1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables.
27 Basic induction variables (BIVs) are a pseudo registers which are set within
28 a loop only by incrementing or decrementing its value. General induction
29 variables (GIVs) are pseudo registers with a value which is a linear function
30 of a basic induction variable. BIVs are recognized by `basic_induction_var';
31 GIVs by `general_induction_var'.
33 Once induction variables are identified, strength reduction is applied to the
34 general induction variables, and induction variable elimination is applied to
35 the basic induction variables.
37 It also finds cases where
38 a register is set within the loop by zero-extending a narrower value
39 and changes these to zero the entire register once before the loop
40 and merely copy the low part within the loop.
42 Most of the complexity is in heuristics to decide when it is worth
43 while to do these things. */
47 #include "coretypes.h"
53 #include "hard-reg-set.h"
54 #include "basic-block.h"
55 #include "insn-config.h"
65 #include "insn-flags.h"
70 /* Not really meaningful values, but at least something. */
71 #ifndef SIMULTANEOUS_PREFETCHES
72 #define SIMULTANEOUS_PREFETCHES 3
74 #ifndef PREFETCH_BLOCK
75 #define PREFETCH_BLOCK 32
78 #define HAVE_prefetch 0
79 #define CODE_FOR_prefetch 0
80 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
83 /* Give up the prefetch optimizations once we exceed a given threshold.
84 It is unlikely that we would be able to optimize something in a loop
85 with so many detected prefetches. */
86 #define MAX_PREFETCHES 100
87 /* The number of prefetch blocks that are beneficial to fetch at once before
88 a loop with a known (and low) iteration count. */
89 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
90 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
91 since it is likely that the data are already in the cache. */
92 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
94 /* Parameterize some prefetch heuristics so they can be turned on and off
95 easily for performance testing on new architectures. These can be
96 defined in target-dependent files. */
98 /* Prefetch is worthwhile only when loads/stores are dense. */
99 #ifndef PREFETCH_ONLY_DENSE_MEM
100 #define PREFETCH_ONLY_DENSE_MEM 1
103 /* Define what we mean by "dense" loads and stores; This value divided by 256
104 is the minimum percentage of memory references that worth prefetching. */
105 #ifndef PREFETCH_DENSE_MEM
106 #define PREFETCH_DENSE_MEM 220
109 /* Do not prefetch for a loop whose iteration count is known to be low. */
110 #ifndef PREFETCH_NO_LOW_LOOPCNT
111 #define PREFETCH_NO_LOW_LOOPCNT 1
114 /* Define what we mean by a "low" iteration count. */
115 #ifndef PREFETCH_LOW_LOOPCNT
116 #define PREFETCH_LOW_LOOPCNT 32
119 /* Do not prefetch for a loop that contains a function call; such a loop is
120 probably not an internal loop. */
121 #ifndef PREFETCH_NO_CALL
122 #define PREFETCH_NO_CALL 1
125 /* Do not prefetch accesses with an extreme stride. */
126 #ifndef PREFETCH_NO_EXTREME_STRIDE
127 #define PREFETCH_NO_EXTREME_STRIDE 1
130 /* Define what we mean by an "extreme" stride. */
131 #ifndef PREFETCH_EXTREME_STRIDE
132 #define PREFETCH_EXTREME_STRIDE 4096
135 /* Define a limit to how far apart indices can be and still be merged
136 into a single prefetch. */
137 #ifndef PREFETCH_EXTREME_DIFFERENCE
138 #define PREFETCH_EXTREME_DIFFERENCE 4096
141 /* Issue prefetch instructions before the loop to fetch data to be used
142 in the first few loop iterations. */
143 #ifndef PREFETCH_BEFORE_LOOP
144 #define PREFETCH_BEFORE_LOOP 1
147 /* Do not handle reversed order prefetches (negative stride). */
148 #ifndef PREFETCH_NO_REVERSE_ORDER
149 #define PREFETCH_NO_REVERSE_ORDER 1
152 /* Prefetch even if the GIV is in conditional code. */
153 #ifndef PREFETCH_CONDITIONAL
154 #define PREFETCH_CONDITIONAL 1
157 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
158 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
160 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
161 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
162 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
164 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
165 ((REGNO) < FIRST_PSEUDO_REGISTER \
166 ? (int) hard_regno_nregs[(REGNO)][GET_MODE (SET_DEST)] : 1)
169 /* Vector mapping INSN_UIDs to luids.
170 The luids are like uids but increase monotonically always.
171 We use them to see whether a jump comes from outside a given loop. */
175 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
176 number the insn is contained in. */
178 struct loop
**uid_loop
;
180 /* 1 + largest uid of any insn. */
182 int max_uid_for_loop
;
184 /* Number of loops detected in current function. Used as index to the
187 static int max_loop_num
;
189 /* Bound on pseudo register number before loop optimization.
190 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
191 unsigned int max_reg_before_loop
;
193 /* The value to pass to the next call of reg_scan_update. */
194 static int loop_max_reg
;
196 /* During the analysis of a loop, a chain of `struct movable's
197 is made to record all the movable insns found.
198 Then the entire chain can be scanned to decide which to move. */
202 rtx insn
; /* A movable insn */
203 rtx set_src
; /* The expression this reg is set from. */
204 rtx set_dest
; /* The destination of this SET. */
205 rtx dependencies
; /* When INSN is libcall, this is an EXPR_LIST
206 of any registers used within the LIBCALL. */
207 int consec
; /* Number of consecutive following insns
208 that must be moved with this one. */
209 unsigned int regno
; /* The register it sets */
210 short lifetime
; /* lifetime of that register;
211 may be adjusted when matching movables
212 that load the same value are found. */
213 short savings
; /* Number of insns we can move for this reg,
214 including other movables that force this
215 or match this one. */
216 ENUM_BITFIELD(machine_mode
) savemode
: 8; /* Nonzero means it is a mode for
217 a low part that we should avoid changing when
218 clearing the rest of the reg. */
219 unsigned int cond
: 1; /* 1 if only conditionally movable */
220 unsigned int force
: 1; /* 1 means MUST move this insn */
221 unsigned int global
: 1; /* 1 means reg is live outside this loop */
222 /* If PARTIAL is 1, GLOBAL means something different:
223 that the reg is live outside the range from where it is set
224 to the following label. */
225 unsigned int done
: 1; /* 1 inhibits further processing of this */
227 unsigned int partial
: 1; /* 1 means this reg is used for zero-extending.
228 In particular, moving it does not make it
230 unsigned int move_insn
: 1; /* 1 means that we call emit_move_insn to
231 load SRC, rather than copying INSN. */
232 unsigned int move_insn_first
:1;/* Same as above, if this is necessary for the
233 first insn of a consecutive sets group. */
234 unsigned int is_equiv
: 1; /* 1 means a REG_EQUIV is present on INSN. */
235 unsigned int insert_temp
: 1; /* 1 means we copy to a new pseudo and replace
236 the original insn with a copy from that
237 pseudo, rather than deleting it. */
238 struct movable
*match
; /* First entry for same value */
239 struct movable
*forces
; /* An insn that must be moved if this is */
240 struct movable
*next
;
244 FILE *loop_dump_stream
;
246 /* Forward declarations. */
248 static void invalidate_loops_containing_label (rtx
);
249 static void find_and_verify_loops (rtx
, struct loops
*);
250 static void mark_loop_jump (rtx
, struct loop
*);
251 static void prescan_loop (struct loop
*);
252 static int reg_in_basic_block_p (rtx
, rtx
);
253 static int consec_sets_invariant_p (const struct loop
*, rtx
, int, rtx
);
254 static int labels_in_range_p (rtx
, int);
255 static void count_one_set (struct loop_regs
*, rtx
, rtx
, rtx
*);
256 static void note_addr_stored (rtx
, rtx
, void *);
257 static void note_set_pseudo_multiple_uses (rtx
, rtx
, void *);
258 static int loop_reg_used_before_p (const struct loop
*, rtx
, rtx
);
259 static rtx
find_regs_nested (rtx
, rtx
);
260 static void scan_loop (struct loop
*, int);
262 static void replace_call_address (rtx
, rtx
, rtx
);
264 static rtx
skip_consec_insns (rtx
, int);
265 static int libcall_benefit (rtx
);
266 static rtx
libcall_other_reg (rtx
, rtx
);
267 static void record_excess_regs (rtx
, rtx
, rtx
*);
268 static void ignore_some_movables (struct loop_movables
*);
269 static void force_movables (struct loop_movables
*);
270 static void combine_movables (struct loop_movables
*, struct loop_regs
*);
271 static int num_unmoved_movables (const struct loop
*);
272 static int regs_match_p (rtx
, rtx
, struct loop_movables
*);
273 static int rtx_equal_for_loop_p (rtx
, rtx
, struct loop_movables
*,
275 static void add_label_notes (rtx
, rtx
);
276 static void move_movables (struct loop
*loop
, struct loop_movables
*, int,
278 static void loop_movables_add (struct loop_movables
*, struct movable
*);
279 static void loop_movables_free (struct loop_movables
*);
280 static int count_nonfixed_reads (const struct loop
*, rtx
);
281 static void loop_bivs_find (struct loop
*);
282 static void loop_bivs_init_find (struct loop
*);
283 static void loop_bivs_check (struct loop
*);
284 static void loop_givs_find (struct loop
*);
285 static void loop_givs_check (struct loop
*);
286 static int loop_biv_eliminable_p (struct loop
*, struct iv_class
*, int, int);
287 static int loop_giv_reduce_benefit (struct loop
*, struct iv_class
*,
288 struct induction
*, rtx
);
289 static void loop_givs_dead_check (struct loop
*, struct iv_class
*);
290 static void loop_givs_reduce (struct loop
*, struct iv_class
*);
291 static void loop_givs_rescan (struct loop
*, struct iv_class
*, rtx
*);
292 static void loop_ivs_free (struct loop
*);
293 static void strength_reduce (struct loop
*, int);
294 static void find_single_use_in_loop (struct loop_regs
*, rtx
, rtx
);
295 static int valid_initial_value_p (rtx
, rtx
, int, rtx
);
296 static void find_mem_givs (const struct loop
*, rtx
, rtx
, int, int);
297 static void record_biv (struct loop
*, struct induction
*, rtx
, rtx
, rtx
,
298 rtx
, rtx
*, int, int);
299 static void check_final_value (const struct loop
*, struct induction
*);
300 static void loop_ivs_dump (const struct loop
*, FILE *, int);
301 static void loop_iv_class_dump (const struct iv_class
*, FILE *, int);
302 static void loop_biv_dump (const struct induction
*, FILE *, int);
303 static void loop_giv_dump (const struct induction
*, FILE *, int);
304 static void record_giv (const struct loop
*, struct induction
*, rtx
, rtx
,
305 rtx
, rtx
, rtx
, rtx
, int, enum g_types
, int, int,
307 static void update_giv_derive (const struct loop
*, rtx
);
308 static void check_ext_dependent_givs (const struct loop
*, struct iv_class
*);
309 static int basic_induction_var (const struct loop
*, rtx
, enum machine_mode
,
310 rtx
, rtx
, rtx
*, rtx
*, rtx
**);
311 static rtx
simplify_giv_expr (const struct loop
*, rtx
, rtx
*, int *);
312 static int general_induction_var (const struct loop
*loop
, rtx
, rtx
*, rtx
*,
313 rtx
*, rtx
*, int, int *, enum machine_mode
);
314 static int consec_sets_giv (const struct loop
*, int, rtx
, rtx
, rtx
, rtx
*,
315 rtx
*, rtx
*, rtx
*);
316 static int check_dbra_loop (struct loop
*, int);
317 static rtx
express_from_1 (rtx
, rtx
, rtx
);
318 static rtx
combine_givs_p (struct induction
*, struct induction
*);
319 static int cmp_combine_givs_stats (const void *, const void *);
320 static void combine_givs (struct loop_regs
*, struct iv_class
*);
321 static int product_cheap_p (rtx
, rtx
);
322 static int maybe_eliminate_biv (const struct loop
*, struct iv_class
*, int,
324 static int maybe_eliminate_biv_1 (const struct loop
*, rtx
, rtx
,
325 struct iv_class
*, int, basic_block
, rtx
);
326 static int last_use_this_basic_block (rtx
, rtx
);
327 static void record_initial (rtx
, rtx
, void *);
328 static void update_reg_last_use (rtx
, rtx
);
329 static rtx
next_insn_in_loop (const struct loop
*, rtx
);
330 static void loop_regs_scan (const struct loop
*, int);
331 static int count_insns_in_loop (const struct loop
*);
332 static int find_mem_in_note_1 (rtx
*, void *);
333 static rtx
find_mem_in_note (rtx
);
334 static void load_mems (const struct loop
*);
335 static int insert_loop_mem (rtx
*, void *);
336 static int replace_loop_mem (rtx
*, void *);
337 static void replace_loop_mems (rtx
, rtx
, rtx
, int);
338 static int replace_loop_reg (rtx
*, void *);
339 static void replace_loop_regs (rtx insn
, rtx
, rtx
);
340 static void note_reg_stored (rtx
, rtx
, void *);
341 static void try_copy_prop (const struct loop
*, rtx
, unsigned int);
342 static void try_swap_copy_prop (const struct loop
*, rtx
, unsigned int);
343 static rtx
check_insn_for_givs (struct loop
*, rtx
, int, int);
344 static rtx
check_insn_for_bivs (struct loop
*, rtx
, int, int);
345 static rtx
gen_add_mult (rtx
, rtx
, rtx
, rtx
);
346 static void loop_regs_update (const struct loop
*, rtx
);
347 static int iv_add_mult_cost (rtx
, rtx
, rtx
, rtx
);
349 static rtx
loop_insn_emit_after (const struct loop
*, basic_block
, rtx
, rtx
);
350 static rtx
loop_call_insn_emit_before (const struct loop
*, basic_block
,
352 static rtx
loop_call_insn_hoist (const struct loop
*, rtx
);
353 static rtx
loop_insn_sink_or_swim (const struct loop
*, rtx
);
355 static void loop_dump_aux (const struct loop
*, FILE *, int);
356 static void loop_delete_insns (rtx
, rtx
);
357 static HOST_WIDE_INT
remove_constant_addition (rtx
*);
358 static rtx
gen_load_of_final_value (rtx
, rtx
);
359 void debug_ivs (const struct loop
*);
360 void debug_iv_class (const struct iv_class
*);
361 void debug_biv (const struct induction
*);
362 void debug_giv (const struct induction
*);
363 void debug_loop (const struct loop
*);
364 void debug_loops (const struct loops
*);
366 typedef struct loop_replace_args
373 /* Nonzero iff INSN is between START and END, inclusive. */
374 #define INSN_IN_RANGE_P(INSN, START, END) \
375 (INSN_UID (INSN) < max_uid_for_loop \
376 && INSN_LUID (INSN) >= INSN_LUID (START) \
377 && INSN_LUID (INSN) <= INSN_LUID (END))
379 /* Indirect_jump_in_function is computed once per function. */
380 static int indirect_jump_in_function
;
381 static int indirect_jump_in_function_p (rtx
);
383 static int compute_luids (rtx
, rtx
, int);
385 static int biv_elimination_giv_has_0_offset (struct induction
*,
386 struct induction
*, rtx
);
388 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
389 copy the value of the strength reduced giv to its original register. */
390 static int copy_cost
;
392 /* Cost of using a register, to normalize the benefits of a giv. */
393 static int reg_address_cost
;
398 rtx reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
400 reg_address_cost
= address_cost (reg
, SImode
);
402 copy_cost
= COSTS_N_INSNS (1);
405 /* Compute the mapping from uids to luids.
406 LUIDs are numbers assigned to insns, like uids,
407 except that luids increase monotonically through the code.
408 Start at insn START and stop just before END. Assign LUIDs
409 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
411 compute_luids (rtx start
, rtx end
, int prev_luid
)
416 for (insn
= start
, i
= prev_luid
; insn
!= end
; insn
= NEXT_INSN (insn
))
418 if (INSN_UID (insn
) >= max_uid_for_loop
)
420 /* Don't assign luids to line-number NOTEs, so that the distance in
421 luids between two insns is not affected by -g. */
422 if (GET_CODE (insn
) != NOTE
423 || NOTE_LINE_NUMBER (insn
) <= 0)
424 uid_luid
[INSN_UID (insn
)] = ++i
;
426 /* Give a line number note the same luid as preceding insn. */
427 uid_luid
[INSN_UID (insn
)] = i
;
432 /* Entry point of this file. Perform loop optimization
433 on the current function. F is the first insn of the function
434 and DUMPFILE is a stream for output of a trace of actions taken
435 (or 0 if none should be output). */
438 loop_optimize (rtx f
, FILE *dumpfile
, int flags
)
442 struct loops loops_data
;
443 struct loops
*loops
= &loops_data
;
444 struct loop_info
*loops_info
;
446 loop_dump_stream
= dumpfile
;
448 init_recog_no_volatile ();
450 max_reg_before_loop
= max_reg_num ();
451 loop_max_reg
= max_reg_before_loop
;
455 /* Count the number of loops. */
458 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
460 if (GET_CODE (insn
) == NOTE
461 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
465 /* Don't waste time if no loops. */
466 if (max_loop_num
== 0)
469 loops
->num
= max_loop_num
;
471 /* Get size to use for tables indexed by uids.
472 Leave some space for labels allocated by find_and_verify_loops. */
473 max_uid_for_loop
= get_max_uid () + 1 + max_loop_num
* 32;
475 uid_luid
= xcalloc (max_uid_for_loop
, sizeof (int));
476 uid_loop
= xcalloc (max_uid_for_loop
, sizeof (struct loop
*));
478 /* Allocate storage for array of loops. */
479 loops
->array
= xcalloc (loops
->num
, sizeof (struct loop
));
481 /* Find and process each loop.
482 First, find them, and record them in order of their beginnings. */
483 find_and_verify_loops (f
, loops
);
485 /* Allocate and initialize auxiliary loop information. */
486 loops_info
= xcalloc (loops
->num
, sizeof (struct loop_info
));
487 for (i
= 0; i
< (int) loops
->num
; i
++)
488 loops
->array
[i
].aux
= loops_info
+ i
;
490 /* Now find all register lifetimes. This must be done after
491 find_and_verify_loops, because it might reorder the insns in the
493 reg_scan (f
, max_reg_before_loop
, 1);
495 /* This must occur after reg_scan so that registers created by gcse
496 will have entries in the register tables.
498 We could have added a call to reg_scan after gcse_main in toplev.c,
499 but moving this call to init_alias_analysis is more efficient. */
500 init_alias_analysis ();
502 /* See if we went too far. Note that get_max_uid already returns
503 one more that the maximum uid of all insn. */
504 if (get_max_uid () > max_uid_for_loop
)
506 /* Now reset it to the actual size we need. See above. */
507 max_uid_for_loop
= get_max_uid ();
509 /* find_and_verify_loops has already called compute_luids, but it
510 might have rearranged code afterwards, so we need to recompute
512 compute_luids (f
, NULL_RTX
, 0);
514 /* Don't leave gaps in uid_luid for insns that have been
515 deleted. It is possible that the first or last insn
516 using some register has been deleted by cross-jumping.
517 Make sure that uid_luid for that former insn's uid
518 points to the general area where that insn used to be. */
519 for (i
= 0; i
< max_uid_for_loop
; i
++)
521 uid_luid
[0] = uid_luid
[i
];
522 if (uid_luid
[0] != 0)
525 for (i
= 0; i
< max_uid_for_loop
; i
++)
526 if (uid_luid
[i
] == 0)
527 uid_luid
[i
] = uid_luid
[i
- 1];
529 /* Determine if the function has indirect jump. On some systems
530 this prevents low overhead loop instructions from being used. */
531 indirect_jump_in_function
= indirect_jump_in_function_p (f
);
533 /* Now scan the loops, last ones first, since this means inner ones are done
534 before outer ones. */
535 for (i
= max_loop_num
- 1; i
>= 0; i
--)
537 struct loop
*loop
= &loops
->array
[i
];
539 if (! loop
->invalid
&& loop
->end
)
541 scan_loop (loop
, flags
);
546 end_alias_analysis ();
549 for (i
= 0; i
< (int) loops
->num
; i
++)
550 free (loops_info
[i
].mems
);
558 /* Returns the next insn, in execution order, after INSN. START and
559 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
560 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
561 insn-stream; it is used with loops that are entered near the
565 next_insn_in_loop (const struct loop
*loop
, rtx insn
)
567 insn
= NEXT_INSN (insn
);
569 if (insn
== loop
->end
)
572 /* Go to the top of the loop, and continue there. */
579 if (insn
== loop
->scan_start
)
586 /* Find any register references hidden inside X and add them to
587 the dependency list DEPS. This is used to look inside CLOBBER (MEM
588 when checking whether a PARALLEL can be pulled out of a loop. */
591 find_regs_nested (rtx deps
, rtx x
)
593 enum rtx_code code
= GET_CODE (x
);
595 deps
= gen_rtx_EXPR_LIST (VOIDmode
, x
, deps
);
598 const char *fmt
= GET_RTX_FORMAT (code
);
600 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
603 deps
= find_regs_nested (deps
, XEXP (x
, i
));
604 else if (fmt
[i
] == 'E')
605 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
606 deps
= find_regs_nested (deps
, XVECEXP (x
, i
, j
));
612 /* Optimize one loop described by LOOP. */
614 /* ??? Could also move memory writes out of loops if the destination address
615 is invariant, the source is invariant, the memory write is not volatile,
616 and if we can prove that no read inside the loop can read this address
617 before the write occurs. If there is a read of this address after the
618 write, then we can also mark the memory read as invariant. */
621 scan_loop (struct loop
*loop
, int flags
)
623 struct loop_info
*loop_info
= LOOP_INFO (loop
);
624 struct loop_regs
*regs
= LOOP_REGS (loop
);
626 rtx loop_start
= loop
->start
;
627 rtx loop_end
= loop
->end
;
629 /* 1 if we are scanning insns that could be executed zero times. */
631 /* 1 if we are scanning insns that might never be executed
632 due to a subroutine call which might exit before they are reached. */
634 /* Number of insns in the loop. */
637 rtx temp
, update_start
, update_end
;
638 /* The SET from an insn, if it is the only SET in the insn. */
640 /* Chain describing insns movable in current loop. */
641 struct loop_movables
*movables
= LOOP_MOVABLES (loop
);
642 /* Ratio of extra register life span we can justify
643 for saving an instruction. More if loop doesn't call subroutines
644 since in that case saving an insn makes more difference
645 and more registers are available. */
647 /* Nonzero if we are scanning instructions in a sub-loop. */
656 /* Determine whether this loop starts with a jump down to a test at
657 the end. This will occur for a small number of loops with a test
658 that is too complex to duplicate in front of the loop.
660 We search for the first insn or label in the loop, skipping NOTEs.
661 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
662 (because we might have a loop executed only once that contains a
663 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
664 (in case we have a degenerate loop).
666 Note that if we mistakenly think that a loop is entered at the top
667 when, in fact, it is entered at the exit test, the only effect will be
668 slightly poorer optimization. Making the opposite error can generate
669 incorrect code. Since very few loops now start with a jump to the
670 exit test, the code here to detect that case is very conservative. */
672 for (p
= NEXT_INSN (loop_start
);
674 && GET_CODE (p
) != CODE_LABEL
&& ! INSN_P (p
)
675 && (GET_CODE (p
) != NOTE
676 || (NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_BEG
677 && NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_END
));
681 loop
->scan_start
= p
;
683 /* If loop end is the end of the current function, then emit a
684 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
685 note insn. This is the position we use when sinking insns out of
687 if (NEXT_INSN (loop
->end
) != 0)
688 loop
->sink
= NEXT_INSN (loop
->end
);
690 loop
->sink
= emit_note_after (NOTE_INSN_DELETED
, loop
->end
);
692 /* Set up variables describing this loop. */
694 threshold
= (loop_info
->has_call
? 1 : 2) * (1 + n_non_fixed_regs
);
696 /* If loop has a jump before the first label,
697 the true entry is the target of that jump.
698 Start scan from there.
699 But record in LOOP->TOP the place where the end-test jumps
700 back to so we can scan that after the end of the loop. */
701 if (GET_CODE (p
) == JUMP_INSN
702 /* Loop entry must be unconditional jump (and not a RETURN) */
703 && any_uncondjump_p (p
)
704 && JUMP_LABEL (p
) != 0
705 /* Check to see whether the jump actually
706 jumps out of the loop (meaning it's no loop).
707 This case can happen for things like
708 do {..} while (0). If this label was generated previously
709 by loop, we can't tell anything about it and have to reject
711 && INSN_IN_RANGE_P (JUMP_LABEL (p
), loop_start
, loop_end
))
713 loop
->top
= next_label (loop
->scan_start
);
714 loop
->scan_start
= JUMP_LABEL (p
);
717 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
718 as required by loop_reg_used_before_p. So skip such loops. (This
719 test may never be true, but it's best to play it safe.)
721 Also, skip loops where we do not start scanning at a label. This
722 test also rejects loops starting with a JUMP_INSN that failed the
725 if (INSN_UID (loop
->scan_start
) >= max_uid_for_loop
726 || GET_CODE (loop
->scan_start
) != CODE_LABEL
)
728 if (loop_dump_stream
)
729 fprintf (loop_dump_stream
, "\nLoop from %d to %d is phony.\n\n",
730 INSN_UID (loop_start
), INSN_UID (loop_end
));
734 /* Allocate extra space for REGs that might be created by load_mems.
735 We allocate a little extra slop as well, in the hopes that we
736 won't have to reallocate the regs array. */
737 loop_regs_scan (loop
, loop_info
->mems_idx
+ 16);
738 insn_count
= count_insns_in_loop (loop
);
740 if (loop_dump_stream
)
742 fprintf (loop_dump_stream
, "\nLoop from %d to %d: %d real insns.\n",
743 INSN_UID (loop_start
), INSN_UID (loop_end
), insn_count
);
745 fprintf (loop_dump_stream
, "Continue at insn %d.\n",
746 INSN_UID (loop
->cont
));
749 /* Scan through the loop finding insns that are safe to move.
750 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
751 this reg will be considered invariant for subsequent insns.
752 We consider whether subsequent insns use the reg
753 in deciding whether it is worth actually moving.
755 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
756 and therefore it is possible that the insns we are scanning
757 would never be executed. At such times, we must make sure
758 that it is safe to execute the insn once instead of zero times.
759 When MAYBE_NEVER is 0, all insns will be executed at least once
760 so that is not a problem. */
762 for (in_libcall
= 0, p
= next_insn_in_loop (loop
, loop
->scan_start
);
764 p
= next_insn_in_loop (loop
, p
))
766 if (in_libcall
&& INSN_P (p
) && find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
768 if (GET_CODE (p
) == INSN
)
770 temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
774 && (set
= single_set (p
))
775 && GET_CODE (SET_DEST (set
)) == REG
776 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
777 && SET_DEST (set
) != pic_offset_table_rtx
779 && ! regs
->array
[REGNO (SET_DEST (set
))].may_not_optimize
)
785 rtx src
= SET_SRC (set
);
786 rtx dependencies
= 0;
788 /* Figure out what to use as a source of this insn. If a
789 REG_EQUIV note is given or if a REG_EQUAL note with a
790 constant operand is specified, use it as the source and
791 mark that we should move this insn by calling
792 emit_move_insn rather that duplicating the insn.
794 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
796 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
798 src
= XEXP (temp
, 0), move_insn
= 1;
801 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
802 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
803 src
= XEXP (temp
, 0), move_insn
= 1;
804 if (temp
&& find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
806 src
= XEXP (temp
, 0);
807 /* A libcall block can use regs that don't appear in
808 the equivalent expression. To move the libcall,
809 we must move those regs too. */
810 dependencies
= libcall_other_reg (p
, src
);
814 /* For parallels, add any possible uses to the dependencies, as
815 we can't move the insn without resolving them first.
816 MEMs inside CLOBBERs may also reference registers; these
817 count as implicit uses. */
818 if (GET_CODE (PATTERN (p
)) == PARALLEL
)
820 for (i
= 0; i
< XVECLEN (PATTERN (p
), 0); i
++)
822 rtx x
= XVECEXP (PATTERN (p
), 0, i
);
823 if (GET_CODE (x
) == USE
)
825 = gen_rtx_EXPR_LIST (VOIDmode
, XEXP (x
, 0),
827 else if (GET_CODE (x
) == CLOBBER
828 && GET_CODE (XEXP (x
, 0)) == MEM
)
829 dependencies
= find_regs_nested (dependencies
,
830 XEXP (XEXP (x
, 0), 0));
834 if (/* The register is used in basic blocks other
835 than the one where it is set (meaning that
836 something after this point in the loop might
837 depend on its value before the set). */
838 ! reg_in_basic_block_p (p
, SET_DEST (set
))
839 /* And the set is not guaranteed to be executed once
840 the loop starts, or the value before the set is
841 needed before the set occurs...
843 ??? Note we have quadratic behavior here, mitigated
844 by the fact that the previous test will often fail for
845 large loops. Rather than re-scanning the entire loop
846 each time for register usage, we should build tables
847 of the register usage and use them here instead. */
849 || loop_reg_used_before_p (loop
, set
, p
)))
850 /* It is unsafe to move the set. However, it may be OK to
851 move the source into a new pseudo, and substitute a
852 reg-to-reg copy for the original insn.
854 This code used to consider it OK to move a set of a variable
855 which was not created by the user and not used in an exit
857 That behavior is incorrect and was removed. */
860 /* Don't try to optimize a MODE_CC set with a constant
861 source. It probably will be combined with a conditional
863 if (GET_MODE_CLASS (GET_MODE (SET_DEST (set
))) == MODE_CC
866 /* Don't try to optimize a register that was made
867 by loop-optimization for an inner loop.
868 We don't know its life-span, so we can't compute
870 else if (REGNO (SET_DEST (set
)) >= max_reg_before_loop
)
872 /* Don't move the source and add a reg-to-reg copy:
873 - with -Os (this certainly increases size),
874 - if the mode doesn't support copy operations (obviously),
875 - if the source is already a reg (the motion will gain nothing),
876 - if the source is a legitimate constant (likewise). */
879 || ! can_copy_p (GET_MODE (SET_SRC (set
)))
880 || GET_CODE (SET_SRC (set
)) == REG
881 || (CONSTANT_P (SET_SRC (set
))
882 && LEGITIMATE_CONSTANT_P (SET_SRC (set
)))))
884 else if ((tem
= loop_invariant_p (loop
, src
))
885 && (dependencies
== 0
887 = loop_invariant_p (loop
, dependencies
)) != 0)
888 && (regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
== 1
890 = consec_sets_invariant_p
891 (loop
, SET_DEST (set
),
892 regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
,
894 /* If the insn can cause a trap (such as divide by zero),
895 can't move it unless it's guaranteed to be executed
896 once loop is entered. Even a function call might
897 prevent the trap insn from being reached
898 (since it might exit!) */
899 && ! ((maybe_never
|| call_passed
)
900 && may_trap_p (src
)))
903 int regno
= REGNO (SET_DEST (set
));
905 /* A potential lossage is where we have a case where two insns
906 can be combined as long as they are both in the loop, but
907 we move one of them outside the loop. For large loops,
908 this can lose. The most common case of this is the address
909 of a function being called.
911 Therefore, if this register is marked as being used
912 exactly once if we are in a loop with calls
913 (a "large loop"), see if we can replace the usage of
914 this register with the source of this SET. If we can,
917 Don't do this if P has a REG_RETVAL note or if we have
918 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
920 if (loop_info
->has_call
921 && regs
->array
[regno
].single_usage
!= 0
922 && regs
->array
[regno
].single_usage
!= const0_rtx
923 && REGNO_FIRST_UID (regno
) == INSN_UID (p
)
924 && (REGNO_LAST_UID (regno
)
925 == INSN_UID (regs
->array
[regno
].single_usage
))
926 && regs
->array
[regno
].set_in_loop
== 1
927 && GET_CODE (SET_SRC (set
)) != ASM_OPERANDS
928 && ! side_effects_p (SET_SRC (set
))
929 && ! find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
930 && (! SMALL_REGISTER_CLASSES
931 || (! (GET_CODE (SET_SRC (set
)) == REG
932 && (REGNO (SET_SRC (set
))
933 < FIRST_PSEUDO_REGISTER
))))
934 /* This test is not redundant; SET_SRC (set) might be
935 a call-clobbered register and the life of REGNO
936 might span a call. */
937 && ! modified_between_p (SET_SRC (set
), p
,
938 regs
->array
[regno
].single_usage
)
939 && no_labels_between_p (p
,
940 regs
->array
[regno
].single_usage
)
941 && validate_replace_rtx (SET_DEST (set
), SET_SRC (set
),
942 regs
->array
[regno
].single_usage
))
944 /* Replace any usage in a REG_EQUAL note. Must copy
945 the new source, so that we don't get rtx sharing
946 between the SET_SOURCE and REG_NOTES of insn p. */
947 REG_NOTES (regs
->array
[regno
].single_usage
)
949 (REG_NOTES (regs
->array
[regno
].single_usage
),
950 SET_DEST (set
), copy_rtx (SET_SRC (set
))));
953 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
));
955 regs
->array
[regno
+i
].set_in_loop
= 0;
959 m
= xmalloc (sizeof (struct movable
));
963 m
->dependencies
= dependencies
;
964 m
->set_dest
= SET_DEST (set
);
967 = regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
- 1;
971 m
->move_insn
= move_insn
;
972 m
->move_insn_first
= 0;
973 m
->insert_temp
= insert_temp
;
974 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
975 m
->savemode
= VOIDmode
;
977 /* Set M->cond if either loop_invariant_p
978 or consec_sets_invariant_p returned 2
979 (only conditionally invariant). */
980 m
->cond
= ((tem
| tem1
| tem2
) > 1);
981 m
->global
= LOOP_REG_GLOBAL_P (loop
, regno
);
983 m
->lifetime
= LOOP_REG_LIFETIME (loop
, regno
);
984 m
->savings
= regs
->array
[regno
].n_times_set
;
985 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
986 m
->savings
+= libcall_benefit (p
);
987 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
)); i
++)
988 regs
->array
[regno
+i
].set_in_loop
= move_insn
? -2 : -1;
989 /* Add M to the end of the chain MOVABLES. */
990 loop_movables_add (movables
, m
);
994 /* It is possible for the first instruction to have a
995 REG_EQUAL note but a non-invariant SET_SRC, so we must
996 remember the status of the first instruction in case
997 the last instruction doesn't have a REG_EQUAL note. */
998 m
->move_insn_first
= m
->move_insn
;
1000 /* Skip this insn, not checking REG_LIBCALL notes. */
1001 p
= next_nonnote_insn (p
);
1002 /* Skip the consecutive insns, if there are any. */
1003 p
= skip_consec_insns (p
, m
->consec
);
1004 /* Back up to the last insn of the consecutive group. */
1005 p
= prev_nonnote_insn (p
);
1007 /* We must now reset m->move_insn, m->is_equiv, and
1008 possibly m->set_src to correspond to the effects of
1010 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
1012 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1015 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1016 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
1017 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1023 = (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
1026 /* If this register is always set within a STRICT_LOW_PART
1027 or set to zero, then its high bytes are constant.
1028 So clear them outside the loop and within the loop
1029 just load the low bytes.
1030 We must check that the machine has an instruction to do so.
1031 Also, if the value loaded into the register
1032 depends on the same register, this cannot be done. */
1033 else if (SET_SRC (set
) == const0_rtx
1034 && GET_CODE (NEXT_INSN (p
)) == INSN
1035 && (set1
= single_set (NEXT_INSN (p
)))
1036 && GET_CODE (set1
) == SET
1037 && (GET_CODE (SET_DEST (set1
)) == STRICT_LOW_PART
)
1038 && (GET_CODE (XEXP (SET_DEST (set1
), 0)) == SUBREG
)
1039 && (SUBREG_REG (XEXP (SET_DEST (set1
), 0))
1041 && !reg_mentioned_p (SET_DEST (set
), SET_SRC (set1
)))
1043 int regno
= REGNO (SET_DEST (set
));
1044 if (regs
->array
[regno
].set_in_loop
== 2)
1047 m
= xmalloc (sizeof (struct movable
));
1050 m
->set_dest
= SET_DEST (set
);
1051 m
->dependencies
= 0;
1057 m
->move_insn_first
= 0;
1058 m
->insert_temp
= insert_temp
;
1060 /* If the insn may not be executed on some cycles,
1061 we can't clear the whole reg; clear just high part.
1062 Not even if the reg is used only within this loop.
1069 Clearing x before the inner loop could clobber a value
1070 being saved from the last time around the outer loop.
1071 However, if the reg is not used outside this loop
1072 and all uses of the register are in the same
1073 basic block as the store, there is no problem.
1075 If this insn was made by loop, we don't know its
1076 INSN_LUID and hence must make a conservative
1078 m
->global
= (INSN_UID (p
) >= max_uid_for_loop
1079 || LOOP_REG_GLOBAL_P (loop
, regno
)
1080 || (labels_in_range_p
1081 (p
, REGNO_FIRST_LUID (regno
))));
1082 if (maybe_never
&& m
->global
)
1083 m
->savemode
= GET_MODE (SET_SRC (set1
));
1085 m
->savemode
= VOIDmode
;
1089 m
->lifetime
= LOOP_REG_LIFETIME (loop
, regno
);
1092 i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
));
1094 regs
->array
[regno
+i
].set_in_loop
= -1;
1095 /* Add M to the end of the chain MOVABLES. */
1096 loop_movables_add (movables
, m
);
1101 /* Past a call insn, we get to insns which might not be executed
1102 because the call might exit. This matters for insns that trap.
1103 Constant and pure call insns always return, so they don't count. */
1104 else if (GET_CODE (p
) == CALL_INSN
&& ! CONST_OR_PURE_CALL_P (p
))
1106 /* Past a label or a jump, we get to insns for which we
1107 can't count on whether or how many times they will be
1108 executed during each iteration. Therefore, we can
1109 only move out sets of trivial variables
1110 (those not used after the loop). */
1111 /* Similar code appears twice in strength_reduce. */
1112 else if ((GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
)
1113 /* If we enter the loop in the middle, and scan around to the
1114 beginning, don't set maybe_never for that. This must be an
1115 unconditional jump, otherwise the code at the top of the
1116 loop might never be executed. Unconditional jumps are
1117 followed by a barrier then the loop_end. */
1118 && ! (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == loop
->top
1119 && NEXT_INSN (NEXT_INSN (p
)) == loop_end
1120 && any_uncondjump_p (p
)))
1122 else if (GET_CODE (p
) == NOTE
)
1124 /* At the virtual top of a converted loop, insns are again known to
1125 be executed: logically, the loop begins here even though the exit
1126 code has been duplicated. */
1127 if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
&& loop_depth
== 0)
1128 maybe_never
= call_passed
= 0;
1129 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
1131 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
1136 /* If one movable subsumes another, ignore that other. */
1138 ignore_some_movables (movables
);
1140 /* For each movable insn, see if the reg that it loads
1141 leads when it dies right into another conditionally movable insn.
1142 If so, record that the second insn "forces" the first one,
1143 since the second can be moved only if the first is. */
1145 force_movables (movables
);
1147 /* See if there are multiple movable insns that load the same value.
1148 If there are, make all but the first point at the first one
1149 through the `match' field, and add the priorities of them
1150 all together as the priority of the first. */
1152 combine_movables (movables
, regs
);
1154 /* Now consider each movable insn to decide whether it is worth moving.
1155 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1157 For machines with few registers this increases code size, so do not
1158 move moveables when optimizing for code size on such machines.
1159 (The 18 below is the value for i386.) */
1162 || (reg_class_size
[GENERAL_REGS
] > 18 && !loop_info
->has_call
))
1164 move_movables (loop
, movables
, threshold
, insn_count
);
1166 /* Recalculate regs->array if move_movables has created new
1168 if (max_reg_num () > regs
->num
)
1170 loop_regs_scan (loop
, 0);
1171 for (update_start
= loop_start
;
1172 PREV_INSN (update_start
)
1173 && GET_CODE (PREV_INSN (update_start
)) != CODE_LABEL
;
1174 update_start
= PREV_INSN (update_start
))
1176 update_end
= NEXT_INSN (loop_end
);
1178 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1179 loop_max_reg
= max_reg_num ();
1183 /* Now candidates that still are negative are those not moved.
1184 Change regs->array[I].set_in_loop to indicate that those are not actually
1186 for (i
= 0; i
< regs
->num
; i
++)
1187 if (regs
->array
[i
].set_in_loop
< 0)
1188 regs
->array
[i
].set_in_loop
= regs
->array
[i
].n_times_set
;
1190 /* Now that we've moved some things out of the loop, we might be able to
1191 hoist even more memory references. */
1194 /* Recalculate regs->array if load_mems has created new registers. */
1195 if (max_reg_num () > regs
->num
)
1196 loop_regs_scan (loop
, 0);
1198 for (update_start
= loop_start
;
1199 PREV_INSN (update_start
)
1200 && GET_CODE (PREV_INSN (update_start
)) != CODE_LABEL
;
1201 update_start
= PREV_INSN (update_start
))
1203 update_end
= NEXT_INSN (loop_end
);
1205 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1206 loop_max_reg
= max_reg_num ();
1208 if (flag_strength_reduce
)
1210 if (update_end
&& GET_CODE (update_end
) == CODE_LABEL
)
1211 /* Ensure our label doesn't go away. */
1212 LABEL_NUSES (update_end
)++;
1214 strength_reduce (loop
, flags
);
1216 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1217 loop_max_reg
= max_reg_num ();
1219 if (update_end
&& GET_CODE (update_end
) == CODE_LABEL
1220 && --LABEL_NUSES (update_end
) == 0)
1221 delete_related_insns (update_end
);
1225 /* The movable information is required for strength reduction. */
1226 loop_movables_free (movables
);
1233 /* Add elements to *OUTPUT to record all the pseudo-regs
1234 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1237 record_excess_regs (rtx in_this
, rtx not_in_this
, rtx
*output
)
1243 code
= GET_CODE (in_this
);
1257 if (REGNO (in_this
) >= FIRST_PSEUDO_REGISTER
1258 && ! reg_mentioned_p (in_this
, not_in_this
))
1259 *output
= gen_rtx_EXPR_LIST (VOIDmode
, in_this
, *output
);
1266 fmt
= GET_RTX_FORMAT (code
);
1267 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1274 for (j
= 0; j
< XVECLEN (in_this
, i
); j
++)
1275 record_excess_regs (XVECEXP (in_this
, i
, j
), not_in_this
, output
);
1279 record_excess_regs (XEXP (in_this
, i
), not_in_this
, output
);
1285 /* Check what regs are referred to in the libcall block ending with INSN,
1286 aside from those mentioned in the equivalent value.
1287 If there are none, return 0.
1288 If there are one or more, return an EXPR_LIST containing all of them. */
1291 libcall_other_reg (rtx insn
, rtx equiv
)
1293 rtx note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1294 rtx p
= XEXP (note
, 0);
1297 /* First, find all the regs used in the libcall block
1298 that are not mentioned as inputs to the result. */
1302 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
1303 || GET_CODE (p
) == CALL_INSN
)
1304 record_excess_regs (PATTERN (p
), equiv
, &output
);
1311 /* Return 1 if all uses of REG
1312 are between INSN and the end of the basic block. */
1315 reg_in_basic_block_p (rtx insn
, rtx reg
)
1317 int regno
= REGNO (reg
);
1320 if (REGNO_FIRST_UID (regno
) != INSN_UID (insn
))
1323 /* Search this basic block for the already recorded last use of the reg. */
1324 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1326 switch (GET_CODE (p
))
1333 /* Ordinary insn: if this is the last use, we win. */
1334 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1339 /* Jump insn: if this is the last use, we win. */
1340 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1342 /* Otherwise, it's the end of the basic block, so we lose. */
1347 /* It's the end of the basic block, so we lose. */
1355 /* The "last use" that was recorded can't be found after the first
1356 use. This can happen when the last use was deleted while
1357 processing an inner loop, this inner loop was then completely
1358 unrolled, and the outer loop is always exited after the inner loop,
1359 so that everything after the first use becomes a single basic block. */
1363 /* Compute the benefit of eliminating the insns in the block whose
1364 last insn is LAST. This may be a group of insns used to compute a
1365 value directly or can contain a library call. */
1368 libcall_benefit (rtx last
)
1373 for (insn
= XEXP (find_reg_note (last
, REG_RETVAL
, NULL_RTX
), 0);
1374 insn
!= last
; insn
= NEXT_INSN (insn
))
1376 if (GET_CODE (insn
) == CALL_INSN
)
1377 benefit
+= 10; /* Assume at least this many insns in a library
1379 else if (GET_CODE (insn
) == INSN
1380 && GET_CODE (PATTERN (insn
)) != USE
1381 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
1388 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1391 skip_consec_insns (rtx insn
, int count
)
1393 for (; count
> 0; count
--)
1397 /* If first insn of libcall sequence, skip to end. */
1398 /* Do this at start of loop, since INSN is guaranteed to
1400 if (GET_CODE (insn
) != NOTE
1401 && (temp
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
1402 insn
= XEXP (temp
, 0);
1405 insn
= NEXT_INSN (insn
);
1406 while (GET_CODE (insn
) == NOTE
);
1412 /* Ignore any movable whose insn falls within a libcall
1413 which is part of another movable.
1414 We make use of the fact that the movable for the libcall value
1415 was made later and so appears later on the chain. */
1418 ignore_some_movables (struct loop_movables
*movables
)
1420 struct movable
*m
, *m1
;
1422 for (m
= movables
->head
; m
; m
= m
->next
)
1424 /* Is this a movable for the value of a libcall? */
1425 rtx note
= find_reg_note (m
->insn
, REG_RETVAL
, NULL_RTX
);
1429 /* Check for earlier movables inside that range,
1430 and mark them invalid. We cannot use LUIDs here because
1431 insns created by loop.c for prior loops don't have LUIDs.
1432 Rather than reject all such insns from movables, we just
1433 explicitly check each insn in the libcall (since invariant
1434 libcalls aren't that common). */
1435 for (insn
= XEXP (note
, 0); insn
!= m
->insn
; insn
= NEXT_INSN (insn
))
1436 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1437 if (m1
->insn
== insn
)
1443 /* For each movable insn, see if the reg that it loads
1444 leads when it dies right into another conditionally movable insn.
1445 If so, record that the second insn "forces" the first one,
1446 since the second can be moved only if the first is. */
1449 force_movables (struct loop_movables
*movables
)
1451 struct movable
*m
, *m1
;
1453 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
1454 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1455 if (!m1
->partial
&& !m1
->done
)
1457 int regno
= m1
->regno
;
1458 for (m
= m1
->next
; m
; m
= m
->next
)
1459 /* ??? Could this be a bug? What if CSE caused the
1460 register of M1 to be used after this insn?
1461 Since CSE does not update regno_last_uid,
1462 this insn M->insn might not be where it dies.
1463 But very likely this doesn't matter; what matters is
1464 that M's reg is computed from M1's reg. */
1465 if (INSN_UID (m
->insn
) == REGNO_LAST_UID (regno
)
1468 if (m
!= 0 && m
->set_src
== m1
->set_dest
1469 /* If m->consec, m->set_src isn't valid. */
1473 /* Increase the priority of the moving the first insn
1474 since it permits the second to be moved as well.
1475 Likewise for insns already forced by the first insn. */
1481 for (m2
= m1
; m2
; m2
= m2
->forces
)
1483 m2
->lifetime
+= m
->lifetime
;
1484 m2
->savings
+= m
->savings
;
1490 /* Find invariant expressions that are equal and can be combined into
1494 combine_movables (struct loop_movables
*movables
, struct loop_regs
*regs
)
1497 char *matched_regs
= xmalloc (regs
->num
);
1498 enum machine_mode mode
;
1500 /* Regs that are set more than once are not allowed to match
1501 or be matched. I'm no longer sure why not. */
1502 /* Only pseudo registers are allowed to match or be matched,
1503 since move_movables does not validate the change. */
1504 /* Perhaps testing m->consec_sets would be more appropriate here? */
1506 for (m
= movables
->head
; m
; m
= m
->next
)
1507 if (m
->match
== 0 && regs
->array
[m
->regno
].n_times_set
== 1
1508 && m
->regno
>= FIRST_PSEUDO_REGISTER
1513 int regno
= m
->regno
;
1515 memset (matched_regs
, 0, regs
->num
);
1516 matched_regs
[regno
] = 1;
1518 /* We want later insns to match the first one. Don't make the first
1519 one match any later ones. So start this loop at m->next. */
1520 for (m1
= m
->next
; m1
; m1
= m1
->next
)
1521 if (m
!= m1
&& m1
->match
== 0
1523 && regs
->array
[m1
->regno
].n_times_set
== 1
1524 && m1
->regno
>= FIRST_PSEUDO_REGISTER
1525 /* A reg used outside the loop mustn't be eliminated. */
1527 /* A reg used for zero-extending mustn't be eliminated. */
1529 && (matched_regs
[m1
->regno
]
1532 /* Can combine regs with different modes loaded from the
1533 same constant only if the modes are the same or
1534 if both are integer modes with M wider or the same
1535 width as M1. The check for integer is redundant, but
1536 safe, since the only case of differing destination
1537 modes with equal sources is when both sources are
1538 VOIDmode, i.e., CONST_INT. */
1539 (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
)
1540 || (GET_MODE_CLASS (GET_MODE (m
->set_dest
)) == MODE_INT
1541 && GET_MODE_CLASS (GET_MODE (m1
->set_dest
)) == MODE_INT
1542 && (GET_MODE_BITSIZE (GET_MODE (m
->set_dest
))
1543 >= GET_MODE_BITSIZE (GET_MODE (m1
->set_dest
)))))
1544 /* See if the source of M1 says it matches M. */
1545 && ((GET_CODE (m1
->set_src
) == REG
1546 && matched_regs
[REGNO (m1
->set_src
)])
1547 || rtx_equal_for_loop_p (m
->set_src
, m1
->set_src
,
1549 && ((m
->dependencies
== m1
->dependencies
)
1550 || rtx_equal_p (m
->dependencies
, m1
->dependencies
)))
1552 m
->lifetime
+= m1
->lifetime
;
1553 m
->savings
+= m1
->savings
;
1556 matched_regs
[m1
->regno
] = 1;
1560 /* Now combine the regs used for zero-extension.
1561 This can be done for those not marked `global'
1562 provided their lives don't overlap. */
1564 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1565 mode
= GET_MODE_WIDER_MODE (mode
))
1567 struct movable
*m0
= 0;
1569 /* Combine all the registers for extension from mode MODE.
1570 Don't combine any that are used outside this loop. */
1571 for (m
= movables
->head
; m
; m
= m
->next
)
1572 if (m
->partial
&& ! m
->global
1573 && mode
== GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m
->insn
)))))
1577 int first
= REGNO_FIRST_LUID (m
->regno
);
1578 int last
= REGNO_LAST_LUID (m
->regno
);
1582 /* First one: don't check for overlap, just record it. */
1587 /* Make sure they extend to the same mode.
1588 (Almost always true.) */
1589 if (GET_MODE (m
->set_dest
) != GET_MODE (m0
->set_dest
))
1592 /* We already have one: check for overlap with those
1593 already combined together. */
1594 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1595 if (m1
== m0
|| (m1
->partial
&& m1
->match
== m0
))
1596 if (! (REGNO_FIRST_LUID (m1
->regno
) > last
1597 || REGNO_LAST_LUID (m1
->regno
) < first
))
1600 /* No overlap: we can combine this with the others. */
1601 m0
->lifetime
+= m
->lifetime
;
1602 m0
->savings
+= m
->savings
;
1612 free (matched_regs
);
1615 /* Returns the number of movable instructions in LOOP that were not
1616 moved outside the loop. */
1619 num_unmoved_movables (const struct loop
*loop
)
1624 for (m
= LOOP_MOVABLES (loop
)->head
; m
; m
= m
->next
)
1632 /* Return 1 if regs X and Y will become the same if moved. */
1635 regs_match_p (rtx x
, rtx y
, struct loop_movables
*movables
)
1637 unsigned int xn
= REGNO (x
);
1638 unsigned int yn
= REGNO (y
);
1639 struct movable
*mx
, *my
;
1641 for (mx
= movables
->head
; mx
; mx
= mx
->next
)
1642 if (mx
->regno
== xn
)
1645 for (my
= movables
->head
; my
; my
= my
->next
)
1646 if (my
->regno
== yn
)
1650 && ((mx
->match
== my
->match
&& mx
->match
!= 0)
1652 || mx
== my
->match
));
1655 /* Return 1 if X and Y are identical-looking rtx's.
1656 This is the Lisp function EQUAL for rtx arguments.
1658 If two registers are matching movables or a movable register and an
1659 equivalent constant, consider them equal. */
1662 rtx_equal_for_loop_p (rtx x
, rtx y
, struct loop_movables
*movables
,
1663 struct loop_regs
*regs
)
1673 if (x
== 0 || y
== 0)
1676 code
= GET_CODE (x
);
1678 /* If we have a register and a constant, they may sometimes be
1680 if (GET_CODE (x
) == REG
&& regs
->array
[REGNO (x
)].set_in_loop
== -2
1683 for (m
= movables
->head
; m
; m
= m
->next
)
1684 if (m
->move_insn
&& m
->regno
== REGNO (x
)
1685 && rtx_equal_p (m
->set_src
, y
))
1688 else if (GET_CODE (y
) == REG
&& regs
->array
[REGNO (y
)].set_in_loop
== -2
1691 for (m
= movables
->head
; m
; m
= m
->next
)
1692 if (m
->move_insn
&& m
->regno
== REGNO (y
)
1693 && rtx_equal_p (m
->set_src
, x
))
1697 /* Otherwise, rtx's of different codes cannot be equal. */
1698 if (code
!= GET_CODE (y
))
1701 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1702 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1704 if (GET_MODE (x
) != GET_MODE (y
))
1707 /* These three types of rtx's can be compared nonrecursively. */
1709 return (REGNO (x
) == REGNO (y
) || regs_match_p (x
, y
, movables
));
1711 if (code
== LABEL_REF
)
1712 return XEXP (x
, 0) == XEXP (y
, 0);
1713 if (code
== SYMBOL_REF
)
1714 return XSTR (x
, 0) == XSTR (y
, 0);
1716 /* Compare the elements. If any pair of corresponding elements
1717 fail to match, return 0 for the whole things. */
1719 fmt
= GET_RTX_FORMAT (code
);
1720 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1725 if (XWINT (x
, i
) != XWINT (y
, i
))
1730 if (XINT (x
, i
) != XINT (y
, i
))
1735 /* Two vectors must have the same length. */
1736 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1739 /* And the corresponding elements must match. */
1740 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1741 if (rtx_equal_for_loop_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
1742 movables
, regs
) == 0)
1747 if (rtx_equal_for_loop_p (XEXP (x
, i
), XEXP (y
, i
), movables
, regs
)
1753 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1758 /* These are just backpointers, so they don't matter. */
1764 /* It is believed that rtx's at this level will never
1765 contain anything but integers and other rtx's,
1766 except for within LABEL_REFs and SYMBOL_REFs. */
1774 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1775 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1776 references is incremented once for each added note. */
1779 add_label_notes (rtx x
, rtx insns
)
1781 enum rtx_code code
= GET_CODE (x
);
1786 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
1788 /* This code used to ignore labels that referred to dispatch tables to
1789 avoid flow generating (slightly) worse code.
1791 We no longer ignore such label references (see LABEL_REF handling in
1792 mark_jump_label for additional information). */
1793 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
1794 if (reg_mentioned_p (XEXP (x
, 0), insn
))
1796 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
1798 if (LABEL_P (XEXP (x
, 0)))
1799 LABEL_NUSES (XEXP (x
, 0))++;
1803 fmt
= GET_RTX_FORMAT (code
);
1804 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1807 add_label_notes (XEXP (x
, i
), insns
);
1808 else if (fmt
[i
] == 'E')
1809 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1810 add_label_notes (XVECEXP (x
, i
, j
), insns
);
1814 /* Scan MOVABLES, and move the insns that deserve to be moved.
1815 If two matching movables are combined, replace one reg with the
1816 other throughout. */
1819 move_movables (struct loop
*loop
, struct loop_movables
*movables
,
1820 int threshold
, int insn_count
)
1822 struct loop_regs
*regs
= LOOP_REGS (loop
);
1823 int nregs
= regs
->num
;
1827 rtx loop_start
= loop
->start
;
1828 rtx loop_end
= loop
->end
;
1829 /* Map of pseudo-register replacements to handle combining
1830 when we move several insns that load the same value
1831 into different pseudo-registers. */
1832 rtx
*reg_map
= xcalloc (nregs
, sizeof (rtx
));
1833 char *already_moved
= xcalloc (nregs
, sizeof (char));
1835 for (m
= movables
->head
; m
; m
= m
->next
)
1837 /* Describe this movable insn. */
1839 if (loop_dump_stream
)
1841 fprintf (loop_dump_stream
, "Insn %d: regno %d (life %d), ",
1842 INSN_UID (m
->insn
), m
->regno
, m
->lifetime
);
1844 fprintf (loop_dump_stream
, "consec %d, ", m
->consec
);
1846 fprintf (loop_dump_stream
, "cond ");
1848 fprintf (loop_dump_stream
, "force ");
1850 fprintf (loop_dump_stream
, "global ");
1852 fprintf (loop_dump_stream
, "done ");
1854 fprintf (loop_dump_stream
, "move-insn ");
1856 fprintf (loop_dump_stream
, "matches %d ",
1857 INSN_UID (m
->match
->insn
));
1859 fprintf (loop_dump_stream
, "forces %d ",
1860 INSN_UID (m
->forces
->insn
));
1863 /* Ignore the insn if it's already done (it matched something else).
1864 Otherwise, see if it is now safe to move. */
1868 || (1 == loop_invariant_p (loop
, m
->set_src
)
1869 && (m
->dependencies
== 0
1870 || 1 == loop_invariant_p (loop
, m
->dependencies
))
1872 || 1 == consec_sets_invariant_p (loop
, m
->set_dest
,
1875 && (! m
->forces
|| m
->forces
->done
))
1879 int savings
= m
->savings
;
1881 /* We have an insn that is safe to move.
1882 Compute its desirability. */
1887 if (loop_dump_stream
)
1888 fprintf (loop_dump_stream
, "savings %d ", savings
);
1890 if (regs
->array
[regno
].moved_once
&& loop_dump_stream
)
1891 fprintf (loop_dump_stream
, "halved since already moved ");
1893 /* An insn MUST be moved if we already moved something else
1894 which is safe only if this one is moved too: that is,
1895 if already_moved[REGNO] is nonzero. */
1897 /* An insn is desirable to move if the new lifetime of the
1898 register is no more than THRESHOLD times the old lifetime.
1899 If it's not desirable, it means the loop is so big
1900 that moving won't speed things up much,
1901 and it is liable to make register usage worse. */
1903 /* It is also desirable to move if it can be moved at no
1904 extra cost because something else was already moved. */
1906 if (already_moved
[regno
]
1907 || flag_move_all_movables
1908 || (threshold
* savings
* m
->lifetime
) >=
1909 (regs
->array
[regno
].moved_once
? insn_count
* 2 : insn_count
)
1910 || (m
->forces
&& m
->forces
->done
1911 && regs
->array
[m
->forces
->regno
].n_times_set
== 1))
1915 rtx first
= NULL_RTX
;
1916 rtx newreg
= NULL_RTX
;
1919 newreg
= gen_reg_rtx (GET_MODE (m
->set_dest
));
1921 /* Now move the insns that set the reg. */
1923 if (m
->partial
&& m
->match
)
1927 /* Find the end of this chain of matching regs.
1928 Thus, we load each reg in the chain from that one reg.
1929 And that reg is loaded with 0 directly,
1930 since it has ->match == 0. */
1931 for (m1
= m
; m1
->match
; m1
= m1
->match
);
1932 newpat
= gen_move_insn (SET_DEST (PATTERN (m
->insn
)),
1933 SET_DEST (PATTERN (m1
->insn
)));
1934 i1
= loop_insn_hoist (loop
, newpat
);
1936 /* Mark the moved, invariant reg as being allowed to
1937 share a hard reg with the other matching invariant. */
1938 REG_NOTES (i1
) = REG_NOTES (m
->insn
);
1939 r1
= SET_DEST (PATTERN (m
->insn
));
1940 r2
= SET_DEST (PATTERN (m1
->insn
));
1942 = gen_rtx_EXPR_LIST (VOIDmode
, r1
,
1943 gen_rtx_EXPR_LIST (VOIDmode
, r2
,
1945 delete_insn (m
->insn
);
1950 if (loop_dump_stream
)
1951 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
1953 /* If we are to re-generate the item being moved with a
1954 new move insn, first delete what we have and then emit
1955 the move insn before the loop. */
1956 else if (m
->move_insn
)
1960 for (count
= m
->consec
; count
>= 0; count
--)
1962 /* If this is the first insn of a library call sequence,
1963 something is very wrong. */
1964 if (GET_CODE (p
) != NOTE
1965 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
1968 /* If this is the last insn of a libcall sequence, then
1969 delete every insn in the sequence except the last.
1970 The last insn is handled in the normal manner. */
1971 if (GET_CODE (p
) != NOTE
1972 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
1974 temp
= XEXP (temp
, 0);
1976 temp
= delete_insn (temp
);
1980 p
= delete_insn (p
);
1982 /* simplify_giv_expr expects that it can walk the insns
1983 at m->insn forwards and see this old sequence we are
1984 tossing here. delete_insn does preserve the next
1985 pointers, but when we skip over a NOTE we must fix
1986 it up. Otherwise that code walks into the non-deleted
1988 while (p
&& GET_CODE (p
) == NOTE
)
1989 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
1993 /* Replace the original insn with a move from
1994 our newly created temp. */
1996 emit_move_insn (m
->set_dest
, newreg
);
1999 emit_insn_before (seq
, p
);
2004 emit_move_insn (m
->insert_temp
? newreg
: m
->set_dest
,
2009 add_label_notes (m
->set_src
, seq
);
2011 i1
= loop_insn_hoist (loop
, seq
);
2012 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2013 set_unique_reg_note (i1
,
2014 m
->is_equiv
? REG_EQUIV
: REG_EQUAL
,
2017 if (loop_dump_stream
)
2018 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
2020 /* The more regs we move, the less we like moving them. */
2025 for (count
= m
->consec
; count
>= 0; count
--)
2029 /* If first insn of libcall sequence, skip to end. */
2030 /* Do this at start of loop, since p is guaranteed to
2032 if (GET_CODE (p
) != NOTE
2033 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
2036 /* If last insn of libcall sequence, move all
2037 insns except the last before the loop. The last
2038 insn is handled in the normal manner. */
2039 if (GET_CODE (p
) != NOTE
2040 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
2044 rtx fn_address_insn
= 0;
2047 for (temp
= XEXP (temp
, 0); temp
!= p
;
2048 temp
= NEXT_INSN (temp
))
2054 if (GET_CODE (temp
) == NOTE
)
2057 body
= PATTERN (temp
);
2059 /* Find the next insn after TEMP,
2060 not counting USE or NOTE insns. */
2061 for (next
= NEXT_INSN (temp
); next
!= p
;
2062 next
= NEXT_INSN (next
))
2063 if (! (GET_CODE (next
) == INSN
2064 && GET_CODE (PATTERN (next
)) == USE
)
2065 && GET_CODE (next
) != NOTE
)
2068 /* If that is the call, this may be the insn
2069 that loads the function address.
2071 Extract the function address from the insn
2072 that loads it into a register.
2073 If this insn was cse'd, we get incorrect code.
2075 So emit a new move insn that copies the
2076 function address into the register that the
2077 call insn will use. flow.c will delete any
2078 redundant stores that we have created. */
2079 if (GET_CODE (next
) == CALL_INSN
2080 && GET_CODE (body
) == SET
2081 && GET_CODE (SET_DEST (body
)) == REG
2082 && (n
= find_reg_note (temp
, REG_EQUAL
,
2085 fn_reg
= SET_SRC (body
);
2086 if (GET_CODE (fn_reg
) != REG
)
2087 fn_reg
= SET_DEST (body
);
2088 fn_address
= XEXP (n
, 0);
2089 fn_address_insn
= temp
;
2091 /* We have the call insn.
2092 If it uses the register we suspect it might,
2093 load it with the correct address directly. */
2094 if (GET_CODE (temp
) == CALL_INSN
2096 && reg_referenced_p (fn_reg
, body
))
2097 loop_insn_emit_after (loop
, 0, fn_address_insn
,
2099 (fn_reg
, fn_address
));
2101 if (GET_CODE (temp
) == CALL_INSN
)
2103 i1
= loop_call_insn_hoist (loop
, body
);
2104 /* Because the USAGE information potentially
2105 contains objects other than hard registers
2106 we need to copy it. */
2107 if (CALL_INSN_FUNCTION_USAGE (temp
))
2108 CALL_INSN_FUNCTION_USAGE (i1
)
2109 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp
));
2112 i1
= loop_insn_hoist (loop
, body
);
2115 if (temp
== fn_address_insn
)
2116 fn_address_insn
= i1
;
2117 REG_NOTES (i1
) = REG_NOTES (temp
);
2118 REG_NOTES (temp
) = NULL
;
2124 if (m
->savemode
!= VOIDmode
)
2126 /* P sets REG to zero; but we should clear only
2127 the bits that are not covered by the mode
2129 rtx reg
= m
->set_dest
;
2134 tem
= expand_simple_binop
2135 (GET_MODE (reg
), AND
, reg
,
2136 GEN_INT ((((HOST_WIDE_INT
) 1
2137 << GET_MODE_BITSIZE (m
->savemode
)))
2139 reg
, 1, OPTAB_LIB_WIDEN
);
2143 emit_move_insn (reg
, tem
);
2144 sequence
= get_insns ();
2146 i1
= loop_insn_hoist (loop
, sequence
);
2148 else if (GET_CODE (p
) == CALL_INSN
)
2150 i1
= loop_call_insn_hoist (loop
, PATTERN (p
));
2151 /* Because the USAGE information potentially
2152 contains objects other than hard registers
2153 we need to copy it. */
2154 if (CALL_INSN_FUNCTION_USAGE (p
))
2155 CALL_INSN_FUNCTION_USAGE (i1
)
2156 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p
));
2158 else if (count
== m
->consec
&& m
->move_insn_first
)
2161 /* The SET_SRC might not be invariant, so we must
2162 use the REG_EQUAL note. */
2164 emit_move_insn (m
->insert_temp
? newreg
: m
->set_dest
,
2169 add_label_notes (m
->set_src
, seq
);
2171 i1
= loop_insn_hoist (loop
, seq
);
2172 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2173 set_unique_reg_note (i1
, m
->is_equiv
? REG_EQUIV
2174 : REG_EQUAL
, m
->set_src
);
2176 else if (m
->insert_temp
)
2178 rtx
*reg_map2
= xcalloc (REGNO (newreg
),
2180 reg_map2
[m
->regno
] = newreg
;
2182 i1
= loop_insn_hoist (loop
, copy_rtx (PATTERN (p
)));
2183 replace_regs (i1
, reg_map2
, REGNO (newreg
), 1);
2187 i1
= loop_insn_hoist (loop
, PATTERN (p
));
2189 if (REG_NOTES (i1
) == 0)
2191 REG_NOTES (i1
) = REG_NOTES (p
);
2192 REG_NOTES (p
) = NULL
;
2194 /* If there is a REG_EQUAL note present whose value
2195 is not loop invariant, then delete it, since it
2196 may cause problems with later optimization passes.
2197 It is possible for cse to create such notes
2198 like this as a result of record_jump_cond. */
2200 if ((temp
= find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2201 && ! loop_invariant_p (loop
, XEXP (temp
, 0)))
2202 remove_note (i1
, temp
);
2208 if (loop_dump_stream
)
2209 fprintf (loop_dump_stream
, " moved to %d",
2212 /* If library call, now fix the REG_NOTES that contain
2213 insn pointers, namely REG_LIBCALL on FIRST
2214 and REG_RETVAL on I1. */
2215 if ((temp
= find_reg_note (i1
, REG_RETVAL
, NULL_RTX
)))
2217 XEXP (temp
, 0) = first
;
2218 temp
= find_reg_note (first
, REG_LIBCALL
, NULL_RTX
);
2219 XEXP (temp
, 0) = i1
;
2226 /* simplify_giv_expr expects that it can walk the insns
2227 at m->insn forwards and see this old sequence we are
2228 tossing here. delete_insn does preserve the next
2229 pointers, but when we skip over a NOTE we must fix
2230 it up. Otherwise that code walks into the non-deleted
2232 while (p
&& GET_CODE (p
) == NOTE
)
2233 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
2238 /* Replace the original insn with a move from
2239 our newly created temp. */
2241 emit_move_insn (m
->set_dest
, newreg
);
2244 emit_insn_before (seq
, p
);
2248 /* The more regs we move, the less we like moving them. */
2254 if (!m
->insert_temp
)
2256 /* Any other movable that loads the same register
2258 already_moved
[regno
] = 1;
2260 /* This reg has been moved out of one loop. */
2261 regs
->array
[regno
].moved_once
= 1;
2263 /* The reg set here is now invariant. */
2267 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, m
->set_dest
); i
++)
2268 regs
->array
[regno
+i
].set_in_loop
= 0;
2271 /* Change the length-of-life info for the register
2272 to say it lives at least the full length of this loop.
2273 This will help guide optimizations in outer loops. */
2275 if (REGNO_FIRST_LUID (regno
) > INSN_LUID (loop_start
))
2276 /* This is the old insn before all the moved insns.
2277 We can't use the moved insn because it is out of range
2278 in uid_luid. Only the old insns have luids. */
2279 REGNO_FIRST_UID (regno
) = INSN_UID (loop_start
);
2280 if (REGNO_LAST_LUID (regno
) < INSN_LUID (loop_end
))
2281 REGNO_LAST_UID (regno
) = INSN_UID (loop_end
);
2284 /* Combine with this moved insn any other matching movables. */
2287 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
2292 /* Schedule the reg loaded by M1
2293 for replacement so that shares the reg of M.
2294 If the modes differ (only possible in restricted
2295 circumstances, make a SUBREG.
2297 Note this assumes that the target dependent files
2298 treat REG and SUBREG equally, including within
2299 GO_IF_LEGITIMATE_ADDRESS and in all the
2300 predicates since we never verify that replacing the
2301 original register with a SUBREG results in a
2302 recognizable insn. */
2303 if (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
))
2304 reg_map
[m1
->regno
] = m
->set_dest
;
2307 = gen_lowpart_common (GET_MODE (m1
->set_dest
),
2310 /* Get rid of the matching insn
2311 and prevent further processing of it. */
2314 /* If library call, delete all insns. */
2315 if ((temp
= find_reg_note (m1
->insn
, REG_RETVAL
,
2317 delete_insn_chain (XEXP (temp
, 0), m1
->insn
);
2319 delete_insn (m1
->insn
);
2321 /* Any other movable that loads the same register
2323 already_moved
[m1
->regno
] = 1;
2325 /* The reg merged here is now invariant,
2326 if the reg it matches is invariant. */
2331 i
< LOOP_REGNO_NREGS (regno
, m1
->set_dest
);
2333 regs
->array
[m1
->regno
+i
].set_in_loop
= 0;
2337 else if (loop_dump_stream
)
2338 fprintf (loop_dump_stream
, "not desirable");
2340 else if (loop_dump_stream
&& !m
->match
)
2341 fprintf (loop_dump_stream
, "not safe");
2343 if (loop_dump_stream
)
2344 fprintf (loop_dump_stream
, "\n");
2348 new_start
= loop_start
;
2350 /* Go through all the instructions in the loop, making
2351 all the register substitutions scheduled in REG_MAP. */
2352 for (p
= new_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
2353 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
2354 || GET_CODE (p
) == CALL_INSN
)
2356 replace_regs (PATTERN (p
), reg_map
, nregs
, 0);
2357 replace_regs (REG_NOTES (p
), reg_map
, nregs
, 0);
2363 free (already_moved
);
2368 loop_movables_add (struct loop_movables
*movables
, struct movable
*m
)
2370 if (movables
->head
== 0)
2373 movables
->last
->next
= m
;
2379 loop_movables_free (struct loop_movables
*movables
)
2382 struct movable
*m_next
;
2384 for (m
= movables
->head
; m
; m
= m_next
)
2392 /* Scan X and replace the address of any MEM in it with ADDR.
2393 REG is the address that MEM should have before the replacement. */
2396 replace_call_address (rtx x
, rtx reg
, rtx addr
)
2404 code
= GET_CODE (x
);
2418 /* Short cut for very common case. */
2419 replace_call_address (XEXP (x
, 1), reg
, addr
);
2423 /* Short cut for very common case. */
2424 replace_call_address (XEXP (x
, 0), reg
, addr
);
2428 /* If this MEM uses a reg other than the one we expected,
2429 something is wrong. */
2430 if (XEXP (x
, 0) != reg
)
2439 fmt
= GET_RTX_FORMAT (code
);
2440 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2443 replace_call_address (XEXP (x
, i
), reg
, addr
);
2444 else if (fmt
[i
] == 'E')
2447 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2448 replace_call_address (XVECEXP (x
, i
, j
), reg
, addr
);
2454 /* Return the number of memory refs to addresses that vary
2458 count_nonfixed_reads (const struct loop
*loop
, rtx x
)
2468 code
= GET_CODE (x
);
2482 return ((loop_invariant_p (loop
, XEXP (x
, 0)) != 1)
2483 + count_nonfixed_reads (loop
, XEXP (x
, 0)));
2490 fmt
= GET_RTX_FORMAT (code
);
2491 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2494 value
+= count_nonfixed_reads (loop
, XEXP (x
, i
));
2498 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2499 value
+= count_nonfixed_reads (loop
, XVECEXP (x
, i
, j
));
2505 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2506 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2507 `unknown_address_altered', `unknown_constant_address_altered', and
2508 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2509 list `store_mems' in LOOP. */
2512 prescan_loop (struct loop
*loop
)
2516 struct loop_info
*loop_info
= LOOP_INFO (loop
);
2517 rtx start
= loop
->start
;
2518 rtx end
= loop
->end
;
2519 /* The label after END. Jumping here is just like falling off the
2520 end of the loop. We use next_nonnote_insn instead of next_label
2521 as a hedge against the (pathological) case where some actual insn
2522 might end up between the two. */
2523 rtx exit_target
= next_nonnote_insn (end
);
2525 loop_info
->has_indirect_jump
= indirect_jump_in_function
;
2526 loop_info
->pre_header_has_call
= 0;
2527 loop_info
->has_call
= 0;
2528 loop_info
->has_nonconst_call
= 0;
2529 loop_info
->has_prefetch
= 0;
2530 loop_info
->has_volatile
= 0;
2531 loop_info
->has_tablejump
= 0;
2532 loop_info
->has_multiple_exit_targets
= 0;
2535 loop_info
->unknown_address_altered
= 0;
2536 loop_info
->unknown_constant_address_altered
= 0;
2537 loop_info
->store_mems
= NULL_RTX
;
2538 loop_info
->first_loop_store_insn
= NULL_RTX
;
2539 loop_info
->mems_idx
= 0;
2540 loop_info
->num_mem_sets
= 0;
2541 /* If loop opts run twice, this was set on 1st pass for 2nd. */
2542 loop_info
->preconditioned
= NOTE_PRECONDITIONED (end
);
2544 for (insn
= start
; insn
&& GET_CODE (insn
) != CODE_LABEL
;
2545 insn
= PREV_INSN (insn
))
2547 if (GET_CODE (insn
) == CALL_INSN
)
2549 loop_info
->pre_header_has_call
= 1;
2554 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2555 insn
= NEXT_INSN (insn
))
2557 switch (GET_CODE (insn
))
2560 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
2563 /* Count number of loops contained in this one. */
2566 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
2571 if (! CONST_OR_PURE_CALL_P (insn
))
2573 loop_info
->unknown_address_altered
= 1;
2574 loop_info
->has_nonconst_call
= 1;
2576 else if (pure_call_p (insn
))
2577 loop_info
->has_nonconst_call
= 1;
2578 loop_info
->has_call
= 1;
2579 if (can_throw_internal (insn
))
2580 loop_info
->has_multiple_exit_targets
= 1;
2582 /* Calls initializing constant objects have CLOBBER of MEM /u in the
2583 attached FUNCTION_USAGE expression list, not accounted for by the
2584 code above. We should note these to avoid missing dependencies in
2585 later references. */
2589 for (fusage_entry
= CALL_INSN_FUNCTION_USAGE (insn
);
2590 fusage_entry
; fusage_entry
= XEXP (fusage_entry
, 1))
2592 rtx fusage
= XEXP (fusage_entry
, 0);
2594 if (GET_CODE (fusage
) == CLOBBER
2595 && GET_CODE (XEXP (fusage
, 0)) == MEM
2596 && RTX_UNCHANGING_P (XEXP (fusage
, 0)))
2598 note_stores (fusage
, note_addr_stored
, loop_info
);
2599 if (! loop_info
->first_loop_store_insn
2600 && loop_info
->store_mems
)
2601 loop_info
->first_loop_store_insn
= insn
;
2608 if (! loop_info
->has_multiple_exit_targets
)
2610 rtx set
= pc_set (insn
);
2614 rtx src
= SET_SRC (set
);
2617 if (GET_CODE (src
) == IF_THEN_ELSE
)
2619 label1
= XEXP (src
, 1);
2620 label2
= XEXP (src
, 2);
2630 if (label1
&& label1
!= pc_rtx
)
2632 if (GET_CODE (label1
) != LABEL_REF
)
2634 /* Something tricky. */
2635 loop_info
->has_multiple_exit_targets
= 1;
2638 else if (XEXP (label1
, 0) != exit_target
2639 && LABEL_OUTSIDE_LOOP_P (label1
))
2641 /* A jump outside the current loop. */
2642 loop_info
->has_multiple_exit_targets
= 1;
2654 /* A return, or something tricky. */
2655 loop_info
->has_multiple_exit_targets
= 1;
2661 if (volatile_refs_p (PATTERN (insn
)))
2662 loop_info
->has_volatile
= 1;
2664 if (GET_CODE (insn
) == JUMP_INSN
2665 && (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
2666 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
))
2667 loop_info
->has_tablejump
= 1;
2669 note_stores (PATTERN (insn
), note_addr_stored
, loop_info
);
2670 if (! loop_info
->first_loop_store_insn
&& loop_info
->store_mems
)
2671 loop_info
->first_loop_store_insn
= insn
;
2673 if (flag_non_call_exceptions
&& can_throw_internal (insn
))
2674 loop_info
->has_multiple_exit_targets
= 1;
2682 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2683 if (/* An exception thrown by a called function might land us
2685 ! loop_info
->has_nonconst_call
2686 /* We don't want loads for MEMs moved to a location before the
2687 one at which their stack memory becomes allocated. (Note
2688 that this is not a problem for malloc, etc., since those
2689 require actual function calls. */
2690 && ! current_function_calls_alloca
2691 /* There are ways to leave the loop other than falling off the
2693 && ! loop_info
->has_multiple_exit_targets
)
2694 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2695 insn
= NEXT_INSN (insn
))
2696 for_each_rtx (&insn
, insert_loop_mem
, loop_info
);
2698 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2699 that loop_invariant_p and load_mems can use true_dependence
2700 to determine what is really clobbered. */
2701 if (loop_info
->unknown_address_altered
)
2703 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
2705 loop_info
->store_mems
2706 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
2708 if (loop_info
->unknown_constant_address_altered
)
2710 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
2712 RTX_UNCHANGING_P (mem
) = 1;
2713 loop_info
->store_mems
2714 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
2718 /* Invalidate all loops containing LABEL. */
2721 invalidate_loops_containing_label (rtx label
)
2724 for (loop
= uid_loop
[INSN_UID (label
)]; loop
; loop
= loop
->outer
)
2728 /* Scan the function looking for loops. Record the start and end of each loop.
2729 Also mark as invalid loops any loops that contain a setjmp or are branched
2730 to from outside the loop. */
2733 find_and_verify_loops (rtx f
, struct loops
*loops
)
2738 struct loop
*current_loop
;
2739 struct loop
*next_loop
;
2742 num_loops
= loops
->num
;
2744 compute_luids (f
, NULL_RTX
, 0);
2746 /* If there are jumps to undefined labels,
2747 treat them as jumps out of any/all loops.
2748 This also avoids writing past end of tables when there are no loops. */
2751 /* Find boundaries of loops, mark which loops are contained within
2752 loops, and invalidate loops that have setjmp. */
2755 current_loop
= NULL
;
2756 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2758 if (GET_CODE (insn
) == NOTE
)
2759 switch (NOTE_LINE_NUMBER (insn
))
2761 case NOTE_INSN_LOOP_BEG
:
2762 next_loop
= loops
->array
+ num_loops
;
2763 next_loop
->num
= num_loops
;
2765 next_loop
->start
= insn
;
2766 next_loop
->outer
= current_loop
;
2767 current_loop
= next_loop
;
2770 case NOTE_INSN_LOOP_CONT
:
2771 current_loop
->cont
= insn
;
2774 case NOTE_INSN_LOOP_VTOP
:
2775 current_loop
->vtop
= insn
;
2778 case NOTE_INSN_LOOP_END
:
2782 current_loop
->end
= insn
;
2783 current_loop
= current_loop
->outer
;
2790 if (GET_CODE (insn
) == CALL_INSN
2791 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2793 /* In this case, we must invalidate our current loop and any
2795 for (loop
= current_loop
; loop
; loop
= loop
->outer
)
2798 if (loop_dump_stream
)
2799 fprintf (loop_dump_stream
,
2800 "\nLoop at %d ignored due to setjmp.\n",
2801 INSN_UID (loop
->start
));
2805 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2806 enclosing loop, but this doesn't matter. */
2807 uid_loop
[INSN_UID (insn
)] = current_loop
;
2810 /* Any loop containing a label used in an initializer must be invalidated,
2811 because it can be jumped into from anywhere. */
2812 for (label
= forced_labels
; label
; label
= XEXP (label
, 1))
2813 invalidate_loops_containing_label (XEXP (label
, 0));
2815 /* Any loop containing a label used for an exception handler must be
2816 invalidated, because it can be jumped into from anywhere. */
2817 for_each_eh_label (invalidate_loops_containing_label
);
2819 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2820 loop that it is not contained within, that loop is marked invalid.
2821 If any INSN or CALL_INSN uses a label's address, then the loop containing
2822 that label is marked invalid, because it could be jumped into from
2825 Also look for blocks of code ending in an unconditional branch that
2826 exits the loop. If such a block is surrounded by a conditional
2827 branch around the block, move the block elsewhere (see below) and
2828 invert the jump to point to the code block. This may eliminate a
2829 label in our loop and will simplify processing by both us and a
2830 possible second cse pass. */
2832 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2835 struct loop
*this_loop
= uid_loop
[INSN_UID (insn
)];
2837 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
2839 rtx note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
2841 invalidate_loops_containing_label (XEXP (note
, 0));
2844 if (GET_CODE (insn
) != JUMP_INSN
)
2847 mark_loop_jump (PATTERN (insn
), this_loop
);
2849 /* See if this is an unconditional branch outside the loop. */
2851 && (GET_CODE (PATTERN (insn
)) == RETURN
2852 || (any_uncondjump_p (insn
)
2853 && onlyjump_p (insn
)
2854 && (uid_loop
[INSN_UID (JUMP_LABEL (insn
))]
2856 && get_max_uid () < max_uid_for_loop
)
2859 rtx our_next
= next_real_insn (insn
);
2860 rtx last_insn_to_move
= NEXT_INSN (insn
);
2861 struct loop
*dest_loop
;
2862 struct loop
*outer_loop
= NULL
;
2864 /* Go backwards until we reach the start of the loop, a label,
2866 for (p
= PREV_INSN (insn
);
2867 GET_CODE (p
) != CODE_LABEL
2868 && ! (GET_CODE (p
) == NOTE
2869 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
2870 && GET_CODE (p
) != JUMP_INSN
;
2874 /* Check for the case where we have a jump to an inner nested
2875 loop, and do not perform the optimization in that case. */
2877 if (JUMP_LABEL (insn
))
2879 dest_loop
= uid_loop
[INSN_UID (JUMP_LABEL (insn
))];
2882 for (outer_loop
= dest_loop
; outer_loop
;
2883 outer_loop
= outer_loop
->outer
)
2884 if (outer_loop
== this_loop
)
2889 /* Make sure that the target of P is within the current loop. */
2891 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
)
2892 && uid_loop
[INSN_UID (JUMP_LABEL (p
))] != this_loop
)
2893 outer_loop
= this_loop
;
2895 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2896 we have a block of code to try to move.
2898 We look backward and then forward from the target of INSN
2899 to find a BARRIER at the same loop depth as the target.
2900 If we find such a BARRIER, we make a new label for the start
2901 of the block, invert the jump in P and point it to that label,
2902 and move the block of code to the spot we found. */
2905 && GET_CODE (p
) == JUMP_INSN
2906 && JUMP_LABEL (p
) != 0
2907 /* Just ignore jumps to labels that were never emitted.
2908 These always indicate compilation errors. */
2909 && INSN_UID (JUMP_LABEL (p
)) != 0
2910 && any_condjump_p (p
) && onlyjump_p (p
)
2911 && next_real_insn (JUMP_LABEL (p
)) == our_next
2912 /* If it's not safe to move the sequence, then we
2914 && insns_safe_to_move_p (p
, NEXT_INSN (insn
),
2915 &last_insn_to_move
))
2918 = JUMP_LABEL (insn
) ? JUMP_LABEL (insn
) : get_last_insn ();
2919 struct loop
*target_loop
= uid_loop
[INSN_UID (target
)];
2923 /* Search for possible garbage past the conditional jumps
2924 and look for the last barrier. */
2925 for (tmp
= last_insn_to_move
;
2926 tmp
&& GET_CODE (tmp
) != CODE_LABEL
; tmp
= NEXT_INSN (tmp
))
2927 if (GET_CODE (tmp
) == BARRIER
)
2928 last_insn_to_move
= tmp
;
2930 for (loc
= target
; loc
; loc
= PREV_INSN (loc
))
2931 if (GET_CODE (loc
) == BARRIER
2932 /* Don't move things inside a tablejump. */
2933 && ((loc2
= next_nonnote_insn (loc
)) == 0
2934 || GET_CODE (loc2
) != CODE_LABEL
2935 || (loc2
= next_nonnote_insn (loc2
)) == 0
2936 || GET_CODE (loc2
) != JUMP_INSN
2937 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2938 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2939 && uid_loop
[INSN_UID (loc
)] == target_loop
)
2943 for (loc
= target
; loc
; loc
= NEXT_INSN (loc
))
2944 if (GET_CODE (loc
) == BARRIER
2945 /* Don't move things inside a tablejump. */
2946 && ((loc2
= next_nonnote_insn (loc
)) == 0
2947 || GET_CODE (loc2
) != CODE_LABEL
2948 || (loc2
= next_nonnote_insn (loc2
)) == 0
2949 || GET_CODE (loc2
) != JUMP_INSN
2950 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2951 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2952 && uid_loop
[INSN_UID (loc
)] == target_loop
)
2957 rtx cond_label
= JUMP_LABEL (p
);
2958 rtx new_label
= get_label_after (p
);
2960 /* Ensure our label doesn't go away. */
2961 LABEL_NUSES (cond_label
)++;
2963 /* Verify that uid_loop is large enough and that
2965 if (invert_jump (p
, new_label
, 1))
2969 /* If no suitable BARRIER was found, create a suitable
2970 one before TARGET. Since TARGET is a fall through
2971 path, we'll need to insert a jump around our block
2972 and add a BARRIER before TARGET.
2974 This creates an extra unconditional jump outside
2975 the loop. However, the benefits of removing rarely
2976 executed instructions from inside the loop usually
2977 outweighs the cost of the extra unconditional jump
2978 outside the loop. */
2983 temp
= gen_jump (JUMP_LABEL (insn
));
2984 temp
= emit_jump_insn_before (temp
, target
);
2985 JUMP_LABEL (temp
) = JUMP_LABEL (insn
);
2986 LABEL_NUSES (JUMP_LABEL (insn
))++;
2987 loc
= emit_barrier_before (target
);
2990 /* Include the BARRIER after INSN and copy the
2992 if (squeeze_notes (&new_label
, &last_insn_to_move
))
2994 reorder_insns (new_label
, last_insn_to_move
, loc
);
2996 /* All those insns are now in TARGET_LOOP. */
2998 q
!= NEXT_INSN (last_insn_to_move
);
3000 uid_loop
[INSN_UID (q
)] = target_loop
;
3002 /* The label jumped to by INSN is no longer a loop
3003 exit. Unless INSN does not have a label (e.g.,
3004 it is a RETURN insn), search loop->exit_labels
3005 to find its label_ref, and remove it. Also turn
3006 off LABEL_OUTSIDE_LOOP_P bit. */
3007 if (JUMP_LABEL (insn
))
3009 for (q
= 0, r
= this_loop
->exit_labels
;
3011 q
= r
, r
= LABEL_NEXTREF (r
))
3012 if (XEXP (r
, 0) == JUMP_LABEL (insn
))
3014 LABEL_OUTSIDE_LOOP_P (r
) = 0;
3016 LABEL_NEXTREF (q
) = LABEL_NEXTREF (r
);
3018 this_loop
->exit_labels
= LABEL_NEXTREF (r
);
3022 for (loop
= this_loop
; loop
&& loop
!= target_loop
;
3026 /* If we didn't find it, then something is
3032 /* P is now a jump outside the loop, so it must be put
3033 in loop->exit_labels, and marked as such.
3034 The easiest way to do this is to just call
3035 mark_loop_jump again for P. */
3036 mark_loop_jump (PATTERN (p
), this_loop
);
3038 /* If INSN now jumps to the insn after it,
3040 if (JUMP_LABEL (insn
) != 0
3041 && (next_real_insn (JUMP_LABEL (insn
))
3042 == next_real_insn (insn
)))
3043 delete_related_insns (insn
);
3046 /* Continue the loop after where the conditional
3047 branch used to jump, since the only branch insn
3048 in the block (if it still remains) is an inter-loop
3049 branch and hence needs no processing. */
3050 insn
= NEXT_INSN (cond_label
);
3052 if (--LABEL_NUSES (cond_label
) == 0)
3053 delete_related_insns (cond_label
);
3055 /* This loop will be continued with NEXT_INSN (insn). */
3056 insn
= PREV_INSN (insn
);
3063 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3064 loops it is contained in, mark the target loop invalid.
3066 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3069 mark_loop_jump (rtx x
, struct loop
*loop
)
3071 struct loop
*dest_loop
;
3072 struct loop
*outer_loop
;
3075 switch (GET_CODE (x
))
3088 /* There could be a label reference in here. */
3089 mark_loop_jump (XEXP (x
, 0), loop
);
3095 mark_loop_jump (XEXP (x
, 0), loop
);
3096 mark_loop_jump (XEXP (x
, 1), loop
);
3100 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3101 mark_loop_jump (XEXP (x
, 1), loop
);
3106 mark_loop_jump (XEXP (x
, 0), loop
);
3110 dest_loop
= uid_loop
[INSN_UID (XEXP (x
, 0))];
3112 /* Link together all labels that branch outside the loop. This
3113 is used by final_[bg]iv_value and the loop unrolling code. Also
3114 mark this LABEL_REF so we know that this branch should predict
3117 /* A check to make sure the label is not in an inner nested loop,
3118 since this does not count as a loop exit. */
3121 for (outer_loop
= dest_loop
; outer_loop
;
3122 outer_loop
= outer_loop
->outer
)
3123 if (outer_loop
== loop
)
3129 if (loop
&& ! outer_loop
)
3131 LABEL_OUTSIDE_LOOP_P (x
) = 1;
3132 LABEL_NEXTREF (x
) = loop
->exit_labels
;
3133 loop
->exit_labels
= x
;
3135 for (outer_loop
= loop
;
3136 outer_loop
&& outer_loop
!= dest_loop
;
3137 outer_loop
= outer_loop
->outer
)
3138 outer_loop
->exit_count
++;
3141 /* If this is inside a loop, but not in the current loop or one enclosed
3142 by it, it invalidates at least one loop. */
3147 /* We must invalidate every nested loop containing the target of this
3148 label, except those that also contain the jump insn. */
3150 for (; dest_loop
; dest_loop
= dest_loop
->outer
)
3152 /* Stop when we reach a loop that also contains the jump insn. */
3153 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
3154 if (dest_loop
== outer_loop
)
3157 /* If we get here, we know we need to invalidate a loop. */
3158 if (loop_dump_stream
&& ! dest_loop
->invalid
)
3159 fprintf (loop_dump_stream
,
3160 "\nLoop at %d ignored due to multiple entry points.\n",
3161 INSN_UID (dest_loop
->start
));
3163 dest_loop
->invalid
= 1;
3168 /* If this is not setting pc, ignore. */
3169 if (SET_DEST (x
) == pc_rtx
)
3170 mark_loop_jump (SET_SRC (x
), loop
);
3174 mark_loop_jump (XEXP (x
, 1), loop
);
3175 mark_loop_jump (XEXP (x
, 2), loop
);
3180 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
3181 mark_loop_jump (XVECEXP (x
, 0, i
), loop
);
3185 for (i
= 0; i
< XVECLEN (x
, 1); i
++)
3186 mark_loop_jump (XVECEXP (x
, 1, i
), loop
);
3190 /* Strictly speaking this is not a jump into the loop, only a possible
3191 jump out of the loop. However, we have no way to link the destination
3192 of this jump onto the list of exit labels. To be safe we mark this
3193 loop and any containing loops as invalid. */
3196 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
3198 if (loop_dump_stream
&& ! outer_loop
->invalid
)
3199 fprintf (loop_dump_stream
,
3200 "\nLoop at %d ignored due to unknown exit jump.\n",
3201 INSN_UID (outer_loop
->start
));
3202 outer_loop
->invalid
= 1;
3209 /* Return nonzero if there is a label in the range from
3210 insn INSN to and including the insn whose luid is END
3211 INSN must have an assigned luid (i.e., it must not have
3212 been previously created by loop.c). */
3215 labels_in_range_p (rtx insn
, int end
)
3217 while (insn
&& INSN_LUID (insn
) <= end
)
3219 if (GET_CODE (insn
) == CODE_LABEL
)
3221 insn
= NEXT_INSN (insn
);
3227 /* Record that a memory reference X is being set. */
3230 note_addr_stored (rtx x
, rtx y ATTRIBUTE_UNUSED
,
3231 void *data ATTRIBUTE_UNUSED
)
3233 struct loop_info
*loop_info
= data
;
3235 if (x
== 0 || GET_CODE (x
) != MEM
)
3238 /* Count number of memory writes.
3239 This affects heuristics in strength_reduce. */
3240 loop_info
->num_mem_sets
++;
3242 /* BLKmode MEM means all memory is clobbered. */
3243 if (GET_MODE (x
) == BLKmode
)
3245 if (RTX_UNCHANGING_P (x
))
3246 loop_info
->unknown_constant_address_altered
= 1;
3248 loop_info
->unknown_address_altered
= 1;
3253 loop_info
->store_mems
= gen_rtx_EXPR_LIST (VOIDmode
, x
,
3254 loop_info
->store_mems
);
3257 /* X is a value modified by an INSN that references a biv inside a loop
3258 exit test (ie, X is somehow related to the value of the biv). If X
3259 is a pseudo that is used more than once, then the biv is (effectively)
3260 used more than once. DATA is a pointer to a loop_regs structure. */
3263 note_set_pseudo_multiple_uses (rtx x
, rtx y ATTRIBUTE_UNUSED
, void *data
)
3265 struct loop_regs
*regs
= (struct loop_regs
*) data
;
3270 while (GET_CODE (x
) == STRICT_LOW_PART
3271 || GET_CODE (x
) == SIGN_EXTRACT
3272 || GET_CODE (x
) == ZERO_EXTRACT
3273 || GET_CODE (x
) == SUBREG
)
3276 if (GET_CODE (x
) != REG
|| REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3279 /* If we do not have usage information, or if we know the register
3280 is used more than once, note that fact for check_dbra_loop. */
3281 if (REGNO (x
) >= max_reg_before_loop
3282 || ! regs
->array
[REGNO (x
)].single_usage
3283 || regs
->array
[REGNO (x
)].single_usage
== const0_rtx
)
3284 regs
->multiple_uses
= 1;
3287 /* Return nonzero if the rtx X is invariant over the current loop.
3289 The value is 2 if we refer to something only conditionally invariant.
3291 A memory ref is invariant if it is not volatile and does not conflict
3292 with anything stored in `loop_info->store_mems'. */
3295 loop_invariant_p (const struct loop
*loop
, rtx x
)
3297 struct loop_info
*loop_info
= LOOP_INFO (loop
);
3298 struct loop_regs
*regs
= LOOP_REGS (loop
);
3302 int conditional
= 0;
3307 code
= GET_CODE (x
);
3317 /* A LABEL_REF is normally invariant, however, if we are unrolling
3318 loops, and this label is inside the loop, then it isn't invariant.
3319 This is because each unrolled copy of the loop body will have
3320 a copy of this label. If this was invariant, then an insn loading
3321 the address of this label into a register might get moved outside
3322 the loop, and then each loop body would end up using the same label.
3324 We don't know the loop bounds here though, so just fail for all
3326 if (flag_old_unroll_loops
)
3333 case UNSPEC_VOLATILE
:
3337 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3338 since the reg might be set by initialization within the loop. */
3340 if ((x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
3341 || x
== arg_pointer_rtx
|| x
== pic_offset_table_rtx
)
3342 && ! current_function_has_nonlocal_goto
)
3345 if (LOOP_INFO (loop
)->has_call
3346 && REGNO (x
) < FIRST_PSEUDO_REGISTER
&& call_used_regs
[REGNO (x
)])
3349 /* Out-of-range regs can occur when we are called from unrolling.
3350 These registers created by the unroller are set in the loop,
3351 hence are never invariant.
3352 Other out-of-range regs can be generated by load_mems; those that
3353 are written to in the loop are not invariant, while those that are
3354 not written to are invariant. It would be easy for load_mems
3355 to set n_times_set correctly for these registers, however, there
3356 is no easy way to distinguish them from registers created by the
3359 if (REGNO (x
) >= (unsigned) regs
->num
)
3362 if (regs
->array
[REGNO (x
)].set_in_loop
< 0)
3365 return regs
->array
[REGNO (x
)].set_in_loop
== 0;
3368 /* Volatile memory references must be rejected. Do this before
3369 checking for read-only items, so that volatile read-only items
3370 will be rejected also. */
3371 if (MEM_VOLATILE_P (x
))
3374 /* See if there is any dependence between a store and this load. */
3375 mem_list_entry
= loop_info
->store_mems
;
3376 while (mem_list_entry
)
3378 if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
3382 mem_list_entry
= XEXP (mem_list_entry
, 1);
3385 /* It's not invalidated by a store in memory
3386 but we must still verify the address is invariant. */
3390 /* Don't mess with insns declared volatile. */
3391 if (MEM_VOLATILE_P (x
))
3399 fmt
= GET_RTX_FORMAT (code
);
3400 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3404 int tem
= loop_invariant_p (loop
, XEXP (x
, i
));
3410 else if (fmt
[i
] == 'E')
3413 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3415 int tem
= loop_invariant_p (loop
, XVECEXP (x
, i
, j
));
3425 return 1 + conditional
;
3428 /* Return nonzero if all the insns in the loop that set REG
3429 are INSN and the immediately following insns,
3430 and if each of those insns sets REG in an invariant way
3431 (not counting uses of REG in them).
3433 The value is 2 if some of these insns are only conditionally invariant.
3435 We assume that INSN itself is the first set of REG
3436 and that its source is invariant. */
3439 consec_sets_invariant_p (const struct loop
*loop
, rtx reg
, int n_sets
,
3442 struct loop_regs
*regs
= LOOP_REGS (loop
);
3444 unsigned int regno
= REGNO (reg
);
3446 /* Number of sets we have to insist on finding after INSN. */
3447 int count
= n_sets
- 1;
3448 int old
= regs
->array
[regno
].set_in_loop
;
3452 /* If N_SETS hit the limit, we can't rely on its value. */
3456 regs
->array
[regno
].set_in_loop
= 0;
3464 code
= GET_CODE (p
);
3466 /* If library call, skip to end of it. */
3467 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
3472 && (set
= single_set (p
))
3473 && GET_CODE (SET_DEST (set
)) == REG
3474 && REGNO (SET_DEST (set
)) == regno
)
3476 this = loop_invariant_p (loop
, SET_SRC (set
));
3479 else if ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)))
3481 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3482 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3484 this = (CONSTANT_P (XEXP (temp
, 0))
3485 || (find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
3486 && loop_invariant_p (loop
, XEXP (temp
, 0))));
3493 else if (code
!= NOTE
)
3495 regs
->array
[regno
].set_in_loop
= old
;
3500 regs
->array
[regno
].set_in_loop
= old
;
3501 /* If loop_invariant_p ever returned 2, we return 2. */
3502 return 1 + (value
& 2);
3505 /* Look at all uses (not sets) of registers in X. For each, if it is
3506 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3507 a different insn, set USAGE[REGNO] to const0_rtx. */
3510 find_single_use_in_loop (struct loop_regs
*regs
, rtx insn
, rtx x
)
3512 enum rtx_code code
= GET_CODE (x
);
3513 const char *fmt
= GET_RTX_FORMAT (code
);
3517 regs
->array
[REGNO (x
)].single_usage
3518 = (regs
->array
[REGNO (x
)].single_usage
!= 0
3519 && regs
->array
[REGNO (x
)].single_usage
!= insn
)
3520 ? const0_rtx
: insn
;
3522 else if (code
== SET
)
3524 /* Don't count SET_DEST if it is a REG; otherwise count things
3525 in SET_DEST because if a register is partially modified, it won't
3526 show up as a potential movable so we don't care how USAGE is set
3528 if (GET_CODE (SET_DEST (x
)) != REG
)
3529 find_single_use_in_loop (regs
, insn
, SET_DEST (x
));
3530 find_single_use_in_loop (regs
, insn
, SET_SRC (x
));
3533 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3535 if (fmt
[i
] == 'e' && XEXP (x
, i
) != 0)
3536 find_single_use_in_loop (regs
, insn
, XEXP (x
, i
));
3537 else if (fmt
[i
] == 'E')
3538 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3539 find_single_use_in_loop (regs
, insn
, XVECEXP (x
, i
, j
));
3543 /* Count and record any set in X which is contained in INSN. Update
3544 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3548 count_one_set (struct loop_regs
*regs
, rtx insn
, rtx x
, rtx
*last_set
)
3550 if (GET_CODE (x
) == CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
)
3551 /* Don't move a reg that has an explicit clobber.
3552 It's not worth the pain to try to do it correctly. */
3553 regs
->array
[REGNO (XEXP (x
, 0))].may_not_optimize
= 1;
3555 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
3557 rtx dest
= SET_DEST (x
);
3558 while (GET_CODE (dest
) == SUBREG
3559 || GET_CODE (dest
) == ZERO_EXTRACT
3560 || GET_CODE (dest
) == SIGN_EXTRACT
3561 || GET_CODE (dest
) == STRICT_LOW_PART
)
3562 dest
= XEXP (dest
, 0);
3563 if (GET_CODE (dest
) == REG
)
3566 int regno
= REGNO (dest
);
3567 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, dest
); i
++)
3569 /* If this is the first setting of this reg
3570 in current basic block, and it was set before,
3571 it must be set in two basic blocks, so it cannot
3572 be moved out of the loop. */
3573 if (regs
->array
[regno
].set_in_loop
> 0
3574 && last_set
[regno
] == 0)
3575 regs
->array
[regno
+i
].may_not_optimize
= 1;
3576 /* If this is not first setting in current basic block,
3577 see if reg was used in between previous one and this.
3578 If so, neither one can be moved. */
3579 if (last_set
[regno
] != 0
3580 && reg_used_between_p (dest
, last_set
[regno
], insn
))
3581 regs
->array
[regno
+i
].may_not_optimize
= 1;
3582 if (regs
->array
[regno
+i
].set_in_loop
< 127)
3583 ++regs
->array
[regno
+i
].set_in_loop
;
3584 last_set
[regno
+i
] = insn
;
3590 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3591 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3592 contained in insn INSN is used by any insn that precedes INSN in
3593 cyclic order starting from the loop entry point.
3595 We don't want to use INSN_LUID here because if we restrict INSN to those
3596 that have a valid INSN_LUID, it means we cannot move an invariant out
3597 from an inner loop past two loops. */
3600 loop_reg_used_before_p (const struct loop
*loop
, rtx set
, rtx insn
)
3602 rtx reg
= SET_DEST (set
);
3605 /* Scan forward checking for register usage. If we hit INSN, we
3606 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3607 for (p
= loop
->scan_start
; p
!= insn
; p
= NEXT_INSN (p
))
3609 if (INSN_P (p
) && reg_overlap_mentioned_p (reg
, PATTERN (p
)))
3620 /* Information we collect about arrays that we might want to prefetch. */
3621 struct prefetch_info
3623 struct iv_class
*class; /* Class this prefetch is based on. */
3624 struct induction
*giv
; /* GIV this prefetch is based on. */
3625 rtx base_address
; /* Start prefetching from this address plus
3627 HOST_WIDE_INT index
;
3628 HOST_WIDE_INT stride
; /* Prefetch stride in bytes in each
3630 unsigned int bytes_accessed
; /* Sum of sizes of all accesses to this
3631 prefetch area in one iteration. */
3632 unsigned int total_bytes
; /* Total bytes loop will access in this block.
3633 This is set only for loops with known
3634 iteration counts and is 0xffffffff
3636 int prefetch_in_loop
; /* Number of prefetch insns in loop. */
3637 int prefetch_before_loop
; /* Number of prefetch insns before loop. */
3638 unsigned int write
: 1; /* 1 for read/write prefetches. */
3641 /* Data used by check_store function. */
3642 struct check_store_data
3648 static void check_store (rtx
, rtx
, void *);
3649 static void emit_prefetch_instructions (struct loop
*);
3650 static int rtx_equal_for_prefetch_p (rtx
, rtx
);
3652 /* Set mem_write when mem_address is found. Used as callback to
3655 check_store (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
3657 struct check_store_data
*d
= (struct check_store_data
*) data
;
3659 if ((GET_CODE (x
) == MEM
) && rtx_equal_p (d
->mem_address
, XEXP (x
, 0)))
3663 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3664 important to get some addresses combined. Later more sophisticated
3665 transformations can be added when necessary.
3667 ??? Same trick with swapping operand is done at several other places.
3668 It can be nice to develop some common way to handle this. */
3671 rtx_equal_for_prefetch_p (rtx x
, rtx y
)
3675 enum rtx_code code
= GET_CODE (x
);
3680 if (code
!= GET_CODE (y
))
3683 if (COMMUTATIVE_ARITH_P (x
))
3685 return ((rtx_equal_for_prefetch_p (XEXP (x
, 0), XEXP (y
, 0))
3686 && rtx_equal_for_prefetch_p (XEXP (x
, 1), XEXP (y
, 1)))
3687 || (rtx_equal_for_prefetch_p (XEXP (x
, 0), XEXP (y
, 1))
3688 && rtx_equal_for_prefetch_p (XEXP (x
, 1), XEXP (y
, 0))));
3691 /* Compare the elements. If any pair of corresponding elements fails to
3692 match, return 0 for the whole thing. */
3694 fmt
= GET_RTX_FORMAT (code
);
3695 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3700 if (XWINT (x
, i
) != XWINT (y
, i
))
3705 if (XINT (x
, i
) != XINT (y
, i
))
3710 /* Two vectors must have the same length. */
3711 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
3714 /* And the corresponding elements must match. */
3715 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3716 if (rtx_equal_for_prefetch_p (XVECEXP (x
, i
, j
),
3717 XVECEXP (y
, i
, j
)) == 0)
3722 if (rtx_equal_for_prefetch_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
3727 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
3732 /* These are just backpointers, so they don't matter. */
3738 /* It is believed that rtx's at this level will never
3739 contain anything but integers and other rtx's,
3740 except for within LABEL_REFs and SYMBOL_REFs. */
3748 /* Remove constant addition value from the expression X (when present)
3751 static HOST_WIDE_INT
3752 remove_constant_addition (rtx
*x
)
3754 HOST_WIDE_INT addval
= 0;
3757 /* Avoid clobbering a shared CONST expression. */
3758 if (GET_CODE (exp
) == CONST
)
3760 if (GET_CODE (XEXP (exp
, 0)) == PLUS
3761 && GET_CODE (XEXP (XEXP (exp
, 0), 0)) == SYMBOL_REF
3762 && GET_CODE (XEXP (XEXP (exp
, 0), 1)) == CONST_INT
)
3764 *x
= XEXP (XEXP (exp
, 0), 0);
3765 return INTVAL (XEXP (XEXP (exp
, 0), 1));
3770 if (GET_CODE (exp
) == CONST_INT
)
3772 addval
= INTVAL (exp
);
3776 /* For plus expression recurse on ourself. */
3777 else if (GET_CODE (exp
) == PLUS
)
3779 addval
+= remove_constant_addition (&XEXP (exp
, 0));
3780 addval
+= remove_constant_addition (&XEXP (exp
, 1));
3782 /* In case our parameter was constant, remove extra zero from the
3784 if (XEXP (exp
, 0) == const0_rtx
)
3786 else if (XEXP (exp
, 1) == const0_rtx
)
3793 /* Attempt to identify accesses to arrays that are most likely to cause cache
3794 misses, and emit prefetch instructions a few prefetch blocks forward.
3796 To detect the arrays we use the GIV information that was collected by the
3797 strength reduction pass.
3799 The prefetch instructions are generated after the GIV information is done
3800 and before the strength reduction process. The new GIVs are injected into
3801 the strength reduction tables, so the prefetch addresses are optimized as
3804 GIVs are split into base address, stride, and constant addition values.
3805 GIVs with the same address, stride and close addition values are combined
3806 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3807 for write instructions can be used for the block we write to, on machines
3808 that support write prefetches.
3810 Several heuristics are used to determine when to prefetch. They are
3811 controlled by defined symbols that can be overridden for each target. */
3814 emit_prefetch_instructions (struct loop
*loop
)
3816 int num_prefetches
= 0;
3817 int num_real_prefetches
= 0;
3818 int num_real_write_prefetches
= 0;
3819 int num_prefetches_before
= 0;
3820 int num_write_prefetches_before
= 0;
3823 struct iv_class
*bl
;
3824 struct induction
*iv
;
3825 struct prefetch_info info
[MAX_PREFETCHES
];
3826 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
3831 /* Consider only loops w/o calls. When a call is done, the loop is probably
3832 slow enough to read the memory. */
3833 if (PREFETCH_NO_CALL
&& LOOP_INFO (loop
)->has_call
)
3835 if (loop_dump_stream
)
3836 fprintf (loop_dump_stream
, "Prefetch: ignoring loop: has call.\n");
3841 /* Don't prefetch in loops known to have few iterations. */
3842 if (PREFETCH_NO_LOW_LOOPCNT
3843 && LOOP_INFO (loop
)->n_iterations
3844 && LOOP_INFO (loop
)->n_iterations
<= PREFETCH_LOW_LOOPCNT
)
3846 if (loop_dump_stream
)
3847 fprintf (loop_dump_stream
,
3848 "Prefetch: ignoring loop: not enough iterations.\n");
3852 /* Search all induction variables and pick those interesting for the prefetch
3854 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
3856 struct induction
*biv
= bl
->biv
, *biv1
;
3861 /* Expect all BIVs to be executed in each iteration. This makes our
3862 analysis more conservative. */
3865 /* Discard non-constant additions that we can't handle well yet, and
3866 BIVs that are executed multiple times; such BIVs ought to be
3867 handled in the nested loop. We accept not_every_iteration BIVs,
3868 since these only result in larger strides and make our
3869 heuristics more conservative. */
3870 if (GET_CODE (biv
->add_val
) != CONST_INT
)
3872 if (loop_dump_stream
)
3874 fprintf (loop_dump_stream
,
3875 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
3876 REGNO (biv
->src_reg
), INSN_UID (biv
->insn
));
3877 print_rtl (loop_dump_stream
, biv
->add_val
);
3878 fprintf (loop_dump_stream
, "\n");
3883 if (biv
->maybe_multiple
)
3885 if (loop_dump_stream
)
3887 fprintf (loop_dump_stream
,
3888 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
3889 REGNO (biv
->src_reg
), INSN_UID (biv
->insn
));
3890 print_rtl (loop_dump_stream
, biv
->add_val
);
3891 fprintf (loop_dump_stream
, "\n");
3896 basestride
+= INTVAL (biv1
->add_val
);
3897 biv1
= biv1
->next_iv
;
3900 if (biv1
|| !basestride
)
3903 for (iv
= bl
->giv
; iv
; iv
= iv
->next_iv
)
3907 HOST_WIDE_INT index
= 0;
3909 HOST_WIDE_INT stride
= 0;
3910 int stride_sign
= 1;
3911 struct check_store_data d
;
3912 const char *ignore_reason
= NULL
;
3913 int size
= GET_MODE_SIZE (GET_MODE (iv
));
3915 /* See whether an induction variable is interesting to us and if
3916 not, report the reason. */
3917 if (iv
->giv_type
!= DEST_ADDR
)
3918 ignore_reason
= "giv is not a destination address";
3920 /* We are interested only in constant stride memory references
3921 in order to be able to compute density easily. */
3922 else if (GET_CODE (iv
->mult_val
) != CONST_INT
)
3923 ignore_reason
= "stride is not constant";
3927 stride
= INTVAL (iv
->mult_val
) * basestride
;
3934 /* On some targets, reversed order prefetches are not
3936 if (PREFETCH_NO_REVERSE_ORDER
&& stride_sign
< 0)
3937 ignore_reason
= "reversed order stride";
3939 /* Prefetch of accesses with an extreme stride might not be
3940 worthwhile, either. */
3941 else if (PREFETCH_NO_EXTREME_STRIDE
3942 && stride
> PREFETCH_EXTREME_STRIDE
)
3943 ignore_reason
= "extreme stride";
3945 /* Ignore GIVs with varying add values; we can't predict the
3946 value for the next iteration. */
3947 else if (!loop_invariant_p (loop
, iv
->add_val
))
3948 ignore_reason
= "giv has varying add value";
3950 /* Ignore GIVs in the nested loops; they ought to have been
3952 else if (iv
->maybe_multiple
)
3953 ignore_reason
= "giv is in nested loop";
3956 if (ignore_reason
!= NULL
)
3958 if (loop_dump_stream
)
3959 fprintf (loop_dump_stream
,
3960 "Prefetch: ignoring giv at %d: %s.\n",
3961 INSN_UID (iv
->insn
), ignore_reason
);
3965 /* Determine the pointer to the basic array we are examining. It is
3966 the sum of the BIV's initial value and the GIV's add_val. */
3967 address
= copy_rtx (iv
->add_val
);
3968 temp
= copy_rtx (bl
->initial_value
);
3970 address
= simplify_gen_binary (PLUS
, Pmode
, temp
, address
);
3971 index
= remove_constant_addition (&address
);
3974 d
.mem_address
= *iv
->location
;
3976 /* When the GIV is not always executed, we might be better off by
3977 not dirtying the cache pages. */
3978 if (PREFETCH_CONDITIONAL
|| iv
->always_executed
)
3979 note_stores (PATTERN (iv
->insn
), check_store
, &d
);
3982 if (loop_dump_stream
)
3983 fprintf (loop_dump_stream
, "Prefetch: Ignoring giv at %d: %s\n",
3984 INSN_UID (iv
->insn
), "in conditional code.");
3988 /* Attempt to find another prefetch to the same array and see if we
3989 can merge this one. */
3990 for (i
= 0; i
< num_prefetches
; i
++)
3991 if (rtx_equal_for_prefetch_p (address
, info
[i
].base_address
)
3992 && stride
== info
[i
].stride
)
3994 /* In case both access same array (same location
3995 just with small difference in constant indexes), merge
3996 the prefetches. Just do the later and the earlier will
3997 get prefetched from previous iteration.
3998 The artificial threshold should not be too small,
3999 but also not bigger than small portion of memory usually
4000 traversed by single loop. */
4001 if (index
>= info
[i
].index
4002 && index
- info
[i
].index
< PREFETCH_EXTREME_DIFFERENCE
)
4004 info
[i
].write
|= d
.mem_write
;
4005 info
[i
].bytes_accessed
+= size
;
4006 info
[i
].index
= index
;
4009 info
[num_prefetches
].base_address
= address
;
4014 if (index
< info
[i
].index
4015 && info
[i
].index
- index
< PREFETCH_EXTREME_DIFFERENCE
)
4017 info
[i
].write
|= d
.mem_write
;
4018 info
[i
].bytes_accessed
+= size
;
4024 /* Merging failed. */
4027 info
[num_prefetches
].giv
= iv
;
4028 info
[num_prefetches
].class = bl
;
4029 info
[num_prefetches
].index
= index
;
4030 info
[num_prefetches
].stride
= stride
;
4031 info
[num_prefetches
].base_address
= address
;
4032 info
[num_prefetches
].write
= d
.mem_write
;
4033 info
[num_prefetches
].bytes_accessed
= size
;
4035 if (num_prefetches
>= MAX_PREFETCHES
)
4037 if (loop_dump_stream
)
4038 fprintf (loop_dump_stream
,
4039 "Maximal number of prefetches exceeded.\n");
4046 for (i
= 0; i
< num_prefetches
; i
++)
4050 /* Attempt to calculate the total number of bytes fetched by all
4051 iterations of the loop. Avoid overflow. */
4052 if (LOOP_INFO (loop
)->n_iterations
4053 && ((unsigned HOST_WIDE_INT
) (0xffffffff / info
[i
].stride
)
4054 >= LOOP_INFO (loop
)->n_iterations
))
4055 info
[i
].total_bytes
= info
[i
].stride
* LOOP_INFO (loop
)->n_iterations
;
4057 info
[i
].total_bytes
= 0xffffffff;
4059 density
= info
[i
].bytes_accessed
* 100 / info
[i
].stride
;
4061 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4062 if (PREFETCH_ONLY_DENSE_MEM
)
4063 if (density
* 256 > PREFETCH_DENSE_MEM
* 100
4064 && (info
[i
].total_bytes
/ PREFETCH_BLOCK
4065 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN
))
4067 info
[i
].prefetch_before_loop
= 1;
4068 info
[i
].prefetch_in_loop
4069 = (info
[i
].total_bytes
/ PREFETCH_BLOCK
4070 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX
);
4074 info
[i
].prefetch_in_loop
= 0, info
[i
].prefetch_before_loop
= 0;
4075 if (loop_dump_stream
)
4076 fprintf (loop_dump_stream
,
4077 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4078 INSN_UID (info
[i
].giv
->insn
), density
);
4081 info
[i
].prefetch_in_loop
= 1, info
[i
].prefetch_before_loop
= 1;
4083 /* Find how many prefetch instructions we'll use within the loop. */
4084 if (info
[i
].prefetch_in_loop
!= 0)
4086 info
[i
].prefetch_in_loop
= ((info
[i
].stride
+ PREFETCH_BLOCK
- 1)
4088 num_real_prefetches
+= info
[i
].prefetch_in_loop
;
4090 num_real_write_prefetches
+= info
[i
].prefetch_in_loop
;
4094 /* Determine how many iterations ahead to prefetch within the loop, based
4095 on how many prefetches we currently expect to do within the loop. */
4096 if (num_real_prefetches
!= 0)
4098 if ((ahead
= SIMULTANEOUS_PREFETCHES
/ num_real_prefetches
) == 0)
4100 if (loop_dump_stream
)
4101 fprintf (loop_dump_stream
,
4102 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4103 SIMULTANEOUS_PREFETCHES
, num_real_prefetches
);
4104 num_real_prefetches
= 0, num_real_write_prefetches
= 0;
4107 /* We'll also use AHEAD to determine how many prefetch instructions to
4108 emit before a loop, so don't leave it zero. */
4110 ahead
= PREFETCH_BLOCKS_BEFORE_LOOP_MAX
;
4112 for (i
= 0; i
< num_prefetches
; i
++)
4114 /* Update if we've decided not to prefetch anything within the loop. */
4115 if (num_real_prefetches
== 0)
4116 info
[i
].prefetch_in_loop
= 0;
4118 /* Find how many prefetch instructions we'll use before the loop. */
4119 if (info
[i
].prefetch_before_loop
!= 0)
4121 int n
= info
[i
].total_bytes
/ PREFETCH_BLOCK
;
4124 info
[i
].prefetch_before_loop
= n
;
4125 num_prefetches_before
+= n
;
4127 num_write_prefetches_before
+= n
;
4130 if (loop_dump_stream
)
4132 if (info
[i
].prefetch_in_loop
== 0
4133 && info
[i
].prefetch_before_loop
== 0)
4135 fprintf (loop_dump_stream
, "Prefetch insn: %d",
4136 INSN_UID (info
[i
].giv
->insn
));
4137 fprintf (loop_dump_stream
,
4138 "; in loop: %d; before: %d; %s\n",
4139 info
[i
].prefetch_in_loop
,
4140 info
[i
].prefetch_before_loop
,
4141 info
[i
].write
? "read/write" : "read only");
4142 fprintf (loop_dump_stream
,
4143 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4144 (int) (info
[i
].bytes_accessed
* 100 / info
[i
].stride
),
4145 info
[i
].bytes_accessed
, info
[i
].total_bytes
);
4146 fprintf (loop_dump_stream
, " index: " HOST_WIDE_INT_PRINT_DEC
4147 "; stride: " HOST_WIDE_INT_PRINT_DEC
"; address: ",
4148 info
[i
].index
, info
[i
].stride
);
4149 print_rtl (loop_dump_stream
, info
[i
].base_address
);
4150 fprintf (loop_dump_stream
, "\n");
4154 if (num_real_prefetches
+ num_prefetches_before
> 0)
4156 /* Record that this loop uses prefetch instructions. */
4157 LOOP_INFO (loop
)->has_prefetch
= 1;
4159 if (loop_dump_stream
)
4161 fprintf (loop_dump_stream
, "Real prefetches needed within loop: %d (write: %d)\n",
4162 num_real_prefetches
, num_real_write_prefetches
);
4163 fprintf (loop_dump_stream
, "Real prefetches needed before loop: %d (write: %d)\n",
4164 num_prefetches_before
, num_write_prefetches_before
);
4168 for (i
= 0; i
< num_prefetches
; i
++)
4172 for (y
= 0; y
< info
[i
].prefetch_in_loop
; y
++)
4174 rtx loc
= copy_rtx (*info
[i
].giv
->location
);
4176 int bytes_ahead
= PREFETCH_BLOCK
* (ahead
+ y
);
4177 rtx before_insn
= info
[i
].giv
->insn
;
4178 rtx prev_insn
= PREV_INSN (info
[i
].giv
->insn
);
4181 /* We can save some effort by offsetting the address on
4182 architectures with offsettable memory references. */
4183 if (offsettable_address_p (0, VOIDmode
, loc
))
4184 loc
= plus_constant (loc
, bytes_ahead
);
4187 rtx reg
= gen_reg_rtx (Pmode
);
4188 loop_iv_add_mult_emit_before (loop
, loc
, const1_rtx
,
4189 GEN_INT (bytes_ahead
), reg
,
4195 /* Make sure the address operand is valid for prefetch. */
4196 if (! (*insn_data
[(int)CODE_FOR_prefetch
].operand
[0].predicate
)
4197 (loc
, insn_data
[(int)CODE_FOR_prefetch
].operand
[0].mode
))
4198 loc
= force_reg (Pmode
, loc
);
4199 emit_insn (gen_prefetch (loc
, GEN_INT (info
[i
].write
),
4203 emit_insn_before (seq
, before_insn
);
4205 /* Check all insns emitted and record the new GIV
4207 insn
= NEXT_INSN (prev_insn
);
4208 while (insn
!= before_insn
)
4210 insn
= check_insn_for_givs (loop
, insn
,
4211 info
[i
].giv
->always_executed
,
4212 info
[i
].giv
->maybe_multiple
);
4213 insn
= NEXT_INSN (insn
);
4217 if (PREFETCH_BEFORE_LOOP
)
4219 /* Emit insns before the loop to fetch the first cache lines or,
4220 if we're not prefetching within the loop, everything we expect
4222 for (y
= 0; y
< info
[i
].prefetch_before_loop
; y
++)
4224 rtx reg
= gen_reg_rtx (Pmode
);
4225 rtx loop_start
= loop
->start
;
4226 rtx init_val
= info
[i
].class->initial_value
;
4227 rtx add_val
= simplify_gen_binary (PLUS
, Pmode
,
4228 info
[i
].giv
->add_val
,
4229 GEN_INT (y
* PREFETCH_BLOCK
));
4231 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4232 non-constant INIT_VAL to have the same mode as REG, which
4233 in this case we know to be Pmode. */
4234 if (GET_MODE (init_val
) != Pmode
&& !CONSTANT_P (init_val
))
4239 init_val
= convert_to_mode (Pmode
, init_val
, 0);
4242 loop_insn_emit_before (loop
, 0, loop_start
, seq
);
4244 loop_iv_add_mult_emit_before (loop
, init_val
,
4245 info
[i
].giv
->mult_val
,
4246 add_val
, reg
, 0, loop_start
);
4247 emit_insn_before (gen_prefetch (reg
, GEN_INT (info
[i
].write
),
4257 /* Communication with routines called via `note_stores'. */
4259 static rtx note_insn
;
4261 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4263 static rtx addr_placeholder
;
4265 /* ??? Unfinished optimizations, and possible future optimizations,
4266 for the strength reduction code. */
4268 /* ??? The interaction of biv elimination, and recognition of 'constant'
4269 bivs, may cause problems. */
4271 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4272 performance problems.
4274 Perhaps don't eliminate things that can be combined with an addressing
4275 mode. Find all givs that have the same biv, mult_val, and add_val;
4276 then for each giv, check to see if its only use dies in a following
4277 memory address. If so, generate a new memory address and check to see
4278 if it is valid. If it is valid, then store the modified memory address,
4279 otherwise, mark the giv as not done so that it will get its own iv. */
4281 /* ??? Could try to optimize branches when it is known that a biv is always
4284 /* ??? When replace a biv in a compare insn, we should replace with closest
4285 giv so that an optimized branch can still be recognized by the combiner,
4286 e.g. the VAX acb insn. */
4288 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4289 was rerun in loop_optimize whenever a register was added or moved.
4290 Also, some of the optimizations could be a little less conservative. */
4292 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4293 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4296 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4297 least once for every loop iteration except for the last one.
4299 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4303 for_each_insn_in_loop (struct loop
*loop
, loop_insn_callback fncall
)
4305 int not_every_iteration
= 0;
4306 int maybe_multiple
= 0;
4307 int past_loop_latch
= 0;
4311 /* If loop_scan_start points to the loop exit test, we have to be wary of
4312 subversive use of gotos inside expression statements. */
4313 if (prev_nonnote_insn (loop
->scan_start
) != prev_nonnote_insn (loop
->start
))
4314 maybe_multiple
= back_branch_in_range_p (loop
, loop
->scan_start
);
4316 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4317 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
4319 p
= next_insn_in_loop (loop
, p
))
4321 p
= fncall (loop
, p
, not_every_iteration
, maybe_multiple
);
4323 /* Past CODE_LABEL, we get to insns that may be executed multiple
4324 times. The only way we can be sure that they can't is if every
4325 jump insn between here and the end of the loop either
4326 returns, exits the loop, is a jump to a location that is still
4327 behind the label, or is a jump to the loop start. */
4329 if (GET_CODE (p
) == CODE_LABEL
)
4337 insn
= NEXT_INSN (insn
);
4338 if (insn
== loop
->scan_start
)
4340 if (insn
== loop
->end
)
4346 if (insn
== loop
->scan_start
)
4350 if (GET_CODE (insn
) == JUMP_INSN
4351 && GET_CODE (PATTERN (insn
)) != RETURN
4352 && (!any_condjump_p (insn
)
4353 || (JUMP_LABEL (insn
) != 0
4354 && JUMP_LABEL (insn
) != loop
->scan_start
4355 && !loop_insn_first_p (p
, JUMP_LABEL (insn
)))))
4363 /* Past a jump, we get to insns for which we can't count
4364 on whether they will be executed during each iteration. */
4365 /* This code appears twice in strength_reduce. There is also similar
4366 code in scan_loop. */
4367 if (GET_CODE (p
) == JUMP_INSN
4368 /* If we enter the loop in the middle, and scan around to the
4369 beginning, don't set not_every_iteration for that.
4370 This can be any kind of jump, since we want to know if insns
4371 will be executed if the loop is executed. */
4372 && !(JUMP_LABEL (p
) == loop
->top
4373 && ((NEXT_INSN (NEXT_INSN (p
)) == loop
->end
4374 && any_uncondjump_p (p
))
4375 || (NEXT_INSN (p
) == loop
->end
&& any_condjump_p (p
)))))
4379 /* If this is a jump outside the loop, then it also doesn't
4380 matter. Check to see if the target of this branch is on the
4381 loop->exits_labels list. */
4383 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
4384 if (XEXP (label
, 0) == JUMP_LABEL (p
))
4388 not_every_iteration
= 1;
4391 else if (GET_CODE (p
) == NOTE
)
4393 /* At the virtual top of a converted loop, insns are again known to
4394 be executed each iteration: logically, the loop begins here
4395 even though the exit code has been duplicated.
4397 Insns are also again known to be executed each iteration at
4398 the LOOP_CONT note. */
4399 if ((NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
4400 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_CONT
)
4402 not_every_iteration
= 0;
4403 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
4405 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
4409 /* Note if we pass a loop latch. If we do, then we can not clear
4410 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4411 a loop since a jump before the last CODE_LABEL may have started
4412 a new loop iteration.
4414 Note that LOOP_TOP is only set for rotated loops and we need
4415 this check for all loops, so compare against the CODE_LABEL
4416 which immediately follows LOOP_START. */
4417 if (GET_CODE (p
) == JUMP_INSN
4418 && JUMP_LABEL (p
) == NEXT_INSN (loop
->start
))
4419 past_loop_latch
= 1;
4421 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4422 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4423 or not an insn is known to be executed each iteration of the
4424 loop, whether or not any iterations are known to occur.
4426 Therefore, if we have just passed a label and have no more labels
4427 between here and the test insn of the loop, and we have not passed
4428 a jump to the top of the loop, then we know these insns will be
4429 executed each iteration. */
4431 if (not_every_iteration
4433 && GET_CODE (p
) == CODE_LABEL
4434 && no_labels_between_p (p
, loop
->end
)
4435 && loop_insn_first_p (p
, loop
->cont
))
4436 not_every_iteration
= 0;
4441 loop_bivs_find (struct loop
*loop
)
4443 struct loop_regs
*regs
= LOOP_REGS (loop
);
4444 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4445 /* Temporary list pointers for traversing ivs->list. */
4446 struct iv_class
*bl
, **backbl
;
4450 for_each_insn_in_loop (loop
, check_insn_for_bivs
);
4452 /* Scan ivs->list to remove all regs that proved not to be bivs.
4453 Make a sanity check against regs->n_times_set. */
4454 for (backbl
= &ivs
->list
, bl
= *backbl
; bl
; bl
= bl
->next
)
4456 if (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
4457 /* Above happens if register modified by subreg, etc. */
4458 /* Make sure it is not recognized as a basic induction var: */
4459 || regs
->array
[bl
->regno
].n_times_set
!= bl
->biv_count
4460 /* If never incremented, it is invariant that we decided not to
4461 move. So leave it alone. */
4462 || ! bl
->incremented
)
4464 if (loop_dump_stream
)
4465 fprintf (loop_dump_stream
, "Biv %d: discarded, %s\n",
4467 (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
4468 ? "not induction variable"
4469 : (! bl
->incremented
? "never incremented"
4472 REG_IV_TYPE (ivs
, bl
->regno
) = NOT_BASIC_INDUCT
;
4479 if (loop_dump_stream
)
4480 fprintf (loop_dump_stream
, "Biv %d: verified\n", bl
->regno
);
4486 /* Determine how BIVS are initialized by looking through pre-header
4487 extended basic block. */
4489 loop_bivs_init_find (struct loop
*loop
)
4491 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4492 /* Temporary list pointers for traversing ivs->list. */
4493 struct iv_class
*bl
;
4497 /* Find initial value for each biv by searching backwards from loop_start,
4498 halting at first label. Also record any test condition. */
4501 for (p
= loop
->start
; p
&& GET_CODE (p
) != CODE_LABEL
; p
= PREV_INSN (p
))
4507 if (GET_CODE (p
) == CALL_INSN
)
4511 note_stores (PATTERN (p
), record_initial
, ivs
);
4513 /* Record any test of a biv that branches around the loop if no store
4514 between it and the start of loop. We only care about tests with
4515 constants and registers and only certain of those. */
4516 if (GET_CODE (p
) == JUMP_INSN
4517 && JUMP_LABEL (p
) != 0
4518 && next_real_insn (JUMP_LABEL (p
)) == next_real_insn (loop
->end
)
4519 && (test
= get_condition_for_loop (loop
, p
)) != 0
4520 && GET_CODE (XEXP (test
, 0)) == REG
4521 && REGNO (XEXP (test
, 0)) < max_reg_before_loop
4522 && (bl
= REG_IV_CLASS (ivs
, REGNO (XEXP (test
, 0)))) != 0
4523 && valid_initial_value_p (XEXP (test
, 1), p
, call_seen
, loop
->start
)
4524 && bl
->init_insn
== 0)
4526 /* If an NE test, we have an initial value! */
4527 if (GET_CODE (test
) == NE
)
4530 bl
->init_set
= gen_rtx_SET (VOIDmode
,
4531 XEXP (test
, 0), XEXP (test
, 1));
4534 bl
->initial_test
= test
;
4540 /* Look at the each biv and see if we can say anything better about its
4541 initial value from any initializing insns set up above. (This is done
4542 in two passes to avoid missing SETs in a PARALLEL.) */
4544 loop_bivs_check (struct loop
*loop
)
4546 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4547 /* Temporary list pointers for traversing ivs->list. */
4548 struct iv_class
*bl
;
4549 struct iv_class
**backbl
;
4551 for (backbl
= &ivs
->list
; (bl
= *backbl
); backbl
= &bl
->next
)
4556 if (! bl
->init_insn
)
4559 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4560 is a constant, use the value of that. */
4561 if (((note
= find_reg_note (bl
->init_insn
, REG_EQUAL
, 0)) != NULL
4562 && CONSTANT_P (XEXP (note
, 0)))
4563 || ((note
= find_reg_note (bl
->init_insn
, REG_EQUIV
, 0)) != NULL
4564 && CONSTANT_P (XEXP (note
, 0))))
4565 src
= XEXP (note
, 0);
4567 src
= SET_SRC (bl
->init_set
);
4569 if (loop_dump_stream
)
4570 fprintf (loop_dump_stream
,
4571 "Biv %d: initialized at insn %d: initial value ",
4572 bl
->regno
, INSN_UID (bl
->init_insn
));
4574 if ((GET_MODE (src
) == GET_MODE (regno_reg_rtx
[bl
->regno
])
4575 || GET_MODE (src
) == VOIDmode
)
4576 && valid_initial_value_p (src
, bl
->init_insn
,
4577 LOOP_INFO (loop
)->pre_header_has_call
,
4580 bl
->initial_value
= src
;
4582 if (loop_dump_stream
)
4584 print_simple_rtl (loop_dump_stream
, src
);
4585 fputc ('\n', loop_dump_stream
);
4588 /* If we can't make it a giv,
4589 let biv keep initial value of "itself". */
4590 else if (loop_dump_stream
)
4591 fprintf (loop_dump_stream
, "is complex\n");
4596 /* Search the loop for general induction variables. */
4599 loop_givs_find (struct loop
* loop
)
4601 for_each_insn_in_loop (loop
, check_insn_for_givs
);
4605 /* For each giv for which we still don't know whether or not it is
4606 replaceable, check to see if it is replaceable because its final value
4607 can be calculated. */
4610 loop_givs_check (struct loop
*loop
)
4612 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4613 struct iv_class
*bl
;
4615 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
4617 struct induction
*v
;
4619 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4620 if (! v
->replaceable
&& ! v
->not_replaceable
)
4621 check_final_value (loop
, v
);
4626 /* Return nonzero if it is possible to eliminate the biv BL provided
4627 all givs are reduced. This is possible if either the reg is not
4628 used outside the loop, or we can compute what its final value will
4632 loop_biv_eliminable_p (struct loop
*loop
, struct iv_class
*bl
,
4633 int threshold
, int insn_count
)
4635 /* For architectures with a decrement_and_branch_until_zero insn,
4636 don't do this if we put a REG_NONNEG note on the endtest for this
4639 #ifdef HAVE_decrement_and_branch_until_zero
4642 if (loop_dump_stream
)
4643 fprintf (loop_dump_stream
,
4644 "Cannot eliminate nonneg biv %d.\n", bl
->regno
);
4649 /* Check that biv is used outside loop or if it has a final value.
4650 Compare against bl->init_insn rather than loop->start. We aren't
4651 concerned with any uses of the biv between init_insn and
4652 loop->start since these won't be affected by the value of the biv
4653 elsewhere in the function, so long as init_insn doesn't use the
4656 if ((REGNO_LAST_LUID (bl
->regno
) < INSN_LUID (loop
->end
)
4658 && INSN_UID (bl
->init_insn
) < max_uid_for_loop
4659 && REGNO_FIRST_LUID (bl
->regno
) >= INSN_LUID (bl
->init_insn
)
4660 && ! reg_mentioned_p (bl
->biv
->dest_reg
, SET_SRC (bl
->init_set
)))
4661 || (bl
->final_value
= final_biv_value (loop
, bl
)))
4662 return maybe_eliminate_biv (loop
, bl
, 0, threshold
, insn_count
);
4664 if (loop_dump_stream
)
4666 fprintf (loop_dump_stream
,
4667 "Cannot eliminate biv %d.\n",
4669 fprintf (loop_dump_stream
,
4670 "First use: insn %d, last use: insn %d.\n",
4671 REGNO_FIRST_UID (bl
->regno
),
4672 REGNO_LAST_UID (bl
->regno
));
4678 /* Reduce each giv of BL that we have decided to reduce. */
4681 loop_givs_reduce (struct loop
*loop
, struct iv_class
*bl
)
4683 struct induction
*v
;
4685 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4687 struct induction
*tv
;
4688 if (! v
->ignore
&& v
->same
== 0)
4690 int auto_inc_opt
= 0;
4692 /* If the code for derived givs immediately below has already
4693 allocated a new_reg, we must keep it. */
4695 v
->new_reg
= gen_reg_rtx (v
->mode
);
4698 /* If the target has auto-increment addressing modes, and
4699 this is an address giv, then try to put the increment
4700 immediately after its use, so that flow can create an
4701 auto-increment addressing mode. */
4702 if (v
->giv_type
== DEST_ADDR
&& bl
->biv_count
== 1
4703 && bl
->biv
->always_executed
&& ! bl
->biv
->maybe_multiple
4704 /* We don't handle reversed biv's because bl->biv->insn
4705 does not have a valid INSN_LUID. */
4707 && v
->always_executed
&& ! v
->maybe_multiple
4708 && INSN_UID (v
->insn
) < max_uid_for_loop
)
4710 /* If other giv's have been combined with this one, then
4711 this will work only if all uses of the other giv's occur
4712 before this giv's insn. This is difficult to check.
4714 We simplify this by looking for the common case where
4715 there is one DEST_REG giv, and this giv's insn is the
4716 last use of the dest_reg of that DEST_REG giv. If the
4717 increment occurs after the address giv, then we can
4718 perform the optimization. (Otherwise, the increment
4719 would have to go before other_giv, and we would not be
4720 able to combine it with the address giv to get an
4721 auto-inc address.) */
4722 if (v
->combined_with
)
4724 struct induction
*other_giv
= 0;
4726 for (tv
= bl
->giv
; tv
; tv
= tv
->next_iv
)
4734 if (! tv
&& other_giv
4735 && REGNO (other_giv
->dest_reg
) < max_reg_before_loop
4736 && (REGNO_LAST_UID (REGNO (other_giv
->dest_reg
))
4737 == INSN_UID (v
->insn
))
4738 && INSN_LUID (v
->insn
) < INSN_LUID (bl
->biv
->insn
))
4741 /* Check for case where increment is before the address
4742 giv. Do this test in "loop order". */
4743 else if ((INSN_LUID (v
->insn
) > INSN_LUID (bl
->biv
->insn
)
4744 && (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
4745 || (INSN_LUID (bl
->biv
->insn
)
4746 > INSN_LUID (loop
->scan_start
))))
4747 || (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
4748 && (INSN_LUID (loop
->scan_start
)
4749 < INSN_LUID (bl
->biv
->insn
))))
4758 /* We can't put an insn immediately after one setting
4759 cc0, or immediately before one using cc0. */
4760 if ((auto_inc_opt
== 1 && sets_cc0_p (PATTERN (v
->insn
)))
4761 || (auto_inc_opt
== -1
4762 && (prev
= prev_nonnote_insn (v
->insn
)) != 0
4764 && sets_cc0_p (PATTERN (prev
))))
4770 v
->auto_inc_opt
= 1;
4774 /* For each place where the biv is incremented, add an insn
4775 to increment the new, reduced reg for the giv. */
4776 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
4780 /* Skip if location is the same as a previous one. */
4784 insert_before
= NEXT_INSN (tv
->insn
);
4785 else if (auto_inc_opt
== 1)
4786 insert_before
= NEXT_INSN (v
->insn
);
4788 insert_before
= v
->insn
;
4790 if (tv
->mult_val
== const1_rtx
)
4791 loop_iv_add_mult_emit_before (loop
, tv
->add_val
, v
->mult_val
,
4792 v
->new_reg
, v
->new_reg
,
4794 else /* tv->mult_val == const0_rtx */
4795 /* A multiply is acceptable here
4796 since this is presumed to be seldom executed. */
4797 loop_iv_add_mult_emit_before (loop
, tv
->add_val
, v
->mult_val
,
4798 v
->add_val
, v
->new_reg
,
4802 /* Add code at loop start to initialize giv's reduced reg. */
4804 loop_iv_add_mult_hoist (loop
,
4805 extend_value_for_giv (v
, bl
->initial_value
),
4806 v
->mult_val
, v
->add_val
, v
->new_reg
);
4812 /* Check for givs whose first use is their definition and whose
4813 last use is the definition of another giv. If so, it is likely
4814 dead and should not be used to derive another giv nor to
4818 loop_givs_dead_check (struct loop
*loop ATTRIBUTE_UNUSED
, struct iv_class
*bl
)
4820 struct induction
*v
;
4822 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4825 || (v
->same
&& v
->same
->ignore
))
4828 if (v
->giv_type
== DEST_REG
4829 && REGNO_FIRST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v
->insn
))
4831 struct induction
*v1
;
4833 for (v1
= bl
->giv
; v1
; v1
= v1
->next_iv
)
4834 if (REGNO_LAST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v1
->insn
))
4842 loop_givs_rescan (struct loop
*loop
, struct iv_class
*bl
, rtx
*reg_map
)
4844 struct induction
*v
;
4846 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4848 if (v
->same
&& v
->same
->ignore
)
4854 /* Update expression if this was combined, in case other giv was
4857 v
->new_reg
= replace_rtx (v
->new_reg
,
4858 v
->same
->dest_reg
, v
->same
->new_reg
);
4860 /* See if this register is known to be a pointer to something. If
4861 so, see if we can find the alignment. First see if there is a
4862 destination register that is a pointer. If so, this shares the
4863 alignment too. Next see if we can deduce anything from the
4864 computational information. If not, and this is a DEST_ADDR
4865 giv, at least we know that it's a pointer, though we don't know
4867 if (GET_CODE (v
->new_reg
) == REG
4868 && v
->giv_type
== DEST_REG
4869 && REG_POINTER (v
->dest_reg
))
4870 mark_reg_pointer (v
->new_reg
,
4871 REGNO_POINTER_ALIGN (REGNO (v
->dest_reg
)));
4872 else if (GET_CODE (v
->new_reg
) == REG
4873 && REG_POINTER (v
->src_reg
))
4875 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->src_reg
));
4878 || GET_CODE (v
->add_val
) != CONST_INT
4879 || INTVAL (v
->add_val
) % (align
/ BITS_PER_UNIT
) != 0)
4882 mark_reg_pointer (v
->new_reg
, align
);
4884 else if (GET_CODE (v
->new_reg
) == REG
4885 && GET_CODE (v
->add_val
) == REG
4886 && REG_POINTER (v
->add_val
))
4888 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->add_val
));
4890 if (align
== 0 || GET_CODE (v
->mult_val
) != CONST_INT
4891 || INTVAL (v
->mult_val
) % (align
/ BITS_PER_UNIT
) != 0)
4894 mark_reg_pointer (v
->new_reg
, align
);
4896 else if (GET_CODE (v
->new_reg
) == REG
&& v
->giv_type
== DEST_ADDR
)
4897 mark_reg_pointer (v
->new_reg
, 0);
4899 if (v
->giv_type
== DEST_ADDR
)
4900 /* Store reduced reg as the address in the memref where we found
4902 validate_change (v
->insn
, v
->location
, v
->new_reg
, 0);
4903 else if (v
->replaceable
)
4905 reg_map
[REGNO (v
->dest_reg
)] = v
->new_reg
;
4909 rtx original_insn
= v
->insn
;
4912 /* Not replaceable; emit an insn to set the original giv reg from
4913 the reduced giv, same as above. */
4914 v
->insn
= loop_insn_emit_after (loop
, 0, original_insn
,
4915 gen_move_insn (v
->dest_reg
,
4918 /* The original insn may have a REG_EQUAL note. This note is
4919 now incorrect and may result in invalid substitutions later.
4920 The original insn is dead, but may be part of a libcall
4921 sequence, which doesn't seem worth the bother of handling. */
4922 note
= find_reg_note (original_insn
, REG_EQUAL
, NULL_RTX
);
4924 remove_note (original_insn
, note
);
4927 /* When a loop is reversed, givs which depend on the reversed
4928 biv, and which are live outside the loop, must be set to their
4929 correct final value. This insn is only needed if the giv is
4930 not replaceable. The correct final value is the same as the
4931 value that the giv starts the reversed loop with. */
4932 if (bl
->reversed
&& ! v
->replaceable
)
4933 loop_iv_add_mult_sink (loop
,
4934 extend_value_for_giv (v
, bl
->initial_value
),
4935 v
->mult_val
, v
->add_val
, v
->dest_reg
);
4936 else if (v
->final_value
)
4937 loop_insn_sink_or_swim (loop
,
4938 gen_load_of_final_value (v
->dest_reg
,
4941 if (loop_dump_stream
)
4943 fprintf (loop_dump_stream
, "giv at %d reduced to ",
4944 INSN_UID (v
->insn
));
4945 print_simple_rtl (loop_dump_stream
, v
->new_reg
);
4946 fprintf (loop_dump_stream
, "\n");
4953 loop_giv_reduce_benefit (struct loop
*loop ATTRIBUTE_UNUSED
,
4954 struct iv_class
*bl
, struct induction
*v
,
4960 benefit
= v
->benefit
;
4961 PUT_MODE (test_reg
, v
->mode
);
4962 add_cost
= iv_add_mult_cost (bl
->biv
->add_val
, v
->mult_val
,
4963 test_reg
, test_reg
);
4965 /* Reduce benefit if not replaceable, since we will insert a
4966 move-insn to replace the insn that calculates this giv. Don't do
4967 this unless the giv is a user variable, since it will often be
4968 marked non-replaceable because of the duplication of the exit
4969 code outside the loop. In such a case, the copies we insert are
4970 dead and will be deleted. So they don't have a cost. Similar
4971 situations exist. */
4972 /* ??? The new final_[bg]iv_value code does a much better job of
4973 finding replaceable giv's, and hence this code may no longer be
4975 if (! v
->replaceable
&& ! bl
->eliminable
4976 && REG_USERVAR_P (v
->dest_reg
))
4977 benefit
-= copy_cost
;
4979 /* Decrease the benefit to count the add-insns that we will insert
4980 to increment the reduced reg for the giv. ??? This can
4981 overestimate the run-time cost of the additional insns, e.g. if
4982 there are multiple basic blocks that increment the biv, but only
4983 one of these blocks is executed during each iteration. There is
4984 no good way to detect cases like this with the current structure
4985 of the loop optimizer. This code is more accurate for
4986 determining code size than run-time benefits. */
4987 benefit
-= add_cost
* bl
->biv_count
;
4989 /* Decide whether to strength-reduce this giv or to leave the code
4990 unchanged (recompute it from the biv each time it is used). This
4991 decision can be made independently for each giv. */
4994 /* Attempt to guess whether autoincrement will handle some of the
4995 new add insns; if so, increase BENEFIT (undo the subtraction of
4996 add_cost that was done above). */
4997 if (v
->giv_type
== DEST_ADDR
4998 /* Increasing the benefit is risky, since this is only a guess.
4999 Avoid increasing register pressure in cases where there would
5000 be no other benefit from reducing this giv. */
5002 && GET_CODE (v
->mult_val
) == CONST_INT
)
5004 int size
= GET_MODE_SIZE (GET_MODE (v
->mem
));
5006 if (HAVE_POST_INCREMENT
5007 && INTVAL (v
->mult_val
) == size
)
5008 benefit
+= add_cost
* bl
->biv_count
;
5009 else if (HAVE_PRE_INCREMENT
5010 && INTVAL (v
->mult_val
) == size
)
5011 benefit
+= add_cost
* bl
->biv_count
;
5012 else if (HAVE_POST_DECREMENT
5013 && -INTVAL (v
->mult_val
) == size
)
5014 benefit
+= add_cost
* bl
->biv_count
;
5015 else if (HAVE_PRE_DECREMENT
5016 && -INTVAL (v
->mult_val
) == size
)
5017 benefit
+= add_cost
* bl
->biv_count
;
5025 /* Free IV structures for LOOP. */
5028 loop_ivs_free (struct loop
*loop
)
5030 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5031 struct iv_class
*iv
= ivs
->list
;
5037 struct iv_class
*next
= iv
->next
;
5038 struct induction
*induction
;
5039 struct induction
*next_induction
;
5041 for (induction
= iv
->biv
; induction
; induction
= next_induction
)
5043 next_induction
= induction
->next_iv
;
5046 for (induction
= iv
->giv
; induction
; induction
= next_induction
)
5048 next_induction
= induction
->next_iv
;
5058 /* Perform strength reduction and induction variable elimination.
5060 Pseudo registers created during this function will be beyond the
5061 last valid index in several tables including
5062 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
5063 problem here, because the added registers cannot be givs outside of
5064 their loop, and hence will never be reconsidered. But scan_loop
5065 must check regnos to make sure they are in bounds. */
5068 strength_reduce (struct loop
*loop
, int flags
)
5070 struct loop_info
*loop_info
= LOOP_INFO (loop
);
5071 struct loop_regs
*regs
= LOOP_REGS (loop
);
5072 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5074 /* Temporary list pointer for traversing ivs->list. */
5075 struct iv_class
*bl
;
5076 /* Ratio of extra register life span we can justify
5077 for saving an instruction. More if loop doesn't call subroutines
5078 since in that case saving an insn makes more difference
5079 and more registers are available. */
5080 /* ??? could set this to last value of threshold in move_movables */
5081 int threshold
= (loop_info
->has_call
? 1 : 2) * (3 + n_non_fixed_regs
);
5082 /* Map of pseudo-register replacements. */
5083 rtx
*reg_map
= NULL
;
5085 int unrolled_insn_copies
= 0;
5086 rtx test_reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
5087 int insn_count
= count_insns_in_loop (loop
);
5089 addr_placeholder
= gen_reg_rtx (Pmode
);
5091 ivs
->n_regs
= max_reg_before_loop
;
5092 ivs
->regs
= xcalloc (ivs
->n_regs
, sizeof (struct iv
));
5094 /* Find all BIVs in loop. */
5095 loop_bivs_find (loop
);
5097 /* Exit if there are no bivs. */
5100 /* Can still unroll the loop anyways, but indicate that there is no
5101 strength reduction info available. */
5102 if (flags
& LOOP_UNROLL
)
5103 unroll_loop (loop
, insn_count
, 0);
5105 loop_ivs_free (loop
);
5109 /* Determine how BIVS are initialized by looking through pre-header
5110 extended basic block. */
5111 loop_bivs_init_find (loop
);
5113 /* Look at the each biv and see if we can say anything better about its
5114 initial value from any initializing insns set up above. */
5115 loop_bivs_check (loop
);
5117 /* Search the loop for general induction variables. */
5118 loop_givs_find (loop
);
5120 /* Try to calculate and save the number of loop iterations. This is
5121 set to zero if the actual number can not be calculated. This must
5122 be called after all giv's have been identified, since otherwise it may
5123 fail if the iteration variable is a giv. */
5124 loop_iterations (loop
);
5126 #ifdef HAVE_prefetch
5127 if (flags
& LOOP_PREFETCH
)
5128 emit_prefetch_instructions (loop
);
5131 /* Now for each giv for which we still don't know whether or not it is
5132 replaceable, check to see if it is replaceable because its final value
5133 can be calculated. This must be done after loop_iterations is called,
5134 so that final_giv_value will work correctly. */
5135 loop_givs_check (loop
);
5137 /* Try to prove that the loop counter variable (if any) is always
5138 nonnegative; if so, record that fact with a REG_NONNEG note
5139 so that "decrement and branch until zero" insn can be used. */
5140 check_dbra_loop (loop
, insn_count
);
5142 /* Create reg_map to hold substitutions for replaceable giv regs.
5143 Some givs might have been made from biv increments, so look at
5144 ivs->reg_iv_type for a suitable size. */
5145 reg_map_size
= ivs
->n_regs
;
5146 reg_map
= xcalloc (reg_map_size
, sizeof (rtx
));
5148 /* Examine each iv class for feasibility of strength reduction/induction
5149 variable elimination. */
5151 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
5153 struct induction
*v
;
5156 /* Test whether it will be possible to eliminate this biv
5157 provided all givs are reduced. */
5158 bl
->eliminable
= loop_biv_eliminable_p (loop
, bl
, threshold
, insn_count
);
5160 /* This will be true at the end, if all givs which depend on this
5161 biv have been strength reduced.
5162 We can't (currently) eliminate the biv unless this is so. */
5163 bl
->all_reduced
= 1;
5165 /* Check each extension dependent giv in this class to see if its
5166 root biv is safe from wrapping in the interior mode. */
5167 check_ext_dependent_givs (loop
, bl
);
5169 /* Combine all giv's for this iv_class. */
5170 combine_givs (regs
, bl
);
5172 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5174 struct induction
*tv
;
5176 if (v
->ignore
|| v
->same
)
5179 benefit
= loop_giv_reduce_benefit (loop
, bl
, v
, test_reg
);
5181 /* If an insn is not to be strength reduced, then set its ignore
5182 flag, and clear bl->all_reduced. */
5184 /* A giv that depends on a reversed biv must be reduced if it is
5185 used after the loop exit, otherwise, it would have the wrong
5186 value after the loop exit. To make it simple, just reduce all
5187 of such giv's whether or not we know they are used after the loop
5190 if (! flag_reduce_all_givs
5191 && v
->lifetime
* threshold
* benefit
< insn_count
5194 if (loop_dump_stream
)
5195 fprintf (loop_dump_stream
,
5196 "giv of insn %d not worth while, %d vs %d.\n",
5198 v
->lifetime
* threshold
* benefit
, insn_count
);
5200 bl
->all_reduced
= 0;
5204 /* Check that we can increment the reduced giv without a
5205 multiply insn. If not, reject it. */
5207 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
5208 if (tv
->mult_val
== const1_rtx
5209 && ! product_cheap_p (tv
->add_val
, v
->mult_val
))
5211 if (loop_dump_stream
)
5212 fprintf (loop_dump_stream
,
5213 "giv of insn %d: would need a multiply.\n",
5214 INSN_UID (v
->insn
));
5216 bl
->all_reduced
= 0;
5222 /* Check for givs whose first use is their definition and whose
5223 last use is the definition of another giv. If so, it is likely
5224 dead and should not be used to derive another giv nor to
5226 loop_givs_dead_check (loop
, bl
);
5228 /* Reduce each giv that we decided to reduce. */
5229 loop_givs_reduce (loop
, bl
);
5231 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5234 For each giv register that can be reduced now: if replaceable,
5235 substitute reduced reg wherever the old giv occurs;
5236 else add new move insn "giv_reg = reduced_reg". */
5237 loop_givs_rescan (loop
, bl
, reg_map
);
5239 /* All the givs based on the biv bl have been reduced if they
5242 /* For each giv not marked as maybe dead that has been combined with a
5243 second giv, clear any "maybe dead" mark on that second giv.
5244 v->new_reg will either be or refer to the register of the giv it
5247 Doing this clearing avoids problems in biv elimination where
5248 a giv's new_reg is a complex value that can't be put in the
5249 insn but the giv combined with (with a reg as new_reg) is
5250 marked maybe_dead. Since the register will be used in either
5251 case, we'd prefer it be used from the simpler giv. */
5253 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5254 if (! v
->maybe_dead
&& v
->same
)
5255 v
->same
->maybe_dead
= 0;
5257 /* Try to eliminate the biv, if it is a candidate.
5258 This won't work if ! bl->all_reduced,
5259 since the givs we planned to use might not have been reduced.
5261 We have to be careful that we didn't initially think we could
5262 eliminate this biv because of a giv that we now think may be
5263 dead and shouldn't be used as a biv replacement.
5265 Also, there is the possibility that we may have a giv that looks
5266 like it can be used to eliminate a biv, but the resulting insn
5267 isn't valid. This can happen, for example, on the 88k, where a
5268 JUMP_INSN can compare a register only with zero. Attempts to
5269 replace it with a compare with a constant will fail.
5271 Note that in cases where this call fails, we may have replaced some
5272 of the occurrences of the biv with a giv, but no harm was done in
5273 doing so in the rare cases where it can occur. */
5275 if (bl
->all_reduced
== 1 && bl
->eliminable
5276 && maybe_eliminate_biv (loop
, bl
, 1, threshold
, insn_count
))
5278 /* ?? If we created a new test to bypass the loop entirely,
5279 or otherwise drop straight in, based on this test, then
5280 we might want to rewrite it also. This way some later
5281 pass has more hope of removing the initialization of this
5284 /* If final_value != 0, then the biv may be used after loop end
5285 and we must emit an insn to set it just in case.
5287 Reversed bivs already have an insn after the loop setting their
5288 value, so we don't need another one. We can't calculate the
5289 proper final value for such a biv here anyways. */
5290 if (bl
->final_value
&& ! bl
->reversed
)
5291 loop_insn_sink_or_swim (loop
,
5292 gen_load_of_final_value (bl
->biv
->dest_reg
,
5295 if (loop_dump_stream
)
5296 fprintf (loop_dump_stream
, "Reg %d: biv eliminated\n",
5299 /* See above note wrt final_value. But since we couldn't eliminate
5300 the biv, we must set the value after the loop instead of before. */
5301 else if (bl
->final_value
&& ! bl
->reversed
)
5302 loop_insn_sink (loop
, gen_load_of_final_value (bl
->biv
->dest_reg
,
5306 /* Go through all the instructions in the loop, making all the
5307 register substitutions scheduled in REG_MAP. */
5309 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
5310 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
5311 || GET_CODE (p
) == CALL_INSN
)
5313 replace_regs (PATTERN (p
), reg_map
, reg_map_size
, 0);
5314 replace_regs (REG_NOTES (p
), reg_map
, reg_map_size
, 0);
5318 if (loop_info
->n_iterations
> 0)
5320 /* When we completely unroll a loop we will likely not need the increment
5321 of the loop BIV and we will not need the conditional branch at the
5323 unrolled_insn_copies
= insn_count
- 2;
5326 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5327 need the comparison before the conditional branch at the end of the
5329 unrolled_insn_copies
-= 1;
5332 /* We'll need one copy for each loop iteration. */
5333 unrolled_insn_copies
*= loop_info
->n_iterations
;
5335 /* A little slop to account for the ability to remove initialization
5336 code, better CSE, and other secondary benefits of completely
5337 unrolling some loops. */
5338 unrolled_insn_copies
-= 1;
5340 /* Clamp the value. */
5341 if (unrolled_insn_copies
< 0)
5342 unrolled_insn_copies
= 0;
5345 /* Unroll loops from within strength reduction so that we can use the
5346 induction variable information that strength_reduce has already
5347 collected. Always unroll loops that would be as small or smaller
5348 unrolled than when rolled. */
5349 if ((flags
& LOOP_UNROLL
)
5350 || ((flags
& LOOP_AUTO_UNROLL
)
5351 && loop_info
->n_iterations
> 0
5352 && unrolled_insn_copies
<= insn_count
))
5353 unroll_loop (loop
, insn_count
, 1);
5355 if (loop_dump_stream
)
5356 fprintf (loop_dump_stream
, "\n");
5358 loop_ivs_free (loop
);
5363 /*Record all basic induction variables calculated in the insn. */
5365 check_insn_for_bivs (struct loop
*loop
, rtx p
, int not_every_iteration
,
5368 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5375 if (GET_CODE (p
) == INSN
5376 && (set
= single_set (p
))
5377 && GET_CODE (SET_DEST (set
)) == REG
)
5379 dest_reg
= SET_DEST (set
);
5380 if (REGNO (dest_reg
) < max_reg_before_loop
5381 && REGNO (dest_reg
) >= FIRST_PSEUDO_REGISTER
5382 && REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != NOT_BASIC_INDUCT
)
5384 if (basic_induction_var (loop
, SET_SRC (set
),
5385 GET_MODE (SET_SRC (set
)),
5386 dest_reg
, p
, &inc_val
, &mult_val
,
5389 /* It is a possible basic induction variable.
5390 Create and initialize an induction structure for it. */
5392 struct induction
*v
= xmalloc (sizeof (struct induction
));
5394 record_biv (loop
, v
, p
, dest_reg
, inc_val
, mult_val
, location
,
5395 not_every_iteration
, maybe_multiple
);
5396 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = BASIC_INDUCT
;
5398 else if (REGNO (dest_reg
) < ivs
->n_regs
)
5399 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = NOT_BASIC_INDUCT
;
5405 /* Record all givs calculated in the insn.
5406 A register is a giv if: it is only set once, it is a function of a
5407 biv and a constant (or invariant), and it is not a biv. */
5409 check_insn_for_givs (struct loop
*loop
, rtx p
, int not_every_iteration
,
5412 struct loop_regs
*regs
= LOOP_REGS (loop
);
5415 /* Look for a general induction variable in a register. */
5416 if (GET_CODE (p
) == INSN
5417 && (set
= single_set (p
))
5418 && GET_CODE (SET_DEST (set
)) == REG
5419 && ! regs
->array
[REGNO (SET_DEST (set
))].may_not_optimize
)
5428 rtx last_consec_insn
;
5430 dest_reg
= SET_DEST (set
);
5431 if (REGNO (dest_reg
) < FIRST_PSEUDO_REGISTER
)
5434 if (/* SET_SRC is a giv. */
5435 (general_induction_var (loop
, SET_SRC (set
), &src_reg
, &add_val
,
5436 &mult_val
, &ext_val
, 0, &benefit
, VOIDmode
)
5437 /* Equivalent expression is a giv. */
5438 || ((regnote
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
5439 && general_induction_var (loop
, XEXP (regnote
, 0), &src_reg
,
5440 &add_val
, &mult_val
, &ext_val
, 0,
5441 &benefit
, VOIDmode
)))
5442 /* Don't try to handle any regs made by loop optimization.
5443 We have nothing on them in regno_first_uid, etc. */
5444 && REGNO (dest_reg
) < max_reg_before_loop
5445 /* Don't recognize a BASIC_INDUCT_VAR here. */
5446 && dest_reg
!= src_reg
5447 /* This must be the only place where the register is set. */
5448 && (regs
->array
[REGNO (dest_reg
)].n_times_set
== 1
5449 /* or all sets must be consecutive and make a giv. */
5450 || (benefit
= consec_sets_giv (loop
, benefit
, p
,
5452 &add_val
, &mult_val
, &ext_val
,
5453 &last_consec_insn
))))
5455 struct induction
*v
= xmalloc (sizeof (struct induction
));
5457 /* If this is a library call, increase benefit. */
5458 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
5459 benefit
+= libcall_benefit (p
);
5461 /* Skip the consecutive insns, if there are any. */
5462 if (regs
->array
[REGNO (dest_reg
)].n_times_set
!= 1)
5463 p
= last_consec_insn
;
5465 record_giv (loop
, v
, p
, src_reg
, dest_reg
, mult_val
, add_val
,
5466 ext_val
, benefit
, DEST_REG
, not_every_iteration
,
5467 maybe_multiple
, (rtx
*) 0);
5472 /* Look for givs which are memory addresses. */
5473 if (GET_CODE (p
) == INSN
)
5474 find_mem_givs (loop
, PATTERN (p
), p
, not_every_iteration
,
5477 /* Update the status of whether giv can derive other givs. This can
5478 change when we pass a label or an insn that updates a biv. */
5479 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
5480 || GET_CODE (p
) == CODE_LABEL
)
5481 update_giv_derive (loop
, p
);
5485 /* Return 1 if X is a valid source for an initial value (or as value being
5486 compared against in an initial test).
5488 X must be either a register or constant and must not be clobbered between
5489 the current insn and the start of the loop.
5491 INSN is the insn containing X. */
5494 valid_initial_value_p (rtx x
, rtx insn
, int call_seen
, rtx loop_start
)
5499 /* Only consider pseudos we know about initialized in insns whose luids
5501 if (GET_CODE (x
) != REG
5502 || REGNO (x
) >= max_reg_before_loop
)
5505 /* Don't use call-clobbered registers across a call which clobbers it. On
5506 some machines, don't use any hard registers at all. */
5507 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
5508 && (SMALL_REGISTER_CLASSES
5509 || (call_used_regs
[REGNO (x
)] && call_seen
)))
5512 /* Don't use registers that have been clobbered before the start of the
5514 if (reg_set_between_p (x
, insn
, loop_start
))
5520 /* Scan X for memory refs and check each memory address
5521 as a possible giv. INSN is the insn whose pattern X comes from.
5522 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5523 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5524 more than once in each loop iteration. */
5527 find_mem_givs (const struct loop
*loop
, rtx x
, rtx insn
,
5528 int not_every_iteration
, int maybe_multiple
)
5537 code
= GET_CODE (x
);
5562 /* This code used to disable creating GIVs with mult_val == 1 and
5563 add_val == 0. However, this leads to lost optimizations when
5564 it comes time to combine a set of related DEST_ADDR GIVs, since
5565 this one would not be seen. */
5567 if (general_induction_var (loop
, XEXP (x
, 0), &src_reg
, &add_val
,
5568 &mult_val
, &ext_val
, 1, &benefit
,
5571 /* Found one; record it. */
5572 struct induction
*v
= xmalloc (sizeof (struct induction
));
5574 record_giv (loop
, v
, insn
, src_reg
, addr_placeholder
, mult_val
,
5575 add_val
, ext_val
, benefit
, DEST_ADDR
,
5576 not_every_iteration
, maybe_multiple
, &XEXP (x
, 0));
5587 /* Recursively scan the subexpressions for other mem refs. */
5589 fmt
= GET_RTX_FORMAT (code
);
5590 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5592 find_mem_givs (loop
, XEXP (x
, i
), insn
, not_every_iteration
,
5594 else if (fmt
[i
] == 'E')
5595 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5596 find_mem_givs (loop
, XVECEXP (x
, i
, j
), insn
, not_every_iteration
,
5600 /* Fill in the data about one biv update.
5601 V is the `struct induction' in which we record the biv. (It is
5602 allocated by the caller, with alloca.)
5603 INSN is the insn that sets it.
5604 DEST_REG is the biv's reg.
5606 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5607 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5608 being set to INC_VAL.
5610 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5611 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5612 can be executed more than once per iteration. If MAYBE_MULTIPLE
5613 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5614 executed exactly once per iteration. */
5617 record_biv (struct loop
*loop
, struct induction
*v
, rtx insn
, rtx dest_reg
,
5618 rtx inc_val
, rtx mult_val
, rtx
*location
,
5619 int not_every_iteration
, int maybe_multiple
)
5621 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5622 struct iv_class
*bl
;
5625 v
->src_reg
= dest_reg
;
5626 v
->dest_reg
= dest_reg
;
5627 v
->mult_val
= mult_val
;
5628 v
->add_val
= inc_val
;
5629 v
->ext_dependent
= NULL_RTX
;
5630 v
->location
= location
;
5631 v
->mode
= GET_MODE (dest_reg
);
5632 v
->always_computable
= ! not_every_iteration
;
5633 v
->always_executed
= ! not_every_iteration
;
5634 v
->maybe_multiple
= maybe_multiple
;
5637 /* Add this to the reg's iv_class, creating a class
5638 if this is the first incrementation of the reg. */
5640 bl
= REG_IV_CLASS (ivs
, REGNO (dest_reg
));
5643 /* Create and initialize new iv_class. */
5645 bl
= xmalloc (sizeof (struct iv_class
));
5647 bl
->regno
= REGNO (dest_reg
);
5653 /* Set initial value to the reg itself. */
5654 bl
->initial_value
= dest_reg
;
5655 bl
->final_value
= 0;
5656 /* We haven't seen the initializing insn yet. */
5659 bl
->initial_test
= 0;
5660 bl
->incremented
= 0;
5664 bl
->total_benefit
= 0;
5666 /* Add this class to ivs->list. */
5667 bl
->next
= ivs
->list
;
5670 /* Put it in the array of biv register classes. */
5671 REG_IV_CLASS (ivs
, REGNO (dest_reg
)) = bl
;
5675 /* Check if location is the same as a previous one. */
5676 struct induction
*induction
;
5677 for (induction
= bl
->biv
; induction
; induction
= induction
->next_iv
)
5678 if (location
== induction
->location
)
5680 v
->same
= induction
;
5685 /* Update IV_CLASS entry for this biv. */
5686 v
->next_iv
= bl
->biv
;
5689 if (mult_val
== const1_rtx
)
5690 bl
->incremented
= 1;
5692 if (loop_dump_stream
)
5693 loop_biv_dump (v
, loop_dump_stream
, 0);
5696 /* Fill in the data about one giv.
5697 V is the `struct induction' in which we record the giv. (It is
5698 allocated by the caller, with alloca.)
5699 INSN is the insn that sets it.
5700 BENEFIT estimates the savings from deleting this insn.
5701 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5702 into a register or is used as a memory address.
5704 SRC_REG is the biv reg which the giv is computed from.
5705 DEST_REG is the giv's reg (if the giv is stored in a reg).
5706 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5707 LOCATION points to the place where this giv's value appears in INSN. */
5710 record_giv (const struct loop
*loop
, struct induction
*v
, rtx insn
,
5711 rtx src_reg
, rtx dest_reg
, rtx mult_val
, rtx add_val
,
5712 rtx ext_val
, int benefit
, enum g_types type
,
5713 int not_every_iteration
, int maybe_multiple
, rtx
*location
)
5715 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5716 struct induction
*b
;
5717 struct iv_class
*bl
;
5718 rtx set
= single_set (insn
);
5721 /* Attempt to prove constantness of the values. Don't let simplify_rtx
5722 undo the MULT canonicalization that we performed earlier. */
5723 temp
= simplify_rtx (add_val
);
5725 && ! (GET_CODE (add_val
) == MULT
5726 && GET_CODE (temp
) == ASHIFT
))
5730 v
->src_reg
= src_reg
;
5732 v
->dest_reg
= dest_reg
;
5733 v
->mult_val
= mult_val
;
5734 v
->add_val
= add_val
;
5735 v
->ext_dependent
= ext_val
;
5736 v
->benefit
= benefit
;
5737 v
->location
= location
;
5739 v
->combined_with
= 0;
5740 v
->maybe_multiple
= maybe_multiple
;
5742 v
->derive_adjustment
= 0;
5748 v
->auto_inc_opt
= 0;
5752 /* The v->always_computable field is used in update_giv_derive, to
5753 determine whether a giv can be used to derive another giv. For a
5754 DEST_REG giv, INSN computes a new value for the giv, so its value
5755 isn't computable if INSN insn't executed every iteration.
5756 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5757 it does not compute a new value. Hence the value is always computable
5758 regardless of whether INSN is executed each iteration. */
5760 if (type
== DEST_ADDR
)
5761 v
->always_computable
= 1;
5763 v
->always_computable
= ! not_every_iteration
;
5765 v
->always_executed
= ! not_every_iteration
;
5767 if (type
== DEST_ADDR
)
5769 v
->mode
= GET_MODE (*location
);
5772 else /* type == DEST_REG */
5774 v
->mode
= GET_MODE (SET_DEST (set
));
5776 v
->lifetime
= LOOP_REG_LIFETIME (loop
, REGNO (dest_reg
));
5778 /* If the lifetime is zero, it means that this register is
5779 really a dead store. So mark this as a giv that can be
5780 ignored. This will not prevent the biv from being eliminated. */
5781 if (v
->lifetime
== 0)
5784 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
5785 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
5788 /* Add the giv to the class of givs computed from one biv. */
5790 bl
= REG_IV_CLASS (ivs
, REGNO (src_reg
));
5793 v
->next_iv
= bl
->giv
;
5795 /* Don't count DEST_ADDR. This is supposed to count the number of
5796 insns that calculate givs. */
5797 if (type
== DEST_REG
)
5799 bl
->total_benefit
+= benefit
;
5802 /* Fatal error, biv missing for this giv? */
5805 if (type
== DEST_ADDR
)
5808 v
->not_replaceable
= 0;
5812 /* The giv can be replaced outright by the reduced register only if all
5813 of the following conditions are true:
5814 - the insn that sets the giv is always executed on any iteration
5815 on which the giv is used at all
5816 (there are two ways to deduce this:
5817 either the insn is executed on every iteration,
5818 or all uses follow that insn in the same basic block),
5819 - the giv is not used outside the loop
5820 - no assignments to the biv occur during the giv's lifetime. */
5822 if (REGNO_FIRST_UID (REGNO (dest_reg
)) == INSN_UID (insn
)
5823 /* Previous line always fails if INSN was moved by loop opt. */
5824 && REGNO_LAST_LUID (REGNO (dest_reg
))
5825 < INSN_LUID (loop
->end
)
5826 && (! not_every_iteration
5827 || last_use_this_basic_block (dest_reg
, insn
)))
5829 /* Now check that there are no assignments to the biv within the
5830 giv's lifetime. This requires two separate checks. */
5832 /* Check each biv update, and fail if any are between the first
5833 and last use of the giv.
5835 If this loop contains an inner loop that was unrolled, then
5836 the insn modifying the biv may have been emitted by the loop
5837 unrolling code, and hence does not have a valid luid. Just
5838 mark the biv as not replaceable in this case. It is not very
5839 useful as a biv, because it is used in two different loops.
5840 It is very unlikely that we would be able to optimize the giv
5841 using this biv anyways. */
5844 v
->not_replaceable
= 0;
5845 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5847 if (INSN_UID (b
->insn
) >= max_uid_for_loop
5848 || ((INSN_LUID (b
->insn
)
5849 >= REGNO_FIRST_LUID (REGNO (dest_reg
)))
5850 && (INSN_LUID (b
->insn
)
5851 <= REGNO_LAST_LUID (REGNO (dest_reg
)))))
5854 v
->not_replaceable
= 1;
5859 /* If there are any backwards branches that go from after the
5860 biv update to before it, then this giv is not replaceable. */
5862 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5863 if (back_branch_in_range_p (loop
, b
->insn
))
5866 v
->not_replaceable
= 1;
5872 /* May still be replaceable, we don't have enough info here to
5875 v
->not_replaceable
= 0;
5879 /* Record whether the add_val contains a const_int, for later use by
5884 v
->no_const_addval
= 1;
5885 if (tem
== const0_rtx
)
5887 else if (CONSTANT_P (add_val
))
5888 v
->no_const_addval
= 0;
5889 if (GET_CODE (tem
) == PLUS
)
5893 if (GET_CODE (XEXP (tem
, 0)) == PLUS
)
5894 tem
= XEXP (tem
, 0);
5895 else if (GET_CODE (XEXP (tem
, 1)) == PLUS
)
5896 tem
= XEXP (tem
, 1);
5900 if (CONSTANT_P (XEXP (tem
, 1)))
5901 v
->no_const_addval
= 0;
5905 if (loop_dump_stream
)
5906 loop_giv_dump (v
, loop_dump_stream
, 0);
5909 /* All this does is determine whether a giv can be made replaceable because
5910 its final value can be calculated. This code can not be part of record_giv
5911 above, because final_giv_value requires that the number of loop iterations
5912 be known, and that can not be accurately calculated until after all givs
5913 have been identified. */
5916 check_final_value (const struct loop
*loop
, struct induction
*v
)
5918 rtx final_value
= 0;
5920 /* DEST_ADDR givs will never reach here, because they are always marked
5921 replaceable above in record_giv. */
5923 /* The giv can be replaced outright by the reduced register only if all
5924 of the following conditions are true:
5925 - the insn that sets the giv is always executed on any iteration
5926 on which the giv is used at all
5927 (there are two ways to deduce this:
5928 either the insn is executed on every iteration,
5929 or all uses follow that insn in the same basic block),
5930 - its final value can be calculated (this condition is different
5931 than the one above in record_giv)
5932 - it's not used before the it's set
5933 - no assignments to the biv occur during the giv's lifetime. */
5936 /* This is only called now when replaceable is known to be false. */
5937 /* Clear replaceable, so that it won't confuse final_giv_value. */
5941 if ((final_value
= final_giv_value (loop
, v
))
5942 && (v
->always_executed
5943 || last_use_this_basic_block (v
->dest_reg
, v
->insn
)))
5945 int biv_increment_seen
= 0, before_giv_insn
= 0;
5950 v
->not_replaceable
= 0;
5952 /* When trying to determine whether or not a biv increment occurs
5953 during the lifetime of the giv, we can ignore uses of the variable
5954 outside the loop because final_value is true. Hence we can not
5955 use regno_last_uid and regno_first_uid as above in record_giv. */
5957 /* Search the loop to determine whether any assignments to the
5958 biv occur during the giv's lifetime. Start with the insn
5959 that sets the giv, and search around the loop until we come
5960 back to that insn again.
5962 Also fail if there is a jump within the giv's lifetime that jumps
5963 to somewhere outside the lifetime but still within the loop. This
5964 catches spaghetti code where the execution order is not linear, and
5965 hence the above test fails. Here we assume that the giv lifetime
5966 does not extend from one iteration of the loop to the next, so as
5967 to make the test easier. Since the lifetime isn't known yet,
5968 this requires two loops. See also record_giv above. */
5970 last_giv_use
= v
->insn
;
5977 before_giv_insn
= 1;
5978 p
= NEXT_INSN (loop
->start
);
5983 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
5984 || GET_CODE (p
) == CALL_INSN
)
5986 /* It is possible for the BIV increment to use the GIV if we
5987 have a cycle. Thus we must be sure to check each insn for
5988 both BIV and GIV uses, and we must check for BIV uses
5991 if (! biv_increment_seen
5992 && reg_set_p (v
->src_reg
, PATTERN (p
)))
5993 biv_increment_seen
= 1;
5995 if (reg_mentioned_p (v
->dest_reg
, PATTERN (p
)))
5997 if (biv_increment_seen
|| before_giv_insn
)
6000 v
->not_replaceable
= 1;
6008 /* Now that the lifetime of the giv is known, check for branches
6009 from within the lifetime to outside the lifetime if it is still
6019 p
= NEXT_INSN (loop
->start
);
6020 if (p
== last_giv_use
)
6023 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
)
6024 && LABEL_NAME (JUMP_LABEL (p
))
6025 && ((loop_insn_first_p (JUMP_LABEL (p
), v
->insn
)
6026 && loop_insn_first_p (loop
->start
, JUMP_LABEL (p
)))
6027 || (loop_insn_first_p (last_giv_use
, JUMP_LABEL (p
))
6028 && loop_insn_first_p (JUMP_LABEL (p
), loop
->end
))))
6031 v
->not_replaceable
= 1;
6033 if (loop_dump_stream
)
6034 fprintf (loop_dump_stream
,
6035 "Found branch outside giv lifetime.\n");
6042 /* If it is replaceable, then save the final value. */
6044 v
->final_value
= final_value
;
6047 if (loop_dump_stream
&& v
->replaceable
)
6048 fprintf (loop_dump_stream
, "Insn %d: giv reg %d final_value replaceable\n",
6049 INSN_UID (v
->insn
), REGNO (v
->dest_reg
));
6052 /* Update the status of whether a giv can derive other givs.
6054 We need to do something special if there is or may be an update to the biv
6055 between the time the giv is defined and the time it is used to derive
6058 In addition, a giv that is only conditionally set is not allowed to
6059 derive another giv once a label has been passed.
6061 The cases we look at are when a label or an update to a biv is passed. */
6064 update_giv_derive (const struct loop
*loop
, rtx p
)
6066 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6067 struct iv_class
*bl
;
6068 struct induction
*biv
, *giv
;
6072 /* Search all IV classes, then all bivs, and finally all givs.
6074 There are three cases we are concerned with. First we have the situation
6075 of a giv that is only updated conditionally. In that case, it may not
6076 derive any givs after a label is passed.
6078 The second case is when a biv update occurs, or may occur, after the
6079 definition of a giv. For certain biv updates (see below) that are
6080 known to occur between the giv definition and use, we can adjust the
6081 giv definition. For others, or when the biv update is conditional,
6082 we must prevent the giv from deriving any other givs. There are two
6083 sub-cases within this case.
6085 If this is a label, we are concerned with any biv update that is done
6086 conditionally, since it may be done after the giv is defined followed by
6087 a branch here (actually, we need to pass both a jump and a label, but
6088 this extra tracking doesn't seem worth it).
6090 If this is a jump, we are concerned about any biv update that may be
6091 executed multiple times. We are actually only concerned about
6092 backward jumps, but it is probably not worth performing the test
6093 on the jump again here.
6095 If this is a biv update, we must adjust the giv status to show that a
6096 subsequent biv update was performed. If this adjustment cannot be done,
6097 the giv cannot derive further givs. */
6099 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
6100 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
6101 if (GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
6104 /* Skip if location is the same as a previous one. */
6108 for (giv
= bl
->giv
; giv
; giv
= giv
->next_iv
)
6110 /* If cant_derive is already true, there is no point in
6111 checking all of these conditions again. */
6112 if (giv
->cant_derive
)
6115 /* If this giv is conditionally set and we have passed a label,
6116 it cannot derive anything. */
6117 if (GET_CODE (p
) == CODE_LABEL
&& ! giv
->always_computable
)
6118 giv
->cant_derive
= 1;
6120 /* Skip givs that have mult_val == 0, since
6121 they are really invariants. Also skip those that are
6122 replaceable, since we know their lifetime doesn't contain
6124 else if (giv
->mult_val
== const0_rtx
|| giv
->replaceable
)
6127 /* The only way we can allow this giv to derive another
6128 is if this is a biv increment and we can form the product
6129 of biv->add_val and giv->mult_val. In this case, we will
6130 be able to compute a compensation. */
6131 else if (biv
->insn
== p
)
6136 if (biv
->mult_val
== const1_rtx
)
6137 tem
= simplify_giv_expr (loop
,
6138 gen_rtx_MULT (giv
->mode
,
6141 &ext_val_dummy
, &dummy
);
6143 if (tem
&& giv
->derive_adjustment
)
6144 tem
= simplify_giv_expr
6146 gen_rtx_PLUS (giv
->mode
, tem
, giv
->derive_adjustment
),
6147 &ext_val_dummy
, &dummy
);
6150 giv
->derive_adjustment
= tem
;
6152 giv
->cant_derive
= 1;
6154 else if ((GET_CODE (p
) == CODE_LABEL
&& ! biv
->always_computable
)
6155 || (GET_CODE (p
) == JUMP_INSN
&& biv
->maybe_multiple
))
6156 giv
->cant_derive
= 1;
6161 /* Check whether an insn is an increment legitimate for a basic induction var.
6162 X is the source of insn P, or a part of it.
6163 MODE is the mode in which X should be interpreted.
6165 DEST_REG is the putative biv, also the destination of the insn.
6166 We accept patterns of these forms:
6167 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6168 REG = INVARIANT + REG
6170 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6171 store the additive term into *INC_VAL, and store the place where
6172 we found the additive term into *LOCATION.
6174 If X is an assignment of an invariant into DEST_REG, we set
6175 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6177 We also want to detect a BIV when it corresponds to a variable
6178 whose mode was promoted. In that case, an increment
6179 of the variable may be a PLUS that adds a SUBREG of that variable to
6180 an invariant and then sign- or zero-extends the result of the PLUS
6183 Most GIVs in such cases will be in the promoted mode, since that is the
6184 probably the natural computation mode (and almost certainly the mode
6185 used for addresses) on the machine. So we view the pseudo-reg containing
6186 the variable as the BIV, as if it were simply incremented.
6188 Note that treating the entire pseudo as a BIV will result in making
6189 simple increments to any GIVs based on it. However, if the variable
6190 overflows in its declared mode but not its promoted mode, the result will
6191 be incorrect. This is acceptable if the variable is signed, since
6192 overflows in such cases are undefined, but not if it is unsigned, since
6193 those overflows are defined. So we only check for SIGN_EXTEND and
6196 If we cannot find a biv, we return 0. */
6199 basic_induction_var (const struct loop
*loop
, rtx x
, enum machine_mode mode
,
6200 rtx dest_reg
, rtx p
, rtx
*inc_val
, rtx
*mult_val
,
6205 rtx insn
, set
= 0, last
, inc
;
6207 code
= GET_CODE (x
);
6212 if (rtx_equal_p (XEXP (x
, 0), dest_reg
)
6213 || (GET_CODE (XEXP (x
, 0)) == SUBREG
6214 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 0))
6215 && SUBREG_REG (XEXP (x
, 0)) == dest_reg
))
6217 argp
= &XEXP (x
, 1);
6219 else if (rtx_equal_p (XEXP (x
, 1), dest_reg
)
6220 || (GET_CODE (XEXP (x
, 1)) == SUBREG
6221 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 1))
6222 && SUBREG_REG (XEXP (x
, 1)) == dest_reg
))
6224 argp
= &XEXP (x
, 0);
6230 if (loop_invariant_p (loop
, arg
) != 1)
6233 /* convert_modes can emit new instructions, e.g. when arg is a loop
6234 invariant MEM and dest_reg has a different mode.
6235 These instructions would be emitted after the end of the function
6236 and then *inc_val would be an uninitialized pseudo.
6237 Detect this and bail in this case.
6238 Other alternatives to solve this can be introducing a convert_modes
6239 variant which is allowed to fail but not allowed to emit new
6240 instructions, emit these instructions before loop start and let
6241 it be garbage collected if *inc_val is never used or saving the
6242 *inc_val initialization sequence generated here and when *inc_val
6243 is going to be actually used, emit it at some suitable place. */
6244 last
= get_last_insn ();
6245 inc
= convert_modes (GET_MODE (dest_reg
), GET_MODE (x
), arg
, 0);
6246 if (get_last_insn () != last
)
6248 delete_insns_since (last
);
6253 *mult_val
= const1_rtx
;
6258 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6259 handle addition of promoted variables.
6260 ??? The comment at the start of this function is wrong: promoted
6261 variable increments don't look like it says they do. */
6262 return basic_induction_var (loop
, SUBREG_REG (x
),
6263 GET_MODE (SUBREG_REG (x
)),
6264 dest_reg
, p
, inc_val
, mult_val
, location
);
6267 /* If this register is assigned in a previous insn, look at its
6268 source, but don't go outside the loop or past a label. */
6270 /* If this sets a register to itself, we would repeat any previous
6271 biv increment if we applied this strategy blindly. */
6272 if (rtx_equal_p (dest_reg
, x
))
6281 insn
= PREV_INSN (insn
);
6283 while (insn
&& GET_CODE (insn
) == NOTE
6284 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
6288 set
= single_set (insn
);
6291 dest
= SET_DEST (set
);
6293 || (GET_CODE (dest
) == SUBREG
6294 && (GET_MODE_SIZE (GET_MODE (dest
)) <= UNITS_PER_WORD
)
6295 && (GET_MODE_CLASS (GET_MODE (dest
)) == MODE_INT
)
6296 && SUBREG_REG (dest
) == x
))
6297 return basic_induction_var (loop
, SET_SRC (set
),
6298 (GET_MODE (SET_SRC (set
)) == VOIDmode
6300 : GET_MODE (SET_SRC (set
))),
6302 inc_val
, mult_val
, location
);
6304 while (GET_CODE (dest
) == SIGN_EXTRACT
6305 || GET_CODE (dest
) == ZERO_EXTRACT
6306 || GET_CODE (dest
) == SUBREG
6307 || GET_CODE (dest
) == STRICT_LOW_PART
)
6308 dest
= XEXP (dest
, 0);
6314 /* Can accept constant setting of biv only when inside inner most loop.
6315 Otherwise, a biv of an inner loop may be incorrectly recognized
6316 as a biv of the outer loop,
6317 causing code to be moved INTO the inner loop. */
6319 if (loop_invariant_p (loop
, x
) != 1)
6324 /* convert_modes aborts if we try to convert to or from CCmode, so just
6325 exclude that case. It is very unlikely that a condition code value
6326 would be a useful iterator anyways. convert_modes aborts if we try to
6327 convert a float mode to non-float or vice versa too. */
6328 if (loop
->level
== 1
6329 && GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (dest_reg
))
6330 && GET_MODE_CLASS (mode
) != MODE_CC
)
6332 /* Possible bug here? Perhaps we don't know the mode of X. */
6333 last
= get_last_insn ();
6334 inc
= convert_modes (GET_MODE (dest_reg
), mode
, x
, 0);
6335 if (get_last_insn () != last
)
6337 delete_insns_since (last
);
6342 *mult_val
= const0_rtx
;
6349 /* Ignore this BIV if signed arithmetic overflow is defined. */
6352 return basic_induction_var (loop
, XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
6353 dest_reg
, p
, inc_val
, mult_val
, location
);
6356 /* Similar, since this can be a sign extension. */
6357 for (insn
= PREV_INSN (p
);
6358 (insn
&& GET_CODE (insn
) == NOTE
6359 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
6360 insn
= PREV_INSN (insn
))
6364 set
= single_set (insn
);
6366 if (! rtx_equal_p (dest_reg
, XEXP (x
, 0))
6367 && set
&& SET_DEST (set
) == XEXP (x
, 0)
6368 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6369 && INTVAL (XEXP (x
, 1)) >= 0
6370 && GET_CODE (SET_SRC (set
)) == ASHIFT
6371 && XEXP (x
, 1) == XEXP (SET_SRC (set
), 1))
6372 return basic_induction_var (loop
, XEXP (SET_SRC (set
), 0),
6373 GET_MODE (XEXP (x
, 0)),
6374 dest_reg
, insn
, inc_val
, mult_val
,
6383 /* A general induction variable (giv) is any quantity that is a linear
6384 function of a basic induction variable,
6385 i.e. giv = biv * mult_val + add_val.
6386 The coefficients can be any loop invariant quantity.
6387 A giv need not be computed directly from the biv;
6388 it can be computed by way of other givs. */
6390 /* Determine whether X computes a giv.
6391 If it does, return a nonzero value
6392 which is the benefit from eliminating the computation of X;
6393 set *SRC_REG to the register of the biv that it is computed from;
6394 set *ADD_VAL and *MULT_VAL to the coefficients,
6395 such that the value of X is biv * mult + add; */
6398 general_induction_var (const struct loop
*loop
, rtx x
, rtx
*src_reg
,
6399 rtx
*add_val
, rtx
*mult_val
, rtx
*ext_val
,
6400 int is_addr
, int *pbenefit
,
6401 enum machine_mode addr_mode
)
6403 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6406 /* If this is an invariant, forget it, it isn't a giv. */
6407 if (loop_invariant_p (loop
, x
) == 1)
6411 *ext_val
= NULL_RTX
;
6412 x
= simplify_giv_expr (loop
, x
, ext_val
, pbenefit
);
6416 switch (GET_CODE (x
))
6420 /* Since this is now an invariant and wasn't before, it must be a giv
6421 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6423 *src_reg
= ivs
->list
->biv
->dest_reg
;
6424 *mult_val
= const0_rtx
;
6429 /* This is equivalent to a BIV. */
6431 *mult_val
= const1_rtx
;
6432 *add_val
= const0_rtx
;
6436 /* Either (plus (biv) (invar)) or
6437 (plus (mult (biv) (invar_1)) (invar_2)). */
6438 if (GET_CODE (XEXP (x
, 0)) == MULT
)
6440 *src_reg
= XEXP (XEXP (x
, 0), 0);
6441 *mult_val
= XEXP (XEXP (x
, 0), 1);
6445 *src_reg
= XEXP (x
, 0);
6446 *mult_val
= const1_rtx
;
6448 *add_val
= XEXP (x
, 1);
6452 /* ADD_VAL is zero. */
6453 *src_reg
= XEXP (x
, 0);
6454 *mult_val
= XEXP (x
, 1);
6455 *add_val
= const0_rtx
;
6462 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6463 unless they are CONST_INT). */
6464 if (GET_CODE (*add_val
) == USE
)
6465 *add_val
= XEXP (*add_val
, 0);
6466 if (GET_CODE (*mult_val
) == USE
)
6467 *mult_val
= XEXP (*mult_val
, 0);
6470 *pbenefit
+= address_cost (orig_x
, addr_mode
) - reg_address_cost
;
6472 *pbenefit
+= rtx_cost (orig_x
, SET
);
6474 /* Always return true if this is a giv so it will be detected as such,
6475 even if the benefit is zero or negative. This allows elimination
6476 of bivs that might otherwise not be eliminated. */
6480 /* Given an expression, X, try to form it as a linear function of a biv.
6481 We will canonicalize it to be of the form
6482 (plus (mult (BIV) (invar_1))
6484 with possible degeneracies.
6486 The invariant expressions must each be of a form that can be used as a
6487 machine operand. We surround then with a USE rtx (a hack, but localized
6488 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6489 routine; it is the caller's responsibility to strip them.
6491 If no such canonicalization is possible (i.e., two biv's are used or an
6492 expression that is neither invariant nor a biv or giv), this routine
6495 For a nonzero return, the result will have a code of CONST_INT, USE,
6496 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6498 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6500 static rtx
sge_plus (enum machine_mode
, rtx
, rtx
);
6501 static rtx
sge_plus_constant (rtx
, rtx
);
6504 simplify_giv_expr (const struct loop
*loop
, rtx x
, rtx
*ext_val
, int *benefit
)
6506 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6507 struct loop_regs
*regs
= LOOP_REGS (loop
);
6508 enum machine_mode mode
= GET_MODE (x
);
6512 /* If this is not an integer mode, or if we cannot do arithmetic in this
6513 mode, this can't be a giv. */
6514 if (mode
!= VOIDmode
6515 && (GET_MODE_CLASS (mode
) != MODE_INT
6516 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
))
6519 switch (GET_CODE (x
))
6522 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
6523 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
6524 if (arg0
== 0 || arg1
== 0)
6527 /* Put constant last, CONST_INT last if both constant. */
6528 if ((GET_CODE (arg0
) == USE
6529 || GET_CODE (arg0
) == CONST_INT
)
6530 && ! ((GET_CODE (arg0
) == USE
6531 && GET_CODE (arg1
) == USE
)
6532 || GET_CODE (arg1
) == CONST_INT
))
6533 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6535 /* Handle addition of zero, then addition of an invariant. */
6536 if (arg1
== const0_rtx
)
6538 else if (GET_CODE (arg1
) == CONST_INT
|| GET_CODE (arg1
) == USE
)
6539 switch (GET_CODE (arg0
))
6543 /* Adding two invariants must result in an invariant, so enclose
6544 addition operation inside a USE and return it. */
6545 if (GET_CODE (arg0
) == USE
)
6546 arg0
= XEXP (arg0
, 0);
6547 if (GET_CODE (arg1
) == USE
)
6548 arg1
= XEXP (arg1
, 0);
6550 if (GET_CODE (arg0
) == CONST_INT
)
6551 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6552 if (GET_CODE (arg1
) == CONST_INT
)
6553 tem
= sge_plus_constant (arg0
, arg1
);
6555 tem
= sge_plus (mode
, arg0
, arg1
);
6557 if (GET_CODE (tem
) != CONST_INT
)
6558 tem
= gen_rtx_USE (mode
, tem
);
6563 /* biv + invar or mult + invar. Return sum. */
6564 return gen_rtx_PLUS (mode
, arg0
, arg1
);
6567 /* (a + invar_1) + invar_2. Associate. */
6569 simplify_giv_expr (loop
,
6581 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6582 MULT to reduce cases. */
6583 if (GET_CODE (arg0
) == REG
)
6584 arg0
= gen_rtx_MULT (mode
, arg0
, const1_rtx
);
6585 if (GET_CODE (arg1
) == REG
)
6586 arg1
= gen_rtx_MULT (mode
, arg1
, const1_rtx
);
6588 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6589 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6590 Recurse to associate the second PLUS. */
6591 if (GET_CODE (arg1
) == MULT
)
6592 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6594 if (GET_CODE (arg1
) == PLUS
)
6596 simplify_giv_expr (loop
,
6598 gen_rtx_PLUS (mode
, arg0
,
6603 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6604 if (GET_CODE (arg0
) != MULT
|| GET_CODE (arg1
) != MULT
)
6607 if (!rtx_equal_p (arg0
, arg1
))
6610 return simplify_giv_expr (loop
,
6619 /* Handle "a - b" as "a + b * (-1)". */
6620 return simplify_giv_expr (loop
,
6629 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
6630 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
6631 if (arg0
== 0 || arg1
== 0)
6634 /* Put constant last, CONST_INT last if both constant. */
6635 if ((GET_CODE (arg0
) == USE
|| GET_CODE (arg0
) == CONST_INT
)
6636 && GET_CODE (arg1
) != CONST_INT
)
6637 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6639 /* If second argument is not now constant, not giv. */
6640 if (GET_CODE (arg1
) != USE
&& GET_CODE (arg1
) != CONST_INT
)
6643 /* Handle multiply by 0 or 1. */
6644 if (arg1
== const0_rtx
)
6647 else if (arg1
== const1_rtx
)
6650 switch (GET_CODE (arg0
))
6653 /* biv * invar. Done. */
6654 return gen_rtx_MULT (mode
, arg0
, arg1
);
6657 /* Product of two constants. */
6658 return GEN_INT (INTVAL (arg0
) * INTVAL (arg1
));
6661 /* invar * invar is a giv, but attempt to simplify it somehow. */
6662 if (GET_CODE (arg1
) != CONST_INT
)
6665 arg0
= XEXP (arg0
, 0);
6666 if (GET_CODE (arg0
) == MULT
)
6668 /* (invar_0 * invar_1) * invar_2. Associate. */
6669 return simplify_giv_expr (loop
,
6678 /* Propagate the MULT expressions to the innermost nodes. */
6679 else if (GET_CODE (arg0
) == PLUS
)
6681 /* (invar_0 + invar_1) * invar_2. Distribute. */
6682 return simplify_giv_expr (loop
,
6694 return gen_rtx_USE (mode
, gen_rtx_MULT (mode
, arg0
, arg1
));
6697 /* (a * invar_1) * invar_2. Associate. */
6698 return simplify_giv_expr (loop
,
6707 /* (a + invar_1) * invar_2. Distribute. */
6708 return simplify_giv_expr (loop
,
6723 /* Shift by constant is multiply by power of two. */
6724 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6728 simplify_giv_expr (loop
,
6731 GEN_INT ((HOST_WIDE_INT
) 1
6732 << INTVAL (XEXP (x
, 1)))),
6736 /* "-a" is "a * (-1)" */
6737 return simplify_giv_expr (loop
,
6738 gen_rtx_MULT (mode
, XEXP (x
, 0), constm1_rtx
),
6742 /* "~a" is "-a - 1". Silly, but easy. */
6743 return simplify_giv_expr (loop
,
6744 gen_rtx_MINUS (mode
,
6745 gen_rtx_NEG (mode
, XEXP (x
, 0)),
6750 /* Already in proper form for invariant. */
6756 /* Conditionally recognize extensions of simple IVs. After we've
6757 computed loop traversal counts and verified the range of the
6758 source IV, we'll reevaluate this as a GIV. */
6759 if (*ext_val
== NULL_RTX
)
6761 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
6762 if (arg0
&& *ext_val
== NULL_RTX
&& GET_CODE (arg0
) == REG
)
6764 *ext_val
= gen_rtx_fmt_e (GET_CODE (x
), mode
, arg0
);
6771 /* If this is a new register, we can't deal with it. */
6772 if (REGNO (x
) >= max_reg_before_loop
)
6775 /* Check for biv or giv. */
6776 switch (REG_IV_TYPE (ivs
, REGNO (x
)))
6780 case GENERAL_INDUCT
:
6782 struct induction
*v
= REG_IV_INFO (ivs
, REGNO (x
));
6784 /* Form expression from giv and add benefit. Ensure this giv
6785 can derive another and subtract any needed adjustment if so. */
6787 /* Increasing the benefit here is risky. The only case in which it
6788 is arguably correct is if this is the only use of V. In other
6789 cases, this will artificially inflate the benefit of the current
6790 giv, and lead to suboptimal code. Thus, it is disabled, since
6791 potentially not reducing an only marginally beneficial giv is
6792 less harmful than reducing many givs that are not really
6795 rtx single_use
= regs
->array
[REGNO (x
)].single_usage
;
6796 if (single_use
&& single_use
!= const0_rtx
)
6797 *benefit
+= v
->benefit
;
6803 tem
= gen_rtx_PLUS (mode
, gen_rtx_MULT (mode
,
6804 v
->src_reg
, v
->mult_val
),
6807 if (v
->derive_adjustment
)
6808 tem
= gen_rtx_MINUS (mode
, tem
, v
->derive_adjustment
);
6809 arg0
= simplify_giv_expr (loop
, tem
, ext_val
, benefit
);
6812 if (!v
->ext_dependent
)
6817 *ext_val
= v
->ext_dependent
;
6825 /* If it isn't an induction variable, and it is invariant, we
6826 may be able to simplify things further by looking through
6827 the bits we just moved outside the loop. */
6828 if (loop_invariant_p (loop
, x
) == 1)
6831 struct loop_movables
*movables
= LOOP_MOVABLES (loop
);
6833 for (m
= movables
->head
; m
; m
= m
->next
)
6834 if (rtx_equal_p (x
, m
->set_dest
))
6836 /* Ok, we found a match. Substitute and simplify. */
6838 /* If we match another movable, we must use that, as
6839 this one is going away. */
6841 return simplify_giv_expr (loop
, m
->match
->set_dest
,
6844 /* If consec is nonzero, this is a member of a group of
6845 instructions that were moved together. We handle this
6846 case only to the point of seeking to the last insn and
6847 looking for a REG_EQUAL. Fail if we don't find one. */
6854 tem
= NEXT_INSN (tem
);
6858 tem
= find_reg_note (tem
, REG_EQUAL
, NULL_RTX
);
6860 tem
= XEXP (tem
, 0);
6864 tem
= single_set (m
->insn
);
6866 tem
= SET_SRC (tem
);
6871 /* What we are most interested in is pointer
6872 arithmetic on invariants -- only take
6873 patterns we may be able to do something with. */
6874 if (GET_CODE (tem
) == PLUS
6875 || GET_CODE (tem
) == MULT
6876 || GET_CODE (tem
) == ASHIFT
6877 || GET_CODE (tem
) == CONST_INT
6878 || GET_CODE (tem
) == SYMBOL_REF
)
6880 tem
= simplify_giv_expr (loop
, tem
, ext_val
,
6885 else if (GET_CODE (tem
) == CONST
6886 && GET_CODE (XEXP (tem
, 0)) == PLUS
6887 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == SYMBOL_REF
6888 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)
6890 tem
= simplify_giv_expr (loop
, XEXP (tem
, 0),
6902 /* Fall through to general case. */
6904 /* If invariant, return as USE (unless CONST_INT).
6905 Otherwise, not giv. */
6906 if (GET_CODE (x
) == USE
)
6909 if (loop_invariant_p (loop
, x
) == 1)
6911 if (GET_CODE (x
) == CONST_INT
)
6913 if (GET_CODE (x
) == CONST
6914 && GET_CODE (XEXP (x
, 0)) == PLUS
6915 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
6916 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
6918 return gen_rtx_USE (mode
, x
);
6925 /* This routine folds invariants such that there is only ever one
6926 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6929 sge_plus_constant (rtx x
, rtx c
)
6931 if (GET_CODE (x
) == CONST_INT
)
6932 return GEN_INT (INTVAL (x
) + INTVAL (c
));
6933 else if (GET_CODE (x
) != PLUS
)
6934 return gen_rtx_PLUS (GET_MODE (x
), x
, c
);
6935 else if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6937 return gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
6938 GEN_INT (INTVAL (XEXP (x
, 1)) + INTVAL (c
)));
6940 else if (GET_CODE (XEXP (x
, 0)) == PLUS
6941 || GET_CODE (XEXP (x
, 1)) != PLUS
)
6943 return gen_rtx_PLUS (GET_MODE (x
),
6944 sge_plus_constant (XEXP (x
, 0), c
), XEXP (x
, 1));
6948 return gen_rtx_PLUS (GET_MODE (x
),
6949 sge_plus_constant (XEXP (x
, 1), c
), XEXP (x
, 0));
6954 sge_plus (enum machine_mode mode
, rtx x
, rtx y
)
6956 while (GET_CODE (y
) == PLUS
)
6958 rtx a
= XEXP (y
, 0);
6959 if (GET_CODE (a
) == CONST_INT
)
6960 x
= sge_plus_constant (x
, a
);
6962 x
= gen_rtx_PLUS (mode
, x
, a
);
6965 if (GET_CODE (y
) == CONST_INT
)
6966 x
= sge_plus_constant (x
, y
);
6968 x
= gen_rtx_PLUS (mode
, x
, y
);
6972 /* Help detect a giv that is calculated by several consecutive insns;
6976 The caller has already identified the first insn P as having a giv as dest;
6977 we check that all other insns that set the same register follow
6978 immediately after P, that they alter nothing else,
6979 and that the result of the last is still a giv.
6981 The value is 0 if the reg set in P is not really a giv.
6982 Otherwise, the value is the amount gained by eliminating
6983 all the consecutive insns that compute the value.
6985 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6986 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6988 The coefficients of the ultimate giv value are stored in
6989 *MULT_VAL and *ADD_VAL. */
6992 consec_sets_giv (const struct loop
*loop
, int first_benefit
, rtx p
,
6993 rtx src_reg
, rtx dest_reg
, rtx
*add_val
, rtx
*mult_val
,
6994 rtx
*ext_val
, rtx
*last_consec_insn
)
6996 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6997 struct loop_regs
*regs
= LOOP_REGS (loop
);
7004 /* Indicate that this is a giv so that we can update the value produced in
7005 each insn of the multi-insn sequence.
7007 This induction structure will be used only by the call to
7008 general_induction_var below, so we can allocate it on our stack.
7009 If this is a giv, our caller will replace the induct var entry with
7010 a new induction structure. */
7011 struct induction
*v
;
7013 if (REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != UNKNOWN_INDUCT
)
7016 v
= alloca (sizeof (struct induction
));
7017 v
->src_reg
= src_reg
;
7018 v
->mult_val
= *mult_val
;
7019 v
->add_val
= *add_val
;
7020 v
->benefit
= first_benefit
;
7022 v
->derive_adjustment
= 0;
7023 v
->ext_dependent
= NULL_RTX
;
7025 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
7026 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
7028 count
= regs
->array
[REGNO (dest_reg
)].n_times_set
- 1;
7033 code
= GET_CODE (p
);
7035 /* If libcall, skip to end of call sequence. */
7036 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
7040 && (set
= single_set (p
))
7041 && GET_CODE (SET_DEST (set
)) == REG
7042 && SET_DEST (set
) == dest_reg
7043 && (general_induction_var (loop
, SET_SRC (set
), &src_reg
,
7044 add_val
, mult_val
, ext_val
, 0,
7046 /* Giv created by equivalent expression. */
7047 || ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
7048 && general_induction_var (loop
, XEXP (temp
, 0), &src_reg
,
7049 add_val
, mult_val
, ext_val
, 0,
7050 &benefit
, VOIDmode
)))
7051 && src_reg
== v
->src_reg
)
7053 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
7054 benefit
+= libcall_benefit (p
);
7057 v
->mult_val
= *mult_val
;
7058 v
->add_val
= *add_val
;
7059 v
->benefit
+= benefit
;
7061 else if (code
!= NOTE
)
7063 /* Allow insns that set something other than this giv to a
7064 constant. Such insns are needed on machines which cannot
7065 include long constants and should not disqualify a giv. */
7067 && (set
= single_set (p
))
7068 && SET_DEST (set
) != dest_reg
7069 && CONSTANT_P (SET_SRC (set
)))
7072 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
7077 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
7078 *last_consec_insn
= p
;
7082 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7083 represented by G1. If no such expression can be found, or it is clear that
7084 it cannot possibly be a valid address, 0 is returned.
7086 To perform the computation, we note that
7089 where `v' is the biv.
7091 So G2 = (y/b) * G1 + (b - a*y/x).
7093 Note that MULT = y/x.
7095 Update: A and B are now allowed to be additive expressions such that
7096 B contains all variables in A. That is, computing B-A will not require
7097 subtracting variables. */
7100 express_from_1 (rtx a
, rtx b
, rtx mult
)
7102 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7104 if (mult
== const0_rtx
)
7107 /* If MULT is not 1, we cannot handle A with non-constants, since we
7108 would then be required to subtract multiples of the registers in A.
7109 This is theoretically possible, and may even apply to some Fortran
7110 constructs, but it is a lot of work and we do not attempt it here. */
7112 if (mult
!= const1_rtx
&& GET_CODE (a
) != CONST_INT
)
7115 /* In general these structures are sorted top to bottom (down the PLUS
7116 chain), but not left to right across the PLUS. If B is a higher
7117 order giv than A, we can strip one level and recurse. If A is higher
7118 order, we'll eventually bail out, but won't know that until the end.
7119 If they are the same, we'll strip one level around this loop. */
7121 while (GET_CODE (a
) == PLUS
&& GET_CODE (b
) == PLUS
)
7123 rtx ra
, rb
, oa
, ob
, tmp
;
7125 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
7126 if (GET_CODE (ra
) == PLUS
)
7127 tmp
= ra
, ra
= oa
, oa
= tmp
;
7129 rb
= XEXP (b
, 0), ob
= XEXP (b
, 1);
7130 if (GET_CODE (rb
) == PLUS
)
7131 tmp
= rb
, rb
= ob
, ob
= tmp
;
7133 if (rtx_equal_p (ra
, rb
))
7134 /* We matched: remove one reg completely. */
7136 else if (GET_CODE (ob
) != PLUS
&& rtx_equal_p (ra
, ob
))
7137 /* An alternate match. */
7139 else if (GET_CODE (oa
) != PLUS
&& rtx_equal_p (oa
, rb
))
7140 /* An alternate match. */
7144 /* Indicates an extra register in B. Strip one level from B and
7145 recurse, hoping B was the higher order expression. */
7146 ob
= express_from_1 (a
, ob
, mult
);
7149 return gen_rtx_PLUS (GET_MODE (b
), rb
, ob
);
7153 /* Here we are at the last level of A, go through the cases hoping to
7154 get rid of everything but a constant. */
7156 if (GET_CODE (a
) == PLUS
)
7160 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
7161 if (rtx_equal_p (oa
, b
))
7163 else if (!rtx_equal_p (ra
, b
))
7166 if (GET_CODE (oa
) != CONST_INT
)
7169 return GEN_INT (-INTVAL (oa
) * INTVAL (mult
));
7171 else if (GET_CODE (a
) == CONST_INT
)
7173 return plus_constant (b
, -INTVAL (a
) * INTVAL (mult
));
7175 else if (CONSTANT_P (a
))
7177 enum machine_mode mode_a
= GET_MODE (a
);
7178 enum machine_mode mode_b
= GET_MODE (b
);
7179 enum machine_mode mode
= mode_b
== VOIDmode
? mode_a
: mode_b
;
7180 return simplify_gen_binary (MINUS
, mode
, b
, a
);
7182 else if (GET_CODE (b
) == PLUS
)
7184 if (rtx_equal_p (a
, XEXP (b
, 0)))
7186 else if (rtx_equal_p (a
, XEXP (b
, 1)))
7191 else if (rtx_equal_p (a
, b
))
7198 express_from (struct induction
*g1
, struct induction
*g2
)
7202 /* The value that G1 will be multiplied by must be a constant integer. Also,
7203 the only chance we have of getting a valid address is if b*c/a (see above
7204 for notation) is also an integer. */
7205 if (GET_CODE (g1
->mult_val
) == CONST_INT
7206 && GET_CODE (g2
->mult_val
) == CONST_INT
)
7208 if (g1
->mult_val
== const0_rtx
7209 || (g1
->mult_val
== constm1_rtx
7210 && INTVAL (g2
->mult_val
)
7211 == (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1))
7212 || INTVAL (g2
->mult_val
) % INTVAL (g1
->mult_val
) != 0)
7214 mult
= GEN_INT (INTVAL (g2
->mult_val
) / INTVAL (g1
->mult_val
));
7216 else if (rtx_equal_p (g1
->mult_val
, g2
->mult_val
))
7220 /* ??? Find out if the one is a multiple of the other? */
7224 add
= express_from_1 (g1
->add_val
, g2
->add_val
, mult
);
7225 if (add
== NULL_RTX
)
7227 /* Failed. If we've got a multiplication factor between G1 and G2,
7228 scale G1's addend and try again. */
7229 if (INTVAL (mult
) > 1)
7231 rtx g1_add_val
= g1
->add_val
;
7232 if (GET_CODE (g1_add_val
) == MULT
7233 && GET_CODE (XEXP (g1_add_val
, 1)) == CONST_INT
)
7236 m
= INTVAL (mult
) * INTVAL (XEXP (g1_add_val
, 1));
7237 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
),
7238 XEXP (g1_add_val
, 0), GEN_INT (m
));
7242 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
), g1_add_val
,
7246 add
= express_from_1 (g1_add_val
, g2
->add_val
, const1_rtx
);
7249 if (add
== NULL_RTX
)
7252 /* Form simplified final result. */
7253 if (mult
== const0_rtx
)
7255 else if (mult
== const1_rtx
)
7256 mult
= g1
->dest_reg
;
7258 mult
= gen_rtx_MULT (g2
->mode
, g1
->dest_reg
, mult
);
7260 if (add
== const0_rtx
)
7264 if (GET_CODE (add
) == PLUS
7265 && CONSTANT_P (XEXP (add
, 1)))
7267 rtx tem
= XEXP (add
, 1);
7268 mult
= gen_rtx_PLUS (g2
->mode
, mult
, XEXP (add
, 0));
7272 return gen_rtx_PLUS (g2
->mode
, mult
, add
);
7276 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7277 represented by G1. This indicates that G2 should be combined with G1 and
7278 that G2 can use (either directly or via an address expression) a register
7279 used to represent G1. */
7282 combine_givs_p (struct induction
*g1
, struct induction
*g2
)
7286 /* With the introduction of ext dependent givs, we must care for modes.
7287 G2 must not use a wider mode than G1. */
7288 if (GET_MODE_SIZE (g1
->mode
) < GET_MODE_SIZE (g2
->mode
))
7291 ret
= comb
= express_from (g1
, g2
);
7292 if (comb
== NULL_RTX
)
7294 if (g1
->mode
!= g2
->mode
)
7295 ret
= gen_lowpart (g2
->mode
, comb
);
7297 /* If these givs are identical, they can be combined. We use the results
7298 of express_from because the addends are not in a canonical form, so
7299 rtx_equal_p is a weaker test. */
7300 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7301 combination to be the other way round. */
7302 if (comb
== g1
->dest_reg
7303 && (g1
->giv_type
== DEST_REG
|| g2
->giv_type
== DEST_ADDR
))
7308 /* If G2 can be expressed as a function of G1 and that function is valid
7309 as an address and no more expensive than using a register for G2,
7310 the expression of G2 in terms of G1 can be used. */
7312 && g2
->giv_type
== DEST_ADDR
7313 && memory_address_p (GET_MODE (g2
->mem
), ret
))
7319 /* Check each extension dependent giv in this class to see if its
7320 root biv is safe from wrapping in the interior mode, which would
7321 make the giv illegal. */
7324 check_ext_dependent_givs (const struct loop
*loop
, struct iv_class
*bl
)
7326 struct loop_info
*loop_info
= LOOP_INFO (loop
);
7327 int ze_ok
= 0, se_ok
= 0, info_ok
= 0;
7328 enum machine_mode biv_mode
= GET_MODE (bl
->biv
->src_reg
);
7329 HOST_WIDE_INT start_val
;
7330 unsigned HOST_WIDE_INT u_end_val
= 0;
7331 unsigned HOST_WIDE_INT u_start_val
= 0;
7333 struct induction
*v
;
7335 /* Make sure the iteration data is available. We must have
7336 constants in order to be certain of no overflow. */
7337 if (loop_info
->n_iterations
> 0
7338 && bl
->initial_value
7339 && GET_CODE (bl
->initial_value
) == CONST_INT
7340 && (incr
= biv_total_increment (bl
))
7341 && GET_CODE (incr
) == CONST_INT
7342 /* Make sure the host can represent the arithmetic. */
7343 && HOST_BITS_PER_WIDE_INT
>= GET_MODE_BITSIZE (biv_mode
))
7345 unsigned HOST_WIDE_INT abs_incr
, total_incr
;
7346 HOST_WIDE_INT s_end_val
;
7350 start_val
= INTVAL (bl
->initial_value
);
7351 u_start_val
= start_val
;
7353 neg_incr
= 0, abs_incr
= INTVAL (incr
);
7354 if (INTVAL (incr
) < 0)
7355 neg_incr
= 1, abs_incr
= -abs_incr
;
7356 total_incr
= abs_incr
* loop_info
->n_iterations
;
7358 /* Check for host arithmetic overflow. */
7359 if (total_incr
/ loop_info
->n_iterations
== abs_incr
)
7361 unsigned HOST_WIDE_INT u_max
;
7362 HOST_WIDE_INT s_max
;
7364 u_end_val
= start_val
+ (neg_incr
? -total_incr
: total_incr
);
7365 s_end_val
= u_end_val
;
7366 u_max
= GET_MODE_MASK (biv_mode
);
7369 /* Check zero extension of biv ok. */
7371 /* Check for host arithmetic overflow. */
7373 ? u_end_val
< u_start_val
7374 : u_end_val
> u_start_val
)
7375 /* Check for target arithmetic overflow. */
7377 ? 1 /* taken care of with host overflow */
7378 : u_end_val
<= u_max
))
7383 /* Check sign extension of biv ok. */
7384 /* ??? While it is true that overflow with signed and pointer
7385 arithmetic is undefined, I fear too many programmers don't
7386 keep this fact in mind -- myself included on occasion.
7387 So leave alone with the signed overflow optimizations. */
7388 if (start_val
>= -s_max
- 1
7389 /* Check for host arithmetic overflow. */
7391 ? s_end_val
< start_val
7392 : s_end_val
> start_val
)
7393 /* Check for target arithmetic overflow. */
7395 ? s_end_val
>= -s_max
- 1
7396 : s_end_val
<= s_max
))
7403 /* If we know the BIV is compared at run-time against an
7404 invariant value, and the increment is +/- 1, we may also
7405 be able to prove that the BIV cannot overflow. */
7406 else if (bl
->biv
->src_reg
== loop_info
->iteration_var
7407 && loop_info
->comparison_value
7408 && loop_invariant_p (loop
, loop_info
->comparison_value
)
7409 && (incr
= biv_total_increment (bl
))
7410 && GET_CODE (incr
) == CONST_INT
)
7412 /* If the increment is +1, and the exit test is a <,
7413 the BIV cannot overflow. (For <=, we have the
7414 problematic case that the comparison value might
7415 be the maximum value of the range.) */
7416 if (INTVAL (incr
) == 1)
7418 if (loop_info
->comparison_code
== LT
)
7420 else if (loop_info
->comparison_code
== LTU
)
7424 /* Likewise for increment -1 and exit test >. */
7425 if (INTVAL (incr
) == -1)
7427 if (loop_info
->comparison_code
== GT
)
7429 else if (loop_info
->comparison_code
== GTU
)
7434 /* Invalidate givs that fail the tests. */
7435 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7436 if (v
->ext_dependent
)
7438 enum rtx_code code
= GET_CODE (v
->ext_dependent
);
7451 /* We don't know whether this value is being used as either
7452 signed or unsigned, so to safely truncate we must satisfy
7453 both. The initial check here verifies the BIV itself;
7454 once that is successful we may check its range wrt the
7455 derived GIV. This works only if we were able to determine
7456 constant start and end values above. */
7457 if (se_ok
&& ze_ok
&& info_ok
)
7459 enum machine_mode outer_mode
= GET_MODE (v
->ext_dependent
);
7460 unsigned HOST_WIDE_INT max
= GET_MODE_MASK (outer_mode
) >> 1;
7462 /* We know from the above that both endpoints are nonnegative,
7463 and that there is no wrapping. Verify that both endpoints
7464 are within the (signed) range of the outer mode. */
7465 if (u_start_val
<= max
&& u_end_val
<= max
)
7476 if (loop_dump_stream
)
7478 fprintf (loop_dump_stream
,
7479 "Verified ext dependent giv at %d of reg %d\n",
7480 INSN_UID (v
->insn
), bl
->regno
);
7485 if (loop_dump_stream
)
7490 why
= "biv iteration values overflowed";
7494 incr
= biv_total_increment (bl
);
7495 if (incr
== const1_rtx
)
7496 why
= "biv iteration info incomplete; incr by 1";
7498 why
= "biv iteration info incomplete";
7501 fprintf (loop_dump_stream
,
7502 "Failed ext dependent giv at %d, %s\n",
7503 INSN_UID (v
->insn
), why
);
7506 bl
->all_reduced
= 0;
7511 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7514 extend_value_for_giv (struct induction
*v
, rtx value
)
7516 rtx ext_dep
= v
->ext_dependent
;
7521 /* Recall that check_ext_dependent_givs verified that the known bounds
7522 of a biv did not overflow or wrap with respect to the extension for
7523 the giv. Therefore, constants need no additional adjustment. */
7524 if (CONSTANT_P (value
) && GET_MODE (value
) == VOIDmode
)
7527 /* Otherwise, we must adjust the value to compensate for the
7528 differing modes of the biv and the giv. */
7529 return gen_rtx_fmt_e (GET_CODE (ext_dep
), GET_MODE (ext_dep
), value
);
7532 struct combine_givs_stats
7539 cmp_combine_givs_stats (const void *xp
, const void *yp
)
7541 const struct combine_givs_stats
* const x
=
7542 (const struct combine_givs_stats
*) xp
;
7543 const struct combine_givs_stats
* const y
=
7544 (const struct combine_givs_stats
*) yp
;
7546 d
= y
->total_benefit
- x
->total_benefit
;
7547 /* Stabilize the sort. */
7549 d
= x
->giv_number
- y
->giv_number
;
7553 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7554 any other. If so, point SAME to the giv combined with and set NEW_REG to
7555 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7556 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7559 combine_givs (struct loop_regs
*regs
, struct iv_class
*bl
)
7561 /* Additional benefit to add for being combined multiple times. */
7562 const int extra_benefit
= 3;
7564 struct induction
*g1
, *g2
, **giv_array
;
7565 int i
, j
, k
, giv_count
;
7566 struct combine_givs_stats
*stats
;
7569 /* Count givs, because bl->giv_count is incorrect here. */
7571 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
7575 giv_array
= alloca (giv_count
* sizeof (struct induction
*));
7577 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
7579 giv_array
[i
++] = g1
;
7581 stats
= xcalloc (giv_count
, sizeof (*stats
));
7582 can_combine
= xcalloc (giv_count
, giv_count
* sizeof (rtx
));
7584 for (i
= 0; i
< giv_count
; i
++)
7590 stats
[i
].giv_number
= i
;
7592 /* If a DEST_REG GIV is used only once, do not allow it to combine
7593 with anything, for in doing so we will gain nothing that cannot
7594 be had by simply letting the GIV with which we would have combined
7595 to be reduced on its own. The losage shows up in particular with
7596 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7597 be seen elsewhere as well. */
7598 if (g1
->giv_type
== DEST_REG
7599 && (single_use
= regs
->array
[REGNO (g1
->dest_reg
)].single_usage
)
7600 && single_use
!= const0_rtx
)
7603 this_benefit
= g1
->benefit
;
7604 /* Add an additional weight for zero addends. */
7605 if (g1
->no_const_addval
)
7608 for (j
= 0; j
< giv_count
; j
++)
7614 && (this_combine
= combine_givs_p (g1
, g2
)) != NULL_RTX
)
7616 can_combine
[i
* giv_count
+ j
] = this_combine
;
7617 this_benefit
+= g2
->benefit
+ extra_benefit
;
7620 stats
[i
].total_benefit
= this_benefit
;
7623 /* Iterate, combining until we can't. */
7625 qsort (stats
, giv_count
, sizeof (*stats
), cmp_combine_givs_stats
);
7627 if (loop_dump_stream
)
7629 fprintf (loop_dump_stream
, "Sorted combine statistics:\n");
7630 for (k
= 0; k
< giv_count
; k
++)
7632 g1
= giv_array
[stats
[k
].giv_number
];
7633 if (!g1
->combined_with
&& !g1
->same
)
7634 fprintf (loop_dump_stream
, " {%d, %d}",
7635 INSN_UID (giv_array
[stats
[k
].giv_number
]->insn
),
7636 stats
[k
].total_benefit
);
7638 putc ('\n', loop_dump_stream
);
7641 for (k
= 0; k
< giv_count
; k
++)
7643 int g1_add_benefit
= 0;
7645 i
= stats
[k
].giv_number
;
7648 /* If it has already been combined, skip. */
7649 if (g1
->combined_with
|| g1
->same
)
7652 for (j
= 0; j
< giv_count
; j
++)
7655 if (g1
!= g2
&& can_combine
[i
* giv_count
+ j
]
7656 /* If it has already been combined, skip. */
7657 && ! g2
->same
&& ! g2
->combined_with
)
7661 g2
->new_reg
= can_combine
[i
* giv_count
+ j
];
7663 /* For destination, we now may replace by mem expression instead
7664 of register. This changes the costs considerably, so add the
7666 if (g2
->giv_type
== DEST_ADDR
)
7667 g2
->benefit
= (g2
->benefit
+ reg_address_cost
7668 - address_cost (g2
->new_reg
,
7669 GET_MODE (g2
->mem
)));
7670 g1
->combined_with
++;
7671 g1
->lifetime
+= g2
->lifetime
;
7673 g1_add_benefit
+= g2
->benefit
;
7675 /* ??? The new final_[bg]iv_value code does a much better job
7676 of finding replaceable giv's, and hence this code may no
7677 longer be necessary. */
7678 if (! g2
->replaceable
&& REG_USERVAR_P (g2
->dest_reg
))
7679 g1_add_benefit
-= copy_cost
;
7681 /* To help optimize the next set of combinations, remove
7682 this giv from the benefits of other potential mates. */
7683 for (l
= 0; l
< giv_count
; ++l
)
7685 int m
= stats
[l
].giv_number
;
7686 if (can_combine
[m
* giv_count
+ j
])
7687 stats
[l
].total_benefit
-= g2
->benefit
+ extra_benefit
;
7690 if (loop_dump_stream
)
7691 fprintf (loop_dump_stream
,
7692 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7693 INSN_UID (g2
->insn
), INSN_UID (g1
->insn
),
7694 g1
->benefit
, g1_add_benefit
, g1
->lifetime
);
7698 /* To help optimize the next set of combinations, remove
7699 this giv from the benefits of other potential mates. */
7700 if (g1
->combined_with
)
7702 for (j
= 0; j
< giv_count
; ++j
)
7704 int m
= stats
[j
].giv_number
;
7705 if (can_combine
[m
* giv_count
+ i
])
7706 stats
[j
].total_benefit
-= g1
->benefit
+ extra_benefit
;
7709 g1
->benefit
+= g1_add_benefit
;
7711 /* We've finished with this giv, and everything it touched.
7712 Restart the combination so that proper weights for the
7713 rest of the givs are properly taken into account. */
7714 /* ??? Ideally we would compact the arrays at this point, so
7715 as to not cover old ground. But sanely compacting
7716 can_combine is tricky. */
7726 /* Generate sequence for REG = B * M + A. B is the initial value of
7727 the basic induction variable, M a multiplicative constant, A an
7728 additive constant and REG the destination register. */
7731 gen_add_mult (rtx b
, rtx m
, rtx a
, rtx reg
)
7737 /* Use unsigned arithmetic. */
7738 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
7740 emit_move_insn (reg
, result
);
7748 /* Update registers created in insn sequence SEQ. */
7751 loop_regs_update (const struct loop
*loop ATTRIBUTE_UNUSED
, rtx seq
)
7755 /* Update register info for alias analysis. */
7758 while (insn
!= NULL_RTX
)
7760 rtx set
= single_set (insn
);
7762 if (set
&& GET_CODE (SET_DEST (set
)) == REG
)
7763 record_base_value (REGNO (SET_DEST (set
)), SET_SRC (set
), 0);
7765 insn
= NEXT_INSN (insn
);
7770 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
7771 is the initial value of the basic induction variable, M a
7772 multiplicative constant, A an additive constant and REG the
7773 destination register. */
7776 loop_iv_add_mult_emit_before (const struct loop
*loop
, rtx b
, rtx m
, rtx a
,
7777 rtx reg
, basic_block before_bb
, rtx before_insn
)
7783 loop_iv_add_mult_hoist (loop
, b
, m
, a
, reg
);
7787 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7788 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
7790 /* Increase the lifetime of any invariants moved further in code. */
7791 update_reg_last_use (a
, before_insn
);
7792 update_reg_last_use (b
, before_insn
);
7793 update_reg_last_use (m
, before_insn
);
7795 /* It is possible that the expansion created lots of new registers.
7796 Iterate over the sequence we just created and record them all. We
7797 must do this before inserting the sequence. */
7798 loop_regs_update (loop
, seq
);
7800 loop_insn_emit_before (loop
, before_bb
, before_insn
, seq
);
7804 /* Emit insns in loop pre-header to set REG = B * M + A. B is the
7805 initial value of the basic induction variable, M a multiplicative
7806 constant, A an additive constant and REG the destination
7810 loop_iv_add_mult_sink (const struct loop
*loop
, rtx b
, rtx m
, rtx a
, rtx reg
)
7814 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7815 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
7817 /* Increase the lifetime of any invariants moved further in code.
7818 ???? Is this really necessary? */
7819 update_reg_last_use (a
, loop
->sink
);
7820 update_reg_last_use (b
, loop
->sink
);
7821 update_reg_last_use (m
, loop
->sink
);
7823 /* It is possible that the expansion created lots of new registers.
7824 Iterate over the sequence we just created and record them all. We
7825 must do this before inserting the sequence. */
7826 loop_regs_update (loop
, seq
);
7828 loop_insn_sink (loop
, seq
);
7832 /* Emit insns after loop to set REG = B * M + A. B is the initial
7833 value of the basic induction variable, M a multiplicative constant,
7834 A an additive constant and REG the destination register. */
7837 loop_iv_add_mult_hoist (const struct loop
*loop
, rtx b
, rtx m
, rtx a
, rtx reg
)
7841 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7842 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
7844 /* It is possible that the expansion created lots of new registers.
7845 Iterate over the sequence we just created and record them all. We
7846 must do this before inserting the sequence. */
7847 loop_regs_update (loop
, seq
);
7849 loop_insn_hoist (loop
, seq
);
7854 /* Similar to gen_add_mult, but compute cost rather than generating
7858 iv_add_mult_cost (rtx b
, rtx m
, rtx a
, rtx reg
)
7864 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
7866 emit_move_insn (reg
, result
);
7867 last
= get_last_insn ();
7870 rtx t
= single_set (last
);
7872 cost
+= rtx_cost (SET_SRC (t
), SET
);
7873 last
= PREV_INSN (last
);
7879 /* Test whether A * B can be computed without
7880 an actual multiply insn. Value is 1 if so.
7882 ??? This function stinks because it generates a ton of wasted RTL
7883 ??? and as a result fragments GC memory to no end. There are other
7884 ??? places in the compiler which are invoked a lot and do the same
7885 ??? thing, generate wasted RTL just to see if something is possible. */
7888 product_cheap_p (rtx a
, rtx b
)
7893 /* If only one is constant, make it B. */
7894 if (GET_CODE (a
) == CONST_INT
)
7895 tmp
= a
, a
= b
, b
= tmp
;
7897 /* If first constant, both constant, so don't need multiply. */
7898 if (GET_CODE (a
) == CONST_INT
)
7901 /* If second not constant, neither is constant, so would need multiply. */
7902 if (GET_CODE (b
) != CONST_INT
)
7905 /* One operand is constant, so might not need multiply insn. Generate the
7906 code for the multiply and see if a call or multiply, or long sequence
7907 of insns is generated. */
7910 expand_mult (GET_MODE (a
), a
, b
, NULL_RTX
, 1);
7918 while (tmp
!= NULL_RTX
)
7920 rtx next
= NEXT_INSN (tmp
);
7923 || GET_CODE (tmp
) != INSN
7924 || (GET_CODE (PATTERN (tmp
)) == SET
7925 && GET_CODE (SET_SRC (PATTERN (tmp
))) == MULT
)
7926 || (GET_CODE (PATTERN (tmp
)) == PARALLEL
7927 && GET_CODE (XVECEXP (PATTERN (tmp
), 0, 0)) == SET
7928 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp
), 0, 0))) == MULT
))
7937 else if (GET_CODE (tmp
) == SET
7938 && GET_CODE (SET_SRC (tmp
)) == MULT
)
7940 else if (GET_CODE (tmp
) == PARALLEL
7941 && GET_CODE (XVECEXP (tmp
, 0, 0)) == SET
7942 && GET_CODE (SET_SRC (XVECEXP (tmp
, 0, 0))) == MULT
)
7948 /* Check to see if loop can be terminated by a "decrement and branch until
7949 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7950 Also try reversing an increment loop to a decrement loop
7951 to see if the optimization can be performed.
7952 Value is nonzero if optimization was performed. */
7954 /* This is useful even if the architecture doesn't have such an insn,
7955 because it might change a loops which increments from 0 to n to a loop
7956 which decrements from n to 0. A loop that decrements to zero is usually
7957 faster than one that increments from zero. */
7959 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7960 such as approx_final_value, biv_total_increment, loop_iterations, and
7961 final_[bg]iv_value. */
7964 check_dbra_loop (struct loop
*loop
, int insn_count
)
7966 struct loop_info
*loop_info
= LOOP_INFO (loop
);
7967 struct loop_regs
*regs
= LOOP_REGS (loop
);
7968 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7969 struct iv_class
*bl
;
7971 enum machine_mode mode
;
7977 rtx before_comparison
;
7981 int compare_and_branch
;
7982 rtx loop_start
= loop
->start
;
7983 rtx loop_end
= loop
->end
;
7985 /* If last insn is a conditional branch, and the insn before tests a
7986 register value, try to optimize it. Otherwise, we can't do anything. */
7988 jump
= PREV_INSN (loop_end
);
7989 comparison
= get_condition_for_loop (loop
, jump
);
7990 if (comparison
== 0)
7992 if (!onlyjump_p (jump
))
7995 /* Try to compute whether the compare/branch at the loop end is one or
7996 two instructions. */
7997 get_condition (jump
, &first_compare
, false);
7998 if (first_compare
== jump
)
7999 compare_and_branch
= 1;
8000 else if (first_compare
== prev_nonnote_insn (jump
))
8001 compare_and_branch
= 2;
8006 /* If more than one condition is present to control the loop, then
8007 do not proceed, as this function does not know how to rewrite
8008 loop tests with more than one condition.
8010 Look backwards from the first insn in the last comparison
8011 sequence and see if we've got another comparison sequence. */
8014 if ((jump1
= prev_nonnote_insn (first_compare
)) != loop
->cont
)
8015 if (GET_CODE (jump1
) == JUMP_INSN
)
8019 /* Check all of the bivs to see if the compare uses one of them.
8020 Skip biv's set more than once because we can't guarantee that
8021 it will be zero on the last iteration. Also skip if the biv is
8022 used between its update and the test insn. */
8024 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
8026 if (bl
->biv_count
== 1
8027 && ! bl
->biv
->maybe_multiple
8028 && bl
->biv
->dest_reg
== XEXP (comparison
, 0)
8029 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
8034 /* Try swapping the comparison to identify a suitable biv. */
8036 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
8037 if (bl
->biv_count
== 1
8038 && ! bl
->biv
->maybe_multiple
8039 && bl
->biv
->dest_reg
== XEXP (comparison
, 1)
8040 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
8043 comparison
= gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)),
8045 XEXP (comparison
, 1),
8046 XEXP (comparison
, 0));
8053 /* Look for the case where the basic induction variable is always
8054 nonnegative, and equals zero on the last iteration.
8055 In this case, add a reg_note REG_NONNEG, which allows the
8056 m68k DBRA instruction to be used. */
8058 if (((GET_CODE (comparison
) == GT
&& XEXP (comparison
, 1) == constm1_rtx
)
8059 || (GET_CODE (comparison
) == NE
&& XEXP (comparison
, 1) == const0_rtx
))
8060 && GET_CODE (bl
->biv
->add_val
) == CONST_INT
8061 && INTVAL (bl
->biv
->add_val
) < 0)
8063 /* Initial value must be greater than 0,
8064 init_val % -dec_value == 0 to ensure that it equals zero on
8065 the last iteration */
8067 if (GET_CODE (bl
->initial_value
) == CONST_INT
8068 && INTVAL (bl
->initial_value
) > 0
8069 && (INTVAL (bl
->initial_value
)
8070 % (-INTVAL (bl
->biv
->add_val
))) == 0)
8072 /* Register always nonnegative, add REG_NOTE to branch. */
8073 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
8075 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
8082 /* If the decrement is 1 and the value was tested as >= 0 before
8083 the loop, then we can safely optimize. */
8084 for (p
= loop_start
; p
; p
= PREV_INSN (p
))
8086 if (GET_CODE (p
) == CODE_LABEL
)
8088 if (GET_CODE (p
) != JUMP_INSN
)
8091 before_comparison
= get_condition_for_loop (loop
, p
);
8092 if (before_comparison
8093 && XEXP (before_comparison
, 0) == bl
->biv
->dest_reg
8094 && (GET_CODE (before_comparison
) == LT
8095 || GET_CODE (before_comparison
) == LTU
)
8096 && XEXP (before_comparison
, 1) == const0_rtx
8097 && ! reg_set_between_p (bl
->biv
->dest_reg
, p
, loop_start
)
8098 && INTVAL (bl
->biv
->add_val
) == -1)
8100 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
8102 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
8110 else if (GET_CODE (bl
->biv
->add_val
) == CONST_INT
8111 && INTVAL (bl
->biv
->add_val
) > 0)
8113 /* Try to change inc to dec, so can apply above optimization. */
8115 all registers modified are induction variables or invariant,
8116 all memory references have non-overlapping addresses
8117 (obviously true if only one write)
8118 allow 2 insns for the compare/jump at the end of the loop. */
8119 /* Also, we must avoid any instructions which use both the reversed
8120 biv and another biv. Such instructions will fail if the loop is
8121 reversed. We meet this condition by requiring that either
8122 no_use_except_counting is true, or else that there is only
8124 int num_nonfixed_reads
= 0;
8125 /* 1 if the iteration var is used only to count iterations. */
8126 int no_use_except_counting
= 0;
8127 /* 1 if the loop has no memory store, or it has a single memory store
8128 which is reversible. */
8129 int reversible_mem_store
= 1;
8131 if (bl
->giv_count
== 0
8132 && !loop
->exit_count
8133 && !loop_info
->has_multiple_exit_targets
)
8135 rtx bivreg
= regno_reg_rtx
[bl
->regno
];
8136 struct iv_class
*blt
;
8138 /* If there are no givs for this biv, and the only exit is the
8139 fall through at the end of the loop, then
8140 see if perhaps there are no uses except to count. */
8141 no_use_except_counting
= 1;
8142 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8145 rtx set
= single_set (p
);
8147 if (set
&& GET_CODE (SET_DEST (set
)) == REG
8148 && REGNO (SET_DEST (set
)) == bl
->regno
)
8149 /* An insn that sets the biv is okay. */
8151 else if (!reg_mentioned_p (bivreg
, PATTERN (p
)))
8152 /* An insn that doesn't mention the biv is okay. */
8154 else if (p
== prev_nonnote_insn (prev_nonnote_insn (loop_end
))
8155 || p
== prev_nonnote_insn (loop_end
))
8157 /* If either of these insns uses the biv and sets a pseudo
8158 that has more than one usage, then the biv has uses
8159 other than counting since it's used to derive a value
8160 that is used more than one time. */
8161 note_stores (PATTERN (p
), note_set_pseudo_multiple_uses
,
8163 if (regs
->multiple_uses
)
8165 no_use_except_counting
= 0;
8171 no_use_except_counting
= 0;
8176 /* A biv has uses besides counting if it is used to set
8178 for (blt
= ivs
->list
; blt
; blt
= blt
->next
)
8180 && reg_mentioned_p (bivreg
, SET_SRC (blt
->init_set
)))
8182 no_use_except_counting
= 0;
8187 if (no_use_except_counting
)
8188 /* No need to worry about MEMs. */
8190 else if (loop_info
->num_mem_sets
<= 1)
8192 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8194 num_nonfixed_reads
+= count_nonfixed_reads (loop
, PATTERN (p
));
8196 /* If the loop has a single store, and the destination address is
8197 invariant, then we can't reverse the loop, because this address
8198 might then have the wrong value at loop exit.
8199 This would work if the source was invariant also, however, in that
8200 case, the insn should have been moved out of the loop. */
8202 if (loop_info
->num_mem_sets
== 1)
8204 struct induction
*v
;
8206 /* If we could prove that each of the memory locations
8207 written to was different, then we could reverse the
8208 store -- but we don't presently have any way of
8210 reversible_mem_store
= 0;
8212 /* If the store depends on a register that is set after the
8213 store, it depends on the initial value, and is thus not
8215 for (v
= bl
->giv
; reversible_mem_store
&& v
; v
= v
->next_iv
)
8217 if (v
->giv_type
== DEST_REG
8218 && reg_mentioned_p (v
->dest_reg
,
8219 PATTERN (loop_info
->first_loop_store_insn
))
8220 && loop_insn_first_p (loop_info
->first_loop_store_insn
,
8222 reversible_mem_store
= 0;
8229 /* This code only acts for innermost loops. Also it simplifies
8230 the memory address check by only reversing loops with
8231 zero or one memory access.
8232 Two memory accesses could involve parts of the same array,
8233 and that can't be reversed.
8234 If the biv is used only for counting, than we don't need to worry
8235 about all these things. */
8237 if ((num_nonfixed_reads
<= 1
8238 && ! loop_info
->has_nonconst_call
8239 && ! loop_info
->has_prefetch
8240 && ! loop_info
->has_volatile
8241 && reversible_mem_store
8242 && (bl
->giv_count
+ bl
->biv_count
+ loop_info
->num_mem_sets
8243 + num_unmoved_movables (loop
) + compare_and_branch
== insn_count
)
8244 && (bl
== ivs
->list
&& bl
->next
== 0))
8245 || (no_use_except_counting
&& ! loop_info
->has_prefetch
))
8249 /* Loop can be reversed. */
8250 if (loop_dump_stream
)
8251 fprintf (loop_dump_stream
, "Can reverse loop\n");
8253 /* Now check other conditions:
8255 The increment must be a constant, as must the initial value,
8256 and the comparison code must be LT.
8258 This test can probably be improved since +/- 1 in the constant
8259 can be obtained by changing LT to LE and vice versa; this is
8263 /* for constants, LE gets turned into LT */
8264 && (GET_CODE (comparison
) == LT
8265 || (GET_CODE (comparison
) == LE
8266 && no_use_except_counting
)
8267 || GET_CODE (comparison
) == LTU
))
8269 HOST_WIDE_INT add_val
, add_adjust
, comparison_val
= 0;
8270 rtx initial_value
, comparison_value
;
8272 enum rtx_code cmp_code
;
8273 int comparison_const_width
;
8274 unsigned HOST_WIDE_INT comparison_sign_mask
;
8276 add_val
= INTVAL (bl
->biv
->add_val
);
8277 comparison_value
= XEXP (comparison
, 1);
8278 if (GET_MODE (comparison_value
) == VOIDmode
)
8279 comparison_const_width
8280 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison
, 0)));
8282 comparison_const_width
8283 = GET_MODE_BITSIZE (GET_MODE (comparison_value
));
8284 if (comparison_const_width
> HOST_BITS_PER_WIDE_INT
)
8285 comparison_const_width
= HOST_BITS_PER_WIDE_INT
;
8286 comparison_sign_mask
8287 = (unsigned HOST_WIDE_INT
) 1 << (comparison_const_width
- 1);
8289 /* If the comparison value is not a loop invariant, then we
8290 can not reverse this loop.
8292 ??? If the insns which initialize the comparison value as
8293 a whole compute an invariant result, then we could move
8294 them out of the loop and proceed with loop reversal. */
8295 if (! loop_invariant_p (loop
, comparison_value
))
8298 if (GET_CODE (comparison_value
) == CONST_INT
)
8299 comparison_val
= INTVAL (comparison_value
);
8300 initial_value
= bl
->initial_value
;
8302 /* Normalize the initial value if it is an integer and
8303 has no other use except as a counter. This will allow
8304 a few more loops to be reversed. */
8305 if (no_use_except_counting
8306 && GET_CODE (comparison_value
) == CONST_INT
8307 && GET_CODE (initial_value
) == CONST_INT
)
8309 comparison_val
= comparison_val
- INTVAL (bl
->initial_value
);
8310 /* The code below requires comparison_val to be a multiple
8311 of add_val in order to do the loop reversal, so
8312 round up comparison_val to a multiple of add_val.
8313 Since comparison_value is constant, we know that the
8314 current comparison code is LT. */
8315 comparison_val
= comparison_val
+ add_val
- 1;
8317 -= (unsigned HOST_WIDE_INT
) comparison_val
% add_val
;
8318 /* We postpone overflow checks for COMPARISON_VAL here;
8319 even if there is an overflow, we might still be able to
8320 reverse the loop, if converting the loop exit test to
8322 initial_value
= const0_rtx
;
8325 /* First check if we can do a vanilla loop reversal. */
8326 if (initial_value
== const0_rtx
8327 /* If we have a decrement_and_branch_on_count,
8328 prefer the NE test, since this will allow that
8329 instruction to be generated. Note that we must
8330 use a vanilla loop reversal if the biv is used to
8331 calculate a giv or has a non-counting use. */
8332 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8333 && defined (HAVE_decrement_and_branch_on_count)
8334 && (! (add_val
== 1 && loop
->vtop
8335 && (bl
->biv_count
== 0
8336 || no_use_except_counting
)))
8338 && GET_CODE (comparison_value
) == CONST_INT
8339 /* Now do postponed overflow checks on COMPARISON_VAL. */
8340 && ! (((comparison_val
- add_val
) ^ INTVAL (comparison_value
))
8341 & comparison_sign_mask
))
8343 /* Register will always be nonnegative, with value
8344 0 on last iteration */
8345 add_adjust
= add_val
;
8349 else if (add_val
== 1 && loop
->vtop
8350 && (bl
->biv_count
== 0
8351 || no_use_except_counting
))
8359 if (GET_CODE (comparison
) == LE
)
8360 add_adjust
-= add_val
;
8362 /* If the initial value is not zero, or if the comparison
8363 value is not an exact multiple of the increment, then we
8364 can not reverse this loop. */
8365 if (initial_value
== const0_rtx
8366 && GET_CODE (comparison_value
) == CONST_INT
)
8368 if (((unsigned HOST_WIDE_INT
) comparison_val
% add_val
) != 0)
8373 if (! no_use_except_counting
|| add_val
!= 1)
8377 final_value
= comparison_value
;
8379 /* Reset these in case we normalized the initial value
8380 and comparison value above. */
8381 if (GET_CODE (comparison_value
) == CONST_INT
8382 && GET_CODE (initial_value
) == CONST_INT
)
8384 comparison_value
= GEN_INT (comparison_val
);
8386 = GEN_INT (comparison_val
+ INTVAL (bl
->initial_value
));
8388 bl
->initial_value
= initial_value
;
8390 /* Save some info needed to produce the new insns. */
8391 reg
= bl
->biv
->dest_reg
;
8392 mode
= GET_MODE (reg
);
8393 jump_label
= condjump_label (PREV_INSN (loop_end
));
8394 new_add_val
= GEN_INT (-INTVAL (bl
->biv
->add_val
));
8396 /* Set start_value; if this is not a CONST_INT, we need
8398 Initialize biv to start_value before loop start.
8399 The old initializing insn will be deleted as a
8400 dead store by flow.c. */
8401 if (initial_value
== const0_rtx
8402 && GET_CODE (comparison_value
) == CONST_INT
)
8405 = gen_int_mode (comparison_val
- add_adjust
, mode
);
8406 loop_insn_hoist (loop
, gen_move_insn (reg
, start_value
));
8408 else if (GET_CODE (initial_value
) == CONST_INT
)
8410 rtx offset
= GEN_INT (-INTVAL (initial_value
) - add_adjust
);
8411 rtx add_insn
= gen_add3_insn (reg
, comparison_value
, offset
);
8417 = gen_rtx_PLUS (mode
, comparison_value
, offset
);
8418 loop_insn_hoist (loop
, add_insn
);
8419 if (GET_CODE (comparison
) == LE
)
8420 final_value
= gen_rtx_PLUS (mode
, comparison_value
,
8423 else if (! add_adjust
)
8425 rtx sub_insn
= gen_sub3_insn (reg
, comparison_value
,
8431 = gen_rtx_MINUS (mode
, comparison_value
, initial_value
);
8432 loop_insn_hoist (loop
, sub_insn
);
8435 /* We could handle the other cases too, but it'll be
8436 better to have a testcase first. */
8439 /* We may not have a single insn which can increment a reg, so
8440 create a sequence to hold all the insns from expand_inc. */
8442 expand_inc (reg
, new_add_val
);
8446 p
= loop_insn_emit_before (loop
, 0, bl
->biv
->insn
, tem
);
8447 delete_insn (bl
->biv
->insn
);
8449 /* Update biv info to reflect its new status. */
8451 bl
->initial_value
= start_value
;
8452 bl
->biv
->add_val
= new_add_val
;
8454 /* Update loop info. */
8455 loop_info
->initial_value
= reg
;
8456 loop_info
->initial_equiv_value
= reg
;
8457 loop_info
->final_value
= const0_rtx
;
8458 loop_info
->final_equiv_value
= const0_rtx
;
8459 loop_info
->comparison_value
= const0_rtx
;
8460 loop_info
->comparison_code
= cmp_code
;
8461 loop_info
->increment
= new_add_val
;
8463 /* Inc LABEL_NUSES so that delete_insn will
8464 not delete the label. */
8465 LABEL_NUSES (XEXP (jump_label
, 0))++;
8467 /* Emit an insn after the end of the loop to set the biv's
8468 proper exit value if it is used anywhere outside the loop. */
8469 if ((REGNO_LAST_UID (bl
->regno
) != INSN_UID (first_compare
))
8471 || REGNO_FIRST_UID (bl
->regno
) != INSN_UID (bl
->init_insn
))
8472 loop_insn_sink (loop
, gen_load_of_final_value (reg
, final_value
));
8474 /* Delete compare/branch at end of loop. */
8475 delete_related_insns (PREV_INSN (loop_end
));
8476 if (compare_and_branch
== 2)
8477 delete_related_insns (first_compare
);
8479 /* Add new compare/branch insn at end of loop. */
8481 emit_cmp_and_jump_insns (reg
, const0_rtx
, cmp_code
, NULL_RTX
,
8483 XEXP (jump_label
, 0));
8486 emit_jump_insn_before (tem
, loop_end
);
8488 for (tem
= PREV_INSN (loop_end
);
8489 tem
&& GET_CODE (tem
) != JUMP_INSN
;
8490 tem
= PREV_INSN (tem
))
8494 JUMP_LABEL (tem
) = XEXP (jump_label
, 0);
8500 /* Increment of LABEL_NUSES done above. */
8501 /* Register is now always nonnegative,
8502 so add REG_NONNEG note to the branch. */
8503 REG_NOTES (tem
) = gen_rtx_EXPR_LIST (REG_NONNEG
, reg
,
8509 /* No insn may reference both the reversed and another biv or it
8510 will fail (see comment near the top of the loop reversal
8512 Earlier on, we have verified that the biv has no use except
8513 counting, or it is the only biv in this function.
8514 However, the code that computes no_use_except_counting does
8515 not verify reg notes. It's possible to have an insn that
8516 references another biv, and has a REG_EQUAL note with an
8517 expression based on the reversed biv. To avoid this case,
8518 remove all REG_EQUAL notes based on the reversed biv
8520 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8524 rtx set
= single_set (p
);
8525 /* If this is a set of a GIV based on the reversed biv, any
8526 REG_EQUAL notes should still be correct. */
8528 || GET_CODE (SET_DEST (set
)) != REG
8529 || (size_t) REGNO (SET_DEST (set
)) >= ivs
->n_regs
8530 || REG_IV_TYPE (ivs
, REGNO (SET_DEST (set
))) != GENERAL_INDUCT
8531 || REG_IV_INFO (ivs
, REGNO (SET_DEST (set
)))->src_reg
!= bl
->biv
->src_reg
)
8532 for (pnote
= ®_NOTES (p
); *pnote
;)
8534 if (REG_NOTE_KIND (*pnote
) == REG_EQUAL
8535 && reg_mentioned_p (regno_reg_rtx
[bl
->regno
],
8537 *pnote
= XEXP (*pnote
, 1);
8539 pnote
= &XEXP (*pnote
, 1);
8543 /* Mark that this biv has been reversed. Each giv which depends
8544 on this biv, and which is also live past the end of the loop
8545 will have to be fixed up. */
8549 if (loop_dump_stream
)
8551 fprintf (loop_dump_stream
, "Reversed loop");
8553 fprintf (loop_dump_stream
, " and added reg_nonneg\n");
8555 fprintf (loop_dump_stream
, "\n");
8566 /* Verify whether the biv BL appears to be eliminable,
8567 based on the insns in the loop that refer to it.
8569 If ELIMINATE_P is nonzero, actually do the elimination.
8571 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8572 determine whether invariant insns should be placed inside or at the
8573 start of the loop. */
8576 maybe_eliminate_biv (const struct loop
*loop
, struct iv_class
*bl
,
8577 int eliminate_p
, int threshold
, int insn_count
)
8579 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
8580 rtx reg
= bl
->biv
->dest_reg
;
8583 /* Scan all insns in the loop, stopping if we find one that uses the
8584 biv in a way that we cannot eliminate. */
8586 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
8588 enum rtx_code code
= GET_CODE (p
);
8589 basic_block where_bb
= 0;
8590 rtx where_insn
= threshold
>= insn_count
? 0 : p
;
8593 /* If this is a libcall that sets a giv, skip ahead to its end. */
8596 note
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
8600 rtx last
= XEXP (note
, 0);
8601 rtx set
= single_set (last
);
8603 if (set
&& GET_CODE (SET_DEST (set
)) == REG
)
8605 unsigned int regno
= REGNO (SET_DEST (set
));
8607 if (regno
< ivs
->n_regs
8608 && REG_IV_TYPE (ivs
, regno
) == GENERAL_INDUCT
8609 && REG_IV_INFO (ivs
, regno
)->src_reg
== bl
->biv
->src_reg
)
8615 /* Closely examine the insn if the biv is mentioned. */
8616 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
8617 && reg_mentioned_p (reg
, PATTERN (p
))
8618 && ! maybe_eliminate_biv_1 (loop
, PATTERN (p
), p
, bl
,
8619 eliminate_p
, where_bb
, where_insn
))
8621 if (loop_dump_stream
)
8622 fprintf (loop_dump_stream
,
8623 "Cannot eliminate biv %d: biv used in insn %d.\n",
8624 bl
->regno
, INSN_UID (p
));
8628 /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
8630 && (note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
8631 && reg_mentioned_p (reg
, XEXP (note
, 0)))
8632 remove_note (p
, note
);
8637 if (loop_dump_stream
)
8638 fprintf (loop_dump_stream
, "biv %d %s eliminated.\n",
8639 bl
->regno
, eliminate_p
? "was" : "can be");
8646 /* INSN and REFERENCE are instructions in the same insn chain.
8647 Return nonzero if INSN is first. */
8650 loop_insn_first_p (rtx insn
, rtx reference
)
8654 for (p
= insn
, q
= reference
;;)
8656 /* Start with test for not first so that INSN == REFERENCE yields not
8658 if (q
== insn
|| ! p
)
8660 if (p
== reference
|| ! q
)
8663 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8664 previous insn, hence the <= comparison below does not work if
8666 if (INSN_UID (p
) < max_uid_for_loop
8667 && INSN_UID (q
) < max_uid_for_loop
8668 && GET_CODE (p
) != NOTE
)
8669 return INSN_LUID (p
) <= INSN_LUID (q
);
8671 if (INSN_UID (p
) >= max_uid_for_loop
8672 || GET_CODE (p
) == NOTE
)
8674 if (INSN_UID (q
) >= max_uid_for_loop
)
8679 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
8680 the offset that we have to take into account due to auto-increment /
8681 div derivation is zero. */
8683 biv_elimination_giv_has_0_offset (struct induction
*biv
,
8684 struct induction
*giv
, rtx insn
)
8686 /* If the giv V had the auto-inc address optimization applied
8687 to it, and INSN occurs between the giv insn and the biv
8688 insn, then we'd have to adjust the value used here.
8689 This is rare, so we don't bother to make this possible. */
8690 if (giv
->auto_inc_opt
8691 && ((loop_insn_first_p (giv
->insn
, insn
)
8692 && loop_insn_first_p (insn
, biv
->insn
))
8693 || (loop_insn_first_p (biv
->insn
, insn
)
8694 && loop_insn_first_p (insn
, giv
->insn
))))
8700 /* If BL appears in X (part of the pattern of INSN), see if we can
8701 eliminate its use. If so, return 1. If not, return 0.
8703 If BIV does not appear in X, return 1.
8705 If ELIMINATE_P is nonzero, actually do the elimination.
8706 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8707 Depending on how many items have been moved out of the loop, it
8708 will either be before INSN (when WHERE_INSN is nonzero) or at the
8709 start of the loop (when WHERE_INSN is zero). */
8712 maybe_eliminate_biv_1 (const struct loop
*loop
, rtx x
, rtx insn
,
8713 struct iv_class
*bl
, int eliminate_p
,
8714 basic_block where_bb
, rtx where_insn
)
8716 enum rtx_code code
= GET_CODE (x
);
8717 rtx reg
= bl
->biv
->dest_reg
;
8718 enum machine_mode mode
= GET_MODE (reg
);
8719 struct induction
*v
;
8731 /* If we haven't already been able to do something with this BIV,
8732 we can't eliminate it. */
8738 /* If this sets the BIV, it is not a problem. */
8739 if (SET_DEST (x
) == reg
)
8742 /* If this is an insn that defines a giv, it is also ok because
8743 it will go away when the giv is reduced. */
8744 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8745 if (v
->giv_type
== DEST_REG
&& SET_DEST (x
) == v
->dest_reg
)
8749 if (SET_DEST (x
) == cc0_rtx
&& SET_SRC (x
) == reg
)
8751 /* Can replace with any giv that was reduced and
8752 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8753 Require a constant for MULT_VAL, so we know it's nonzero.
8754 ??? We disable this optimization to avoid potential
8757 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8758 if (GET_CODE (v
->mult_val
) == CONST_INT
&& v
->mult_val
!= const0_rtx
8759 && v
->add_val
== const0_rtx
8760 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8764 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8770 /* If the giv has the opposite direction of change,
8771 then reverse the comparison. */
8772 if (INTVAL (v
->mult_val
) < 0)
8773 new = gen_rtx_COMPARE (GET_MODE (v
->new_reg
),
8774 const0_rtx
, v
->new_reg
);
8778 /* We can probably test that giv's reduced reg. */
8779 if (validate_change (insn
, &SET_SRC (x
), new, 0))
8783 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8784 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8785 Require a constant for MULT_VAL, so we know it's nonzero.
8786 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8787 overflow problem. */
8789 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8790 if (GET_CODE (v
->mult_val
) == CONST_INT
8791 && v
->mult_val
!= const0_rtx
8792 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8794 && (GET_CODE (v
->add_val
) == SYMBOL_REF
8795 || GET_CODE (v
->add_val
) == LABEL_REF
8796 || GET_CODE (v
->add_val
) == CONST
8797 || (GET_CODE (v
->add_val
) == REG
8798 && REG_POINTER (v
->add_val
))))
8800 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8806 /* If the giv has the opposite direction of change,
8807 then reverse the comparison. */
8808 if (INTVAL (v
->mult_val
) < 0)
8809 new = gen_rtx_COMPARE (VOIDmode
, copy_rtx (v
->add_val
),
8812 new = gen_rtx_COMPARE (VOIDmode
, v
->new_reg
,
8813 copy_rtx (v
->add_val
));
8815 /* Replace biv with the giv's reduced register. */
8816 update_reg_last_use (v
->add_val
, insn
);
8817 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
8820 /* Insn doesn't support that constant or invariant. Copy it
8821 into a register (it will be a loop invariant.) */
8822 tem
= gen_reg_rtx (GET_MODE (v
->new_reg
));
8824 loop_insn_emit_before (loop
, 0, where_insn
,
8826 copy_rtx (v
->add_val
)));
8828 /* Substitute the new register for its invariant value in
8829 the compare expression. */
8830 XEXP (new, (INTVAL (v
->mult_val
) < 0) ? 0 : 1) = tem
;
8831 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
8840 case GT
: case GE
: case GTU
: case GEU
:
8841 case LT
: case LE
: case LTU
: case LEU
:
8842 /* See if either argument is the biv. */
8843 if (XEXP (x
, 0) == reg
)
8844 arg
= XEXP (x
, 1), arg_operand
= 1;
8845 else if (XEXP (x
, 1) == reg
)
8846 arg
= XEXP (x
, 0), arg_operand
= 0;
8850 if (CONSTANT_P (arg
))
8852 /* First try to replace with any giv that has constant positive
8853 mult_val and constant add_val. We might be able to support
8854 negative mult_val, but it seems complex to do it in general. */
8856 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8857 if (GET_CODE (v
->mult_val
) == CONST_INT
8858 && INTVAL (v
->mult_val
) > 0
8859 && (GET_CODE (v
->add_val
) == SYMBOL_REF
8860 || GET_CODE (v
->add_val
) == LABEL_REF
8861 || GET_CODE (v
->add_val
) == CONST
8862 || (GET_CODE (v
->add_val
) == REG
8863 && REG_POINTER (v
->add_val
)))
8864 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8867 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8870 /* Don't eliminate if the linear combination that makes up
8871 the giv overflows when it is applied to ARG. */
8872 if (GET_CODE (arg
) == CONST_INT
)
8876 if (GET_CODE (v
->add_val
) == CONST_INT
)
8877 add_val
= v
->add_val
;
8879 add_val
= const0_rtx
;
8881 if (const_mult_add_overflow_p (arg
, v
->mult_val
,
8889 /* Replace biv with the giv's reduced reg. */
8890 validate_change (insn
, &XEXP (x
, 1 - arg_operand
), v
->new_reg
, 1);
8892 /* If all constants are actually constant integers and
8893 the derived constant can be directly placed in the COMPARE,
8895 if (GET_CODE (arg
) == CONST_INT
8896 && GET_CODE (v
->add_val
) == CONST_INT
)
8898 tem
= expand_mult_add (arg
, NULL_RTX
, v
->mult_val
,
8899 v
->add_val
, mode
, 1);
8903 /* Otherwise, load it into a register. */
8904 tem
= gen_reg_rtx (mode
);
8905 loop_iv_add_mult_emit_before (loop
, arg
,
8906 v
->mult_val
, v
->add_val
,
8907 tem
, where_bb
, where_insn
);
8910 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8912 if (apply_change_group ())
8916 /* Look for giv with positive constant mult_val and nonconst add_val.
8917 Insert insns to calculate new compare value.
8918 ??? Turn this off due to possible overflow. */
8920 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8921 if (GET_CODE (v
->mult_val
) == CONST_INT
8922 && INTVAL (v
->mult_val
) > 0
8923 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8929 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8935 tem
= gen_reg_rtx (mode
);
8937 /* Replace biv with giv's reduced register. */
8938 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8941 /* Compute value to compare against. */
8942 loop_iv_add_mult_emit_before (loop
, arg
,
8943 v
->mult_val
, v
->add_val
,
8944 tem
, where_bb
, where_insn
);
8945 /* Use it in this insn. */
8946 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8947 if (apply_change_group ())
8951 else if (GET_CODE (arg
) == REG
|| GET_CODE (arg
) == MEM
)
8953 if (loop_invariant_p (loop
, arg
) == 1)
8955 /* Look for giv with constant positive mult_val and nonconst
8956 add_val. Insert insns to compute new compare value.
8957 ??? Turn this off due to possible overflow. */
8959 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8960 if (GET_CODE (v
->mult_val
) == CONST_INT
&& INTVAL (v
->mult_val
) > 0
8961 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8967 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8973 tem
= gen_reg_rtx (mode
);
8975 /* Replace biv with giv's reduced register. */
8976 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8979 /* Compute value to compare against. */
8980 loop_iv_add_mult_emit_before (loop
, arg
,
8981 v
->mult_val
, v
->add_val
,
8982 tem
, where_bb
, where_insn
);
8983 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8984 if (apply_change_group ())
8989 /* This code has problems. Basically, you can't know when
8990 seeing if we will eliminate BL, whether a particular giv
8991 of ARG will be reduced. If it isn't going to be reduced,
8992 we can't eliminate BL. We can try forcing it to be reduced,
8993 but that can generate poor code.
8995 The problem is that the benefit of reducing TV, below should
8996 be increased if BL can actually be eliminated, but this means
8997 we might have to do a topological sort of the order in which
8998 we try to process biv. It doesn't seem worthwhile to do
8999 this sort of thing now. */
9002 /* Otherwise the reg compared with had better be a biv. */
9003 if (GET_CODE (arg
) != REG
9004 || REG_IV_TYPE (ivs
, REGNO (arg
)) != BASIC_INDUCT
)
9007 /* Look for a pair of givs, one for each biv,
9008 with identical coefficients. */
9009 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
9011 struct induction
*tv
;
9013 if (v
->ignore
|| v
->maybe_dead
|| v
->mode
!= mode
)
9016 for (tv
= REG_IV_CLASS (ivs
, REGNO (arg
))->giv
; tv
;
9018 if (! tv
->ignore
&& ! tv
->maybe_dead
9019 && rtx_equal_p (tv
->mult_val
, v
->mult_val
)
9020 && rtx_equal_p (tv
->add_val
, v
->add_val
)
9021 && tv
->mode
== mode
)
9023 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
9029 /* Replace biv with its giv's reduced reg. */
9030 XEXP (x
, 1 - arg_operand
) = v
->new_reg
;
9031 /* Replace other operand with the other giv's
9033 XEXP (x
, arg_operand
) = tv
->new_reg
;
9040 /* If we get here, the biv can't be eliminated. */
9044 /* If this address is a DEST_ADDR giv, it doesn't matter if the
9045 biv is used in it, since it will be replaced. */
9046 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
9047 if (v
->giv_type
== DEST_ADDR
&& v
->location
== &XEXP (x
, 0))
9055 /* See if any subexpression fails elimination. */
9056 fmt
= GET_RTX_FORMAT (code
);
9057 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9062 if (! maybe_eliminate_biv_1 (loop
, XEXP (x
, i
), insn
, bl
,
9063 eliminate_p
, where_bb
, where_insn
))
9068 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9069 if (! maybe_eliminate_biv_1 (loop
, XVECEXP (x
, i
, j
), insn
, bl
,
9070 eliminate_p
, where_bb
, where_insn
))
9079 /* Return nonzero if the last use of REG
9080 is in an insn following INSN in the same basic block. */
9083 last_use_this_basic_block (rtx reg
, rtx insn
)
9087 n
&& GET_CODE (n
) != CODE_LABEL
&& GET_CODE (n
) != JUMP_INSN
;
9090 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (n
))
9096 /* Called via `note_stores' to record the initial value of a biv. Here we
9097 just record the location of the set and process it later. */
9100 record_initial (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
9102 struct loop_ivs
*ivs
= (struct loop_ivs
*) data
;
9103 struct iv_class
*bl
;
9105 if (GET_CODE (dest
) != REG
9106 || REGNO (dest
) >= ivs
->n_regs
9107 || REG_IV_TYPE (ivs
, REGNO (dest
)) != BASIC_INDUCT
)
9110 bl
= REG_IV_CLASS (ivs
, REGNO (dest
));
9112 /* If this is the first set found, record it. */
9113 if (bl
->init_insn
== 0)
9115 bl
->init_insn
= note_insn
;
9120 /* If any of the registers in X are "old" and currently have a last use earlier
9121 than INSN, update them to have a last use of INSN. Their actual last use
9122 will be the previous insn but it will not have a valid uid_luid so we can't
9123 use it. X must be a source expression only. */
9126 update_reg_last_use (rtx x
, rtx insn
)
9128 /* Check for the case where INSN does not have a valid luid. In this case,
9129 there is no need to modify the regno_last_uid, as this can only happen
9130 when code is inserted after the loop_end to set a pseudo's final value,
9131 and hence this insn will never be the last use of x.
9132 ???? This comment is not correct. See for example loop_givs_reduce.
9133 This may insert an insn before another new insn. */
9134 if (GET_CODE (x
) == REG
&& REGNO (x
) < max_reg_before_loop
9135 && INSN_UID (insn
) < max_uid_for_loop
9136 && REGNO_LAST_LUID (REGNO (x
)) < INSN_LUID (insn
))
9138 REGNO_LAST_UID (REGNO (x
)) = INSN_UID (insn
);
9143 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
9144 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
9147 update_reg_last_use (XEXP (x
, i
), insn
);
9148 else if (fmt
[i
] == 'E')
9149 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9150 update_reg_last_use (XVECEXP (x
, i
, j
), insn
);
9155 /* Given an insn INSN and condition COND, return the condition in a
9156 canonical form to simplify testing by callers. Specifically:
9158 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9159 (2) Both operands will be machine operands; (cc0) will have been replaced.
9160 (3) If an operand is a constant, it will be the second operand.
9161 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9162 for GE, GEU, and LEU.
9164 If the condition cannot be understood, or is an inequality floating-point
9165 comparison which needs to be reversed, 0 will be returned.
9167 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
9169 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9170 insn used in locating the condition was found. If a replacement test
9171 of the condition is desired, it should be placed in front of that
9172 insn and we will be sure that the inputs are still valid.
9174 If WANT_REG is nonzero, we wish the condition to be relative to that
9175 register, if possible. Therefore, do not canonicalize the condition
9176 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
9177 to be a compare to a CC mode register. */
9180 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
9181 rtx want_reg
, int allow_cc_mode
)
9188 int reverse_code
= 0;
9189 enum machine_mode mode
;
9191 code
= GET_CODE (cond
);
9192 mode
= GET_MODE (cond
);
9193 op0
= XEXP (cond
, 0);
9194 op1
= XEXP (cond
, 1);
9197 code
= reversed_comparison_code (cond
, insn
);
9198 if (code
== UNKNOWN
)
9204 /* If we are comparing a register with zero, see if the register is set
9205 in the previous insn to a COMPARE or a comparison operation. Perform
9206 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9209 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
9210 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
9211 && op1
== CONST0_RTX (GET_MODE (op0
))
9214 /* Set nonzero when we find something of interest. */
9218 /* If comparison with cc0, import actual comparison from compare
9222 if ((prev
= prev_nonnote_insn (prev
)) == 0
9223 || GET_CODE (prev
) != INSN
9224 || (set
= single_set (prev
)) == 0
9225 || SET_DEST (set
) != cc0_rtx
)
9228 op0
= SET_SRC (set
);
9229 op1
= CONST0_RTX (GET_MODE (op0
));
9235 /* If this is a COMPARE, pick up the two things being compared. */
9236 if (GET_CODE (op0
) == COMPARE
)
9238 op1
= XEXP (op0
, 1);
9239 op0
= XEXP (op0
, 0);
9242 else if (GET_CODE (op0
) != REG
)
9245 /* Go back to the previous insn. Stop if it is not an INSN. We also
9246 stop if it isn't a single set or if it has a REG_INC note because
9247 we don't want to bother dealing with it. */
9249 if ((prev
= prev_nonnote_insn (prev
)) == 0
9250 || GET_CODE (prev
) != INSN
9251 || FIND_REG_INC_NOTE (prev
, NULL_RTX
))
9254 set
= set_of (op0
, prev
);
9257 && (GET_CODE (set
) != SET
9258 || !rtx_equal_p (SET_DEST (set
), op0
)))
9261 /* If this is setting OP0, get what it sets it to if it looks
9265 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
9266 #ifdef FLOAT_STORE_FLAG_VALUE
9267 REAL_VALUE_TYPE fsfv
;
9270 /* ??? We may not combine comparisons done in a CCmode with
9271 comparisons not done in a CCmode. This is to aid targets
9272 like Alpha that have an IEEE compliant EQ instruction, and
9273 a non-IEEE compliant BEQ instruction. The use of CCmode is
9274 actually artificial, simply to prevent the combination, but
9275 should not affect other platforms.
9277 However, we must allow VOIDmode comparisons to match either
9278 CCmode or non-CCmode comparison, because some ports have
9279 modeless comparisons inside branch patterns.
9281 ??? This mode check should perhaps look more like the mode check
9282 in simplify_comparison in combine. */
9284 if ((GET_CODE (SET_SRC (set
)) == COMPARE
9287 && GET_MODE_CLASS (inner_mode
) == MODE_INT
9288 && (GET_MODE_BITSIZE (inner_mode
)
9289 <= HOST_BITS_PER_WIDE_INT
)
9290 && (STORE_FLAG_VALUE
9291 & ((HOST_WIDE_INT
) 1
9292 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
9293 #ifdef FLOAT_STORE_FLAG_VALUE
9295 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
9296 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
9297 REAL_VALUE_NEGATIVE (fsfv
)))
9300 && COMPARISON_P (SET_SRC (set
))))
9301 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
9302 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
9303 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
9305 else if (((code
== EQ
9307 && (GET_MODE_BITSIZE (inner_mode
)
9308 <= HOST_BITS_PER_WIDE_INT
)
9309 && GET_MODE_CLASS (inner_mode
) == MODE_INT
9310 && (STORE_FLAG_VALUE
9311 & ((HOST_WIDE_INT
) 1
9312 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
9313 #ifdef FLOAT_STORE_FLAG_VALUE
9315 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
9316 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
9317 REAL_VALUE_NEGATIVE (fsfv
)))
9320 && COMPARISON_P (SET_SRC (set
))
9321 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
9322 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
9323 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
9333 else if (reg_set_p (op0
, prev
))
9334 /* If this sets OP0, but not directly, we have to give up. */
9339 if (COMPARISON_P (x
))
9340 code
= GET_CODE (x
);
9343 code
= reversed_comparison_code (x
, prev
);
9344 if (code
== UNKNOWN
)
9349 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
9355 /* If constant is first, put it last. */
9356 if (CONSTANT_P (op0
))
9357 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
9359 /* If OP0 is the result of a comparison, we weren't able to find what
9360 was really being compared, so fail. */
9362 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
9365 /* Canonicalize any ordered comparison with integers involving equality
9366 if we can do computations in the relevant mode and we do not
9369 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
9370 && GET_CODE (op1
) == CONST_INT
9371 && GET_MODE (op0
) != VOIDmode
9372 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
9374 HOST_WIDE_INT const_val
= INTVAL (op1
);
9375 unsigned HOST_WIDE_INT uconst_val
= const_val
;
9376 unsigned HOST_WIDE_INT max_val
9377 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
9382 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
9383 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
9386 /* When cross-compiling, const_val might be sign-extended from
9387 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9389 if ((HOST_WIDE_INT
) (const_val
& max_val
)
9390 != (((HOST_WIDE_INT
) 1
9391 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
9392 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
9396 if (uconst_val
< max_val
)
9397 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
9401 if (uconst_val
!= 0)
9402 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
9410 /* Never return CC0; return zero instead. */
9414 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
9417 /* Given a jump insn JUMP, return the condition that will cause it to branch
9418 to its JUMP_LABEL. If the condition cannot be understood, or is an
9419 inequality floating-point comparison which needs to be reversed, 0 will
9422 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9423 insn used in locating the condition was found. If a replacement test
9424 of the condition is desired, it should be placed in front of that
9425 insn and we will be sure that the inputs are still valid.
9427 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
9428 compare CC mode register. */
9431 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
)
9437 /* If this is not a standard conditional jump, we can't parse it. */
9438 if (GET_CODE (jump
) != JUMP_INSN
9439 || ! any_condjump_p (jump
))
9441 set
= pc_set (jump
);
9443 cond
= XEXP (SET_SRC (set
), 0);
9445 /* If this branches to JUMP_LABEL when the condition is false, reverse
9448 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
9449 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
9451 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
9455 /* Similar to above routine, except that we also put an invariant last
9456 unless both operands are invariants. */
9459 get_condition_for_loop (const struct loop
*loop
, rtx x
)
9461 rtx comparison
= get_condition (x
, (rtx
*) 0, false);
9464 || ! loop_invariant_p (loop
, XEXP (comparison
, 0))
9465 || loop_invariant_p (loop
, XEXP (comparison
, 1)))
9468 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)), VOIDmode
,
9469 XEXP (comparison
, 1), XEXP (comparison
, 0));
9472 /* Scan the function and determine whether it has indirect (computed) jumps.
9474 This is taken mostly from flow.c; similar code exists elsewhere
9475 in the compiler. It may be useful to put this into rtlanal.c. */
9477 indirect_jump_in_function_p (rtx start
)
9481 for (insn
= start
; insn
; insn
= NEXT_INSN (insn
))
9482 if (computed_jump_p (insn
))
9488 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9489 documentation for LOOP_MEMS for the definition of `appropriate'.
9490 This function is called from prescan_loop via for_each_rtx. */
9493 insert_loop_mem (rtx
*mem
, void *data ATTRIBUTE_UNUSED
)
9495 struct loop_info
*loop_info
= data
;
9502 switch (GET_CODE (m
))
9508 /* We're not interested in MEMs that are only clobbered. */
9512 /* We're not interested in the MEM associated with a
9513 CONST_DOUBLE, so there's no need to traverse into this. */
9517 /* We're not interested in any MEMs that only appear in notes. */
9521 /* This is not a MEM. */
9525 /* See if we've already seen this MEM. */
9526 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
9527 if (rtx_equal_p (m
, loop_info
->mems
[i
].mem
))
9529 if (MEM_VOLATILE_P (m
) && !MEM_VOLATILE_P (loop_info
->mems
[i
].mem
))
9530 loop_info
->mems
[i
].mem
= m
;
9531 if (GET_MODE (m
) != GET_MODE (loop_info
->mems
[i
].mem
))
9532 /* The modes of the two memory accesses are different. If
9533 this happens, something tricky is going on, and we just
9534 don't optimize accesses to this MEM. */
9535 loop_info
->mems
[i
].optimize
= 0;
9540 /* Resize the array, if necessary. */
9541 if (loop_info
->mems_idx
== loop_info
->mems_allocated
)
9543 if (loop_info
->mems_allocated
!= 0)
9544 loop_info
->mems_allocated
*= 2;
9546 loop_info
->mems_allocated
= 32;
9548 loop_info
->mems
= xrealloc (loop_info
->mems
,
9549 loop_info
->mems_allocated
* sizeof (loop_mem_info
));
9552 /* Actually insert the MEM. */
9553 loop_info
->mems
[loop_info
->mems_idx
].mem
= m
;
9554 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9555 because we can't put it in a register. We still store it in the
9556 table, though, so that if we see the same address later, but in a
9557 non-BLK mode, we'll not think we can optimize it at that point. */
9558 loop_info
->mems
[loop_info
->mems_idx
].optimize
= (GET_MODE (m
) != BLKmode
);
9559 loop_info
->mems
[loop_info
->mems_idx
].reg
= NULL_RTX
;
9560 ++loop_info
->mems_idx
;
9566 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9568 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9569 register that is modified by an insn between FROM and TO. If the
9570 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9571 more, stop incrementing it, to avoid overflow.
9573 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9574 register I is used, if it is only used once. Otherwise, it is set
9575 to 0 (for no uses) or const0_rtx for more than one use. This
9576 parameter may be zero, in which case this processing is not done.
9578 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9579 optimize register I. */
9582 loop_regs_scan (const struct loop
*loop
, int extra_size
)
9584 struct loop_regs
*regs
= LOOP_REGS (loop
);
9586 /* last_set[n] is nonzero iff reg n has been set in the current
9587 basic block. In that case, it is the insn that last set reg n. */
9592 old_nregs
= regs
->num
;
9593 regs
->num
= max_reg_num ();
9595 /* Grow the regs array if not allocated or too small. */
9596 if (regs
->num
>= regs
->size
)
9598 regs
->size
= regs
->num
+ extra_size
;
9600 regs
->array
= xrealloc (regs
->array
, regs
->size
* sizeof (*regs
->array
));
9602 /* Zero the new elements. */
9603 memset (regs
->array
+ old_nregs
, 0,
9604 (regs
->size
- old_nregs
) * sizeof (*regs
->array
));
9607 /* Clear previously scanned fields but do not clear n_times_set. */
9608 for (i
= 0; i
< old_nregs
; i
++)
9610 regs
->array
[i
].set_in_loop
= 0;
9611 regs
->array
[i
].may_not_optimize
= 0;
9612 regs
->array
[i
].single_usage
= NULL_RTX
;
9615 last_set
= xcalloc (regs
->num
, sizeof (rtx
));
9617 /* Scan the loop, recording register usage. */
9618 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
9619 insn
= NEXT_INSN (insn
))
9623 /* Record registers that have exactly one use. */
9624 find_single_use_in_loop (regs
, insn
, PATTERN (insn
));
9626 /* Include uses in REG_EQUAL notes. */
9627 if (REG_NOTES (insn
))
9628 find_single_use_in_loop (regs
, insn
, REG_NOTES (insn
));
9630 if (GET_CODE (PATTERN (insn
)) == SET
9631 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
9632 count_one_set (regs
, insn
, PATTERN (insn
), last_set
);
9633 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
9636 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
9637 count_one_set (regs
, insn
, XVECEXP (PATTERN (insn
), 0, i
),
9642 if (GET_CODE (insn
) == CODE_LABEL
|| GET_CODE (insn
) == JUMP_INSN
)
9643 memset (last_set
, 0, regs
->num
* sizeof (rtx
));
9645 /* Invalidate all registers used for function argument passing.
9646 We check rtx_varies_p for the same reason as below, to allow
9647 optimizing PIC calculations. */
9648 if (GET_CODE (insn
) == CALL_INSN
)
9651 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
9653 link
= XEXP (link
, 1))
9657 if (GET_CODE (op
= XEXP (link
, 0)) == USE
9658 && GET_CODE (reg
= XEXP (op
, 0)) == REG
9659 && rtx_varies_p (reg
, 1))
9660 regs
->array
[REGNO (reg
)].may_not_optimize
= 1;
9665 /* Invalidate all hard registers clobbered by calls. With one exception:
9666 a call-clobbered PIC register is still function-invariant for our
9667 purposes, since we can hoist any PIC calculations out of the loop.
9668 Thus the call to rtx_varies_p. */
9669 if (LOOP_INFO (loop
)->has_call
)
9670 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
9671 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
)
9672 && rtx_varies_p (regno_reg_rtx
[i
], 1))
9674 regs
->array
[i
].may_not_optimize
= 1;
9675 regs
->array
[i
].set_in_loop
= 1;
9678 #ifdef AVOID_CCMODE_COPIES
9679 /* Don't try to move insns which set CC registers if we should not
9680 create CCmode register copies. */
9681 for (i
= regs
->num
- 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
9682 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
9683 regs
->array
[i
].may_not_optimize
= 1;
9686 /* Set regs->array[I].n_times_set for the new registers. */
9687 for (i
= old_nregs
; i
< regs
->num
; i
++)
9688 regs
->array
[i
].n_times_set
= regs
->array
[i
].set_in_loop
;
9693 /* Returns the number of real INSNs in the LOOP. */
9696 count_insns_in_loop (const struct loop
*loop
)
9701 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
9702 insn
= NEXT_INSN (insn
))
9709 /* Move MEMs into registers for the duration of the loop. */
9712 load_mems (const struct loop
*loop
)
9714 struct loop_info
*loop_info
= LOOP_INFO (loop
);
9715 struct loop_regs
*regs
= LOOP_REGS (loop
);
9716 int maybe_never
= 0;
9718 rtx p
, prev_ebb_head
;
9719 rtx label
= NULL_RTX
;
9721 /* Nonzero if the next instruction may never be executed. */
9722 int next_maybe_never
= 0;
9723 unsigned int last_max_reg
= max_reg_num ();
9725 if (loop_info
->mems_idx
== 0)
9728 /* We cannot use next_label here because it skips over normal insns. */
9729 end_label
= next_nonnote_insn (loop
->end
);
9730 if (end_label
&& GET_CODE (end_label
) != CODE_LABEL
)
9731 end_label
= NULL_RTX
;
9733 /* Check to see if it's possible that some instructions in the loop are
9734 never executed. Also check if there is a goto out of the loop other
9735 than right after the end of the loop. */
9736 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
9738 p
= next_insn_in_loop (loop
, p
))
9740 if (GET_CODE (p
) == CODE_LABEL
)
9742 else if (GET_CODE (p
) == JUMP_INSN
9743 /* If we enter the loop in the middle, and scan
9744 around to the beginning, don't set maybe_never
9745 for that. This must be an unconditional jump,
9746 otherwise the code at the top of the loop might
9747 never be executed. Unconditional jumps are
9748 followed a by barrier then loop end. */
9749 && ! (GET_CODE (p
) == JUMP_INSN
9750 && JUMP_LABEL (p
) == loop
->top
9751 && NEXT_INSN (NEXT_INSN (p
)) == loop
->end
9752 && any_uncondjump_p (p
)))
9754 /* If this is a jump outside of the loop but not right
9755 after the end of the loop, we would have to emit new fixup
9756 sequences for each such label. */
9757 if (/* If we can't tell where control might go when this
9758 JUMP_INSN is executed, we must be conservative. */
9760 || (JUMP_LABEL (p
) != end_label
9761 && (INSN_UID (JUMP_LABEL (p
)) >= max_uid_for_loop
9762 || INSN_LUID (JUMP_LABEL (p
)) < INSN_LUID (loop
->start
)
9763 || INSN_LUID (JUMP_LABEL (p
)) > INSN_LUID (loop
->end
))))
9766 if (!any_condjump_p (p
))
9767 /* Something complicated. */
9770 /* If there are any more instructions in the loop, they
9771 might not be reached. */
9772 next_maybe_never
= 1;
9774 else if (next_maybe_never
)
9778 /* Find start of the extended basic block that enters the loop. */
9779 for (p
= loop
->start
;
9780 PREV_INSN (p
) && GET_CODE (p
) != CODE_LABEL
;
9787 /* Build table of mems that get set to constant values before the
9789 for (; p
!= loop
->start
; p
= NEXT_INSN (p
))
9790 cselib_process_insn (p
);
9792 /* Actually move the MEMs. */
9793 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
9795 regset_head load_copies
;
9796 regset_head store_copies
;
9799 rtx mem
= loop_info
->mems
[i
].mem
;
9802 if (MEM_VOLATILE_P (mem
)
9803 || loop_invariant_p (loop
, XEXP (mem
, 0)) != 1)
9804 /* There's no telling whether or not MEM is modified. */
9805 loop_info
->mems
[i
].optimize
= 0;
9807 /* Go through the MEMs written to in the loop to see if this
9808 one is aliased by one of them. */
9809 mem_list_entry
= loop_info
->store_mems
;
9810 while (mem_list_entry
)
9812 if (rtx_equal_p (mem
, XEXP (mem_list_entry
, 0)))
9814 else if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
9817 /* MEM is indeed aliased by this store. */
9818 loop_info
->mems
[i
].optimize
= 0;
9821 mem_list_entry
= XEXP (mem_list_entry
, 1);
9824 if (flag_float_store
&& written
9825 && GET_MODE_CLASS (GET_MODE (mem
)) == MODE_FLOAT
)
9826 loop_info
->mems
[i
].optimize
= 0;
9828 /* If this MEM is written to, we must be sure that there
9829 are no reads from another MEM that aliases this one. */
9830 if (loop_info
->mems
[i
].optimize
&& written
)
9834 for (j
= 0; j
< loop_info
->mems_idx
; ++j
)
9838 else if (true_dependence (mem
,
9840 loop_info
->mems
[j
].mem
,
9843 /* It's not safe to hoist loop_info->mems[i] out of
9844 the loop because writes to it might not be
9845 seen by reads from loop_info->mems[j]. */
9846 loop_info
->mems
[i
].optimize
= 0;
9852 if (maybe_never
&& may_trap_p (mem
))
9853 /* We can't access the MEM outside the loop; it might
9854 cause a trap that wouldn't have happened otherwise. */
9855 loop_info
->mems
[i
].optimize
= 0;
9857 if (!loop_info
->mems
[i
].optimize
)
9858 /* We thought we were going to lift this MEM out of the
9859 loop, but later discovered that we could not. */
9862 INIT_REG_SET (&load_copies
);
9863 INIT_REG_SET (&store_copies
);
9865 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9866 order to keep scan_loop from moving stores to this MEM
9867 out of the loop just because this REG is neither a
9868 user-variable nor used in the loop test. */
9869 reg
= gen_reg_rtx (GET_MODE (mem
));
9870 REG_USERVAR_P (reg
) = 1;
9871 loop_info
->mems
[i
].reg
= reg
;
9873 /* Now, replace all references to the MEM with the
9874 corresponding pseudos. */
9876 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
9878 p
= next_insn_in_loop (loop
, p
))
9884 set
= single_set (p
);
9886 /* See if this copies the mem into a register that isn't
9887 modified afterwards. We'll try to do copy propagation
9888 a little further on. */
9890 /* @@@ This test is _way_ too conservative. */
9892 && GET_CODE (SET_DEST (set
)) == REG
9893 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
9894 && REGNO (SET_DEST (set
)) < last_max_reg
9895 && regs
->array
[REGNO (SET_DEST (set
))].n_times_set
== 1
9896 && rtx_equal_p (SET_SRC (set
), mem
))
9897 SET_REGNO_REG_SET (&load_copies
, REGNO (SET_DEST (set
)));
9899 /* See if this copies the mem from a register that isn't
9900 modified afterwards. We'll try to remove the
9901 redundant copy later on by doing a little register
9902 renaming and copy propagation. This will help
9903 to untangle things for the BIV detection code. */
9906 && GET_CODE (SET_SRC (set
)) == REG
9907 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
9908 && REGNO (SET_SRC (set
)) < last_max_reg
9909 && regs
->array
[REGNO (SET_SRC (set
))].n_times_set
== 1
9910 && rtx_equal_p (SET_DEST (set
), mem
))
9911 SET_REGNO_REG_SET (&store_copies
, REGNO (SET_SRC (set
)));
9913 /* If this is a call which uses / clobbers this memory
9914 location, we must not change the interface here. */
9915 if (GET_CODE (p
) == CALL_INSN
9916 && reg_mentioned_p (loop_info
->mems
[i
].mem
,
9917 CALL_INSN_FUNCTION_USAGE (p
)))
9920 loop_info
->mems
[i
].optimize
= 0;
9924 /* Replace the memory reference with the shadow register. */
9925 replace_loop_mems (p
, loop_info
->mems
[i
].mem
,
9926 loop_info
->mems
[i
].reg
, written
);
9929 if (GET_CODE (p
) == CODE_LABEL
9930 || GET_CODE (p
) == JUMP_INSN
)
9934 if (! loop_info
->mems
[i
].optimize
)
9935 ; /* We found we couldn't do the replacement, so do nothing. */
9936 else if (! apply_change_group ())
9937 /* We couldn't replace all occurrences of the MEM. */
9938 loop_info
->mems
[i
].optimize
= 0;
9941 /* Load the memory immediately before LOOP->START, which is
9942 the NOTE_LOOP_BEG. */
9943 cselib_val
*e
= cselib_lookup (mem
, VOIDmode
, 0);
9947 struct elt_loc_list
*const_equiv
= 0;
9951 struct elt_loc_list
*equiv
;
9952 struct elt_loc_list
*best_equiv
= 0;
9953 for (equiv
= e
->locs
; equiv
; equiv
= equiv
->next
)
9955 if (CONSTANT_P (equiv
->loc
))
9956 const_equiv
= equiv
;
9957 else if (GET_CODE (equiv
->loc
) == REG
9958 /* Extending hard register lifetimes causes crash
9959 on SRC targets. Doing so on non-SRC is
9960 probably also not good idea, since we most
9961 probably have pseudoregister equivalence as
9963 && REGNO (equiv
->loc
) >= FIRST_PSEUDO_REGISTER
)
9966 /* Use the constant equivalence if that is cheap enough. */
9968 best_equiv
= const_equiv
;
9969 else if (const_equiv
9970 && (rtx_cost (const_equiv
->loc
, SET
)
9971 <= rtx_cost (best_equiv
->loc
, SET
)))
9973 best_equiv
= const_equiv
;
9977 /* If best_equiv is nonzero, we know that MEM is set to a
9978 constant or register before the loop. We will use this
9979 knowledge to initialize the shadow register with that
9980 constant or reg rather than by loading from MEM. */
9982 best
= copy_rtx (best_equiv
->loc
);
9985 set
= gen_move_insn (reg
, best
);
9986 set
= loop_insn_hoist (loop
, set
);
9989 for (p
= prev_ebb_head
; p
!= loop
->start
; p
= NEXT_INSN (p
))
9990 if (REGNO_LAST_UID (REGNO (best
)) == INSN_UID (p
))
9992 REGNO_LAST_UID (REGNO (best
)) = INSN_UID (set
);
9998 set_unique_reg_note (set
, REG_EQUAL
, copy_rtx (const_equiv
->loc
));
10002 if (label
== NULL_RTX
)
10004 label
= gen_label_rtx ();
10005 emit_label_after (label
, loop
->end
);
10008 /* Store the memory immediately after END, which is
10009 the NOTE_LOOP_END. */
10010 set
= gen_move_insn (copy_rtx (mem
), reg
);
10011 loop_insn_emit_after (loop
, 0, label
, set
);
10014 if (loop_dump_stream
)
10016 fprintf (loop_dump_stream
, "Hoisted regno %d %s from ",
10017 REGNO (reg
), (written
? "r/w" : "r/o"));
10018 print_rtl (loop_dump_stream
, mem
);
10019 fputc ('\n', loop_dump_stream
);
10022 /* Attempt a bit of copy propagation. This helps untangle the
10023 data flow, and enables {basic,general}_induction_var to find
10025 EXECUTE_IF_SET_IN_REG_SET
10026 (&load_copies
, FIRST_PSEUDO_REGISTER
, j
,
10028 try_copy_prop (loop
, reg
, j
);
10030 CLEAR_REG_SET (&load_copies
);
10032 EXECUTE_IF_SET_IN_REG_SET
10033 (&store_copies
, FIRST_PSEUDO_REGISTER
, j
,
10035 try_swap_copy_prop (loop
, reg
, j
);
10037 CLEAR_REG_SET (&store_copies
);
10041 /* Now, we need to replace all references to the previous exit
10042 label with the new one. */
10043 if (label
!= NULL_RTX
&& end_label
!= NULL_RTX
)
10044 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
10045 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == end_label
)
10046 redirect_jump (p
, label
, false);
10051 /* For communication between note_reg_stored and its caller. */
10052 struct note_reg_stored_arg
10058 /* Called via note_stores, record in SET_SEEN whether X, which is written,
10059 is equal to ARG. */
10061 note_reg_stored (rtx x
, rtx setter ATTRIBUTE_UNUSED
, void *arg
)
10063 struct note_reg_stored_arg
*t
= (struct note_reg_stored_arg
*) arg
;
10068 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10069 There must be exactly one insn that sets this pseudo; it will be
10070 deleted if all replacements succeed and we can prove that the register
10071 is not used after the loop. */
10074 try_copy_prop (const struct loop
*loop
, rtx replacement
, unsigned int regno
)
10076 /* This is the reg that we are copying from. */
10077 rtx reg_rtx
= regno_reg_rtx
[regno
];
10080 /* These help keep track of whether we replaced all uses of the reg. */
10081 int replaced_last
= 0;
10082 int store_is_first
= 0;
10084 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
10086 insn
= next_insn_in_loop (loop
, insn
))
10090 /* Only substitute within one extended basic block from the initializing
10092 if (GET_CODE (insn
) == CODE_LABEL
&& init_insn
)
10095 if (! INSN_P (insn
))
10098 /* Is this the initializing insn? */
10099 set
= single_set (insn
);
10101 && GET_CODE (SET_DEST (set
)) == REG
10102 && REGNO (SET_DEST (set
)) == regno
)
10108 if (REGNO_FIRST_UID (regno
) == INSN_UID (insn
))
10109 store_is_first
= 1;
10112 /* Only substitute after seeing the initializing insn. */
10113 if (init_insn
&& insn
!= init_insn
)
10115 struct note_reg_stored_arg arg
;
10117 replace_loop_regs (insn
, reg_rtx
, replacement
);
10118 if (REGNO_LAST_UID (regno
) == INSN_UID (insn
))
10121 /* Stop replacing when REPLACEMENT is modified. */
10122 arg
.reg
= replacement
;
10124 note_stores (PATTERN (insn
), note_reg_stored
, &arg
);
10127 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL
);
10129 /* It is possible that we've turned previously valid REG_EQUAL to
10130 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10131 REPLACEMENT is modified, we get different meaning. */
10132 if (note
&& reg_mentioned_p (replacement
, XEXP (note
, 0)))
10133 remove_note (insn
, note
);
10140 if (apply_change_group ())
10142 if (loop_dump_stream
)
10143 fprintf (loop_dump_stream
, " Replaced reg %d", regno
);
10144 if (store_is_first
&& replaced_last
)
10149 /* Assume we're just deleting INIT_INSN. */
10151 /* Look for REG_RETVAL note. If we're deleting the end of
10152 the libcall sequence, the whole sequence can go. */
10153 retval_note
= find_reg_note (init_insn
, REG_RETVAL
, NULL_RTX
);
10154 /* If we found a REG_RETVAL note, find the first instruction
10155 in the sequence. */
10157 first
= XEXP (retval_note
, 0);
10159 /* Delete the instructions. */
10160 loop_delete_insns (first
, init_insn
);
10162 if (loop_dump_stream
)
10163 fprintf (loop_dump_stream
, ".\n");
10167 /* Replace all the instructions from FIRST up to and including LAST
10168 with NOTE_INSN_DELETED notes. */
10171 loop_delete_insns (rtx first
, rtx last
)
10175 if (loop_dump_stream
)
10176 fprintf (loop_dump_stream
, ", deleting init_insn (%d)",
10178 delete_insn (first
);
10180 /* If this was the LAST instructions we're supposed to delete,
10185 first
= NEXT_INSN (first
);
10189 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10190 loop LOOP if the order of the sets of these registers can be
10191 swapped. There must be exactly one insn within the loop that sets
10192 this pseudo followed immediately by a move insn that sets
10193 REPLACEMENT with REGNO. */
10195 try_swap_copy_prop (const struct loop
*loop
, rtx replacement
,
10196 unsigned int regno
)
10199 rtx set
= NULL_RTX
;
10200 unsigned int new_regno
;
10202 new_regno
= REGNO (replacement
);
10204 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
10206 insn
= next_insn_in_loop (loop
, insn
))
10208 /* Search for the insn that copies REGNO to NEW_REGNO? */
10210 && (set
= single_set (insn
))
10211 && GET_CODE (SET_DEST (set
)) == REG
10212 && REGNO (SET_DEST (set
)) == new_regno
10213 && GET_CODE (SET_SRC (set
)) == REG
10214 && REGNO (SET_SRC (set
)) == regno
)
10218 if (insn
!= NULL_RTX
)
10223 /* Some DEF-USE info would come in handy here to make this
10224 function more general. For now, just check the previous insn
10225 which is the most likely candidate for setting REGNO. */
10227 prev_insn
= PREV_INSN (insn
);
10230 && (prev_set
= single_set (prev_insn
))
10231 && GET_CODE (SET_DEST (prev_set
)) == REG
10232 && REGNO (SET_DEST (prev_set
)) == regno
)
10235 (set (reg regno) (expr))
10236 (set (reg new_regno) (reg regno))
10238 so try converting this to:
10239 (set (reg new_regno) (expr))
10240 (set (reg regno) (reg new_regno))
10242 The former construct is often generated when a global
10243 variable used for an induction variable is shadowed by a
10244 register (NEW_REGNO). The latter construct improves the
10245 chances of GIV replacement and BIV elimination. */
10247 validate_change (prev_insn
, &SET_DEST (prev_set
),
10249 validate_change (insn
, &SET_DEST (set
),
10251 validate_change (insn
, &SET_SRC (set
),
10254 if (apply_change_group ())
10256 if (loop_dump_stream
)
10257 fprintf (loop_dump_stream
,
10258 " Swapped set of reg %d at %d with reg %d at %d.\n",
10259 regno
, INSN_UID (insn
),
10260 new_regno
, INSN_UID (prev_insn
));
10262 /* Update first use of REGNO. */
10263 if (REGNO_FIRST_UID (regno
) == INSN_UID (prev_insn
))
10264 REGNO_FIRST_UID (regno
) = INSN_UID (insn
);
10266 /* Now perform copy propagation to hopefully
10267 remove all uses of REGNO within the loop. */
10268 try_copy_prop (loop
, replacement
, regno
);
10274 /* Worker function for find_mem_in_note, called via for_each_rtx. */
10277 find_mem_in_note_1 (rtx
*x
, void *data
)
10279 if (*x
!= NULL_RTX
&& GET_CODE (*x
) == MEM
)
10281 rtx
*res
= (rtx
*) data
;
10288 /* Returns the first MEM found in NOTE by depth-first search. */
10291 find_mem_in_note (rtx note
)
10293 if (note
&& for_each_rtx (¬e
, find_mem_in_note_1
, ¬e
))
10298 /* Replace MEM with its associated pseudo register. This function is
10299 called from load_mems via for_each_rtx. DATA is actually a pointer
10300 to a structure describing the instruction currently being scanned
10301 and the MEM we are currently replacing. */
10304 replace_loop_mem (rtx
*mem
, void *data
)
10306 loop_replace_args
*args
= (loop_replace_args
*) data
;
10312 switch (GET_CODE (m
))
10318 /* We're not interested in the MEM associated with a
10319 CONST_DOUBLE, so there's no need to traverse into one. */
10323 /* This is not a MEM. */
10327 if (!rtx_equal_p (args
->match
, m
))
10328 /* This is not the MEM we are currently replacing. */
10331 /* Actually replace the MEM. */
10332 validate_change (args
->insn
, mem
, args
->replacement
, 1);
10338 replace_loop_mems (rtx insn
, rtx mem
, rtx reg
, int written
)
10340 loop_replace_args args
;
10344 args
.replacement
= reg
;
10346 for_each_rtx (&insn
, replace_loop_mem
, &args
);
10348 /* If we hoist a mem write out of the loop, then REG_EQUAL
10349 notes referring to the mem are no longer valid. */
10355 for (link
= ®_NOTES (insn
); (note
= *link
); link
= &XEXP (note
, 1))
10357 if (REG_NOTE_KIND (note
) == REG_EQUAL
10358 && (sub
= find_mem_in_note (note
))
10359 && true_dependence (mem
, VOIDmode
, sub
, rtx_varies_p
))
10361 /* Remove the note. */
10362 validate_change (NULL_RTX
, link
, XEXP (note
, 1), 1);
10369 /* Replace one register with another. Called through for_each_rtx; PX points
10370 to the rtx being scanned. DATA is actually a pointer to
10371 a structure of arguments. */
10374 replace_loop_reg (rtx
*px
, void *data
)
10377 loop_replace_args
*args
= (loop_replace_args
*) data
;
10382 if (x
== args
->match
)
10383 validate_change (args
->insn
, px
, args
->replacement
, 1);
10389 replace_loop_regs (rtx insn
, rtx reg
, rtx replacement
)
10391 loop_replace_args args
;
10395 args
.replacement
= replacement
;
10397 for_each_rtx (&insn
, replace_loop_reg
, &args
);
10400 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10401 (ignored in the interim). */
10404 loop_insn_emit_after (const struct loop
*loop ATTRIBUTE_UNUSED
,
10405 basic_block where_bb ATTRIBUTE_UNUSED
, rtx where_insn
,
10408 return emit_insn_after (pattern
, where_insn
);
10412 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
10413 in basic block WHERE_BB (ignored in the interim) within the loop
10414 otherwise hoist PATTERN into the loop pre-header. */
10417 loop_insn_emit_before (const struct loop
*loop
,
10418 basic_block where_bb ATTRIBUTE_UNUSED
,
10419 rtx where_insn
, rtx pattern
)
10422 return loop_insn_hoist (loop
, pattern
);
10423 return emit_insn_before (pattern
, where_insn
);
10427 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10428 WHERE_BB (ignored in the interim) within the loop. */
10431 loop_call_insn_emit_before (const struct loop
*loop ATTRIBUTE_UNUSED
,
10432 basic_block where_bb ATTRIBUTE_UNUSED
,
10433 rtx where_insn
, rtx pattern
)
10435 return emit_call_insn_before (pattern
, where_insn
);
10439 /* Hoist insn for PATTERN into the loop pre-header. */
10442 loop_insn_hoist (const struct loop
*loop
, rtx pattern
)
10444 return loop_insn_emit_before (loop
, 0, loop
->start
, pattern
);
10448 /* Hoist call insn for PATTERN into the loop pre-header. */
10451 loop_call_insn_hoist (const struct loop
*loop
, rtx pattern
)
10453 return loop_call_insn_emit_before (loop
, 0, loop
->start
, pattern
);
10457 /* Sink insn for PATTERN after the loop end. */
10460 loop_insn_sink (const struct loop
*loop
, rtx pattern
)
10462 return loop_insn_emit_before (loop
, 0, loop
->sink
, pattern
);
10465 /* bl->final_value can be either general_operand or PLUS of general_operand
10466 and constant. Emit sequence of instructions to load it into REG. */
10468 gen_load_of_final_value (rtx reg
, rtx final_value
)
10472 final_value
= force_operand (final_value
, reg
);
10473 if (final_value
!= reg
)
10474 emit_move_insn (reg
, final_value
);
10475 seq
= get_insns ();
10480 /* If the loop has multiple exits, emit insn for PATTERN before the
10481 loop to ensure that it will always be executed no matter how the
10482 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10483 since this is slightly more efficient. */
10486 loop_insn_sink_or_swim (const struct loop
*loop
, rtx pattern
)
10488 if (loop
->exit_count
)
10489 return loop_insn_hoist (loop
, pattern
);
10491 return loop_insn_sink (loop
, pattern
);
10495 loop_ivs_dump (const struct loop
*loop
, FILE *file
, int verbose
)
10497 struct iv_class
*bl
;
10500 if (! loop
|| ! file
)
10503 for (bl
= LOOP_IVS (loop
)->list
; bl
; bl
= bl
->next
)
10506 fprintf (file
, "Loop %d: %d IV classes\n", loop
->num
, iv_num
);
10508 for (bl
= LOOP_IVS (loop
)->list
; bl
; bl
= bl
->next
)
10510 loop_iv_class_dump (bl
, file
, verbose
);
10511 fputc ('\n', file
);
10517 loop_iv_class_dump (const struct iv_class
*bl
, FILE *file
,
10518 int verbose ATTRIBUTE_UNUSED
)
10520 struct induction
*v
;
10524 if (! bl
|| ! file
)
10527 fprintf (file
, "IV class for reg %d, benefit %d\n",
10528 bl
->regno
, bl
->total_benefit
);
10530 fprintf (file
, " Init insn %d", INSN_UID (bl
->init_insn
));
10531 if (bl
->initial_value
)
10533 fprintf (file
, ", init val: ");
10534 print_simple_rtl (file
, bl
->initial_value
);
10536 if (bl
->initial_test
)
10538 fprintf (file
, ", init test: ");
10539 print_simple_rtl (file
, bl
->initial_test
);
10541 fputc ('\n', file
);
10543 if (bl
->final_value
)
10545 fprintf (file
, " Final val: ");
10546 print_simple_rtl (file
, bl
->final_value
);
10547 fputc ('\n', file
);
10550 if ((incr
= biv_total_increment (bl
)))
10552 fprintf (file
, " Total increment: ");
10553 print_simple_rtl (file
, incr
);
10554 fputc ('\n', file
);
10557 /* List the increments. */
10558 for (i
= 0, v
= bl
->biv
; v
; v
= v
->next_iv
, i
++)
10560 fprintf (file
, " Inc%d: insn %d, incr: ", i
, INSN_UID (v
->insn
));
10561 print_simple_rtl (file
, v
->add_val
);
10562 fputc ('\n', file
);
10565 /* List the givs. */
10566 for (i
= 0, v
= bl
->giv
; v
; v
= v
->next_iv
, i
++)
10568 fprintf (file
, " Giv%d: insn %d, benefit %d, ",
10569 i
, INSN_UID (v
->insn
), v
->benefit
);
10570 if (v
->giv_type
== DEST_ADDR
)
10571 print_simple_rtl (file
, v
->mem
);
10573 print_simple_rtl (file
, single_set (v
->insn
));
10574 fputc ('\n', file
);
10580 loop_biv_dump (const struct induction
*v
, FILE *file
, int verbose
)
10587 REGNO (v
->dest_reg
), INSN_UID (v
->insn
));
10588 fprintf (file
, " const ");
10589 print_simple_rtl (file
, v
->add_val
);
10591 if (verbose
&& v
->final_value
)
10593 fputc ('\n', file
);
10594 fprintf (file
, " final ");
10595 print_simple_rtl (file
, v
->final_value
);
10598 fputc ('\n', file
);
10603 loop_giv_dump (const struct induction
*v
, FILE *file
, int verbose
)
10608 if (v
->giv_type
== DEST_REG
)
10609 fprintf (file
, "Giv %d: insn %d",
10610 REGNO (v
->dest_reg
), INSN_UID (v
->insn
));
10612 fprintf (file
, "Dest address: insn %d",
10613 INSN_UID (v
->insn
));
10615 fprintf (file
, " src reg %d benefit %d",
10616 REGNO (v
->src_reg
), v
->benefit
);
10617 fprintf (file
, " lifetime %d",
10620 if (v
->replaceable
)
10621 fprintf (file
, " replaceable");
10623 if (v
->no_const_addval
)
10624 fprintf (file
, " ncav");
10626 if (v
->ext_dependent
)
10628 switch (GET_CODE (v
->ext_dependent
))
10631 fprintf (file
, " ext se");
10634 fprintf (file
, " ext ze");
10637 fprintf (file
, " ext tr");
10644 fputc ('\n', file
);
10645 fprintf (file
, " mult ");
10646 print_simple_rtl (file
, v
->mult_val
);
10648 fputc ('\n', file
);
10649 fprintf (file
, " add ");
10650 print_simple_rtl (file
, v
->add_val
);
10652 if (verbose
&& v
->final_value
)
10654 fputc ('\n', file
);
10655 fprintf (file
, " final ");
10656 print_simple_rtl (file
, v
->final_value
);
10659 fputc ('\n', file
);
10664 debug_ivs (const struct loop
*loop
)
10666 loop_ivs_dump (loop
, stderr
, 1);
10671 debug_iv_class (const struct iv_class
*bl
)
10673 loop_iv_class_dump (bl
, stderr
, 1);
10678 debug_biv (const struct induction
*v
)
10680 loop_biv_dump (v
, stderr
, 1);
10685 debug_giv (const struct induction
*v
)
10687 loop_giv_dump (v
, stderr
, 1);
10691 #define LOOP_BLOCK_NUM_1(INSN) \
10692 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10694 /* The notes do not have an assigned block, so look at the next insn. */
10695 #define LOOP_BLOCK_NUM(INSN) \
10696 ((INSN) ? (GET_CODE (INSN) == NOTE \
10697 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10698 : LOOP_BLOCK_NUM_1 (INSN)) \
10701 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10704 loop_dump_aux (const struct loop
*loop
, FILE *file
,
10705 int verbose ATTRIBUTE_UNUSED
)
10709 if (! loop
|| ! file
)
10712 /* Print diagnostics to compare our concept of a loop with
10713 what the loop notes say. */
10714 if (! PREV_INSN (BB_HEAD (loop
->first
))
10715 || GET_CODE (PREV_INSN (BB_HEAD (loop
->first
))) != NOTE
10716 || NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (loop
->first
)))
10717 != NOTE_INSN_LOOP_BEG
)
10718 fprintf (file
, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10719 INSN_UID (PREV_INSN (BB_HEAD (loop
->first
))));
10720 if (! NEXT_INSN (BB_END (loop
->last
))
10721 || GET_CODE (NEXT_INSN (BB_END (loop
->last
))) != NOTE
10722 || NOTE_LINE_NUMBER (NEXT_INSN (BB_END (loop
->last
)))
10723 != NOTE_INSN_LOOP_END
)
10724 fprintf (file
, ";; No NOTE_INSN_LOOP_END at %d\n",
10725 INSN_UID (NEXT_INSN (BB_END (loop
->last
))));
10730 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10731 LOOP_BLOCK_NUM (loop
->start
),
10732 LOOP_INSN_UID (loop
->start
),
10733 LOOP_BLOCK_NUM (loop
->cont
),
10734 LOOP_INSN_UID (loop
->cont
),
10735 LOOP_BLOCK_NUM (loop
->cont
),
10736 LOOP_INSN_UID (loop
->cont
),
10737 LOOP_BLOCK_NUM (loop
->vtop
),
10738 LOOP_INSN_UID (loop
->vtop
),
10739 LOOP_BLOCK_NUM (loop
->end
),
10740 LOOP_INSN_UID (loop
->end
));
10741 fprintf (file
, ";; top %d (%d), scan start %d (%d)\n",
10742 LOOP_BLOCK_NUM (loop
->top
),
10743 LOOP_INSN_UID (loop
->top
),
10744 LOOP_BLOCK_NUM (loop
->scan_start
),
10745 LOOP_INSN_UID (loop
->scan_start
));
10746 fprintf (file
, ";; exit_count %d", loop
->exit_count
);
10747 if (loop
->exit_count
)
10749 fputs (", labels:", file
);
10750 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
10752 fprintf (file
, " %d ",
10753 LOOP_INSN_UID (XEXP (label
, 0)));
10756 fputs ("\n", file
);
10758 /* This can happen when a marked loop appears as two nested loops,
10759 say from while (a || b) {}. The inner loop won't match
10760 the loop markers but the outer one will. */
10761 if (LOOP_BLOCK_NUM (loop
->cont
) != loop
->latch
->index
)
10762 fprintf (file
, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10766 /* Call this function from the debugger to dump LOOP. */
10769 debug_loop (const struct loop
*loop
)
10771 flow_loop_dump (loop
, stderr
, loop_dump_aux
, 1);
10774 /* Call this function from the debugger to dump LOOPS. */
10777 debug_loops (const struct loops
*loops
)
10779 flow_loops_dump (loops
, stderr
, loop_dump_aux
, 1);