1 /* Instruction scheduling pass. This file computes dependencies between
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
27 #include "coretypes.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
42 #include "sched-int.h"
48 static regset_head reg_pending_sets_head
;
49 static regset_head reg_pending_clobbers_head
;
50 static regset_head reg_pending_uses_head
;
52 static regset reg_pending_sets
;
53 static regset reg_pending_clobbers
;
54 static regset reg_pending_uses
;
56 /* The following enumeration values tell us what dependencies we
57 should use to implement the barrier. We use true-dependencies for
58 TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */
59 enum reg_pending_barrier_mode
66 static enum reg_pending_barrier_mode reg_pending_barrier
;
68 /* To speed up the test for duplicate dependency links we keep a
69 record of dependencies created by add_dependence when the average
70 number of instructions in a basic block is very large.
72 Studies have shown that there is typically around 5 instructions between
73 branches for typical C code. So we can make a guess that the average
74 basic block is approximately 5 instructions long; we will choose 100X
75 the average size as a very large basic block.
77 Each insn has associated bitmaps for its dependencies. Each bitmap
78 has enough entries to represent a dependency on any other insn in
79 the insn chain. All bitmap for true dependencies cache is
80 allocated then the rest two ones are also allocated. */
81 static bitmap_head
*true_dependency_cache
;
82 static bitmap_head
*anti_dependency_cache
;
83 static bitmap_head
*output_dependency_cache
;
86 /* To speed up checking consistency of formed forward insn
87 dependencies we use the following cache. Another possible solution
88 could be switching off checking duplication of insns in forward
90 #ifdef ENABLE_CHECKING
91 static bitmap_head
*forward_dependency_cache
;
94 static int deps_may_trap_p (rtx
);
95 static void add_dependence_list (rtx
, rtx
, enum reg_note
);
96 static void add_dependence_list_and_free (rtx
, rtx
*, enum reg_note
);
97 static void set_sched_group_p (rtx
);
99 static void flush_pending_lists (struct deps
*, rtx
, int, int);
100 static void sched_analyze_1 (struct deps
*, rtx
, rtx
);
101 static void sched_analyze_2 (struct deps
*, rtx
, rtx
);
102 static void sched_analyze_insn (struct deps
*, rtx
, rtx
, rtx
);
104 static rtx
get_condition (rtx
);
105 static int conditions_mutex_p (rtx
, rtx
);
107 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
110 deps_may_trap_p (rtx mem
)
112 rtx addr
= XEXP (mem
, 0);
114 if (REG_P (addr
) && REGNO (addr
) >= FIRST_PSEUDO_REGISTER
)
116 rtx t
= get_reg_known_value (REGNO (addr
));
120 return rtx_addr_can_trap_p (addr
);
123 /* Return the INSN_LIST containing INSN in LIST, or NULL
124 if LIST does not contain INSN. */
127 find_insn_list (rtx insn
, rtx list
)
131 if (XEXP (list
, 0) == insn
)
133 list
= XEXP (list
, 1);
138 /* Find the condition under which INSN is executed. */
141 get_condition (rtx insn
)
143 rtx pat
= PATTERN (insn
);
148 if (GET_CODE (pat
) == COND_EXEC
)
149 return COND_EXEC_TEST (pat
);
150 if (GET_CODE (insn
) != JUMP_INSN
)
152 if (GET_CODE (pat
) != SET
|| SET_SRC (pat
) != pc_rtx
)
154 if (GET_CODE (SET_DEST (pat
)) != IF_THEN_ELSE
)
156 pat
= SET_DEST (pat
);
157 cond
= XEXP (pat
, 0);
158 if (GET_CODE (XEXP (cond
, 1)) == LABEL_REF
159 && XEXP (cond
, 2) == pc_rtx
)
161 else if (GET_CODE (XEXP (cond
, 2)) == LABEL_REF
162 && XEXP (cond
, 1) == pc_rtx
)
163 return gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)), GET_MODE (cond
),
164 XEXP (cond
, 0), XEXP (cond
, 1));
169 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
172 conditions_mutex_p (rtx cond1
, rtx cond2
)
174 if (COMPARISON_P (cond1
)
175 && COMPARISON_P (cond2
)
176 && GET_CODE (cond1
) == reverse_condition (GET_CODE (cond2
))
177 && XEXP (cond1
, 0) == XEXP (cond2
, 0)
178 && XEXP (cond1
, 1) == XEXP (cond2
, 1))
183 /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
184 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the
185 type of dependence that this link represents. The function returns
186 nonzero if a new entry has been added to insn's LOG_LINK. */
189 add_dependence (rtx insn
, rtx elem
, enum reg_note dep_type
)
195 /* Don't depend an insn on itself. */
199 /* We can get a dependency on deleted insns due to optimizations in
200 the register allocation and reloading or due to splitting. Any
201 such dependency is useless and can be ignored. */
202 if (GET_CODE (elem
) == NOTE
)
205 /* flow.c doesn't handle conditional lifetimes entirely correctly;
206 calls mess up the conditional lifetimes. */
207 /* ??? add_dependence is the wrong place to be eliding dependencies,
208 as that forgets that the condition expressions themselves may
210 if (GET_CODE (insn
) != CALL_INSN
&& GET_CODE (elem
) != CALL_INSN
)
212 cond1
= get_condition (insn
);
213 cond2
= get_condition (elem
);
215 && conditions_mutex_p (cond1
, cond2
)
216 /* Make sure first instruction doesn't affect condition of second
217 instruction if switched. */
218 && !modified_in_p (cond1
, elem
)
219 /* Make sure second instruction doesn't affect condition of first
220 instruction if switched. */
221 && !modified_in_p (cond2
, insn
))
226 #ifdef INSN_SCHEDULING
227 /* ??? No good way to tell from here whether we're doing interblock
228 scheduling. Possibly add another callback. */
230 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
231 No need for interblock dependences with calls, since
232 calls are not moved between blocks. Note: the edge where
233 elem is a CALL is still required. */
234 if (GET_CODE (insn
) == CALL_INSN
235 && (INSN_BB (elem
) != INSN_BB (insn
)))
239 /* If we already have a dependency for ELEM, then we do not need to
240 do anything. Avoiding the list walk below can cut compile times
241 dramatically for some code. */
242 if (true_dependency_cache
!= NULL
)
244 enum reg_note present_dep_type
= 0;
246 if (anti_dependency_cache
== NULL
|| output_dependency_cache
== NULL
)
248 if (bitmap_bit_p (&true_dependency_cache
[INSN_LUID (insn
)],
250 /* Do nothing (present_set_type is already 0). */
252 else if (bitmap_bit_p (&anti_dependency_cache
[INSN_LUID (insn
)],
254 present_dep_type
= REG_DEP_ANTI
;
255 else if (bitmap_bit_p (&output_dependency_cache
[INSN_LUID (insn
)],
257 present_dep_type
= REG_DEP_OUTPUT
;
260 if (present_p
&& (int) dep_type
>= (int) present_dep_type
)
265 /* Check that we don't already have this dependence. */
267 for (link
= LOG_LINKS (insn
); link
; link
= XEXP (link
, 1))
268 if (XEXP (link
, 0) == elem
)
270 #ifdef INSN_SCHEDULING
271 /* Clear corresponding cache entry because type of the link
273 if (true_dependency_cache
!= NULL
)
275 if (REG_NOTE_KIND (link
) == REG_DEP_ANTI
)
276 bitmap_clear_bit (&anti_dependency_cache
[INSN_LUID (insn
)],
278 else if (REG_NOTE_KIND (link
) == REG_DEP_OUTPUT
279 && output_dependency_cache
)
280 bitmap_clear_bit (&output_dependency_cache
[INSN_LUID (insn
)],
287 /* If this is a more restrictive type of dependence than the existing
288 one, then change the existing dependence to this type. */
289 if ((int) dep_type
< (int) REG_NOTE_KIND (link
))
290 PUT_REG_NOTE_KIND (link
, dep_type
);
292 #ifdef INSN_SCHEDULING
293 /* If we are adding a dependency to INSN's LOG_LINKs, then
294 note that in the bitmap caches of dependency information. */
295 if (true_dependency_cache
!= NULL
)
297 if ((int) REG_NOTE_KIND (link
) == 0)
298 bitmap_set_bit (&true_dependency_cache
[INSN_LUID (insn
)],
300 else if (REG_NOTE_KIND (link
) == REG_DEP_ANTI
)
301 bitmap_set_bit (&anti_dependency_cache
[INSN_LUID (insn
)],
303 else if (REG_NOTE_KIND (link
) == REG_DEP_OUTPUT
)
304 bitmap_set_bit (&output_dependency_cache
[INSN_LUID (insn
)],
310 /* Might want to check one level of transitivity to save conses. */
312 link
= alloc_INSN_LIST (elem
, LOG_LINKS (insn
));
313 LOG_LINKS (insn
) = link
;
315 /* Insn dependency, not data dependency. */
316 PUT_REG_NOTE_KIND (link
, dep_type
);
318 #ifdef INSN_SCHEDULING
319 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
320 in the bitmap caches of dependency information. */
321 if (true_dependency_cache
!= NULL
)
323 if ((int) dep_type
== 0)
324 bitmap_set_bit (&true_dependency_cache
[INSN_LUID (insn
)], INSN_LUID (elem
));
325 else if (dep_type
== REG_DEP_ANTI
)
326 bitmap_set_bit (&anti_dependency_cache
[INSN_LUID (insn
)], INSN_LUID (elem
));
327 else if (dep_type
== REG_DEP_OUTPUT
)
328 bitmap_set_bit (&output_dependency_cache
[INSN_LUID (insn
)], INSN_LUID (elem
));
334 /* A convenience wrapper to operate on an entire list. */
337 add_dependence_list (rtx insn
, rtx list
, enum reg_note dep_type
)
339 for (; list
; list
= XEXP (list
, 1))
340 add_dependence (insn
, XEXP (list
, 0), dep_type
);
343 /* Similar, but free *LISTP at the same time. */
346 add_dependence_list_and_free (rtx insn
, rtx
*listp
, enum reg_note dep_type
)
349 for (list
= *listp
, *listp
= NULL
; list
; list
= next
)
351 next
= XEXP (list
, 1);
352 add_dependence (insn
, XEXP (list
, 0), dep_type
);
353 free_INSN_LIST_node (list
);
357 /* Set SCHED_GROUP_P and care for the rest of the bookkeeping that
358 goes along with that. */
361 set_sched_group_p (rtx insn
)
365 SCHED_GROUP_P (insn
) = 1;
367 prev
= prev_nonnote_insn (insn
);
368 add_dependence (insn
, prev
, REG_DEP_ANTI
);
371 /* Process an insn's memory dependencies. There are four kinds of
374 (0) read dependence: read follows read
375 (1) true dependence: read follows write
376 (2) anti dependence: write follows read
377 (3) output dependence: write follows write
379 We are careful to build only dependencies which actually exist, and
380 use transitivity to avoid building too many links. */
382 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
383 The MEM is a memory reference contained within INSN, which we are saving
384 so that we can do memory aliasing on it. */
387 add_insn_mem_dependence (struct deps
*deps
, rtx
*insn_list
, rtx
*mem_list
,
392 link
= alloc_INSN_LIST (insn
, *insn_list
);
395 if (current_sched_info
->use_cselib
)
397 mem
= shallow_copy_rtx (mem
);
398 XEXP (mem
, 0) = cselib_subst_to_values (XEXP (mem
, 0));
400 link
= alloc_EXPR_LIST (VOIDmode
, canon_rtx (mem
), *mem_list
);
403 deps
->pending_lists_length
++;
406 /* Make a dependency between every memory reference on the pending lists
407 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
408 dependencies for a read operation, similarly with FOR_WRITE. */
411 flush_pending_lists (struct deps
*deps
, rtx insn
, int for_read
,
416 add_dependence_list_and_free (insn
, &deps
->pending_read_insns
,
418 free_EXPR_LIST_list (&deps
->pending_read_mems
);
421 add_dependence_list_and_free (insn
, &deps
->pending_write_insns
,
422 for_read
? REG_DEP_ANTI
: REG_DEP_OUTPUT
);
423 free_EXPR_LIST_list (&deps
->pending_write_mems
);
424 deps
->pending_lists_length
= 0;
426 add_dependence_list_and_free (insn
, &deps
->last_pending_memory_flush
,
427 for_read
? REG_DEP_ANTI
: REG_DEP_OUTPUT
);
428 deps
->last_pending_memory_flush
= alloc_INSN_LIST (insn
, NULL_RTX
);
429 deps
->pending_flush_length
= 1;
432 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
433 rtx, X, creating all dependencies generated by the write to the
434 destination of X, and reads of everything mentioned. */
437 sched_analyze_1 (struct deps
*deps
, rtx x
, rtx insn
)
440 rtx dest
= XEXP (x
, 0);
441 enum rtx_code code
= GET_CODE (x
);
446 if (GET_CODE (dest
) == PARALLEL
)
450 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
451 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
452 sched_analyze_1 (deps
,
453 gen_rtx_CLOBBER (VOIDmode
,
454 XEXP (XVECEXP (dest
, 0, i
), 0)),
457 if (GET_CODE (x
) == SET
)
458 sched_analyze_2 (deps
, SET_SRC (x
), insn
);
462 while (GET_CODE (dest
) == STRICT_LOW_PART
|| GET_CODE (dest
) == SUBREG
463 || GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
465 if (GET_CODE (dest
) == STRICT_LOW_PART
466 || GET_CODE (dest
) == ZERO_EXTRACT
467 || GET_CODE (dest
) == SIGN_EXTRACT
468 || read_modify_subreg_p (dest
))
470 /* These both read and modify the result. We must handle
471 them as writes to get proper dependencies for following
472 instructions. We must handle them as reads to get proper
473 dependencies from this to previous instructions.
474 Thus we need to call sched_analyze_2. */
476 sched_analyze_2 (deps
, XEXP (dest
, 0), insn
);
478 if (GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
480 /* The second and third arguments are values read by this insn. */
481 sched_analyze_2 (deps
, XEXP (dest
, 1), insn
);
482 sched_analyze_2 (deps
, XEXP (dest
, 2), insn
);
484 dest
= XEXP (dest
, 0);
487 if (GET_CODE (dest
) == REG
)
489 regno
= REGNO (dest
);
491 /* A hard reg in a wide mode may really be multiple registers.
492 If so, mark all of them just like the first. */
493 if (regno
< FIRST_PSEUDO_REGISTER
)
495 int i
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
499 SET_REGNO_REG_SET (reg_pending_sets
, regno
+ i
);
504 SET_REGNO_REG_SET (reg_pending_clobbers
, regno
+ i
);
507 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
508 it does not reload. Ignore these as they have served their
510 else if (regno
>= deps
->max_reg
)
512 if (GET_CODE (PATTERN (insn
)) != USE
513 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
519 SET_REGNO_REG_SET (reg_pending_sets
, regno
);
521 SET_REGNO_REG_SET (reg_pending_clobbers
, regno
);
523 /* Pseudos that are REG_EQUIV to something may be replaced
524 by that during reloading. We need only add dependencies for
525 the address in the REG_EQUIV note. */
526 if (!reload_completed
&& get_reg_known_equiv_p (regno
))
528 rtx t
= get_reg_known_value (regno
);
529 if (GET_CODE (t
) == MEM
)
530 sched_analyze_2 (deps
, XEXP (t
, 0), insn
);
533 /* Don't let it cross a call after scheduling if it doesn't
534 already cross one. */
535 if (REG_N_CALLS_CROSSED (regno
) == 0)
536 add_dependence_list (insn
, deps
->last_function_call
, REG_DEP_ANTI
);
539 else if (GET_CODE (dest
) == MEM
)
541 /* Writing memory. */
544 if (current_sched_info
->use_cselib
)
546 t
= shallow_copy_rtx (dest
);
547 cselib_lookup (XEXP (t
, 0), Pmode
, 1);
548 XEXP (t
, 0) = cselib_subst_to_values (XEXP (t
, 0));
552 if (deps
->pending_lists_length
> MAX_PENDING_LIST_LENGTH
)
554 /* Flush all pending reads and writes to prevent the pending lists
555 from getting any larger. Insn scheduling runs too slowly when
556 these lists get long. When compiling GCC with itself,
557 this flush occurs 8 times for sparc, and 10 times for m88k using
558 the default value of 32. */
559 flush_pending_lists (deps
, insn
, false, true);
563 rtx pending
, pending_mem
;
565 pending
= deps
->pending_read_insns
;
566 pending_mem
= deps
->pending_read_mems
;
569 if (anti_dependence (XEXP (pending_mem
, 0), t
))
570 add_dependence (insn
, XEXP (pending
, 0), REG_DEP_ANTI
);
572 pending
= XEXP (pending
, 1);
573 pending_mem
= XEXP (pending_mem
, 1);
576 pending
= deps
->pending_write_insns
;
577 pending_mem
= deps
->pending_write_mems
;
580 if (output_dependence (XEXP (pending_mem
, 0), t
))
581 add_dependence (insn
, XEXP (pending
, 0), REG_DEP_OUTPUT
);
583 pending
= XEXP (pending
, 1);
584 pending_mem
= XEXP (pending_mem
, 1);
587 add_dependence_list (insn
, deps
->last_pending_memory_flush
,
590 add_insn_mem_dependence (deps
, &deps
->pending_write_insns
,
591 &deps
->pending_write_mems
, insn
, dest
);
593 sched_analyze_2 (deps
, XEXP (dest
, 0), insn
);
597 if (GET_CODE (x
) == SET
)
598 sched_analyze_2 (deps
, SET_SRC (x
), insn
);
601 /* Analyze the uses of memory and registers in rtx X in INSN. */
604 sched_analyze_2 (struct deps
*deps
, rtx x
, rtx insn
)
624 /* Ignore constants. Note that we must handle CONST_DOUBLE here
625 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
626 this does not mean that this insn is using cc0. */
631 /* User of CC0 depends on immediately preceding insn. */
632 set_sched_group_p (insn
);
633 /* Don't move CC0 setter to another block (it can set up the
634 same flag for previous CC0 users which is safe). */
635 CANT_MOVE (prev_nonnote_insn (insn
)) = 1;
641 int regno
= REGNO (x
);
642 if (regno
< FIRST_PSEUDO_REGISTER
)
644 int i
= hard_regno_nregs
[regno
][GET_MODE (x
)];
646 SET_REGNO_REG_SET (reg_pending_uses
, regno
+ i
);
648 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
649 it does not reload. Ignore these as they have served their
651 else if (regno
>= deps
->max_reg
)
653 if (GET_CODE (PATTERN (insn
)) != USE
654 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
659 SET_REGNO_REG_SET (reg_pending_uses
, regno
);
661 /* Pseudos that are REG_EQUIV to something may be replaced
662 by that during reloading. We need only add dependencies for
663 the address in the REG_EQUIV note. */
664 if (!reload_completed
&& get_reg_known_equiv_p (regno
))
666 rtx t
= get_reg_known_value (regno
);
667 if (GET_CODE (t
) == MEM
)
668 sched_analyze_2 (deps
, XEXP (t
, 0), insn
);
671 /* If the register does not already cross any calls, then add this
672 insn to the sched_before_next_call list so that it will still
673 not cross calls after scheduling. */
674 if (REG_N_CALLS_CROSSED (regno
) == 0)
675 deps
->sched_before_next_call
676 = alloc_INSN_LIST (insn
, deps
->sched_before_next_call
);
683 /* Reading memory. */
685 rtx pending
, pending_mem
;
688 if (current_sched_info
->use_cselib
)
690 t
= shallow_copy_rtx (t
);
691 cselib_lookup (XEXP (t
, 0), Pmode
, 1);
692 XEXP (t
, 0) = cselib_subst_to_values (XEXP (t
, 0));
695 pending
= deps
->pending_read_insns
;
696 pending_mem
= deps
->pending_read_mems
;
699 if (read_dependence (XEXP (pending_mem
, 0), t
))
700 add_dependence (insn
, XEXP (pending
, 0), REG_DEP_ANTI
);
702 pending
= XEXP (pending
, 1);
703 pending_mem
= XEXP (pending_mem
, 1);
706 pending
= deps
->pending_write_insns
;
707 pending_mem
= deps
->pending_write_mems
;
710 if (true_dependence (XEXP (pending_mem
, 0), VOIDmode
,
712 add_dependence (insn
, XEXP (pending
, 0), 0);
714 pending
= XEXP (pending
, 1);
715 pending_mem
= XEXP (pending_mem
, 1);
718 for (u
= deps
->last_pending_memory_flush
; u
; u
= XEXP (u
, 1))
719 if (GET_CODE (XEXP (u
, 0)) != JUMP_INSN
720 || deps_may_trap_p (x
))
721 add_dependence (insn
, XEXP (u
, 0), REG_DEP_ANTI
);
723 /* Always add these dependencies to pending_reads, since
724 this insn may be followed by a write. */
725 add_insn_mem_dependence (deps
, &deps
->pending_read_insns
,
726 &deps
->pending_read_mems
, insn
, x
);
728 /* Take advantage of tail recursion here. */
729 sched_analyze_2 (deps
, XEXP (x
, 0), insn
);
733 /* Force pending stores to memory in case a trap handler needs them. */
735 flush_pending_lists (deps
, insn
, true, false);
740 case UNSPEC_VOLATILE
:
742 /* Traditional and volatile asm instructions must be considered to use
743 and clobber all hard registers, all pseudo-registers and all of
744 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
746 Consider for instance a volatile asm that changes the fpu rounding
747 mode. An insn should not be moved across this even if it only uses
748 pseudo-regs because it might give an incorrectly rounded result. */
749 if (code
!= ASM_OPERANDS
|| MEM_VOLATILE_P (x
))
750 reg_pending_barrier
= TRUE_BARRIER
;
752 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
753 We can not just fall through here since then we would be confused
754 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
755 traditional asms unlike their normal usage. */
757 if (code
== ASM_OPERANDS
)
759 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
760 sched_analyze_2 (deps
, ASM_OPERANDS_INPUT (x
, j
), insn
);
770 /* These both read and modify the result. We must handle them as writes
771 to get proper dependencies for following instructions. We must handle
772 them as reads to get proper dependencies from this to previous
773 instructions. Thus we need to pass them to both sched_analyze_1
774 and sched_analyze_2. We must call sched_analyze_2 first in order
775 to get the proper antecedent for the read. */
776 sched_analyze_2 (deps
, XEXP (x
, 0), insn
);
777 sched_analyze_1 (deps
, x
, insn
);
782 /* op0 = op0 + op1 */
783 sched_analyze_2 (deps
, XEXP (x
, 0), insn
);
784 sched_analyze_2 (deps
, XEXP (x
, 1), insn
);
785 sched_analyze_1 (deps
, x
, insn
);
792 /* Other cases: walk the insn. */
793 fmt
= GET_RTX_FORMAT (code
);
794 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
797 sched_analyze_2 (deps
, XEXP (x
, i
), insn
);
798 else if (fmt
[i
] == 'E')
799 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
800 sched_analyze_2 (deps
, XVECEXP (x
, i
, j
), insn
);
804 /* Analyze an INSN with pattern X to find all dependencies. */
807 sched_analyze_insn (struct deps
*deps
, rtx x
, rtx insn
, rtx loop_notes
)
809 RTX_CODE code
= GET_CODE (x
);
813 if (code
== COND_EXEC
)
815 sched_analyze_2 (deps
, COND_EXEC_TEST (x
), insn
);
817 /* ??? Should be recording conditions so we reduce the number of
818 false dependencies. */
819 x
= COND_EXEC_CODE (x
);
822 if (code
== SET
|| code
== CLOBBER
)
824 sched_analyze_1 (deps
, x
, insn
);
826 /* Bare clobber insns are used for letting life analysis, reg-stack
827 and others know that a value is dead. Depend on the last call
828 instruction so that reg-stack won't get confused. */
830 add_dependence_list (insn
, deps
->last_function_call
, REG_DEP_OUTPUT
);
832 else if (code
== PARALLEL
)
835 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
837 rtx sub
= XVECEXP (x
, 0, i
);
838 code
= GET_CODE (sub
);
840 if (code
== COND_EXEC
)
842 sched_analyze_2 (deps
, COND_EXEC_TEST (sub
), insn
);
843 sub
= COND_EXEC_CODE (sub
);
844 code
= GET_CODE (sub
);
846 if (code
== SET
|| code
== CLOBBER
)
847 sched_analyze_1 (deps
, sub
, insn
);
849 sched_analyze_2 (deps
, sub
, insn
);
853 sched_analyze_2 (deps
, x
, insn
);
855 /* Mark registers CLOBBERED or used by called function. */
856 if (GET_CODE (insn
) == CALL_INSN
)
858 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
860 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
861 sched_analyze_1 (deps
, XEXP (link
, 0), insn
);
863 sched_analyze_2 (deps
, XEXP (link
, 0), insn
);
865 if (find_reg_note (insn
, REG_SETJMP
, NULL
))
866 reg_pending_barrier
= MOVE_BARRIER
;
869 if (GET_CODE (insn
) == JUMP_INSN
)
872 next
= next_nonnote_insn (insn
);
873 if (next
&& GET_CODE (next
) == BARRIER
)
874 reg_pending_barrier
= TRUE_BARRIER
;
877 rtx pending
, pending_mem
;
878 regset_head tmp_uses
, tmp_sets
;
879 INIT_REG_SET (&tmp_uses
);
880 INIT_REG_SET (&tmp_sets
);
882 (*current_sched_info
->compute_jump_reg_dependencies
)
883 (insn
, &deps
->reg_conditional_sets
, &tmp_uses
, &tmp_sets
);
884 /* Make latency of jump equal to 0 by using anti-dependence. */
885 EXECUTE_IF_SET_IN_REG_SET (&tmp_uses
, 0, i
,
887 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
888 add_dependence_list (insn
, reg_last
->sets
, REG_DEP_ANTI
);
889 add_dependence_list (insn
, reg_last
->clobbers
, REG_DEP_ANTI
);
890 reg_last
->uses_length
++;
891 reg_last
->uses
= alloc_INSN_LIST (insn
, reg_last
->uses
);
893 IOR_REG_SET (reg_pending_sets
, &tmp_sets
);
895 CLEAR_REG_SET (&tmp_uses
);
896 CLEAR_REG_SET (&tmp_sets
);
898 /* All memory writes and volatile reads must happen before the
899 jump. Non-volatile reads must happen before the jump iff
900 the result is needed by the above register used mask. */
902 pending
= deps
->pending_write_insns
;
903 pending_mem
= deps
->pending_write_mems
;
906 add_dependence (insn
, XEXP (pending
, 0), REG_DEP_OUTPUT
);
907 pending
= XEXP (pending
, 1);
908 pending_mem
= XEXP (pending_mem
, 1);
911 pending
= deps
->pending_read_insns
;
912 pending_mem
= deps
->pending_read_mems
;
915 if (MEM_VOLATILE_P (XEXP (pending_mem
, 0)))
916 add_dependence (insn
, XEXP (pending
, 0), REG_DEP_OUTPUT
);
917 pending
= XEXP (pending
, 1);
918 pending_mem
= XEXP (pending_mem
, 1);
921 add_dependence_list (insn
, deps
->last_pending_memory_flush
,
926 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
927 block, then we must be sure that no instructions are scheduled across it.
928 Otherwise, the reg_n_refs info (which depends on loop_depth) would
934 /* Update loop_notes with any notes from this insn. Also determine
935 if any of the notes on the list correspond to instruction scheduling
936 barriers (loop, eh & setjmp notes, but not range notes). */
938 while (XEXP (link
, 1))
940 if (INTVAL (XEXP (link
, 0)) == NOTE_INSN_LOOP_BEG
941 || INTVAL (XEXP (link
, 0)) == NOTE_INSN_LOOP_END
942 || INTVAL (XEXP (link
, 0)) == NOTE_INSN_EH_REGION_BEG
943 || INTVAL (XEXP (link
, 0)) == NOTE_INSN_EH_REGION_END
)
944 reg_pending_barrier
= MOVE_BARRIER
;
946 link
= XEXP (link
, 1);
948 XEXP (link
, 1) = REG_NOTES (insn
);
949 REG_NOTES (insn
) = loop_notes
;
952 /* If this instruction can throw an exception, then moving it changes
953 where block boundaries fall. This is mighty confusing elsewhere.
954 Therefore, prevent such an instruction from being moved. */
955 if (can_throw_internal (insn
))
956 reg_pending_barrier
= MOVE_BARRIER
;
958 /* Add dependencies if a scheduling barrier was found. */
959 if (reg_pending_barrier
)
961 /* In the case of barrier the most added dependencies are not
962 real, so we use anti-dependence here. */
963 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
965 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
,
967 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
968 add_dependence_list (insn
, reg_last
->uses
, REG_DEP_ANTI
);
970 (insn
, reg_last
->sets
,
971 reg_pending_barrier
== TRUE_BARRIER
? 0 : REG_DEP_ANTI
);
973 (insn
, reg_last
->clobbers
,
974 reg_pending_barrier
== TRUE_BARRIER
? 0 : REG_DEP_ANTI
);
979 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
,
981 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
982 add_dependence_list_and_free (insn
, ®_last
->uses
,
984 add_dependence_list_and_free
985 (insn
, ®_last
->sets
,
986 reg_pending_barrier
== TRUE_BARRIER
? 0 : REG_DEP_ANTI
);
987 add_dependence_list_and_free
988 (insn
, ®_last
->clobbers
,
989 reg_pending_barrier
== TRUE_BARRIER
? 0 : REG_DEP_ANTI
);
990 reg_last
->uses_length
= 0;
991 reg_last
->clobbers_length
= 0;
995 for (i
= 0; i
< deps
->max_reg
; i
++)
997 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
998 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
999 SET_REGNO_REG_SET (&deps
->reg_last_in_use
, i
);
1002 flush_pending_lists (deps
, insn
, true, true);
1003 CLEAR_REG_SET (&deps
->reg_conditional_sets
);
1004 reg_pending_barrier
= NOT_A_BARRIER
;
1008 /* If the current insn is conditional, we can't free any
1010 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1012 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses
, 0, i
,
1014 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1015 add_dependence_list (insn
, reg_last
->sets
, 0);
1016 add_dependence_list (insn
, reg_last
->clobbers
, 0);
1017 reg_last
->uses
= alloc_INSN_LIST (insn
, reg_last
->uses
);
1018 reg_last
->uses_length
++;
1020 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers
, 0, i
,
1022 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1023 add_dependence_list (insn
, reg_last
->sets
, REG_DEP_OUTPUT
);
1024 add_dependence_list (insn
, reg_last
->uses
, REG_DEP_ANTI
);
1025 reg_last
->clobbers
= alloc_INSN_LIST (insn
, reg_last
->clobbers
);
1026 reg_last
->clobbers_length
++;
1028 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets
, 0, i
,
1030 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1031 add_dependence_list (insn
, reg_last
->sets
, REG_DEP_OUTPUT
);
1032 add_dependence_list (insn
, reg_last
->clobbers
, REG_DEP_OUTPUT
);
1033 add_dependence_list (insn
, reg_last
->uses
, REG_DEP_ANTI
);
1034 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
1035 SET_REGNO_REG_SET (&deps
->reg_conditional_sets
, i
);
1040 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses
, 0, i
,
1042 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1043 add_dependence_list (insn
, reg_last
->sets
, 0);
1044 add_dependence_list (insn
, reg_last
->clobbers
, 0);
1045 reg_last
->uses_length
++;
1046 reg_last
->uses
= alloc_INSN_LIST (insn
, reg_last
->uses
);
1048 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers
, 0, i
,
1050 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1051 if (reg_last
->uses_length
> MAX_PENDING_LIST_LENGTH
1052 || reg_last
->clobbers_length
> MAX_PENDING_LIST_LENGTH
)
1054 add_dependence_list_and_free (insn
, ®_last
->sets
,
1056 add_dependence_list_and_free (insn
, ®_last
->uses
,
1058 add_dependence_list_and_free (insn
, ®_last
->clobbers
,
1060 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
1061 reg_last
->clobbers_length
= 0;
1062 reg_last
->uses_length
= 0;
1066 add_dependence_list (insn
, reg_last
->sets
, REG_DEP_OUTPUT
);
1067 add_dependence_list (insn
, reg_last
->uses
, REG_DEP_ANTI
);
1069 reg_last
->clobbers_length
++;
1070 reg_last
->clobbers
= alloc_INSN_LIST (insn
, reg_last
->clobbers
);
1072 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets
, 0, i
,
1074 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1075 add_dependence_list_and_free (insn
, ®_last
->sets
,
1077 add_dependence_list_and_free (insn
, ®_last
->clobbers
,
1079 add_dependence_list_and_free (insn
, ®_last
->uses
,
1081 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
1082 reg_last
->uses_length
= 0;
1083 reg_last
->clobbers_length
= 0;
1084 CLEAR_REGNO_REG_SET (&deps
->reg_conditional_sets
, i
);
1088 IOR_REG_SET (&deps
->reg_last_in_use
, reg_pending_uses
);
1089 IOR_REG_SET (&deps
->reg_last_in_use
, reg_pending_clobbers
);
1090 IOR_REG_SET (&deps
->reg_last_in_use
, reg_pending_sets
);
1092 CLEAR_REG_SET (reg_pending_uses
);
1093 CLEAR_REG_SET (reg_pending_clobbers
);
1094 CLEAR_REG_SET (reg_pending_sets
);
1096 /* If we are currently in a libcall scheduling group, then mark the
1097 current insn as being in a scheduling group and that it can not
1098 be moved into a different basic block. */
1100 if (deps
->libcall_block_tail_insn
)
1102 set_sched_group_p (insn
);
1103 CANT_MOVE (insn
) = 1;
1106 /* If a post-call group is still open, see if it should remain so.
1107 This insn must be a simple move of a hard reg to a pseudo or
1110 We must avoid moving these insns for correctness on
1111 SMALL_REGISTER_CLASS machines, and for special registers like
1112 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
1113 hard regs for all targets. */
1115 if (deps
->in_post_call_group_p
)
1117 rtx tmp
, set
= single_set (insn
);
1118 int src_regno
, dest_regno
;
1121 goto end_call_group
;
1123 tmp
= SET_DEST (set
);
1124 if (GET_CODE (tmp
) == SUBREG
)
1125 tmp
= SUBREG_REG (tmp
);
1126 if (GET_CODE (tmp
) == REG
)
1127 dest_regno
= REGNO (tmp
);
1129 goto end_call_group
;
1131 tmp
= SET_SRC (set
);
1132 if (GET_CODE (tmp
) == SUBREG
)
1133 tmp
= SUBREG_REG (tmp
);
1134 if ((GET_CODE (tmp
) == PLUS
1135 || GET_CODE (tmp
) == MINUS
)
1136 && GET_CODE (XEXP (tmp
, 0)) == REG
1137 && REGNO (XEXP (tmp
, 0)) == STACK_POINTER_REGNUM
1138 && dest_regno
== STACK_POINTER_REGNUM
)
1139 src_regno
= STACK_POINTER_REGNUM
;
1140 else if (GET_CODE (tmp
) == REG
)
1141 src_regno
= REGNO (tmp
);
1143 goto end_call_group
;
1145 if (src_regno
< FIRST_PSEUDO_REGISTER
1146 || dest_regno
< FIRST_PSEUDO_REGISTER
)
1148 set_sched_group_p (insn
);
1149 CANT_MOVE (insn
) = 1;
1154 deps
->in_post_call_group_p
= false;
1159 /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
1160 for every dependency. */
1163 sched_analyze (struct deps
*deps
, rtx head
, rtx tail
)
1168 if (current_sched_info
->use_cselib
)
1171 for (insn
= head
;; insn
= NEXT_INSN (insn
))
1173 rtx link
, end_seq
, r0
, set
;
1175 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
)
1177 /* Clear out the stale LOG_LINKS from flow. */
1178 free_INSN_LIST_list (&LOG_LINKS (insn
));
1180 /* Make each JUMP_INSN a scheduling barrier for memory
1182 if (GET_CODE (insn
) == JUMP_INSN
)
1184 /* Keep the list a reasonable size. */
1185 if (deps
->pending_flush_length
++ > MAX_PENDING_LIST_LENGTH
)
1186 flush_pending_lists (deps
, insn
, true, true);
1188 deps
->last_pending_memory_flush
1189 = alloc_INSN_LIST (insn
, deps
->last_pending_memory_flush
);
1191 sched_analyze_insn (deps
, PATTERN (insn
), insn
, loop_notes
);
1194 else if (GET_CODE (insn
) == CALL_INSN
)
1198 CANT_MOVE (insn
) = 1;
1200 /* Clear out the stale LOG_LINKS from flow. */
1201 free_INSN_LIST_list (&LOG_LINKS (insn
));
1203 if (find_reg_note (insn
, REG_SETJMP
, NULL
))
1205 /* This is setjmp. Assume that all registers, not just
1206 hard registers, may be clobbered by this call. */
1207 reg_pending_barrier
= MOVE_BARRIER
;
1211 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1212 /* A call may read and modify global register variables. */
1215 SET_REGNO_REG_SET (reg_pending_sets
, i
);
1216 SET_REGNO_REG_SET (reg_pending_uses
, i
);
1218 /* Other call-clobbered hard regs may be clobbered.
1219 Since we only have a choice between 'might be clobbered'
1220 and 'definitely not clobbered', we must include all
1221 partly call-clobbered registers here. */
1222 else if (HARD_REGNO_CALL_PART_CLOBBERED (i
, reg_raw_mode
[i
])
1223 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1224 SET_REGNO_REG_SET (reg_pending_clobbers
, i
);
1225 /* We don't know what set of fixed registers might be used
1226 by the function, but it is certain that the stack pointer
1227 is among them, but be conservative. */
1228 else if (fixed_regs
[i
])
1229 SET_REGNO_REG_SET (reg_pending_uses
, i
);
1230 /* The frame pointer is normally not used by the function
1231 itself, but by the debugger. */
1232 /* ??? MIPS o32 is an exception. It uses the frame pointer
1233 in the macro expansion of jal but does not represent this
1234 fact in the call_insn rtl. */
1235 else if (i
== FRAME_POINTER_REGNUM
1236 || (i
== HARD_FRAME_POINTER_REGNUM
1237 && (! reload_completed
|| frame_pointer_needed
)))
1238 SET_REGNO_REG_SET (reg_pending_uses
, i
);
1241 /* For each insn which shouldn't cross a call, add a dependence
1242 between that insn and this call insn. */
1243 add_dependence_list_and_free (insn
, &deps
->sched_before_next_call
,
1246 sched_analyze_insn (deps
, PATTERN (insn
), insn
, loop_notes
);
1249 /* In the absence of interprocedural alias analysis, we must flush
1250 all pending reads and writes, and start new dependencies starting
1251 from here. But only flush writes for constant calls (which may
1252 be passed a pointer to something we haven't written yet). */
1253 flush_pending_lists (deps
, insn
, true, !CONST_OR_PURE_CALL_P (insn
));
1255 /* Remember the last function call for limiting lifetimes. */
1256 free_INSN_LIST_list (&deps
->last_function_call
);
1257 deps
->last_function_call
= alloc_INSN_LIST (insn
, NULL_RTX
);
1259 /* Before reload, begin a post-call group, so as to keep the
1260 lifetimes of hard registers correct. */
1261 if (! reload_completed
)
1262 deps
->in_post_call_group_p
= true;
1265 /* See comments on reemit_notes as to why we do this.
1266 ??? Actually, the reemit_notes just say what is done, not why. */
1268 if (GET_CODE (insn
) == NOTE
1269 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
1270 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
1271 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EH_REGION_BEG
1272 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EH_REGION_END
))
1276 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EH_REGION_BEG
1277 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EH_REGION_END
)
1278 rtx_region
= GEN_INT (NOTE_EH_HANDLER (insn
));
1280 rtx_region
= const0_rtx
;
1282 loop_notes
= alloc_EXPR_LIST (REG_SAVE_NOTE
,
1285 loop_notes
= alloc_EXPR_LIST (REG_SAVE_NOTE
,
1286 GEN_INT (NOTE_LINE_NUMBER (insn
)),
1288 CONST_OR_PURE_CALL_P (loop_notes
) = CONST_OR_PURE_CALL_P (insn
);
1291 if (current_sched_info
->use_cselib
)
1292 cselib_process_insn (insn
);
1294 /* Now that we have completed handling INSN, check and see if it is
1295 a CLOBBER beginning a libcall block. If it is, record the
1296 end of the libcall sequence.
1298 We want to schedule libcall blocks as a unit before reload. While
1299 this restricts scheduling, it preserves the meaning of a libcall
1302 As a side effect, we may get better code due to decreased register
1303 pressure as well as less chance of a foreign insn appearing in
1305 if (!reload_completed
1306 /* Note we may have nested libcall sequences. We only care about
1307 the outermost libcall sequence. */
1308 && deps
->libcall_block_tail_insn
== 0
1309 /* The sequence must start with a clobber of a register. */
1310 && GET_CODE (insn
) == INSN
1311 && GET_CODE (PATTERN (insn
)) == CLOBBER
1312 && (r0
= XEXP (PATTERN (insn
), 0), GET_CODE (r0
) == REG
)
1313 && GET_CODE (XEXP (PATTERN (insn
), 0)) == REG
1314 /* The CLOBBER must also have a REG_LIBCALL note attached. */
1315 && (link
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0
1316 && (end_seq
= XEXP (link
, 0)) != 0
1317 /* The insn referenced by the REG_LIBCALL note must be a
1318 simple nop copy with the same destination as the register
1319 mentioned in the clobber. */
1320 && (set
= single_set (end_seq
)) != 0
1321 && SET_DEST (set
) == r0
&& SET_SRC (set
) == r0
1322 /* And finally the insn referenced by the REG_LIBCALL must
1323 also contain a REG_EQUAL note and a REG_RETVAL note. */
1324 && find_reg_note (end_seq
, REG_EQUAL
, NULL_RTX
) != 0
1325 && find_reg_note (end_seq
, REG_RETVAL
, NULL_RTX
) != 0)
1326 deps
->libcall_block_tail_insn
= XEXP (link
, 0);
1328 /* If we have reached the end of a libcall block, then close the
1330 if (deps
->libcall_block_tail_insn
== insn
)
1331 deps
->libcall_block_tail_insn
= 0;
1335 if (current_sched_info
->use_cselib
)
1344 /* The following function adds forward dependence (FROM, TO) with
1345 given DEP_TYPE. The forward dependence should be not exist before. */
1348 add_forward_dependence (rtx from
, rtx to
, enum reg_note dep_type
)
1352 #ifdef ENABLE_CHECKING
1353 /* If add_dependence is working properly there should never
1354 be notes, deleted insns or duplicates in the backward
1355 links. Thus we need not check for them here.
1357 However, if we have enabled checking we might as well go
1358 ahead and verify that add_dependence worked properly. */
1359 if (GET_CODE (from
) == NOTE
1360 || INSN_DELETED_P (from
)
1361 || (forward_dependency_cache
!= NULL
1362 && bitmap_bit_p (&forward_dependency_cache
[INSN_LUID (from
)],
1364 || (forward_dependency_cache
== NULL
1365 && find_insn_list (to
, INSN_DEPEND (from
))))
1367 if (forward_dependency_cache
!= NULL
)
1368 bitmap_bit_p (&forward_dependency_cache
[INSN_LUID (from
)],
1372 new_link
= alloc_INSN_LIST (to
, INSN_DEPEND (from
));
1374 PUT_REG_NOTE_KIND (new_link
, dep_type
);
1376 INSN_DEPEND (from
) = new_link
;
1377 INSN_DEP_COUNT (to
) += 1;
1380 /* Examine insns in the range [ HEAD, TAIL ] and Use the backward
1381 dependences from LOG_LINKS to build forward dependences in
1385 compute_forward_dependences (rtx head
, rtx tail
)
1390 next_tail
= NEXT_INSN (tail
);
1391 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
1393 if (! INSN_P (insn
))
1396 for (link
= LOG_LINKS (insn
); link
; link
= XEXP (link
, 1))
1397 add_forward_dependence (XEXP (link
, 0), insn
, REG_NOTE_KIND (link
));
1401 /* Initialize variables for region data dependence analysis.
1402 n_bbs is the number of region blocks. */
1405 init_deps (struct deps
*deps
)
1407 int max_reg
= (reload_completed
? FIRST_PSEUDO_REGISTER
: max_reg_num ());
1409 deps
->max_reg
= max_reg
;
1410 deps
->reg_last
= xcalloc (max_reg
, sizeof (struct deps_reg
));
1411 INIT_REG_SET (&deps
->reg_last_in_use
);
1412 INIT_REG_SET (&deps
->reg_conditional_sets
);
1414 deps
->pending_read_insns
= 0;
1415 deps
->pending_read_mems
= 0;
1416 deps
->pending_write_insns
= 0;
1417 deps
->pending_write_mems
= 0;
1418 deps
->pending_lists_length
= 0;
1419 deps
->pending_flush_length
= 0;
1420 deps
->last_pending_memory_flush
= 0;
1421 deps
->last_function_call
= 0;
1422 deps
->sched_before_next_call
= 0;
1423 deps
->in_post_call_group_p
= false;
1424 deps
->libcall_block_tail_insn
= 0;
1427 /* Free insn lists found in DEPS. */
1430 free_deps (struct deps
*deps
)
1434 free_INSN_LIST_list (&deps
->pending_read_insns
);
1435 free_EXPR_LIST_list (&deps
->pending_read_mems
);
1436 free_INSN_LIST_list (&deps
->pending_write_insns
);
1437 free_EXPR_LIST_list (&deps
->pending_write_mems
);
1438 free_INSN_LIST_list (&deps
->last_pending_memory_flush
);
1440 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
1441 times. For a testcase with 42000 regs and 8000 small basic blocks,
1442 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
1443 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
,
1445 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
1447 free_INSN_LIST_list (®_last
->uses
);
1449 free_INSN_LIST_list (®_last
->sets
);
1450 if (reg_last
->clobbers
)
1451 free_INSN_LIST_list (®_last
->clobbers
);
1453 CLEAR_REG_SET (&deps
->reg_last_in_use
);
1454 CLEAR_REG_SET (&deps
->reg_conditional_sets
);
1456 free (deps
->reg_last
);
1459 /* If it is profitable to use them, initialize caches for tracking
1460 dependency information. LUID is the number of insns to be scheduled,
1461 it is used in the estimate of profitability. */
1464 init_dependency_caches (int luid
)
1466 /* ?!? We could save some memory by computing a per-region luid mapping
1467 which could reduce both the number of vectors in the cache and the size
1468 of each vector. Instead we just avoid the cache entirely unless the
1469 average number of instructions in a basic block is very high. See
1470 the comment before the declaration of true_dependency_cache for
1471 what we consider "very high". */
1472 if (luid
/ n_basic_blocks
> 100 * 5)
1475 true_dependency_cache
= xmalloc (luid
* sizeof (bitmap_head
));
1476 anti_dependency_cache
= xmalloc (luid
* sizeof (bitmap_head
));
1477 output_dependency_cache
= xmalloc (luid
* sizeof (bitmap_head
));
1478 #ifdef ENABLE_CHECKING
1479 forward_dependency_cache
= xmalloc (luid
* sizeof (bitmap_head
));
1481 for (i
= 0; i
< luid
; i
++)
1483 bitmap_initialize (&true_dependency_cache
[i
], 0);
1484 bitmap_initialize (&anti_dependency_cache
[i
], 0);
1485 bitmap_initialize (&output_dependency_cache
[i
], 0);
1486 #ifdef ENABLE_CHECKING
1487 bitmap_initialize (&forward_dependency_cache
[i
], 0);
1494 /* Free the caches allocated in init_dependency_caches. */
1497 free_dependency_caches (void)
1499 if (true_dependency_cache
)
1503 for (i
= 0; i
< cache_size
; i
++)
1505 bitmap_clear (&true_dependency_cache
[i
]);
1506 bitmap_clear (&anti_dependency_cache
[i
]);
1507 bitmap_clear (&output_dependency_cache
[i
]);
1508 #ifdef ENABLE_CHECKING
1509 bitmap_clear (&forward_dependency_cache
[i
]);
1512 free (true_dependency_cache
);
1513 true_dependency_cache
= NULL
;
1514 free (anti_dependency_cache
);
1515 anti_dependency_cache
= NULL
;
1516 free (output_dependency_cache
);
1517 output_dependency_cache
= NULL
;
1518 #ifdef ENABLE_CHECKING
1519 free (forward_dependency_cache
);
1520 forward_dependency_cache
= NULL
;
1525 /* Initialize some global variables needed by the dependency analysis
1529 init_deps_global (void)
1531 reg_pending_sets
= INITIALIZE_REG_SET (reg_pending_sets_head
);
1532 reg_pending_clobbers
= INITIALIZE_REG_SET (reg_pending_clobbers_head
);
1533 reg_pending_uses
= INITIALIZE_REG_SET (reg_pending_uses_head
);
1534 reg_pending_barrier
= NOT_A_BARRIER
;
1537 /* Free everything used by the dependency analysis code. */
1540 finish_deps_global (void)
1542 FREE_REG_SET (reg_pending_sets
);
1543 FREE_REG_SET (reg_pending_clobbers
);
1544 FREE_REG_SET (reg_pending_uses
);