* system.h: Poison NO_RECURSIVE_FUNCTION_CSE.
[official-gcc.git] / gcc / gcse.c
blobb6d0a6b4d4a3d018303860f51153df1c0a791a3d
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
172 /* Propagate flow information through back edges and thus enable PRE's
173 moving loop invariant calculations out of loops.
175 Originally this tended to create worse overall code, but several
176 improvements during the development of PRE seem to have made following
177 back edges generally a win.
179 Note much of the loop invariant code motion done here would normally
180 be done by loop.c, which has more heuristics for when to move invariants
181 out of loops. At some point we might need to move some of those
182 heuristics into gcse.c. */
184 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
185 are a superset of those done by GCSE.
187 We perform the following steps:
189 1) Compute basic block information.
191 2) Compute table of places where registers are set.
193 3) Perform copy/constant propagation.
195 4) Perform global cse using lazy code motion if not optimizing
196 for size, or code hoisting if we are.
198 5) Perform another pass of copy/constant propagation.
200 Two passes of copy/constant propagation are done because the first one
201 enables more GCSE and the second one helps to clean up the copies that
202 GCSE creates. This is needed more for PRE than for Classic because Classic
203 GCSE will try to use an existing register containing the common
204 subexpression rather than create a new one. This is harder to do for PRE
205 because of the code motion (which Classic GCSE doesn't do).
207 Expressions we are interested in GCSE-ing are of the form
208 (set (pseudo-reg) (expression)).
209 Function want_to_gcse_p says what these are.
211 PRE handles moving invariant expressions out of loops (by treating them as
212 partially redundant).
214 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
215 assignment) based GVN (global value numbering). L. T. Simpson's paper
216 (Rice University) on value numbering is a useful reference for this.
218 **********************
220 We used to support multiple passes but there are diminishing returns in
221 doing so. The first pass usually makes 90% of the changes that are doable.
222 A second pass can make a few more changes made possible by the first pass.
223 Experiments show any further passes don't make enough changes to justify
224 the expense.
226 A study of spec92 using an unlimited number of passes:
227 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
228 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
229 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
231 It was found doing copy propagation between each pass enables further
232 substitutions.
234 PRE is quite expensive in complicated functions because the DFA can take
235 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
236 be modified if one wants to experiment.
238 **********************
240 The steps for PRE are:
242 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
244 2) Perform the data flow analysis for PRE.
246 3) Delete the redundant instructions
248 4) Insert the required copies [if any] that make the partially
249 redundant instructions fully redundant.
251 5) For other reaching expressions, insert an instruction to copy the value
252 to a newly created pseudo that will reach the redundant instruction.
254 The deletion is done first so that when we do insertions we
255 know which pseudo reg to use.
257 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
258 argue it is not. The number of iterations for the algorithm to converge
259 is typically 2-4 so I don't view it as that expensive (relatively speaking).
261 PRE GCSE depends heavily on the second CSE pass to clean up the copies
262 we create. To make an expression reach the place where it's redundant,
263 the result of the expression is copied to a new register, and the redundant
264 expression is deleted by replacing it with this new register. Classic GCSE
265 doesn't have this problem as much as it computes the reaching defs of
266 each register in each block and thus can try to use an existing register.
268 **********************
270 A fair bit of simplicity is created by creating small functions for simple
271 tasks, even when the function is only called in one place. This may
272 measurably slow things down [or may not] by creating more function call
273 overhead than is necessary. The source is laid out so that it's trivial
274 to make the affected functions inline so that one can measure what speed
275 up, if any, can be achieved, and maybe later when things settle things can
276 be rearranged.
278 Help stamp out big monolithic functions! */
280 /* GCSE global vars. */
282 /* -dG dump file. */
283 static FILE *gcse_file;
285 /* Note whether or not we should run jump optimization after gcse. We
286 want to do this for two cases.
288 * If we changed any jumps via cprop.
290 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
393 #else
394 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
395 #endif
397 /* Number of cuids. */
398 static int max_cuid;
400 /* Mapping of cuids to insns. */
401 static rtx *cuid_insn;
403 /* Get insn from cuid. */
404 #define CUID_INSN(CUID) (cuid_insn[CUID])
406 /* Maximum register number in function prior to doing gcse + 1.
407 Registers created during this pass have regno >= max_gcse_regno.
408 This is named with "gcse" to not collide with global of same name. */
409 static unsigned int max_gcse_regno;
411 /* Table of registers that are modified.
413 For each register, each element is a list of places where the pseudo-reg
414 is set.
416 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
417 requires knowledge of which blocks kill which regs [and thus could use
418 a bitmap instead of the lists `reg_set_table' uses].
420 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
421 num-regs) [however perhaps it may be useful to keep the data as is]. One
422 advantage of recording things this way is that `reg_set_table' is fairly
423 sparse with respect to pseudo regs but for hard regs could be fairly dense
424 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
425 up functions like compute_transp since in the case of pseudo-regs we only
426 need to iterate over the number of times a pseudo-reg is set, not over the
427 number of basic blocks [clearly there is a bit of a slow down in the cases
428 where a pseudo is set more than once in a block, however it is believed
429 that the net effect is to speed things up]. This isn't done for hard-regs
430 because recording call-clobbered hard-regs in `reg_set_table' at each
431 function call can consume a fair bit of memory, and iterating over
432 hard-regs stored this way in compute_transp will be more expensive. */
434 typedef struct reg_set
436 /* The next setting of this register. */
437 struct reg_set *next;
438 /* The insn where it was set. */
439 rtx insn;
440 } reg_set;
442 static reg_set **reg_set_table;
444 /* Size of `reg_set_table'.
445 The table starts out at max_gcse_regno + slop, and is enlarged as
446 necessary. */
447 static int reg_set_table_size;
449 /* Amount to grow `reg_set_table' by when it's full. */
450 #define REG_SET_TABLE_SLOP 100
452 /* This is a list of expressions which are MEMs and will be used by load
453 or store motion.
454 Load motion tracks MEMs which aren't killed by
455 anything except itself. (ie, loads and stores to a single location).
456 We can then allow movement of these MEM refs with a little special
457 allowance. (all stores copy the same value to the reaching reg used
458 for the loads). This means all values used to store into memory must have
459 no side effects so we can re-issue the setter value.
460 Store Motion uses this structure as an expression table to track stores
461 which look interesting, and might be moveable towards the exit block. */
463 struct ls_expr
465 struct expr * expr; /* Gcse expression reference for LM. */
466 rtx pattern; /* Pattern of this mem. */
467 rtx pattern_regs; /* List of registers mentioned by the mem. */
468 rtx loads; /* INSN list of loads seen. */
469 rtx stores; /* INSN list of stores seen. */
470 struct ls_expr * next; /* Next in the list. */
471 int invalid; /* Invalid for some reason. */
472 int index; /* If it maps to a bitmap index. */
473 unsigned int hash_index; /* Index when in a hash table. */
474 rtx reaching_reg; /* Register to use when re-writing. */
477 /* Array of implicit set patterns indexed by basic block index. */
478 static rtx *implicit_sets;
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
488 /* For each block, a bitmap of registers set in the block.
489 This is used by compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 bitmap modify_mem_list_set;
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 bitmap canon_modify_mem_list_set;
503 /* Various variables for statistics gathering. */
505 /* Memory used in a pass.
506 This isn't intended to be absolutely precise. Its intent is only
507 to keep an eye on memory usage. */
508 static int bytes_used;
510 /* GCSE substitutions made. */
511 static int gcse_subst_count;
512 /* Number of copy instructions created. */
513 static int gcse_create_count;
514 /* Number of constants propagated. */
515 static int const_prop_count;
516 /* Number of copys propagated. */
517 static int copy_prop_count;
519 /* For available exprs */
520 static sbitmap *ae_kill, *ae_gen;
522 /* Objects of this type are passed around by the null-pointer check
523 removal routines. */
524 struct null_pointer_info
526 /* The basic block being processed. */
527 basic_block current_block;
528 /* The first register to be handled in this pass. */
529 unsigned int min_reg;
530 /* One greater than the last register to be handled in this pass. */
531 unsigned int max_reg;
532 sbitmap *nonnull_local;
533 sbitmap *nonnull_killed;
536 static void compute_can_copy (void);
537 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
538 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
539 static void *grealloc (void *, size_t);
540 static void *gcse_alloc (unsigned long);
541 static void alloc_gcse_mem (rtx);
542 static void free_gcse_mem (void);
543 static void alloc_reg_set_mem (int);
544 static void free_reg_set_mem (void);
545 static void record_one_set (int, rtx);
546 static void replace_one_set (int, rtx, rtx);
547 static void record_set_info (rtx, rtx, void *);
548 static void compute_sets (rtx);
549 static void hash_scan_insn (rtx, struct hash_table *, int);
550 static void hash_scan_set (rtx, rtx, struct hash_table *);
551 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
552 static void hash_scan_call (rtx, rtx, struct hash_table *);
553 static int want_to_gcse_p (rtx);
554 static bool can_assign_to_reg_p (rtx);
555 static bool gcse_constant_p (rtx);
556 static int oprs_unchanged_p (rtx, rtx, int);
557 static int oprs_anticipatable_p (rtx, rtx);
558 static int oprs_available_p (rtx, rtx);
559 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
560 struct hash_table *);
561 static void insert_set_in_table (rtx, rtx, struct hash_table *);
562 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
563 static unsigned int hash_expr_1 (rtx, enum machine_mode, int *);
564 static unsigned int hash_string_1 (const char *);
565 static unsigned int hash_set (int, int);
566 static int expr_equiv_p (rtx, rtx);
567 static void record_last_reg_set_info (rtx, int);
568 static void record_last_mem_set_info (rtx);
569 static void record_last_set_info (rtx, rtx, void *);
570 static void compute_hash_table (struct hash_table *);
571 static void alloc_hash_table (int, struct hash_table *, int);
572 static void free_hash_table (struct hash_table *);
573 static void compute_hash_table_work (struct hash_table *);
574 static void dump_hash_table (FILE *, const char *, struct hash_table *);
575 static struct expr *lookup_expr (rtx, struct hash_table *);
576 static struct expr *lookup_set (unsigned int, struct hash_table *);
577 static struct expr *next_set (unsigned int, struct expr *);
578 static void reset_opr_set_tables (void);
579 static int oprs_not_set_p (rtx, rtx);
580 static void mark_call (rtx);
581 static void mark_set (rtx, rtx);
582 static void mark_clobber (rtx, rtx);
583 static void mark_oprs_set (rtx);
584 static void alloc_cprop_mem (int, int);
585 static void free_cprop_mem (void);
586 static void compute_transp (rtx, int, sbitmap *, int);
587 static void compute_transpout (void);
588 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
589 struct hash_table *);
590 static void compute_cprop_data (void);
591 static void find_used_regs (rtx *, void *);
592 static int try_replace_reg (rtx, rtx, rtx);
593 static struct expr *find_avail_set (int, rtx);
594 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
595 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
596 static int load_killed_in_block_p (basic_block, int, rtx, int);
597 static void canon_list_insert (rtx, rtx, void *);
598 static int cprop_insn (rtx, int);
599 static int cprop (int);
600 static void find_implicit_sets (void);
601 static int one_cprop_pass (int, int, int);
602 static bool constprop_register (rtx, rtx, rtx, int);
603 static struct expr *find_bypass_set (int, int);
604 static bool reg_killed_on_edge (rtx, edge);
605 static int bypass_block (basic_block, rtx, rtx);
606 static int bypass_conditional_jumps (void);
607 static void alloc_pre_mem (int, int);
608 static void free_pre_mem (void);
609 static void compute_pre_data (void);
610 static int pre_expr_reaches_here_p (basic_block, struct expr *,
611 basic_block);
612 static void insert_insn_end_bb (struct expr *, basic_block, int);
613 static void pre_insert_copy_insn (struct expr *, rtx);
614 static void pre_insert_copies (void);
615 static int pre_delete (void);
616 static int pre_gcse (void);
617 static int one_pre_gcse_pass (int);
618 static void add_label_notes (rtx, rtx);
619 static void alloc_code_hoist_mem (int, int);
620 static void free_code_hoist_mem (void);
621 static void compute_code_hoist_vbeinout (void);
622 static void compute_code_hoist_data (void);
623 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
624 static void hoist_code (void);
625 static int one_code_hoisting_pass (void);
626 static rtx process_insert_insn (struct expr *);
627 static int pre_edge_insert (struct edge_list *, struct expr **);
628 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
629 basic_block, char *);
630 static struct ls_expr * ldst_entry (rtx);
631 static void free_ldst_entry (struct ls_expr *);
632 static void free_ldst_mems (void);
633 static void print_ldst_list (FILE *);
634 static struct ls_expr * find_rtx_in_ldst (rtx);
635 static int enumerate_ldsts (void);
636 static inline struct ls_expr * first_ls_expr (void);
637 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
638 static int simple_mem (rtx);
639 static void invalidate_any_buried_refs (rtx);
640 static void compute_ld_motion_mems (void);
641 static void trim_ld_motion_mems (void);
642 static void update_ld_motion_stores (struct expr *);
643 static void reg_set_info (rtx, rtx, void *);
644 static void reg_clear_last_set (rtx, rtx, void *);
645 static bool store_ops_ok (rtx, int *);
646 static rtx extract_mentioned_regs (rtx);
647 static rtx extract_mentioned_regs_helper (rtx, rtx);
648 static void find_moveable_store (rtx, int *, int *);
649 static int compute_store_table (void);
650 static bool load_kills_store (rtx, rtx, int);
651 static bool find_loads (rtx, rtx, int);
652 static bool store_killed_in_insn (rtx, rtx, rtx, int);
653 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
654 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
655 static void build_store_vectors (void);
656 static void insert_insn_start_bb (rtx, basic_block);
657 static int insert_store (struct ls_expr *, edge);
658 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
659 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
660 static void delete_store (struct ls_expr *, basic_block);
661 static void free_store_memory (void);
662 static void store_motion (void);
663 static void free_insn_expr_list_list (rtx *);
664 static void clear_modify_mem_tables (void);
665 static void free_modify_mem_tables (void);
666 static rtx gcse_emit_move_after (rtx, rtx, rtx);
667 static void local_cprop_find_used_regs (rtx *, void *);
668 static bool do_local_cprop (rtx, rtx, int, rtx*);
669 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
670 static void local_cprop_pass (int);
671 static bool is_too_expensive (const char *);
674 /* Entry point for global common subexpression elimination.
675 F is the first instruction in the function. */
678 gcse_main (rtx f, FILE *file)
680 int changed, pass;
681 /* Bytes used at start of pass. */
682 int initial_bytes_used;
683 /* Maximum number of bytes used by a pass. */
684 int max_pass_bytes;
685 /* Point to release obstack data from for each pass. */
686 char *gcse_obstack_bottom;
688 /* We do not construct an accurate cfg in functions which call
689 setjmp, so just punt to be safe. */
690 if (current_function_calls_setjmp)
691 return 0;
693 /* Assume that we do not need to run jump optimizations after gcse. */
694 run_jump_opt_after_gcse = 0;
696 /* For calling dump_foo fns from gdb. */
697 debug_stderr = stderr;
698 gcse_file = file;
700 /* Identify the basic block information for this function, including
701 successors and predecessors. */
702 max_gcse_regno = max_reg_num ();
704 if (file)
705 dump_flow_info (file);
707 /* Return if there's nothing to do, or it is too expensive. */
708 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
709 return 0;
711 gcc_obstack_init (&gcse_obstack);
712 bytes_used = 0;
714 /* We need alias. */
715 init_alias_analysis ();
716 /* Record where pseudo-registers are set. This data is kept accurate
717 during each pass. ??? We could also record hard-reg information here
718 [since it's unchanging], however it is currently done during hash table
719 computation.
721 It may be tempting to compute MEM set information here too, but MEM sets
722 will be subject to code motion one day and thus we need to compute
723 information about memory sets when we build the hash tables. */
725 alloc_reg_set_mem (max_gcse_regno);
726 compute_sets (f);
728 pass = 0;
729 initial_bytes_used = bytes_used;
730 max_pass_bytes = 0;
731 gcse_obstack_bottom = gcse_alloc (1);
732 changed = 1;
733 while (changed && pass < MAX_GCSE_PASSES)
735 changed = 0;
736 if (file)
737 fprintf (file, "GCSE pass %d\n\n", pass + 1);
739 /* Initialize bytes_used to the space for the pred/succ lists,
740 and the reg_set_table data. */
741 bytes_used = initial_bytes_used;
743 /* Each pass may create new registers, so recalculate each time. */
744 max_gcse_regno = max_reg_num ();
746 alloc_gcse_mem (f);
748 /* Don't allow constant propagation to modify jumps
749 during this pass. */
750 changed = one_cprop_pass (pass + 1, 0, 0);
752 if (optimize_size)
753 /* Do nothing. */ ;
754 else
756 changed |= one_pre_gcse_pass (pass + 1);
757 /* We may have just created new basic blocks. Release and
758 recompute various things which are sized on the number of
759 basic blocks. */
760 if (changed)
762 free_modify_mem_tables ();
763 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
764 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
766 free_reg_set_mem ();
767 alloc_reg_set_mem (max_reg_num ());
768 compute_sets (f);
769 run_jump_opt_after_gcse = 1;
772 if (max_pass_bytes < bytes_used)
773 max_pass_bytes = bytes_used;
775 /* Free up memory, then reallocate for code hoisting. We can
776 not re-use the existing allocated memory because the tables
777 will not have info for the insns or registers created by
778 partial redundancy elimination. */
779 free_gcse_mem ();
781 /* It does not make sense to run code hoisting unless we are optimizing
782 for code size -- it rarely makes programs faster, and can make
783 them bigger if we did partial redundancy elimination (when optimizing
784 for space, we don't run the partial redundancy algorithms). */
785 if (optimize_size)
787 max_gcse_regno = max_reg_num ();
788 alloc_gcse_mem (f);
789 changed |= one_code_hoisting_pass ();
790 free_gcse_mem ();
792 if (max_pass_bytes < bytes_used)
793 max_pass_bytes = bytes_used;
796 if (file)
798 fprintf (file, "\n");
799 fflush (file);
802 obstack_free (&gcse_obstack, gcse_obstack_bottom);
803 pass++;
806 /* Do one last pass of copy propagation, including cprop into
807 conditional jumps. */
809 max_gcse_regno = max_reg_num ();
810 alloc_gcse_mem (f);
811 /* This time, go ahead and allow cprop to alter jumps. */
812 one_cprop_pass (pass + 1, 1, 0);
813 free_gcse_mem ();
815 if (file)
817 fprintf (file, "GCSE of %s: %d basic blocks, ",
818 current_function_name (), n_basic_blocks);
819 fprintf (file, "%d pass%s, %d bytes\n\n",
820 pass, pass > 1 ? "es" : "", max_pass_bytes);
823 obstack_free (&gcse_obstack, NULL);
824 free_reg_set_mem ();
825 /* We are finished with alias. */
826 end_alias_analysis ();
827 allocate_reg_info (max_reg_num (), FALSE, FALSE);
829 if (!optimize_size && flag_gcse_sm)
830 store_motion ();
832 /* Record where pseudo-registers are set. */
833 return run_jump_opt_after_gcse;
836 /* Misc. utilities. */
838 /* Nonzero for each mode that supports (set (reg) (reg)).
839 This is trivially true for integer and floating point values.
840 It may or may not be true for condition codes. */
841 static char can_copy[(int) NUM_MACHINE_MODES];
843 /* Compute which modes support reg/reg copy operations. */
845 static void
846 compute_can_copy (void)
848 int i;
849 #ifndef AVOID_CCMODE_COPIES
850 rtx reg, insn;
851 #endif
852 memset (can_copy, 0, NUM_MACHINE_MODES);
854 start_sequence ();
855 for (i = 0; i < NUM_MACHINE_MODES; i++)
856 if (GET_MODE_CLASS (i) == MODE_CC)
858 #ifdef AVOID_CCMODE_COPIES
859 can_copy[i] = 0;
860 #else
861 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
862 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
863 if (recog (PATTERN (insn), insn, NULL) >= 0)
864 can_copy[i] = 1;
865 #endif
867 else
868 can_copy[i] = 1;
870 end_sequence ();
873 /* Returns whether the mode supports reg/reg copy operations. */
875 bool
876 can_copy_p (enum machine_mode mode)
878 static bool can_copy_init_p = false;
880 if (! can_copy_init_p)
882 compute_can_copy ();
883 can_copy_init_p = true;
886 return can_copy[mode] != 0;
889 /* Cover function to xmalloc to record bytes allocated. */
891 static void *
892 gmalloc (size_t size)
894 bytes_used += size;
895 return xmalloc (size);
898 /* Cover function to xcalloc to record bytes allocated. */
900 static void *
901 gcalloc (size_t nelem, size_t elsize)
903 bytes_used += nelem * elsize;
904 return xcalloc (nelem, elsize);
907 /* Cover function to xrealloc.
908 We don't record the additional size since we don't know it.
909 It won't affect memory usage stats much anyway. */
911 static void *
912 grealloc (void *ptr, size_t size)
914 return xrealloc (ptr, size);
917 /* Cover function to obstack_alloc. */
919 static void *
920 gcse_alloc (unsigned long size)
922 bytes_used += size;
923 return obstack_alloc (&gcse_obstack, size);
926 /* Allocate memory for the cuid mapping array,
927 and reg/memory set tracking tables.
929 This is called at the start of each pass. */
931 static void
932 alloc_gcse_mem (rtx f)
934 int i;
935 rtx insn;
937 /* Find the largest UID and create a mapping from UIDs to CUIDs.
938 CUIDs are like UIDs except they increase monotonically, have no gaps,
939 and only apply to real insns. */
941 max_uid = get_max_uid ();
942 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
943 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
945 if (INSN_P (insn))
946 uid_cuid[INSN_UID (insn)] = i++;
947 else
948 uid_cuid[INSN_UID (insn)] = i;
951 /* Create a table mapping cuids to insns. */
953 max_cuid = i;
954 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
955 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
956 if (INSN_P (insn))
957 CUID_INSN (i++) = insn;
959 /* Allocate vars to track sets of regs. */
960 reg_set_bitmap = BITMAP_XMALLOC ();
962 /* Allocate vars to track sets of regs, memory per block. */
963 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
964 /* Allocate array to keep a list of insns which modify memory in each
965 basic block. */
966 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
967 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
968 modify_mem_list_set = BITMAP_XMALLOC ();
969 canon_modify_mem_list_set = BITMAP_XMALLOC ();
972 /* Free memory allocated by alloc_gcse_mem. */
974 static void
975 free_gcse_mem (void)
977 free (uid_cuid);
978 free (cuid_insn);
980 BITMAP_XFREE (reg_set_bitmap);
982 sbitmap_vector_free (reg_set_in_block);
983 free_modify_mem_tables ();
984 BITMAP_XFREE (modify_mem_list_set);
985 BITMAP_XFREE (canon_modify_mem_list_set);
988 /* Compute the local properties of each recorded expression.
990 Local properties are those that are defined by the block, irrespective of
991 other blocks.
993 An expression is transparent in a block if its operands are not modified
994 in the block.
996 An expression is computed (locally available) in a block if it is computed
997 at least once and expression would contain the same value if the
998 computation was moved to the end of the block.
1000 An expression is locally anticipatable in a block if it is computed at
1001 least once and expression would contain the same value if the computation
1002 was moved to the beginning of the block.
1004 We call this routine for cprop, pre and code hoisting. They all compute
1005 basically the same information and thus can easily share this code.
1007 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1008 properties. If NULL, then it is not necessary to compute or record that
1009 particular property.
1011 TABLE controls which hash table to look at. If it is set hash table,
1012 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1013 ABSALTERED. */
1015 static void
1016 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc, struct hash_table *table)
1018 unsigned int i;
1020 /* Initialize any bitmaps that were passed in. */
1021 if (transp)
1023 if (table->set_p)
1024 sbitmap_vector_zero (transp, last_basic_block);
1025 else
1026 sbitmap_vector_ones (transp, last_basic_block);
1029 if (comp)
1030 sbitmap_vector_zero (comp, last_basic_block);
1031 if (antloc)
1032 sbitmap_vector_zero (antloc, last_basic_block);
1034 for (i = 0; i < table->size; i++)
1036 struct expr *expr;
1038 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1040 int indx = expr->bitmap_index;
1041 struct occr *occr;
1043 /* The expression is transparent in this block if it is not killed.
1044 We start by assuming all are transparent [none are killed], and
1045 then reset the bits for those that are. */
1046 if (transp)
1047 compute_transp (expr->expr, indx, transp, table->set_p);
1049 /* The occurrences recorded in antic_occr are exactly those that
1050 we want to set to nonzero in ANTLOC. */
1051 if (antloc)
1052 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1054 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1056 /* While we're scanning the table, this is a good place to
1057 initialize this. */
1058 occr->deleted_p = 0;
1061 /* The occurrences recorded in avail_occr are exactly those that
1062 we want to set to nonzero in COMP. */
1063 if (comp)
1064 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1066 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1068 /* While we're scanning the table, this is a good place to
1069 initialize this. */
1070 occr->copied_p = 0;
1073 /* While we're scanning the table, this is a good place to
1074 initialize this. */
1075 expr->reaching_reg = 0;
1080 /* Register set information.
1082 `reg_set_table' records where each register is set or otherwise
1083 modified. */
1085 static struct obstack reg_set_obstack;
1087 static void
1088 alloc_reg_set_mem (int n_regs)
1090 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1091 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1093 gcc_obstack_init (&reg_set_obstack);
1096 static void
1097 free_reg_set_mem (void)
1099 free (reg_set_table);
1100 obstack_free (&reg_set_obstack, NULL);
1103 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1104 Update the corresponding `reg_set_table' entry accordingly.
1105 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1107 static void
1108 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1110 struct reg_set *reg_info;
1111 if (regno >= reg_set_table_size)
1112 return;
1113 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1114 if (reg_info->insn == old_insn)
1116 reg_info->insn = new_insn;
1117 break;
1121 /* Record REGNO in the reg_set table. */
1123 static void
1124 record_one_set (int regno, rtx insn)
1126 /* Allocate a new reg_set element and link it onto the list. */
1127 struct reg_set *new_reg_info;
1129 /* If the table isn't big enough, enlarge it. */
1130 if (regno >= reg_set_table_size)
1132 int new_size = regno + REG_SET_TABLE_SLOP;
1134 reg_set_table = grealloc (reg_set_table,
1135 new_size * sizeof (struct reg_set *));
1136 memset (reg_set_table + reg_set_table_size, 0,
1137 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1138 reg_set_table_size = new_size;
1141 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1142 bytes_used += sizeof (struct reg_set);
1143 new_reg_info->insn = insn;
1144 new_reg_info->next = reg_set_table[regno];
1145 reg_set_table[regno] = new_reg_info;
1148 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1149 an insn. The DATA is really the instruction in which the SET is
1150 occurring. */
1152 static void
1153 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1155 rtx record_set_insn = (rtx) data;
1157 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1158 record_one_set (REGNO (dest), record_set_insn);
1161 /* Scan the function and record each set of each pseudo-register.
1163 This is called once, at the start of the gcse pass. See the comments for
1164 `reg_set_table' for further documentation. */
1166 static void
1167 compute_sets (rtx f)
1169 rtx insn;
1171 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1172 if (INSN_P (insn))
1173 note_stores (PATTERN (insn), record_set_info, insn);
1176 /* Hash table support. */
1178 struct reg_avail_info
1180 basic_block last_bb;
1181 int first_set;
1182 int last_set;
1185 static struct reg_avail_info *reg_avail_info;
1186 static basic_block current_bb;
1189 /* See whether X, the source of a set, is something we want to consider for
1190 GCSE. */
1192 static int
1193 want_to_gcse_p (rtx x)
1195 switch (GET_CODE (x))
1197 case REG:
1198 case SUBREG:
1199 case CONST_INT:
1200 case CONST_DOUBLE:
1201 case CONST_VECTOR:
1202 case CALL:
1203 return 0;
1205 default:
1206 return can_assign_to_reg_p (x);
1210 /* Used internally by can_assign_to_reg_p. */
1212 static GTY(()) rtx test_insn;
1214 /* Return true if we can assign X to a pseudo register. */
1216 static bool
1217 can_assign_to_reg_p (rtx x)
1219 int num_clobbers = 0;
1220 int icode;
1222 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1223 if (general_operand (x, GET_MODE (x)))
1224 return 1;
1225 else if (GET_MODE (x) == VOIDmode)
1226 return 0;
1228 /* Otherwise, check if we can make a valid insn from it. First initialize
1229 our test insn if we haven't already. */
1230 if (test_insn == 0)
1232 test_insn
1233 = make_insn_raw (gen_rtx_SET (VOIDmode,
1234 gen_rtx_REG (word_mode,
1235 FIRST_PSEUDO_REGISTER * 2),
1236 const0_rtx));
1237 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1240 /* Now make an insn like the one we would make when GCSE'ing and see if
1241 valid. */
1242 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1243 SET_SRC (PATTERN (test_insn)) = x;
1244 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1245 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1248 /* Return nonzero if the operands of expression X are unchanged from the
1249 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1250 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1252 static int
1253 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1255 int i, j;
1256 enum rtx_code code;
1257 const char *fmt;
1259 if (x == 0)
1260 return 1;
1262 code = GET_CODE (x);
1263 switch (code)
1265 case REG:
1267 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1269 if (info->last_bb != current_bb)
1270 return 1;
1271 if (avail_p)
1272 return info->last_set < INSN_CUID (insn);
1273 else
1274 return info->first_set >= INSN_CUID (insn);
1277 case MEM:
1278 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1279 x, avail_p))
1280 return 0;
1281 else
1282 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1284 case PRE_DEC:
1285 case PRE_INC:
1286 case POST_DEC:
1287 case POST_INC:
1288 case PRE_MODIFY:
1289 case POST_MODIFY:
1290 return 0;
1292 case PC:
1293 case CC0: /*FIXME*/
1294 case CONST:
1295 case CONST_INT:
1296 case CONST_DOUBLE:
1297 case CONST_VECTOR:
1298 case SYMBOL_REF:
1299 case LABEL_REF:
1300 case ADDR_VEC:
1301 case ADDR_DIFF_VEC:
1302 return 1;
1304 default:
1305 break;
1308 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1310 if (fmt[i] == 'e')
1312 /* If we are about to do the last recursive call needed at this
1313 level, change it into iteration. This function is called enough
1314 to be worth it. */
1315 if (i == 0)
1316 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1318 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1319 return 0;
1321 else if (fmt[i] == 'E')
1322 for (j = 0; j < XVECLEN (x, i); j++)
1323 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1324 return 0;
1327 return 1;
1330 /* Used for communication between mems_conflict_for_gcse_p and
1331 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1332 conflict between two memory references. */
1333 static int gcse_mems_conflict_p;
1335 /* Used for communication between mems_conflict_for_gcse_p and
1336 load_killed_in_block_p. A memory reference for a load instruction,
1337 mems_conflict_for_gcse_p will see if a memory store conflicts with
1338 this memory load. */
1339 static rtx gcse_mem_operand;
1341 /* DEST is the output of an instruction. If it is a memory reference, and
1342 possibly conflicts with the load found in gcse_mem_operand, then set
1343 gcse_mems_conflict_p to a nonzero value. */
1345 static void
1346 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1347 void *data ATTRIBUTE_UNUSED)
1349 while (GET_CODE (dest) == SUBREG
1350 || GET_CODE (dest) == ZERO_EXTRACT
1351 || GET_CODE (dest) == SIGN_EXTRACT
1352 || GET_CODE (dest) == STRICT_LOW_PART)
1353 dest = XEXP (dest, 0);
1355 /* If DEST is not a MEM, then it will not conflict with the load. Note
1356 that function calls are assumed to clobber memory, but are handled
1357 elsewhere. */
1358 if (GET_CODE (dest) != MEM)
1359 return;
1361 /* If we are setting a MEM in our list of specially recognized MEMs,
1362 don't mark as killed this time. */
1364 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1366 if (!find_rtx_in_ldst (dest))
1367 gcse_mems_conflict_p = 1;
1368 return;
1371 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1372 rtx_addr_varies_p))
1373 gcse_mems_conflict_p = 1;
1376 /* Return nonzero if the expression in X (a memory reference) is killed
1377 in block BB before or after the insn with the CUID in UID_LIMIT.
1378 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1379 before UID_LIMIT.
1381 To check the entire block, set UID_LIMIT to max_uid + 1 and
1382 AVAIL_P to 0. */
1384 static int
1385 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1387 rtx list_entry = modify_mem_list[bb->index];
1388 while (list_entry)
1390 rtx setter;
1391 /* Ignore entries in the list that do not apply. */
1392 if ((avail_p
1393 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1394 || (! avail_p
1395 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1397 list_entry = XEXP (list_entry, 1);
1398 continue;
1401 setter = XEXP (list_entry, 0);
1403 /* If SETTER is a call everything is clobbered. Note that calls
1404 to pure functions are never put on the list, so we need not
1405 worry about them. */
1406 if (GET_CODE (setter) == CALL_INSN)
1407 return 1;
1409 /* SETTER must be an INSN of some kind that sets memory. Call
1410 note_stores to examine each hunk of memory that is modified.
1412 The note_stores interface is pretty limited, so we have to
1413 communicate via global variables. Yuk. */
1414 gcse_mem_operand = x;
1415 gcse_mems_conflict_p = 0;
1416 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1417 if (gcse_mems_conflict_p)
1418 return 1;
1419 list_entry = XEXP (list_entry, 1);
1421 return 0;
1424 /* Return nonzero if the operands of expression X are unchanged from
1425 the start of INSN's basic block up to but not including INSN. */
1427 static int
1428 oprs_anticipatable_p (rtx x, rtx insn)
1430 return oprs_unchanged_p (x, insn, 0);
1433 /* Return nonzero if the operands of expression X are unchanged from
1434 INSN to the end of INSN's basic block. */
1436 static int
1437 oprs_available_p (rtx x, rtx insn)
1439 return oprs_unchanged_p (x, insn, 1);
1442 /* Hash expression X.
1444 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1445 indicating if a volatile operand is found or if the expression contains
1446 something we don't want to insert in the table. HASH_TABLE_SIZE is
1447 the current size of the hash table to be probed.
1449 ??? One might want to merge this with canon_hash. Later. */
1451 static unsigned int
1452 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1453 int hash_table_size)
1455 unsigned int hash;
1457 *do_not_record_p = 0;
1459 hash = hash_expr_1 (x, mode, do_not_record_p);
1460 return hash % hash_table_size;
1463 /* Hash a string. Just add its bytes up. */
1465 static inline unsigned
1466 hash_string_1 (const char *ps)
1468 unsigned hash = 0;
1469 const unsigned char *p = (const unsigned char *) ps;
1471 if (p)
1472 while (*p)
1473 hash += *p++;
1475 return hash;
1478 /* Subroutine of hash_expr to do the actual work. */
1480 static unsigned int
1481 hash_expr_1 (rtx x, enum machine_mode mode, int *do_not_record_p)
1483 int i, j;
1484 unsigned hash = 0;
1485 enum rtx_code code;
1486 const char *fmt;
1488 /* Used to turn recursion into iteration. We can't rely on GCC's
1489 tail-recursion elimination since we need to keep accumulating values
1490 in HASH. */
1492 if (x == 0)
1493 return hash;
1495 repeat:
1496 code = GET_CODE (x);
1497 switch (code)
1499 case REG:
1500 hash += ((unsigned int) REG << 7) + REGNO (x);
1501 return hash;
1503 case CONST_INT:
1504 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1505 + (unsigned int) INTVAL (x));
1506 return hash;
1508 case CONST_DOUBLE:
1509 /* This is like the general case, except that it only counts
1510 the integers representing the constant. */
1511 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1512 if (GET_MODE (x) != VOIDmode)
1513 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1514 hash += (unsigned int) XWINT (x, i);
1515 else
1516 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1517 + (unsigned int) CONST_DOUBLE_HIGH (x));
1518 return hash;
1520 case CONST_VECTOR:
1522 int units;
1523 rtx elt;
1525 units = CONST_VECTOR_NUNITS (x);
1527 for (i = 0; i < units; ++i)
1529 elt = CONST_VECTOR_ELT (x, i);
1530 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1533 return hash;
1536 /* Assume there is only one rtx object for any given label. */
1537 case LABEL_REF:
1538 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1539 differences and differences between each stage's debugging dumps. */
1540 hash += (((unsigned int) LABEL_REF << 7)
1541 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1542 return hash;
1544 case SYMBOL_REF:
1546 /* Don't hash on the symbol's address to avoid bootstrap differences.
1547 Different hash values may cause expressions to be recorded in
1548 different orders and thus different registers to be used in the
1549 final assembler. This also avoids differences in the dump files
1550 between various stages. */
1551 unsigned int h = 0;
1552 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1554 while (*p)
1555 h += (h << 7) + *p++; /* ??? revisit */
1557 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1558 return hash;
1561 case MEM:
1562 if (MEM_VOLATILE_P (x))
1564 *do_not_record_p = 1;
1565 return 0;
1568 hash += (unsigned int) MEM;
1569 /* We used alias set for hashing, but this is not good, since the alias
1570 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1571 causing the profiles to fail to match. */
1572 x = XEXP (x, 0);
1573 goto repeat;
1575 case PRE_DEC:
1576 case PRE_INC:
1577 case POST_DEC:
1578 case POST_INC:
1579 case PC:
1580 case CC0:
1581 case CALL:
1582 case UNSPEC_VOLATILE:
1583 *do_not_record_p = 1;
1584 return 0;
1586 case ASM_OPERANDS:
1587 if (MEM_VOLATILE_P (x))
1589 *do_not_record_p = 1;
1590 return 0;
1592 else
1594 /* We don't want to take the filename and line into account. */
1595 hash += (unsigned) code + (unsigned) GET_MODE (x)
1596 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1597 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1598 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1600 if (ASM_OPERANDS_INPUT_LENGTH (x))
1602 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1604 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1605 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1606 do_not_record_p)
1607 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1608 (x, i)));
1611 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1612 x = ASM_OPERANDS_INPUT (x, 0);
1613 mode = GET_MODE (x);
1614 goto repeat;
1616 return hash;
1619 default:
1620 break;
1623 hash += (unsigned) code + (unsigned) GET_MODE (x);
1624 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1626 if (fmt[i] == 'e')
1628 /* If we are about to do the last recursive call
1629 needed at this level, change it into iteration.
1630 This function is called enough to be worth it. */
1631 if (i == 0)
1633 x = XEXP (x, i);
1634 goto repeat;
1637 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1638 if (*do_not_record_p)
1639 return 0;
1642 else if (fmt[i] == 'E')
1643 for (j = 0; j < XVECLEN (x, i); j++)
1645 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1646 if (*do_not_record_p)
1647 return 0;
1650 else if (fmt[i] == 's')
1651 hash += hash_string_1 (XSTR (x, i));
1652 else if (fmt[i] == 'i')
1653 hash += (unsigned int) XINT (x, i);
1654 else
1655 abort ();
1658 return hash;
1661 /* Hash a set of register REGNO.
1663 Sets are hashed on the register that is set. This simplifies the PRE copy
1664 propagation code.
1666 ??? May need to make things more elaborate. Later, as necessary. */
1668 static unsigned int
1669 hash_set (int regno, int hash_table_size)
1671 unsigned int hash;
1673 hash = regno;
1674 return hash % hash_table_size;
1677 /* Return nonzero if exp1 is equivalent to exp2.
1678 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1680 static int
1681 expr_equiv_p (rtx x, rtx y)
1683 int i, j;
1684 enum rtx_code code;
1685 const char *fmt;
1687 if (x == y)
1688 return 1;
1690 if (x == 0 || y == 0)
1691 return 0;
1693 code = GET_CODE (x);
1694 if (code != GET_CODE (y))
1695 return 0;
1697 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1698 if (GET_MODE (x) != GET_MODE (y))
1699 return 0;
1701 switch (code)
1703 case PC:
1704 case CC0:
1705 case CONST_INT:
1706 return 0;
1708 case LABEL_REF:
1709 return XEXP (x, 0) == XEXP (y, 0);
1711 case SYMBOL_REF:
1712 return XSTR (x, 0) == XSTR (y, 0);
1714 case REG:
1715 return REGNO (x) == REGNO (y);
1717 case MEM:
1718 /* Can't merge two expressions in different alias sets, since we can
1719 decide that the expression is transparent in a block when it isn't,
1720 due to it being set with the different alias set. */
1721 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1722 return 0;
1724 /* A volatile mem should not be considered equivalent to any other. */
1725 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1726 return 0;
1727 break;
1729 /* For commutative operations, check both orders. */
1730 case PLUS:
1731 case MULT:
1732 case AND:
1733 case IOR:
1734 case XOR:
1735 case NE:
1736 case EQ:
1737 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1738 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1739 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1740 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1742 case ASM_OPERANDS:
1743 /* We don't use the generic code below because we want to
1744 disregard filename and line numbers. */
1746 /* A volatile asm isn't equivalent to any other. */
1747 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1748 return 0;
1750 if (GET_MODE (x) != GET_MODE (y)
1751 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1752 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1753 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1754 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1755 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1756 return 0;
1758 if (ASM_OPERANDS_INPUT_LENGTH (x))
1760 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1761 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1762 ASM_OPERANDS_INPUT (y, i))
1763 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1764 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1765 return 0;
1768 return 1;
1770 default:
1771 break;
1774 /* Compare the elements. If any pair of corresponding elements
1775 fail to match, return 0 for the whole thing. */
1777 fmt = GET_RTX_FORMAT (code);
1778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1780 switch (fmt[i])
1782 case 'e':
1783 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1784 return 0;
1785 break;
1787 case 'E':
1788 if (XVECLEN (x, i) != XVECLEN (y, i))
1789 return 0;
1790 for (j = 0; j < XVECLEN (x, i); j++)
1791 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1792 return 0;
1793 break;
1795 case 's':
1796 if (strcmp (XSTR (x, i), XSTR (y, i)))
1797 return 0;
1798 break;
1800 case 'i':
1801 if (XINT (x, i) != XINT (y, i))
1802 return 0;
1803 break;
1805 case 'w':
1806 if (XWINT (x, i) != XWINT (y, i))
1807 return 0;
1808 break;
1810 case '0':
1811 break;
1813 default:
1814 abort ();
1818 return 1;
1821 /* Insert expression X in INSN in the hash TABLE.
1822 If it is already present, record it as the last occurrence in INSN's
1823 basic block.
1825 MODE is the mode of the value X is being stored into.
1826 It is only used if X is a CONST_INT.
1828 ANTIC_P is nonzero if X is an anticipatable expression.
1829 AVAIL_P is nonzero if X is an available expression. */
1831 static void
1832 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1833 int avail_p, struct hash_table *table)
1835 int found, do_not_record_p;
1836 unsigned int hash;
1837 struct expr *cur_expr, *last_expr = NULL;
1838 struct occr *antic_occr, *avail_occr;
1839 struct occr *last_occr = NULL;
1841 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1843 /* Do not insert expression in table if it contains volatile operands,
1844 or if hash_expr determines the expression is something we don't want
1845 to or can't handle. */
1846 if (do_not_record_p)
1847 return;
1849 cur_expr = table->table[hash];
1850 found = 0;
1852 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1854 /* If the expression isn't found, save a pointer to the end of
1855 the list. */
1856 last_expr = cur_expr;
1857 cur_expr = cur_expr->next_same_hash;
1860 if (! found)
1862 cur_expr = gcse_alloc (sizeof (struct expr));
1863 bytes_used += sizeof (struct expr);
1864 if (table->table[hash] == NULL)
1865 /* This is the first pattern that hashed to this index. */
1866 table->table[hash] = cur_expr;
1867 else
1868 /* Add EXPR to end of this hash chain. */
1869 last_expr->next_same_hash = cur_expr;
1871 /* Set the fields of the expr element. */
1872 cur_expr->expr = x;
1873 cur_expr->bitmap_index = table->n_elems++;
1874 cur_expr->next_same_hash = NULL;
1875 cur_expr->antic_occr = NULL;
1876 cur_expr->avail_occr = NULL;
1879 /* Now record the occurrence(s). */
1880 if (antic_p)
1882 antic_occr = cur_expr->antic_occr;
1884 /* Search for another occurrence in the same basic block. */
1885 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1887 /* If an occurrence isn't found, save a pointer to the end of
1888 the list. */
1889 last_occr = antic_occr;
1890 antic_occr = antic_occr->next;
1893 if (antic_occr)
1894 /* Found another instance of the expression in the same basic block.
1895 Prefer the currently recorded one. We want the first one in the
1896 block and the block is scanned from start to end. */
1897 ; /* nothing to do */
1898 else
1900 /* First occurrence of this expression in this basic block. */
1901 antic_occr = gcse_alloc (sizeof (struct occr));
1902 bytes_used += sizeof (struct occr);
1903 /* First occurrence of this expression in any block? */
1904 if (cur_expr->antic_occr == NULL)
1905 cur_expr->antic_occr = antic_occr;
1906 else
1907 last_occr->next = antic_occr;
1909 antic_occr->insn = insn;
1910 antic_occr->next = NULL;
1911 antic_occr->deleted_p = 0;
1915 if (avail_p)
1917 avail_occr = cur_expr->avail_occr;
1919 /* Search for another occurrence in the same basic block. */
1920 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1922 /* If an occurrence isn't found, save a pointer to the end of
1923 the list. */
1924 last_occr = avail_occr;
1925 avail_occr = avail_occr->next;
1928 if (avail_occr)
1929 /* Found another instance of the expression in the same basic block.
1930 Prefer this occurrence to the currently recorded one. We want
1931 the last one in the block and the block is scanned from start
1932 to end. */
1933 avail_occr->insn = insn;
1934 else
1936 /* First occurrence of this expression in this basic block. */
1937 avail_occr = gcse_alloc (sizeof (struct occr));
1938 bytes_used += sizeof (struct occr);
1940 /* First occurrence of this expression in any block? */
1941 if (cur_expr->avail_occr == NULL)
1942 cur_expr->avail_occr = avail_occr;
1943 else
1944 last_occr->next = avail_occr;
1946 avail_occr->insn = insn;
1947 avail_occr->next = NULL;
1948 avail_occr->deleted_p = 0;
1953 /* Insert pattern X in INSN in the hash table.
1954 X is a SET of a reg to either another reg or a constant.
1955 If it is already present, record it as the last occurrence in INSN's
1956 basic block. */
1958 static void
1959 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1961 int found;
1962 unsigned int hash;
1963 struct expr *cur_expr, *last_expr = NULL;
1964 struct occr *cur_occr, *last_occr = NULL;
1966 if (GET_CODE (x) != SET
1967 || GET_CODE (SET_DEST (x)) != REG)
1968 abort ();
1970 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1972 cur_expr = table->table[hash];
1973 found = 0;
1975 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1977 /* If the expression isn't found, save a pointer to the end of
1978 the list. */
1979 last_expr = cur_expr;
1980 cur_expr = cur_expr->next_same_hash;
1983 if (! found)
1985 cur_expr = gcse_alloc (sizeof (struct expr));
1986 bytes_used += sizeof (struct expr);
1987 if (table->table[hash] == NULL)
1988 /* This is the first pattern that hashed to this index. */
1989 table->table[hash] = cur_expr;
1990 else
1991 /* Add EXPR to end of this hash chain. */
1992 last_expr->next_same_hash = cur_expr;
1994 /* Set the fields of the expr element.
1995 We must copy X because it can be modified when copy propagation is
1996 performed on its operands. */
1997 cur_expr->expr = copy_rtx (x);
1998 cur_expr->bitmap_index = table->n_elems++;
1999 cur_expr->next_same_hash = NULL;
2000 cur_expr->antic_occr = NULL;
2001 cur_expr->avail_occr = NULL;
2004 /* Now record the occurrence. */
2005 cur_occr = cur_expr->avail_occr;
2007 /* Search for another occurrence in the same basic block. */
2008 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2010 /* If an occurrence isn't found, save a pointer to the end of
2011 the list. */
2012 last_occr = cur_occr;
2013 cur_occr = cur_occr->next;
2016 if (cur_occr)
2017 /* Found another instance of the expression in the same basic block.
2018 Prefer this occurrence to the currently recorded one. We want the
2019 last one in the block and the block is scanned from start to end. */
2020 cur_occr->insn = insn;
2021 else
2023 /* First occurrence of this expression in this basic block. */
2024 cur_occr = gcse_alloc (sizeof (struct occr));
2025 bytes_used += sizeof (struct occr);
2027 /* First occurrence of this expression in any block? */
2028 if (cur_expr->avail_occr == NULL)
2029 cur_expr->avail_occr = cur_occr;
2030 else
2031 last_occr->next = cur_occr;
2033 cur_occr->insn = insn;
2034 cur_occr->next = NULL;
2035 cur_occr->deleted_p = 0;
2039 /* Determine whether the rtx X should be treated as a constant for
2040 the purposes of GCSE's constant propagation. */
2042 static bool
2043 gcse_constant_p (rtx x)
2045 /* Consider a COMPARE of two integers constant. */
2046 if (GET_CODE (x) == COMPARE
2047 && GET_CODE (XEXP (x, 0)) == CONST_INT
2048 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2049 return true;
2052 /* Consider a COMPARE of the same registers is a constant
2053 if they are not floating point registers. */
2054 if (GET_CODE(x) == COMPARE
2055 && GET_CODE (XEXP (x, 0)) == REG
2056 && GET_CODE (XEXP (x, 1)) == REG
2057 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
2058 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
2059 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
2060 return true;
2062 return CONSTANT_P (x);
2065 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2066 expression one). */
2068 static void
2069 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
2071 rtx src = SET_SRC (pat);
2072 rtx dest = SET_DEST (pat);
2073 rtx note;
2075 if (GET_CODE (src) == CALL)
2076 hash_scan_call (src, insn, table);
2078 else if (GET_CODE (dest) == REG)
2080 unsigned int regno = REGNO (dest);
2081 rtx tmp;
2083 /* If this is a single set and we are doing constant propagation,
2084 see if a REG_NOTE shows this equivalent to a constant. */
2085 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2086 && gcse_constant_p (XEXP (note, 0)))
2087 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2089 /* Only record sets of pseudo-regs in the hash table. */
2090 if (! table->set_p
2091 && regno >= FIRST_PSEUDO_REGISTER
2092 /* Don't GCSE something if we can't do a reg/reg copy. */
2093 && can_copy_p (GET_MODE (dest))
2094 /* GCSE commonly inserts instruction after the insn. We can't
2095 do that easily for EH_REGION notes so disable GCSE on these
2096 for now. */
2097 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2098 /* Is SET_SRC something we want to gcse? */
2099 && want_to_gcse_p (src)
2100 /* Don't CSE a nop. */
2101 && ! set_noop_p (pat)
2102 /* Don't GCSE if it has attached REG_EQUIV note.
2103 At this point this only function parameters should have
2104 REG_EQUIV notes and if the argument slot is used somewhere
2105 explicitly, it means address of parameter has been taken,
2106 so we should not extend the lifetime of the pseudo. */
2107 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2108 || GET_CODE (XEXP (note, 0)) != MEM))
2110 /* An expression is not anticipatable if its operands are
2111 modified before this insn or if this is not the only SET in
2112 this insn. */
2113 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2114 /* An expression is not available if its operands are
2115 subsequently modified, including this insn. It's also not
2116 available if this is a branch, because we can't insert
2117 a set after the branch. */
2118 int avail_p = (oprs_available_p (src, insn)
2119 && ! JUMP_P (insn));
2121 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
2124 /* Record sets for constant/copy propagation. */
2125 else if (table->set_p
2126 && regno >= FIRST_PSEUDO_REGISTER
2127 && ((GET_CODE (src) == REG
2128 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2129 && can_copy_p (GET_MODE (dest))
2130 && REGNO (src) != regno)
2131 || gcse_constant_p (src))
2132 /* A copy is not available if its src or dest is subsequently
2133 modified. Here we want to search from INSN+1 on, but
2134 oprs_available_p searches from INSN on. */
2135 && (insn == BB_END (BLOCK_FOR_INSN (insn))
2136 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2137 && oprs_available_p (pat, tmp))))
2138 insert_set_in_table (pat, insn, table);
2140 /* In case of store we want to consider the memory value as available in
2141 the REG stored in that memory. This makes it possible to remove
2142 redundant loads from due to stores to the same location. */
2143 else if (flag_gcse_las && GET_CODE (src) == REG && GET_CODE (dest) == MEM)
2145 unsigned int regno = REGNO (src);
2147 /* Do not do this for constant/copy propagation. */
2148 if (! table->set_p
2149 /* Only record sets of pseudo-regs in the hash table. */
2150 && regno >= FIRST_PSEUDO_REGISTER
2151 /* Don't GCSE something if we can't do a reg/reg copy. */
2152 && can_copy_p (GET_MODE (src))
2153 /* GCSE commonly inserts instruction after the insn. We can't
2154 do that easily for EH_REGION notes so disable GCSE on these
2155 for now. */
2156 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2157 /* Is SET_DEST something we want to gcse? */
2158 && want_to_gcse_p (dest)
2159 /* Don't CSE a nop. */
2160 && ! set_noop_p (pat)
2161 /* Don't GCSE if it has attached REG_EQUIV note.
2162 At this point this only function parameters should have
2163 REG_EQUIV notes and if the argument slot is used somewhere
2164 explicitly, it means address of parameter has been taken,
2165 so we should not extend the lifetime of the pseudo. */
2166 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2167 || GET_CODE (XEXP (note, 0)) != MEM))
2169 /* Stores are never anticipatable. */
2170 int antic_p = 0;
2171 /* An expression is not available if its operands are
2172 subsequently modified, including this insn. It's also not
2173 available if this is a branch, because we can't insert
2174 a set after the branch. */
2175 int avail_p = oprs_available_p (dest, insn)
2176 && ! JUMP_P (insn);
2178 /* Record the memory expression (DEST) in the hash table. */
2179 insert_expr_in_table (dest, GET_MODE (dest), insn,
2180 antic_p, avail_p, table);
2185 static void
2186 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
2187 struct hash_table *table ATTRIBUTE_UNUSED)
2189 /* Currently nothing to do. */
2192 static void
2193 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
2194 struct hash_table *table ATTRIBUTE_UNUSED)
2196 /* Currently nothing to do. */
2199 /* Process INSN and add hash table entries as appropriate.
2201 Only available expressions that set a single pseudo-reg are recorded.
2203 Single sets in a PARALLEL could be handled, but it's an extra complication
2204 that isn't dealt with right now. The trick is handling the CLOBBERs that
2205 are also in the PARALLEL. Later.
2207 If SET_P is nonzero, this is for the assignment hash table,
2208 otherwise it is for the expression hash table.
2209 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2210 not record any expressions. */
2212 static void
2213 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
2215 rtx pat = PATTERN (insn);
2216 int i;
2218 if (in_libcall_block)
2219 return;
2221 /* Pick out the sets of INSN and for other forms of instructions record
2222 what's been modified. */
2224 if (GET_CODE (pat) == SET)
2225 hash_scan_set (pat, insn, table);
2226 else if (GET_CODE (pat) == PARALLEL)
2227 for (i = 0; i < XVECLEN (pat, 0); i++)
2229 rtx x = XVECEXP (pat, 0, i);
2231 if (GET_CODE (x) == SET)
2232 hash_scan_set (x, insn, table);
2233 else if (GET_CODE (x) == CLOBBER)
2234 hash_scan_clobber (x, insn, table);
2235 else if (GET_CODE (x) == CALL)
2236 hash_scan_call (x, insn, table);
2239 else if (GET_CODE (pat) == CLOBBER)
2240 hash_scan_clobber (pat, insn, table);
2241 else if (GET_CODE (pat) == CALL)
2242 hash_scan_call (pat, insn, table);
2245 static void
2246 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
2248 int i;
2249 /* Flattened out table, so it's printed in proper order. */
2250 struct expr **flat_table;
2251 unsigned int *hash_val;
2252 struct expr *expr;
2254 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
2255 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
2257 for (i = 0; i < (int) table->size; i++)
2258 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2260 flat_table[expr->bitmap_index] = expr;
2261 hash_val[expr->bitmap_index] = i;
2264 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2265 name, table->size, table->n_elems);
2267 for (i = 0; i < (int) table->n_elems; i++)
2268 if (flat_table[i] != 0)
2270 expr = flat_table[i];
2271 fprintf (file, "Index %d (hash value %d)\n ",
2272 expr->bitmap_index, hash_val[i]);
2273 print_rtl (file, expr->expr);
2274 fprintf (file, "\n");
2277 fprintf (file, "\n");
2279 free (flat_table);
2280 free (hash_val);
2283 /* Record register first/last/block set information for REGNO in INSN.
2285 first_set records the first place in the block where the register
2286 is set and is used to compute "anticipatability".
2288 last_set records the last place in the block where the register
2289 is set and is used to compute "availability".
2291 last_bb records the block for which first_set and last_set are
2292 valid, as a quick test to invalidate them.
2294 reg_set_in_block records whether the register is set in the block
2295 and is used to compute "transparency". */
2297 static void
2298 record_last_reg_set_info (rtx insn, int regno)
2300 struct reg_avail_info *info = &reg_avail_info[regno];
2301 int cuid = INSN_CUID (insn);
2303 info->last_set = cuid;
2304 if (info->last_bb != current_bb)
2306 info->last_bb = current_bb;
2307 info->first_set = cuid;
2308 SET_BIT (reg_set_in_block[current_bb->index], regno);
2313 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2314 Note we store a pair of elements in the list, so they have to be
2315 taken off pairwise. */
2317 static void
2318 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
2319 void * v_insn)
2321 rtx dest_addr, insn;
2322 int bb;
2324 while (GET_CODE (dest) == SUBREG
2325 || GET_CODE (dest) == ZERO_EXTRACT
2326 || GET_CODE (dest) == SIGN_EXTRACT
2327 || GET_CODE (dest) == STRICT_LOW_PART)
2328 dest = XEXP (dest, 0);
2330 /* If DEST is not a MEM, then it will not conflict with a load. Note
2331 that function calls are assumed to clobber memory, but are handled
2332 elsewhere. */
2334 if (GET_CODE (dest) != MEM)
2335 return;
2337 dest_addr = get_addr (XEXP (dest, 0));
2338 dest_addr = canon_rtx (dest_addr);
2339 insn = (rtx) v_insn;
2340 bb = BLOCK_NUM (insn);
2342 canon_modify_mem_list[bb] =
2343 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2344 canon_modify_mem_list[bb] =
2345 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2346 bitmap_set_bit (canon_modify_mem_list_set, bb);
2349 /* Record memory modification information for INSN. We do not actually care
2350 about the memory location(s) that are set, or even how they are set (consider
2351 a CALL_INSN). We merely need to record which insns modify memory. */
2353 static void
2354 record_last_mem_set_info (rtx insn)
2356 int bb = BLOCK_NUM (insn);
2358 /* load_killed_in_block_p will handle the case of calls clobbering
2359 everything. */
2360 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2361 bitmap_set_bit (modify_mem_list_set, bb);
2363 if (GET_CODE (insn) == CALL_INSN)
2365 /* Note that traversals of this loop (other than for free-ing)
2366 will break after encountering a CALL_INSN. So, there's no
2367 need to insert a pair of items, as canon_list_insert does. */
2368 canon_modify_mem_list[bb] =
2369 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2370 bitmap_set_bit (canon_modify_mem_list_set, bb);
2372 else
2373 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2376 /* Called from compute_hash_table via note_stores to handle one
2377 SET or CLOBBER in an insn. DATA is really the instruction in which
2378 the SET is taking place. */
2380 static void
2381 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2383 rtx last_set_insn = (rtx) data;
2385 if (GET_CODE (dest) == SUBREG)
2386 dest = SUBREG_REG (dest);
2388 if (GET_CODE (dest) == REG)
2389 record_last_reg_set_info (last_set_insn, REGNO (dest));
2390 else if (GET_CODE (dest) == MEM
2391 /* Ignore pushes, they clobber nothing. */
2392 && ! push_operand (dest, GET_MODE (dest)))
2393 record_last_mem_set_info (last_set_insn);
2396 /* Top level function to create an expression or assignment hash table.
2398 Expression entries are placed in the hash table if
2399 - they are of the form (set (pseudo-reg) src),
2400 - src is something we want to perform GCSE on,
2401 - none of the operands are subsequently modified in the block
2403 Assignment entries are placed in the hash table if
2404 - they are of the form (set (pseudo-reg) src),
2405 - src is something we want to perform const/copy propagation on,
2406 - none of the operands or target are subsequently modified in the block
2408 Currently src must be a pseudo-reg or a const_int.
2410 TABLE is the table computed. */
2412 static void
2413 compute_hash_table_work (struct hash_table *table)
2415 unsigned int i;
2417 /* While we compute the hash table we also compute a bit array of which
2418 registers are set in which blocks.
2419 ??? This isn't needed during const/copy propagation, but it's cheap to
2420 compute. Later. */
2421 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2423 /* re-Cache any INSN_LIST nodes we have allocated. */
2424 clear_modify_mem_tables ();
2425 /* Some working arrays used to track first and last set in each block. */
2426 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2428 for (i = 0; i < max_gcse_regno; ++i)
2429 reg_avail_info[i].last_bb = NULL;
2431 FOR_EACH_BB (current_bb)
2433 rtx insn;
2434 unsigned int regno;
2435 int in_libcall_block;
2437 /* First pass over the instructions records information used to
2438 determine when registers and memory are first and last set.
2439 ??? hard-reg reg_set_in_block computation
2440 could be moved to compute_sets since they currently don't change. */
2442 for (insn = BB_HEAD (current_bb);
2443 insn && insn != NEXT_INSN (BB_END (current_bb));
2444 insn = NEXT_INSN (insn))
2446 if (! INSN_P (insn))
2447 continue;
2449 if (GET_CODE (insn) == CALL_INSN)
2451 bool clobbers_all = false;
2452 #ifdef NON_SAVING_SETJMP
2453 if (NON_SAVING_SETJMP
2454 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2455 clobbers_all = true;
2456 #endif
2458 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2459 if (clobbers_all
2460 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2461 record_last_reg_set_info (insn, regno);
2463 mark_call (insn);
2466 note_stores (PATTERN (insn), record_last_set_info, insn);
2469 /* Insert implicit sets in the hash table. */
2470 if (table->set_p
2471 && implicit_sets[current_bb->index] != NULL_RTX)
2472 hash_scan_set (implicit_sets[current_bb->index],
2473 BB_HEAD (current_bb), table);
2475 /* The next pass builds the hash table. */
2477 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2478 insn && insn != NEXT_INSN (BB_END (current_bb));
2479 insn = NEXT_INSN (insn))
2480 if (INSN_P (insn))
2482 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2483 in_libcall_block = 1;
2484 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2485 in_libcall_block = 0;
2486 hash_scan_insn (insn, table, in_libcall_block);
2487 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2488 in_libcall_block = 0;
2492 free (reg_avail_info);
2493 reg_avail_info = NULL;
2496 /* Allocate space for the set/expr hash TABLE.
2497 N_INSNS is the number of instructions in the function.
2498 It is used to determine the number of buckets to use.
2499 SET_P determines whether set or expression table will
2500 be created. */
2502 static void
2503 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2505 int n;
2507 table->size = n_insns / 4;
2508 if (table->size < 11)
2509 table->size = 11;
2511 /* Attempt to maintain efficient use of hash table.
2512 Making it an odd number is simplest for now.
2513 ??? Later take some measurements. */
2514 table->size |= 1;
2515 n = table->size * sizeof (struct expr *);
2516 table->table = gmalloc (n);
2517 table->set_p = set_p;
2520 /* Free things allocated by alloc_hash_table. */
2522 static void
2523 free_hash_table (struct hash_table *table)
2525 free (table->table);
2528 /* Compute the hash TABLE for doing copy/const propagation or
2529 expression hash table. */
2531 static void
2532 compute_hash_table (struct hash_table *table)
2534 /* Initialize count of number of entries in hash table. */
2535 table->n_elems = 0;
2536 memset (table->table, 0, table->size * sizeof (struct expr *));
2538 compute_hash_table_work (table);
2541 /* Expression tracking support. */
2543 /* Lookup pattern PAT in the expression TABLE.
2544 The result is a pointer to the table entry, or NULL if not found. */
2546 static struct expr *
2547 lookup_expr (rtx pat, struct hash_table *table)
2549 int do_not_record_p;
2550 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2551 table->size);
2552 struct expr *expr;
2554 if (do_not_record_p)
2555 return NULL;
2557 expr = table->table[hash];
2559 while (expr && ! expr_equiv_p (expr->expr, pat))
2560 expr = expr->next_same_hash;
2562 return expr;
2565 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2566 table entry, or NULL if not found. */
2568 static struct expr *
2569 lookup_set (unsigned int regno, struct hash_table *table)
2571 unsigned int hash = hash_set (regno, table->size);
2572 struct expr *expr;
2574 expr = table->table[hash];
2576 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2577 expr = expr->next_same_hash;
2579 return expr;
2582 /* Return the next entry for REGNO in list EXPR. */
2584 static struct expr *
2585 next_set (unsigned int regno, struct expr *expr)
2588 expr = expr->next_same_hash;
2589 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2591 return expr;
2594 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2595 types may be mixed. */
2597 static void
2598 free_insn_expr_list_list (rtx *listp)
2600 rtx list, next;
2602 for (list = *listp; list ; list = next)
2604 next = XEXP (list, 1);
2605 if (GET_CODE (list) == EXPR_LIST)
2606 free_EXPR_LIST_node (list);
2607 else
2608 free_INSN_LIST_node (list);
2611 *listp = NULL;
2614 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2615 static void
2616 clear_modify_mem_tables (void)
2618 int i;
2620 EXECUTE_IF_SET_IN_BITMAP
2621 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2622 bitmap_clear (modify_mem_list_set);
2624 EXECUTE_IF_SET_IN_BITMAP
2625 (canon_modify_mem_list_set, 0, i,
2626 free_insn_expr_list_list (canon_modify_mem_list + i));
2627 bitmap_clear (canon_modify_mem_list_set);
2630 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2632 static void
2633 free_modify_mem_tables (void)
2635 clear_modify_mem_tables ();
2636 free (modify_mem_list);
2637 free (canon_modify_mem_list);
2638 modify_mem_list = 0;
2639 canon_modify_mem_list = 0;
2642 /* Reset tables used to keep track of what's still available [since the
2643 start of the block]. */
2645 static void
2646 reset_opr_set_tables (void)
2648 /* Maintain a bitmap of which regs have been set since beginning of
2649 the block. */
2650 CLEAR_REG_SET (reg_set_bitmap);
2652 /* Also keep a record of the last instruction to modify memory.
2653 For now this is very trivial, we only record whether any memory
2654 location has been modified. */
2655 clear_modify_mem_tables ();
2658 /* Return nonzero if the operands of X are not set before INSN in
2659 INSN's basic block. */
2661 static int
2662 oprs_not_set_p (rtx x, rtx insn)
2664 int i, j;
2665 enum rtx_code code;
2666 const char *fmt;
2668 if (x == 0)
2669 return 1;
2671 code = GET_CODE (x);
2672 switch (code)
2674 case PC:
2675 case CC0:
2676 case CONST:
2677 case CONST_INT:
2678 case CONST_DOUBLE:
2679 case CONST_VECTOR:
2680 case SYMBOL_REF:
2681 case LABEL_REF:
2682 case ADDR_VEC:
2683 case ADDR_DIFF_VEC:
2684 return 1;
2686 case MEM:
2687 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2688 INSN_CUID (insn), x, 0))
2689 return 0;
2690 else
2691 return oprs_not_set_p (XEXP (x, 0), insn);
2693 case REG:
2694 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2696 default:
2697 break;
2700 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2702 if (fmt[i] == 'e')
2704 /* If we are about to do the last recursive call
2705 needed at this level, change it into iteration.
2706 This function is called enough to be worth it. */
2707 if (i == 0)
2708 return oprs_not_set_p (XEXP (x, i), insn);
2710 if (! oprs_not_set_p (XEXP (x, i), insn))
2711 return 0;
2713 else if (fmt[i] == 'E')
2714 for (j = 0; j < XVECLEN (x, i); j++)
2715 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2716 return 0;
2719 return 1;
2722 /* Mark things set by a CALL. */
2724 static void
2725 mark_call (rtx insn)
2727 if (! CONST_OR_PURE_CALL_P (insn))
2728 record_last_mem_set_info (insn);
2731 /* Mark things set by a SET. */
2733 static void
2734 mark_set (rtx pat, rtx insn)
2736 rtx dest = SET_DEST (pat);
2738 while (GET_CODE (dest) == SUBREG
2739 || GET_CODE (dest) == ZERO_EXTRACT
2740 || GET_CODE (dest) == SIGN_EXTRACT
2741 || GET_CODE (dest) == STRICT_LOW_PART)
2742 dest = XEXP (dest, 0);
2744 if (GET_CODE (dest) == REG)
2745 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2746 else if (GET_CODE (dest) == MEM)
2747 record_last_mem_set_info (insn);
2749 if (GET_CODE (SET_SRC (pat)) == CALL)
2750 mark_call (insn);
2753 /* Record things set by a CLOBBER. */
2755 static void
2756 mark_clobber (rtx pat, rtx insn)
2758 rtx clob = XEXP (pat, 0);
2760 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2761 clob = XEXP (clob, 0);
2763 if (GET_CODE (clob) == REG)
2764 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2765 else
2766 record_last_mem_set_info (insn);
2769 /* Record things set by INSN.
2770 This data is used by oprs_not_set_p. */
2772 static void
2773 mark_oprs_set (rtx insn)
2775 rtx pat = PATTERN (insn);
2776 int i;
2778 if (GET_CODE (pat) == SET)
2779 mark_set (pat, insn);
2780 else if (GET_CODE (pat) == PARALLEL)
2781 for (i = 0; i < XVECLEN (pat, 0); i++)
2783 rtx x = XVECEXP (pat, 0, i);
2785 if (GET_CODE (x) == SET)
2786 mark_set (x, insn);
2787 else if (GET_CODE (x) == CLOBBER)
2788 mark_clobber (x, insn);
2789 else if (GET_CODE (x) == CALL)
2790 mark_call (insn);
2793 else if (GET_CODE (pat) == CLOBBER)
2794 mark_clobber (pat, insn);
2795 else if (GET_CODE (pat) == CALL)
2796 mark_call (insn);
2800 /* Compute copy/constant propagation working variables. */
2802 /* Local properties of assignments. */
2803 static sbitmap *cprop_pavloc;
2804 static sbitmap *cprop_absaltered;
2806 /* Global properties of assignments (computed from the local properties). */
2807 static sbitmap *cprop_avin;
2808 static sbitmap *cprop_avout;
2810 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2811 basic blocks. N_SETS is the number of sets. */
2813 static void
2814 alloc_cprop_mem (int n_blocks, int n_sets)
2816 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2817 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2819 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2820 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2823 /* Free vars used by copy/const propagation. */
2825 static void
2826 free_cprop_mem (void)
2828 sbitmap_vector_free (cprop_pavloc);
2829 sbitmap_vector_free (cprop_absaltered);
2830 sbitmap_vector_free (cprop_avin);
2831 sbitmap_vector_free (cprop_avout);
2834 /* For each block, compute whether X is transparent. X is either an
2835 expression or an assignment [though we don't care which, for this context
2836 an assignment is treated as an expression]. For each block where an
2837 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2838 bit in BMAP. */
2840 static void
2841 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2843 int i, j;
2844 basic_block bb;
2845 enum rtx_code code;
2846 reg_set *r;
2847 const char *fmt;
2849 /* repeat is used to turn tail-recursion into iteration since GCC
2850 can't do it when there's no return value. */
2851 repeat:
2853 if (x == 0)
2854 return;
2856 code = GET_CODE (x);
2857 switch (code)
2859 case REG:
2860 if (set_p)
2862 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2864 FOR_EACH_BB (bb)
2865 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2866 SET_BIT (bmap[bb->index], indx);
2868 else
2870 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2871 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2874 else
2876 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2878 FOR_EACH_BB (bb)
2879 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2880 RESET_BIT (bmap[bb->index], indx);
2882 else
2884 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2885 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2889 return;
2891 case MEM:
2892 FOR_EACH_BB (bb)
2894 rtx list_entry = canon_modify_mem_list[bb->index];
2896 while (list_entry)
2898 rtx dest, dest_addr;
2900 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
2902 if (set_p)
2903 SET_BIT (bmap[bb->index], indx);
2904 else
2905 RESET_BIT (bmap[bb->index], indx);
2906 break;
2908 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2909 Examine each hunk of memory that is modified. */
2911 dest = XEXP (list_entry, 0);
2912 list_entry = XEXP (list_entry, 1);
2913 dest_addr = XEXP (list_entry, 0);
2915 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2916 x, rtx_addr_varies_p))
2918 if (set_p)
2919 SET_BIT (bmap[bb->index], indx);
2920 else
2921 RESET_BIT (bmap[bb->index], indx);
2922 break;
2924 list_entry = XEXP (list_entry, 1);
2928 x = XEXP (x, 0);
2929 goto repeat;
2931 case PC:
2932 case CC0: /*FIXME*/
2933 case CONST:
2934 case CONST_INT:
2935 case CONST_DOUBLE:
2936 case CONST_VECTOR:
2937 case SYMBOL_REF:
2938 case LABEL_REF:
2939 case ADDR_VEC:
2940 case ADDR_DIFF_VEC:
2941 return;
2943 default:
2944 break;
2947 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2949 if (fmt[i] == 'e')
2951 /* If we are about to do the last recursive call
2952 needed at this level, change it into iteration.
2953 This function is called enough to be worth it. */
2954 if (i == 0)
2956 x = XEXP (x, i);
2957 goto repeat;
2960 compute_transp (XEXP (x, i), indx, bmap, set_p);
2962 else if (fmt[i] == 'E')
2963 for (j = 0; j < XVECLEN (x, i); j++)
2964 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2968 /* Top level routine to do the dataflow analysis needed by copy/const
2969 propagation. */
2971 static void
2972 compute_cprop_data (void)
2974 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2975 compute_available (cprop_pavloc, cprop_absaltered,
2976 cprop_avout, cprop_avin);
2979 /* Copy/constant propagation. */
2981 /* Maximum number of register uses in an insn that we handle. */
2982 #define MAX_USES 8
2984 /* Table of uses found in an insn.
2985 Allocated statically to avoid alloc/free complexity and overhead. */
2986 static struct reg_use reg_use_table[MAX_USES];
2988 /* Index into `reg_use_table' while building it. */
2989 static int reg_use_count;
2991 /* Set up a list of register numbers used in INSN. The found uses are stored
2992 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2993 and contains the number of uses in the table upon exit.
2995 ??? If a register appears multiple times we will record it multiple times.
2996 This doesn't hurt anything but it will slow things down. */
2998 static void
2999 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
3001 int i, j;
3002 enum rtx_code code;
3003 const char *fmt;
3004 rtx x = *xptr;
3006 /* repeat is used to turn tail-recursion into iteration since GCC
3007 can't do it when there's no return value. */
3008 repeat:
3009 if (x == 0)
3010 return;
3012 code = GET_CODE (x);
3013 if (REG_P (x))
3015 if (reg_use_count == MAX_USES)
3016 return;
3018 reg_use_table[reg_use_count].reg_rtx = x;
3019 reg_use_count++;
3022 /* Recursively scan the operands of this expression. */
3024 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3026 if (fmt[i] == 'e')
3028 /* If we are about to do the last recursive call
3029 needed at this level, change it into iteration.
3030 This function is called enough to be worth it. */
3031 if (i == 0)
3033 x = XEXP (x, 0);
3034 goto repeat;
3037 find_used_regs (&XEXP (x, i), data);
3039 else if (fmt[i] == 'E')
3040 for (j = 0; j < XVECLEN (x, i); j++)
3041 find_used_regs (&XVECEXP (x, i, j), data);
3045 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3046 Returns nonzero is successful. */
3048 static int
3049 try_replace_reg (rtx from, rtx to, rtx insn)
3051 rtx note = find_reg_equal_equiv_note (insn);
3052 rtx src = 0;
3053 int success = 0;
3054 rtx set = single_set (insn);
3056 validate_replace_src_group (from, to, insn);
3057 if (num_changes_pending () && apply_change_group ())
3058 success = 1;
3060 /* Try to simplify SET_SRC if we have substituted a constant. */
3061 if (success && set && CONSTANT_P (to))
3063 src = simplify_rtx (SET_SRC (set));
3065 if (src)
3066 validate_change (insn, &SET_SRC (set), src, 0);
3069 /* If there is already a NOTE, update the expression in it with our
3070 replacement. */
3071 if (note != 0)
3072 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3074 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
3076 /* If above failed and this is a single set, try to simplify the source of
3077 the set given our substitution. We could perhaps try this for multiple
3078 SETs, but it probably won't buy us anything. */
3079 src = simplify_replace_rtx (SET_SRC (set), from, to);
3081 if (!rtx_equal_p (src, SET_SRC (set))
3082 && validate_change (insn, &SET_SRC (set), src, 0))
3083 success = 1;
3085 /* If we've failed to do replacement, have a single SET, don't already
3086 have a note, and have no special SET, add a REG_EQUAL note to not
3087 lose information. */
3088 if (!success && note == 0 && set != 0
3089 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
3090 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
3091 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3094 /* REG_EQUAL may get simplified into register.
3095 We don't allow that. Remove that note. This code ought
3096 not to happen, because previous code ought to synthesize
3097 reg-reg move, but be on the safe side. */
3098 if (note && REG_P (XEXP (note, 0)))
3099 remove_note (insn, note);
3101 return success;
3104 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3105 NULL no such set is found. */
3107 static struct expr *
3108 find_avail_set (int regno, rtx insn)
3110 /* SET1 contains the last set found that can be returned to the caller for
3111 use in a substitution. */
3112 struct expr *set1 = 0;
3114 /* Loops are not possible here. To get a loop we would need two sets
3115 available at the start of the block containing INSN. ie we would
3116 need two sets like this available at the start of the block:
3118 (set (reg X) (reg Y))
3119 (set (reg Y) (reg X))
3121 This can not happen since the set of (reg Y) would have killed the
3122 set of (reg X) making it unavailable at the start of this block. */
3123 while (1)
3125 rtx src;
3126 struct expr *set = lookup_set (regno, &set_hash_table);
3128 /* Find a set that is available at the start of the block
3129 which contains INSN. */
3130 while (set)
3132 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3133 break;
3134 set = next_set (regno, set);
3137 /* If no available set was found we've reached the end of the
3138 (possibly empty) copy chain. */
3139 if (set == 0)
3140 break;
3142 if (GET_CODE (set->expr) != SET)
3143 abort ();
3145 src = SET_SRC (set->expr);
3147 /* We know the set is available.
3148 Now check that SRC is ANTLOC (i.e. none of the source operands
3149 have changed since the start of the block).
3151 If the source operand changed, we may still use it for the next
3152 iteration of this loop, but we may not use it for substitutions. */
3154 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
3155 set1 = set;
3157 /* If the source of the set is anything except a register, then
3158 we have reached the end of the copy chain. */
3159 if (GET_CODE (src) != REG)
3160 break;
3162 /* Follow the copy chain, ie start another iteration of the loop
3163 and see if we have an available copy into SRC. */
3164 regno = REGNO (src);
3167 /* SET1 holds the last set that was available and anticipatable at
3168 INSN. */
3169 return set1;
3172 /* Subroutine of cprop_insn that tries to propagate constants into
3173 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
3174 it is the instruction that immediately precedes JUMP, and must be a
3175 single SET of a register. FROM is what we will try to replace,
3176 SRC is the constant we will try to substitute for it. Returns nonzero
3177 if a change was made. */
3179 static int
3180 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
3182 rtx new, set_src, note_src;
3183 rtx set = pc_set (jump);
3184 rtx note = find_reg_equal_equiv_note (jump);
3186 if (note)
3188 note_src = XEXP (note, 0);
3189 if (GET_CODE (note_src) == EXPR_LIST)
3190 note_src = NULL_RTX;
3192 else note_src = NULL_RTX;
3194 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
3195 set_src = note_src ? note_src : SET_SRC (set);
3197 /* First substitute the SETCC condition into the JUMP instruction,
3198 then substitute that given values into this expanded JUMP. */
3199 if (setcc != NULL_RTX
3200 && !modified_between_p (from, setcc, jump)
3201 && !modified_between_p (src, setcc, jump))
3203 rtx setcc_src;
3204 rtx setcc_set = single_set (setcc);
3205 rtx setcc_note = find_reg_equal_equiv_note (setcc);
3206 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
3207 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
3208 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
3209 setcc_src);
3211 else
3212 setcc = NULL_RTX;
3214 new = simplify_replace_rtx (set_src, from, src);
3216 /* If no simplification can be made, then try the next register. */
3217 if (rtx_equal_p (new, SET_SRC (set)))
3218 return 0;
3220 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
3221 if (new == pc_rtx)
3222 delete_insn (jump);
3223 else
3225 /* Ensure the value computed inside the jump insn to be equivalent
3226 to one computed by setcc. */
3227 if (setcc && modified_in_p (new, setcc))
3228 return 0;
3229 if (! validate_change (jump, &SET_SRC (set), new, 0))
3231 /* When (some) constants are not valid in a comparison, and there
3232 are two registers to be replaced by constants before the entire
3233 comparison can be folded into a constant, we need to keep
3234 intermediate information in REG_EQUAL notes. For targets with
3235 separate compare insns, such notes are added by try_replace_reg.
3236 When we have a combined compare-and-branch instruction, however,
3237 we need to attach a note to the branch itself to make this
3238 optimization work. */
3240 if (!rtx_equal_p (new, note_src))
3241 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
3242 return 0;
3245 /* Remove REG_EQUAL note after simplification. */
3246 if (note_src)
3247 remove_note (jump, note);
3249 /* If this has turned into an unconditional jump,
3250 then put a barrier after it so that the unreachable
3251 code will be deleted. */
3252 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
3253 emit_barrier_after (jump);
3256 #ifdef HAVE_cc0
3257 /* Delete the cc0 setter. */
3258 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
3259 delete_insn (setcc);
3260 #endif
3262 run_jump_opt_after_gcse = 1;
3264 const_prop_count++;
3265 if (gcse_file != NULL)
3267 fprintf (gcse_file,
3268 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
3269 REGNO (from), INSN_UID (jump));
3270 print_rtl (gcse_file, src);
3271 fprintf (gcse_file, "\n");
3273 purge_dead_edges (bb);
3275 return 1;
3278 static bool
3279 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
3281 rtx sset;
3283 /* Check for reg or cc0 setting instructions followed by
3284 conditional branch instructions first. */
3285 if (alter_jumps
3286 && (sset = single_set (insn)) != NULL
3287 && NEXT_INSN (insn)
3288 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
3290 rtx dest = SET_DEST (sset);
3291 if ((REG_P (dest) || CC0_P (dest))
3292 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
3293 return 1;
3296 /* Handle normal insns next. */
3297 if (GET_CODE (insn) == INSN
3298 && try_replace_reg (from, to, insn))
3299 return 1;
3301 /* Try to propagate a CONST_INT into a conditional jump.
3302 We're pretty specific about what we will handle in this
3303 code, we can extend this as necessary over time.
3305 Right now the insn in question must look like
3306 (set (pc) (if_then_else ...)) */
3307 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
3308 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
3309 return 0;
3312 /* Perform constant and copy propagation on INSN.
3313 The result is nonzero if a change was made. */
3315 static int
3316 cprop_insn (rtx insn, int alter_jumps)
3318 struct reg_use *reg_used;
3319 int changed = 0;
3320 rtx note;
3322 if (!INSN_P (insn))
3323 return 0;
3325 reg_use_count = 0;
3326 note_uses (&PATTERN (insn), find_used_regs, NULL);
3328 note = find_reg_equal_equiv_note (insn);
3330 /* We may win even when propagating constants into notes. */
3331 if (note)
3332 find_used_regs (&XEXP (note, 0), NULL);
3334 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3335 reg_used++, reg_use_count--)
3337 unsigned int regno = REGNO (reg_used->reg_rtx);
3338 rtx pat, src;
3339 struct expr *set;
3341 /* Ignore registers created by GCSE.
3342 We do this because ... */
3343 if (regno >= max_gcse_regno)
3344 continue;
3346 /* If the register has already been set in this block, there's
3347 nothing we can do. */
3348 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3349 continue;
3351 /* Find an assignment that sets reg_used and is available
3352 at the start of the block. */
3353 set = find_avail_set (regno, insn);
3354 if (! set)
3355 continue;
3357 pat = set->expr;
3358 /* ??? We might be able to handle PARALLELs. Later. */
3359 if (GET_CODE (pat) != SET)
3360 abort ();
3362 src = SET_SRC (pat);
3364 /* Constant propagation. */
3365 if (gcse_constant_p (src))
3367 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
3369 changed = 1;
3370 const_prop_count++;
3371 if (gcse_file != NULL)
3373 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
3374 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
3375 print_rtl (gcse_file, src);
3376 fprintf (gcse_file, "\n");
3378 if (INSN_DELETED_P (insn))
3379 return 1;
3382 else if (GET_CODE (src) == REG
3383 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3384 && REGNO (src) != regno)
3386 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3388 changed = 1;
3389 copy_prop_count++;
3390 if (gcse_file != NULL)
3392 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3393 regno, INSN_UID (insn));
3394 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3397 /* The original insn setting reg_used may or may not now be
3398 deletable. We leave the deletion to flow. */
3399 /* FIXME: If it turns out that the insn isn't deletable,
3400 then we may have unnecessarily extended register lifetimes
3401 and made things worse. */
3406 return changed;
3409 /* Like find_used_regs, but avoid recording uses that appear in
3410 input-output contexts such as zero_extract or pre_dec. This
3411 restricts the cases we consider to those for which local cprop
3412 can legitimately make replacements. */
3414 static void
3415 local_cprop_find_used_regs (rtx *xptr, void *data)
3417 rtx x = *xptr;
3419 if (x == 0)
3420 return;
3422 switch (GET_CODE (x))
3424 case ZERO_EXTRACT:
3425 case SIGN_EXTRACT:
3426 case STRICT_LOW_PART:
3427 return;
3429 case PRE_DEC:
3430 case PRE_INC:
3431 case POST_DEC:
3432 case POST_INC:
3433 case PRE_MODIFY:
3434 case POST_MODIFY:
3435 /* Can only legitimately appear this early in the context of
3436 stack pushes for function arguments, but handle all of the
3437 codes nonetheless. */
3438 return;
3440 case SUBREG:
3441 /* Setting a subreg of a register larger than word_mode leaves
3442 the non-written words unchanged. */
3443 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3444 return;
3445 break;
3447 default:
3448 break;
3451 find_used_regs (xptr, data);
3454 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3455 their REG_EQUAL notes need updating. */
3457 static bool
3458 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3460 rtx newreg = NULL, newcnst = NULL;
3462 /* Rule out USE instructions and ASM statements as we don't want to
3463 change the hard registers mentioned. */
3464 if (GET_CODE (x) == REG
3465 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3466 || (GET_CODE (PATTERN (insn)) != USE
3467 && asm_noperands (PATTERN (insn)) < 0)))
3469 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3470 struct elt_loc_list *l;
3472 if (!val)
3473 return false;
3474 for (l = val->locs; l; l = l->next)
3476 rtx this_rtx = l->loc;
3477 rtx note;
3479 if (l->in_libcall)
3480 continue;
3482 if (gcse_constant_p (this_rtx))
3483 newcnst = this_rtx;
3484 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3485 /* Don't copy propagate if it has attached REG_EQUIV note.
3486 At this point this only function parameters should have
3487 REG_EQUIV notes and if the argument slot is used somewhere
3488 explicitly, it means address of parameter has been taken,
3489 so we should not extend the lifetime of the pseudo. */
3490 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3491 || GET_CODE (XEXP (note, 0)) != MEM))
3492 newreg = this_rtx;
3494 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3496 /* If we find a case where we can't fix the retval REG_EQUAL notes
3497 match the new register, we either have to abandon this replacement
3498 or fix delete_trivially_dead_insns to preserve the setting insn,
3499 or make it delete the REG_EUAQL note, and fix up all passes that
3500 require the REG_EQUAL note there. */
3501 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
3502 abort ();
3503 if (gcse_file != NULL)
3505 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3506 REGNO (x));
3507 fprintf (gcse_file, "insn %d with constant ",
3508 INSN_UID (insn));
3509 print_rtl (gcse_file, newcnst);
3510 fprintf (gcse_file, "\n");
3512 const_prop_count++;
3513 return true;
3515 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3517 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3518 if (gcse_file != NULL)
3520 fprintf (gcse_file,
3521 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3522 REGNO (x), INSN_UID (insn));
3523 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3525 copy_prop_count++;
3526 return true;
3529 return false;
3532 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3533 their REG_EQUAL notes need updating to reflect that OLDREG has been
3534 replaced with NEWVAL in INSN. Return true if all substitutions could
3535 be made. */
3536 static bool
3537 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3539 rtx end;
3541 while ((end = *libcall_sp++))
3543 rtx note = find_reg_equal_equiv_note (end);
3545 if (! note)
3546 continue;
3548 if (REG_P (newval))
3550 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3554 note = find_reg_equal_equiv_note (end);
3555 if (! note)
3556 continue;
3557 if (reg_mentioned_p (newval, XEXP (note, 0)))
3558 return false;
3560 while ((end = *libcall_sp++));
3561 return true;
3564 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
3565 insn = end;
3567 return true;
3570 #define MAX_NESTED_LIBCALLS 9
3572 static void
3573 local_cprop_pass (int alter_jumps)
3575 rtx insn;
3576 struct reg_use *reg_used;
3577 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3578 bool changed = false;
3580 cselib_init (false);
3581 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3582 *libcall_sp = 0;
3583 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3585 if (INSN_P (insn))
3587 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3589 if (note)
3591 if (libcall_sp == libcall_stack)
3592 abort ();
3593 *--libcall_sp = XEXP (note, 0);
3595 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3596 if (note)
3597 libcall_sp++;
3598 note = find_reg_equal_equiv_note (insn);
3601 reg_use_count = 0;
3602 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3603 if (note)
3604 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3606 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3607 reg_used++, reg_use_count--)
3608 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3609 libcall_sp))
3611 changed = true;
3612 break;
3614 if (INSN_DELETED_P (insn))
3615 break;
3617 while (reg_use_count);
3619 cselib_process_insn (insn);
3621 cselib_finish ();
3622 /* Global analysis may get into infinite loops for unreachable blocks. */
3623 if (changed && alter_jumps)
3625 delete_unreachable_blocks ();
3626 free_reg_set_mem ();
3627 alloc_reg_set_mem (max_reg_num ());
3628 compute_sets (get_insns ());
3632 /* Forward propagate copies. This includes copies and constants. Return
3633 nonzero if a change was made. */
3635 static int
3636 cprop (int alter_jumps)
3638 int changed;
3639 basic_block bb;
3640 rtx insn;
3642 /* Note we start at block 1. */
3643 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3645 if (gcse_file != NULL)
3646 fprintf (gcse_file, "\n");
3647 return 0;
3650 changed = 0;
3651 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3653 /* Reset tables used to keep track of what's still valid [since the
3654 start of the block]. */
3655 reset_opr_set_tables ();
3657 for (insn = BB_HEAD (bb);
3658 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3659 insn = NEXT_INSN (insn))
3660 if (INSN_P (insn))
3662 changed |= cprop_insn (insn, alter_jumps);
3664 /* Keep track of everything modified by this insn. */
3665 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3666 call mark_oprs_set if we turned the insn into a NOTE. */
3667 if (GET_CODE (insn) != NOTE)
3668 mark_oprs_set (insn);
3672 if (gcse_file != NULL)
3673 fprintf (gcse_file, "\n");
3675 return changed;
3678 /* Similar to get_condition, only the resulting condition must be
3679 valid at JUMP, instead of at EARLIEST.
3681 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3682 settle for the condition variable in the jump instruction being integral.
3683 We prefer to be able to record the value of a user variable, rather than
3684 the value of a temporary used in a condition. This could be solved by
3685 recording the value of *every* register scaned by canonicalize_condition,
3686 but this would require some code reorganization. */
3689 fis_get_condition (rtx jump)
3691 rtx cond, set, tmp, insn, earliest;
3692 bool reverse;
3694 if (! any_condjump_p (jump))
3695 return NULL_RTX;
3697 set = pc_set (jump);
3698 cond = XEXP (SET_SRC (set), 0);
3700 /* If this branches to JUMP_LABEL when the condition is false,
3701 reverse the condition. */
3702 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
3703 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
3705 /* Use canonicalize_condition to do the dirty work of manipulating
3706 MODE_CC values and COMPARE rtx codes. */
3707 tmp = canonicalize_condition (jump, cond, reverse, &earliest, NULL_RTX,
3708 false);
3709 if (!tmp)
3710 return NULL_RTX;
3712 /* Verify that the given condition is valid at JUMP by virtue of not
3713 having been modified since EARLIEST. */
3714 for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
3715 if (INSN_P (insn) && modified_in_p (tmp, insn))
3716 break;
3717 if (insn == jump)
3718 return tmp;
3720 /* The condition was modified. See if we can get a partial result
3721 that doesn't follow all the reversals. Perhaps combine can fold
3722 them together later. */
3723 tmp = XEXP (tmp, 0);
3724 if (!REG_P (tmp) || GET_MODE_CLASS (GET_MODE (tmp)) != MODE_INT)
3725 return NULL_RTX;
3726 tmp = canonicalize_condition (jump, cond, reverse, &earliest, tmp,
3727 false);
3728 if (!tmp)
3729 return NULL_RTX;
3731 /* For sanity's sake, re-validate the new result. */
3732 for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
3733 if (INSN_P (insn) && modified_in_p (tmp, insn))
3734 return NULL_RTX;
3736 return tmp;
3739 /* Check the comparison COND to see if we can safely form an implicit set from
3740 it. COND is either an EQ or NE comparison. */
3742 static bool
3743 implicit_set_cond_p (rtx cond)
3745 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3746 rtx cst = XEXP (cond, 1);
3748 /* We can't perform this optimization if either operand might be or might
3749 contain a signed zero. */
3750 if (HONOR_SIGNED_ZEROS (mode))
3752 /* It is sufficient to check if CST is or contains a zero. We must
3753 handle float, complex, and vector. If any subpart is a zero, then
3754 the optimization can't be performed. */
3755 /* ??? The complex and vector checks are not implemented yet. We just
3756 always return zero for them. */
3757 if (GET_CODE (cst) == CONST_DOUBLE)
3759 REAL_VALUE_TYPE d;
3760 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3761 if (REAL_VALUES_EQUAL (d, dconst0))
3762 return 0;
3764 else
3765 return 0;
3768 return gcse_constant_p (cst);
3771 /* Find the implicit sets of a function. An "implicit set" is a constraint
3772 on the value of a variable, implied by a conditional jump. For example,
3773 following "if (x == 2)", the then branch may be optimized as though the
3774 conditional performed an "explicit set", in this example, "x = 2". This
3775 function records the set patterns that are implicit at the start of each
3776 basic block. */
3778 static void
3779 find_implicit_sets (void)
3781 basic_block bb, dest;
3782 unsigned int count;
3783 rtx cond, new;
3785 count = 0;
3786 FOR_EACH_BB (bb)
3787 /* Check for more than one successor. */
3788 if (bb->succ && bb->succ->succ_next)
3790 cond = fis_get_condition (BB_END (bb));
3792 if (cond
3793 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3794 && GET_CODE (XEXP (cond, 0)) == REG
3795 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3796 && implicit_set_cond_p (cond))
3798 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3799 : FALLTHRU_EDGE (bb)->dest;
3801 if (dest && ! dest->pred->pred_next
3802 && dest != EXIT_BLOCK_PTR)
3804 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3805 XEXP (cond, 1));
3806 implicit_sets[dest->index] = new;
3807 if (gcse_file)
3809 fprintf(gcse_file, "Implicit set of reg %d in ",
3810 REGNO (XEXP (cond, 0)));
3811 fprintf(gcse_file, "basic block %d\n", dest->index);
3813 count++;
3818 if (gcse_file)
3819 fprintf (gcse_file, "Found %d implicit sets\n", count);
3822 /* Perform one copy/constant propagation pass.
3823 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3824 propagation into conditional jumps. If BYPASS_JUMPS is true,
3825 perform conditional jump bypassing optimizations. */
3827 static int
3828 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3830 int changed = 0;
3832 const_prop_count = 0;
3833 copy_prop_count = 0;
3835 local_cprop_pass (cprop_jumps);
3837 /* Determine implicit sets. */
3838 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3839 find_implicit_sets ();
3841 alloc_hash_table (max_cuid, &set_hash_table, 1);
3842 compute_hash_table (&set_hash_table);
3844 /* Free implicit_sets before peak usage. */
3845 free (implicit_sets);
3846 implicit_sets = NULL;
3848 if (gcse_file)
3849 dump_hash_table (gcse_file, "SET", &set_hash_table);
3850 if (set_hash_table.n_elems > 0)
3852 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3853 compute_cprop_data ();
3854 changed = cprop (cprop_jumps);
3855 if (bypass_jumps)
3856 changed |= bypass_conditional_jumps ();
3857 free_cprop_mem ();
3860 free_hash_table (&set_hash_table);
3862 if (gcse_file)
3864 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3865 current_function_name (), pass, bytes_used);
3866 fprintf (gcse_file, "%d const props, %d copy props\n\n",
3867 const_prop_count, copy_prop_count);
3869 /* Global analysis may get into infinite loops for unreachable blocks. */
3870 if (changed && cprop_jumps)
3871 delete_unreachable_blocks ();
3873 return changed;
3876 /* Bypass conditional jumps. */
3878 /* The value of last_basic_block at the beginning of the jump_bypass
3879 pass. The use of redirect_edge_and_branch_force may introduce new
3880 basic blocks, but the data flow analysis is only valid for basic
3881 block indices less than bypass_last_basic_block. */
3883 static int bypass_last_basic_block;
3885 /* Find a set of REGNO to a constant that is available at the end of basic
3886 block BB. Returns NULL if no such set is found. Based heavily upon
3887 find_avail_set. */
3889 static struct expr *
3890 find_bypass_set (int regno, int bb)
3892 struct expr *result = 0;
3894 for (;;)
3896 rtx src;
3897 struct expr *set = lookup_set (regno, &set_hash_table);
3899 while (set)
3901 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3902 break;
3903 set = next_set (regno, set);
3906 if (set == 0)
3907 break;
3909 if (GET_CODE (set->expr) != SET)
3910 abort ();
3912 src = SET_SRC (set->expr);
3913 if (gcse_constant_p (src))
3914 result = set;
3916 if (GET_CODE (src) != REG)
3917 break;
3919 regno = REGNO (src);
3921 return result;
3925 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3926 any of the instructions inserted on an edge. Jump bypassing places
3927 condition code setters on CFG edges using insert_insn_on_edge. This
3928 function is required to check that our data flow analysis is still
3929 valid prior to commit_edge_insertions. */
3931 static bool
3932 reg_killed_on_edge (rtx reg, edge e)
3934 rtx insn;
3936 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3937 if (INSN_P (insn) && reg_set_p (reg, insn))
3938 return true;
3940 return false;
3943 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3944 basic block BB which has more than one predecessor. If not NULL, SETCC
3945 is the first instruction of BB, which is immediately followed by JUMP_INSN
3946 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3947 Returns nonzero if a change was made.
3949 During the jump bypassing pass, we may place copies of SETCC instructions
3950 on CFG edges. The following routine must be careful to pay attention to
3951 these inserted insns when performing its transformations. */
3953 static int
3954 bypass_block (basic_block bb, rtx setcc, rtx jump)
3956 rtx insn, note;
3957 edge e, enext, edest;
3958 int i, change;
3959 int may_be_loop_header;
3961 insn = (setcc != NULL) ? setcc : jump;
3963 /* Determine set of register uses in INSN. */
3964 reg_use_count = 0;
3965 note_uses (&PATTERN (insn), find_used_regs, NULL);
3966 note = find_reg_equal_equiv_note (insn);
3967 if (note)
3968 find_used_regs (&XEXP (note, 0), NULL);
3970 may_be_loop_header = false;
3971 for (e = bb->pred; e; e = e->pred_next)
3972 if (e->flags & EDGE_DFS_BACK)
3974 may_be_loop_header = true;
3975 break;
3978 change = 0;
3979 for (e = bb->pred; e; e = enext)
3981 enext = e->pred_next;
3982 if (e->flags & EDGE_COMPLEX)
3983 continue;
3985 /* We can't redirect edges from new basic blocks. */
3986 if (e->src->index >= bypass_last_basic_block)
3987 continue;
3989 /* The irreducible loops created by redirecting of edges entering the
3990 loop from outside would decrease effectiveness of some of the following
3991 optimizations, so prevent this. */
3992 if (may_be_loop_header
3993 && !(e->flags & EDGE_DFS_BACK))
3994 continue;
3996 for (i = 0; i < reg_use_count; i++)
3998 struct reg_use *reg_used = &reg_use_table[i];
3999 unsigned int regno = REGNO (reg_used->reg_rtx);
4000 basic_block dest, old_dest;
4001 struct expr *set;
4002 rtx src, new;
4004 if (regno >= max_gcse_regno)
4005 continue;
4007 set = find_bypass_set (regno, e->src->index);
4009 if (! set)
4010 continue;
4012 /* Check the data flow is valid after edge insertions. */
4013 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
4014 continue;
4016 src = SET_SRC (pc_set (jump));
4018 if (setcc != NULL)
4019 src = simplify_replace_rtx (src,
4020 SET_DEST (PATTERN (setcc)),
4021 SET_SRC (PATTERN (setcc)));
4023 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4024 SET_SRC (set->expr));
4026 /* Jump bypassing may have already placed instructions on
4027 edges of the CFG. We can't bypass an outgoing edge that
4028 has instructions associated with it, as these insns won't
4029 get executed if the incoming edge is redirected. */
4031 if (new == pc_rtx)
4033 edest = FALLTHRU_EDGE (bb);
4034 dest = edest->insns.r ? NULL : edest->dest;
4036 else if (GET_CODE (new) == LABEL_REF)
4038 dest = BLOCK_FOR_INSN (XEXP (new, 0));
4039 /* Don't bypass edges containing instructions. */
4040 for (edest = bb->succ; edest; edest = edest->succ_next)
4041 if (edest->dest == dest && edest->insns.r)
4043 dest = NULL;
4044 break;
4047 else
4048 dest = NULL;
4050 /* Avoid unification of the edge with other edges from original
4051 branch. We would end up emitting the instruction on "both"
4052 edges. */
4054 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
4056 edge e2;
4057 for (e2 = e->src->succ; e2; e2 = e2->succ_next)
4058 if (e2->dest == dest)
4060 dest = NULL;
4061 break;
4065 old_dest = e->dest;
4066 if (dest != NULL
4067 && dest != old_dest
4068 && dest != EXIT_BLOCK_PTR)
4070 redirect_edge_and_branch_force (e, dest);
4072 /* Copy the register setter to the redirected edge.
4073 Don't copy CC0 setters, as CC0 is dead after jump. */
4074 if (setcc)
4076 rtx pat = PATTERN (setcc);
4077 if (!CC0_P (SET_DEST (pat)))
4078 insert_insn_on_edge (copy_insn (pat), e);
4081 if (gcse_file != NULL)
4083 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4084 regno, INSN_UID (jump));
4085 print_rtl (gcse_file, SET_SRC (set->expr));
4086 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4087 e->src->index, old_dest->index, dest->index);
4089 change = 1;
4090 break;
4094 return change;
4097 /* Find basic blocks with more than one predecessor that only contain a
4098 single conditional jump. If the result of the comparison is known at
4099 compile-time from any incoming edge, redirect that edge to the
4100 appropriate target. Returns nonzero if a change was made.
4102 This function is now mis-named, because we also handle indirect jumps. */
4104 static int
4105 bypass_conditional_jumps (void)
4107 basic_block bb;
4108 int changed;
4109 rtx setcc;
4110 rtx insn;
4111 rtx dest;
4113 /* Note we start at block 1. */
4114 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4115 return 0;
4117 bypass_last_basic_block = last_basic_block;
4118 mark_dfs_back_edges ();
4120 changed = 0;
4121 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4122 EXIT_BLOCK_PTR, next_bb)
4124 /* Check for more than one predecessor. */
4125 if (bb->pred && bb->pred->pred_next)
4127 setcc = NULL_RTX;
4128 for (insn = BB_HEAD (bb);
4129 insn != NULL && insn != NEXT_INSN (BB_END (bb));
4130 insn = NEXT_INSN (insn))
4131 if (GET_CODE (insn) == INSN)
4133 if (setcc)
4134 break;
4135 if (GET_CODE (PATTERN (insn)) != SET)
4136 break;
4138 dest = SET_DEST (PATTERN (insn));
4139 if (REG_P (dest) || CC0_P (dest))
4140 setcc = insn;
4141 else
4142 break;
4144 else if (GET_CODE (insn) == JUMP_INSN)
4146 if ((any_condjump_p (insn) || computed_jump_p (insn))
4147 && onlyjump_p (insn))
4148 changed |= bypass_block (bb, setcc, insn);
4149 break;
4151 else if (INSN_P (insn))
4152 break;
4156 /* If we bypassed any register setting insns, we inserted a
4157 copy on the redirected edge. These need to be committed. */
4158 if (changed)
4159 commit_edge_insertions();
4161 return changed;
4164 /* Compute PRE+LCM working variables. */
4166 /* Local properties of expressions. */
4167 /* Nonzero for expressions that are transparent in the block. */
4168 static sbitmap *transp;
4170 /* Nonzero for expressions that are transparent at the end of the block.
4171 This is only zero for expressions killed by abnormal critical edge
4172 created by a calls. */
4173 static sbitmap *transpout;
4175 /* Nonzero for expressions that are computed (available) in the block. */
4176 static sbitmap *comp;
4178 /* Nonzero for expressions that are locally anticipatable in the block. */
4179 static sbitmap *antloc;
4181 /* Nonzero for expressions where this block is an optimal computation
4182 point. */
4183 static sbitmap *pre_optimal;
4185 /* Nonzero for expressions which are redundant in a particular block. */
4186 static sbitmap *pre_redundant;
4188 /* Nonzero for expressions which should be inserted on a specific edge. */
4189 static sbitmap *pre_insert_map;
4191 /* Nonzero for expressions which should be deleted in a specific block. */
4192 static sbitmap *pre_delete_map;
4194 /* Contains the edge_list returned by pre_edge_lcm. */
4195 static struct edge_list *edge_list;
4197 /* Redundant insns. */
4198 static sbitmap pre_redundant_insns;
4200 /* Allocate vars used for PRE analysis. */
4202 static void
4203 alloc_pre_mem (int n_blocks, int n_exprs)
4205 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4206 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4207 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4209 pre_optimal = NULL;
4210 pre_redundant = NULL;
4211 pre_insert_map = NULL;
4212 pre_delete_map = NULL;
4213 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4215 /* pre_insert and pre_delete are allocated later. */
4218 /* Free vars used for PRE analysis. */
4220 static void
4221 free_pre_mem (void)
4223 sbitmap_vector_free (transp);
4224 sbitmap_vector_free (comp);
4226 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4228 if (pre_optimal)
4229 sbitmap_vector_free (pre_optimal);
4230 if (pre_redundant)
4231 sbitmap_vector_free (pre_redundant);
4232 if (pre_insert_map)
4233 sbitmap_vector_free (pre_insert_map);
4234 if (pre_delete_map)
4235 sbitmap_vector_free (pre_delete_map);
4237 transp = comp = NULL;
4238 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4241 /* Top level routine to do the dataflow analysis needed by PRE. */
4243 static void
4244 compute_pre_data (void)
4246 sbitmap trapping_expr;
4247 basic_block bb;
4248 unsigned int ui;
4250 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4251 sbitmap_vector_zero (ae_kill, last_basic_block);
4253 /* Collect expressions which might trap. */
4254 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
4255 sbitmap_zero (trapping_expr);
4256 for (ui = 0; ui < expr_hash_table.size; ui++)
4258 struct expr *e;
4259 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
4260 if (may_trap_p (e->expr))
4261 SET_BIT (trapping_expr, e->bitmap_index);
4264 /* Compute ae_kill for each basic block using:
4266 ~(TRANSP | COMP)
4269 FOR_EACH_BB (bb)
4271 edge e;
4273 /* If the current block is the destination of an abnormal edge, we
4274 kill all trapping expressions because we won't be able to properly
4275 place the instruction on the edge. So make them neither
4276 anticipatable nor transparent. This is fairly conservative. */
4277 for (e = bb->pred; e ; e = e->pred_next)
4278 if (e->flags & EDGE_ABNORMAL)
4280 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
4281 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
4282 break;
4285 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
4286 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
4289 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
4290 ae_kill, &pre_insert_map, &pre_delete_map);
4291 sbitmap_vector_free (antloc);
4292 antloc = NULL;
4293 sbitmap_vector_free (ae_kill);
4294 ae_kill = NULL;
4295 sbitmap_free (trapping_expr);
4298 /* PRE utilities */
4300 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
4301 block BB.
4303 VISITED is a pointer to a working buffer for tracking which BB's have
4304 been visited. It is NULL for the top-level call.
4306 We treat reaching expressions that go through blocks containing the same
4307 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4308 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4309 2 as not reaching. The intent is to improve the probability of finding
4310 only one reaching expression and to reduce register lifetimes by picking
4311 the closest such expression. */
4313 static int
4314 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
4316 edge pred;
4318 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4320 basic_block pred_bb = pred->src;
4322 if (pred->src == ENTRY_BLOCK_PTR
4323 /* Has predecessor has already been visited? */
4324 || visited[pred_bb->index])
4325 ;/* Nothing to do. */
4327 /* Does this predecessor generate this expression? */
4328 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4330 /* Is this the occurrence we're looking for?
4331 Note that there's only one generating occurrence per block
4332 so we just need to check the block number. */
4333 if (occr_bb == pred_bb)
4334 return 1;
4336 visited[pred_bb->index] = 1;
4338 /* Ignore this predecessor if it kills the expression. */
4339 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4340 visited[pred_bb->index] = 1;
4342 /* Neither gen nor kill. */
4343 else
4345 visited[pred_bb->index] = 1;
4346 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4347 return 1;
4351 /* All paths have been checked. */
4352 return 0;
4355 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4356 memory allocated for that function is returned. */
4358 static int
4359 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
4361 int rval;
4362 char *visited = xcalloc (last_basic_block, 1);
4364 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4366 free (visited);
4367 return rval;
4371 /* Given an expr, generate RTL which we can insert at the end of a BB,
4372 or on an edge. Set the block number of any insns generated to
4373 the value of BB. */
4375 static rtx
4376 process_insert_insn (struct expr *expr)
4378 rtx reg = expr->reaching_reg;
4379 rtx exp = copy_rtx (expr->expr);
4380 rtx pat;
4382 start_sequence ();
4384 /* If the expression is something that's an operand, like a constant,
4385 just copy it to a register. */
4386 if (general_operand (exp, GET_MODE (reg)))
4387 emit_move_insn (reg, exp);
4389 /* Otherwise, make a new insn to compute this expression and make sure the
4390 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4391 expression to make sure we don't have any sharing issues. */
4392 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4393 abort ();
4395 pat = get_insns ();
4396 end_sequence ();
4398 return pat;
4401 /* Add EXPR to the end of basic block BB.
4403 This is used by both the PRE and code hoisting.
4405 For PRE, we want to verify that the expr is either transparent
4406 or locally anticipatable in the target block. This check makes
4407 no sense for code hoisting. */
4409 static void
4410 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
4412 rtx insn = BB_END (bb);
4413 rtx new_insn;
4414 rtx reg = expr->reaching_reg;
4415 int regno = REGNO (reg);
4416 rtx pat, pat_end;
4418 pat = process_insert_insn (expr);
4419 if (pat == NULL_RTX || ! INSN_P (pat))
4420 abort ();
4422 pat_end = pat;
4423 while (NEXT_INSN (pat_end) != NULL_RTX)
4424 pat_end = NEXT_INSN (pat_end);
4426 /* If the last insn is a jump, insert EXPR in front [taking care to
4427 handle cc0, etc. properly]. Similarly we need to care trapping
4428 instructions in presence of non-call exceptions. */
4430 if (GET_CODE (insn) == JUMP_INSN
4431 || (GET_CODE (insn) == INSN
4432 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4434 #ifdef HAVE_cc0
4435 rtx note;
4436 #endif
4437 /* It should always be the case that we can put these instructions
4438 anywhere in the basic block with performing PRE optimizations.
4439 Check this. */
4440 if (GET_CODE (insn) == INSN && pre
4441 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4442 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4443 abort ();
4445 /* If this is a jump table, then we can't insert stuff here. Since
4446 we know the previous real insn must be the tablejump, we insert
4447 the new instruction just before the tablejump. */
4448 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4449 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4450 insn = prev_real_insn (insn);
4452 #ifdef HAVE_cc0
4453 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4454 if cc0 isn't set. */
4455 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4456 if (note)
4457 insn = XEXP (note, 0);
4458 else
4460 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4461 if (maybe_cc0_setter
4462 && INSN_P (maybe_cc0_setter)
4463 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4464 insn = maybe_cc0_setter;
4466 #endif
4467 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4468 new_insn = emit_insn_before (pat, insn);
4471 /* Likewise if the last insn is a call, as will happen in the presence
4472 of exception handling. */
4473 else if (GET_CODE (insn) == CALL_INSN
4474 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4476 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4477 we search backward and place the instructions before the first
4478 parameter is loaded. Do this for everyone for consistency and a
4479 presumption that we'll get better code elsewhere as well.
4481 It should always be the case that we can put these instructions
4482 anywhere in the basic block with performing PRE optimizations.
4483 Check this. */
4485 if (pre
4486 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4487 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4488 abort ();
4490 /* Since different machines initialize their parameter registers
4491 in different orders, assume nothing. Collect the set of all
4492 parameter registers. */
4493 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4495 /* If we found all the parameter loads, then we want to insert
4496 before the first parameter load.
4498 If we did not find all the parameter loads, then we might have
4499 stopped on the head of the block, which could be a CODE_LABEL.
4500 If we inserted before the CODE_LABEL, then we would be putting
4501 the insn in the wrong basic block. In that case, put the insn
4502 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4503 while (GET_CODE (insn) == CODE_LABEL
4504 || NOTE_INSN_BASIC_BLOCK_P (insn))
4505 insn = NEXT_INSN (insn);
4507 new_insn = emit_insn_before (pat, insn);
4509 else
4510 new_insn = emit_insn_after (pat, insn);
4512 while (1)
4514 if (INSN_P (pat))
4516 add_label_notes (PATTERN (pat), new_insn);
4517 note_stores (PATTERN (pat), record_set_info, pat);
4519 if (pat == pat_end)
4520 break;
4521 pat = NEXT_INSN (pat);
4524 gcse_create_count++;
4526 if (gcse_file)
4528 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4529 bb->index, INSN_UID (new_insn));
4530 fprintf (gcse_file, "copying expression %d to reg %d\n",
4531 expr->bitmap_index, regno);
4535 /* Insert partially redundant expressions on edges in the CFG to make
4536 the expressions fully redundant. */
4538 static int
4539 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4541 int e, i, j, num_edges, set_size, did_insert = 0;
4542 sbitmap *inserted;
4544 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4545 if it reaches any of the deleted expressions. */
4547 set_size = pre_insert_map[0]->size;
4548 num_edges = NUM_EDGES (edge_list);
4549 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4550 sbitmap_vector_zero (inserted, num_edges);
4552 for (e = 0; e < num_edges; e++)
4554 int indx;
4555 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4557 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4559 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4561 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4562 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4564 struct expr *expr = index_map[j];
4565 struct occr *occr;
4567 /* Now look at each deleted occurrence of this expression. */
4568 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4570 if (! occr->deleted_p)
4571 continue;
4573 /* Insert this expression on this edge if if it would
4574 reach the deleted occurrence in BB. */
4575 if (!TEST_BIT (inserted[e], j))
4577 rtx insn;
4578 edge eg = INDEX_EDGE (edge_list, e);
4580 /* We can't insert anything on an abnormal and
4581 critical edge, so we insert the insn at the end of
4582 the previous block. There are several alternatives
4583 detailed in Morgans book P277 (sec 10.5) for
4584 handling this situation. This one is easiest for
4585 now. */
4587 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4588 insert_insn_end_bb (index_map[j], bb, 0);
4589 else
4591 insn = process_insert_insn (index_map[j]);
4592 insert_insn_on_edge (insn, eg);
4595 if (gcse_file)
4597 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4598 bb->index,
4599 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4600 fprintf (gcse_file, "copy expression %d\n",
4601 expr->bitmap_index);
4604 update_ld_motion_stores (expr);
4605 SET_BIT (inserted[e], j);
4606 did_insert = 1;
4607 gcse_create_count++;
4614 sbitmap_vector_free (inserted);
4615 return did_insert;
4618 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4619 Given "old_reg <- expr" (INSN), instead of adding after it
4620 reaching_reg <- old_reg
4621 it's better to do the following:
4622 reaching_reg <- expr
4623 old_reg <- reaching_reg
4624 because this way copy propagation can discover additional PRE
4625 opportunities. But if this fails, we try the old way.
4626 When "expr" is a store, i.e.
4627 given "MEM <- old_reg", instead of adding after it
4628 reaching_reg <- old_reg
4629 it's better to add it before as follows:
4630 reaching_reg <- old_reg
4631 MEM <- reaching_reg. */
4633 static void
4634 pre_insert_copy_insn (struct expr *expr, rtx insn)
4636 rtx reg = expr->reaching_reg;
4637 int regno = REGNO (reg);
4638 int indx = expr->bitmap_index;
4639 rtx pat = PATTERN (insn);
4640 rtx set, new_insn;
4641 rtx old_reg;
4642 int i;
4644 /* This block matches the logic in hash_scan_insn. */
4645 if (GET_CODE (pat) == SET)
4646 set = pat;
4647 else if (GET_CODE (pat) == PARALLEL)
4649 /* Search through the parallel looking for the set whose
4650 source was the expression that we're interested in. */
4651 set = NULL_RTX;
4652 for (i = 0; i < XVECLEN (pat, 0); i++)
4654 rtx x = XVECEXP (pat, 0, i);
4655 if (GET_CODE (x) == SET
4656 && expr_equiv_p (SET_SRC (x), expr->expr))
4658 set = x;
4659 break;
4663 else
4664 abort ();
4666 if (GET_CODE (SET_DEST (set)) == REG)
4668 old_reg = SET_DEST (set);
4669 /* Check if we can modify the set destination in the original insn. */
4670 if (validate_change (insn, &SET_DEST (set), reg, 0))
4672 new_insn = gen_move_insn (old_reg, reg);
4673 new_insn = emit_insn_after (new_insn, insn);
4675 /* Keep register set table up to date. */
4676 replace_one_set (REGNO (old_reg), insn, new_insn);
4677 record_one_set (regno, insn);
4679 else
4681 new_insn = gen_move_insn (reg, old_reg);
4682 new_insn = emit_insn_after (new_insn, insn);
4684 /* Keep register set table up to date. */
4685 record_one_set (regno, new_insn);
4688 else /* This is possible only in case of a store to memory. */
4690 old_reg = SET_SRC (set);
4691 new_insn = gen_move_insn (reg, old_reg);
4693 /* Check if we can modify the set source in the original insn. */
4694 if (validate_change (insn, &SET_SRC (set), reg, 0))
4695 new_insn = emit_insn_before (new_insn, insn);
4696 else
4697 new_insn = emit_insn_after (new_insn, insn);
4699 /* Keep register set table up to date. */
4700 record_one_set (regno, new_insn);
4703 gcse_create_count++;
4705 if (gcse_file)
4706 fprintf (gcse_file,
4707 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4708 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4709 INSN_UID (insn), regno);
4712 /* Copy available expressions that reach the redundant expression
4713 to `reaching_reg'. */
4715 static void
4716 pre_insert_copies (void)
4718 unsigned int i, added_copy;
4719 struct expr *expr;
4720 struct occr *occr;
4721 struct occr *avail;
4723 /* For each available expression in the table, copy the result to
4724 `reaching_reg' if the expression reaches a deleted one.
4726 ??? The current algorithm is rather brute force.
4727 Need to do some profiling. */
4729 for (i = 0; i < expr_hash_table.size; i++)
4730 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4732 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4733 we don't want to insert a copy here because the expression may not
4734 really be redundant. So only insert an insn if the expression was
4735 deleted. This test also avoids further processing if the
4736 expression wasn't deleted anywhere. */
4737 if (expr->reaching_reg == NULL)
4738 continue;
4740 /* Set when we add a copy for that expression. */
4741 added_copy = 0;
4743 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4745 if (! occr->deleted_p)
4746 continue;
4748 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4750 rtx insn = avail->insn;
4752 /* No need to handle this one if handled already. */
4753 if (avail->copied_p)
4754 continue;
4756 /* Don't handle this one if it's a redundant one. */
4757 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4758 continue;
4760 /* Or if the expression doesn't reach the deleted one. */
4761 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4762 expr,
4763 BLOCK_FOR_INSN (occr->insn)))
4764 continue;
4766 added_copy = 1;
4768 /* Copy the result of avail to reaching_reg. */
4769 pre_insert_copy_insn (expr, insn);
4770 avail->copied_p = 1;
4774 if (added_copy)
4775 update_ld_motion_stores (expr);
4779 /* Emit move from SRC to DEST noting the equivalence with expression computed
4780 in INSN. */
4781 static rtx
4782 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4784 rtx new;
4785 rtx set = single_set (insn), set2;
4786 rtx note;
4787 rtx eqv;
4789 /* This should never fail since we're creating a reg->reg copy
4790 we've verified to be valid. */
4792 new = emit_insn_after (gen_move_insn (dest, src), insn);
4794 /* Note the equivalence for local CSE pass. */
4795 set2 = single_set (new);
4796 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4797 return new;
4798 if ((note = find_reg_equal_equiv_note (insn)))
4799 eqv = XEXP (note, 0);
4800 else
4801 eqv = SET_SRC (set);
4803 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4805 return new;
4808 /* Delete redundant computations.
4809 Deletion is done by changing the insn to copy the `reaching_reg' of
4810 the expression into the result of the SET. It is left to later passes
4811 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4813 Returns nonzero if a change is made. */
4815 static int
4816 pre_delete (void)
4818 unsigned int i;
4819 int changed;
4820 struct expr *expr;
4821 struct occr *occr;
4823 changed = 0;
4824 for (i = 0; i < expr_hash_table.size; i++)
4825 for (expr = expr_hash_table.table[i];
4826 expr != NULL;
4827 expr = expr->next_same_hash)
4829 int indx = expr->bitmap_index;
4831 /* We only need to search antic_occr since we require
4832 ANTLOC != 0. */
4834 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4836 rtx insn = occr->insn;
4837 rtx set;
4838 basic_block bb = BLOCK_FOR_INSN (insn);
4840 /* We only delete insns that have a single_set. */
4841 if (TEST_BIT (pre_delete_map[bb->index], indx)
4842 && (set = single_set (insn)) != 0)
4844 /* Create a pseudo-reg to store the result of reaching
4845 expressions into. Get the mode for the new pseudo from
4846 the mode of the original destination pseudo. */
4847 if (expr->reaching_reg == NULL)
4848 expr->reaching_reg
4849 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4851 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4852 delete_insn (insn);
4853 occr->deleted_p = 1;
4854 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4855 changed = 1;
4856 gcse_subst_count++;
4858 if (gcse_file)
4860 fprintf (gcse_file,
4861 "PRE: redundant insn %d (expression %d) in ",
4862 INSN_UID (insn), indx);
4863 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4864 bb->index, REGNO (expr->reaching_reg));
4870 return changed;
4873 /* Perform GCSE optimizations using PRE.
4874 This is called by one_pre_gcse_pass after all the dataflow analysis
4875 has been done.
4877 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4878 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4879 Compiler Design and Implementation.
4881 ??? A new pseudo reg is created to hold the reaching expression. The nice
4882 thing about the classical approach is that it would try to use an existing
4883 reg. If the register can't be adequately optimized [i.e. we introduce
4884 reload problems], one could add a pass here to propagate the new register
4885 through the block.
4887 ??? We don't handle single sets in PARALLELs because we're [currently] not
4888 able to copy the rest of the parallel when we insert copies to create full
4889 redundancies from partial redundancies. However, there's no reason why we
4890 can't handle PARALLELs in the cases where there are no partial
4891 redundancies. */
4893 static int
4894 pre_gcse (void)
4896 unsigned int i;
4897 int did_insert, changed;
4898 struct expr **index_map;
4899 struct expr *expr;
4901 /* Compute a mapping from expression number (`bitmap_index') to
4902 hash table entry. */
4904 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4905 for (i = 0; i < expr_hash_table.size; i++)
4906 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4907 index_map[expr->bitmap_index] = expr;
4909 /* Reset bitmap used to track which insns are redundant. */
4910 pre_redundant_insns = sbitmap_alloc (max_cuid);
4911 sbitmap_zero (pre_redundant_insns);
4913 /* Delete the redundant insns first so that
4914 - we know what register to use for the new insns and for the other
4915 ones with reaching expressions
4916 - we know which insns are redundant when we go to create copies */
4918 changed = pre_delete ();
4920 did_insert = pre_edge_insert (edge_list, index_map);
4922 /* In other places with reaching expressions, copy the expression to the
4923 specially allocated pseudo-reg that reaches the redundant expr. */
4924 pre_insert_copies ();
4925 if (did_insert)
4927 commit_edge_insertions ();
4928 changed = 1;
4931 free (index_map);
4932 sbitmap_free (pre_redundant_insns);
4933 return changed;
4936 /* Top level routine to perform one PRE GCSE pass.
4938 Return nonzero if a change was made. */
4940 static int
4941 one_pre_gcse_pass (int pass)
4943 int changed = 0;
4945 gcse_subst_count = 0;
4946 gcse_create_count = 0;
4948 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4949 add_noreturn_fake_exit_edges ();
4950 if (flag_gcse_lm)
4951 compute_ld_motion_mems ();
4953 compute_hash_table (&expr_hash_table);
4954 trim_ld_motion_mems ();
4955 if (gcse_file)
4956 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4958 if (expr_hash_table.n_elems > 0)
4960 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4961 compute_pre_data ();
4962 changed |= pre_gcse ();
4963 free_edge_list (edge_list);
4964 free_pre_mem ();
4967 free_ldst_mems ();
4968 remove_fake_edges ();
4969 free_hash_table (&expr_hash_table);
4971 if (gcse_file)
4973 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4974 current_function_name (), pass, bytes_used);
4975 fprintf (gcse_file, "%d substs, %d insns created\n",
4976 gcse_subst_count, gcse_create_count);
4979 return changed;
4982 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4983 If notes are added to an insn which references a CODE_LABEL, the
4984 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4985 because the following loop optimization pass requires them. */
4987 /* ??? This is very similar to the loop.c add_label_notes function. We
4988 could probably share code here. */
4990 /* ??? If there was a jump optimization pass after gcse and before loop,
4991 then we would not need to do this here, because jump would add the
4992 necessary REG_LABEL notes. */
4994 static void
4995 add_label_notes (rtx x, rtx insn)
4997 enum rtx_code code = GET_CODE (x);
4998 int i, j;
4999 const char *fmt;
5001 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5003 /* This code used to ignore labels that referred to dispatch tables to
5004 avoid flow generating (slightly) worse code.
5006 We no longer ignore such label references (see LABEL_REF handling in
5007 mark_jump_label for additional information). */
5009 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5010 REG_NOTES (insn));
5011 if (LABEL_P (XEXP (x, 0)))
5012 LABEL_NUSES (XEXP (x, 0))++;
5013 return;
5016 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5018 if (fmt[i] == 'e')
5019 add_label_notes (XEXP (x, i), insn);
5020 else if (fmt[i] == 'E')
5021 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5022 add_label_notes (XVECEXP (x, i, j), insn);
5026 /* Compute transparent outgoing information for each block.
5028 An expression is transparent to an edge unless it is killed by
5029 the edge itself. This can only happen with abnormal control flow,
5030 when the edge is traversed through a call. This happens with
5031 non-local labels and exceptions.
5033 This would not be necessary if we split the edge. While this is
5034 normally impossible for abnormal critical edges, with some effort
5035 it should be possible with exception handling, since we still have
5036 control over which handler should be invoked. But due to increased
5037 EH table sizes, this may not be worthwhile. */
5039 static void
5040 compute_transpout (void)
5042 basic_block bb;
5043 unsigned int i;
5044 struct expr *expr;
5046 sbitmap_vector_ones (transpout, last_basic_block);
5048 FOR_EACH_BB (bb)
5050 /* Note that flow inserted a nop a the end of basic blocks that
5051 end in call instructions for reasons other than abnormal
5052 control flow. */
5053 if (GET_CODE (BB_END (bb)) != CALL_INSN)
5054 continue;
5056 for (i = 0; i < expr_hash_table.size; i++)
5057 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
5058 if (GET_CODE (expr->expr) == MEM)
5060 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5061 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5062 continue;
5064 /* ??? Optimally, we would use interprocedural alias
5065 analysis to determine if this mem is actually killed
5066 by this call. */
5067 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5072 /* Code Hoisting variables and subroutines. */
5074 /* Very busy expressions. */
5075 static sbitmap *hoist_vbein;
5076 static sbitmap *hoist_vbeout;
5078 /* Hoistable expressions. */
5079 static sbitmap *hoist_exprs;
5081 /* ??? We could compute post dominators and run this algorithm in
5082 reverse to perform tail merging, doing so would probably be
5083 more effective than the tail merging code in jump.c.
5085 It's unclear if tail merging could be run in parallel with
5086 code hoisting. It would be nice. */
5088 /* Allocate vars used for code hoisting analysis. */
5090 static void
5091 alloc_code_hoist_mem (int n_blocks, int n_exprs)
5093 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5094 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5095 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5097 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5098 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5099 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5100 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5103 /* Free vars used for code hoisting analysis. */
5105 static void
5106 free_code_hoist_mem (void)
5108 sbitmap_vector_free (antloc);
5109 sbitmap_vector_free (transp);
5110 sbitmap_vector_free (comp);
5112 sbitmap_vector_free (hoist_vbein);
5113 sbitmap_vector_free (hoist_vbeout);
5114 sbitmap_vector_free (hoist_exprs);
5115 sbitmap_vector_free (transpout);
5117 free_dominance_info (CDI_DOMINATORS);
5120 /* Compute the very busy expressions at entry/exit from each block.
5122 An expression is very busy if all paths from a given point
5123 compute the expression. */
5125 static void
5126 compute_code_hoist_vbeinout (void)
5128 int changed, passes;
5129 basic_block bb;
5131 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
5132 sbitmap_vector_zero (hoist_vbein, last_basic_block);
5134 passes = 0;
5135 changed = 1;
5137 while (changed)
5139 changed = 0;
5141 /* We scan the blocks in the reverse order to speed up
5142 the convergence. */
5143 FOR_EACH_BB_REVERSE (bb)
5145 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
5146 hoist_vbeout[bb->index], transp[bb->index]);
5147 if (bb->next_bb != EXIT_BLOCK_PTR)
5148 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
5151 passes++;
5154 if (gcse_file)
5155 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5158 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5160 static void
5161 compute_code_hoist_data (void)
5163 compute_local_properties (transp, comp, antloc, &expr_hash_table);
5164 compute_transpout ();
5165 compute_code_hoist_vbeinout ();
5166 calculate_dominance_info (CDI_DOMINATORS);
5167 if (gcse_file)
5168 fprintf (gcse_file, "\n");
5171 /* Determine if the expression identified by EXPR_INDEX would
5172 reach BB unimpared if it was placed at the end of EXPR_BB.
5174 It's unclear exactly what Muchnick meant by "unimpared". It seems
5175 to me that the expression must either be computed or transparent in
5176 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5177 would allow the expression to be hoisted out of loops, even if
5178 the expression wasn't a loop invariant.
5180 Contrast this to reachability for PRE where an expression is
5181 considered reachable if *any* path reaches instead of *all*
5182 paths. */
5184 static int
5185 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
5187 edge pred;
5188 int visited_allocated_locally = 0;
5191 if (visited == NULL)
5193 visited_allocated_locally = 1;
5194 visited = xcalloc (last_basic_block, 1);
5197 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5199 basic_block pred_bb = pred->src;
5201 if (pred->src == ENTRY_BLOCK_PTR)
5202 break;
5203 else if (pred_bb == expr_bb)
5204 continue;
5205 else if (visited[pred_bb->index])
5206 continue;
5208 /* Does this predecessor generate this expression? */
5209 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5210 break;
5211 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5212 break;
5214 /* Not killed. */
5215 else
5217 visited[pred_bb->index] = 1;
5218 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5219 pred_bb, visited))
5220 break;
5223 if (visited_allocated_locally)
5224 free (visited);
5226 return (pred == NULL);
5229 /* Actually perform code hoisting. */
5231 static void
5232 hoist_code (void)
5234 basic_block bb, dominated;
5235 basic_block *domby;
5236 unsigned int domby_len;
5237 unsigned int i,j;
5238 struct expr **index_map;
5239 struct expr *expr;
5241 sbitmap_vector_zero (hoist_exprs, last_basic_block);
5243 /* Compute a mapping from expression number (`bitmap_index') to
5244 hash table entry. */
5246 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
5247 for (i = 0; i < expr_hash_table.size; i++)
5248 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5249 index_map[expr->bitmap_index] = expr;
5251 /* Walk over each basic block looking for potentially hoistable
5252 expressions, nothing gets hoisted from the entry block. */
5253 FOR_EACH_BB (bb)
5255 int found = 0;
5256 int insn_inserted_p;
5258 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
5259 /* Examine each expression that is very busy at the exit of this
5260 block. These are the potentially hoistable expressions. */
5261 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
5263 int hoistable = 0;
5265 if (TEST_BIT (hoist_vbeout[bb->index], i)
5266 && TEST_BIT (transpout[bb->index], i))
5268 /* We've found a potentially hoistable expression, now
5269 we look at every block BB dominates to see if it
5270 computes the expression. */
5271 for (j = 0; j < domby_len; j++)
5273 dominated = domby[j];
5274 /* Ignore self dominance. */
5275 if (bb == dominated)
5276 continue;
5277 /* We've found a dominated block, now see if it computes
5278 the busy expression and whether or not moving that
5279 expression to the "beginning" of that block is safe. */
5280 if (!TEST_BIT (antloc[dominated->index], i))
5281 continue;
5283 /* Note if the expression would reach the dominated block
5284 unimpared if it was placed at the end of BB.
5286 Keep track of how many times this expression is hoistable
5287 from a dominated block into BB. */
5288 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5289 hoistable++;
5292 /* If we found more than one hoistable occurrence of this
5293 expression, then note it in the bitmap of expressions to
5294 hoist. It makes no sense to hoist things which are computed
5295 in only one BB, and doing so tends to pessimize register
5296 allocation. One could increase this value to try harder
5297 to avoid any possible code expansion due to register
5298 allocation issues; however experiments have shown that
5299 the vast majority of hoistable expressions are only movable
5300 from two successors, so raising this threshold is likely
5301 to nullify any benefit we get from code hoisting. */
5302 if (hoistable > 1)
5304 SET_BIT (hoist_exprs[bb->index], i);
5305 found = 1;
5309 /* If we found nothing to hoist, then quit now. */
5310 if (! found)
5312 free (domby);
5313 continue;
5316 /* Loop over all the hoistable expressions. */
5317 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
5319 /* We want to insert the expression into BB only once, so
5320 note when we've inserted it. */
5321 insn_inserted_p = 0;
5323 /* These tests should be the same as the tests above. */
5324 if (TEST_BIT (hoist_vbeout[bb->index], i))
5326 /* We've found a potentially hoistable expression, now
5327 we look at every block BB dominates to see if it
5328 computes the expression. */
5329 for (j = 0; j < domby_len; j++)
5331 dominated = domby[j];
5332 /* Ignore self dominance. */
5333 if (bb == dominated)
5334 continue;
5336 /* We've found a dominated block, now see if it computes
5337 the busy expression and whether or not moving that
5338 expression to the "beginning" of that block is safe. */
5339 if (!TEST_BIT (antloc[dominated->index], i))
5340 continue;
5342 /* The expression is computed in the dominated block and
5343 it would be safe to compute it at the start of the
5344 dominated block. Now we have to determine if the
5345 expression would reach the dominated block if it was
5346 placed at the end of BB. */
5347 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5349 struct expr *expr = index_map[i];
5350 struct occr *occr = expr->antic_occr;
5351 rtx insn;
5352 rtx set;
5354 /* Find the right occurrence of this expression. */
5355 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
5356 occr = occr->next;
5358 /* Should never happen. */
5359 if (!occr)
5360 abort ();
5362 insn = occr->insn;
5364 set = single_set (insn);
5365 if (! set)
5366 abort ();
5368 /* Create a pseudo-reg to store the result of reaching
5369 expressions into. Get the mode for the new pseudo
5370 from the mode of the original destination pseudo. */
5371 if (expr->reaching_reg == NULL)
5372 expr->reaching_reg
5373 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5375 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5376 delete_insn (insn);
5377 occr->deleted_p = 1;
5378 if (!insn_inserted_p)
5380 insert_insn_end_bb (index_map[i], bb, 0);
5381 insn_inserted_p = 1;
5387 free (domby);
5390 free (index_map);
5393 /* Top level routine to perform one code hoisting (aka unification) pass
5395 Return nonzero if a change was made. */
5397 static int
5398 one_code_hoisting_pass (void)
5400 int changed = 0;
5402 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5403 compute_hash_table (&expr_hash_table);
5404 if (gcse_file)
5405 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5407 if (expr_hash_table.n_elems > 0)
5409 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5410 compute_code_hoist_data ();
5411 hoist_code ();
5412 free_code_hoist_mem ();
5415 free_hash_table (&expr_hash_table);
5417 return changed;
5420 /* Here we provide the things required to do store motion towards
5421 the exit. In order for this to be effective, gcse also needed to
5422 be taught how to move a load when it is kill only by a store to itself.
5424 int i;
5425 float a[10];
5427 void foo(float scale)
5429 for (i=0; i<10; i++)
5430 a[i] *= scale;
5433 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5434 the load out since its live around the loop, and stored at the bottom
5435 of the loop.
5437 The 'Load Motion' referred to and implemented in this file is
5438 an enhancement to gcse which when using edge based lcm, recognizes
5439 this situation and allows gcse to move the load out of the loop.
5441 Once gcse has hoisted the load, store motion can then push this
5442 load towards the exit, and we end up with no loads or stores of 'i'
5443 in the loop. */
5445 /* This will search the ldst list for a matching expression. If it
5446 doesn't find one, we create one and initialize it. */
5448 static struct ls_expr *
5449 ldst_entry (rtx x)
5451 int do_not_record_p = 0;
5452 struct ls_expr * ptr;
5453 unsigned int hash;
5455 hash = hash_expr_1 (x, GET_MODE (x), & do_not_record_p);
5457 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5458 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5459 return ptr;
5461 ptr = xmalloc (sizeof (struct ls_expr));
5463 ptr->next = pre_ldst_mems;
5464 ptr->expr = NULL;
5465 ptr->pattern = x;
5466 ptr->pattern_regs = NULL_RTX;
5467 ptr->loads = NULL_RTX;
5468 ptr->stores = NULL_RTX;
5469 ptr->reaching_reg = NULL_RTX;
5470 ptr->invalid = 0;
5471 ptr->index = 0;
5472 ptr->hash_index = hash;
5473 pre_ldst_mems = ptr;
5475 return ptr;
5478 /* Free up an individual ldst entry. */
5480 static void
5481 free_ldst_entry (struct ls_expr * ptr)
5483 free_INSN_LIST_list (& ptr->loads);
5484 free_INSN_LIST_list (& ptr->stores);
5486 free (ptr);
5489 /* Free up all memory associated with the ldst list. */
5491 static void
5492 free_ldst_mems (void)
5494 while (pre_ldst_mems)
5496 struct ls_expr * tmp = pre_ldst_mems;
5498 pre_ldst_mems = pre_ldst_mems->next;
5500 free_ldst_entry (tmp);
5503 pre_ldst_mems = NULL;
5506 /* Dump debugging info about the ldst list. */
5508 static void
5509 print_ldst_list (FILE * file)
5511 struct ls_expr * ptr;
5513 fprintf (file, "LDST list: \n");
5515 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5517 fprintf (file, " Pattern (%3d): ", ptr->index);
5519 print_rtl (file, ptr->pattern);
5521 fprintf (file, "\n Loads : ");
5523 if (ptr->loads)
5524 print_rtl (file, ptr->loads);
5525 else
5526 fprintf (file, "(nil)");
5528 fprintf (file, "\n Stores : ");
5530 if (ptr->stores)
5531 print_rtl (file, ptr->stores);
5532 else
5533 fprintf (file, "(nil)");
5535 fprintf (file, "\n\n");
5538 fprintf (file, "\n");
5541 /* Returns 1 if X is in the list of ldst only expressions. */
5543 static struct ls_expr *
5544 find_rtx_in_ldst (rtx x)
5546 struct ls_expr * ptr;
5548 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5549 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5550 return ptr;
5552 return NULL;
5555 /* Assign each element of the list of mems a monotonically increasing value. */
5557 static int
5558 enumerate_ldsts (void)
5560 struct ls_expr * ptr;
5561 int n = 0;
5563 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5564 ptr->index = n++;
5566 return n;
5569 /* Return first item in the list. */
5571 static inline struct ls_expr *
5572 first_ls_expr (void)
5574 return pre_ldst_mems;
5577 /* Return the next item in the list after the specified one. */
5579 static inline struct ls_expr *
5580 next_ls_expr (struct ls_expr * ptr)
5582 return ptr->next;
5585 /* Load Motion for loads which only kill themselves. */
5587 /* Return true if x is a simple MEM operation, with no registers or
5588 side effects. These are the types of loads we consider for the
5589 ld_motion list, otherwise we let the usual aliasing take care of it. */
5591 static int
5592 simple_mem (rtx x)
5594 if (GET_CODE (x) != MEM)
5595 return 0;
5597 if (MEM_VOLATILE_P (x))
5598 return 0;
5600 if (GET_MODE (x) == BLKmode)
5601 return 0;
5603 /* If we are handling exceptions, we must be careful with memory references
5604 that may trap. If we are not, the behavior is undefined, so we may just
5605 continue. */
5606 if (flag_non_call_exceptions && may_trap_p (x))
5607 return 0;
5609 if (side_effects_p (x))
5610 return 0;
5612 /* Do not consider function arguments passed on stack. */
5613 if (reg_mentioned_p (stack_pointer_rtx, x))
5614 return 0;
5616 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5617 return 0;
5619 return 1;
5622 /* Make sure there isn't a buried reference in this pattern anywhere.
5623 If there is, invalidate the entry for it since we're not capable
5624 of fixing it up just yet.. We have to be sure we know about ALL
5625 loads since the aliasing code will allow all entries in the
5626 ld_motion list to not-alias itself. If we miss a load, we will get
5627 the wrong value since gcse might common it and we won't know to
5628 fix it up. */
5630 static void
5631 invalidate_any_buried_refs (rtx x)
5633 const char * fmt;
5634 int i, j;
5635 struct ls_expr * ptr;
5637 /* Invalidate it in the list. */
5638 if (GET_CODE (x) == MEM && simple_mem (x))
5640 ptr = ldst_entry (x);
5641 ptr->invalid = 1;
5644 /* Recursively process the insn. */
5645 fmt = GET_RTX_FORMAT (GET_CODE (x));
5647 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5649 if (fmt[i] == 'e')
5650 invalidate_any_buried_refs (XEXP (x, i));
5651 else if (fmt[i] == 'E')
5652 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5653 invalidate_any_buried_refs (XVECEXP (x, i, j));
5657 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5658 being defined as MEM loads and stores to symbols, with no side effects
5659 and no registers in the expression. For a MEM destination, we also
5660 check that the insn is still valid if we replace the destination with a
5661 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5662 which don't match this criteria, they are invalidated and trimmed out
5663 later. */
5665 static void
5666 compute_ld_motion_mems (void)
5668 struct ls_expr * ptr;
5669 basic_block bb;
5670 rtx insn;
5672 pre_ldst_mems = NULL;
5674 FOR_EACH_BB (bb)
5676 for (insn = BB_HEAD (bb);
5677 insn && insn != NEXT_INSN (BB_END (bb));
5678 insn = NEXT_INSN (insn))
5680 if (INSN_P (insn))
5682 if (GET_CODE (PATTERN (insn)) == SET)
5684 rtx src = SET_SRC (PATTERN (insn));
5685 rtx dest = SET_DEST (PATTERN (insn));
5687 /* Check for a simple LOAD... */
5688 if (GET_CODE (src) == MEM && simple_mem (src))
5690 ptr = ldst_entry (src);
5691 if (GET_CODE (dest) == REG)
5692 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5693 else
5694 ptr->invalid = 1;
5696 else
5698 /* Make sure there isn't a buried load somewhere. */
5699 invalidate_any_buried_refs (src);
5702 /* Check for stores. Don't worry about aliased ones, they
5703 will block any movement we might do later. We only care
5704 about this exact pattern since those are the only
5705 circumstance that we will ignore the aliasing info. */
5706 if (GET_CODE (dest) == MEM && simple_mem (dest))
5708 ptr = ldst_entry (dest);
5710 if (GET_CODE (src) != MEM
5711 && GET_CODE (src) != ASM_OPERANDS
5712 /* Check for REG manually since want_to_gcse_p
5713 returns 0 for all REGs. */
5714 && can_assign_to_reg_p (src))
5715 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5716 else
5717 ptr->invalid = 1;
5720 else
5721 invalidate_any_buried_refs (PATTERN (insn));
5727 /* Remove any references that have been either invalidated or are not in the
5728 expression list for pre gcse. */
5730 static void
5731 trim_ld_motion_mems (void)
5733 struct ls_expr * * last = & pre_ldst_mems;
5734 struct ls_expr * ptr = pre_ldst_mems;
5736 while (ptr != NULL)
5738 struct expr * expr;
5740 /* Delete if entry has been made invalid. */
5741 if (! ptr->invalid)
5743 /* Delete if we cannot find this mem in the expression list. */
5744 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5746 for (expr = expr_hash_table.table[hash];
5747 expr != NULL;
5748 expr = expr->next_same_hash)
5749 if (expr_equiv_p (expr->expr, ptr->pattern))
5750 break;
5752 else
5753 expr = (struct expr *) 0;
5755 if (expr)
5757 /* Set the expression field if we are keeping it. */
5758 ptr->expr = expr;
5759 last = & ptr->next;
5760 ptr = ptr->next;
5762 else
5764 *last = ptr->next;
5765 free_ldst_entry (ptr);
5766 ptr = * last;
5770 /* Show the world what we've found. */
5771 if (gcse_file && pre_ldst_mems != NULL)
5772 print_ldst_list (gcse_file);
5775 /* This routine will take an expression which we are replacing with
5776 a reaching register, and update any stores that are needed if
5777 that expression is in the ld_motion list. Stores are updated by
5778 copying their SRC to the reaching register, and then storing
5779 the reaching register into the store location. These keeps the
5780 correct value in the reaching register for the loads. */
5782 static void
5783 update_ld_motion_stores (struct expr * expr)
5785 struct ls_expr * mem_ptr;
5787 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5789 /* We can try to find just the REACHED stores, but is shouldn't
5790 matter to set the reaching reg everywhere... some might be
5791 dead and should be eliminated later. */
5793 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5794 where reg is the reaching reg used in the load. We checked in
5795 compute_ld_motion_mems that we can replace (set mem expr) with
5796 (set reg expr) in that insn. */
5797 rtx list = mem_ptr->stores;
5799 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5801 rtx insn = XEXP (list, 0);
5802 rtx pat = PATTERN (insn);
5803 rtx src = SET_SRC (pat);
5804 rtx reg = expr->reaching_reg;
5805 rtx copy, new;
5807 /* If we've already copied it, continue. */
5808 if (expr->reaching_reg == src)
5809 continue;
5811 if (gcse_file)
5813 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5814 print_rtl (gcse_file, expr->reaching_reg);
5815 fprintf (gcse_file, ":\n ");
5816 print_inline_rtx (gcse_file, insn, 8);
5817 fprintf (gcse_file, "\n");
5820 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5821 new = emit_insn_before (copy, insn);
5822 record_one_set (REGNO (reg), new);
5823 SET_SRC (pat) = reg;
5825 /* un-recognize this pattern since it's probably different now. */
5826 INSN_CODE (insn) = -1;
5827 gcse_create_count++;
5832 /* Store motion code. */
5834 #define ANTIC_STORE_LIST(x) ((x)->loads)
5835 #define AVAIL_STORE_LIST(x) ((x)->stores)
5836 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5838 /* This is used to communicate the target bitvector we want to use in the
5839 reg_set_info routine when called via the note_stores mechanism. */
5840 static int * regvec;
5842 /* And current insn, for the same routine. */
5843 static rtx compute_store_table_current_insn;
5845 /* Used in computing the reverse edge graph bit vectors. */
5846 static sbitmap * st_antloc;
5848 /* Global holding the number of store expressions we are dealing with. */
5849 static int num_stores;
5851 /* Checks to set if we need to mark a register set. Called from
5852 note_stores. */
5854 static void
5855 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5856 void *data)
5858 sbitmap bb_reg = data;
5860 if (GET_CODE (dest) == SUBREG)
5861 dest = SUBREG_REG (dest);
5863 if (GET_CODE (dest) == REG)
5865 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5866 if (bb_reg)
5867 SET_BIT (bb_reg, REGNO (dest));
5871 /* Clear any mark that says that this insn sets dest. Called from
5872 note_stores. */
5874 static void
5875 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5876 void *data)
5878 int *dead_vec = data;
5880 if (GET_CODE (dest) == SUBREG)
5881 dest = SUBREG_REG (dest);
5883 if (GET_CODE (dest) == REG &&
5884 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5885 dead_vec[REGNO (dest)] = 0;
5888 /* Return zero if some of the registers in list X are killed
5889 due to set of registers in bitmap REGS_SET. */
5891 static bool
5892 store_ops_ok (rtx x, int *regs_set)
5894 rtx reg;
5896 for (; x; x = XEXP (x, 1))
5898 reg = XEXP (x, 0);
5899 if (regs_set[REGNO(reg)])
5900 return false;
5903 return true;
5906 /* Returns a list of registers mentioned in X. */
5907 static rtx
5908 extract_mentioned_regs (rtx x)
5910 return extract_mentioned_regs_helper (x, NULL_RTX);
5913 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5914 registers. */
5915 static rtx
5916 extract_mentioned_regs_helper (rtx x, rtx accum)
5918 int i;
5919 enum rtx_code code;
5920 const char * fmt;
5922 /* Repeat is used to turn tail-recursion into iteration. */
5923 repeat:
5925 if (x == 0)
5926 return accum;
5928 code = GET_CODE (x);
5929 switch (code)
5931 case REG:
5932 return alloc_EXPR_LIST (0, x, accum);
5934 case MEM:
5935 x = XEXP (x, 0);
5936 goto repeat;
5938 case PRE_DEC:
5939 case PRE_INC:
5940 case POST_DEC:
5941 case POST_INC:
5942 /* We do not run this function with arguments having side effects. */
5943 abort ();
5945 case PC:
5946 case CC0: /*FIXME*/
5947 case CONST:
5948 case CONST_INT:
5949 case CONST_DOUBLE:
5950 case CONST_VECTOR:
5951 case SYMBOL_REF:
5952 case LABEL_REF:
5953 case ADDR_VEC:
5954 case ADDR_DIFF_VEC:
5955 return accum;
5957 default:
5958 break;
5961 i = GET_RTX_LENGTH (code) - 1;
5962 fmt = GET_RTX_FORMAT (code);
5964 for (; i >= 0; i--)
5966 if (fmt[i] == 'e')
5968 rtx tem = XEXP (x, i);
5970 /* If we are about to do the last recursive call
5971 needed at this level, change it into iteration. */
5972 if (i == 0)
5974 x = tem;
5975 goto repeat;
5978 accum = extract_mentioned_regs_helper (tem, accum);
5980 else if (fmt[i] == 'E')
5982 int j;
5984 for (j = 0; j < XVECLEN (x, i); j++)
5985 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5989 return accum;
5992 /* Determine whether INSN is MEM store pattern that we will consider moving.
5993 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5994 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5995 including) the insn in this basic block. We must be passing through BB from
5996 head to end, as we are using this fact to speed things up.
5998 The results are stored this way:
6000 -- the first anticipatable expression is added into ANTIC_STORE_LIST
6001 -- if the processed expression is not anticipatable, NULL_RTX is added
6002 there instead, so that we can use it as indicator that no further
6003 expression of this type may be anticipatable
6004 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
6005 consequently, all of them but this head are dead and may be deleted.
6006 -- if the expression is not available, the insn due to that it fails to be
6007 available is stored in reaching_reg.
6009 The things are complicated a bit by fact that there already may be stores
6010 to the same MEM from other blocks; also caller must take care of the
6011 necessary cleanup of the temporary markers after end of the basic block.
6014 static void
6015 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
6017 struct ls_expr * ptr;
6018 rtx dest, set, tmp;
6019 int check_anticipatable, check_available;
6020 basic_block bb = BLOCK_FOR_INSN (insn);
6022 set = single_set (insn);
6023 if (!set)
6024 return;
6026 dest = SET_DEST (set);
6028 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6029 || GET_MODE (dest) == BLKmode)
6030 return;
6032 if (side_effects_p (dest))
6033 return;
6035 /* If we are handling exceptions, we must be careful with memory references
6036 that may trap. If we are not, the behavior is undefined, so we may just
6037 continue. */
6038 if (flag_non_call_exceptions && may_trap_p (dest))
6039 return;
6041 /* Even if the destination cannot trap, the source may. In this case we'd
6042 need to handle updating the REG_EH_REGION note. */
6043 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
6044 return;
6046 ptr = ldst_entry (dest);
6047 if (!ptr->pattern_regs)
6048 ptr->pattern_regs = extract_mentioned_regs (dest);
6050 /* Do not check for anticipatability if we either found one anticipatable
6051 store already, or tested for one and found out that it was killed. */
6052 check_anticipatable = 0;
6053 if (!ANTIC_STORE_LIST (ptr))
6054 check_anticipatable = 1;
6055 else
6057 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
6058 if (tmp != NULL_RTX
6059 && BLOCK_FOR_INSN (tmp) != bb)
6060 check_anticipatable = 1;
6062 if (check_anticipatable)
6064 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
6065 tmp = NULL_RTX;
6066 else
6067 tmp = insn;
6068 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
6069 ANTIC_STORE_LIST (ptr));
6072 /* It is not necessary to check whether store is available if we did
6073 it successfully before; if we failed before, do not bother to check
6074 until we reach the insn that caused us to fail. */
6075 check_available = 0;
6076 if (!AVAIL_STORE_LIST (ptr))
6077 check_available = 1;
6078 else
6080 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
6081 if (BLOCK_FOR_INSN (tmp) != bb)
6082 check_available = 1;
6084 if (check_available)
6086 /* Check that we have already reached the insn at that the check
6087 failed last time. */
6088 if (LAST_AVAIL_CHECK_FAILURE (ptr))
6090 for (tmp = BB_END (bb);
6091 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
6092 tmp = PREV_INSN (tmp))
6093 continue;
6094 if (tmp == insn)
6095 check_available = 0;
6097 else
6098 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
6099 bb, regs_set_after,
6100 &LAST_AVAIL_CHECK_FAILURE (ptr));
6102 if (!check_available)
6103 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
6106 /* Find available and anticipatable stores. */
6108 static int
6109 compute_store_table (void)
6111 int ret;
6112 basic_block bb;
6113 unsigned regno;
6114 rtx insn, pat, tmp;
6115 int *last_set_in, *already_set;
6116 struct ls_expr * ptr, **prev_next_ptr_ptr;
6118 max_gcse_regno = max_reg_num ();
6120 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
6121 max_gcse_regno);
6122 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
6123 pre_ldst_mems = 0;
6124 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
6125 already_set = xmalloc (sizeof (int) * max_gcse_regno);
6127 /* Find all the stores we care about. */
6128 FOR_EACH_BB (bb)
6130 /* First compute the registers set in this block. */
6131 regvec = last_set_in;
6133 for (insn = BB_HEAD (bb);
6134 insn != NEXT_INSN (BB_END (bb));
6135 insn = NEXT_INSN (insn))
6137 if (! INSN_P (insn))
6138 continue;
6140 if (GET_CODE (insn) == CALL_INSN)
6142 bool clobbers_all = false;
6143 #ifdef NON_SAVING_SETJMP
6144 if (NON_SAVING_SETJMP
6145 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6146 clobbers_all = true;
6147 #endif
6149 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6150 if (clobbers_all
6151 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6153 last_set_in[regno] = INSN_UID (insn);
6154 SET_BIT (reg_set_in_block[bb->index], regno);
6158 pat = PATTERN (insn);
6159 compute_store_table_current_insn = insn;
6160 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
6163 /* Now find the stores. */
6164 memset (already_set, 0, sizeof (int) * max_gcse_regno);
6165 regvec = already_set;
6166 for (insn = BB_HEAD (bb);
6167 insn != NEXT_INSN (BB_END (bb));
6168 insn = NEXT_INSN (insn))
6170 if (! INSN_P (insn))
6171 continue;
6173 if (GET_CODE (insn) == CALL_INSN)
6175 bool clobbers_all = false;
6176 #ifdef NON_SAVING_SETJMP
6177 if (NON_SAVING_SETJMP
6178 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6179 clobbers_all = true;
6180 #endif
6182 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6183 if (clobbers_all
6184 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6185 already_set[regno] = 1;
6188 pat = PATTERN (insn);
6189 note_stores (pat, reg_set_info, NULL);
6191 /* Now that we've marked regs, look for stores. */
6192 find_moveable_store (insn, already_set, last_set_in);
6194 /* Unmark regs that are no longer set. */
6195 compute_store_table_current_insn = insn;
6196 note_stores (pat, reg_clear_last_set, last_set_in);
6197 if (GET_CODE (insn) == CALL_INSN)
6199 bool clobbers_all = false;
6200 #ifdef NON_SAVING_SETJMP
6201 if (NON_SAVING_SETJMP
6202 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6203 clobbers_all = true;
6204 #endif
6206 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6207 if ((clobbers_all
6208 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6209 && last_set_in[regno] == INSN_UID (insn))
6210 last_set_in[regno] = 0;
6214 #ifdef ENABLE_CHECKING
6215 /* last_set_in should now be all-zero. */
6216 for (regno = 0; regno < max_gcse_regno; regno++)
6217 if (last_set_in[regno] != 0)
6218 abort ();
6219 #endif
6221 /* Clear temporary marks. */
6222 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6224 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
6225 if (ANTIC_STORE_LIST (ptr)
6226 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
6227 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
6231 /* Remove the stores that are not available anywhere, as there will
6232 be no opportunity to optimize them. */
6233 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
6234 ptr != NULL;
6235 ptr = *prev_next_ptr_ptr)
6237 if (!AVAIL_STORE_LIST (ptr))
6239 *prev_next_ptr_ptr = ptr->next;
6240 free_ldst_entry (ptr);
6242 else
6243 prev_next_ptr_ptr = &ptr->next;
6246 ret = enumerate_ldsts ();
6248 if (gcse_file)
6250 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6251 print_ldst_list (gcse_file);
6254 free (last_set_in);
6255 free (already_set);
6256 return ret;
6259 /* Check to see if the load X is aliased with STORE_PATTERN.
6260 AFTER is true if we are checking the case when STORE_PATTERN occurs
6261 after the X. */
6263 static bool
6264 load_kills_store (rtx x, rtx store_pattern, int after)
6266 if (after)
6267 return anti_dependence (x, store_pattern);
6268 else
6269 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
6270 rtx_addr_varies_p);
6273 /* Go through the entire insn X, looking for any loads which might alias
6274 STORE_PATTERN. Return true if found.
6275 AFTER is true if we are checking the case when STORE_PATTERN occurs
6276 after the insn X. */
6278 static bool
6279 find_loads (rtx x, rtx store_pattern, int after)
6281 const char * fmt;
6282 int i, j;
6283 int ret = false;
6285 if (!x)
6286 return false;
6288 if (GET_CODE (x) == SET)
6289 x = SET_SRC (x);
6291 if (GET_CODE (x) == MEM)
6293 if (load_kills_store (x, store_pattern, after))
6294 return true;
6297 /* Recursively process the insn. */
6298 fmt = GET_RTX_FORMAT (GET_CODE (x));
6300 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6302 if (fmt[i] == 'e')
6303 ret |= find_loads (XEXP (x, i), store_pattern, after);
6304 else if (fmt[i] == 'E')
6305 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6306 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
6308 return ret;
6311 /* Check if INSN kills the store pattern X (is aliased with it).
6312 AFTER is true if we are checking the case when store X occurs
6313 after the insn. Return true if it it does. */
6315 static bool
6316 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
6318 rtx reg, base, note;
6320 if (!INSN_P (insn))
6321 return false;
6323 if (GET_CODE (insn) == CALL_INSN)
6325 /* A normal or pure call might read from pattern,
6326 but a const call will not. */
6327 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
6328 return true;
6330 /* But even a const call reads its parameters. Check whether the
6331 base of some of registers used in mem is stack pointer. */
6332 for (reg = x_regs; reg; reg = XEXP (reg, 1))
6334 base = find_base_term (XEXP (reg, 0));
6335 if (!base
6336 || (GET_CODE (base) == ADDRESS
6337 && GET_MODE (base) == Pmode
6338 && XEXP (base, 0) == stack_pointer_rtx))
6339 return true;
6342 return false;
6345 if (GET_CODE (PATTERN (insn)) == SET)
6347 rtx pat = PATTERN (insn);
6348 rtx dest = SET_DEST (pat);
6350 if (GET_CODE (dest) == SIGN_EXTRACT
6351 || GET_CODE (dest) == ZERO_EXTRACT)
6352 dest = XEXP (dest, 0);
6354 /* Check for memory stores to aliased objects. */
6355 if (GET_CODE (dest) == MEM
6356 && !expr_equiv_p (dest, x))
6358 if (after)
6360 if (output_dependence (dest, x))
6361 return true;
6363 else
6365 if (output_dependence (x, dest))
6366 return true;
6369 if (find_loads (SET_SRC (pat), x, after))
6370 return true;
6372 else if (find_loads (PATTERN (insn), x, after))
6373 return true;
6375 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
6376 location aliased with X, then this insn kills X. */
6377 note = find_reg_equal_equiv_note (insn);
6378 if (! note)
6379 return false;
6380 note = XEXP (note, 0);
6382 /* However, if the note represents a must alias rather than a may
6383 alias relationship, then it does not kill X. */
6384 if (expr_equiv_p (note, x))
6385 return false;
6387 /* See if there are any aliased loads in the note. */
6388 return find_loads (note, x, after);
6391 /* Returns true if the expression X is loaded or clobbered on or after INSN
6392 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6393 or after the insn. X_REGS is list of registers mentioned in X. If the store
6394 is killed, return the last insn in that it occurs in FAIL_INSN. */
6396 static bool
6397 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6398 int *regs_set_after, rtx *fail_insn)
6400 rtx last = BB_END (bb), act;
6402 if (!store_ops_ok (x_regs, regs_set_after))
6404 /* We do not know where it will happen. */
6405 if (fail_insn)
6406 *fail_insn = NULL_RTX;
6407 return true;
6410 /* Scan from the end, so that fail_insn is determined correctly. */
6411 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6412 if (store_killed_in_insn (x, x_regs, act, false))
6414 if (fail_insn)
6415 *fail_insn = act;
6416 return true;
6419 return false;
6422 /* Returns true if the expression X is loaded or clobbered on or before INSN
6423 within basic block BB. X_REGS is list of registers mentioned in X.
6424 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6425 static bool
6426 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6427 int *regs_set_before)
6429 rtx first = BB_HEAD (bb);
6431 if (!store_ops_ok (x_regs, regs_set_before))
6432 return true;
6434 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6435 if (store_killed_in_insn (x, x_regs, insn, true))
6436 return true;
6438 return false;
6441 /* Fill in available, anticipatable, transparent and kill vectors in
6442 STORE_DATA, based on lists of available and anticipatable stores. */
6443 static void
6444 build_store_vectors (void)
6446 basic_block bb;
6447 int *regs_set_in_block;
6448 rtx insn, st;
6449 struct ls_expr * ptr;
6450 unsigned regno;
6452 /* Build the gen_vector. This is any store in the table which is not killed
6453 by aliasing later in its block. */
6454 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6455 sbitmap_vector_zero (ae_gen, last_basic_block);
6457 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6458 sbitmap_vector_zero (st_antloc, last_basic_block);
6460 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6462 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6464 insn = XEXP (st, 0);
6465 bb = BLOCK_FOR_INSN (insn);
6467 /* If we've already seen an available expression in this block,
6468 we can delete this one (It occurs earlier in the block). We'll
6469 copy the SRC expression to an unused register in case there
6470 are any side effects. */
6471 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6473 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6474 if (gcse_file)
6475 fprintf (gcse_file, "Removing redundant store:\n");
6476 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6477 continue;
6479 SET_BIT (ae_gen[bb->index], ptr->index);
6482 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6484 insn = XEXP (st, 0);
6485 bb = BLOCK_FOR_INSN (insn);
6486 SET_BIT (st_antloc[bb->index], ptr->index);
6490 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6491 sbitmap_vector_zero (ae_kill, last_basic_block);
6493 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6494 sbitmap_vector_zero (transp, last_basic_block);
6495 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6497 FOR_EACH_BB (bb)
6499 for (regno = 0; regno < max_gcse_regno; regno++)
6500 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6502 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6504 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6505 bb, regs_set_in_block, NULL))
6507 /* It should not be necessary to consider the expression
6508 killed if it is both anticipatable and available. */
6509 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6510 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6511 SET_BIT (ae_kill[bb->index], ptr->index);
6513 else
6514 SET_BIT (transp[bb->index], ptr->index);
6518 free (regs_set_in_block);
6520 if (gcse_file)
6522 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6523 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6524 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6525 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6529 /* Insert an instruction at the beginning of a basic block, and update
6530 the BB_HEAD if needed. */
6532 static void
6533 insert_insn_start_bb (rtx insn, basic_block bb)
6535 /* Insert at start of successor block. */
6536 rtx prev = PREV_INSN (BB_HEAD (bb));
6537 rtx before = BB_HEAD (bb);
6538 while (before != 0)
6540 if (GET_CODE (before) != CODE_LABEL
6541 && (GET_CODE (before) != NOTE
6542 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6543 break;
6544 prev = before;
6545 if (prev == BB_END (bb))
6546 break;
6547 before = NEXT_INSN (before);
6550 insn = emit_insn_after (insn, prev);
6552 if (gcse_file)
6554 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6555 bb->index);
6556 print_inline_rtx (gcse_file, insn, 6);
6557 fprintf (gcse_file, "\n");
6561 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6562 the memory reference, and E is the edge to insert it on. Returns nonzero
6563 if an edge insertion was performed. */
6565 static int
6566 insert_store (struct ls_expr * expr, edge e)
6568 rtx reg, insn;
6569 basic_block bb;
6570 edge tmp;
6572 /* We did all the deleted before this insert, so if we didn't delete a
6573 store, then we haven't set the reaching reg yet either. */
6574 if (expr->reaching_reg == NULL_RTX)
6575 return 0;
6577 if (e->flags & EDGE_FAKE)
6578 return 0;
6580 reg = expr->reaching_reg;
6581 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6583 /* If we are inserting this expression on ALL predecessor edges of a BB,
6584 insert it at the start of the BB, and reset the insert bits on the other
6585 edges so we don't try to insert it on the other edges. */
6586 bb = e->dest;
6587 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6588 if (!(tmp->flags & EDGE_FAKE))
6590 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6591 if (index == EDGE_INDEX_NO_EDGE)
6592 abort ();
6593 if (! TEST_BIT (pre_insert_map[index], expr->index))
6594 break;
6597 /* If tmp is NULL, we found an insertion on every edge, blank the
6598 insertion vector for these edges, and insert at the start of the BB. */
6599 if (!tmp && bb != EXIT_BLOCK_PTR)
6601 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6603 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6604 RESET_BIT (pre_insert_map[index], expr->index);
6606 insert_insn_start_bb (insn, bb);
6607 return 0;
6610 /* We can't insert on this edge, so we'll insert at the head of the
6611 successors block. See Morgan, sec 10.5. */
6612 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6614 insert_insn_start_bb (insn, bb);
6615 return 0;
6618 insert_insn_on_edge (insn, e);
6620 if (gcse_file)
6622 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6623 e->src->index, e->dest->index);
6624 print_inline_rtx (gcse_file, insn, 6);
6625 fprintf (gcse_file, "\n");
6628 return 1;
6631 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6632 memory location in SMEXPR set in basic block BB.
6634 This could be rather expensive. */
6636 static void
6637 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6639 edge *stack = xmalloc (sizeof (edge) * n_basic_blocks), act;
6640 sbitmap visited = sbitmap_alloc (last_basic_block);
6641 int stack_top = 0;
6642 rtx last, insn, note;
6643 rtx mem = smexpr->pattern;
6645 sbitmap_zero (visited);
6646 act = bb->succ;
6648 while (1)
6650 if (!act)
6652 if (!stack_top)
6654 free (stack);
6655 sbitmap_free (visited);
6656 return;
6658 act = stack[--stack_top];
6660 bb = act->dest;
6662 if (bb == EXIT_BLOCK_PTR
6663 || TEST_BIT (visited, bb->index))
6665 act = act->succ_next;
6666 continue;
6668 SET_BIT (visited, bb->index);
6670 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6672 for (last = ANTIC_STORE_LIST (smexpr);
6673 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6674 last = XEXP (last, 1))
6675 continue;
6676 last = XEXP (last, 0);
6678 else
6679 last = NEXT_INSN (BB_END (bb));
6681 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6682 if (INSN_P (insn))
6684 note = find_reg_equal_equiv_note (insn);
6685 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6686 continue;
6688 if (gcse_file)
6689 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6690 INSN_UID (insn));
6691 remove_note (insn, note);
6693 act = act->succ_next;
6694 if (bb->succ)
6696 if (act)
6697 stack[stack_top++] = act;
6698 act = bb->succ;
6703 /* This routine will replace a store with a SET to a specified register. */
6705 static void
6706 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6708 rtx insn, mem, note, set, ptr;
6710 mem = smexpr->pattern;
6711 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6712 insn = emit_insn_after (insn, del);
6714 if (gcse_file)
6716 fprintf (gcse_file,
6717 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6718 print_inline_rtx (gcse_file, del, 6);
6719 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6720 print_inline_rtx (gcse_file, insn, 6);
6721 fprintf (gcse_file, "\n");
6724 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6725 if (XEXP (ptr, 0) == del)
6727 XEXP (ptr, 0) = insn;
6728 break;
6730 delete_insn (del);
6732 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6733 they are no longer accurate provided that they are reached by this
6734 definition, so drop them. */
6735 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6736 if (INSN_P (insn))
6738 set = single_set (insn);
6739 if (!set)
6740 continue;
6741 if (expr_equiv_p (SET_DEST (set), mem))
6742 return;
6743 note = find_reg_equal_equiv_note (insn);
6744 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6745 continue;
6747 if (gcse_file)
6748 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6749 INSN_UID (insn));
6750 remove_note (insn, note);
6752 remove_reachable_equiv_notes (bb, smexpr);
6756 /* Delete a store, but copy the value that would have been stored into
6757 the reaching_reg for later storing. */
6759 static void
6760 delete_store (struct ls_expr * expr, basic_block bb)
6762 rtx reg, i, del;
6764 if (expr->reaching_reg == NULL_RTX)
6765 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6767 reg = expr->reaching_reg;
6769 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6771 del = XEXP (i, 0);
6772 if (BLOCK_FOR_INSN (del) == bb)
6774 /* We know there is only one since we deleted redundant
6775 ones during the available computation. */
6776 replace_store_insn (reg, del, bb, expr);
6777 break;
6782 /* Free memory used by store motion. */
6784 static void
6785 free_store_memory (void)
6787 free_ldst_mems ();
6789 if (ae_gen)
6790 sbitmap_vector_free (ae_gen);
6791 if (ae_kill)
6792 sbitmap_vector_free (ae_kill);
6793 if (transp)
6794 sbitmap_vector_free (transp);
6795 if (st_antloc)
6796 sbitmap_vector_free (st_antloc);
6797 if (pre_insert_map)
6798 sbitmap_vector_free (pre_insert_map);
6799 if (pre_delete_map)
6800 sbitmap_vector_free (pre_delete_map);
6801 if (reg_set_in_block)
6802 sbitmap_vector_free (reg_set_in_block);
6804 ae_gen = ae_kill = transp = st_antloc = NULL;
6805 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6808 /* Perform store motion. Much like gcse, except we move expressions the
6809 other way by looking at the flowgraph in reverse. */
6811 static void
6812 store_motion (void)
6814 basic_block bb;
6815 int x;
6816 struct ls_expr * ptr;
6817 int update_flow = 0;
6819 if (gcse_file)
6821 fprintf (gcse_file, "before store motion\n");
6822 print_rtl (gcse_file, get_insns ());
6825 init_alias_analysis ();
6827 /* Find all the available and anticipatable stores. */
6828 num_stores = compute_store_table ();
6829 if (num_stores == 0)
6831 sbitmap_vector_free (reg_set_in_block);
6832 end_alias_analysis ();
6833 return;
6836 /* Now compute kill & transp vectors. */
6837 build_store_vectors ();
6838 add_noreturn_fake_exit_edges ();
6839 connect_infinite_loops_to_exit ();
6841 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6842 st_antloc, ae_kill, &pre_insert_map,
6843 &pre_delete_map);
6845 /* Now we want to insert the new stores which are going to be needed. */
6846 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6848 FOR_EACH_BB (bb)
6849 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6850 delete_store (ptr, bb);
6852 for (x = 0; x < NUM_EDGES (edge_list); x++)
6853 if (TEST_BIT (pre_insert_map[x], ptr->index))
6854 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6857 if (update_flow)
6858 commit_edge_insertions ();
6860 free_store_memory ();
6861 free_edge_list (edge_list);
6862 remove_fake_edges ();
6863 end_alias_analysis ();
6867 /* Entry point for jump bypassing optimization pass. */
6870 bypass_jumps (FILE *file)
6872 int changed;
6874 /* We do not construct an accurate cfg in functions which call
6875 setjmp, so just punt to be safe. */
6876 if (current_function_calls_setjmp)
6877 return 0;
6879 /* For calling dump_foo fns from gdb. */
6880 debug_stderr = stderr;
6881 gcse_file = file;
6883 /* Identify the basic block information for this function, including
6884 successors and predecessors. */
6885 max_gcse_regno = max_reg_num ();
6887 if (file)
6888 dump_flow_info (file);
6890 /* Return if there's nothing to do, or it is too expensive. */
6891 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6892 return 0;
6894 gcc_obstack_init (&gcse_obstack);
6895 bytes_used = 0;
6897 /* We need alias. */
6898 init_alias_analysis ();
6900 /* Record where pseudo-registers are set. This data is kept accurate
6901 during each pass. ??? We could also record hard-reg information here
6902 [since it's unchanging], however it is currently done during hash table
6903 computation.
6905 It may be tempting to compute MEM set information here too, but MEM sets
6906 will be subject to code motion one day and thus we need to compute
6907 information about memory sets when we build the hash tables. */
6909 alloc_reg_set_mem (max_gcse_regno);
6910 compute_sets (get_insns ());
6912 max_gcse_regno = max_reg_num ();
6913 alloc_gcse_mem (get_insns ());
6914 changed = one_cprop_pass (1, 1, 1);
6915 free_gcse_mem ();
6917 if (file)
6919 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6920 current_function_name (), n_basic_blocks);
6921 fprintf (file, "%d bytes\n\n", bytes_used);
6924 obstack_free (&gcse_obstack, NULL);
6925 free_reg_set_mem ();
6927 /* We are finished with alias. */
6928 end_alias_analysis ();
6929 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6931 return changed;
6934 /* Return true if the graph is too expensive to optimize. PASS is the
6935 optimization about to be performed. */
6937 static bool
6938 is_too_expensive (const char *pass)
6940 /* Trying to perform global optimizations on flow graphs which have
6941 a high connectivity will take a long time and is unlikely to be
6942 particularly useful.
6944 In normal circumstances a cfg should have about twice as many
6945 edges as blocks. But we do not want to punish small functions
6946 which have a couple switch statements. Rather than simply
6947 threshold the number of blocks, uses something with a more
6948 graceful degradation. */
6949 if (n_edges > 20000 + n_basic_blocks * 4)
6951 if (warn_disabled_optimization)
6952 warning ("%s: %d basic blocks and %d edges/basic block",
6953 pass, n_basic_blocks, n_edges / n_basic_blocks);
6955 return true;
6958 /* If allocating memory for the cprop bitmap would take up too much
6959 storage it's better just to disable the optimization. */
6960 if ((n_basic_blocks
6961 * SBITMAP_SET_SIZE (max_reg_num ())
6962 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6964 if (warn_disabled_optimization)
6965 warning ("%s: %d basic blocks and %d registers",
6966 pass, n_basic_blocks, max_reg_num ());
6968 return true;
6971 return false;
6974 /* The following code implements gcse after reload, the purpose of this
6975 pass is to cleanup redundant loads generated by reload and other
6976 optimizations that come after gcse. It searches for simple inter-block
6977 redundancies and tries to eliminate them by adding moves and loads
6978 in cold places. */
6980 /* The following structure holds the information about the occurrences of
6981 the redundant instructions. */
6982 struct unoccr
6984 struct unoccr *next;
6985 edge pred;
6986 rtx insn;
6989 static bool reg_used_on_edge (rtx, edge);
6990 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
6991 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
6992 static rtx get_avail_load_store_reg (rtx);
6993 static bool is_jump_table_basic_block (basic_block);
6994 static bool bb_has_well_behaved_predecessors (basic_block);
6995 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
6996 static void hash_scan_set_after_reload (rtx, rtx, struct hash_table *);
6997 static void compute_hash_table_after_reload (struct hash_table *);
6998 static void eliminate_partially_redundant_loads (basic_block,
6999 rtx,
7000 struct expr *);
7001 static void gcse_after_reload (void);
7002 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
7003 void gcse_after_reload_main (rtx, FILE *);
7006 /* Check if register REG is used in any insn waiting to be inserted on E.
7007 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
7008 with PREV(insn),NEXT(insn) instead of calling
7009 reg_overlap_mentioned_p. */
7011 static bool
7012 reg_used_on_edge (rtx reg, edge e)
7014 rtx insn;
7016 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
7017 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
7018 return true;
7020 return false;
7023 /* Return the insn that sets register REG or clobbers it in between
7024 FROM_INSN and TO_INSN (exclusive of those two).
7025 Just like reg_set_between but for hard registers and not pseudos. */
7027 static rtx
7028 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
7030 rtx insn;
7031 int regno;
7033 if (GET_CODE (reg) != REG)
7034 abort ();
7035 regno = REGNO (reg);
7037 /* We are called after register allocation. */
7038 if (regno >= FIRST_PSEUDO_REGISTER)
7039 abort ();
7041 if (from_insn == to_insn)
7042 return NULL_RTX;
7044 for (insn = NEXT_INSN (from_insn);
7045 insn != to_insn;
7046 insn = NEXT_INSN (insn))
7048 if (INSN_P (insn))
7050 if (FIND_REG_INC_NOTE (insn, reg)
7051 || (GET_CODE (insn) == CALL_INSN
7052 && call_used_regs[regno])
7053 || find_reg_fusage (insn, CLOBBER, reg))
7054 return insn;
7056 if (set_of (reg, insn) != NULL_RTX)
7057 return insn;
7059 return NULL_RTX;
7062 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
7063 (exclusive of those two). Similar to reg_used_between but for hard
7064 registers and not pseudos. */
7066 static rtx
7067 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
7069 rtx insn;
7070 int regno;
7072 if (GET_CODE (reg) != REG)
7073 return to_insn;
7074 regno = REGNO (reg);
7076 /* We are called after register allocation. */
7077 if (regno >= FIRST_PSEUDO_REGISTER)
7078 abort ();
7079 if (from_insn == to_insn)
7080 return NULL_RTX;
7082 for (insn = NEXT_INSN (from_insn);
7083 insn != to_insn;
7084 insn = NEXT_INSN (insn))
7085 if (INSN_P (insn)
7086 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
7087 || (GET_CODE (insn) == CALL_INSN
7088 && call_used_regs[regno])
7089 || find_reg_fusage (insn, USE, reg)
7090 || find_reg_fusage (insn, CLOBBER, reg)))
7091 return insn;
7092 return NULL_RTX;
7095 /* Return the loaded/stored register of a load/store instruction. */
7097 static rtx
7098 get_avail_load_store_reg (rtx insn)
7100 if (GET_CODE (SET_DEST (PATTERN (insn))) == REG) /* A load. */
7101 return SET_DEST(PATTERN(insn));
7102 if (GET_CODE (SET_SRC (PATTERN (insn))) == REG) /* A store. */
7103 return SET_SRC (PATTERN (insn));
7104 abort ();
7107 /* Don't handle ABNORMAL edges or jump tables. */
7109 static bool
7110 is_jump_table_basic_block (basic_block bb)
7112 rtx insn = BB_END (bb);
7114 if (GET_CODE (insn) == JUMP_INSN &&
7115 (GET_CODE (PATTERN (insn)) == ADDR_VEC
7116 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
7117 return true;
7118 return false;
7121 /* Return nonzero if the predecessors of BB are "well behaved". */
7123 static bool
7124 bb_has_well_behaved_predecessors (basic_block bb)
7126 edge pred;
7128 if (! bb->pred)
7129 return false;
7130 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
7131 if (((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
7132 || is_jump_table_basic_block (pred->src))
7133 return false;
7134 return true;
7138 /* Search for the occurrences of expression in BB. */
7140 static struct occr*
7141 get_bb_avail_insn (basic_block bb, struct occr *occr)
7143 for (; occr != NULL; occr = occr->next)
7144 if (BLOCK_FOR_INSN (occr->insn)->index == bb->index)
7145 return occr;
7146 return NULL;
7149 /* Perform partial GCSE pass after reload, try to eliminate redundant loads
7150 created by the reload pass. We try to look for a full or partial
7151 redundant loads fed by one or more loads/stores in predecessor BBs,
7152 and try adding loads to make them fully redundant. We also check if
7153 it's worth adding loads to be able to delete the redundant load.
7155 Algorithm:
7156 1. Build available expressions hash table:
7157 For each load/store instruction, if the loaded/stored memory didn't
7158 change until the end of the basic block add this memory expression to
7159 the hash table.
7160 2. Perform Redundancy elimination:
7161 For each load instruction do the following:
7162 perform partial redundancy elimination, check if it's worth adding
7163 loads to make the load fully redundant. If so add loads and
7164 register copies and delete the load.
7166 Future enhancement:
7167 if loaded register is used/defined between load and some store,
7168 look for some other free register between load and all its stores,
7169 and replace load with a copy from this register to the loaded
7170 register. */
7173 /* This handles the case where several stores feed a partially redundant
7174 load. It checks if the redundancy elimination is possible and if it's
7175 worth it. */
7177 static void
7178 eliminate_partially_redundant_loads (basic_block bb, rtx insn,
7179 struct expr *expr)
7181 edge pred;
7182 rtx avail_insn = NULL_RTX;
7183 rtx avail_reg;
7184 rtx dest, pat;
7185 struct occr *a_occr;
7186 struct unoccr *occr, *avail_occrs = NULL;
7187 struct unoccr *unoccr, *unavail_occrs = NULL;
7188 int npred_ok = 0;
7189 gcov_type ok_count = 0; /* Redundant load execution count. */
7190 gcov_type critical_count = 0; /* Execution count of critical edges. */
7192 /* The execution count of the loads to be added to make the
7193 load fully redundant. */
7194 gcov_type not_ok_count = 0;
7195 basic_block pred_bb;
7197 pat = PATTERN (insn);
7198 dest = SET_DEST (pat);
7199 /* Check that the loaded register is not used, set, or killed from the
7200 beginning of the block. */
7201 if (reg_used_between_after_reload_p (dest,
7202 PREV_INSN (BB_HEAD (bb)), insn)
7203 || reg_set_between_after_reload_p (dest,
7204 PREV_INSN (BB_HEAD (bb)), insn))
7205 return;
7207 /* Check potential for replacing load with copy for predecessors. */
7208 for (pred = bb->pred; pred; pred = pred->pred_next)
7210 rtx next_pred_bb_end;
7212 avail_insn = NULL_RTX;
7213 pred_bb = pred->src;
7214 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
7215 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
7216 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
7218 /* Check if the loaded register is not used. */
7219 avail_insn = a_occr->insn;
7220 if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
7221 abort ();
7222 /* Make sure we can generate a move from register avail_reg to
7223 dest. */
7224 extract_insn (gen_move_insn (copy_rtx (dest),
7225 copy_rtx (avail_reg)));
7226 if (! constrain_operands (1)
7227 || reg_killed_on_edge (avail_reg, pred)
7228 || reg_used_on_edge (dest, pred))
7230 avail_insn = NULL;
7231 continue;
7233 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
7234 next_pred_bb_end))
7235 /* AVAIL_INSN remains non-null. */
7236 break;
7237 else
7238 avail_insn = NULL;
7240 if (avail_insn != NULL_RTX)
7242 npred_ok++;
7243 ok_count += pred->count;
7244 if (EDGE_CRITICAL_P (pred))
7245 critical_count += pred->count;
7246 occr = gmalloc (sizeof (struct unoccr));
7247 occr->insn = avail_insn;
7248 occr->pred = pred;
7249 occr->next = avail_occrs;
7250 avail_occrs = occr;
7252 else
7254 not_ok_count += pred->count;
7255 if (EDGE_CRITICAL_P (pred))
7256 critical_count += pred->count;
7257 unoccr = gmalloc (sizeof (struct unoccr));
7258 unoccr->insn = NULL_RTX;
7259 unoccr->pred = pred;
7260 unoccr->next = unavail_occrs;
7261 unavail_occrs = unoccr;
7265 if (npred_ok == 0 /* No load can be replaced by copy. */
7266 || (optimize_size && npred_ok > 1)) /* Prevent exploding the code. */
7267 goto cleanup;
7269 /* Check if it's worth applying the partial redundancy elimination. */
7270 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
7271 goto cleanup;
7273 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
7274 goto cleanup;
7276 /* Generate moves to the loaded register from where
7277 the memory is available. */
7278 for (occr = avail_occrs; occr; occr = occr->next)
7280 avail_insn = occr->insn;
7281 pred = occr->pred;
7282 /* Set avail_reg to be the register having the value of the
7283 memory. */
7284 avail_reg = get_avail_load_store_reg (avail_insn);
7285 if (! avail_reg)
7286 abort ();
7288 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
7289 copy_rtx (avail_reg)),
7290 pred);
7292 if (gcse_file)
7293 fprintf (gcse_file,
7294 "GCSE AFTER reload generating move from %d to %d on \
7295 edge from %d to %d\n",
7296 REGNO (avail_reg),
7297 REGNO (dest),
7298 pred->src->index,
7299 pred->dest->index);
7302 /* Regenerate loads where the memory is unavailable. */
7303 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
7305 pred = unoccr->pred;
7306 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
7308 if (gcse_file)
7309 fprintf (gcse_file,
7310 "GCSE AFTER reload: generating on edge from %d to %d\
7311 a copy of load:\n",
7312 pred->src->index,
7313 pred->dest->index);
7316 /* Delete the insn if it is not available in this block and mark it
7317 for deletion if it is available. If insn is available it may help
7318 discover additional redundancies, so mark it for later deletion.*/
7319 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
7320 a_occr && (a_occr->insn != insn);
7321 a_occr = get_bb_avail_insn (bb, a_occr->next));
7323 if (!a_occr)
7324 delete_insn (insn);
7325 else
7326 a_occr->deleted_p = 1;
7328 cleanup:
7330 while (unavail_occrs)
7332 struct unoccr *temp = unavail_occrs->next;
7333 free (unavail_occrs);
7334 unavail_occrs = temp;
7337 while (avail_occrs)
7339 struct unoccr *temp = avail_occrs->next;
7340 free (avail_occrs);
7341 avail_occrs = temp;
7345 /* Performing the redundancy elimination as described before. */
7347 static void
7348 gcse_after_reload (void)
7350 unsigned int i;
7351 rtx insn;
7352 basic_block bb;
7353 struct expr *expr;
7354 struct occr *occr;
7356 /* Note we start at block 1. */
7358 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
7359 return;
7361 FOR_BB_BETWEEN (bb,
7362 ENTRY_BLOCK_PTR->next_bb->next_bb,
7363 EXIT_BLOCK_PTR,
7364 next_bb)
7366 if (! bb_has_well_behaved_predecessors (bb))
7367 continue;
7369 /* Do not try this optimization on cold basic blocks. */
7370 if (probably_cold_bb_p (bb))
7371 continue;
7373 reset_opr_set_tables ();
7375 for (insn = BB_HEAD (bb);
7376 insn != NULL
7377 && insn != NEXT_INSN (BB_END (bb));
7378 insn = NEXT_INSN (insn))
7380 /* Is it a load - of the form (set (reg) (mem))? */
7381 if (GET_CODE (insn) == INSN
7382 && GET_CODE (PATTERN (insn)) == SET
7383 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
7384 && GET_CODE (SET_SRC (PATTERN (insn))) == MEM)
7386 rtx pat = PATTERN (insn);
7387 rtx src = SET_SRC (pat);
7388 struct expr *expr;
7390 if (general_operand (src, GET_MODE (src))
7391 /* Is the expression recorded? */
7392 && (expr = lookup_expr (src, &expr_hash_table)) != NULL
7393 /* Are the operands unchanged since the start of the
7394 block? */
7395 && oprs_not_set_p (src, insn)
7396 && ! MEM_VOLATILE_P (src)
7397 && GET_MODE (src) != BLKmode
7398 && !(flag_non_call_exceptions && may_trap_p (src))
7399 && !side_effects_p (src))
7401 /* We now have a load (insn) and an available memory at
7402 its BB start (expr). Try to remove the loads if it is
7403 redundant. */
7404 eliminate_partially_redundant_loads (bb, insn, expr);
7408 /* Keep track of everything modified by this insn. */
7409 if (INSN_P (insn))
7410 mark_oprs_set (insn);
7414 commit_edge_insertions ();
7416 /* Go over the expression hash table and delete insns that were
7417 marked for later deletion. */
7418 for (i = 0; i < expr_hash_table.size; i++)
7420 for (expr = expr_hash_table.table[i];
7421 expr != NULL;
7422 expr = expr->next_same_hash)
7423 for (occr = expr->avail_occr; occr; occr = occr->next)
7424 if (occr->deleted_p)
7425 delete_insn (occr->insn);
7429 /* Scan pattern PAT of INSN and add an entry to the hash TABLE.
7430 After reload we are interested in loads/stores only. */
7432 static void
7433 hash_scan_set_after_reload (rtx pat, rtx insn, struct hash_table *table)
7435 rtx src = SET_SRC (pat);
7436 rtx dest = SET_DEST (pat);
7438 if (GET_CODE (src) != MEM && GET_CODE (dest) != MEM)
7439 return;
7441 if (GET_CODE (dest) == REG)
7443 if (/* Don't GCSE something if we can't do a reg/reg copy. */
7444 can_copy_p (GET_MODE (dest))
7445 /* GCSE commonly inserts instruction after the insn. We can't
7446 do that easily for EH_REGION notes so disable GCSE on these
7447 for now. */
7448 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7449 /* Is SET_SRC something we want to gcse? */
7450 && general_operand (src, GET_MODE (src))
7451 /* Don't CSE a nop. */
7452 && ! set_noop_p (pat)
7453 && ! JUMP_P (insn))
7455 /* An expression is not available if its operands are
7456 subsequently modified, including this insn. */
7457 if (oprs_available_p (src, insn))
7458 insert_expr_in_table (src, GET_MODE (dest), insn, 0, 1, table);
7461 else if ((GET_CODE (src) == REG))
7463 /* Only record sets of pseudo-regs in the hash table. */
7464 if (/* Don't GCSE something if we can't do a reg/reg copy. */
7465 can_copy_p (GET_MODE (src))
7466 /* GCSE commonly inserts instruction after the insn. We can't
7467 do that easily for EH_REGION notes so disable GCSE on these
7468 for now. */
7469 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7470 /* Is SET_DEST something we want to gcse? */
7471 && general_operand (dest, GET_MODE (dest))
7472 /* Don't CSE a nop. */
7473 && ! set_noop_p (pat)
7474 &&! JUMP_P (insn)
7475 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
7476 /* Check if the memory expression is killed after insn. */
7477 && ! load_killed_in_block_p (BLOCK_FOR_INSN (insn),
7478 INSN_CUID (insn) + 1,
7479 dest,
7481 && oprs_unchanged_p (XEXP (dest, 0), insn, 1))
7483 insert_expr_in_table (dest, GET_MODE (dest), insn, 0, 1, table);
7489 /* Create hash table of memory expressions available at end of basic
7490 blocks. */
7492 static void
7493 compute_hash_table_after_reload (struct hash_table *table)
7495 unsigned int i;
7497 table->set_p = 0;
7499 /* Initialize count of number of entries in hash table. */
7500 table->n_elems = 0;
7501 memset ((char *) table->table, 0,
7502 table->size * sizeof (struct expr *));
7504 /* While we compute the hash table we also compute a bit array of which
7505 registers are set in which blocks. */
7506 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
7508 /* Re-cache any INSN_LIST nodes we have allocated. */
7509 clear_modify_mem_tables ();
7511 /* Some working arrays used to track first and last set in each block. */
7512 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
7514 for (i = 0; i < max_gcse_regno; ++i)
7515 reg_avail_info[i].last_bb = NULL;
7517 FOR_EACH_BB (current_bb)
7519 rtx insn;
7520 unsigned int regno;
7522 /* First pass over the instructions records information used to
7523 determine when registers and memory are first and last set. */
7524 for (insn = BB_HEAD (current_bb);
7525 insn && insn != NEXT_INSN (BB_END (current_bb));
7526 insn = NEXT_INSN (insn))
7528 if (! INSN_P (insn))
7529 continue;
7531 if (GET_CODE (insn) == CALL_INSN)
7533 bool clobbers_all = false;
7535 #ifdef NON_SAVING_SETJMP
7536 if (NON_SAVING_SETJMP
7537 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
7538 clobbers_all = true;
7539 #endif
7541 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7542 if (clobbers_all
7543 || TEST_HARD_REG_BIT (regs_invalidated_by_call,
7544 regno))
7545 record_last_reg_set_info (insn, regno);
7547 mark_call (insn);
7550 note_stores (PATTERN (insn), record_last_set_info, insn);
7552 if (GET_CODE (PATTERN (insn)) == SET)
7554 rtx src, dest;
7556 src = SET_SRC (PATTERN (insn));
7557 dest = SET_DEST (PATTERN (insn));
7558 if (GET_CODE (src) == MEM && auto_inc_p (XEXP (src, 0)))
7560 regno = REGNO (XEXP (XEXP (src, 0), 0));
7561 record_last_reg_set_info (insn, regno);
7563 if (GET_CODE (dest) == MEM && auto_inc_p (XEXP (dest, 0)))
7565 regno = REGNO (XEXP (XEXP (dest, 0), 0));
7566 record_last_reg_set_info (insn, regno);
7571 /* The next pass builds the hash table. */
7572 for (insn = BB_HEAD (current_bb);
7573 insn && insn != NEXT_INSN (BB_END (current_bb));
7574 insn = NEXT_INSN (insn))
7575 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
7576 if (! find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7577 hash_scan_set_after_reload (PATTERN (insn), insn, table);
7580 free (reg_avail_info);
7581 reg_avail_info = NULL;
7585 /* Main entry point of the GCSE after reload - clean some redundant loads
7586 due to spilling. */
7588 void
7589 gcse_after_reload_main (rtx f, FILE* file)
7591 gcse_subst_count = 0;
7592 gcse_create_count = 0;
7594 gcse_file = file;
7596 gcc_obstack_init (&gcse_obstack);
7597 bytes_used = 0;
7599 /* We need alias. */
7600 init_alias_analysis ();
7602 max_gcse_regno = max_reg_num ();
7604 alloc_reg_set_mem (max_gcse_regno);
7605 alloc_gcse_mem (f);
7606 alloc_hash_table (max_cuid, &expr_hash_table, 0);
7607 compute_hash_table_after_reload (&expr_hash_table);
7609 if (gcse_file)
7610 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
7612 if (expr_hash_table.n_elems > 0)
7613 gcse_after_reload ();
7615 free_hash_table (&expr_hash_table);
7617 free_gcse_mem ();
7618 free_reg_set_mem ();
7620 /* We are finished with alias. */
7621 end_alias_analysis ();
7623 obstack_free (&gcse_obstack, NULL);
7626 #include "gt-gcse.h"