1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
39 #include "coretypes.h"
45 #include "hard-reg-set.h"
47 #include "insn-config.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
62 #include "diagnostic.h"
65 #include "langhooks.h"
70 #ifdef DWARF2_DEBUGGING_INFO
71 static void dwarf2out_source_line (unsigned int, const char *);
74 /* DWARF2 Abbreviation Glossary:
75 CFA = Canonical Frame Address
76 a fixed address on the stack which identifies a call frame.
77 We define it to be the value of SP just before the call insn.
78 The CFA register and offset, which may change during the course
79 of the function, are used to calculate its value at runtime.
80 CFI = Call Frame Instruction
81 an instruction for the DWARF2 abstract machine
82 CIE = Common Information Entry
83 information describing information common to one or more FDEs
84 DIE = Debugging Information Entry
85 FDE = Frame Description Entry
86 information describing the stack call frame, in particular,
87 how to restore registers
89 DW_CFA_... = DWARF2 CFA call frame instruction
90 DW_TAG_... = DWARF2 DIE tag */
92 /* Decide whether we want to emit frame unwind information for the current
96 dwarf2out_do_frame (void)
98 return (write_symbols
== DWARF2_DEBUG
99 || write_symbols
== VMS_AND_DWARF2_DEBUG
100 #ifdef DWARF2_FRAME_INFO
103 #ifdef DWARF2_UNWIND_INFO
104 || flag_unwind_tables
105 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)
110 /* The size of the target's pointer type. */
112 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
115 /* Various versions of targetm.eh_frame_section. Note these must appear
116 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
118 /* Version of targetm.eh_frame_section for systems with named sections. */
120 named_section_eh_frame_section (void)
122 #ifdef EH_FRAME_SECTION_NAME
123 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
124 int fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
125 int per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
126 int lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
130 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
131 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
132 && (per_encoding
& 0x70) != DW_EH_PE_absptr
133 && (per_encoding
& 0x70) != DW_EH_PE_aligned
134 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
135 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
137 named_section_flags (EH_FRAME_SECTION_NAME
, flags
);
139 named_section_flags (EH_FRAME_SECTION_NAME
, SECTION_WRITE
);
144 /* Version of targetm.eh_frame_section for systems using collect2. */
146 collect2_eh_frame_section (void)
148 tree label
= get_file_function_name ('F');
151 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
152 targetm
.asm_out
.globalize_label (asm_out_file
, IDENTIFIER_POINTER (label
));
153 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
156 /* Default version of targetm.eh_frame_section. */
158 default_eh_frame_section (void)
160 #ifdef EH_FRAME_SECTION_NAME
161 named_section_eh_frame_section ();
163 collect2_eh_frame_section ();
167 /* Array of RTXes referenced by the debugging information, which therefore
168 must be kept around forever. */
169 static GTY(()) varray_type used_rtx_varray
;
171 /* A pointer to the base of a list of incomplete types which might be
172 completed at some later time. incomplete_types_list needs to be a VARRAY
173 because we want to tell the garbage collector about it. */
174 static GTY(()) varray_type incomplete_types
;
176 /* A pointer to the base of a table of references to declaration
177 scopes. This table is a display which tracks the nesting
178 of declaration scopes at the current scope and containing
179 scopes. This table is used to find the proper place to
180 define type declaration DIE's. */
181 static GTY(()) varray_type decl_scope_table
;
183 /* How to start an assembler comment. */
184 #ifndef ASM_COMMENT_START
185 #define ASM_COMMENT_START ";#"
188 typedef struct dw_cfi_struct
*dw_cfi_ref
;
189 typedef struct dw_fde_struct
*dw_fde_ref
;
190 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
192 /* Call frames are described using a sequence of Call Frame
193 Information instructions. The register number, offset
194 and address fields are provided as possible operands;
195 their use is selected by the opcode field. */
197 enum dw_cfi_oprnd_type
{
199 dw_cfi_oprnd_reg_num
,
205 typedef union dw_cfi_oprnd_struct
GTY(())
207 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num
;
208 HOST_WIDE_INT
GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset
;
209 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr
;
210 struct dw_loc_descr_struct
* GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc
;
214 typedef struct dw_cfi_struct
GTY(())
216 dw_cfi_ref dw_cfi_next
;
217 enum dwarf_call_frame_info dw_cfi_opc
;
218 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
225 /* This is how we define the location of the CFA. We use to handle it
226 as REG + OFFSET all the time, but now it can be more complex.
227 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
228 Instead of passing around REG and OFFSET, we pass a copy
229 of this structure. */
230 typedef struct cfa_loc
GTY(())
233 HOST_WIDE_INT offset
;
234 HOST_WIDE_INT base_offset
;
235 int indirect
; /* 1 if CFA is accessed via a dereference. */
238 /* All call frame descriptions (FDE's) in the GCC generated DWARF
239 refer to a single Common Information Entry (CIE), defined at
240 the beginning of the .debug_frame section. This use of a single
241 CIE obviates the need to keep track of multiple CIE's
242 in the DWARF generation routines below. */
244 typedef struct dw_fde_struct
GTY(())
247 const char *dw_fde_begin
;
248 const char *dw_fde_current_label
;
249 const char *dw_fde_end
;
250 dw_cfi_ref dw_fde_cfi
;
251 unsigned funcdef_number
;
252 unsigned all_throwers_are_sibcalls
: 1;
253 unsigned nothrow
: 1;
254 unsigned uses_eh_lsda
: 1;
258 /* Maximum size (in bytes) of an artificially generated label. */
259 #define MAX_ARTIFICIAL_LABEL_BYTES 30
261 /* The size of addresses as they appear in the Dwarf 2 data.
262 Some architectures use word addresses to refer to code locations,
263 but Dwarf 2 info always uses byte addresses. On such machines,
264 Dwarf 2 addresses need to be larger than the architecture's
266 #ifndef DWARF2_ADDR_SIZE
267 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
270 /* The size in bytes of a DWARF field indicating an offset or length
271 relative to a debug info section, specified to be 4 bytes in the
272 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
275 #ifndef DWARF_OFFSET_SIZE
276 #define DWARF_OFFSET_SIZE 4
279 /* According to the (draft) DWARF 3 specification, the initial length
280 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
281 bytes are 0xffffffff, followed by the length stored in the next 8
284 However, the SGI/MIPS ABI uses an initial length which is equal to
285 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
287 #ifndef DWARF_INITIAL_LENGTH_SIZE
288 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
291 #define DWARF_VERSION 2
293 /* Round SIZE up to the nearest BOUNDARY. */
294 #define DWARF_ROUND(SIZE,BOUNDARY) \
295 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
297 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
298 #ifndef DWARF_CIE_DATA_ALIGNMENT
299 #ifdef STACK_GROWS_DOWNWARD
300 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
302 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
306 /* A pointer to the base of a table that contains frame description
307 information for each routine. */
308 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table
;
310 /* Number of elements currently allocated for fde_table. */
311 static GTY(()) unsigned fde_table_allocated
;
313 /* Number of elements in fde_table currently in use. */
314 static GTY(()) unsigned fde_table_in_use
;
316 /* Size (in elements) of increments by which we may expand the
318 #define FDE_TABLE_INCREMENT 256
320 /* A list of call frame insns for the CIE. */
321 static GTY(()) dw_cfi_ref cie_cfi_head
;
323 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
324 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
325 attribute that accelerates the lookup of the FDE associated
326 with the subprogram. This variable holds the table index of the FDE
327 associated with the current function (body) definition. */
328 static unsigned current_funcdef_fde
;
331 struct indirect_string_node
GTY(())
334 unsigned int refcount
;
339 static GTY ((param_is (struct indirect_string_node
))) htab_t debug_str_hash
;
341 static GTY(()) int dw2_string_counter
;
342 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
344 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
346 /* Forward declarations for functions defined in this file. */
348 static char *stripattributes (const char *);
349 static const char *dwarf_cfi_name (unsigned);
350 static dw_cfi_ref
new_cfi (void);
351 static void add_cfi (dw_cfi_ref
*, dw_cfi_ref
);
352 static void add_fde_cfi (const char *, dw_cfi_ref
);
353 static void lookup_cfa_1 (dw_cfi_ref
, dw_cfa_location
*);
354 static void lookup_cfa (dw_cfa_location
*);
355 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT
);
356 static void initial_return_save (rtx
);
357 static HOST_WIDE_INT
stack_adjust_offset (rtx
);
358 static void output_cfi (dw_cfi_ref
, dw_fde_ref
, int);
359 static void output_call_frame_info (int);
360 static void dwarf2out_stack_adjust (rtx
);
361 static void queue_reg_save (const char *, rtx
, HOST_WIDE_INT
);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx
);
364 static void dwarf2out_frame_debug_expr (rtx
, const char *);
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref
);
368 static void get_cfa_from_loc_descr (dw_cfa_location
*,
369 struct dw_loc_descr_struct
*);
370 static struct dw_loc_descr_struct
*build_cfa_loc
372 static void def_cfa_1 (const char *, dw_cfa_location
*);
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
412 #ifndef DWARF_FRAME_RETURN_COLUMN
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
432 /* Hook used by __throw. */
435 expand_builtin_dwarf_sp_column (void)
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
));
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
444 stripattributes (const char *s
)
446 char *stripped
= xmalloc (strlen (s
) + 2);
451 while (*s
&& *s
!= ',')
458 /* Generate code to initialize the register size table. */
461 expand_builtin_init_dwarf_reg_sizes (tree address
)
464 enum machine_mode mode
= TYPE_MODE (char_type_node
);
465 rtx addr
= expand_expr (address
, NULL_RTX
, VOIDmode
, 0);
466 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
467 bool wrote_return_column
= false;
469 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
470 if (DWARF_FRAME_REGNUM (i
) < DWARF_FRAME_REGISTERS
)
472 HOST_WIDE_INT offset
= DWARF_FRAME_REGNUM (i
) * GET_MODE_SIZE (mode
);
473 enum machine_mode save_mode
= reg_raw_mode
[i
];
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i
, save_mode
))
477 save_mode
= choose_hard_reg_mode (i
, 1, true);
478 if (DWARF_FRAME_REGNUM (i
) == DWARF_FRAME_RETURN_COLUMN
)
480 if (save_mode
== VOIDmode
)
482 wrote_return_column
= true;
484 size
= GET_MODE_SIZE (save_mode
);
488 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 if (! wrote_return_column
)
494 i
= DWARF_ALT_FRAME_RETURN_COLUMN
;
495 wrote_return_column
= false;
497 i
= DWARF_FRAME_RETURN_COLUMN
;
500 if (! wrote_return_column
)
502 enum machine_mode save_mode
= Pmode
;
503 HOST_WIDE_INT offset
= i
* GET_MODE_SIZE (mode
);
504 HOST_WIDE_INT size
= GET_MODE_SIZE (save_mode
);
505 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
509 /* Convert a DWARF call frame info. operation to its string name */
512 dwarf_cfi_name (unsigned int cfi_opc
)
516 case DW_CFA_advance_loc
:
517 return "DW_CFA_advance_loc";
519 return "DW_CFA_offset";
521 return "DW_CFA_restore";
525 return "DW_CFA_set_loc";
526 case DW_CFA_advance_loc1
:
527 return "DW_CFA_advance_loc1";
528 case DW_CFA_advance_loc2
:
529 return "DW_CFA_advance_loc2";
530 case DW_CFA_advance_loc4
:
531 return "DW_CFA_advance_loc4";
532 case DW_CFA_offset_extended
:
533 return "DW_CFA_offset_extended";
534 case DW_CFA_restore_extended
:
535 return "DW_CFA_restore_extended";
536 case DW_CFA_undefined
:
537 return "DW_CFA_undefined";
538 case DW_CFA_same_value
:
539 return "DW_CFA_same_value";
540 case DW_CFA_register
:
541 return "DW_CFA_register";
542 case DW_CFA_remember_state
:
543 return "DW_CFA_remember_state";
544 case DW_CFA_restore_state
:
545 return "DW_CFA_restore_state";
547 return "DW_CFA_def_cfa";
548 case DW_CFA_def_cfa_register
:
549 return "DW_CFA_def_cfa_register";
550 case DW_CFA_def_cfa_offset
:
551 return "DW_CFA_def_cfa_offset";
554 case DW_CFA_def_cfa_expression
:
555 return "DW_CFA_def_cfa_expression";
556 case DW_CFA_expression
:
557 return "DW_CFA_expression";
558 case DW_CFA_offset_extended_sf
:
559 return "DW_CFA_offset_extended_sf";
560 case DW_CFA_def_cfa_sf
:
561 return "DW_CFA_def_cfa_sf";
562 case DW_CFA_def_cfa_offset_sf
:
563 return "DW_CFA_def_cfa_offset_sf";
565 /* SGI/MIPS specific */
566 case DW_CFA_MIPS_advance_loc8
:
567 return "DW_CFA_MIPS_advance_loc8";
570 case DW_CFA_GNU_window_save
:
571 return "DW_CFA_GNU_window_save";
572 case DW_CFA_GNU_args_size
:
573 return "DW_CFA_GNU_args_size";
574 case DW_CFA_GNU_negative_offset_extended
:
575 return "DW_CFA_GNU_negative_offset_extended";
578 return "DW_CFA_<unknown>";
582 /* Return a pointer to a newly allocated Call Frame Instruction. */
584 static inline dw_cfi_ref
587 dw_cfi_ref cfi
= ggc_alloc (sizeof (dw_cfi_node
));
589 cfi
->dw_cfi_next
= NULL
;
590 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
591 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
596 /* Add a Call Frame Instruction to list of instructions. */
599 add_cfi (dw_cfi_ref
*list_head
, dw_cfi_ref cfi
)
603 /* Find the end of the chain. */
604 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
610 /* Generate a new label for the CFI info to refer to. */
613 dwarf2out_cfi_label (void)
615 static char label
[20];
617 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", dwarf2out_cfi_label_num
++);
618 ASM_OUTPUT_LABEL (asm_out_file
, label
);
622 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
623 or to the CIE if LABEL is NULL. */
626 add_fde_cfi (const char *label
, dw_cfi_ref cfi
)
630 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
633 label
= dwarf2out_cfi_label ();
635 if (fde
->dw_fde_current_label
== NULL
636 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
640 fde
->dw_fde_current_label
= label
= xstrdup (label
);
642 /* Set the location counter to the new label. */
644 xcfi
->dw_cfi_opc
= DW_CFA_advance_loc4
;
645 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
646 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
649 add_cfi (&fde
->dw_fde_cfi
, cfi
);
653 add_cfi (&cie_cfi_head
, cfi
);
656 /* Subroutine of lookup_cfa. */
659 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
)
661 switch (cfi
->dw_cfi_opc
)
663 case DW_CFA_def_cfa_offset
:
664 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
666 case DW_CFA_def_cfa_register
:
667 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
670 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
671 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
673 case DW_CFA_def_cfa_expression
:
674 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
681 /* Find the previous value for the CFA. */
684 lookup_cfa (dw_cfa_location
*loc
)
688 loc
->reg
= (unsigned long) -1;
691 loc
->base_offset
= 0;
693 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
694 lookup_cfa_1 (cfi
, loc
);
696 if (fde_table_in_use
)
698 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
699 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
700 lookup_cfa_1 (cfi
, loc
);
704 /* The current rule for calculating the DWARF2 canonical frame address. */
705 static dw_cfa_location cfa
;
707 /* The register used for saving registers to the stack, and its offset
709 static dw_cfa_location cfa_store
;
711 /* The running total of the size of arguments pushed onto the stack. */
712 static HOST_WIDE_INT args_size
;
714 /* The last args_size we actually output. */
715 static HOST_WIDE_INT old_args_size
;
717 /* Entry point to update the canonical frame address (CFA).
718 LABEL is passed to add_fde_cfi. The value of CFA is now to be
719 calculated from REG+OFFSET. */
722 dwarf2out_def_cfa (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
729 def_cfa_1 (label
, &loc
);
732 /* This routine does the actual work. The CFA is now calculated from
733 the dw_cfa_location structure. */
736 def_cfa_1 (const char *label
, dw_cfa_location
*loc_p
)
739 dw_cfa_location old_cfa
, loc
;
744 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
745 cfa_store
.offset
= loc
.offset
;
747 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
748 lookup_cfa (&old_cfa
);
750 /* If nothing changed, no need to issue any call frame instructions. */
751 if (loc
.reg
== old_cfa
.reg
&& loc
.offset
== old_cfa
.offset
752 && loc
.indirect
== old_cfa
.indirect
753 && (loc
.indirect
== 0 || loc
.base_offset
== old_cfa
.base_offset
))
758 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
760 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
761 indicating the CFA register did not change but the offset
763 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
764 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
767 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
768 else if (loc
.offset
== old_cfa
.offset
&& old_cfa
.reg
!= (unsigned long) -1
771 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
772 indicating the CFA register has changed to <register> but the
773 offset has not changed. */
774 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
775 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
779 else if (loc
.indirect
== 0)
781 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
782 indicating the CFA register has changed to <register> with
783 the specified offset. */
784 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
785 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
786 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
790 /* Construct a DW_CFA_def_cfa_expression instruction to
791 calculate the CFA using a full location expression since no
792 register-offset pair is available. */
793 struct dw_loc_descr_struct
*loc_list
;
795 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
796 loc_list
= build_cfa_loc (&loc
);
797 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
800 add_fde_cfi (label
, cfi
);
803 /* Add the CFI for saving a register. REG is the CFA column number.
804 LABEL is passed to add_fde_cfi.
805 If SREG is -1, the register is saved at OFFSET from the CFA;
806 otherwise it is saved in SREG. */
809 reg_save (const char *label
, unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
811 dw_cfi_ref cfi
= new_cfi ();
813 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
815 /* The following comparison is correct. -1 is used to indicate that
816 the value isn't a register number. */
817 if (sreg
== (unsigned int) -1)
820 /* The register number won't fit in 6 bits, so we have to use
822 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
824 cfi
->dw_cfi_opc
= DW_CFA_offset
;
826 #ifdef ENABLE_CHECKING
828 /* If we get an offset that is not a multiple of
829 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
830 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
832 HOST_WIDE_INT check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
834 if (check_offset
* DWARF_CIE_DATA_ALIGNMENT
!= offset
)
838 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
840 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
842 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
844 else if (sreg
== reg
)
845 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
849 cfi
->dw_cfi_opc
= DW_CFA_register
;
850 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
853 add_fde_cfi (label
, cfi
);
856 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
857 This CFI tells the unwinder that it needs to restore the window registers
858 from the previous frame's window save area.
860 ??? Perhaps we should note in the CIE where windows are saved (instead of
861 assuming 0(cfa)) and what registers are in the window. */
864 dwarf2out_window_save (const char *label
)
866 dw_cfi_ref cfi
= new_cfi ();
868 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
869 add_fde_cfi (label
, cfi
);
872 /* Add a CFI to update the running total of the size of arguments
873 pushed onto the stack. */
876 dwarf2out_args_size (const char *label
, HOST_WIDE_INT size
)
880 if (size
== old_args_size
)
883 old_args_size
= size
;
886 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
887 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
888 add_fde_cfi (label
, cfi
);
891 /* Entry point for saving a register to the stack. REG is the GCC register
892 number. LABEL and OFFSET are passed to reg_save. */
895 dwarf2out_reg_save (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
897 reg_save (label
, DWARF_FRAME_REGNUM (reg
), -1, offset
);
900 /* Entry point for saving the return address in the stack.
901 LABEL and OFFSET are passed to reg_save. */
904 dwarf2out_return_save (const char *label
, HOST_WIDE_INT offset
)
906 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, -1, offset
);
909 /* Entry point for saving the return address in a register.
910 LABEL and SREG are passed to reg_save. */
913 dwarf2out_return_reg (const char *label
, unsigned int sreg
)
915 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, sreg
, 0);
918 /* Record the initial position of the return address. RTL is
919 INCOMING_RETURN_ADDR_RTX. */
922 initial_return_save (rtx rtl
)
924 unsigned int reg
= (unsigned int) -1;
925 HOST_WIDE_INT offset
= 0;
927 switch (GET_CODE (rtl
))
930 /* RA is in a register. */
931 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
935 /* RA is on the stack. */
937 switch (GET_CODE (rtl
))
940 if (REGNO (rtl
) != STACK_POINTER_REGNUM
)
946 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
948 offset
= INTVAL (XEXP (rtl
, 1));
952 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
954 offset
= -INTVAL (XEXP (rtl
, 1));
964 /* The return address is at some offset from any value we can
965 actually load. For instance, on the SPARC it is in %i7+8. Just
966 ignore the offset for now; it doesn't matter for unwinding frames. */
967 if (GET_CODE (XEXP (rtl
, 1)) != CONST_INT
)
969 initial_return_save (XEXP (rtl
, 0));
976 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
979 /* Given a SET, calculate the amount of stack adjustment it
983 stack_adjust_offset (rtx pattern
)
985 rtx src
= SET_SRC (pattern
);
986 rtx dest
= SET_DEST (pattern
);
987 HOST_WIDE_INT offset
= 0;
990 if (dest
== stack_pointer_rtx
)
992 /* (set (reg sp) (plus (reg sp) (const_int))) */
993 code
= GET_CODE (src
);
994 if (! (code
== PLUS
|| code
== MINUS
)
995 || XEXP (src
, 0) != stack_pointer_rtx
996 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
999 offset
= INTVAL (XEXP (src
, 1));
1003 else if (GET_CODE (dest
) == MEM
)
1005 /* (set (mem (pre_dec (reg sp))) (foo)) */
1006 src
= XEXP (dest
, 0);
1007 code
= GET_CODE (src
);
1013 if (XEXP (src
, 0) == stack_pointer_rtx
)
1015 rtx val
= XEXP (XEXP (src
, 1), 1);
1016 /* We handle only adjustments by constant amount. */
1017 if (GET_CODE (XEXP (src
, 1)) != PLUS
||
1018 GET_CODE (val
) != CONST_INT
)
1020 offset
= -INTVAL (val
);
1027 if (XEXP (src
, 0) == stack_pointer_rtx
)
1029 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1036 if (XEXP (src
, 0) == stack_pointer_rtx
)
1038 offset
= -GET_MODE_SIZE (GET_MODE (dest
));
1053 /* Check INSN to see if it looks like a push or a stack adjustment, and
1054 make a note of it if it does. EH uses this information to find out how
1055 much extra space it needs to pop off the stack. */
1058 dwarf2out_stack_adjust (rtx insn
)
1060 HOST_WIDE_INT offset
;
1064 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1065 with this function. Proper support would require all frame-related
1066 insns to be marked, and to be able to handle saving state around
1067 epilogues textually in the middle of the function. */
1068 if (prologue_epilogue_contains (insn
) || sibcall_epilogue_contains (insn
))
1071 if (!flag_asynchronous_unwind_tables
&& GET_CODE (insn
) == CALL_INSN
)
1073 /* Extract the size of the args from the CALL rtx itself. */
1074 insn
= PATTERN (insn
);
1075 if (GET_CODE (insn
) == PARALLEL
)
1076 insn
= XVECEXP (insn
, 0, 0);
1077 if (GET_CODE (insn
) == SET
)
1078 insn
= SET_SRC (insn
);
1079 if (GET_CODE (insn
) != CALL
)
1082 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1086 /* If only calls can throw, and we have a frame pointer,
1087 save up adjustments until we see the CALL_INSN. */
1088 else if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1091 if (GET_CODE (insn
) == BARRIER
)
1093 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1094 the compiler will have already emitted a stack adjustment, but
1095 doesn't bother for calls to noreturn functions. */
1096 #ifdef STACK_GROWS_DOWNWARD
1097 offset
= -args_size
;
1102 else if (GET_CODE (PATTERN (insn
)) == SET
)
1103 offset
= stack_adjust_offset (PATTERN (insn
));
1104 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1105 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1107 /* There may be stack adjustments inside compound insns. Search
1109 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1110 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1111 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1119 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1120 cfa
.offset
+= offset
;
1122 #ifndef STACK_GROWS_DOWNWARD
1126 args_size
+= offset
;
1130 label
= dwarf2out_cfi_label ();
1131 def_cfa_1 (label
, &cfa
);
1132 dwarf2out_args_size (label
, args_size
);
1137 /* We delay emitting a register save until either (a) we reach the end
1138 of the prologue or (b) the register is clobbered. This clusters
1139 register saves so that there are fewer pc advances. */
1141 struct queued_reg_save
GTY(())
1143 struct queued_reg_save
*next
;
1145 HOST_WIDE_INT cfa_offset
;
1148 static GTY(()) struct queued_reg_save
*queued_reg_saves
;
1150 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1151 static const char *last_reg_save_label
;
1154 queue_reg_save (const char *label
, rtx reg
, HOST_WIDE_INT offset
)
1156 struct queued_reg_save
*q
= ggc_alloc (sizeof (*q
));
1158 q
->next
= queued_reg_saves
;
1160 q
->cfa_offset
= offset
;
1161 queued_reg_saves
= q
;
1163 last_reg_save_label
= label
;
1167 flush_queued_reg_saves (void)
1169 struct queued_reg_save
*q
, *next
;
1171 for (q
= queued_reg_saves
; q
; q
= next
)
1173 dwarf2out_reg_save (last_reg_save_label
, REGNO (q
->reg
), q
->cfa_offset
);
1177 queued_reg_saves
= NULL
;
1178 last_reg_save_label
= NULL
;
1182 clobbers_queued_reg_save (rtx insn
)
1184 struct queued_reg_save
*q
;
1186 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1187 if (modified_in_p (q
->reg
, insn
))
1194 /* A temporary register holding an integral value used in adjusting SP
1195 or setting up the store_reg. The "offset" field holds the integer
1196 value, not an offset. */
1197 static dw_cfa_location cfa_temp
;
1199 /* Record call frame debugging information for an expression EXPR,
1200 which either sets SP or FP (adjusting how we calculate the frame
1201 address) or saves a register to the stack. LABEL indicates the
1204 This function encodes a state machine mapping rtxes to actions on
1205 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1206 users need not read the source code.
1208 The High-Level Picture
1210 Changes in the register we use to calculate the CFA: Currently we
1211 assume that if you copy the CFA register into another register, we
1212 should take the other one as the new CFA register; this seems to
1213 work pretty well. If it's wrong for some target, it's simple
1214 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1216 Changes in the register we use for saving registers to the stack:
1217 This is usually SP, but not always. Again, we deduce that if you
1218 copy SP into another register (and SP is not the CFA register),
1219 then the new register is the one we will be using for register
1220 saves. This also seems to work.
1222 Register saves: There's not much guesswork about this one; if
1223 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1224 register save, and the register used to calculate the destination
1225 had better be the one we think we're using for this purpose.
1227 Except: If the register being saved is the CFA register, and the
1228 offset is nonzero, we are saving the CFA, so we assume we have to
1229 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1230 the intent is to save the value of SP from the previous frame.
1232 Invariants / Summaries of Rules
1234 cfa current rule for calculating the CFA. It usually
1235 consists of a register and an offset.
1236 cfa_store register used by prologue code to save things to the stack
1237 cfa_store.offset is the offset from the value of
1238 cfa_store.reg to the actual CFA
1239 cfa_temp register holding an integral value. cfa_temp.offset
1240 stores the value, which will be used to adjust the
1241 stack pointer. cfa_temp is also used like cfa_store,
1242 to track stores to the stack via fp or a temp reg.
1244 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1245 with cfa.reg as the first operand changes the cfa.reg and its
1246 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1249 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1250 expression yielding a constant. This sets cfa_temp.reg
1251 and cfa_temp.offset.
1253 Rule 5: Create a new register cfa_store used to save items to the
1256 Rules 10-14: Save a register to the stack. Define offset as the
1257 difference of the original location and cfa_store's
1258 location (or cfa_temp's location if cfa_temp is used).
1262 "{a,b}" indicates a choice of a xor b.
1263 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1266 (set <reg1> <reg2>:cfa.reg)
1267 effects: cfa.reg = <reg1>
1268 cfa.offset unchanged
1269 cfa_temp.reg = <reg1>
1270 cfa_temp.offset = cfa.offset
1273 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1274 {<const_int>,<reg>:cfa_temp.reg}))
1275 effects: cfa.reg = sp if fp used
1276 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1277 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1278 if cfa_store.reg==sp
1281 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1282 effects: cfa.reg = fp
1283 cfa_offset += +/- <const_int>
1286 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1287 constraints: <reg1> != fp
1289 effects: cfa.reg = <reg1>
1290 cfa_temp.reg = <reg1>
1291 cfa_temp.offset = cfa.offset
1294 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1295 constraints: <reg1> != fp
1297 effects: cfa_store.reg = <reg1>
1298 cfa_store.offset = cfa.offset - cfa_temp.offset
1301 (set <reg> <const_int>)
1302 effects: cfa_temp.reg = <reg>
1303 cfa_temp.offset = <const_int>
1306 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1307 effects: cfa_temp.reg = <reg1>
1308 cfa_temp.offset |= <const_int>
1311 (set <reg> (high <exp>))
1315 (set <reg> (lo_sum <exp> <const_int>))
1316 effects: cfa_temp.reg = <reg>
1317 cfa_temp.offset = <const_int>
1320 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1321 effects: cfa_store.offset -= <const_int>
1322 cfa.offset = cfa_store.offset if cfa.reg == sp
1324 cfa.base_offset = -cfa_store.offset
1327 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1328 effects: cfa_store.offset += -/+ mode_size(mem)
1329 cfa.offset = cfa_store.offset if cfa.reg == sp
1331 cfa.base_offset = -cfa_store.offset
1334 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1337 effects: cfa.reg = <reg1>
1338 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1341 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1342 effects: cfa.reg = <reg1>
1343 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1346 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1347 effects: cfa.reg = <reg1>
1348 cfa.base_offset = -cfa_temp.offset
1349 cfa_temp.offset -= mode_size(mem) */
1352 dwarf2out_frame_debug_expr (rtx expr
, const char *label
)
1355 HOST_WIDE_INT offset
;
1357 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1358 the PARALLEL independently. The first element is always processed if
1359 it is a SET. This is for backward compatibility. Other elements
1360 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1361 flag is set in them. */
1362 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1365 int limit
= XVECLEN (expr
, 0);
1367 for (par_index
= 0; par_index
< limit
; par_index
++)
1368 if (GET_CODE (XVECEXP (expr
, 0, par_index
)) == SET
1369 && (RTX_FRAME_RELATED_P (XVECEXP (expr
, 0, par_index
))
1371 dwarf2out_frame_debug_expr (XVECEXP (expr
, 0, par_index
), label
);
1376 if (GET_CODE (expr
) != SET
)
1379 src
= SET_SRC (expr
);
1380 dest
= SET_DEST (expr
);
1382 switch (GET_CODE (dest
))
1386 /* Update the CFA rule wrt SP or FP. Make sure src is
1387 relative to the current CFA register. */
1388 switch (GET_CODE (src
))
1390 /* Setting FP from SP. */
1392 if (cfa
.reg
== (unsigned) REGNO (src
))
1398 /* We used to require that dest be either SP or FP, but the
1399 ARM copies SP to a temporary register, and from there to
1400 FP. So we just rely on the backends to only set
1401 RTX_FRAME_RELATED_P on appropriate insns. */
1402 cfa
.reg
= REGNO (dest
);
1403 cfa_temp
.reg
= cfa
.reg
;
1404 cfa_temp
.offset
= cfa
.offset
;
1410 if (dest
== stack_pointer_rtx
)
1414 switch (GET_CODE (XEXP (src
, 1)))
1417 offset
= INTVAL (XEXP (src
, 1));
1420 if ((unsigned) REGNO (XEXP (src
, 1)) != cfa_temp
.reg
)
1422 offset
= cfa_temp
.offset
;
1428 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1430 /* Restoring SP from FP in the epilogue. */
1431 if (cfa
.reg
!= (unsigned) HARD_FRAME_POINTER_REGNUM
)
1433 cfa
.reg
= STACK_POINTER_REGNUM
;
1435 else if (GET_CODE (src
) == LO_SUM
)
1436 /* Assume we've set the source reg of the LO_SUM from sp. */
1438 else if (XEXP (src
, 0) != stack_pointer_rtx
)
1441 if (GET_CODE (src
) != MINUS
)
1443 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1444 cfa
.offset
+= offset
;
1445 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1446 cfa_store
.offset
+= offset
;
1448 else if (dest
== hard_frame_pointer_rtx
)
1451 /* Either setting the FP from an offset of the SP,
1452 or adjusting the FP */
1453 if (! frame_pointer_needed
)
1456 if (GET_CODE (XEXP (src
, 0)) == REG
1457 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1458 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1460 offset
= INTVAL (XEXP (src
, 1));
1461 if (GET_CODE (src
) != MINUS
)
1463 cfa
.offset
+= offset
;
1464 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1471 if (GET_CODE (src
) == MINUS
)
1475 if (GET_CODE (XEXP (src
, 0)) == REG
1476 && REGNO (XEXP (src
, 0)) == cfa
.reg
1477 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1479 /* Setting a temporary CFA register that will be copied
1480 into the FP later on. */
1481 offset
= - INTVAL (XEXP (src
, 1));
1482 cfa
.offset
+= offset
;
1483 cfa
.reg
= REGNO (dest
);
1484 /* Or used to save regs to the stack. */
1485 cfa_temp
.reg
= cfa
.reg
;
1486 cfa_temp
.offset
= cfa
.offset
;
1490 else if (GET_CODE (XEXP (src
, 0)) == REG
1491 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1492 && XEXP (src
, 1) == stack_pointer_rtx
)
1494 /* Setting a scratch register that we will use instead
1495 of SP for saving registers to the stack. */
1496 if (cfa
.reg
!= STACK_POINTER_REGNUM
)
1498 cfa_store
.reg
= REGNO (dest
);
1499 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1503 else if (GET_CODE (src
) == LO_SUM
1504 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1506 cfa_temp
.reg
= REGNO (dest
);
1507 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1516 cfa_temp
.reg
= REGNO (dest
);
1517 cfa_temp
.offset
= INTVAL (src
);
1522 if (GET_CODE (XEXP (src
, 0)) != REG
1523 || (unsigned) REGNO (XEXP (src
, 0)) != cfa_temp
.reg
1524 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1527 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1528 cfa_temp
.reg
= REGNO (dest
);
1529 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1532 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1533 which will fill in all of the bits. */
1542 def_cfa_1 (label
, &cfa
);
1546 if (GET_CODE (src
) != REG
)
1549 /* Saving a register to the stack. Make sure dest is relative to the
1551 switch (GET_CODE (XEXP (dest
, 0)))
1556 /* We can't handle variable size modifications. */
1557 if (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1)) != CONST_INT
)
1559 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1561 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1562 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1565 cfa_store
.offset
+= offset
;
1566 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1567 cfa
.offset
= cfa_store
.offset
;
1569 offset
= -cfa_store
.offset
;
1575 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1576 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1579 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1580 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1583 cfa_store
.offset
+= offset
;
1584 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1585 cfa
.offset
= cfa_store
.offset
;
1587 offset
= -cfa_store
.offset
;
1591 /* With an offset. */
1595 if (GET_CODE (XEXP (XEXP (dest
, 0), 1)) != CONST_INT
)
1597 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1598 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1601 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1602 offset
-= cfa_store
.offset
;
1603 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1604 offset
-= cfa_temp
.offset
;
1610 /* Without an offset. */
1612 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1613 offset
= -cfa_store
.offset
;
1614 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1615 offset
= -cfa_temp
.offset
;
1622 if (cfa_temp
.reg
!= (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1624 offset
= -cfa_temp
.offset
;
1625 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1632 if (REGNO (src
) != STACK_POINTER_REGNUM
1633 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1634 && (unsigned) REGNO (src
) == cfa
.reg
)
1636 /* We're storing the current CFA reg into the stack. */
1638 if (cfa
.offset
== 0)
1640 /* If the source register is exactly the CFA, assume
1641 we're saving SP like any other register; this happens
1643 def_cfa_1 (label
, &cfa
);
1644 queue_reg_save (label
, stack_pointer_rtx
, offset
);
1649 /* Otherwise, we'll need to look in the stack to
1650 calculate the CFA. */
1651 rtx x
= XEXP (dest
, 0);
1653 if (GET_CODE (x
) != REG
)
1655 if (GET_CODE (x
) != REG
)
1658 cfa
.reg
= REGNO (x
);
1659 cfa
.base_offset
= offset
;
1661 def_cfa_1 (label
, &cfa
);
1666 def_cfa_1 (label
, &cfa
);
1667 queue_reg_save (label
, src
, offset
);
1675 /* Record call frame debugging information for INSN, which either
1676 sets SP or FP (adjusting how we calculate the frame address) or saves a
1677 register to the stack. If INSN is NULL_RTX, initialize our state. */
1680 dwarf2out_frame_debug (rtx insn
)
1685 if (insn
== NULL_RTX
)
1687 /* Flush any queued register saves. */
1688 flush_queued_reg_saves ();
1690 /* Set up state for generating call frame debug info. */
1692 if (cfa
.reg
!= (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
))
1695 cfa
.reg
= STACK_POINTER_REGNUM
;
1698 cfa_temp
.offset
= 0;
1702 if (GET_CODE (insn
) != INSN
|| clobbers_queued_reg_save (insn
))
1703 flush_queued_reg_saves ();
1705 if (! RTX_FRAME_RELATED_P (insn
))
1707 if (!ACCUMULATE_OUTGOING_ARGS
)
1708 dwarf2out_stack_adjust (insn
);
1713 label
= dwarf2out_cfi_label ();
1714 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1716 insn
= XEXP (src
, 0);
1718 insn
= PATTERN (insn
);
1720 dwarf2out_frame_debug_expr (insn
, label
);
1725 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1726 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1727 (enum dwarf_call_frame_info cfi
);
1729 static enum dw_cfi_oprnd_type
1730 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi
)
1735 case DW_CFA_GNU_window_save
:
1736 return dw_cfi_oprnd_unused
;
1738 case DW_CFA_set_loc
:
1739 case DW_CFA_advance_loc1
:
1740 case DW_CFA_advance_loc2
:
1741 case DW_CFA_advance_loc4
:
1742 case DW_CFA_MIPS_advance_loc8
:
1743 return dw_cfi_oprnd_addr
;
1746 case DW_CFA_offset_extended
:
1747 case DW_CFA_def_cfa
:
1748 case DW_CFA_offset_extended_sf
:
1749 case DW_CFA_def_cfa_sf
:
1750 case DW_CFA_restore_extended
:
1751 case DW_CFA_undefined
:
1752 case DW_CFA_same_value
:
1753 case DW_CFA_def_cfa_register
:
1754 case DW_CFA_register
:
1755 return dw_cfi_oprnd_reg_num
;
1757 case DW_CFA_def_cfa_offset
:
1758 case DW_CFA_GNU_args_size
:
1759 case DW_CFA_def_cfa_offset_sf
:
1760 return dw_cfi_oprnd_offset
;
1762 case DW_CFA_def_cfa_expression
:
1763 case DW_CFA_expression
:
1764 return dw_cfi_oprnd_loc
;
1771 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1772 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1773 (enum dwarf_call_frame_info cfi
);
1775 static enum dw_cfi_oprnd_type
1776 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi
)
1780 case DW_CFA_def_cfa
:
1781 case DW_CFA_def_cfa_sf
:
1783 case DW_CFA_offset_extended_sf
:
1784 case DW_CFA_offset_extended
:
1785 return dw_cfi_oprnd_offset
;
1787 case DW_CFA_register
:
1788 return dw_cfi_oprnd_reg_num
;
1791 return dw_cfi_oprnd_unused
;
1795 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1797 /* Map register numbers held in the call frame info that gcc has
1798 collected using DWARF_FRAME_REGNUM to those that should be output in
1799 .debug_frame and .eh_frame. */
1800 #ifndef DWARF2_FRAME_REG_OUT
1801 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1804 /* Output a Call Frame Information opcode and its operand(s). */
1807 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
1810 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
1811 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1812 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
1813 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
1814 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
1815 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
1817 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1818 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
1819 "DW_CFA_offset, column 0x%lx", r
);
1820 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1822 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
1824 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1825 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
1826 "DW_CFA_restore, column 0x%lx", r
);
1830 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
1831 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
1833 switch (cfi
->dw_cfi_opc
)
1835 case DW_CFA_set_loc
:
1837 dw2_asm_output_encoded_addr_rtx (
1838 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1839 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
1842 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
1843 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
1846 case DW_CFA_advance_loc1
:
1847 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1848 fde
->dw_fde_current_label
, NULL
);
1849 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1852 case DW_CFA_advance_loc2
:
1853 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1854 fde
->dw_fde_current_label
, NULL
);
1855 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1858 case DW_CFA_advance_loc4
:
1859 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1860 fde
->dw_fde_current_label
, NULL
);
1861 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1864 case DW_CFA_MIPS_advance_loc8
:
1865 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1866 fde
->dw_fde_current_label
, NULL
);
1867 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1870 case DW_CFA_offset_extended
:
1871 case DW_CFA_def_cfa
:
1872 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1873 dw2_asm_output_data_uleb128 (r
, NULL
);
1874 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1877 case DW_CFA_offset_extended_sf
:
1878 case DW_CFA_def_cfa_sf
:
1879 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1880 dw2_asm_output_data_uleb128 (r
, NULL
);
1881 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1884 case DW_CFA_restore_extended
:
1885 case DW_CFA_undefined
:
1886 case DW_CFA_same_value
:
1887 case DW_CFA_def_cfa_register
:
1888 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1889 dw2_asm_output_data_uleb128 (r
, NULL
);
1892 case DW_CFA_register
:
1893 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
1894 dw2_asm_output_data_uleb128 (r
, NULL
);
1895 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
1896 dw2_asm_output_data_uleb128 (r
, NULL
);
1899 case DW_CFA_def_cfa_offset
:
1900 case DW_CFA_GNU_args_size
:
1901 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1904 case DW_CFA_def_cfa_offset_sf
:
1905 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1908 case DW_CFA_GNU_window_save
:
1911 case DW_CFA_def_cfa_expression
:
1912 case DW_CFA_expression
:
1913 output_cfa_loc (cfi
);
1916 case DW_CFA_GNU_negative_offset_extended
:
1917 /* Obsoleted by DW_CFA_offset_extended_sf. */
1926 /* Output the call frame information used to record information
1927 that relates to calculating the frame pointer, and records the
1928 location of saved registers. */
1931 output_call_frame_info (int for_eh
)
1936 char l1
[20], l2
[20], section_start_label
[20];
1937 bool any_lsda_needed
= false;
1938 char augmentation
[6];
1939 int augmentation_size
;
1940 int fde_encoding
= DW_EH_PE_absptr
;
1941 int per_encoding
= DW_EH_PE_absptr
;
1942 int lsda_encoding
= DW_EH_PE_absptr
;
1944 /* Don't emit a CIE if there won't be any FDEs. */
1945 if (fde_table_in_use
== 0)
1948 /* If we make FDEs linkonce, we may have to emit an empty label for
1949 an FDE that wouldn't otherwise be emitted. We want to avoid
1950 having an FDE kept around when the function it refers to is
1951 discarded. (Example where this matters: a primary function
1952 template in C++ requires EH information, but an explicit
1953 specialization doesn't. */
1954 if (TARGET_USES_WEAK_UNWIND_INFO
1955 && ! flag_asynchronous_unwind_tables
1957 for (i
= 0; i
< fde_table_in_use
; i
++)
1958 if ((fde_table
[i
].nothrow
|| fde_table
[i
].all_throwers_are_sibcalls
)
1959 && !fde_table
[i
].uses_eh_lsda
1960 && ! DECL_ONE_ONLY (fde_table
[i
].decl
))
1961 targetm
.asm_out
.unwind_label (asm_out_file
, fde_table
[i
].decl
,
1962 for_eh
, /* empty */ 1);
1964 /* If we don't have any functions we'll want to unwind out of, don't
1965 emit any EH unwind information. Note that if exceptions aren't
1966 enabled, we won't have collected nothrow information, and if we
1967 asked for asynchronous tables, we always want this info. */
1970 bool any_eh_needed
= !flag_exceptions
|| flag_asynchronous_unwind_tables
;
1972 for (i
= 0; i
< fde_table_in_use
; i
++)
1973 if (fde_table
[i
].uses_eh_lsda
)
1974 any_eh_needed
= any_lsda_needed
= true;
1975 else if (TARGET_USES_WEAK_UNWIND_INFO
1976 && DECL_ONE_ONLY (fde_table
[i
].decl
))
1978 else if (! fde_table
[i
].nothrow
1979 && ! fde_table
[i
].all_throwers_are_sibcalls
)
1980 any_eh_needed
= true;
1982 if (! any_eh_needed
)
1986 /* We're going to be generating comments, so turn on app. */
1991 targetm
.asm_out
.eh_frame_section ();
1993 named_section_flags (DEBUG_FRAME_SECTION
, SECTION_DEBUG
);
1995 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
1996 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
1998 /* Output the CIE. */
1999 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
2000 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
2001 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2002 "Length of Common Information Entry");
2003 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2005 /* Now that the CIE pointer is PC-relative for EH,
2006 use 0 to identify the CIE. */
2007 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
2008 (for_eh
? 0 : DW_CIE_ID
),
2009 "CIE Identifier Tag");
2011 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
2013 augmentation
[0] = 0;
2014 augmentation_size
= 0;
2020 z Indicates that a uleb128 is present to size the
2021 augmentation section.
2022 L Indicates the encoding (and thus presence) of
2023 an LSDA pointer in the FDE augmentation.
2024 R Indicates a non-default pointer encoding for
2026 P Indicates the presence of an encoding + language
2027 personality routine in the CIE augmentation. */
2029 fde_encoding
= TARGET_USES_WEAK_UNWIND_INFO
2030 ? ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1)
2031 : ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2032 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2033 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2035 p
= augmentation
+ 1;
2036 if (eh_personality_libfunc
)
2039 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
2041 if (any_lsda_needed
)
2044 augmentation_size
+= 1;
2046 if (fde_encoding
!= DW_EH_PE_absptr
)
2049 augmentation_size
+= 1;
2051 if (p
> augmentation
+ 1)
2053 augmentation
[0] = 'z';
2057 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2058 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
2060 int offset
= ( 4 /* Length */
2062 + 1 /* CIE version */
2063 + strlen (augmentation
) + 1 /* Augmentation */
2064 + size_of_uleb128 (1) /* Code alignment */
2065 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
2067 + 1 /* Augmentation size */
2068 + 1 /* Personality encoding */ );
2069 int pad
= -offset
& (PTR_SIZE
- 1);
2071 augmentation_size
+= pad
;
2073 /* Augmentations should be small, so there's scarce need to
2074 iterate for a solution. Die if we exceed one uleb128 byte. */
2075 if (size_of_uleb128 (augmentation_size
) != 1)
2080 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
2081 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2082 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
2083 "CIE Data Alignment Factor");
2084 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN
, "CIE RA Column");
2086 if (augmentation
[0])
2088 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
2089 if (eh_personality_libfunc
)
2091 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
2092 eh_data_format_name (per_encoding
));
2093 dw2_asm_output_encoded_addr_rtx (per_encoding
,
2094 eh_personality_libfunc
, NULL
);
2097 if (any_lsda_needed
)
2098 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
2099 eh_data_format_name (lsda_encoding
));
2101 if (fde_encoding
!= DW_EH_PE_absptr
)
2102 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
2103 eh_data_format_name (fde_encoding
));
2106 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2107 output_cfi (cfi
, NULL
, for_eh
);
2109 /* Pad the CIE out to an address sized boundary. */
2110 ASM_OUTPUT_ALIGN (asm_out_file
,
2111 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
2112 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2114 /* Loop through all of the FDE's. */
2115 for (i
= 0; i
< fde_table_in_use
; i
++)
2117 fde
= &fde_table
[i
];
2119 /* Don't emit EH unwind info for leaf functions that don't need it. */
2120 if (for_eh
&& !flag_asynchronous_unwind_tables
&& flag_exceptions
2121 && (fde
->nothrow
|| fde
->all_throwers_are_sibcalls
)
2122 && (! TARGET_USES_WEAK_UNWIND_INFO
|| ! DECL_ONE_ONLY (fde
->decl
))
2123 && !fde
->uses_eh_lsda
)
2126 targetm
.asm_out
.unwind_label (asm_out_file
, fde
->decl
, for_eh
, /* empty */ 0);
2127 targetm
.asm_out
.internal_label (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
2128 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
2129 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
2130 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2132 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2135 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
2137 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
2142 if (TARGET_USES_WEAK_UNWIND_INFO
2143 && DECL_ONE_ONLY (fde
->decl
))
2144 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
2145 gen_rtx_SYMBOL_REF (Pmode
, IDENTIFIER_POINTER
2146 (DECL_ASSEMBLER_NAME (fde
->decl
))),
2147 "FDE initial location");
2149 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
2150 gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
),
2151 "FDE initial location");
2152 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2153 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2154 "FDE address range");
2158 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
2159 "FDE initial location");
2160 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2161 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2162 "FDE address range");
2165 if (augmentation
[0])
2167 if (any_lsda_needed
)
2169 int size
= size_of_encoded_value (lsda_encoding
);
2171 if (lsda_encoding
== DW_EH_PE_aligned
)
2173 int offset
= ( 4 /* Length */
2174 + 4 /* CIE offset */
2175 + 2 * size_of_encoded_value (fde_encoding
)
2176 + 1 /* Augmentation size */ );
2177 int pad
= -offset
& (PTR_SIZE
- 1);
2180 if (size_of_uleb128 (size
) != 1)
2184 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
2186 if (fde
->uses_eh_lsda
)
2188 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
2189 fde
->funcdef_number
);
2190 dw2_asm_output_encoded_addr_rtx (
2191 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
2192 "Language Specific Data Area");
2196 if (lsda_encoding
== DW_EH_PE_aligned
)
2197 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2199 (size_of_encoded_value (lsda_encoding
), 0,
2200 "Language Specific Data Area (none)");
2204 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2207 /* Loop through the Call Frame Instructions associated with
2209 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2210 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2211 output_cfi (cfi
, fde
, for_eh
);
2213 /* Pad the FDE out to an address sized boundary. */
2214 ASM_OUTPUT_ALIGN (asm_out_file
,
2215 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2216 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2219 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
2220 dw2_asm_output_data (4, 0, "End of Table");
2221 #ifdef MIPS_DEBUGGING_INFO
2222 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2223 get a value of 0. Putting .align 0 after the label fixes it. */
2224 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2227 /* Turn off app to make assembly quicker. */
2232 /* Output a marker (i.e. a label) for the beginning of a function, before
2236 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED
,
2237 const char *file ATTRIBUTE_UNUSED
)
2239 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2242 current_function_func_begin_label
= 0;
2244 #ifdef IA64_UNWIND_INFO
2245 /* ??? current_function_func_begin_label is also used by except.c
2246 for call-site information. We must emit this label if it might
2248 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2249 && ! dwarf2out_do_frame ())
2252 if (! dwarf2out_do_frame ())
2256 function_section (current_function_decl
);
2257 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2258 current_function_funcdef_no
);
2259 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2260 current_function_funcdef_no
);
2261 current_function_func_begin_label
= get_identifier (label
);
2263 #ifdef IA64_UNWIND_INFO
2264 /* We can elide the fde allocation if we're not emitting debug info. */
2265 if (! dwarf2out_do_frame ())
2269 /* Expand the fde table if necessary. */
2270 if (fde_table_in_use
== fde_table_allocated
)
2272 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2273 fde_table
= ggc_realloc (fde_table
,
2274 fde_table_allocated
* sizeof (dw_fde_node
));
2275 memset (fde_table
+ fde_table_in_use
, 0,
2276 FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2279 /* Record the FDE associated with this function. */
2280 current_funcdef_fde
= fde_table_in_use
;
2282 /* Add the new FDE at the end of the fde_table. */
2283 fde
= &fde_table
[fde_table_in_use
++];
2284 fde
->decl
= current_function_decl
;
2285 fde
->dw_fde_begin
= xstrdup (label
);
2286 fde
->dw_fde_current_label
= NULL
;
2287 fde
->dw_fde_end
= NULL
;
2288 fde
->dw_fde_cfi
= NULL
;
2289 fde
->funcdef_number
= current_function_funcdef_no
;
2290 fde
->nothrow
= current_function_nothrow
;
2291 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2292 fde
->all_throwers_are_sibcalls
= cfun
->all_throwers_are_sibcalls
;
2294 args_size
= old_args_size
= 0;
2296 /* We only want to output line number information for the genuine dwarf2
2297 prologue case, not the eh frame case. */
2298 #ifdef DWARF2_DEBUGGING_INFO
2300 dwarf2out_source_line (line
, file
);
2304 /* Output a marker (i.e. a label) for the absolute end of the generated code
2305 for a function definition. This gets called *after* the epilogue code has
2309 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
2310 const char *file ATTRIBUTE_UNUSED
)
2313 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2315 /* Output a label to mark the endpoint of the code generated for this
2317 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
2318 current_function_funcdef_no
);
2319 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2320 fde
= &fde_table
[fde_table_in_use
- 1];
2321 fde
->dw_fde_end
= xstrdup (label
);
2325 dwarf2out_frame_init (void)
2327 /* Allocate the initial hunk of the fde_table. */
2328 fde_table
= ggc_alloc_cleared (FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2329 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2330 fde_table_in_use
= 0;
2332 /* Generate the CFA instructions common to all FDE's. Do it now for the
2333 sake of lookup_cfa. */
2335 #ifdef DWARF2_UNWIND_INFO
2336 /* On entry, the Canonical Frame Address is at SP. */
2337 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2338 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2343 dwarf2out_frame_finish (void)
2345 /* Output call frame information. */
2346 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
2347 output_call_frame_info (0);
2349 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2350 output_call_frame_info (1);
2354 /* And now, the subset of the debugging information support code necessary
2355 for emitting location expressions. */
2357 /* We need some way to distinguish DW_OP_addr with a direct symbol
2358 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2359 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2362 typedef struct dw_val_struct
*dw_val_ref
;
2363 typedef struct die_struct
*dw_die_ref
;
2364 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2365 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2367 /* Each DIE may have a series of attribute/value pairs. Values
2368 can take on several forms. The forms that are used in this
2369 implementation are listed below. */
2374 dw_val_class_offset
,
2376 dw_val_class_loc_list
,
2377 dw_val_class_range_list
,
2379 dw_val_class_unsigned_const
,
2380 dw_val_class_long_long
,
2383 dw_val_class_die_ref
,
2384 dw_val_class_fde_ref
,
2385 dw_val_class_lbl_id
,
2386 dw_val_class_lbl_offset
,
2390 /* Describe a double word constant value. */
2391 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2393 typedef struct dw_long_long_struct
GTY(())
2400 /* Describe a floating point constant value, or a vector constant value. */
2402 typedef struct dw_vec_struct
GTY(())
2404 unsigned char * GTY((length ("%h.length"))) array
;
2410 /* The dw_val_node describes an attribute's value, as it is
2411 represented internally. */
2413 typedef struct dw_val_struct
GTY(())
2415 enum dw_val_class val_class
;
2416 union dw_val_struct_union
2418 rtx
GTY ((tag ("dw_val_class_addr"))) val_addr
;
2419 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_offset"))) val_offset
;
2420 dw_loc_list_ref
GTY ((tag ("dw_val_class_loc_list"))) val_loc_list
;
2421 dw_loc_descr_ref
GTY ((tag ("dw_val_class_loc"))) val_loc
;
2422 HOST_WIDE_INT
GTY ((default)) val_int
;
2423 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned
;
2424 dw_long_long_const
GTY ((tag ("dw_val_class_long_long"))) val_long_long
;
2425 dw_vec_const
GTY ((tag ("dw_val_class_vec"))) val_vec
;
2426 struct dw_val_die_union
2430 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref
;
2431 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index
;
2432 struct indirect_string_node
* GTY ((tag ("dw_val_class_str"))) val_str
;
2433 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id
;
2434 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag
;
2436 GTY ((desc ("%1.val_class"))) v
;
2440 /* Locations in memory are described using a sequence of stack machine
2443 typedef struct dw_loc_descr_struct
GTY(())
2445 dw_loc_descr_ref dw_loc_next
;
2446 enum dwarf_location_atom dw_loc_opc
;
2447 dw_val_node dw_loc_oprnd1
;
2448 dw_val_node dw_loc_oprnd2
;
2453 /* Location lists are ranges + location descriptions for that range,
2454 so you can track variables that are in different places over
2455 their entire life. */
2456 typedef struct dw_loc_list_struct
GTY(())
2458 dw_loc_list_ref dw_loc_next
;
2459 const char *begin
; /* Label for begin address of range */
2460 const char *end
; /* Label for end address of range */
2461 char *ll_symbol
; /* Label for beginning of location list.
2462 Only on head of list */
2463 const char *section
; /* Section this loclist is relative to */
2464 dw_loc_descr_ref expr
;
2467 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2469 static const char *dwarf_stack_op_name (unsigned);
2470 static dw_loc_descr_ref
new_loc_descr (enum dwarf_location_atom
,
2471 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
);
2472 static void add_loc_descr (dw_loc_descr_ref
*, dw_loc_descr_ref
);
2473 static unsigned long size_of_loc_descr (dw_loc_descr_ref
);
2474 static unsigned long size_of_locs (dw_loc_descr_ref
);
2475 static void output_loc_operands (dw_loc_descr_ref
);
2476 static void output_loc_sequence (dw_loc_descr_ref
);
2478 /* Convert a DWARF stack opcode into its string name. */
2481 dwarf_stack_op_name (unsigned int op
)
2486 case INTERNAL_DW_OP_tls_addr
:
2487 return "DW_OP_addr";
2489 return "DW_OP_deref";
2491 return "DW_OP_const1u";
2493 return "DW_OP_const1s";
2495 return "DW_OP_const2u";
2497 return "DW_OP_const2s";
2499 return "DW_OP_const4u";
2501 return "DW_OP_const4s";
2503 return "DW_OP_const8u";
2505 return "DW_OP_const8s";
2507 return "DW_OP_constu";
2509 return "DW_OP_consts";
2513 return "DW_OP_drop";
2515 return "DW_OP_over";
2517 return "DW_OP_pick";
2519 return "DW_OP_swap";
2523 return "DW_OP_xderef";
2531 return "DW_OP_minus";
2543 return "DW_OP_plus";
2544 case DW_OP_plus_uconst
:
2545 return "DW_OP_plus_uconst";
2551 return "DW_OP_shra";
2569 return "DW_OP_skip";
2571 return "DW_OP_lit0";
2573 return "DW_OP_lit1";
2575 return "DW_OP_lit2";
2577 return "DW_OP_lit3";
2579 return "DW_OP_lit4";
2581 return "DW_OP_lit5";
2583 return "DW_OP_lit6";
2585 return "DW_OP_lit7";
2587 return "DW_OP_lit8";
2589 return "DW_OP_lit9";
2591 return "DW_OP_lit10";
2593 return "DW_OP_lit11";
2595 return "DW_OP_lit12";
2597 return "DW_OP_lit13";
2599 return "DW_OP_lit14";
2601 return "DW_OP_lit15";
2603 return "DW_OP_lit16";
2605 return "DW_OP_lit17";
2607 return "DW_OP_lit18";
2609 return "DW_OP_lit19";
2611 return "DW_OP_lit20";
2613 return "DW_OP_lit21";
2615 return "DW_OP_lit22";
2617 return "DW_OP_lit23";
2619 return "DW_OP_lit24";
2621 return "DW_OP_lit25";
2623 return "DW_OP_lit26";
2625 return "DW_OP_lit27";
2627 return "DW_OP_lit28";
2629 return "DW_OP_lit29";
2631 return "DW_OP_lit30";
2633 return "DW_OP_lit31";
2635 return "DW_OP_reg0";
2637 return "DW_OP_reg1";
2639 return "DW_OP_reg2";
2641 return "DW_OP_reg3";
2643 return "DW_OP_reg4";
2645 return "DW_OP_reg5";
2647 return "DW_OP_reg6";
2649 return "DW_OP_reg7";
2651 return "DW_OP_reg8";
2653 return "DW_OP_reg9";
2655 return "DW_OP_reg10";
2657 return "DW_OP_reg11";
2659 return "DW_OP_reg12";
2661 return "DW_OP_reg13";
2663 return "DW_OP_reg14";
2665 return "DW_OP_reg15";
2667 return "DW_OP_reg16";
2669 return "DW_OP_reg17";
2671 return "DW_OP_reg18";
2673 return "DW_OP_reg19";
2675 return "DW_OP_reg20";
2677 return "DW_OP_reg21";
2679 return "DW_OP_reg22";
2681 return "DW_OP_reg23";
2683 return "DW_OP_reg24";
2685 return "DW_OP_reg25";
2687 return "DW_OP_reg26";
2689 return "DW_OP_reg27";
2691 return "DW_OP_reg28";
2693 return "DW_OP_reg29";
2695 return "DW_OP_reg30";
2697 return "DW_OP_reg31";
2699 return "DW_OP_breg0";
2701 return "DW_OP_breg1";
2703 return "DW_OP_breg2";
2705 return "DW_OP_breg3";
2707 return "DW_OP_breg4";
2709 return "DW_OP_breg5";
2711 return "DW_OP_breg6";
2713 return "DW_OP_breg7";
2715 return "DW_OP_breg8";
2717 return "DW_OP_breg9";
2719 return "DW_OP_breg10";
2721 return "DW_OP_breg11";
2723 return "DW_OP_breg12";
2725 return "DW_OP_breg13";
2727 return "DW_OP_breg14";
2729 return "DW_OP_breg15";
2731 return "DW_OP_breg16";
2733 return "DW_OP_breg17";
2735 return "DW_OP_breg18";
2737 return "DW_OP_breg19";
2739 return "DW_OP_breg20";
2741 return "DW_OP_breg21";
2743 return "DW_OP_breg22";
2745 return "DW_OP_breg23";
2747 return "DW_OP_breg24";
2749 return "DW_OP_breg25";
2751 return "DW_OP_breg26";
2753 return "DW_OP_breg27";
2755 return "DW_OP_breg28";
2757 return "DW_OP_breg29";
2759 return "DW_OP_breg30";
2761 return "DW_OP_breg31";
2763 return "DW_OP_regx";
2765 return "DW_OP_fbreg";
2767 return "DW_OP_bregx";
2769 return "DW_OP_piece";
2770 case DW_OP_deref_size
:
2771 return "DW_OP_deref_size";
2772 case DW_OP_xderef_size
:
2773 return "DW_OP_xderef_size";
2776 case DW_OP_push_object_address
:
2777 return "DW_OP_push_object_address";
2779 return "DW_OP_call2";
2781 return "DW_OP_call4";
2782 case DW_OP_call_ref
:
2783 return "DW_OP_call_ref";
2784 case DW_OP_GNU_push_tls_address
:
2785 return "DW_OP_GNU_push_tls_address";
2787 return "OP_<unknown>";
2791 /* Return a pointer to a newly allocated location description. Location
2792 descriptions are simple expression terms that can be strung
2793 together to form more complicated location (address) descriptions. */
2795 static inline dw_loc_descr_ref
2796 new_loc_descr (enum dwarf_location_atom op
, unsigned HOST_WIDE_INT oprnd1
,
2797 unsigned HOST_WIDE_INT oprnd2
)
2799 dw_loc_descr_ref descr
= ggc_alloc_cleared (sizeof (dw_loc_descr_node
));
2801 descr
->dw_loc_opc
= op
;
2802 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
2803 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
2804 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
2805 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
2811 /* Add a location description term to a location description expression. */
2814 add_loc_descr (dw_loc_descr_ref
*list_head
, dw_loc_descr_ref descr
)
2816 dw_loc_descr_ref
*d
;
2818 /* Find the end of the chain. */
2819 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
2825 /* Return the size of a location descriptor. */
2827 static unsigned long
2828 size_of_loc_descr (dw_loc_descr_ref loc
)
2830 unsigned long size
= 1;
2832 switch (loc
->dw_loc_opc
)
2835 case INTERNAL_DW_OP_tls_addr
:
2836 size
+= DWARF2_ADDR_SIZE
;
2855 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2858 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2863 case DW_OP_plus_uconst
:
2864 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2902 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2905 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2908 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2911 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2912 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
2915 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2917 case DW_OP_deref_size
:
2918 case DW_OP_xderef_size
:
2927 case DW_OP_call_ref
:
2928 size
+= DWARF2_ADDR_SIZE
;
2937 /* Return the size of a series of location descriptors. */
2939 static unsigned long
2940 size_of_locs (dw_loc_descr_ref loc
)
2944 for (size
= 0; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2946 loc
->dw_loc_addr
= size
;
2947 size
+= size_of_loc_descr (loc
);
2953 /* Output location description stack opcode's operands (if any). */
2956 output_loc_operands (dw_loc_descr_ref loc
)
2958 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2959 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2961 switch (loc
->dw_loc_opc
)
2963 #ifdef DWARF2_DEBUGGING_INFO
2965 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
2969 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
2973 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
2977 if (HOST_BITS_PER_LONG
< 64)
2979 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
2986 if (val1
->val_class
== dw_val_class_loc
)
2987 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2991 dw2_asm_output_data (2, offset
, NULL
);
3004 /* We currently don't make any attempt to make sure these are
3005 aligned properly like we do for the main unwind info, so
3006 don't support emitting things larger than a byte if we're
3007 only doing unwinding. */
3012 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3015 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3018 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3021 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3023 case DW_OP_plus_uconst
:
3024 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3058 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3061 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3064 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3067 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3068 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
3071 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3073 case DW_OP_deref_size
:
3074 case DW_OP_xderef_size
:
3075 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3078 case INTERNAL_DW_OP_tls_addr
:
3079 #ifdef ASM_OUTPUT_DWARF_DTPREL
3080 ASM_OUTPUT_DWARF_DTPREL (asm_out_file
, DWARF2_ADDR_SIZE
,
3082 fputc ('\n', asm_out_file
);
3089 /* Other codes have no operands. */
3094 /* Output a sequence of location operations. */
3097 output_loc_sequence (dw_loc_descr_ref loc
)
3099 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
3101 /* Output the opcode. */
3102 dw2_asm_output_data (1, loc
->dw_loc_opc
,
3103 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
3105 /* Output the operand(s) (if any). */
3106 output_loc_operands (loc
);
3110 /* This routine will generate the correct assembly data for a location
3111 description based on a cfi entry with a complex address. */
3114 output_cfa_loc (dw_cfi_ref cfi
)
3116 dw_loc_descr_ref loc
;
3119 /* Output the size of the block. */
3120 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3121 size
= size_of_locs (loc
);
3122 dw2_asm_output_data_uleb128 (size
, NULL
);
3124 /* Now output the operations themselves. */
3125 output_loc_sequence (loc
);
3128 /* This function builds a dwarf location descriptor sequence from
3129 a dw_cfa_location. */
3131 static struct dw_loc_descr_struct
*
3132 build_cfa_loc (dw_cfa_location
*cfa
)
3134 struct dw_loc_descr_struct
*head
, *tmp
;
3136 if (cfa
->indirect
== 0)
3139 if (cfa
->base_offset
)
3142 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
3144 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
3146 else if (cfa
->reg
<= 31)
3147 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3149 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3151 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
3152 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
3153 add_loc_descr (&head
, tmp
);
3154 if (cfa
->offset
!= 0)
3156 tmp
= new_loc_descr (DW_OP_plus_uconst
, cfa
->offset
, 0);
3157 add_loc_descr (&head
, tmp
);
3163 /* This function fills in aa dw_cfa_location structure from a dwarf location
3164 descriptor sequence. */
3167 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_struct
*loc
)
3169 struct dw_loc_descr_struct
*ptr
;
3171 cfa
->base_offset
= 0;
3175 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
3177 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
3213 cfa
->reg
= op
- DW_OP_reg0
;
3216 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3250 cfa
->reg
= op
- DW_OP_breg0
;
3251 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3254 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3255 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3260 case DW_OP_plus_uconst
:
3261 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3264 internal_error ("DW_LOC_OP %s not implemented\n",
3265 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3269 #endif /* .debug_frame support */
3271 /* And now, the support for symbolic debugging information. */
3272 #ifdef DWARF2_DEBUGGING_INFO
3274 /* .debug_str support. */
3275 static int output_indirect_string (void **, void *);
3277 static void dwarf2out_init (const char *);
3278 static void dwarf2out_finish (const char *);
3279 static void dwarf2out_define (unsigned int, const char *);
3280 static void dwarf2out_undef (unsigned int, const char *);
3281 static void dwarf2out_start_source_file (unsigned, const char *);
3282 static void dwarf2out_end_source_file (unsigned);
3283 static void dwarf2out_begin_block (unsigned, unsigned);
3284 static void dwarf2out_end_block (unsigned, unsigned);
3285 static bool dwarf2out_ignore_block (tree
);
3286 static void dwarf2out_global_decl (tree
);
3287 static void dwarf2out_type_decl (tree
, int);
3288 static void dwarf2out_imported_module_or_decl (tree
, tree
);
3289 static void dwarf2out_abstract_function (tree
);
3290 static void dwarf2out_var_location (rtx
);
3291 static void dwarf2out_begin_function (tree
);
3293 /* The debug hooks structure. */
3295 const struct gcc_debug_hooks dwarf2_debug_hooks
=
3301 dwarf2out_start_source_file
,
3302 dwarf2out_end_source_file
,
3303 dwarf2out_begin_block
,
3304 dwarf2out_end_block
,
3305 dwarf2out_ignore_block
,
3306 dwarf2out_source_line
,
3307 dwarf2out_begin_prologue
,
3308 debug_nothing_int_charstar
, /* end_prologue */
3309 dwarf2out_end_epilogue
,
3310 dwarf2out_begin_function
,
3311 debug_nothing_int
, /* end_function */
3312 dwarf2out_decl
, /* function_decl */
3313 dwarf2out_global_decl
,
3314 dwarf2out_type_decl
, /* type_decl */
3315 dwarf2out_imported_module_or_decl
,
3316 debug_nothing_tree
, /* deferred_inline_function */
3317 /* The DWARF 2 backend tries to reduce debugging bloat by not
3318 emitting the abstract description of inline functions until
3319 something tries to reference them. */
3320 dwarf2out_abstract_function
, /* outlining_inline_function */
3321 debug_nothing_rtx
, /* label */
3322 debug_nothing_int
, /* handle_pch */
3323 dwarf2out_var_location
3327 /* NOTE: In the comments in this file, many references are made to
3328 "Debugging Information Entries". This term is abbreviated as `DIE'
3329 throughout the remainder of this file. */
3331 /* An internal representation of the DWARF output is built, and then
3332 walked to generate the DWARF debugging info. The walk of the internal
3333 representation is done after the entire program has been compiled.
3334 The types below are used to describe the internal representation. */
3336 /* Various DIE's use offsets relative to the beginning of the
3337 .debug_info section to refer to each other. */
3339 typedef long int dw_offset
;
3341 /* Define typedefs here to avoid circular dependencies. */
3343 typedef struct dw_attr_struct
*dw_attr_ref
;
3344 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3345 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3346 typedef struct pubname_struct
*pubname_ref
;
3347 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3349 /* Each entry in the line_info_table maintains the file and
3350 line number associated with the label generated for that
3351 entry. The label gives the PC value associated with
3352 the line number entry. */
3354 typedef struct dw_line_info_struct
GTY(())
3356 unsigned long dw_file_num
;
3357 unsigned long dw_line_num
;
3361 /* Line information for functions in separate sections; each one gets its
3363 typedef struct dw_separate_line_info_struct
GTY(())
3365 unsigned long dw_file_num
;
3366 unsigned long dw_line_num
;
3367 unsigned long function
;
3369 dw_separate_line_info_entry
;
3371 /* Each DIE attribute has a field specifying the attribute kind,
3372 a link to the next attribute in the chain, and an attribute value.
3373 Attributes are typically linked below the DIE they modify. */
3375 typedef struct dw_attr_struct
GTY(())
3377 enum dwarf_attribute dw_attr
;
3378 dw_attr_ref dw_attr_next
;
3379 dw_val_node dw_attr_val
;
3383 /* The Debugging Information Entry (DIE) structure */
3385 typedef struct die_struct
GTY(())
3387 enum dwarf_tag die_tag
;
3389 dw_attr_ref die_attr
;
3390 dw_die_ref die_parent
;
3391 dw_die_ref die_child
;
3393 dw_die_ref die_definition
; /* ref from a specification to its definition */
3394 dw_offset die_offset
;
3395 unsigned long die_abbrev
;
3397 unsigned int decl_id
;
3401 /* The pubname structure */
3403 typedef struct pubname_struct
GTY(())
3410 struct dw_ranges_struct
GTY(())
3415 /* The limbo die list structure. */
3416 typedef struct limbo_die_struct
GTY(())
3420 struct limbo_die_struct
*next
;
3424 /* How to start an assembler comment. */
3425 #ifndef ASM_COMMENT_START
3426 #define ASM_COMMENT_START ";#"
3429 /* Define a macro which returns nonzero for a TYPE_DECL which was
3430 implicitly generated for a tagged type.
3432 Note that unlike the gcc front end (which generates a NULL named
3433 TYPE_DECL node for each complete tagged type, each array type, and
3434 each function type node created) the g++ front end generates a
3435 _named_ TYPE_DECL node for each tagged type node created.
3436 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3437 generate a DW_TAG_typedef DIE for them. */
3439 #define TYPE_DECL_IS_STUB(decl) \
3440 (DECL_NAME (decl) == NULL_TREE \
3441 || (DECL_ARTIFICIAL (decl) \
3442 && is_tagged_type (TREE_TYPE (decl)) \
3443 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3444 /* This is necessary for stub decls that \
3445 appear in nested inline functions. */ \
3446 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3447 && (decl_ultimate_origin (decl) \
3448 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3450 /* Information concerning the compilation unit's programming
3451 language, and compiler version. */
3453 /* Fixed size portion of the DWARF compilation unit header. */
3454 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3455 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3457 /* Fixed size portion of public names info. */
3458 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3460 /* Fixed size portion of the address range info. */
3461 #define DWARF_ARANGES_HEADER_SIZE \
3462 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3463 DWARF2_ADDR_SIZE * 2) \
3464 - DWARF_INITIAL_LENGTH_SIZE)
3466 /* Size of padding portion in the address range info. It must be
3467 aligned to twice the pointer size. */
3468 #define DWARF_ARANGES_PAD_SIZE \
3469 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3470 DWARF2_ADDR_SIZE * 2) \
3471 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3473 /* Use assembler line directives if available. */
3474 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3475 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3476 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3478 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3482 /* Minimum line offset in a special line info. opcode.
3483 This value was chosen to give a reasonable range of values. */
3484 #define DWARF_LINE_BASE -10
3486 /* First special line opcode - leave room for the standard opcodes. */
3487 #define DWARF_LINE_OPCODE_BASE 10
3489 /* Range of line offsets in a special line info. opcode. */
3490 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3492 /* Flag that indicates the initial value of the is_stmt_start flag.
3493 In the present implementation, we do not mark any lines as
3494 the beginning of a source statement, because that information
3495 is not made available by the GCC front-end. */
3496 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3498 #ifdef DWARF2_DEBUGGING_INFO
3499 /* This location is used by calc_die_sizes() to keep track
3500 the offset of each DIE within the .debug_info section. */
3501 static unsigned long next_die_offset
;
3504 /* Record the root of the DIE's built for the current compilation unit. */
3505 static GTY(()) dw_die_ref comp_unit_die
;
3507 /* A list of DIEs with a NULL parent waiting to be relocated. */
3508 static GTY(()) limbo_die_node
*limbo_die_list
;
3510 /* Filenames referenced by this compilation unit. */
3511 static GTY(()) varray_type file_table
;
3512 static GTY(()) varray_type file_table_emitted
;
3513 static GTY(()) size_t file_table_last_lookup_index
;
3515 /* A hash table of references to DIE's that describe declarations.
3516 The key is a DECL_UID() which is a unique number identifying each decl. */
3517 static GTY ((param_is (struct die_struct
))) htab_t decl_die_table
;
3519 /* Node of the variable location list. */
3520 struct var_loc_node
GTY ((chain_next ("%h.next")))
3522 rtx
GTY (()) var_loc_note
;
3523 const char * GTY (()) label
;
3524 struct var_loc_node
* GTY (()) next
;
3527 /* Variable location list. */
3528 struct var_loc_list_def
GTY (())
3530 struct var_loc_node
* GTY (()) first
;
3532 /* Do not mark the last element of the chained list because
3533 it is marked through the chain. */
3534 struct var_loc_node
* GTY ((skip ("%h"))) last
;
3536 /* DECL_UID of the variable decl. */
3537 unsigned int decl_id
;
3539 typedef struct var_loc_list_def var_loc_list
;
3542 /* Table of decl location linked lists. */
3543 static GTY ((param_is (var_loc_list
))) htab_t decl_loc_table
;
3545 /* A pointer to the base of a list of references to DIE's that
3546 are uniquely identified by their tag, presence/absence of
3547 children DIE's, and list of attribute/value pairs. */
3548 static GTY((length ("abbrev_die_table_allocated")))
3549 dw_die_ref
*abbrev_die_table
;
3551 /* Number of elements currently allocated for abbrev_die_table. */
3552 static GTY(()) unsigned abbrev_die_table_allocated
;
3554 /* Number of elements in type_die_table currently in use. */
3555 static GTY(()) unsigned abbrev_die_table_in_use
;
3557 /* Size (in elements) of increments by which we may expand the
3558 abbrev_die_table. */
3559 #define ABBREV_DIE_TABLE_INCREMENT 256
3561 /* A pointer to the base of a table that contains line information
3562 for each source code line in .text in the compilation unit. */
3563 static GTY((length ("line_info_table_allocated")))
3564 dw_line_info_ref line_info_table
;
3566 /* Number of elements currently allocated for line_info_table. */
3567 static GTY(()) unsigned line_info_table_allocated
;
3569 /* Number of elements in line_info_table currently in use. */
3570 static GTY(()) unsigned line_info_table_in_use
;
3572 /* A pointer to the base of a table that contains line information
3573 for each source code line outside of .text in the compilation unit. */
3574 static GTY ((length ("separate_line_info_table_allocated")))
3575 dw_separate_line_info_ref separate_line_info_table
;
3577 /* Number of elements currently allocated for separate_line_info_table. */
3578 static GTY(()) unsigned separate_line_info_table_allocated
;
3580 /* Number of elements in separate_line_info_table currently in use. */
3581 static GTY(()) unsigned separate_line_info_table_in_use
;
3583 /* Size (in elements) of increments by which we may expand the
3585 #define LINE_INFO_TABLE_INCREMENT 1024
3587 /* A pointer to the base of a table that contains a list of publicly
3588 accessible names. */
3589 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table
;
3591 /* Number of elements currently allocated for pubname_table. */
3592 static GTY(()) unsigned pubname_table_allocated
;
3594 /* Number of elements in pubname_table currently in use. */
3595 static GTY(()) unsigned pubname_table_in_use
;
3597 /* Size (in elements) of increments by which we may expand the
3599 #define PUBNAME_TABLE_INCREMENT 64
3601 /* Array of dies for which we should generate .debug_arange info. */
3602 static GTY((length ("arange_table_allocated"))) dw_die_ref
*arange_table
;
3604 /* Number of elements currently allocated for arange_table. */
3605 static GTY(()) unsigned arange_table_allocated
;
3607 /* Number of elements in arange_table currently in use. */
3608 static GTY(()) unsigned arange_table_in_use
;
3610 /* Size (in elements) of increments by which we may expand the
3612 #define ARANGE_TABLE_INCREMENT 64
3614 /* Array of dies for which we should generate .debug_ranges info. */
3615 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table
;
3617 /* Number of elements currently allocated for ranges_table. */
3618 static GTY(()) unsigned ranges_table_allocated
;
3620 /* Number of elements in ranges_table currently in use. */
3621 static GTY(()) unsigned ranges_table_in_use
;
3623 /* Size (in elements) of increments by which we may expand the
3625 #define RANGES_TABLE_INCREMENT 64
3627 /* Whether we have location lists that need outputting */
3628 static GTY(()) unsigned have_location_lists
;
3630 /* Unique label counter. */
3631 static GTY(()) unsigned int loclabel_num
;
3633 #ifdef DWARF2_DEBUGGING_INFO
3634 /* Record whether the function being analyzed contains inlined functions. */
3635 static int current_function_has_inlines
;
3637 #if 0 && defined (MIPS_DEBUGGING_INFO)
3638 static int comp_unit_has_inlines
;
3641 /* Number of file tables emitted in maybe_emit_file(). */
3642 static GTY(()) int emitcount
= 0;
3644 /* Number of internal labels generated by gen_internal_sym(). */
3645 static GTY(()) int label_num
;
3647 #ifdef DWARF2_DEBUGGING_INFO
3649 /* Forward declarations for functions defined in this file. */
3651 static int is_pseudo_reg (rtx
);
3652 static tree
type_main_variant (tree
);
3653 static int is_tagged_type (tree
);
3654 static const char *dwarf_tag_name (unsigned);
3655 static const char *dwarf_attr_name (unsigned);
3656 static const char *dwarf_form_name (unsigned);
3658 static const char *dwarf_type_encoding_name (unsigned);
3660 static tree
decl_ultimate_origin (tree
);
3661 static tree
block_ultimate_origin (tree
);
3662 static tree
decl_class_context (tree
);
3663 static void add_dwarf_attr (dw_die_ref
, dw_attr_ref
);
3664 static inline enum dw_val_class
AT_class (dw_attr_ref
);
3665 static void add_AT_flag (dw_die_ref
, enum dwarf_attribute
, unsigned);
3666 static inline unsigned AT_flag (dw_attr_ref
);
3667 static void add_AT_int (dw_die_ref
, enum dwarf_attribute
, HOST_WIDE_INT
);
3668 static inline HOST_WIDE_INT
AT_int (dw_attr_ref
);
3669 static void add_AT_unsigned (dw_die_ref
, enum dwarf_attribute
, unsigned HOST_WIDE_INT
);
3670 static inline unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_ref
);
3671 static void add_AT_long_long (dw_die_ref
, enum dwarf_attribute
, unsigned long,
3673 static inline void add_AT_vec (dw_die_ref
, enum dwarf_attribute
, unsigned int,
3674 unsigned int, unsigned char *);
3675 static hashval_t
debug_str_do_hash (const void *);
3676 static int debug_str_eq (const void *, const void *);
3677 static void add_AT_string (dw_die_ref
, enum dwarf_attribute
, const char *);
3678 static inline const char *AT_string (dw_attr_ref
);
3679 static int AT_string_form (dw_attr_ref
);
3680 static void add_AT_die_ref (dw_die_ref
, enum dwarf_attribute
, dw_die_ref
);
3681 static void add_AT_specification (dw_die_ref
, dw_die_ref
);
3682 static inline dw_die_ref
AT_ref (dw_attr_ref
);
3683 static inline int AT_ref_external (dw_attr_ref
);
3684 static inline void set_AT_ref_external (dw_attr_ref
, int);
3685 static void add_AT_fde_ref (dw_die_ref
, enum dwarf_attribute
, unsigned);
3686 static void add_AT_loc (dw_die_ref
, enum dwarf_attribute
, dw_loc_descr_ref
);
3687 static inline dw_loc_descr_ref
AT_loc (dw_attr_ref
);
3688 static void add_AT_loc_list (dw_die_ref
, enum dwarf_attribute
,
3690 static inline dw_loc_list_ref
AT_loc_list (dw_attr_ref
);
3691 static void add_AT_addr (dw_die_ref
, enum dwarf_attribute
, rtx
);
3692 static inline rtx
AT_addr (dw_attr_ref
);
3693 static void add_AT_lbl_id (dw_die_ref
, enum dwarf_attribute
, const char *);
3694 static void add_AT_lbl_offset (dw_die_ref
, enum dwarf_attribute
, const char *);
3695 static void add_AT_offset (dw_die_ref
, enum dwarf_attribute
,
3696 unsigned HOST_WIDE_INT
);
3697 static void add_AT_range_list (dw_die_ref
, enum dwarf_attribute
,
3699 static inline const char *AT_lbl (dw_attr_ref
);
3700 static dw_attr_ref
get_AT (dw_die_ref
, enum dwarf_attribute
);
3701 static const char *get_AT_low_pc (dw_die_ref
);
3702 static const char *get_AT_hi_pc (dw_die_ref
);
3703 static const char *get_AT_string (dw_die_ref
, enum dwarf_attribute
);
3704 static int get_AT_flag (dw_die_ref
, enum dwarf_attribute
);
3705 static unsigned get_AT_unsigned (dw_die_ref
, enum dwarf_attribute
);
3706 static inline dw_die_ref
get_AT_ref (dw_die_ref
, enum dwarf_attribute
);
3707 static bool is_c_family (void);
3708 static bool is_cxx (void);
3709 static bool is_java (void);
3710 static bool is_fortran (void);
3711 static bool is_ada (void);
3712 static void remove_AT (dw_die_ref
, enum dwarf_attribute
);
3713 static void remove_child_TAG (dw_die_ref
, enum dwarf_tag
);
3714 static inline void free_die (dw_die_ref
);
3715 static void remove_children (dw_die_ref
);
3716 static void add_child_die (dw_die_ref
, dw_die_ref
);
3717 static dw_die_ref
new_die (enum dwarf_tag
, dw_die_ref
, tree
);
3718 static dw_die_ref
lookup_type_die (tree
);
3719 static void equate_type_number_to_die (tree
, dw_die_ref
);
3720 static hashval_t
decl_die_table_hash (const void *);
3721 static int decl_die_table_eq (const void *, const void *);
3722 static dw_die_ref
lookup_decl_die (tree
);
3723 static hashval_t
decl_loc_table_hash (const void *);
3724 static int decl_loc_table_eq (const void *, const void *);
3725 static var_loc_list
*lookup_decl_loc (tree
);
3726 static void equate_decl_number_to_die (tree
, dw_die_ref
);
3727 static void add_var_loc_to_decl (tree
, struct var_loc_node
*);
3728 static void print_spaces (FILE *);
3729 static void print_die (dw_die_ref
, FILE *);
3730 static void print_dwarf_line_table (FILE *);
3731 static void reverse_die_lists (dw_die_ref
);
3732 static void reverse_all_dies (dw_die_ref
);
3733 static dw_die_ref
push_new_compile_unit (dw_die_ref
, dw_die_ref
);
3734 static dw_die_ref
pop_compile_unit (dw_die_ref
);
3735 static void loc_checksum (dw_loc_descr_ref
, struct md5_ctx
*);
3736 static void attr_checksum (dw_attr_ref
, struct md5_ctx
*, int *);
3737 static void die_checksum (dw_die_ref
, struct md5_ctx
*, int *);
3738 static int same_loc_p (dw_loc_descr_ref
, dw_loc_descr_ref
, int *);
3739 static int same_dw_val_p (dw_val_node
*, dw_val_node
*, int *);
3740 static int same_attr_p (dw_attr_ref
, dw_attr_ref
, int *);
3741 static int same_die_p (dw_die_ref
, dw_die_ref
, int *);
3742 static int same_die_p_wrap (dw_die_ref
, dw_die_ref
);
3743 static void compute_section_prefix (dw_die_ref
);
3744 static int is_type_die (dw_die_ref
);
3745 static int is_comdat_die (dw_die_ref
);
3746 static int is_symbol_die (dw_die_ref
);
3747 static void assign_symbol_names (dw_die_ref
);
3748 static void break_out_includes (dw_die_ref
);
3749 static hashval_t
htab_cu_hash (const void *);
3750 static int htab_cu_eq (const void *, const void *);
3751 static void htab_cu_del (void *);
3752 static int check_duplicate_cu (dw_die_ref
, htab_t
, unsigned *);
3753 static void record_comdat_symbol_number (dw_die_ref
, htab_t
, unsigned);
3754 static void add_sibling_attributes (dw_die_ref
);
3755 static void build_abbrev_table (dw_die_ref
);
3756 static void output_location_lists (dw_die_ref
);
3757 static int constant_size (long unsigned);
3758 static unsigned long size_of_die (dw_die_ref
);
3759 static void calc_die_sizes (dw_die_ref
);
3760 static void mark_dies (dw_die_ref
);
3761 static void unmark_dies (dw_die_ref
);
3762 static void unmark_all_dies (dw_die_ref
);
3763 static unsigned long size_of_pubnames (void);
3764 static unsigned long size_of_aranges (void);
3765 static enum dwarf_form
value_format (dw_attr_ref
);
3766 static void output_value_format (dw_attr_ref
);
3767 static void output_abbrev_section (void);
3768 static void output_die_symbol (dw_die_ref
);
3769 static void output_die (dw_die_ref
);
3770 static void output_compilation_unit_header (void);
3771 static void output_comp_unit (dw_die_ref
, int);
3772 static const char *dwarf2_name (tree
, int);
3773 static void add_pubname (tree
, dw_die_ref
);
3774 static void output_pubnames (void);
3775 static void add_arange (tree
, dw_die_ref
);
3776 static void output_aranges (void);
3777 static unsigned int add_ranges (tree
);
3778 static void output_ranges (void);
3779 static void output_line_info (void);
3780 static void output_file_names (void);
3781 static dw_die_ref
base_type_die (tree
);
3782 static tree
root_type (tree
);
3783 static int is_base_type (tree
);
3784 static bool is_subrange_type (tree
);
3785 static dw_die_ref
subrange_type_die (tree
, dw_die_ref
);
3786 static dw_die_ref
modified_type_die (tree
, int, int, dw_die_ref
);
3787 static int type_is_enum (tree
);
3788 static unsigned int dbx_reg_number (rtx
);
3789 static dw_loc_descr_ref
reg_loc_descriptor (rtx
);
3790 static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int);
3791 static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx
, rtx
);
3792 static dw_loc_descr_ref
int_loc_descriptor (HOST_WIDE_INT
);
3793 static dw_loc_descr_ref
based_loc_descr (unsigned, HOST_WIDE_INT
, bool);
3794 static int is_based_loc (rtx
);
3795 static dw_loc_descr_ref
mem_loc_descriptor (rtx
, enum machine_mode mode
, bool);
3796 static dw_loc_descr_ref
concat_loc_descriptor (rtx
, rtx
);
3797 static dw_loc_descr_ref
loc_descriptor (rtx
, bool);
3798 static dw_loc_descr_ref
loc_descriptor_from_tree (tree
, int);
3799 static HOST_WIDE_INT
ceiling (HOST_WIDE_INT
, unsigned int);
3800 static tree
field_type (tree
);
3801 static unsigned int simple_type_align_in_bits (tree
);
3802 static unsigned int simple_decl_align_in_bits (tree
);
3803 static unsigned HOST_WIDE_INT
simple_type_size_in_bits (tree
);
3804 static HOST_WIDE_INT
field_byte_offset (tree
);
3805 static void add_AT_location_description (dw_die_ref
, enum dwarf_attribute
,
3807 static void add_data_member_location_attribute (dw_die_ref
, tree
);
3808 static void add_const_value_attribute (dw_die_ref
, rtx
);
3809 static void insert_int (HOST_WIDE_INT
, unsigned, unsigned char *);
3810 static HOST_WIDE_INT
extract_int (const unsigned char *, unsigned);
3811 static void insert_float (rtx
, unsigned char *);
3812 static rtx
rtl_for_decl_location (tree
);
3813 static void add_location_or_const_value_attribute (dw_die_ref
, tree
,
3814 enum dwarf_attribute
);
3815 static void tree_add_const_value_attribute (dw_die_ref
, tree
);
3816 static void add_name_attribute (dw_die_ref
, const char *);
3817 static void add_comp_dir_attribute (dw_die_ref
);
3818 static void add_bound_info (dw_die_ref
, enum dwarf_attribute
, tree
);
3819 static void add_subscript_info (dw_die_ref
, tree
);
3820 static void add_byte_size_attribute (dw_die_ref
, tree
);
3821 static void add_bit_offset_attribute (dw_die_ref
, tree
);
3822 static void add_bit_size_attribute (dw_die_ref
, tree
);
3823 static void add_prototyped_attribute (dw_die_ref
, tree
);
3824 static void add_abstract_origin_attribute (dw_die_ref
, tree
);
3825 static void add_pure_or_virtual_attribute (dw_die_ref
, tree
);
3826 static void add_src_coords_attributes (dw_die_ref
, tree
);
3827 static void add_name_and_src_coords_attributes (dw_die_ref
, tree
);
3828 static void push_decl_scope (tree
);
3829 static void pop_decl_scope (void);
3830 static dw_die_ref
scope_die_for (tree
, dw_die_ref
);
3831 static inline int local_scope_p (dw_die_ref
);
3832 static inline int class_or_namespace_scope_p (dw_die_ref
);
3833 static void add_type_attribute (dw_die_ref
, tree
, int, int, dw_die_ref
);
3834 static const char *type_tag (tree
);
3835 static tree
member_declared_type (tree
);
3837 static const char *decl_start_label (tree
);
3839 static void gen_array_type_die (tree
, dw_die_ref
);
3840 static void gen_set_type_die (tree
, dw_die_ref
);
3842 static void gen_entry_point_die (tree
, dw_die_ref
);
3844 static void gen_inlined_enumeration_type_die (tree
, dw_die_ref
);
3845 static void gen_inlined_structure_type_die (tree
, dw_die_ref
);
3846 static void gen_inlined_union_type_die (tree
, dw_die_ref
);
3847 static dw_die_ref
gen_enumeration_type_die (tree
, dw_die_ref
);
3848 static dw_die_ref
gen_formal_parameter_die (tree
, dw_die_ref
);
3849 static void gen_unspecified_parameters_die (tree
, dw_die_ref
);
3850 static void gen_formal_types_die (tree
, dw_die_ref
);
3851 static void gen_subprogram_die (tree
, dw_die_ref
);
3852 static void gen_variable_die (tree
, dw_die_ref
);
3853 static void gen_label_die (tree
, dw_die_ref
);
3854 static void gen_lexical_block_die (tree
, dw_die_ref
, int);
3855 static void gen_inlined_subroutine_die (tree
, dw_die_ref
, int);
3856 static void gen_field_die (tree
, dw_die_ref
);
3857 static void gen_ptr_to_mbr_type_die (tree
, dw_die_ref
);
3858 static dw_die_ref
gen_compile_unit_die (const char *);
3859 static void gen_string_type_die (tree
, dw_die_ref
);
3860 static void gen_inheritance_die (tree
, tree
, dw_die_ref
);
3861 static void gen_member_die (tree
, dw_die_ref
);
3862 static void gen_struct_or_union_type_die (tree
, dw_die_ref
);
3863 static void gen_subroutine_type_die (tree
, dw_die_ref
);
3864 static void gen_typedef_die (tree
, dw_die_ref
);
3865 static void gen_type_die (tree
, dw_die_ref
);
3866 static void gen_tagged_type_instantiation_die (tree
, dw_die_ref
);
3867 static void gen_block_die (tree
, dw_die_ref
, int);
3868 static void decls_for_scope (tree
, dw_die_ref
, int);
3869 static int is_redundant_typedef (tree
);
3870 static void gen_namespace_die (tree
);
3871 static void gen_decl_die (tree
, dw_die_ref
);
3872 static dw_die_ref
force_decl_die (tree
);
3873 static dw_die_ref
force_type_die (tree
);
3874 static dw_die_ref
setup_namespace_context (tree
, dw_die_ref
);
3875 static void declare_in_namespace (tree
, dw_die_ref
);
3876 static unsigned lookup_filename (const char *);
3877 static void init_file_table (void);
3878 static void retry_incomplete_types (void);
3879 static void gen_type_die_for_member (tree
, tree
, dw_die_ref
);
3880 static void splice_child_die (dw_die_ref
, dw_die_ref
);
3881 static int file_info_cmp (const void *, const void *);
3882 static dw_loc_list_ref
new_loc_list (dw_loc_descr_ref
, const char *,
3883 const char *, const char *, unsigned);
3884 static void add_loc_descr_to_loc_list (dw_loc_list_ref
*, dw_loc_descr_ref
,
3885 const char *, const char *,
3887 static void output_loc_list (dw_loc_list_ref
);
3888 static char *gen_internal_sym (const char *);
3890 static void prune_unmark_dies (dw_die_ref
);
3891 static void prune_unused_types_mark (dw_die_ref
, int);
3892 static void prune_unused_types_walk (dw_die_ref
);
3893 static void prune_unused_types_walk_attribs (dw_die_ref
);
3894 static void prune_unused_types_prune (dw_die_ref
);
3895 static void prune_unused_types (void);
3896 static int maybe_emit_file (int);
3898 /* Section names used to hold DWARF debugging information. */
3899 #ifndef DEBUG_INFO_SECTION
3900 #define DEBUG_INFO_SECTION ".debug_info"
3902 #ifndef DEBUG_ABBREV_SECTION
3903 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3905 #ifndef DEBUG_ARANGES_SECTION
3906 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3908 #ifndef DEBUG_MACINFO_SECTION
3909 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3911 #ifndef DEBUG_LINE_SECTION
3912 #define DEBUG_LINE_SECTION ".debug_line"
3914 #ifndef DEBUG_LOC_SECTION
3915 #define DEBUG_LOC_SECTION ".debug_loc"
3917 #ifndef DEBUG_PUBNAMES_SECTION
3918 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3920 #ifndef DEBUG_STR_SECTION
3921 #define DEBUG_STR_SECTION ".debug_str"
3923 #ifndef DEBUG_RANGES_SECTION
3924 #define DEBUG_RANGES_SECTION ".debug_ranges"
3927 /* Standard ELF section names for compiled code and data. */
3928 #ifndef TEXT_SECTION_NAME
3929 #define TEXT_SECTION_NAME ".text"
3932 /* Section flags for .debug_str section. */
3933 #define DEBUG_STR_SECTION_FLAGS \
3934 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3935 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3938 /* Labels we insert at beginning sections we can reference instead of
3939 the section names themselves. */
3941 #ifndef TEXT_SECTION_LABEL
3942 #define TEXT_SECTION_LABEL "Ltext"
3944 #ifndef DEBUG_LINE_SECTION_LABEL
3945 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3947 #ifndef DEBUG_INFO_SECTION_LABEL
3948 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3950 #ifndef DEBUG_ABBREV_SECTION_LABEL
3951 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3953 #ifndef DEBUG_LOC_SECTION_LABEL
3954 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3956 #ifndef DEBUG_RANGES_SECTION_LABEL
3957 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3959 #ifndef DEBUG_MACINFO_SECTION_LABEL
3960 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3963 /* Definitions of defaults for formats and names of various special
3964 (artificial) labels which may be generated within this file (when the -g
3965 options is used and DWARF2_DEBUGGING_INFO is in effect.
3966 If necessary, these may be overridden from within the tm.h file, but
3967 typically, overriding these defaults is unnecessary. */
3969 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3970 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3971 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3972 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3973 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3974 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3975 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3976 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
3978 #ifndef TEXT_END_LABEL
3979 #define TEXT_END_LABEL "Letext"
3981 #ifndef BLOCK_BEGIN_LABEL
3982 #define BLOCK_BEGIN_LABEL "LBB"
3984 #ifndef BLOCK_END_LABEL
3985 #define BLOCK_END_LABEL "LBE"
3987 #ifndef LINE_CODE_LABEL
3988 #define LINE_CODE_LABEL "LM"
3990 #ifndef SEPARATE_LINE_CODE_LABEL
3991 #define SEPARATE_LINE_CODE_LABEL "LSM"
3994 /* We allow a language front-end to designate a function that is to be
3995 called to "demangle" any name before it it put into a DIE. */
3997 static const char *(*demangle_name_func
) (const char *);
4000 dwarf2out_set_demangle_name_func (const char *(*func
) (const char *))
4002 demangle_name_func
= func
;
4005 /* Test if rtl node points to a pseudo register. */
4008 is_pseudo_reg (rtx rtl
)
4010 return ((GET_CODE (rtl
) == REG
&& REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
4011 || (GET_CODE (rtl
) == SUBREG
4012 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
4015 /* Return a reference to a type, with its const and volatile qualifiers
4019 type_main_variant (tree type
)
4021 type
= TYPE_MAIN_VARIANT (type
);
4023 /* ??? There really should be only one main variant among any group of
4024 variants of a given type (and all of the MAIN_VARIANT values for all
4025 members of the group should point to that one type) but sometimes the C
4026 front-end messes this up for array types, so we work around that bug
4028 if (TREE_CODE (type
) == ARRAY_TYPE
)
4029 while (type
!= TYPE_MAIN_VARIANT (type
))
4030 type
= TYPE_MAIN_VARIANT (type
);
4035 /* Return nonzero if the given type node represents a tagged type. */
4038 is_tagged_type (tree type
)
4040 enum tree_code code
= TREE_CODE (type
);
4042 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
4043 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
4046 /* Convert a DIE tag into its string name. */
4049 dwarf_tag_name (unsigned int tag
)
4053 case DW_TAG_padding
:
4054 return "DW_TAG_padding";
4055 case DW_TAG_array_type
:
4056 return "DW_TAG_array_type";
4057 case DW_TAG_class_type
:
4058 return "DW_TAG_class_type";
4059 case DW_TAG_entry_point
:
4060 return "DW_TAG_entry_point";
4061 case DW_TAG_enumeration_type
:
4062 return "DW_TAG_enumeration_type";
4063 case DW_TAG_formal_parameter
:
4064 return "DW_TAG_formal_parameter";
4065 case DW_TAG_imported_declaration
:
4066 return "DW_TAG_imported_declaration";
4068 return "DW_TAG_label";
4069 case DW_TAG_lexical_block
:
4070 return "DW_TAG_lexical_block";
4072 return "DW_TAG_member";
4073 case DW_TAG_pointer_type
:
4074 return "DW_TAG_pointer_type";
4075 case DW_TAG_reference_type
:
4076 return "DW_TAG_reference_type";
4077 case DW_TAG_compile_unit
:
4078 return "DW_TAG_compile_unit";
4079 case DW_TAG_string_type
:
4080 return "DW_TAG_string_type";
4081 case DW_TAG_structure_type
:
4082 return "DW_TAG_structure_type";
4083 case DW_TAG_subroutine_type
:
4084 return "DW_TAG_subroutine_type";
4085 case DW_TAG_typedef
:
4086 return "DW_TAG_typedef";
4087 case DW_TAG_union_type
:
4088 return "DW_TAG_union_type";
4089 case DW_TAG_unspecified_parameters
:
4090 return "DW_TAG_unspecified_parameters";
4091 case DW_TAG_variant
:
4092 return "DW_TAG_variant";
4093 case DW_TAG_common_block
:
4094 return "DW_TAG_common_block";
4095 case DW_TAG_common_inclusion
:
4096 return "DW_TAG_common_inclusion";
4097 case DW_TAG_inheritance
:
4098 return "DW_TAG_inheritance";
4099 case DW_TAG_inlined_subroutine
:
4100 return "DW_TAG_inlined_subroutine";
4102 return "DW_TAG_module";
4103 case DW_TAG_ptr_to_member_type
:
4104 return "DW_TAG_ptr_to_member_type";
4105 case DW_TAG_set_type
:
4106 return "DW_TAG_set_type";
4107 case DW_TAG_subrange_type
:
4108 return "DW_TAG_subrange_type";
4109 case DW_TAG_with_stmt
:
4110 return "DW_TAG_with_stmt";
4111 case DW_TAG_access_declaration
:
4112 return "DW_TAG_access_declaration";
4113 case DW_TAG_base_type
:
4114 return "DW_TAG_base_type";
4115 case DW_TAG_catch_block
:
4116 return "DW_TAG_catch_block";
4117 case DW_TAG_const_type
:
4118 return "DW_TAG_const_type";
4119 case DW_TAG_constant
:
4120 return "DW_TAG_constant";
4121 case DW_TAG_enumerator
:
4122 return "DW_TAG_enumerator";
4123 case DW_TAG_file_type
:
4124 return "DW_TAG_file_type";
4126 return "DW_TAG_friend";
4127 case DW_TAG_namelist
:
4128 return "DW_TAG_namelist";
4129 case DW_TAG_namelist_item
:
4130 return "DW_TAG_namelist_item";
4131 case DW_TAG_namespace
:
4132 return "DW_TAG_namespace";
4133 case DW_TAG_packed_type
:
4134 return "DW_TAG_packed_type";
4135 case DW_TAG_subprogram
:
4136 return "DW_TAG_subprogram";
4137 case DW_TAG_template_type_param
:
4138 return "DW_TAG_template_type_param";
4139 case DW_TAG_template_value_param
:
4140 return "DW_TAG_template_value_param";
4141 case DW_TAG_thrown_type
:
4142 return "DW_TAG_thrown_type";
4143 case DW_TAG_try_block
:
4144 return "DW_TAG_try_block";
4145 case DW_TAG_variant_part
:
4146 return "DW_TAG_variant_part";
4147 case DW_TAG_variable
:
4148 return "DW_TAG_variable";
4149 case DW_TAG_volatile_type
:
4150 return "DW_TAG_volatile_type";
4151 case DW_TAG_imported_module
:
4152 return "DW_TAG_imported_module";
4153 case DW_TAG_MIPS_loop
:
4154 return "DW_TAG_MIPS_loop";
4155 case DW_TAG_format_label
:
4156 return "DW_TAG_format_label";
4157 case DW_TAG_function_template
:
4158 return "DW_TAG_function_template";
4159 case DW_TAG_class_template
:
4160 return "DW_TAG_class_template";
4161 case DW_TAG_GNU_BINCL
:
4162 return "DW_TAG_GNU_BINCL";
4163 case DW_TAG_GNU_EINCL
:
4164 return "DW_TAG_GNU_EINCL";
4166 return "DW_TAG_<unknown>";
4170 /* Convert a DWARF attribute code into its string name. */
4173 dwarf_attr_name (unsigned int attr
)
4178 return "DW_AT_sibling";
4179 case DW_AT_location
:
4180 return "DW_AT_location";
4182 return "DW_AT_name";
4183 case DW_AT_ordering
:
4184 return "DW_AT_ordering";
4185 case DW_AT_subscr_data
:
4186 return "DW_AT_subscr_data";
4187 case DW_AT_byte_size
:
4188 return "DW_AT_byte_size";
4189 case DW_AT_bit_offset
:
4190 return "DW_AT_bit_offset";
4191 case DW_AT_bit_size
:
4192 return "DW_AT_bit_size";
4193 case DW_AT_element_list
:
4194 return "DW_AT_element_list";
4195 case DW_AT_stmt_list
:
4196 return "DW_AT_stmt_list";
4198 return "DW_AT_low_pc";
4200 return "DW_AT_high_pc";
4201 case DW_AT_language
:
4202 return "DW_AT_language";
4204 return "DW_AT_member";
4206 return "DW_AT_discr";
4207 case DW_AT_discr_value
:
4208 return "DW_AT_discr_value";
4209 case DW_AT_visibility
:
4210 return "DW_AT_visibility";
4212 return "DW_AT_import";
4213 case DW_AT_string_length
:
4214 return "DW_AT_string_length";
4215 case DW_AT_common_reference
:
4216 return "DW_AT_common_reference";
4217 case DW_AT_comp_dir
:
4218 return "DW_AT_comp_dir";
4219 case DW_AT_const_value
:
4220 return "DW_AT_const_value";
4221 case DW_AT_containing_type
:
4222 return "DW_AT_containing_type";
4223 case DW_AT_default_value
:
4224 return "DW_AT_default_value";
4226 return "DW_AT_inline";
4227 case DW_AT_is_optional
:
4228 return "DW_AT_is_optional";
4229 case DW_AT_lower_bound
:
4230 return "DW_AT_lower_bound";
4231 case DW_AT_producer
:
4232 return "DW_AT_producer";
4233 case DW_AT_prototyped
:
4234 return "DW_AT_prototyped";
4235 case DW_AT_return_addr
:
4236 return "DW_AT_return_addr";
4237 case DW_AT_start_scope
:
4238 return "DW_AT_start_scope";
4239 case DW_AT_stride_size
:
4240 return "DW_AT_stride_size";
4241 case DW_AT_upper_bound
:
4242 return "DW_AT_upper_bound";
4243 case DW_AT_abstract_origin
:
4244 return "DW_AT_abstract_origin";
4245 case DW_AT_accessibility
:
4246 return "DW_AT_accessibility";
4247 case DW_AT_address_class
:
4248 return "DW_AT_address_class";
4249 case DW_AT_artificial
:
4250 return "DW_AT_artificial";
4251 case DW_AT_base_types
:
4252 return "DW_AT_base_types";
4253 case DW_AT_calling_convention
:
4254 return "DW_AT_calling_convention";
4256 return "DW_AT_count";
4257 case DW_AT_data_member_location
:
4258 return "DW_AT_data_member_location";
4259 case DW_AT_decl_column
:
4260 return "DW_AT_decl_column";
4261 case DW_AT_decl_file
:
4262 return "DW_AT_decl_file";
4263 case DW_AT_decl_line
:
4264 return "DW_AT_decl_line";
4265 case DW_AT_declaration
:
4266 return "DW_AT_declaration";
4267 case DW_AT_discr_list
:
4268 return "DW_AT_discr_list";
4269 case DW_AT_encoding
:
4270 return "DW_AT_encoding";
4271 case DW_AT_external
:
4272 return "DW_AT_external";
4273 case DW_AT_frame_base
:
4274 return "DW_AT_frame_base";
4276 return "DW_AT_friend";
4277 case DW_AT_identifier_case
:
4278 return "DW_AT_identifier_case";
4279 case DW_AT_macro_info
:
4280 return "DW_AT_macro_info";
4281 case DW_AT_namelist_items
:
4282 return "DW_AT_namelist_items";
4283 case DW_AT_priority
:
4284 return "DW_AT_priority";
4286 return "DW_AT_segment";
4287 case DW_AT_specification
:
4288 return "DW_AT_specification";
4289 case DW_AT_static_link
:
4290 return "DW_AT_static_link";
4292 return "DW_AT_type";
4293 case DW_AT_use_location
:
4294 return "DW_AT_use_location";
4295 case DW_AT_variable_parameter
:
4296 return "DW_AT_variable_parameter";
4297 case DW_AT_virtuality
:
4298 return "DW_AT_virtuality";
4299 case DW_AT_vtable_elem_location
:
4300 return "DW_AT_vtable_elem_location";
4302 case DW_AT_allocated
:
4303 return "DW_AT_allocated";
4304 case DW_AT_associated
:
4305 return "DW_AT_associated";
4306 case DW_AT_data_location
:
4307 return "DW_AT_data_location";
4309 return "DW_AT_stride";
4310 case DW_AT_entry_pc
:
4311 return "DW_AT_entry_pc";
4312 case DW_AT_use_UTF8
:
4313 return "DW_AT_use_UTF8";
4314 case DW_AT_extension
:
4315 return "DW_AT_extension";
4317 return "DW_AT_ranges";
4318 case DW_AT_trampoline
:
4319 return "DW_AT_trampoline";
4320 case DW_AT_call_column
:
4321 return "DW_AT_call_column";
4322 case DW_AT_call_file
:
4323 return "DW_AT_call_file";
4324 case DW_AT_call_line
:
4325 return "DW_AT_call_line";
4327 case DW_AT_MIPS_fde
:
4328 return "DW_AT_MIPS_fde";
4329 case DW_AT_MIPS_loop_begin
:
4330 return "DW_AT_MIPS_loop_begin";
4331 case DW_AT_MIPS_tail_loop_begin
:
4332 return "DW_AT_MIPS_tail_loop_begin";
4333 case DW_AT_MIPS_epilog_begin
:
4334 return "DW_AT_MIPS_epilog_begin";
4335 case DW_AT_MIPS_loop_unroll_factor
:
4336 return "DW_AT_MIPS_loop_unroll_factor";
4337 case DW_AT_MIPS_software_pipeline_depth
:
4338 return "DW_AT_MIPS_software_pipeline_depth";
4339 case DW_AT_MIPS_linkage_name
:
4340 return "DW_AT_MIPS_linkage_name";
4341 case DW_AT_MIPS_stride
:
4342 return "DW_AT_MIPS_stride";
4343 case DW_AT_MIPS_abstract_name
:
4344 return "DW_AT_MIPS_abstract_name";
4345 case DW_AT_MIPS_clone_origin
:
4346 return "DW_AT_MIPS_clone_origin";
4347 case DW_AT_MIPS_has_inlines
:
4348 return "DW_AT_MIPS_has_inlines";
4350 case DW_AT_sf_names
:
4351 return "DW_AT_sf_names";
4352 case DW_AT_src_info
:
4353 return "DW_AT_src_info";
4354 case DW_AT_mac_info
:
4355 return "DW_AT_mac_info";
4356 case DW_AT_src_coords
:
4357 return "DW_AT_src_coords";
4358 case DW_AT_body_begin
:
4359 return "DW_AT_body_begin";
4360 case DW_AT_body_end
:
4361 return "DW_AT_body_end";
4362 case DW_AT_GNU_vector
:
4363 return "DW_AT_GNU_vector";
4365 case DW_AT_VMS_rtnbeg_pd_address
:
4366 return "DW_AT_VMS_rtnbeg_pd_address";
4369 return "DW_AT_<unknown>";
4373 /* Convert a DWARF value form code into its string name. */
4376 dwarf_form_name (unsigned int form
)
4381 return "DW_FORM_addr";
4382 case DW_FORM_block2
:
4383 return "DW_FORM_block2";
4384 case DW_FORM_block4
:
4385 return "DW_FORM_block4";
4387 return "DW_FORM_data2";
4389 return "DW_FORM_data4";
4391 return "DW_FORM_data8";
4392 case DW_FORM_string
:
4393 return "DW_FORM_string";
4395 return "DW_FORM_block";
4396 case DW_FORM_block1
:
4397 return "DW_FORM_block1";
4399 return "DW_FORM_data1";
4401 return "DW_FORM_flag";
4403 return "DW_FORM_sdata";
4405 return "DW_FORM_strp";
4407 return "DW_FORM_udata";
4408 case DW_FORM_ref_addr
:
4409 return "DW_FORM_ref_addr";
4411 return "DW_FORM_ref1";
4413 return "DW_FORM_ref2";
4415 return "DW_FORM_ref4";
4417 return "DW_FORM_ref8";
4418 case DW_FORM_ref_udata
:
4419 return "DW_FORM_ref_udata";
4420 case DW_FORM_indirect
:
4421 return "DW_FORM_indirect";
4423 return "DW_FORM_<unknown>";
4427 /* Convert a DWARF type code into its string name. */
4431 dwarf_type_encoding_name (unsigned enc
)
4435 case DW_ATE_address
:
4436 return "DW_ATE_address";
4437 case DW_ATE_boolean
:
4438 return "DW_ATE_boolean";
4439 case DW_ATE_complex_float
:
4440 return "DW_ATE_complex_float";
4442 return "DW_ATE_float";
4444 return "DW_ATE_signed";
4445 case DW_ATE_signed_char
:
4446 return "DW_ATE_signed_char";
4447 case DW_ATE_unsigned
:
4448 return "DW_ATE_unsigned";
4449 case DW_ATE_unsigned_char
:
4450 return "DW_ATE_unsigned_char";
4452 return "DW_ATE_<unknown>";
4457 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4458 instance of an inlined instance of a decl which is local to an inline
4459 function, so we have to trace all of the way back through the origin chain
4460 to find out what sort of node actually served as the original seed for the
4464 decl_ultimate_origin (tree decl
)
4466 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4467 nodes in the function to point to themselves; ignore that if
4468 we're trying to output the abstract instance of this function. */
4469 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4472 #ifdef ENABLE_CHECKING
4473 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
4474 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4475 most distant ancestor, this should never happen. */
4479 return DECL_ABSTRACT_ORIGIN (decl
);
4482 /* Determine the "ultimate origin" of a block. The block may be an inlined
4483 instance of an inlined instance of a block which is local to an inline
4484 function, so we have to trace all of the way back through the origin chain
4485 to find out what sort of node actually served as the original seed for the
4489 block_ultimate_origin (tree block
)
4491 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4493 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4494 nodes in the function to point to themselves; ignore that if
4495 we're trying to output the abstract instance of this function. */
4496 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4499 if (immediate_origin
== NULL_TREE
)
4504 tree lookahead
= immediate_origin
;
4508 ret_val
= lookahead
;
4509 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4510 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4512 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4518 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4519 of a virtual function may refer to a base class, so we check the 'this'
4523 decl_class_context (tree decl
)
4525 tree context
= NULL_TREE
;
4527 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4528 context
= DECL_CONTEXT (decl
);
4530 context
= TYPE_MAIN_VARIANT
4531 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4533 if (context
&& !TYPE_P (context
))
4534 context
= NULL_TREE
;
4539 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4540 addition order, and correct that in reverse_all_dies. */
4543 add_dwarf_attr (dw_die_ref die
, dw_attr_ref attr
)
4545 if (die
!= NULL
&& attr
!= NULL
)
4547 attr
->dw_attr_next
= die
->die_attr
;
4548 die
->die_attr
= attr
;
4552 static inline enum dw_val_class
4553 AT_class (dw_attr_ref a
)
4555 return a
->dw_attr_val
.val_class
;
4558 /* Add a flag value attribute to a DIE. */
4561 add_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int flag
)
4563 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4565 attr
->dw_attr_next
= NULL
;
4566 attr
->dw_attr
= attr_kind
;
4567 attr
->dw_attr_val
.val_class
= dw_val_class_flag
;
4568 attr
->dw_attr_val
.v
.val_flag
= flag
;
4569 add_dwarf_attr (die
, attr
);
4572 static inline unsigned
4573 AT_flag (dw_attr_ref a
)
4575 if (a
&& AT_class (a
) == dw_val_class_flag
)
4576 return a
->dw_attr_val
.v
.val_flag
;
4581 /* Add a signed integer attribute value to a DIE. */
4584 add_AT_int (dw_die_ref die
, enum dwarf_attribute attr_kind
, HOST_WIDE_INT int_val
)
4586 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4588 attr
->dw_attr_next
= NULL
;
4589 attr
->dw_attr
= attr_kind
;
4590 attr
->dw_attr_val
.val_class
= dw_val_class_const
;
4591 attr
->dw_attr_val
.v
.val_int
= int_val
;
4592 add_dwarf_attr (die
, attr
);
4595 static inline HOST_WIDE_INT
4596 AT_int (dw_attr_ref a
)
4598 if (a
&& AT_class (a
) == dw_val_class_const
)
4599 return a
->dw_attr_val
.v
.val_int
;
4604 /* Add an unsigned integer attribute value to a DIE. */
4607 add_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4608 unsigned HOST_WIDE_INT unsigned_val
)
4610 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4612 attr
->dw_attr_next
= NULL
;
4613 attr
->dw_attr
= attr_kind
;
4614 attr
->dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4615 attr
->dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4616 add_dwarf_attr (die
, attr
);
4619 static inline unsigned HOST_WIDE_INT
4620 AT_unsigned (dw_attr_ref a
)
4622 if (a
&& AT_class (a
) == dw_val_class_unsigned_const
)
4623 return a
->dw_attr_val
.v
.val_unsigned
;
4628 /* Add an unsigned double integer attribute value to a DIE. */
4631 add_AT_long_long (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4632 long unsigned int val_hi
, long unsigned int val_low
)
4634 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4636 attr
->dw_attr_next
= NULL
;
4637 attr
->dw_attr
= attr_kind
;
4638 attr
->dw_attr_val
.val_class
= dw_val_class_long_long
;
4639 attr
->dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
4640 attr
->dw_attr_val
.v
.val_long_long
.low
= val_low
;
4641 add_dwarf_attr (die
, attr
);
4644 /* Add a floating point attribute value to a DIE and return it. */
4647 add_AT_vec (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4648 unsigned int length
, unsigned int elt_size
, unsigned char *array
)
4650 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4652 attr
->dw_attr_next
= NULL
;
4653 attr
->dw_attr
= attr_kind
;
4654 attr
->dw_attr_val
.val_class
= dw_val_class_vec
;
4655 attr
->dw_attr_val
.v
.val_vec
.length
= length
;
4656 attr
->dw_attr_val
.v
.val_vec
.elt_size
= elt_size
;
4657 attr
->dw_attr_val
.v
.val_vec
.array
= array
;
4658 add_dwarf_attr (die
, attr
);
4661 /* Hash and equality functions for debug_str_hash. */
4664 debug_str_do_hash (const void *x
)
4666 return htab_hash_string (((const struct indirect_string_node
*)x
)->str
);
4670 debug_str_eq (const void *x1
, const void *x2
)
4672 return strcmp ((((const struct indirect_string_node
*)x1
)->str
),
4673 (const char *)x2
) == 0;
4676 /* Add a string attribute value to a DIE. */
4679 add_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *str
)
4681 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4682 struct indirect_string_node
*node
;
4685 if (! debug_str_hash
)
4686 debug_str_hash
= htab_create_ggc (10, debug_str_do_hash
,
4687 debug_str_eq
, NULL
);
4689 slot
= htab_find_slot_with_hash (debug_str_hash
, str
,
4690 htab_hash_string (str
), INSERT
);
4692 *slot
= ggc_alloc_cleared (sizeof (struct indirect_string_node
));
4693 node
= (struct indirect_string_node
*) *slot
;
4694 node
->str
= ggc_strdup (str
);
4697 attr
->dw_attr_next
= NULL
;
4698 attr
->dw_attr
= attr_kind
;
4699 attr
->dw_attr_val
.val_class
= dw_val_class_str
;
4700 attr
->dw_attr_val
.v
.val_str
= node
;
4701 add_dwarf_attr (die
, attr
);
4704 static inline const char *
4705 AT_string (dw_attr_ref a
)
4707 if (a
&& AT_class (a
) == dw_val_class_str
)
4708 return a
->dw_attr_val
.v
.val_str
->str
;
4713 /* Find out whether a string should be output inline in DIE
4714 or out-of-line in .debug_str section. */
4717 AT_string_form (dw_attr_ref a
)
4719 if (a
&& AT_class (a
) == dw_val_class_str
)
4721 struct indirect_string_node
*node
;
4725 node
= a
->dw_attr_val
.v
.val_str
;
4729 len
= strlen (node
->str
) + 1;
4731 /* If the string is shorter or equal to the size of the reference, it is
4732 always better to put it inline. */
4733 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
4734 return node
->form
= DW_FORM_string
;
4736 /* If we cannot expect the linker to merge strings in .debug_str
4737 section, only put it into .debug_str if it is worth even in this
4739 if ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) == 0
4740 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
4741 return node
->form
= DW_FORM_string
;
4743 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
4744 ++dw2_string_counter
;
4745 node
->label
= xstrdup (label
);
4747 return node
->form
= DW_FORM_strp
;
4753 /* Add a DIE reference attribute value to a DIE. */
4756 add_AT_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_die_ref targ_die
)
4758 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4760 attr
->dw_attr_next
= NULL
;
4761 attr
->dw_attr
= attr_kind
;
4762 attr
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
4763 attr
->dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4764 attr
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4765 add_dwarf_attr (die
, attr
);
4768 /* Add an AT_specification attribute to a DIE, and also make the back
4769 pointer from the specification to the definition. */
4772 add_AT_specification (dw_die_ref die
, dw_die_ref targ_die
)
4774 add_AT_die_ref (die
, DW_AT_specification
, targ_die
);
4775 if (targ_die
->die_definition
)
4777 targ_die
->die_definition
= die
;
4780 static inline dw_die_ref
4781 AT_ref (dw_attr_ref a
)
4783 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4784 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4790 AT_ref_external (dw_attr_ref a
)
4792 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4793 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4799 set_AT_ref_external (dw_attr_ref a
, int i
)
4801 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4802 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4807 /* Add an FDE reference attribute value to a DIE. */
4810 add_AT_fde_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int targ_fde
)
4812 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4814 attr
->dw_attr_next
= NULL
;
4815 attr
->dw_attr
= attr_kind
;
4816 attr
->dw_attr_val
.val_class
= dw_val_class_fde_ref
;
4817 attr
->dw_attr_val
.v
.val_fde_index
= targ_fde
;
4818 add_dwarf_attr (die
, attr
);
4821 /* Add a location description attribute value to a DIE. */
4824 add_AT_loc (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_descr_ref loc
)
4826 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4828 attr
->dw_attr_next
= NULL
;
4829 attr
->dw_attr
= attr_kind
;
4830 attr
->dw_attr_val
.val_class
= dw_val_class_loc
;
4831 attr
->dw_attr_val
.v
.val_loc
= loc
;
4832 add_dwarf_attr (die
, attr
);
4835 static inline dw_loc_descr_ref
4836 AT_loc (dw_attr_ref a
)
4838 if (a
&& AT_class (a
) == dw_val_class_loc
)
4839 return a
->dw_attr_val
.v
.val_loc
;
4845 add_AT_loc_list (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_list_ref loc_list
)
4847 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4849 attr
->dw_attr_next
= NULL
;
4850 attr
->dw_attr
= attr_kind
;
4851 attr
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
4852 attr
->dw_attr_val
.v
.val_loc_list
= loc_list
;
4853 add_dwarf_attr (die
, attr
);
4854 have_location_lists
= 1;
4857 static inline dw_loc_list_ref
4858 AT_loc_list (dw_attr_ref a
)
4860 if (a
&& AT_class (a
) == dw_val_class_loc_list
)
4861 return a
->dw_attr_val
.v
.val_loc_list
;
4866 /* Add an address constant attribute value to a DIE. */
4869 add_AT_addr (dw_die_ref die
, enum dwarf_attribute attr_kind
, rtx addr
)
4871 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4873 attr
->dw_attr_next
= NULL
;
4874 attr
->dw_attr
= attr_kind
;
4875 attr
->dw_attr_val
.val_class
= dw_val_class_addr
;
4876 attr
->dw_attr_val
.v
.val_addr
= addr
;
4877 add_dwarf_attr (die
, attr
);
4881 AT_addr (dw_attr_ref a
)
4883 if (a
&& AT_class (a
) == dw_val_class_addr
)
4884 return a
->dw_attr_val
.v
.val_addr
;
4889 /* Add a label identifier attribute value to a DIE. */
4892 add_AT_lbl_id (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *lbl_id
)
4894 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4896 attr
->dw_attr_next
= NULL
;
4897 attr
->dw_attr
= attr_kind
;
4898 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4899 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
4900 add_dwarf_attr (die
, attr
);
4903 /* Add a section offset attribute value to a DIE. */
4906 add_AT_lbl_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *label
)
4908 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4910 attr
->dw_attr_next
= NULL
;
4911 attr
->dw_attr
= attr_kind
;
4912 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_offset
;
4913 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4914 add_dwarf_attr (die
, attr
);
4917 /* Add an offset attribute value to a DIE. */
4920 add_AT_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4921 unsigned HOST_WIDE_INT offset
)
4923 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4925 attr
->dw_attr_next
= NULL
;
4926 attr
->dw_attr
= attr_kind
;
4927 attr
->dw_attr_val
.val_class
= dw_val_class_offset
;
4928 attr
->dw_attr_val
.v
.val_offset
= offset
;
4929 add_dwarf_attr (die
, attr
);
4932 /* Add an range_list attribute value to a DIE. */
4935 add_AT_range_list (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4936 long unsigned int offset
)
4938 dw_attr_ref attr
= ggc_alloc (sizeof (dw_attr_node
));
4940 attr
->dw_attr_next
= NULL
;
4941 attr
->dw_attr
= attr_kind
;
4942 attr
->dw_attr_val
.val_class
= dw_val_class_range_list
;
4943 attr
->dw_attr_val
.v
.val_offset
= offset
;
4944 add_dwarf_attr (die
, attr
);
4947 static inline const char *
4948 AT_lbl (dw_attr_ref a
)
4950 if (a
&& (AT_class (a
) == dw_val_class_lbl_id
4951 || AT_class (a
) == dw_val_class_lbl_offset
))
4952 return a
->dw_attr_val
.v
.val_lbl_id
;
4957 /* Get the attribute of type attr_kind. */
4960 get_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
4963 dw_die_ref spec
= NULL
;
4967 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
4968 if (a
->dw_attr
== attr_kind
)
4970 else if (a
->dw_attr
== DW_AT_specification
4971 || a
->dw_attr
== DW_AT_abstract_origin
)
4975 return get_AT (spec
, attr_kind
);
4981 /* Return the "low pc" attribute value, typically associated with a subprogram
4982 DIE. Return null if the "low pc" attribute is either not present, or if it
4983 cannot be represented as an assembler label identifier. */
4985 static inline const char *
4986 get_AT_low_pc (dw_die_ref die
)
4988 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
4990 return a
? AT_lbl (a
) : NULL
;
4993 /* Return the "high pc" attribute value, typically associated with a subprogram
4994 DIE. Return null if the "high pc" attribute is either not present, or if it
4995 cannot be represented as an assembler label identifier. */
4997 static inline const char *
4998 get_AT_hi_pc (dw_die_ref die
)
5000 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
5002 return a
? AT_lbl (a
) : NULL
;
5005 /* Return the value of the string attribute designated by ATTR_KIND, or
5006 NULL if it is not present. */
5008 static inline const char *
5009 get_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5011 dw_attr_ref a
= get_AT (die
, attr_kind
);
5013 return a
? AT_string (a
) : NULL
;
5016 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5017 if it is not present. */
5020 get_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5022 dw_attr_ref a
= get_AT (die
, attr_kind
);
5024 return a
? AT_flag (a
) : 0;
5027 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5028 if it is not present. */
5030 static inline unsigned
5031 get_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5033 dw_attr_ref a
= get_AT (die
, attr_kind
);
5035 return a
? AT_unsigned (a
) : 0;
5038 static inline dw_die_ref
5039 get_AT_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5041 dw_attr_ref a
= get_AT (die
, attr_kind
);
5043 return a
? AT_ref (a
) : NULL
;
5046 /* Return TRUE if the language is C or C++. */
5051 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5053 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
5054 || lang
== DW_LANG_C_plus_plus
);
5057 /* Return TRUE if the language is C++. */
5062 return (get_AT_unsigned (comp_unit_die
, DW_AT_language
)
5063 == DW_LANG_C_plus_plus
);
5066 /* Return TRUE if the language is Fortran. */
5071 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5073 return (lang
== DW_LANG_Fortran77
5074 || lang
== DW_LANG_Fortran90
5075 || lang
== DW_LANG_Fortran95
);
5078 /* Return TRUE if the language is Java. */
5083 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5085 return lang
== DW_LANG_Java
;
5088 /* Return TRUE if the language is Ada. */
5093 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5095 return lang
== DW_LANG_Ada95
|| lang
== DW_LANG_Ada83
;
5098 /* Free up the memory used by A. */
5100 static inline void free_AT (dw_attr_ref
);
5102 free_AT (dw_attr_ref a
)
5104 if (AT_class (a
) == dw_val_class_str
)
5105 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5106 a
->dw_attr_val
.v
.val_str
->refcount
--;
5109 /* Remove the specified attribute if present. */
5112 remove_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5115 dw_attr_ref removed
= NULL
;
5119 for (p
= &(die
->die_attr
); *p
; p
= &((*p
)->dw_attr_next
))
5120 if ((*p
)->dw_attr
== attr_kind
)
5123 *p
= (*p
)->dw_attr_next
;
5132 /* Remove child die whose die_tag is specified tag. */
5135 remove_child_TAG (dw_die_ref die
, enum dwarf_tag tag
)
5137 dw_die_ref current
, prev
, next
;
5138 current
= die
->die_child
;
5140 while (current
!= NULL
)
5142 if (current
->die_tag
== tag
)
5144 next
= current
->die_sib
;
5146 die
->die_child
= next
;
5148 prev
->die_sib
= next
;
5155 current
= current
->die_sib
;
5160 /* Free up the memory used by DIE. */
5163 free_die (dw_die_ref die
)
5165 remove_children (die
);
5168 /* Discard the children of this DIE. */
5171 remove_children (dw_die_ref die
)
5173 dw_die_ref child_die
= die
->die_child
;
5175 die
->die_child
= NULL
;
5177 while (child_die
!= NULL
)
5179 dw_die_ref tmp_die
= child_die
;
5182 child_die
= child_die
->die_sib
;
5184 for (a
= tmp_die
->die_attr
; a
!= NULL
;)
5186 dw_attr_ref tmp_a
= a
;
5188 a
= a
->dw_attr_next
;
5196 /* Add a child DIE below its parent. We build the lists up in reverse
5197 addition order, and correct that in reverse_all_dies. */
5200 add_child_die (dw_die_ref die
, dw_die_ref child_die
)
5202 if (die
!= NULL
&& child_die
!= NULL
)
5204 if (die
== child_die
)
5207 child_die
->die_parent
= die
;
5208 child_die
->die_sib
= die
->die_child
;
5209 die
->die_child
= child_die
;
5213 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5214 is the specification, to the front of PARENT's list of children. */
5217 splice_child_die (dw_die_ref parent
, dw_die_ref child
)
5221 /* We want the declaration DIE from inside the class, not the
5222 specification DIE at toplevel. */
5223 if (child
->die_parent
!= parent
)
5225 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5231 if (child
->die_parent
!= parent
5232 && child
->die_parent
!= get_AT_ref (parent
, DW_AT_specification
))
5235 for (p
= &(child
->die_parent
->die_child
); *p
; p
= &((*p
)->die_sib
))
5238 *p
= child
->die_sib
;
5242 child
->die_parent
= parent
;
5243 child
->die_sib
= parent
->die_child
;
5244 parent
->die_child
= child
;
5247 /* Return a pointer to a newly created DIE node. */
5249 static inline dw_die_ref
5250 new_die (enum dwarf_tag tag_value
, dw_die_ref parent_die
, tree t
)
5252 dw_die_ref die
= ggc_alloc_cleared (sizeof (die_node
));
5254 die
->die_tag
= tag_value
;
5256 if (parent_die
!= NULL
)
5257 add_child_die (parent_die
, die
);
5260 limbo_die_node
*limbo_node
;
5262 limbo_node
= ggc_alloc_cleared (sizeof (limbo_die_node
));
5263 limbo_node
->die
= die
;
5264 limbo_node
->created_for
= t
;
5265 limbo_node
->next
= limbo_die_list
;
5266 limbo_die_list
= limbo_node
;
5272 /* Return the DIE associated with the given type specifier. */
5274 static inline dw_die_ref
5275 lookup_type_die (tree type
)
5277 return TYPE_SYMTAB_DIE (type
);
5280 /* Equate a DIE to a given type specifier. */
5283 equate_type_number_to_die (tree type
, dw_die_ref type_die
)
5285 TYPE_SYMTAB_DIE (type
) = type_die
;
5288 /* Returns a hash value for X (which really is a die_struct). */
5291 decl_die_table_hash (const void *x
)
5293 return (hashval_t
) ((const dw_die_ref
) x
)->decl_id
;
5296 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5299 decl_die_table_eq (const void *x
, const void *y
)
5301 return (((const dw_die_ref
) x
)->decl_id
== DECL_UID ((const tree
) y
));
5304 /* Return the DIE associated with a given declaration. */
5306 static inline dw_die_ref
5307 lookup_decl_die (tree decl
)
5309 return htab_find_with_hash (decl_die_table
, decl
, DECL_UID (decl
));
5312 /* Returns a hash value for X (which really is a var_loc_list). */
5315 decl_loc_table_hash (const void *x
)
5317 return (hashval_t
) ((const var_loc_list
*) x
)->decl_id
;
5320 /* Return nonzero if decl_id of var_loc_list X is the same as
5324 decl_loc_table_eq (const void *x
, const void *y
)
5326 return (((const var_loc_list
*) x
)->decl_id
== DECL_UID ((const tree
) y
));
5329 /* Return the var_loc list associated with a given declaration. */
5331 static inline var_loc_list
*
5332 lookup_decl_loc (tree decl
)
5334 return htab_find_with_hash (decl_loc_table
, decl
, DECL_UID (decl
));
5337 /* Equate a DIE to a particular declaration. */
5340 equate_decl_number_to_die (tree decl
, dw_die_ref decl_die
)
5342 unsigned int decl_id
= DECL_UID (decl
);
5345 slot
= htab_find_slot_with_hash (decl_die_table
, decl
, decl_id
, INSERT
);
5347 decl_die
->decl_id
= decl_id
;
5350 /* Add a variable location node to the linked list for DECL. */
5353 add_var_loc_to_decl (tree decl
, struct var_loc_node
*loc
)
5355 unsigned int decl_id
= DECL_UID (decl
);
5359 slot
= htab_find_slot_with_hash (decl_loc_table
, decl
, decl_id
, INSERT
);
5362 temp
= ggc_alloc_cleared (sizeof (var_loc_list
));
5363 temp
->decl_id
= decl_id
;
5371 /* If the current location is the same as the end of the list,
5372 we have nothing to do. */
5373 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp
->last
->var_loc_note
),
5374 NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
)))
5376 /* Add LOC to the end of list and update LAST. */
5377 temp
->last
->next
= loc
;
5381 /* Do not add empty location to the beginning of the list. */
5382 else if (NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
) != NULL_RTX
)
5389 /* Keep track of the number of spaces used to indent the
5390 output of the debugging routines that print the structure of
5391 the DIE internal representation. */
5392 static int print_indent
;
5394 /* Indent the line the number of spaces given by print_indent. */
5397 print_spaces (FILE *outfile
)
5399 fprintf (outfile
, "%*s", print_indent
, "");
5402 /* Print the information associated with a given DIE, and its children.
5403 This routine is a debugging aid only. */
5406 print_die (dw_die_ref die
, FILE *outfile
)
5411 print_spaces (outfile
);
5412 fprintf (outfile
, "DIE %4lu: %s\n",
5413 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5414 print_spaces (outfile
);
5415 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5416 fprintf (outfile
, " offset: %lu\n", die
->die_offset
);
5418 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5420 print_spaces (outfile
);
5421 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5423 switch (AT_class (a
))
5425 case dw_val_class_addr
:
5426 fprintf (outfile
, "address");
5428 case dw_val_class_offset
:
5429 fprintf (outfile
, "offset");
5431 case dw_val_class_loc
:
5432 fprintf (outfile
, "location descriptor");
5434 case dw_val_class_loc_list
:
5435 fprintf (outfile
, "location list -> label:%s",
5436 AT_loc_list (a
)->ll_symbol
);
5438 case dw_val_class_range_list
:
5439 fprintf (outfile
, "range list");
5441 case dw_val_class_const
:
5442 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, AT_int (a
));
5444 case dw_val_class_unsigned_const
:
5445 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, AT_unsigned (a
));
5447 case dw_val_class_long_long
:
5448 fprintf (outfile
, "constant (%lu,%lu)",
5449 a
->dw_attr_val
.v
.val_long_long
.hi
,
5450 a
->dw_attr_val
.v
.val_long_long
.low
);
5452 case dw_val_class_vec
:
5453 fprintf (outfile
, "floating-point or vector constant");
5455 case dw_val_class_flag
:
5456 fprintf (outfile
, "%u", AT_flag (a
));
5458 case dw_val_class_die_ref
:
5459 if (AT_ref (a
) != NULL
)
5461 if (AT_ref (a
)->die_symbol
)
5462 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5464 fprintf (outfile
, "die -> %lu", AT_ref (a
)->die_offset
);
5467 fprintf (outfile
, "die -> <null>");
5469 case dw_val_class_lbl_id
:
5470 case dw_val_class_lbl_offset
:
5471 fprintf (outfile
, "label: %s", AT_lbl (a
));
5473 case dw_val_class_str
:
5474 if (AT_string (a
) != NULL
)
5475 fprintf (outfile
, "\"%s\"", AT_string (a
));
5477 fprintf (outfile
, "<null>");
5483 fprintf (outfile
, "\n");
5486 if (die
->die_child
!= NULL
)
5489 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5490 print_die (c
, outfile
);
5494 if (print_indent
== 0)
5495 fprintf (outfile
, "\n");
5498 /* Print the contents of the source code line number correspondence table.
5499 This routine is a debugging aid only. */
5502 print_dwarf_line_table (FILE *outfile
)
5505 dw_line_info_ref line_info
;
5507 fprintf (outfile
, "\n\nDWARF source line information\n");
5508 for (i
= 1; i
< line_info_table_in_use
; i
++)
5510 line_info
= &line_info_table
[i
];
5511 fprintf (outfile
, "%5d: ", i
);
5512 fprintf (outfile
, "%-20s",
5513 VARRAY_CHAR_PTR (file_table
, line_info
->dw_file_num
));
5514 fprintf (outfile
, "%6ld", line_info
->dw_line_num
);
5515 fprintf (outfile
, "\n");
5518 fprintf (outfile
, "\n\n");
5521 /* Print the information collected for a given DIE. */
5524 debug_dwarf_die (dw_die_ref die
)
5526 print_die (die
, stderr
);
5529 /* Print all DWARF information collected for the compilation unit.
5530 This routine is a debugging aid only. */
5536 print_die (comp_unit_die
, stderr
);
5537 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5538 print_dwarf_line_table (stderr
);
5541 /* We build up the lists of children and attributes by pushing new ones
5542 onto the beginning of the list. Reverse the lists for DIE so that
5543 they are in order of addition. */
5546 reverse_die_lists (dw_die_ref die
)
5548 dw_die_ref c
, cp
, cn
;
5549 dw_attr_ref a
, ap
, an
;
5551 for (a
= die
->die_attr
, ap
= 0; a
; a
= an
)
5553 an
= a
->dw_attr_next
;
5554 a
->dw_attr_next
= ap
;
5560 for (c
= die
->die_child
, cp
= 0; c
; c
= cn
)
5567 die
->die_child
= cp
;
5570 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5571 reverse all dies in add_sibling_attributes, which runs through all the dies,
5572 it would reverse all the dies. Now, however, since we don't call
5573 reverse_die_lists in add_sibling_attributes, we need a routine to
5574 recursively reverse all the dies. This is that routine. */
5577 reverse_all_dies (dw_die_ref die
)
5581 reverse_die_lists (die
);
5583 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5584 reverse_all_dies (c
);
5587 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5588 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5589 DIE that marks the start of the DIEs for this include file. */
5592 push_new_compile_unit (dw_die_ref old_unit
, dw_die_ref bincl_die
)
5594 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5595 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5597 new_unit
->die_sib
= old_unit
;
5601 /* Close an include-file CU and reopen the enclosing one. */
5604 pop_compile_unit (dw_die_ref old_unit
)
5606 dw_die_ref new_unit
= old_unit
->die_sib
;
5608 old_unit
->die_sib
= NULL
;
5612 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5613 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5615 /* Calculate the checksum of a location expression. */
5618 loc_checksum (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
5620 CHECKSUM (loc
->dw_loc_opc
);
5621 CHECKSUM (loc
->dw_loc_oprnd1
);
5622 CHECKSUM (loc
->dw_loc_oprnd2
);
5625 /* Calculate the checksum of an attribute. */
5628 attr_checksum (dw_attr_ref at
, struct md5_ctx
*ctx
, int *mark
)
5630 dw_loc_descr_ref loc
;
5633 CHECKSUM (at
->dw_attr
);
5635 /* We don't care about differences in file numbering. */
5636 if (at
->dw_attr
== DW_AT_decl_file
5637 /* Or that this was compiled with a different compiler snapshot; if
5638 the output is the same, that's what matters. */
5639 || at
->dw_attr
== DW_AT_producer
)
5642 switch (AT_class (at
))
5644 case dw_val_class_const
:
5645 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
5647 case dw_val_class_unsigned_const
:
5648 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
5650 case dw_val_class_long_long
:
5651 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
5653 case dw_val_class_vec
:
5654 CHECKSUM (at
->dw_attr_val
.v
.val_vec
);
5656 case dw_val_class_flag
:
5657 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
5659 case dw_val_class_str
:
5660 CHECKSUM_STRING (AT_string (at
));
5663 case dw_val_class_addr
:
5665 switch (GET_CODE (r
))
5668 CHECKSUM_STRING (XSTR (r
, 0));
5676 case dw_val_class_offset
:
5677 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
5680 case dw_val_class_loc
:
5681 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
5682 loc_checksum (loc
, ctx
);
5685 case dw_val_class_die_ref
:
5686 die_checksum (AT_ref (at
), ctx
, mark
);
5689 case dw_val_class_fde_ref
:
5690 case dw_val_class_lbl_id
:
5691 case dw_val_class_lbl_offset
:
5699 /* Calculate the checksum of a DIE. */
5702 die_checksum (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
5707 /* To avoid infinite recursion. */
5710 CHECKSUM (die
->die_mark
);
5713 die
->die_mark
= ++(*mark
);
5715 CHECKSUM (die
->die_tag
);
5717 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
5718 attr_checksum (a
, ctx
, mark
);
5720 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5721 die_checksum (c
, ctx
, mark
);
5725 #undef CHECKSUM_STRING
5727 /* Do the location expressions look same? */
5729 same_loc_p (dw_loc_descr_ref loc1
, dw_loc_descr_ref loc2
, int *mark
)
5731 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
5732 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
5733 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
5736 /* Do the values look the same? */
5738 same_dw_val_p (dw_val_node
*v1
, dw_val_node
*v2
, int *mark
)
5740 dw_loc_descr_ref loc1
, loc2
;
5743 if (v1
->val_class
!= v2
->val_class
)
5746 switch (v1
->val_class
)
5748 case dw_val_class_const
:
5749 return v1
->v
.val_int
== v2
->v
.val_int
;
5750 case dw_val_class_unsigned_const
:
5751 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
5752 case dw_val_class_long_long
:
5753 return v1
->v
.val_long_long
.hi
== v2
->v
.val_long_long
.hi
5754 && v1
->v
.val_long_long
.low
== v2
->v
.val_long_long
.low
;
5755 case dw_val_class_vec
:
5756 if (v1
->v
.val_vec
.length
!= v2
->v
.val_vec
.length
5757 || v1
->v
.val_vec
.elt_size
!= v2
->v
.val_vec
.elt_size
)
5759 if (memcmp (v1
->v
.val_vec
.array
, v2
->v
.val_vec
.array
,
5760 v1
->v
.val_vec
.length
* v1
->v
.val_vec
.elt_size
))
5763 case dw_val_class_flag
:
5764 return v1
->v
.val_flag
== v2
->v
.val_flag
;
5765 case dw_val_class_str
:
5766 return !strcmp(v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
5768 case dw_val_class_addr
:
5769 r1
= v1
->v
.val_addr
;
5770 r2
= v2
->v
.val_addr
;
5771 if (GET_CODE (r1
) != GET_CODE (r2
))
5773 switch (GET_CODE (r1
))
5776 return !strcmp (XSTR (r1
, 0), XSTR (r2
, 0));
5782 case dw_val_class_offset
:
5783 return v1
->v
.val_offset
== v2
->v
.val_offset
;
5785 case dw_val_class_loc
:
5786 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
5788 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
5789 if (!same_loc_p (loc1
, loc2
, mark
))
5791 return !loc1
&& !loc2
;
5793 case dw_val_class_die_ref
:
5794 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
5796 case dw_val_class_fde_ref
:
5797 case dw_val_class_lbl_id
:
5798 case dw_val_class_lbl_offset
:
5806 /* Do the attributes look the same? */
5809 same_attr_p (dw_attr_ref at1
, dw_attr_ref at2
, int *mark
)
5811 if (at1
->dw_attr
!= at2
->dw_attr
)
5814 /* We don't care about differences in file numbering. */
5815 if (at1
->dw_attr
== DW_AT_decl_file
5816 /* Or that this was compiled with a different compiler snapshot; if
5817 the output is the same, that's what matters. */
5818 || at1
->dw_attr
== DW_AT_producer
)
5821 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
5824 /* Do the dies look the same? */
5827 same_die_p (dw_die_ref die1
, dw_die_ref die2
, int *mark
)
5832 /* To avoid infinite recursion. */
5834 return die1
->die_mark
== die2
->die_mark
;
5835 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
5837 if (die1
->die_tag
!= die2
->die_tag
)
5840 for (a1
= die1
->die_attr
, a2
= die2
->die_attr
;
5842 a1
= a1
->dw_attr_next
, a2
= a2
->dw_attr_next
)
5843 if (!same_attr_p (a1
, a2
, mark
))
5848 for (c1
= die1
->die_child
, c2
= die2
->die_child
;
5850 c1
= c1
->die_sib
, c2
= c2
->die_sib
)
5851 if (!same_die_p (c1
, c2
, mark
))
5859 /* Do the dies look the same? Wrapper around same_die_p. */
5862 same_die_p_wrap (dw_die_ref die1
, dw_die_ref die2
)
5865 int ret
= same_die_p (die1
, die2
, &mark
);
5867 unmark_all_dies (die1
);
5868 unmark_all_dies (die2
);
5873 /* The prefix to attach to symbols on DIEs in the current comdat debug
5875 static char *comdat_symbol_id
;
5877 /* The index of the current symbol within the current comdat CU. */
5878 static unsigned int comdat_symbol_number
;
5880 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5881 children, and set comdat_symbol_id accordingly. */
5884 compute_section_prefix (dw_die_ref unit_die
)
5886 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
5887 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
5888 char *name
= alloca (strlen (base
) + 64);
5891 unsigned char checksum
[16];
5894 /* Compute the checksum of the DIE, then append part of it as hex digits to
5895 the name filename of the unit. */
5897 md5_init_ctx (&ctx
);
5899 die_checksum (unit_die
, &ctx
, &mark
);
5900 unmark_all_dies (unit_die
);
5901 md5_finish_ctx (&ctx
, checksum
);
5903 sprintf (name
, "%s.", base
);
5904 clean_symbol_name (name
);
5906 p
= name
+ strlen (name
);
5907 for (i
= 0; i
< 4; i
++)
5909 sprintf (p
, "%.2x", checksum
[i
]);
5913 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
5914 comdat_symbol_number
= 0;
5917 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5920 is_type_die (dw_die_ref die
)
5922 switch (die
->die_tag
)
5924 case DW_TAG_array_type
:
5925 case DW_TAG_class_type
:
5926 case DW_TAG_enumeration_type
:
5927 case DW_TAG_pointer_type
:
5928 case DW_TAG_reference_type
:
5929 case DW_TAG_string_type
:
5930 case DW_TAG_structure_type
:
5931 case DW_TAG_subroutine_type
:
5932 case DW_TAG_union_type
:
5933 case DW_TAG_ptr_to_member_type
:
5934 case DW_TAG_set_type
:
5935 case DW_TAG_subrange_type
:
5936 case DW_TAG_base_type
:
5937 case DW_TAG_const_type
:
5938 case DW_TAG_file_type
:
5939 case DW_TAG_packed_type
:
5940 case DW_TAG_volatile_type
:
5941 case DW_TAG_typedef
:
5948 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5949 Basically, we want to choose the bits that are likely to be shared between
5950 compilations (types) and leave out the bits that are specific to individual
5951 compilations (functions). */
5954 is_comdat_die (dw_die_ref c
)
5956 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5957 we do for stabs. The advantage is a greater likelihood of sharing between
5958 objects that don't include headers in the same order (and therefore would
5959 put the base types in a different comdat). jason 8/28/00 */
5961 if (c
->die_tag
== DW_TAG_base_type
)
5964 if (c
->die_tag
== DW_TAG_pointer_type
5965 || c
->die_tag
== DW_TAG_reference_type
5966 || c
->die_tag
== DW_TAG_const_type
5967 || c
->die_tag
== DW_TAG_volatile_type
)
5969 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
5971 return t
? is_comdat_die (t
) : 0;
5974 return is_type_die (c
);
5977 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5978 compilation unit. */
5981 is_symbol_die (dw_die_ref c
)
5983 return (is_type_die (c
)
5984 || (get_AT (c
, DW_AT_declaration
)
5985 && !get_AT (c
, DW_AT_specification
)));
5989 gen_internal_sym (const char *prefix
)
5993 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
5994 return xstrdup (buf
);
5997 /* Assign symbols to all worthy DIEs under DIE. */
6000 assign_symbol_names (dw_die_ref die
)
6004 if (is_symbol_die (die
))
6006 if (comdat_symbol_id
)
6008 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
6010 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
6011 comdat_symbol_id
, comdat_symbol_number
++);
6012 die
->die_symbol
= xstrdup (p
);
6015 die
->die_symbol
= gen_internal_sym ("LDIE");
6018 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6019 assign_symbol_names (c
);
6022 struct cu_hash_table_entry
6025 unsigned min_comdat_num
, max_comdat_num
;
6026 struct cu_hash_table_entry
*next
;
6029 /* Routines to manipulate hash table of CUs. */
6031 htab_cu_hash (const void *of
)
6033 const struct cu_hash_table_entry
*entry
= of
;
6035 return htab_hash_string (entry
->cu
->die_symbol
);
6039 htab_cu_eq (const void *of1
, const void *of2
)
6041 const struct cu_hash_table_entry
*entry1
= of1
;
6042 const struct die_struct
*entry2
= of2
;
6044 return !strcmp (entry1
->cu
->die_symbol
, entry2
->die_symbol
);
6048 htab_cu_del (void *what
)
6050 struct cu_hash_table_entry
*next
, *entry
= what
;
6060 /* Check whether we have already seen this CU and set up SYM_NUM
6063 check_duplicate_cu (dw_die_ref cu
, htab_t htable
, unsigned int *sym_num
)
6065 struct cu_hash_table_entry dummy
;
6066 struct cu_hash_table_entry
**slot
, *entry
, *last
= &dummy
;
6068 dummy
.max_comdat_num
= 0;
6070 slot
= (struct cu_hash_table_entry
**)
6071 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6075 for (; entry
; last
= entry
, entry
= entry
->next
)
6077 if (same_die_p_wrap (cu
, entry
->cu
))
6083 *sym_num
= entry
->min_comdat_num
;
6087 entry
= xcalloc (1, sizeof (struct cu_hash_table_entry
));
6089 entry
->min_comdat_num
= *sym_num
= last
->max_comdat_num
;
6090 entry
->next
= *slot
;
6096 /* Record SYM_NUM to record of CU in HTABLE. */
6098 record_comdat_symbol_number (dw_die_ref cu
, htab_t htable
, unsigned int sym_num
)
6100 struct cu_hash_table_entry
**slot
, *entry
;
6102 slot
= (struct cu_hash_table_entry
**)
6103 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6107 entry
->max_comdat_num
= sym_num
;
6110 /* Traverse the DIE (which is always comp_unit_die), and set up
6111 additional compilation units for each of the include files we see
6112 bracketed by BINCL/EINCL. */
6115 break_out_includes (dw_die_ref die
)
6118 dw_die_ref unit
= NULL
;
6119 limbo_die_node
*node
, **pnode
;
6120 htab_t cu_hash_table
;
6122 for (ptr
= &(die
->die_child
); *ptr
;)
6124 dw_die_ref c
= *ptr
;
6126 if (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
6127 || (unit
&& is_comdat_die (c
)))
6129 /* This DIE is for a secondary CU; remove it from the main one. */
6132 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
6134 unit
= push_new_compile_unit (unit
, c
);
6137 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
6139 unit
= pop_compile_unit (unit
);
6143 add_child_die (unit
, c
);
6147 /* Leave this DIE in the main CU. */
6148 ptr
= &(c
->die_sib
);
6154 /* We can only use this in debugging, since the frontend doesn't check
6155 to make sure that we leave every include file we enter. */
6160 assign_symbol_names (die
);
6161 cu_hash_table
= htab_create (10, htab_cu_hash
, htab_cu_eq
, htab_cu_del
);
6162 for (node
= limbo_die_list
, pnode
= &limbo_die_list
;
6168 compute_section_prefix (node
->die
);
6169 is_dupl
= check_duplicate_cu (node
->die
, cu_hash_table
,
6170 &comdat_symbol_number
);
6171 assign_symbol_names (node
->die
);
6173 *pnode
= node
->next
;
6176 pnode
= &node
->next
;
6177 record_comdat_symbol_number (node
->die
, cu_hash_table
,
6178 comdat_symbol_number
);
6181 htab_delete (cu_hash_table
);
6184 /* Traverse the DIE and add a sibling attribute if it may have the
6185 effect of speeding up access to siblings. To save some space,
6186 avoid generating sibling attributes for DIE's without children. */
6189 add_sibling_attributes (dw_die_ref die
)
6193 if (die
->die_tag
!= DW_TAG_compile_unit
6194 && die
->die_sib
&& die
->die_child
!= NULL
)
6195 /* Add the sibling link to the front of the attribute list. */
6196 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
6198 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6199 add_sibling_attributes (c
);
6202 /* Output all location lists for the DIE and its children. */
6205 output_location_lists (dw_die_ref die
)
6210 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
6211 if (AT_class (d_attr
) == dw_val_class_loc_list
)
6212 output_loc_list (AT_loc_list (d_attr
));
6214 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6215 output_location_lists (c
);
6219 /* The format of each DIE (and its attribute value pairs) is encoded in an
6220 abbreviation table. This routine builds the abbreviation table and assigns
6221 a unique abbreviation id for each abbreviation entry. The children of each
6222 die are visited recursively. */
6225 build_abbrev_table (dw_die_ref die
)
6227 unsigned long abbrev_id
;
6228 unsigned int n_alloc
;
6230 dw_attr_ref d_attr
, a_attr
;
6232 /* Scan the DIE references, and mark as external any that refer to
6233 DIEs from other CUs (i.e. those which are not marked). */
6234 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
6235 if (AT_class (d_attr
) == dw_val_class_die_ref
6236 && AT_ref (d_attr
)->die_mark
== 0)
6238 if (AT_ref (d_attr
)->die_symbol
== 0)
6241 set_AT_ref_external (d_attr
, 1);
6244 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6246 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6248 if (abbrev
->die_tag
== die
->die_tag
)
6250 if ((abbrev
->die_child
!= NULL
) == (die
->die_child
!= NULL
))
6252 a_attr
= abbrev
->die_attr
;
6253 d_attr
= die
->die_attr
;
6255 while (a_attr
!= NULL
&& d_attr
!= NULL
)
6257 if ((a_attr
->dw_attr
!= d_attr
->dw_attr
)
6258 || (value_format (a_attr
) != value_format (d_attr
)))
6261 a_attr
= a_attr
->dw_attr_next
;
6262 d_attr
= d_attr
->dw_attr_next
;
6265 if (a_attr
== NULL
&& d_attr
== NULL
)
6271 if (abbrev_id
>= abbrev_die_table_in_use
)
6273 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
6275 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
6276 abbrev_die_table
= ggc_realloc (abbrev_die_table
,
6277 sizeof (dw_die_ref
) * n_alloc
);
6279 memset (&abbrev_die_table
[abbrev_die_table_allocated
], 0,
6280 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
6281 abbrev_die_table_allocated
= n_alloc
;
6284 ++abbrev_die_table_in_use
;
6285 abbrev_die_table
[abbrev_id
] = die
;
6288 die
->die_abbrev
= abbrev_id
;
6289 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6290 build_abbrev_table (c
);
6293 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6296 constant_size (long unsigned int value
)
6303 log
= floor_log2 (value
);
6306 log
= 1 << (floor_log2 (log
) + 1);
6311 /* Return the size of a DIE as it is represented in the
6312 .debug_info section. */
6314 static unsigned long
6315 size_of_die (dw_die_ref die
)
6317 unsigned long size
= 0;
6320 size
+= size_of_uleb128 (die
->die_abbrev
);
6321 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6323 switch (AT_class (a
))
6325 case dw_val_class_addr
:
6326 size
+= DWARF2_ADDR_SIZE
;
6328 case dw_val_class_offset
:
6329 size
+= DWARF_OFFSET_SIZE
;
6331 case dw_val_class_loc
:
6333 unsigned long lsize
= size_of_locs (AT_loc (a
));
6336 size
+= constant_size (lsize
);
6340 case dw_val_class_loc_list
:
6341 size
+= DWARF_OFFSET_SIZE
;
6343 case dw_val_class_range_list
:
6344 size
+= DWARF_OFFSET_SIZE
;
6346 case dw_val_class_const
:
6347 size
+= size_of_sleb128 (AT_int (a
));
6349 case dw_val_class_unsigned_const
:
6350 size
+= constant_size (AT_unsigned (a
));
6352 case dw_val_class_long_long
:
6353 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
6355 case dw_val_class_vec
:
6356 size
+= 1 + (a
->dw_attr_val
.v
.val_vec
.length
6357 * a
->dw_attr_val
.v
.val_vec
.elt_size
); /* block */
6359 case dw_val_class_flag
:
6362 case dw_val_class_die_ref
:
6363 if (AT_ref_external (a
))
6364 size
+= DWARF2_ADDR_SIZE
;
6366 size
+= DWARF_OFFSET_SIZE
;
6368 case dw_val_class_fde_ref
:
6369 size
+= DWARF_OFFSET_SIZE
;
6371 case dw_val_class_lbl_id
:
6372 size
+= DWARF2_ADDR_SIZE
;
6374 case dw_val_class_lbl_offset
:
6375 size
+= DWARF_OFFSET_SIZE
;
6377 case dw_val_class_str
:
6378 if (AT_string_form (a
) == DW_FORM_strp
)
6379 size
+= DWARF_OFFSET_SIZE
;
6381 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
6391 /* Size the debugging information associated with a given DIE. Visits the
6392 DIE's children recursively. Updates the global variable next_die_offset, on
6393 each time through. Uses the current value of next_die_offset to update the
6394 die_offset field in each DIE. */
6397 calc_die_sizes (dw_die_ref die
)
6401 die
->die_offset
= next_die_offset
;
6402 next_die_offset
+= size_of_die (die
);
6404 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6407 if (die
->die_child
!= NULL
)
6408 /* Count the null byte used to terminate sibling lists. */
6409 next_die_offset
+= 1;
6412 /* Set the marks for a die and its children. We do this so
6413 that we know whether or not a reference needs to use FORM_ref_addr; only
6414 DIEs in the same CU will be marked. We used to clear out the offset
6415 and use that as the flag, but ran into ordering problems. */
6418 mark_dies (dw_die_ref die
)
6426 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6430 /* Clear the marks for a die and its children. */
6433 unmark_dies (dw_die_ref die
)
6441 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6445 /* Clear the marks for a die, its children and referred dies. */
6448 unmark_all_dies (dw_die_ref die
)
6457 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
6458 unmark_all_dies (c
);
6460 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
6461 if (AT_class (a
) == dw_val_class_die_ref
)
6462 unmark_all_dies (AT_ref (a
));
6465 /* Return the size of the .debug_pubnames table generated for the
6466 compilation unit. */
6468 static unsigned long
6469 size_of_pubnames (void)
6474 size
= DWARF_PUBNAMES_HEADER_SIZE
;
6475 for (i
= 0; i
< pubname_table_in_use
; i
++)
6477 pubname_ref p
= &pubname_table
[i
];
6478 size
+= DWARF_OFFSET_SIZE
+ strlen (p
->name
) + 1;
6481 size
+= DWARF_OFFSET_SIZE
;
6485 /* Return the size of the information in the .debug_aranges section. */
6487 static unsigned long
6488 size_of_aranges (void)
6492 size
= DWARF_ARANGES_HEADER_SIZE
;
6494 /* Count the address/length pair for this compilation unit. */
6495 size
+= 2 * DWARF2_ADDR_SIZE
;
6496 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
6498 /* Count the two zero words used to terminated the address range table. */
6499 size
+= 2 * DWARF2_ADDR_SIZE
;
6503 /* Select the encoding of an attribute value. */
6505 static enum dwarf_form
6506 value_format (dw_attr_ref a
)
6508 switch (a
->dw_attr_val
.val_class
)
6510 case dw_val_class_addr
:
6511 return DW_FORM_addr
;
6512 case dw_val_class_range_list
:
6513 case dw_val_class_offset
:
6514 if (DWARF_OFFSET_SIZE
== 4)
6515 return DW_FORM_data4
;
6516 if (DWARF_OFFSET_SIZE
== 8)
6517 return DW_FORM_data8
;
6519 case dw_val_class_loc_list
:
6520 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6521 .debug_loc section */
6522 return DW_FORM_data4
;
6523 case dw_val_class_loc
:
6524 switch (constant_size (size_of_locs (AT_loc (a
))))
6527 return DW_FORM_block1
;
6529 return DW_FORM_block2
;
6533 case dw_val_class_const
:
6534 return DW_FORM_sdata
;
6535 case dw_val_class_unsigned_const
:
6536 switch (constant_size (AT_unsigned (a
)))
6539 return DW_FORM_data1
;
6541 return DW_FORM_data2
;
6543 return DW_FORM_data4
;
6545 return DW_FORM_data8
;
6549 case dw_val_class_long_long
:
6550 return DW_FORM_block1
;
6551 case dw_val_class_vec
:
6552 return DW_FORM_block1
;
6553 case dw_val_class_flag
:
6554 return DW_FORM_flag
;
6555 case dw_val_class_die_ref
:
6556 if (AT_ref_external (a
))
6557 return DW_FORM_ref_addr
;
6560 case dw_val_class_fde_ref
:
6561 return DW_FORM_data
;
6562 case dw_val_class_lbl_id
:
6563 return DW_FORM_addr
;
6564 case dw_val_class_lbl_offset
:
6565 return DW_FORM_data
;
6566 case dw_val_class_str
:
6567 return AT_string_form (a
);
6574 /* Output the encoding of an attribute value. */
6577 output_value_format (dw_attr_ref a
)
6579 enum dwarf_form form
= value_format (a
);
6581 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6584 /* Output the .debug_abbrev section which defines the DIE abbreviation
6588 output_abbrev_section (void)
6590 unsigned long abbrev_id
;
6594 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6596 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6598 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6599 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6600 dwarf_tag_name (abbrev
->die_tag
));
6602 if (abbrev
->die_child
!= NULL
)
6603 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6605 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6607 for (a_attr
= abbrev
->die_attr
; a_attr
!= NULL
;
6608 a_attr
= a_attr
->dw_attr_next
)
6610 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6611 dwarf_attr_name (a_attr
->dw_attr
));
6612 output_value_format (a_attr
);
6615 dw2_asm_output_data (1, 0, NULL
);
6616 dw2_asm_output_data (1, 0, NULL
);
6619 /* Terminate the table. */
6620 dw2_asm_output_data (1, 0, NULL
);
6623 /* Output a symbol we can use to refer to this DIE from another CU. */
6626 output_die_symbol (dw_die_ref die
)
6628 char *sym
= die
->die_symbol
;
6633 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
6634 /* We make these global, not weak; if the target doesn't support
6635 .linkonce, it doesn't support combining the sections, so debugging
6637 targetm
.asm_out
.globalize_label (asm_out_file
, sym
);
6639 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
6642 /* Return a new location list, given the begin and end range, and the
6643 expression. gensym tells us whether to generate a new internal symbol for
6644 this location list node, which is done for the head of the list only. */
6646 static inline dw_loc_list_ref
6647 new_loc_list (dw_loc_descr_ref expr
, const char *begin
, const char *end
,
6648 const char *section
, unsigned int gensym
)
6650 dw_loc_list_ref retlist
= ggc_alloc_cleared (sizeof (dw_loc_list_node
));
6652 retlist
->begin
= begin
;
6654 retlist
->expr
= expr
;
6655 retlist
->section
= section
;
6657 retlist
->ll_symbol
= gen_internal_sym ("LLST");
6662 /* Add a location description expression to a location list. */
6665 add_loc_descr_to_loc_list (dw_loc_list_ref
*list_head
, dw_loc_descr_ref descr
,
6666 const char *begin
, const char *end
,
6667 const char *section
)
6671 /* Find the end of the chain. */
6672 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
6675 /* Add a new location list node to the list. */
6676 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
6679 /* Output the location list given to us. */
6682 output_loc_list (dw_loc_list_ref list_head
)
6684 dw_loc_list_ref curr
= list_head
;
6686 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
6688 /* Walk the location list, and output each range + expression. */
6689 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
6692 if (separate_line_info_table_in_use
== 0)
6694 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
6695 "Location list begin address (%s)",
6696 list_head
->ll_symbol
);
6697 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
6698 "Location list end address (%s)",
6699 list_head
->ll_symbol
);
6703 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
6704 "Location list begin address (%s)",
6705 list_head
->ll_symbol
);
6706 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
6707 "Location list end address (%s)",
6708 list_head
->ll_symbol
);
6710 size
= size_of_locs (curr
->expr
);
6712 /* Output the block length for this list of location operations. */
6715 dw2_asm_output_data (2, size
, "%s", "Location expression size");
6717 output_loc_sequence (curr
->expr
);
6720 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
6721 "Location list terminator begin (%s)",
6722 list_head
->ll_symbol
);
6723 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
6724 "Location list terminator end (%s)",
6725 list_head
->ll_symbol
);
6728 /* Output the DIE and its attributes. Called recursively to generate
6729 the definitions of each child DIE. */
6732 output_die (dw_die_ref die
)
6738 /* If someone in another CU might refer to us, set up a symbol for
6739 them to point to. */
6740 if (die
->die_symbol
)
6741 output_die_symbol (die
);
6743 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
6744 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
6746 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6748 const char *name
= dwarf_attr_name (a
->dw_attr
);
6750 switch (AT_class (a
))
6752 case dw_val_class_addr
:
6753 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
6756 case dw_val_class_offset
:
6757 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
6761 case dw_val_class_range_list
:
6763 char *p
= strchr (ranges_section_label
, '\0');
6765 sprintf (p
, "+" HOST_WIDE_INT_PRINT_HEX
,
6766 a
->dw_attr_val
.v
.val_offset
);
6767 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
6773 case dw_val_class_loc
:
6774 size
= size_of_locs (AT_loc (a
));
6776 /* Output the block length for this list of location operations. */
6777 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
6779 output_loc_sequence (AT_loc (a
));
6782 case dw_val_class_const
:
6783 /* ??? It would be slightly more efficient to use a scheme like is
6784 used for unsigned constants below, but gdb 4.x does not sign
6785 extend. Gdb 5.x does sign extend. */
6786 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
6789 case dw_val_class_unsigned_const
:
6790 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
6791 AT_unsigned (a
), "%s", name
);
6794 case dw_val_class_long_long
:
6796 unsigned HOST_WIDE_INT first
, second
;
6798 dw2_asm_output_data (1,
6799 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6802 if (WORDS_BIG_ENDIAN
)
6804 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6805 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
6809 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
6810 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6813 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6814 first
, "long long constant");
6815 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6820 case dw_val_class_vec
:
6822 unsigned int elt_size
= a
->dw_attr_val
.v
.val_vec
.elt_size
;
6823 unsigned int len
= a
->dw_attr_val
.v
.val_vec
.length
;
6827 dw2_asm_output_data (1, len
* elt_size
, "%s", name
);
6828 if (elt_size
> sizeof (HOST_WIDE_INT
))
6833 for (i
= 0, p
= a
->dw_attr_val
.v
.val_vec
.array
;
6836 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
6837 "fp or vector constant word %u", i
);
6841 case dw_val_class_flag
:
6842 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
6845 case dw_val_class_loc_list
:
6847 char *sym
= AT_loc_list (a
)->ll_symbol
;
6851 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, sym
, "%s", name
);
6855 case dw_val_class_die_ref
:
6856 if (AT_ref_external (a
))
6858 char *sym
= AT_ref (a
)->die_symbol
;
6862 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, "%s", name
);
6864 else if (AT_ref (a
)->die_offset
== 0)
6867 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
6871 case dw_val_class_fde_ref
:
6875 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
6876 a
->dw_attr_val
.v
.val_fde_index
* 2);
6877 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, "%s", name
);
6881 case dw_val_class_lbl_id
:
6882 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
6885 case dw_val_class_lbl_offset
:
6886 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
), "%s", name
);
6889 case dw_val_class_str
:
6890 if (AT_string_form (a
) == DW_FORM_strp
)
6891 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
6892 a
->dw_attr_val
.v
.val_str
->label
,
6893 "%s: \"%s\"", name
, AT_string (a
));
6895 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
6903 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6906 /* Add null byte to terminate sibling list. */
6907 if (die
->die_child
!= NULL
)
6908 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6912 /* Output the compilation unit that appears at the beginning of the
6913 .debug_info section, and precedes the DIE descriptions. */
6916 output_compilation_unit_header (void)
6918 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
6919 dw2_asm_output_data (4, 0xffffffff,
6920 "Initial length escape value indicating 64-bit DWARF extension");
6921 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
6922 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
6923 "Length of Compilation Unit Info");
6924 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
6925 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
6926 "Offset Into Abbrev. Section");
6927 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
6930 /* Output the compilation unit DIE and its children. */
6933 output_comp_unit (dw_die_ref die
, int output_if_empty
)
6935 const char *secname
;
6938 /* Unless we are outputting main CU, we may throw away empty ones. */
6939 if (!output_if_empty
&& die
->die_child
== NULL
)
6942 /* Even if there are no children of this DIE, we must output the information
6943 about the compilation unit. Otherwise, on an empty translation unit, we
6944 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6945 will then complain when examining the file. First mark all the DIEs in
6946 this CU so we know which get local refs. */
6949 build_abbrev_table (die
);
6951 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6952 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
6953 calc_die_sizes (die
);
6955 oldsym
= die
->die_symbol
;
6958 tmp
= alloca (strlen (oldsym
) + 24);
6960 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
6962 die
->die_symbol
= NULL
;
6965 secname
= (const char *) DEBUG_INFO_SECTION
;
6967 /* Output debugging information. */
6968 named_section_flags (secname
, SECTION_DEBUG
);
6969 output_compilation_unit_header ();
6972 /* Leave the marks on the main CU, so we can check them in
6977 die
->die_symbol
= oldsym
;
6981 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6982 output of lang_hooks.decl_printable_name for C++ looks like
6983 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6986 dwarf2_name (tree decl
, int scope
)
6988 return lang_hooks
.decl_printable_name (decl
, scope
? 1 : 0);
6991 /* Add a new entry to .debug_pubnames if appropriate. */
6994 add_pubname (tree decl
, dw_die_ref die
)
6998 if (! TREE_PUBLIC (decl
))
7001 if (pubname_table_in_use
== pubname_table_allocated
)
7003 pubname_table_allocated
+= PUBNAME_TABLE_INCREMENT
;
7005 = ggc_realloc (pubname_table
,
7006 (pubname_table_allocated
* sizeof (pubname_entry
)));
7007 memset (pubname_table
+ pubname_table_in_use
, 0,
7008 PUBNAME_TABLE_INCREMENT
* sizeof (pubname_entry
));
7011 p
= &pubname_table
[pubname_table_in_use
++];
7013 p
->name
= xstrdup (dwarf2_name (decl
, 1));
7016 /* Output the public names table used to speed up access to externally
7017 visible names. For now, only generate entries for externally
7018 visible procedures. */
7021 output_pubnames (void)
7024 unsigned long pubnames_length
= size_of_pubnames ();
7026 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7027 dw2_asm_output_data (4, 0xffffffff,
7028 "Initial length escape value indicating 64-bit DWARF extension");
7029 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
7030 "Length of Public Names Info");
7031 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7032 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7033 "Offset of Compilation Unit Info");
7034 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
7035 "Compilation Unit Length");
7037 for (i
= 0; i
< pubname_table_in_use
; i
++)
7039 pubname_ref pub
= &pubname_table
[i
];
7041 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7042 if (pub
->die
->die_mark
== 0)
7045 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
7048 dw2_asm_output_nstring (pub
->name
, -1, "external name");
7051 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
7054 /* Add a new entry to .debug_aranges if appropriate. */
7057 add_arange (tree decl
, dw_die_ref die
)
7059 if (! DECL_SECTION_NAME (decl
))
7062 if (arange_table_in_use
== arange_table_allocated
)
7064 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
7065 arange_table
= ggc_realloc (arange_table
,
7066 (arange_table_allocated
7067 * sizeof (dw_die_ref
)));
7068 memset (arange_table
+ arange_table_in_use
, 0,
7069 ARANGE_TABLE_INCREMENT
* sizeof (dw_die_ref
));
7072 arange_table
[arange_table_in_use
++] = die
;
7075 /* Output the information that goes into the .debug_aranges table.
7076 Namely, define the beginning and ending address range of the
7077 text section generated for this compilation unit. */
7080 output_aranges (void)
7083 unsigned long aranges_length
= size_of_aranges ();
7085 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7086 dw2_asm_output_data (4, 0xffffffff,
7087 "Initial length escape value indicating 64-bit DWARF extension");
7088 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
7089 "Length of Address Ranges Info");
7090 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7091 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7092 "Offset of Compilation Unit Info");
7093 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
7094 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7096 /* We need to align to twice the pointer size here. */
7097 if (DWARF_ARANGES_PAD_SIZE
)
7099 /* Pad using a 2 byte words so that padding is correct for any
7101 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7102 2 * DWARF2_ADDR_SIZE
);
7103 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
7104 dw2_asm_output_data (2, 0, NULL
);
7107 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
7108 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
7109 text_section_label
, "Length");
7111 for (i
= 0; i
< arange_table_in_use
; i
++)
7113 dw_die_ref die
= arange_table
[i
];
7115 /* We shouldn't see aranges for DIEs outside of the main CU. */
7116 if (die
->die_mark
== 0)
7119 if (die
->die_tag
== DW_TAG_subprogram
)
7121 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
7123 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
7124 get_AT_low_pc (die
), "Length");
7128 /* A static variable; extract the symbol from DW_AT_location.
7129 Note that this code isn't currently hit, as we only emit
7130 aranges for functions (jason 9/23/99). */
7131 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
7132 dw_loc_descr_ref loc
;
7134 if (! a
|| AT_class (a
) != dw_val_class_loc
)
7138 if (loc
->dw_loc_opc
!= DW_OP_addr
)
7141 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
7142 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
7143 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
7144 get_AT_unsigned (die
, DW_AT_byte_size
),
7149 /* Output the terminator words. */
7150 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7151 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7154 /* Add a new entry to .debug_ranges. Return the offset at which it
7158 add_ranges (tree block
)
7160 unsigned int in_use
= ranges_table_in_use
;
7162 if (in_use
== ranges_table_allocated
)
7164 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
7166 = ggc_realloc (ranges_table
, (ranges_table_allocated
7167 * sizeof (struct dw_ranges_struct
)));
7168 memset (ranges_table
+ ranges_table_in_use
, 0,
7169 RANGES_TABLE_INCREMENT
* sizeof (struct dw_ranges_struct
));
7172 ranges_table
[in_use
].block_num
= (block
? BLOCK_NUMBER (block
) : 0);
7173 ranges_table_in_use
= in_use
+ 1;
7175 return in_use
* 2 * DWARF2_ADDR_SIZE
;
7179 output_ranges (void)
7182 static const char *const start_fmt
= "Offset 0x%x";
7183 const char *fmt
= start_fmt
;
7185 for (i
= 0; i
< ranges_table_in_use
; i
++)
7187 int block_num
= ranges_table
[i
].block_num
;
7191 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7192 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7194 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
7195 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
7197 /* If all code is in the text section, then the compilation
7198 unit base address defaults to DW_AT_low_pc, which is the
7199 base of the text section. */
7200 if (separate_line_info_table_in_use
== 0)
7202 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
7204 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7205 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
7206 text_section_label
, NULL
);
7209 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7210 compilation unit base address to zero, which allows us to
7211 use absolute addresses, and not worry about whether the
7212 target supports cross-section arithmetic. */
7215 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
7216 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7217 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
7224 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7225 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7231 /* Data structure containing information about input files. */
7234 char *path
; /* Complete file name. */
7235 char *fname
; /* File name part. */
7236 int length
; /* Length of entire string. */
7237 int file_idx
; /* Index in input file table. */
7238 int dir_idx
; /* Index in directory table. */
7241 /* Data structure containing information about directories with source
7245 char *path
; /* Path including directory name. */
7246 int length
; /* Path length. */
7247 int prefix
; /* Index of directory entry which is a prefix. */
7248 int count
; /* Number of files in this directory. */
7249 int dir_idx
; /* Index of directory used as base. */
7250 int used
; /* Used in the end? */
7253 /* Callback function for file_info comparison. We sort by looking at
7254 the directories in the path. */
7257 file_info_cmp (const void *p1
, const void *p2
)
7259 const struct file_info
*s1
= p1
;
7260 const struct file_info
*s2
= p2
;
7264 /* Take care of file names without directories. We need to make sure that
7265 we return consistent values to qsort since some will get confused if
7266 we return the same value when identical operands are passed in opposite
7267 orders. So if neither has a directory, return 0 and otherwise return
7268 1 or -1 depending on which one has the directory. */
7269 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
7270 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
7272 cp1
= (unsigned char *) s1
->path
;
7273 cp2
= (unsigned char *) s2
->path
;
7279 /* Reached the end of the first path? If so, handle like above. */
7280 if ((cp1
== (unsigned char *) s1
->fname
)
7281 || (cp2
== (unsigned char *) s2
->fname
))
7282 return ((cp2
== (unsigned char *) s2
->fname
)
7283 - (cp1
== (unsigned char *) s1
->fname
));
7285 /* Character of current path component the same? */
7286 else if (*cp1
!= *cp2
)
7291 /* Output the directory table and the file name table. We try to minimize
7292 the total amount of memory needed. A heuristic is used to avoid large
7293 slowdowns with many input files. */
7296 output_file_names (void)
7298 struct file_info
*files
;
7299 struct dir_info
*dirs
;
7308 /* Handle the case where file_table is empty. */
7309 if (VARRAY_ACTIVE_SIZE (file_table
) <= 1)
7311 dw2_asm_output_data (1, 0, "End directory table");
7312 dw2_asm_output_data (1, 0, "End file name table");
7316 /* Allocate the various arrays we need. */
7317 files
= alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (struct file_info
));
7318 dirs
= alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (struct dir_info
));
7320 /* Sort the file names. */
7321 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7325 /* Skip all leading "./". */
7326 f
= VARRAY_CHAR_PTR (file_table
, i
);
7327 while (f
[0] == '.' && f
[1] == '/')
7330 /* Create a new array entry. */
7332 files
[i
].length
= strlen (f
);
7333 files
[i
].file_idx
= i
;
7335 /* Search for the file name part. */
7336 f
= strrchr (f
, '/');
7337 files
[i
].fname
= f
== NULL
? files
[i
].path
: f
+ 1;
7340 qsort (files
+ 1, VARRAY_ACTIVE_SIZE (file_table
) - 1,
7341 sizeof (files
[0]), file_info_cmp
);
7343 /* Find all the different directories used. */
7344 dirs
[0].path
= files
[1].path
;
7345 dirs
[0].length
= files
[1].fname
- files
[1].path
;
7346 dirs
[0].prefix
= -1;
7348 dirs
[0].dir_idx
= 0;
7350 files
[1].dir_idx
= 0;
7353 for (i
= 2; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7354 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
7355 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
7356 dirs
[ndirs
- 1].length
) == 0)
7358 /* Same directory as last entry. */
7359 files
[i
].dir_idx
= ndirs
- 1;
7360 ++dirs
[ndirs
- 1].count
;
7366 /* This is a new directory. */
7367 dirs
[ndirs
].path
= files
[i
].path
;
7368 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
7369 dirs
[ndirs
].count
= 1;
7370 dirs
[ndirs
].dir_idx
= ndirs
;
7371 dirs
[ndirs
].used
= 0;
7372 files
[i
].dir_idx
= ndirs
;
7374 /* Search for a prefix. */
7375 dirs
[ndirs
].prefix
= -1;
7376 for (j
= 0; j
< ndirs
; j
++)
7377 if (dirs
[j
].length
< dirs
[ndirs
].length
7378 && dirs
[j
].length
> 1
7379 && (dirs
[ndirs
].prefix
== -1
7380 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
7381 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
7382 dirs
[ndirs
].prefix
= j
;
7387 /* Now to the actual work. We have to find a subset of the directories which
7388 allow expressing the file name using references to the directory table
7389 with the least amount of characters. We do not do an exhaustive search
7390 where we would have to check out every combination of every single
7391 possible prefix. Instead we use a heuristic which provides nearly optimal
7392 results in most cases and never is much off. */
7393 saved
= alloca (ndirs
* sizeof (int));
7394 savehere
= alloca (ndirs
* sizeof (int));
7396 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
7397 for (i
= 0; i
< ndirs
; i
++)
7402 /* We can always save some space for the current directory. But this
7403 does not mean it will be enough to justify adding the directory. */
7404 savehere
[i
] = dirs
[i
].length
;
7405 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
7407 for (j
= i
+ 1; j
< ndirs
; j
++)
7410 if (saved
[j
] < dirs
[i
].length
)
7412 /* Determine whether the dirs[i] path is a prefix of the
7417 while (k
!= -1 && k
!= (int) i
)
7422 /* Yes it is. We can possibly safe some memory but
7423 writing the filenames in dirs[j] relative to
7425 savehere
[j
] = dirs
[i
].length
;
7426 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
7431 /* Check whether we can safe enough to justify adding the dirs[i]
7433 if (total
> dirs
[i
].length
+ 1)
7435 /* It's worthwhile adding. */
7436 for (j
= i
; j
< ndirs
; j
++)
7437 if (savehere
[j
] > 0)
7439 /* Remember how much we saved for this directory so far. */
7440 saved
[j
] = savehere
[j
];
7442 /* Remember the prefix directory. */
7443 dirs
[j
].dir_idx
= i
;
7448 /* We have to emit them in the order they appear in the file_table array
7449 since the index is used in the debug info generation. To do this
7450 efficiently we generate a back-mapping of the indices first. */
7451 backmap
= alloca (VARRAY_ACTIVE_SIZE (file_table
) * sizeof (int));
7452 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7454 backmap
[files
[i
].file_idx
] = i
;
7456 /* Mark this directory as used. */
7457 dirs
[dirs
[files
[i
].dir_idx
].dir_idx
].used
= 1;
7460 /* That was it. We are ready to emit the information. First emit the
7461 directory name table. We have to make sure the first actually emitted
7462 directory name has index one; zero is reserved for the current working
7463 directory. Make sure we do not confuse these indices with the one for the
7464 constructed table (even though most of the time they are identical). */
7466 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
7467 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
7468 if (dirs
[i
].used
!= 0)
7470 dirs
[i
].used
= idx
++;
7471 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
7472 "Directory Entry: 0x%x", dirs
[i
].used
);
7475 dw2_asm_output_data (1, 0, "End directory table");
7477 /* Correct the index for the current working directory entry if it
7479 if (idx_offset
== 0)
7482 /* Now write all the file names. */
7483 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
7485 int file_idx
= backmap
[i
];
7486 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
7488 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
7489 "File Entry: 0x%lx", (unsigned long) i
);
7491 /* Include directory index. */
7492 dw2_asm_output_data_uleb128 (dirs
[dir_idx
].used
, NULL
);
7494 /* Modification time. */
7495 dw2_asm_output_data_uleb128 (0, NULL
);
7497 /* File length in bytes. */
7498 dw2_asm_output_data_uleb128 (0, NULL
);
7501 dw2_asm_output_data (1, 0, "End file name table");
7505 /* Output the source line number correspondence information. This
7506 information goes into the .debug_line section. */
7509 output_line_info (void)
7511 char l1
[20], l2
[20], p1
[20], p2
[20];
7512 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7513 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7516 unsigned long lt_index
;
7517 unsigned long current_line
;
7520 unsigned long current_file
;
7521 unsigned long function
;
7523 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
7524 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
7525 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
7526 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
7528 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7529 dw2_asm_output_data (4, 0xffffffff,
7530 "Initial length escape value indicating 64-bit DWARF extension");
7531 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
7532 "Length of Source Line Info");
7533 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
7535 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7536 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
7537 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
7539 /* Define the architecture-dependent minimum instruction length (in
7540 bytes). In this implementation of DWARF, this field is used for
7541 information purposes only. Since GCC generates assembly language,
7542 we have no a priori knowledge of how many instruction bytes are
7543 generated for each source line, and therefore can use only the
7544 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7545 commands. Accordingly, we fix this as `1', which is "correct
7546 enough" for all architectures, and don't let the target override. */
7547 dw2_asm_output_data (1, 1,
7548 "Minimum Instruction Length");
7550 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
7551 "Default is_stmt_start flag");
7552 dw2_asm_output_data (1, DWARF_LINE_BASE
,
7553 "Line Base Value (Special Opcodes)");
7554 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
7555 "Line Range Value (Special Opcodes)");
7556 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
7557 "Special Opcode Base");
7559 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
7563 case DW_LNS_advance_pc
:
7564 case DW_LNS_advance_line
:
7565 case DW_LNS_set_file
:
7566 case DW_LNS_set_column
:
7567 case DW_LNS_fixed_advance_pc
:
7575 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
7579 /* Write out the information about the files we use. */
7580 output_file_names ();
7581 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
7583 /* We used to set the address register to the first location in the text
7584 section here, but that didn't accomplish anything since we already
7585 have a line note for the opening brace of the first function. */
7587 /* Generate the line number to PC correspondence table, encoded as
7588 a series of state machine operations. */
7591 strcpy (prev_line_label
, text_section_label
);
7592 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
7594 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
7597 /* Disable this optimization for now; GDB wants to see two line notes
7598 at the beginning of a function so it can find the end of the
7601 /* Don't emit anything for redundant notes. Just updating the
7602 address doesn't accomplish anything, because we already assume
7603 that anything after the last address is this line. */
7604 if (line_info
->dw_line_num
== current_line
7605 && line_info
->dw_file_num
== current_file
)
7609 /* Emit debug info for the address of the current line.
7611 Unfortunately, we have little choice here currently, and must always
7612 use the most general form. GCC does not know the address delta
7613 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7614 attributes which will give an upper bound on the address range. We
7615 could perhaps use length attributes to determine when it is safe to
7616 use DW_LNS_fixed_advance_pc. */
7618 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
7621 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7622 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7623 "DW_LNS_fixed_advance_pc");
7624 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7628 /* This can handle any delta. This takes
7629 4+DWARF2_ADDR_SIZE bytes. */
7630 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7631 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7632 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7633 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7636 strcpy (prev_line_label
, line_label
);
7638 /* Emit debug info for the source file of the current line, if
7639 different from the previous line. */
7640 if (line_info
->dw_file_num
!= current_file
)
7642 current_file
= line_info
->dw_file_num
;
7643 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7644 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7645 VARRAY_CHAR_PTR (file_table
,
7649 /* Emit debug info for the current line number, choosing the encoding
7650 that uses the least amount of space. */
7651 if (line_info
->dw_line_num
!= current_line
)
7653 line_offset
= line_info
->dw_line_num
- current_line
;
7654 line_delta
= line_offset
- DWARF_LINE_BASE
;
7655 current_line
= line_info
->dw_line_num
;
7656 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7657 /* This can handle deltas from -10 to 234, using the current
7658 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7660 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7661 "line %lu", current_line
);
7664 /* This can handle any delta. This takes at least 4 bytes,
7665 depending on the value being encoded. */
7666 dw2_asm_output_data (1, DW_LNS_advance_line
,
7667 "advance to line %lu", current_line
);
7668 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7669 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7673 /* We still need to start a new row, so output a copy insn. */
7674 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7677 /* Emit debug info for the address of the end of the function. */
7680 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7681 "DW_LNS_fixed_advance_pc");
7682 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
7686 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7687 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7688 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7689 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
7692 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7693 dw2_asm_output_data_uleb128 (1, NULL
);
7694 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7699 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
7701 dw_separate_line_info_ref line_info
7702 = &separate_line_info_table
[lt_index
];
7705 /* Don't emit anything for redundant notes. */
7706 if (line_info
->dw_line_num
== current_line
7707 && line_info
->dw_file_num
== current_file
7708 && line_info
->function
== function
)
7712 /* Emit debug info for the address of the current line. If this is
7713 a new function, or the first line of a function, then we need
7714 to handle it differently. */
7715 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
7717 if (function
!= line_info
->function
)
7719 function
= line_info
->function
;
7721 /* Set the address register to the first line in the function. */
7722 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7723 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7724 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7725 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7729 /* ??? See the DW_LNS_advance_pc comment above. */
7732 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7733 "DW_LNS_fixed_advance_pc");
7734 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7738 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7739 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7740 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7741 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7745 strcpy (prev_line_label
, line_label
);
7747 /* Emit debug info for the source file of the current line, if
7748 different from the previous line. */
7749 if (line_info
->dw_file_num
!= current_file
)
7751 current_file
= line_info
->dw_file_num
;
7752 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7753 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7754 VARRAY_CHAR_PTR (file_table
,
7758 /* Emit debug info for the current line number, choosing the encoding
7759 that uses the least amount of space. */
7760 if (line_info
->dw_line_num
!= current_line
)
7762 line_offset
= line_info
->dw_line_num
- current_line
;
7763 line_delta
= line_offset
- DWARF_LINE_BASE
;
7764 current_line
= line_info
->dw_line_num
;
7765 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7766 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7767 "line %lu", current_line
);
7770 dw2_asm_output_data (1, DW_LNS_advance_line
,
7771 "advance to line %lu", current_line
);
7772 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7773 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7777 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7785 /* If we're done with a function, end its sequence. */
7786 if (lt_index
== separate_line_info_table_in_use
7787 || separate_line_info_table
[lt_index
].function
!= function
)
7792 /* Emit debug info for the address of the end of the function. */
7793 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
7796 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7797 "DW_LNS_fixed_advance_pc");
7798 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7802 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7803 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7804 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7805 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7808 /* Output the marker for the end of this sequence. */
7809 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7810 dw2_asm_output_data_uleb128 (1, NULL
);
7811 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7815 /* Output the marker for the end of the line number info. */
7816 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
7819 /* Given a pointer to a tree node for some base type, return a pointer to
7820 a DIE that describes the given type.
7822 This routine must only be called for GCC type nodes that correspond to
7823 Dwarf base (fundamental) types. */
7826 base_type_die (tree type
)
7828 dw_die_ref base_type_result
;
7829 const char *type_name
;
7830 enum dwarf_type encoding
;
7831 tree name
= TYPE_NAME (type
);
7833 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
7838 if (TREE_CODE (name
) == TYPE_DECL
)
7839 name
= DECL_NAME (name
);
7841 type_name
= IDENTIFIER_POINTER (name
);
7844 type_name
= "__unknown__";
7846 switch (TREE_CODE (type
))
7849 /* Carefully distinguish the C character types, without messing
7850 up if the language is not C. Note that we check only for the names
7851 that contain spaces; other names might occur by coincidence in other
7853 if (! (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
7854 && (type
== char_type_node
7855 || ! strcmp (type_name
, "signed char")
7856 || ! strcmp (type_name
, "unsigned char"))))
7858 if (TYPE_UNSIGNED (type
))
7859 encoding
= DW_ATE_unsigned
;
7861 encoding
= DW_ATE_signed
;
7864 /* else fall through. */
7867 /* GNU Pascal/Ada CHAR type. Not used in C. */
7868 if (TYPE_UNSIGNED (type
))
7869 encoding
= DW_ATE_unsigned_char
;
7871 encoding
= DW_ATE_signed_char
;
7875 encoding
= DW_ATE_float
;
7878 /* Dwarf2 doesn't know anything about complex ints, so use
7879 a user defined type for it. */
7881 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
7882 encoding
= DW_ATE_complex_float
;
7884 encoding
= DW_ATE_lo_user
;
7888 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7889 encoding
= DW_ATE_boolean
;
7893 /* No other TREE_CODEs are Dwarf fundamental types. */
7897 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
7898 if (demangle_name_func
)
7899 type_name
= (*demangle_name_func
) (type_name
);
7901 add_AT_string (base_type_result
, DW_AT_name
, type_name
);
7902 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
7903 int_size_in_bytes (type
));
7904 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
7906 return base_type_result
;
7909 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7910 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7911 a given type is generally the same as the given type, except that if the
7912 given type is a pointer or reference type, then the root type of the given
7913 type is the root type of the "basis" type for the pointer or reference
7914 type. (This definition of the "root" type is recursive.) Also, the root
7915 type of a `const' qualified type or a `volatile' qualified type is the
7916 root type of the given type without the qualifiers. */
7919 root_type (tree type
)
7921 if (TREE_CODE (type
) == ERROR_MARK
)
7922 return error_mark_node
;
7924 switch (TREE_CODE (type
))
7927 return error_mark_node
;
7930 case REFERENCE_TYPE
:
7931 return type_main_variant (root_type (TREE_TYPE (type
)));
7934 return type_main_variant (type
);
7938 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7939 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7942 is_base_type (tree type
)
7944 switch (TREE_CODE (type
))
7959 case QUAL_UNION_TYPE
:
7964 case REFERENCE_TYPE
:
7978 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7979 node, return the size in bits for the type if it is a constant, or else
7980 return the alignment for the type if the type's size is not constant, or
7981 else return BITS_PER_WORD if the type actually turns out to be an
7984 static inline unsigned HOST_WIDE_INT
7985 simple_type_size_in_bits (tree type
)
7987 if (TREE_CODE (type
) == ERROR_MARK
)
7988 return BITS_PER_WORD
;
7989 else if (TYPE_SIZE (type
) == NULL_TREE
)
7991 else if (host_integerp (TYPE_SIZE (type
), 1))
7992 return tree_low_cst (TYPE_SIZE (type
), 1);
7994 return TYPE_ALIGN (type
);
7997 /* Return true if the debug information for the given type should be
7998 emitted as a subrange type. */
8001 is_subrange_type (tree type
)
8003 tree subtype
= TREE_TYPE (type
);
8005 /* Subrange types are identified by the fact that they are integer
8006 types, and that they have a subtype which is either an integer type
8007 or an enumeral type. */
8009 if (TREE_CODE (type
) != INTEGER_TYPE
8010 || subtype
== NULL_TREE
)
8013 if (TREE_CODE (subtype
) != INTEGER_TYPE
8014 && TREE_CODE (subtype
) != ENUMERAL_TYPE
)
8017 if (TREE_CODE (type
) == TREE_CODE (subtype
)
8018 && int_size_in_bytes (type
) == int_size_in_bytes (subtype
)
8019 && TYPE_MIN_VALUE (type
) != NULL
8020 && TYPE_MIN_VALUE (subtype
) != NULL
8021 && tree_int_cst_equal (TYPE_MIN_VALUE (type
), TYPE_MIN_VALUE (subtype
))
8022 && TYPE_MAX_VALUE (type
) != NULL
8023 && TYPE_MAX_VALUE (subtype
) != NULL
8024 && tree_int_cst_equal (TYPE_MAX_VALUE (type
), TYPE_MAX_VALUE (subtype
)))
8026 /* The type and its subtype have the same representation. If in
8027 addition the two types also have the same name, then the given
8028 type is not a subrange type, but rather a plain base type. */
8029 /* FIXME: brobecker/2004-03-22:
8030 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8031 therefore be sufficient to check the TYPE_SIZE node pointers
8032 rather than checking the actual size. Unfortunately, we have
8033 found some cases, such as in the Ada "integer" type, where
8034 this is not the case. Until this problem is solved, we need to
8035 keep checking the actual size. */
8036 tree type_name
= TYPE_NAME (type
);
8037 tree subtype_name
= TYPE_NAME (subtype
);
8039 if (type_name
!= NULL
&& TREE_CODE (type_name
) == TYPE_DECL
)
8040 type_name
= DECL_NAME (type_name
);
8042 if (subtype_name
!= NULL
&& TREE_CODE (subtype_name
) == TYPE_DECL
)
8043 subtype_name
= DECL_NAME (subtype_name
);
8045 if (type_name
== subtype_name
)
8052 /* Given a pointer to a tree node for a subrange type, return a pointer
8053 to a DIE that describes the given type. */
8056 subrange_type_die (tree type
, dw_die_ref context_die
)
8058 dw_die_ref subtype_die
;
8059 dw_die_ref subrange_die
;
8060 tree name
= TYPE_NAME (type
);
8061 const HOST_WIDE_INT size_in_bytes
= int_size_in_bytes (type
);
8062 tree subtype
= TREE_TYPE (type
);
8064 if (context_die
== NULL
)
8065 context_die
= comp_unit_die
;
8067 if (TREE_CODE (subtype
) == ENUMERAL_TYPE
)
8068 subtype_die
= gen_enumeration_type_die (subtype
, context_die
);
8070 subtype_die
= base_type_die (subtype
);
8072 subrange_die
= new_die (DW_TAG_subrange_type
, context_die
, type
);
8076 if (TREE_CODE (name
) == TYPE_DECL
)
8077 name
= DECL_NAME (name
);
8078 add_name_attribute (subrange_die
, IDENTIFIER_POINTER (name
));
8081 if (int_size_in_bytes (subtype
) != size_in_bytes
)
8083 /* The size of the subrange type and its base type do not match,
8084 so we need to generate a size attribute for the subrange type. */
8085 add_AT_unsigned (subrange_die
, DW_AT_byte_size
, size_in_bytes
);
8088 if (TYPE_MIN_VALUE (type
) != NULL
)
8089 add_bound_info (subrange_die
, DW_AT_lower_bound
,
8090 TYPE_MIN_VALUE (type
));
8091 if (TYPE_MAX_VALUE (type
) != NULL
)
8092 add_bound_info (subrange_die
, DW_AT_upper_bound
,
8093 TYPE_MAX_VALUE (type
));
8094 add_AT_die_ref (subrange_die
, DW_AT_type
, subtype_die
);
8096 return subrange_die
;
8099 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8100 entry that chains various modifiers in front of the given type. */
8103 modified_type_die (tree type
, int is_const_type
, int is_volatile_type
,
8104 dw_die_ref context_die
)
8106 enum tree_code code
= TREE_CODE (type
);
8107 dw_die_ref mod_type_die
= NULL
;
8108 dw_die_ref sub_die
= NULL
;
8109 tree item_type
= NULL
;
8111 if (code
!= ERROR_MARK
)
8113 tree qualified_type
;
8115 /* See if we already have the appropriately qualified variant of
8118 = get_qualified_type (type
,
8119 ((is_const_type
? TYPE_QUAL_CONST
: 0)
8121 ? TYPE_QUAL_VOLATILE
: 0)));
8123 /* If we do, then we can just use its DIE, if it exists. */
8126 mod_type_die
= lookup_type_die (qualified_type
);
8128 return mod_type_die
;
8131 /* Handle C typedef types. */
8132 if (qualified_type
&& TYPE_NAME (qualified_type
)
8133 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
8134 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type
)))
8136 tree type_name
= TYPE_NAME (qualified_type
);
8137 tree dtype
= TREE_TYPE (type_name
);
8139 if (qualified_type
== dtype
)
8141 /* For a named type, use the typedef. */
8142 gen_type_die (qualified_type
, context_die
);
8143 mod_type_die
= lookup_type_die (qualified_type
);
8145 else if (is_const_type
< TYPE_READONLY (dtype
)
8146 || is_volatile_type
< TYPE_VOLATILE (dtype
))
8147 /* cv-unqualified version of named type. Just use the unnamed
8148 type to which it refers. */
8150 = modified_type_die (DECL_ORIGINAL_TYPE (type_name
),
8151 is_const_type
, is_volatile_type
,
8154 /* Else cv-qualified version of named type; fall through. */
8160 else if (is_const_type
)
8162 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
8163 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
8165 else if (is_volatile_type
)
8167 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
8168 sub_die
= modified_type_die (type
, 0, 0, context_die
);
8170 else if (code
== POINTER_TYPE
)
8172 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
8173 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8174 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8176 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
8178 item_type
= TREE_TYPE (type
);
8180 else if (code
== REFERENCE_TYPE
)
8182 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
8183 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8184 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8186 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
8188 item_type
= TREE_TYPE (type
);
8190 else if (is_subrange_type (type
))
8191 mod_type_die
= subrange_type_die (type
, context_die
);
8192 else if (is_base_type (type
))
8193 mod_type_die
= base_type_die (type
);
8196 gen_type_die (type
, context_die
);
8198 /* We have to get the type_main_variant here (and pass that to the
8199 `lookup_type_die' routine) because the ..._TYPE node we have
8200 might simply be a *copy* of some original type node (where the
8201 copy was created to help us keep track of typedef names) and
8202 that copy might have a different TYPE_UID from the original
8204 if (TREE_CODE (type
) != VECTOR_TYPE
)
8205 mod_type_die
= lookup_type_die (type_main_variant (type
));
8207 /* Vectors have the debugging information in the type,
8208 not the main variant. */
8209 mod_type_die
= lookup_type_die (type
);
8210 if (mod_type_die
== NULL
)
8214 /* We want to equate the qualified type to the die below. */
8215 type
= qualified_type
;
8219 equate_type_number_to_die (type
, mod_type_die
);
8221 /* We must do this after the equate_type_number_to_die call, in case
8222 this is a recursive type. This ensures that the modified_type_die
8223 recursion will terminate even if the type is recursive. Recursive
8224 types are possible in Ada. */
8225 sub_die
= modified_type_die (item_type
,
8226 TYPE_READONLY (item_type
),
8227 TYPE_VOLATILE (item_type
),
8230 if (sub_die
!= NULL
)
8231 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
8233 return mod_type_die
;
8236 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8237 an enumerated type. */
8240 type_is_enum (tree type
)
8242 return TREE_CODE (type
) == ENUMERAL_TYPE
;
8245 /* Return the DBX register number described by a given RTL node. */
8248 dbx_reg_number (rtx rtl
)
8250 unsigned regno
= REGNO (rtl
);
8252 if (regno
>= FIRST_PSEUDO_REGISTER
)
8255 return DBX_REGISTER_NUMBER (regno
);
8258 /* Return a location descriptor that designates a machine register or
8259 zero if there is none. */
8261 static dw_loc_descr_ref
8262 reg_loc_descriptor (rtx rtl
)
8267 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
8270 reg
= dbx_reg_number (rtl
);
8271 regs
= targetm
.dwarf_register_span (rtl
);
8273 if (hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)] > 1
8275 return multiple_reg_loc_descriptor (rtl
, regs
);
8277 return one_reg_loc_descriptor (reg
);
8280 /* Return a location descriptor that designates a machine register for
8281 a given hard register number. */
8283 static dw_loc_descr_ref
8284 one_reg_loc_descriptor (unsigned int regno
)
8287 return new_loc_descr (DW_OP_reg0
+ regno
, 0, 0);
8289 return new_loc_descr (DW_OP_regx
, regno
, 0);
8292 /* Given an RTL of a register, return a location descriptor that
8293 designates a value that spans more than one register. */
8295 static dw_loc_descr_ref
8296 multiple_reg_loc_descriptor (rtx rtl
, rtx regs
)
8300 dw_loc_descr_ref loc_result
= NULL
;
8302 reg
= dbx_reg_number (rtl
);
8303 nregs
= hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)];
8305 /* Simple, contiguous registers. */
8306 if (regs
== NULL_RTX
)
8308 size
= GET_MODE_SIZE (GET_MODE (rtl
)) / nregs
;
8315 t
= one_reg_loc_descriptor (reg
);
8316 add_loc_descr (&loc_result
, t
);
8317 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_piece
, size
, 0));
8323 /* Now onto stupid register sets in non contiguous locations. */
8325 if (GET_CODE (regs
) != PARALLEL
)
8328 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8331 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
8335 t
= one_reg_loc_descriptor (REGNO (XVECEXP (regs
, 0, i
)));
8336 add_loc_descr (&loc_result
, t
);
8337 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8338 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_piece
, size
, 0));
8343 /* Return a location descriptor that designates a constant. */
8345 static dw_loc_descr_ref
8346 int_loc_descriptor (HOST_WIDE_INT i
)
8348 enum dwarf_location_atom op
;
8350 /* Pick the smallest representation of a constant, rather than just
8351 defaulting to the LEB encoding. */
8355 op
= DW_OP_lit0
+ i
;
8358 else if (i
<= 0xffff)
8360 else if (HOST_BITS_PER_WIDE_INT
== 32
8370 else if (i
>= -0x8000)
8372 else if (HOST_BITS_PER_WIDE_INT
== 32
8373 || i
>= -0x80000000)
8379 return new_loc_descr (op
, i
, 0);
8382 /* Return a location descriptor that designates a base+offset location. */
8384 static dw_loc_descr_ref
8385 based_loc_descr (unsigned int reg
, HOST_WIDE_INT offset
, bool can_use_fbreg
)
8387 dw_loc_descr_ref loc_result
;
8388 /* For the "frame base", we use the frame pointer or stack pointer
8389 registers, since the RTL for local variables is relative to one of
8391 unsigned fp_reg
= DBX_REGISTER_NUMBER (frame_pointer_needed
8392 ? HARD_FRAME_POINTER_REGNUM
8393 : STACK_POINTER_REGNUM
);
8395 if (reg
== fp_reg
&& can_use_fbreg
)
8396 loc_result
= new_loc_descr (DW_OP_fbreg
, offset
, 0);
8398 loc_result
= new_loc_descr (DW_OP_breg0
+ reg
, offset
, 0);
8400 loc_result
= new_loc_descr (DW_OP_bregx
, reg
, offset
);
8405 /* Return true if this RTL expression describes a base+offset calculation. */
8408 is_based_loc (rtx rtl
)
8410 return (GET_CODE (rtl
) == PLUS
8411 && ((GET_CODE (XEXP (rtl
, 0)) == REG
8412 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
8413 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
8416 /* The following routine converts the RTL for a variable or parameter
8417 (resident in memory) into an equivalent Dwarf representation of a
8418 mechanism for getting the address of that same variable onto the top of a
8419 hypothetical "address evaluation" stack.
8421 When creating memory location descriptors, we are effectively transforming
8422 the RTL for a memory-resident object into its Dwarf postfix expression
8423 equivalent. This routine recursively descends an RTL tree, turning
8424 it into Dwarf postfix code as it goes.
8426 MODE is the mode of the memory reference, needed to handle some
8427 autoincrement addressing modes.
8429 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8430 list for RTL. We can't use it when we are emitting location list for
8431 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8432 which describes how frame base changes when !frame_pointer_needed.
8434 Return 0 if we can't represent the location. */
8436 static dw_loc_descr_ref
8437 mem_loc_descriptor (rtx rtl
, enum machine_mode mode
, bool can_use_fbreg
)
8439 dw_loc_descr_ref mem_loc_result
= NULL
;
8440 enum dwarf_location_atom op
;
8442 /* Note that for a dynamically sized array, the location we will generate a
8443 description of here will be the lowest numbered location which is
8444 actually within the array. That's *not* necessarily the same as the
8445 zeroth element of the array. */
8447 rtl
= targetm
.delegitimize_address (rtl
);
8449 switch (GET_CODE (rtl
))
8454 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8455 just fall into the SUBREG code. */
8457 /* ... fall through ... */
8460 /* The case of a subreg may arise when we have a local (register)
8461 variable or a formal (register) parameter which doesn't quite fill
8462 up an entire register. For now, just assume that it is
8463 legitimate to make the Dwarf info refer to the whole register which
8464 contains the given subreg. */
8465 rtl
= SUBREG_REG (rtl
);
8467 /* ... fall through ... */
8470 /* Whenever a register number forms a part of the description of the
8471 method for calculating the (dynamic) address of a memory resident
8472 object, DWARF rules require the register number be referred to as
8473 a "base register". This distinction is not based in any way upon
8474 what category of register the hardware believes the given register
8475 belongs to. This is strictly DWARF terminology we're dealing with
8476 here. Note that in cases where the location of a memory-resident
8477 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8478 OP_CONST (0)) the actual DWARF location descriptor that we generate
8479 may just be OP_BASEREG (basereg). This may look deceptively like
8480 the object in question was allocated to a register (rather than in
8481 memory) so DWARF consumers need to be aware of the subtle
8482 distinction between OP_REG and OP_BASEREG. */
8483 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
8484 mem_loc_result
= based_loc_descr (dbx_reg_number (rtl
), 0,
8489 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
),
8491 if (mem_loc_result
!= 0)
8492 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
8496 rtl
= XEXP (rtl
, 1);
8498 /* ... fall through ... */
8501 /* Some ports can transform a symbol ref into a label ref, because
8502 the symbol ref is too far away and has to be dumped into a constant
8506 /* Alternatively, the symbol in the constant pool might be referenced
8507 by a different symbol. */
8508 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
8511 rtx tmp
= get_pool_constant_mark (rtl
, &marked
);
8513 if (GET_CODE (tmp
) == SYMBOL_REF
)
8516 if (CONSTANT_POOL_ADDRESS_P (tmp
))
8517 get_pool_constant_mark (tmp
, &marked
);
8522 /* If all references to this pool constant were optimized away,
8523 it was not output and thus we can't represent it.
8524 FIXME: might try to use DW_OP_const_value here, though
8525 DW_OP_piece complicates it. */
8530 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
8531 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8532 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8533 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
8537 /* Extract the PLUS expression nested inside and fall into
8539 rtl
= XEXP (rtl
, 1);
8544 /* Turn these into a PLUS expression and fall into the PLUS code
8546 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
8547 GEN_INT (GET_CODE (rtl
) == PRE_INC
8548 ? GET_MODE_UNIT_SIZE (mode
)
8549 : -GET_MODE_UNIT_SIZE (mode
)));
8551 /* ... fall through ... */
8555 if (is_based_loc (rtl
))
8556 mem_loc_result
= based_loc_descr (dbx_reg_number (XEXP (rtl
, 0)),
8557 INTVAL (XEXP (rtl
, 1)),
8561 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
,
8563 if (mem_loc_result
== 0)
8566 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
8567 && INTVAL (XEXP (rtl
, 1)) >= 0)
8568 add_loc_descr (&mem_loc_result
,
8569 new_loc_descr (DW_OP_plus_uconst
,
8570 INTVAL (XEXP (rtl
, 1)), 0));
8573 add_loc_descr (&mem_loc_result
,
8574 mem_loc_descriptor (XEXP (rtl
, 1), mode
,
8576 add_loc_descr (&mem_loc_result
,
8577 new_loc_descr (DW_OP_plus
, 0, 0));
8582 /* If a pseudo-reg is optimized away, it is possible for it to
8583 be replaced with a MEM containing a multiply or shift. */
8602 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
,
8604 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
,
8607 if (op0
== 0 || op1
== 0)
8610 mem_loc_result
= op0
;
8611 add_loc_descr (&mem_loc_result
, op1
);
8612 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
8617 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
8621 /* If this is a MEM, return its address. Otherwise, we can't
8623 if (GET_CODE (XEXP (rtl
, 0)) == MEM
)
8624 return mem_loc_descriptor (XEXP (XEXP (rtl
, 0), 0), mode
,
8633 return mem_loc_result
;
8636 /* Return a descriptor that describes the concatenation of two locations.
8637 This is typically a complex variable. */
8639 static dw_loc_descr_ref
8640 concat_loc_descriptor (rtx x0
, rtx x1
)
8642 dw_loc_descr_ref cc_loc_result
= NULL
;
8643 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
, true);
8644 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
, true);
8646 if (x0_ref
== 0 || x1_ref
== 0)
8649 cc_loc_result
= x0_ref
;
8650 add_loc_descr (&cc_loc_result
,
8651 new_loc_descr (DW_OP_piece
,
8652 GET_MODE_SIZE (GET_MODE (x0
)), 0));
8654 add_loc_descr (&cc_loc_result
, x1_ref
);
8655 add_loc_descr (&cc_loc_result
,
8656 new_loc_descr (DW_OP_piece
,
8657 GET_MODE_SIZE (GET_MODE (x1
)), 0));
8659 return cc_loc_result
;
8662 /* Output a proper Dwarf location descriptor for a variable or parameter
8663 which is either allocated in a register or in a memory location. For a
8664 register, we just generate an OP_REG and the register number. For a
8665 memory location we provide a Dwarf postfix expression describing how to
8666 generate the (dynamic) address of the object onto the address stack.
8668 If we don't know how to describe it, return 0. */
8670 static dw_loc_descr_ref
8671 loc_descriptor (rtx rtl
, bool can_use_fbreg
)
8673 dw_loc_descr_ref loc_result
= NULL
;
8675 switch (GET_CODE (rtl
))
8678 /* The case of a subreg may arise when we have a local (register)
8679 variable or a formal (register) parameter which doesn't quite fill
8680 up an entire register. For now, just assume that it is
8681 legitimate to make the Dwarf info refer to the whole register which
8682 contains the given subreg. */
8683 rtl
= SUBREG_REG (rtl
);
8685 /* ... fall through ... */
8688 loc_result
= reg_loc_descriptor (rtl
);
8692 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
),
8697 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1));
8702 if (GET_CODE (XEXP (rtl
, 1)) != PARALLEL
)
8704 loc_result
= loc_descriptor (XEXP (XEXP (rtl
, 1), 0), can_use_fbreg
);
8706 /* Multiple parts. */
8709 rtvec par_elems
= XVEC (XEXP (rtl
, 1), 0);
8710 int num_elem
= GET_NUM_ELEM (par_elems
);
8711 enum machine_mode mode
;
8714 /* Create the first one, so we have something to add to. */
8715 loc_result
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0),
8717 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
8718 add_loc_descr (&loc_result
,
8719 new_loc_descr (DW_OP_piece
, GET_MODE_SIZE (mode
), 0));
8720 for (i
= 1; i
< num_elem
; i
++)
8722 dw_loc_descr_ref temp
;
8724 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0),
8726 add_loc_descr (&loc_result
, temp
);
8727 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
8728 add_loc_descr (&loc_result
,
8729 new_loc_descr (DW_OP_piece
,
8730 GET_MODE_SIZE (mode
), 0));
8742 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8743 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8744 looking for an address. Otherwise, we return a value. If we can't make a
8745 descriptor, return 0. */
8747 static dw_loc_descr_ref
8748 loc_descriptor_from_tree (tree loc
, int addressp
)
8750 dw_loc_descr_ref ret
, ret1
;
8752 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (loc
));
8753 enum dwarf_location_atom op
;
8755 /* ??? Most of the time we do not take proper care for sign/zero
8756 extending the values properly. Hopefully this won't be a real
8759 switch (TREE_CODE (loc
))
8764 case PLACEHOLDER_EXPR
:
8765 /* This case involves extracting fields from an object to determine the
8766 position of other fields. We don't try to encode this here. The
8767 only user of this is Ada, which encodes the needed information using
8768 the names of types. */
8774 case PREINCREMENT_EXPR
:
8775 case PREDECREMENT_EXPR
:
8776 case POSTINCREMENT_EXPR
:
8777 case POSTDECREMENT_EXPR
:
8778 /* There are no opcodes for these operations. */
8782 /* We can support this only if we can look through conversions and
8783 find an INDIRECT_EXPR. */
8784 for (loc
= TREE_OPERAND (loc
, 0);
8785 TREE_CODE (loc
) == CONVERT_EXPR
|| TREE_CODE (loc
) == NOP_EXPR
8786 || TREE_CODE (loc
) == NON_LVALUE_EXPR
8787 || TREE_CODE (loc
) == VIEW_CONVERT_EXPR
8788 || TREE_CODE (loc
) == SAVE_EXPR
;
8789 loc
= TREE_OPERAND (loc
, 0))
8792 return (TREE_CODE (loc
) == INDIRECT_REF
8793 ? loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
)
8797 if (DECL_THREAD_LOCAL (loc
))
8801 #ifndef ASM_OUTPUT_DWARF_DTPREL
8802 /* If this is not defined, we have no way to emit the data. */
8806 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8807 look up addresses of objects in the current module. */
8808 if (DECL_EXTERNAL (loc
))
8811 rtl
= rtl_for_decl_location (loc
);
8812 if (rtl
== NULL_RTX
)
8815 if (GET_CODE (rtl
) != MEM
)
8817 rtl
= XEXP (rtl
, 0);
8818 if (! CONSTANT_P (rtl
))
8821 ret
= new_loc_descr (INTERNAL_DW_OP_tls_addr
, 0, 0);
8822 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8823 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8825 ret1
= new_loc_descr (DW_OP_GNU_push_tls_address
, 0, 0);
8826 add_loc_descr (&ret
, ret1
);
8836 rtx rtl
= rtl_for_decl_location (loc
);
8838 if (rtl
== NULL_RTX
)
8840 else if (CONSTANT_P (rtl
))
8842 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
8843 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8844 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8849 enum machine_mode mode
= GET_MODE (rtl
);
8851 if (GET_CODE (rtl
) == MEM
)
8854 rtl
= XEXP (rtl
, 0);
8857 ret
= mem_loc_descriptor (rtl
, mode
, true);
8863 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8868 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), addressp
);
8872 case NON_LVALUE_EXPR
:
8873 case VIEW_CONVERT_EXPR
:
8876 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
);
8881 case ARRAY_RANGE_REF
:
8884 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
8885 enum machine_mode mode
;
8888 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
8889 &unsignedp
, &volatilep
);
8894 ret
= loc_descriptor_from_tree (obj
, 1);
8896 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
8899 if (offset
!= NULL_TREE
)
8901 /* Variable offset. */
8902 add_loc_descr (&ret
, loc_descriptor_from_tree (offset
, 0));
8903 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8909 bytepos
= bitpos
/ BITS_PER_UNIT
;
8911 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
8912 else if (bytepos
< 0)
8914 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
8915 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8921 if (host_integerp (loc
, 0))
8922 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
8929 /* Get an RTL for this, if something has been emitted. */
8930 rtx rtl
= lookup_constant_def (loc
);
8931 enum machine_mode mode
;
8933 if (GET_CODE (rtl
) != MEM
)
8935 mode
= GET_MODE (rtl
);
8936 rtl
= XEXP (rtl
, 0);
8938 rtl
= targetm
.delegitimize_address (rtl
);
8941 ret
= mem_loc_descriptor (rtl
, mode
, true);
8945 case TRUTH_AND_EXPR
:
8946 case TRUTH_ANDIF_EXPR
:
8951 case TRUTH_XOR_EXPR
:
8957 case TRUTH_ORIF_EXPR
:
8962 case FLOOR_DIV_EXPR
:
8964 case ROUND_DIV_EXPR
:
8965 case TRUNC_DIV_EXPR
:
8973 case FLOOR_MOD_EXPR
:
8975 case ROUND_MOD_EXPR
:
8976 case TRUNC_MOD_EXPR
:
8989 op
= (unsignedp
? DW_OP_shr
: DW_OP_shra
);
8993 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
8994 && host_integerp (TREE_OPERAND (loc
, 1), 0))
8996 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
9000 add_loc_descr (&ret
,
9001 new_loc_descr (DW_OP_plus_uconst
,
9002 tree_low_cst (TREE_OPERAND (loc
, 1),
9012 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9019 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9026 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9033 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9048 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
9049 ret1
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
9050 if (ret
== 0 || ret1
== 0)
9053 add_loc_descr (&ret
, ret1
);
9054 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9057 case TRUTH_NOT_EXPR
:
9071 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
9075 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9081 const enum tree_code code
=
9082 TREE_CODE (loc
) == MIN_EXPR
? GT_EXPR
: LT_EXPR
;
9084 loc
= build (COND_EXPR
, TREE_TYPE (loc
),
9085 build (code
, integer_type_node
,
9086 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
9087 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
9090 /* ... fall through ... */
9094 dw_loc_descr_ref lhs
9095 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
9096 dw_loc_descr_ref rhs
9097 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 2), 0);
9098 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
9100 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
9101 if (ret
== 0 || lhs
== 0 || rhs
== 0)
9104 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
9105 add_loc_descr (&ret
, bra_node
);
9107 add_loc_descr (&ret
, rhs
);
9108 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
9109 add_loc_descr (&ret
, jump_node
);
9111 add_loc_descr (&ret
, lhs
);
9112 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9113 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
9115 /* ??? Need a node to point the skip at. Use a nop. */
9116 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
9117 add_loc_descr (&ret
, tmp
);
9118 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9119 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
9124 /* Leave front-end specific codes as simply unknown. This comes
9125 up, for instance, with the C STMT_EXPR. */
9126 if ((unsigned int) TREE_CODE (loc
)
9127 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
9130 /* Otherwise this is a generic code; we should just lists all of
9131 these explicitly. Aborting means we forgot one. */
9135 /* Show if we can't fill the request for an address. */
9136 if (addressp
&& indirect_p
== 0)
9139 /* If we've got an address and don't want one, dereference. */
9140 if (!addressp
&& indirect_p
> 0)
9142 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
9144 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
9146 else if (size
== DWARF2_ADDR_SIZE
)
9149 op
= DW_OP_deref_size
;
9151 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
9157 /* Given a value, round it up to the lowest multiple of `boundary'
9158 which is not less than the value itself. */
9160 static inline HOST_WIDE_INT
9161 ceiling (HOST_WIDE_INT value
, unsigned int boundary
)
9163 return (((value
+ boundary
- 1) / boundary
) * boundary
);
9166 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9167 pointer to the declared type for the relevant field variable, or return
9168 `integer_type_node' if the given node turns out to be an
9172 field_type (tree decl
)
9176 if (TREE_CODE (decl
) == ERROR_MARK
)
9177 return integer_type_node
;
9179 type
= DECL_BIT_FIELD_TYPE (decl
);
9180 if (type
== NULL_TREE
)
9181 type
= TREE_TYPE (decl
);
9186 /* Given a pointer to a tree node, return the alignment in bits for
9187 it, or else return BITS_PER_WORD if the node actually turns out to
9188 be an ERROR_MARK node. */
9190 static inline unsigned
9191 simple_type_align_in_bits (tree type
)
9193 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
9196 static inline unsigned
9197 simple_decl_align_in_bits (tree decl
)
9199 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
9202 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9203 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9204 or return 0 if we are unable to determine what that offset is, either
9205 because the argument turns out to be a pointer to an ERROR_MARK node, or
9206 because the offset is actually variable. (We can't handle the latter case
9209 static HOST_WIDE_INT
9210 field_byte_offset (tree decl
)
9212 unsigned int type_align_in_bits
;
9213 unsigned int decl_align_in_bits
;
9214 unsigned HOST_WIDE_INT type_size_in_bits
;
9215 HOST_WIDE_INT object_offset_in_bits
;
9217 tree field_size_tree
;
9218 HOST_WIDE_INT bitpos_int
;
9219 HOST_WIDE_INT deepest_bitpos
;
9220 unsigned HOST_WIDE_INT field_size_in_bits
;
9222 if (TREE_CODE (decl
) == ERROR_MARK
)
9224 else if (TREE_CODE (decl
) != FIELD_DECL
)
9227 type
= field_type (decl
);
9228 field_size_tree
= DECL_SIZE (decl
);
9230 /* The size could be unspecified if there was an error, or for
9231 a flexible array member. */
9232 if (! field_size_tree
)
9233 field_size_tree
= bitsize_zero_node
;
9235 /* We cannot yet cope with fields whose positions are variable, so
9236 for now, when we see such things, we simply return 0. Someday, we may
9237 be able to handle such cases, but it will be damn difficult. */
9238 if (! host_integerp (bit_position (decl
), 0))
9241 bitpos_int
= int_bit_position (decl
);
9243 /* If we don't know the size of the field, pretend it's a full word. */
9244 if (host_integerp (field_size_tree
, 1))
9245 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
9247 field_size_in_bits
= BITS_PER_WORD
;
9249 type_size_in_bits
= simple_type_size_in_bits (type
);
9250 type_align_in_bits
= simple_type_align_in_bits (type
);
9251 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
9253 /* The GCC front-end doesn't make any attempt to keep track of the starting
9254 bit offset (relative to the start of the containing structure type) of the
9255 hypothetical "containing object" for a bit-field. Thus, when computing
9256 the byte offset value for the start of the "containing object" of a
9257 bit-field, we must deduce this information on our own. This can be rather
9258 tricky to do in some cases. For example, handling the following structure
9259 type definition when compiling for an i386/i486 target (which only aligns
9260 long long's to 32-bit boundaries) can be very tricky:
9262 struct S { int field1; long long field2:31; };
9264 Fortunately, there is a simple rule-of-thumb which can be used in such
9265 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9266 structure shown above. It decides to do this based upon one simple rule
9267 for bit-field allocation. GCC allocates each "containing object" for each
9268 bit-field at the first (i.e. lowest addressed) legitimate alignment
9269 boundary (based upon the required minimum alignment for the declared type
9270 of the field) which it can possibly use, subject to the condition that
9271 there is still enough available space remaining in the containing object
9272 (when allocated at the selected point) to fully accommodate all of the
9273 bits of the bit-field itself.
9275 This simple rule makes it obvious why GCC allocates 8 bytes for each
9276 object of the structure type shown above. When looking for a place to
9277 allocate the "containing object" for `field2', the compiler simply tries
9278 to allocate a 64-bit "containing object" at each successive 32-bit
9279 boundary (starting at zero) until it finds a place to allocate that 64-
9280 bit field such that at least 31 contiguous (and previously unallocated)
9281 bits remain within that selected 64 bit field. (As it turns out, for the
9282 example above, the compiler finds it is OK to allocate the "containing
9283 object" 64-bit field at bit-offset zero within the structure type.)
9285 Here we attempt to work backwards from the limited set of facts we're
9286 given, and we try to deduce from those facts, where GCC must have believed
9287 that the containing object started (within the structure type). The value
9288 we deduce is then used (by the callers of this routine) to generate
9289 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9290 and, in the case of DW_AT_location, regular fields as well). */
9292 /* Figure out the bit-distance from the start of the structure to the
9293 "deepest" bit of the bit-field. */
9294 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
9296 /* This is the tricky part. Use some fancy footwork to deduce where the
9297 lowest addressed bit of the containing object must be. */
9298 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9300 /* Round up to type_align by default. This works best for bitfields. */
9301 object_offset_in_bits
+= type_align_in_bits
- 1;
9302 object_offset_in_bits
/= type_align_in_bits
;
9303 object_offset_in_bits
*= type_align_in_bits
;
9305 if (object_offset_in_bits
> bitpos_int
)
9307 /* Sigh, the decl must be packed. */
9308 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9310 /* Round up to decl_align instead. */
9311 object_offset_in_bits
+= decl_align_in_bits
- 1;
9312 object_offset_in_bits
/= decl_align_in_bits
;
9313 object_offset_in_bits
*= decl_align_in_bits
;
9316 return object_offset_in_bits
/ BITS_PER_UNIT
;
9319 /* The following routines define various Dwarf attributes and any data
9320 associated with them. */
9322 /* Add a location description attribute value to a DIE.
9324 This emits location attributes suitable for whole variables and
9325 whole parameters. Note that the location attributes for struct fields are
9326 generated by the routine `data_member_location_attribute' below. */
9329 add_AT_location_description (dw_die_ref die
, enum dwarf_attribute attr_kind
,
9330 dw_loc_descr_ref descr
)
9333 add_AT_loc (die
, attr_kind
, descr
);
9336 /* Attach the specialized form of location attribute used for data members of
9337 struct and union types. In the special case of a FIELD_DECL node which
9338 represents a bit-field, the "offset" part of this special location
9339 descriptor must indicate the distance in bytes from the lowest-addressed
9340 byte of the containing struct or union type to the lowest-addressed byte of
9341 the "containing object" for the bit-field. (See the `field_byte_offset'
9344 For any given bit-field, the "containing object" is a hypothetical object
9345 (of some integral or enum type) within which the given bit-field lives. The
9346 type of this hypothetical "containing object" is always the same as the
9347 declared type of the individual bit-field itself (for GCC anyway... the
9348 DWARF spec doesn't actually mandate this). Note that it is the size (in
9349 bytes) of the hypothetical "containing object" which will be given in the
9350 DW_AT_byte_size attribute for this bit-field. (See the
9351 `byte_size_attribute' function below.) It is also used when calculating the
9352 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9356 add_data_member_location_attribute (dw_die_ref die
, tree decl
)
9358 HOST_WIDE_INT offset
;
9359 dw_loc_descr_ref loc_descr
= 0;
9361 if (TREE_CODE (decl
) == TREE_VEC
)
9363 /* We're working on the TAG_inheritance for a base class. */
9364 if (TREE_VIA_VIRTUAL (decl
) && is_cxx ())
9366 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9367 aren't at a fixed offset from all (sub)objects of the same
9368 type. We need to extract the appropriate offset from our
9369 vtable. The following dwarf expression means
9371 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9373 This is specific to the V3 ABI, of course. */
9375 dw_loc_descr_ref tmp
;
9377 /* Make a copy of the object address. */
9378 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
9379 add_loc_descr (&loc_descr
, tmp
);
9381 /* Extract the vtable address. */
9382 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9383 add_loc_descr (&loc_descr
, tmp
);
9385 /* Calculate the address of the offset. */
9386 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
9390 tmp
= int_loc_descriptor (-offset
);
9391 add_loc_descr (&loc_descr
, tmp
);
9392 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
9393 add_loc_descr (&loc_descr
, tmp
);
9395 /* Extract the offset. */
9396 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9397 add_loc_descr (&loc_descr
, tmp
);
9399 /* Add it to the object address. */
9400 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
9401 add_loc_descr (&loc_descr
, tmp
);
9404 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
9407 offset
= field_byte_offset (decl
);
9411 enum dwarf_location_atom op
;
9413 /* The DWARF2 standard says that we should assume that the structure
9414 address is already on the stack, so we can specify a structure field
9415 address by using DW_OP_plus_uconst. */
9417 #ifdef MIPS_DEBUGGING_INFO
9418 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9419 operator correctly. It works only if we leave the offset on the
9423 op
= DW_OP_plus_uconst
;
9426 loc_descr
= new_loc_descr (op
, offset
, 0);
9429 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
9432 /* Writes integer values to dw_vec_const array. */
9435 insert_int (HOST_WIDE_INT val
, unsigned int size
, unsigned char *dest
)
9439 *dest
++ = val
& 0xff;
9445 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9447 static HOST_WIDE_INT
9448 extract_int (const unsigned char *src
, unsigned int size
)
9450 HOST_WIDE_INT val
= 0;
9456 val
|= *--src
& 0xff;
9462 /* Writes floating point values to dw_vec_const array. */
9465 insert_float (rtx rtl
, unsigned char *array
)
9471 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
9472 real_to_target (val
, &rv
, GET_MODE (rtl
));
9474 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9475 for (i
= 0; i
< GET_MODE_SIZE (GET_MODE (rtl
)) / 4; i
++)
9477 insert_int (val
[i
], 4, array
);
9482 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9483 does not have a "location" either in memory or in a register. These
9484 things can arise in GNU C when a constant is passed as an actual parameter
9485 to an inlined function. They can also arise in C++ where declared
9486 constants do not necessarily get memory "homes". */
9489 add_const_value_attribute (dw_die_ref die
, rtx rtl
)
9491 switch (GET_CODE (rtl
))
9495 HOST_WIDE_INT val
= INTVAL (rtl
);
9498 add_AT_int (die
, DW_AT_const_value
, val
);
9500 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned HOST_WIDE_INT
) val
);
9505 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9506 floating-point constant. A CONST_DOUBLE is used whenever the
9507 constant requires more than one word in order to be adequately
9508 represented. We output CONST_DOUBLEs as blocks. */
9510 enum machine_mode mode
= GET_MODE (rtl
);
9512 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
9514 unsigned int length
= GET_MODE_SIZE (mode
);
9515 unsigned char *array
= ggc_alloc (length
);
9517 insert_float (rtl
, array
);
9518 add_AT_vec (die
, DW_AT_const_value
, length
/ 4, 4, array
);
9522 /* ??? We really should be using HOST_WIDE_INT throughout. */
9523 if (HOST_BITS_PER_LONG
!= HOST_BITS_PER_WIDE_INT
)
9526 add_AT_long_long (die
, DW_AT_const_value
,
9527 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
9534 enum machine_mode mode
= GET_MODE (rtl
);
9535 unsigned int elt_size
= GET_MODE_UNIT_SIZE (mode
);
9536 unsigned int length
= CONST_VECTOR_NUNITS (rtl
);
9537 unsigned char *array
= ggc_alloc (length
* elt_size
);
9541 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
)
9543 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
9545 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
9546 HOST_WIDE_INT lo
, hi
;
9547 if (GET_CODE (elt
) == CONST_INT
)
9552 else if (GET_CODE (elt
) == CONST_DOUBLE
)
9554 lo
= CONST_DOUBLE_LOW (elt
);
9555 hi
= CONST_DOUBLE_HIGH (elt
);
9560 if (elt_size
<= sizeof (HOST_WIDE_INT
))
9561 insert_int (lo
, elt_size
, p
);
9562 else if (elt_size
== 2 * sizeof (HOST_WIDE_INT
))
9564 unsigned char *p0
= p
;
9565 unsigned char *p1
= p
+ sizeof (HOST_WIDE_INT
);
9567 if (WORDS_BIG_ENDIAN
)
9572 insert_int (lo
, sizeof (HOST_WIDE_INT
), p0
);
9573 insert_int (hi
, sizeof (HOST_WIDE_INT
), p1
);
9579 else if (GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
)
9581 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
9583 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
9584 insert_float (elt
, p
);
9590 add_AT_vec (die
, DW_AT_const_value
, length
, elt_size
, array
);
9595 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
9601 add_AT_addr (die
, DW_AT_const_value
, rtl
);
9602 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
9606 /* In cases where an inlined instance of an inline function is passed
9607 the address of an `auto' variable (which is local to the caller) we
9608 can get a situation where the DECL_RTL of the artificial local
9609 variable (for the inlining) which acts as a stand-in for the
9610 corresponding formal parameter (of the inline function) will look
9611 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9612 exactly a compile-time constant expression, but it isn't the address
9613 of the (artificial) local variable either. Rather, it represents the
9614 *value* which the artificial local variable always has during its
9615 lifetime. We currently have no way to represent such quasi-constant
9616 values in Dwarf, so for now we just punt and generate nothing. */
9620 /* No other kinds of rtx should be possible here. */
9627 rtl_for_decl_location (tree decl
)
9631 /* Here we have to decide where we are going to say the parameter "lives"
9632 (as far as the debugger is concerned). We only have a couple of
9633 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9635 DECL_RTL normally indicates where the parameter lives during most of the
9636 activation of the function. If optimization is enabled however, this
9637 could be either NULL or else a pseudo-reg. Both of those cases indicate
9638 that the parameter doesn't really live anywhere (as far as the code
9639 generation parts of GCC are concerned) during most of the function's
9640 activation. That will happen (for example) if the parameter is never
9641 referenced within the function.
9643 We could just generate a location descriptor here for all non-NULL
9644 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9645 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9646 where DECL_RTL is NULL or is a pseudo-reg.
9648 Note however that we can only get away with using DECL_INCOMING_RTL as
9649 a backup substitute for DECL_RTL in certain limited cases. In cases
9650 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9651 we can be sure that the parameter was passed using the same type as it is
9652 declared to have within the function, and that its DECL_INCOMING_RTL
9653 points us to a place where a value of that type is passed.
9655 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9656 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9657 because in these cases DECL_INCOMING_RTL points us to a value of some
9658 type which is *different* from the type of the parameter itself. Thus,
9659 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9660 such cases, the debugger would end up (for example) trying to fetch a
9661 `float' from a place which actually contains the first part of a
9662 `double'. That would lead to really incorrect and confusing
9663 output at debug-time.
9665 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9666 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9667 are a couple of exceptions however. On little-endian machines we can
9668 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9669 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9670 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9671 when (on a little-endian machine) a non-prototyped function has a
9672 parameter declared to be of type `short' or `char'. In such cases,
9673 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9674 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9675 passed `int' value. If the debugger then uses that address to fetch
9676 a `short' or a `char' (on a little-endian machine) the result will be
9677 the correct data, so we allow for such exceptional cases below.
9679 Note that our goal here is to describe the place where the given formal
9680 parameter lives during most of the function's activation (i.e. between the
9681 end of the prologue and the start of the epilogue). We'll do that as best
9682 as we can. Note however that if the given formal parameter is modified
9683 sometime during the execution of the function, then a stack backtrace (at
9684 debug-time) will show the function as having been called with the *new*
9685 value rather than the value which was originally passed in. This happens
9686 rarely enough that it is not a major problem, but it *is* a problem, and
9689 A future version of dwarf2out.c may generate two additional attributes for
9690 any given DW_TAG_formal_parameter DIE which will describe the "passed
9691 type" and the "passed location" for the given formal parameter in addition
9692 to the attributes we now generate to indicate the "declared type" and the
9693 "active location" for each parameter. This additional set of attributes
9694 could be used by debuggers for stack backtraces. Separately, note that
9695 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9696 This happens (for example) for inlined-instances of inline function formal
9697 parameters which are never referenced. This really shouldn't be
9698 happening. All PARM_DECL nodes should get valid non-NULL
9699 DECL_INCOMING_RTL values. FIXME. */
9701 /* Use DECL_RTL as the "location" unless we find something better. */
9702 rtl
= DECL_RTL_IF_SET (decl
);
9704 /* When generating abstract instances, ignore everything except
9705 constants, symbols living in memory, and symbols living in
9707 if (! reload_completed
)
9710 && (CONSTANT_P (rtl
)
9711 || (GET_CODE (rtl
) == MEM
9712 && CONSTANT_P (XEXP (rtl
, 0)))
9713 || (GET_CODE (rtl
) == REG
9714 && TREE_CODE (decl
) == VAR_DECL
9715 && TREE_STATIC (decl
))))
9717 rtl
= targetm
.delegitimize_address (rtl
);
9722 else if (TREE_CODE (decl
) == PARM_DECL
)
9724 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
9726 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
9727 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
9729 /* This decl represents a formal parameter which was optimized out.
9730 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9731 all cases where (rtl == NULL_RTX) just below. */
9732 if (declared_type
== passed_type
)
9733 rtl
= DECL_INCOMING_RTL (decl
);
9734 else if (! BYTES_BIG_ENDIAN
9735 && TREE_CODE (declared_type
) == INTEGER_TYPE
9736 && (GET_MODE_SIZE (TYPE_MODE (declared_type
))
9737 <= GET_MODE_SIZE (TYPE_MODE (passed_type
))))
9738 rtl
= DECL_INCOMING_RTL (decl
);
9741 /* If the parm was passed in registers, but lives on the stack, then
9742 make a big endian correction if the mode of the type of the
9743 parameter is not the same as the mode of the rtl. */
9744 /* ??? This is the same series of checks that are made in dbxout.c before
9745 we reach the big endian correction code there. It isn't clear if all
9746 of these checks are necessary here, but keeping them all is the safe
9748 else if (GET_CODE (rtl
) == MEM
9749 && XEXP (rtl
, 0) != const0_rtx
9750 && ! CONSTANT_P (XEXP (rtl
, 0))
9751 /* Not passed in memory. */
9752 && GET_CODE (DECL_INCOMING_RTL (decl
)) != MEM
9753 /* Not passed by invisible reference. */
9754 && (GET_CODE (XEXP (rtl
, 0)) != REG
9755 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
9756 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
9757 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9758 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
9761 /* Big endian correction check. */
9763 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
9764 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
9767 int offset
= (UNITS_PER_WORD
9768 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
9770 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
9771 plus_constant (XEXP (rtl
, 0), offset
));
9774 else if (TREE_CODE (decl
) == VAR_DECL
9776 && GET_CODE (rtl
) == MEM
9777 && GET_MODE (rtl
) != TYPE_MODE (TREE_TYPE (decl
))
9778 && BYTES_BIG_ENDIAN
)
9780 int rsize
= GET_MODE_SIZE (GET_MODE (rtl
));
9781 int dsize
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)));
9783 /* If a variable is declared "register" yet is smaller than
9784 a register, then if we store the variable to memory, it
9785 looks like we're storing a register-sized value, when in
9786 fact we are not. We need to adjust the offset of the
9787 storage location to reflect the actual value's bytes,
9788 else gdb will not be able to display it. */
9790 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
9791 plus_constant (XEXP (rtl
, 0), rsize
-dsize
));
9794 if (rtl
!= NULL_RTX
)
9796 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
9797 #ifdef LEAF_REG_REMAP
9798 if (current_function_uses_only_leaf_regs
)
9799 leaf_renumber_regs_insn (rtl
);
9803 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9804 and will have been substituted directly into all expressions that use it.
9805 C does not have such a concept, but C++ and other languages do. */
9806 else if (TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
9808 /* If a variable is initialized with a string constant without embedded
9809 zeros, build CONST_STRING. */
9810 if (TREE_CODE (DECL_INITIAL (decl
)) == STRING_CST
9811 && TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
)
9813 tree arrtype
= TREE_TYPE (decl
);
9814 tree enttype
= TREE_TYPE (arrtype
);
9815 tree domain
= TYPE_DOMAIN (arrtype
);
9816 tree init
= DECL_INITIAL (decl
);
9817 enum machine_mode mode
= TYPE_MODE (enttype
);
9819 if (GET_MODE_CLASS (mode
) == MODE_INT
&& GET_MODE_SIZE (mode
) == 1
9821 && integer_zerop (TYPE_MIN_VALUE (domain
))
9822 && compare_tree_int (TYPE_MAX_VALUE (domain
),
9823 TREE_STRING_LENGTH (init
) - 1) == 0
9824 && ((size_t) TREE_STRING_LENGTH (init
)
9825 == strlen (TREE_STRING_POINTER (init
)) + 1))
9826 rtl
= gen_rtx_CONST_STRING (VOIDmode
, TREE_STRING_POINTER (init
));
9828 /* If the initializer is something that we know will expand into an
9829 immediate RTL constant, expand it now. Expanding anything else
9830 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9831 else if (TREE_CODE (DECL_INITIAL (decl
)) == INTEGER_CST
9832 || TREE_CODE (DECL_INITIAL (decl
)) == REAL_CST
)
9834 rtl
= expand_expr (DECL_INITIAL (decl
), NULL_RTX
, VOIDmode
,
9835 EXPAND_INITIALIZER
);
9836 /* If expand_expr returns a MEM, it wasn't immediate. */
9837 if (rtl
&& GET_CODE (rtl
) == MEM
)
9843 rtl
= targetm
.delegitimize_address (rtl
);
9845 /* If we don't look past the constant pool, we risk emitting a
9846 reference to a constant pool entry that isn't referenced from
9847 code, and thus is not emitted. */
9849 rtl
= avoid_constant_pool_reference (rtl
);
9854 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9855 data attribute for a variable or a parameter. We generate the
9856 DW_AT_const_value attribute only in those cases where the given variable
9857 or parameter does not have a true "location" either in memory or in a
9858 register. This can happen (for example) when a constant is passed as an
9859 actual argument in a call to an inline function. (It's possible that
9860 these things can crop up in other ways also.) Note that one type of
9861 constant value which can be passed into an inlined function is a constant
9862 pointer. This can happen for example if an actual argument in an inlined
9863 function call evaluates to a compile-time constant address. */
9866 add_location_or_const_value_attribute (dw_die_ref die
, tree decl
,
9867 enum dwarf_attribute attr
)
9870 dw_loc_descr_ref descr
;
9871 var_loc_list
*loc_list
;
9873 if (TREE_CODE (decl
) == ERROR_MARK
)
9875 else if (TREE_CODE (decl
) != VAR_DECL
&& TREE_CODE (decl
) != PARM_DECL
9876 && TREE_CODE (decl
) != RESULT_DECL
)
9879 /* See if we possibly have multiple locations for this variable. */
9880 loc_list
= lookup_decl_loc (decl
);
9882 /* If it truly has multiple locations, the first and last node will
9884 if (loc_list
&& loc_list
->first
!= loc_list
->last
)
9886 const char *secname
;
9887 const char *endname
;
9888 dw_loc_list_ref list
;
9890 struct var_loc_node
*node
;
9892 /* We need to figure out what section we should use as the base
9893 for the address ranges where a given location is valid.
9894 1. If this particular DECL has a section associated with it,
9896 2. If this function has a section associated with it, use
9898 3. Otherwise, use the text section.
9899 XXX: If you split a variable across multiple sections, this
9902 if (DECL_SECTION_NAME (decl
))
9904 tree sectree
= DECL_SECTION_NAME (decl
);
9905 secname
= TREE_STRING_POINTER (sectree
);
9907 else if (current_function_decl
9908 && DECL_SECTION_NAME (current_function_decl
))
9910 tree sectree
= DECL_SECTION_NAME (current_function_decl
);
9911 secname
= TREE_STRING_POINTER (sectree
);
9914 secname
= text_section_label
;
9916 /* Now that we know what section we are using for a base,
9917 actually construct the list of locations.
9918 The first location information is what is passed to the
9919 function that creates the location list, and the remaining
9920 locations just get added on to that list.
9921 Note that we only know the start address for a location
9922 (IE location changes), so to build the range, we use
9923 the range [current location start, next location start].
9924 This means we have to special case the last node, and generate
9925 a range of [last location start, end of function label]. */
9927 node
= loc_list
->first
;
9928 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
9929 list
= new_loc_list (loc_descriptor (varloc
, attr
!= DW_AT_frame_base
),
9930 node
->label
, node
->next
->label
, secname
, 1);
9933 for (; node
->next
; node
= node
->next
)
9934 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
9936 /* The variable has a location between NODE->LABEL and
9937 NODE->NEXT->LABEL. */
9938 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
9939 add_loc_descr_to_loc_list (&list
,
9940 loc_descriptor (varloc
,
9941 attr
!= DW_AT_frame_base
),
9942 node
->label
, node
->next
->label
, secname
);
9945 /* If the variable has a location at the last label
9946 it keeps its location until the end of function. */
9947 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
9949 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
9951 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
9952 if (!current_function_decl
)
9953 endname
= text_end_label
;
9956 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
9957 current_function_funcdef_no
);
9958 endname
= ggc_strdup (label_id
);
9960 add_loc_descr_to_loc_list (&list
,
9961 loc_descriptor (varloc
,
9962 attr
!= DW_AT_frame_base
),
9963 node
->label
, endname
, secname
);
9966 /* Finally, add the location list to the DIE, and we are done. */
9967 add_AT_loc_list (die
, attr
, list
);
9971 rtl
= rtl_for_decl_location (decl
);
9972 if (rtl
== NULL_RTX
)
9975 switch (GET_CODE (rtl
))
9978 /* The address of a variable that was optimized away;
9979 don't emit anything. */
9990 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9991 add_const_value_attribute (die
, rtl
);
9995 if (TREE_CODE (decl
) == VAR_DECL
&& DECL_THREAD_LOCAL (decl
))
9997 /* Need loc_descriptor_from_tree since that's where we know
9998 how to handle TLS variables. Want the object's address
9999 since the top-level DW_AT_location assumes such. See
10000 the confusion in loc_descriptor for reference. */
10001 descr
= loc_descriptor_from_tree (decl
, 1);
10008 descr
= loc_descriptor (rtl
, true);
10010 add_AT_location_description (die
, attr
, descr
);
10015 rtvec par_elems
= XVEC (rtl
, 0);
10016 int num_elem
= GET_NUM_ELEM (par_elems
);
10017 enum machine_mode mode
;
10020 /* Create the first one, so we have something to add to. */
10021 descr
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0), true);
10022 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
10023 add_loc_descr (&descr
,
10024 new_loc_descr (DW_OP_piece
, GET_MODE_SIZE (mode
), 0));
10025 for (i
= 1; i
< num_elem
; i
++)
10027 dw_loc_descr_ref temp
;
10029 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0), true);
10030 add_loc_descr (&descr
, temp
);
10031 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
10032 add_loc_descr (&descr
,
10033 new_loc_descr (DW_OP_piece
,
10034 GET_MODE_SIZE (mode
), 0));
10037 add_AT_location_description (die
, DW_AT_location
, descr
);
10045 /* If we don't have a copy of this variable in memory for some reason (such
10046 as a C++ member constant that doesn't have an out-of-line definition),
10047 we should tell the debugger about the constant value. */
10050 tree_add_const_value_attribute (dw_die_ref var_die
, tree decl
)
10052 tree init
= DECL_INITIAL (decl
);
10053 tree type
= TREE_TYPE (decl
);
10055 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
10056 && initializer_constant_valid_p (init
, type
) == null_pointer_node
)
10061 switch (TREE_CODE (type
))
10064 if (host_integerp (init
, 0))
10065 add_AT_unsigned (var_die
, DW_AT_const_value
,
10066 tree_low_cst (init
, 0));
10068 add_AT_long_long (var_die
, DW_AT_const_value
,
10069 TREE_INT_CST_HIGH (init
),
10070 TREE_INT_CST_LOW (init
));
10077 /* Generate a DW_AT_name attribute given some string value to be included as
10078 the value of the attribute. */
10081 add_name_attribute (dw_die_ref die
, const char *name_string
)
10083 if (name_string
!= NULL
&& *name_string
!= 0)
10085 if (demangle_name_func
)
10086 name_string
= (*demangle_name_func
) (name_string
);
10088 add_AT_string (die
, DW_AT_name
, name_string
);
10092 /* Generate a DW_AT_comp_dir attribute for DIE. */
10095 add_comp_dir_attribute (dw_die_ref die
)
10097 const char *wd
= get_src_pwd ();
10099 add_AT_string (die
, DW_AT_comp_dir
, wd
);
10102 /* Given a tree node describing an array bound (either lower or upper) output
10103 a representation for that bound. */
10106 add_bound_info (dw_die_ref subrange_die
, enum dwarf_attribute bound_attr
, tree bound
)
10108 switch (TREE_CODE (bound
))
10113 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10115 if (! host_integerp (bound
, 0)
10116 || (bound_attr
== DW_AT_lower_bound
10117 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
10118 || (is_fortran () && integer_onep (bound
)))))
10119 /* Use the default. */
10122 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
10127 case NON_LVALUE_EXPR
:
10128 case VIEW_CONVERT_EXPR
:
10129 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
10133 /* If optimization is turned on, the SAVE_EXPRs that describe how to
10134 access the upper bound values may be bogus. If they refer to a
10135 register, they may only describe how to get at these values at the
10136 points in the generated code right after they have just been
10137 computed. Worse yet, in the typical case, the upper bound values
10138 will not even *be* computed in the optimized code (though the
10139 number of elements will), so these SAVE_EXPRs are entirely
10140 bogus. In order to compensate for this fact, we check here to see
10141 if optimization is enabled, and if so, we don't add an attribute
10142 for the (unknown and unknowable) upper bound. This should not
10143 cause too much trouble for existing (stupid?) debuggers because
10144 they have to deal with empty upper bounds location descriptions
10145 anyway in order to be able to deal with incomplete array types.
10146 Of course an intelligent debugger (GDB?) should be able to
10147 comprehend that a missing upper bound specification in an array
10148 type used for a storage class `auto' local array variable
10149 indicates that the upper bound is both unknown (at compile- time)
10150 and unknowable (at run-time) due to optimization.
10152 We assume that a MEM rtx is safe because gcc wouldn't put the
10153 value there unless it was going to be used repeatedly in the
10154 function, i.e. for cleanups. */
10155 if (SAVE_EXPR_RTL (bound
)
10156 && (! optimize
|| GET_CODE (SAVE_EXPR_RTL (bound
)) == MEM
))
10158 dw_die_ref ctx
= lookup_decl_die (current_function_decl
);
10159 dw_die_ref decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
10160 rtx loc
= SAVE_EXPR_RTL (bound
);
10162 /* If the RTL for the SAVE_EXPR is memory, handle the case where
10163 it references an outer function's frame. */
10164 if (GET_CODE (loc
) == MEM
)
10166 rtx new_addr
= fix_lexical_addr (XEXP (loc
, 0), bound
);
10168 if (XEXP (loc
, 0) != new_addr
)
10169 loc
= gen_rtx_MEM (GET_MODE (loc
), new_addr
);
10172 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
10173 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
10174 add_AT_location_description (decl_die
, DW_AT_location
,
10175 loc_descriptor (loc
, true));
10176 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10179 /* Else leave out the attribute. */
10186 dw_die_ref decl_die
= lookup_decl_die (bound
);
10188 /* ??? Can this happen, or should the variable have been bound
10189 first? Probably it can, since I imagine that we try to create
10190 the types of parameters in the order in which they exist in
10191 the list, and won't have created a forward reference to a
10192 later parameter. */
10193 if (decl_die
!= NULL
)
10194 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10200 /* Otherwise try to create a stack operation procedure to
10201 evaluate the value of the array bound. */
10203 dw_die_ref ctx
, decl_die
;
10204 dw_loc_descr_ref loc
;
10206 loc
= loc_descriptor_from_tree (bound
, 0);
10210 if (current_function_decl
== 0)
10211 ctx
= comp_unit_die
;
10213 ctx
= lookup_decl_die (current_function_decl
);
10215 /* If we weren't able to find a context, it's most likely the case
10216 that we are processing the return type of the function. So
10217 make a SAVE_EXPR to point to it and have the limbo DIE code
10218 find the proper die. The save_expr function doesn't always
10219 make a SAVE_EXPR, so do it ourselves. */
10221 bound
= build (SAVE_EXPR
, TREE_TYPE (bound
), bound
,
10222 current_function_decl
, NULL_TREE
);
10224 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
10225 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
10226 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
10227 add_AT_loc (decl_die
, DW_AT_location
, loc
);
10229 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10235 /* Note that the block of subscript information for an array type also
10236 includes information about the element type of type given array type. */
10239 add_subscript_info (dw_die_ref type_die
, tree type
)
10241 #ifndef MIPS_DEBUGGING_INFO
10242 unsigned dimension_number
;
10245 dw_die_ref subrange_die
;
10247 /* The GNU compilers represent multidimensional array types as sequences of
10248 one dimensional array types whose element types are themselves array
10249 types. Here we squish that down, so that each multidimensional array
10250 type gets only one array_type DIE in the Dwarf debugging info. The draft
10251 Dwarf specification say that we are allowed to do this kind of
10252 compression in C (because there is no difference between an array or
10253 arrays and a multidimensional array in C) but for other source languages
10254 (e.g. Ada) we probably shouldn't do this. */
10256 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10257 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10258 We work around this by disabling this feature. See also
10259 gen_array_type_die. */
10260 #ifndef MIPS_DEBUGGING_INFO
10261 for (dimension_number
= 0;
10262 TREE_CODE (type
) == ARRAY_TYPE
;
10263 type
= TREE_TYPE (type
), dimension_number
++)
10266 tree domain
= TYPE_DOMAIN (type
);
10268 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10269 and (in GNU C only) variable bounds. Handle all three forms
10271 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
10274 /* We have an array type with specified bounds. */
10275 lower
= TYPE_MIN_VALUE (domain
);
10276 upper
= TYPE_MAX_VALUE (domain
);
10278 /* Define the index type. */
10279 if (TREE_TYPE (domain
))
10281 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10282 TREE_TYPE field. We can't emit debug info for this
10283 because it is an unnamed integral type. */
10284 if (TREE_CODE (domain
) == INTEGER_TYPE
10285 && TYPE_NAME (domain
) == NULL_TREE
10286 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
10287 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
10290 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
10294 /* ??? If upper is NULL, the array has unspecified length,
10295 but it does have a lower bound. This happens with Fortran
10297 Since the debugger is definitely going to need to know N
10298 to produce useful results, go ahead and output the lower
10299 bound solo, and hope the debugger can cope. */
10301 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
10303 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
10306 /* Otherwise we have an array type with an unspecified length. The
10307 DWARF-2 spec does not say how to handle this; let's just leave out the
10313 add_byte_size_attribute (dw_die_ref die
, tree tree_node
)
10317 switch (TREE_CODE (tree_node
))
10322 case ENUMERAL_TYPE
:
10325 case QUAL_UNION_TYPE
:
10326 size
= int_size_in_bytes (tree_node
);
10329 /* For a data member of a struct or union, the DW_AT_byte_size is
10330 generally given as the number of bytes normally allocated for an
10331 object of the *declared* type of the member itself. This is true
10332 even for bit-fields. */
10333 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
10339 /* Note that `size' might be -1 when we get to this point. If it is, that
10340 indicates that the byte size of the entity in question is variable. We
10341 have no good way of expressing this fact in Dwarf at the present time,
10342 so just let the -1 pass on through. */
10343 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
10346 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10347 which specifies the distance in bits from the highest order bit of the
10348 "containing object" for the bit-field to the highest order bit of the
10351 For any given bit-field, the "containing object" is a hypothetical object
10352 (of some integral or enum type) within which the given bit-field lives. The
10353 type of this hypothetical "containing object" is always the same as the
10354 declared type of the individual bit-field itself. The determination of the
10355 exact location of the "containing object" for a bit-field is rather
10356 complicated. It's handled by the `field_byte_offset' function (above).
10358 Note that it is the size (in bytes) of the hypothetical "containing object"
10359 which will be given in the DW_AT_byte_size attribute for this bit-field.
10360 (See `byte_size_attribute' above). */
10363 add_bit_offset_attribute (dw_die_ref die
, tree decl
)
10365 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
10366 tree type
= DECL_BIT_FIELD_TYPE (decl
);
10367 HOST_WIDE_INT bitpos_int
;
10368 HOST_WIDE_INT highest_order_object_bit_offset
;
10369 HOST_WIDE_INT highest_order_field_bit_offset
;
10370 HOST_WIDE_INT
unsigned bit_offset
;
10372 /* Must be a field and a bit field. */
10374 || TREE_CODE (decl
) != FIELD_DECL
)
10377 /* We can't yet handle bit-fields whose offsets are variable, so if we
10378 encounter such things, just return without generating any attribute
10379 whatsoever. Likewise for variable or too large size. */
10380 if (! host_integerp (bit_position (decl
), 0)
10381 || ! host_integerp (DECL_SIZE (decl
), 1))
10384 bitpos_int
= int_bit_position (decl
);
10386 /* Note that the bit offset is always the distance (in bits) from the
10387 highest-order bit of the "containing object" to the highest-order bit of
10388 the bit-field itself. Since the "high-order end" of any object or field
10389 is different on big-endian and little-endian machines, the computation
10390 below must take account of these differences. */
10391 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
10392 highest_order_field_bit_offset
= bitpos_int
;
10394 if (! BYTES_BIG_ENDIAN
)
10396 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
10397 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
10401 = (! BYTES_BIG_ENDIAN
10402 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
10403 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
10405 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
10408 /* For a FIELD_DECL node which represents a bit field, output an attribute
10409 which specifies the length in bits of the given field. */
10412 add_bit_size_attribute (dw_die_ref die
, tree decl
)
10414 /* Must be a field and a bit field. */
10415 if (TREE_CODE (decl
) != FIELD_DECL
10416 || ! DECL_BIT_FIELD_TYPE (decl
))
10419 if (host_integerp (DECL_SIZE (decl
), 1))
10420 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
10423 /* If the compiled language is ANSI C, then add a 'prototyped'
10424 attribute, if arg types are given for the parameters of a function. */
10427 add_prototyped_attribute (dw_die_ref die
, tree func_type
)
10429 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
10430 && TYPE_ARG_TYPES (func_type
) != NULL
)
10431 add_AT_flag (die
, DW_AT_prototyped
, 1);
10434 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10435 by looking in either the type declaration or object declaration
10439 add_abstract_origin_attribute (dw_die_ref die
, tree origin
)
10441 dw_die_ref origin_die
= NULL
;
10443 if (TREE_CODE (origin
) != FUNCTION_DECL
)
10445 /* We may have gotten separated from the block for the inlined
10446 function, if we're in an exception handler or some such; make
10447 sure that the abstract function has been written out.
10449 Doing this for nested functions is wrong, however; functions are
10450 distinct units, and our context might not even be inline. */
10454 fn
= TYPE_STUB_DECL (fn
);
10456 fn
= decl_function_context (fn
);
10458 dwarf2out_abstract_function (fn
);
10461 if (DECL_P (origin
))
10462 origin_die
= lookup_decl_die (origin
);
10463 else if (TYPE_P (origin
))
10464 origin_die
= lookup_type_die (origin
);
10466 if (origin_die
== NULL
)
10469 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
10472 /* We do not currently support the pure_virtual attribute. */
10475 add_pure_or_virtual_attribute (dw_die_ref die
, tree func_decl
)
10477 if (DECL_VINDEX (func_decl
))
10479 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
10481 if (host_integerp (DECL_VINDEX (func_decl
), 0))
10482 add_AT_loc (die
, DW_AT_vtable_elem_location
,
10483 new_loc_descr (DW_OP_constu
,
10484 tree_low_cst (DECL_VINDEX (func_decl
), 0),
10487 /* GNU extension: Record what type this method came from originally. */
10488 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10489 add_AT_die_ref (die
, DW_AT_containing_type
,
10490 lookup_type_die (DECL_CONTEXT (func_decl
)));
10494 /* Add source coordinate attributes for the given decl. */
10497 add_src_coords_attributes (dw_die_ref die
, tree decl
)
10499 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10501 add_AT_unsigned (die
, DW_AT_decl_file
, file_index
);
10502 add_AT_unsigned (die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
10505 /* Add a DW_AT_name attribute and source coordinate attribute for the
10506 given decl, but only if it actually has a name. */
10509 add_name_and_src_coords_attributes (dw_die_ref die
, tree decl
)
10513 decl_name
= DECL_NAME (decl
);
10514 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
10516 add_name_attribute (die
, dwarf2_name (decl
, 0));
10517 if (! DECL_ARTIFICIAL (decl
))
10518 add_src_coords_attributes (die
, decl
);
10520 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
10521 && TREE_PUBLIC (decl
)
10522 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
10523 && !DECL_ABSTRACT (decl
))
10524 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
10525 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
10528 #ifdef VMS_DEBUGGING_INFO
10529 /* Get the function's name, as described by its RTL. This may be different
10530 from the DECL_NAME name used in the source file. */
10531 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
10533 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
10534 XEXP (DECL_RTL (decl
), 0));
10535 VARRAY_PUSH_RTX (used_rtx_varray
, XEXP (DECL_RTL (decl
), 0));
10540 /* Push a new declaration scope. */
10543 push_decl_scope (tree scope
)
10545 VARRAY_PUSH_TREE (decl_scope_table
, scope
);
10548 /* Pop a declaration scope. */
10551 pop_decl_scope (void)
10553 if (VARRAY_ACTIVE_SIZE (decl_scope_table
) <= 0)
10556 VARRAY_POP (decl_scope_table
);
10559 /* Return the DIE for the scope that immediately contains this type.
10560 Non-named types get global scope. Named types nested in other
10561 types get their containing scope if it's open, or global scope
10562 otherwise. All other types (i.e. function-local named types) get
10563 the current active scope. */
10566 scope_die_for (tree t
, dw_die_ref context_die
)
10568 dw_die_ref scope_die
= NULL
;
10569 tree containing_scope
;
10572 /* Non-types always go in the current scope. */
10576 containing_scope
= TYPE_CONTEXT (t
);
10578 /* Use the containing namespace if it was passed in (for a declaration). */
10579 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
10581 if (context_die
== lookup_decl_die (containing_scope
))
10584 containing_scope
= NULL_TREE
;
10587 /* Ignore function type "scopes" from the C frontend. They mean that
10588 a tagged type is local to a parmlist of a function declarator, but
10589 that isn't useful to DWARF. */
10590 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
10591 containing_scope
= NULL_TREE
;
10593 if (containing_scope
== NULL_TREE
)
10594 scope_die
= comp_unit_die
;
10595 else if (TYPE_P (containing_scope
))
10597 /* For types, we can just look up the appropriate DIE. But
10598 first we check to see if we're in the middle of emitting it
10599 so we know where the new DIE should go. */
10600 for (i
= VARRAY_ACTIVE_SIZE (decl_scope_table
) - 1; i
>= 0; --i
)
10601 if (VARRAY_TREE (decl_scope_table
, i
) == containing_scope
)
10606 if (debug_info_level
> DINFO_LEVEL_TERSE
10607 && !TREE_ASM_WRITTEN (containing_scope
))
10610 /* If none of the current dies are suitable, we get file scope. */
10611 scope_die
= comp_unit_die
;
10614 scope_die
= lookup_type_die (containing_scope
);
10617 scope_die
= context_die
;
10622 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10625 local_scope_p (dw_die_ref context_die
)
10627 for (; context_die
; context_die
= context_die
->die_parent
)
10628 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
10629 || context_die
->die_tag
== DW_TAG_subprogram
)
10635 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10636 whether or not to treat a DIE in this context as a declaration. */
10639 class_or_namespace_scope_p (dw_die_ref context_die
)
10641 return (context_die
10642 && (context_die
->die_tag
== DW_TAG_structure_type
10643 || context_die
->die_tag
== DW_TAG_union_type
10644 || context_die
->die_tag
== DW_TAG_namespace
));
10647 /* Many forms of DIEs require a "type description" attribute. This
10648 routine locates the proper "type descriptor" die for the type given
10649 by 'type', and adds a DW_AT_type attribute below the given die. */
10652 add_type_attribute (dw_die_ref object_die
, tree type
, int decl_const
,
10653 int decl_volatile
, dw_die_ref context_die
)
10655 enum tree_code code
= TREE_CODE (type
);
10656 dw_die_ref type_die
= NULL
;
10658 /* ??? If this type is an unnamed subrange type of an integral or
10659 floating-point type, use the inner type. This is because we have no
10660 support for unnamed types in base_type_die. This can happen if this is
10661 an Ada subrange type. Correct solution is emit a subrange type die. */
10662 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
10663 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
10664 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
10666 if (code
== ERROR_MARK
10667 /* Handle a special case. For functions whose return type is void, we
10668 generate *no* type attribute. (Note that no object may have type
10669 `void', so this only applies to function return types). */
10670 || code
== VOID_TYPE
)
10673 type_die
= modified_type_die (type
,
10674 decl_const
|| TYPE_READONLY (type
),
10675 decl_volatile
|| TYPE_VOLATILE (type
),
10678 if (type_die
!= NULL
)
10679 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
10682 /* Given a tree pointer to a struct, class, union, or enum type node, return
10683 a pointer to the (string) tag name for the given type, or zero if the type
10684 was declared without a tag. */
10686 static const char *
10687 type_tag (tree type
)
10689 const char *name
= 0;
10691 if (TYPE_NAME (type
) != 0)
10695 /* Find the IDENTIFIER_NODE for the type name. */
10696 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
10697 t
= TYPE_NAME (type
);
10699 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10700 a TYPE_DECL node, regardless of whether or not a `typedef' was
10702 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
10703 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
10704 t
= DECL_NAME (TYPE_NAME (type
));
10706 /* Now get the name as a string, or invent one. */
10708 name
= IDENTIFIER_POINTER (t
);
10711 return (name
== 0 || *name
== '\0') ? 0 : name
;
10714 /* Return the type associated with a data member, make a special check
10715 for bit field types. */
10718 member_declared_type (tree member
)
10720 return (DECL_BIT_FIELD_TYPE (member
)
10721 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
10724 /* Get the decl's label, as described by its RTL. This may be different
10725 from the DECL_NAME name used in the source file. */
10728 static const char *
10729 decl_start_label (tree decl
)
10732 const char *fnname
;
10734 x
= DECL_RTL (decl
);
10735 if (GET_CODE (x
) != MEM
)
10739 if (GET_CODE (x
) != SYMBOL_REF
)
10742 fnname
= XSTR (x
, 0);
10747 /* These routines generate the internal representation of the DIE's for
10748 the compilation unit. Debugging information is collected by walking
10749 the declaration trees passed in from dwarf2out_decl(). */
10752 gen_array_type_die (tree type
, dw_die_ref context_die
)
10754 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
10755 dw_die_ref array_die
;
10758 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10759 the inner array type comes before the outer array type. Thus we must
10760 call gen_type_die before we call new_die. See below also. */
10761 #ifdef MIPS_DEBUGGING_INFO
10762 gen_type_die (TREE_TYPE (type
), context_die
);
10765 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
10766 add_name_attribute (array_die
, type_tag (type
));
10767 equate_type_number_to_die (type
, array_die
);
10769 if (TREE_CODE (type
) == VECTOR_TYPE
)
10771 /* The frontend feeds us a representation for the vector as a struct
10772 containing an array. Pull out the array type. */
10773 type
= TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type
)));
10774 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
10778 /* We default the array ordering. SDB will probably do
10779 the right things even if DW_AT_ordering is not present. It's not even
10780 an issue until we start to get into multidimensional arrays anyway. If
10781 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10782 then we'll have to put the DW_AT_ordering attribute back in. (But if
10783 and when we find out that we need to put these in, we will only do so
10784 for multidimensional arrays. */
10785 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
10788 #ifdef MIPS_DEBUGGING_INFO
10789 /* The SGI compilers handle arrays of unknown bound by setting
10790 AT_declaration and not emitting any subrange DIEs. */
10791 if (! TYPE_DOMAIN (type
))
10792 add_AT_flag (array_die
, DW_AT_declaration
, 1);
10795 add_subscript_info (array_die
, type
);
10797 /* Add representation of the type of the elements of this array type. */
10798 element_type
= TREE_TYPE (type
);
10800 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10801 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10802 We work around this by disabling this feature. See also
10803 add_subscript_info. */
10804 #ifndef MIPS_DEBUGGING_INFO
10805 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
10806 element_type
= TREE_TYPE (element_type
);
10808 gen_type_die (element_type
, context_die
);
10811 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
10815 gen_set_type_die (tree type
, dw_die_ref context_die
)
10817 dw_die_ref type_die
10818 = new_die (DW_TAG_set_type
, scope_die_for (type
, context_die
), type
);
10820 equate_type_number_to_die (type
, type_die
);
10821 add_type_attribute (type_die
, TREE_TYPE (type
), 0, 0, context_die
);
10826 gen_entry_point_die (tree decl
, dw_die_ref context_die
)
10828 tree origin
= decl_ultimate_origin (decl
);
10829 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
10831 if (origin
!= NULL
)
10832 add_abstract_origin_attribute (decl_die
, origin
);
10835 add_name_and_src_coords_attributes (decl_die
, decl
);
10836 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
10837 0, 0, context_die
);
10840 if (DECL_ABSTRACT (decl
))
10841 equate_decl_number_to_die (decl
, decl_die
);
10843 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
10847 /* Walk through the list of incomplete types again, trying once more to
10848 emit full debugging info for them. */
10851 retry_incomplete_types (void)
10855 for (i
= VARRAY_ACTIVE_SIZE (incomplete_types
) - 1; i
>= 0; i
--)
10856 gen_type_die (VARRAY_TREE (incomplete_types
, i
), comp_unit_die
);
10859 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10862 gen_inlined_enumeration_type_die (tree type
, dw_die_ref context_die
)
10864 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
10866 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10867 be incomplete and such types are not marked. */
10868 add_abstract_origin_attribute (type_die
, type
);
10871 /* Generate a DIE to represent an inlined instance of a structure type. */
10874 gen_inlined_structure_type_die (tree type
, dw_die_ref context_die
)
10876 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
10878 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10879 be incomplete and such types are not marked. */
10880 add_abstract_origin_attribute (type_die
, type
);
10883 /* Generate a DIE to represent an inlined instance of a union type. */
10886 gen_inlined_union_type_die (tree type
, dw_die_ref context_die
)
10888 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
10890 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10891 be incomplete and such types are not marked. */
10892 add_abstract_origin_attribute (type_die
, type
);
10895 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10896 include all of the information about the enumeration values also. Each
10897 enumerated type name/value is listed as a child of the enumerated type
10901 gen_enumeration_type_die (tree type
, dw_die_ref context_die
)
10903 dw_die_ref type_die
= lookup_type_die (type
);
10905 if (type_die
== NULL
)
10907 type_die
= new_die (DW_TAG_enumeration_type
,
10908 scope_die_for (type
, context_die
), type
);
10909 equate_type_number_to_die (type
, type_die
);
10910 add_name_attribute (type_die
, type_tag (type
));
10912 else if (! TYPE_SIZE (type
))
10915 remove_AT (type_die
, DW_AT_declaration
);
10917 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10918 given enum type is incomplete, do not generate the DW_AT_byte_size
10919 attribute or the DW_AT_element_list attribute. */
10920 if (TYPE_SIZE (type
))
10924 TREE_ASM_WRITTEN (type
) = 1;
10925 add_byte_size_attribute (type_die
, type
);
10926 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
10927 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
10929 /* If the first reference to this type was as the return type of an
10930 inline function, then it may not have a parent. Fix this now. */
10931 if (type_die
->die_parent
== NULL
)
10932 add_child_die (scope_die_for (type
, context_die
), type_die
);
10934 for (link
= TYPE_VALUES (type
);
10935 link
!= NULL
; link
= TREE_CHAIN (link
))
10937 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
10938 tree value
= TREE_VALUE (link
);
10940 add_name_attribute (enum_die
,
10941 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
10943 if (host_integerp (value
, TYPE_UNSIGNED (TREE_TYPE (value
))))
10944 /* DWARF2 does not provide a way of indicating whether or
10945 not enumeration constants are signed or unsigned. GDB
10946 always assumes the values are signed, so we output all
10947 values as if they were signed. That means that
10948 enumeration constants with very large unsigned values
10949 will appear to have negative values in the debugger. */
10950 add_AT_int (enum_die
, DW_AT_const_value
,
10951 tree_low_cst (value
, tree_int_cst_sgn (value
) > 0));
10955 add_AT_flag (type_die
, DW_AT_declaration
, 1);
10960 /* Generate a DIE to represent either a real live formal parameter decl or to
10961 represent just the type of some formal parameter position in some function
10964 Note that this routine is a bit unusual because its argument may be a
10965 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10966 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10967 node. If it's the former then this function is being called to output a
10968 DIE to represent a formal parameter object (or some inlining thereof). If
10969 it's the latter, then this function is only being called to output a
10970 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10971 argument type of some subprogram type. */
10974 gen_formal_parameter_die (tree node
, dw_die_ref context_die
)
10976 dw_die_ref parm_die
10977 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
10980 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
10983 origin
= decl_ultimate_origin (node
);
10984 if (origin
!= NULL
)
10985 add_abstract_origin_attribute (parm_die
, origin
);
10988 add_name_and_src_coords_attributes (parm_die
, node
);
10989 add_type_attribute (parm_die
, TREE_TYPE (node
),
10990 TREE_READONLY (node
),
10991 TREE_THIS_VOLATILE (node
),
10993 if (DECL_ARTIFICIAL (node
))
10994 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
10997 equate_decl_number_to_die (node
, parm_die
);
10998 if (! DECL_ABSTRACT (node
))
10999 add_location_or_const_value_attribute (parm_die
, node
, DW_AT_location
);
11004 /* We were called with some kind of a ..._TYPE node. */
11005 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
11015 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11016 at the end of an (ANSI prototyped) formal parameters list. */
11019 gen_unspecified_parameters_die (tree decl_or_type
, dw_die_ref context_die
)
11021 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
11024 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11025 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11026 parameters as specified in some function type specification (except for
11027 those which appear as part of a function *definition*). */
11030 gen_formal_types_die (tree function_or_method_type
, dw_die_ref context_die
)
11033 tree formal_type
= NULL
;
11034 tree first_parm_type
;
11037 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
11039 arg
= DECL_ARGUMENTS (function_or_method_type
);
11040 function_or_method_type
= TREE_TYPE (function_or_method_type
);
11045 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
11047 /* Make our first pass over the list of formal parameter types and output a
11048 DW_TAG_formal_parameter DIE for each one. */
11049 for (link
= first_parm_type
; link
; )
11051 dw_die_ref parm_die
;
11053 formal_type
= TREE_VALUE (link
);
11054 if (formal_type
== void_type_node
)
11057 /* Output a (nameless) DIE to represent the formal parameter itself. */
11058 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
11059 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
11060 && link
== first_parm_type
)
11061 || (arg
&& DECL_ARTIFICIAL (arg
)))
11062 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
11064 link
= TREE_CHAIN (link
);
11066 arg
= TREE_CHAIN (arg
);
11069 /* If this function type has an ellipsis, add a
11070 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11071 if (formal_type
!= void_type_node
)
11072 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
11074 /* Make our second (and final) pass over the list of formal parameter types
11075 and output DIEs to represent those types (as necessary). */
11076 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
11077 link
&& TREE_VALUE (link
);
11078 link
= TREE_CHAIN (link
))
11079 gen_type_die (TREE_VALUE (link
), context_die
);
11082 /* We want to generate the DIE for TYPE so that we can generate the
11083 die for MEMBER, which has been defined; we will need to refer back
11084 to the member declaration nested within TYPE. If we're trying to
11085 generate minimal debug info for TYPE, processing TYPE won't do the
11086 trick; we need to attach the member declaration by hand. */
11089 gen_type_die_for_member (tree type
, tree member
, dw_die_ref context_die
)
11091 gen_type_die (type
, context_die
);
11093 /* If we're trying to avoid duplicate debug info, we may not have
11094 emitted the member decl for this function. Emit it now. */
11095 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
11096 && ! lookup_decl_die (member
))
11098 if (decl_ultimate_origin (member
))
11101 push_decl_scope (type
);
11102 if (TREE_CODE (member
) == FUNCTION_DECL
)
11103 gen_subprogram_die (member
, lookup_type_die (type
));
11105 gen_variable_die (member
, lookup_type_die (type
));
11111 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11112 may later generate inlined and/or out-of-line instances of. */
11115 dwarf2out_abstract_function (tree decl
)
11117 dw_die_ref old_die
;
11120 int was_abstract
= DECL_ABSTRACT (decl
);
11122 /* Make sure we have the actual abstract inline, not a clone. */
11123 decl
= DECL_ORIGIN (decl
);
11125 old_die
= lookup_decl_die (decl
);
11126 if (old_die
&& get_AT (old_die
, DW_AT_inline
))
11127 /* We've already generated the abstract instance. */
11130 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11131 we don't get confused by DECL_ABSTRACT. */
11132 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11134 context
= decl_class_context (decl
);
11136 gen_type_die_for_member
11137 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
11140 /* Pretend we've just finished compiling this function. */
11141 save_fn
= current_function_decl
;
11142 current_function_decl
= decl
;
11144 set_decl_abstract_flags (decl
, 1);
11145 dwarf2out_decl (decl
);
11146 if (! was_abstract
)
11147 set_decl_abstract_flags (decl
, 0);
11149 current_function_decl
= save_fn
;
11152 /* Generate a DIE to represent a declared function (either file-scope or
11156 gen_subprogram_die (tree decl
, dw_die_ref context_die
)
11158 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
11159 tree origin
= decl_ultimate_origin (decl
);
11160 dw_die_ref subr_die
;
11164 dw_die_ref old_die
= lookup_decl_die (decl
);
11165 int declaration
= (current_function_decl
!= decl
11166 || class_or_namespace_scope_p (context_die
));
11168 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11169 started to generate the abstract instance of an inline, decided to output
11170 its containing class, and proceeded to emit the declaration of the inline
11171 from the member list for the class. If so, DECLARATION takes priority;
11172 we'll get back to the abstract instance when done with the class. */
11174 /* The class-scope declaration DIE must be the primary DIE. */
11175 if (origin
&& declaration
&& class_or_namespace_scope_p (context_die
))
11182 if (origin
!= NULL
)
11184 if (declaration
&& ! local_scope_p (context_die
))
11187 /* Fixup die_parent for the abstract instance of a nested
11188 inline function. */
11189 if (old_die
&& old_die
->die_parent
== NULL
)
11190 add_child_die (context_die
, old_die
);
11192 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11193 add_abstract_origin_attribute (subr_die
, origin
);
11197 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
11199 if (!get_AT_flag (old_die
, DW_AT_declaration
)
11200 /* We can have a normal definition following an inline one in the
11201 case of redefinition of GNU C extern inlines.
11202 It seems reasonable to use AT_specification in this case. */
11203 && !get_AT (old_die
, DW_AT_inline
))
11205 /* ??? This can happen if there is a bug in the program, for
11206 instance, if it has duplicate function definitions. Ideally,
11207 we should detect this case and ignore it. For now, if we have
11208 already reported an error, any error at all, then assume that
11209 we got here because of an input error, not a dwarf2 bug. */
11215 /* If the definition comes from the same place as the declaration,
11216 maybe use the old DIE. We always want the DIE for this function
11217 that has the *_pc attributes to be under comp_unit_die so the
11218 debugger can find it. We also need to do this for abstract
11219 instances of inlines, since the spec requires the out-of-line copy
11220 to have the same parent. For local class methods, this doesn't
11221 apply; we just use the old DIE. */
11222 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
11223 && (DECL_ARTIFICIAL (decl
)
11224 || (get_AT_unsigned (old_die
, DW_AT_decl_file
) == file_index
11225 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11226 == (unsigned) DECL_SOURCE_LINE (decl
)))))
11228 subr_die
= old_die
;
11230 /* Clear out the declaration attribute and the formal parameters.
11231 Do not remove all children, because it is possible that this
11232 declaration die was forced using force_decl_die(). In such
11233 cases die that forced declaration die (e.g. TAG_imported_module)
11234 is one of the children that we do not want to remove. */
11235 remove_AT (subr_die
, DW_AT_declaration
);
11236 remove_child_TAG (subr_die
, DW_TAG_formal_parameter
);
11240 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11241 add_AT_specification (subr_die
, old_die
);
11242 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
11243 add_AT_unsigned (subr_die
, DW_AT_decl_file
, file_index
);
11244 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11245 != (unsigned) DECL_SOURCE_LINE (decl
))
11247 (subr_die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
11252 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11254 if (TREE_PUBLIC (decl
))
11255 add_AT_flag (subr_die
, DW_AT_external
, 1);
11257 add_name_and_src_coords_attributes (subr_die
, decl
);
11258 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11260 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
11261 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
11262 0, 0, context_die
);
11265 add_pure_or_virtual_attribute (subr_die
, decl
);
11266 if (DECL_ARTIFICIAL (decl
))
11267 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
11269 if (TREE_PROTECTED (decl
))
11270 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11271 else if (TREE_PRIVATE (decl
))
11272 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11277 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
11279 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
11281 /* The first time we see a member function, it is in the context of
11282 the class to which it belongs. We make sure of this by emitting
11283 the class first. The next time is the definition, which is
11284 handled above. The two may come from the same source text.
11286 Note that force_decl_die() forces function declaration die. It is
11287 later reused to represent definition. */
11288 equate_decl_number_to_die (decl
, subr_die
);
11291 else if (DECL_ABSTRACT (decl
))
11293 if (DECL_DECLARED_INLINE_P (decl
))
11295 if (cgraph_function_possibly_inlined_p (decl
))
11296 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
11298 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
11302 if (cgraph_function_possibly_inlined_p (decl
))
11303 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
11305 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_not_inlined
);
11308 equate_decl_number_to_die (decl
, subr_die
);
11310 else if (!DECL_EXTERNAL (decl
))
11312 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
11313 equate_decl_number_to_die (decl
, subr_die
);
11315 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
11316 current_function_funcdef_no
);
11317 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
11318 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
11319 current_function_funcdef_no
);
11320 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
11322 add_pubname (decl
, subr_die
);
11323 add_arange (decl
, subr_die
);
11325 #ifdef MIPS_DEBUGGING_INFO
11326 /* Add a reference to the FDE for this routine. */
11327 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
11330 /* Define the "frame base" location for this routine. We use the
11331 frame pointer or stack pointer registers, since the RTL for local
11332 variables is relative to one of them. */
11333 if (frame_base_decl
&& lookup_decl_loc (frame_base_decl
) != NULL
)
11335 add_location_or_const_value_attribute (subr_die
, frame_base_decl
,
11341 = frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx
;
11342 add_AT_loc (subr_die
, DW_AT_frame_base
, reg_loc_descriptor (fp_reg
));
11345 if (cfun
->static_chain_decl
)
11346 add_AT_location_description (subr_die
, DW_AT_static_link
,
11347 loc_descriptor_from_tree (cfun
->static_chain_decl
, 0));
11350 /* Now output descriptions of the arguments for this function. This gets
11351 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11352 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11353 `...' at the end of the formal parameter list. In order to find out if
11354 there was a trailing ellipsis or not, we must instead look at the type
11355 associated with the FUNCTION_DECL. This will be a node of type
11356 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11357 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11358 an ellipsis at the end. */
11360 /* In the case where we are describing a mere function declaration, all we
11361 need to do here (and all we *can* do here) is to describe the *types* of
11362 its formal parameters. */
11363 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11365 else if (declaration
)
11366 gen_formal_types_die (decl
, subr_die
);
11369 /* Generate DIEs to represent all known formal parameters. */
11370 tree arg_decls
= DECL_ARGUMENTS (decl
);
11373 /* When generating DIEs, generate the unspecified_parameters DIE
11374 instead if we come across the arg "__builtin_va_alist" */
11375 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
11376 if (TREE_CODE (parm
) == PARM_DECL
)
11378 if (DECL_NAME (parm
)
11379 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
11380 "__builtin_va_alist"))
11381 gen_unspecified_parameters_die (parm
, subr_die
);
11383 gen_decl_die (parm
, subr_die
);
11386 /* Decide whether we need an unspecified_parameters DIE at the end.
11387 There are 2 more cases to do this for: 1) the ansi ... declaration -
11388 this is detectable when the end of the arg list is not a
11389 void_type_node 2) an unprototyped function declaration (not a
11390 definition). This just means that we have no info about the
11391 parameters at all. */
11392 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
11393 if (fn_arg_types
!= NULL
)
11395 /* This is the prototyped case, check for.... */
11396 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
11397 gen_unspecified_parameters_die (decl
, subr_die
);
11399 else if (DECL_INITIAL (decl
) == NULL_TREE
)
11400 gen_unspecified_parameters_die (decl
, subr_die
);
11403 /* Output Dwarf info for all of the stuff within the body of the function
11404 (if it has one - it may be just a declaration). */
11405 outer_scope
= DECL_INITIAL (decl
);
11407 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11408 a function. This BLOCK actually represents the outermost binding contour
11409 for the function, i.e. the contour in which the function's formal
11410 parameters and labels get declared. Curiously, it appears that the front
11411 end doesn't actually put the PARM_DECL nodes for the current function onto
11412 the BLOCK_VARS list for this outer scope, but are strung off of the
11413 DECL_ARGUMENTS list for the function instead.
11415 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11416 the LABEL_DECL nodes for the function however, and we output DWARF info
11417 for those in decls_for_scope. Just within the `outer_scope' there will be
11418 a BLOCK node representing the function's outermost pair of curly braces,
11419 and any blocks used for the base and member initializers of a C++
11420 constructor function. */
11421 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
11423 /* Emit a DW_TAG_variable DIE for a named return value. */
11424 if (DECL_NAME (DECL_RESULT (decl
)))
11425 gen_decl_die (DECL_RESULT (decl
), subr_die
);
11427 current_function_has_inlines
= 0;
11428 decls_for_scope (outer_scope
, subr_die
, 0);
11430 #if 0 && defined (MIPS_DEBUGGING_INFO)
11431 if (current_function_has_inlines
)
11433 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
11434 if (! comp_unit_has_inlines
)
11436 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
11437 comp_unit_has_inlines
= 1;
11444 /* Generate a DIE to represent a declared data object. */
11447 gen_variable_die (tree decl
, dw_die_ref context_die
)
11449 tree origin
= decl_ultimate_origin (decl
);
11450 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
11452 dw_die_ref old_die
= lookup_decl_die (decl
);
11453 int declaration
= (DECL_EXTERNAL (decl
)
11454 || class_or_namespace_scope_p (context_die
));
11456 if (origin
!= NULL
)
11457 add_abstract_origin_attribute (var_die
, origin
);
11459 /* Loop unrolling can create multiple blocks that refer to the same
11460 static variable, so we must test for the DW_AT_declaration flag.
11462 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11463 copy decls and set the DECL_ABSTRACT flag on them instead of
11466 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11467 else if (old_die
&& TREE_STATIC (decl
)
11468 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
11470 /* This is a definition of a C++ class level static. */
11471 add_AT_specification (var_die
, old_die
);
11472 if (DECL_NAME (decl
))
11474 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
11476 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
11477 add_AT_unsigned (var_die
, DW_AT_decl_file
, file_index
);
11479 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11480 != (unsigned) DECL_SOURCE_LINE (decl
))
11482 add_AT_unsigned (var_die
, DW_AT_decl_line
,
11483 DECL_SOURCE_LINE (decl
));
11488 add_name_and_src_coords_attributes (var_die
, decl
);
11489 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
11490 TREE_THIS_VOLATILE (decl
), context_die
);
11492 if (TREE_PUBLIC (decl
))
11493 add_AT_flag (var_die
, DW_AT_external
, 1);
11495 if (DECL_ARTIFICIAL (decl
))
11496 add_AT_flag (var_die
, DW_AT_artificial
, 1);
11498 if (TREE_PROTECTED (decl
))
11499 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11500 else if (TREE_PRIVATE (decl
))
11501 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11505 add_AT_flag (var_die
, DW_AT_declaration
, 1);
11507 if (DECL_ABSTRACT (decl
) || declaration
)
11508 equate_decl_number_to_die (decl
, var_die
);
11510 if (! declaration
&& ! DECL_ABSTRACT (decl
))
11512 add_location_or_const_value_attribute (var_die
, decl
, DW_AT_location
);
11513 add_pubname (decl
, var_die
);
11516 tree_add_const_value_attribute (var_die
, decl
);
11519 /* Generate a DIE to represent a label identifier. */
11522 gen_label_die (tree decl
, dw_die_ref context_die
)
11524 tree origin
= decl_ultimate_origin (decl
);
11525 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
11527 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11529 if (origin
!= NULL
)
11530 add_abstract_origin_attribute (lbl_die
, origin
);
11532 add_name_and_src_coords_attributes (lbl_die
, decl
);
11534 if (DECL_ABSTRACT (decl
))
11535 equate_decl_number_to_die (decl
, lbl_die
);
11538 insn
= DECL_RTL_IF_SET (decl
);
11540 /* Deleted labels are programmer specified labels which have been
11541 eliminated because of various optimizations. We still emit them
11542 here so that it is possible to put breakpoints on them. */
11544 && (GET_CODE (insn
) == CODE_LABEL
11545 || ((GET_CODE (insn
) == NOTE
11546 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
))))
11548 /* When optimization is enabled (via -O) some parts of the compiler
11549 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11550 represent source-level labels which were explicitly declared by
11551 the user. This really shouldn't be happening though, so catch
11552 it if it ever does happen. */
11553 if (INSN_DELETED_P (insn
))
11556 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
11557 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
11562 /* Generate a DIE for a lexical block. */
11565 gen_lexical_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
11567 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
11568 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11570 if (! BLOCK_ABSTRACT (stmt
))
11572 if (BLOCK_FRAGMENT_CHAIN (stmt
))
11576 add_AT_range_list (stmt_die
, DW_AT_ranges
, add_ranges (stmt
));
11578 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
11581 add_ranges (chain
);
11582 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
11589 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
11590 BLOCK_NUMBER (stmt
));
11591 add_AT_lbl_id (stmt_die
, DW_AT_low_pc
, label
);
11592 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
11593 BLOCK_NUMBER (stmt
));
11594 add_AT_lbl_id (stmt_die
, DW_AT_high_pc
, label
);
11598 decls_for_scope (stmt
, stmt_die
, depth
);
11601 /* Generate a DIE for an inlined subprogram. */
11604 gen_inlined_subroutine_die (tree stmt
, dw_die_ref context_die
, int depth
)
11606 tree decl
= block_ultimate_origin (stmt
);
11608 /* Emit info for the abstract instance first, if we haven't yet. We
11609 must emit this even if the block is abstract, otherwise when we
11610 emit the block below (or elsewhere), we may end up trying to emit
11611 a die whose origin die hasn't been emitted, and crashing. */
11612 dwarf2out_abstract_function (decl
);
11614 if (! BLOCK_ABSTRACT (stmt
))
11616 dw_die_ref subr_die
11617 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
11618 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11620 add_abstract_origin_attribute (subr_die
, decl
);
11621 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
11622 BLOCK_NUMBER (stmt
));
11623 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label
);
11624 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
11625 BLOCK_NUMBER (stmt
));
11626 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label
);
11627 decls_for_scope (stmt
, subr_die
, depth
);
11628 current_function_has_inlines
= 1;
11631 /* We may get here if we're the outer block of function A that was
11632 inlined into function B that was inlined into function C. When
11633 generating debugging info for C, dwarf2out_abstract_function(B)
11634 would mark all inlined blocks as abstract, including this one.
11635 So, we wouldn't (and shouldn't) expect labels to be generated
11636 for this one. Instead, just emit debugging info for
11637 declarations within the block. This is particularly important
11638 in the case of initializers of arguments passed from B to us:
11639 if they're statement expressions containing declarations, we
11640 wouldn't generate dies for their abstract variables, and then,
11641 when generating dies for the real variables, we'd die (pun
11643 gen_lexical_block_die (stmt
, context_die
, depth
);
11646 /* Generate a DIE for a field in a record, or structure. */
11649 gen_field_die (tree decl
, dw_die_ref context_die
)
11651 dw_die_ref decl_die
;
11653 if (TREE_TYPE (decl
) == error_mark_node
)
11656 decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
11657 add_name_and_src_coords_attributes (decl_die
, decl
);
11658 add_type_attribute (decl_die
, member_declared_type (decl
),
11659 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
11662 if (DECL_BIT_FIELD_TYPE (decl
))
11664 add_byte_size_attribute (decl_die
, decl
);
11665 add_bit_size_attribute (decl_die
, decl
);
11666 add_bit_offset_attribute (decl_die
, decl
);
11669 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
11670 add_data_member_location_attribute (decl_die
, decl
);
11672 if (DECL_ARTIFICIAL (decl
))
11673 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
11675 if (TREE_PROTECTED (decl
))
11676 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11677 else if (TREE_PRIVATE (decl
))
11678 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11682 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11683 Use modified_type_die instead.
11684 We keep this code here just in case these types of DIEs may be needed to
11685 represent certain things in other languages (e.g. Pascal) someday. */
11688 gen_pointer_type_die (tree type
, dw_die_ref context_die
)
11691 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
11693 equate_type_number_to_die (type
, ptr_die
);
11694 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
11695 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
11698 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11699 Use modified_type_die instead.
11700 We keep this code here just in case these types of DIEs may be needed to
11701 represent certain things in other languages (e.g. Pascal) someday. */
11704 gen_reference_type_die (tree type
, dw_die_ref context_die
)
11707 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
11709 equate_type_number_to_die (type
, ref_die
);
11710 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
11711 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
11715 /* Generate a DIE for a pointer to a member type. */
11718 gen_ptr_to_mbr_type_die (tree type
, dw_die_ref context_die
)
11721 = new_die (DW_TAG_ptr_to_member_type
,
11722 scope_die_for (type
, context_die
), type
);
11724 equate_type_number_to_die (type
, ptr_die
);
11725 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
11726 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
11727 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
11730 /* Generate the DIE for the compilation unit. */
11733 gen_compile_unit_die (const char *filename
)
11736 char producer
[250];
11737 const char *language_string
= lang_hooks
.name
;
11740 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
11744 add_name_attribute (die
, filename
);
11745 /* Don't add cwd for <built-in>. */
11746 if (filename
[0] != DIR_SEPARATOR
&& filename
[0] != '<')
11747 add_comp_dir_attribute (die
);
11750 sprintf (producer
, "%s %s", language_string
, version_string
);
11752 #ifdef MIPS_DEBUGGING_INFO
11753 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11754 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11755 not appear in the producer string, the debugger reaches the conclusion
11756 that the object file is stripped and has no debugging information.
11757 To get the MIPS/SGI debugger to believe that there is debugging
11758 information in the object file, we add a -g to the producer string. */
11759 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11760 strcat (producer
, " -g");
11763 add_AT_string (die
, DW_AT_producer
, producer
);
11765 if (strcmp (language_string
, "GNU C++") == 0)
11766 language
= DW_LANG_C_plus_plus
;
11767 else if (strcmp (language_string
, "GNU Ada") == 0)
11768 language
= DW_LANG_Ada95
;
11769 else if (strcmp (language_string
, "GNU F77") == 0)
11770 language
= DW_LANG_Fortran77
;
11771 else if (strcmp (language_string
, "GNU F95") == 0)
11772 language
= DW_LANG_Fortran95
;
11773 else if (strcmp (language_string
, "GNU Pascal") == 0)
11774 language
= DW_LANG_Pascal83
;
11775 else if (strcmp (language_string
, "GNU Java") == 0)
11776 language
= DW_LANG_Java
;
11778 language
= DW_LANG_C89
;
11780 add_AT_unsigned (die
, DW_AT_language
, language
);
11784 /* Generate a DIE for a string type. */
11787 gen_string_type_die (tree type
, dw_die_ref context_die
)
11789 dw_die_ref type_die
11790 = new_die (DW_TAG_string_type
, scope_die_for (type
, context_die
), type
);
11792 equate_type_number_to_die (type
, type_die
);
11794 /* ??? Fudge the string length attribute for now.
11795 TODO: add string length info. */
11797 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)));
11798 bound_representation (upper_bound
, 0, 'u');
11802 /* Generate the DIE for a base class. */
11805 gen_inheritance_die (tree binfo
, tree access
, dw_die_ref context_die
)
11807 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
11809 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
11810 add_data_member_location_attribute (die
, binfo
);
11812 if (TREE_VIA_VIRTUAL (binfo
))
11813 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
11815 if (access
== access_public_node
)
11816 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
11817 else if (access
== access_protected_node
)
11818 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11821 /* Generate a DIE for a class member. */
11824 gen_member_die (tree type
, dw_die_ref context_die
)
11827 tree binfo
= TYPE_BINFO (type
);
11830 /* If this is not an incomplete type, output descriptions of each of its
11831 members. Note that as we output the DIEs necessary to represent the
11832 members of this record or union type, we will also be trying to output
11833 DIEs to represent the *types* of those members. However the `type'
11834 function (above) will specifically avoid generating type DIEs for member
11835 types *within* the list of member DIEs for this (containing) type except
11836 for those types (of members) which are explicitly marked as also being
11837 members of this (containing) type themselves. The g++ front- end can
11838 force any given type to be treated as a member of some other (containing)
11839 type by setting the TYPE_CONTEXT of the given (member) type to point to
11840 the TREE node representing the appropriate (containing) type. */
11842 /* First output info about the base classes. */
11843 if (binfo
&& BINFO_BASETYPES (binfo
))
11845 tree bases
= BINFO_BASETYPES (binfo
);
11846 tree accesses
= BINFO_BASEACCESSES (binfo
);
11847 int n_bases
= TREE_VEC_LENGTH (bases
);
11850 for (i
= 0; i
< n_bases
; i
++)
11851 gen_inheritance_die (TREE_VEC_ELT (bases
, i
),
11852 (accesses
? TREE_VEC_ELT (accesses
, i
)
11853 : access_public_node
), context_die
);
11856 /* Now output info about the data members and type members. */
11857 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
11859 /* If we thought we were generating minimal debug info for TYPE
11860 and then changed our minds, some of the member declarations
11861 may have already been defined. Don't define them again, but
11862 do put them in the right order. */
11864 child
= lookup_decl_die (member
);
11866 splice_child_die (context_die
, child
);
11868 gen_decl_die (member
, context_die
);
11871 /* Now output info about the function members (if any). */
11872 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
11874 /* Don't include clones in the member list. */
11875 if (DECL_ABSTRACT_ORIGIN (member
))
11878 child
= lookup_decl_die (member
);
11880 splice_child_die (context_die
, child
);
11882 gen_decl_die (member
, context_die
);
11886 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11887 is set, we pretend that the type was never defined, so we only get the
11888 member DIEs needed by later specification DIEs. */
11891 gen_struct_or_union_type_die (tree type
, dw_die_ref context_die
)
11893 dw_die_ref type_die
= lookup_type_die (type
);
11894 dw_die_ref scope_die
= 0;
11896 int complete
= (TYPE_SIZE (type
)
11897 && (! TYPE_STUB_DECL (type
)
11898 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
11899 int ns_decl
= (context_die
&& context_die
->die_tag
== DW_TAG_namespace
);
11901 if (type_die
&& ! complete
)
11904 if (TYPE_CONTEXT (type
) != NULL_TREE
11905 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
11906 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
))
11909 scope_die
= scope_die_for (type
, context_die
);
11911 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
11912 /* First occurrence of type or toplevel definition of nested class. */
11914 dw_die_ref old_die
= type_die
;
11916 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
11917 ? DW_TAG_structure_type
: DW_TAG_union_type
,
11919 equate_type_number_to_die (type
, type_die
);
11921 add_AT_specification (type_die
, old_die
);
11923 add_name_attribute (type_die
, type_tag (type
));
11926 remove_AT (type_die
, DW_AT_declaration
);
11928 /* If this type has been completed, then give it a byte_size attribute and
11929 then give a list of members. */
11930 if (complete
&& !ns_decl
)
11932 /* Prevent infinite recursion in cases where the type of some member of
11933 this type is expressed in terms of this type itself. */
11934 TREE_ASM_WRITTEN (type
) = 1;
11935 add_byte_size_attribute (type_die
, type
);
11936 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
11937 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
11939 /* If the first reference to this type was as the return type of an
11940 inline function, then it may not have a parent. Fix this now. */
11941 if (type_die
->die_parent
== NULL
)
11942 add_child_die (scope_die
, type_die
);
11944 push_decl_scope (type
);
11945 gen_member_die (type
, type_die
);
11948 /* GNU extension: Record what type our vtable lives in. */
11949 if (TYPE_VFIELD (type
))
11951 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
11953 gen_type_die (vtype
, context_die
);
11954 add_AT_die_ref (type_die
, DW_AT_containing_type
,
11955 lookup_type_die (vtype
));
11960 add_AT_flag (type_die
, DW_AT_declaration
, 1);
11962 /* We don't need to do this for function-local types. */
11963 if (TYPE_STUB_DECL (type
)
11964 && ! decl_function_context (TYPE_STUB_DECL (type
)))
11965 VARRAY_PUSH_TREE (incomplete_types
, type
);
11969 /* Generate a DIE for a subroutine _type_. */
11972 gen_subroutine_type_die (tree type
, dw_die_ref context_die
)
11974 tree return_type
= TREE_TYPE (type
);
11975 dw_die_ref subr_die
11976 = new_die (DW_TAG_subroutine_type
,
11977 scope_die_for (type
, context_die
), type
);
11979 equate_type_number_to_die (type
, subr_die
);
11980 add_prototyped_attribute (subr_die
, type
);
11981 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
11982 gen_formal_types_die (type
, subr_die
);
11985 /* Generate a DIE for a type definition. */
11988 gen_typedef_die (tree decl
, dw_die_ref context_die
)
11990 dw_die_ref type_die
;
11993 if (TREE_ASM_WRITTEN (decl
))
11996 TREE_ASM_WRITTEN (decl
) = 1;
11997 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
11998 origin
= decl_ultimate_origin (decl
);
11999 if (origin
!= NULL
)
12000 add_abstract_origin_attribute (type_die
, origin
);
12005 add_name_and_src_coords_attributes (type_die
, decl
);
12006 if (DECL_ORIGINAL_TYPE (decl
))
12008 type
= DECL_ORIGINAL_TYPE (decl
);
12010 if (type
== TREE_TYPE (decl
))
12013 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
12016 type
= TREE_TYPE (decl
);
12018 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
12019 TREE_THIS_VOLATILE (decl
), context_die
);
12022 if (DECL_ABSTRACT (decl
))
12023 equate_decl_number_to_die (decl
, type_die
);
12026 /* Generate a type description DIE. */
12029 gen_type_die (tree type
, dw_die_ref context_die
)
12033 if (type
== NULL_TREE
|| type
== error_mark_node
)
12036 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
12037 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
12039 if (TREE_ASM_WRITTEN (type
))
12042 /* Prevent broken recursion; we can't hand off to the same type. */
12043 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type
)) == type
)
12046 TREE_ASM_WRITTEN (type
) = 1;
12047 gen_decl_die (TYPE_NAME (type
), context_die
);
12051 /* We are going to output a DIE to represent the unqualified version
12052 of this type (i.e. without any const or volatile qualifiers) so
12053 get the main variant (i.e. the unqualified version) of this type
12054 now. (Vectors are special because the debugging info is in the
12055 cloned type itself). */
12056 if (TREE_CODE (type
) != VECTOR_TYPE
)
12057 type
= type_main_variant (type
);
12059 if (TREE_ASM_WRITTEN (type
))
12062 switch (TREE_CODE (type
))
12068 case REFERENCE_TYPE
:
12069 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12070 ensures that the gen_type_die recursion will terminate even if the
12071 type is recursive. Recursive types are possible in Ada. */
12072 /* ??? We could perhaps do this for all types before the switch
12074 TREE_ASM_WRITTEN (type
) = 1;
12076 /* For these types, all that is required is that we output a DIE (or a
12077 set of DIEs) to represent the "basis" type. */
12078 gen_type_die (TREE_TYPE (type
), context_die
);
12082 /* This code is used for C++ pointer-to-data-member types.
12083 Output a description of the relevant class type. */
12084 gen_type_die (TYPE_OFFSET_BASETYPE (type
), context_die
);
12086 /* Output a description of the type of the object pointed to. */
12087 gen_type_die (TREE_TYPE (type
), context_die
);
12089 /* Now output a DIE to represent this pointer-to-data-member type
12091 gen_ptr_to_mbr_type_die (type
, context_die
);
12095 gen_type_die (TYPE_DOMAIN (type
), context_die
);
12096 gen_set_type_die (type
, context_die
);
12100 gen_type_die (TREE_TYPE (type
), context_die
);
12101 abort (); /* No way to represent these in Dwarf yet! */
12104 case FUNCTION_TYPE
:
12105 /* Force out return type (in case it wasn't forced out already). */
12106 gen_type_die (TREE_TYPE (type
), context_die
);
12107 gen_subroutine_type_die (type
, context_die
);
12111 /* Force out return type (in case it wasn't forced out already). */
12112 gen_type_die (TREE_TYPE (type
), context_die
);
12113 gen_subroutine_type_die (type
, context_die
);
12117 if (TYPE_STRING_FLAG (type
) && TREE_CODE (TREE_TYPE (type
)) == CHAR_TYPE
)
12119 gen_type_die (TREE_TYPE (type
), context_die
);
12120 gen_string_type_die (type
, context_die
);
12123 gen_array_type_die (type
, context_die
);
12127 gen_array_type_die (type
, context_die
);
12130 case ENUMERAL_TYPE
:
12133 case QUAL_UNION_TYPE
:
12134 /* If this is a nested type whose containing class hasn't been written
12135 out yet, writing it out will cover this one, too. This does not apply
12136 to instantiations of member class templates; they need to be added to
12137 the containing class as they are generated. FIXME: This hurts the
12138 idea of combining type decls from multiple TUs, since we can't predict
12139 what set of template instantiations we'll get. */
12140 if (TYPE_CONTEXT (type
)
12141 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
12142 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
12144 gen_type_die (TYPE_CONTEXT (type
), context_die
);
12146 if (TREE_ASM_WRITTEN (type
))
12149 /* If that failed, attach ourselves to the stub. */
12150 push_decl_scope (TYPE_CONTEXT (type
));
12151 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
12156 declare_in_namespace (type
, context_die
);
12160 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
12161 gen_enumeration_type_die (type
, context_die
);
12163 gen_struct_or_union_type_die (type
, context_die
);
12168 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12169 it up if it is ever completed. gen_*_type_die will set it for us
12170 when appropriate. */
12179 /* No DIEs needed for fundamental types. */
12183 /* No Dwarf representation currently defined. */
12190 TREE_ASM_WRITTEN (type
) = 1;
12193 /* Generate a DIE for a tagged type instantiation. */
12196 gen_tagged_type_instantiation_die (tree type
, dw_die_ref context_die
)
12198 if (type
== NULL_TREE
|| type
== error_mark_node
)
12201 /* We are going to output a DIE to represent the unqualified version of
12202 this type (i.e. without any const or volatile qualifiers) so make sure
12203 that we have the main variant (i.e. the unqualified version) of this
12205 if (type
!= type_main_variant (type
))
12208 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12209 an instance of an unresolved type. */
12211 switch (TREE_CODE (type
))
12216 case ENUMERAL_TYPE
:
12217 gen_inlined_enumeration_type_die (type
, context_die
);
12221 gen_inlined_structure_type_die (type
, context_die
);
12225 case QUAL_UNION_TYPE
:
12226 gen_inlined_union_type_die (type
, context_die
);
12234 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12235 things which are local to the given block. */
12238 gen_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
12240 int must_output_die
= 0;
12243 enum tree_code origin_code
;
12245 /* Ignore blocks never really used to make RTL. */
12246 if (stmt
== NULL_TREE
|| !TREE_USED (stmt
)
12247 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
12250 /* If the block is one fragment of a non-contiguous block, do not
12251 process the variables, since they will have been done by the
12252 origin block. Do process subblocks. */
12253 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
12257 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
12258 gen_block_die (sub
, context_die
, depth
+ 1);
12263 /* Determine the "ultimate origin" of this block. This block may be an
12264 inlined instance of an inlined instance of inline function, so we have
12265 to trace all of the way back through the origin chain to find out what
12266 sort of node actually served as the original seed for the creation of
12267 the current block. */
12268 origin
= block_ultimate_origin (stmt
);
12269 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
12271 /* Determine if we need to output any Dwarf DIEs at all to represent this
12273 if (origin_code
== FUNCTION_DECL
)
12274 /* The outer scopes for inlinings *must* always be represented. We
12275 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12276 must_output_die
= 1;
12279 /* In the case where the current block represents an inlining of the
12280 "body block" of an inline function, we must *NOT* output any DIE for
12281 this block because we have already output a DIE to represent the whole
12282 inlined function scope and the "body block" of any function doesn't
12283 really represent a different scope according to ANSI C rules. So we
12284 check here to make sure that this block does not represent a "body
12285 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12286 if (! is_body_block (origin
? origin
: stmt
))
12288 /* Determine if this block directly contains any "significant"
12289 local declarations which we will need to output DIEs for. */
12290 if (debug_info_level
> DINFO_LEVEL_TERSE
)
12291 /* We are not in terse mode so *any* local declaration counts
12292 as being a "significant" one. */
12293 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
12295 /* We are in terse mode, so only local (nested) function
12296 definitions count as "significant" local declarations. */
12297 for (decl
= BLOCK_VARS (stmt
);
12298 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12299 if (TREE_CODE (decl
) == FUNCTION_DECL
12300 && DECL_INITIAL (decl
))
12302 must_output_die
= 1;
12308 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12309 DIE for any block which contains no significant local declarations at
12310 all. Rather, in such cases we just call `decls_for_scope' so that any
12311 needed Dwarf info for any sub-blocks will get properly generated. Note
12312 that in terse mode, our definition of what constitutes a "significant"
12313 local declaration gets restricted to include only inlined function
12314 instances and local (nested) function definitions. */
12315 if (must_output_die
)
12317 if (origin_code
== FUNCTION_DECL
)
12318 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
12320 gen_lexical_block_die (stmt
, context_die
, depth
);
12323 decls_for_scope (stmt
, context_die
, depth
);
12326 /* Generate all of the decls declared within a given scope and (recursively)
12327 all of its sub-blocks. */
12330 decls_for_scope (tree stmt
, dw_die_ref context_die
, int depth
)
12335 /* Ignore blocks never really used to make RTL. */
12336 if (stmt
== NULL_TREE
|| ! TREE_USED (stmt
))
12339 /* Output the DIEs to represent all of the data objects and typedefs
12340 declared directly within this block but not within any nested
12341 sub-blocks. Also, nested function and tag DIEs have been
12342 generated with a parent of NULL; fix that up now. */
12343 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12347 if (TREE_CODE (decl
) == FUNCTION_DECL
)
12348 die
= lookup_decl_die (decl
);
12349 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
12350 die
= lookup_type_die (TREE_TYPE (decl
));
12354 if (die
!= NULL
&& die
->die_parent
== NULL
)
12355 add_child_die (context_die
, die
);
12357 gen_decl_die (decl
, context_die
);
12360 /* If we're at -g1, we're not interested in subblocks. */
12361 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12364 /* Output the DIEs to represent all sub-blocks (and the items declared
12365 therein) of this block. */
12366 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
12368 subblocks
= BLOCK_CHAIN (subblocks
))
12369 gen_block_die (subblocks
, context_die
, depth
+ 1);
12372 /* Is this a typedef we can avoid emitting? */
12375 is_redundant_typedef (tree decl
)
12377 if (TYPE_DECL_IS_STUB (decl
))
12380 if (DECL_ARTIFICIAL (decl
)
12381 && DECL_CONTEXT (decl
)
12382 && is_tagged_type (DECL_CONTEXT (decl
))
12383 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
12384 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
12385 /* Also ignore the artificial member typedef for the class name. */
12391 /* Returns the DIE for decl or aborts. */
12394 force_decl_die (tree decl
)
12396 dw_die_ref decl_die
;
12397 unsigned saved_external_flag
;
12398 tree save_fn
= NULL_TREE
;
12399 decl_die
= lookup_decl_die (decl
);
12402 dw_die_ref context_die
;
12403 tree decl_context
= DECL_CONTEXT (decl
);
12406 /* Find die that represents this context. */
12407 if (TYPE_P (decl_context
))
12408 context_die
= force_type_die (decl_context
);
12410 context_die
= force_decl_die (decl_context
);
12413 context_die
= comp_unit_die
;
12415 switch (TREE_CODE (decl
))
12417 case FUNCTION_DECL
:
12418 /* Clear current_function_decl, so that gen_subprogram_die thinks
12419 that this is a declaration. At this point, we just want to force
12420 declaration die. */
12421 save_fn
= current_function_decl
;
12422 current_function_decl
= NULL_TREE
;
12423 gen_subprogram_die (decl
, context_die
);
12424 current_function_decl
= save_fn
;
12428 /* Set external flag to force declaration die. Restore it after
12429 gen_decl_die() call. */
12430 saved_external_flag
= DECL_EXTERNAL (decl
);
12431 DECL_EXTERNAL (decl
) = 1;
12432 gen_decl_die (decl
, context_die
);
12433 DECL_EXTERNAL (decl
) = saved_external_flag
;
12436 case NAMESPACE_DECL
:
12437 dwarf2out_decl (decl
);
12444 /* See if we can find the die for this deci now.
12445 If not then abort. */
12447 decl_die
= lookup_decl_die (decl
);
12455 /* Returns the DIE for decl or aborts. */
12458 force_type_die (tree type
)
12460 dw_die_ref type_die
;
12462 type_die
= lookup_type_die (type
);
12465 dw_die_ref context_die
;
12466 if (TYPE_CONTEXT (type
))
12467 if (TYPE_P (TYPE_CONTEXT (type
)))
12468 context_die
= force_type_die (TYPE_CONTEXT (type
));
12470 context_die
= force_decl_die (TYPE_CONTEXT (type
));
12472 context_die
= comp_unit_die
;
12474 gen_type_die (type
, context_die
);
12475 type_die
= lookup_type_die (type
);
12482 /* Force out any required namespaces to be able to output DECL,
12483 and return the new context_die for it, if it's changed. */
12486 setup_namespace_context (tree thing
, dw_die_ref context_die
)
12488 tree context
= DECL_P (thing
) ? DECL_CONTEXT (thing
) : TYPE_CONTEXT (thing
);
12489 if (context
&& TREE_CODE (context
) == NAMESPACE_DECL
)
12490 /* Force out the namespace. */
12491 context_die
= force_decl_die (context
);
12493 return context_die
;
12496 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12497 type) within its namespace, if appropriate.
12499 For compatibility with older debuggers, namespace DIEs only contain
12500 declarations; all definitions are emitted at CU scope. */
12503 declare_in_namespace (tree thing
, dw_die_ref context_die
)
12505 dw_die_ref ns_context
;
12507 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12510 ns_context
= setup_namespace_context (thing
, context_die
);
12512 if (ns_context
!= context_die
)
12514 if (DECL_P (thing
))
12515 gen_decl_die (thing
, ns_context
);
12517 gen_type_die (thing
, ns_context
);
12521 /* Generate a DIE for a namespace or namespace alias. */
12524 gen_namespace_die (tree decl
)
12526 dw_die_ref context_die
= setup_namespace_context (decl
, comp_unit_die
);
12528 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12529 they are an alias of. */
12530 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL
)
12532 /* Output a real namespace. */
12533 dw_die_ref namespace_die
12534 = new_die (DW_TAG_namespace
, context_die
, decl
);
12535 add_name_and_src_coords_attributes (namespace_die
, decl
);
12536 equate_decl_number_to_die (decl
, namespace_die
);
12540 /* Output a namespace alias. */
12542 /* Force out the namespace we are an alias of, if necessary. */
12543 dw_die_ref origin_die
12544 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl
));
12546 /* Now create the namespace alias DIE. */
12547 dw_die_ref namespace_die
12548 = new_die (DW_TAG_imported_declaration
, context_die
, decl
);
12549 add_name_and_src_coords_attributes (namespace_die
, decl
);
12550 add_AT_die_ref (namespace_die
, DW_AT_import
, origin_die
);
12551 equate_decl_number_to_die (decl
, namespace_die
);
12555 /* Generate Dwarf debug information for a decl described by DECL. */
12558 gen_decl_die (tree decl
, dw_die_ref context_die
)
12562 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
12565 switch (TREE_CODE (decl
))
12571 /* The individual enumerators of an enum type get output when we output
12572 the Dwarf representation of the relevant enum type itself. */
12575 case FUNCTION_DECL
:
12576 /* Don't output any DIEs to represent mere function declarations,
12577 unless they are class members or explicit block externs. */
12578 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
12579 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
12584 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12585 on local redeclarations of global functions. That seems broken. */
12586 if (current_function_decl
!= decl
)
12587 /* This is only a declaration. */;
12590 /* If we're emitting a clone, emit info for the abstract instance. */
12591 if (DECL_ORIGIN (decl
) != decl
)
12592 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
12594 /* If we're emitting an out-of-line copy of an inline function,
12595 emit info for the abstract instance and set up to refer to it. */
12596 else if (cgraph_function_possibly_inlined_p (decl
)
12597 && ! DECL_ABSTRACT (decl
)
12598 && ! class_or_namespace_scope_p (context_die
)
12599 /* dwarf2out_abstract_function won't emit a die if this is just
12600 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12601 that case, because that works only if we have a die. */
12602 && DECL_INITIAL (decl
) != NULL_TREE
)
12604 dwarf2out_abstract_function (decl
);
12605 set_decl_origin_self (decl
);
12608 /* Otherwise we're emitting the primary DIE for this decl. */
12609 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
12611 /* Before we describe the FUNCTION_DECL itself, make sure that we
12612 have described its return type. */
12613 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
12615 /* And its virtual context. */
12616 if (DECL_VINDEX (decl
) != NULL_TREE
)
12617 gen_type_die (DECL_CONTEXT (decl
), context_die
);
12619 /* And its containing type. */
12620 origin
= decl_class_context (decl
);
12621 if (origin
!= NULL_TREE
)
12622 gen_type_die_for_member (origin
, decl
, context_die
);
12624 /* And its containing namespace. */
12625 declare_in_namespace (decl
, context_die
);
12628 /* Now output a DIE to represent the function itself. */
12629 gen_subprogram_die (decl
, context_die
);
12633 /* If we are in terse mode, don't generate any DIEs to represent any
12634 actual typedefs. */
12635 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12638 /* In the special case of a TYPE_DECL node representing the declaration
12639 of some type tag, if the given TYPE_DECL is marked as having been
12640 instantiated from some other (original) TYPE_DECL node (e.g. one which
12641 was generated within the original definition of an inline function) we
12642 have to generate a special (abbreviated) DW_TAG_structure_type,
12643 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12644 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
12646 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
12650 if (is_redundant_typedef (decl
))
12651 gen_type_die (TREE_TYPE (decl
), context_die
);
12653 /* Output a DIE to represent the typedef itself. */
12654 gen_typedef_die (decl
, context_die
);
12658 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
12659 gen_label_die (decl
, context_die
);
12664 /* If we are in terse mode, don't generate any DIEs to represent any
12665 variable declarations or definitions. */
12666 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12669 /* Output any DIEs that are needed to specify the type of this data
12671 gen_type_die (TREE_TYPE (decl
), context_die
);
12673 /* And its containing type. */
12674 origin
= decl_class_context (decl
);
12675 if (origin
!= NULL_TREE
)
12676 gen_type_die_for_member (origin
, decl
, context_die
);
12678 /* And its containing namespace. */
12679 declare_in_namespace (decl
, context_die
);
12681 /* Now output the DIE to represent the data object itself. This gets
12682 complicated because of the possibility that the VAR_DECL really
12683 represents an inlined instance of a formal parameter for an inline
12685 origin
= decl_ultimate_origin (decl
);
12686 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
12687 gen_formal_parameter_die (decl
, context_die
);
12689 gen_variable_die (decl
, context_die
);
12693 /* Ignore the nameless fields that are used to skip bits but handle C++
12694 anonymous unions and structs. */
12695 if (DECL_NAME (decl
) != NULL_TREE
12696 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
12697 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
)
12699 gen_type_die (member_declared_type (decl
), context_die
);
12700 gen_field_die (decl
, context_die
);
12705 gen_type_die (TREE_TYPE (decl
), context_die
);
12706 gen_formal_parameter_die (decl
, context_die
);
12709 case NAMESPACE_DECL
:
12710 gen_namespace_die (decl
);
12714 if ((int)TREE_CODE (decl
) > NUM_TREE_CODES
)
12715 /* Probably some frontend-internal decl. Assume we don't care. */
12721 /* Add Ada "use" clause information for SGI Workshop debugger. */
12724 dwarf2out_add_library_unit_info (const char *filename
, const char *context_list
)
12726 unsigned int file_index
;
12728 if (filename
!= NULL
)
12730 dw_die_ref unit_die
= new_die (DW_TAG_module
, comp_unit_die
, NULL
);
12731 tree context_list_decl
12732 = build_decl (LABEL_DECL
, get_identifier (context_list
),
12735 TREE_PUBLIC (context_list_decl
) = TRUE
;
12736 add_name_attribute (unit_die
, context_list
);
12737 file_index
= lookup_filename (filename
);
12738 add_AT_unsigned (unit_die
, DW_AT_decl_file
, file_index
);
12739 add_pubname (context_list_decl
, unit_die
);
12743 /* Output debug information for global decl DECL. Called from toplev.c after
12744 compilation proper has finished. */
12747 dwarf2out_global_decl (tree decl
)
12749 /* Output DWARF2 information for file-scope tentative data object
12750 declarations, file-scope (extern) function declarations (which had no
12751 corresponding body) and file-scope tagged type declarations and
12752 definitions which have not yet been forced out. */
12753 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
12754 dwarf2out_decl (decl
);
12757 /* Output debug information for type decl DECL. Called from toplev.c
12758 and from language front ends (to record built-in types). */
12760 dwarf2out_type_decl (tree decl
, int local
)
12763 dwarf2out_decl (decl
);
12766 /* Output debug information for imported module or decl. */
12769 dwarf2out_imported_module_or_decl (tree decl
, tree context
)
12771 dw_die_ref imported_die
, at_import_die
;
12772 dw_die_ref scope_die
;
12773 unsigned file_index
;
12775 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12781 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12782 We need decl DIE for reference and scope die. First, get DIE for the decl
12785 /* Get the scope die for decl context. Use comp_unit_die for global module
12786 or decl. If die is not found for non globals, force new die. */
12788 scope_die
= comp_unit_die
;
12789 else if (TYPE_P (context
))
12790 scope_die
= force_type_die (context
);
12792 scope_die
= force_decl_die (context
);
12794 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12795 if (TREE_CODE (decl
) == TYPE_DECL
|| TREE_CODE (decl
) == CONST_DECL
)
12796 at_import_die
= force_type_die (TREE_TYPE (decl
));
12798 at_import_die
= force_decl_die (decl
);
12800 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12801 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
12802 imported_die
= new_die (DW_TAG_imported_module
, scope_die
, context
);
12804 imported_die
= new_die (DW_TAG_imported_declaration
, scope_die
, context
);
12806 file_index
= lookup_filename (input_filename
);
12807 add_AT_unsigned (imported_die
, DW_AT_decl_file
, file_index
);
12808 add_AT_unsigned (imported_die
, DW_AT_decl_line
, input_line
);
12809 add_AT_die_ref (imported_die
, DW_AT_import
, at_import_die
);
12812 /* Write the debugging output for DECL. */
12815 dwarf2out_decl (tree decl
)
12817 dw_die_ref context_die
= comp_unit_die
;
12819 switch (TREE_CODE (decl
))
12824 case FUNCTION_DECL
:
12825 /* What we would really like to do here is to filter out all mere
12826 file-scope declarations of file-scope functions which are never
12827 referenced later within this translation unit (and keep all of ones
12828 that *are* referenced later on) but we aren't clairvoyant, so we have
12829 no idea which functions will be referenced in the future (i.e. later
12830 on within the current translation unit). So here we just ignore all
12831 file-scope function declarations which are not also definitions. If
12832 and when the debugger needs to know something about these functions,
12833 it will have to hunt around and find the DWARF information associated
12834 with the definition of the function.
12836 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12837 nodes represent definitions and which ones represent mere
12838 declarations. We have to check DECL_INITIAL instead. That's because
12839 the C front-end supports some weird semantics for "extern inline"
12840 function definitions. These can get inlined within the current
12841 translation unit (an thus, we need to generate Dwarf info for their
12842 abstract instances so that the Dwarf info for the concrete inlined
12843 instances can have something to refer to) but the compiler never
12844 generates any out-of-lines instances of such things (despite the fact
12845 that they *are* definitions).
12847 The important point is that the C front-end marks these "extern
12848 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12849 them anyway. Note that the C++ front-end also plays some similar games
12850 for inline function definitions appearing within include files which
12851 also contain `#pragma interface' pragmas. */
12852 if (DECL_INITIAL (decl
) == NULL_TREE
)
12855 /* If we're a nested function, initially use a parent of NULL; if we're
12856 a plain function, this will be fixed up in decls_for_scope. If
12857 we're a method, it will be ignored, since we already have a DIE. */
12858 if (decl_function_context (decl
)
12859 /* But if we're in terse mode, we don't care about scope. */
12860 && debug_info_level
> DINFO_LEVEL_TERSE
)
12861 context_die
= NULL
;
12865 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12866 declaration and if the declaration was never even referenced from
12867 within this entire compilation unit. We suppress these DIEs in
12868 order to save space in the .debug section (by eliminating entries
12869 which are probably useless). Note that we must not suppress
12870 block-local extern declarations (whether used or not) because that
12871 would screw-up the debugger's name lookup mechanism and cause it to
12872 miss things which really ought to be in scope at a given point. */
12873 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
12876 /* If we are in terse mode, don't generate any DIEs to represent any
12877 variable declarations or definitions. */
12878 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12882 case NAMESPACE_DECL
:
12883 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12885 if (lookup_decl_die (decl
) != NULL
)
12890 /* Don't emit stubs for types unless they are needed by other DIEs. */
12891 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
12894 /* Don't bother trying to generate any DIEs to represent any of the
12895 normal built-in types for the language we are compiling. */
12896 if (DECL_SOURCE_LINE (decl
) == 0)
12898 /* OK, we need to generate one for `bool' so GDB knows what type
12899 comparisons have. */
12900 if ((get_AT_unsigned (comp_unit_die
, DW_AT_language
)
12901 == DW_LANG_C_plus_plus
)
12902 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
12903 && ! DECL_IGNORED_P (decl
))
12904 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
12909 /* If we are in terse mode, don't generate any DIEs for types. */
12910 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12913 /* If we're a function-scope tag, initially use a parent of NULL;
12914 this will be fixed up in decls_for_scope. */
12915 if (decl_function_context (decl
))
12916 context_die
= NULL
;
12924 gen_decl_die (decl
, context_die
);
12927 /* Output a marker (i.e. a label) for the beginning of the generated code for
12928 a lexical block. */
12931 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED
,
12932 unsigned int blocknum
)
12934 function_section (current_function_decl
);
12935 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
12938 /* Output a marker (i.e. a label) for the end of the generated code for a
12942 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED
, unsigned int blocknum
)
12944 function_section (current_function_decl
);
12945 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
12948 /* Returns nonzero if it is appropriate not to emit any debugging
12949 information for BLOCK, because it doesn't contain any instructions.
12951 Don't allow this for blocks with nested functions or local classes
12952 as we would end up with orphans, and in the presence of scheduling
12953 we may end up calling them anyway. */
12956 dwarf2out_ignore_block (tree block
)
12960 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
12961 if (TREE_CODE (decl
) == FUNCTION_DECL
12962 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
12968 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12969 dwarf2out.c) and return its "index". The index of each (known) filename is
12970 just a unique number which is associated with only that one filename. We
12971 need such numbers for the sake of generating labels (in the .debug_sfnames
12972 section) and references to those files numbers (in the .debug_srcinfo
12973 and.debug_macinfo sections). If the filename given as an argument is not
12974 found in our current list, add it to the list and assign it the next
12975 available unique index number. In order to speed up searches, we remember
12976 the index of the filename was looked up last. This handles the majority of
12980 lookup_filename (const char *file_name
)
12983 char *save_file_name
;
12985 /* Check to see if the file name that was searched on the previous
12986 call matches this file name. If so, return the index. */
12987 if (file_table_last_lookup_index
!= 0)
12990 = VARRAY_CHAR_PTR (file_table
, file_table_last_lookup_index
);
12991 if (strcmp (file_name
, last
) == 0)
12992 return file_table_last_lookup_index
;
12995 /* Didn't match the previous lookup, search the table */
12996 n
= VARRAY_ACTIVE_SIZE (file_table
);
12997 for (i
= 1; i
< n
; i
++)
12998 if (strcmp (file_name
, VARRAY_CHAR_PTR (file_table
, i
)) == 0)
13000 file_table_last_lookup_index
= i
;
13004 /* Add the new entry to the end of the filename table. */
13005 file_table_last_lookup_index
= n
;
13006 save_file_name
= (char *) ggc_strdup (file_name
);
13007 VARRAY_PUSH_CHAR_PTR (file_table
, save_file_name
);
13008 VARRAY_PUSH_UINT (file_table_emitted
, 0);
13014 maybe_emit_file (int fileno
)
13016 if (DWARF2_ASM_LINE_DEBUG_INFO
&& fileno
> 0)
13018 if (!VARRAY_UINT (file_table_emitted
, fileno
))
13020 VARRAY_UINT (file_table_emitted
, fileno
) = ++emitcount
;
13021 fprintf (asm_out_file
, "\t.file %u ",
13022 VARRAY_UINT (file_table_emitted
, fileno
));
13023 output_quoted_string (asm_out_file
,
13024 VARRAY_CHAR_PTR (file_table
, fileno
));
13025 fputc ('\n', asm_out_file
);
13027 return VARRAY_UINT (file_table_emitted
, fileno
);
13034 init_file_table (void)
13036 /* Allocate the initial hunk of the file_table. */
13037 VARRAY_CHAR_PTR_INIT (file_table
, 64, "file_table");
13038 VARRAY_UINT_INIT (file_table_emitted
, 64, "file_table_emitted");
13040 /* Skip the first entry - file numbers begin at 1. */
13041 VARRAY_PUSH_CHAR_PTR (file_table
, NULL
);
13042 VARRAY_PUSH_UINT (file_table_emitted
, 0);
13043 file_table_last_lookup_index
= 0;
13046 /* Called by the final INSN scan whenever we see a var location. We
13047 use it to drop labels in the right places, and throw the location in
13048 our lookup table. */
13051 dwarf2out_var_location (rtx loc_note
)
13053 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
13054 struct var_loc_node
*newloc
;
13056 static rtx last_insn
;
13057 static const char *last_label
;
13059 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note
)))
13061 prev_insn
= PREV_INSN (loc_note
);
13063 newloc
= ggc_alloc_cleared (sizeof (struct var_loc_node
));
13064 /* If the insn we processed last time is the previous insn
13065 and it is also a var location note, use the label we emitted
13067 if (last_insn
!= NULL_RTX
13068 && last_insn
== prev_insn
13069 && GET_CODE (prev_insn
) == NOTE
13070 && NOTE_LINE_NUMBER (prev_insn
) == NOTE_INSN_VAR_LOCATION
)
13072 newloc
->label
= last_label
;
13076 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", loclabel_num
);
13077 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LVL", loclabel_num
);
13079 newloc
->label
= ggc_strdup (loclabel
);
13081 newloc
->var_loc_note
= loc_note
;
13082 newloc
->next
= NULL
;
13084 last_insn
= loc_note
;
13085 last_label
= newloc
->label
;
13087 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note
), newloc
);
13090 /* We need to reset the locations at the beginning of each
13091 function. We can't do this in the end_function hook, because the
13092 declarations that use the locations won't have been outputted when
13093 that hook is called. */
13096 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED
)
13098 htab_empty (decl_loc_table
);
13101 /* Output a label to mark the beginning of a source code line entry
13102 and record information relating to this source line, in
13103 'line_info_table' for later output of the .debug_line section. */
13106 dwarf2out_source_line (unsigned int line
, const char *filename
)
13108 if (debug_info_level
>= DINFO_LEVEL_NORMAL
13111 function_section (current_function_decl
);
13113 /* If requested, emit something human-readable. */
13114 if (flag_debug_asm
)
13115 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
13118 if (DWARF2_ASM_LINE_DEBUG_INFO
)
13120 unsigned file_num
= lookup_filename (filename
);
13122 file_num
= maybe_emit_file (file_num
);
13124 /* Emit the .loc directive understood by GNU as. */
13125 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
13127 /* Indicate that line number info exists. */
13128 line_info_table_in_use
++;
13130 /* Indicate that multiple line number tables exist. */
13131 if (DECL_SECTION_NAME (current_function_decl
))
13132 separate_line_info_table_in_use
++;
13134 else if (DECL_SECTION_NAME (current_function_decl
))
13136 dw_separate_line_info_ref line_info
;
13137 targetm
.asm_out
.internal_label (asm_out_file
, SEPARATE_LINE_CODE_LABEL
,
13138 separate_line_info_table_in_use
);
13140 /* Expand the line info table if necessary. */
13141 if (separate_line_info_table_in_use
13142 == separate_line_info_table_allocated
)
13144 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
13145 separate_line_info_table
13146 = ggc_realloc (separate_line_info_table
,
13147 separate_line_info_table_allocated
13148 * sizeof (dw_separate_line_info_entry
));
13149 memset (separate_line_info_table
13150 + separate_line_info_table_in_use
,
13152 (LINE_INFO_TABLE_INCREMENT
13153 * sizeof (dw_separate_line_info_entry
)));
13156 /* Add the new entry at the end of the line_info_table. */
13158 = &separate_line_info_table
[separate_line_info_table_in_use
++];
13159 line_info
->dw_file_num
= lookup_filename (filename
);
13160 line_info
->dw_line_num
= line
;
13161 line_info
->function
= current_function_funcdef_no
;
13165 dw_line_info_ref line_info
;
13167 targetm
.asm_out
.internal_label (asm_out_file
, LINE_CODE_LABEL
,
13168 line_info_table_in_use
);
13170 /* Expand the line info table if necessary. */
13171 if (line_info_table_in_use
== line_info_table_allocated
)
13173 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
13175 = ggc_realloc (line_info_table
,
13176 (line_info_table_allocated
13177 * sizeof (dw_line_info_entry
)));
13178 memset (line_info_table
+ line_info_table_in_use
, 0,
13179 LINE_INFO_TABLE_INCREMENT
* sizeof (dw_line_info_entry
));
13182 /* Add the new entry at the end of the line_info_table. */
13183 line_info
= &line_info_table
[line_info_table_in_use
++];
13184 line_info
->dw_file_num
= lookup_filename (filename
);
13185 line_info
->dw_line_num
= line
;
13190 /* Record the beginning of a new source file. */
13193 dwarf2out_start_source_file (unsigned int lineno
, const char *filename
)
13195 if (flag_eliminate_dwarf2_dups
)
13197 /* Record the beginning of the file for break_out_includes. */
13198 dw_die_ref bincl_die
;
13200 bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
13201 add_AT_string (bincl_die
, DW_AT_name
, filename
);
13204 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13206 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13207 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
13208 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
13210 maybe_emit_file (lookup_filename (filename
));
13211 dw2_asm_output_data_uleb128 (lookup_filename (filename
),
13212 "Filename we just started");
13216 /* Record the end of a source file. */
13219 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED
)
13221 if (flag_eliminate_dwarf2_dups
)
13222 /* Record the end of the file for break_out_includes. */
13223 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
13225 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13227 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13228 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
13232 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13233 the tail part of the directive line, i.e. the part which is past the
13234 initial whitespace, #, whitespace, directive-name, whitespace part. */
13237 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED
,
13238 const char *buffer ATTRIBUTE_UNUSED
)
13240 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13242 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13243 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
13244 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
13245 dw2_asm_output_nstring (buffer
, -1, "The macro");
13249 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13250 the tail part of the directive line, i.e. the part which is past the
13251 initial whitespace, #, whitespace, directive-name, whitespace part. */
13254 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED
,
13255 const char *buffer ATTRIBUTE_UNUSED
)
13257 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13259 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13260 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
13261 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
13262 dw2_asm_output_nstring (buffer
, -1, "The macro");
13266 /* Set up for Dwarf output at the start of compilation. */
13269 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED
)
13271 init_file_table ();
13273 /* Allocate the decl_die_table. */
13274 decl_die_table
= htab_create_ggc (10, decl_die_table_hash
,
13275 decl_die_table_eq
, NULL
);
13277 /* Allocate the decl_loc_table. */
13278 decl_loc_table
= htab_create_ggc (10, decl_loc_table_hash
,
13279 decl_loc_table_eq
, NULL
);
13281 /* Allocate the initial hunk of the decl_scope_table. */
13282 VARRAY_TREE_INIT (decl_scope_table
, 256, "decl_scope_table");
13284 /* Allocate the initial hunk of the abbrev_die_table. */
13285 abbrev_die_table
= ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13286 * sizeof (dw_die_ref
));
13287 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
13288 /* Zero-th entry is allocated, but unused */
13289 abbrev_die_table_in_use
= 1;
13291 /* Allocate the initial hunk of the line_info_table. */
13292 line_info_table
= ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13293 * sizeof (dw_line_info_entry
));
13294 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
13296 /* Zero-th entry is allocated, but unused */
13297 line_info_table_in_use
= 1;
13299 /* Generate the initial DIE for the .debug section. Note that the (string)
13300 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13301 will (typically) be a relative pathname and that this pathname should be
13302 taken as being relative to the directory from which the compiler was
13303 invoked when the given (base) source file was compiled. We will fill
13304 in this value in dwarf2out_finish. */
13305 comp_unit_die
= gen_compile_unit_die (NULL
);
13307 VARRAY_TREE_INIT (incomplete_types
, 64, "incomplete_types");
13309 VARRAY_RTX_INIT (used_rtx_varray
, 32, "used_rtx_varray");
13311 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
13312 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
13313 DEBUG_ABBREV_SECTION_LABEL
, 0);
13314 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
13315 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
13317 strcpy (text_section_label
, stripattributes (TEXT_SECTION_NAME
));
13319 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
13320 DEBUG_INFO_SECTION_LABEL
, 0);
13321 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
13322 DEBUG_LINE_SECTION_LABEL
, 0);
13323 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
13324 DEBUG_RANGES_SECTION_LABEL
, 0);
13325 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
13326 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
13327 named_section_flags (DEBUG_INFO_SECTION
, SECTION_DEBUG
);
13328 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
13329 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
13330 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
13332 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13334 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13335 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
13336 DEBUG_MACINFO_SECTION_LABEL
, 0);
13337 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
13340 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
13343 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
13347 /* A helper function for dwarf2out_finish called through
13348 ht_forall. Emit one queued .debug_str string. */
13351 output_indirect_string (void **h
, void *v ATTRIBUTE_UNUSED
)
13353 struct indirect_string_node
*node
= (struct indirect_string_node
*) *h
;
13355 if (node
->form
== DW_FORM_strp
)
13357 named_section_flags (DEBUG_STR_SECTION
, DEBUG_STR_SECTION_FLAGS
);
13358 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
13359 assemble_string (node
->str
, strlen (node
->str
) + 1);
13367 /* Clear the marks for a die and its children.
13368 Be cool if the mark isn't set. */
13371 prune_unmark_dies (dw_die_ref die
)
13375 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
13376 prune_unmark_dies (c
);
13380 /* Given DIE that we're marking as used, find any other dies
13381 it references as attributes and mark them as used. */
13384 prune_unused_types_walk_attribs (dw_die_ref die
)
13388 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
13390 if (a
->dw_attr_val
.val_class
== dw_val_class_die_ref
)
13392 /* A reference to another DIE.
13393 Make sure that it will get emitted. */
13394 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
13396 else if (a
->dw_attr
== DW_AT_decl_file
)
13398 /* A reference to a file. Make sure the file name is emitted. */
13399 a
->dw_attr_val
.v
.val_unsigned
=
13400 maybe_emit_file (a
->dw_attr_val
.v
.val_unsigned
);
13406 /* Mark DIE as being used. If DOKIDS is true, then walk down
13407 to DIE's children. */
13410 prune_unused_types_mark (dw_die_ref die
, int dokids
)
13414 if (die
->die_mark
== 0)
13416 /* We haven't done this node yet. Mark it as used. */
13419 /* We also have to mark its parents as used.
13420 (But we don't want to mark our parents' kids due to this.) */
13421 if (die
->die_parent
)
13422 prune_unused_types_mark (die
->die_parent
, 0);
13424 /* Mark any referenced nodes. */
13425 prune_unused_types_walk_attribs (die
);
13427 /* If this node is a specification,
13428 also mark the definition, if it exists. */
13429 if (get_AT_flag (die
, DW_AT_declaration
) && die
->die_definition
)
13430 prune_unused_types_mark (die
->die_definition
, 1);
13433 if (dokids
&& die
->die_mark
!= 2)
13435 /* We need to walk the children, but haven't done so yet.
13436 Remember that we've walked the kids. */
13440 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
13442 /* If this is an array type, we need to make sure our
13443 kids get marked, even if they're types. */
13444 if (die
->die_tag
== DW_TAG_array_type
)
13445 prune_unused_types_mark (c
, 1);
13447 prune_unused_types_walk (c
);
13453 /* Walk the tree DIE and mark types that we actually use. */
13456 prune_unused_types_walk (dw_die_ref die
)
13460 /* Don't do anything if this node is already marked. */
13464 switch (die
->die_tag
) {
13465 case DW_TAG_const_type
:
13466 case DW_TAG_packed_type
:
13467 case DW_TAG_pointer_type
:
13468 case DW_TAG_reference_type
:
13469 case DW_TAG_volatile_type
:
13470 case DW_TAG_typedef
:
13471 case DW_TAG_array_type
:
13472 case DW_TAG_structure_type
:
13473 case DW_TAG_union_type
:
13474 case DW_TAG_class_type
:
13475 case DW_TAG_friend
:
13476 case DW_TAG_variant_part
:
13477 case DW_TAG_enumeration_type
:
13478 case DW_TAG_subroutine_type
:
13479 case DW_TAG_string_type
:
13480 case DW_TAG_set_type
:
13481 case DW_TAG_subrange_type
:
13482 case DW_TAG_ptr_to_member_type
:
13483 case DW_TAG_file_type
:
13484 /* It's a type node --- don't mark it. */
13488 /* Mark everything else. */
13494 /* Now, mark any dies referenced from here. */
13495 prune_unused_types_walk_attribs (die
);
13497 /* Mark children. */
13498 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
13499 prune_unused_types_walk (c
);
13503 /* Remove from the tree DIE any dies that aren't marked. */
13506 prune_unused_types_prune (dw_die_ref die
)
13508 dw_die_ref c
, p
, n
;
13509 if (!die
->die_mark
)
13513 for (c
= die
->die_child
; c
; c
= n
)
13518 prune_unused_types_prune (c
);
13526 die
->die_child
= n
;
13533 /* Remove dies representing declarations that we never use. */
13536 prune_unused_types (void)
13539 limbo_die_node
*node
;
13541 /* Clear all the marks. */
13542 prune_unmark_dies (comp_unit_die
);
13543 for (node
= limbo_die_list
; node
; node
= node
->next
)
13544 prune_unmark_dies (node
->die
);
13546 /* Set the mark on nodes that are actually used. */
13547 prune_unused_types_walk (comp_unit_die
);
13548 for (node
= limbo_die_list
; node
; node
= node
->next
)
13549 prune_unused_types_walk (node
->die
);
13551 /* Also set the mark on nodes referenced from the
13552 pubname_table or arange_table. */
13553 for (i
= 0; i
< pubname_table_in_use
; i
++)
13554 prune_unused_types_mark (pubname_table
[i
].die
, 1);
13555 for (i
= 0; i
< arange_table_in_use
; i
++)
13556 prune_unused_types_mark (arange_table
[i
], 1);
13558 /* Get rid of nodes that aren't marked. */
13559 prune_unused_types_prune (comp_unit_die
);
13560 for (node
= limbo_die_list
; node
; node
= node
->next
)
13561 prune_unused_types_prune (node
->die
);
13563 /* Leave the marks clear. */
13564 prune_unmark_dies (comp_unit_die
);
13565 for (node
= limbo_die_list
; node
; node
= node
->next
)
13566 prune_unmark_dies (node
->die
);
13569 /* Output stuff that dwarf requires at the end of every file,
13570 and generate the DWARF-2 debugging info. */
13573 dwarf2out_finish (const char *filename
)
13575 limbo_die_node
*node
, *next_node
;
13576 dw_die_ref die
= 0;
13578 /* Add the name for the main input file now. We delayed this from
13579 dwarf2out_init to avoid complications with PCH. */
13580 add_name_attribute (comp_unit_die
, filename
);
13581 if (filename
[0] != DIR_SEPARATOR
)
13582 add_comp_dir_attribute (comp_unit_die
);
13583 else if (get_AT (comp_unit_die
, DW_AT_comp_dir
) == NULL
)
13586 for (i
= 1; i
< VARRAY_ACTIVE_SIZE (file_table
); i
++)
13587 if (VARRAY_CHAR_PTR (file_table
, i
)[0] != DIR_SEPARATOR
13588 /* Don't add cwd for <built-in>. */
13589 && VARRAY_CHAR_PTR (file_table
, i
)[0] != '<')
13591 add_comp_dir_attribute (comp_unit_die
);
13596 /* Traverse the limbo die list, and add parent/child links. The only
13597 dies without parents that should be here are concrete instances of
13598 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13599 For concrete instances, we can get the parent die from the abstract
13601 for (node
= limbo_die_list
; node
; node
= next_node
)
13603 next_node
= node
->next
;
13606 if (die
->die_parent
== NULL
)
13608 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
13612 add_child_die (origin
->die_parent
, die
);
13613 else if (die
== comp_unit_die
)
13615 /* If this was an expression for a bound involved in a function
13616 return type, it may be a SAVE_EXPR for which we weren't able
13617 to find a DIE previously. So try now. */
13618 else if (node
->created_for
13619 && TREE_CODE (node
->created_for
) == SAVE_EXPR
13620 && 0 != (origin
= (lookup_decl_die
13622 (node
->created_for
)))))
13623 add_child_die (origin
, die
);
13624 else if (errorcount
> 0 || sorrycount
> 0)
13625 /* It's OK to be confused by errors in the input. */
13626 add_child_die (comp_unit_die
, die
);
13627 else if (node
->created_for
13628 && ((DECL_P (node
->created_for
)
13629 && (context
= DECL_CONTEXT (node
->created_for
)))
13630 || (TYPE_P (node
->created_for
)
13631 && (context
= TYPE_CONTEXT (node
->created_for
))))
13632 && TREE_CODE (context
) == FUNCTION_DECL
)
13634 /* In certain situations, the lexical block containing a
13635 nested function can be optimized away, which results
13636 in the nested function die being orphaned. Likewise
13637 with the return type of that nested function. Force
13638 this to be a child of the containing function. */
13639 origin
= lookup_decl_die (context
);
13642 add_child_die (origin
, die
);
13649 limbo_die_list
= NULL
;
13651 /* Walk through the list of incomplete types again, trying once more to
13652 emit full debugging info for them. */
13653 retry_incomplete_types ();
13655 /* We need to reverse all the dies before break_out_includes, or
13656 we'll see the end of an include file before the beginning. */
13657 reverse_all_dies (comp_unit_die
);
13659 if (flag_eliminate_unused_debug_types
)
13660 prune_unused_types ();
13662 /* Generate separate CUs for each of the include files we've seen.
13663 They will go into limbo_die_list. */
13664 if (flag_eliminate_dwarf2_dups
)
13665 break_out_includes (comp_unit_die
);
13667 /* Traverse the DIE's and add add sibling attributes to those DIE's
13668 that have children. */
13669 add_sibling_attributes (comp_unit_die
);
13670 for (node
= limbo_die_list
; node
; node
= node
->next
)
13671 add_sibling_attributes (node
->die
);
13673 /* Output a terminator label for the .text section. */
13675 targetm
.asm_out
.internal_label (asm_out_file
, TEXT_END_LABEL
, 0);
13677 /* Output the source line correspondence table. We must do this
13678 even if there is no line information. Otherwise, on an empty
13679 translation unit, we will generate a present, but empty,
13680 .debug_info section. IRIX 6.5 `nm' will then complain when
13681 examining the file. */
13682 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
13684 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
13685 output_line_info ();
13688 /* Output location list section if necessary. */
13689 if (have_location_lists
)
13691 /* Output the location lists info. */
13692 named_section_flags (DEBUG_LOC_SECTION
, SECTION_DEBUG
);
13693 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
13694 DEBUG_LOC_SECTION_LABEL
, 0);
13695 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
13696 output_location_lists (die
);
13697 have_location_lists
= 0;
13700 /* We can only use the low/high_pc attributes if all of the code was
13702 if (separate_line_info_table_in_use
== 0)
13704 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
13705 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
13708 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13709 "base address". Use zero so that these addresses become absolute. */
13710 else if (have_location_lists
|| ranges_table_in_use
)
13711 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
13713 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
13714 add_AT_lbl_offset (comp_unit_die
, DW_AT_stmt_list
,
13715 debug_line_section_label
);
13717 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13718 add_AT_lbl_offset (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
13720 /* Output all of the compilation units. We put the main one last so that
13721 the offsets are available to output_pubnames. */
13722 for (node
= limbo_die_list
; node
; node
= node
->next
)
13723 output_comp_unit (node
->die
, 0);
13725 output_comp_unit (comp_unit_die
, 0);
13727 /* Output the abbreviation table. */
13728 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
13729 output_abbrev_section ();
13731 /* Output public names table if necessary. */
13732 if (pubname_table_in_use
)
13734 named_section_flags (DEBUG_PUBNAMES_SECTION
, SECTION_DEBUG
);
13735 output_pubnames ();
13738 /* Output the address range information. We only put functions in the arange
13739 table, so don't write it out if we don't have any. */
13740 if (fde_table_in_use
)
13742 named_section_flags (DEBUG_ARANGES_SECTION
, SECTION_DEBUG
);
13746 /* Output ranges section if necessary. */
13747 if (ranges_table_in_use
)
13749 named_section_flags (DEBUG_RANGES_SECTION
, SECTION_DEBUG
);
13750 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
13754 /* Have to end the primary source file. */
13755 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13757 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
13758 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
13759 dw2_asm_output_data (1, 0, "End compilation unit");
13762 /* If we emitted any DW_FORM_strp form attribute, output the string
13764 if (debug_str_hash
)
13765 htab_traverse (debug_str_hash
, output_indirect_string
, NULL
);
13769 /* This should never be used, but its address is needed for comparisons. */
13770 const struct gcc_debug_hooks dwarf2_debug_hooks
;
13772 #endif /* DWARF2_DEBUGGING_INFO */
13774 #include "gt-dwarf2out.h"