2009-04-21 Taras Glek <tglek@mozilla.com>
[official-gcc.git] / gcc / alias.c
blob85db75569c81da54e3e70c3e39687226f3fbd8aa
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct GTY(()) alias_set_entry {
132 /* The alias set number, as stored in MEM_ALIAS_SET. */
133 alias_set_type alias_set;
135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
139 /* The children of the alias set. These are not just the immediate
140 children, but, in fact, all descendants. So, if we have:
142 struct T { struct S s; float f; }
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
146 splay_tree GTY((param1_is (int), param2_is (int))) children;
148 typedef struct alias_set_entry *alias_set_entry;
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, enum machine_mode,
154 enum machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static int insert_subset_children (splay_tree_node, void*);
158 static tree find_base_decl (tree);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162 static int aliases_everything_p (const_rtx);
163 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
164 static tree decl_for_component_ref (tree);
165 static rtx adjust_offset_for_component_ref (tree, rtx);
166 static int write_dependence_p (const_rtx, const_rtx, int);
168 static void memory_modified_1 (rtx, const_rtx, void *);
170 /* Set up all info needed to perform alias analysis on memory references. */
172 /* Returns the size in bytes of the mode of X. */
173 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
175 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
176 different alias sets. We ignore alias sets in functions making use
177 of variable arguments because the va_arg macros on some systems are
178 not legal ANSI C. */
179 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
180 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
182 /* Cap the number of passes we make over the insns propagating alias
183 information through set chains. 10 is a completely arbitrary choice. */
184 #define MAX_ALIAS_LOOP_PASSES 10
186 /* reg_base_value[N] gives an address to which register N is related.
187 If all sets after the first add or subtract to the current value
188 or otherwise modify it so it does not point to a different top level
189 object, reg_base_value[N] is equal to the address part of the source
190 of the first set.
192 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
193 expressions represent certain special values: function arguments and
194 the stack, frame, and argument pointers.
196 The contents of an ADDRESS is not normally used, the mode of the
197 ADDRESS determines whether the ADDRESS is a function argument or some
198 other special value. Pointer equality, not rtx_equal_p, determines whether
199 two ADDRESS expressions refer to the same base address.
201 The only use of the contents of an ADDRESS is for determining if the
202 current function performs nonlocal memory memory references for the
203 purposes of marking the function as a constant function. */
205 static GTY(()) VEC(rtx,gc) *reg_base_value;
206 static rtx *new_reg_base_value;
208 /* We preserve the copy of old array around to avoid amount of garbage
209 produced. About 8% of garbage produced were attributed to this
210 array. */
211 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
213 /* Static hunks of RTL used by the aliasing code; these are initialized
214 once per function to avoid unnecessary RTL allocations. */
215 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
217 #define REG_BASE_VALUE(X) \
218 (REGNO (X) < VEC_length (rtx, reg_base_value) \
219 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
221 /* Vector indexed by N giving the initial (unchanging) value known for
222 pseudo-register N. This array is initialized in init_alias_analysis,
223 and does not change until end_alias_analysis is called. */
224 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
226 /* Indicates number of valid entries in reg_known_value. */
227 static GTY(()) unsigned int reg_known_value_size;
229 /* Vector recording for each reg_known_value whether it is due to a
230 REG_EQUIV note. Future passes (viz., reload) may replace the
231 pseudo with the equivalent expression and so we account for the
232 dependences that would be introduced if that happens.
234 The REG_EQUIV notes created in assign_parms may mention the arg
235 pointer, and there are explicit insns in the RTL that modify the
236 arg pointer. Thus we must ensure that such insns don't get
237 scheduled across each other because that would invalidate the
238 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
239 wrong, but solving the problem in the scheduler will likely give
240 better code, so we do it here. */
241 static bool *reg_known_equiv_p;
243 /* True when scanning insns from the start of the rtl to the
244 NOTE_INSN_FUNCTION_BEG note. */
245 static bool copying_arguments;
247 DEF_VEC_P(alias_set_entry);
248 DEF_VEC_ALLOC_P(alias_set_entry,gc);
250 /* The splay-tree used to store the various alias set entries. */
251 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
253 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
254 such an entry, or NULL otherwise. */
256 static inline alias_set_entry
257 get_alias_set_entry (alias_set_type alias_set)
259 return VEC_index (alias_set_entry, alias_sets, alias_set);
262 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
263 the two MEMs cannot alias each other. */
265 static inline int
266 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
268 /* Perform a basic sanity check. Namely, that there are no alias sets
269 if we're not using strict aliasing. This helps to catch bugs
270 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
271 where a MEM is allocated in some way other than by the use of
272 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
273 use alias sets to indicate that spilled registers cannot alias each
274 other, we might need to remove this check. */
275 gcc_assert (flag_strict_aliasing
276 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
278 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
281 /* Insert the NODE into the splay tree given by DATA. Used by
282 record_alias_subset via splay_tree_foreach. */
284 static int
285 insert_subset_children (splay_tree_node node, void *data)
287 splay_tree_insert ((splay_tree) data, node->key, node->value);
289 return 0;
292 /* Return true if the first alias set is a subset of the second. */
294 bool
295 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
297 alias_set_entry ase;
299 /* Everything is a subset of the "aliases everything" set. */
300 if (set2 == 0)
301 return true;
303 /* Otherwise, check if set1 is a subset of set2. */
304 ase = get_alias_set_entry (set2);
305 if (ase != 0
306 && ((ase->has_zero_child && set1 == 0)
307 || splay_tree_lookup (ase->children,
308 (splay_tree_key) set1)))
309 return true;
310 return false;
313 /* Return 1 if the two specified alias sets may conflict. */
316 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
318 alias_set_entry ase;
320 /* The easy case. */
321 if (alias_sets_must_conflict_p (set1, set2))
322 return 1;
324 /* See if the first alias set is a subset of the second. */
325 ase = get_alias_set_entry (set1);
326 if (ase != 0
327 && (ase->has_zero_child
328 || splay_tree_lookup (ase->children,
329 (splay_tree_key) set2)))
330 return 1;
332 /* Now do the same, but with the alias sets reversed. */
333 ase = get_alias_set_entry (set2);
334 if (ase != 0
335 && (ase->has_zero_child
336 || splay_tree_lookup (ase->children,
337 (splay_tree_key) set1)))
338 return 1;
340 /* The two alias sets are distinct and neither one is the
341 child of the other. Therefore, they cannot conflict. */
342 return 0;
345 static int
346 walk_mems_2 (rtx *x, rtx mem)
348 if (MEM_P (*x))
350 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
351 return 1;
353 return -1;
355 return 0;
358 static int
359 walk_mems_1 (rtx *x, rtx *pat)
361 if (MEM_P (*x))
363 /* Visit all MEMs in *PAT and check indepedence. */
364 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
365 /* Indicate that dependence was determined and stop traversal. */
366 return 1;
368 return -1;
370 return 0;
373 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
374 bool
375 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
377 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
378 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
379 &PATTERN (insn2));
382 /* Return 1 if the two specified alias sets will always conflict. */
385 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
387 if (set1 == 0 || set2 == 0 || set1 == set2)
388 return 1;
390 return 0;
393 /* Return 1 if any MEM object of type T1 will always conflict (using the
394 dependency routines in this file) with any MEM object of type T2.
395 This is used when allocating temporary storage. If T1 and/or T2 are
396 NULL_TREE, it means we know nothing about the storage. */
399 objects_must_conflict_p (tree t1, tree t2)
401 alias_set_type set1, set2;
403 /* If neither has a type specified, we don't know if they'll conflict
404 because we may be using them to store objects of various types, for
405 example the argument and local variables areas of inlined functions. */
406 if (t1 == 0 && t2 == 0)
407 return 0;
409 /* If they are the same type, they must conflict. */
410 if (t1 == t2
411 /* Likewise if both are volatile. */
412 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
413 return 1;
415 set1 = t1 ? get_alias_set (t1) : 0;
416 set2 = t2 ? get_alias_set (t2) : 0;
418 /* We can't use alias_sets_conflict_p because we must make sure
419 that every subtype of t1 will conflict with every subtype of
420 t2 for which a pair of subobjects of these respective subtypes
421 overlaps on the stack. */
422 return alias_sets_must_conflict_p (set1, set2);
425 /* T is an expression with pointer type. Find the DECL on which this
426 expression is based. (For example, in `a[i]' this would be `a'.)
427 If there is no such DECL, or a unique decl cannot be determined,
428 NULL_TREE is returned. */
430 static tree
431 find_base_decl (tree t)
433 tree d0, d1;
435 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
436 return 0;
438 /* If this is a declaration, return it. If T is based on a restrict
439 qualified decl, return that decl. */
440 if (DECL_P (t))
442 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
443 t = DECL_GET_RESTRICT_BASE (t);
444 return t;
447 /* Handle general expressions. It would be nice to deal with
448 COMPONENT_REFs here. If we could tell that `a' and `b' were the
449 same, then `a->f' and `b->f' are also the same. */
450 switch (TREE_CODE_CLASS (TREE_CODE (t)))
452 case tcc_unary:
453 return find_base_decl (TREE_OPERAND (t, 0));
455 case tcc_binary:
456 /* Return 0 if found in neither or both are the same. */
457 d0 = find_base_decl (TREE_OPERAND (t, 0));
458 d1 = find_base_decl (TREE_OPERAND (t, 1));
459 if (d0 == d1)
460 return d0;
461 else if (d0 == 0)
462 return d1;
463 else if (d1 == 0)
464 return d0;
465 else
466 return 0;
468 default:
469 return 0;
473 /* Return true if all nested component references handled by
474 get_inner_reference in T are such that we should use the alias set
475 provided by the object at the heart of T.
477 This is true for non-addressable components (which don't have their
478 own alias set), as well as components of objects in alias set zero.
479 This later point is a special case wherein we wish to override the
480 alias set used by the component, but we don't have per-FIELD_DECL
481 assignable alias sets. */
483 bool
484 component_uses_parent_alias_set (const_tree t)
486 while (1)
488 /* If we're at the end, it vacuously uses its own alias set. */
489 if (!handled_component_p (t))
490 return false;
492 switch (TREE_CODE (t))
494 case COMPONENT_REF:
495 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
496 return true;
497 break;
499 case ARRAY_REF:
500 case ARRAY_RANGE_REF:
501 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
502 return true;
503 break;
505 case REALPART_EXPR:
506 case IMAGPART_EXPR:
507 break;
509 default:
510 /* Bitfields and casts are never addressable. */
511 return true;
514 t = TREE_OPERAND (t, 0);
515 if (get_alias_set (TREE_TYPE (t)) == 0)
516 return true;
520 /* Return the alias set for the memory pointed to by T, which may be
521 either a type or an expression. Return -1 if there is nothing
522 special about dereferencing T. */
524 static alias_set_type
525 get_deref_alias_set_1 (tree t)
527 /* If we're not doing any alias analysis, just assume everything
528 aliases everything else. */
529 if (!flag_strict_aliasing)
530 return 0;
532 if (! TYPE_P (t))
534 tree decl = find_base_decl (t);
536 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
538 /* If we haven't computed the actual alias set, do it now. */
539 if (DECL_POINTER_ALIAS_SET (decl) == -2)
541 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
543 /* No two restricted pointers can point at the same thing.
544 However, a restricted pointer can point at the same thing
545 as an unrestricted pointer, if that unrestricted pointer
546 is based on the restricted pointer. So, we make the
547 alias set for the restricted pointer a subset of the
548 alias set for the type pointed to by the type of the
549 decl. */
550 alias_set_type pointed_to_alias_set
551 = get_alias_set (pointed_to_type);
553 if (pointed_to_alias_set == 0)
554 /* It's not legal to make a subset of alias set zero. */
555 DECL_POINTER_ALIAS_SET (decl) = 0;
556 else if (AGGREGATE_TYPE_P (pointed_to_type))
557 /* For an aggregate, we must treat the restricted
558 pointer the same as an ordinary pointer. If we
559 were to make the type pointed to by the
560 restricted pointer a subset of the pointed-to
561 type, then we would believe that other subsets
562 of the pointed-to type (such as fields of that
563 type) do not conflict with the type pointed to
564 by the restricted pointer. */
565 DECL_POINTER_ALIAS_SET (decl)
566 = pointed_to_alias_set;
567 else
569 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
570 record_alias_subset (pointed_to_alias_set,
571 DECL_POINTER_ALIAS_SET (decl));
575 /* We use the alias set indicated in the declaration. */
576 return DECL_POINTER_ALIAS_SET (decl);
579 /* Now all we care about is the type. */
580 t = TREE_TYPE (t);
583 /* If we have an INDIRECT_REF via a void pointer, we don't
584 know anything about what that might alias. Likewise if the
585 pointer is marked that way. */
586 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
587 || TYPE_REF_CAN_ALIAS_ALL (t))
588 return 0;
590 return -1;
593 /* Return the alias set for the memory pointed to by T, which may be
594 either a type or an expression. */
596 alias_set_type
597 get_deref_alias_set (tree t)
599 alias_set_type set = get_deref_alias_set_1 (t);
601 /* Fall back to the alias-set of the pointed-to type. */
602 if (set == -1)
604 if (! TYPE_P (t))
605 t = TREE_TYPE (t);
606 set = get_alias_set (TREE_TYPE (t));
609 return set;
612 /* Return the alias set for T, which may be either a type or an
613 expression. Call language-specific routine for help, if needed. */
615 alias_set_type
616 get_alias_set (tree t)
618 alias_set_type set;
620 /* If we're not doing any alias analysis, just assume everything
621 aliases everything else. Also return 0 if this or its type is
622 an error. */
623 if (! flag_strict_aliasing || t == error_mark_node
624 || (! TYPE_P (t)
625 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
626 return 0;
628 /* We can be passed either an expression or a type. This and the
629 language-specific routine may make mutually-recursive calls to each other
630 to figure out what to do. At each juncture, we see if this is a tree
631 that the language may need to handle specially. First handle things that
632 aren't types. */
633 if (! TYPE_P (t))
635 tree inner = t;
637 /* Remove any nops, then give the language a chance to do
638 something with this tree before we look at it. */
639 STRIP_NOPS (t);
640 set = lang_hooks.get_alias_set (t);
641 if (set != -1)
642 return set;
644 /* First see if the actual object referenced is an INDIRECT_REF from a
645 restrict-qualified pointer or a "void *". */
646 while (handled_component_p (inner))
648 inner = TREE_OPERAND (inner, 0);
649 STRIP_NOPS (inner);
652 if (INDIRECT_REF_P (inner))
654 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
655 if (set != -1)
656 return set;
659 /* Otherwise, pick up the outermost object that we could have a pointer
660 to, processing conversions as above. */
661 while (component_uses_parent_alias_set (t))
663 t = TREE_OPERAND (t, 0);
664 STRIP_NOPS (t);
667 /* If we've already determined the alias set for a decl, just return
668 it. This is necessary for C++ anonymous unions, whose component
669 variables don't look like union members (boo!). */
670 if (TREE_CODE (t) == VAR_DECL
671 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
672 return MEM_ALIAS_SET (DECL_RTL (t));
674 /* Now all we care about is the type. */
675 t = TREE_TYPE (t);
678 /* Variant qualifiers don't affect the alias set, so get the main
679 variant. Always use the canonical type as well.
680 If this is a type with a known alias set, return it. */
681 t = TYPE_MAIN_VARIANT (t);
682 if (TYPE_CANONICAL (t))
683 t = TYPE_CANONICAL (t);
684 if (TYPE_ALIAS_SET_KNOWN_P (t))
685 return TYPE_ALIAS_SET (t);
687 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
688 if (!COMPLETE_TYPE_P (t))
690 /* For arrays with unknown size the conservative answer is the
691 alias set of the element type. */
692 if (TREE_CODE (t) == ARRAY_TYPE)
693 return get_alias_set (TREE_TYPE (t));
695 /* But return zero as a conservative answer for incomplete types. */
696 return 0;
699 /* See if the language has special handling for this type. */
700 set = lang_hooks.get_alias_set (t);
701 if (set != -1)
702 return set;
704 /* There are no objects of FUNCTION_TYPE, so there's no point in
705 using up an alias set for them. (There are, of course, pointers
706 and references to functions, but that's different.) */
707 else if (TREE_CODE (t) == FUNCTION_TYPE
708 || TREE_CODE (t) == METHOD_TYPE)
709 set = 0;
711 /* Unless the language specifies otherwise, let vector types alias
712 their components. This avoids some nasty type punning issues in
713 normal usage. And indeed lets vectors be treated more like an
714 array slice. */
715 else if (TREE_CODE (t) == VECTOR_TYPE)
716 set = get_alias_set (TREE_TYPE (t));
718 /* Unless the language specifies otherwise, treat array types the
719 same as their components. This avoids the asymmetry we get
720 through recording the components. Consider accessing a
721 character(kind=1) through a reference to a character(kind=1)[1:1].
722 Or consider if we want to assign integer(kind=4)[0:D.1387] and
723 integer(kind=4)[4] the same alias set or not.
724 Just be pragmatic here and make sure the array and its element
725 type get the same alias set assigned. */
726 else if (TREE_CODE (t) == ARRAY_TYPE
727 && !TYPE_NONALIASED_COMPONENT (t))
728 set = get_alias_set (TREE_TYPE (t));
730 else
731 /* Otherwise make a new alias set for this type. */
732 set = new_alias_set ();
734 TYPE_ALIAS_SET (t) = set;
736 /* If this is an aggregate type, we must record any component aliasing
737 information. */
738 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
739 record_component_aliases (t);
741 return set;
744 /* Return a brand-new alias set. */
746 alias_set_type
747 new_alias_set (void)
749 if (flag_strict_aliasing)
751 if (alias_sets == 0)
752 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
753 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
754 return VEC_length (alias_set_entry, alias_sets) - 1;
756 else
757 return 0;
760 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
761 not everything that aliases SUPERSET also aliases SUBSET. For example,
762 in C, a store to an `int' can alias a load of a structure containing an
763 `int', and vice versa. But it can't alias a load of a 'double' member
764 of the same structure. Here, the structure would be the SUPERSET and
765 `int' the SUBSET. This relationship is also described in the comment at
766 the beginning of this file.
768 This function should be called only once per SUPERSET/SUBSET pair.
770 It is illegal for SUPERSET to be zero; everything is implicitly a
771 subset of alias set zero. */
773 void
774 record_alias_subset (alias_set_type superset, alias_set_type subset)
776 alias_set_entry superset_entry;
777 alias_set_entry subset_entry;
779 /* It is possible in complex type situations for both sets to be the same,
780 in which case we can ignore this operation. */
781 if (superset == subset)
782 return;
784 gcc_assert (superset);
786 superset_entry = get_alias_set_entry (superset);
787 if (superset_entry == 0)
789 /* Create an entry for the SUPERSET, so that we have a place to
790 attach the SUBSET. */
791 superset_entry = GGC_NEW (struct alias_set_entry);
792 superset_entry->alias_set = superset;
793 superset_entry->children
794 = splay_tree_new_ggc (splay_tree_compare_ints);
795 superset_entry->has_zero_child = 0;
796 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
799 if (subset == 0)
800 superset_entry->has_zero_child = 1;
801 else
803 subset_entry = get_alias_set_entry (subset);
804 /* If there is an entry for the subset, enter all of its children
805 (if they are not already present) as children of the SUPERSET. */
806 if (subset_entry)
808 if (subset_entry->has_zero_child)
809 superset_entry->has_zero_child = 1;
811 splay_tree_foreach (subset_entry->children, insert_subset_children,
812 superset_entry->children);
815 /* Enter the SUBSET itself as a child of the SUPERSET. */
816 splay_tree_insert (superset_entry->children,
817 (splay_tree_key) subset, 0);
821 /* Record that component types of TYPE, if any, are part of that type for
822 aliasing purposes. For record types, we only record component types
823 for fields that are not marked non-addressable. For array types, we
824 only record the component type if it is not marked non-aliased. */
826 void
827 record_component_aliases (tree type)
829 alias_set_type superset = get_alias_set (type);
830 tree field;
832 if (superset == 0)
833 return;
835 switch (TREE_CODE (type))
837 case RECORD_TYPE:
838 case UNION_TYPE:
839 case QUAL_UNION_TYPE:
840 /* Recursively record aliases for the base classes, if there are any. */
841 if (TYPE_BINFO (type))
843 int i;
844 tree binfo, base_binfo;
846 for (binfo = TYPE_BINFO (type), i = 0;
847 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
848 record_alias_subset (superset,
849 get_alias_set (BINFO_TYPE (base_binfo)));
851 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
852 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
853 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
854 break;
856 case COMPLEX_TYPE:
857 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
858 break;
860 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
861 element type. */
863 default:
864 break;
868 /* Allocate an alias set for use in storing and reading from the varargs
869 spill area. */
871 static GTY(()) alias_set_type varargs_set = -1;
873 alias_set_type
874 get_varargs_alias_set (void)
876 #if 1
877 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
878 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
879 consistently use the varargs alias set for loads from the varargs
880 area. So don't use it anywhere. */
881 return 0;
882 #else
883 if (varargs_set == -1)
884 varargs_set = new_alias_set ();
886 return varargs_set;
887 #endif
890 /* Likewise, but used for the fixed portions of the frame, e.g., register
891 save areas. */
893 static GTY(()) alias_set_type frame_set = -1;
895 alias_set_type
896 get_frame_alias_set (void)
898 if (frame_set == -1)
899 frame_set = new_alias_set ();
901 return frame_set;
904 /* Inside SRC, the source of a SET, find a base address. */
906 static rtx
907 find_base_value (rtx src)
909 unsigned int regno;
911 #if defined (FIND_BASE_TERM)
912 /* Try machine-dependent ways to find the base term. */
913 src = FIND_BASE_TERM (src);
914 #endif
916 switch (GET_CODE (src))
918 case SYMBOL_REF:
919 case LABEL_REF:
920 return src;
922 case REG:
923 regno = REGNO (src);
924 /* At the start of a function, argument registers have known base
925 values which may be lost later. Returning an ADDRESS
926 expression here allows optimization based on argument values
927 even when the argument registers are used for other purposes. */
928 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
929 return new_reg_base_value[regno];
931 /* If a pseudo has a known base value, return it. Do not do this
932 for non-fixed hard regs since it can result in a circular
933 dependency chain for registers which have values at function entry.
935 The test above is not sufficient because the scheduler may move
936 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
937 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
938 && regno < VEC_length (rtx, reg_base_value))
940 /* If we're inside init_alias_analysis, use new_reg_base_value
941 to reduce the number of relaxation iterations. */
942 if (new_reg_base_value && new_reg_base_value[regno]
943 && DF_REG_DEF_COUNT (regno) == 1)
944 return new_reg_base_value[regno];
946 if (VEC_index (rtx, reg_base_value, regno))
947 return VEC_index (rtx, reg_base_value, regno);
950 return 0;
952 case MEM:
953 /* Check for an argument passed in memory. Only record in the
954 copying-arguments block; it is too hard to track changes
955 otherwise. */
956 if (copying_arguments
957 && (XEXP (src, 0) == arg_pointer_rtx
958 || (GET_CODE (XEXP (src, 0)) == PLUS
959 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
960 return gen_rtx_ADDRESS (VOIDmode, src);
961 return 0;
963 case CONST:
964 src = XEXP (src, 0);
965 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
966 break;
968 /* ... fall through ... */
970 case PLUS:
971 case MINUS:
973 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
975 /* If either operand is a REG that is a known pointer, then it
976 is the base. */
977 if (REG_P (src_0) && REG_POINTER (src_0))
978 return find_base_value (src_0);
979 if (REG_P (src_1) && REG_POINTER (src_1))
980 return find_base_value (src_1);
982 /* If either operand is a REG, then see if we already have
983 a known value for it. */
984 if (REG_P (src_0))
986 temp = find_base_value (src_0);
987 if (temp != 0)
988 src_0 = temp;
991 if (REG_P (src_1))
993 temp = find_base_value (src_1);
994 if (temp!= 0)
995 src_1 = temp;
998 /* If either base is named object or a special address
999 (like an argument or stack reference), then use it for the
1000 base term. */
1001 if (src_0 != 0
1002 && (GET_CODE (src_0) == SYMBOL_REF
1003 || GET_CODE (src_0) == LABEL_REF
1004 || (GET_CODE (src_0) == ADDRESS
1005 && GET_MODE (src_0) != VOIDmode)))
1006 return src_0;
1008 if (src_1 != 0
1009 && (GET_CODE (src_1) == SYMBOL_REF
1010 || GET_CODE (src_1) == LABEL_REF
1011 || (GET_CODE (src_1) == ADDRESS
1012 && GET_MODE (src_1) != VOIDmode)))
1013 return src_1;
1015 /* Guess which operand is the base address:
1016 If either operand is a symbol, then it is the base. If
1017 either operand is a CONST_INT, then the other is the base. */
1018 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
1019 return find_base_value (src_0);
1020 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
1021 return find_base_value (src_1);
1023 return 0;
1026 case LO_SUM:
1027 /* The standard form is (lo_sum reg sym) so look only at the
1028 second operand. */
1029 return find_base_value (XEXP (src, 1));
1031 case AND:
1032 /* If the second operand is constant set the base
1033 address to the first operand. */
1034 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
1035 return find_base_value (XEXP (src, 0));
1036 return 0;
1038 case TRUNCATE:
1039 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1040 break;
1041 /* Fall through. */
1042 case HIGH:
1043 case PRE_INC:
1044 case PRE_DEC:
1045 case POST_INC:
1046 case POST_DEC:
1047 case PRE_MODIFY:
1048 case POST_MODIFY:
1049 return find_base_value (XEXP (src, 0));
1051 case ZERO_EXTEND:
1052 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1054 rtx temp = find_base_value (XEXP (src, 0));
1056 if (temp != 0 && CONSTANT_P (temp))
1057 temp = convert_memory_address (Pmode, temp);
1059 return temp;
1062 default:
1063 break;
1066 return 0;
1069 /* Called from init_alias_analysis indirectly through note_stores. */
1071 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1072 register N has been set in this function. */
1073 static char *reg_seen;
1075 /* Addresses which are known not to alias anything else are identified
1076 by a unique integer. */
1077 static int unique_id;
1079 static void
1080 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1082 unsigned regno;
1083 rtx src;
1084 int n;
1086 if (!REG_P (dest))
1087 return;
1089 regno = REGNO (dest);
1091 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1093 /* If this spans multiple hard registers, then we must indicate that every
1094 register has an unusable value. */
1095 if (regno < FIRST_PSEUDO_REGISTER)
1096 n = hard_regno_nregs[regno][GET_MODE (dest)];
1097 else
1098 n = 1;
1099 if (n != 1)
1101 while (--n >= 0)
1103 reg_seen[regno + n] = 1;
1104 new_reg_base_value[regno + n] = 0;
1106 return;
1109 if (set)
1111 /* A CLOBBER wipes out any old value but does not prevent a previously
1112 unset register from acquiring a base address (i.e. reg_seen is not
1113 set). */
1114 if (GET_CODE (set) == CLOBBER)
1116 new_reg_base_value[regno] = 0;
1117 return;
1119 src = SET_SRC (set);
1121 else
1123 if (reg_seen[regno])
1125 new_reg_base_value[regno] = 0;
1126 return;
1128 reg_seen[regno] = 1;
1129 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1130 GEN_INT (unique_id++));
1131 return;
1134 /* If this is not the first set of REGNO, see whether the new value
1135 is related to the old one. There are two cases of interest:
1137 (1) The register might be assigned an entirely new value
1138 that has the same base term as the original set.
1140 (2) The set might be a simple self-modification that
1141 cannot change REGNO's base value.
1143 If neither case holds, reject the original base value as invalid.
1144 Note that the following situation is not detected:
1146 extern int x, y; int *p = &x; p += (&y-&x);
1148 ANSI C does not allow computing the difference of addresses
1149 of distinct top level objects. */
1150 if (new_reg_base_value[regno] != 0
1151 && find_base_value (src) != new_reg_base_value[regno])
1152 switch (GET_CODE (src))
1154 case LO_SUM:
1155 case MINUS:
1156 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1157 new_reg_base_value[regno] = 0;
1158 break;
1159 case PLUS:
1160 /* If the value we add in the PLUS is also a valid base value,
1161 this might be the actual base value, and the original value
1162 an index. */
1164 rtx other = NULL_RTX;
1166 if (XEXP (src, 0) == dest)
1167 other = XEXP (src, 1);
1168 else if (XEXP (src, 1) == dest)
1169 other = XEXP (src, 0);
1171 if (! other || find_base_value (other))
1172 new_reg_base_value[regno] = 0;
1173 break;
1175 case AND:
1176 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1177 new_reg_base_value[regno] = 0;
1178 break;
1179 default:
1180 new_reg_base_value[regno] = 0;
1181 break;
1183 /* If this is the first set of a register, record the value. */
1184 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1185 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1186 new_reg_base_value[regno] = find_base_value (src);
1188 reg_seen[regno] = 1;
1191 /* If a value is known for REGNO, return it. */
1194 get_reg_known_value (unsigned int regno)
1196 if (regno >= FIRST_PSEUDO_REGISTER)
1198 regno -= FIRST_PSEUDO_REGISTER;
1199 if (regno < reg_known_value_size)
1200 return reg_known_value[regno];
1202 return NULL;
1205 /* Set it. */
1207 static void
1208 set_reg_known_value (unsigned int regno, rtx val)
1210 if (regno >= FIRST_PSEUDO_REGISTER)
1212 regno -= FIRST_PSEUDO_REGISTER;
1213 if (regno < reg_known_value_size)
1214 reg_known_value[regno] = val;
1218 /* Similarly for reg_known_equiv_p. */
1220 bool
1221 get_reg_known_equiv_p (unsigned int regno)
1223 if (regno >= FIRST_PSEUDO_REGISTER)
1225 regno -= FIRST_PSEUDO_REGISTER;
1226 if (regno < reg_known_value_size)
1227 return reg_known_equiv_p[regno];
1229 return false;
1232 static void
1233 set_reg_known_equiv_p (unsigned int regno, bool val)
1235 if (regno >= FIRST_PSEUDO_REGISTER)
1237 regno -= FIRST_PSEUDO_REGISTER;
1238 if (regno < reg_known_value_size)
1239 reg_known_equiv_p[regno] = val;
1244 /* Returns a canonical version of X, from the point of view alias
1245 analysis. (For example, if X is a MEM whose address is a register,
1246 and the register has a known value (say a SYMBOL_REF), then a MEM
1247 whose address is the SYMBOL_REF is returned.) */
1250 canon_rtx (rtx x)
1252 /* Recursively look for equivalences. */
1253 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1255 rtx t = get_reg_known_value (REGNO (x));
1256 if (t == x)
1257 return x;
1258 if (t)
1259 return canon_rtx (t);
1262 if (GET_CODE (x) == PLUS)
1264 rtx x0 = canon_rtx (XEXP (x, 0));
1265 rtx x1 = canon_rtx (XEXP (x, 1));
1267 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1269 if (GET_CODE (x0) == CONST_INT)
1270 return plus_constant (x1, INTVAL (x0));
1271 else if (GET_CODE (x1) == CONST_INT)
1272 return plus_constant (x0, INTVAL (x1));
1273 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1277 /* This gives us much better alias analysis when called from
1278 the loop optimizer. Note we want to leave the original
1279 MEM alone, but need to return the canonicalized MEM with
1280 all the flags with their original values. */
1281 else if (MEM_P (x))
1282 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1284 return x;
1287 /* Return 1 if X and Y are identical-looking rtx's.
1288 Expect that X and Y has been already canonicalized.
1290 We use the data in reg_known_value above to see if two registers with
1291 different numbers are, in fact, equivalent. */
1293 static int
1294 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1296 int i;
1297 int j;
1298 enum rtx_code code;
1299 const char *fmt;
1301 if (x == 0 && y == 0)
1302 return 1;
1303 if (x == 0 || y == 0)
1304 return 0;
1306 if (x == y)
1307 return 1;
1309 code = GET_CODE (x);
1310 /* Rtx's of different codes cannot be equal. */
1311 if (code != GET_CODE (y))
1312 return 0;
1314 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1315 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1317 if (GET_MODE (x) != GET_MODE (y))
1318 return 0;
1320 /* Some RTL can be compared without a recursive examination. */
1321 switch (code)
1323 case REG:
1324 return REGNO (x) == REGNO (y);
1326 case LABEL_REF:
1327 return XEXP (x, 0) == XEXP (y, 0);
1329 case SYMBOL_REF:
1330 return XSTR (x, 0) == XSTR (y, 0);
1332 case VALUE:
1333 case CONST_INT:
1334 case CONST_DOUBLE:
1335 case CONST_FIXED:
1336 /* There's no need to compare the contents of CONST_DOUBLEs or
1337 CONST_INTs because pointer equality is a good enough
1338 comparison for these nodes. */
1339 return 0;
1341 default:
1342 break;
1345 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1346 if (code == PLUS)
1347 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1348 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1349 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1350 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1351 /* For commutative operations, the RTX match if the operand match in any
1352 order. Also handle the simple binary and unary cases without a loop. */
1353 if (COMMUTATIVE_P (x))
1355 rtx xop0 = canon_rtx (XEXP (x, 0));
1356 rtx yop0 = canon_rtx (XEXP (y, 0));
1357 rtx yop1 = canon_rtx (XEXP (y, 1));
1359 return ((rtx_equal_for_memref_p (xop0, yop0)
1360 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1361 || (rtx_equal_for_memref_p (xop0, yop1)
1362 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1364 else if (NON_COMMUTATIVE_P (x))
1366 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1367 canon_rtx (XEXP (y, 0)))
1368 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1369 canon_rtx (XEXP (y, 1))));
1371 else if (UNARY_P (x))
1372 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1373 canon_rtx (XEXP (y, 0)));
1375 /* Compare the elements. If any pair of corresponding elements
1376 fail to match, return 0 for the whole things.
1378 Limit cases to types which actually appear in addresses. */
1380 fmt = GET_RTX_FORMAT (code);
1381 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1383 switch (fmt[i])
1385 case 'i':
1386 if (XINT (x, i) != XINT (y, i))
1387 return 0;
1388 break;
1390 case 'E':
1391 /* Two vectors must have the same length. */
1392 if (XVECLEN (x, i) != XVECLEN (y, i))
1393 return 0;
1395 /* And the corresponding elements must match. */
1396 for (j = 0; j < XVECLEN (x, i); j++)
1397 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1398 canon_rtx (XVECEXP (y, i, j))) == 0)
1399 return 0;
1400 break;
1402 case 'e':
1403 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1404 canon_rtx (XEXP (y, i))) == 0)
1405 return 0;
1406 break;
1408 /* This can happen for asm operands. */
1409 case 's':
1410 if (strcmp (XSTR (x, i), XSTR (y, i)))
1411 return 0;
1412 break;
1414 /* This can happen for an asm which clobbers memory. */
1415 case '0':
1416 break;
1418 /* It is believed that rtx's at this level will never
1419 contain anything but integers and other rtx's,
1420 except for within LABEL_REFs and SYMBOL_REFs. */
1421 default:
1422 gcc_unreachable ();
1425 return 1;
1429 find_base_term (rtx x)
1431 cselib_val *val;
1432 struct elt_loc_list *l;
1434 #if defined (FIND_BASE_TERM)
1435 /* Try machine-dependent ways to find the base term. */
1436 x = FIND_BASE_TERM (x);
1437 #endif
1439 switch (GET_CODE (x))
1441 case REG:
1442 return REG_BASE_VALUE (x);
1444 case TRUNCATE:
1445 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1446 return 0;
1447 /* Fall through. */
1448 case HIGH:
1449 case PRE_INC:
1450 case PRE_DEC:
1451 case POST_INC:
1452 case POST_DEC:
1453 case PRE_MODIFY:
1454 case POST_MODIFY:
1455 return find_base_term (XEXP (x, 0));
1457 case ZERO_EXTEND:
1458 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1460 rtx temp = find_base_term (XEXP (x, 0));
1462 if (temp != 0 && CONSTANT_P (temp))
1463 temp = convert_memory_address (Pmode, temp);
1465 return temp;
1468 case VALUE:
1469 val = CSELIB_VAL_PTR (x);
1470 if (!val)
1471 return 0;
1472 for (l = val->locs; l; l = l->next)
1473 if ((x = find_base_term (l->loc)) != 0)
1474 return x;
1475 return 0;
1477 case CONST:
1478 x = XEXP (x, 0);
1479 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1480 return 0;
1481 /* Fall through. */
1482 case LO_SUM:
1483 /* The standard form is (lo_sum reg sym) so look only at the
1484 second operand. */
1485 return find_base_term (XEXP (x, 1));
1486 case PLUS:
1487 case MINUS:
1489 rtx tmp1 = XEXP (x, 0);
1490 rtx tmp2 = XEXP (x, 1);
1492 /* This is a little bit tricky since we have to determine which of
1493 the two operands represents the real base address. Otherwise this
1494 routine may return the index register instead of the base register.
1496 That may cause us to believe no aliasing was possible, when in
1497 fact aliasing is possible.
1499 We use a few simple tests to guess the base register. Additional
1500 tests can certainly be added. For example, if one of the operands
1501 is a shift or multiply, then it must be the index register and the
1502 other operand is the base register. */
1504 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1505 return find_base_term (tmp2);
1507 /* If either operand is known to be a pointer, then use it
1508 to determine the base term. */
1509 if (REG_P (tmp1) && REG_POINTER (tmp1))
1510 return find_base_term (tmp1);
1512 if (REG_P (tmp2) && REG_POINTER (tmp2))
1513 return find_base_term (tmp2);
1515 /* Neither operand was known to be a pointer. Go ahead and find the
1516 base term for both operands. */
1517 tmp1 = find_base_term (tmp1);
1518 tmp2 = find_base_term (tmp2);
1520 /* If either base term is named object or a special address
1521 (like an argument or stack reference), then use it for the
1522 base term. */
1523 if (tmp1 != 0
1524 && (GET_CODE (tmp1) == SYMBOL_REF
1525 || GET_CODE (tmp1) == LABEL_REF
1526 || (GET_CODE (tmp1) == ADDRESS
1527 && GET_MODE (tmp1) != VOIDmode)))
1528 return tmp1;
1530 if (tmp2 != 0
1531 && (GET_CODE (tmp2) == SYMBOL_REF
1532 || GET_CODE (tmp2) == LABEL_REF
1533 || (GET_CODE (tmp2) == ADDRESS
1534 && GET_MODE (tmp2) != VOIDmode)))
1535 return tmp2;
1537 /* We could not determine which of the two operands was the
1538 base register and which was the index. So we can determine
1539 nothing from the base alias check. */
1540 return 0;
1543 case AND:
1544 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1545 return find_base_term (XEXP (x, 0));
1546 return 0;
1548 case SYMBOL_REF:
1549 case LABEL_REF:
1550 return x;
1552 default:
1553 return 0;
1557 /* Return 0 if the addresses X and Y are known to point to different
1558 objects, 1 if they might be pointers to the same object. */
1560 static int
1561 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1562 enum machine_mode y_mode)
1564 rtx x_base = find_base_term (x);
1565 rtx y_base = find_base_term (y);
1567 /* If the address itself has no known base see if a known equivalent
1568 value has one. If either address still has no known base, nothing
1569 is known about aliasing. */
1570 if (x_base == 0)
1572 rtx x_c;
1574 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1575 return 1;
1577 x_base = find_base_term (x_c);
1578 if (x_base == 0)
1579 return 1;
1582 if (y_base == 0)
1584 rtx y_c;
1585 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1586 return 1;
1588 y_base = find_base_term (y_c);
1589 if (y_base == 0)
1590 return 1;
1593 /* If the base addresses are equal nothing is known about aliasing. */
1594 if (rtx_equal_p (x_base, y_base))
1595 return 1;
1597 /* The base addresses are different expressions. If they are not accessed
1598 via AND, there is no conflict. We can bring knowledge of object
1599 alignment into play here. For example, on alpha, "char a, b;" can
1600 alias one another, though "char a; long b;" cannot. AND addesses may
1601 implicitly alias surrounding objects; i.e. unaligned access in DImode
1602 via AND address can alias all surrounding object types except those
1603 with aligment 8 or higher. */
1604 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1605 return 1;
1606 if (GET_CODE (x) == AND
1607 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1608 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1609 return 1;
1610 if (GET_CODE (y) == AND
1611 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1612 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1613 return 1;
1615 /* Differing symbols not accessed via AND never alias. */
1616 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1617 return 0;
1619 /* If one address is a stack reference there can be no alias:
1620 stack references using different base registers do not alias,
1621 a stack reference can not alias a parameter, and a stack reference
1622 can not alias a global. */
1623 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1624 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1625 return 0;
1627 if (! flag_argument_noalias)
1628 return 1;
1630 if (flag_argument_noalias > 1)
1631 return 0;
1633 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1634 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1637 /* Convert the address X into something we can use. This is done by returning
1638 it unchanged unless it is a value; in the latter case we call cselib to get
1639 a more useful rtx. */
1642 get_addr (rtx x)
1644 cselib_val *v;
1645 struct elt_loc_list *l;
1647 if (GET_CODE (x) != VALUE)
1648 return x;
1649 v = CSELIB_VAL_PTR (x);
1650 if (v)
1652 for (l = v->locs; l; l = l->next)
1653 if (CONSTANT_P (l->loc))
1654 return l->loc;
1655 for (l = v->locs; l; l = l->next)
1656 if (!REG_P (l->loc) && !MEM_P (l->loc))
1657 return l->loc;
1658 if (v->locs)
1659 return v->locs->loc;
1661 return x;
1664 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1665 where SIZE is the size in bytes of the memory reference. If ADDR
1666 is not modified by the memory reference then ADDR is returned. */
1668 static rtx
1669 addr_side_effect_eval (rtx addr, int size, int n_refs)
1671 int offset = 0;
1673 switch (GET_CODE (addr))
1675 case PRE_INC:
1676 offset = (n_refs + 1) * size;
1677 break;
1678 case PRE_DEC:
1679 offset = -(n_refs + 1) * size;
1680 break;
1681 case POST_INC:
1682 offset = n_refs * size;
1683 break;
1684 case POST_DEC:
1685 offset = -n_refs * size;
1686 break;
1688 default:
1689 return addr;
1692 if (offset)
1693 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1694 GEN_INT (offset));
1695 else
1696 addr = XEXP (addr, 0);
1697 addr = canon_rtx (addr);
1699 return addr;
1702 /* Return nonzero if X and Y (memory addresses) could reference the
1703 same location in memory. C is an offset accumulator. When
1704 C is nonzero, we are testing aliases between X and Y + C.
1705 XSIZE is the size in bytes of the X reference,
1706 similarly YSIZE is the size in bytes for Y.
1707 Expect that canon_rtx has been already called for X and Y.
1709 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1710 referenced (the reference was BLKmode), so make the most pessimistic
1711 assumptions.
1713 If XSIZE or YSIZE is negative, we may access memory outside the object
1714 being referenced as a side effect. This can happen when using AND to
1715 align memory references, as is done on the Alpha.
1717 Nice to notice that varying addresses cannot conflict with fp if no
1718 local variables had their addresses taken, but that's too hard now. */
1720 static int
1721 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1723 if (GET_CODE (x) == VALUE)
1724 x = get_addr (x);
1725 if (GET_CODE (y) == VALUE)
1726 y = get_addr (y);
1727 if (GET_CODE (x) == HIGH)
1728 x = XEXP (x, 0);
1729 else if (GET_CODE (x) == LO_SUM)
1730 x = XEXP (x, 1);
1731 else
1732 x = addr_side_effect_eval (x, xsize, 0);
1733 if (GET_CODE (y) == HIGH)
1734 y = XEXP (y, 0);
1735 else if (GET_CODE (y) == LO_SUM)
1736 y = XEXP (y, 1);
1737 else
1738 y = addr_side_effect_eval (y, ysize, 0);
1740 if (rtx_equal_for_memref_p (x, y))
1742 if (xsize <= 0 || ysize <= 0)
1743 return 1;
1744 if (c >= 0 && xsize > c)
1745 return 1;
1746 if (c < 0 && ysize+c > 0)
1747 return 1;
1748 return 0;
1751 /* This code used to check for conflicts involving stack references and
1752 globals but the base address alias code now handles these cases. */
1754 if (GET_CODE (x) == PLUS)
1756 /* The fact that X is canonicalized means that this
1757 PLUS rtx is canonicalized. */
1758 rtx x0 = XEXP (x, 0);
1759 rtx x1 = XEXP (x, 1);
1761 if (GET_CODE (y) == PLUS)
1763 /* The fact that Y is canonicalized means that this
1764 PLUS rtx is canonicalized. */
1765 rtx y0 = XEXP (y, 0);
1766 rtx y1 = XEXP (y, 1);
1768 if (rtx_equal_for_memref_p (x1, y1))
1769 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1770 if (rtx_equal_for_memref_p (x0, y0))
1771 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1772 if (GET_CODE (x1) == CONST_INT)
1774 if (GET_CODE (y1) == CONST_INT)
1775 return memrefs_conflict_p (xsize, x0, ysize, y0,
1776 c - INTVAL (x1) + INTVAL (y1));
1777 else
1778 return memrefs_conflict_p (xsize, x0, ysize, y,
1779 c - INTVAL (x1));
1781 else if (GET_CODE (y1) == CONST_INT)
1782 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1784 return 1;
1786 else if (GET_CODE (x1) == CONST_INT)
1787 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1789 else if (GET_CODE (y) == PLUS)
1791 /* The fact that Y is canonicalized means that this
1792 PLUS rtx is canonicalized. */
1793 rtx y0 = XEXP (y, 0);
1794 rtx y1 = XEXP (y, 1);
1796 if (GET_CODE (y1) == CONST_INT)
1797 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1798 else
1799 return 1;
1802 if (GET_CODE (x) == GET_CODE (y))
1803 switch (GET_CODE (x))
1805 case MULT:
1807 /* Handle cases where we expect the second operands to be the
1808 same, and check only whether the first operand would conflict
1809 or not. */
1810 rtx x0, y0;
1811 rtx x1 = canon_rtx (XEXP (x, 1));
1812 rtx y1 = canon_rtx (XEXP (y, 1));
1813 if (! rtx_equal_for_memref_p (x1, y1))
1814 return 1;
1815 x0 = canon_rtx (XEXP (x, 0));
1816 y0 = canon_rtx (XEXP (y, 0));
1817 if (rtx_equal_for_memref_p (x0, y0))
1818 return (xsize == 0 || ysize == 0
1819 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1821 /* Can't properly adjust our sizes. */
1822 if (GET_CODE (x1) != CONST_INT)
1823 return 1;
1824 xsize /= INTVAL (x1);
1825 ysize /= INTVAL (x1);
1826 c /= INTVAL (x1);
1827 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1830 default:
1831 break;
1834 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1835 as an access with indeterminate size. Assume that references
1836 besides AND are aligned, so if the size of the other reference is
1837 at least as large as the alignment, assume no other overlap. */
1838 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1840 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1841 xsize = -1;
1842 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1844 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1846 /* ??? If we are indexing far enough into the array/structure, we
1847 may yet be able to determine that we can not overlap. But we
1848 also need to that we are far enough from the end not to overlap
1849 a following reference, so we do nothing with that for now. */
1850 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1851 ysize = -1;
1852 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1855 if (CONSTANT_P (x))
1857 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1859 c += (INTVAL (y) - INTVAL (x));
1860 return (xsize <= 0 || ysize <= 0
1861 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1864 if (GET_CODE (x) == CONST)
1866 if (GET_CODE (y) == CONST)
1867 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1868 ysize, canon_rtx (XEXP (y, 0)), c);
1869 else
1870 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1871 ysize, y, c);
1873 if (GET_CODE (y) == CONST)
1874 return memrefs_conflict_p (xsize, x, ysize,
1875 canon_rtx (XEXP (y, 0)), c);
1877 if (CONSTANT_P (y))
1878 return (xsize <= 0 || ysize <= 0
1879 || (rtx_equal_for_memref_p (x, y)
1880 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1882 return 1;
1884 return 1;
1887 /* Functions to compute memory dependencies.
1889 Since we process the insns in execution order, we can build tables
1890 to keep track of what registers are fixed (and not aliased), what registers
1891 are varying in known ways, and what registers are varying in unknown
1892 ways.
1894 If both memory references are volatile, then there must always be a
1895 dependence between the two references, since their order can not be
1896 changed. A volatile and non-volatile reference can be interchanged
1897 though.
1899 A MEM_IN_STRUCT reference at a non-AND varying address can never
1900 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1901 also must allow AND addresses, because they may generate accesses
1902 outside the object being referenced. This is used to generate
1903 aligned addresses from unaligned addresses, for instance, the alpha
1904 storeqi_unaligned pattern. */
1906 /* Read dependence: X is read after read in MEM takes place. There can
1907 only be a dependence here if both reads are volatile. */
1910 read_dependence (const_rtx mem, const_rtx x)
1912 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1915 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1916 MEM2 is a reference to a structure at a varying address, or returns
1917 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1918 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1919 to decide whether or not an address may vary; it should return
1920 nonzero whenever variation is possible.
1921 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1923 static const_rtx
1924 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1925 rtx mem2_addr,
1926 bool (*varies_p) (const_rtx, bool))
1928 if (! flag_strict_aliasing)
1929 return NULL_RTX;
1931 if (MEM_ALIAS_SET (mem2)
1932 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1933 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1934 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1935 varying address. */
1936 return mem1;
1938 if (MEM_ALIAS_SET (mem1)
1939 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1940 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1941 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1942 varying address. */
1943 return mem2;
1945 return NULL_RTX;
1948 /* Returns nonzero if something about the mode or address format MEM1
1949 indicates that it might well alias *anything*. */
1951 static int
1952 aliases_everything_p (const_rtx mem)
1954 if (GET_CODE (XEXP (mem, 0)) == AND)
1955 /* If the address is an AND, it's very hard to know at what it is
1956 actually pointing. */
1957 return 1;
1959 return 0;
1962 /* Return true if we can determine that the fields referenced cannot
1963 overlap for any pair of objects. */
1965 static bool
1966 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1968 const_tree fieldx, fieldy, typex, typey, orig_y;
1972 /* The comparison has to be done at a common type, since we don't
1973 know how the inheritance hierarchy works. */
1974 orig_y = y;
1977 fieldx = TREE_OPERAND (x, 1);
1978 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1980 y = orig_y;
1983 fieldy = TREE_OPERAND (y, 1);
1984 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1986 if (typex == typey)
1987 goto found;
1989 y = TREE_OPERAND (y, 0);
1991 while (y && TREE_CODE (y) == COMPONENT_REF);
1993 x = TREE_OPERAND (x, 0);
1995 while (x && TREE_CODE (x) == COMPONENT_REF);
1996 /* Never found a common type. */
1997 return false;
1999 found:
2000 /* If we're left with accessing different fields of a structure,
2001 then no overlap. */
2002 if (TREE_CODE (typex) == RECORD_TYPE
2003 && fieldx != fieldy)
2004 return true;
2006 /* The comparison on the current field failed. If we're accessing
2007 a very nested structure, look at the next outer level. */
2008 x = TREE_OPERAND (x, 0);
2009 y = TREE_OPERAND (y, 0);
2011 while (x && y
2012 && TREE_CODE (x) == COMPONENT_REF
2013 && TREE_CODE (y) == COMPONENT_REF);
2015 return false;
2018 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2020 static tree
2021 decl_for_component_ref (tree x)
2025 x = TREE_OPERAND (x, 0);
2027 while (x && TREE_CODE (x) == COMPONENT_REF);
2029 return x && DECL_P (x) ? x : NULL_TREE;
2032 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2033 offset of the field reference. */
2035 static rtx
2036 adjust_offset_for_component_ref (tree x, rtx offset)
2038 HOST_WIDE_INT ioffset;
2040 if (! offset)
2041 return NULL_RTX;
2043 ioffset = INTVAL (offset);
2046 tree offset = component_ref_field_offset (x);
2047 tree field = TREE_OPERAND (x, 1);
2049 if (! host_integerp (offset, 1))
2050 return NULL_RTX;
2051 ioffset += (tree_low_cst (offset, 1)
2052 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2053 / BITS_PER_UNIT));
2055 x = TREE_OPERAND (x, 0);
2057 while (x && TREE_CODE (x) == COMPONENT_REF);
2059 return GEN_INT (ioffset);
2062 /* Return nonzero if we can determine the exprs corresponding to memrefs
2063 X and Y and they do not overlap. */
2066 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2068 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2069 rtx rtlx, rtly;
2070 rtx basex, basey;
2071 rtx moffsetx, moffsety;
2072 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2074 /* Unless both have exprs, we can't tell anything. */
2075 if (exprx == 0 || expry == 0)
2076 return 0;
2078 /* If both are field references, we may be able to determine something. */
2079 if (TREE_CODE (exprx) == COMPONENT_REF
2080 && TREE_CODE (expry) == COMPONENT_REF
2081 && nonoverlapping_component_refs_p (exprx, expry))
2082 return 1;
2085 /* If the field reference test failed, look at the DECLs involved. */
2086 moffsetx = MEM_OFFSET (x);
2087 if (TREE_CODE (exprx) == COMPONENT_REF)
2089 if (TREE_CODE (expry) == VAR_DECL
2090 && POINTER_TYPE_P (TREE_TYPE (expry)))
2092 tree field = TREE_OPERAND (exprx, 1);
2093 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2094 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2095 TREE_TYPE (field)))
2096 return 1;
2099 tree t = decl_for_component_ref (exprx);
2100 if (! t)
2101 return 0;
2102 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2103 exprx = t;
2106 else if (INDIRECT_REF_P (exprx))
2108 exprx = TREE_OPERAND (exprx, 0);
2109 if (flag_argument_noalias < 2
2110 || TREE_CODE (exprx) != PARM_DECL)
2111 return 0;
2114 moffsety = MEM_OFFSET (y);
2115 if (TREE_CODE (expry) == COMPONENT_REF)
2117 if (TREE_CODE (exprx) == VAR_DECL
2118 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2120 tree field = TREE_OPERAND (expry, 1);
2121 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2122 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2123 TREE_TYPE (field)))
2124 return 1;
2127 tree t = decl_for_component_ref (expry);
2128 if (! t)
2129 return 0;
2130 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2131 expry = t;
2134 else if (INDIRECT_REF_P (expry))
2136 expry = TREE_OPERAND (expry, 0);
2137 if (flag_argument_noalias < 2
2138 || TREE_CODE (expry) != PARM_DECL)
2139 return 0;
2142 if (! DECL_P (exprx) || ! DECL_P (expry))
2143 return 0;
2145 rtlx = DECL_RTL (exprx);
2146 rtly = DECL_RTL (expry);
2148 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2149 can't overlap unless they are the same because we never reuse that part
2150 of the stack frame used for locals for spilled pseudos. */
2151 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2152 && ! rtx_equal_p (rtlx, rtly))
2153 return 1;
2155 /* Get the base and offsets of both decls. If either is a register, we
2156 know both are and are the same, so use that as the base. The only
2157 we can avoid overlap is if we can deduce that they are nonoverlapping
2158 pieces of that decl, which is very rare. */
2159 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2160 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2161 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2163 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2164 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2165 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2167 /* If the bases are different, we know they do not overlap if both
2168 are constants or if one is a constant and the other a pointer into the
2169 stack frame. Otherwise a different base means we can't tell if they
2170 overlap or not. */
2171 if (! rtx_equal_p (basex, basey))
2172 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2173 || (CONSTANT_P (basex) && REG_P (basey)
2174 && REGNO_PTR_FRAME_P (REGNO (basey)))
2175 || (CONSTANT_P (basey) && REG_P (basex)
2176 && REGNO_PTR_FRAME_P (REGNO (basex))));
2178 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2179 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2180 : -1);
2181 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2182 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2183 -1);
2185 /* If we have an offset for either memref, it can update the values computed
2186 above. */
2187 if (moffsetx)
2188 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2189 if (moffsety)
2190 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2192 /* If a memref has both a size and an offset, we can use the smaller size.
2193 We can't do this if the offset isn't known because we must view this
2194 memref as being anywhere inside the DECL's MEM. */
2195 if (MEM_SIZE (x) && moffsetx)
2196 sizex = INTVAL (MEM_SIZE (x));
2197 if (MEM_SIZE (y) && moffsety)
2198 sizey = INTVAL (MEM_SIZE (y));
2200 /* Put the values of the memref with the lower offset in X's values. */
2201 if (offsetx > offsety)
2203 tem = offsetx, offsetx = offsety, offsety = tem;
2204 tem = sizex, sizex = sizey, sizey = tem;
2207 /* If we don't know the size of the lower-offset value, we can't tell
2208 if they conflict. Otherwise, we do the test. */
2209 return sizex >= 0 && offsety >= offsetx + sizex;
2212 /* True dependence: X is read after store in MEM takes place. */
2215 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2216 bool (*varies) (const_rtx, bool))
2218 rtx x_addr, mem_addr;
2219 rtx base;
2221 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2222 return 1;
2224 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2225 This is used in epilogue deallocation functions, and in cselib. */
2226 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2227 return 1;
2228 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2229 return 1;
2230 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2231 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2232 return 1;
2234 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2235 return 0;
2237 /* Read-only memory is by definition never modified, and therefore can't
2238 conflict with anything. We don't expect to find read-only set on MEM,
2239 but stupid user tricks can produce them, so don't die. */
2240 if (MEM_READONLY_P (x))
2241 return 0;
2243 if (nonoverlapping_memrefs_p (mem, x))
2244 return 0;
2246 if (mem_mode == VOIDmode)
2247 mem_mode = GET_MODE (mem);
2249 x_addr = get_addr (XEXP (x, 0));
2250 mem_addr = get_addr (XEXP (mem, 0));
2252 base = find_base_term (x_addr);
2253 if (base && (GET_CODE (base) == LABEL_REF
2254 || (GET_CODE (base) == SYMBOL_REF
2255 && CONSTANT_POOL_ADDRESS_P (base))))
2256 return 0;
2258 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2259 return 0;
2261 x_addr = canon_rtx (x_addr);
2262 mem_addr = canon_rtx (mem_addr);
2264 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2265 SIZE_FOR_MODE (x), x_addr, 0))
2266 return 0;
2268 if (aliases_everything_p (x))
2269 return 1;
2271 /* We cannot use aliases_everything_p to test MEM, since we must look
2272 at MEM_MODE, rather than GET_MODE (MEM). */
2273 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2274 return 1;
2276 /* In true_dependence we also allow BLKmode to alias anything. Why
2277 don't we do this in anti_dependence and output_dependence? */
2278 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2279 return 1;
2281 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2282 varies);
2285 /* Canonical true dependence: X is read after store in MEM takes place.
2286 Variant of true_dependence which assumes MEM has already been
2287 canonicalized (hence we no longer do that here).
2288 The mem_addr argument has been added, since true_dependence computed
2289 this value prior to canonicalizing. */
2292 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2293 const_rtx x, bool (*varies) (const_rtx, bool))
2295 rtx x_addr;
2297 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2298 return 1;
2300 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2301 This is used in epilogue deallocation functions. */
2302 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2303 return 1;
2304 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2305 return 1;
2306 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2307 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2308 return 1;
2310 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2311 return 0;
2313 /* Read-only memory is by definition never modified, and therefore can't
2314 conflict with anything. We don't expect to find read-only set on MEM,
2315 but stupid user tricks can produce them, so don't die. */
2316 if (MEM_READONLY_P (x))
2317 return 0;
2319 if (nonoverlapping_memrefs_p (x, mem))
2320 return 0;
2322 x_addr = get_addr (XEXP (x, 0));
2324 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2325 return 0;
2327 x_addr = canon_rtx (x_addr);
2328 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2329 SIZE_FOR_MODE (x), x_addr, 0))
2330 return 0;
2332 if (aliases_everything_p (x))
2333 return 1;
2335 /* We cannot use aliases_everything_p to test MEM, since we must look
2336 at MEM_MODE, rather than GET_MODE (MEM). */
2337 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2338 return 1;
2340 /* In true_dependence we also allow BLKmode to alias anything. Why
2341 don't we do this in anti_dependence and output_dependence? */
2342 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2343 return 1;
2345 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2346 varies);
2349 /* Returns nonzero if a write to X might alias a previous read from
2350 (or, if WRITEP is nonzero, a write to) MEM. */
2352 static int
2353 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2355 rtx x_addr, mem_addr;
2356 const_rtx fixed_scalar;
2357 rtx base;
2359 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2360 return 1;
2362 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2363 This is used in epilogue deallocation functions. */
2364 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2365 return 1;
2366 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2367 return 1;
2368 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2369 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2370 return 1;
2372 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2373 return 0;
2375 /* A read from read-only memory can't conflict with read-write memory. */
2376 if (!writep && MEM_READONLY_P (mem))
2377 return 0;
2379 if (nonoverlapping_memrefs_p (x, mem))
2380 return 0;
2382 x_addr = get_addr (XEXP (x, 0));
2383 mem_addr = get_addr (XEXP (mem, 0));
2385 if (! writep)
2387 base = find_base_term (mem_addr);
2388 if (base && (GET_CODE (base) == LABEL_REF
2389 || (GET_CODE (base) == SYMBOL_REF
2390 && CONSTANT_POOL_ADDRESS_P (base))))
2391 return 0;
2394 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2395 GET_MODE (mem)))
2396 return 0;
2398 x_addr = canon_rtx (x_addr);
2399 mem_addr = canon_rtx (mem_addr);
2401 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2402 SIZE_FOR_MODE (x), x_addr, 0))
2403 return 0;
2405 fixed_scalar
2406 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2407 rtx_addr_varies_p);
2409 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2410 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2413 /* Anti dependence: X is written after read in MEM takes place. */
2416 anti_dependence (const_rtx mem, const_rtx x)
2418 return write_dependence_p (mem, x, /*writep=*/0);
2421 /* Output dependence: X is written after store in MEM takes place. */
2424 output_dependence (const_rtx mem, const_rtx x)
2426 return write_dependence_p (mem, x, /*writep=*/1);
2430 void
2431 init_alias_target (void)
2433 int i;
2435 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2438 /* Check whether this register can hold an incoming pointer
2439 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2440 numbers, so translate if necessary due to register windows. */
2441 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2442 && HARD_REGNO_MODE_OK (i, Pmode))
2443 static_reg_base_value[i]
2444 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2446 static_reg_base_value[STACK_POINTER_REGNUM]
2447 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2448 static_reg_base_value[ARG_POINTER_REGNUM]
2449 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2450 static_reg_base_value[FRAME_POINTER_REGNUM]
2451 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2452 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2453 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2454 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2455 #endif
2458 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2459 to be memory reference. */
2460 static bool memory_modified;
2461 static void
2462 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2464 if (MEM_P (x))
2466 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2467 memory_modified = true;
2472 /* Return true when INSN possibly modify memory contents of MEM
2473 (i.e. address can be modified). */
2474 bool
2475 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2477 if (!INSN_P (insn))
2478 return false;
2479 memory_modified = false;
2480 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2481 return memory_modified;
2484 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2485 array. */
2487 void
2488 init_alias_analysis (void)
2490 unsigned int maxreg = max_reg_num ();
2491 int changed, pass;
2492 int i;
2493 unsigned int ui;
2494 rtx insn;
2496 timevar_push (TV_ALIAS_ANALYSIS);
2498 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2499 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2500 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2502 /* If we have memory allocated from the previous run, use it. */
2503 if (old_reg_base_value)
2504 reg_base_value = old_reg_base_value;
2506 if (reg_base_value)
2507 VEC_truncate (rtx, reg_base_value, 0);
2509 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2511 new_reg_base_value = XNEWVEC (rtx, maxreg);
2512 reg_seen = XNEWVEC (char, maxreg);
2514 /* The basic idea is that each pass through this loop will use the
2515 "constant" information from the previous pass to propagate alias
2516 information through another level of assignments.
2518 This could get expensive if the assignment chains are long. Maybe
2519 we should throttle the number of iterations, possibly based on
2520 the optimization level or flag_expensive_optimizations.
2522 We could propagate more information in the first pass by making use
2523 of DF_REG_DEF_COUNT to determine immediately that the alias information
2524 for a pseudo is "constant".
2526 A program with an uninitialized variable can cause an infinite loop
2527 here. Instead of doing a full dataflow analysis to detect such problems
2528 we just cap the number of iterations for the loop.
2530 The state of the arrays for the set chain in question does not matter
2531 since the program has undefined behavior. */
2533 pass = 0;
2536 /* Assume nothing will change this iteration of the loop. */
2537 changed = 0;
2539 /* We want to assign the same IDs each iteration of this loop, so
2540 start counting from zero each iteration of the loop. */
2541 unique_id = 0;
2543 /* We're at the start of the function each iteration through the
2544 loop, so we're copying arguments. */
2545 copying_arguments = true;
2547 /* Wipe the potential alias information clean for this pass. */
2548 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2550 /* Wipe the reg_seen array clean. */
2551 memset (reg_seen, 0, maxreg);
2553 /* Mark all hard registers which may contain an address.
2554 The stack, frame and argument pointers may contain an address.
2555 An argument register which can hold a Pmode value may contain
2556 an address even if it is not in BASE_REGS.
2558 The address expression is VOIDmode for an argument and
2559 Pmode for other registers. */
2561 memcpy (new_reg_base_value, static_reg_base_value,
2562 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2564 /* Walk the insns adding values to the new_reg_base_value array. */
2565 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2567 if (INSN_P (insn))
2569 rtx note, set;
2571 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2572 /* The prologue/epilogue insns are not threaded onto the
2573 insn chain until after reload has completed. Thus,
2574 there is no sense wasting time checking if INSN is in
2575 the prologue/epilogue until after reload has completed. */
2576 if (reload_completed
2577 && prologue_epilogue_contains (insn))
2578 continue;
2579 #endif
2581 /* If this insn has a noalias note, process it, Otherwise,
2582 scan for sets. A simple set will have no side effects
2583 which could change the base value of any other register. */
2585 if (GET_CODE (PATTERN (insn)) == SET
2586 && REG_NOTES (insn) != 0
2587 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2588 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2589 else
2590 note_stores (PATTERN (insn), record_set, NULL);
2592 set = single_set (insn);
2594 if (set != 0
2595 && REG_P (SET_DEST (set))
2596 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2598 unsigned int regno = REGNO (SET_DEST (set));
2599 rtx src = SET_SRC (set);
2600 rtx t;
2602 note = find_reg_equal_equiv_note (insn);
2603 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2604 && DF_REG_DEF_COUNT (regno) != 1)
2605 note = NULL_RTX;
2607 if (note != NULL_RTX
2608 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2609 && ! rtx_varies_p (XEXP (note, 0), 1)
2610 && ! reg_overlap_mentioned_p (SET_DEST (set),
2611 XEXP (note, 0)))
2613 set_reg_known_value (regno, XEXP (note, 0));
2614 set_reg_known_equiv_p (regno,
2615 REG_NOTE_KIND (note) == REG_EQUIV);
2617 else if (DF_REG_DEF_COUNT (regno) == 1
2618 && GET_CODE (src) == PLUS
2619 && REG_P (XEXP (src, 0))
2620 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2621 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2623 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2624 set_reg_known_value (regno, t);
2625 set_reg_known_equiv_p (regno, 0);
2627 else if (DF_REG_DEF_COUNT (regno) == 1
2628 && ! rtx_varies_p (src, 1))
2630 set_reg_known_value (regno, src);
2631 set_reg_known_equiv_p (regno, 0);
2635 else if (NOTE_P (insn)
2636 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2637 copying_arguments = false;
2640 /* Now propagate values from new_reg_base_value to reg_base_value. */
2641 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2643 for (ui = 0; ui < maxreg; ui++)
2645 if (new_reg_base_value[ui]
2646 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2647 && ! rtx_equal_p (new_reg_base_value[ui],
2648 VEC_index (rtx, reg_base_value, ui)))
2650 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2651 changed = 1;
2655 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2657 /* Fill in the remaining entries. */
2658 for (i = 0; i < (int)reg_known_value_size; i++)
2659 if (reg_known_value[i] == 0)
2660 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2662 /* Clean up. */
2663 free (new_reg_base_value);
2664 new_reg_base_value = 0;
2665 free (reg_seen);
2666 reg_seen = 0;
2667 timevar_pop (TV_ALIAS_ANALYSIS);
2670 void
2671 end_alias_analysis (void)
2673 old_reg_base_value = reg_base_value;
2674 ggc_free (reg_known_value);
2675 reg_known_value = 0;
2676 reg_known_value_size = 0;
2677 free (reg_known_equiv_p);
2678 reg_known_equiv_p = 0;
2681 #include "gt-alias.h"