1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
36 #include "basic-block.h"
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx
*, void *);
42 static void set_of_1 (rtx
, rtx
, void *);
43 static void insn_dependent_p_1 (rtx
, rtx
, void *);
44 static int rtx_referenced_p_1 (rtx
*, void *);
45 static int computed_jump_p_1 (rtx
);
46 static void parms_set (rtx
, rtx
, void *);
47 static bool hoist_test_store (rtx
, rtx
, regset
);
48 static void hoist_update_store (rtx
, rtx
*, rtx
, rtx
);
50 /* Bit flags that specify the machine subtype we are compiling for.
51 Bits are tested using macros TARGET_... defined in the tm.h file
52 and set by `-m...' switches. Must be defined in rtlanal.c. */
56 /* Return 1 if the value of X is unstable
57 (would be different at a different point in the program).
58 The frame pointer, arg pointer, etc. are considered stable
59 (within one function) and so is anything marked `unchanging'. */
62 rtx_unstable_p (rtx x
)
64 RTX_CODE code
= GET_CODE (x
);
71 return ! RTX_UNCHANGING_P (x
) || rtx_unstable_p (XEXP (x
, 0));
86 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
87 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
88 /* The arg pointer varies if it is not a fixed register. */
89 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
90 || RTX_UNCHANGING_P (x
))
92 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
93 /* ??? When call-clobbered, the value is stable modulo the restore
94 that must happen after a call. This currently screws up local-alloc
95 into believing that the restore is not needed. */
96 if (x
== pic_offset_table_rtx
)
102 if (MEM_VOLATILE_P (x
))
111 fmt
= GET_RTX_FORMAT (code
);
112 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
115 if (rtx_unstable_p (XEXP (x
, i
)))
118 else if (fmt
[i
] == 'E')
121 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
122 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
129 /* Return 1 if X has a value that can vary even between two
130 executions of the program. 0 means X can be compared reliably
131 against certain constants or near-constants.
132 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
133 zero, we are slightly more conservative.
134 The frame pointer and the arg pointer are considered constant. */
137 rtx_varies_p (rtx x
, int for_alias
)
150 return ! RTX_UNCHANGING_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
164 /* This will resolve to some offset from the frame pointer. */
168 /* Note that we have to test for the actual rtx used for the frame
169 and arg pointers and not just the register number in case we have
170 eliminated the frame and/or arg pointer and are using it
172 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
173 /* The arg pointer varies if it is not a fixed register. */
174 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
176 if (x
== pic_offset_table_rtx
177 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
178 /* ??? When call-clobbered, the value is stable modulo the restore
179 that must happen after a call. This currently screws up
180 local-alloc into believing that the restore is not needed, so we
181 must return 0 only if we are called from alias analysis. */
189 /* The operand 0 of a LO_SUM is considered constant
190 (in fact it is related specifically to operand 1)
191 during alias analysis. */
192 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
193 || rtx_varies_p (XEXP (x
, 1), for_alias
);
196 if (MEM_VOLATILE_P (x
))
205 fmt
= GET_RTX_FORMAT (code
);
206 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
209 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
212 else if (fmt
[i
] == 'E')
215 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
216 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
223 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
226 rtx_addr_can_trap_p (rtx x
)
228 enum rtx_code code
= GET_CODE (x
);
233 return SYMBOL_REF_WEAK (x
);
239 /* This will resolve to some offset from the frame pointer. */
243 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
244 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
245 || x
== stack_pointer_rtx
246 /* The arg pointer varies if it is not a fixed register. */
247 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
249 /* All of the virtual frame registers are stack references. */
250 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
251 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
256 return rtx_addr_can_trap_p (XEXP (x
, 0));
259 /* An address is assumed not to trap if it is an address that can't
260 trap plus a constant integer or it is the pic register plus a
262 return ! ((! rtx_addr_can_trap_p (XEXP (x
, 0))
263 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
264 || (XEXP (x
, 0) == pic_offset_table_rtx
265 && CONSTANT_P (XEXP (x
, 1))));
269 return rtx_addr_can_trap_p (XEXP (x
, 1));
276 return rtx_addr_can_trap_p (XEXP (x
, 0));
282 /* If it isn't one of the case above, it can cause a trap. */
286 /* Return true if X is an address that is known to not be zero. */
289 nonzero_address_p (rtx x
)
291 enum rtx_code code
= GET_CODE (x
);
296 return !SYMBOL_REF_WEAK (x
);
302 /* This will resolve to some offset from the frame pointer. */
306 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
307 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
308 || x
== stack_pointer_rtx
309 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
311 /* All of the virtual frame registers are stack references. */
312 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
313 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
318 return nonzero_address_p (XEXP (x
, 0));
321 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
323 /* Pointers aren't allowed to wrap. If we've got a register
324 that is known to be a pointer, and a positive offset, then
325 the composite can't be zero. */
326 if (INTVAL (XEXP (x
, 1)) > 0
327 && REG_P (XEXP (x
, 0))
328 && REG_POINTER (XEXP (x
, 0)))
331 return nonzero_address_p (XEXP (x
, 0));
333 /* Handle PIC references. */
334 else if (XEXP (x
, 0) == pic_offset_table_rtx
335 && CONSTANT_P (XEXP (x
, 1)))
340 /* Similar to the above; allow positive offsets. Further, since
341 auto-inc is only allowed in memories, the register must be a
343 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
344 && INTVAL (XEXP (x
, 1)) > 0)
346 return nonzero_address_p (XEXP (x
, 0));
349 /* Similarly. Further, the offset is always positive. */
356 return nonzero_address_p (XEXP (x
, 0));
359 return nonzero_address_p (XEXP (x
, 1));
365 /* If it isn't one of the case above, might be zero. */
369 /* Return 1 if X refers to a memory location whose address
370 cannot be compared reliably with constant addresses,
371 or if X refers to a BLKmode memory object.
372 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
373 zero, we are slightly more conservative. */
376 rtx_addr_varies_p (rtx x
, int for_alias
)
387 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
389 fmt
= GET_RTX_FORMAT (code
);
390 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
393 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
396 else if (fmt
[i
] == 'E')
399 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
400 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
406 /* Return the value of the integer term in X, if one is apparent;
408 Only obvious integer terms are detected.
409 This is used in cse.c with the `related_value' field. */
412 get_integer_term (rtx x
)
414 if (GET_CODE (x
) == CONST
)
417 if (GET_CODE (x
) == MINUS
418 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
419 return - INTVAL (XEXP (x
, 1));
420 if (GET_CODE (x
) == PLUS
421 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
422 return INTVAL (XEXP (x
, 1));
426 /* If X is a constant, return the value sans apparent integer term;
428 Only obvious integer terms are detected. */
431 get_related_value (rtx x
)
433 if (GET_CODE (x
) != CONST
)
436 if (GET_CODE (x
) == PLUS
437 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
439 else if (GET_CODE (x
) == MINUS
440 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
445 /* Given a tablejump insn INSN, return the RTL expression for the offset
446 into the jump table. If the offset cannot be determined, then return
449 If EARLIEST is nonzero, it is a pointer to a place where the earliest
450 insn used in locating the offset was found. */
453 get_jump_table_offset (rtx insn
, rtx
*earliest
)
465 if (!tablejump_p (insn
, &label
, &table
) || !(set
= single_set (insn
)))
470 /* Some targets (eg, ARM) emit a tablejump that also
471 contains the out-of-range target. */
472 if (GET_CODE (x
) == IF_THEN_ELSE
473 && GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
476 /* Search backwards and locate the expression stored in X. */
477 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
478 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
481 /* If X is an expression using a relative address then strip
482 off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
483 or the jump table label. */
484 if (GET_CODE (PATTERN (table
)) == ADDR_DIFF_VEC
485 && (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
))
487 for (i
= 0; i
< 2; i
++)
492 if (y
== pc_rtx
|| y
== pic_offset_table_rtx
)
495 for (old_y
= NULL_RTX
; GET_CODE (y
) == REG
&& y
!= old_y
;
496 old_y
= y
, y
= find_last_value (y
, &old_insn
, NULL_RTX
, 0))
499 if ((GET_CODE (y
) == LABEL_REF
&& XEXP (y
, 0) == label
))
508 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
509 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
513 /* Strip off any sign or zero extension. */
514 if (GET_CODE (x
) == SIGN_EXTEND
|| GET_CODE (x
) == ZERO_EXTEND
)
518 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
519 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
523 /* If X isn't a MEM then this isn't a tablejump we understand. */
524 if (GET_CODE (x
) != MEM
)
527 /* Strip off the MEM. */
530 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
531 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
534 /* If X isn't a PLUS than this isn't a tablejump we understand. */
535 if (GET_CODE (x
) != PLUS
)
538 /* At this point we should have an expression representing the jump table
539 plus an offset. Examine each operand in order to determine which one
540 represents the jump table. Knowing that tells us that the other operand
541 must represent the offset. */
542 for (i
= 0; i
< 2; i
++)
547 for (old_y
= NULL_RTX
; GET_CODE (y
) == REG
&& y
!= old_y
;
548 old_y
= y
, y
= find_last_value (y
, &old_insn
, NULL_RTX
, 0))
551 if ((GET_CODE (y
) == CONST
|| GET_CODE (y
) == LABEL_REF
)
552 && reg_mentioned_p (label
, y
))
561 /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM. */
562 if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
)
563 for (i
= 0; i
< 2; i
++)
564 if (XEXP (x
, i
) == pic_offset_table_rtx
)
573 /* Return the RTL expression representing the offset. */
577 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
578 a global register. */
581 global_reg_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
589 switch (GET_CODE (x
))
592 if (GET_CODE (SUBREG_REG (x
)) == REG
)
594 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
595 && global_regs
[subreg_regno (x
)])
603 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
617 /* A non-constant call might use a global register. */
627 /* Returns nonzero if X mentions a global register. */
630 global_reg_mentioned_p (rtx x
)
634 if (GET_CODE (x
) == CALL_INSN
)
636 if (! CONST_OR_PURE_CALL_P (x
))
638 x
= CALL_INSN_FUNCTION_USAGE (x
);
646 return for_each_rtx (&x
, global_reg_mentioned_p_1
, NULL
);
649 /* Return the number of places FIND appears within X. If COUNT_DEST is
650 zero, we do not count occurrences inside the destination of a SET. */
653 count_occurrences (rtx x
, rtx find
, int count_dest
)
657 const char *format_ptr
;
678 if (GET_CODE (find
) == MEM
&& rtx_equal_p (x
, find
))
683 if (SET_DEST (x
) == find
&& ! count_dest
)
684 return count_occurrences (SET_SRC (x
), find
, count_dest
);
691 format_ptr
= GET_RTX_FORMAT (code
);
694 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
696 switch (*format_ptr
++)
699 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
703 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
704 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
711 /* Nonzero if register REG appears somewhere within IN.
712 Also works if REG is not a register; in this case it checks
713 for a subexpression of IN that is Lisp "equal" to REG. */
716 reg_mentioned_p (rtx reg
, rtx in
)
728 if (GET_CODE (in
) == LABEL_REF
)
729 return reg
== XEXP (in
, 0);
731 code
= GET_CODE (in
);
735 /* Compare registers by number. */
737 return GET_CODE (reg
) == REG
&& REGNO (in
) == REGNO (reg
);
739 /* These codes have no constituent expressions
749 /* These are kept unique for a given value. */
756 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
759 fmt
= GET_RTX_FORMAT (code
);
761 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
766 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
767 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
770 else if (fmt
[i
] == 'e'
771 && reg_mentioned_p (reg
, XEXP (in
, i
)))
777 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
778 no CODE_LABEL insn. */
781 no_labels_between_p (rtx beg
, rtx end
)
786 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
787 if (GET_CODE (p
) == CODE_LABEL
)
792 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
793 no JUMP_INSN insn. */
796 no_jumps_between_p (rtx beg
, rtx end
)
799 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
800 if (GET_CODE (p
) == JUMP_INSN
)
805 /* Nonzero if register REG is used in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
809 reg_used_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
813 if (from_insn
== to_insn
)
816 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
818 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
819 || (GET_CODE (insn
) == CALL_INSN
820 && (find_reg_fusage (insn
, USE
, reg
)
821 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
826 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
827 is entirely replaced by a new value and the only use is as a SET_DEST,
828 we do not consider it a reference. */
831 reg_referenced_p (rtx x
, rtx body
)
835 switch (GET_CODE (body
))
838 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
841 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
842 of a REG that occupies all of the REG, the insn references X if
843 it is mentioned in the destination. */
844 if (GET_CODE (SET_DEST (body
)) != CC0
845 && GET_CODE (SET_DEST (body
)) != PC
846 && GET_CODE (SET_DEST (body
)) != REG
847 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
848 && GET_CODE (SUBREG_REG (SET_DEST (body
))) == REG
849 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
850 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
851 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
852 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
853 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
858 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
859 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
866 return reg_overlap_mentioned_p (x
, body
);
869 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
872 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
875 case UNSPEC_VOLATILE
:
876 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
877 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
882 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
883 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
888 if (GET_CODE (XEXP (body
, 0)) == MEM
)
889 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
894 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
896 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
903 /* Nonzero if register REG is referenced in an insn between
904 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
908 reg_referenced_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
912 if (from_insn
== to_insn
)
915 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
917 && (reg_referenced_p (reg
, PATTERN (insn
))
918 || (GET_CODE (insn
) == CALL_INSN
919 && find_reg_fusage (insn
, USE
, reg
))))
924 /* Nonzero if register REG is set or clobbered in an insn between
925 FROM_INSN and TO_INSN (exclusive of those two). */
928 reg_set_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
932 if (from_insn
== to_insn
)
935 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
936 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
941 /* Internals of reg_set_between_p. */
943 reg_set_p (rtx reg
, rtx insn
)
945 /* We can be passed an insn or part of one. If we are passed an insn,
946 check if a side-effect of the insn clobbers REG. */
948 && (FIND_REG_INC_NOTE (insn
, reg
)
949 || (GET_CODE (insn
) == CALL_INSN
950 /* We'd like to test call_used_regs here, but rtlanal.c can't
951 reference that variable due to its use in genattrtab. So
952 we'll just be more conservative.
954 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
955 information holds all clobbered registers. */
956 && ((GET_CODE (reg
) == REG
957 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
958 || GET_CODE (reg
) == MEM
959 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
962 return set_of (reg
, insn
) != NULL_RTX
;
965 /* Similar to reg_set_between_p, but check all registers in X. Return 0
966 only if none of them are modified between START and END. Do not
967 consider non-registers one way or the other. */
970 regs_set_between_p (rtx x
, rtx start
, rtx end
)
972 enum rtx_code code
= GET_CODE (x
);
989 return reg_set_between_p (x
, start
, end
);
995 fmt
= GET_RTX_FORMAT (code
);
996 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
998 if (fmt
[i
] == 'e' && regs_set_between_p (XEXP (x
, i
), start
, end
))
1001 else if (fmt
[i
] == 'E')
1002 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1003 if (regs_set_between_p (XVECEXP (x
, i
, j
), start
, end
))
1010 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1011 only if none of them are modified between START and END. Return 1 if
1012 X contains a MEM; this routine does usememory aliasing. */
1015 modified_between_p (rtx x
, rtx start
, rtx end
)
1017 enum rtx_code code
= GET_CODE (x
);
1040 if (RTX_UNCHANGING_P (x
))
1042 if (modified_between_p (XEXP (x
, 0), start
, end
))
1044 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
1045 if (memory_modified_in_insn_p (x
, insn
))
1051 return reg_set_between_p (x
, start
, end
);
1057 fmt
= GET_RTX_FORMAT (code
);
1058 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1060 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
1063 else if (fmt
[i
] == 'E')
1064 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1065 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
1072 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1073 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1074 does use memory aliasing. */
1077 modified_in_p (rtx x
, rtx insn
)
1079 enum rtx_code code
= GET_CODE (x
);
1098 if (RTX_UNCHANGING_P (x
))
1100 if (modified_in_p (XEXP (x
, 0), insn
))
1102 if (memory_modified_in_insn_p (x
, insn
))
1108 return reg_set_p (x
, insn
);
1114 fmt
= GET_RTX_FORMAT (code
);
1115 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1117 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
1120 else if (fmt
[i
] == 'E')
1121 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1122 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
1129 /* Return true if anything in insn X is (anti,output,true) dependent on
1130 anything in insn Y. */
1133 insn_dependent_p (rtx x
, rtx y
)
1137 if (! INSN_P (x
) || ! INSN_P (y
))
1141 note_stores (PATTERN (x
), insn_dependent_p_1
, &tmp
);
1142 if (tmp
== NULL_RTX
)
1146 note_stores (PATTERN (y
), insn_dependent_p_1
, &tmp
);
1147 if (tmp
== NULL_RTX
)
1153 /* A helper routine for insn_dependent_p called through note_stores. */
1156 insn_dependent_p_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
1158 rtx
* pinsn
= (rtx
*) data
;
1160 if (*pinsn
&& reg_mentioned_p (x
, *pinsn
))
1164 /* Helper function for set_of. */
1172 set_of_1 (rtx x
, rtx pat
, void *data1
)
1174 struct set_of_data
*data
= (struct set_of_data
*) (data1
);
1175 if (rtx_equal_p (x
, data
->pat
)
1176 || (GET_CODE (x
) != MEM
&& reg_overlap_mentioned_p (data
->pat
, x
)))
1180 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1181 (either directly or via STRICT_LOW_PART and similar modifiers). */
1183 set_of (rtx pat
, rtx insn
)
1185 struct set_of_data data
;
1186 data
.found
= NULL_RTX
;
1188 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1192 /* Given an INSN, return a SET expression if this insn has only a single SET.
1193 It may also have CLOBBERs, USEs, or SET whose output
1194 will not be used, which we ignore. */
1197 single_set_2 (rtx insn
, rtx pat
)
1200 int set_verified
= 1;
1203 if (GET_CODE (pat
) == PARALLEL
)
1205 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1207 rtx sub
= XVECEXP (pat
, 0, i
);
1208 switch (GET_CODE (sub
))
1215 /* We can consider insns having multiple sets, where all
1216 but one are dead as single set insns. In common case
1217 only single set is present in the pattern so we want
1218 to avoid checking for REG_UNUSED notes unless necessary.
1220 When we reach set first time, we just expect this is
1221 the single set we are looking for and only when more
1222 sets are found in the insn, we check them. */
1225 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1226 && !side_effects_p (set
))
1232 set
= sub
, set_verified
= 0;
1233 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1234 || side_effects_p (sub
))
1246 /* Given an INSN, return nonzero if it has more than one SET, else return
1250 multiple_sets (rtx insn
)
1255 /* INSN must be an insn. */
1256 if (! INSN_P (insn
))
1259 /* Only a PARALLEL can have multiple SETs. */
1260 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1262 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1263 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1265 /* If we have already found a SET, then return now. */
1273 /* Either zero or one SET. */
1277 /* Return nonzero if the destination of SET equals the source
1278 and there are no side effects. */
1281 set_noop_p (rtx set
)
1283 rtx src
= SET_SRC (set
);
1284 rtx dst
= SET_DEST (set
);
1286 if (dst
== pc_rtx
&& src
== pc_rtx
)
1289 if (GET_CODE (dst
) == MEM
&& GET_CODE (src
) == MEM
)
1290 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1292 if (GET_CODE (dst
) == SIGN_EXTRACT
1293 || GET_CODE (dst
) == ZERO_EXTRACT
)
1294 return rtx_equal_p (XEXP (dst
, 0), src
)
1295 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1296 && !side_effects_p (src
);
1298 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1299 dst
= XEXP (dst
, 0);
1301 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1303 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1305 src
= SUBREG_REG (src
);
1306 dst
= SUBREG_REG (dst
);
1309 return (GET_CODE (src
) == REG
&& GET_CODE (dst
) == REG
1310 && REGNO (src
) == REGNO (dst
));
1313 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1317 noop_move_p (rtx insn
)
1319 rtx pat
= PATTERN (insn
);
1321 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1324 /* Insns carrying these notes are useful later on. */
1325 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1328 /* For now treat an insn with a REG_RETVAL note as a
1329 a special insn which should not be considered a no-op. */
1330 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
1333 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1336 if (GET_CODE (pat
) == PARALLEL
)
1339 /* If nothing but SETs of registers to themselves,
1340 this insn can also be deleted. */
1341 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1343 rtx tem
= XVECEXP (pat
, 0, i
);
1345 if (GET_CODE (tem
) == USE
1346 || GET_CODE (tem
) == CLOBBER
)
1349 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1359 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1360 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1361 If the object was modified, if we hit a partial assignment to X, or hit a
1362 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1363 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1367 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1371 for (p
= PREV_INSN (*pinsn
); p
&& GET_CODE (p
) != CODE_LABEL
;
1375 rtx set
= single_set (p
);
1376 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1378 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1380 rtx src
= SET_SRC (set
);
1382 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1383 src
= XEXP (note
, 0);
1385 if ((valid_to
== NULL_RTX
1386 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1387 /* Reject hard registers because we don't usually want
1388 to use them; we'd rather use a pseudo. */
1389 && (! (GET_CODE (src
) == REG
1390 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1397 /* If set in non-simple way, we don't have a value. */
1398 if (reg_set_p (x
, p
))
1405 /* Return nonzero if register in range [REGNO, ENDREGNO)
1406 appears either explicitly or implicitly in X
1407 other than being stored into.
1409 References contained within the substructure at LOC do not count.
1410 LOC may be zero, meaning don't ignore anything. */
1413 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, rtx x
,
1417 unsigned int x_regno
;
1422 /* The contents of a REG_NONNEG note is always zero, so we must come here
1423 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1427 code
= GET_CODE (x
);
1432 x_regno
= REGNO (x
);
1434 /* If we modifying the stack, frame, or argument pointer, it will
1435 clobber a virtual register. In fact, we could be more precise,
1436 but it isn't worth it. */
1437 if ((x_regno
== STACK_POINTER_REGNUM
1438 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1439 || x_regno
== ARG_POINTER_REGNUM
1441 || x_regno
== FRAME_POINTER_REGNUM
)
1442 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1445 return (endregno
> x_regno
1446 && regno
< x_regno
+ (x_regno
< FIRST_PSEUDO_REGISTER
1447 ? hard_regno_nregs
[x_regno
][GET_MODE (x
)]
1451 /* If this is a SUBREG of a hard reg, we can see exactly which
1452 registers are being modified. Otherwise, handle normally. */
1453 if (GET_CODE (SUBREG_REG (x
)) == REG
1454 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1456 unsigned int inner_regno
= subreg_regno (x
);
1457 unsigned int inner_endregno
1458 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1459 ? hard_regno_nregs
[inner_regno
][GET_MODE (x
)] : 1);
1461 return endregno
> inner_regno
&& regno
< inner_endregno
;
1467 if (&SET_DEST (x
) != loc
1468 /* Note setting a SUBREG counts as referring to the REG it is in for
1469 a pseudo but not for hard registers since we can
1470 treat each word individually. */
1471 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1472 && loc
!= &SUBREG_REG (SET_DEST (x
))
1473 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
1474 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1475 && refers_to_regno_p (regno
, endregno
,
1476 SUBREG_REG (SET_DEST (x
)), loc
))
1477 || (GET_CODE (SET_DEST (x
)) != REG
1478 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1481 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1490 /* X does not match, so try its subexpressions. */
1492 fmt
= GET_RTX_FORMAT (code
);
1493 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1495 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1503 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1506 else if (fmt
[i
] == 'E')
1509 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1510 if (loc
!= &XVECEXP (x
, i
, j
)
1511 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1518 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1519 we check if any register number in X conflicts with the relevant register
1520 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1521 contains a MEM (we don't bother checking for memory addresses that can't
1522 conflict because we expect this to be a rare case. */
1525 reg_overlap_mentioned_p (rtx x
, rtx in
)
1527 unsigned int regno
, endregno
;
1529 /* If either argument is a constant, then modifying X can not
1530 affect IN. Here we look at IN, we can profitably combine
1531 CONSTANT_P (x) with the switch statement below. */
1532 if (CONSTANT_P (in
))
1536 switch (GET_CODE (x
))
1538 case STRICT_LOW_PART
:
1541 /* Overly conservative. */
1546 regno
= REGNO (SUBREG_REG (x
));
1547 if (regno
< FIRST_PSEUDO_REGISTER
)
1548 regno
= subreg_regno (x
);
1554 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1555 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
1556 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1563 if (GET_CODE (in
) == MEM
)
1566 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1567 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1568 if (fmt
[i
] == 'e' && reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1577 return reg_mentioned_p (x
, in
);
1583 /* If any register in here refers to it we return true. */
1584 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1585 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1586 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1592 #ifdef ENABLE_CHECKING
1593 if (!CONSTANT_P (x
))
1601 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1602 (X would be the pattern of an insn).
1603 FUN receives two arguments:
1604 the REG, MEM, CC0 or PC being stored in or clobbered,
1605 the SET or CLOBBER rtx that does the store.
1607 If the item being stored in or clobbered is a SUBREG of a hard register,
1608 the SUBREG will be passed. */
1611 note_stores (rtx x
, void (*fun
) (rtx
, rtx
, void *), void *data
)
1615 if (GET_CODE (x
) == COND_EXEC
)
1616 x
= COND_EXEC_CODE (x
);
1618 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1620 rtx dest
= SET_DEST (x
);
1622 while ((GET_CODE (dest
) == SUBREG
1623 && (GET_CODE (SUBREG_REG (dest
)) != REG
1624 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1625 || GET_CODE (dest
) == ZERO_EXTRACT
1626 || GET_CODE (dest
) == SIGN_EXTRACT
1627 || GET_CODE (dest
) == STRICT_LOW_PART
)
1628 dest
= XEXP (dest
, 0);
1630 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1631 each of whose first operand is a register. */
1632 if (GET_CODE (dest
) == PARALLEL
)
1634 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1635 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1636 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1639 (*fun
) (dest
, x
, data
);
1642 else if (GET_CODE (x
) == PARALLEL
)
1643 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1644 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1647 /* Like notes_stores, but call FUN for each expression that is being
1648 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1649 FUN for each expression, not any interior subexpressions. FUN receives a
1650 pointer to the expression and the DATA passed to this function.
1652 Note that this is not quite the same test as that done in reg_referenced_p
1653 since that considers something as being referenced if it is being
1654 partially set, while we do not. */
1657 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1662 switch (GET_CODE (body
))
1665 (*fun
) (&COND_EXEC_TEST (body
), data
);
1666 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1670 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1671 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1675 (*fun
) (&XEXP (body
, 0), data
);
1679 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1680 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1684 (*fun
) (&TRAP_CONDITION (body
), data
);
1688 (*fun
) (&XEXP (body
, 0), data
);
1692 case UNSPEC_VOLATILE
:
1693 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1694 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1698 if (GET_CODE (XEXP (body
, 0)) == MEM
)
1699 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1704 rtx dest
= SET_DEST (body
);
1706 /* For sets we replace everything in source plus registers in memory
1707 expression in store and operands of a ZERO_EXTRACT. */
1708 (*fun
) (&SET_SRC (body
), data
);
1710 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1712 (*fun
) (&XEXP (dest
, 1), data
);
1713 (*fun
) (&XEXP (dest
, 2), data
);
1716 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1717 dest
= XEXP (dest
, 0);
1719 if (GET_CODE (dest
) == MEM
)
1720 (*fun
) (&XEXP (dest
, 0), data
);
1725 /* All the other possibilities never store. */
1726 (*fun
) (pbody
, data
);
1731 /* Return nonzero if X's old contents don't survive after INSN.
1732 This will be true if X is (cc0) or if X is a register and
1733 X dies in INSN or because INSN entirely sets X.
1735 "Entirely set" means set directly and not through a SUBREG,
1736 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1737 Likewise, REG_INC does not count.
1739 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1740 but for this use that makes no difference, since regs don't overlap
1741 during their lifetimes. Therefore, this function may be used
1742 at any time after deaths have been computed (in flow.c).
1744 If REG is a hard reg that occupies multiple machine registers, this
1745 function will only return 1 if each of those registers will be replaced
1749 dead_or_set_p (rtx insn
, rtx x
)
1751 unsigned int regno
, last_regno
;
1754 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1755 if (GET_CODE (x
) == CC0
)
1758 if (GET_CODE (x
) != REG
)
1762 last_regno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
1763 : regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)] - 1);
1765 for (i
= regno
; i
<= last_regno
; i
++)
1766 if (! dead_or_set_regno_p (insn
, i
))
1772 /* Utility function for dead_or_set_p to check an individual register. Also
1773 called from flow.c. */
1776 dead_or_set_regno_p (rtx insn
, unsigned int test_regno
)
1778 unsigned int regno
, endregno
;
1781 /* See if there is a death note for something that includes TEST_REGNO. */
1782 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1785 if (GET_CODE (insn
) == CALL_INSN
1786 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1789 pattern
= PATTERN (insn
);
1791 if (GET_CODE (pattern
) == COND_EXEC
)
1792 pattern
= COND_EXEC_CODE (pattern
);
1794 if (GET_CODE (pattern
) == SET
)
1796 rtx dest
= SET_DEST (pattern
);
1798 /* A value is totally replaced if it is the destination or the
1799 destination is a SUBREG of REGNO that does not change the number of
1801 if (GET_CODE (dest
) == SUBREG
1802 && (((GET_MODE_SIZE (GET_MODE (dest
))
1803 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1804 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1805 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1806 dest
= SUBREG_REG (dest
);
1808 if (GET_CODE (dest
) != REG
)
1811 regno
= REGNO (dest
);
1812 endregno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
+ 1
1813 : regno
+ hard_regno_nregs
[regno
][GET_MODE (dest
)]);
1815 return (test_regno
>= regno
&& test_regno
< endregno
);
1817 else if (GET_CODE (pattern
) == PARALLEL
)
1821 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1823 rtx body
= XVECEXP (pattern
, 0, i
);
1825 if (GET_CODE (body
) == COND_EXEC
)
1826 body
= COND_EXEC_CODE (body
);
1828 if (GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1830 rtx dest
= SET_DEST (body
);
1832 if (GET_CODE (dest
) == SUBREG
1833 && (((GET_MODE_SIZE (GET_MODE (dest
))
1834 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1835 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1836 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1837 dest
= SUBREG_REG (dest
);
1839 if (GET_CODE (dest
) != REG
)
1842 regno
= REGNO (dest
);
1843 endregno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
+ 1
1844 : regno
+ hard_regno_nregs
[regno
][GET_MODE (dest
)]);
1846 if (test_regno
>= regno
&& test_regno
< endregno
)
1855 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1856 If DATUM is nonzero, look for one whose datum is DATUM. */
1859 find_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1863 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1864 if (! INSN_P (insn
))
1868 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1869 if (REG_NOTE_KIND (link
) == kind
)
1874 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1875 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1880 /* Return the reg-note of kind KIND in insn INSN which applies to register
1881 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1882 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1883 it might be the case that the note overlaps REGNO. */
1886 find_regno_note (rtx insn
, enum reg_note kind
, unsigned int regno
)
1890 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1891 if (! INSN_P (insn
))
1894 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1895 if (REG_NOTE_KIND (link
) == kind
1896 /* Verify that it is a register, so that scratch and MEM won't cause a
1898 && GET_CODE (XEXP (link
, 0)) == REG
1899 && REGNO (XEXP (link
, 0)) <= regno
1900 && ((REGNO (XEXP (link
, 0))
1901 + (REGNO (XEXP (link
, 0)) >= FIRST_PSEUDO_REGISTER
? 1
1902 : hard_regno_nregs
[REGNO (XEXP (link
, 0))]
1903 [GET_MODE (XEXP (link
, 0))]))
1909 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1913 find_reg_equal_equiv_note (rtx insn
)
1919 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1920 if (REG_NOTE_KIND (link
) == REG_EQUAL
1921 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1923 if (single_set (insn
) == 0)
1930 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1931 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1934 find_reg_fusage (rtx insn
, enum rtx_code code
, rtx datum
)
1936 /* If it's not a CALL_INSN, it can't possibly have a
1937 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1938 if (GET_CODE (insn
) != CALL_INSN
)
1944 if (GET_CODE (datum
) != REG
)
1948 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1950 link
= XEXP (link
, 1))
1951 if (GET_CODE (XEXP (link
, 0)) == code
1952 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1957 unsigned int regno
= REGNO (datum
);
1959 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1960 to pseudo registers, so don't bother checking. */
1962 if (regno
< FIRST_PSEUDO_REGISTER
)
1964 unsigned int end_regno
1965 = regno
+ hard_regno_nregs
[regno
][GET_MODE (datum
)];
1968 for (i
= regno
; i
< end_regno
; i
++)
1969 if (find_regno_fusage (insn
, code
, i
))
1977 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1978 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1981 find_regno_fusage (rtx insn
, enum rtx_code code
, unsigned int regno
)
1985 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1986 to pseudo registers, so don't bother checking. */
1988 if (regno
>= FIRST_PSEUDO_REGISTER
1989 || GET_CODE (insn
) != CALL_INSN
)
1992 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1994 unsigned int regnote
;
1997 if (GET_CODE (op
= XEXP (link
, 0)) == code
1998 && GET_CODE (reg
= XEXP (op
, 0)) == REG
1999 && (regnote
= REGNO (reg
)) <= regno
2000 && regnote
+ hard_regno_nregs
[regnote
][GET_MODE (reg
)] > regno
)
2007 /* Return true if INSN is a call to a pure function. */
2010 pure_call_p (rtx insn
)
2014 if (GET_CODE (insn
) != CALL_INSN
|| ! CONST_OR_PURE_CALL_P (insn
))
2017 /* Look for the note that differentiates const and pure functions. */
2018 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2022 if (GET_CODE (u
= XEXP (link
, 0)) == USE
2023 && GET_CODE (m
= XEXP (u
, 0)) == MEM
&& GET_MODE (m
) == BLKmode
2024 && GET_CODE (XEXP (m
, 0)) == SCRATCH
)
2031 /* Remove register note NOTE from the REG_NOTES of INSN. */
2034 remove_note (rtx insn
, rtx note
)
2038 if (note
== NULL_RTX
)
2041 if (REG_NOTES (insn
) == note
)
2043 REG_NOTES (insn
) = XEXP (note
, 1);
2047 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2048 if (XEXP (link
, 1) == note
)
2050 XEXP (link
, 1) = XEXP (note
, 1);
2057 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2058 return 1 if it is found. A simple equality test is used to determine if
2062 in_expr_list_p (rtx listp
, rtx node
)
2066 for (x
= listp
; x
; x
= XEXP (x
, 1))
2067 if (node
== XEXP (x
, 0))
2073 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2074 remove that entry from the list if it is found.
2076 A simple equality test is used to determine if NODE matches. */
2079 remove_node_from_expr_list (rtx node
, rtx
*listp
)
2082 rtx prev
= NULL_RTX
;
2086 if (node
== XEXP (temp
, 0))
2088 /* Splice the node out of the list. */
2090 XEXP (prev
, 1) = XEXP (temp
, 1);
2092 *listp
= XEXP (temp
, 1);
2098 temp
= XEXP (temp
, 1);
2102 /* Nonzero if X contains any volatile instructions. These are instructions
2103 which may cause unpredictable machine state instructions, and thus no
2104 instructions should be moved or combined across them. This includes
2105 only volatile asms and UNSPEC_VOLATILE instructions. */
2108 volatile_insn_p (rtx x
)
2112 code
= GET_CODE (x
);
2132 case UNSPEC_VOLATILE
:
2133 /* case TRAP_IF: This isn't clear yet. */
2138 if (MEM_VOLATILE_P (x
))
2145 /* Recursively scan the operands of this expression. */
2148 const char *fmt
= GET_RTX_FORMAT (code
);
2151 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2155 if (volatile_insn_p (XEXP (x
, i
)))
2158 else if (fmt
[i
] == 'E')
2161 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2162 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2170 /* Nonzero if X contains any volatile memory references
2171 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2174 volatile_refs_p (rtx x
)
2178 code
= GET_CODE (x
);
2196 case UNSPEC_VOLATILE
:
2202 if (MEM_VOLATILE_P (x
))
2209 /* Recursively scan the operands of this expression. */
2212 const char *fmt
= GET_RTX_FORMAT (code
);
2215 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2219 if (volatile_refs_p (XEXP (x
, i
)))
2222 else if (fmt
[i
] == 'E')
2225 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2226 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2234 /* Similar to above, except that it also rejects register pre- and post-
2238 side_effects_p (rtx x
)
2242 code
= GET_CODE (x
);
2260 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2261 when some combination can't be done. If we see one, don't think
2262 that we can simplify the expression. */
2263 return (GET_MODE (x
) != VOIDmode
);
2272 case UNSPEC_VOLATILE
:
2273 /* case TRAP_IF: This isn't clear yet. */
2279 if (MEM_VOLATILE_P (x
))
2286 /* Recursively scan the operands of this expression. */
2289 const char *fmt
= GET_RTX_FORMAT (code
);
2292 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2296 if (side_effects_p (XEXP (x
, i
)))
2299 else if (fmt
[i
] == 'E')
2302 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2303 if (side_effects_p (XVECEXP (x
, i
, j
)))
2311 /* Return nonzero if evaluating rtx X might cause a trap. */
2322 code
= GET_CODE (x
);
2325 /* Handle these cases quickly. */
2339 case UNSPEC_VOLATILE
:
2344 return MEM_VOLATILE_P (x
);
2346 /* Memory ref can trap unless it's a static var or a stack slot. */
2348 if (MEM_NOTRAP_P (x
))
2350 return rtx_addr_can_trap_p (XEXP (x
, 0));
2352 /* Division by a non-constant might trap. */
2357 if (HONOR_SNANS (GET_MODE (x
)))
2359 if (! CONSTANT_P (XEXP (x
, 1))
2360 || (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
2361 && flag_trapping_math
))
2363 if (XEXP (x
, 1) == const0_rtx
)
2368 /* An EXPR_LIST is used to represent a function call. This
2369 certainly may trap. */
2377 /* Some floating point comparisons may trap. */
2378 if (!flag_trapping_math
)
2380 /* ??? There is no machine independent way to check for tests that trap
2381 when COMPARE is used, though many targets do make this distinction.
2382 For instance, sparc uses CCFPE for compares which generate exceptions
2383 and CCFP for compares which do not generate exceptions. */
2384 if (HONOR_NANS (GET_MODE (x
)))
2386 /* But often the compare has some CC mode, so check operand
2388 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2389 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2395 if (HONOR_SNANS (GET_MODE (x
)))
2397 /* Often comparison is CC mode, so check operand modes. */
2398 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2399 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2404 /* Conversion of floating point might trap. */
2405 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2411 /* These operations don't trap even with floating point. */
2415 /* Any floating arithmetic may trap. */
2416 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
2417 && flag_trapping_math
)
2421 fmt
= GET_RTX_FORMAT (code
);
2422 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2426 if (may_trap_p (XEXP (x
, i
)))
2429 else if (fmt
[i
] == 'E')
2432 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2433 if (may_trap_p (XVECEXP (x
, i
, j
)))
2440 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2441 i.e., an inequality. */
2444 inequality_comparisons_p (rtx x
)
2448 enum rtx_code code
= GET_CODE (x
);
2478 len
= GET_RTX_LENGTH (code
);
2479 fmt
= GET_RTX_FORMAT (code
);
2481 for (i
= 0; i
< len
; i
++)
2485 if (inequality_comparisons_p (XEXP (x
, i
)))
2488 else if (fmt
[i
] == 'E')
2491 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2492 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2500 /* Replace any occurrence of FROM in X with TO. The function does
2501 not enter into CONST_DOUBLE for the replace.
2503 Note that copying is not done so X must not be shared unless all copies
2504 are to be modified. */
2507 replace_rtx (rtx x
, rtx from
, rtx to
)
2512 /* The following prevents loops occurrence when we change MEM in
2513 CONST_DOUBLE onto the same CONST_DOUBLE. */
2514 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2520 /* Allow this function to make replacements in EXPR_LISTs. */
2524 if (GET_CODE (x
) == SUBREG
)
2526 rtx
new = replace_rtx (SUBREG_REG (x
), from
, to
);
2528 if (GET_CODE (new) == CONST_INT
)
2530 x
= simplify_subreg (GET_MODE (x
), new,
2531 GET_MODE (SUBREG_REG (x
)),
2537 SUBREG_REG (x
) = new;
2541 else if (GET_CODE (x
) == ZERO_EXTEND
)
2543 rtx
new = replace_rtx (XEXP (x
, 0), from
, to
);
2545 if (GET_CODE (new) == CONST_INT
)
2547 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2548 new, GET_MODE (XEXP (x
, 0)));
2558 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2559 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2562 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2563 else if (fmt
[i
] == 'E')
2564 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2565 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2571 /* Throughout the rtx X, replace many registers according to REG_MAP.
2572 Return the replacement for X (which may be X with altered contents).
2573 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2574 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2576 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2577 should not be mapped to pseudos or vice versa since validate_change
2580 If REPLACE_DEST is 1, replacements are also done in destinations;
2581 otherwise, only sources are replaced. */
2584 replace_regs (rtx x
, rtx
*reg_map
, unsigned int nregs
, int replace_dest
)
2593 code
= GET_CODE (x
);
2608 /* Verify that the register has an entry before trying to access it. */
2609 if (REGNO (x
) < nregs
&& reg_map
[REGNO (x
)] != 0)
2611 /* SUBREGs can't be shared. Always return a copy to ensure that if
2612 this replacement occurs more than once then each instance will
2613 get distinct rtx. */
2614 if (GET_CODE (reg_map
[REGNO (x
)]) == SUBREG
)
2615 return copy_rtx (reg_map
[REGNO (x
)]);
2616 return reg_map
[REGNO (x
)];
2621 /* Prevent making nested SUBREGs. */
2622 if (GET_CODE (SUBREG_REG (x
)) == REG
&& REGNO (SUBREG_REG (x
)) < nregs
2623 && reg_map
[REGNO (SUBREG_REG (x
))] != 0
2624 && GET_CODE (reg_map
[REGNO (SUBREG_REG (x
))]) == SUBREG
)
2626 rtx map_val
= reg_map
[REGNO (SUBREG_REG (x
))];
2627 return simplify_gen_subreg (GET_MODE (x
), map_val
,
2628 GET_MODE (SUBREG_REG (x
)),
2635 SET_DEST (x
) = replace_regs (SET_DEST (x
), reg_map
, nregs
, 0);
2637 else if (GET_CODE (SET_DEST (x
)) == MEM
2638 || GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
)
2639 /* Even if we are not to replace destinations, replace register if it
2640 is CONTAINED in destination (destination is memory or
2641 STRICT_LOW_PART). */
2642 XEXP (SET_DEST (x
), 0) = replace_regs (XEXP (SET_DEST (x
), 0),
2644 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
2645 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2648 SET_SRC (x
) = replace_regs (SET_SRC (x
), reg_map
, nregs
, 0);
2655 fmt
= GET_RTX_FORMAT (code
);
2656 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2659 XEXP (x
, i
) = replace_regs (XEXP (x
, i
), reg_map
, nregs
, replace_dest
);
2660 else if (fmt
[i
] == 'E')
2663 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2664 XVECEXP (x
, i
, j
) = replace_regs (XVECEXP (x
, i
, j
), reg_map
,
2665 nregs
, replace_dest
);
2671 /* Replace occurrences of the old label in *X with the new one.
2672 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2675 replace_label (rtx
*x
, void *data
)
2678 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2679 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2680 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2685 if (GET_CODE (l
) == SYMBOL_REF
2686 && CONSTANT_POOL_ADDRESS_P (l
))
2688 rtx c
= get_pool_constant (l
);
2689 if (rtx_referenced_p (old_label
, c
))
2692 replace_label_data
*d
= (replace_label_data
*) data
;
2694 /* Create a copy of constant C; replace the label inside
2695 but do not update LABEL_NUSES because uses in constant pool
2697 new_c
= copy_rtx (c
);
2698 d
->update_label_nuses
= false;
2699 for_each_rtx (&new_c
, replace_label
, data
);
2700 d
->update_label_nuses
= update_label_nuses
;
2702 /* Add the new constant NEW_C to constant pool and replace
2703 the old reference to constant by new reference. */
2704 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2705 *x
= replace_rtx (l
, l
, new_l
);
2710 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2711 field. This is not handled by for_each_rtx because it doesn't
2712 handle unprinted ('0') fields. */
2713 if (GET_CODE (l
) == JUMP_INSN
&& JUMP_LABEL (l
) == old_label
)
2714 JUMP_LABEL (l
) = new_label
;
2716 if ((GET_CODE (l
) == LABEL_REF
2717 || GET_CODE (l
) == INSN_LIST
)
2718 && XEXP (l
, 0) == old_label
)
2720 XEXP (l
, 0) = new_label
;
2721 if (update_label_nuses
)
2723 ++LABEL_NUSES (new_label
);
2724 --LABEL_NUSES (old_label
);
2732 /* When *BODY is equal to X or X is directly referenced by *BODY
2733 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2734 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2737 rtx_referenced_p_1 (rtx
*body
, void *x
)
2741 if (*body
== NULL_RTX
)
2742 return y
== NULL_RTX
;
2744 /* Return true if a label_ref *BODY refers to label Y. */
2745 if (GET_CODE (*body
) == LABEL_REF
&& GET_CODE (y
) == CODE_LABEL
)
2746 return XEXP (*body
, 0) == y
;
2748 /* If *BODY is a reference to pool constant traverse the constant. */
2749 if (GET_CODE (*body
) == SYMBOL_REF
2750 && CONSTANT_POOL_ADDRESS_P (*body
))
2751 return rtx_referenced_p (y
, get_pool_constant (*body
));
2753 /* By default, compare the RTL expressions. */
2754 return rtx_equal_p (*body
, y
);
2757 /* Return true if X is referenced in BODY. */
2760 rtx_referenced_p (rtx x
, rtx body
)
2762 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2765 /* If INSN is a tablejump return true and store the label (before jump table) to
2766 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2769 tablejump_p (rtx insn
, rtx
*labelp
, rtx
*tablep
)
2773 if (GET_CODE (insn
) == JUMP_INSN
2774 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2775 && (table
= next_active_insn (label
)) != NULL_RTX
2776 && GET_CODE (table
) == JUMP_INSN
2777 && (GET_CODE (PATTERN (table
)) == ADDR_VEC
2778 || GET_CODE (PATTERN (table
)) == ADDR_DIFF_VEC
))
2789 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2790 constant that is not in the constant pool and not in the condition
2791 of an IF_THEN_ELSE. */
2794 computed_jump_p_1 (rtx x
)
2796 enum rtx_code code
= GET_CODE (x
);
2815 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2816 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2819 return (computed_jump_p_1 (XEXP (x
, 1))
2820 || computed_jump_p_1 (XEXP (x
, 2)));
2826 fmt
= GET_RTX_FORMAT (code
);
2827 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2830 && computed_jump_p_1 (XEXP (x
, i
)))
2833 else if (fmt
[i
] == 'E')
2834 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2835 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2842 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2844 Tablejumps and casesi insns are not considered indirect jumps;
2845 we can recognize them by a (use (label_ref)). */
2848 computed_jump_p (rtx insn
)
2851 if (GET_CODE (insn
) == JUMP_INSN
)
2853 rtx pat
= PATTERN (insn
);
2855 if (find_reg_note (insn
, REG_LABEL
, NULL_RTX
))
2857 else if (GET_CODE (pat
) == PARALLEL
)
2859 int len
= XVECLEN (pat
, 0);
2860 int has_use_labelref
= 0;
2862 for (i
= len
- 1; i
>= 0; i
--)
2863 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2864 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2866 has_use_labelref
= 1;
2868 if (! has_use_labelref
)
2869 for (i
= len
- 1; i
>= 0; i
--)
2870 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2871 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2872 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2875 else if (GET_CODE (pat
) == SET
2876 && SET_DEST (pat
) == pc_rtx
2877 && computed_jump_p_1 (SET_SRC (pat
)))
2883 /* Traverse X via depth-first search, calling F for each
2884 sub-expression (including X itself). F is also passed the DATA.
2885 If F returns -1, do not traverse sub-expressions, but continue
2886 traversing the rest of the tree. If F ever returns any other
2887 nonzero value, stop the traversal, and return the value returned
2888 by F. Otherwise, return 0. This function does not traverse inside
2889 tree structure that contains RTX_EXPRs, or into sub-expressions
2890 whose format code is `0' since it is not known whether or not those
2891 codes are actually RTL.
2893 This routine is very general, and could (should?) be used to
2894 implement many of the other routines in this file. */
2897 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2905 result
= (*f
) (x
, data
);
2907 /* Do not traverse sub-expressions. */
2909 else if (result
!= 0)
2910 /* Stop the traversal. */
2914 /* There are no sub-expressions. */
2917 length
= GET_RTX_LENGTH (GET_CODE (*x
));
2918 format
= GET_RTX_FORMAT (GET_CODE (*x
));
2920 for (i
= 0; i
< length
; ++i
)
2925 result
= for_each_rtx (&XEXP (*x
, i
), f
, data
);
2932 if (XVEC (*x
, i
) != 0)
2935 for (j
= 0; j
< XVECLEN (*x
, i
); ++j
)
2937 result
= for_each_rtx (&XVECEXP (*x
, i
, j
), f
, data
);
2945 /* Nothing to do. */
2954 /* Searches X for any reference to REGNO, returning the rtx of the
2955 reference found if any. Otherwise, returns NULL_RTX. */
2958 regno_use_in (unsigned int regno
, rtx x
)
2964 if (GET_CODE (x
) == REG
&& REGNO (x
) == regno
)
2967 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2968 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2972 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2975 else if (fmt
[i
] == 'E')
2976 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2977 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2984 /* Return a value indicating whether OP, an operand of a commutative
2985 operation, is preferred as the first or second operand. The higher
2986 the value, the stronger the preference for being the first operand.
2987 We use negative values to indicate a preference for the first operand
2988 and positive values for the second operand. */
2991 commutative_operand_precedence (rtx op
)
2993 enum rtx_code code
= GET_CODE (op
);
2995 /* Constants always come the second operand. Prefer "nice" constants. */
2996 if (code
== CONST_INT
)
2998 if (code
== CONST_DOUBLE
)
3000 op
= avoid_constant_pool_reference (op
);
3002 switch (GET_RTX_CLASS (code
))
3005 if (code
== CONST_INT
)
3007 if (code
== CONST_DOUBLE
)
3012 /* SUBREGs of objects should come second. */
3013 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3016 if (!CONSTANT_P (op
))
3019 /* As for RTX_CONST_OBJ. */
3023 /* Complex expressions should be the first, so decrease priority
3027 case RTX_COMM_ARITH
:
3028 /* Prefer operands that are themselves commutative to be first.
3029 This helps to make things linear. In particular,
3030 (and (and (reg) (reg)) (not (reg))) is canonical. */
3034 /* If only one operand is a binary expression, it will be the first
3035 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3036 is canonical, although it will usually be further simplified. */
3040 /* Then prefer NEG and NOT. */
3041 if (code
== NEG
|| code
== NOT
)
3049 /* Return 1 iff it is necessary to swap operands of commutative operation
3050 in order to canonicalize expression. */
3053 swap_commutative_operands_p (rtx x
, rtx y
)
3055 return (commutative_operand_precedence (x
)
3056 < commutative_operand_precedence (y
));
3059 /* Return 1 if X is an autoincrement side effect and the register is
3060 not the stack pointer. */
3064 switch (GET_CODE (x
))
3072 /* There are no REG_INC notes for SP. */
3073 if (XEXP (x
, 0) != stack_pointer_rtx
)
3081 /* Return 1 if the sequence of instructions beginning with FROM and up
3082 to and including TO is safe to move. If NEW_TO is non-NULL, and
3083 the sequence is not already safe to move, but can be easily
3084 extended to a sequence which is safe, then NEW_TO will point to the
3085 end of the extended sequence.
3087 For now, this function only checks that the region contains whole
3088 exception regions, but it could be extended to check additional
3089 conditions as well. */
3092 insns_safe_to_move_p (rtx from
, rtx to
, rtx
*new_to
)
3094 int eh_region_count
= 0;
3098 /* By default, assume the end of the region will be what was
3105 if (GET_CODE (r
) == NOTE
)
3107 switch (NOTE_LINE_NUMBER (r
))
3109 case NOTE_INSN_EH_REGION_BEG
:
3113 case NOTE_INSN_EH_REGION_END
:
3114 if (eh_region_count
== 0)
3115 /* This sequence of instructions contains the end of
3116 an exception region, but not he beginning. Moving
3117 it will cause chaos. */
3128 /* If we've passed TO, and we see a non-note instruction, we
3129 can't extend the sequence to a movable sequence. */
3135 /* It's OK to move the sequence if there were matched sets of
3136 exception region notes. */
3137 return eh_region_count
== 0;
3142 /* It's OK to move the sequence if there were matched sets of
3143 exception region notes. */
3144 if (past_to_p
&& eh_region_count
== 0)
3150 /* Go to the next instruction. */
3157 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3159 loc_mentioned_in_p (rtx
*loc
, rtx in
)
3161 enum rtx_code code
= GET_CODE (in
);
3162 const char *fmt
= GET_RTX_FORMAT (code
);
3165 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3167 if (loc
== &in
->u
.fld
[i
].rtx
)
3171 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3174 else if (fmt
[i
] == 'E')
3175 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3176 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3182 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3183 and SUBREG_BYTE, return the bit offset where the subreg begins
3184 (counting from the least significant bit of the operand). */
3187 subreg_lsb_1 (enum machine_mode outer_mode
,
3188 enum machine_mode inner_mode
,
3189 unsigned int subreg_byte
)
3191 unsigned int bitpos
;
3195 /* A paradoxical subreg begins at bit position 0. */
3196 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
3199 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3200 /* If the subreg crosses a word boundary ensure that
3201 it also begins and ends on a word boundary. */
3202 if ((subreg_byte
% UNITS_PER_WORD
3203 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3204 && (subreg_byte
% UNITS_PER_WORD
3205 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
))
3208 if (WORDS_BIG_ENDIAN
)
3209 word
= (GET_MODE_SIZE (inner_mode
)
3210 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3212 word
= subreg_byte
/ UNITS_PER_WORD
;
3213 bitpos
= word
* BITS_PER_WORD
;
3215 if (BYTES_BIG_ENDIAN
)
3216 byte
= (GET_MODE_SIZE (inner_mode
)
3217 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3219 byte
= subreg_byte
% UNITS_PER_WORD
;
3220 bitpos
+= byte
* BITS_PER_UNIT
;
3225 /* Given a subreg X, return the bit offset where the subreg begins
3226 (counting from the least significant bit of the reg). */
3231 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3235 /* This function returns the regno offset of a subreg expression.
3236 xregno - A regno of an inner hard subreg_reg (or what will become one).
3237 xmode - The mode of xregno.
3238 offset - The byte offset.
3239 ymode - The mode of a top level SUBREG (or what may become one).
3240 RETURN - The regno offset which would be used. */
3242 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3243 unsigned int offset
, enum machine_mode ymode
)
3245 int nregs_xmode
, nregs_ymode
;
3246 int mode_multiple
, nregs_multiple
;
3249 if (xregno
>= FIRST_PSEUDO_REGISTER
)
3252 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3253 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3255 /* If this is a big endian paradoxical subreg, which uses more actual
3256 hard registers than the original register, we must return a negative
3257 offset so that we find the proper highpart of the register. */
3259 && nregs_ymode
> nregs_xmode
3260 && (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3261 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
3262 return nregs_xmode
- nregs_ymode
;
3264 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3267 /* size of ymode must not be greater than the size of xmode. */
3268 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3269 if (mode_multiple
== 0)
3272 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3273 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3274 return (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3277 /* This function returns true when the offset is representable via
3278 subreg_offset in the given regno.
3279 xregno - A regno of an inner hard subreg_reg (or what will become one).
3280 xmode - The mode of xregno.
3281 offset - The byte offset.
3282 ymode - The mode of a top level SUBREG (or what may become one).
3283 RETURN - The regno offset which would be used. */
3285 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3286 unsigned int offset
, enum machine_mode ymode
)
3288 int nregs_xmode
, nregs_ymode
;
3289 int mode_multiple
, nregs_multiple
;
3292 if (xregno
>= FIRST_PSEUDO_REGISTER
)
3295 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3296 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3298 /* Paradoxical subregs are always valid. */
3300 && nregs_ymode
> nregs_xmode
3301 && (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3302 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
3305 /* Lowpart subregs are always valid. */
3306 if (offset
== subreg_lowpart_offset (ymode
, xmode
))
3309 #ifdef ENABLE_CHECKING
3310 /* This should always pass, otherwise we don't know how to verify the
3311 constraint. These conditions may be relaxed but subreg_offset would
3312 need to be redesigned. */
3313 if (GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)
3314 || GET_MODE_SIZE (ymode
) % nregs_ymode
3315 || nregs_xmode
% nregs_ymode
)
3319 /* The XMODE value can be seen as a vector of NREGS_XMODE
3320 values. The subreg must represent a lowpart of given field.
3321 Compute what field it is. */
3322 offset
-= subreg_lowpart_offset (ymode
,
3323 mode_for_size (GET_MODE_BITSIZE (xmode
)
3327 /* size of ymode must not be greater than the size of xmode. */
3328 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3329 if (mode_multiple
== 0)
3332 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3333 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3334 #ifdef ENABLE_CHECKING
3335 if (offset
% GET_MODE_SIZE (ymode
)
3336 || mode_multiple
% nregs_multiple
)
3339 return (!(y_offset
% (mode_multiple
/ nregs_multiple
)));
3342 /* Return the final regno that a subreg expression refers to. */
3344 subreg_regno (rtx x
)
3347 rtx subreg
= SUBREG_REG (x
);
3348 int regno
= REGNO (subreg
);
3350 ret
= regno
+ subreg_regno_offset (regno
,
3357 struct parms_set_data
3363 /* Helper function for noticing stores to parameter registers. */
3365 parms_set (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
3367 struct parms_set_data
*d
= data
;
3368 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3369 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3371 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3376 /* Look backward for first parameter to be loaded.
3377 Do not skip BOUNDARY. */
3379 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3381 struct parms_set_data parm
;
3384 /* Since different machines initialize their parameter registers
3385 in different orders, assume nothing. Collect the set of all
3386 parameter registers. */
3387 CLEAR_HARD_REG_SET (parm
.regs
);
3389 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3390 if (GET_CODE (XEXP (p
, 0)) == USE
3391 && GET_CODE (XEXP (XEXP (p
, 0), 0)) == REG
)
3393 if (REGNO (XEXP (XEXP (p
, 0), 0)) >= FIRST_PSEUDO_REGISTER
)
3396 /* We only care about registers which can hold function
3398 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3401 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3406 /* Search backward for the first set of a register in this set. */
3407 while (parm
.nregs
&& before
!= boundary
)
3409 before
= PREV_INSN (before
);
3411 /* It is possible that some loads got CSEed from one call to
3412 another. Stop in that case. */
3413 if (GET_CODE (before
) == CALL_INSN
)
3416 /* Our caller needs either ensure that we will find all sets
3417 (in case code has not been optimized yet), or take care
3418 for possible labels in a way by setting boundary to preceding
3420 if (GET_CODE (before
) == CODE_LABEL
)
3422 if (before
!= boundary
)
3427 if (INSN_P (before
))
3428 note_stores (PATTERN (before
), parms_set
, &parm
);
3433 /* Return true if we should avoid inserting code between INSN and preceding
3434 call instruction. */
3437 keep_with_call_p (rtx insn
)
3441 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3443 if (GET_CODE (SET_DEST (set
)) == REG
3444 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3445 && fixed_regs
[REGNO (SET_DEST (set
))]
3446 && general_operand (SET_SRC (set
), VOIDmode
))
3448 if (GET_CODE (SET_SRC (set
)) == REG
3449 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set
)))
3450 && GET_CODE (SET_DEST (set
)) == REG
3451 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3453 /* There may be a stack pop just after the call and before the store
3454 of the return register. Search for the actual store when deciding
3455 if we can break or not. */
3456 if (SET_DEST (set
) == stack_pointer_rtx
)
3458 rtx i2
= next_nonnote_insn (insn
);
3459 if (i2
&& keep_with_call_p (i2
))
3466 /* Return true when store to register X can be hoisted to the place
3467 with LIVE registers (can be NULL). Value VAL contains destination
3468 whose value will be used. */
3471 hoist_test_store (rtx x
, rtx val
, regset live
)
3473 if (GET_CODE (x
) == SCRATCH
)
3476 if (rtx_equal_p (x
, val
))
3479 /* Allow subreg of X in case it is not writing just part of multireg pseudo.
3480 Then we would need to update all users to care hoisting the store too.
3481 Caller may represent that by specifying whole subreg as val. */
3483 if (GET_CODE (x
) == SUBREG
&& rtx_equal_p (SUBREG_REG (x
), val
))
3485 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
3486 && GET_MODE_BITSIZE (GET_MODE (x
)) <
3487 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
3491 if (GET_CODE (x
) == SUBREG
)
3494 /* Anything except register store is not hoistable. This includes the
3495 partial stores to registers. */
3500 /* Pseudo registers can be always replaced by another pseudo to avoid
3501 the side effect, for hard register we must ensure that they are dead.
3502 Eventually we may want to add code to try turn pseudos to hards, but it
3503 is unlikely useful. */
3505 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3507 int regno
= REGNO (x
);
3508 int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
3512 if (REGNO_REG_SET_P (live
, regno
))
3515 if (REGNO_REG_SET_P (live
, regno
+ n
))
3522 /* Return true if INSN can be hoisted to place with LIVE hard registers
3523 (LIVE can be NULL when unknown). VAL is expected to be stored by the insn
3524 and used by the hoisting pass. */
3527 can_hoist_insn_p (rtx insn
, rtx val
, regset live
)
3529 rtx pat
= PATTERN (insn
);
3532 /* It probably does not worth the complexity to handle multiple
3534 if (!single_set (insn
))
3536 /* We can move CALL_INSN, but we need to check that all caller clobbered
3538 if (GET_CODE (insn
) == CALL_INSN
)
3540 /* In future we will handle hoisting of libcall sequences, but
3542 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
3544 switch (GET_CODE (pat
))
3547 if (!hoist_test_store (SET_DEST (pat
), val
, live
))
3551 /* USES do have sick semantics, so do not move them. */
3555 if (!hoist_test_store (XEXP (pat
, 0), val
, live
))
3559 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3561 rtx x
= XVECEXP (pat
, 0, i
);
3562 switch (GET_CODE (x
))
3565 if (!hoist_test_store (SET_DEST (x
), val
, live
))
3569 /* We need to fix callers to really ensure availability
3570 of all values insn uses, but for now it is safe to prohibit
3571 hoisting of any insn having such a hidden uses. */
3575 if (!hoist_test_store (SET_DEST (x
), val
, live
))
3589 /* Update store after hoisting - replace all stores to pseudo registers
3590 by new ones to avoid clobbering of values except for store to VAL that will
3591 be updated to NEW. */
3594 hoist_update_store (rtx insn
, rtx
*xp
, rtx val
, rtx
new)
3598 if (GET_CODE (x
) == SCRATCH
)
3601 if (GET_CODE (x
) == SUBREG
&& SUBREG_REG (x
) == val
)
3602 validate_change (insn
, xp
,
3603 simplify_gen_subreg (GET_MODE (x
), new, GET_MODE (new),
3604 SUBREG_BYTE (x
)), 1);
3605 if (rtx_equal_p (x
, val
))
3607 validate_change (insn
, xp
, new, 1);
3610 if (GET_CODE (x
) == SUBREG
)
3612 xp
= &SUBREG_REG (x
);
3619 /* We've verified that hard registers are dead, so we may keep the side
3620 effect. Otherwise replace it by new pseudo. */
3621 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
3622 validate_change (insn
, xp
, gen_reg_rtx (GET_MODE (x
)), 1);
3624 = alloc_EXPR_LIST (REG_UNUSED
, *xp
, REG_NOTES (insn
));
3627 /* Create a copy of INSN after AFTER replacing store of VAL to NEW
3628 and each other side effect to pseudo register by new pseudo register. */
3631 hoist_insn_after (rtx insn
, rtx after
, rtx val
, rtx
new)
3637 insn
= emit_copy_of_insn_after (insn
, after
);
3638 pat
= PATTERN (insn
);
3640 /* Remove REG_UNUSED notes as we will re-emit them. */
3641 while ((note
= find_reg_note (insn
, REG_UNUSED
, NULL_RTX
)))
3642 remove_note (insn
, note
);
3644 /* To get this working callers must ensure to move everything referenced
3645 by REG_EQUAL/REG_EQUIV notes too. Lets remove them, it is probably
3647 while ((note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)))
3648 remove_note (insn
, note
);
3649 while ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)))
3650 remove_note (insn
, note
);
3652 /* Remove REG_DEAD notes as they might not be valid anymore in case
3653 we create redundancy. */
3654 while ((note
= find_reg_note (insn
, REG_DEAD
, NULL_RTX
)))
3655 remove_note (insn
, note
);
3656 switch (GET_CODE (pat
))
3659 hoist_update_store (insn
, &SET_DEST (pat
), val
, new);
3664 hoist_update_store (insn
, &XEXP (pat
, 0), val
, new);
3667 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3669 rtx x
= XVECEXP (pat
, 0, i
);
3670 switch (GET_CODE (x
))
3673 hoist_update_store (insn
, &SET_DEST (x
), val
, new);
3678 hoist_update_store (insn
, &SET_DEST (x
), val
, new);
3688 if (!apply_change_group ())
3695 hoist_insn_to_edge (rtx insn
, edge e
, rtx val
, rtx
new)
3699 /* We cannot insert instructions on an abnormal critical edge.
3700 It will be easier to find the culprit if we die now. */
3701 if ((e
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (e
))
3704 /* Do not use emit_insn_on_edge as we want to preserve notes and similar
3705 stuff. We also emit CALL_INSNS and firends. */
3706 if (e
->insns
.r
== NULL_RTX
)
3709 emit_note (NOTE_INSN_DELETED
);
3712 push_to_sequence (e
->insns
.r
);
3714 new_insn
= hoist_insn_after (insn
, get_last_insn (), val
, new);
3716 e
->insns
.r
= get_insns ();
3721 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3722 to non-complex jumps. That is, direct unconditional, conditional,
3723 and tablejumps, but not computed jumps or returns. It also does
3724 not apply to the fallthru case of a conditional jump. */
3727 label_is_jump_target_p (rtx label
, rtx jump_insn
)
3729 rtx tmp
= JUMP_LABEL (jump_insn
);
3734 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3736 rtvec vec
= XVEC (PATTERN (tmp
),
3737 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3738 int i
, veclen
= GET_NUM_ELEM (vec
);
3740 for (i
= 0; i
< veclen
; ++i
)
3741 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3749 /* Return an estimate of the cost of computing rtx X.
3750 One use is in cse, to decide which expression to keep in the hash table.
3751 Another is in rtl generation, to pick the cheapest way to multiply.
3752 Other uses like the latter are expected in the future. */
3755 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
)
3765 /* Compute the default costs of certain things.
3766 Note that targetm.rtx_costs can override the defaults. */
3768 code
= GET_CODE (x
);
3772 total
= COSTS_N_INSNS (5);
3778 total
= COSTS_N_INSNS (7);
3781 /* Used in loop.c and combine.c as a marker. */
3785 total
= COSTS_N_INSNS (1);
3794 /* If we can't tie these modes, make this expensive. The larger
3795 the mode, the more expensive it is. */
3796 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3797 return COSTS_N_INSNS (2
3798 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3802 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
))
3807 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3808 which is already in total. */
3810 fmt
= GET_RTX_FORMAT (code
);
3811 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3813 total
+= rtx_cost (XEXP (x
, i
), code
);
3814 else if (fmt
[i
] == 'E')
3815 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3816 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
3821 /* Return cost of address expression X.
3822 Expect that X is properly formed address reference. */
3825 address_cost (rtx x
, enum machine_mode mode
)
3827 /* The address_cost target hook does not deal with ADDRESSOF nodes. But,
3828 during CSE, such nodes are present. Using an ADDRESSOF node which
3829 refers to the address of a REG is a good thing because we can then
3830 turn (MEM (ADDRESSOF (REG))) into just plain REG. */
3832 if (GET_CODE (x
) == ADDRESSOF
&& REG_P (XEXP ((x
), 0)))
3835 /* We may be asked for cost of various unusual addresses, such as operands
3836 of push instruction. It is not worthwhile to complicate writing
3837 of the target hook by such cases. */
3839 if (!memory_address_p (mode
, x
))
3842 return targetm
.address_cost (x
);
3845 /* If the target doesn't override, compute the cost as with arithmetic. */
3848 default_address_cost (rtx x
)
3850 return rtx_cost (x
, MEM
);