* system.h: Poison NO_RECURSIVE_FUNCTION_CSE.
[official-gcc.git] / gcc / emit-rtl.c
blobba8a3d6cf2410447e68d80b09484a3101302089f
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static GTY(()) int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
92 rtx global_rtl[GR_MAX];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100 rtx (*gen_lowpart) (enum machine_mode mode, rtx x) = gen_lowpart_general;
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
207 /* Returns a hash code for X (which is a really a CONST_INT). */
209 static hashval_t
210 const_int_htab_hash (const void *x)
212 return (hashval_t) INTVAL ((rtx) x);
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
219 static int
220 const_int_htab_eq (const void *x, const void *y)
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
229 rtx value = (rtx) x;
230 hashval_t h;
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
240 return h;
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
248 rtx a = (rtx)x, b = (rtx)y;
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
265 mem_attrs *p = (mem_attrs *) x;
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
295 mem_attrs attrs;
296 void **slot;
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
321 return *slot;
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
329 reg_attrs *p = (reg_attrs *) x;
331 return ((p->offset * 1000) ^ (long) p->decl);
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
344 return (p->decl == q->decl && p->offset == q->offset);
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
353 reg_attrs attrs;
354 void **slot;
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
360 attrs.decl = decl;
361 attrs.offset = offset;
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
370 return *slot;
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
378 gen_raw_REG (enum machine_mode mode, int regno)
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
392 void **slot;
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
408 return (rtx) *slot;
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
414 return GEN_INT (trunc_int_for_mode (c, mode));
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
431 return (rtx) *slot;
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
444 return lookup_const_double (real);
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
455 rtx value;
456 unsigned int i;
458 if (mode != VOIDmode)
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
532 return lookup_const_double (value);
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
552 if (mode == Pmode && !reload_in_progress)
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
597 return gen_raw_REG (mode, regno);
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
609 return rt;
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
637 enum machine_mode inmode;
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
646 /* gen_rtvec (n, [rt1, ..., rtn])
648 ** This routine creates an rtvec and stores within it the
649 ** pointers to rtx's which are its arguments.
652 /*VARARGS1*/
653 rtvec
654 gen_rtvec (int n, ...)
656 int i, save_n;
657 rtx *vector;
658 va_list p;
660 va_start (p, n);
662 if (n == 0)
663 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
665 vector = alloca (n * sizeof (rtx));
667 for (i = 0; i < n; i++)
668 vector[i] = va_arg (p, rtx);
670 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
671 save_n = n;
672 va_end (p);
674 return gen_rtvec_v (save_n, vector);
677 rtvec
678 gen_rtvec_v (int n, rtx *argp)
680 int i;
681 rtvec rt_val;
683 if (n == 0)
684 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
686 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
688 for (i = 0; i < n; i++)
689 rt_val->elem[i] = *argp++;
691 return rt_val;
694 /* Generate a REG rtx for a new pseudo register of mode MODE.
695 This pseudo is assigned the next sequential register number. */
698 gen_reg_rtx (enum machine_mode mode)
700 struct function *f = cfun;
701 rtx val;
703 /* Don't let anything called after initial flow analysis create new
704 registers. */
705 if (no_new_pseudos)
706 abort ();
708 if (generating_concat_p
709 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
710 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
712 /* For complex modes, don't make a single pseudo.
713 Instead, make a CONCAT of two pseudos.
714 This allows noncontiguous allocation of the real and imaginary parts,
715 which makes much better code. Besides, allocating DCmode
716 pseudos overstrains reload on some machines like the 386. */
717 rtx realpart, imagpart;
718 enum machine_mode partmode = GET_MODE_INNER (mode);
720 realpart = gen_reg_rtx (partmode);
721 imagpart = gen_reg_rtx (partmode);
722 return gen_rtx_CONCAT (mode, realpart, imagpart);
725 /* Make sure regno_pointer_align, and regno_reg_rtx are large
726 enough to have an element for this pseudo reg number. */
728 if (reg_rtx_no == f->emit->regno_pointer_align_length)
730 int old_size = f->emit->regno_pointer_align_length;
731 char *new;
732 rtx *new1;
734 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
735 memset (new + old_size, 0, old_size);
736 f->emit->regno_pointer_align = (unsigned char *) new;
738 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
739 old_size * 2 * sizeof (rtx));
740 memset (new1 + old_size, 0, old_size * sizeof (rtx));
741 regno_reg_rtx = new1;
743 f->emit->regno_pointer_align_length = old_size * 2;
746 val = gen_raw_REG (mode, reg_rtx_no);
747 regno_reg_rtx[reg_rtx_no++] = val;
748 return val;
751 /* Generate a register with same attributes as REG,
752 but offsetted by OFFSET. */
755 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
757 rtx new = gen_rtx_REG (mode, regno);
758 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
759 REG_OFFSET (reg) + offset);
760 return new;
763 /* Set the decl for MEM to DECL. */
765 void
766 set_reg_attrs_from_mem (rtx reg, rtx mem)
768 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
769 REG_ATTRS (reg)
770 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
773 /* Set the register attributes for registers contained in PARM_RTX.
774 Use needed values from memory attributes of MEM. */
776 void
777 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
779 if (GET_CODE (parm_rtx) == REG)
780 set_reg_attrs_from_mem (parm_rtx, mem);
781 else if (GET_CODE (parm_rtx) == PARALLEL)
783 /* Check for a NULL entry in the first slot, used to indicate that the
784 parameter goes both on the stack and in registers. */
785 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
786 for (; i < XVECLEN (parm_rtx, 0); i++)
788 rtx x = XVECEXP (parm_rtx, 0, i);
789 if (GET_CODE (XEXP (x, 0)) == REG)
790 REG_ATTRS (XEXP (x, 0))
791 = get_reg_attrs (MEM_EXPR (mem),
792 INTVAL (XEXP (x, 1)));
797 /* Assign the RTX X to declaration T. */
798 void
799 set_decl_rtl (tree t, rtx x)
801 DECL_CHECK (t)->decl.rtl = x;
803 if (!x)
804 return;
805 /* For register, we maintain the reverse information too. */
806 if (GET_CODE (x) == REG)
807 REG_ATTRS (x) = get_reg_attrs (t, 0);
808 else if (GET_CODE (x) == SUBREG)
809 REG_ATTRS (SUBREG_REG (x))
810 = get_reg_attrs (t, -SUBREG_BYTE (x));
811 if (GET_CODE (x) == CONCAT)
813 if (REG_P (XEXP (x, 0)))
814 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
815 if (REG_P (XEXP (x, 1)))
816 REG_ATTRS (XEXP (x, 1))
817 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
819 if (GET_CODE (x) == PARALLEL)
821 int i;
822 for (i = 0; i < XVECLEN (x, 0); i++)
824 rtx y = XVECEXP (x, 0, i);
825 if (REG_P (XEXP (y, 0)))
826 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
831 /* Assign the RTX X to parameter declaration T. */
832 void
833 set_decl_incoming_rtl (tree t, rtx x)
835 DECL_INCOMING_RTL (t) = x;
837 if (!x)
838 return;
839 /* For register, we maintain the reverse information too. */
840 if (GET_CODE (x) == REG)
841 REG_ATTRS (x) = get_reg_attrs (t, 0);
842 else if (GET_CODE (x) == SUBREG)
843 REG_ATTRS (SUBREG_REG (x))
844 = get_reg_attrs (t, -SUBREG_BYTE (x));
845 if (GET_CODE (x) == CONCAT)
847 if (REG_P (XEXP (x, 0)))
848 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
849 if (REG_P (XEXP (x, 1)))
850 REG_ATTRS (XEXP (x, 1))
851 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
853 if (GET_CODE (x) == PARALLEL)
855 int i, start;
857 /* Check for a NULL entry, used to indicate that the parameter goes
858 both on the stack and in registers. */
859 if (XEXP (XVECEXP (x, 0, 0), 0))
860 start = 0;
861 else
862 start = 1;
864 for (i = start; i < XVECLEN (x, 0); i++)
866 rtx y = XVECEXP (x, 0, i);
867 if (REG_P (XEXP (y, 0)))
868 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
873 /* Identify REG (which may be a CONCAT) as a user register. */
875 void
876 mark_user_reg (rtx reg)
878 if (GET_CODE (reg) == CONCAT)
880 REG_USERVAR_P (XEXP (reg, 0)) = 1;
881 REG_USERVAR_P (XEXP (reg, 1)) = 1;
883 else if (GET_CODE (reg) == REG)
884 REG_USERVAR_P (reg) = 1;
885 else
886 abort ();
889 /* Identify REG as a probable pointer register and show its alignment
890 as ALIGN, if nonzero. */
892 void
893 mark_reg_pointer (rtx reg, int align)
895 if (! REG_POINTER (reg))
897 REG_POINTER (reg) = 1;
899 if (align)
900 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
902 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
903 /* We can no-longer be sure just how aligned this pointer is. */
904 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
907 /* Return 1 plus largest pseudo reg number used in the current function. */
910 max_reg_num (void)
912 return reg_rtx_no;
915 /* Return 1 + the largest label number used so far in the current function. */
918 max_label_num (void)
920 if (last_label_num && label_num == base_label_num)
921 return last_label_num;
922 return label_num;
925 /* Return first label number used in this function (if any were used). */
928 get_first_label_num (void)
930 return first_label_num;
933 /* If the rtx for label was created during the expansion of a nested
934 function, then first_label_num won't include this label number.
935 Fix this now so that array indicies work later. */
937 void
938 maybe_set_first_label_num (rtx x)
940 if (CODE_LABEL_NUMBER (x) < first_label_num)
941 first_label_num = CODE_LABEL_NUMBER (x);
944 /* Return the final regno of X, which is a SUBREG of a hard
945 register. */
947 subreg_hard_regno (rtx x, int check_mode)
949 enum machine_mode mode = GET_MODE (x);
950 unsigned int byte_offset, base_regno, final_regno;
951 rtx reg = SUBREG_REG (x);
953 /* This is where we attempt to catch illegal subregs
954 created by the compiler. */
955 if (GET_CODE (x) != SUBREG
956 || GET_CODE (reg) != REG)
957 abort ();
958 base_regno = REGNO (reg);
959 if (base_regno >= FIRST_PSEUDO_REGISTER)
960 abort ();
961 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
962 abort ();
963 #ifdef ENABLE_CHECKING
964 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
965 SUBREG_BYTE (x), mode))
966 abort ();
967 #endif
968 /* Catch non-congruent offsets too. */
969 byte_offset = SUBREG_BYTE (x);
970 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
971 abort ();
973 final_regno = subreg_regno (x);
975 return final_regno;
978 /* Return a value representing some low-order bits of X, where the number
979 of low-order bits is given by MODE. Note that no conversion is done
980 between floating-point and fixed-point values, rather, the bit
981 representation is returned.
983 This function handles the cases in common between gen_lowpart, below,
984 and two variants in cse.c and combine.c. These are the cases that can
985 be safely handled at all points in the compilation.
987 If this is not a case we can handle, return 0. */
990 gen_lowpart_common (enum machine_mode mode, rtx x)
992 int msize = GET_MODE_SIZE (mode);
993 int xsize;
994 int offset = 0;
995 enum machine_mode innermode;
997 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
998 so we have to make one up. Yuk. */
999 innermode = GET_MODE (x);
1000 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1001 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1002 else if (innermode == VOIDmode)
1003 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1005 xsize = GET_MODE_SIZE (innermode);
1007 if (innermode == VOIDmode || innermode == BLKmode)
1008 abort ();
1010 if (innermode == mode)
1011 return x;
1013 /* MODE must occupy no more words than the mode of X. */
1014 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1015 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1016 return 0;
1018 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1019 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1020 return 0;
1022 offset = subreg_lowpart_offset (mode, innermode);
1024 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1025 && (GET_MODE_CLASS (mode) == MODE_INT
1026 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1028 /* If we are getting the low-order part of something that has been
1029 sign- or zero-extended, we can either just use the object being
1030 extended or make a narrower extension. If we want an even smaller
1031 piece than the size of the object being extended, call ourselves
1032 recursively.
1034 This case is used mostly by combine and cse. */
1036 if (GET_MODE (XEXP (x, 0)) == mode)
1037 return XEXP (x, 0);
1038 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1039 return gen_lowpart_common (mode, XEXP (x, 0));
1040 else if (msize < xsize)
1041 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1043 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1044 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1045 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1046 return simplify_gen_subreg (mode, x, innermode, offset);
1048 /* Otherwise, we can't do this. */
1049 return 0;
1052 /* Return the constant real or imaginary part (which has mode MODE)
1053 of a complex value X. The IMAGPART_P argument determines whether
1054 the real or complex component should be returned. This function
1055 returns NULL_RTX if the component isn't a constant. */
1057 static rtx
1058 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1060 tree decl, part;
1062 if (GET_CODE (x) == MEM
1063 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1065 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1066 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1068 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1069 if (TREE_CODE (part) == REAL_CST
1070 || TREE_CODE (part) == INTEGER_CST)
1071 return expand_expr (part, NULL_RTX, mode, 0);
1074 return NULL_RTX;
1077 /* Return the real part (which has mode MODE) of a complex value X.
1078 This always comes at the low address in memory. */
1081 gen_realpart (enum machine_mode mode, rtx x)
1083 rtx part;
1085 /* Handle complex constants. */
1086 part = gen_complex_constant_part (mode, x, 0);
1087 if (part != NULL_RTX)
1088 return part;
1090 if (WORDS_BIG_ENDIAN
1091 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1092 && REG_P (x)
1093 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1094 internal_error
1095 ("can't access real part of complex value in hard register");
1096 else if (WORDS_BIG_ENDIAN)
1097 return gen_highpart (mode, x);
1098 else
1099 return gen_lowpart (mode, x);
1102 /* Return the imaginary part (which has mode MODE) of a complex value X.
1103 This always comes at the high address in memory. */
1106 gen_imagpart (enum machine_mode mode, rtx x)
1108 rtx part;
1110 /* Handle complex constants. */
1111 part = gen_complex_constant_part (mode, x, 1);
1112 if (part != NULL_RTX)
1113 return part;
1115 if (WORDS_BIG_ENDIAN)
1116 return gen_lowpart (mode, x);
1117 else if (! WORDS_BIG_ENDIAN
1118 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1119 && REG_P (x)
1120 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1121 internal_error
1122 ("can't access imaginary part of complex value in hard register");
1123 else
1124 return gen_highpart (mode, x);
1127 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1128 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1129 least-significant part of X.
1130 MODE specifies how big a part of X to return;
1131 it usually should not be larger than a word.
1132 If X is a MEM whose address is a QUEUED, the value may be so also. */
1135 gen_lowpart_general (enum machine_mode mode, rtx x)
1137 rtx result = gen_lowpart_common (mode, x);
1139 if (result)
1140 return result;
1141 else if (GET_CODE (x) == REG)
1143 /* Must be a hard reg that's not valid in MODE. */
1144 result = gen_lowpart_common (mode, copy_to_reg (x));
1145 if (result == 0)
1146 abort ();
1147 return result;
1149 else if (GET_CODE (x) == MEM)
1151 /* The only additional case we can do is MEM. */
1152 int offset = 0;
1154 /* The following exposes the use of "x" to CSE. */
1155 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1156 && SCALAR_INT_MODE_P (GET_MODE (x))
1157 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1158 GET_MODE_BITSIZE (GET_MODE (x)))
1159 && ! no_new_pseudos)
1160 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1162 if (WORDS_BIG_ENDIAN)
1163 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1166 if (BYTES_BIG_ENDIAN)
1167 /* Adjust the address so that the address-after-the-data
1168 is unchanged. */
1169 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1170 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1172 return adjust_address (x, mode, offset);
1174 else if (GET_CODE (x) == ADDRESSOF)
1175 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1176 else
1177 abort ();
1180 /* Like `gen_lowpart', but refer to the most significant part.
1181 This is used to access the imaginary part of a complex number. */
1184 gen_highpart (enum machine_mode mode, rtx x)
1186 unsigned int msize = GET_MODE_SIZE (mode);
1187 rtx result;
1189 /* This case loses if X is a subreg. To catch bugs early,
1190 complain if an invalid MODE is used even in other cases. */
1191 if (msize > UNITS_PER_WORD
1192 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1193 abort ();
1195 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1196 subreg_highpart_offset (mode, GET_MODE (x)));
1198 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1199 the target if we have a MEM. gen_highpart must return a valid operand,
1200 emitting code if necessary to do so. */
1201 if (result != NULL_RTX && GET_CODE (result) == MEM)
1202 result = validize_mem (result);
1204 if (!result)
1205 abort ();
1206 return result;
1209 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1210 be VOIDmode constant. */
1212 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1214 if (GET_MODE (exp) != VOIDmode)
1216 if (GET_MODE (exp) != innermode)
1217 abort ();
1218 return gen_highpart (outermode, exp);
1220 return simplify_gen_subreg (outermode, exp, innermode,
1221 subreg_highpart_offset (outermode, innermode));
1224 /* Return offset in bytes to get OUTERMODE low part
1225 of the value in mode INNERMODE stored in memory in target format. */
1227 unsigned int
1228 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1230 unsigned int offset = 0;
1231 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1233 if (difference > 0)
1235 if (WORDS_BIG_ENDIAN)
1236 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1237 if (BYTES_BIG_ENDIAN)
1238 offset += difference % UNITS_PER_WORD;
1241 return offset;
1244 /* Return offset in bytes to get OUTERMODE high part
1245 of the value in mode INNERMODE stored in memory in target format. */
1246 unsigned int
1247 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1249 unsigned int offset = 0;
1250 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1252 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1253 abort ();
1255 if (difference > 0)
1257 if (! WORDS_BIG_ENDIAN)
1258 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1259 if (! BYTES_BIG_ENDIAN)
1260 offset += difference % UNITS_PER_WORD;
1263 return offset;
1266 /* Return 1 iff X, assumed to be a SUBREG,
1267 refers to the least significant part of its containing reg.
1268 If X is not a SUBREG, always return 1 (it is its own low part!). */
1271 subreg_lowpart_p (rtx x)
1273 if (GET_CODE (x) != SUBREG)
1274 return 1;
1275 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1276 return 0;
1278 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1279 == SUBREG_BYTE (x));
1282 /* Return subword OFFSET of operand OP.
1283 The word number, OFFSET, is interpreted as the word number starting
1284 at the low-order address. OFFSET 0 is the low-order word if not
1285 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1287 If we cannot extract the required word, we return zero. Otherwise,
1288 an rtx corresponding to the requested word will be returned.
1290 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1291 reload has completed, a valid address will always be returned. After
1292 reload, if a valid address cannot be returned, we return zero.
1294 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1295 it is the responsibility of the caller.
1297 MODE is the mode of OP in case it is a CONST_INT.
1299 ??? This is still rather broken for some cases. The problem for the
1300 moment is that all callers of this thing provide no 'goal mode' to
1301 tell us to work with. This exists because all callers were written
1302 in a word based SUBREG world.
1303 Now use of this function can be deprecated by simplify_subreg in most
1304 cases.
1308 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1310 if (mode == VOIDmode)
1311 mode = GET_MODE (op);
1313 if (mode == VOIDmode)
1314 abort ();
1316 /* If OP is narrower than a word, fail. */
1317 if (mode != BLKmode
1318 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1319 return 0;
1321 /* If we want a word outside OP, return zero. */
1322 if (mode != BLKmode
1323 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1324 return const0_rtx;
1326 /* Form a new MEM at the requested address. */
1327 if (GET_CODE (op) == MEM)
1329 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1331 if (! validate_address)
1332 return new;
1334 else if (reload_completed)
1336 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1337 return 0;
1339 else
1340 return replace_equiv_address (new, XEXP (new, 0));
1343 /* Rest can be handled by simplify_subreg. */
1344 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1347 /* Similar to `operand_subword', but never return 0. If we can't extract
1348 the required subword, put OP into a register and try again. If that fails,
1349 abort. We always validate the address in this case.
1351 MODE is the mode of OP, in case it is CONST_INT. */
1354 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1356 rtx result = operand_subword (op, offset, 1, mode);
1358 if (result)
1359 return result;
1361 if (mode != BLKmode && mode != VOIDmode)
1363 /* If this is a register which can not be accessed by words, copy it
1364 to a pseudo register. */
1365 if (GET_CODE (op) == REG)
1366 op = copy_to_reg (op);
1367 else
1368 op = force_reg (mode, op);
1371 result = operand_subword (op, offset, 1, mode);
1372 if (result == 0)
1373 abort ();
1375 return result;
1378 /* Given a compare instruction, swap the operands.
1379 A test instruction is changed into a compare of 0 against the operand. */
1381 void
1382 reverse_comparison (rtx insn)
1384 rtx body = PATTERN (insn);
1385 rtx comp;
1387 if (GET_CODE (body) == SET)
1388 comp = SET_SRC (body);
1389 else
1390 comp = SET_SRC (XVECEXP (body, 0, 0));
1392 if (GET_CODE (comp) == COMPARE)
1394 rtx op0 = XEXP (comp, 0);
1395 rtx op1 = XEXP (comp, 1);
1396 XEXP (comp, 0) = op1;
1397 XEXP (comp, 1) = op0;
1399 else
1401 rtx new = gen_rtx_COMPARE (VOIDmode,
1402 CONST0_RTX (GET_MODE (comp)), comp);
1403 if (GET_CODE (body) == SET)
1404 SET_SRC (body) = new;
1405 else
1406 SET_SRC (XVECEXP (body, 0, 0)) = new;
1410 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1411 or (2) a component ref of something variable. Represent the later with
1412 a NULL expression. */
1414 static tree
1415 component_ref_for_mem_expr (tree ref)
1417 tree inner = TREE_OPERAND (ref, 0);
1419 if (TREE_CODE (inner) == COMPONENT_REF)
1420 inner = component_ref_for_mem_expr (inner);
1421 else
1423 /* Now remove any conversions: they don't change what the underlying
1424 object is. Likewise for SAVE_EXPR. */
1425 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1426 || TREE_CODE (inner) == NON_LVALUE_EXPR
1427 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1428 || TREE_CODE (inner) == SAVE_EXPR)
1429 inner = TREE_OPERAND (inner, 0);
1431 if (! DECL_P (inner))
1432 inner = NULL_TREE;
1435 if (inner == TREE_OPERAND (ref, 0))
1436 return ref;
1437 else
1438 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1439 TREE_OPERAND (ref, 1));
1442 /* Returns 1 if both MEM_EXPR can be considered equal
1443 and 0 otherwise. */
1446 mem_expr_equal_p (tree expr1, tree expr2)
1448 if (expr1 == expr2)
1449 return 1;
1451 if (! expr1 || ! expr2)
1452 return 0;
1454 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1455 return 0;
1457 if (TREE_CODE (expr1) == COMPONENT_REF)
1458 return
1459 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1460 TREE_OPERAND (expr2, 0))
1461 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1462 TREE_OPERAND (expr2, 1));
1464 if (TREE_CODE (expr1) == INDIRECT_REF)
1465 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1466 TREE_OPERAND (expr2, 0));
1468 /* Decls with different pointers can't be equal. */
1469 if (DECL_P (expr1))
1470 return 0;
1472 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1473 have been resolved here. */
1476 /* Given REF, a MEM, and T, either the type of X or the expression
1477 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1478 if we are making a new object of this type. BITPOS is nonzero if
1479 there is an offset outstanding on T that will be applied later. */
1481 void
1482 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1483 HOST_WIDE_INT bitpos)
1485 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1486 tree expr = MEM_EXPR (ref);
1487 rtx offset = MEM_OFFSET (ref);
1488 rtx size = MEM_SIZE (ref);
1489 unsigned int align = MEM_ALIGN (ref);
1490 HOST_WIDE_INT apply_bitpos = 0;
1491 tree type;
1493 /* It can happen that type_for_mode was given a mode for which there
1494 is no language-level type. In which case it returns NULL, which
1495 we can see here. */
1496 if (t == NULL_TREE)
1497 return;
1499 type = TYPE_P (t) ? t : TREE_TYPE (t);
1500 if (type == error_mark_node)
1501 return;
1503 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1504 wrong answer, as it assumes that DECL_RTL already has the right alias
1505 info. Callers should not set DECL_RTL until after the call to
1506 set_mem_attributes. */
1507 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1508 abort ();
1510 /* Get the alias set from the expression or type (perhaps using a
1511 front-end routine) and use it. */
1512 alias = get_alias_set (t);
1514 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1515 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1516 RTX_UNCHANGING_P (ref)
1517 |= ((lang_hooks.honor_readonly
1518 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1519 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1520 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1522 /* If we are making an object of this type, or if this is a DECL, we know
1523 that it is a scalar if the type is not an aggregate. */
1524 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1525 MEM_SCALAR_P (ref) = 1;
1527 /* We can set the alignment from the type if we are making an object,
1528 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1529 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1530 align = MAX (align, TYPE_ALIGN (type));
1532 /* If the size is known, we can set that. */
1533 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1534 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1536 /* If T is not a type, we may be able to deduce some more information about
1537 the expression. */
1538 if (! TYPE_P (t))
1540 maybe_set_unchanging (ref, t);
1541 if (TREE_THIS_VOLATILE (t))
1542 MEM_VOLATILE_P (ref) = 1;
1544 /* Now remove any conversions: they don't change what the underlying
1545 object is. Likewise for SAVE_EXPR. */
1546 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1547 || TREE_CODE (t) == NON_LVALUE_EXPR
1548 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1549 || TREE_CODE (t) == SAVE_EXPR)
1550 t = TREE_OPERAND (t, 0);
1552 /* If this expression can't be addressed (e.g., it contains a reference
1553 to a non-addressable field), show we don't change its alias set. */
1554 if (! can_address_p (t))
1555 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1557 /* If this is a decl, set the attributes of the MEM from it. */
1558 if (DECL_P (t))
1560 expr = t;
1561 offset = const0_rtx;
1562 apply_bitpos = bitpos;
1563 size = (DECL_SIZE_UNIT (t)
1564 && host_integerp (DECL_SIZE_UNIT (t), 1)
1565 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1566 align = DECL_ALIGN (t);
1569 /* If this is a constant, we know the alignment. */
1570 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1572 align = TYPE_ALIGN (type);
1573 #ifdef CONSTANT_ALIGNMENT
1574 align = CONSTANT_ALIGNMENT (t, align);
1575 #endif
1578 /* If this is a field reference and not a bit-field, record it. */
1579 /* ??? There is some information that can be gleened from bit-fields,
1580 such as the word offset in the structure that might be modified.
1581 But skip it for now. */
1582 else if (TREE_CODE (t) == COMPONENT_REF
1583 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1585 expr = component_ref_for_mem_expr (t);
1586 offset = const0_rtx;
1587 apply_bitpos = bitpos;
1588 /* ??? Any reason the field size would be different than
1589 the size we got from the type? */
1592 /* If this is an array reference, look for an outer field reference. */
1593 else if (TREE_CODE (t) == ARRAY_REF)
1595 tree off_tree = size_zero_node;
1596 /* We can't modify t, because we use it at the end of the
1597 function. */
1598 tree t2 = t;
1602 tree index = TREE_OPERAND (t2, 1);
1603 tree array = TREE_OPERAND (t2, 0);
1604 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1605 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1606 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1608 /* We assume all arrays have sizes that are a multiple of a byte.
1609 First subtract the lower bound, if any, in the type of the
1610 index, then convert to sizetype and multiply by the size of the
1611 array element. */
1612 if (low_bound != 0 && ! integer_zerop (low_bound))
1613 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1614 index, low_bound));
1616 /* If the index has a self-referential type, instantiate it;
1617 likewise for the component size. */
1618 index = SUBSTITUTE_PLACEHOLDER_IN_EXPR (index, t2);
1619 unit_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (unit_size, array);
1620 off_tree
1621 = fold (build (PLUS_EXPR, sizetype,
1622 fold (build (MULT_EXPR, sizetype,
1623 index, unit_size)),
1624 off_tree));
1625 t2 = TREE_OPERAND (t2, 0);
1627 while (TREE_CODE (t2) == ARRAY_REF);
1629 if (DECL_P (t2))
1631 expr = t2;
1632 offset = NULL;
1633 if (host_integerp (off_tree, 1))
1635 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1636 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1637 align = DECL_ALIGN (t2);
1638 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1639 align = aoff;
1640 offset = GEN_INT (ioff);
1641 apply_bitpos = bitpos;
1644 else if (TREE_CODE (t2) == COMPONENT_REF)
1646 expr = component_ref_for_mem_expr (t2);
1647 if (host_integerp (off_tree, 1))
1649 offset = GEN_INT (tree_low_cst (off_tree, 1));
1650 apply_bitpos = bitpos;
1652 /* ??? Any reason the field size would be different than
1653 the size we got from the type? */
1655 else if (flag_argument_noalias > 1
1656 && TREE_CODE (t2) == INDIRECT_REF
1657 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1659 expr = t2;
1660 offset = NULL;
1664 /* If this is a Fortran indirect argument reference, record the
1665 parameter decl. */
1666 else if (flag_argument_noalias > 1
1667 && TREE_CODE (t) == INDIRECT_REF
1668 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1670 expr = t;
1671 offset = NULL;
1675 /* If we modified OFFSET based on T, then subtract the outstanding
1676 bit position offset. Similarly, increase the size of the accessed
1677 object to contain the negative offset. */
1678 if (apply_bitpos)
1680 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1681 if (size)
1682 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1685 /* Now set the attributes we computed above. */
1686 MEM_ATTRS (ref)
1687 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1689 /* If this is already known to be a scalar or aggregate, we are done. */
1690 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1691 return;
1693 /* If it is a reference into an aggregate, this is part of an aggregate.
1694 Otherwise we don't know. */
1695 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1696 || TREE_CODE (t) == ARRAY_RANGE_REF
1697 || TREE_CODE (t) == BIT_FIELD_REF)
1698 MEM_IN_STRUCT_P (ref) = 1;
1701 void
1702 set_mem_attributes (rtx ref, tree t, int objectp)
1704 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1707 /* Set the decl for MEM to DECL. */
1709 void
1710 set_mem_attrs_from_reg (rtx mem, rtx reg)
1712 MEM_ATTRS (mem)
1713 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1714 GEN_INT (REG_OFFSET (reg)),
1715 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1718 /* Set the alias set of MEM to SET. */
1720 void
1721 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1723 #ifdef ENABLE_CHECKING
1724 /* If the new and old alias sets don't conflict, something is wrong. */
1725 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1726 abort ();
1727 #endif
1729 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1730 MEM_SIZE (mem), MEM_ALIGN (mem),
1731 GET_MODE (mem));
1734 /* Set the alignment of MEM to ALIGN bits. */
1736 void
1737 set_mem_align (rtx mem, unsigned int align)
1739 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1740 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1741 GET_MODE (mem));
1744 /* Set the expr for MEM to EXPR. */
1746 void
1747 set_mem_expr (rtx mem, tree expr)
1749 MEM_ATTRS (mem)
1750 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1751 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1754 /* Set the offset of MEM to OFFSET. */
1756 void
1757 set_mem_offset (rtx mem, rtx offset)
1759 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1760 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1761 GET_MODE (mem));
1764 /* Set the size of MEM to SIZE. */
1766 void
1767 set_mem_size (rtx mem, rtx size)
1769 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1770 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1771 GET_MODE (mem));
1774 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1775 and its address changed to ADDR. (VOIDmode means don't change the mode.
1776 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1777 returned memory location is required to be valid. The memory
1778 attributes are not changed. */
1780 static rtx
1781 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1783 rtx new;
1785 if (GET_CODE (memref) != MEM)
1786 abort ();
1787 if (mode == VOIDmode)
1788 mode = GET_MODE (memref);
1789 if (addr == 0)
1790 addr = XEXP (memref, 0);
1791 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1792 && (!validate || memory_address_p (mode, addr)))
1793 return memref;
1795 if (validate)
1797 if (reload_in_progress || reload_completed)
1799 if (! memory_address_p (mode, addr))
1800 abort ();
1802 else
1803 addr = memory_address (mode, addr);
1806 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1807 return memref;
1809 new = gen_rtx_MEM (mode, addr);
1810 MEM_COPY_ATTRIBUTES (new, memref);
1811 return new;
1814 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1815 way we are changing MEMREF, so we only preserve the alias set. */
1818 change_address (rtx memref, enum machine_mode mode, rtx addr)
1820 rtx new = change_address_1 (memref, mode, addr, 1), size;
1821 enum machine_mode mmode = GET_MODE (new);
1822 unsigned int align;
1824 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1825 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1827 /* If there are no changes, just return the original memory reference. */
1828 if (new == memref)
1830 if (MEM_ATTRS (memref) == 0
1831 || (MEM_EXPR (memref) == NULL
1832 && MEM_OFFSET (memref) == NULL
1833 && MEM_SIZE (memref) == size
1834 && MEM_ALIGN (memref) == align))
1835 return new;
1837 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1838 MEM_COPY_ATTRIBUTES (new, memref);
1841 MEM_ATTRS (new)
1842 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1844 return new;
1847 /* Return a memory reference like MEMREF, but with its mode changed
1848 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1849 nonzero, the memory address is forced to be valid.
1850 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1851 and caller is responsible for adjusting MEMREF base register. */
1854 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1855 int validate, int adjust)
1857 rtx addr = XEXP (memref, 0);
1858 rtx new;
1859 rtx memoffset = MEM_OFFSET (memref);
1860 rtx size = 0;
1861 unsigned int memalign = MEM_ALIGN (memref);
1863 /* If there are no changes, just return the original memory reference. */
1864 if (mode == GET_MODE (memref) && !offset
1865 && (!validate || memory_address_p (mode, addr)))
1866 return memref;
1868 /* ??? Prefer to create garbage instead of creating shared rtl.
1869 This may happen even if offset is nonzero -- consider
1870 (plus (plus reg reg) const_int) -- so do this always. */
1871 addr = copy_rtx (addr);
1873 if (adjust)
1875 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1876 object, we can merge it into the LO_SUM. */
1877 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1878 && offset >= 0
1879 && (unsigned HOST_WIDE_INT) offset
1880 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1881 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1882 plus_constant (XEXP (addr, 1), offset));
1883 else
1884 addr = plus_constant (addr, offset);
1887 new = change_address_1 (memref, mode, addr, validate);
1889 /* Compute the new values of the memory attributes due to this adjustment.
1890 We add the offsets and update the alignment. */
1891 if (memoffset)
1892 memoffset = GEN_INT (offset + INTVAL (memoffset));
1894 /* Compute the new alignment by taking the MIN of the alignment and the
1895 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1896 if zero. */
1897 if (offset != 0)
1898 memalign
1899 = MIN (memalign,
1900 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1902 /* We can compute the size in a number of ways. */
1903 if (GET_MODE (new) != BLKmode)
1904 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1905 else if (MEM_SIZE (memref))
1906 size = plus_constant (MEM_SIZE (memref), -offset);
1908 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1909 memoffset, size, memalign, GET_MODE (new));
1911 /* At some point, we should validate that this offset is within the object,
1912 if all the appropriate values are known. */
1913 return new;
1916 /* Return a memory reference like MEMREF, but with its mode changed
1917 to MODE and its address changed to ADDR, which is assumed to be
1918 MEMREF offseted by OFFSET bytes. If VALIDATE is
1919 nonzero, the memory address is forced to be valid. */
1922 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1923 HOST_WIDE_INT offset, int validate)
1925 memref = change_address_1 (memref, VOIDmode, addr, validate);
1926 return adjust_address_1 (memref, mode, offset, validate, 0);
1929 /* Return a memory reference like MEMREF, but whose address is changed by
1930 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1931 known to be in OFFSET (possibly 1). */
1934 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1936 rtx new, addr = XEXP (memref, 0);
1938 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1940 /* At this point we don't know _why_ the address is invalid. It
1941 could have secondary memory references, multiplies or anything.
1943 However, if we did go and rearrange things, we can wind up not
1944 being able to recognize the magic around pic_offset_table_rtx.
1945 This stuff is fragile, and is yet another example of why it is
1946 bad to expose PIC machinery too early. */
1947 if (! memory_address_p (GET_MODE (memref), new)
1948 && GET_CODE (addr) == PLUS
1949 && XEXP (addr, 0) == pic_offset_table_rtx)
1951 addr = force_reg (GET_MODE (addr), addr);
1952 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1955 update_temp_slot_address (XEXP (memref, 0), new);
1956 new = change_address_1 (memref, VOIDmode, new, 1);
1958 /* If there are no changes, just return the original memory reference. */
1959 if (new == memref)
1960 return new;
1962 /* Update the alignment to reflect the offset. Reset the offset, which
1963 we don't know. */
1964 MEM_ATTRS (new)
1965 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1966 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1967 GET_MODE (new));
1968 return new;
1971 /* Return a memory reference like MEMREF, but with its address changed to
1972 ADDR. The caller is asserting that the actual piece of memory pointed
1973 to is the same, just the form of the address is being changed, such as
1974 by putting something into a register. */
1977 replace_equiv_address (rtx memref, rtx addr)
1979 /* change_address_1 copies the memory attribute structure without change
1980 and that's exactly what we want here. */
1981 update_temp_slot_address (XEXP (memref, 0), addr);
1982 return change_address_1 (memref, VOIDmode, addr, 1);
1985 /* Likewise, but the reference is not required to be valid. */
1988 replace_equiv_address_nv (rtx memref, rtx addr)
1990 return change_address_1 (memref, VOIDmode, addr, 0);
1993 /* Return a memory reference like MEMREF, but with its mode widened to
1994 MODE and offset by OFFSET. This would be used by targets that e.g.
1995 cannot issue QImode memory operations and have to use SImode memory
1996 operations plus masking logic. */
1999 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2001 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2002 tree expr = MEM_EXPR (new);
2003 rtx memoffset = MEM_OFFSET (new);
2004 unsigned int size = GET_MODE_SIZE (mode);
2006 /* If there are no changes, just return the original memory reference. */
2007 if (new == memref)
2008 return new;
2010 /* If we don't know what offset we were at within the expression, then
2011 we can't know if we've overstepped the bounds. */
2012 if (! memoffset)
2013 expr = NULL_TREE;
2015 while (expr)
2017 if (TREE_CODE (expr) == COMPONENT_REF)
2019 tree field = TREE_OPERAND (expr, 1);
2021 if (! DECL_SIZE_UNIT (field))
2023 expr = NULL_TREE;
2024 break;
2027 /* Is the field at least as large as the access? If so, ok,
2028 otherwise strip back to the containing structure. */
2029 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2030 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2031 && INTVAL (memoffset) >= 0)
2032 break;
2034 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2036 expr = NULL_TREE;
2037 break;
2040 expr = TREE_OPERAND (expr, 0);
2041 memoffset = (GEN_INT (INTVAL (memoffset)
2042 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2043 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2044 / BITS_PER_UNIT)));
2046 /* Similarly for the decl. */
2047 else if (DECL_P (expr)
2048 && DECL_SIZE_UNIT (expr)
2049 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2050 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2051 && (! memoffset || INTVAL (memoffset) >= 0))
2052 break;
2053 else
2055 /* The widened memory access overflows the expression, which means
2056 that it could alias another expression. Zap it. */
2057 expr = NULL_TREE;
2058 break;
2062 if (! expr)
2063 memoffset = NULL_RTX;
2065 /* The widened memory may alias other stuff, so zap the alias set. */
2066 /* ??? Maybe use get_alias_set on any remaining expression. */
2068 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2069 MEM_ALIGN (new), mode);
2071 return new;
2074 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2077 gen_label_rtx (void)
2079 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2080 NULL, label_num++, NULL);
2083 /* For procedure integration. */
2085 /* Install new pointers to the first and last insns in the chain.
2086 Also, set cur_insn_uid to one higher than the last in use.
2087 Used for an inline-procedure after copying the insn chain. */
2089 void
2090 set_new_first_and_last_insn (rtx first, rtx last)
2092 rtx insn;
2094 first_insn = first;
2095 last_insn = last;
2096 cur_insn_uid = 0;
2098 for (insn = first; insn; insn = NEXT_INSN (insn))
2099 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2101 cur_insn_uid++;
2104 /* Set the last label number found in the current function.
2105 This is used when belatedly compiling an inline function. */
2107 void
2108 set_new_last_label_num (int last)
2110 base_label_num = label_num;
2111 last_label_num = last;
2114 /* Restore all variables describing the current status from the structure *P.
2115 This is used after a nested function. */
2117 void
2118 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2120 last_label_num = 0;
2123 /* Go through all the RTL insn bodies and copy any invalid shared
2124 structure. This routine should only be called once. */
2126 void
2127 unshare_all_rtl (tree fndecl, rtx insn)
2129 tree decl;
2131 /* Make sure that virtual parameters are not shared. */
2132 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2133 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2135 /* Make sure that virtual stack slots are not shared. */
2136 unshare_all_decls (DECL_INITIAL (fndecl));
2138 /* Unshare just about everything else. */
2139 unshare_all_rtl_in_chain (insn);
2141 /* Make sure the addresses of stack slots found outside the insn chain
2142 (such as, in DECL_RTL of a variable) are not shared
2143 with the insn chain.
2145 This special care is necessary when the stack slot MEM does not
2146 actually appear in the insn chain. If it does appear, its address
2147 is unshared from all else at that point. */
2148 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2151 /* Go through all the RTL insn bodies and copy any invalid shared
2152 structure, again. This is a fairly expensive thing to do so it
2153 should be done sparingly. */
2155 void
2156 unshare_all_rtl_again (rtx insn)
2158 rtx p;
2159 tree decl;
2161 for (p = insn; p; p = NEXT_INSN (p))
2162 if (INSN_P (p))
2164 reset_used_flags (PATTERN (p));
2165 reset_used_flags (REG_NOTES (p));
2166 reset_used_flags (LOG_LINKS (p));
2169 /* Make sure that virtual stack slots are not shared. */
2170 reset_used_decls (DECL_INITIAL (cfun->decl));
2172 /* Make sure that virtual parameters are not shared. */
2173 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2174 reset_used_flags (DECL_RTL (decl));
2176 reset_used_flags (stack_slot_list);
2178 unshare_all_rtl (cfun->decl, insn);
2181 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2182 Recursively does the same for subexpressions. */
2184 static void
2185 verify_rtx_sharing (rtx orig, rtx insn)
2187 rtx x = orig;
2188 int i;
2189 enum rtx_code code;
2190 const char *format_ptr;
2192 if (x == 0)
2193 return;
2195 code = GET_CODE (x);
2197 /* These types may be freely shared. */
2199 switch (code)
2201 case REG:
2202 case QUEUED:
2203 case CONST_INT:
2204 case CONST_DOUBLE:
2205 case CONST_VECTOR:
2206 case SYMBOL_REF:
2207 case LABEL_REF:
2208 case CODE_LABEL:
2209 case PC:
2210 case CC0:
2211 case SCRATCH:
2212 return;
2213 /* SCRATCH must be shared because they represent distinct values. */
2214 case CLOBBER:
2215 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2216 return;
2217 break;
2219 case CONST:
2220 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2221 a LABEL_REF, it isn't sharable. */
2222 if (GET_CODE (XEXP (x, 0)) == PLUS
2223 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2224 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2225 return;
2226 break;
2228 case MEM:
2229 /* A MEM is allowed to be shared if its address is constant. */
2230 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2231 || reload_completed || reload_in_progress)
2232 return;
2234 break;
2236 default:
2237 break;
2240 /* This rtx may not be shared. If it has already been seen,
2241 replace it with a copy of itself. */
2243 if (RTX_FLAG (x, used))
2245 error ("Invalid rtl sharing found in the insn");
2246 debug_rtx (insn);
2247 error ("Shared rtx");
2248 debug_rtx (x);
2249 abort ();
2251 RTX_FLAG (x, used) = 1;
2253 /* Now scan the subexpressions recursively. */
2255 format_ptr = GET_RTX_FORMAT (code);
2257 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2259 switch (*format_ptr++)
2261 case 'e':
2262 verify_rtx_sharing (XEXP (x, i), insn);
2263 break;
2265 case 'E':
2266 if (XVEC (x, i) != NULL)
2268 int j;
2269 int len = XVECLEN (x, i);
2271 for (j = 0; j < len; j++)
2273 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2274 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2275 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2276 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2277 else
2278 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2281 break;
2284 return;
2287 /* Go through all the RTL insn bodies and check that there is no unexpected
2288 sharing in between the subexpressions. */
2290 void
2291 verify_rtl_sharing (void)
2293 rtx p;
2295 for (p = get_insns (); p; p = NEXT_INSN (p))
2296 if (INSN_P (p))
2298 reset_used_flags (PATTERN (p));
2299 reset_used_flags (REG_NOTES (p));
2300 reset_used_flags (LOG_LINKS (p));
2303 for (p = get_insns (); p; p = NEXT_INSN (p))
2304 if (INSN_P (p))
2306 verify_rtx_sharing (PATTERN (p), p);
2307 verify_rtx_sharing (REG_NOTES (p), p);
2308 verify_rtx_sharing (LOG_LINKS (p), p);
2312 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2313 Assumes the mark bits are cleared at entry. */
2315 void
2316 unshare_all_rtl_in_chain (rtx insn)
2318 for (; insn; insn = NEXT_INSN (insn))
2319 if (INSN_P (insn))
2321 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2322 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2323 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2327 /* Go through all virtual stack slots of a function and copy any
2328 shared structure. */
2329 static void
2330 unshare_all_decls (tree blk)
2332 tree t;
2334 /* Copy shared decls. */
2335 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2336 if (DECL_RTL_SET_P (t))
2337 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2339 /* Now process sub-blocks. */
2340 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2341 unshare_all_decls (t);
2344 /* Go through all virtual stack slots of a function and mark them as
2345 not shared. */
2346 static void
2347 reset_used_decls (tree blk)
2349 tree t;
2351 /* Mark decls. */
2352 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2353 if (DECL_RTL_SET_P (t))
2354 reset_used_flags (DECL_RTL (t));
2356 /* Now process sub-blocks. */
2357 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2358 reset_used_decls (t);
2361 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2362 placed in the result directly, rather than being copied. MAY_SHARE is
2363 either a MEM of an EXPR_LIST of MEMs. */
2366 copy_most_rtx (rtx orig, rtx may_share)
2368 rtx copy;
2369 int i, j;
2370 RTX_CODE code;
2371 const char *format_ptr;
2373 if (orig == may_share
2374 || (GET_CODE (may_share) == EXPR_LIST
2375 && in_expr_list_p (may_share, orig)))
2376 return orig;
2378 code = GET_CODE (orig);
2380 switch (code)
2382 case REG:
2383 case QUEUED:
2384 case CONST_INT:
2385 case CONST_DOUBLE:
2386 case CONST_VECTOR:
2387 case SYMBOL_REF:
2388 case CODE_LABEL:
2389 case PC:
2390 case CC0:
2391 return orig;
2392 default:
2393 break;
2396 copy = rtx_alloc (code);
2397 PUT_MODE (copy, GET_MODE (orig));
2398 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2399 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2400 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2401 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2402 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2404 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2406 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2408 switch (*format_ptr++)
2410 case 'e':
2411 XEXP (copy, i) = XEXP (orig, i);
2412 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2413 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2414 break;
2416 case 'u':
2417 XEXP (copy, i) = XEXP (orig, i);
2418 break;
2420 case 'E':
2421 case 'V':
2422 XVEC (copy, i) = XVEC (orig, i);
2423 if (XVEC (orig, i) != NULL)
2425 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2426 for (j = 0; j < XVECLEN (copy, i); j++)
2427 XVECEXP (copy, i, j)
2428 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2430 break;
2432 case 'w':
2433 XWINT (copy, i) = XWINT (orig, i);
2434 break;
2436 case 'n':
2437 case 'i':
2438 XINT (copy, i) = XINT (orig, i);
2439 break;
2441 case 't':
2442 XTREE (copy, i) = XTREE (orig, i);
2443 break;
2445 case 's':
2446 case 'S':
2447 XSTR (copy, i) = XSTR (orig, i);
2448 break;
2450 case '0':
2451 X0ANY (copy, i) = X0ANY (orig, i);
2452 break;
2454 default:
2455 abort ();
2458 return copy;
2461 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2462 Recursively does the same for subexpressions. Uses
2463 copy_rtx_if_shared_1 to reduce stack space. */
2466 copy_rtx_if_shared (rtx orig)
2468 copy_rtx_if_shared_1 (&orig);
2469 return orig;
2472 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2473 use. Recursively does the same for subexpressions. */
2475 static void
2476 copy_rtx_if_shared_1 (rtx *orig1)
2478 rtx x;
2479 int i;
2480 enum rtx_code code;
2481 rtx *last_ptr;
2482 const char *format_ptr;
2483 int copied = 0;
2484 int length;
2486 /* Repeat is used to turn tail-recursion into iteration. */
2487 repeat:
2488 x = *orig1;
2490 if (x == 0)
2491 return;
2493 code = GET_CODE (x);
2495 /* These types may be freely shared. */
2497 switch (code)
2499 case REG:
2500 case QUEUED:
2501 case CONST_INT:
2502 case CONST_DOUBLE:
2503 case CONST_VECTOR:
2504 case SYMBOL_REF:
2505 case LABEL_REF:
2506 case CODE_LABEL:
2507 case PC:
2508 case CC0:
2509 case SCRATCH:
2510 /* SCRATCH must be shared because they represent distinct values. */
2511 return;
2512 case CLOBBER:
2513 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2514 return;
2515 break;
2517 case CONST:
2518 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2519 a LABEL_REF, it isn't sharable. */
2520 if (GET_CODE (XEXP (x, 0)) == PLUS
2521 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2522 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2523 return;
2524 break;
2526 case INSN:
2527 case JUMP_INSN:
2528 case CALL_INSN:
2529 case NOTE:
2530 case BARRIER:
2531 /* The chain of insns is not being copied. */
2532 return;
2534 default:
2535 break;
2538 /* This rtx may not be shared. If it has already been seen,
2539 replace it with a copy of itself. */
2541 if (RTX_FLAG (x, used))
2543 rtx copy;
2545 copy = rtx_alloc (code);
2546 memcpy (copy, x, RTX_SIZE (code));
2547 x = copy;
2548 copied = 1;
2550 RTX_FLAG (x, used) = 1;
2552 /* Now scan the subexpressions recursively.
2553 We can store any replaced subexpressions directly into X
2554 since we know X is not shared! Any vectors in X
2555 must be copied if X was copied. */
2557 format_ptr = GET_RTX_FORMAT (code);
2558 length = GET_RTX_LENGTH (code);
2559 last_ptr = NULL;
2561 for (i = 0; i < length; i++)
2563 switch (*format_ptr++)
2565 case 'e':
2566 if (last_ptr)
2567 copy_rtx_if_shared_1 (last_ptr);
2568 last_ptr = &XEXP (x, i);
2569 break;
2571 case 'E':
2572 if (XVEC (x, i) != NULL)
2574 int j;
2575 int len = XVECLEN (x, i);
2577 /* Copy the vector iff I copied the rtx and the length
2578 is nonzero. */
2579 if (copied && len > 0)
2580 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2582 /* Call recursively on all inside the vector. */
2583 for (j = 0; j < len; j++)
2585 if (last_ptr)
2586 copy_rtx_if_shared_1 (last_ptr);
2587 last_ptr = &XVECEXP (x, i, j);
2590 break;
2593 *orig1 = x;
2594 if (last_ptr)
2596 orig1 = last_ptr;
2597 goto repeat;
2599 return;
2602 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2603 to look for shared sub-parts. */
2605 void
2606 reset_used_flags (rtx x)
2608 int i, j;
2609 enum rtx_code code;
2610 const char *format_ptr;
2611 int length;
2613 /* Repeat is used to turn tail-recursion into iteration. */
2614 repeat:
2615 if (x == 0)
2616 return;
2618 code = GET_CODE (x);
2620 /* These types may be freely shared so we needn't do any resetting
2621 for them. */
2623 switch (code)
2625 case REG:
2626 case QUEUED:
2627 case CONST_INT:
2628 case CONST_DOUBLE:
2629 case CONST_VECTOR:
2630 case SYMBOL_REF:
2631 case CODE_LABEL:
2632 case PC:
2633 case CC0:
2634 return;
2636 case INSN:
2637 case JUMP_INSN:
2638 case CALL_INSN:
2639 case NOTE:
2640 case LABEL_REF:
2641 case BARRIER:
2642 /* The chain of insns is not being copied. */
2643 return;
2645 default:
2646 break;
2649 RTX_FLAG (x, used) = 0;
2651 format_ptr = GET_RTX_FORMAT (code);
2652 length = GET_RTX_LENGTH (code);
2654 for (i = 0; i < length; i++)
2656 switch (*format_ptr++)
2658 case 'e':
2659 if (i == length-1)
2661 x = XEXP (x, i);
2662 goto repeat;
2664 reset_used_flags (XEXP (x, i));
2665 break;
2667 case 'E':
2668 for (j = 0; j < XVECLEN (x, i); j++)
2669 reset_used_flags (XVECEXP (x, i, j));
2670 break;
2675 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2676 to look for shared sub-parts. */
2678 void
2679 set_used_flags (rtx x)
2681 int i, j;
2682 enum rtx_code code;
2683 const char *format_ptr;
2685 if (x == 0)
2686 return;
2688 code = GET_CODE (x);
2690 /* These types may be freely shared so we needn't do any resetting
2691 for them. */
2693 switch (code)
2695 case REG:
2696 case QUEUED:
2697 case CONST_INT:
2698 case CONST_DOUBLE:
2699 case CONST_VECTOR:
2700 case SYMBOL_REF:
2701 case CODE_LABEL:
2702 case PC:
2703 case CC0:
2704 return;
2706 case INSN:
2707 case JUMP_INSN:
2708 case CALL_INSN:
2709 case NOTE:
2710 case LABEL_REF:
2711 case BARRIER:
2712 /* The chain of insns is not being copied. */
2713 return;
2715 default:
2716 break;
2719 RTX_FLAG (x, used) = 1;
2721 format_ptr = GET_RTX_FORMAT (code);
2722 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2724 switch (*format_ptr++)
2726 case 'e':
2727 set_used_flags (XEXP (x, i));
2728 break;
2730 case 'E':
2731 for (j = 0; j < XVECLEN (x, i); j++)
2732 set_used_flags (XVECEXP (x, i, j));
2733 break;
2738 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2739 Return X or the rtx for the pseudo reg the value of X was copied into.
2740 OTHER must be valid as a SET_DEST. */
2743 make_safe_from (rtx x, rtx other)
2745 while (1)
2746 switch (GET_CODE (other))
2748 case SUBREG:
2749 other = SUBREG_REG (other);
2750 break;
2751 case STRICT_LOW_PART:
2752 case SIGN_EXTEND:
2753 case ZERO_EXTEND:
2754 other = XEXP (other, 0);
2755 break;
2756 default:
2757 goto done;
2759 done:
2760 if ((GET_CODE (other) == MEM
2761 && ! CONSTANT_P (x)
2762 && GET_CODE (x) != REG
2763 && GET_CODE (x) != SUBREG)
2764 || (GET_CODE (other) == REG
2765 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2766 || reg_mentioned_p (other, x))))
2768 rtx temp = gen_reg_rtx (GET_MODE (x));
2769 emit_move_insn (temp, x);
2770 return temp;
2772 return x;
2775 /* Emission of insns (adding them to the doubly-linked list). */
2777 /* Return the first insn of the current sequence or current function. */
2780 get_insns (void)
2782 return first_insn;
2785 /* Specify a new insn as the first in the chain. */
2787 void
2788 set_first_insn (rtx insn)
2790 if (PREV_INSN (insn) != 0)
2791 abort ();
2792 first_insn = insn;
2795 /* Return the last insn emitted in current sequence or current function. */
2798 get_last_insn (void)
2800 return last_insn;
2803 /* Specify a new insn as the last in the chain. */
2805 void
2806 set_last_insn (rtx insn)
2808 if (NEXT_INSN (insn) != 0)
2809 abort ();
2810 last_insn = insn;
2813 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2816 get_last_insn_anywhere (void)
2818 struct sequence_stack *stack;
2819 if (last_insn)
2820 return last_insn;
2821 for (stack = seq_stack; stack; stack = stack->next)
2822 if (stack->last != 0)
2823 return stack->last;
2824 return 0;
2827 /* Return the first nonnote insn emitted in current sequence or current
2828 function. This routine looks inside SEQUENCEs. */
2831 get_first_nonnote_insn (void)
2833 rtx insn = first_insn;
2835 while (insn)
2837 insn = next_insn (insn);
2838 if (insn == 0 || GET_CODE (insn) != NOTE)
2839 break;
2842 return insn;
2845 /* Return the last nonnote insn emitted in current sequence or current
2846 function. This routine looks inside SEQUENCEs. */
2849 get_last_nonnote_insn (void)
2851 rtx insn = last_insn;
2853 while (insn)
2855 insn = previous_insn (insn);
2856 if (insn == 0 || GET_CODE (insn) != NOTE)
2857 break;
2860 return insn;
2863 /* Return a number larger than any instruction's uid in this function. */
2866 get_max_uid (void)
2868 return cur_insn_uid;
2871 /* Renumber instructions so that no instruction UIDs are wasted. */
2873 void
2874 renumber_insns (FILE *stream)
2876 rtx insn;
2878 /* If we're not supposed to renumber instructions, don't. */
2879 if (!flag_renumber_insns)
2880 return;
2882 /* If there aren't that many instructions, then it's not really
2883 worth renumbering them. */
2884 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2885 return;
2887 cur_insn_uid = 1;
2889 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2891 if (stream)
2892 fprintf (stream, "Renumbering insn %d to %d\n",
2893 INSN_UID (insn), cur_insn_uid);
2894 INSN_UID (insn) = cur_insn_uid++;
2898 /* Return the next insn. If it is a SEQUENCE, return the first insn
2899 of the sequence. */
2902 next_insn (rtx insn)
2904 if (insn)
2906 insn = NEXT_INSN (insn);
2907 if (insn && GET_CODE (insn) == INSN
2908 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2909 insn = XVECEXP (PATTERN (insn), 0, 0);
2912 return insn;
2915 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2916 of the sequence. */
2919 previous_insn (rtx insn)
2921 if (insn)
2923 insn = PREV_INSN (insn);
2924 if (insn && GET_CODE (insn) == INSN
2925 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2926 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2929 return insn;
2932 /* Return the next insn after INSN that is not a NOTE. This routine does not
2933 look inside SEQUENCEs. */
2936 next_nonnote_insn (rtx insn)
2938 while (insn)
2940 insn = NEXT_INSN (insn);
2941 if (insn == 0 || GET_CODE (insn) != NOTE)
2942 break;
2945 return insn;
2948 /* Return the previous insn before INSN that is not a NOTE. This routine does
2949 not look inside SEQUENCEs. */
2952 prev_nonnote_insn (rtx insn)
2954 while (insn)
2956 insn = PREV_INSN (insn);
2957 if (insn == 0 || GET_CODE (insn) != NOTE)
2958 break;
2961 return insn;
2964 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2965 or 0, if there is none. This routine does not look inside
2966 SEQUENCEs. */
2969 next_real_insn (rtx insn)
2971 while (insn)
2973 insn = NEXT_INSN (insn);
2974 if (insn == 0 || INSN_P (insn))
2975 break;
2978 return insn;
2981 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2982 or 0, if there is none. This routine does not look inside
2983 SEQUENCEs. */
2986 prev_real_insn (rtx insn)
2988 while (insn)
2990 insn = PREV_INSN (insn);
2991 if (insn == 0 || INSN_P (insn))
2992 break;
2995 return insn;
2998 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2999 This routine does not look inside SEQUENCEs. */
3002 last_call_insn (void)
3004 rtx insn;
3006 for (insn = get_last_insn ();
3007 insn && GET_CODE (insn) != CALL_INSN;
3008 insn = PREV_INSN (insn))
3011 return insn;
3014 /* Find the next insn after INSN that really does something. This routine
3015 does not look inside SEQUENCEs. Until reload has completed, this is the
3016 same as next_real_insn. */
3019 active_insn_p (rtx insn)
3021 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3022 || (GET_CODE (insn) == INSN
3023 && (! reload_completed
3024 || (GET_CODE (PATTERN (insn)) != USE
3025 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3029 next_active_insn (rtx insn)
3031 while (insn)
3033 insn = NEXT_INSN (insn);
3034 if (insn == 0 || active_insn_p (insn))
3035 break;
3038 return insn;
3041 /* Find the last insn before INSN that really does something. This routine
3042 does not look inside SEQUENCEs. Until reload has completed, this is the
3043 same as prev_real_insn. */
3046 prev_active_insn (rtx insn)
3048 while (insn)
3050 insn = PREV_INSN (insn);
3051 if (insn == 0 || active_insn_p (insn))
3052 break;
3055 return insn;
3058 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3061 next_label (rtx insn)
3063 while (insn)
3065 insn = NEXT_INSN (insn);
3066 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3067 break;
3070 return insn;
3073 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3076 prev_label (rtx insn)
3078 while (insn)
3080 insn = PREV_INSN (insn);
3081 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3082 break;
3085 return insn;
3088 #ifdef HAVE_cc0
3089 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3090 and REG_CC_USER notes so we can find it. */
3092 void
3093 link_cc0_insns (rtx insn)
3095 rtx user = next_nonnote_insn (insn);
3097 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3098 user = XVECEXP (PATTERN (user), 0, 0);
3100 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3101 REG_NOTES (user));
3102 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3105 /* Return the next insn that uses CC0 after INSN, which is assumed to
3106 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3107 applied to the result of this function should yield INSN).
3109 Normally, this is simply the next insn. However, if a REG_CC_USER note
3110 is present, it contains the insn that uses CC0.
3112 Return 0 if we can't find the insn. */
3115 next_cc0_user (rtx insn)
3117 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3119 if (note)
3120 return XEXP (note, 0);
3122 insn = next_nonnote_insn (insn);
3123 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3124 insn = XVECEXP (PATTERN (insn), 0, 0);
3126 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3127 return insn;
3129 return 0;
3132 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3133 note, it is the previous insn. */
3136 prev_cc0_setter (rtx insn)
3138 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3140 if (note)
3141 return XEXP (note, 0);
3143 insn = prev_nonnote_insn (insn);
3144 if (! sets_cc0_p (PATTERN (insn)))
3145 abort ();
3147 return insn;
3149 #endif
3151 /* Increment the label uses for all labels present in rtx. */
3153 static void
3154 mark_label_nuses (rtx x)
3156 enum rtx_code code;
3157 int i, j;
3158 const char *fmt;
3160 code = GET_CODE (x);
3161 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3162 LABEL_NUSES (XEXP (x, 0))++;
3164 fmt = GET_RTX_FORMAT (code);
3165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3167 if (fmt[i] == 'e')
3168 mark_label_nuses (XEXP (x, i));
3169 else if (fmt[i] == 'E')
3170 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3171 mark_label_nuses (XVECEXP (x, i, j));
3176 /* Try splitting insns that can be split for better scheduling.
3177 PAT is the pattern which might split.
3178 TRIAL is the insn providing PAT.
3179 LAST is nonzero if we should return the last insn of the sequence produced.
3181 If this routine succeeds in splitting, it returns the first or last
3182 replacement insn depending on the value of LAST. Otherwise, it
3183 returns TRIAL. If the insn to be returned can be split, it will be. */
3186 try_split (rtx pat, rtx trial, int last)
3188 rtx before = PREV_INSN (trial);
3189 rtx after = NEXT_INSN (trial);
3190 int has_barrier = 0;
3191 rtx tem;
3192 rtx note, seq;
3193 int probability;
3194 rtx insn_last, insn;
3195 int njumps = 0;
3197 if (any_condjump_p (trial)
3198 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3199 split_branch_probability = INTVAL (XEXP (note, 0));
3200 probability = split_branch_probability;
3202 seq = split_insns (pat, trial);
3204 split_branch_probability = -1;
3206 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3207 We may need to handle this specially. */
3208 if (after && GET_CODE (after) == BARRIER)
3210 has_barrier = 1;
3211 after = NEXT_INSN (after);
3214 if (!seq)
3215 return trial;
3217 /* Avoid infinite loop if any insn of the result matches
3218 the original pattern. */
3219 insn_last = seq;
3220 while (1)
3222 if (INSN_P (insn_last)
3223 && rtx_equal_p (PATTERN (insn_last), pat))
3224 return trial;
3225 if (!NEXT_INSN (insn_last))
3226 break;
3227 insn_last = NEXT_INSN (insn_last);
3230 /* Mark labels. */
3231 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3233 if (GET_CODE (insn) == JUMP_INSN)
3235 mark_jump_label (PATTERN (insn), insn, 0);
3236 njumps++;
3237 if (probability != -1
3238 && any_condjump_p (insn)
3239 && !find_reg_note (insn, REG_BR_PROB, 0))
3241 /* We can preserve the REG_BR_PROB notes only if exactly
3242 one jump is created, otherwise the machine description
3243 is responsible for this step using
3244 split_branch_probability variable. */
3245 if (njumps != 1)
3246 abort ();
3247 REG_NOTES (insn)
3248 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3249 GEN_INT (probability),
3250 REG_NOTES (insn));
3255 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3256 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3257 if (GET_CODE (trial) == CALL_INSN)
3259 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3260 if (GET_CODE (insn) == CALL_INSN)
3262 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3263 while (*p)
3264 p = &XEXP (*p, 1);
3265 *p = CALL_INSN_FUNCTION_USAGE (trial);
3266 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3270 /* Copy notes, particularly those related to the CFG. */
3271 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3273 switch (REG_NOTE_KIND (note))
3275 case REG_EH_REGION:
3276 insn = insn_last;
3277 while (insn != NULL_RTX)
3279 if (GET_CODE (insn) == CALL_INSN
3280 || (flag_non_call_exceptions
3281 && may_trap_p (PATTERN (insn))))
3282 REG_NOTES (insn)
3283 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3284 XEXP (note, 0),
3285 REG_NOTES (insn));
3286 insn = PREV_INSN (insn);
3288 break;
3290 case REG_NORETURN:
3291 case REG_SETJMP:
3292 case REG_ALWAYS_RETURN:
3293 insn = insn_last;
3294 while (insn != NULL_RTX)
3296 if (GET_CODE (insn) == CALL_INSN)
3297 REG_NOTES (insn)
3298 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3299 XEXP (note, 0),
3300 REG_NOTES (insn));
3301 insn = PREV_INSN (insn);
3303 break;
3305 case REG_NON_LOCAL_GOTO:
3306 insn = insn_last;
3307 while (insn != NULL_RTX)
3309 if (GET_CODE (insn) == JUMP_INSN)
3310 REG_NOTES (insn)
3311 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3312 XEXP (note, 0),
3313 REG_NOTES (insn));
3314 insn = PREV_INSN (insn);
3316 break;
3318 default:
3319 break;
3323 /* If there are LABELS inside the split insns increment the
3324 usage count so we don't delete the label. */
3325 if (GET_CODE (trial) == INSN)
3327 insn = insn_last;
3328 while (insn != NULL_RTX)
3330 if (GET_CODE (insn) == INSN)
3331 mark_label_nuses (PATTERN (insn));
3333 insn = PREV_INSN (insn);
3337 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3339 delete_insn (trial);
3340 if (has_barrier)
3341 emit_barrier_after (tem);
3343 /* Recursively call try_split for each new insn created; by the
3344 time control returns here that insn will be fully split, so
3345 set LAST and continue from the insn after the one returned.
3346 We can't use next_active_insn here since AFTER may be a note.
3347 Ignore deleted insns, which can be occur if not optimizing. */
3348 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3349 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3350 tem = try_split (PATTERN (tem), tem, 1);
3352 /* Return either the first or the last insn, depending on which was
3353 requested. */
3354 return last
3355 ? (after ? PREV_INSN (after) : last_insn)
3356 : NEXT_INSN (before);
3359 /* Make and return an INSN rtx, initializing all its slots.
3360 Store PATTERN in the pattern slots. */
3363 make_insn_raw (rtx pattern)
3365 rtx insn;
3367 insn = rtx_alloc (INSN);
3369 INSN_UID (insn) = cur_insn_uid++;
3370 PATTERN (insn) = pattern;
3371 INSN_CODE (insn) = -1;
3372 LOG_LINKS (insn) = NULL;
3373 REG_NOTES (insn) = NULL;
3374 INSN_LOCATOR (insn) = 0;
3375 BLOCK_FOR_INSN (insn) = NULL;
3377 #ifdef ENABLE_RTL_CHECKING
3378 if (insn
3379 && INSN_P (insn)
3380 && (returnjump_p (insn)
3381 || (GET_CODE (insn) == SET
3382 && SET_DEST (insn) == pc_rtx)))
3384 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3385 debug_rtx (insn);
3387 #endif
3389 return insn;
3392 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3394 static rtx
3395 make_jump_insn_raw (rtx pattern)
3397 rtx insn;
3399 insn = rtx_alloc (JUMP_INSN);
3400 INSN_UID (insn) = cur_insn_uid++;
3402 PATTERN (insn) = pattern;
3403 INSN_CODE (insn) = -1;
3404 LOG_LINKS (insn) = NULL;
3405 REG_NOTES (insn) = NULL;
3406 JUMP_LABEL (insn) = NULL;
3407 INSN_LOCATOR (insn) = 0;
3408 BLOCK_FOR_INSN (insn) = NULL;
3410 return insn;
3413 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3415 static rtx
3416 make_call_insn_raw (rtx pattern)
3418 rtx insn;
3420 insn = rtx_alloc (CALL_INSN);
3421 INSN_UID (insn) = cur_insn_uid++;
3423 PATTERN (insn) = pattern;
3424 INSN_CODE (insn) = -1;
3425 LOG_LINKS (insn) = NULL;
3426 REG_NOTES (insn) = NULL;
3427 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3428 INSN_LOCATOR (insn) = 0;
3429 BLOCK_FOR_INSN (insn) = NULL;
3431 return insn;
3434 /* Add INSN to the end of the doubly-linked list.
3435 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3437 void
3438 add_insn (rtx insn)
3440 PREV_INSN (insn) = last_insn;
3441 NEXT_INSN (insn) = 0;
3443 if (NULL != last_insn)
3444 NEXT_INSN (last_insn) = insn;
3446 if (NULL == first_insn)
3447 first_insn = insn;
3449 last_insn = insn;
3452 /* Add INSN into the doubly-linked list after insn AFTER. This and
3453 the next should be the only functions called to insert an insn once
3454 delay slots have been filled since only they know how to update a
3455 SEQUENCE. */
3457 void
3458 add_insn_after (rtx insn, rtx after)
3460 rtx next = NEXT_INSN (after);
3461 basic_block bb;
3463 if (optimize && INSN_DELETED_P (after))
3464 abort ();
3466 NEXT_INSN (insn) = next;
3467 PREV_INSN (insn) = after;
3469 if (next)
3471 PREV_INSN (next) = insn;
3472 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3473 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3475 else if (last_insn == after)
3476 last_insn = insn;
3477 else
3479 struct sequence_stack *stack = seq_stack;
3480 /* Scan all pending sequences too. */
3481 for (; stack; stack = stack->next)
3482 if (after == stack->last)
3484 stack->last = insn;
3485 break;
3488 if (stack == 0)
3489 abort ();
3492 if (GET_CODE (after) != BARRIER
3493 && GET_CODE (insn) != BARRIER
3494 && (bb = BLOCK_FOR_INSN (after)))
3496 set_block_for_insn (insn, bb);
3497 if (INSN_P (insn))
3498 bb->flags |= BB_DIRTY;
3499 /* Should not happen as first in the BB is always
3500 either NOTE or LABEL. */
3501 if (BB_END (bb) == after
3502 /* Avoid clobbering of structure when creating new BB. */
3503 && GET_CODE (insn) != BARRIER
3504 && (GET_CODE (insn) != NOTE
3505 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3506 BB_END (bb) = insn;
3509 NEXT_INSN (after) = insn;
3510 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3512 rtx sequence = PATTERN (after);
3513 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3517 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3518 the previous should be the only functions called to insert an insn once
3519 delay slots have been filled since only they know how to update a
3520 SEQUENCE. */
3522 void
3523 add_insn_before (rtx insn, rtx before)
3525 rtx prev = PREV_INSN (before);
3526 basic_block bb;
3528 if (optimize && INSN_DELETED_P (before))
3529 abort ();
3531 PREV_INSN (insn) = prev;
3532 NEXT_INSN (insn) = before;
3534 if (prev)
3536 NEXT_INSN (prev) = insn;
3537 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3539 rtx sequence = PATTERN (prev);
3540 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3543 else if (first_insn == before)
3544 first_insn = insn;
3545 else
3547 struct sequence_stack *stack = seq_stack;
3548 /* Scan all pending sequences too. */
3549 for (; stack; stack = stack->next)
3550 if (before == stack->first)
3552 stack->first = insn;
3553 break;
3556 if (stack == 0)
3557 abort ();
3560 if (GET_CODE (before) != BARRIER
3561 && GET_CODE (insn) != BARRIER
3562 && (bb = BLOCK_FOR_INSN (before)))
3564 set_block_for_insn (insn, bb);
3565 if (INSN_P (insn))
3566 bb->flags |= BB_DIRTY;
3567 /* Should not happen as first in the BB is always
3568 either NOTE or LABEl. */
3569 if (BB_HEAD (bb) == insn
3570 /* Avoid clobbering of structure when creating new BB. */
3571 && GET_CODE (insn) != BARRIER
3572 && (GET_CODE (insn) != NOTE
3573 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3574 abort ();
3577 PREV_INSN (before) = insn;
3578 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3579 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3582 /* Remove an insn from its doubly-linked list. This function knows how
3583 to handle sequences. */
3584 void
3585 remove_insn (rtx insn)
3587 rtx next = NEXT_INSN (insn);
3588 rtx prev = PREV_INSN (insn);
3589 basic_block bb;
3591 if (prev)
3593 NEXT_INSN (prev) = next;
3594 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3596 rtx sequence = PATTERN (prev);
3597 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3600 else if (first_insn == insn)
3601 first_insn = next;
3602 else
3604 struct sequence_stack *stack = seq_stack;
3605 /* Scan all pending sequences too. */
3606 for (; stack; stack = stack->next)
3607 if (insn == stack->first)
3609 stack->first = next;
3610 break;
3613 if (stack == 0)
3614 abort ();
3617 if (next)
3619 PREV_INSN (next) = prev;
3620 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3621 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3623 else if (last_insn == insn)
3624 last_insn = prev;
3625 else
3627 struct sequence_stack *stack = seq_stack;
3628 /* Scan all pending sequences too. */
3629 for (; stack; stack = stack->next)
3630 if (insn == stack->last)
3632 stack->last = prev;
3633 break;
3636 if (stack == 0)
3637 abort ();
3639 if (GET_CODE (insn) != BARRIER
3640 && (bb = BLOCK_FOR_INSN (insn)))
3642 if (INSN_P (insn))
3643 bb->flags |= BB_DIRTY;
3644 if (BB_HEAD (bb) == insn)
3646 /* Never ever delete the basic block note without deleting whole
3647 basic block. */
3648 if (GET_CODE (insn) == NOTE)
3649 abort ();
3650 BB_HEAD (bb) = next;
3652 if (BB_END (bb) == insn)
3653 BB_END (bb) = prev;
3657 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3659 void
3660 add_function_usage_to (rtx call_insn, rtx call_fusage)
3662 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3663 abort ();
3665 /* Put the register usage information on the CALL. If there is already
3666 some usage information, put ours at the end. */
3667 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3669 rtx link;
3671 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3672 link = XEXP (link, 1))
3675 XEXP (link, 1) = call_fusage;
3677 else
3678 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3681 /* Delete all insns made since FROM.
3682 FROM becomes the new last instruction. */
3684 void
3685 delete_insns_since (rtx from)
3687 if (from == 0)
3688 first_insn = 0;
3689 else
3690 NEXT_INSN (from) = 0;
3691 last_insn = from;
3694 /* This function is deprecated, please use sequences instead.
3696 Move a consecutive bunch of insns to a different place in the chain.
3697 The insns to be moved are those between FROM and TO.
3698 They are moved to a new position after the insn AFTER.
3699 AFTER must not be FROM or TO or any insn in between.
3701 This function does not know about SEQUENCEs and hence should not be
3702 called after delay-slot filling has been done. */
3704 void
3705 reorder_insns_nobb (rtx from, rtx to, rtx after)
3707 /* Splice this bunch out of where it is now. */
3708 if (PREV_INSN (from))
3709 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3710 if (NEXT_INSN (to))
3711 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3712 if (last_insn == to)
3713 last_insn = PREV_INSN (from);
3714 if (first_insn == from)
3715 first_insn = NEXT_INSN (to);
3717 /* Make the new neighbors point to it and it to them. */
3718 if (NEXT_INSN (after))
3719 PREV_INSN (NEXT_INSN (after)) = to;
3721 NEXT_INSN (to) = NEXT_INSN (after);
3722 PREV_INSN (from) = after;
3723 NEXT_INSN (after) = from;
3724 if (after == last_insn)
3725 last_insn = to;
3728 /* Same as function above, but take care to update BB boundaries. */
3729 void
3730 reorder_insns (rtx from, rtx to, rtx after)
3732 rtx prev = PREV_INSN (from);
3733 basic_block bb, bb2;
3735 reorder_insns_nobb (from, to, after);
3737 if (GET_CODE (after) != BARRIER
3738 && (bb = BLOCK_FOR_INSN (after)))
3740 rtx x;
3741 bb->flags |= BB_DIRTY;
3743 if (GET_CODE (from) != BARRIER
3744 && (bb2 = BLOCK_FOR_INSN (from)))
3746 if (BB_END (bb2) == to)
3747 BB_END (bb2) = prev;
3748 bb2->flags |= BB_DIRTY;
3751 if (BB_END (bb) == after)
3752 BB_END (bb) = to;
3754 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3755 set_block_for_insn (x, bb);
3759 /* Return the line note insn preceding INSN. */
3761 static rtx
3762 find_line_note (rtx insn)
3764 if (no_line_numbers)
3765 return 0;
3767 for (; insn; insn = PREV_INSN (insn))
3768 if (GET_CODE (insn) == NOTE
3769 && NOTE_LINE_NUMBER (insn) >= 0)
3770 break;
3772 return insn;
3775 /* Remove unnecessary notes from the instruction stream. */
3777 void
3778 remove_unnecessary_notes (void)
3780 rtx block_stack = NULL_RTX;
3781 rtx eh_stack = NULL_RTX;
3782 rtx insn;
3783 rtx next;
3784 rtx tmp;
3786 /* We must not remove the first instruction in the function because
3787 the compiler depends on the first instruction being a note. */
3788 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3790 /* Remember what's next. */
3791 next = NEXT_INSN (insn);
3793 /* We're only interested in notes. */
3794 if (GET_CODE (insn) != NOTE)
3795 continue;
3797 switch (NOTE_LINE_NUMBER (insn))
3799 case NOTE_INSN_DELETED:
3800 case NOTE_INSN_LOOP_END_TOP_COND:
3801 remove_insn (insn);
3802 break;
3804 case NOTE_INSN_EH_REGION_BEG:
3805 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3806 break;
3808 case NOTE_INSN_EH_REGION_END:
3809 /* Too many end notes. */
3810 if (eh_stack == NULL_RTX)
3811 abort ();
3812 /* Mismatched nesting. */
3813 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3814 abort ();
3815 tmp = eh_stack;
3816 eh_stack = XEXP (eh_stack, 1);
3817 free_INSN_LIST_node (tmp);
3818 break;
3820 case NOTE_INSN_BLOCK_BEG:
3821 /* By now, all notes indicating lexical blocks should have
3822 NOTE_BLOCK filled in. */
3823 if (NOTE_BLOCK (insn) == NULL_TREE)
3824 abort ();
3825 block_stack = alloc_INSN_LIST (insn, block_stack);
3826 break;
3828 case NOTE_INSN_BLOCK_END:
3829 /* Too many end notes. */
3830 if (block_stack == NULL_RTX)
3831 abort ();
3832 /* Mismatched nesting. */
3833 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3834 abort ();
3835 tmp = block_stack;
3836 block_stack = XEXP (block_stack, 1);
3837 free_INSN_LIST_node (tmp);
3839 /* Scan back to see if there are any non-note instructions
3840 between INSN and the beginning of this block. If not,
3841 then there is no PC range in the generated code that will
3842 actually be in this block, so there's no point in
3843 remembering the existence of the block. */
3844 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3846 /* This block contains a real instruction. Note that we
3847 don't include labels; if the only thing in the block
3848 is a label, then there are still no PC values that
3849 lie within the block. */
3850 if (INSN_P (tmp))
3851 break;
3853 /* We're only interested in NOTEs. */
3854 if (GET_CODE (tmp) != NOTE)
3855 continue;
3857 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3859 /* We just verified that this BLOCK matches us with
3860 the block_stack check above. Never delete the
3861 BLOCK for the outermost scope of the function; we
3862 can refer to names from that scope even if the
3863 block notes are messed up. */
3864 if (! is_body_block (NOTE_BLOCK (insn))
3865 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3867 remove_insn (tmp);
3868 remove_insn (insn);
3870 break;
3872 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3873 /* There's a nested block. We need to leave the
3874 current block in place since otherwise the debugger
3875 wouldn't be able to show symbols from our block in
3876 the nested block. */
3877 break;
3882 /* Too many begin notes. */
3883 if (block_stack || eh_stack)
3884 abort ();
3888 /* Emit insn(s) of given code and pattern
3889 at a specified place within the doubly-linked list.
3891 All of the emit_foo global entry points accept an object
3892 X which is either an insn list or a PATTERN of a single
3893 instruction.
3895 There are thus a few canonical ways to generate code and
3896 emit it at a specific place in the instruction stream. For
3897 example, consider the instruction named SPOT and the fact that
3898 we would like to emit some instructions before SPOT. We might
3899 do it like this:
3901 start_sequence ();
3902 ... emit the new instructions ...
3903 insns_head = get_insns ();
3904 end_sequence ();
3906 emit_insn_before (insns_head, SPOT);
3908 It used to be common to generate SEQUENCE rtl instead, but that
3909 is a relic of the past which no longer occurs. The reason is that
3910 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3911 generated would almost certainly die right after it was created. */
3913 /* Make X be output before the instruction BEFORE. */
3916 emit_insn_before (rtx x, rtx before)
3918 rtx last = before;
3919 rtx insn;
3921 #ifdef ENABLE_RTL_CHECKING
3922 if (before == NULL_RTX)
3923 abort ();
3924 #endif
3926 if (x == NULL_RTX)
3927 return last;
3929 switch (GET_CODE (x))
3931 case INSN:
3932 case JUMP_INSN:
3933 case CALL_INSN:
3934 case CODE_LABEL:
3935 case BARRIER:
3936 case NOTE:
3937 insn = x;
3938 while (insn)
3940 rtx next = NEXT_INSN (insn);
3941 add_insn_before (insn, before);
3942 last = insn;
3943 insn = next;
3945 break;
3947 #ifdef ENABLE_RTL_CHECKING
3948 case SEQUENCE:
3949 abort ();
3950 break;
3951 #endif
3953 default:
3954 last = make_insn_raw (x);
3955 add_insn_before (last, before);
3956 break;
3959 return last;
3962 /* Make an instruction with body X and code JUMP_INSN
3963 and output it before the instruction BEFORE. */
3966 emit_jump_insn_before (rtx x, rtx before)
3968 rtx insn, last = NULL_RTX;
3970 #ifdef ENABLE_RTL_CHECKING
3971 if (before == NULL_RTX)
3972 abort ();
3973 #endif
3975 switch (GET_CODE (x))
3977 case INSN:
3978 case JUMP_INSN:
3979 case CALL_INSN:
3980 case CODE_LABEL:
3981 case BARRIER:
3982 case NOTE:
3983 insn = x;
3984 while (insn)
3986 rtx next = NEXT_INSN (insn);
3987 add_insn_before (insn, before);
3988 last = insn;
3989 insn = next;
3991 break;
3993 #ifdef ENABLE_RTL_CHECKING
3994 case SEQUENCE:
3995 abort ();
3996 break;
3997 #endif
3999 default:
4000 last = make_jump_insn_raw (x);
4001 add_insn_before (last, before);
4002 break;
4005 return last;
4008 /* Make an instruction with body X and code CALL_INSN
4009 and output it before the instruction BEFORE. */
4012 emit_call_insn_before (rtx x, rtx before)
4014 rtx last = NULL_RTX, insn;
4016 #ifdef ENABLE_RTL_CHECKING
4017 if (before == NULL_RTX)
4018 abort ();
4019 #endif
4021 switch (GET_CODE (x))
4023 case INSN:
4024 case JUMP_INSN:
4025 case CALL_INSN:
4026 case CODE_LABEL:
4027 case BARRIER:
4028 case NOTE:
4029 insn = x;
4030 while (insn)
4032 rtx next = NEXT_INSN (insn);
4033 add_insn_before (insn, before);
4034 last = insn;
4035 insn = next;
4037 break;
4039 #ifdef ENABLE_RTL_CHECKING
4040 case SEQUENCE:
4041 abort ();
4042 break;
4043 #endif
4045 default:
4046 last = make_call_insn_raw (x);
4047 add_insn_before (last, before);
4048 break;
4051 return last;
4054 /* Make an insn of code BARRIER
4055 and output it before the insn BEFORE. */
4058 emit_barrier_before (rtx before)
4060 rtx insn = rtx_alloc (BARRIER);
4062 INSN_UID (insn) = cur_insn_uid++;
4064 add_insn_before (insn, before);
4065 return insn;
4068 /* Emit the label LABEL before the insn BEFORE. */
4071 emit_label_before (rtx label, rtx before)
4073 /* This can be called twice for the same label as a result of the
4074 confusion that follows a syntax error! So make it harmless. */
4075 if (INSN_UID (label) == 0)
4077 INSN_UID (label) = cur_insn_uid++;
4078 add_insn_before (label, before);
4081 return label;
4084 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4087 emit_note_before (int subtype, rtx before)
4089 rtx note = rtx_alloc (NOTE);
4090 INSN_UID (note) = cur_insn_uid++;
4091 NOTE_SOURCE_FILE (note) = 0;
4092 NOTE_LINE_NUMBER (note) = subtype;
4093 BLOCK_FOR_INSN (note) = NULL;
4095 add_insn_before (note, before);
4096 return note;
4099 /* Helper for emit_insn_after, handles lists of instructions
4100 efficiently. */
4102 static rtx emit_insn_after_1 (rtx, rtx);
4104 static rtx
4105 emit_insn_after_1 (rtx first, rtx after)
4107 rtx last;
4108 rtx after_after;
4109 basic_block bb;
4111 if (GET_CODE (after) != BARRIER
4112 && (bb = BLOCK_FOR_INSN (after)))
4114 bb->flags |= BB_DIRTY;
4115 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4116 if (GET_CODE (last) != BARRIER)
4117 set_block_for_insn (last, bb);
4118 if (GET_CODE (last) != BARRIER)
4119 set_block_for_insn (last, bb);
4120 if (BB_END (bb) == after)
4121 BB_END (bb) = last;
4123 else
4124 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4125 continue;
4127 after_after = NEXT_INSN (after);
4129 NEXT_INSN (after) = first;
4130 PREV_INSN (first) = after;
4131 NEXT_INSN (last) = after_after;
4132 if (after_after)
4133 PREV_INSN (after_after) = last;
4135 if (after == last_insn)
4136 last_insn = last;
4137 return last;
4140 /* Make X be output after the insn AFTER. */
4143 emit_insn_after (rtx x, rtx after)
4145 rtx last = after;
4147 #ifdef ENABLE_RTL_CHECKING
4148 if (after == NULL_RTX)
4149 abort ();
4150 #endif
4152 if (x == NULL_RTX)
4153 return last;
4155 switch (GET_CODE (x))
4157 case INSN:
4158 case JUMP_INSN:
4159 case CALL_INSN:
4160 case CODE_LABEL:
4161 case BARRIER:
4162 case NOTE:
4163 last = emit_insn_after_1 (x, after);
4164 break;
4166 #ifdef ENABLE_RTL_CHECKING
4167 case SEQUENCE:
4168 abort ();
4169 break;
4170 #endif
4172 default:
4173 last = make_insn_raw (x);
4174 add_insn_after (last, after);
4175 break;
4178 return last;
4181 /* Similar to emit_insn_after, except that line notes are to be inserted so
4182 as to act as if this insn were at FROM. */
4184 void
4185 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4187 rtx from_line = find_line_note (from);
4188 rtx after_line = find_line_note (after);
4189 rtx insn = emit_insn_after (x, after);
4191 if (from_line)
4192 emit_note_copy_after (from_line, after);
4194 if (after_line)
4195 emit_note_copy_after (after_line, insn);
4198 /* Make an insn of code JUMP_INSN with body X
4199 and output it after the insn AFTER. */
4202 emit_jump_insn_after (rtx x, rtx after)
4204 rtx last;
4206 #ifdef ENABLE_RTL_CHECKING
4207 if (after == NULL_RTX)
4208 abort ();
4209 #endif
4211 switch (GET_CODE (x))
4213 case INSN:
4214 case JUMP_INSN:
4215 case CALL_INSN:
4216 case CODE_LABEL:
4217 case BARRIER:
4218 case NOTE:
4219 last = emit_insn_after_1 (x, after);
4220 break;
4222 #ifdef ENABLE_RTL_CHECKING
4223 case SEQUENCE:
4224 abort ();
4225 break;
4226 #endif
4228 default:
4229 last = make_jump_insn_raw (x);
4230 add_insn_after (last, after);
4231 break;
4234 return last;
4237 /* Make an instruction with body X and code CALL_INSN
4238 and output it after the instruction AFTER. */
4241 emit_call_insn_after (rtx x, rtx after)
4243 rtx last;
4245 #ifdef ENABLE_RTL_CHECKING
4246 if (after == NULL_RTX)
4247 abort ();
4248 #endif
4250 switch (GET_CODE (x))
4252 case INSN:
4253 case JUMP_INSN:
4254 case CALL_INSN:
4255 case CODE_LABEL:
4256 case BARRIER:
4257 case NOTE:
4258 last = emit_insn_after_1 (x, after);
4259 break;
4261 #ifdef ENABLE_RTL_CHECKING
4262 case SEQUENCE:
4263 abort ();
4264 break;
4265 #endif
4267 default:
4268 last = make_call_insn_raw (x);
4269 add_insn_after (last, after);
4270 break;
4273 return last;
4276 /* Make an insn of code BARRIER
4277 and output it after the insn AFTER. */
4280 emit_barrier_after (rtx after)
4282 rtx insn = rtx_alloc (BARRIER);
4284 INSN_UID (insn) = cur_insn_uid++;
4286 add_insn_after (insn, after);
4287 return insn;
4290 /* Emit the label LABEL after the insn AFTER. */
4293 emit_label_after (rtx label, rtx after)
4295 /* This can be called twice for the same label
4296 as a result of the confusion that follows a syntax error!
4297 So make it harmless. */
4298 if (INSN_UID (label) == 0)
4300 INSN_UID (label) = cur_insn_uid++;
4301 add_insn_after (label, after);
4304 return label;
4307 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4310 emit_note_after (int subtype, rtx after)
4312 rtx note = rtx_alloc (NOTE);
4313 INSN_UID (note) = cur_insn_uid++;
4314 NOTE_SOURCE_FILE (note) = 0;
4315 NOTE_LINE_NUMBER (note) = subtype;
4316 BLOCK_FOR_INSN (note) = NULL;
4317 add_insn_after (note, after);
4318 return note;
4321 /* Emit a copy of note ORIG after the insn AFTER. */
4324 emit_note_copy_after (rtx orig, rtx after)
4326 rtx note;
4328 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4330 cur_insn_uid++;
4331 return 0;
4334 note = rtx_alloc (NOTE);
4335 INSN_UID (note) = cur_insn_uid++;
4336 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4337 NOTE_DATA (note) = NOTE_DATA (orig);
4338 BLOCK_FOR_INSN (note) = NULL;
4339 add_insn_after (note, after);
4340 return note;
4343 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4345 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4347 rtx last = emit_insn_after (pattern, after);
4349 if (pattern == NULL_RTX)
4350 return last;
4352 after = NEXT_INSN (after);
4353 while (1)
4355 if (active_insn_p (after))
4356 INSN_LOCATOR (after) = loc;
4357 if (after == last)
4358 break;
4359 after = NEXT_INSN (after);
4361 return last;
4364 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4366 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4368 rtx last = emit_jump_insn_after (pattern, after);
4370 if (pattern == NULL_RTX)
4371 return last;
4373 after = NEXT_INSN (after);
4374 while (1)
4376 if (active_insn_p (after))
4377 INSN_LOCATOR (after) = loc;
4378 if (after == last)
4379 break;
4380 after = NEXT_INSN (after);
4382 return last;
4385 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4387 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4389 rtx last = emit_call_insn_after (pattern, after);
4391 if (pattern == NULL_RTX)
4392 return last;
4394 after = NEXT_INSN (after);
4395 while (1)
4397 if (active_insn_p (after))
4398 INSN_LOCATOR (after) = loc;
4399 if (after == last)
4400 break;
4401 after = NEXT_INSN (after);
4403 return last;
4406 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4408 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4410 rtx first = PREV_INSN (before);
4411 rtx last = emit_insn_before (pattern, before);
4413 if (pattern == NULL_RTX)
4414 return last;
4416 first = NEXT_INSN (first);
4417 while (1)
4419 if (active_insn_p (first))
4420 INSN_LOCATOR (first) = loc;
4421 if (first == last)
4422 break;
4423 first = NEXT_INSN (first);
4425 return last;
4428 /* Take X and emit it at the end of the doubly-linked
4429 INSN list.
4431 Returns the last insn emitted. */
4434 emit_insn (rtx x)
4436 rtx last = last_insn;
4437 rtx insn;
4439 if (x == NULL_RTX)
4440 return last;
4442 switch (GET_CODE (x))
4444 case INSN:
4445 case JUMP_INSN:
4446 case CALL_INSN:
4447 case CODE_LABEL:
4448 case BARRIER:
4449 case NOTE:
4450 insn = x;
4451 while (insn)
4453 rtx next = NEXT_INSN (insn);
4454 add_insn (insn);
4455 last = insn;
4456 insn = next;
4458 break;
4460 #ifdef ENABLE_RTL_CHECKING
4461 case SEQUENCE:
4462 abort ();
4463 break;
4464 #endif
4466 default:
4467 last = make_insn_raw (x);
4468 add_insn (last);
4469 break;
4472 return last;
4475 /* Make an insn of code JUMP_INSN with pattern X
4476 and add it to the end of the doubly-linked list. */
4479 emit_jump_insn (rtx x)
4481 rtx last = NULL_RTX, insn;
4483 switch (GET_CODE (x))
4485 case INSN:
4486 case JUMP_INSN:
4487 case CALL_INSN:
4488 case CODE_LABEL:
4489 case BARRIER:
4490 case NOTE:
4491 insn = x;
4492 while (insn)
4494 rtx next = NEXT_INSN (insn);
4495 add_insn (insn);
4496 last = insn;
4497 insn = next;
4499 break;
4501 #ifdef ENABLE_RTL_CHECKING
4502 case SEQUENCE:
4503 abort ();
4504 break;
4505 #endif
4507 default:
4508 last = make_jump_insn_raw (x);
4509 add_insn (last);
4510 break;
4513 return last;
4516 /* Make an insn of code CALL_INSN with pattern X
4517 and add it to the end of the doubly-linked list. */
4520 emit_call_insn (rtx x)
4522 rtx insn;
4524 switch (GET_CODE (x))
4526 case INSN:
4527 case JUMP_INSN:
4528 case CALL_INSN:
4529 case CODE_LABEL:
4530 case BARRIER:
4531 case NOTE:
4532 insn = emit_insn (x);
4533 break;
4535 #ifdef ENABLE_RTL_CHECKING
4536 case SEQUENCE:
4537 abort ();
4538 break;
4539 #endif
4541 default:
4542 insn = make_call_insn_raw (x);
4543 add_insn (insn);
4544 break;
4547 return insn;
4550 /* Add the label LABEL to the end of the doubly-linked list. */
4553 emit_label (rtx label)
4555 /* This can be called twice for the same label
4556 as a result of the confusion that follows a syntax error!
4557 So make it harmless. */
4558 if (INSN_UID (label) == 0)
4560 INSN_UID (label) = cur_insn_uid++;
4561 add_insn (label);
4563 return label;
4566 /* Make an insn of code BARRIER
4567 and add it to the end of the doubly-linked list. */
4570 emit_barrier (void)
4572 rtx barrier = rtx_alloc (BARRIER);
4573 INSN_UID (barrier) = cur_insn_uid++;
4574 add_insn (barrier);
4575 return barrier;
4578 /* Make line numbering NOTE insn for LOCATION add it to the end
4579 of the doubly-linked list, but only if line-numbers are desired for
4580 debugging info and it doesn't match the previous one. */
4583 emit_line_note (location_t location)
4585 rtx note;
4587 set_file_and_line_for_stmt (location);
4589 if (location.file && last_location.file
4590 && !strcmp (location.file, last_location.file)
4591 && location.line == last_location.line)
4592 return NULL_RTX;
4593 last_location = location;
4595 if (no_line_numbers)
4597 cur_insn_uid++;
4598 return NULL_RTX;
4601 note = emit_note (location.line);
4602 NOTE_SOURCE_FILE (note) = location.file;
4604 return note;
4607 /* Emit a copy of note ORIG. */
4610 emit_note_copy (rtx orig)
4612 rtx note;
4614 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4616 cur_insn_uid++;
4617 return NULL_RTX;
4620 note = rtx_alloc (NOTE);
4622 INSN_UID (note) = cur_insn_uid++;
4623 NOTE_DATA (note) = NOTE_DATA (orig);
4624 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4625 BLOCK_FOR_INSN (note) = NULL;
4626 add_insn (note);
4628 return note;
4631 /* Make an insn of code NOTE or type NOTE_NO
4632 and add it to the end of the doubly-linked list. */
4635 emit_note (int note_no)
4637 rtx note;
4639 note = rtx_alloc (NOTE);
4640 INSN_UID (note) = cur_insn_uid++;
4641 NOTE_LINE_NUMBER (note) = note_no;
4642 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4643 BLOCK_FOR_INSN (note) = NULL;
4644 add_insn (note);
4645 return note;
4648 /* Cause next statement to emit a line note even if the line number
4649 has not changed. */
4651 void
4652 force_next_line_note (void)
4654 last_location.line = -1;
4657 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4658 note of this type already exists, remove it first. */
4661 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4663 rtx note = find_reg_note (insn, kind, NULL_RTX);
4665 switch (kind)
4667 case REG_EQUAL:
4668 case REG_EQUIV:
4669 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4670 has multiple sets (some callers assume single_set
4671 means the insn only has one set, when in fact it
4672 means the insn only has one * useful * set). */
4673 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4675 if (note)
4676 abort ();
4677 return NULL_RTX;
4680 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4681 It serves no useful purpose and breaks eliminate_regs. */
4682 if (GET_CODE (datum) == ASM_OPERANDS)
4683 return NULL_RTX;
4684 break;
4686 default:
4687 break;
4690 if (note)
4692 XEXP (note, 0) = datum;
4693 return note;
4696 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4697 return REG_NOTES (insn);
4700 /* Return an indication of which type of insn should have X as a body.
4701 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4703 enum rtx_code
4704 classify_insn (rtx x)
4706 if (GET_CODE (x) == CODE_LABEL)
4707 return CODE_LABEL;
4708 if (GET_CODE (x) == CALL)
4709 return CALL_INSN;
4710 if (GET_CODE (x) == RETURN)
4711 return JUMP_INSN;
4712 if (GET_CODE (x) == SET)
4714 if (SET_DEST (x) == pc_rtx)
4715 return JUMP_INSN;
4716 else if (GET_CODE (SET_SRC (x)) == CALL)
4717 return CALL_INSN;
4718 else
4719 return INSN;
4721 if (GET_CODE (x) == PARALLEL)
4723 int j;
4724 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4725 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4726 return CALL_INSN;
4727 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4728 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4729 return JUMP_INSN;
4730 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4731 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4732 return CALL_INSN;
4734 return INSN;
4737 /* Emit the rtl pattern X as an appropriate kind of insn.
4738 If X is a label, it is simply added into the insn chain. */
4741 emit (rtx x)
4743 enum rtx_code code = classify_insn (x);
4745 if (code == CODE_LABEL)
4746 return emit_label (x);
4747 else if (code == INSN)
4748 return emit_insn (x);
4749 else if (code == JUMP_INSN)
4751 rtx insn = emit_jump_insn (x);
4752 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4753 return emit_barrier ();
4754 return insn;
4756 else if (code == CALL_INSN)
4757 return emit_call_insn (x);
4758 else
4759 abort ();
4762 /* Space for free sequence stack entries. */
4763 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4765 /* Begin emitting insns to a sequence which can be packaged in an
4766 RTL_EXPR. If this sequence will contain something that might cause
4767 the compiler to pop arguments to function calls (because those
4768 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4769 details), use do_pending_stack_adjust before calling this function.
4770 That will ensure that the deferred pops are not accidentally
4771 emitted in the middle of this sequence. */
4773 void
4774 start_sequence (void)
4776 struct sequence_stack *tem;
4778 if (free_sequence_stack != NULL)
4780 tem = free_sequence_stack;
4781 free_sequence_stack = tem->next;
4783 else
4784 tem = ggc_alloc (sizeof (struct sequence_stack));
4786 tem->next = seq_stack;
4787 tem->first = first_insn;
4788 tem->last = last_insn;
4789 tem->sequence_rtl_expr = seq_rtl_expr;
4791 seq_stack = tem;
4793 first_insn = 0;
4794 last_insn = 0;
4797 /* Similarly, but indicate that this sequence will be placed in T, an
4798 RTL_EXPR. See the documentation for start_sequence for more
4799 information about how to use this function. */
4801 void
4802 start_sequence_for_rtl_expr (tree t)
4804 start_sequence ();
4806 seq_rtl_expr = t;
4809 /* Set up the insn chain starting with FIRST as the current sequence,
4810 saving the previously current one. See the documentation for
4811 start_sequence for more information about how to use this function. */
4813 void
4814 push_to_sequence (rtx first)
4816 rtx last;
4818 start_sequence ();
4820 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4822 first_insn = first;
4823 last_insn = last;
4826 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4828 void
4829 push_to_full_sequence (rtx first, rtx last)
4831 start_sequence ();
4832 first_insn = first;
4833 last_insn = last;
4834 /* We really should have the end of the insn chain here. */
4835 if (last && NEXT_INSN (last))
4836 abort ();
4839 /* Set up the outer-level insn chain
4840 as the current sequence, saving the previously current one. */
4842 void
4843 push_topmost_sequence (void)
4845 struct sequence_stack *stack, *top = NULL;
4847 start_sequence ();
4849 for (stack = seq_stack; stack; stack = stack->next)
4850 top = stack;
4852 first_insn = top->first;
4853 last_insn = top->last;
4854 seq_rtl_expr = top->sequence_rtl_expr;
4857 /* After emitting to the outer-level insn chain, update the outer-level
4858 insn chain, and restore the previous saved state. */
4860 void
4861 pop_topmost_sequence (void)
4863 struct sequence_stack *stack, *top = NULL;
4865 for (stack = seq_stack; stack; stack = stack->next)
4866 top = stack;
4868 top->first = first_insn;
4869 top->last = last_insn;
4870 /* ??? Why don't we save seq_rtl_expr here? */
4872 end_sequence ();
4875 /* After emitting to a sequence, restore previous saved state.
4877 To get the contents of the sequence just made, you must call
4878 `get_insns' *before* calling here.
4880 If the compiler might have deferred popping arguments while
4881 generating this sequence, and this sequence will not be immediately
4882 inserted into the instruction stream, use do_pending_stack_adjust
4883 before calling get_insns. That will ensure that the deferred
4884 pops are inserted into this sequence, and not into some random
4885 location in the instruction stream. See INHIBIT_DEFER_POP for more
4886 information about deferred popping of arguments. */
4888 void
4889 end_sequence (void)
4891 struct sequence_stack *tem = seq_stack;
4893 first_insn = tem->first;
4894 last_insn = tem->last;
4895 seq_rtl_expr = tem->sequence_rtl_expr;
4896 seq_stack = tem->next;
4898 memset (tem, 0, sizeof (*tem));
4899 tem->next = free_sequence_stack;
4900 free_sequence_stack = tem;
4903 /* Return 1 if currently emitting into a sequence. */
4906 in_sequence_p (void)
4908 return seq_stack != 0;
4911 /* Put the various virtual registers into REGNO_REG_RTX. */
4913 void
4914 init_virtual_regs (struct emit_status *es)
4916 rtx *ptr = es->x_regno_reg_rtx;
4917 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4918 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4919 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4920 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4921 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4925 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4926 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4927 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4928 static int copy_insn_n_scratches;
4930 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4931 copied an ASM_OPERANDS.
4932 In that case, it is the original input-operand vector. */
4933 static rtvec orig_asm_operands_vector;
4935 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4936 copied an ASM_OPERANDS.
4937 In that case, it is the copied input-operand vector. */
4938 static rtvec copy_asm_operands_vector;
4940 /* Likewise for the constraints vector. */
4941 static rtvec orig_asm_constraints_vector;
4942 static rtvec copy_asm_constraints_vector;
4944 /* Recursively create a new copy of an rtx for copy_insn.
4945 This function differs from copy_rtx in that it handles SCRATCHes and
4946 ASM_OPERANDs properly.
4947 Normally, this function is not used directly; use copy_insn as front end.
4948 However, you could first copy an insn pattern with copy_insn and then use
4949 this function afterwards to properly copy any REG_NOTEs containing
4950 SCRATCHes. */
4953 copy_insn_1 (rtx orig)
4955 rtx copy;
4956 int i, j;
4957 RTX_CODE code;
4958 const char *format_ptr;
4960 code = GET_CODE (orig);
4962 switch (code)
4964 case REG:
4965 case QUEUED:
4966 case CONST_INT:
4967 case CONST_DOUBLE:
4968 case CONST_VECTOR:
4969 case SYMBOL_REF:
4970 case CODE_LABEL:
4971 case PC:
4972 case CC0:
4973 case ADDRESSOF:
4974 return orig;
4975 case CLOBBER:
4976 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4977 return orig;
4978 break;
4980 case SCRATCH:
4981 for (i = 0; i < copy_insn_n_scratches; i++)
4982 if (copy_insn_scratch_in[i] == orig)
4983 return copy_insn_scratch_out[i];
4984 break;
4986 case CONST:
4987 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4988 a LABEL_REF, it isn't sharable. */
4989 if (GET_CODE (XEXP (orig, 0)) == PLUS
4990 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4991 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4992 return orig;
4993 break;
4995 /* A MEM with a constant address is not sharable. The problem is that
4996 the constant address may need to be reloaded. If the mem is shared,
4997 then reloading one copy of this mem will cause all copies to appear
4998 to have been reloaded. */
5000 default:
5001 break;
5004 copy = rtx_alloc (code);
5006 /* Copy the various flags, and other information. We assume that
5007 all fields need copying, and then clear the fields that should
5008 not be copied. That is the sensible default behavior, and forces
5009 us to explicitly document why we are *not* copying a flag. */
5010 memcpy (copy, orig, RTX_HDR_SIZE);
5012 /* We do not copy the USED flag, which is used as a mark bit during
5013 walks over the RTL. */
5014 RTX_FLAG (copy, used) = 0;
5016 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5017 if (INSN_P (orig))
5019 RTX_FLAG (copy, jump) = 0;
5020 RTX_FLAG (copy, call) = 0;
5021 RTX_FLAG (copy, frame_related) = 0;
5024 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5026 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5028 copy->u.fld[i] = orig->u.fld[i];
5029 switch (*format_ptr++)
5031 case 'e':
5032 if (XEXP (orig, i) != NULL)
5033 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5034 break;
5036 case 'E':
5037 case 'V':
5038 if (XVEC (orig, i) == orig_asm_constraints_vector)
5039 XVEC (copy, i) = copy_asm_constraints_vector;
5040 else if (XVEC (orig, i) == orig_asm_operands_vector)
5041 XVEC (copy, i) = copy_asm_operands_vector;
5042 else if (XVEC (orig, i) != NULL)
5044 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5045 for (j = 0; j < XVECLEN (copy, i); j++)
5046 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5048 break;
5050 case 't':
5051 case 'w':
5052 case 'i':
5053 case 's':
5054 case 'S':
5055 case 'u':
5056 case '0':
5057 /* These are left unchanged. */
5058 break;
5060 default:
5061 abort ();
5065 if (code == SCRATCH)
5067 i = copy_insn_n_scratches++;
5068 if (i >= MAX_RECOG_OPERANDS)
5069 abort ();
5070 copy_insn_scratch_in[i] = orig;
5071 copy_insn_scratch_out[i] = copy;
5073 else if (code == ASM_OPERANDS)
5075 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5076 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5077 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5078 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5081 return copy;
5084 /* Create a new copy of an rtx.
5085 This function differs from copy_rtx in that it handles SCRATCHes and
5086 ASM_OPERANDs properly.
5087 INSN doesn't really have to be a full INSN; it could be just the
5088 pattern. */
5090 copy_insn (rtx insn)
5092 copy_insn_n_scratches = 0;
5093 orig_asm_operands_vector = 0;
5094 orig_asm_constraints_vector = 0;
5095 copy_asm_operands_vector = 0;
5096 copy_asm_constraints_vector = 0;
5097 return copy_insn_1 (insn);
5100 /* Initialize data structures and variables in this file
5101 before generating rtl for each function. */
5103 void
5104 init_emit (void)
5106 struct function *f = cfun;
5108 f->emit = ggc_alloc (sizeof (struct emit_status));
5109 first_insn = NULL;
5110 last_insn = NULL;
5111 seq_rtl_expr = NULL;
5112 cur_insn_uid = 1;
5113 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5114 last_location.line = 0;
5115 last_location.file = 0;
5116 first_label_num = label_num;
5117 last_label_num = 0;
5118 seq_stack = NULL;
5120 /* Init the tables that describe all the pseudo regs. */
5122 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5124 f->emit->regno_pointer_align
5125 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5126 * sizeof (unsigned char));
5128 regno_reg_rtx
5129 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5131 /* Put copies of all the hard registers into regno_reg_rtx. */
5132 memcpy (regno_reg_rtx,
5133 static_regno_reg_rtx,
5134 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5136 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5137 init_virtual_regs (f->emit);
5139 /* Indicate that the virtual registers and stack locations are
5140 all pointers. */
5141 REG_POINTER (stack_pointer_rtx) = 1;
5142 REG_POINTER (frame_pointer_rtx) = 1;
5143 REG_POINTER (hard_frame_pointer_rtx) = 1;
5144 REG_POINTER (arg_pointer_rtx) = 1;
5146 REG_POINTER (virtual_incoming_args_rtx) = 1;
5147 REG_POINTER (virtual_stack_vars_rtx) = 1;
5148 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5149 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5150 REG_POINTER (virtual_cfa_rtx) = 1;
5152 #ifdef STACK_BOUNDARY
5153 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5154 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5155 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5156 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5158 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5159 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5160 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5161 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5162 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5163 #endif
5165 #ifdef INIT_EXPANDERS
5166 INIT_EXPANDERS;
5167 #endif
5170 /* Generate the constant 0. */
5172 static rtx
5173 gen_const_vector_0 (enum machine_mode mode)
5175 rtx tem;
5176 rtvec v;
5177 int units, i;
5178 enum machine_mode inner;
5180 units = GET_MODE_NUNITS (mode);
5181 inner = GET_MODE_INNER (mode);
5183 v = rtvec_alloc (units);
5185 /* We need to call this function after we to set CONST0_RTX first. */
5186 if (!CONST0_RTX (inner))
5187 abort ();
5189 for (i = 0; i < units; ++i)
5190 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5192 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5193 return tem;
5196 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5197 all elements are zero. */
5199 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5201 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5202 int i;
5204 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5205 if (RTVEC_ELT (v, i) != inner_zero)
5206 return gen_rtx_raw_CONST_VECTOR (mode, v);
5207 return CONST0_RTX (mode);
5210 /* Create some permanent unique rtl objects shared between all functions.
5211 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5213 void
5214 init_emit_once (int line_numbers)
5216 int i;
5217 enum machine_mode mode;
5218 enum machine_mode double_mode;
5220 /* We need reg_raw_mode, so initialize the modes now. */
5221 init_reg_modes_once ();
5223 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5224 tables. */
5225 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5226 const_int_htab_eq, NULL);
5228 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5229 const_double_htab_eq, NULL);
5231 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5232 mem_attrs_htab_eq, NULL);
5233 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5234 reg_attrs_htab_eq, NULL);
5236 no_line_numbers = ! line_numbers;
5238 /* Compute the word and byte modes. */
5240 byte_mode = VOIDmode;
5241 word_mode = VOIDmode;
5242 double_mode = VOIDmode;
5244 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5245 mode = GET_MODE_WIDER_MODE (mode))
5247 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5248 && byte_mode == VOIDmode)
5249 byte_mode = mode;
5251 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5252 && word_mode == VOIDmode)
5253 word_mode = mode;
5256 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5257 mode = GET_MODE_WIDER_MODE (mode))
5259 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5260 && double_mode == VOIDmode)
5261 double_mode = mode;
5264 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5266 /* Assign register numbers to the globally defined register rtx.
5267 This must be done at runtime because the register number field
5268 is in a union and some compilers can't initialize unions. */
5270 pc_rtx = gen_rtx_PC (VOIDmode);
5271 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5272 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5273 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5274 if (hard_frame_pointer_rtx == 0)
5275 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5276 HARD_FRAME_POINTER_REGNUM);
5277 if (arg_pointer_rtx == 0)
5278 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5279 virtual_incoming_args_rtx =
5280 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5281 virtual_stack_vars_rtx =
5282 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5283 virtual_stack_dynamic_rtx =
5284 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5285 virtual_outgoing_args_rtx =
5286 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5287 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5289 /* Initialize RTL for commonly used hard registers. These are
5290 copied into regno_reg_rtx as we begin to compile each function. */
5291 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5292 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5294 #ifdef INIT_EXPANDERS
5295 /* This is to initialize {init|mark|free}_machine_status before the first
5296 call to push_function_context_to. This is needed by the Chill front
5297 end which calls push_function_context_to before the first call to
5298 init_function_start. */
5299 INIT_EXPANDERS;
5300 #endif
5302 /* Create the unique rtx's for certain rtx codes and operand values. */
5304 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5305 tries to use these variables. */
5306 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5307 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5308 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5310 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5311 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5312 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5313 else
5314 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5316 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5317 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5318 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5319 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5320 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5321 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5322 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5324 dconsthalf = dconst1;
5325 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5327 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5329 /* Initialize mathematical constants for constant folding builtins.
5330 These constants need to be given to at least 160 bits precision. */
5331 real_from_string (&dconstpi,
5332 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5333 real_from_string (&dconste,
5334 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5336 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5338 REAL_VALUE_TYPE *r =
5339 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5342 mode = GET_MODE_WIDER_MODE (mode))
5343 const_tiny_rtx[i][(int) mode] =
5344 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5346 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5349 mode = GET_MODE_WIDER_MODE (mode))
5350 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5352 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5353 mode != VOIDmode;
5354 mode = GET_MODE_WIDER_MODE (mode))
5355 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5358 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5359 mode != VOIDmode;
5360 mode = GET_MODE_WIDER_MODE (mode))
5361 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5363 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5364 mode != VOIDmode;
5365 mode = GET_MODE_WIDER_MODE (mode))
5366 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5368 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5369 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5370 const_tiny_rtx[0][i] = const0_rtx;
5372 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5373 if (STORE_FLAG_VALUE == 1)
5374 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5376 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5377 return_address_pointer_rtx
5378 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5379 #endif
5381 #ifdef STATIC_CHAIN_REGNUM
5382 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5384 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5385 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5386 static_chain_incoming_rtx
5387 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5388 else
5389 #endif
5390 static_chain_incoming_rtx = static_chain_rtx;
5391 #endif
5393 #ifdef STATIC_CHAIN
5394 static_chain_rtx = STATIC_CHAIN;
5396 #ifdef STATIC_CHAIN_INCOMING
5397 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5398 #else
5399 static_chain_incoming_rtx = static_chain_rtx;
5400 #endif
5401 #endif
5403 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5404 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5407 /* Query and clear/ restore no_line_numbers. This is used by the
5408 switch / case handling in stmt.c to give proper line numbers in
5409 warnings about unreachable code. */
5412 force_line_numbers (void)
5414 int old = no_line_numbers;
5416 no_line_numbers = 0;
5417 if (old)
5418 force_next_line_note ();
5419 return old;
5422 void
5423 restore_line_number_status (int old_value)
5425 no_line_numbers = old_value;
5428 /* Produce exact duplicate of insn INSN after AFTER.
5429 Care updating of libcall regions if present. */
5432 emit_copy_of_insn_after (rtx insn, rtx after)
5434 rtx new;
5435 rtx note1, note2, link;
5437 switch (GET_CODE (insn))
5439 case INSN:
5440 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5441 break;
5443 case JUMP_INSN:
5444 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5445 break;
5447 case CALL_INSN:
5448 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5449 if (CALL_INSN_FUNCTION_USAGE (insn))
5450 CALL_INSN_FUNCTION_USAGE (new)
5451 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5452 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5453 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5454 break;
5456 default:
5457 abort ();
5460 /* Update LABEL_NUSES. */
5461 mark_jump_label (PATTERN (new), new, 0);
5463 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5465 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5466 make them. */
5467 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5468 if (REG_NOTE_KIND (link) != REG_LABEL)
5470 if (GET_CODE (link) == EXPR_LIST)
5471 REG_NOTES (new)
5472 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5473 XEXP (link, 0),
5474 REG_NOTES (new)));
5475 else
5476 REG_NOTES (new)
5477 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5478 XEXP (link, 0),
5479 REG_NOTES (new)));
5482 /* Fix the libcall sequences. */
5483 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5485 rtx p = new;
5486 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5487 p = PREV_INSN (p);
5488 XEXP (note1, 0) = p;
5489 XEXP (note2, 0) = new;
5491 INSN_CODE (new) = INSN_CODE (insn);
5492 return new;
5495 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5497 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5499 if (hard_reg_clobbers[mode][regno])
5500 return hard_reg_clobbers[mode][regno];
5501 else
5502 return (hard_reg_clobbers[mode][regno] =
5503 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5506 #include "gt-emit-rtl.h"