_SET (VOIDmode, stack_reg,
15633 gen_rtx_PLUS (Pmode, stack_reg,
15634 GEN_INT (-size))));
15637 /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
15638 with (plus:P (reg 1) VAL), and with REG2 replaced with RREG if REG2
15639 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
15640 deduce these equivalences by itself so it wasn't necessary to hold
15641 its hand so much. */
15643 static void
15644 rs6000_frame_related (rtx insn, rtx reg, HOST_WIDE_INT val,
15645 rtx reg2, rtx rreg)
15647 rtx real, temp;
15649 /* copy_rtx will not make unique copies of registers, so we need to
15650 ensure we don't have unwanted sharing here. */
15651 if (reg == reg2)
15652 reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));
15654 if (reg == rreg)
15655 reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));
15657 real = copy_rtx (PATTERN (insn));
15659 if (reg2 != NULL_RTX)
15660 real = replace_rtx (real, reg2, rreg);
15662 real = replace_rtx (real, reg,
15663 gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode,
15664 STACK_POINTER_REGNUM),
15665 GEN_INT (val)));
15667 /* We expect that 'real' is either a SET or a PARALLEL containing
15668 SETs (and possibly other stuff). In a PARALLEL, all the SETs
15669 are important so they all have to be marked RTX_FRAME_RELATED_P. */
15671 if (GET_CODE (real) == SET)
15673 rtx set = real;
15675 temp = simplify_rtx (SET_SRC (set));
15676 if (temp)
15677 SET_SRC (set) = temp;
15678 temp = simplify_rtx (SET_DEST (set));
15679 if (temp)
15680 SET_DEST (set) = temp;
15681 if (GET_CODE (SET_DEST (set)) == MEM)
15683 temp = simplify_rtx (XEXP (SET_DEST (set), 0));
15684 if (temp)
15685 XEXP (SET_DEST (set), 0) = temp;
15688 else
15690 int i;
15692 gcc_assert (GET_CODE (real) == PARALLEL);
15693 for (i = 0; i < XVECLEN (real, 0); i++)
15694 if (GET_CODE (XVECEXP (real, 0, i)) == SET)
15696 rtx set = XVECEXP (real, 0, i);
15698 temp = simplify_rtx (SET_SRC (set));
15699 if (temp)
15700 SET_SRC (set) = temp;
15701 temp = simplify_rtx (SET_DEST (set));
15702 if (temp)
15703 SET_DEST (set) = temp;
15704 if (GET_CODE (SET_DEST (set)) == MEM)
15706 temp = simplify_rtx (XEXP (SET_DEST (set), 0));
15707 if (temp)
15708 XEXP (SET_DEST (set), 0) = temp;
15710 RTX_FRAME_RELATED_P (set) = 1;
15714 RTX_FRAME_RELATED_P (insn) = 1;
15715 add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
15718 /* Returns an insn that has a vrsave set operation with the
15719 appropriate CLOBBERs. */
15721 static rtx
15722 generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
15724 int nclobs, i;
15725 rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
15726 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
15728 clobs[0]
15729 = gen_rtx_SET (VOIDmode,
15730 vrsave,
15731 gen_rtx_UNSPEC_VOLATILE (SImode,
15732 gen_rtvec (2, reg, vrsave),
15733 UNSPECV_SET_VRSAVE));
15735 nclobs = 1;
15737 /* We need to clobber the registers in the mask so the scheduler
15738 does not move sets to VRSAVE before sets of AltiVec registers.
15740 However, if the function receives nonlocal gotos, reload will set
15741 all call saved registers live. We will end up with:
15743 (set (reg 999) (mem))
15744 (parallel [ (set (reg vrsave) (unspec blah))
15745 (clobber (reg 999))])
15747 The clobber will cause the store into reg 999 to be dead, and
15748 flow will attempt to delete an epilogue insn. In this case, we
15749 need an unspec use/set of the register. */
15751 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
15752 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
15754 if (!epiloguep || call_used_regs [i])
15755 clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
15756 gen_rtx_REG (V4SImode, i));
15757 else
15759 rtx reg = gen_rtx_REG (V4SImode, i);
15761 clobs[nclobs++]
15762 = gen_rtx_SET (VOIDmode,
15763 reg,
15764 gen_rtx_UNSPEC (V4SImode,
15765 gen_rtvec (1, reg), 27));
15769 insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));
15771 for (i = 0; i < nclobs; ++i)
15772 XVECEXP (insn, 0, i) = clobs[i];
15774 return insn;
15777 /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
15778 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
15780 static void
15781 emit_frame_save (rtx frame_reg, rtx frame_ptr, enum machine_mode mode,
15782 unsigned int regno, int offset, HOST_WIDE_INT total_size)
15784 rtx reg, offset_rtx, insn, mem, addr, int_rtx;
15785 rtx replacea, replaceb;
15787 int_rtx = GEN_INT (offset);
15789 /* Some cases that need register indexed addressing. */
15790 if ((TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
15791 || (TARGET_E500_DOUBLE && mode == DFmode)
15792 || (TARGET_SPE_ABI
15793 && SPE_VECTOR_MODE (mode)
15794 && !SPE_CONST_OFFSET_OK (offset)))
15796 /* Whomever calls us must make sure r11 is available in the
15797 flow path of instructions in the prologue. */
15798 offset_rtx = gen_rtx_REG (Pmode, 11);
15799 emit_move_insn (offset_rtx, int_rtx);
15801 replacea = offset_rtx;
15802 replaceb = int_rtx;
15804 else
15806 offset_rtx = int_rtx;
15807 replacea = NULL_RTX;
15808 replaceb = NULL_RTX;
15811 reg = gen_rtx_REG (mode, regno);
15812 addr = gen_rtx_PLUS (Pmode, frame_reg, offset_rtx);
15813 mem = gen_frame_mem (mode, addr);
15815 insn = emit_move_insn (mem, reg);
15817 rs6000_frame_related (insn, frame_ptr, total_size, replacea, replaceb);
15820 /* Emit an offset memory reference suitable for a frame store, while
15821 converting to a valid addressing mode. */
15823 static rtx
15824 gen_frame_mem_offset (enum machine_mode mode, rtx reg, int offset)
15826 rtx int_rtx, offset_rtx;
15828 int_rtx = GEN_INT (offset);
15830 if ((TARGET_SPE_ABI && SPE_VECTOR_MODE (mode))
15831 || (TARGET_E500_DOUBLE && mode == DFmode))
15833 offset_rtx = gen_rtx_REG (Pmode, FIXED_SCRATCH);
15834 emit_move_insn (offset_rtx, int_rtx);
15836 else
15837 offset_rtx = int_rtx;
15839 return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, offset_rtx));
15842 /* Look for user-defined global regs. We should not save and restore these,
15843 and cannot use stmw/lmw if there are any in its range. */
15845 static bool
15846 no_global_regs_above (int first, bool gpr)
15848 int i;
15849 for (i = first; i < gpr ? 32 : 64 ; i++)
15850 if (global_regs[i])
15851 return false;
15852 return true;
15855 #ifndef TARGET_FIX_AND_CONTINUE
15856 #define TARGET_FIX_AND_CONTINUE 0
15857 #endif
15859 /* It's really GPR 13 and FPR 14, but we need the smaller of the two. */
15860 #define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
15861 #define LAST_SAVRES_REGISTER 31
15862 #define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
15864 static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][8];
15866 /* Return the symbol for an out-of-line register save/restore routine.
15867 We are saving/restoring GPRs if GPR is true. */
15869 static rtx
15870 rs6000_savres_routine_sym (rs6000_stack_t *info, bool savep, bool gpr, bool exitp)
15872 int regno = gpr ? info->first_gp_reg_save : (info->first_fp_reg_save - 32);
15873 rtx sym;
15874 int select = ((savep ? 1 : 0) << 2
15875 | (gpr
15876 /* On the SPE, we never have any FPRs, but we do have
15877 32/64-bit versions of the routines. */
15878 ? (TARGET_SPE_ABI && info->spe_64bit_regs_used ? 1 : 0)
15879 : 0) << 1
15880 | (exitp ? 1: 0));
15882 /* Don't generate bogus routine names. */
15883 gcc_assert (FIRST_SAVRES_REGISTER <= regno && regno <= LAST_SAVRES_REGISTER);
15885 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];
15887 if (sym == NULL)
15889 char name[30];
15890 const char *action;
15891 const char *regkind;
15892 const char *exit_suffix;
15894 action = savep ? "save" : "rest";
15896 /* SPE has slightly different names for its routines depending on
15897 whether we are saving 32-bit or 64-bit registers. */
15898 if (TARGET_SPE_ABI)
15900 /* No floating point saves on the SPE. */
15901 gcc_assert (gpr);
15903 regkind = info->spe_64bit_regs_used ? "64gpr" : "32gpr";
15905 else
15906 regkind = gpr ? "gpr" : "fpr";
15908 exit_suffix = exitp ? "_x" : "";
15910 sprintf (name, "_%s%s_%d%s", action, regkind, regno, exit_suffix);
15912 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
15913 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
15916 return sym;
15919 /* Emit a sequence of insns, including a stack tie if needed, for
15920 resetting the stack pointer. If SAVRES is true, then don't reset the
15921 stack pointer, but move the base of the frame into r11 for use by
15922 out-of-line register restore routines. */
15924 static void
15925 rs6000_emit_stack_reset (rs6000_stack_t *info,
15926 rtx sp_reg_rtx, rtx frame_reg_rtx,
15927 int sp_offset, bool savres)
15929 /* This blockage is needed so that sched doesn't decide to move
15930 the sp change before the register restores. */
15931 if (frame_reg_rtx != sp_reg_rtx
15932 || (TARGET_SPE_ABI
15933 && info->spe_64bit_regs_used != 0
15934 && info->first_gp_reg_save != 32))
15935 rs6000_emit_stack_tie ();
15937 if (frame_reg_rtx != sp_reg_rtx)
15939 if (sp_offset != 0)
15940 emit_insn (gen_addsi3 (sp_reg_rtx, frame_reg_rtx,
15941 GEN_INT (sp_offset)));
15942 else if (!savres)
15943 emit_move_insn (sp_reg_rtx, frame_reg_rtx);
15945 else if (sp_offset != 0)
15947 /* If we are restoring registers out-of-line, we will be using the
15948 "exit" variants of the restore routines, which will reset the
15949 stack for us. But we do need to point r11 into the right place
15950 for those routines. */
15951 rtx dest_reg = (savres
15952 ? gen_rtx_REG (Pmode, 11)
15953 : sp_reg_rtx);
15955 emit_insn (TARGET_32BIT
15956 ? gen_addsi3 (dest_reg, sp_reg_rtx,
15957 GEN_INT (sp_offset))
15958 : gen_adddi3 (dest_reg, sp_reg_rtx,
15959 GEN_INT (sp_offset)));
15963 /* Construct a parallel rtx describing the effect of a call to an
15964 out-of-line register save/restore routine. */
15966 static rtx
15967 rs6000_make_savres_rtx (rs6000_stack_t *info,
15968 rtx frame_reg_rtx, int save_area_offset,
15969 enum machine_mode reg_mode,
15970 bool savep, bool gpr, bool exitp)
15972 int i;
15973 int offset, start_reg, end_reg, n_regs;
15974 int reg_size = GET_MODE_SIZE (reg_mode);
15975 rtx sym;
15976 rtvec p;
15978 offset = 0;
15979 start_reg = (gpr
15980 ? info->first_gp_reg_save
15981 : info->first_fp_reg_save);
15982 end_reg = gpr ? 32 : 64;
15983 n_regs = end_reg - start_reg;
15984 p = rtvec_alloc ((exitp ? 4 : 3) + n_regs);
15986 /* If we're saving registers, then we should never say we're exiting. */
15987 gcc_assert ((savep && !exitp) || !savep);
15989 if (exitp)
15990 RTVEC_ELT (p, offset++) = gen_rtx_RETURN (VOIDmode);
15992 RTVEC_ELT (p, offset++)
15993 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 65));
15995 sym = rs6000_savres_routine_sym (info, savep, gpr, exitp);
15996 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
15997 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 11));
15999 for (i = 0; i < end_reg - start_reg; i++)
16001 rtx addr, reg, mem;
16002 reg = gen_rtx_REG (reg_mode, start_reg + i);
16003 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16004 GEN_INT (save_area_offset + reg_size*i));
16005 mem = gen_frame_mem (reg_mode, addr);
16007 RTVEC_ELT (p, i + offset) = gen_rtx_SET (VOIDmode,
16008 savep ? mem : reg,
16009 savep ? reg : mem);
16012 return gen_rtx_PARALLEL (VOIDmode, p);
16015 /* Determine whether the gp REG is really used. */
16017 static bool
16018 rs6000_reg_live_or_pic_offset_p (int reg)
16020 return ((df_regs_ever_live_p (reg)
16021 && (!call_used_regs[reg]
16022 || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
16023 && TARGET_TOC && TARGET_MINIMAL_TOC)))
16024 || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
16025 && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
16026 || (DEFAULT_ABI == ABI_DARWIN && flag_pic))));
16029 enum {
16030 SAVRES_MULTIPLE = 0x1,
16031 SAVRES_INLINE_FPRS = 0x2,
16032 SAVRES_INLINE_GPRS = 0x4
16035 /* Determine the strategy for savings/restoring registers. */
16037 static int
16038 rs6000_savres_strategy (rs6000_stack_t *info, bool savep,
16039 int using_static_chain_p, int sibcall)
16041 bool using_multiple_p;
16042 bool common;
16043 bool savres_fprs_inline;
16044 bool savres_gprs_inline;
16045 bool noclobber_global_gprs
16046 = no_global_regs_above (info->first_gp_reg_save, /*gpr=*/true);
16048 using_multiple_p = (TARGET_MULTIPLE && ! TARGET_POWERPC64
16049 && (!TARGET_SPE_ABI
16050 || info->spe_64bit_regs_used == 0)
16051 && info->first_gp_reg_save < 31
16052 && noclobber_global_gprs);
16053 /* Don't bother to try to save things out-of-line if r11 is occupied
16054 by the static chain. It would require too much fiddling and the
16055 static chain is rarely used anyway. */
16056 common = (using_static_chain_p
16057 || sibcall
16058 || crtl->calls_eh_return
16059 || !info->lr_save_p
16060 || cfun->machine->ra_need_lr
16061 || info->total_size > 32767);
16062 savres_fprs_inline = (common
16063 || info->first_fp_reg_save == 64
16064 || !no_global_regs_above (info->first_fp_reg_save,
16065 /*gpr=*/false)
16066 || FP_SAVE_INLINE (info->first_fp_reg_save));
16067 savres_gprs_inline = (common
16068 /* Saving CR interferes with the exit routines
16069 used on the SPE, so just punt here. */
16070 || (!savep
16071 && TARGET_SPE_ABI
16072 && info->spe_64bit_regs_used != 0
16073 && info->cr_save_p != 0)
16074 || info->first_gp_reg_save == 32
16075 || !noclobber_global_gprs
16076 || GP_SAVE_INLINE (info->first_gp_reg_save));
16078 if (savep)
16079 /* If we are going to use store multiple, then don't even bother
16080 with the out-of-line routines, since the store-multiple instruction
16081 will always be smaller. */
16082 savres_gprs_inline = savres_gprs_inline || using_multiple_p;
16083 else
16085 /* The situation is more complicated with load multiple. We'd
16086 prefer to use the out-of-line routines for restores, since the
16087 "exit" out-of-line routines can handle the restore of LR and
16088 the frame teardown. But we can only use the out-of-line
16089 routines if we know that we've used store multiple or
16090 out-of-line routines in the prologue, i.e. if we've saved all
16091 the registers from first_gp_reg_save. Otherwise, we risk
16092 loading garbage from the stack. Furthermore, we can only use
16093 the "exit" out-of-line gpr restore if we haven't saved any
16094 fprs. */
16095 bool saved_all = !savres_gprs_inline || using_multiple_p;
16097 if (saved_all && info->first_fp_reg_save != 64)
16098 /* We can't use the exit routine; use load multiple if it's
16099 available. */
16100 savres_gprs_inline = savres_gprs_inline || using_multiple_p;
16103 return (using_multiple_p
16104 | (savres_fprs_inline << 1)
16105 | (savres_gprs_inline << 2));
16108 /* Emit function prologue as insns. */
16110 void
16111 rs6000_emit_prologue (void)
16113 rs6000_stack_t *info = rs6000_stack_info ();
16114 enum machine_mode reg_mode = Pmode;
16115 int reg_size = TARGET_32BIT ? 4 : 8;
16116 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
16117 rtx frame_ptr_rtx = gen_rtx_REG (Pmode, 12);
16118 rtx frame_reg_rtx = sp_reg_rtx;
16119 rtx cr_save_rtx = NULL_RTX;
16120 rtx insn;
16121 int strategy;
16122 int saving_FPRs_inline;
16123 int saving_GPRs_inline;
16124 int using_store_multiple;
16125 int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
16126 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
16127 && !call_used_regs[STATIC_CHAIN_REGNUM]);
16128 HOST_WIDE_INT sp_offset = 0;
16130 if (TARGET_FIX_AND_CONTINUE)
16132 /* gdb on darwin arranges to forward a function from the old
16133 address by modifying the first 5 instructions of the function
16134 to branch to the overriding function. This is necessary to
16135 permit function pointers that point to the old function to
16136 actually forward to the new function. */
16137 emit_insn (gen_nop ());
16138 emit_insn (gen_nop ());
16139 emit_insn (gen_nop ());
16140 emit_insn (gen_nop ());
16141 emit_insn (gen_nop ());
16144 if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
16146 reg_mode = V2SImode;
16147 reg_size = 8;
16150 strategy = rs6000_savres_strategy (info, /*savep=*/true,
16151 /*static_chain_p=*/using_static_chain_p,
16152 /*sibcall=*/0);
16153 using_store_multiple = strategy & SAVRES_MULTIPLE;
16154 saving_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
16155 saving_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
16157 /* For V.4, update stack before we do any saving and set back pointer. */
16158 if (! WORLD_SAVE_P (info)
16159 && info->push_p
16160 && (DEFAULT_ABI == ABI_V4
16161 || crtl->calls_eh_return))
16163 bool need_r11 = (TARGET_SPE
16164 ? (!saving_GPRs_inline
16165 && info->spe_64bit_regs_used == 0)
16166 : (!saving_FPRs_inline || !saving_GPRs_inline));
16167 if (info->total_size < 32767)
16168 sp_offset = info->total_size;
16169 else
16170 frame_reg_rtx = (need_r11
16171 ? gen_rtx_REG (Pmode, 11)
16172 : frame_ptr_rtx);
16173 rs6000_emit_allocate_stack (info->total_size,
16174 (frame_reg_rtx != sp_reg_rtx
16175 && (info->cr_save_p
16176 || info->lr_save_p
16177 || info->first_fp_reg_save < 64
16178 || info->first_gp_reg_save < 32
16180 need_r11);
16181 if (frame_reg_rtx != sp_reg_rtx)
16182 rs6000_emit_stack_tie ();
16185 /* Handle world saves specially here. */
16186 if (WORLD_SAVE_P (info))
16188 int i, j, sz;
16189 rtx treg;
16190 rtvec p;
16191 rtx reg0;
16193 /* save_world expects lr in r0. */
16194 reg0 = gen_rtx_REG (Pmode, 0);
16195 if (info->lr_save_p)
16197 insn = emit_move_insn (reg0,
16198 gen_rtx_REG (Pmode, LR_REGNO));
16199 RTX_FRAME_RELATED_P (insn) = 1;
16202 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
16203 assumptions about the offsets of various bits of the stack
16204 frame. */
16205 gcc_assert (info->gp_save_offset == -220
16206 && info->fp_save_offset == -144
16207 && info->lr_save_offset == 8
16208 && info->cr_save_offset == 4
16209 && info->push_p
16210 && info->lr_save_p
16211 && (!crtl->calls_eh_return
16212 || info->ehrd_offset == -432)
16213 && info->vrsave_save_offset == -224
16214 && info->altivec_save_offset == -416);
16216 treg = gen_rtx_REG (SImode, 11);
16217 emit_move_insn (treg, GEN_INT (-info->total_size));
16219 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
16220 in R11. It also clobbers R12, so beware! */
16222 /* Preserve CR2 for save_world prologues */
16223 sz = 5;
16224 sz += 32 - info->first_gp_reg_save;
16225 sz += 64 - info->first_fp_reg_save;
16226 sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
16227 p = rtvec_alloc (sz);
16228 j = 0;
16229 RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
16230 gen_rtx_REG (SImode,
16231 LR_REGNO));
16232 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
16233 gen_rtx_SYMBOL_REF (Pmode,
16234 "*save_world"));
16235 /* We do floats first so that the instruction pattern matches
16236 properly. */
16237 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
16239 rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16240 ? DFmode : SFmode),
16241 info->first_fp_reg_save + i);
16242 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16243 GEN_INT (info->fp_save_offset
16244 + sp_offset + 8 * i));
16245 rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16246 ? DFmode : SFmode), addr);
16248 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16250 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
16252 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
16253 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16254 GEN_INT (info->altivec_save_offset
16255 + sp_offset + 16 * i));
16256 rtx mem = gen_frame_mem (V4SImode, addr);
16258 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16260 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16262 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16263 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16264 GEN_INT (info->gp_save_offset
16265 + sp_offset + reg_size * i));
16266 rtx mem = gen_frame_mem (reg_mode, addr);
16268 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16272 /* CR register traditionally saved as CR2. */
16273 rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
16274 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16275 GEN_INT (info->cr_save_offset
16276 + sp_offset));
16277 rtx mem = gen_frame_mem (reg_mode, addr);
16279 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16281 /* Explain about use of R0. */
16282 if (info->lr_save_p)
16284 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16285 GEN_INT (info->lr_save_offset
16286 + sp_offset));
16287 rtx mem = gen_frame_mem (reg_mode, addr);
16289 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg0);
16291 /* Explain what happens to the stack pointer. */
16293 rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
16294 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, sp_reg_rtx, newval);
16297 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16298 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16299 treg, GEN_INT (-info->total_size));
16300 sp_offset = info->total_size;
16303 /* If we use the link register, get it into r0. */
16304 if (!WORLD_SAVE_P (info) && info->lr_save_p)
16306 rtx addr, reg, mem;
16308 insn = emit_move_insn (gen_rtx_REG (Pmode, 0),
16309 gen_rtx_REG (Pmode, LR_REGNO));
16310 RTX_FRAME_RELATED_P (insn) = 1;
16312 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16313 GEN_INT (info->lr_save_offset + sp_offset));
16314 reg = gen_rtx_REG (Pmode, 0);
16315 mem = gen_rtx_MEM (Pmode, addr);
16316 /* This should not be of rs6000_sr_alias_set, because of
16317 __builtin_return_address. */
16319 insn = emit_move_insn (mem, reg);
16320 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16321 NULL_RTX, NULL_RTX);
16324 /* If we need to save CR, put it into r12. */
16325 if (!WORLD_SAVE_P (info) && info->cr_save_p && frame_reg_rtx != frame_ptr_rtx)
16327 rtx set;
16329 cr_save_rtx = gen_rtx_REG (SImode, 12);
16330 insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
16331 RTX_FRAME_RELATED_P (insn) = 1;
16332 /* Now, there's no way that dwarf2out_frame_debug_expr is going
16333 to understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)'.
16334 But that's OK. All we have to do is specify that _one_ condition
16335 code register is saved in this stack slot. The thrower's epilogue
16336 will then restore all the call-saved registers.
16337 We use CR2_REGNO (70) to be compatible with gcc-2.95 on Linux. */
16338 set = gen_rtx_SET (VOIDmode, cr_save_rtx,
16339 gen_rtx_REG (SImode, CR2_REGNO));
16340 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
16343 /* Do any required saving of fpr's. If only one or two to save, do
16344 it ourselves. Otherwise, call function. */
16345 if (!WORLD_SAVE_P (info) && saving_FPRs_inline)
16347 int i;
16348 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
16349 if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
16350 && ! call_used_regs[info->first_fp_reg_save+i]))
16351 emit_frame_save (frame_reg_rtx, frame_ptr_rtx,
16352 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16353 ? DFmode : SFmode,
16354 info->first_fp_reg_save + i,
16355 info->fp_save_offset + sp_offset + 8 * i,
16356 info->total_size);
16358 else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
16360 rtx par;
16362 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
16363 info->fp_save_offset + sp_offset,
16364 DFmode,
16365 /*savep=*/true, /*gpr=*/false,
16366 /*exitp=*/false);
16367 insn = emit_insn (par);
16368 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16369 NULL_RTX, NULL_RTX);
16372 /* Save GPRs. This is done as a PARALLEL if we are using
16373 the store-multiple instructions. */
16374 if (!WORLD_SAVE_P (info)
16375 && TARGET_SPE_ABI
16376 && info->spe_64bit_regs_used != 0
16377 && info->first_gp_reg_save != 32)
16379 int i;
16380 rtx spe_save_area_ptr;
16382 /* Determine whether we can address all of the registers that need
16383 to be saved with an offset from the stack pointer that fits in
16384 the small const field for SPE memory instructions. */
16385 int spe_regs_addressable_via_sp
16386 = (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
16387 + (32 - info->first_gp_reg_save - 1) * reg_size)
16388 && saving_GPRs_inline);
16389 int spe_offset;
16391 if (spe_regs_addressable_via_sp)
16393 spe_save_area_ptr = frame_reg_rtx;
16394 spe_offset = info->spe_gp_save_offset + sp_offset;
16396 else
16398 /* Make r11 point to the start of the SPE save area. We need
16399 to be careful here if r11 is holding the static chain. If
16400 it is, then temporarily save it in r0. We would use r0 as
16401 our base register here, but using r0 as a base register in
16402 loads and stores means something different from what we
16403 would like. */
16404 int ool_adjust = (saving_GPRs_inline
16406 : (info->first_gp_reg_save
16407 - (FIRST_SAVRES_REGISTER+1))*8);
16408 HOST_WIDE_INT offset = (info->spe_gp_save_offset
16409 + sp_offset - ool_adjust);
16411 if (using_static_chain_p)
16413 rtx r0 = gen_rtx_REG (Pmode, 0);
16414 gcc_assert (info->first_gp_reg_save > 11);
16416 emit_move_insn (r0, gen_rtx_REG (Pmode, 11));
16419 spe_save_area_ptr = gen_rtx_REG (Pmode, 11);
16420 insn = emit_insn (gen_addsi3 (spe_save_area_ptr,
16421 frame_reg_rtx,
16422 GEN_INT (offset)));
16423 /* We need to make sure the move to r11 gets noted for
16424 properly outputting unwind information. */
16425 if (!saving_GPRs_inline)
16426 rs6000_frame_related (insn, frame_reg_rtx, offset,
16427 NULL_RTX, NULL_RTX);
16428 spe_offset = 0;
16431 if (saving_GPRs_inline)
16433 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16434 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
16436 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16437 rtx offset, addr, mem;
16439 /* We're doing all this to ensure that the offset fits into
16440 the immediate offset of 'evstdd'. */
16441 gcc_assert (SPE_CONST_OFFSET_OK (reg_size * i + spe_offset));
16443 offset = GEN_INT (reg_size * i + spe_offset);
16444 addr = gen_rtx_PLUS (Pmode, spe_save_area_ptr, offset);
16445 mem = gen_rtx_MEM (V2SImode, addr);
16447 insn = emit_move_insn (mem, reg);
16449 rs6000_frame_related (insn, spe_save_area_ptr,
16450 info->spe_gp_save_offset
16451 + sp_offset + reg_size * i,
16452 offset, const0_rtx);
16455 else
16457 rtx par;
16459 par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
16460 0, reg_mode,
16461 /*savep=*/true, /*gpr=*/true,
16462 /*exitp=*/false);
16463 insn = emit_insn (par);
16464 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16465 NULL_RTX, NULL_RTX);
16469 /* Move the static chain pointer back. */
16470 if (using_static_chain_p && !spe_regs_addressable_via_sp)
16471 emit_move_insn (gen_rtx_REG (Pmode, 11), gen_rtx_REG (Pmode, 0));
16473 else if (!WORLD_SAVE_P (info) && !saving_GPRs_inline)
16475 rtx par;
16477 /* Need to adjust r11 if we saved any FPRs. */
16478 if (info->first_fp_reg_save != 64)
16480 rtx r11 = gen_rtx_REG (reg_mode, 11);
16481 rtx offset = GEN_INT (info->total_size
16482 + (-8 * (64-info->first_fp_reg_save)));
16483 rtx ptr_reg = (sp_reg_rtx == frame_reg_rtx
16484 ? sp_reg_rtx : r11);
16486 emit_insn (TARGET_32BIT
16487 ? gen_addsi3 (r11, ptr_reg, offset)
16488 : gen_adddi3 (r11, ptr_reg, offset));
16491 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
16492 info->gp_save_offset + sp_offset,
16493 reg_mode,
16494 /*savep=*/true, /*gpr=*/true,
16495 /*exitp=*/false);
16496 insn = emit_insn (par);
16497 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16498 NULL_RTX, NULL_RTX);
16500 else if (!WORLD_SAVE_P (info) && using_store_multiple)
16502 rtvec p;
16503 int i;
16504 p = rtvec_alloc (32 - info->first_gp_reg_save);
16505 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16507 rtx addr, reg, mem;
16508 reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16509 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16510 GEN_INT (info->gp_save_offset
16511 + sp_offset
16512 + reg_size * i));
16513 mem = gen_frame_mem (reg_mode, addr);
16515 RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, mem, reg);
16517 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16518 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16519 NULL_RTX, NULL_RTX);
16521 else if (!WORLD_SAVE_P (info))
16523 int i;
16524 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16525 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
16527 rtx addr, reg, mem;
16528 reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16530 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16531 GEN_INT (info->gp_save_offset
16532 + sp_offset
16533 + reg_size * i));
16534 mem = gen_frame_mem (reg_mode, addr);
16536 insn = emit_move_insn (mem, reg);
16537 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16538 NULL_RTX, NULL_RTX);
16542 /* ??? There's no need to emit actual instructions here, but it's the
16543 easiest way to get the frame unwind information emitted. */
16544 if (crtl->calls_eh_return)
16546 unsigned int i, regno;
16548 /* In AIX ABI we need to pretend we save r2 here. */
16549 if (TARGET_AIX)
16551 rtx addr, reg, mem;
16553 reg = gen_rtx_REG (reg_mode, 2);
16554 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16555 GEN_INT (sp_offset + 5 * reg_size));
16556 mem = gen_frame_mem (reg_mode, addr);
16558 insn = emit_move_insn (mem, reg);
16559 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16560 NULL_RTX, NULL_RTX);
16561 PATTERN (insn) = gen_blockage ();
16564 for (i = 0; ; ++i)
16566 regno = EH_RETURN_DATA_REGNO (i);
16567 if (regno == INVALID_REGNUM)
16568 break;
16570 emit_frame_save (frame_reg_rtx, frame_ptr_rtx, reg_mode, regno,
16571 info->ehrd_offset + sp_offset
16572 + reg_size * (int) i,
16573 info->total_size);
16577 /* Save CR if we use any that must be preserved. */
16578 if (!WORLD_SAVE_P (info) && info->cr_save_p)
16580 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16581 GEN_INT (info->cr_save_offset + sp_offset));
16582 rtx mem = gen_frame_mem (SImode, addr);
16583 /* See the large comment above about why CR2_REGNO is used. */
16584 rtx magic_eh_cr_reg = gen_rtx_REG (SImode, CR2_REGNO);
16586 /* If r12 was used to hold the original sp, copy cr into r0 now
16587 that it's free. */
16588 if (REGNO (frame_reg_rtx) == 12)
16590 rtx set;
16592 cr_save_rtx = gen_rtx_REG (SImode, 0);
16593 insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
16594 RTX_FRAME_RELATED_P (insn) = 1;
16595 set = gen_rtx_SET (VOIDmode, cr_save_rtx, magic_eh_cr_reg);
16596 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
16598 insn = emit_move_insn (mem, cr_save_rtx);
16600 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16601 NULL_RTX, NULL_RTX);
16604 /* Update stack and set back pointer unless this is V.4,
16605 for which it was done previously. */
16606 if (!WORLD_SAVE_P (info) && info->push_p
16607 && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
16609 if (info->total_size < 32767)
16610 sp_offset = info->total_size;
16611 else
16612 frame_reg_rtx = frame_ptr_rtx;
16613 rs6000_emit_allocate_stack (info->total_size,
16614 (frame_reg_rtx != sp_reg_rtx
16615 && ((info->altivec_size != 0)
16616 || (info->vrsave_mask != 0)
16618 FALSE);
16619 if (frame_reg_rtx != sp_reg_rtx)
16620 rs6000_emit_stack_tie ();
16623 /* Set frame pointer, if needed. */
16624 if (frame_pointer_needed)
16626 insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
16627 sp_reg_rtx);
16628 RTX_FRAME_RELATED_P (insn) = 1;
16631 /* Save AltiVec registers if needed. Save here because the red zone does
16632 not include AltiVec registers. */
16633 if (!WORLD_SAVE_P (info) && TARGET_ALTIVEC_ABI && info->altivec_size != 0)
16635 int i;
16637 /* There should be a non inline version of this, for when we
16638 are saving lots of vector registers. */
16639 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
16640 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
16642 rtx areg, savereg, mem;
16643 int offset;
16645 offset = info->altivec_save_offset + sp_offset
16646 + 16 * (i - info->first_altivec_reg_save);
16648 savereg = gen_rtx_REG (V4SImode, i);
16650 areg = gen_rtx_REG (Pmode, 0);
16651 emit_move_insn (areg, GEN_INT (offset));
16653 /* AltiVec addressing mode is [reg+reg]. */
16654 mem = gen_frame_mem (V4SImode,
16655 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));
16657 insn = emit_move_insn (mem, savereg);
16659 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16660 areg, GEN_INT (offset));
16664 /* VRSAVE is a bit vector representing which AltiVec registers
16665 are used. The OS uses this to determine which vector
16666 registers to save on a context switch. We need to save
16667 VRSAVE on the stack frame, add whatever AltiVec registers we
16668 used in this function, and do the corresponding magic in the
16669 epilogue. */
16671 if (TARGET_ALTIVEC && TARGET_ALTIVEC_VRSAVE
16672 && info->vrsave_mask != 0)
16674 rtx reg, mem, vrsave;
16675 int offset;
16677 /* Get VRSAVE onto a GPR. Note that ABI_V4 might be using r12
16678 as frame_reg_rtx and r11 as the static chain pointer for
16679 nested functions. */
16680 reg = gen_rtx_REG (SImode, 0);
16681 vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
16682 if (TARGET_MACHO)
16683 emit_insn (gen_get_vrsave_internal (reg));
16684 else
16685 emit_insn (gen_rtx_SET (VOIDmode, reg, vrsave));
16687 if (!WORLD_SAVE_P (info))
16689 /* Save VRSAVE. */
16690 offset = info->vrsave_save_offset + sp_offset;
16691 mem = gen_frame_mem (SImode,
16692 gen_rtx_PLUS (Pmode, frame_reg_rtx,
16693 GEN_INT (offset)));
16694 insn = emit_move_insn (mem, reg);
16697 /* Include the registers in the mask. */
16698 emit_insn (gen_iorsi3 (reg, reg, GEN_INT ((int) info->vrsave_mask)));
16700 insn = emit_insn (generate_set_vrsave (reg, info, 0));
16703 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
16704 if ((TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0)
16705 || (DEFAULT_ABI == ABI_V4
16706 && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
16707 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM)))
16709 /* If emit_load_toc_table will use the link register, we need to save
16710 it. We use R12 for this purpose because emit_load_toc_table
16711 can use register 0. This allows us to use a plain 'blr' to return
16712 from the procedure more often. */
16713 int save_LR_around_toc_setup = (TARGET_ELF
16714 && DEFAULT_ABI != ABI_AIX
16715 && flag_pic
16716 && ! info->lr_save_p
16717 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0);
16718 if (save_LR_around_toc_setup)
16720 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
16722 insn = emit_move_insn (frame_ptr_rtx, lr);
16723 RTX_FRAME_RELATED_P (insn) = 1;
16725 rs6000_emit_load_toc_table (TRUE);
16727 insn = emit_move_insn (lr, frame_ptr_rtx);
16728 RTX_FRAME_RELATED_P (insn) = 1;
16730 else
16731 rs6000_emit_load_toc_table (TRUE);
16734 #if TARGET_MACHO
16735 if (DEFAULT_ABI == ABI_DARWIN
16736 && flag_pic && crtl->uses_pic_offset_table)
16738 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
16739 rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);
16741 /* Save and restore LR locally around this call (in R0). */
16742 if (!info->lr_save_p)
16743 emit_move_insn (gen_rtx_REG (Pmode, 0), lr);
16745 emit_insn (gen_load_macho_picbase (src));
16747 emit_move_insn (gen_rtx_REG (Pmode,
16748 RS6000_PIC_OFFSET_TABLE_REGNUM),
16749 lr);
16751 if (!info->lr_save_p)
16752 emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
16754 #endif
16757 /* Write function prologue. */
16759 static void
16760 rs6000_output_function_prologue (FILE *file,
16761 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
16763 rs6000_stack_t *info = rs6000_stack_info ();
16765 if (TARGET_DEBUG_STACK)
16766 debug_stack_info (info);
16768 /* Write .extern for any function we will call to save and restore
16769 fp values. */
16770 if (info->first_fp_reg_save < 64
16771 && !FP_SAVE_INLINE (info->first_fp_reg_save))
16772 fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n",
16773 SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX,
16774 RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);
16776 /* Write .extern for AIX common mode routines, if needed. */
16777 if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined)
16779 fputs ("\t.extern __mulh\n", file);
16780 fputs ("\t.extern __mull\n", file);
16781 fputs ("\t.extern __divss\n", file);
16782 fputs ("\t.extern __divus\n", file);
16783 fputs ("\t.extern __quoss\n", file);
16784 fputs ("\t.extern __quous\n", file);
16785 common_mode_defined = 1;
16788 if (! HAVE_prologue)
16790 start_sequence ();
16792 /* A NOTE_INSN_DELETED is supposed to be at the start and end of
16793 the "toplevel" insn chain. */
16794 emit_note (NOTE_INSN_DELETED);
16795 rs6000_emit_prologue ();
16796 emit_note (NOTE_INSN_DELETED);
16798 /* Expand INSN_ADDRESSES so final() doesn't crash. */
16800 rtx insn;
16801 unsigned addr = 0;
16802 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
16804 INSN_ADDRESSES_NEW (insn, addr);
16805 addr += 4;
16809 if (TARGET_DEBUG_STACK)
16810 debug_rtx_list (get_insns (), 100);
16811 final (get_insns (), file, FALSE);
16812 end_sequence ();
16815 rs6000_pic_labelno++;
16818 /* Non-zero if vmx regs are restored before the frame pop, zero if
16819 we restore after the pop when possible. */
16820 #define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
16822 /* Reload CR from REG. */
16824 static void
16825 rs6000_restore_saved_cr (rtx reg, int using_mfcr_multiple)
16827 int count = 0;
16828 int i;
16830 if (using_mfcr_multiple)
16832 for (i = 0; i < 8; i++)
16833 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16834 count++;
16835 gcc_assert (count);
16838 if (using_mfcr_multiple && count > 1)
16840 rtvec p;
16841 int ndx;
16843 p = rtvec_alloc (count);
16845 ndx = 0;
16846 for (i = 0; i < 8; i++)
16847 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16849 rtvec r = rtvec_alloc (2);
16850 RTVEC_ELT (r, 0) = reg;
16851 RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
16852 RTVEC_ELT (p, ndx) =
16853 gen_rtx_SET (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO+i),
16854 gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
16855 ndx++;
16857 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16858 gcc_assert (ndx == count);
16860 else
16861 for (i = 0; i < 8; i++)
16862 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16864 emit_insn (gen_movsi_to_cr_one (gen_rtx_REG (CCmode,
16865 CR0_REGNO+i),
16866 reg));
16870 /* Emit function epilogue as insns.
16872 At present, dwarf2out_frame_debug_expr doesn't understand
16873 register restores, so we don't bother setting RTX_FRAME_RELATED_P
16874 anywhere in the epilogue. Most of the insns below would in any case
16875 need special notes to explain where r11 is in relation to the stack. */
16877 void
16878 rs6000_emit_epilogue (int sibcall)
16880 rs6000_stack_t *info;
16881 int restoring_GPRs_inline;
16882 int restoring_FPRs_inline;
16883 int using_load_multiple;
16884 int using_mtcr_multiple;
16885 int use_backchain_to_restore_sp;
16886 int restore_lr;
16887 int strategy;
16888 int sp_offset = 0;
16889 rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
16890 rtx frame_reg_rtx = sp_reg_rtx;
16891 enum machine_mode reg_mode = Pmode;
16892 int reg_size = TARGET_32BIT ? 4 : 8;
16893 int i;
16895 info = rs6000_stack_info ();
16897 if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
16899 reg_mode = V2SImode;
16900 reg_size = 8;
16903 strategy = rs6000_savres_strategy (info, /*savep=*/false,
16904 /*static_chain_p=*/0, sibcall);
16905 using_load_multiple = strategy & SAVRES_MULTIPLE;
16906 restoring_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
16907 restoring_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
16908 using_mtcr_multiple = (rs6000_cpu == PROCESSOR_PPC601
16909 || rs6000_cpu == PROCESSOR_PPC603
16910 || rs6000_cpu == PROCESSOR_PPC750
16911 || optimize_size);
16912 /* Restore via the backchain when we have a large frame, since this
16913 is more efficient than an addis, addi pair. The second condition
16914 here will not trigger at the moment; We don't actually need a
16915 frame pointer for alloca, but the generic parts of the compiler
16916 give us one anyway. */
16917 use_backchain_to_restore_sp = (info->total_size > 32767
16918 || info->total_size
16919 + (info->lr_save_p ? info->lr_save_offset : 0)
16920 > 32767
16921 || (cfun->calls_alloca
16922 && !frame_pointer_needed));
16923 restore_lr = (info->lr_save_p
16924 && restoring_GPRs_inline
16925 && restoring_FPRs_inline);
16927 if (WORLD_SAVE_P (info))
16929 int i, j;
16930 char rname[30];
16931 const char *alloc_rname;
16932 rtvec p;
16934 /* eh_rest_world_r10 will return to the location saved in the LR
16935 stack slot (which is not likely to be our caller.)
16936 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
16937 rest_world is similar, except any R10 parameter is ignored.
16938 The exception-handling stuff that was here in 2.95 is no
16939 longer necessary. */
16941 p = rtvec_alloc (9
16943 + 32 - info->first_gp_reg_save
16944 + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
16945 + 63 + 1 - info->first_fp_reg_save);
16947 strcpy (rname, ((crtl->calls_eh_return) ?
16948 "*eh_rest_world_r10" : "*rest_world"));
16949 alloc_rname = ggc_strdup (rname);
16951 j = 0;
16952 RTVEC_ELT (p, j++) = gen_rtx_RETURN (VOIDmode);
16953 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
16954 gen_rtx_REG (Pmode,
16955 LR_REGNO));
16956 RTVEC_ELT (p, j++)
16957 = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
16958 /* The instruction pattern requires a clobber here;
16959 it is shared with the restVEC helper. */
16960 RTVEC_ELT (p, j++)
16961 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
16964 /* CR register traditionally saved as CR2. */
16965 rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
16966 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16967 GEN_INT (info->cr_save_offset));
16968 rtx mem = gen_frame_mem (reg_mode, addr);
16970 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16973 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16975 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16976 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16977 GEN_INT (info->gp_save_offset
16978 + reg_size * i));
16979 rtx mem = gen_frame_mem (reg_mode, addr);
16981 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16983 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
16985 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
16986 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16987 GEN_INT (info->altivec_save_offset
16988 + 16 * i));
16989 rtx mem = gen_frame_mem (V4SImode, addr);
16991 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16993 for (i = 0; info->first_fp_reg_save + i <= 63; i++)
16995 rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16996 ? DFmode : SFmode),
16997 info->first_fp_reg_save + i);
16998 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16999 GEN_INT (info->fp_save_offset
17000 + 8 * i));
17001 rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
17002 ? DFmode : SFmode), addr);
17004 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
17006 RTVEC_ELT (p, j++)
17007 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
17008 RTVEC_ELT (p, j++)
17009 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
17010 RTVEC_ELT (p, j++)
17011 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
17012 RTVEC_ELT (p, j++)
17013 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
17014 RTVEC_ELT (p, j++)
17015 = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
17016 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
17018 return;
17021 /* frame_reg_rtx + sp_offset points to the top of this stack frame. */
17022 if (info->push_p)
17023 sp_offset = info->total_size;
17025 /* Restore AltiVec registers if we must do so before adjusting the
17026 stack. */
17027 if (TARGET_ALTIVEC_ABI
17028 && info->altivec_size != 0
17029 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17030 || (DEFAULT_ABI != ABI_V4
17031 && info->altivec_save_offset < (TARGET_32BIT ? -220 : -288))))
17033 int i;
17035 if (use_backchain_to_restore_sp)
17037 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17038 emit_move_insn (frame_reg_rtx,
17039 gen_rtx_MEM (Pmode, sp_reg_rtx));
17040 sp_offset = 0;
17042 else if (frame_pointer_needed)
17043 frame_reg_rtx = hard_frame_pointer_rtx;
17045 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
17046 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
17048 rtx addr, areg, mem;
17050 areg = gen_rtx_REG (Pmode, 0);
17051 emit_move_insn
17052 (areg, GEN_INT (info->altivec_save_offset
17053 + sp_offset
17054 + 16 * (i - info->first_altivec_reg_save)));
17056 /* AltiVec addressing mode is [reg+reg]. */
17057 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
17058 mem = gen_frame_mem (V4SImode, addr);
17060 emit_move_insn (gen_rtx_REG (V4SImode, i), mem);
17064 /* Restore VRSAVE if we must do so before adjusting the stack. */
17065 if (TARGET_ALTIVEC
17066 && TARGET_ALTIVEC_VRSAVE
17067 && info->vrsave_mask != 0
17068 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17069 || (DEFAULT_ABI != ABI_V4
17070 && info->vrsave_save_offset < (TARGET_32BIT ? -220 : -288))))
17072 rtx addr, mem, reg;
17074 if (frame_reg_rtx == sp_reg_rtx)
17076 if (use_backchain_to_restore_sp)
17078 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17079 emit_move_insn (frame_reg_rtx,
17080 gen_rtx_MEM (Pmode, sp_reg_rtx));
17081 sp_offset = 0;
17083 else if (frame_pointer_needed)
17084 frame_reg_rtx = hard_frame_pointer_rtx;
17087 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17088 GEN_INT (info->vrsave_save_offset + sp_offset));
17089 mem = gen_frame_mem (SImode, addr);
17090 reg = gen_rtx_REG (SImode, 12);
17091 emit_move_insn (reg, mem);
17093 emit_insn (generate_set_vrsave (reg, info, 1));
17096 /* If we have a large stack frame, restore the old stack pointer
17097 using the backchain. */
17098 if (use_backchain_to_restore_sp)
17100 if (frame_reg_rtx == sp_reg_rtx)
17102 /* Under V.4, don't reset the stack pointer until after we're done
17103 loading the saved registers. */
17104 if (DEFAULT_ABI == ABI_V4)
17105 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17107 emit_move_insn (frame_reg_rtx,
17108 gen_rtx_MEM (Pmode, sp_reg_rtx));
17109 sp_offset = 0;
17111 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17112 && DEFAULT_ABI == ABI_V4)
17113 /* frame_reg_rtx has been set up by the altivec restore. */
17115 else
17117 emit_move_insn (sp_reg_rtx, frame_reg_rtx);
17118 frame_reg_rtx = sp_reg_rtx;
17121 /* If we have a frame pointer, we can restore the old stack pointer
17122 from it. */
17123 else if (frame_pointer_needed)
17125 frame_reg_rtx = sp_reg_rtx;
17126 if (DEFAULT_ABI == ABI_V4)
17127 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17129 emit_insn (TARGET_32BIT
17130 ? gen_addsi3 (frame_reg_rtx, hard_frame_pointer_rtx,
17131 GEN_INT (info->total_size))
17132 : gen_adddi3 (frame_reg_rtx, hard_frame_pointer_rtx,
17133 GEN_INT (info->total_size)));
17134 sp_offset = 0;
17136 else if (info->push_p
17137 && DEFAULT_ABI != ABI_V4
17138 && !crtl->calls_eh_return)
17140 emit_insn (TARGET_32BIT
17141 ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx,
17142 GEN_INT (info->total_size))
17143 : gen_adddi3 (sp_reg_rtx, sp_reg_rtx,
17144 GEN_INT (info->total_size)));
17145 sp_offset = 0;
17148 /* Restore AltiVec registers if we have not done so already. */
17149 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17150 && TARGET_ALTIVEC_ABI
17151 && info->altivec_size != 0
17152 && (DEFAULT_ABI == ABI_V4
17153 || info->altivec_save_offset >= (TARGET_32BIT ? -220 : -288)))
17155 int i;
17157 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
17158 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
17160 rtx addr, areg, mem;
17162 areg = gen_rtx_REG (Pmode, 0);
17163 emit_move_insn
17164 (areg, GEN_INT (info->altivec_save_offset
17165 + sp_offset
17166 + 16 * (i - info->first_altivec_reg_save)));
17168 /* AltiVec addressing mode is [reg+reg]. */
17169 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
17170 mem = gen_frame_mem (V4SImode, addr);
17172 emit_move_insn (gen_rtx_REG (V4SImode, i), mem);
17176 /* Restore VRSAVE if we have not done so already. */
17177 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17178 && TARGET_ALTIVEC
17179 && TARGET_ALTIVEC_VRSAVE
17180 && info->vrsave_mask != 0
17181 && (DEFAULT_ABI == ABI_V4
17182 || info->vrsave_save_offset >= (TARGET_32BIT ? -220 : -288)))
17184 rtx addr, mem, reg;
17186 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17187 GEN_INT (info->vrsave_save_offset + sp_offset));
17188 mem = gen_frame_mem (SImode, addr);
17189 reg = gen_rtx_REG (SImode, 12);
17190 emit_move_insn (reg, mem);
17192 emit_insn (generate_set_vrsave (reg, info, 1));
17195 /* Get the old lr if we saved it. If we are restoring registers
17196 out-of-line, then the out-of-line routines can do this for us. */
17197 if (restore_lr)
17199 rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx,
17200 info->lr_save_offset + sp_offset);
17202 emit_move_insn (gen_rtx_REG (Pmode, 0), mem);
17205 /* Get the old cr if we saved it. */
17206 if (info->cr_save_p)
17208 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17209 GEN_INT (info->cr_save_offset + sp_offset));
17210 rtx mem = gen_frame_mem (SImode, addr);
17212 emit_move_insn (gen_rtx_REG (SImode, 12), mem);
17215 /* Set LR here to try to overlap restores below. */
17216 if (restore_lr)
17217 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO),
17218 gen_rtx_REG (Pmode, 0));
17220 /* Load exception handler data registers, if needed. */
17221 if (crtl->calls_eh_return)
17223 unsigned int i, regno;
17225 if (TARGET_AIX)
17227 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17228 GEN_INT (sp_offset + 5 * reg_size));
17229 rtx mem = gen_frame_mem (reg_mode, addr);
17231 emit_move_insn (gen_rtx_REG (reg_mode, 2), mem);
17234 for (i = 0; ; ++i)
17236 rtx mem;
17238 regno = EH_RETURN_DATA_REGNO (i);
17239 if (regno == INVALID_REGNUM)
17240 break;
17242 mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
17243 info->ehrd_offset + sp_offset
17244 + reg_size * (int) i);
17246 emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
17250 /* Restore GPRs. This is done as a PARALLEL if we are using
17251 the load-multiple instructions. */
17252 if (TARGET_SPE_ABI
17253 && info->spe_64bit_regs_used != 0
17254 && info->first_gp_reg_save != 32)
17256 /* Determine whether we can address all of the registers that need
17257 to be saved with an offset from the stack pointer that fits in
17258 the small const field for SPE memory instructions. */
17259 int spe_regs_addressable_via_sp
17260 = (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
17261 + (32 - info->first_gp_reg_save - 1) * reg_size)
17262 && restoring_GPRs_inline);
17263 int spe_offset;
17265 if (spe_regs_addressable_via_sp)
17266 spe_offset = info->spe_gp_save_offset + sp_offset;
17267 else
17269 rtx old_frame_reg_rtx = frame_reg_rtx;
17270 /* Make r11 point to the start of the SPE save area. We worried about
17271 not clobbering it when we were saving registers in the prologue.
17272 There's no need to worry here because the static chain is passed
17273 anew to every function. */
17274 int ool_adjust = (restoring_GPRs_inline
17276 : (info->first_gp_reg_save
17277 - (FIRST_SAVRES_REGISTER+1))*8);
17279 if (frame_reg_rtx == sp_reg_rtx)
17280 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17281 emit_insn (gen_addsi3 (frame_reg_rtx, old_frame_reg_rtx,
17282 GEN_INT (info->spe_gp_save_offset
17283 + sp_offset
17284 - ool_adjust)));
17285 /* Keep the invariant that frame_reg_rtx + sp_offset points
17286 at the top of the stack frame. */
17287 sp_offset = -info->spe_gp_save_offset;
17289 spe_offset = 0;
17292 if (restoring_GPRs_inline)
17294 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17295 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
17297 rtx offset, addr, mem;
17299 /* We're doing all this to ensure that the immediate offset
17300 fits into the immediate field of 'evldd'. */
17301 gcc_assert (SPE_CONST_OFFSET_OK (spe_offset + reg_size * i));
17303 offset = GEN_INT (spe_offset + reg_size * i);
17304 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, offset);
17305 mem = gen_rtx_MEM (V2SImode, addr);
17307 emit_move_insn (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
17308 mem);
17311 else
17313 rtx par;
17315 par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
17316 0, reg_mode,
17317 /*savep=*/false, /*gpr=*/true,
17318 /*exitp=*/true);
17319 emit_jump_insn (par);
17321 /* We don't want anybody else emitting things after we jumped
17322 back. */
17323 return;
17326 else if (!restoring_GPRs_inline)
17328 /* We are jumping to an out-of-line function. */
17329 bool can_use_exit = info->first_fp_reg_save == 64;
17330 rtx par;
17332 /* Emit stack reset code if we need it. */
17333 if (can_use_exit)
17334 rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
17335 sp_offset, can_use_exit);
17336 else
17337 emit_insn (gen_addsi3 (gen_rtx_REG (Pmode, 11),
17338 sp_reg_rtx,
17339 GEN_INT (sp_offset - info->fp_size)));
17341 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
17342 info->gp_save_offset, reg_mode,
17343 /*savep=*/false, /*gpr=*/true,
17344 /*exitp=*/can_use_exit);
17346 if (can_use_exit)
17348 if (info->cr_save_p)
17349 rs6000_restore_saved_cr (gen_rtx_REG (SImode, 12),
17350 using_mtcr_multiple);
17352 emit_jump_insn (par);
17354 /* We don't want anybody else emitting things after we jumped
17355 back. */
17356 return;
17358 else
17359 emit_insn (par);
17361 else if (using_load_multiple)
17363 rtvec p;
17364 p = rtvec_alloc (32 - info->first_gp_reg_save);
17365 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17367 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17368 GEN_INT (info->gp_save_offset
17369 + sp_offset
17370 + reg_size * i));
17371 rtx mem = gen_frame_mem (reg_mode, addr);
17373 RTVEC_ELT (p, i) =
17374 gen_rtx_SET (VOIDmode,
17375 gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
17376 mem);
17378 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
17380 else
17382 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17383 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
17385 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17386 GEN_INT (info->gp_save_offset
17387 + sp_offset
17388 + reg_size * i));
17389 rtx mem = gen_frame_mem (reg_mode, addr);
17391 emit_move_insn (gen_rtx_REG (reg_mode,
17392 info->first_gp_reg_save + i), mem);
17396 /* Restore fpr's if we need to do it without calling a function. */
17397 if (restoring_FPRs_inline)
17398 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
17399 if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
17400 && ! call_used_regs[info->first_fp_reg_save+i]))
17402 rtx addr, mem;
17403 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17404 GEN_INT (info->fp_save_offset
17405 + sp_offset
17406 + 8 * i));
17407 mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
17408 ? DFmode : SFmode), addr);
17410 emit_move_insn (gen_rtx_REG (((TARGET_HARD_FLOAT
17411 && TARGET_DOUBLE_FLOAT)
17412 ? DFmode : SFmode),
17413 info->first_fp_reg_save + i),
17414 mem);
17417 /* If we saved cr, restore it here. Just those that were used. */
17418 if (info->cr_save_p)
17419 rs6000_restore_saved_cr (gen_rtx_REG (SImode, 12), using_mtcr_multiple);
17421 /* If this is V.4, unwind the stack pointer after all of the loads
17422 have been done. */
17423 rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
17424 sp_offset, !restoring_FPRs_inline);
17426 if (crtl->calls_eh_return)
17428 rtx sa = EH_RETURN_STACKADJ_RTX;
17429 emit_insn (TARGET_32BIT
17430 ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx, sa)
17431 : gen_adddi3 (sp_reg_rtx, sp_reg_rtx, sa));
17434 if (!sibcall)
17436 rtvec p;
17437 if (! restoring_FPRs_inline)
17438 p = rtvec_alloc (4 + 64 - info->first_fp_reg_save);
17439 else
17440 p = rtvec_alloc (2);
17442 RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode);
17443 RTVEC_ELT (p, 1) = (restoring_FPRs_inline
17444 ? gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 65))
17445 : gen_rtx_CLOBBER (VOIDmode,
17446 gen_rtx_REG (Pmode, 65)));
17448 /* If we have to restore more than two FP registers, branch to the
17449 restore function. It will return to our caller. */
17450 if (! restoring_FPRs_inline)
17452 int i;
17453 rtx sym;
17455 sym = rs6000_savres_routine_sym (info,
17456 /*savep=*/false,
17457 /*gpr=*/false,
17458 /*exitp=*/true);
17459 RTVEC_ELT (p, 2) = gen_rtx_USE (VOIDmode, sym);
17460 RTVEC_ELT (p, 3) = gen_rtx_USE (VOIDmode,
17461 gen_rtx_REG (Pmode, 11));
17462 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
17464 rtx addr, mem;
17465 addr = gen_rtx_PLUS (Pmode, sp_reg_rtx,
17466 GEN_INT (info->fp_save_offset + 8*i));
17467 mem = gen_frame_mem (DFmode, addr);
17469 RTVEC_ELT (p, i+4) =
17470 gen_rtx_SET (VOIDmode,
17471 gen_rtx_REG (DFmode, info->first_fp_reg_save + i),
17472 mem);
17476 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
17480 /* Write function epilogue. */
17482 static void
17483 rs6000_output_function_epilogue (FILE *file,
17484 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
17486 if (! HAVE_epilogue)
17488 rtx insn = get_last_insn ();
17489 /* If the last insn was a BARRIER, we don't have to write anything except
17490 the trace table. */
17491 if (GET_CODE (insn) == NOTE)
17492 insn = prev_nonnote_insn (insn);
17493 if (insn == 0 || GET_CODE (insn) != BARRIER)
17495 /* This is slightly ugly, but at least we don't have two
17496 copies of the epilogue-emitting code. */
17497 start_sequence ();
17499 /* A NOTE_INSN_DELETED is supposed to be at the start
17500 and end of the "toplevel" insn chain. */
17501 emit_note (NOTE_INSN_DELETED);
17502 rs6000_emit_epilogue (FALSE);
17503 emit_note (NOTE_INSN_DELETED);
17505 /* Expand INSN_ADDRESSES so final() doesn't crash. */
17507 rtx insn;
17508 unsigned addr = 0;
17509 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
17511 INSN_ADDRESSES_NEW (insn, addr);
17512 addr += 4;
17516 if (TARGET_DEBUG_STACK)
17517 debug_rtx_list (get_insns (), 100);
17518 final (get_insns (), file, FALSE);
17519 end_sequence ();
17523 #if TARGET_MACHO
17524 macho_branch_islands ();
17525 /* Mach-O doesn't support labels at the end of objects, so if
17526 it looks like we might want one, insert a NOP. */
17528 rtx insn = get_last_insn ();
17529 while (insn
17530 && NOTE_P (insn)
17531 && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
17532 insn = PREV_INSN (insn);
17533 if (insn
17534 && (LABEL_P (insn)
17535 || (NOTE_P (insn)
17536 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL)))
17537 fputs ("\tnop\n", file);
17539 #endif
17541 /* Output a traceback table here. See /usr/include/sys/debug.h for info
17542 on its format.
17544 We don't output a traceback table if -finhibit-size-directive was
17545 used. The documentation for -finhibit-size-directive reads
17546 ``don't output a @code{.size} assembler directive, or anything
17547 else that would cause trouble if the function is split in the
17548 middle, and the two halves are placed at locations far apart in
17549 memory.'' The traceback table has this property, since it
17550 includes the offset from the start of the function to the
17551 traceback table itself.
17553 System V.4 Powerpc's (and the embedded ABI derived from it) use a
17554 different traceback table. */
17555 if (DEFAULT_ABI == ABI_AIX && ! flag_inhibit_size_directive
17556 && rs6000_traceback != traceback_none && !cfun->is_thunk)
17558 const char *fname = NULL;
17559 const char *language_string = lang_hooks.name;
17560 int fixed_parms = 0, float_parms = 0, parm_info = 0;
17561 int i;
17562 int optional_tbtab;
17563 rs6000_stack_t *info = rs6000_stack_info ();
17565 if (rs6000_traceback == traceback_full)
17566 optional_tbtab = 1;
17567 else if (rs6000_traceback == traceback_part)
17568 optional_tbtab = 0;
17569 else
17570 optional_tbtab = !optimize_size && !TARGET_ELF;
17572 if (optional_tbtab)
17574 fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
17575 while (*fname == '.') /* V.4 encodes . in the name */
17576 fname++;
17578 /* Need label immediately before tbtab, so we can compute
17579 its offset from the function start. */
17580 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
17581 ASM_OUTPUT_LABEL (file, fname);
17584 /* The .tbtab pseudo-op can only be used for the first eight
17585 expressions, since it can't handle the possibly variable
17586 length fields that follow. However, if you omit the optional
17587 fields, the assembler outputs zeros for all optional fields
17588 anyways, giving each variable length field is minimum length
17589 (as defined in sys/debug.h). Thus we can not use the .tbtab
17590 pseudo-op at all. */
17592 /* An all-zero word flags the start of the tbtab, for debuggers
17593 that have to find it by searching forward from the entry
17594 point or from the current pc. */
17595 fputs ("\t.long 0\n", file);
17597 /* Tbtab format type. Use format type 0. */
17598 fputs ("\t.byte 0,", file);
17600 /* Language type. Unfortunately, there does not seem to be any
17601 official way to discover the language being compiled, so we
17602 use language_string.
17603 C is 0. Fortran is 1. Pascal is 2. Ada is 3. C++ is 9.
17604 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
17605 a number, so for now use 9. */
17606 if (! strcmp (language_string, "GNU C"))
17607 i = 0;
17608 else if (! strcmp (language_string, "GNU F77")
17609 || ! strcmp (language_string, "GNU Fortran"))
17610 i = 1;
17611 else if (! strcmp (language_string, "GNU Pascal"))
17612 i = 2;
17613 else if (! strcmp (language_string, "GNU Ada"))
17614 i = 3;
17615 else if (! strcmp (language_string, "GNU C++")
17616 || ! strcmp (language_string, "GNU Objective-C++"))
17617 i = 9;
17618 else if (! strcmp (language_string, "GNU Java"))
17619 i = 13;
17620 else if (! strcmp (language_string, "GNU Objective-C"))
17621 i = 14;
17622 else
17623 gcc_unreachable ();
17624 fprintf (file, "%d,", i);
17626 /* 8 single bit fields: global linkage (not set for C extern linkage,
17627 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
17628 from start of procedure stored in tbtab, internal function, function
17629 has controlled storage, function has no toc, function uses fp,
17630 function logs/aborts fp operations. */
17631 /* Assume that fp operations are used if any fp reg must be saved. */
17632 fprintf (file, "%d,",
17633 (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));
17635 /* 6 bitfields: function is interrupt handler, name present in
17636 proc table, function calls alloca, on condition directives
17637 (controls stack walks, 3 bits), saves condition reg, saves
17638 link reg. */
17639 /* The `function calls alloca' bit seems to be set whenever reg 31 is
17640 set up as a frame pointer, even when there is no alloca call. */
17641 fprintf (file, "%d,",
17642 ((optional_tbtab << 6)
17643 | ((optional_tbtab & frame_pointer_needed) << 5)
17644 | (info->cr_save_p << 1)
17645 | (info->lr_save_p)));
17647 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
17648 (6 bits). */
17649 fprintf (file, "%d,",
17650 (info->push_p << 7) | (64 - info->first_fp_reg_save));
17652 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
17653 fprintf (file, "%d,", (32 - first_reg_to_save ()));
17655 if (optional_tbtab)
17657 /* Compute the parameter info from the function decl argument
17658 list. */
17659 tree decl;
17660 int next_parm_info_bit = 31;
17662 for (decl = DECL_ARGUMENTS (current_function_decl);
17663 decl; decl = TREE_CHAIN (decl))
17665 rtx parameter = DECL_INCOMING_RTL (decl);
17666 enum machine_mode mode = GET_MODE (parameter);
17668 if (GET_CODE (parameter) == REG)
17670 if (SCALAR_FLOAT_MODE_P (mode))
17672 int bits;
17674 float_parms++;
17676 switch (mode)
17678 case SFmode:
17679 case SDmode:
17680 bits = 0x2;
17681 break;
17683 case DFmode:
17684 case DDmode:
17685 case TFmode:
17686 case TDmode:
17687 bits = 0x3;
17688 break;
17690 default:
17691 gcc_unreachable ();
17694 /* If only one bit will fit, don't or in this entry. */
17695 if (next_parm_info_bit > 0)
17696 parm_info |= (bits << (next_parm_info_bit - 1));
17697 next_parm_info_bit -= 2;
17699 else
17701 fixed_parms += ((GET_MODE_SIZE (mode)
17702 + (UNITS_PER_WORD - 1))
17703 / UNITS_PER_WORD);
17704 next_parm_info_bit -= 1;
17710 /* Number of fixed point parameters. */
17711 /* This is actually the number of words of fixed point parameters; thus
17712 an 8 byte struct counts as 2; and thus the maximum value is 8. */
17713 fprintf (file, "%d,", fixed_parms);
17715 /* 2 bitfields: number of floating point parameters (7 bits), parameters
17716 all on stack. */
17717 /* This is actually the number of fp registers that hold parameters;
17718 and thus the maximum value is 13. */
17719 /* Set parameters on stack bit if parameters are not in their original
17720 registers, regardless of whether they are on the stack? Xlc
17721 seems to set the bit when not optimizing. */
17722 fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));
17724 if (! optional_tbtab)
17725 return;
17727 /* Optional fields follow. Some are variable length. */
17729 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
17730 11 double float. */
17731 /* There is an entry for each parameter in a register, in the order that
17732 they occur in the parameter list. Any intervening arguments on the
17733 stack are ignored. If the list overflows a long (max possible length
17734 34 bits) then completely leave off all elements that don't fit. */
17735 /* Only emit this long if there was at least one parameter. */
17736 if (fixed_parms || float_parms)
17737 fprintf (file, "\t.long %d\n", parm_info);
17739 /* Offset from start of code to tb table. */
17740 fputs ("\t.long ", file);
17741 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
17742 if (TARGET_AIX)
17743 RS6000_OUTPUT_BASENAME (file, fname);
17744 else
17745 assemble_name (file, fname);
17746 putc ('-', file);
17747 rs6000_output_function_entry (file, fname);
17748 putc ('\n', file);
17750 /* Interrupt handler mask. */
17751 /* Omit this long, since we never set the interrupt handler bit
17752 above. */
17754 /* Number of CTL (controlled storage) anchors. */
17755 /* Omit this long, since the has_ctl bit is never set above. */
17757 /* Displacement into stack of each CTL anchor. */
17758 /* Omit this list of longs, because there are no CTL anchors. */
17760 /* Length of function name. */
17761 if (*fname == '*')
17762 ++fname;
17763 fprintf (file, "\t.short %d\n", (int) strlen (fname));
17765 /* Function name. */
17766 assemble_string (fname, strlen (fname));
17768 /* Register for alloca automatic storage; this is always reg 31.
17769 Only emit this if the alloca bit was set above. */
17770 if (frame_pointer_needed)
17771 fputs ("\t.byte 31\n", file);
17773 fputs ("\t.align 2\n", file);
17777 /* A C compound statement that outputs the assembler code for a thunk
17778 function, used to implement C++ virtual function calls with
17779 multiple inheritance. The thunk acts as a wrapper around a virtual
17780 function, adjusting the implicit object parameter before handing
17781 control off to the real function.
17783 First, emit code to add the integer DELTA to the location that
17784 contains the incoming first argument. Assume that this argument
17785 contains a pointer, and is the one used to pass the `this' pointer
17786 in C++. This is the incoming argument *before* the function
17787 prologue, e.g. `%o0' on a sparc. The addition must preserve the
17788 values of all other incoming arguments.
17790 After the addition, emit code to jump to FUNCTION, which is a
17791 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
17792 not touch the return address. Hence returning from FUNCTION will
17793 return to whoever called the current `thunk'.
17795 The effect must be as if FUNCTION had been called directly with the
17796 adjusted first argument. This macro is responsible for emitting
17797 all of the code for a thunk function; output_function_prologue()
17798 and output_function_epilogue() are not invoked.
17800 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
17801 been extracted from it.) It might possibly be useful on some
17802 targets, but probably not.
17804 If you do not define this macro, the target-independent code in the
17805 C++ frontend will generate a less efficient heavyweight thunk that
17806 calls FUNCTION instead of jumping to it. The generic approach does
17807 not support varargs. */
17809 static void
17810 rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
17811 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
17812 tree function)
17814 rtx this_rtx, insn, funexp;
17816 reload_completed = 1;
17817 epilogue_completed = 1;
17819 /* Mark the end of the (empty) prologue. */
17820 emit_note (NOTE_INSN_PROLOGUE_END);
17822 /* Find the "this" pointer. If the function returns a structure,
17823 the structure return pointer is in r3. */
17824 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
17825 this_rtx = gen_rtx_REG (Pmode, 4);
17826 else
17827 this_rtx = gen_rtx_REG (Pmode, 3);
17829 /* Apply the constant offset, if required. */
17830 if (delta)
17832 rtx delta_rtx = GEN_INT (delta);
17833 emit_insn (TARGET_32BIT
17834 ? gen_addsi3 (this_rtx, this_rtx, delta_rtx)
17835 : gen_adddi3 (this_rtx, this_rtx, delta_rtx));
17838 /* Apply the offset from the vtable, if required. */
17839 if (vcall_offset)
17841 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
17842 rtx tmp = gen_rtx_REG (Pmode, 12);
17844 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
17845 if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
17847 emit_insn (TARGET_32BIT
17848 ? gen_addsi3 (tmp, tmp, vcall_offset_rtx)
17849 : gen_adddi3 (tmp, tmp, vcall_offset_rtx));
17850 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
17852 else
17854 rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);
17856 emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
17858 emit_insn (TARGET_32BIT
17859 ? gen_addsi3 (this_rtx, this_rtx, tmp)
17860 : gen_adddi3 (this_rtx, this_rtx, tmp));
17863 /* Generate a tail call to the target function. */
17864 if (!TREE_USED (function))
17866 assemble_external (function);
17867 TREE_USED (function) = 1;
17869 funexp = XEXP (DECL_RTL (function), 0);
17870 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
17872 #if TARGET_MACHO
17873 if (MACHOPIC_INDIRECT)
17874 funexp = machopic_indirect_call_target (funexp);
17875 #endif
17877 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
17878 generate sibcall RTL explicitly. */
17879 insn = emit_call_insn (
17880 gen_rtx_PARALLEL (VOIDmode,
17881 gen_rtvec (4,
17882 gen_rtx_CALL (VOIDmode,
17883 funexp, const0_rtx),
17884 gen_rtx_USE (VOIDmode, const0_rtx),
17885 gen_rtx_USE (VOIDmode,
17886 gen_rtx_REG (SImode,
17887 LR_REGNO)),
17888 gen_rtx_RETURN (VOIDmode))));
17889 SIBLING_CALL_P (insn) = 1;
17890 emit_barrier ();
17892 /* Run just enough of rest_of_compilation to get the insns emitted.
17893 There's not really enough bulk here to make other passes such as
17894 instruction scheduling worth while. Note that use_thunk calls
17895 assemble_start_function and assemble_end_function. */
17896 insn = get_insns ();
17897 insn_locators_alloc ();
17898 shorten_branches (insn);
17899 final_start_function (insn, file, 1);
17900 final (insn, file, 1);
17901 final_end_function ();
17902 free_after_compilation (cfun);
17904 reload_completed = 0;
17905 epilogue_completed = 0;
17908 /* A quick summary of the various types of 'constant-pool tables'
17909 under PowerPC:
17911 Target Flags Name One table per
17912 AIX (none) AIX TOC object file
17913 AIX -mfull-toc AIX TOC object file
17914 AIX -mminimal-toc AIX minimal TOC translation unit
17915 SVR4/EABI (none) SVR4 SDATA object file
17916 SVR4/EABI -fpic SVR4 pic object file
17917 SVR4/EABI -fPIC SVR4 PIC translation unit
17918 SVR4/EABI -mrelocatable EABI TOC function
17919 SVR4/EABI -maix AIX TOC object file
17920 SVR4/EABI -maix -mminimal-toc
17921 AIX minimal TOC translation unit
17923 Name Reg. Set by entries contains:
17924 made by addrs? fp? sum?
17926 AIX TOC 2 crt0 as Y option option
17927 AIX minimal TOC 30 prolog gcc Y Y option
17928 SVR4 SDATA 13 crt0 gcc N Y N
17929 SVR4 pic 30 prolog ld Y not yet N
17930 SVR4 PIC 30 prolog gcc Y option option
17931 EABI TOC 30 prolog gcc Y option option
17935 /* Hash functions for the hash table. */
17937 static unsigned
17938 rs6000_hash_constant (rtx k)
17940 enum rtx_code code = GET_CODE (k);
17941 enum machine_mode mode = GET_MODE (k);
17942 unsigned result = (code << 3) ^ mode;
17943 const char *format;
17944 int flen, fidx;
17946 format = GET_RTX_FORMAT (code);
17947 flen = strlen (format);
17948 fidx = 0;
17950 switch (code)
17952 case LABEL_REF:
17953 return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));
17955 case CONST_DOUBLE:
17956 if (mode != VOIDmode)
17957 return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
17958 flen = 2;
17959 break;
17961 case CODE_LABEL:
17962 fidx = 3;
17963 break;
17965 default:
17966 break;
17969 for (; fidx < flen; fidx++)
17970 switch (format[fidx])
17972 case 's':
17974 unsigned i, len;
17975 const char *str = XSTR (k, fidx);
17976 len = strlen (str);
17977 result = result * 613 + len;
17978 for (i = 0; i < len; i++)
17979 result = result * 613 + (unsigned) str[i];
17980 break;
17982 case 'u':
17983 case 'e':
17984 result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
17985 break;
17986 case 'i':
17987 case 'n':
17988 result = result * 613 + (unsigned) XINT (k, fidx);
17989 break;
17990 case 'w':
17991 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
17992 result = result * 613 + (unsigned) XWINT (k, fidx);
17993 else
17995 size_t i;
17996 for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
17997 result = result * 613 + (unsigned) (XWINT (k, fidx)
17998 >> CHAR_BIT * i);
18000 break;
18001 case '0':
18002 break;
18003 default:
18004 gcc_unreachable ();
18007 return result;
18010 static unsigned
18011 toc_hash_function (const void *hash_entry)
18013 const struct toc_hash_struct *thc =
18014 (const struct toc_hash_struct *) hash_entry;
18015 return rs6000_hash_constant (thc->key) ^ thc->key_mode;
18018 /* Compare H1 and H2 for equivalence. */
18020 static int
18021 toc_hash_eq (const void *h1, const void *h2)
18023 rtx r1 = ((const struct toc_hash_struct *) h1)->key;
18024 rtx r2 = ((const struct toc_hash_struct *) h2)->key;
18026 if (((const struct toc_hash_struct *) h1)->key_mode
18027 != ((const struct toc_hash_struct *) h2)->key_mode)
18028 return 0;
18030 return rtx_equal_p (r1, r2);
18033 /* These are the names given by the C++ front-end to vtables, and
18034 vtable-like objects. Ideally, this logic should not be here;
18035 instead, there should be some programmatic way of inquiring as
18036 to whether or not an object is a vtable. */
18038 #define VTABLE_NAME_P(NAME) \
18039 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
18040 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
18041 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
18042 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
18043 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
18045 #ifdef NO_DOLLAR_IN_LABEL
18046 /* Return a GGC-allocated character string translating dollar signs in
18047 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
18049 const char *
18050 rs6000_xcoff_strip_dollar (const char *name)
18052 char *strip, *p;
18053 int len;
18055 p = strchr (name, '$');
18057 if (p == 0 || p == name)
18058 return name;
18060 len = strlen (name);
18061 strip = (char *) alloca (len + 1);
18062 strcpy (strip, name);
18063 p = strchr (strip, '$');
18064 while (p)
18066 *p = '_';
18067 p = strchr (p + 1, '$');
18070 return ggc_alloc_string (strip, len);
18072 #endif
18074 void
18075 rs6000_output_symbol_ref (FILE *file, rtx x)
18077 /* Currently C++ toc references to vtables can be emitted before it
18078 is decided whether the vtable is public or private. If this is
18079 the case, then the linker will eventually complain that there is
18080 a reference to an unknown section. Thus, for vtables only,
18081 we emit the TOC reference to reference the symbol and not the
18082 section. */
18083 const char *name = XSTR (x, 0);
18085 if (VTABLE_NAME_P (name))
18087 RS6000_OUTPUT_BASENAME (file, name);
18089 else
18090 assemble_name (file, name);
18093 /* Output a TOC entry. We derive the entry name from what is being
18094 written. */
18096 void
18097 output_toc (FILE *file, rtx x, int labelno, enum machine_mode mode)
18099 char buf[256];
18100 const char *name = buf;
18101 rtx base = x;
18102 HOST_WIDE_INT offset = 0;
18104 gcc_assert (!TARGET_NO_TOC);
18106 /* When the linker won't eliminate them, don't output duplicate
18107 TOC entries (this happens on AIX if there is any kind of TOC,
18108 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
18109 CODE_LABELs. */
18110 if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
18112 struct toc_hash_struct *h;
18113 void * * found;
18115 /* Create toc_hash_table. This can't be done at OVERRIDE_OPTIONS
18116 time because GGC is not initialized at that point. */
18117 if (toc_hash_table == NULL)
18118 toc_hash_table = htab_create_ggc (1021, toc_hash_function,
18119 toc_hash_eq, NULL);
18121 h = GGC_NEW (struct toc_hash_struct);
18122 h->key = x;
18123 h->key_mode = mode;
18124 h->labelno = labelno;
18126 found = htab_find_slot (toc_hash_table, h, INSERT);
18127 if (*found == NULL)
18128 *found = h;
18129 else /* This is indeed a duplicate.
18130 Set this label equal to that label. */
18132 fputs ("\t.set ", file);
18133 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
18134 fprintf (file, "%d,", labelno);
18135 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
18136 fprintf (file, "%d\n", ((*(const struct toc_hash_struct **)
18137 found)->labelno));
18138 return;
18142 /* If we're going to put a double constant in the TOC, make sure it's
18143 aligned properly when strict alignment is on. */
18144 if (GET_CODE (x) == CONST_DOUBLE
18145 && STRICT_ALIGNMENT
18146 && GET_MODE_BITSIZE (mode) >= 64
18147 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
18148 ASM_OUTPUT_ALIGN (file, 3);
18151 (*targetm.asm_out.internal_label) (file, "LC", labelno);
18153 /* Handle FP constants specially. Note that if we have a minimal
18154 TOC, things we put here aren't actually in the TOC, so we can allow
18155 FP constants. */
18156 if (GET_CODE (x) == CONST_DOUBLE &&
18157 (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode))
18159 REAL_VALUE_TYPE rv;
18160 long k[4];
18162 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
18163 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18164 REAL_VALUE_TO_TARGET_DECIMAL128 (rv, k);
18165 else
18166 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
18168 if (TARGET_64BIT)
18170 if (TARGET_MINIMAL_TOC)
18171 fputs (DOUBLE_INT_ASM_OP, file);
18172 else
18173 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18174 k[0] & 0xffffffff, k[1] & 0xffffffff,
18175 k[2] & 0xffffffff, k[3] & 0xffffffff);
18176 fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
18177 k[0] & 0xffffffff, k[1] & 0xffffffff,
18178 k[2] & 0xffffffff, k[3] & 0xffffffff);
18179 return;
18181 else
18183 if (TARGET_MINIMAL_TOC)
18184 fputs ("\t.long ", file);
18185 else
18186 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18187 k[0] & 0xffffffff, k[1] & 0xffffffff,
18188 k[2] & 0xffffffff, k[3] & 0xffffffff);
18189 fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
18190 k[0] & 0xffffffff, k[1] & 0xffffffff,
18191 k[2] & 0xffffffff, k[3] & 0xffffffff);
18192 return;
18195 else if (GET_CODE (x) == CONST_DOUBLE &&
18196 (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
18198 REAL_VALUE_TYPE rv;
18199 long k[2];
18201 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
18203 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18204 REAL_VALUE_TO_TARGET_DECIMAL64 (rv, k);
18205 else
18206 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
18208 if (TARGET_64BIT)
18210 if (TARGET_MINIMAL_TOC)
18211 fputs (DOUBLE_INT_ASM_OP, file);
18212 else
18213 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
18214 k[0] & 0xffffffff, k[1] & 0xffffffff);
18215 fprintf (file, "0x%lx%08lx\n",
18216 k[0] & 0xffffffff, k[1] & 0xffffffff);
18217 return;
18219 else
18221 if (TARGET_MINIMAL_TOC)
18222 fputs ("\t.long ", file);
18223 else
18224 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
18225 k[0] & 0xffffffff, k[1] & 0xffffffff);
18226 fprintf (file, "0x%lx,0x%lx\n",
18227 k[0] & 0xffffffff, k[1] & 0xffffffff);
18228 return;
18231 else if (GET_CODE (x) == CONST_DOUBLE &&
18232 (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
18234 REAL_VALUE_TYPE rv;
18235 long l;
18237 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
18238 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18239 REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
18240 else
18241 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
18243 if (TARGET_64BIT)
18245 if (TARGET_MINIMAL_TOC)
18246 fputs (DOUBLE_INT_ASM_OP, file);
18247 else
18248 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
18249 fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
18250 return;
18252 else
18254 if (TARGET_MINIMAL_TOC)
18255 fputs ("\t.long ", file);
18256 else
18257 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
18258 fprintf (file, "0x%lx\n", l & 0xffffffff);
18259 return;
18262 else if (GET_MODE (x) == VOIDmode
18263 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
18265 unsigned HOST_WIDE_INT low;
18266 HOST_WIDE_INT high;
18268 if (GET_CODE (x) == CONST_DOUBLE)
18270 low = CONST_DOUBLE_LOW (x);
18271 high = CONST_DOUBLE_HIGH (x);
18273 else
18274 #if HOST_BITS_PER_WIDE_INT == 32
18276 low = INTVAL (x);
18277 high = (low & 0x80000000) ? ~0 : 0;
18279 #else
18281 low = INTVAL (x) & 0xffffffff;
18282 high = (HOST_WIDE_INT) INTVAL (x) >> 32;
18284 #endif
18286 /* TOC entries are always Pmode-sized, but since this
18287 is a bigendian machine then if we're putting smaller
18288 integer constants in the TOC we have to pad them.
18289 (This is still a win over putting the constants in
18290 a separate constant pool, because then we'd have
18291 to have both a TOC entry _and_ the actual constant.)
18293 For a 32-bit target, CONST_INT values are loaded and shifted
18294 entirely within `low' and can be stored in one TOC entry. */
18296 /* It would be easy to make this work, but it doesn't now. */
18297 gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));
18299 if (POINTER_SIZE > GET_MODE_BITSIZE (mode))
18301 #if HOST_BITS_PER_WIDE_INT == 32
18302 lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode),
18303 POINTER_SIZE, &low, &high, 0);
18304 #else
18305 low |= high << 32;
18306 low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
18307 high = (HOST_WIDE_INT) low >> 32;
18308 low &= 0xffffffff;
18309 #endif
18312 if (TARGET_64BIT)
18314 if (TARGET_MINIMAL_TOC)
18315 fputs (DOUBLE_INT_ASM_OP, file);
18316 else
18317 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
18318 (long) high & 0xffffffff, (long) low & 0xffffffff);
18319 fprintf (file, "0x%lx%08lx\n",
18320 (long) high & 0xffffffff, (long) low & 0xffffffff);
18321 return;
18323 else
18325 if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
18327 if (TARGET_MINIMAL_TOC)
18328 fputs ("\t.long ", file);
18329 else
18330 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
18331 (long) high & 0xffffffff, (long) low & 0xffffffff);
18332 fprintf (file, "0x%lx,0x%lx\n",
18333 (long) high & 0xffffffff, (long) low & 0xffffffff);
18335 else
18337 if (TARGET_MINIMAL_TOC)
18338 fputs ("\t.long ", file);
18339 else
18340 fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
18341 fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
18343 return;
18347 if (GET_CODE (x) == CONST)
18349 gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS);
18351 base = XEXP (XEXP (x, 0), 0);
18352 offset = INTVAL (XEXP (XEXP (x, 0), 1));
18355 switch (GET_CODE (base))
18357 case SYMBOL_REF:
18358 name = XSTR (base, 0);
18359 break;
18361 case LABEL_REF:
18362 ASM_GENERATE_INTERNAL_LABEL (buf, "L",
18363 CODE_LABEL_NUMBER (XEXP (base, 0)));
18364 break;
18366 case CODE_LABEL:
18367 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
18368 break;
18370 default:
18371 gcc_unreachable ();
18374 if (TARGET_MINIMAL_TOC)
18375 fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
18376 else
18378 fputs ("\t.tc ", file);
18379 RS6000_OUTPUT_BASENAME (file, name);
18381 if (offset < 0)
18382 fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
18383 else if (offset)
18384 fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);
18386 fputs ("[TC],", file);
18389 /* Currently C++ toc references to vtables can be emitted before it
18390 is decided whether the vtable is public or private. If this is
18391 the case, then the linker will eventually complain that there is
18392 a TOC reference to an unknown section. Thus, for vtables only,
18393 we emit the TOC reference to reference the symbol and not the
18394 section. */
18395 if (VTABLE_NAME_P (name))
18397 RS6000_OUTPUT_BASENAME (file, name);
18398 if (offset < 0)
18399 fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
18400 else if (offset > 0)
18401 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
18403 else
18404 output_addr_const (file, x);
18405 putc ('\n', file);
18408 /* Output an assembler pseudo-op to write an ASCII string of N characters
18409 starting at P to FILE.
18411 On the RS/6000, we have to do this using the .byte operation and
18412 write out special characters outside the quoted string.
18413 Also, the assembler is broken; very long strings are truncated,
18414 so we must artificially break them up early. */
18416 void
18417 output_ascii (FILE *file, const char *p, int n)
18419 char c;
18420 int i, count_string;
18421 const char *for_string = "\t.byte \"";
18422 const char *for_decimal = "\t.byte ";
18423 const char *to_close = NULL;
18425 count_string = 0;
18426 for (i = 0; i < n; i++)
18428 c = *p++;
18429 if (c >= ' ' && c < 0177)
18431 if (for_string)
18432 fputs (for_string, file);
18433 putc (c, file);
18435 /* Write two quotes to get one. */
18436 if (c == '"')
18438 putc (c, file);
18439 ++count_string;
18442 for_string = NULL;
18443 for_decimal = "\"\n\t.byte ";
18444 to_close = "\"\n";
18445 ++count_string;
18447 if (count_string >= 512)
18449 fputs (to_close, file);
18451 for_string = "\t.byte \"";
18452 for_decimal = "\t.byte ";
18453 to_close = NULL;
18454 count_string = 0;
18457 else
18459 if (for_decimal)
18460 fputs (for_decimal, file);
18461 fprintf (file, "%d", c);
18463 for_string = "\n\t.byte \"";
18464 for_decimal = ", ";
18465 to_close = "\n";
18466 count_string = 0;
18470 /* Now close the string if we have written one. Then end the line. */
18471 if (to_close)
18472 fputs (to_close, file);
18475 /* Generate a unique section name for FILENAME for a section type
18476 represented by SECTION_DESC. Output goes into BUF.
18478 SECTION_DESC can be any string, as long as it is different for each
18479 possible section type.
18481 We name the section in the same manner as xlc. The name begins with an
18482 underscore followed by the filename (after stripping any leading directory
18483 names) with the last period replaced by the string SECTION_DESC. If
18484 FILENAME does not contain a period, SECTION_DESC is appended to the end of
18485 the name. */
18487 void
18488 rs6000_gen_section_name (char **buf, const char *filename,
18489 const char *section_desc)
18491 const char *q, *after_last_slash, *last_period = 0;
18492 char *p;
18493 int len;
18495 after_last_slash = filename;
18496 for (q = filename; *q; q++)
18498 if (*q == '/')
18499 after_last_slash = q + 1;
18500 else if (*q == '.')
18501 last_period = q;
18504 len = strlen (after_last_slash) + strlen (section_desc) + 2;
18505 *buf = (char *) xmalloc (len);
18507 p = *buf;
18508 *p++ = '_';
18510 for (q = after_last_slash; *q; q++)
18512 if (q == last_period)
18514 strcpy (p, section_desc);
18515 p += strlen (section_desc);
18516 break;
18519 else if (ISALNUM (*q))
18520 *p++ = *q;
18523 if (last_period == 0)
18524 strcpy (p, section_desc);
18525 else
18526 *p = '\0';
18529 /* Emit profile function. */
18531 void
18532 output_profile_hook (int labelno ATTRIBUTE_UNUSED)
18534 /* Non-standard profiling for kernels, which just saves LR then calls
18535 _mcount without worrying about arg saves. The idea is to change
18536 the function prologue as little as possible as it isn't easy to
18537 account for arg save/restore code added just for _mcount. */
18538 if (TARGET_PROFILE_KERNEL)
18539 return;
18541 if (DEFAULT_ABI == ABI_AIX)
18543 #ifndef NO_PROFILE_COUNTERS
18544 # define NO_PROFILE_COUNTERS 0
18545 #endif
18546 if (NO_PROFILE_COUNTERS)
18547 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
18548 LCT_NORMAL, VOIDmode, 0);
18549 else
18551 char buf[30];
18552 const char *label_name;
18553 rtx fun;
18555 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
18556 label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
18557 fun = gen_rtx_SYMBOL_REF (Pmode, label_name);
18559 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
18560 LCT_NORMAL, VOIDmode, 1, fun, Pmode);
18563 else if (DEFAULT_ABI == ABI_DARWIN)
18565 const char *mcount_name = RS6000_MCOUNT;
18566 int caller_addr_regno = LR_REGNO;
18568 /* Be conservative and always set this, at least for now. */
18569 crtl->uses_pic_offset_table = 1;
18571 #if TARGET_MACHO
18572 /* For PIC code, set up a stub and collect the caller's address
18573 from r0, which is where the prologue puts it. */
18574 if (MACHOPIC_INDIRECT
18575 && crtl->uses_pic_offset_table)
18576 caller_addr_regno = 0;
18577 #endif
18578 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
18579 LCT_NORMAL, VOIDmode, 1,
18580 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
18584 /* Write function profiler code. */
18586 void
18587 output_function_profiler (FILE *file, int labelno)
18589 char buf[100];
18591 switch (DEFAULT_ABI)
18593 default:
18594 gcc_unreachable ();
18596 case ABI_V4:
18597 if (!TARGET_32BIT)
18599 warning (0, "no profiling of 64-bit code for this ABI");
18600 return;
18602 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
18603 fprintf (file, "\tmflr %s\n", reg_names[0]);
18604 if (NO_PROFILE_COUNTERS)
18606 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18607 reg_names[0], reg_names[1]);
18609 else if (TARGET_SECURE_PLT && flag_pic)
18611 asm_fprintf (file, "\tbcl 20,31,1f\n1:\n\t{st|stw} %s,4(%s)\n",
18612 reg_names[0], reg_names[1]);
18613 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
18614 asm_fprintf (file, "\t{cau|addis} %s,%s,",
18615 reg_names[12], reg_names[12]);
18616 assemble_name (file, buf);
18617 asm_fprintf (file, "-1b@ha\n\t{cal|la} %s,", reg_names[0]);
18618 assemble_name (file, buf);
18619 asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
18621 else if (flag_pic == 1)
18623 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
18624 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18625 reg_names[0], reg_names[1]);
18626 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
18627 asm_fprintf (file, "\t{l|lwz} %s,", reg_names[0]);
18628 assemble_name (file, buf);
18629 asm_fprintf (file, "@got(%s)\n", reg_names[12]);
18631 else if (flag_pic > 1)
18633 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18634 reg_names[0], reg_names[1]);
18635 /* Now, we need to get the address of the label. */
18636 fputs ("\tbcl 20,31,1f\n\t.long ", file);
18637 assemble_name (file, buf);
18638 fputs ("-.\n1:", file);
18639 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
18640 asm_fprintf (file, "\t{l|lwz} %s,0(%s)\n",
18641 reg_names[0], reg_names[11]);
18642 asm_fprintf (file, "\t{cax|add} %s,%s,%s\n",
18643 reg_names[0], reg_names[0], reg_names[11]);
18645 else
18647 asm_fprintf (file, "\t{liu|lis} %s,", reg_names[12]);
18648 assemble_name (file, buf);
18649 fputs ("@ha\n", file);
18650 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18651 reg_names[0], reg_names[1]);
18652 asm_fprintf (file, "\t{cal|la} %s,", reg_names[0]);
18653 assemble_name (file, buf);
18654 asm_fprintf (file, "@l(%s)\n", reg_names[12]);
18657 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
18658 fprintf (file, "\tbl %s%s\n",
18659 RS6000_MCOUNT, flag_pic ? "@plt" : "");
18660 break;
18662 case ABI_AIX:
18663 case ABI_DARWIN:
18664 if (!TARGET_PROFILE_KERNEL)
18666 /* Don't do anything, done in output_profile_hook (). */
18668 else
18670 gcc_assert (!TARGET_32BIT);
18672 asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
18673 asm_fprintf (file, "\tstd %s,16(%s)\n", reg_names[0], reg_names[1]);
18675 if (cfun->static_chain_decl != NULL)
18677 asm_fprintf (file, "\tstd %s,24(%s)\n",
18678 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
18679 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
18680 asm_fprintf (file, "\tld %s,24(%s)\n",
18681 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
18683 else
18684 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
18686 break;
18692 /* The following variable value is the last issued insn. */
18694 static rtx last_scheduled_insn;
18696 /* The following variable helps to balance issuing of load and
18697 store instructions */
18699 static int load_store_pendulum;
18701 /* Power4 load update and store update instructions are cracked into a
18702 load or store and an integer insn which are executed in the same cycle.
18703 Branches have their own dispatch slot which does not count against the
18704 GCC issue rate, but it changes the program flow so there are no other
18705 instructions to issue in this cycle. */
18707 static int
18708 rs6000_variable_issue (FILE *stream ATTRIBUTE_UNUSED,
18709 int verbose ATTRIBUTE_UNUSED,
18710 rtx insn, int more)
18712 last_scheduled_insn = insn;
18713 if (GET_CODE (PATTERN (insn)) == USE
18714 || GET_CODE (PATTERN (insn)) == CLOBBER)
18716 cached_can_issue_more = more;
18717 return cached_can_issue_more;
18720 if (insn_terminates_group_p (insn, current_group))
18722 cached_can_issue_more = 0;
18723 return cached_can_issue_more;
18726 /* If no reservation, but reach here */
18727 if (recog_memoized (insn) < 0)
18728 return more;
18730 if (rs6000_sched_groups)
18732 if (is_microcoded_insn (insn))
18733 cached_can_issue_more = 0;
18734 else if (is_cracked_insn (insn))
18735 cached_can_issue_more = more > 2 ? more - 2 : 0;
18736 else
18737 cached_can_issue_more = more - 1;
18739 return cached_can_issue_more;
18742 if (rs6000_cpu_attr == CPU_CELL && is_nonpipeline_insn (insn))
18743 return 0;
18745 cached_can_issue_more = more - 1;
18746 return cached_can_issue_more;
18749 /* Adjust the cost of a scheduling dependency. Return the new cost of
18750 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
18752 static int
18753 rs6000_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
18755 enum attr_type attr_type;
18757 if (! recog_memoized (insn))
18758 return 0;
18760 switch (REG_NOTE_KIND (link))
18762 case REG_DEP_TRUE:
18764 /* Data dependency; DEP_INSN writes a register that INSN reads
18765 some cycles later. */
18767 /* Separate a load from a narrower, dependent store. */
18768 if (rs6000_sched_groups
18769 && GET_CODE (PATTERN (insn)) == SET
18770 && GET_CODE (PATTERN (dep_insn)) == SET
18771 && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
18772 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
18773 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
18774 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
18775 return cost + 14;
18777 attr_type = get_attr_type (insn);
18779 switch (attr_type)
18781 case TYPE_JMPREG:
18782 /* Tell the first scheduling pass about the latency between
18783 a mtctr and bctr (and mtlr and br/blr). The first
18784 scheduling pass will not know about this latency since
18785 the mtctr instruction, which has the latency associated
18786 to it, will be generated by reload. */
18787 return TARGET_POWER ? 5 : 4;
18788 case TYPE_BRANCH:
18789 /* Leave some extra cycles between a compare and its
18790 dependent branch, to inhibit expensive mispredicts. */
18791 if ((rs6000_cpu_attr == CPU_PPC603
18792 || rs6000_cpu_attr == CPU_PPC604
18793 || rs6000_cpu_attr == CPU_PPC604E
18794 || rs6000_cpu_attr == CPU_PPC620
18795 || rs6000_cpu_attr == CPU_PPC630
18796 || rs6000_cpu_attr == CPU_PPC750
18797 || rs6000_cpu_attr == CPU_PPC7400
18798 || rs6000_cpu_attr == CPU_PPC7450
18799 || rs6000_cpu_attr == CPU_POWER4
18800 || rs6000_cpu_attr == CPU_POWER5
18801 || rs6000_cpu_attr == CPU_CELL)
18802 && recog_memoized (dep_insn)
18803 && (INSN_CODE (dep_insn) >= 0))
18805 switch (get_attr_type (dep_insn))
18807 case TYPE_CMP:
18808 case TYPE_COMPARE:
18809 case TYPE_DELAYED_COMPARE:
18810 case TYPE_IMUL_COMPARE:
18811 case TYPE_LMUL_COMPARE:
18812 case TYPE_FPCOMPARE:
18813 case TYPE_CR_LOGICAL:
18814 case TYPE_DELAYED_CR:
18815 return cost + 2;
18816 default:
18817 break;
18819 break;
18821 case TYPE_STORE:
18822 case TYPE_STORE_U:
18823 case TYPE_STORE_UX:
18824 case TYPE_FPSTORE:
18825 case TYPE_FPSTORE_U:
18826 case TYPE_FPSTORE_UX:
18827 if ((rs6000_cpu == PROCESSOR_POWER6)
18828 && recog_memoized (dep_insn)
18829 && (INSN_CODE (dep_insn) >= 0))
18832 if (GET_CODE (PATTERN (insn)) != SET)
18833 /* If this happens, we have to extend this to schedule
18834 optimally. Return default for now. */
18835 return cost;
18837 /* Adjust the cost for the case where the value written
18838 by a fixed point operation is used as the address
18839 gen value on a store. */
18840 switch (get_attr_type (dep_insn))
18842 case TYPE_LOAD:
18843 case TYPE_LOAD_U:
18844 case TYPE_LOAD_UX:
18845 case TYPE_CNTLZ:
18847 if (! store_data_bypass_p (dep_insn, insn))
18848 return 4;
18849 break;
18851 case TYPE_LOAD_EXT:
18852 case TYPE_LOAD_EXT_U:
18853 case TYPE_LOAD_EXT_UX:
18854 case TYPE_VAR_SHIFT_ROTATE:
18855 case TYPE_VAR_DELAYED_COMPARE:
18857 if (! store_data_bypass_p (dep_insn, insn))
18858 return 6;
18859 break;
18861 case TYPE_INTEGER:
18862 case TYPE_COMPARE:
18863 case TYPE_FAST_COMPARE:
18864 case TYPE_EXTS:
18865 case TYPE_SHIFT:
18866 case TYPE_INSERT_WORD:
18867 case TYPE_INSERT_DWORD:
18868 case TYPE_FPLOAD_U:
18869 case TYPE_FPLOAD_UX:
18870 case TYPE_STORE_U:
18871 case TYPE_STORE_UX:
18872 case TYPE_FPSTORE_U:
18873 case TYPE_FPSTORE_UX:
18875 if (! store_data_bypass_p (dep_insn, insn))
18876 return 3;
18877 break;
18879 case TYPE_IMUL:
18880 case TYPE_IMUL2:
18881 case TYPE_IMUL3:
18882 case TYPE_LMUL:
18883 case TYPE_IMUL_COMPARE:
18884 case TYPE_LMUL_COMPARE:
18886 if (! store_data_bypass_p (dep_insn, insn))
18887 return 17;
18888 break;
18890 case TYPE_IDIV:
18892 if (! store_data_bypass_p (dep_insn, insn))
18893 return 45;
18894 break;
18896 case TYPE_LDIV:
18898 if (! store_data_bypass_p (dep_insn, insn))
18899 return 57;
18900 break;
18902 default:
18903 break;
18906 break;
18908 case TYPE_LOAD:
18909 case TYPE_LOAD_U:
18910 case TYPE_LOAD_UX:
18911 case TYPE_LOAD_EXT:
18912 case TYPE_LOAD_EXT_U:
18913 case TYPE_LOAD_EXT_UX:
18914 if ((rs6000_cpu == PROCESSOR_POWER6)
18915 && recog_memoized (dep_insn)
18916 && (INSN_CODE (dep_insn) >= 0))
18919 /* Adjust the cost for the case where the value written
18920 by a fixed point instruction is used within the address
18921 gen portion of a subsequent load(u)(x) */
18922 switch (get_attr_type (dep_insn))
18924 case TYPE_LOAD:
18925 case TYPE_LOAD_U:
18926 case TYPE_LOAD_UX:
18927 case TYPE_CNTLZ:
18929 if (set_to_load_agen (dep_insn, insn))
18930 return 4;
18931 break;
18933 case TYPE_LOAD_EXT:
18934 case TYPE_LOAD_EXT_U:
18935 case TYPE_LOAD_EXT_UX:
18936 case TYPE_VAR_SHIFT_ROTATE:
18937 case TYPE_VAR_DELAYED_COMPARE:
18939 if (set_to_load_agen (dep_insn, insn))
18940 return 6;
18941 break;
18943 case TYPE_INTEGER:
18944 case TYPE_COMPARE:
18945 case TYPE_FAST_COMPARE:
18946 case TYPE_EXTS:
18947 case TYPE_SHIFT:
18948 case TYPE_INSERT_WORD:
18949 case TYPE_INSERT_DWORD:
18950 case TYPE_FPLOAD_U:
18951 case TYPE_FPLOAD_UX:
18952 case TYPE_STORE_U:
18953 case TYPE_STORE_UX:
18954 case TYPE_FPSTORE_U:
18955 case TYPE_FPSTORE_UX:
18957 if (set_to_load_agen (dep_insn, insn))
18958 return 3;
18959 break;
18961 case TYPE_IMUL:
18962 case TYPE_IMUL2:
18963 case TYPE_IMUL3:
18964 case TYPE_LMUL:
18965 case TYPE_IMUL_COMPARE:
18966 case TYPE_LMUL_COMPARE:
18968 if (set_to_load_agen (dep_insn, insn))
18969 return 17;
18970 break;
18972 case TYPE_IDIV:
18974 if (set_to_load_agen (dep_insn, insn))
18975 return 45;
18976 break;
18978 case TYPE_LDIV:
18980 if (set_to_load_agen (dep_insn, insn))
18981 return 57;
18982 break;
18984 default:
18985 break;
18988 break;
18990 case TYPE_FPLOAD:
18991 if ((rs6000_cpu == PROCESSOR_POWER6)
18992 && recog_memoized (dep_insn)
18993 && (INSN_CODE (dep_insn) >= 0)
18994 && (get_attr_type (dep_insn) == TYPE_MFFGPR))
18995 return 2;
18997 default:
18998 break;
19001 /* Fall out to return default cost. */
19003 break;
19005 case REG_DEP_OUTPUT:
19006 /* Output dependency; DEP_INSN writes a register that INSN writes some
19007 cycles later. */
19008 if ((rs6000_cpu == PROCESSOR_POWER6)
19009 && recog_memoized (dep_insn)
19010 && (INSN_CODE (dep_insn) >= 0))
19012 attr_type = get_attr_type (insn);
19014 switch (attr_type)
19016 case TYPE_FP:
19017 if (get_attr_type (dep_insn) == TYPE_FP)
19018 return 1;
19019 break;
19020 case TYPE_FPLOAD:
19021 if (get_attr_type (dep_insn) == TYPE_MFFGPR)
19022 return 2;
19023 break;
19024 default:
19025 break;
19028 case REG_DEP_ANTI:
19029 /* Anti dependency; DEP_INSN reads a register that INSN writes some
19030 cycles later. */
19031 return 0;
19033 default:
19034 gcc_unreachable ();
19037 return cost;
19040 /* The function returns a true if INSN is microcoded.
19041 Return false otherwise. */
19043 static bool
19044 is_microcoded_insn (rtx insn)
19046 if (!insn || !INSN_P (insn)
19047 || GET_CODE (PATTERN (insn)) == USE
19048 || GET_CODE (PATTERN (insn)) == CLOBBER)
19049 return false;
19051 if (rs6000_cpu_attr == CPU_CELL)
19052 return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;
19054 if (rs6000_sched_groups)
19056 enum attr_type type = get_attr_type (insn);
19057 if (type == TYPE_LOAD_EXT_U
19058 || type == TYPE_LOAD_EXT_UX
19059 || type == TYPE_LOAD_UX
19060 || type == TYPE_STORE_UX
19061 || type == TYPE_MFCR)
19062 return true;
19065 return false;
19068 /* The function returns true if INSN is cracked into 2 instructions
19069 by the processor (and therefore occupies 2 issue slots). */
19071 static bool
19072 is_cracked_insn (rtx insn)
19074 if (!insn || !INSN_P (insn)
19075 || GET_CODE (PATTERN (insn)) == USE
19076 || GET_CODE (PATTERN (insn)) == CLOBBER)
19077 return false;
19079 if (rs6000_sched_groups)
19081 enum attr_type type = get_attr_type (insn);
19082 if (type == TYPE_LOAD_U || type == TYPE_STORE_U
19083 || type == TYPE_FPLOAD_U || type == TYPE_FPSTORE_U
19084 || type == TYPE_FPLOAD_UX || type == TYPE_FPSTORE_UX
19085 || type == TYPE_LOAD_EXT || type == TYPE_DELAYED_CR
19086 || type == TYPE_COMPARE || type == TYPE_DELAYED_COMPARE
19087 || type == TYPE_IMUL_COMPARE || type == TYPE_LMUL_COMPARE
19088 || type == TYPE_IDIV || type == TYPE_LDIV
19089 || type == TYPE_INSERT_WORD)
19090 return true;
19093 return false;
19096 /* The function returns true if INSN can be issued only from
19097 the branch slot. */
19099 static bool
19100 is_branch_slot_insn (rtx insn)
19102 if (!insn || !INSN_P (insn)
19103 || GET_CODE (PATTERN (insn)) == USE
19104 || GET_CODE (PATTERN (insn)) == CLOBBER)
19105 return false;
19107 if (rs6000_sched_groups)
19109 enum attr_type type = get_attr_type (insn);
19110 if (type == TYPE_BRANCH || type == TYPE_JMPREG)
19111 return true;
19112 return false;
19115 return false;
19118 /* The function returns true if out_inst sets a value that is
19119 used in the address generation computation of in_insn */
19120 static bool
19121 set_to_load_agen (rtx out_insn, rtx in_insn)
19123 rtx out_set, in_set;
19125 /* For performance reasons, only handle the simple case where
19126 both loads are a single_set. */
19127 out_set = single_set (out_insn);
19128 if (out_set)
19130 in_set = single_set (in_insn);
19131 if (in_set)
19132 return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
19135 return false;
19138 /* The function returns true if the target storage location of
19139 out_insn is adjacent to the target storage location of in_insn */
19140 /* Return 1 if memory locations are adjacent. */
19142 static bool
19143 adjacent_mem_locations (rtx insn1, rtx insn2)
19146 rtx a = get_store_dest (PATTERN (insn1));
19147 rtx b = get_store_dest (PATTERN (insn2));
19149 if ((GET_CODE (XEXP (a, 0)) == REG
19150 || (GET_CODE (XEXP (a, 0)) == PLUS
19151 && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
19152 && (GET_CODE (XEXP (b, 0)) == REG
19153 || (GET_CODE (XEXP (b, 0)) == PLUS
19154 && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
19156 HOST_WIDE_INT val0 = 0, val1 = 0, val_diff;
19157 rtx reg0, reg1;
19159 if (GET_CODE (XEXP (a, 0)) == PLUS)
19161 reg0 = XEXP (XEXP (a, 0), 0);
19162 val0 = INTVAL (XEXP (XEXP (a, 0), 1));
19164 else
19165 reg0 = XEXP (a, 0);
19167 if (GET_CODE (XEXP (b, 0)) == PLUS)
19169 reg1 = XEXP (XEXP (b, 0), 0);
19170 val1 = INTVAL (XEXP (XEXP (b, 0), 1));
19172 else
19173 reg1 = XEXP (b, 0);
19175 val_diff = val1 - val0;
19177 return ((REGNO (reg0) == REGNO (reg1))
19178 && ((MEM_SIZE (a) && val_diff == INTVAL (MEM_SIZE (a)))
19179 || (MEM_SIZE (b) && val_diff == -INTVAL (MEM_SIZE (b)))));
19182 return false;
19185 /* A C statement (sans semicolon) to update the integer scheduling
19186 priority INSN_PRIORITY (INSN). Increase the priority to execute the
19187 INSN earlier, reduce the priority to execute INSN later. Do not
19188 define this macro if you do not need to adjust the scheduling
19189 priorities of insns. */
19191 static int
19192 rs6000_adjust_priority (rtx insn ATTRIBUTE_UNUSED, int priority)
19194 /* On machines (like the 750) which have asymmetric integer units,
19195 where one integer unit can do multiply and divides and the other
19196 can't, reduce the priority of multiply/divide so it is scheduled
19197 before other integer operations. */
19199 #if 0
19200 if (! INSN_P (insn))
19201 return priority;
19203 if (GET_CODE (PATTERN (insn)) == USE)
19204 return priority;
19206 switch (rs6000_cpu_attr) {
19207 case CPU_PPC750:
19208 switch (get_attr_type (insn))
19210 default:
19211 break;
19213 case TYPE_IMUL:
19214 case TYPE_IDIV:
19215 fprintf (stderr, "priority was %#x (%d) before adjustment\n",
19216 priority, priority);
19217 if (priority >= 0 && priority < 0x01000000)
19218 priority >>= 3;
19219 break;
19222 #endif
19224 if (insn_must_be_first_in_group (insn)
19225 && reload_completed
19226 && current_sched_info->sched_max_insns_priority
19227 && rs6000_sched_restricted_insns_priority)
19230 /* Prioritize insns that can be dispatched only in the first
19231 dispatch slot. */
19232 if (rs6000_sched_restricted_insns_priority == 1)
19233 /* Attach highest priority to insn. This means that in
19234 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
19235 precede 'priority' (critical path) considerations. */
19236 return current_sched_info->sched_max_insns_priority;
19237 else if (rs6000_sched_restricted_insns_priority == 2)
19238 /* Increase priority of insn by a minimal amount. This means that in
19239 haifa-sched.c:ready_sort(), only 'priority' (critical path)
19240 considerations precede dispatch-slot restriction considerations. */
19241 return (priority + 1);
19244 if (rs6000_cpu == PROCESSOR_POWER6
19245 && ((load_store_pendulum == -2 && is_load_insn (insn))
19246 || (load_store_pendulum == 2 && is_store_insn (insn))))
19247 /* Attach highest priority to insn if the scheduler has just issued two
19248 stores and this instruction is a load, or two loads and this instruction
19249 is a store. Power6 wants loads and stores scheduled alternately
19250 when possible */
19251 return current_sched_info->sched_max_insns_priority;
19253 return priority;
19256 /* Return true if the instruction is nonpipelined on the Cell. */
19257 static bool
19258 is_nonpipeline_insn (rtx insn)
19260 enum attr_type type;
19261 if (!insn || !INSN_P (insn)
19262 || GET_CODE (PATTERN (insn)) == USE
19263 || GET_CODE (PATTERN (insn)) == CLOBBER)
19264 return false;
19266 type = get_attr_type (insn);
19267 if (type == TYPE_IMUL
19268 || type == TYPE_IMUL2
19269 || type == TYPE_IMUL3
19270 || type == TYPE_LMUL
19271 || type == TYPE_IDIV
19272 || type == TYPE_LDIV
19273 || type == TYPE_SDIV
19274 || type == TYPE_DDIV
19275 || type == TYPE_SSQRT
19276 || type == TYPE_DSQRT
19277 || type == TYPE_MFCR
19278 || type == TYPE_MFCRF
19279 || type == TYPE_MFJMPR)
19281 return true;
19283 return false;
19287 /* Return how many instructions the machine can issue per cycle. */
19289 static int
19290 rs6000_issue_rate (void)
19292 /* Use issue rate of 1 for first scheduling pass to decrease degradation. */
19293 if (!reload_completed)
19294 return 1;
19296 switch (rs6000_cpu_attr) {
19297 case CPU_RIOS1: /* ? */
19298 case CPU_RS64A:
19299 case CPU_PPC601: /* ? */
19300 case CPU_PPC7450:
19301 return 3;
19302 case CPU_PPC440:
19303 case CPU_PPC603:
19304 case CPU_PPC750:
19305 case CPU_PPC7400:
19306 case CPU_PPC8540:
19307 case CPU_CELL:
19308 case CPU_PPCE300C2:
19309 case CPU_PPCE300C3:
19310 case CPU_PPCE500MC:
19311 return 2;
19312 case CPU_RIOS2:
19313 case CPU_PPC604:
19314 case CPU_PPC604E:
19315 case CPU_PPC620:
19316 case CPU_PPC630:
19317 return 4;
19318 case CPU_POWER4:
19319 case CPU_POWER5:
19320 case CPU_POWER6:
19321 return 5;
19322 default:
19323 return 1;
19327 /* Return how many instructions to look ahead for better insn
19328 scheduling. */
19330 static int
19331 rs6000_use_sched_lookahead (void)
19333 if (rs6000_cpu_attr == CPU_PPC8540)
19334 return 4;
19335 if (rs6000_cpu_attr == CPU_CELL)
19336 return (reload_completed ? 8 : 0);
19337 return 0;
19340 /* We are choosing insn from the ready queue. Return nonzero if INSN can be chosen. */
19341 static int
19342 rs6000_use_sched_lookahead_guard (rtx insn)
19344 if (rs6000_cpu_attr != CPU_CELL)
19345 return 1;
19347 if (insn == NULL_RTX || !INSN_P (insn))
19348 abort ();
19350 if (!reload_completed
19351 || is_nonpipeline_insn (insn)
19352 || is_microcoded_insn (insn))
19353 return 0;
19355 return 1;
19358 /* Determine is PAT refers to memory. */
19360 static bool
19361 is_mem_ref (rtx pat)
19363 const char * fmt;
19364 int i, j;
19365 bool ret = false;
19367 /* stack_tie does not produce any real memory traffic. */
19368 if (GET_CODE (pat) == UNSPEC
19369 && XINT (pat, 1) == UNSPEC_TIE)
19370 return false;
19372 if (GET_CODE (pat) == MEM)
19373 return true;
19375 /* Recursively process the pattern. */
19376 fmt = GET_RTX_FORMAT (GET_CODE (pat));
19378 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0 && !ret; i--)
19380 if (fmt[i] == 'e')
19381 ret |= is_mem_ref (XEXP (pat, i));
19382 else if (fmt[i] == 'E')
19383 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
19384 ret |= is_mem_ref (XVECEXP (pat, i, j));
19387 return ret;
19390 /* Determine if PAT is a PATTERN of a load insn. */
19392 static bool
19393 is_load_insn1 (rtx pat)
19395 if (!pat || pat == NULL_RTX)
19396 return false;
19398 if (GET_CODE (pat) == SET)
19399 return is_mem_ref (SET_SRC (pat));
19401 if (GET_CODE (pat) == PARALLEL)
19403 int i;
19405 for (i = 0; i < XVECLEN (pat, 0); i++)
19406 if (is_load_insn1 (XVECEXP (pat, 0, i)))
19407 return true;
19410 return false;
19413 /* Determine if INSN loads from memory. */
19415 static bool
19416 is_load_insn (rtx insn)
19418 if (!insn || !INSN_P (insn))
19419 return false;
19421 if (GET_CODE (insn) == CALL_INSN)
19422 return false;
19424 return is_load_insn1 (PATTERN (insn));
19427 /* Determine if PAT is a PATTERN of a store insn. */
19429 static bool
19430 is_store_insn1 (rtx pat)
19432 if (!pat || pat == NULL_RTX)
19433 return false;
19435 if (GET_CODE (pat) == SET)
19436 return is_mem_ref (SET_DEST (pat));
19438 if (GET_CODE (pat) == PARALLEL)
19440 int i;
19442 for (i = 0; i < XVECLEN (pat, 0); i++)
19443 if (is_store_insn1 (XVECEXP (pat, 0, i)))
19444 return true;
19447 return false;
19450 /* Determine if INSN stores to memory. */
19452 static bool
19453 is_store_insn (rtx insn)
19455 if (!insn || !INSN_P (insn))
19456 return false;
19458 return is_store_insn1 (PATTERN (insn));
19461 /* Return the dest of a store insn. */
19463 static rtx
19464 get_store_dest (rtx pat)
19466 gcc_assert (is_store_insn1 (pat));
19468 if (GET_CODE (pat) == SET)
19469 return SET_DEST (pat);
19470 else if (GET_CODE (pat) == PARALLEL)
19472 int i;
19474 for (i = 0; i < XVECLEN (pat, 0); i++)
19476 rtx inner_pat = XVECEXP (pat, 0, i);
19477 if (GET_CODE (inner_pat) == SET
19478 && is_mem_ref (SET_DEST (inner_pat)))
19479 return inner_pat;
19482 /* We shouldn't get here, because we should have either a simple
19483 store insn or a store with update which are covered above. */
19484 gcc_unreachable();
19487 /* Returns whether the dependence between INSN and NEXT is considered
19488 costly by the given target. */
19490 static bool
19491 rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
19493 rtx insn;
19494 rtx next;
19496 /* If the flag is not enabled - no dependence is considered costly;
19497 allow all dependent insns in the same group.
19498 This is the most aggressive option. */
19499 if (rs6000_sched_costly_dep == no_dep_costly)
19500 return false;
19502 /* If the flag is set to 1 - a dependence is always considered costly;
19503 do not allow dependent instructions in the same group.
19504 This is the most conservative option. */
19505 if (rs6000_sched_costly_dep == all_deps_costly)
19506 return true;
19508 insn = DEP_PRO (dep);
19509 next = DEP_CON (dep);
19511 if (rs6000_sched_costly_dep == store_to_load_dep_costly
19512 && is_load_insn (next)
19513 && is_store_insn (insn))
19514 /* Prevent load after store in the same group. */
19515 return true;
19517 if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
19518 && is_load_insn (next)
19519 && is_store_insn (insn)
19520 && DEP_TYPE (dep) == REG_DEP_TRUE)
19521 /* Prevent load after store in the same group if it is a true
19522 dependence. */
19523 return true;
19525 /* The flag is set to X; dependences with latency >= X are considered costly,
19526 and will not be scheduled in the same group. */
19527 if (rs6000_sched_costly_dep <= max_dep_latency
19528 && ((cost - distance) >= (int)rs6000_sched_costly_dep))
19529 return true;
19531 return false;
19534 /* Return the next insn after INSN that is found before TAIL is reached,
19535 skipping any "non-active" insns - insns that will not actually occupy
19536 an issue slot. Return NULL_RTX if such an insn is not found. */
19538 static rtx
19539 get_next_active_insn (rtx insn, rtx tail)
19541 if (insn == NULL_RTX || insn == tail)
19542 return NULL_RTX;
19544 while (1)
19546 insn = NEXT_INSN (insn);
19547 if (insn == NULL_RTX || insn == tail)
19548 return NULL_RTX;
19550 if (CALL_P (insn)
19551 || JUMP_P (insn)
19552 || (NONJUMP_INSN_P (insn)
19553 && GET_CODE (PATTERN (insn)) != USE
19554 && GET_CODE (PATTERN (insn)) != CLOBBER
19555 && INSN_CODE (insn) != CODE_FOR_stack_tie))
19556 break;
19558 return insn;
19561 /* We are about to begin issuing insns for this clock cycle. */
19563 static int
19564 rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
19565 rtx *ready ATTRIBUTE_UNUSED,
19566 int *pn_ready ATTRIBUTE_UNUSED,
19567 int clock_var ATTRIBUTE_UNUSED)
19569 int n_ready = *pn_ready;
19571 if (sched_verbose)
19572 fprintf (dump, "// rs6000_sched_reorder :\n");
19574 /* Reorder the ready list, if the second to last ready insn
19575 is a nonepipeline insn. */
19576 if (rs6000_cpu_attr == CPU_CELL && n_ready > 1)
19578 if (is_nonpipeline_insn (ready[n_ready - 1])
19579 && (recog_memoized (ready[n_ready - 2]) > 0))
19580 /* Simply swap first two insns. */
19582 rtx tmp = ready[n_ready - 1];
19583 ready[n_ready - 1] = ready[n_ready - 2];
19584 ready[n_ready - 2] = tmp;
19588 if (rs6000_cpu == PROCESSOR_POWER6)
19589 load_store_pendulum = 0;
19591 return rs6000_issue_rate ();
19594 /* Like rs6000_sched_reorder, but called after issuing each insn. */
19596 static int
19597 rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx *ready,
19598 int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
19600 if (sched_verbose)
19601 fprintf (dump, "// rs6000_sched_reorder2 :\n");
19603 /* For Power6, we need to handle some special cases to try and keep the
19604 store queue from overflowing and triggering expensive flushes.
19606 This code monitors how load and store instructions are being issued
19607 and skews the ready list one way or the other to increase the likelihood
19608 that a desired instruction is issued at the proper time.
19610 A couple of things are done. First, we maintain a "load_store_pendulum"
19611 to track the current state of load/store issue.
19613 - If the pendulum is at zero, then no loads or stores have been
19614 issued in the current cycle so we do nothing.
19616 - If the pendulum is 1, then a single load has been issued in this
19617 cycle and we attempt to locate another load in the ready list to
19618 issue with it.
19620 - If the pendulum is -2, then two stores have already been
19621 issued in this cycle, so we increase the priority of the first load
19622 in the ready list to increase it's likelihood of being chosen first
19623 in the next cycle.
19625 - If the pendulum is -1, then a single store has been issued in this
19626 cycle and we attempt to locate another store in the ready list to
19627 issue with it, preferring a store to an adjacent memory location to
19628 facilitate store pairing in the store queue.
19630 - If the pendulum is 2, then two loads have already been
19631 issued in this cycle, so we increase the priority of the first store
19632 in the ready list to increase it's likelihood of being chosen first
19633 in the next cycle.
19635 - If the pendulum < -2 or > 2, then do nothing.
19637 Note: This code covers the most common scenarios. There exist non
19638 load/store instructions which make use of the LSU and which
19639 would need to be accounted for to strictly model the behavior
19640 of the machine. Those instructions are currently unaccounted
19641 for to help minimize compile time overhead of this code.
19643 if (rs6000_cpu == PROCESSOR_POWER6 && last_scheduled_insn)
19645 int pos;
19646 int i;
19647 rtx tmp;
19649 if (is_store_insn (last_scheduled_insn))
19650 /* Issuing a store, swing the load_store_pendulum to the left */
19651 load_store_pendulum--;
19652 else if (is_load_insn (last_scheduled_insn))
19653 /* Issuing a load, swing the load_store_pendulum to the right */
19654 load_store_pendulum++;
19655 else
19656 return cached_can_issue_more;
19658 /* If the pendulum is balanced, or there is only one instruction on
19659 the ready list, then all is well, so return. */
19660 if ((load_store_pendulum == 0) || (*pn_ready <= 1))
19661 return cached_can_issue_more;
19663 if (load_store_pendulum == 1)
19665 /* A load has been issued in this cycle. Scan the ready list
19666 for another load to issue with it */
19667 pos = *pn_ready-1;
19669 while (pos >= 0)
19671 if (is_load_insn (ready[pos]))
19673 /* Found a load. Move it to the head of the ready list,
19674 and adjust it's priority so that it is more likely to
19675 stay there */
19676 tmp = ready[pos];
19677 for (i=pos; i<*pn_ready-1; i++)
19678 ready[i] = ready[i + 1];
19679 ready[*pn_ready-1] = tmp;
19681 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
19682 INSN_PRIORITY (tmp)++;
19683 break;
19685 pos--;
19688 else if (load_store_pendulum == -2)
19690 /* Two stores have been issued in this cycle. Increase the
19691 priority of the first load in the ready list to favor it for
19692 issuing in the next cycle. */
19693 pos = *pn_ready-1;
19695 while (pos >= 0)
19697 if (is_load_insn (ready[pos])
19698 && !sel_sched_p ()
19699 && INSN_PRIORITY_KNOWN (ready[pos]))
19701 INSN_PRIORITY (ready[pos])++;
19703 /* Adjust the pendulum to account for the fact that a load
19704 was found and increased in priority. This is to prevent
19705 increasing the priority of multiple loads */
19706 load_store_pendulum--;
19708 break;
19710 pos--;
19713 else if (load_store_pendulum == -1)
19715 /* A store has been issued in this cycle. Scan the ready list for
19716 another store to issue with it, preferring a store to an adjacent
19717 memory location */
19718 int first_store_pos = -1;
19720 pos = *pn_ready-1;
19722 while (pos >= 0)
19724 if (is_store_insn (ready[pos]))
19726 /* Maintain the index of the first store found on the
19727 list */
19728 if (first_store_pos == -1)
19729 first_store_pos = pos;
19731 if (is_store_insn (last_scheduled_insn)
19732 && adjacent_mem_locations (last_scheduled_insn,ready[pos]))
19734 /* Found an adjacent store. Move it to the head of the
19735 ready list, and adjust it's priority so that it is
19736 more likely to stay there */
19737 tmp = ready[pos];
19738 for (i=pos; i<*pn_ready-1; i++)
19739 ready[i] = ready[i + 1];
19740 ready[*pn_ready-1] = tmp;
19742 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
19743 INSN_PRIORITY (tmp)++;
19745 first_store_pos = -1;
19747 break;
19750 pos--;
19753 if (first_store_pos >= 0)
19755 /* An adjacent store wasn't found, but a non-adjacent store was,
19756 so move the non-adjacent store to the front of the ready
19757 list, and adjust its priority so that it is more likely to
19758 stay there. */
19759 tmp = ready[first_store_pos];
19760 for (i=first_store_pos; i<*pn_ready-1; i++)
19761 ready[i] = ready[i + 1];
19762 ready[*pn_ready-1] = tmp;
19763 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
19764 INSN_PRIORITY (tmp)++;
19767 else if (load_store_pendulum == 2)
19769 /* Two loads have been issued in this cycle. Increase the priority
19770 of the first store in the ready list to favor it for issuing in
19771 the next cycle. */
19772 pos = *pn_ready-1;
19774 while (pos >= 0)
19776 if (is_store_insn (ready[pos])
19777 && !sel_sched_p ()
19778 && INSN_PRIORITY_KNOWN (ready[pos]))
19780 INSN_PRIORITY (ready[pos])++;
19782 /* Adjust the pendulum to account for the fact that a store
19783 was found and increased in priority. This is to prevent
19784 increasing the priority of multiple stores */
19785 load_store_pendulum++;
19787 break;
19789 pos--;
19794 return cached_can_issue_more;
19797 /* Return whether the presence of INSN causes a dispatch group termination
19798 of group WHICH_GROUP.
19800 If WHICH_GROUP == current_group, this function will return true if INSN
19801 causes the termination of the current group (i.e, the dispatch group to
19802 which INSN belongs). This means that INSN will be the last insn in the
19803 group it belongs to.
19805 If WHICH_GROUP == previous_group, this function will return true if INSN
19806 causes the termination of the previous group (i.e, the dispatch group that
19807 precedes the group to which INSN belongs). This means that INSN will be
19808 the first insn in the group it belongs to). */
19810 static bool
19811 insn_terminates_group_p (rtx insn, enum group_termination which_group)
19813 bool first, last;
19815 if (! insn)
19816 return false;
19818 first = insn_must_be_first_in_group (insn);
19819 last = insn_must_be_last_in_group (insn);
19821 if (first && last)
19822 return true;
19824 if (which_group == current_group)
19825 return last;
19826 else if (which_group == previous_group)
19827 return first;
19829 return false;
19833 static bool
19834 insn_must_be_first_in_group (rtx insn)
19836 enum attr_type type;
19838 if (!insn
19839 || insn == NULL_RTX
19840 || GET_CODE (insn) == NOTE
19841 || GET_CODE (PATTERN (insn)) == USE
19842 || GET_CODE (PATTERN (insn)) == CLOBBER)
19843 return false;
19845 switch (rs6000_cpu)
19847 case PROCESSOR_POWER5:
19848 if (is_cracked_insn (insn))
19849 return true;
19850 case PROCESSOR_POWER4:
19851 if (is_microcoded_insn (insn))
19852 return true;
19854 if (!rs6000_sched_groups)
19855 return false;
19857 type = get_attr_type (insn);
19859 switch (type)
19861 case TYPE_MFCR:
19862 case TYPE_MFCRF:
19863 case TYPE_MTCR:
19864 case TYPE_DELAYED_CR:
19865 case TYPE_CR_LOGICAL:
19866 case TYPE_MTJMPR:
19867 case TYPE_MFJMPR:
19868 case TYPE_IDIV:
19869 case TYPE_LDIV:
19870 case TYPE_LOAD_L:
19871 case TYPE_STORE_C:
19872 case TYPE_ISYNC:
19873 case TYPE_SYNC:
19874 return true;
19875 default:
19876 break;
19878 break;
19879 case PROCESSOR_POWER6:
19880 type = get_attr_type (insn);
19882 switch (type)
19884 case TYPE_INSERT_DWORD:
19885 case TYPE_EXTS:
19886 case TYPE_CNTLZ:
19887 case TYPE_SHIFT:
19888 case TYPE_VAR_SHIFT_ROTATE:
19889 case TYPE_TRAP:
19890 case TYPE_IMUL:
19891 case TYPE_IMUL2:
19892 case TYPE_IMUL3:
19893 case TYPE_LMUL:
19894 case TYPE_IDIV:
19895 case TYPE_INSERT_WORD:
19896 case TYPE_DELAYED_COMPARE:
19897 case TYPE_IMUL_COMPARE:
19898 case TYPE_LMUL_COMPARE:
19899 case TYPE_FPCOMPARE:
19900 case TYPE_MFCR:
19901 case TYPE_MTCR:
19902 case TYPE_MFJMPR:
19903 case TYPE_MTJMPR:
19904 case TYPE_ISYNC:
19905 case TYPE_SYNC:
19906 case TYPE_LOAD_L:
19907 case TYPE_STORE_C:
19908 case TYPE_LOAD_U:
19909 case TYPE_LOAD_UX:
19910 case TYPE_LOAD_EXT_UX:
19911 case TYPE_STORE_U:
19912 case TYPE_STORE_UX:
19913 case TYPE_FPLOAD_U:
19914 case TYPE_FPLOAD_UX:
19915 case TYPE_FPSTORE_U:
19916 case TYPE_FPSTORE_UX:
19917 return true;
19918 default:
19919 break;
19921 break;
19922 default:
19923 break;
19926 return false;
19929 static bool
19930 insn_must_be_last_in_group (rtx insn)
19932 enum attr_type type;
19934 if (!insn
19935 || insn == NULL_RTX
19936 || GET_CODE (insn) == NOTE
19937 || GET_CODE (PATTERN (insn)) == USE
19938 || GET_CODE (PATTERN (insn)) == CLOBBER)
19939 return false;
19941 switch (rs6000_cpu) {
19942 case PROCESSOR_POWER4:
19943 case PROCESSOR_POWER5:
19944 if (is_microcoded_insn (insn))
19945 return true;
19947 if (is_branch_slot_insn (insn))
19948 return true;
19950 break;
19951 case PROCESSOR_POWER6:
19952 type = get_attr_type (insn);
19954 switch (type)
19956 case TYPE_EXTS:
19957 case TYPE_CNTLZ:
19958 case TYPE_SHIFT:
19959 case TYPE_VAR_SHIFT_ROTATE:
19960 case TYPE_TRAP:
19961 case TYPE_IMUL:
19962 case TYPE_IMUL2:
19963 case TYPE_IMUL3:
19964 case TYPE_LMUL:
19965 case TYPE_IDIV:
19966 case TYPE_DELAYED_COMPARE:
19967 case TYPE_IMUL_COMPARE:
19968 case TYPE_LMUL_COMPARE:
19969 case TYPE_FPCOMPARE:
19970 case TYPE_MFCR:
19971 case TYPE_MTCR:
19972 case TYPE_MFJMPR:
19973 case TYPE_MTJMPR:
19974 case TYPE_ISYNC:
19975 case TYPE_SYNC:
19976 case TYPE_LOAD_L:
19977 case TYPE_STORE_C:
19978 return true;
19979 default:
19980 break;
19982 break;
19983 default:
19984 break;
19987 return false;
19990 /* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
19991 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
19993 static bool
19994 is_costly_group (rtx *group_insns, rtx next_insn)
19996 int i;
19997 int issue_rate = rs6000_issue_rate ();
19999 for (i = 0; i < issue_rate; i++)
20001 sd_iterator_def sd_it;
20002 dep_t dep;
20003 rtx insn = group_insns[i];
20005 if (!insn)
20006 continue;
20008 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
20010 rtx next = DEP_CON (dep);
20012 if (next == next_insn
20013 && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
20014 return true;
20018 return false;
20021 /* Utility of the function redefine_groups.
20022 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
20023 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
20024 to keep it "far" (in a separate group) from GROUP_INSNS, following
20025 one of the following schemes, depending on the value of the flag
20026 -minsert_sched_nops = X:
20027 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
20028 in order to force NEXT_INSN into a separate group.
20029 (2) X < sched_finish_regroup_exact: insert exactly X nops.
20030 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
20031 insertion (has a group just ended, how many vacant issue slots remain in the
20032 last group, and how many dispatch groups were encountered so far). */
20034 static int
20035 force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
20036 rtx next_insn, bool *group_end, int can_issue_more,
20037 int *group_count)
20039 rtx nop;
20040 bool force;
20041 int issue_rate = rs6000_issue_rate ();
20042 bool end = *group_end;
20043 int i;
20045 if (next_insn == NULL_RTX)
20046 return can_issue_more;
20048 if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
20049 return can_issue_more;
20051 force = is_costly_group (group_insns, next_insn);
20052 if (!force)
20053 return can_issue_more;
20055 if (sched_verbose > 6)
20056 fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
20057 *group_count ,can_issue_more);
20059 if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
20061 if (*group_end)
20062 can_issue_more = 0;
20064 /* Since only a branch can be issued in the last issue_slot, it is
20065 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
20066 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
20067 in this case the last nop will start a new group and the branch
20068 will be forced to the new group. */
20069 if (can_issue_more && !is_branch_slot_insn (next_insn))
20070 can_issue_more--;
20072 while (can_issue_more > 0)
20074 nop = gen_nop ();
20075 emit_insn_before (nop, next_insn);
20076 can_issue_more--;
20079 *group_end = true;
20080 return 0;
20083 if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
20085 int n_nops = rs6000_sched_insert_nops;
20087 /* Nops can't be issued from the branch slot, so the effective
20088 issue_rate for nops is 'issue_rate - 1'. */
20089 if (can_issue_more == 0)
20090 can_issue_more = issue_rate;
20091 can_issue_more--;
20092 if (can_issue_more == 0)
20094 can_issue_more = issue_rate - 1;
20095 (*group_count)++;
20096 end = true;
20097 for (i = 0; i < issue_rate; i++)
20099 group_insns[i] = 0;
20103 while (n_nops > 0)
20105 nop = gen_nop ();
20106 emit_insn_before (nop, next_insn);
20107 if (can_issue_more == issue_rate - 1) /* new group begins */
20108 end = false;
20109 can_issue_more--;
20110 if (can_issue_more == 0)
20112 can_issue_more = issue_rate - 1;
20113 (*group_count)++;
20114 end = true;
20115 for (i = 0; i < issue_rate; i++)
20117 group_insns[i] = 0;
20120 n_nops--;
20123 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
20124 can_issue_more++;
20126 /* Is next_insn going to start a new group? */
20127 *group_end
20128 = (end
20129 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
20130 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
20131 || (can_issue_more < issue_rate &&
20132 insn_terminates_group_p (next_insn, previous_group)));
20133 if (*group_end && end)
20134 (*group_count)--;
20136 if (sched_verbose > 6)
20137 fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
20138 *group_count, can_issue_more);
20139 return can_issue_more;
20142 return can_issue_more;
20145 /* This function tries to synch the dispatch groups that the compiler "sees"
20146 with the dispatch groups that the processor dispatcher is expected to
20147 form in practice. It tries to achieve this synchronization by forcing the
20148 estimated processor grouping on the compiler (as opposed to the function
20149 'pad_goups' which tries to force the scheduler's grouping on the processor).
20151 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
20152 examines the (estimated) dispatch groups that will be formed by the processor
20153 dispatcher. It marks these group boundaries to reflect the estimated
20154 processor grouping, overriding the grouping that the scheduler had marked.
20155 Depending on the value of the flag '-minsert-sched-nops' this function can
20156 force certain insns into separate groups or force a certain distance between
20157 them by inserting nops, for example, if there exists a "costly dependence"
20158 between the insns.
20160 The function estimates the group boundaries that the processor will form as
20161 follows: It keeps track of how many vacant issue slots are available after
20162 each insn. A subsequent insn will start a new group if one of the following
20163 4 cases applies:
20164 - no more vacant issue slots remain in the current dispatch group.
20165 - only the last issue slot, which is the branch slot, is vacant, but the next
20166 insn is not a branch.
20167 - only the last 2 or less issue slots, including the branch slot, are vacant,
20168 which means that a cracked insn (which occupies two issue slots) can't be
20169 issued in this group.
20170 - less than 'issue_rate' slots are vacant, and the next insn always needs to
20171 start a new group. */
20173 static int
20174 redefine_groups (FILE *dump, int sched_verbose, rtx prev_head_insn, rtx tail)
20176 rtx insn, next_insn;
20177 int issue_rate;
20178 int can_issue_more;
20179 int slot, i;
20180 bool group_end;
20181 int group_count = 0;
20182 rtx *group_insns;
20184 /* Initialize. */
20185 issue_rate = rs6000_issue_rate ();
20186 group_insns = XALLOCAVEC (rtx, issue_rate);
20187 for (i = 0; i < issue_rate; i++)
20189 group_insns[i] = 0;
20191 can_issue_more = issue_rate;
20192 slot = 0;
20193 insn = get_next_active_insn (prev_head_insn, tail);
20194 group_end = false;
20196 while (insn != NULL_RTX)
20198 slot = (issue_rate - can_issue_more);
20199 group_insns[slot] = insn;
20200 can_issue_more =
20201 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
20202 if (insn_terminates_group_p (insn, current_group))
20203 can_issue_more = 0;
20205 next_insn = get_next_active_insn (insn, tail);
20206 if (next_insn == NULL_RTX)
20207 return group_count + 1;
20209 /* Is next_insn going to start a new group? */
20210 group_end
20211 = (can_issue_more == 0
20212 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
20213 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
20214 || (can_issue_more < issue_rate &&
20215 insn_terminates_group_p (next_insn, previous_group)));
20217 can_issue_more = force_new_group (sched_verbose, dump, group_insns,
20218 next_insn, &group_end, can_issue_more,
20219 &group_count);
20221 if (group_end)
20223 group_count++;
20224 can_issue_more = 0;
20225 for (i = 0; i < issue_rate; i++)
20227 group_insns[i] = 0;
20231 if (GET_MODE (next_insn) == TImode && can_issue_more)
20232 PUT_MODE (next_insn, VOIDmode);
20233 else if (!can_issue_more && GET_MODE (next_insn) != TImode)
20234 PUT_MODE (next_insn, TImode);
20236 insn = next_insn;
20237 if (can_issue_more == 0)
20238 can_issue_more = issue_rate;
20239 } /* while */
20241 return group_count;
20244 /* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
20245 dispatch group boundaries that the scheduler had marked. Pad with nops
20246 any dispatch groups which have vacant issue slots, in order to force the
20247 scheduler's grouping on the processor dispatcher. The function
20248 returns the number of dispatch groups found. */
20250 static int
20251 pad_groups (FILE *dump, int sched_verbose, rtx prev_head_insn, rtx tail)
20253 rtx insn, next_insn;
20254 rtx nop;
20255 int issue_rate;
20256 int can_issue_more;
20257 int group_end;
20258 int group_count = 0;
20260 /* Initialize issue_rate. */
20261 issue_rate = rs6000_issue_rate ();
20262 can_issue_more = issue_rate;
20264 insn = get_next_active_insn (prev_head_insn, tail);
20265 next_insn = get_next_active_insn (insn, tail);
20267 while (insn != NULL_RTX)
20269 can_issue_more =
20270 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
20272 group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);
20274 if (next_insn == NULL_RTX)
20275 break;
20277 if (group_end)
20279 /* If the scheduler had marked group termination at this location
20280 (between insn and next_insn), and neither insn nor next_insn will
20281 force group termination, pad the group with nops to force group
20282 termination. */
20283 if (can_issue_more
20284 && (rs6000_sched_insert_nops == sched_finish_pad_groups)
20285 && !insn_terminates_group_p (insn, current_group)
20286 && !insn_terminates_group_p (next_insn, previous_group))
20288 if (!is_branch_slot_insn (next_insn))
20289 can_issue_more--;
20291 while (can_issue_more)
20293 nop = gen_nop ();
20294 emit_insn_before (nop, next_insn);
20295 can_issue_more--;
20299 can_issue_more = issue_rate;
20300 group_count++;
20303 insn = next_insn;
20304 next_insn = get_next_active_insn (insn, tail);
20307 return group_count;
20310 /* We're beginning a new block. Initialize data structures as necessary. */
20312 static void
20313 rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
20314 int sched_verbose ATTRIBUTE_UNUSED,
20315 int max_ready ATTRIBUTE_UNUSED)
20317 last_scheduled_insn = NULL_RTX;
20318 load_store_pendulum = 0;
20321 /* The following function is called at the end of scheduling BB.
20322 After reload, it inserts nops at insn group bundling. */
20324 static void
20325 rs6000_sched_finish (FILE *dump, int sched_verbose)
20327 int n_groups;
20329 if (sched_verbose)
20330 fprintf (dump, "=== Finishing schedule.\n");
20332 if (reload_completed && rs6000_sched_groups)
20334 /* Do not run sched_finish hook when selective scheduling enabled. */
20335 if (sel_sched_p ())
20336 return;
20338 if (rs6000_sched_insert_nops == sched_finish_none)
20339 return;
20341 if (rs6000_sched_insert_nops == sched_finish_pad_groups)
20342 n_groups = pad_groups (dump, sched_verbose,
20343 current_sched_info->prev_head,
20344 current_sched_info->next_tail);
20345 else
20346 n_groups = redefine_groups (dump, sched_verbose,
20347 current_sched_info->prev_head,
20348 current_sched_info->next_tail);
20350 if (sched_verbose >= 6)
20352 fprintf (dump, "ngroups = %d\n", n_groups);
20353 print_rtl (dump, current_sched_info->prev_head);
20354 fprintf (dump, "Done finish_sched\n");
20359 struct _rs6000_sched_context
20361 short cached_can_issue_more;
20362 rtx last_scheduled_insn;
20363 int load_store_pendulum;
20366 typedef struct _rs6000_sched_context rs6000_sched_context_def;
20367 typedef rs6000_sched_context_def *rs6000_sched_context_t;
20369 /* Allocate store for new scheduling context. */
20370 static void *
20371 rs6000_alloc_sched_context (void)
20373 return xmalloc (sizeof (rs6000_sched_context_def));
20376 /* If CLEAN_P is true then initializes _SC with clean data,
20377 and from the global context otherwise. */
20378 static void
20379 rs6000_init_sched_context (void *_sc, bool clean_p)
20381 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
20383 if (clean_p)
20385 sc->cached_can_issue_more = 0;
20386 sc->last_scheduled_insn = NULL_RTX;
20387 sc->load_store_pendulum = 0;
20389 else
20391 sc->cached_can_issue_more = cached_can_issue_more;
20392 sc->last_scheduled_insn = last_scheduled_insn;
20393 sc->load_store_pendulum = load_store_pendulum;
20397 /* Sets the global scheduling context to the one pointed to by _SC. */
20398 static void
20399 rs6000_set_sched_context (void *_sc)
20401 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
20403 gcc_assert (sc != NULL);
20405 cached_can_issue_more = sc->cached_can_issue_more;
20406 last_scheduled_insn = sc->last_scheduled_insn;
20407 load_store_pendulum = sc->load_store_pendulum;
20410 /* Free _SC. */
20411 static void
20412 rs6000_free_sched_context (void *_sc)
20414 gcc_assert (_sc != NULL);
20416 free (_sc);
20420 /* Length in units of the trampoline for entering a nested function. */
20423 rs6000_trampoline_size (void)
20425 int ret = 0;
20427 switch (DEFAULT_ABI)
20429 default:
20430 gcc_unreachable ();
20432 case ABI_AIX:
20433 ret = (TARGET_32BIT) ? 12 : 24;
20434 break;
20436 case ABI_DARWIN:
20437 case ABI_V4:
20438 ret = (TARGET_32BIT) ? 40 : 48;
20439 break;
20442 return ret;
20445 /* Emit RTL insns to initialize the variable parts of a trampoline.
20446 FNADDR is an RTX for the address of the function's pure code.
20447 CXT is an RTX for the static chain value for the function. */
20449 void
20450 rs6000_initialize_trampoline (rtx addr, rtx fnaddr, rtx cxt)
20452 int regsize = (TARGET_32BIT) ? 4 : 8;
20453 rtx ctx_reg = force_reg (Pmode, cxt);
20455 switch (DEFAULT_ABI)
20457 default:
20458 gcc_unreachable ();
20460 /* Macros to shorten the code expansions below. */
20461 #define MEM_DEREF(addr) gen_rtx_MEM (Pmode, memory_address (Pmode, addr))
20462 #define MEM_PLUS(addr,offset) \
20463 gen_rtx_MEM (Pmode, memory_address (Pmode, plus_constant (addr, offset)))
20465 /* Under AIX, just build the 3 word function descriptor */
20466 case ABI_AIX:
20468 rtx fn_reg = gen_reg_rtx (Pmode);
20469 rtx toc_reg = gen_reg_rtx (Pmode);
20470 emit_move_insn (fn_reg, MEM_DEREF (fnaddr));
20471 emit_move_insn (toc_reg, MEM_PLUS (fnaddr, regsize));
20472 emit_move_insn (MEM_DEREF (addr), fn_reg);
20473 emit_move_insn (MEM_PLUS (addr, regsize), toc_reg);
20474 emit_move_insn (MEM_PLUS (addr, 2*regsize), ctx_reg);
20476 break;
20478 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
20479 case ABI_DARWIN:
20480 case ABI_V4:
20481 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
20482 LCT_NORMAL, VOIDmode, 4,
20483 addr, Pmode,
20484 GEN_INT (rs6000_trampoline_size ()), SImode,
20485 fnaddr, Pmode,
20486 ctx_reg, Pmode);
20487 break;
20490 return;
20494 /* Table of valid machine attributes. */
20496 const struct attribute_spec rs6000_attribute_table[] =
20498 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
20499 { "altivec", 1, 1, false, true, false, rs6000_handle_altivec_attribute },
20500 { "longcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute },
20501 { "shortcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute },
20502 { "ms_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
20503 { "gcc_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
20504 #ifdef SUBTARGET_ATTRIBUTE_TABLE
20505 SUBTARGET_ATTRIBUTE_TABLE,
20506 #endif
20507 { NULL, 0, 0, false, false, false, NULL }
20510 /* Handle the "altivec" attribute. The attribute may have
20511 arguments as follows:
20513 __attribute__((altivec(vector__)))
20514 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
20515 __attribute__((altivec(bool__))) (always followed by 'unsigned')
20517 and may appear more than once (e.g., 'vector bool char') in a
20518 given declaration. */
20520 static tree
20521 rs6000_handle_altivec_attribute (tree *node,
20522 tree name ATTRIBUTE_UNUSED,
20523 tree args,
20524 int flags ATTRIBUTE_UNUSED,
20525 bool *no_add_attrs)
20527 tree type = *node, result = NULL_TREE;
20528 enum machine_mode mode;
20529 int unsigned_p;
20530 char altivec_type
20531 = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
20532 && TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
20533 ? *IDENTIFIER_POINTER (TREE_VALUE (args))
20534 : '?');
20536 while (POINTER_TYPE_P (type)
20537 || TREE_CODE (type) == FUNCTION_TYPE
20538 || TREE_CODE (type) == METHOD_TYPE
20539 || TREE_CODE (type) == ARRAY_TYPE)
20540 type = TREE_TYPE (type);
20542 mode = TYPE_MODE (type);
20544 /* Check for invalid AltiVec type qualifiers. */
20545 if (type == long_unsigned_type_node || type == long_integer_type_node)
20547 if (TARGET_64BIT)
20548 error ("use of %<long%> in AltiVec types is invalid for 64-bit code");
20549 else if (rs6000_warn_altivec_long)
20550 warning (0, "use of %<long%> in AltiVec types is deprecated; use %<int%>");
20552 else if (type == long_long_unsigned_type_node
20553 || type == long_long_integer_type_node)
20554 error ("use of %<long long%> in AltiVec types is invalid");
20555 else if (type == double_type_node)
20556 error ("use of %<double%> in AltiVec types is invalid");
20557 else if (type == long_double_type_node)
20558 error ("use of %<long double%> in AltiVec types is invalid");
20559 else if (type == boolean_type_node)
20560 error ("use of boolean types in AltiVec types is invalid");
20561 else if (TREE_CODE (type) == COMPLEX_TYPE)
20562 error ("use of %<complex%> in AltiVec types is invalid");
20563 else if (DECIMAL_FLOAT_MODE_P (mode))
20564 error ("use of decimal floating point types in AltiVec types is invalid");
20566 switch (altivec_type)
20568 case 'v':
20569 unsigned_p = TYPE_UNSIGNED (type);
20570 switch (mode)
20572 case SImode:
20573 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
20574 break;
20575 case HImode:
20576 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
20577 break;
20578 case QImode:
20579 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
20580 break;
20581 case SFmode: result = V4SF_type_node; break;
20582 /* If the user says 'vector int bool', we may be handed the 'bool'
20583 attribute _before_ the 'vector' attribute, and so select the
20584 proper type in the 'b' case below. */
20585 case V4SImode: case V8HImode: case V16QImode: case V4SFmode:
20586 result = type;
20587 default: break;
20589 break;
20590 case 'b':
20591 switch (mode)
20593 case SImode: case V4SImode: result = bool_V4SI_type_node; break;
20594 case HImode: case V8HImode: result = bool_V8HI_type_node; break;
20595 case QImode: case V16QImode: result = bool_V16QI_type_node;
20596 default: break;
20598 break;
20599 case 'p':
20600 switch (mode)
20602 case V8HImode: result = pixel_V8HI_type_node;
20603 default: break;
20605 default: break;
20608 /* Propagate qualifiers attached to the element type
20609 onto the vector type. */
20610 if (result && result != type && TYPE_QUALS (type))
20611 result = build_qualified_type (result, TYPE_QUALS (type));
20613 *no_add_attrs = true; /* No need to hang on to the attribute. */
20615 if (result)
20616 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
20618 return NULL_TREE;
20621 /* AltiVec defines four built-in scalar types that serve as vector
20622 elements; we must teach the compiler how to mangle them. */
20624 static const char *
20625 rs6000_mangle_type (const_tree type)
20627 type = TYPE_MAIN_VARIANT (type);
20629 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
20630 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
20631 return NULL;
20633 if (type == bool_char_type_node) return "U6__boolc";
20634 if (type == bool_short_type_node) return "U6__bools";
20635 if (type == pixel_type_node) return "u7__pixel";
20636 if (type == bool_int_type_node) return "U6__booli";
20638 /* Mangle IBM extended float long double as `g' (__float128) on
20639 powerpc*-linux where long-double-64 previously was the default. */
20640 if (TYPE_MAIN_VARIANT (type) == long_double_type_node
20641 && TARGET_ELF
20642 && TARGET_LONG_DOUBLE_128
20643 && !TARGET_IEEEQUAD)
20644 return "g";
20646 /* For all other types, use normal C++ mangling. */
20647 return NULL;
20650 /* Handle a "longcall" or "shortcall" attribute; arguments as in
20651 struct attribute_spec.handler. */
20653 static tree
20654 rs6000_handle_longcall_attribute (tree *node, tree name,
20655 tree args ATTRIBUTE_UNUSED,
20656 int flags ATTRIBUTE_UNUSED,
20657 bool *no_add_attrs)
20659 if (TREE_CODE (*node) != FUNCTION_TYPE
20660 && TREE_CODE (*node) != FIELD_DECL
20661 && TREE_CODE (*node) != TYPE_DECL)
20663 warning (OPT_Wattributes, "%qs attribute only applies to functions",
20664 IDENTIFIER_POINTER (name));
20665 *no_add_attrs = true;
20668 return NULL_TREE;
20671 /* Set longcall attributes on all functions declared when
20672 rs6000_default_long_calls is true. */
20673 static void
20674 rs6000_set_default_type_attributes (tree type)
20676 if (rs6000_default_long_calls
20677 && (TREE_CODE (type) == FUNCTION_TYPE
20678 || TREE_CODE (type) == METHOD_TYPE))
20679 TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
20680 NULL_TREE,
20681 TYPE_ATTRIBUTES (type));
20683 #if TARGET_MACHO
20684 darwin_set_default_type_attributes (type);
20685 #endif
20688 /* Return a reference suitable for calling a function with the
20689 longcall attribute. */
20692 rs6000_longcall_ref (rtx call_ref)
20694 const char *call_name;
20695 tree node;
20697 if (GET_CODE (call_ref) != SYMBOL_REF)
20698 return call_ref;
20700 /* System V adds '.' to the internal name, so skip them. */
20701 call_name = XSTR (call_ref, 0);
20702 if (*call_name == '.')
20704 while (*call_name == '.')
20705 call_name++;
20707 node = get_identifier (call_name);
20708 call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
20711 return force_reg (Pmode, call_ref);
20714 #ifndef TARGET_USE_MS_BITFIELD_LAYOUT
20715 #define TARGET_USE_MS_BITFIELD_LAYOUT 0
20716 #endif
20718 /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
20719 struct attribute_spec.handler. */
20720 static tree
20721 rs6000_handle_struct_attribute (tree *node, tree name,
20722 tree args ATTRIBUTE_UNUSED,
20723 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
20725 tree *type = NULL;
20726 if (DECL_P (*node))
20728 if (TREE_CODE (*node) == TYPE_DECL)
20729 type = &TREE_TYPE (*node);
20731 else
20732 type = node;
20734 if (!(type && (TREE_CODE (*type) == RECORD_TYPE
20735 || TREE_CODE (*type) == UNION_TYPE)))
20737 warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name));
20738 *no_add_attrs = true;
20741 else if ((is_attribute_p ("ms_struct", name)
20742 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
20743 || ((is_attribute_p ("gcc_struct", name)
20744 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
20746 warning (OPT_Wattributes, "%qs incompatible attribute ignored",
20747 IDENTIFIER_POINTER (name));
20748 *no_add_attrs = true;
20751 return NULL_TREE;
20754 static bool
20755 rs6000_ms_bitfield_layout_p (const_tree record_type)
20757 return (TARGET_USE_MS_BITFIELD_LAYOUT &&
20758 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
20759 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
20762 #ifdef USING_ELFOS_H
20764 /* A get_unnamed_section callback, used for switching to toc_section. */
20766 static void
20767 rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
20769 if (DEFAULT_ABI == ABI_AIX
20770 && TARGET_MINIMAL_TOC
20771 && !TARGET_RELOCATABLE)
20773 if (!toc_initialized)
20775 toc_initialized = 1;
20776 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
20777 (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
20778 fprintf (asm_out_file, "\t.tc ");
20779 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
20780 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20781 fprintf (asm_out_file, "\n");
20783 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20784 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20785 fprintf (asm_out_file, " = .+32768\n");
20787 else
20788 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20790 else if (DEFAULT_ABI == ABI_AIX && !TARGET_RELOCATABLE)
20791 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
20792 else
20794 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20795 if (!toc_initialized)
20797 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20798 fprintf (asm_out_file, " = .+32768\n");
20799 toc_initialized = 1;
20804 /* Implement TARGET_ASM_INIT_SECTIONS. */
20806 static void
20807 rs6000_elf_asm_init_sections (void)
20809 toc_section
20810 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);
20812 sdata2_section
20813 = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
20814 SDATA2_SECTION_ASM_OP);
20817 /* Implement TARGET_SELECT_RTX_SECTION. */
20819 static section *
20820 rs6000_elf_select_rtx_section (enum machine_mode mode, rtx x,
20821 unsigned HOST_WIDE_INT align)
20823 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
20824 return toc_section;
20825 else
20826 return default_elf_select_rtx_section (mode, x, align);
20829 /* For a SYMBOL_REF, set generic flags and then perform some
20830 target-specific processing.
20832 When the AIX ABI is requested on a non-AIX system, replace the
20833 function name with the real name (with a leading .) rather than the
20834 function descriptor name. This saves a lot of overriding code to
20835 read the prefixes. */
20837 static void
20838 rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
20840 default_encode_section_info (decl, rtl, first);
20842 if (first
20843 && TREE_CODE (decl) == FUNCTION_DECL
20844 && !TARGET_AIX
20845 && DEFAULT_ABI == ABI_AIX)
20847 rtx sym_ref = XEXP (rtl, 0);
20848 size_t len = strlen (XSTR (sym_ref, 0));
20849 char *str = XALLOCAVEC (char, len + 2);
20850 str[0] = '.';
20851 memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
20852 XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
20856 static inline bool
20857 compare_section_name (const char *section, const char *templ)
20859 int len;
20861 len = strlen (templ);
20862 return (strncmp (section, templ, len) == 0
20863 && (section[len] == 0 || section[len] == '.'));
20866 bool
20867 rs6000_elf_in_small_data_p (const_tree decl)
20869 if (rs6000_sdata == SDATA_NONE)
20870 return false;
20872 /* We want to merge strings, so we never consider them small data. */
20873 if (TREE_CODE (decl) == STRING_CST)
20874 return false;
20876 /* Functions are never in the small data area. */
20877 if (TREE_CODE (decl) == FUNCTION_DECL)
20878 return false;
20880 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
20882 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
20883 if (compare_section_name (section, ".sdata")
20884 || compare_section_name (section, ".sdata2")
20885 || compare_section_name (section, ".gnu.linkonce.s")
20886 || compare_section_name (section, ".sbss")
20887 || compare_section_name (section, ".sbss2")
20888 || compare_section_name (section, ".gnu.linkonce.sb")
20889 || strcmp (section, ".PPC.EMB.sdata0") == 0
20890 || strcmp (section, ".PPC.EMB.sbss0") == 0)
20891 return true;
20893 else
20895 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
20897 if (size > 0
20898 && (unsigned HOST_WIDE_INT) size <= g_switch_value
20899 /* If it's not public, and we're not going to reference it there,
20900 there's no need to put it in the small data section. */
20901 && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
20902 return true;
20905 return false;
20908 #endif /* USING_ELFOS_H */
20910 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
20912 static bool
20913 rs6000_use_blocks_for_constant_p (enum machine_mode mode, const_rtx x)
20915 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
20918 /* Return a REG that occurs in ADDR with coefficient 1.
20919 ADDR can be effectively incremented by incrementing REG.
20921 r0 is special and we must not select it as an address
20922 register by this routine since our caller will try to
20923 increment the returned register via an "la" instruction. */
20926 find_addr_reg (rtx addr)
20928 while (GET_CODE (addr) == PLUS)
20930 if (GET_CODE (XEXP (addr, 0)) == REG
20931 && REGNO (XEXP (addr, 0)) != 0)
20932 addr = XEXP (addr, 0);
20933 else if (GET_CODE (XEXP (addr, 1)) == REG
20934 && REGNO (XEXP (addr, 1)) != 0)
20935 addr = XEXP (addr, 1);
20936 else if (CONSTANT_P (XEXP (addr, 0)))
20937 addr = XEXP (addr, 1);
20938 else if (CONSTANT_P (XEXP (addr, 1)))
20939 addr = XEXP (addr, 0);
20940 else
20941 gcc_unreachable ();
20943 gcc_assert (GET_CODE (addr) == REG && REGNO (addr) != 0);
20944 return addr;
20947 void
20948 rs6000_fatal_bad_address (rtx op)
20950 fatal_insn ("bad address", op);
20953 #if TARGET_MACHO
20955 static tree branch_island_list = 0;
20957 /* Remember to generate a branch island for far calls to the given
20958 function. */
20960 static void
20961 add_compiler_branch_island (tree label_name, tree function_name,
20962 int line_number)
20964 tree branch_island = build_tree_list (function_name, label_name);
20965 TREE_TYPE (branch_island) = build_int_cst (NULL_TREE, line_number);
20966 TREE_CHAIN (branch_island) = branch_island_list;
20967 branch_island_list = branch_island;
20970 #define BRANCH_ISLAND_LABEL_NAME(BRANCH_ISLAND) TREE_VALUE (BRANCH_ISLAND)
20971 #define BRANCH_ISLAND_FUNCTION_NAME(BRANCH_ISLAND) TREE_PURPOSE (BRANCH_ISLAND)
20972 #define BRANCH_ISLAND_LINE_NUMBER(BRANCH_ISLAND) \
20973 TREE_INT_CST_LOW (TREE_TYPE (BRANCH_ISLAND))
20975 /* Generate far-jump branch islands for everything on the
20976 branch_island_list. Invoked immediately after the last instruction
20977 of the epilogue has been emitted; the branch-islands must be
20978 appended to, and contiguous with, the function body. Mach-O stubs
20979 are generated in machopic_output_stub(). */
20981 static void
20982 macho_branch_islands (void)
20984 char tmp_buf[512];
20985 tree branch_island;
20987 for (branch_island = branch_island_list;
20988 branch_island;
20989 branch_island = TREE_CHAIN (branch_island))
20991 const char *label =
20992 IDENTIFIER_POINTER (BRANCH_ISLAND_LABEL_NAME (branch_island));
20993 const char *name =
20994 IDENTIFIER_POINTER (BRANCH_ISLAND_FUNCTION_NAME (branch_island));
20995 char name_buf[512];
20996 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
20997 if (name[0] == '*' || name[0] == '&')
20998 strcpy (name_buf, name+1);
20999 else
21001 name_buf[0] = '_';
21002 strcpy (name_buf+1, name);
21004 strcpy (tmp_buf, "\n");
21005 strcat (tmp_buf, label);
21006 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
21007 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
21008 dbxout_stabd (N_SLINE, BRANCH_ISLAND_LINE_NUMBER (branch_island));
21009 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
21010 if (flag_pic)
21012 strcat (tmp_buf, ":\n\tmflr r0\n\tbcl 20,31,");
21013 strcat (tmp_buf, label);
21014 strcat (tmp_buf, "_pic\n");
21015 strcat (tmp_buf, label);
21016 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
21018 strcat (tmp_buf, "\taddis r11,r11,ha16(");
21019 strcat (tmp_buf, name_buf);
21020 strcat (tmp_buf, " - ");
21021 strcat (tmp_buf, label);
21022 strcat (tmp_buf, "_pic)\n");
21024 strcat (tmp_buf, "\tmtlr r0\n");
21026 strcat (tmp_buf, "\taddi r12,r11,lo16(");
21027 strcat (tmp_buf, name_buf);
21028 strcat (tmp_buf, " - ");
21029 strcat (tmp_buf, label);
21030 strcat (tmp_buf, "_pic)\n");
21032 strcat (tmp_buf, "\tmtctr r12\n\tbctr\n");
21034 else
21036 strcat (tmp_buf, ":\nlis r12,hi16(");
21037 strcat (tmp_buf, name_buf);
21038 strcat (tmp_buf, ")\n\tori r12,r12,lo16(");
21039 strcat (tmp_buf, name_buf);
21040 strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr");
21042 output_asm_insn (tmp_buf, 0);
21043 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
21044 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
21045 dbxout_stabd (N_SLINE, BRANCH_ISLAND_LINE_NUMBER (branch_island));
21046 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
21049 branch_island_list = 0;
21052 /* NO_PREVIOUS_DEF checks in the link list whether the function name is
21053 already there or not. */
21055 static int
21056 no_previous_def (tree function_name)
21058 tree branch_island;
21059 for (branch_island = branch_island_list;
21060 branch_island;
21061 branch_island = TREE_CHAIN (branch_island))
21062 if (function_name == BRANCH_ISLAND_FUNCTION_NAME (branch_island))
21063 return 0;
21064 return 1;
21067 /* GET_PREV_LABEL gets the label name from the previous definition of
21068 the function. */
21070 static tree
21071 get_prev_label (tree function_name)
21073 tree branch_island;
21074 for (branch_island = branch_island_list;
21075 branch_island;
21076 branch_island = TREE_CHAIN (branch_island))
21077 if (function_name == BRANCH_ISLAND_FUNCTION_NAME (branch_island))
21078 return BRANCH_ISLAND_LABEL_NAME (branch_island);
21079 return 0;
21082 #ifndef DARWIN_LINKER_GENERATES_ISLANDS
21083 #define DARWIN_LINKER_GENERATES_ISLANDS 0
21084 #endif
21086 /* KEXTs still need branch islands. */
21087 #define DARWIN_GENERATE_ISLANDS (!DARWIN_LINKER_GENERATES_ISLANDS \
21088 || flag_mkernel || flag_apple_kext)
21090 /* INSN is either a function call or a millicode call. It may have an
21091 unconditional jump in its delay slot.
21093 CALL_DEST is the routine we are calling. */
21095 char *
21096 output_call (rtx insn, rtx *operands, int dest_operand_number,
21097 int cookie_operand_number)
21099 static char buf[256];
21100 if (DARWIN_GENERATE_ISLANDS
21101 && GET_CODE (operands[dest_operand_number]) == SYMBOL_REF
21102 && (INTVAL (operands[cookie_operand_number]) & CALL_LONG))
21104 tree labelname;
21105 tree funname = get_identifier (XSTR (operands[dest_operand_number], 0));
21107 if (no_previous_def (funname))
21109 rtx label_rtx = gen_label_rtx ();
21110 char *label_buf, temp_buf[256];
21111 ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
21112 CODE_LABEL_NUMBER (label_rtx));
21113 label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
21114 labelname = get_identifier (label_buf);
21115 add_compiler_branch_island (labelname, funname, insn_line (insn));
21117 else
21118 labelname = get_prev_label (funname);
21120 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
21121 instruction will reach 'foo', otherwise link as 'bl L42'".
21122 "L42" should be a 'branch island', that will do a far jump to
21123 'foo'. Branch islands are generated in
21124 macho_branch_islands(). */
21125 sprintf (buf, "jbsr %%z%d,%.246s",
21126 dest_operand_number, IDENTIFIER_POINTER (labelname));
21128 else
21129 sprintf (buf, "bl %%z%d", dest_operand_number);
21130 return buf;
21133 /* Generate PIC and indirect symbol stubs. */
21135 void
21136 machopic_output_stub (FILE *file, const char *symb, const char *stub)
21138 unsigned int length;
21139 char *symbol_name, *lazy_ptr_name;
21140 char *local_label_0;
21141 static int label = 0;
21143 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
21144 symb = (*targetm.strip_name_encoding) (symb);
21147 length = strlen (symb);
21148 symbol_name = XALLOCAVEC (char, length + 32);
21149 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
21151 lazy_ptr_name = XALLOCAVEC (char, length + 32);
21152 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);
21154 if (flag_pic == 2)
21155 switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
21156 else
21157 switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
21159 if (flag_pic == 2)
21161 fprintf (file, "\t.align 5\n");
21163 fprintf (file, "%s:\n", stub);
21164 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21166 label++;
21167 local_label_0 = XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
21168 sprintf (local_label_0, "\"L%011d$spb\"", label);
21170 fprintf (file, "\tmflr r0\n");
21171 fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
21172 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
21173 fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
21174 lazy_ptr_name, local_label_0);
21175 fprintf (file, "\tmtlr r0\n");
21176 fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
21177 (TARGET_64BIT ? "ldu" : "lwzu"),
21178 lazy_ptr_name, local_label_0);
21179 fprintf (file, "\tmtctr r12\n");
21180 fprintf (file, "\tbctr\n");
21182 else
21184 fprintf (file, "\t.align 4\n");
21186 fprintf (file, "%s:\n", stub);
21187 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21189 fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
21190 fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
21191 (TARGET_64BIT ? "ldu" : "lwzu"),
21192 lazy_ptr_name);
21193 fprintf (file, "\tmtctr r12\n");
21194 fprintf (file, "\tbctr\n");
21197 switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
21198 fprintf (file, "%s:\n", lazy_ptr_name);
21199 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21200 fprintf (file, "%sdyld_stub_binding_helper\n",
21201 (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
21204 /* Legitimize PIC addresses. If the address is already
21205 position-independent, we return ORIG. Newly generated
21206 position-independent addresses go into a reg. This is REG if non
21207 zero, otherwise we allocate register(s) as necessary. */
21209 #define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
21212 rs6000_machopic_legitimize_pic_address (rtx orig, enum machine_mode mode,
21213 rtx reg)
21215 rtx base, offset;
21217 if (reg == NULL && ! reload_in_progress && ! reload_completed)
21218 reg = gen_reg_rtx (Pmode);
21220 if (GET_CODE (orig) == CONST)
21222 rtx reg_temp;
21224 if (GET_CODE (XEXP (orig, 0)) == PLUS
21225 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
21226 return orig;
21228 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
21230 /* Use a different reg for the intermediate value, as
21231 it will be marked UNCHANGING. */
21232 reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
21233 base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
21234 Pmode, reg_temp);
21235 offset =
21236 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
21237 Pmode, reg);
21239 if (GET_CODE (offset) == CONST_INT)
21241 if (SMALL_INT (offset))
21242 return plus_constant (base, INTVAL (offset));
21243 else if (! reload_in_progress && ! reload_completed)
21244 offset = force_reg (Pmode, offset);
21245 else
21247 rtx mem = force_const_mem (Pmode, orig);
21248 return machopic_legitimize_pic_address (mem, Pmode, reg);
21251 return gen_rtx_PLUS (Pmode, base, offset);
21254 /* Fall back on generic machopic code. */
21255 return machopic_legitimize_pic_address (orig, mode, reg);
21258 /* Output a .machine directive for the Darwin assembler, and call
21259 the generic start_file routine. */
21261 static void
21262 rs6000_darwin_file_start (void)
21264 static const struct
21266 const char *arg;
21267 const char *name;
21268 int if_set;
21269 } mapping[] = {
21270 { "ppc64", "ppc64", MASK_64BIT },
21271 { "970", "ppc970", MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64 },
21272 { "power4", "ppc970", 0 },
21273 { "G5", "ppc970", 0 },
21274 { "7450", "ppc7450", 0 },
21275 { "7400", "ppc7400", MASK_ALTIVEC },
21276 { "G4", "ppc7400", 0 },
21277 { "750", "ppc750", 0 },
21278 { "740", "ppc750", 0 },
21279 { "G3", "ppc750", 0 },
21280 { "604e", "ppc604e", 0 },
21281 { "604", "ppc604", 0 },
21282 { "603e", "ppc603", 0 },
21283 { "603", "ppc603", 0 },
21284 { "601", "ppc601", 0 },
21285 { NULL, "ppc", 0 } };
21286 const char *cpu_id = "";
21287 size_t i;
21289 rs6000_file_start ();
21290 darwin_file_start ();
21292 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
21293 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
21294 if (rs6000_select[i].set_arch_p && rs6000_select[i].string
21295 && rs6000_select[i].string[0] != '\0')
21296 cpu_id = rs6000_select[i].string;
21298 /* Look through the mapping array. Pick the first name that either
21299 matches the argument, has a bit set in IF_SET that is also set
21300 in the target flags, or has a NULL name. */
21302 i = 0;
21303 while (mapping[i].arg != NULL
21304 && strcmp (mapping[i].arg, cpu_id) != 0
21305 && (mapping[i].if_set & target_flags) == 0)
21306 i++;
21308 fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
21311 #endif /* TARGET_MACHO */
21313 #if TARGET_ELF
21314 static int
21315 rs6000_elf_reloc_rw_mask (void)
21317 if (flag_pic)
21318 return 3;
21319 else if (DEFAULT_ABI == ABI_AIX)
21320 return 2;
21321 else
21322 return 0;
21325 /* Record an element in the table of global constructors. SYMBOL is
21326 a SYMBOL_REF of the function to be called; PRIORITY is a number
21327 between 0 and MAX_INIT_PRIORITY.
21329 This differs from default_named_section_asm_out_constructor in
21330 that we have special handling for -mrelocatable. */
21332 static void
21333 rs6000_elf_asm_out_constructor (rtx symbol, int priority)
21335 const char *section = ".ctors";
21336 char buf[16];
21338 if (priority != DEFAULT_INIT_PRIORITY)
21340 sprintf (buf, ".ctors.%.5u",
21341 /* Invert the numbering so the linker puts us in the proper
21342 order; constructors are run from right to left, and the
21343 linker sorts in increasing order. */
21344 MAX_INIT_PRIORITY - priority);
21345 section = buf;
21348 switch_to_section (get_section (section, SECTION_WRITE, NULL));
21349 assemble_align (POINTER_SIZE);
21351 if (TARGET_RELOCATABLE)
21353 fputs ("\t.long (", asm_out_file);
21354 output_addr_const (asm_out_file, symbol);
21355 fputs (")@fixup\n", asm_out_file);
21357 else
21358 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
21361 static void
21362 rs6000_elf_asm_out_destructor (rtx symbol, int priority)
21364 const char *section = ".dtors";
21365 char buf[16];
21367 if (priority != DEFAULT_INIT_PRIORITY)
21369 sprintf (buf, ".dtors.%.5u",
21370 /* Invert the numbering so the linker puts us in the proper
21371 order; constructors are run from right to left, and the
21372 linker sorts in increasing order. */
21373 MAX_INIT_PRIORITY - priority);
21374 section = buf;
21377 switch_to_section (get_section (section, SECTION_WRITE, NULL));
21378 assemble_align (POINTER_SIZE);
21380 if (TARGET_RELOCATABLE)
21382 fputs ("\t.long (", asm_out_file);
21383 output_addr_const (asm_out_file, symbol);
21384 fputs (")@fixup\n", asm_out_file);
21386 else
21387 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
21390 void
21391 rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
21393 if (TARGET_64BIT)
21395 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
21396 ASM_OUTPUT_LABEL (file, name);
21397 fputs (DOUBLE_INT_ASM_OP, file);
21398 rs6000_output_function_entry (file, name);
21399 fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
21400 if (DOT_SYMBOLS)
21402 fputs ("\t.size\t", file);
21403 assemble_name (file, name);
21404 fputs (",24\n\t.type\t.", file);
21405 assemble_name (file, name);
21406 fputs (",@function\n", file);
21407 if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
21409 fputs ("\t.globl\t.", file);
21410 assemble_name (file, name);
21411 putc ('\n', file);
21414 else
21415 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
21416 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
21417 rs6000_output_function_entry (file, name);
21418 fputs (":\n", file);
21419 return;
21422 if (TARGET_RELOCATABLE
21423 && !TARGET_SECURE_PLT
21424 && (get_pool_size () != 0 || crtl->profile)
21425 && uses_TOC ())
21427 char buf[256];
21429 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
21431 ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
21432 fprintf (file, "\t.long ");
21433 assemble_name (file, buf);
21434 putc ('-', file);
21435 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
21436 assemble_name (file, buf);
21437 putc ('\n', file);
21440 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
21441 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
21443 if (DEFAULT_ABI == ABI_AIX)
21445 const char *desc_name, *orig_name;
21447 orig_name = (*targetm.strip_name_encoding) (name);
21448 desc_name = orig_name;
21449 while (*desc_name == '.')
21450 desc_name++;
21452 if (TREE_PUBLIC (decl))
21453 fprintf (file, "\t.globl %s\n", desc_name);
21455 fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
21456 fprintf (file, "%s:\n", desc_name);
21457 fprintf (file, "\t.long %s\n", orig_name);
21458 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
21459 if (DEFAULT_ABI == ABI_AIX)
21460 fputs ("\t.long 0\n", file);
21461 fprintf (file, "\t.previous\n");
21463 ASM_OUTPUT_LABEL (file, name);
21466 static void
21467 rs6000_elf_end_indicate_exec_stack (void)
21469 if (TARGET_32BIT)
21470 file_end_indicate_exec_stack ();
21472 #endif
21474 #if TARGET_XCOFF
21475 static void
21476 rs6000_xcoff_asm_output_anchor (rtx symbol)
21478 char buffer[100];
21480 sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
21481 SYMBOL_REF_BLOCK_OFFSET (symbol));
21482 ASM_OUTPUT_DEF (asm_out_file, XSTR (symbol, 0), buffer);
21485 static void
21486 rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
21488 fputs (GLOBAL_ASM_OP, stream);
21489 RS6000_OUTPUT_BASENAME (stream, name);
21490 putc ('\n', stream);
21493 /* A get_unnamed_decl callback, used for read-only sections. PTR
21494 points to the section string variable. */
21496 static void
21497 rs6000_xcoff_output_readonly_section_asm_op (const void *directive)
21499 fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
21500 *(const char *const *) directive,
21501 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
21504 /* Likewise for read-write sections. */
21506 static void
21507 rs6000_xcoff_output_readwrite_section_asm_op (const void *directive)
21509 fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
21510 *(const char *const *) directive,
21511 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
21514 /* A get_unnamed_section callback, used for switching to toc_section. */
21516 static void
21517 rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
21519 if (TARGET_MINIMAL_TOC)
21521 /* toc_section is always selected at least once from
21522 rs6000_xcoff_file_start, so this is guaranteed to
21523 always be defined once and only once in each file. */
21524 if (!toc_initialized)
21526 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
21527 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
21528 toc_initialized = 1;
21530 fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
21531 (TARGET_32BIT ? "" : ",3"));
21533 else
21534 fputs ("\t.toc\n", asm_out_file);
21537 /* Implement TARGET_ASM_INIT_SECTIONS. */
21539 static void
21540 rs6000_xcoff_asm_init_sections (void)
21542 read_only_data_section
21543 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
21544 &xcoff_read_only_section_name);
21546 private_data_section
21547 = get_unnamed_section (SECTION_WRITE,
21548 rs6000_xcoff_output_readwrite_section_asm_op,
21549 &xcoff_private_data_section_name);
21551 read_only_private_data_section
21552 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
21553 &xcoff_private_data_section_name);
21555 toc_section
21556 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);
21558 readonly_data_section = read_only_data_section;
21559 exception_section = data_section;
21562 static int
21563 rs6000_xcoff_reloc_rw_mask (void)
21565 return 3;
21568 static void
21569 rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
21570 tree decl ATTRIBUTE_UNUSED)
21572 int smclass;
21573 static const char * const suffix[3] = { "PR", "RO", "RW" };
21575 if (flags & SECTION_CODE)
21576 smclass = 0;
21577 else if (flags & SECTION_WRITE)
21578 smclass = 2;
21579 else
21580 smclass = 1;
21582 fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
21583 (flags & SECTION_CODE) ? "." : "",
21584 name, suffix[smclass], flags & SECTION_ENTSIZE);
21587 static section *
21588 rs6000_xcoff_select_section (tree decl, int reloc,
21589 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
21591 if (decl_readonly_section (decl, reloc))
21593 if (TREE_PUBLIC (decl))
21594 return read_only_data_section;
21595 else
21596 return read_only_private_data_section;
21598 else
21600 if (TREE_PUBLIC (decl))
21601 return data_section;
21602 else
21603 return private_data_section;
21607 static void
21608 rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
21610 const char *name;
21612 /* Use select_section for private and uninitialized data. */
21613 if (!TREE_PUBLIC (decl)
21614 || DECL_COMMON (decl)
21615 || DECL_INITIAL (decl) == NULL_TREE
21616 || DECL_INITIAL (decl) == error_mark_node
21617 || (flag_zero_initialized_in_bss
21618 && initializer_zerop (DECL_INITIAL (decl))))
21619 return;
21621 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
21622 name = (*targetm.strip_name_encoding) (name);
21623 DECL_SECTION_NAME (decl) = build_string (strlen (name), name);
21626 /* Select section for constant in constant pool.
21628 On RS/6000, all constants are in the private read-only data area.
21629 However, if this is being placed in the TOC it must be output as a
21630 toc entry. */
21632 static section *
21633 rs6000_xcoff_select_rtx_section (enum machine_mode mode, rtx x,
21634 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
21636 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
21637 return toc_section;
21638 else
21639 return read_only_private_data_section;
21642 /* Remove any trailing [DS] or the like from the symbol name. */
21644 static const char *
21645 rs6000_xcoff_strip_name_encoding (const char *name)
21647 size_t len;
21648 if (*name == '*')
21649 name++;
21650 len = strlen (name);
21651 if (name[len - 1] == ']')
21652 return ggc_alloc_string (name, len - 4);
21653 else
21654 return name;
21657 /* Section attributes. AIX is always PIC. */
21659 static unsigned int
21660 rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
21662 unsigned int align;
21663 unsigned int flags = default_section_type_flags (decl, name, reloc);
21665 /* Align to at least UNIT size. */
21666 if (flags & SECTION_CODE)
21667 align = MIN_UNITS_PER_WORD;
21668 else
21669 /* Increase alignment of large objects if not already stricter. */
21670 align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
21671 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
21672 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);
21674 return flags | (exact_log2 (align) & SECTION_ENTSIZE);
21677 /* Output at beginning of assembler file.
21679 Initialize the section names for the RS/6000 at this point.
21681 Specify filename, including full path, to assembler.
21683 We want to go into the TOC section so at least one .toc will be emitted.
21684 Also, in order to output proper .bs/.es pairs, we need at least one static
21685 [RW] section emitted.
21687 Finally, declare mcount when profiling to make the assembler happy. */
21689 static void
21690 rs6000_xcoff_file_start (void)
21692 rs6000_gen_section_name (&xcoff_bss_section_name,
21693 main_input_filename, ".bss_");
21694 rs6000_gen_section_name (&xcoff_private_data_section_name,
21695 main_input_filename, ".rw_");
21696 rs6000_gen_section_name (&xcoff_read_only_section_name,
21697 main_input_filename, ".ro_");
21699 fputs ("\t.file\t", asm_out_file);
21700 output_quoted_string (asm_out_file, main_input_filename);
21701 fputc ('\n', asm_out_file);
21702 if (write_symbols != NO_DEBUG)
21703 switch_to_section (private_data_section);
21704 switch_to_section (text_section);
21705 if (profile_flag)
21706 fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
21707 rs6000_file_start ();
21710 /* Output at end of assembler file.
21711 On the RS/6000, referencing data should automatically pull in text. */
21713 static void
21714 rs6000_xcoff_file_end (void)
21716 switch_to_section (text_section);
21717 fputs ("_section_.text:\n", asm_out_file);
21718 switch_to_section (data_section);
21719 fputs (TARGET_32BIT
21720 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
21721 asm_out_file);
21723 #endif /* TARGET_XCOFF */
21725 /* Compute a (partial) cost for rtx X. Return true if the complete
21726 cost has been computed, and false if subexpressions should be
21727 scanned. In either case, *TOTAL contains the cost result. */
21729 static bool
21730 rs6000_rtx_costs (rtx x, int code, int outer_code, int *total,
21731 bool speed)
21733 enum machine_mode mode = GET_MODE (x);
21735 switch (code)
21737 /* On the RS/6000, if it is valid in the insn, it is free. */
21738 case CONST_INT:
21739 if (((outer_code == SET
21740 || outer_code == PLUS
21741 || outer_code == MINUS)
21742 && (satisfies_constraint_I (x)
21743 || satisfies_constraint_L (x)))
21744 || (outer_code == AND
21745 && (satisfies_constraint_K (x)
21746 || (mode == SImode
21747 ? satisfies_constraint_L (x)
21748 : satisfies_constraint_J (x))
21749 || mask_operand (x, mode)
21750 || (mode == DImode
21751 && mask64_operand (x, DImode))))
21752 || ((outer_code == IOR || outer_code == XOR)
21753 && (satisfies_constraint_K (x)
21754 || (mode == SImode
21755 ? satisfies_constraint_L (x)
21756 : satisfies_constraint_J (x))))
21757 || outer_code == ASHIFT
21758 || outer_code == ASHIFTRT
21759 || outer_code == LSHIFTRT
21760 || outer_code == ROTATE
21761 || outer_code == ROTATERT
21762 || outer_code == ZERO_EXTRACT
21763 || (outer_code == MULT
21764 && satisfies_constraint_I (x))
21765 || ((outer_code == DIV || outer_code == UDIV
21766 || outer_code == MOD || outer_code == UMOD)
21767 && exact_log2 (INTVAL (x)) >= 0)
21768 || (outer_code == COMPARE
21769 && (satisfies_constraint_I (x)
21770 || satisfies_constraint_K (x)))
21771 || (outer_code == EQ
21772 && (satisfies_constraint_I (x)
21773 || satisfies_constraint_K (x)
21774 || (mode == SImode
21775 ? satisfies_constraint_L (x)
21776 : satisfies_constraint_J (x))))
21777 || (outer_code == GTU
21778 && satisfies_constraint_I (x))
21779 || (outer_code == LTU
21780 && satisfies_constraint_P (x)))
21782 *total = 0;
21783 return true;
21785 else if ((outer_code == PLUS
21786 && reg_or_add_cint_operand (x, VOIDmode))
21787 || (outer_code == MINUS
21788 && reg_or_sub_cint_operand (x, VOIDmode))
21789 || ((outer_code == SET
21790 || outer_code == IOR
21791 || outer_code == XOR)
21792 && (INTVAL (x)
21793 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
21795 *total = COSTS_N_INSNS (1);
21796 return true;
21798 /* FALLTHRU */
21800 case CONST_DOUBLE:
21801 if (mode == DImode && code == CONST_DOUBLE)
21803 if ((outer_code == IOR || outer_code == XOR)
21804 && CONST_DOUBLE_HIGH (x) == 0
21805 && (CONST_DOUBLE_LOW (x)
21806 & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0)
21808 *total = 0;
21809 return true;
21811 else if ((outer_code == AND && and64_2_operand (x, DImode))
21812 || ((outer_code == SET
21813 || outer_code == IOR
21814 || outer_code == XOR)
21815 && CONST_DOUBLE_HIGH (x) == 0))
21817 *total = COSTS_N_INSNS (1);
21818 return true;
21821 /* FALLTHRU */
21823 case CONST:
21824 case HIGH:
21825 case SYMBOL_REF:
21826 case MEM:
21827 /* When optimizing for size, MEM should be slightly more expensive
21828 than generating address, e.g., (plus (reg) (const)).
21829 L1 cache latency is about two instructions. */
21830 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
21831 return true;
21833 case LABEL_REF:
21834 *total = 0;
21835 return true;
21837 case PLUS:
21838 if (mode == DFmode)
21840 if (GET_CODE (XEXP (x, 0)) == MULT)
21842 /* FNMA accounted in outer NEG. */
21843 if (outer_code == NEG)
21844 *total = rs6000_cost->dmul - rs6000_cost->fp;
21845 else
21846 *total = rs6000_cost->dmul;
21848 else
21849 *total = rs6000_cost->fp;
21851 else if (mode == SFmode)
21853 /* FNMA accounted in outer NEG. */
21854 if (outer_code == NEG && GET_CODE (XEXP (x, 0)) == MULT)
21855 *total = 0;
21856 else
21857 *total = rs6000_cost->fp;
21859 else
21860 *total = COSTS_N_INSNS (1);
21861 return false;
21863 case MINUS:
21864 if (mode == DFmode)
21866 if (GET_CODE (XEXP (x, 0)) == MULT
21867 || GET_CODE (XEXP (x, 1)) == MULT)
21869 /* FNMA accounted in outer NEG. */
21870 if (outer_code == NEG)
21871 *total = rs6000_cost->dmul - rs6000_cost->fp;
21872 else
21873 *total = rs6000_cost->dmul;
21875 else
21876 *total = rs6000_cost->fp;
21878 else if (mode == SFmode)
21880 /* FNMA accounted in outer NEG. */
21881 if (outer_code == NEG && GET_CODE (XEXP (x, 0)) == MULT)
21882 *total = 0;
21883 else
21884 *total = rs6000_cost->fp;
21886 else
21887 *total = COSTS_N_INSNS (1);
21888 return false;
21890 case MULT:
21891 if (GET_CODE (XEXP (x, 1)) == CONST_INT
21892 && satisfies_constraint_I (XEXP (x, 1)))
21894 if (INTVAL (XEXP (x, 1)) >= -256
21895 && INTVAL (XEXP (x, 1)) <= 255)
21896 *total = rs6000_cost->mulsi_const9;
21897 else
21898 *total = rs6000_cost->mulsi_const;
21900 /* FMA accounted in outer PLUS/MINUS. */
21901 else if ((mode == DFmode || mode == SFmode)
21902 && (outer_code == PLUS || outer_code == MINUS))
21903 *total = 0;
21904 else if (mode == DFmode)
21905 *total = rs6000_cost->dmul;
21906 else if (mode == SFmode)
21907 *total = rs6000_cost->fp;
21908 else if (mode == DImode)
21909 *total = rs6000_cost->muldi;
21910 else
21911 *total = rs6000_cost->mulsi;
21912 return false;
21914 case DIV:
21915 case MOD:
21916 if (FLOAT_MODE_P (mode))
21918 *total = mode == DFmode ? rs6000_cost->ddiv
21919 : rs6000_cost->sdiv;
21920 return false;
21922 /* FALLTHRU */
21924 case UDIV:
21925 case UMOD:
21926 if (GET_CODE (XEXP (x, 1)) == CONST_INT
21927 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
21929 if (code == DIV || code == MOD)
21930 /* Shift, addze */
21931 *total = COSTS_N_INSNS (2);
21932 else
21933 /* Shift */
21934 *total = COSTS_N_INSNS (1);
21936 else
21938 if (GET_MODE (XEXP (x, 1)) == DImode)
21939 *total = rs6000_cost->divdi;
21940 else
21941 *total = rs6000_cost->divsi;
21943 /* Add in shift and subtract for MOD. */
21944 if (code == MOD || code == UMOD)
21945 *total += COSTS_N_INSNS (2);
21946 return false;
21948 case CTZ:
21949 case FFS:
21950 *total = COSTS_N_INSNS (4);
21951 return false;
21953 case POPCOUNT:
21954 *total = COSTS_N_INSNS (6);
21955 return false;
21957 case NOT:
21958 if (outer_code == AND || outer_code == IOR || outer_code == XOR)
21960 *total = 0;
21961 return false;
21963 /* FALLTHRU */
21965 case AND:
21966 case CLZ:
21967 case IOR:
21968 case XOR:
21969 case ZERO_EXTRACT:
21970 *total = COSTS_N_INSNS (1);
21971 return false;
21973 case ASHIFT:
21974 case ASHIFTRT:
21975 case LSHIFTRT:
21976 case ROTATE:
21977 case ROTATERT:
21978 /* Handle mul_highpart. */
21979 if (outer_code == TRUNCATE
21980 && GET_CODE (XEXP (x, 0)) == MULT)
21982 if (mode == DImode)
21983 *total = rs6000_cost->muldi;
21984 else
21985 *total = rs6000_cost->mulsi;
21986 return true;
21988 else if (outer_code == AND)
21989 *total = 0;
21990 else
21991 *total = COSTS_N_INSNS (1);
21992 return false;
21994 case SIGN_EXTEND:
21995 case ZERO_EXTEND:
21996 if (GET_CODE (XEXP (x, 0)) == MEM)
21997 *total = 0;
21998 else
21999 *total = COSTS_N_INSNS (1);
22000 return false;
22002 case COMPARE:
22003 case NEG:
22004 case ABS:
22005 if (!FLOAT_MODE_P (mode))
22007 *total = COSTS_N_INSNS (1);
22008 return false;
22010 /* FALLTHRU */
22012 case FLOAT:
22013 case UNSIGNED_FLOAT:
22014 case FIX:
22015 case UNSIGNED_FIX:
22016 case FLOAT_TRUNCATE:
22017 *total = rs6000_cost->fp;
22018 return false;
22020 case FLOAT_EXTEND:
22021 if (mode == DFmode)
22022 *total = 0;
22023 else
22024 *total = rs6000_cost->fp;
22025 return false;
22027 case UNSPEC:
22028 switch (XINT (x, 1))
22030 case UNSPEC_FRSP:
22031 *total = rs6000_cost->fp;
22032 return true;
22034 default:
22035 break;
22037 break;
22039 case CALL:
22040 case IF_THEN_ELSE:
22041 if (!speed)
22043 *total = COSTS_N_INSNS (1);
22044 return true;
22046 else if (FLOAT_MODE_P (mode)
22047 && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT && TARGET_FPRS)
22049 *total = rs6000_cost->fp;
22050 return false;
22052 break;
22054 case EQ:
22055 case GTU:
22056 case LTU:
22057 /* Carry bit requires mode == Pmode.
22058 NEG or PLUS already counted so only add one. */
22059 if (mode == Pmode
22060 && (outer_code == NEG || outer_code == PLUS))
22062 *total = COSTS_N_INSNS (1);
22063 return true;
22065 if (outer_code == SET)
22067 if (XEXP (x, 1) == const0_rtx)
22069 *total = COSTS_N_INSNS (2);
22070 return true;
22072 else if (mode == Pmode)
22074 *total = COSTS_N_INSNS (3);
22075 return false;
22078 /* FALLTHRU */
22080 case GT:
22081 case LT:
22082 case UNORDERED:
22083 if (outer_code == SET && (XEXP (x, 1) == const0_rtx))
22085 *total = COSTS_N_INSNS (2);
22086 return true;
22088 /* CC COMPARE. */
22089 if (outer_code == COMPARE)
22091 *total = 0;
22092 return true;
22094 break;
22096 default:
22097 break;
22100 return false;
22103 /* A C expression returning the cost of moving data from a register of class
22104 CLASS1 to one of CLASS2. */
22107 rs6000_register_move_cost (enum machine_mode mode,
22108 enum reg_class from, enum reg_class to)
22110 /* Moves from/to GENERAL_REGS. */
22111 if (reg_classes_intersect_p (to, GENERAL_REGS)
22112 || reg_classes_intersect_p (from, GENERAL_REGS))
22114 if (! reg_classes_intersect_p (to, GENERAL_REGS))
22115 from = to;
22117 if (from == FLOAT_REGS || from == ALTIVEC_REGS)
22118 return (rs6000_memory_move_cost (mode, from, 0)
22119 + rs6000_memory_move_cost (mode, GENERAL_REGS, 0));
22121 /* It's more expensive to move CR_REGS than CR0_REGS because of the
22122 shift. */
22123 else if (from == CR_REGS)
22124 return 4;
22126 /* Power6 has slower LR/CTR moves so make them more expensive than
22127 memory in order to bias spills to memory .*/
22128 else if (rs6000_cpu == PROCESSOR_POWER6
22129 && reg_classes_intersect_p (from, LINK_OR_CTR_REGS))
22130 return 6 * hard_regno_nregs[0][mode];
22132 else
22133 /* A move will cost one instruction per GPR moved. */
22134 return 2 * hard_regno_nregs[0][mode];
22137 /* Moving between two similar registers is just one instruction. */
22138 else if (reg_classes_intersect_p (to, from))
22139 return (mode == TFmode || mode == TDmode) ? 4 : 2;
22141 /* Everything else has to go through GENERAL_REGS. */
22142 else
22143 return (rs6000_register_move_cost (mode, GENERAL_REGS, to)
22144 + rs6000_register_move_cost (mode, from, GENERAL_REGS));
22147 /* A C expressions returning the cost of moving data of MODE from a register to
22148 or from memory. */
22151 rs6000_memory_move_cost (enum machine_mode mode, enum reg_class rclass,
22152 int in ATTRIBUTE_UNUSED)
22154 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
22155 return 4 * hard_regno_nregs[0][mode];
22156 else if (reg_classes_intersect_p (rclass, FLOAT_REGS))
22157 return 4 * hard_regno_nregs[32][mode];
22158 else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
22159 return 4 * hard_regno_nregs[FIRST_ALTIVEC_REGNO][mode];
22160 else
22161 return 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
22164 /* Returns a code for a target-specific builtin that implements
22165 reciprocal of the function, or NULL_TREE if not available. */
22167 static tree
22168 rs6000_builtin_reciprocal (unsigned int fn, bool md_fn,
22169 bool sqrt ATTRIBUTE_UNUSED)
22171 if (! (TARGET_RECIP && TARGET_PPC_GFXOPT && !optimize_size
22172 && flag_finite_math_only && !flag_trapping_math
22173 && flag_unsafe_math_optimizations))
22174 return NULL_TREE;
22176 if (md_fn)
22177 return NULL_TREE;
22178 else
22179 switch (fn)
22181 case BUILT_IN_SQRTF:
22182 return rs6000_builtin_decls[RS6000_BUILTIN_RSQRTF];
22184 default:
22185 return NULL_TREE;
22189 /* Newton-Raphson approximation of single-precision floating point divide n/d.
22190 Assumes no trapping math and finite arguments. */
22192 void
22193 rs6000_emit_swdivsf (rtx dst, rtx n, rtx d)
22195 rtx x0, e0, e1, y1, u0, v0, one;
22197 x0 = gen_reg_rtx (SFmode);
22198 e0 = gen_reg_rtx (SFmode);
22199 e1 = gen_reg_rtx (SFmode);
22200 y1 = gen_reg_rtx (SFmode);
22201 u0 = gen_reg_rtx (SFmode);
22202 v0 = gen_reg_rtx (SFmode);
22203 one = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, SFmode));
22205 /* x0 = 1./d estimate */
22206 emit_insn (gen_rtx_SET (VOIDmode, x0,
22207 gen_rtx_UNSPEC (SFmode, gen_rtvec (1, d),
22208 UNSPEC_FRES)));
22209 /* e0 = 1. - d * x0 */
22210 emit_insn (gen_rtx_SET (VOIDmode, e0,
22211 gen_rtx_MINUS (SFmode, one,
22212 gen_rtx_MULT (SFmode, d, x0))));
22213 /* e1 = e0 + e0 * e0 */
22214 emit_insn (gen_rtx_SET (VOIDmode, e1,
22215 gen_rtx_PLUS (SFmode,
22216 gen_rtx_MULT (SFmode, e0, e0), e0)));
22217 /* y1 = x0 + e1 * x0 */
22218 emit_insn (gen_rtx_SET (VOIDmode, y1,
22219 gen_rtx_PLUS (SFmode,
22220 gen_rtx_MULT (SFmode, e1, x0), x0)));
22221 /* u0 = n * y1 */
22222 emit_insn (gen_rtx_SET (VOIDmode, u0,
22223 gen_rtx_MULT (SFmode, n, y1)));
22224 /* v0 = n - d * u0 */
22225 emit_insn (gen_rtx_SET (VOIDmode, v0,
22226 gen_rtx_MINUS (SFmode, n,
22227 gen_rtx_MULT (SFmode, d, u0))));
22228 /* dst = u0 + v0 * y1 */
22229 emit_insn (gen_rtx_SET (VOIDmode, dst,
22230 gen_rtx_PLUS (SFmode,
22231 gen_rtx_MULT (SFmode, v0, y1), u0)));
22234 /* Newton-Raphson approximation of double-precision floating point divide n/d.
22235 Assumes no trapping math and finite arguments. */
22237 void
22238 rs6000_emit_swdivdf (rtx dst, rtx n, rtx d)
22240 rtx x0, e0, e1, e2, y1, y2, y3, u0, v0, one;
22242 x0 = gen_reg_rtx (DFmode);
22243 e0 = gen_reg_rtx (DFmode);
22244 e1 = gen_reg_rtx (DFmode);
22245 e2 = gen_reg_rtx (DFmode);
22246 y1 = gen_reg_rtx (DFmode);
22247 y2 = gen_reg_rtx (DFmode);
22248 y3 = gen_reg_rtx (DFmode);
22249 u0 = gen_reg_rtx (DFmode);
22250 v0 = gen_reg_rtx (DFmode);
22251 one = force_reg (DFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, DFmode));
22253 /* x0 = 1./d estimate */
22254 emit_insn (gen_rtx_SET (VOIDmode, x0,
22255 gen_rtx_UNSPEC (DFmode, gen_rtvec (1, d),
22256 UNSPEC_FRES)));
22257 /* e0 = 1. - d * x0 */
22258 emit_insn (gen_rtx_SET (VOIDmode, e0,
22259 gen_rtx_MINUS (DFmode, one,
22260 gen_rtx_MULT (SFmode, d, x0))));
22261 /* y1 = x0 + e0 * x0 */
22262 emit_insn (gen_rtx_SET (VOIDmode, y1,
22263 gen_rtx_PLUS (DFmode,
22264 gen_rtx_MULT (DFmode, e0, x0), x0)));
22265 /* e1 = e0 * e0 */
22266 emit_insn (gen_rtx_SET (VOIDmode, e1,
22267 gen_rtx_MULT (DFmode, e0, e0)));
22268 /* y2 = y1 + e1 * y1 */
22269 emit_insn (gen_rtx_SET (VOIDmode, y2,
22270 gen_rtx_PLUS (DFmode,
22271 gen_rtx_MULT (DFmode, e1, y1), y1)));
22272 /* e2 = e1 * e1 */
22273 emit_insn (gen_rtx_SET (VOIDmode, e2,
22274 gen_rtx_MULT (DFmode, e1, e1)));
22275 /* y3 = y2 + e2 * y2 */
22276 emit_insn (gen_rtx_SET (VOIDmode, y3,
22277 gen_rtx_PLUS (DFmode,
22278 gen_rtx_MULT (DFmode, e2, y2), y2)));
22279 /* u0 = n * y3 */
22280 emit_insn (gen_rtx_SET (VOIDmode, u0,
22281 gen_rtx_MULT (DFmode, n, y3)));
22282 /* v0 = n - d * u0 */
22283 emit_insn (gen_rtx_SET (VOIDmode, v0,
22284 gen_rtx_MINUS (DFmode, n,
22285 gen_rtx_MULT (DFmode, d, u0))));
22286 /* dst = u0 + v0 * y3 */
22287 emit_insn (gen_rtx_SET (VOIDmode, dst,
22288 gen_rtx_PLUS (DFmode,
22289 gen_rtx_MULT (DFmode, v0, y3), u0)));
22293 /* Newton-Raphson approximation of single-precision floating point rsqrt.
22294 Assumes no trapping math and finite arguments. */
22296 void
22297 rs6000_emit_swrsqrtsf (rtx dst, rtx src)
22299 rtx x0, x1, x2, y1, u0, u1, u2, v0, v1, v2, t0,
22300 half, one, halfthree, c1, cond, label;
22302 x0 = gen_reg_rtx (SFmode);
22303 x1 = gen_reg_rtx (SFmode);
22304 x2 = gen_reg_rtx (SFmode);
22305 y1 = gen_reg_rtx (SFmode);
22306 u0 = gen_reg_rtx (SFmode);
22307 u1 = gen_reg_rtx (SFmode);
22308 u2 = gen_reg_rtx (SFmode);
22309 v0 = gen_reg_rtx (SFmode);
22310 v1 = gen_reg_rtx (SFmode);
22311 v2 = gen_reg_rtx (SFmode);
22312 t0 = gen_reg_rtx (SFmode);
22313 halfthree = gen_reg_rtx (SFmode);
22314 cond = gen_rtx_REG (CCFPmode, CR1_REGNO);
22315 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
22317 /* check 0.0, 1.0, NaN, Inf by testing src * src = src */
22318 emit_insn (gen_rtx_SET (VOIDmode, t0,
22319 gen_rtx_MULT (SFmode, src, src)));
22321 emit_insn (gen_rtx_SET (VOIDmode, cond,
22322 gen_rtx_COMPARE (CCFPmode, t0, src)));
22323 c1 = gen_rtx_EQ (VOIDmode, cond, const0_rtx);
22324 emit_unlikely_jump (c1, label);
22326 half = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconsthalf, SFmode));
22327 one = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, SFmode));
22329 /* halfthree = 1.5 = 1.0 + 0.5 */
22330 emit_insn (gen_rtx_SET (VOIDmode, halfthree,
22331 gen_rtx_PLUS (SFmode, one, half)));
22333 /* x0 = rsqrt estimate */
22334 emit_insn (gen_rtx_SET (VOIDmode, x0,
22335 gen_rtx_UNSPEC (SFmode, gen_rtvec (1, src),
22336 UNSPEC_RSQRT)));
22338 /* y1 = 0.5 * src = 1.5 * src - src -> fewer constants */
22339 emit_insn (gen_rtx_SET (VOIDmode, y1,
22340 gen_rtx_MINUS (SFmode,
22341 gen_rtx_MULT (SFmode, src, halfthree),
22342 src)));
22344 /* x1 = x0 * (1.5 - y1 * (x0 * x0)) */
22345 emit_insn (gen_rtx_SET (VOIDmode, u0,
22346 gen_rtx_MULT (SFmode, x0, x0)));
22347 emit_insn (gen_rtx_SET (VOIDmode, v0,
22348 gen_rtx_MINUS (SFmode,
22349 halfthree,
22350 gen_rtx_MULT (SFmode, y1, u0))));
22351 emit_insn (gen_rtx_SET (VOIDmode, x1,
22352 gen_rtx_MULT (SFmode, x0, v0)));
22354 /* x2 = x1 * (1.5 - y1 * (x1 * x1)) */
22355 emit_insn (gen_rtx_SET (VOIDmode, u1,
22356 gen_rtx_MULT (SFmode, x1, x1)));
22357 emit_insn (gen_rtx_SET (VOIDmode, v1,
22358 gen_rtx_MINUS (SFmode,
22359 halfthree,
22360 gen_rtx_MULT (SFmode, y1, u1))));
22361 emit_insn (gen_rtx_SET (VOIDmode, x2,
22362 gen_rtx_MULT (SFmode, x1, v1)));
22364 /* dst = x2 * (1.5 - y1 * (x2 * x2)) */
22365 emit_insn (gen_rtx_SET (VOIDmode, u2,
22366 gen_rtx_MULT (SFmode, x2, x2)));
22367 emit_insn (gen_rtx_SET (VOIDmode, v2,
22368 gen_rtx_MINUS (SFmode,
22369 halfthree,
22370 gen_rtx_MULT (SFmode, y1, u2))));
22371 emit_insn (gen_rtx_SET (VOIDmode, dst,
22372 gen_rtx_MULT (SFmode, x2, v2)));
22374 emit_label (XEXP (label, 0));
22377 /* Emit popcount intrinsic on TARGET_POPCNTB targets. DST is the
22378 target, and SRC is the argument operand. */
22380 void
22381 rs6000_emit_popcount (rtx dst, rtx src)
22383 enum machine_mode mode = GET_MODE (dst);
22384 rtx tmp1, tmp2;
22386 tmp1 = gen_reg_rtx (mode);
22388 if (mode == SImode)
22390 emit_insn (gen_popcntbsi2 (tmp1, src));
22391 tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
22392 NULL_RTX, 0);
22393 tmp2 = force_reg (SImode, tmp2);
22394 emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
22396 else
22398 emit_insn (gen_popcntbdi2 (tmp1, src));
22399 tmp2 = expand_mult (DImode, tmp1,
22400 GEN_INT ((HOST_WIDE_INT)
22401 0x01010101 << 32 | 0x01010101),
22402 NULL_RTX, 0);
22403 tmp2 = force_reg (DImode, tmp2);
22404 emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
22409 /* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
22410 target, and SRC is the argument operand. */
22412 void
22413 rs6000_emit_parity (rtx dst, rtx src)
22415 enum machine_mode mode = GET_MODE (dst);
22416 rtx tmp;
22418 tmp = gen_reg_rtx (mode);
22419 if (mode == SImode)
22421 /* Is mult+shift >= shift+xor+shift+xor? */
22422 if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
22424 rtx tmp1, tmp2, tmp3, tmp4;
22426 tmp1 = gen_reg_rtx (SImode);
22427 emit_insn (gen_popcntbsi2 (tmp1, src));
22429 tmp2 = gen_reg_rtx (SImode);
22430 emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
22431 tmp3 = gen_reg_rtx (SImode);
22432 emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));
22434 tmp4 = gen_reg_rtx (SImode);
22435 emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
22436 emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
22438 else
22439 rs6000_emit_popcount (tmp, src);
22440 emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
22442 else
22444 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
22445 if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
22447 rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
22449 tmp1 = gen_reg_rtx (DImode);
22450 emit_insn (gen_popcntbdi2 (tmp1, src));
22452 tmp2 = gen_reg_rtx (DImode);
22453 emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
22454 tmp3 = gen_reg_rtx (DImode);
22455 emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));
22457 tmp4 = gen_reg_rtx (DImode);
22458 emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
22459 tmp5 = gen_reg_rtx (DImode);
22460 emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));
22462 tmp6 = gen_reg_rtx (DImode);
22463 emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
22464 emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
22466 else
22467 rs6000_emit_popcount (tmp, src);
22468 emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
22472 /* Return an RTX representing where to find the function value of a
22473 function returning MODE. */
22474 static rtx
22475 rs6000_complex_function_value (enum machine_mode mode)
22477 unsigned int regno;
22478 rtx r1, r2;
22479 enum machine_mode inner = GET_MODE_INNER (mode);
22480 unsigned int inner_bytes = GET_MODE_SIZE (inner);
22482 if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22483 regno = FP_ARG_RETURN;
22484 else
22486 regno = GP_ARG_RETURN;
22488 /* 32-bit is OK since it'll go in r3/r4. */
22489 if (TARGET_32BIT && inner_bytes >= 4)
22490 return gen_rtx_REG (mode, regno);
22493 if (inner_bytes >= 8)
22494 return gen_rtx_REG (mode, regno);
22496 r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
22497 const0_rtx);
22498 r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
22499 GEN_INT (inner_bytes));
22500 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
22503 /* Define how to find the value returned by a function.
22504 VALTYPE is the data type of the value (as a tree).
22505 If the precise function being called is known, FUNC is its FUNCTION_DECL;
22506 otherwise, FUNC is 0.
22508 On the SPE, both FPs and vectors are returned in r3.
22510 On RS/6000 an integer value is in r3 and a floating-point value is in
22511 fp1, unless -msoft-float. */
22514 rs6000_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
22516 enum machine_mode mode;
22517 unsigned int regno;
22519 /* Special handling for structs in darwin64. */
22520 if (rs6000_darwin64_abi
22521 && TYPE_MODE (valtype) == BLKmode
22522 && TREE_CODE (valtype) == RECORD_TYPE
22523 && int_size_in_bytes (valtype) > 0)
22525 CUMULATIVE_ARGS valcum;
22526 rtx valret;
22528 valcum.words = 0;
22529 valcum.fregno = FP_ARG_MIN_REG;
22530 valcum.vregno = ALTIVEC_ARG_MIN_REG;
22531 /* Do a trial code generation as if this were going to be passed as
22532 an argument; if any part goes in memory, we return NULL. */
22533 valret = rs6000_darwin64_record_arg (&valcum, valtype, 1, true);
22534 if (valret)
22535 return valret;
22536 /* Otherwise fall through to standard ABI rules. */
22539 if (TARGET_32BIT && TARGET_POWERPC64 && TYPE_MODE (valtype) == DImode)
22541 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22542 return gen_rtx_PARALLEL (DImode,
22543 gen_rtvec (2,
22544 gen_rtx_EXPR_LIST (VOIDmode,
22545 gen_rtx_REG (SImode, GP_ARG_RETURN),
22546 const0_rtx),
22547 gen_rtx_EXPR_LIST (VOIDmode,
22548 gen_rtx_REG (SImode,
22549 GP_ARG_RETURN + 1),
22550 GEN_INT (4))));
22552 if (TARGET_32BIT && TARGET_POWERPC64 && TYPE_MODE (valtype) == DCmode)
22554 return gen_rtx_PARALLEL (DCmode,
22555 gen_rtvec (4,
22556 gen_rtx_EXPR_LIST (VOIDmode,
22557 gen_rtx_REG (SImode, GP_ARG_RETURN),
22558 const0_rtx),
22559 gen_rtx_EXPR_LIST (VOIDmode,
22560 gen_rtx_REG (SImode,
22561 GP_ARG_RETURN + 1),
22562 GEN_INT (4)),
22563 gen_rtx_EXPR_LIST (VOIDmode,
22564 gen_rtx_REG (SImode,
22565 GP_ARG_RETURN + 2),
22566 GEN_INT (8)),
22567 gen_rtx_EXPR_LIST (VOIDmode,
22568 gen_rtx_REG (SImode,
22569 GP_ARG_RETURN + 3),
22570 GEN_INT (12))));
22573 mode = TYPE_MODE (valtype);
22574 if ((INTEGRAL_TYPE_P (valtype) && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
22575 || POINTER_TYPE_P (valtype))
22576 mode = TARGET_32BIT ? SImode : DImode;
22578 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22579 /* _Decimal128 must use an even/odd register pair. */
22580 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
22581 else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT && TARGET_FPRS
22582 && ((TARGET_SINGLE_FLOAT && (mode == SFmode)) || TARGET_DOUBLE_FLOAT))
22583 regno = FP_ARG_RETURN;
22584 else if (TREE_CODE (valtype) == COMPLEX_TYPE
22585 && targetm.calls.split_complex_arg)
22586 return rs6000_complex_function_value (mode);
22587 else if (TREE_CODE (valtype) == VECTOR_TYPE
22588 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
22589 && ALTIVEC_VECTOR_MODE (mode))
22590 regno = ALTIVEC_ARG_RETURN;
22591 else if (TARGET_E500_DOUBLE && TARGET_HARD_FLOAT
22592 && (mode == DFmode || mode == DCmode
22593 || mode == TFmode || mode == TCmode))
22594 return spe_build_register_parallel (mode, GP_ARG_RETURN);
22595 else
22596 regno = GP_ARG_RETURN;
22598 return gen_rtx_REG (mode, regno);
22601 /* Define how to find the value returned by a library function
22602 assuming the value has mode MODE. */
22604 rs6000_libcall_value (enum machine_mode mode)
22606 unsigned int regno;
22608 if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
22610 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22611 return gen_rtx_PARALLEL (DImode,
22612 gen_rtvec (2,
22613 gen_rtx_EXPR_LIST (VOIDmode,
22614 gen_rtx_REG (SImode, GP_ARG_RETURN),
22615 const0_rtx),
22616 gen_rtx_EXPR_LIST (VOIDmode,
22617 gen_rtx_REG (SImode,
22618 GP_ARG_RETURN + 1),
22619 GEN_INT (4))));
22622 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22623 /* _Decimal128 must use an even/odd register pair. */
22624 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
22625 else if (SCALAR_FLOAT_MODE_P (mode)
22626 && TARGET_HARD_FLOAT && TARGET_FPRS)
22627 regno = FP_ARG_RETURN;
22628 else if (ALTIVEC_VECTOR_MODE (mode)
22629 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
22630 regno = ALTIVEC_ARG_RETURN;
22631 else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
22632 return rs6000_complex_function_value (mode);
22633 else if (TARGET_E500_DOUBLE && TARGET_HARD_FLOAT
22634 && (mode == DFmode || mode == DCmode
22635 || mode == TFmode || mode == TCmode))
22636 return spe_build_register_parallel (mode, GP_ARG_RETURN);
22637 else
22638 regno = GP_ARG_RETURN;
22640 return gen_rtx_REG (mode, regno);
22643 /* Define the offset between two registers, FROM to be eliminated and its
22644 replacement TO, at the start of a routine. */
22645 HOST_WIDE_INT
22646 rs6000_initial_elimination_offset (int from, int to)
22648 rs6000_stack_t *info = rs6000_stack_info ();
22649 HOST_WIDE_INT offset;
22651 if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22652 offset = info->push_p ? 0 : -info->total_size;
22653 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22655 offset = info->push_p ? 0 : -info->total_size;
22656 if (FRAME_GROWS_DOWNWARD)
22657 offset += info->fixed_size + info->vars_size + info->parm_size;
22659 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
22660 offset = FRAME_GROWS_DOWNWARD
22661 ? info->fixed_size + info->vars_size + info->parm_size
22662 : 0;
22663 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
22664 offset = info->total_size;
22665 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22666 offset = info->push_p ? info->total_size : 0;
22667 else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
22668 offset = 0;
22669 else
22670 gcc_unreachable ();
22672 return offset;
22675 static rtx
22676 rs6000_dwarf_register_span (rtx reg)
22678 rtx parts[8];
22679 int i, words;
22680 unsigned regno = REGNO (reg);
22681 enum machine_mode mode = GET_MODE (reg);
22683 if (TARGET_SPE
22684 && regno < 32
22685 && (SPE_VECTOR_MODE (GET_MODE (reg))
22686 || (TARGET_E500_DOUBLE && FLOAT_MODE_P (mode)
22687 && mode != SFmode && mode != SDmode && mode != SCmode)))
22689 else
22690 return NULL_RTX;
22692 regno = REGNO (reg);
22694 /* The duality of the SPE register size wreaks all kinds of havoc.
22695 This is a way of distinguishing r0 in 32-bits from r0 in
22696 64-bits. */
22697 words = (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
22698 gcc_assert (words <= 4);
22699 for (i = 0; i < words; i++, regno++)
22701 if (BYTES_BIG_ENDIAN)
22703 parts[2 * i] = gen_rtx_REG (SImode, regno + 1200);
22704 parts[2 * i + 1] = gen_rtx_REG (SImode, regno);
22706 else
22708 parts[2 * i] = gen_rtx_REG (SImode, regno);
22709 parts[2 * i + 1] = gen_rtx_REG (SImode, regno + 1200);
22713 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (words * 2, parts));
22716 /* Fill in sizes for SPE register high parts in table used by unwinder. */
22718 static void
22719 rs6000_init_dwarf_reg_sizes_extra (tree address)
22721 if (TARGET_SPE)
22723 int i;
22724 enum machine_mode mode = TYPE_MODE (char_type_node);
22725 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, EXPAND_NORMAL);
22726 rtx mem = gen_rtx_MEM (BLKmode, addr);
22727 rtx value = gen_int_mode (4, mode);
22729 for (i = 1201; i < 1232; i++)
22731 int column = DWARF_REG_TO_UNWIND_COLUMN (i);
22732 HOST_WIDE_INT offset
22733 = DWARF_FRAME_REGNUM (column) * GET_MODE_SIZE (mode);
22735 emit_move_insn (adjust_address (mem, mode, offset), value);
22740 /* Map internal gcc register numbers to DWARF2 register numbers. */
22742 unsigned int
22743 rs6000_dbx_register_number (unsigned int regno)
22745 if (regno <= 63 || write_symbols != DWARF2_DEBUG)
22746 return regno;
22747 if (regno == MQ_REGNO)
22748 return 100;
22749 if (regno == LR_REGNO)
22750 return 108;
22751 if (regno == CTR_REGNO)
22752 return 109;
22753 if (CR_REGNO_P (regno))
22754 return regno - CR0_REGNO + 86;
22755 if (regno == XER_REGNO)
22756 return 101;
22757 if (ALTIVEC_REGNO_P (regno))
22758 return regno - FIRST_ALTIVEC_REGNO + 1124;
22759 if (regno == VRSAVE_REGNO)
22760 return 356;
22761 if (regno == VSCR_REGNO)
22762 return 67;
22763 if (regno == SPE_ACC_REGNO)
22764 return 99;
22765 if (regno == SPEFSCR_REGNO)
22766 return 612;
22767 /* SPE high reg number. We get these values of regno from
22768 rs6000_dwarf_register_span. */
22769 gcc_assert (regno >= 1200 && regno < 1232);
22770 return regno;
22773 /* target hook eh_return_filter_mode */
22774 static enum machine_mode
22775 rs6000_eh_return_filter_mode (void)
22777 return TARGET_32BIT ? SImode : word_mode;
22780 /* Target hook for scalar_mode_supported_p. */
22781 static bool
22782 rs6000_scalar_mode_supported_p (enum machine_mode mode)
22784 if (DECIMAL_FLOAT_MODE_P (mode))
22785 return true;
22786 else
22787 return default_scalar_mode_supported_p (mode);
22790 /* Target hook for vector_mode_supported_p. */
22791 static bool
22792 rs6000_vector_mode_supported_p (enum machine_mode mode)
22795 if (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (mode))
22796 return true;
22798 if (TARGET_SPE && SPE_VECTOR_MODE (mode))
22799 return true;
22801 else if (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (mode))
22802 return true;
22804 else
22805 return false;
22808 /* Target hook for invalid_arg_for_unprototyped_fn. */
22809 static const char *
22810 invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
22812 return (!rs6000_darwin64_abi
22813 && typelist == 0
22814 && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
22815 && (funcdecl == NULL_TREE
22816 || (TREE_CODE (funcdecl) == FUNCTION_DECL
22817 && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
22818 ? N_("AltiVec argument passed to unprototyped function")
22819 : NULL;
22822 /* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
22823 setup by using __stack_chk_fail_local hidden function instead of
22824 calling __stack_chk_fail directly. Otherwise it is better to call
22825 __stack_chk_fail directly. */
22827 static tree
22828 rs6000_stack_protect_fail (void)
22830 return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
22831 ? default_hidden_stack_protect_fail ()
22832 : default_external_stack_protect_fail ();
22835 void
22836 rs6000_final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
22837 int num_operands ATTRIBUTE_UNUSED)
22839 if (rs6000_warn_cell_microcode)
22841 const char *temp;
22842 int insn_code_number = recog_memoized (insn);
22843 location_t location = locator_location (INSN_LOCATOR (insn));
22845 /* Punt on insns we cannot recognize. */
22846 if (insn_code_number < 0)
22847 return;
22849 temp = get_insn_template (insn_code_number, insn);
22851 if (get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS)
22852 warning_at (location, OPT_mwarn_cell_microcode,
22853 "emitting microcode insn %s\t[%s] #%d",
22854 temp, insn_data[INSN_CODE (insn)].name, INSN_UID (insn));
22855 else if (get_attr_cell_micro (insn) == CELL_MICRO_CONDITIONAL)
22856 warning_at (location, OPT_mwarn_cell_microcode,
22857 "emitting conditional microcode insn %s\t[%s] #%d",
22858 temp, insn_data[INSN_CODE (insn)].name, INSN_UID (insn));
22862 #include "gt-rs6000.h"