1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* stdio.h must precede rtl.h for FFS. */
25 #include "coretypes.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
35 #include "insn-config.h"
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
75 Registers and "quantity numbers":
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `reg_qty' records what quantity a register is currently thought
86 All real quantity numbers are greater than or equal to `max_reg'.
87 If register N has not been assigned a quantity, reg_qty[N] will equal N.
89 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
90 entries should be referenced with an index below `max_reg'.
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
109 Constants and quantity numbers
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
174 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
175 reg_tick[i] is incremented whenever a value is stored in register i.
176 reg_in_table[i] holds -1 if no references to register i have been
177 entered in the table; otherwise, it contains the value reg_tick[i] had
178 when the references were entered. If we want to enter a reference
179 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
180 Until we want to enter a new entry, the mere fact that the two vectors
181 don't match makes the entries be ignored if anyone tries to match them.
183 Registers themselves are entered in the hash table as well as in
184 the equivalent-register chains. However, the vectors `reg_tick'
185 and `reg_in_table' do not apply to expressions which are simple
186 register references. These expressions are removed from the table
187 immediately when they become invalid, and this can be done even if
188 we do not immediately search for all the expressions that refer to
191 A CLOBBER rtx in an instruction invalidates its operand for further
192 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
193 invalidates everything that resides in memory.
197 Constant expressions that differ only by an additive integer
198 are called related. When a constant expression is put in
199 the table, the related expression with no constant term
200 is also entered. These are made to point at each other
201 so that it is possible to find out if there exists any
202 register equivalent to an expression related to a given expression. */
204 /* One plus largest register number used in this function. */
208 /* One plus largest instruction UID used in this function at time of
211 static int max_insn_uid
;
213 /* Length of qty_table vector. We know in advance we will not need
214 a quantity number this big. */
218 /* Next quantity number to be allocated.
219 This is 1 + the largest number needed so far. */
223 /* Per-qty information tracking.
225 `first_reg' and `last_reg' track the head and tail of the
226 chain of registers which currently contain this quantity.
228 `mode' contains the machine mode of this quantity.
230 `const_rtx' holds the rtx of the constant value of this
231 quantity, if known. A summations of the frame/arg pointer
232 and a constant can also be entered here. When this holds
233 a known value, `const_insn' is the insn which stored the
236 `comparison_{code,const,qty}' are used to track when a
237 comparison between a quantity and some constant or register has
238 been passed. In such a case, we know the results of the comparison
239 in case we see it again. These members record a comparison that
240 is known to be true. `comparison_code' holds the rtx code of such
241 a comparison, else it is set to UNKNOWN and the other two
242 comparison members are undefined. `comparison_const' holds
243 the constant being compared against, or zero if the comparison
244 is not against a constant. `comparison_qty' holds the quantity
245 being compared against when the result is known. If the comparison
246 is not with a register, `comparison_qty' is -1. */
248 struct qty_table_elem
252 rtx comparison_const
;
254 unsigned int first_reg
, last_reg
;
255 /* The sizes of these fields should match the sizes of the
256 code and mode fields of struct rtx_def (see rtl.h). */
257 ENUM_BITFIELD(rtx_code
) comparison_code
: 16;
258 ENUM_BITFIELD(machine_mode
) mode
: 8;
261 /* The table of all qtys, indexed by qty number. */
262 static struct qty_table_elem
*qty_table
;
265 /* For machines that have a CC0, we do not record its value in the hash
266 table since its use is guaranteed to be the insn immediately following
267 its definition and any other insn is presumed to invalidate it.
269 Instead, we store below the value last assigned to CC0. If it should
270 happen to be a constant, it is stored in preference to the actual
271 assigned value. In case it is a constant, we store the mode in which
272 the constant should be interpreted. */
274 static rtx prev_insn_cc0
;
275 static enum machine_mode prev_insn_cc0_mode
;
277 /* Previous actual insn. 0 if at first insn of basic block. */
279 static rtx prev_insn
;
282 /* Insn being scanned. */
284 static rtx this_insn
;
286 /* Index by register number, gives the number of the next (or
287 previous) register in the chain of registers sharing the same
290 Or -1 if this register is at the end of the chain.
292 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
294 /* Per-register equivalence chain. */
300 /* The table of all register equivalence chains. */
301 static struct reg_eqv_elem
*reg_eqv_table
;
305 /* Next in hash chain. */
306 struct cse_reg_info
*hash_next
;
308 /* The next cse_reg_info structure in the free or used list. */
309 struct cse_reg_info
*next
;
314 /* The quantity number of the register's current contents. */
317 /* The number of times the register has been altered in the current
321 /* The REG_TICK value at which rtx's containing this register are
322 valid in the hash table. If this does not equal the current
323 reg_tick value, such expressions existing in the hash table are
327 /* The SUBREG that was set when REG_TICK was last incremented. Set
328 to -1 if the last store was to the whole register, not a subreg. */
329 unsigned int subreg_ticked
;
332 /* A free list of cse_reg_info entries. */
333 static struct cse_reg_info
*cse_reg_info_free_list
;
335 /* A used list of cse_reg_info entries. */
336 static struct cse_reg_info
*cse_reg_info_used_list
;
337 static struct cse_reg_info
*cse_reg_info_used_list_end
;
339 /* A mapping from registers to cse_reg_info data structures. */
340 #define REGHASH_SHIFT 7
341 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
342 #define REGHASH_MASK (REGHASH_SIZE - 1)
343 static struct cse_reg_info
*reg_hash
[REGHASH_SIZE
];
345 #define REGHASH_FN(REGNO) \
346 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
348 /* The last lookup we did into the cse_reg_info_tree. This allows us
349 to cache repeated lookups. */
350 static unsigned int cached_regno
;
351 static struct cse_reg_info
*cached_cse_reg_info
;
353 /* A HARD_REG_SET containing all the hard registers for which there is
354 currently a REG expression in the hash table. Note the difference
355 from the above variables, which indicate if the REG is mentioned in some
356 expression in the table. */
358 static HARD_REG_SET hard_regs_in_table
;
360 /* CUID of insn that starts the basic block currently being cse-processed. */
362 static int cse_basic_block_start
;
364 /* CUID of insn that ends the basic block currently being cse-processed. */
366 static int cse_basic_block_end
;
368 /* Vector mapping INSN_UIDs to cuids.
369 The cuids are like uids but increase monotonically always.
370 We use them to see whether a reg is used outside a given basic block. */
372 static int *uid_cuid
;
374 /* Highest UID in UID_CUID. */
377 /* Get the cuid of an insn. */
379 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
381 /* Nonzero if this pass has made changes, and therefore it's
382 worthwhile to run the garbage collector. */
384 static int cse_altered
;
386 /* Nonzero if cse has altered conditional jump insns
387 in such a way that jump optimization should be redone. */
389 static int cse_jumps_altered
;
391 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
392 REG_LABEL, we have to rerun jump after CSE to put in the note. */
393 static int recorded_label_ref
;
395 /* canon_hash stores 1 in do_not_record
396 if it notices a reference to CC0, PC, or some other volatile
399 static int do_not_record
;
401 #ifdef LOAD_EXTEND_OP
403 /* Scratch rtl used when looking for load-extended copy of a MEM. */
404 static rtx memory_extend_rtx
;
407 /* canon_hash stores 1 in hash_arg_in_memory
408 if it notices a reference to memory within the expression being hashed. */
410 static int hash_arg_in_memory
;
412 /* The hash table contains buckets which are chains of `struct table_elt's,
413 each recording one expression's information.
414 That expression is in the `exp' field.
416 The canon_exp field contains a canonical (from the point of view of
417 alias analysis) version of the `exp' field.
419 Those elements with the same hash code are chained in both directions
420 through the `next_same_hash' and `prev_same_hash' fields.
422 Each set of expressions with equivalent values
423 are on a two-way chain through the `next_same_value'
424 and `prev_same_value' fields, and all point with
425 the `first_same_value' field at the first element in
426 that chain. The chain is in order of increasing cost.
427 Each element's cost value is in its `cost' field.
429 The `in_memory' field is nonzero for elements that
430 involve any reference to memory. These elements are removed
431 whenever a write is done to an unidentified location in memory.
432 To be safe, we assume that a memory address is unidentified unless
433 the address is either a symbol constant or a constant plus
434 the frame pointer or argument pointer.
436 The `related_value' field is used to connect related expressions
437 (that differ by adding an integer).
438 The related expressions are chained in a circular fashion.
439 `related_value' is zero for expressions for which this
442 The `cost' field stores the cost of this element's expression.
443 The `regcost' field stores the value returned by approx_reg_cost for
444 this element's expression.
446 The `is_const' flag is set if the element is a constant (including
449 The `flag' field is used as a temporary during some search routines.
451 The `mode' field is usually the same as GET_MODE (`exp'), but
452 if `exp' is a CONST_INT and has no machine mode then the `mode'
453 field is the mode it was being used as. Each constant is
454 recorded separately for each mode it is used with. */
460 struct table_elt
*next_same_hash
;
461 struct table_elt
*prev_same_hash
;
462 struct table_elt
*next_same_value
;
463 struct table_elt
*prev_same_value
;
464 struct table_elt
*first_same_value
;
465 struct table_elt
*related_value
;
468 /* The size of this field should match the size
469 of the mode field of struct rtx_def (see rtl.h). */
470 ENUM_BITFIELD(machine_mode
) mode
: 8;
476 /* We don't want a lot of buckets, because we rarely have very many
477 things stored in the hash table, and a lot of buckets slows
478 down a lot of loops that happen frequently. */
480 #define HASH_SIZE (1 << HASH_SHIFT)
481 #define HASH_MASK (HASH_SIZE - 1)
483 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
484 register (hard registers may require `do_not_record' to be set). */
487 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
488 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
489 : canon_hash (X, M)) & HASH_MASK)
491 /* Determine whether register number N is considered a fixed register for the
492 purpose of approximating register costs.
493 It is desirable to replace other regs with fixed regs, to reduce need for
495 A reg wins if it is either the frame pointer or designated as fixed. */
496 #define FIXED_REGNO_P(N) \
497 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
498 || fixed_regs[N] || global_regs[N])
500 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
501 hard registers and pointers into the frame are the cheapest with a cost
502 of 0. Next come pseudos with a cost of one and other hard registers with
503 a cost of 2. Aside from these special cases, call `rtx_cost'. */
505 #define CHEAP_REGNO(N) \
506 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
507 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
508 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
509 || ((N) < FIRST_PSEUDO_REGISTER \
510 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
512 #define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
513 #define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
515 /* Get the info associated with register N. */
517 #define GET_CSE_REG_INFO(N) \
518 (((N) == cached_regno && cached_cse_reg_info) \
519 ? cached_cse_reg_info : get_cse_reg_info ((N)))
521 /* Get the number of times this register has been updated in this
524 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
526 /* Get the point at which REG was recorded in the table. */
528 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
530 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
533 #define SUBREG_TICKED(N) ((GET_CSE_REG_INFO (N))->subreg_ticked)
535 /* Get the quantity number for REG. */
537 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
539 /* Determine if the quantity number for register X represents a valid index
540 into the qty_table. */
542 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
544 static struct table_elt
*table
[HASH_SIZE
];
546 /* Chain of `struct table_elt's made so far for this function
547 but currently removed from the table. */
549 static struct table_elt
*free_element_chain
;
551 /* Number of `struct table_elt' structures made so far for this function. */
553 static int n_elements_made
;
555 /* Maximum value `n_elements_made' has had so far in this compilation
556 for functions previously processed. */
558 static int max_elements_made
;
560 /* Surviving equivalence class when two equivalence classes are merged
561 by recording the effects of a jump in the last insn. Zero if the
562 last insn was not a conditional jump. */
564 static struct table_elt
*last_jump_equiv_class
;
566 /* Set to the cost of a constant pool reference if one was found for a
567 symbolic constant. If this was found, it means we should try to
568 convert constants into constant pool entries if they don't fit in
571 static int constant_pool_entries_cost
;
572 static int constant_pool_entries_regcost
;
574 /* This data describes a block that will be processed by cse_basic_block. */
576 struct cse_basic_block_data
578 /* Lowest CUID value of insns in block. */
580 /* Highest CUID value of insns in block. */
582 /* Total number of SETs in block. */
584 /* Last insn in the block. */
586 /* Size of current branch path, if any. */
588 /* Current branch path, indicating which branches will be taken. */
591 /* The branch insn. */
593 /* Whether it should be taken or not. AROUND is the same as taken
594 except that it is used when the destination label is not preceded
596 enum taken
{PATH_TAKEN
, PATH_NOT_TAKEN
, PATH_AROUND
} status
;
600 static bool fixed_base_plus_p (rtx x
);
601 static int notreg_cost (rtx
, enum rtx_code
);
602 static int approx_reg_cost_1 (rtx
*, void *);
603 static int approx_reg_cost (rtx
);
604 static int preferable (int, int, int, int);
605 static void new_basic_block (void);
606 static void make_new_qty (unsigned int, enum machine_mode
);
607 static void make_regs_eqv (unsigned int, unsigned int);
608 static void delete_reg_equiv (unsigned int);
609 static int mention_regs (rtx
);
610 static int insert_regs (rtx
, struct table_elt
*, int);
611 static void remove_from_table (struct table_elt
*, unsigned);
612 static struct table_elt
*lookup (rtx
, unsigned, enum machine_mode
);
613 static struct table_elt
*lookup_for_remove (rtx
, unsigned, enum machine_mode
);
614 static rtx
lookup_as_function (rtx
, enum rtx_code
);
615 static struct table_elt
*insert (rtx
, struct table_elt
*, unsigned,
617 static void merge_equiv_classes (struct table_elt
*, struct table_elt
*);
618 static void invalidate (rtx
, enum machine_mode
);
619 static int cse_rtx_varies_p (rtx
, int);
620 static void remove_invalid_refs (unsigned int);
621 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
623 static void rehash_using_reg (rtx
);
624 static void invalidate_memory (void);
625 static void invalidate_for_call (void);
626 static rtx
use_related_value (rtx
, struct table_elt
*);
627 static unsigned canon_hash (rtx
, enum machine_mode
);
628 static unsigned canon_hash_string (const char *);
629 static unsigned safe_hash (rtx
, enum machine_mode
);
630 static int exp_equiv_p (rtx
, rtx
, int, int);
631 static rtx
canon_reg (rtx
, rtx
);
632 static void find_best_addr (rtx
, rtx
*, enum machine_mode
);
633 static enum rtx_code
find_comparison_args (enum rtx_code
, rtx
*, rtx
*,
635 enum machine_mode
*);
636 static rtx
fold_rtx (rtx
, rtx
);
637 static rtx
equiv_constant (rtx
);
638 static void record_jump_equiv (rtx
, int);
639 static void record_jump_cond (enum rtx_code
, enum machine_mode
, rtx
, rtx
,
641 static void cse_insn (rtx
, rtx
);
642 static void cse_end_of_basic_block (rtx
, struct cse_basic_block_data
*,
644 static int addr_affects_sp_p (rtx
);
645 static void invalidate_from_clobbers (rtx
);
646 static rtx
cse_process_notes (rtx
, rtx
);
647 static void cse_around_loop (rtx
);
648 static void invalidate_skipped_set (rtx
, rtx
, void *);
649 static void invalidate_skipped_block (rtx
);
650 static void cse_check_loop_start (rtx
, rtx
, void *);
651 static void cse_set_around_loop (rtx
, rtx
, rtx
);
652 static rtx
cse_basic_block (rtx
, rtx
, struct branch_path
*, int);
653 static void count_reg_usage (rtx
, int *, int);
654 static int check_for_label_ref (rtx
*, void *);
655 extern void dump_class (struct table_elt
*);
656 static struct cse_reg_info
* get_cse_reg_info (unsigned int);
657 static int check_dependence (rtx
*, void *);
659 static void flush_hash_table (void);
660 static bool insn_live_p (rtx
, int *);
661 static bool set_live_p (rtx
, rtx
, int *);
662 static bool dead_libcall_p (rtx
, int *);
663 static int cse_change_cc_mode (rtx
*, void *);
664 static void cse_change_cc_mode_insns (rtx
, rtx
, rtx
);
665 static enum machine_mode
cse_cc_succs (basic_block
, rtx
, rtx
, bool);
667 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
668 virtual regs here because the simplify_*_operation routines are called
669 by integrate.c, which is called before virtual register instantiation. */
672 fixed_base_plus_p (rtx x
)
674 switch (GET_CODE (x
))
677 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
)
679 if (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
681 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
682 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
687 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
689 return fixed_base_plus_p (XEXP (x
, 0));
699 /* Dump the expressions in the equivalence class indicated by CLASSP.
700 This function is used only for debugging. */
702 dump_class (struct table_elt
*classp
)
704 struct table_elt
*elt
;
706 fprintf (stderr
, "Equivalence chain for ");
707 print_rtl (stderr
, classp
->exp
);
708 fprintf (stderr
, ": \n");
710 for (elt
= classp
->first_same_value
; elt
; elt
= elt
->next_same_value
)
712 print_rtl (stderr
, elt
->exp
);
713 fprintf (stderr
, "\n");
717 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
720 approx_reg_cost_1 (rtx
*xp
, void *data
)
725 if (x
&& GET_CODE (x
) == REG
)
727 unsigned int regno
= REGNO (x
);
729 if (! CHEAP_REGNO (regno
))
731 if (regno
< FIRST_PSEUDO_REGISTER
)
733 if (SMALL_REGISTER_CLASSES
)
745 /* Return an estimate of the cost of the registers used in an rtx.
746 This is mostly the number of different REG expressions in the rtx;
747 however for some exceptions like fixed registers we use a cost of
748 0. If any other hard register reference occurs, return MAX_COST. */
751 approx_reg_cost (rtx x
)
755 if (for_each_rtx (&x
, approx_reg_cost_1
, (void *) &cost
))
761 /* Return a negative value if an rtx A, whose costs are given by COST_A
762 and REGCOST_A, is more desirable than an rtx B.
763 Return a positive value if A is less desirable, or 0 if the two are
766 preferable (int cost_a
, int regcost_a
, int cost_b
, int regcost_b
)
768 /* First, get rid of cases involving expressions that are entirely
770 if (cost_a
!= cost_b
)
772 if (cost_a
== MAX_COST
)
774 if (cost_b
== MAX_COST
)
778 /* Avoid extending lifetimes of hardregs. */
779 if (regcost_a
!= regcost_b
)
781 if (regcost_a
== MAX_COST
)
783 if (regcost_b
== MAX_COST
)
787 /* Normal operation costs take precedence. */
788 if (cost_a
!= cost_b
)
789 return cost_a
- cost_b
;
790 /* Only if these are identical consider effects on register pressure. */
791 if (regcost_a
!= regcost_b
)
792 return regcost_a
- regcost_b
;
796 /* Internal function, to compute cost when X is not a register; called
797 from COST macro to keep it simple. */
800 notreg_cost (rtx x
, enum rtx_code outer
)
802 return ((GET_CODE (x
) == SUBREG
803 && GET_CODE (SUBREG_REG (x
)) == REG
804 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
805 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_INT
806 && (GET_MODE_SIZE (GET_MODE (x
))
807 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
808 && subreg_lowpart_p (x
)
809 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x
)),
810 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))))
812 : rtx_cost (x
, outer
) * 2);
816 static struct cse_reg_info
*
817 get_cse_reg_info (unsigned int regno
)
819 struct cse_reg_info
**hash_head
= ®_hash
[REGHASH_FN (regno
)];
820 struct cse_reg_info
*p
;
822 for (p
= *hash_head
; p
!= NULL
; p
= p
->hash_next
)
823 if (p
->regno
== regno
)
828 /* Get a new cse_reg_info structure. */
829 if (cse_reg_info_free_list
)
831 p
= cse_reg_info_free_list
;
832 cse_reg_info_free_list
= p
->next
;
835 p
= xmalloc (sizeof (struct cse_reg_info
));
837 /* Insert into hash table. */
838 p
->hash_next
= *hash_head
;
843 p
->reg_in_table
= -1;
844 p
->subreg_ticked
= -1;
847 p
->next
= cse_reg_info_used_list
;
848 cse_reg_info_used_list
= p
;
849 if (!cse_reg_info_used_list_end
)
850 cse_reg_info_used_list_end
= p
;
853 /* Cache this lookup; we tend to be looking up information about the
854 same register several times in a row. */
855 cached_regno
= regno
;
856 cached_cse_reg_info
= p
;
861 /* Clear the hash table and initialize each register with its own quantity,
862 for a new basic block. */
865 new_basic_block (void)
871 /* Clear out hash table state for this pass. */
873 memset (reg_hash
, 0, sizeof reg_hash
);
875 if (cse_reg_info_used_list
)
877 cse_reg_info_used_list_end
->next
= cse_reg_info_free_list
;
878 cse_reg_info_free_list
= cse_reg_info_used_list
;
879 cse_reg_info_used_list
= cse_reg_info_used_list_end
= 0;
881 cached_cse_reg_info
= 0;
883 CLEAR_HARD_REG_SET (hard_regs_in_table
);
885 /* The per-quantity values used to be initialized here, but it is
886 much faster to initialize each as it is made in `make_new_qty'. */
888 for (i
= 0; i
< HASH_SIZE
; i
++)
890 struct table_elt
*first
;
895 struct table_elt
*last
= first
;
899 while (last
->next_same_hash
!= NULL
)
900 last
= last
->next_same_hash
;
902 /* Now relink this hash entire chain into
903 the free element list. */
905 last
->next_same_hash
= free_element_chain
;
906 free_element_chain
= first
;
916 /* Say that register REG contains a quantity in mode MODE not in any
917 register before and initialize that quantity. */
920 make_new_qty (unsigned int reg
, enum machine_mode mode
)
923 struct qty_table_elem
*ent
;
924 struct reg_eqv_elem
*eqv
;
926 if (next_qty
>= max_qty
)
929 q
= REG_QTY (reg
) = next_qty
++;
931 ent
->first_reg
= reg
;
934 ent
->const_rtx
= ent
->const_insn
= NULL_RTX
;
935 ent
->comparison_code
= UNKNOWN
;
937 eqv
= ®_eqv_table
[reg
];
938 eqv
->next
= eqv
->prev
= -1;
941 /* Make reg NEW equivalent to reg OLD.
942 OLD is not changing; NEW is. */
945 make_regs_eqv (unsigned int new, unsigned int old
)
947 unsigned int lastr
, firstr
;
948 int q
= REG_QTY (old
);
949 struct qty_table_elem
*ent
;
953 /* Nothing should become eqv until it has a "non-invalid" qty number. */
954 if (! REGNO_QTY_VALID_P (old
))
958 firstr
= ent
->first_reg
;
959 lastr
= ent
->last_reg
;
961 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
962 hard regs. Among pseudos, if NEW will live longer than any other reg
963 of the same qty, and that is beyond the current basic block,
964 make it the new canonical replacement for this qty. */
965 if (! (firstr
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (firstr
))
966 /* Certain fixed registers might be of the class NO_REGS. This means
967 that not only can they not be allocated by the compiler, but
968 they cannot be used in substitutions or canonicalizations
970 && (new >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (new) != NO_REGS
)
971 && ((new < FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (new))
972 || (new >= FIRST_PSEUDO_REGISTER
973 && (firstr
< FIRST_PSEUDO_REGISTER
974 || ((uid_cuid
[REGNO_LAST_UID (new)] > cse_basic_block_end
975 || (uid_cuid
[REGNO_FIRST_UID (new)]
976 < cse_basic_block_start
))
977 && (uid_cuid
[REGNO_LAST_UID (new)]
978 > uid_cuid
[REGNO_LAST_UID (firstr
)]))))))
980 reg_eqv_table
[firstr
].prev
= new;
981 reg_eqv_table
[new].next
= firstr
;
982 reg_eqv_table
[new].prev
= -1;
983 ent
->first_reg
= new;
987 /* If NEW is a hard reg (known to be non-fixed), insert at end.
988 Otherwise, insert before any non-fixed hard regs that are at the
989 end. Registers of class NO_REGS cannot be used as an
990 equivalent for anything. */
991 while (lastr
< FIRST_PSEUDO_REGISTER
&& reg_eqv_table
[lastr
].prev
>= 0
992 && (REGNO_REG_CLASS (lastr
) == NO_REGS
|| ! FIXED_REGNO_P (lastr
))
993 && new >= FIRST_PSEUDO_REGISTER
)
994 lastr
= reg_eqv_table
[lastr
].prev
;
995 reg_eqv_table
[new].next
= reg_eqv_table
[lastr
].next
;
996 if (reg_eqv_table
[lastr
].next
>= 0)
997 reg_eqv_table
[reg_eqv_table
[lastr
].next
].prev
= new;
999 qty_table
[q
].last_reg
= new;
1000 reg_eqv_table
[lastr
].next
= new;
1001 reg_eqv_table
[new].prev
= lastr
;
1005 /* Remove REG from its equivalence class. */
1008 delete_reg_equiv (unsigned int reg
)
1010 struct qty_table_elem
*ent
;
1011 int q
= REG_QTY (reg
);
1014 /* If invalid, do nothing. */
1018 ent
= &qty_table
[q
];
1020 p
= reg_eqv_table
[reg
].prev
;
1021 n
= reg_eqv_table
[reg
].next
;
1024 reg_eqv_table
[n
].prev
= p
;
1028 reg_eqv_table
[p
].next
= n
;
1032 REG_QTY (reg
) = reg
;
1035 /* Remove any invalid expressions from the hash table
1036 that refer to any of the registers contained in expression X.
1038 Make sure that newly inserted references to those registers
1039 as subexpressions will be considered valid.
1041 mention_regs is not called when a register itself
1042 is being stored in the table.
1044 Return 1 if we have done something that may have changed the hash code
1048 mention_regs (rtx x
)
1058 code
= GET_CODE (x
);
1061 unsigned int regno
= REGNO (x
);
1062 unsigned int endregno
1063 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
1064 : hard_regno_nregs
[regno
][GET_MODE (x
)]);
1067 for (i
= regno
; i
< endregno
; i
++)
1069 if (REG_IN_TABLE (i
) >= 0 && REG_IN_TABLE (i
) != REG_TICK (i
))
1070 remove_invalid_refs (i
);
1072 REG_IN_TABLE (i
) = REG_TICK (i
);
1073 SUBREG_TICKED (i
) = -1;
1079 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1080 pseudo if they don't use overlapping words. We handle only pseudos
1081 here for simplicity. */
1082 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
1083 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
)
1085 unsigned int i
= REGNO (SUBREG_REG (x
));
1087 if (REG_IN_TABLE (i
) >= 0 && REG_IN_TABLE (i
) != REG_TICK (i
))
1089 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1090 the last store to this register really stored into this
1091 subreg, then remove the memory of this subreg.
1092 Otherwise, remove any memory of the entire register and
1093 all its subregs from the table. */
1094 if (REG_TICK (i
) - REG_IN_TABLE (i
) > 1
1095 || SUBREG_TICKED (i
) != REGNO (SUBREG_REG (x
)))
1096 remove_invalid_refs (i
);
1098 remove_invalid_subreg_refs (i
, SUBREG_BYTE (x
), GET_MODE (x
));
1101 REG_IN_TABLE (i
) = REG_TICK (i
);
1102 SUBREG_TICKED (i
) = REGNO (SUBREG_REG (x
));
1106 /* If X is a comparison or a COMPARE and either operand is a register
1107 that does not have a quantity, give it one. This is so that a later
1108 call to record_jump_equiv won't cause X to be assigned a different
1109 hash code and not found in the table after that call.
1111 It is not necessary to do this here, since rehash_using_reg can
1112 fix up the table later, but doing this here eliminates the need to
1113 call that expensive function in the most common case where the only
1114 use of the register is in the comparison. */
1116 if (code
== COMPARE
|| COMPARISON_P (x
))
1118 if (GET_CODE (XEXP (x
, 0)) == REG
1119 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
1120 if (insert_regs (XEXP (x
, 0), NULL
, 0))
1122 rehash_using_reg (XEXP (x
, 0));
1126 if (GET_CODE (XEXP (x
, 1)) == REG
1127 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
1128 if (insert_regs (XEXP (x
, 1), NULL
, 0))
1130 rehash_using_reg (XEXP (x
, 1));
1135 fmt
= GET_RTX_FORMAT (code
);
1136 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1138 changed
|= mention_regs (XEXP (x
, i
));
1139 else if (fmt
[i
] == 'E')
1140 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1141 changed
|= mention_regs (XVECEXP (x
, i
, j
));
1146 /* Update the register quantities for inserting X into the hash table
1147 with a value equivalent to CLASSP.
1148 (If the class does not contain a REG, it is irrelevant.)
1149 If MODIFIED is nonzero, X is a destination; it is being modified.
1150 Note that delete_reg_equiv should be called on a register
1151 before insert_regs is done on that register with MODIFIED != 0.
1153 Nonzero value means that elements of reg_qty have changed
1154 so X's hash code may be different. */
1157 insert_regs (rtx x
, struct table_elt
*classp
, int modified
)
1159 if (GET_CODE (x
) == REG
)
1161 unsigned int regno
= REGNO (x
);
1164 /* If REGNO is in the equivalence table already but is of the
1165 wrong mode for that equivalence, don't do anything here. */
1167 qty_valid
= REGNO_QTY_VALID_P (regno
);
1170 struct qty_table_elem
*ent
= &qty_table
[REG_QTY (regno
)];
1172 if (ent
->mode
!= GET_MODE (x
))
1176 if (modified
|| ! qty_valid
)
1179 for (classp
= classp
->first_same_value
;
1181 classp
= classp
->next_same_value
)
1182 if (GET_CODE (classp
->exp
) == REG
1183 && GET_MODE (classp
->exp
) == GET_MODE (x
))
1185 make_regs_eqv (regno
, REGNO (classp
->exp
));
1189 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1190 than REG_IN_TABLE to find out if there was only a single preceding
1191 invalidation - for the SUBREG - or another one, which would be
1192 for the full register. However, if we find here that REG_TICK
1193 indicates that the register is invalid, it means that it has
1194 been invalidated in a separate operation. The SUBREG might be used
1195 now (then this is a recursive call), or we might use the full REG
1196 now and a SUBREG of it later. So bump up REG_TICK so that
1197 mention_regs will do the right thing. */
1199 && REG_IN_TABLE (regno
) >= 0
1200 && REG_TICK (regno
) == REG_IN_TABLE (regno
) + 1)
1202 make_new_qty (regno
, GET_MODE (x
));
1209 /* If X is a SUBREG, we will likely be inserting the inner register in the
1210 table. If that register doesn't have an assigned quantity number at
1211 this point but does later, the insertion that we will be doing now will
1212 not be accessible because its hash code will have changed. So assign
1213 a quantity number now. */
1215 else if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
1216 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x
))))
1218 insert_regs (SUBREG_REG (x
), NULL
, 0);
1223 return mention_regs (x
);
1226 /* Look in or update the hash table. */
1228 /* Remove table element ELT from use in the table.
1229 HASH is its hash code, made using the HASH macro.
1230 It's an argument because often that is known in advance
1231 and we save much time not recomputing it. */
1234 remove_from_table (struct table_elt
*elt
, unsigned int hash
)
1239 /* Mark this element as removed. See cse_insn. */
1240 elt
->first_same_value
= 0;
1242 /* Remove the table element from its equivalence class. */
1245 struct table_elt
*prev
= elt
->prev_same_value
;
1246 struct table_elt
*next
= elt
->next_same_value
;
1249 next
->prev_same_value
= prev
;
1252 prev
->next_same_value
= next
;
1255 struct table_elt
*newfirst
= next
;
1258 next
->first_same_value
= newfirst
;
1259 next
= next
->next_same_value
;
1264 /* Remove the table element from its hash bucket. */
1267 struct table_elt
*prev
= elt
->prev_same_hash
;
1268 struct table_elt
*next
= elt
->next_same_hash
;
1271 next
->prev_same_hash
= prev
;
1274 prev
->next_same_hash
= next
;
1275 else if (table
[hash
] == elt
)
1279 /* This entry is not in the proper hash bucket. This can happen
1280 when two classes were merged by `merge_equiv_classes'. Search
1281 for the hash bucket that it heads. This happens only very
1282 rarely, so the cost is acceptable. */
1283 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1284 if (table
[hash
] == elt
)
1289 /* Remove the table element from its related-value circular chain. */
1291 if (elt
->related_value
!= 0 && elt
->related_value
!= elt
)
1293 struct table_elt
*p
= elt
->related_value
;
1295 while (p
->related_value
!= elt
)
1296 p
= p
->related_value
;
1297 p
->related_value
= elt
->related_value
;
1298 if (p
->related_value
== p
)
1299 p
->related_value
= 0;
1302 /* Now add it to the free element chain. */
1303 elt
->next_same_hash
= free_element_chain
;
1304 free_element_chain
= elt
;
1307 /* Look up X in the hash table and return its table element,
1308 or 0 if X is not in the table.
1310 MODE is the machine-mode of X, or if X is an integer constant
1311 with VOIDmode then MODE is the mode with which X will be used.
1313 Here we are satisfied to find an expression whose tree structure
1316 static struct table_elt
*
1317 lookup (rtx x
, unsigned int hash
, enum machine_mode mode
)
1319 struct table_elt
*p
;
1321 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1322 if (mode
== p
->mode
&& ((x
== p
->exp
&& GET_CODE (x
) == REG
)
1323 || exp_equiv_p (x
, p
->exp
, GET_CODE (x
) != REG
, 0)))
1329 /* Like `lookup' but don't care whether the table element uses invalid regs.
1330 Also ignore discrepancies in the machine mode of a register. */
1332 static struct table_elt
*
1333 lookup_for_remove (rtx x
, unsigned int hash
, enum machine_mode mode
)
1335 struct table_elt
*p
;
1337 if (GET_CODE (x
) == REG
)
1339 unsigned int regno
= REGNO (x
);
1341 /* Don't check the machine mode when comparing registers;
1342 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1343 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1344 if (GET_CODE (p
->exp
) == REG
1345 && REGNO (p
->exp
) == regno
)
1350 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1351 if (mode
== p
->mode
&& (x
== p
->exp
|| exp_equiv_p (x
, p
->exp
, 0, 0)))
1358 /* Look for an expression equivalent to X and with code CODE.
1359 If one is found, return that expression. */
1362 lookup_as_function (rtx x
, enum rtx_code code
)
1365 = lookup (x
, safe_hash (x
, VOIDmode
) & HASH_MASK
, GET_MODE (x
));
1367 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1368 long as we are narrowing. So if we looked in vain for a mode narrower
1369 than word_mode before, look for word_mode now. */
1370 if (p
== 0 && code
== CONST_INT
1371 && GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (word_mode
))
1374 PUT_MODE (x
, word_mode
);
1375 p
= lookup (x
, safe_hash (x
, VOIDmode
) & HASH_MASK
, word_mode
);
1381 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
1382 if (GET_CODE (p
->exp
) == code
1383 /* Make sure this is a valid entry in the table. */
1384 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
1390 /* Insert X in the hash table, assuming HASH is its hash code
1391 and CLASSP is an element of the class it should go in
1392 (or 0 if a new class should be made).
1393 It is inserted at the proper position to keep the class in
1394 the order cheapest first.
1396 MODE is the machine-mode of X, or if X is an integer constant
1397 with VOIDmode then MODE is the mode with which X will be used.
1399 For elements of equal cheapness, the most recent one
1400 goes in front, except that the first element in the list
1401 remains first unless a cheaper element is added. The order of
1402 pseudo-registers does not matter, as canon_reg will be called to
1403 find the cheapest when a register is retrieved from the table.
1405 The in_memory field in the hash table element is set to 0.
1406 The caller must set it nonzero if appropriate.
1408 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1409 and if insert_regs returns a nonzero value
1410 you must then recompute its hash code before calling here.
1412 If necessary, update table showing constant values of quantities. */
1414 #define CHEAPER(X, Y) \
1415 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1417 static struct table_elt
*
1418 insert (rtx x
, struct table_elt
*classp
, unsigned int hash
, enum machine_mode mode
)
1420 struct table_elt
*elt
;
1422 /* If X is a register and we haven't made a quantity for it,
1423 something is wrong. */
1424 if (GET_CODE (x
) == REG
&& ! REGNO_QTY_VALID_P (REGNO (x
)))
1427 /* If X is a hard register, show it is being put in the table. */
1428 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1430 unsigned int regno
= REGNO (x
);
1431 unsigned int endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
1434 for (i
= regno
; i
< endregno
; i
++)
1435 SET_HARD_REG_BIT (hard_regs_in_table
, i
);
1438 /* Put an element for X into the right hash bucket. */
1440 elt
= free_element_chain
;
1442 free_element_chain
= elt
->next_same_hash
;
1446 elt
= xmalloc (sizeof (struct table_elt
));
1450 elt
->canon_exp
= NULL_RTX
;
1451 elt
->cost
= COST (x
);
1452 elt
->regcost
= approx_reg_cost (x
);
1453 elt
->next_same_value
= 0;
1454 elt
->prev_same_value
= 0;
1455 elt
->next_same_hash
= table
[hash
];
1456 elt
->prev_same_hash
= 0;
1457 elt
->related_value
= 0;
1460 elt
->is_const
= (CONSTANT_P (x
)
1461 /* GNU C++ takes advantage of this for `this'
1462 (and other const values). */
1463 || (GET_CODE (x
) == REG
1464 && RTX_UNCHANGING_P (x
)
1465 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1466 || fixed_base_plus_p (x
));
1469 table
[hash
]->prev_same_hash
= elt
;
1472 /* Put it into the proper value-class. */
1475 classp
= classp
->first_same_value
;
1476 if (CHEAPER (elt
, classp
))
1477 /* Insert at the head of the class. */
1479 struct table_elt
*p
;
1480 elt
->next_same_value
= classp
;
1481 classp
->prev_same_value
= elt
;
1482 elt
->first_same_value
= elt
;
1484 for (p
= classp
; p
; p
= p
->next_same_value
)
1485 p
->first_same_value
= elt
;
1489 /* Insert not at head of the class. */
1490 /* Put it after the last element cheaper than X. */
1491 struct table_elt
*p
, *next
;
1493 for (p
= classp
; (next
= p
->next_same_value
) && CHEAPER (next
, elt
);
1496 /* Put it after P and before NEXT. */
1497 elt
->next_same_value
= next
;
1499 next
->prev_same_value
= elt
;
1501 elt
->prev_same_value
= p
;
1502 p
->next_same_value
= elt
;
1503 elt
->first_same_value
= classp
;
1507 elt
->first_same_value
= elt
;
1509 /* If this is a constant being set equivalent to a register or a register
1510 being set equivalent to a constant, note the constant equivalence.
1512 If this is a constant, it cannot be equivalent to a different constant,
1513 and a constant is the only thing that can be cheaper than a register. So
1514 we know the register is the head of the class (before the constant was
1517 If this is a register that is not already known equivalent to a
1518 constant, we must check the entire class.
1520 If this is a register that is already known equivalent to an insn,
1521 update the qtys `const_insn' to show that `this_insn' is the latest
1522 insn making that quantity equivalent to the constant. */
1524 if (elt
->is_const
&& classp
&& GET_CODE (classp
->exp
) == REG
1525 && GET_CODE (x
) != REG
)
1527 int exp_q
= REG_QTY (REGNO (classp
->exp
));
1528 struct qty_table_elem
*exp_ent
= &qty_table
[exp_q
];
1530 exp_ent
->const_rtx
= gen_lowpart (exp_ent
->mode
, x
);
1531 exp_ent
->const_insn
= this_insn
;
1534 else if (GET_CODE (x
) == REG
1536 && ! qty_table
[REG_QTY (REGNO (x
))].const_rtx
1539 struct table_elt
*p
;
1541 for (p
= classp
; p
!= 0; p
= p
->next_same_value
)
1543 if (p
->is_const
&& GET_CODE (p
->exp
) != REG
)
1545 int x_q
= REG_QTY (REGNO (x
));
1546 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
1549 = gen_lowpart (GET_MODE (x
), p
->exp
);
1550 x_ent
->const_insn
= this_insn
;
1556 else if (GET_CODE (x
) == REG
1557 && qty_table
[REG_QTY (REGNO (x
))].const_rtx
1558 && GET_MODE (x
) == qty_table
[REG_QTY (REGNO (x
))].mode
)
1559 qty_table
[REG_QTY (REGNO (x
))].const_insn
= this_insn
;
1561 /* If this is a constant with symbolic value,
1562 and it has a term with an explicit integer value,
1563 link it up with related expressions. */
1564 if (GET_CODE (x
) == CONST
)
1566 rtx subexp
= get_related_value (x
);
1568 struct table_elt
*subelt
, *subelt_prev
;
1572 /* Get the integer-free subexpression in the hash table. */
1573 subhash
= safe_hash (subexp
, mode
) & HASH_MASK
;
1574 subelt
= lookup (subexp
, subhash
, mode
);
1576 subelt
= insert (subexp
, NULL
, subhash
, mode
);
1577 /* Initialize SUBELT's circular chain if it has none. */
1578 if (subelt
->related_value
== 0)
1579 subelt
->related_value
= subelt
;
1580 /* Find the element in the circular chain that precedes SUBELT. */
1581 subelt_prev
= subelt
;
1582 while (subelt_prev
->related_value
!= subelt
)
1583 subelt_prev
= subelt_prev
->related_value
;
1584 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1585 This way the element that follows SUBELT is the oldest one. */
1586 elt
->related_value
= subelt_prev
->related_value
;
1587 subelt_prev
->related_value
= elt
;
1594 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1595 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1596 the two classes equivalent.
1598 CLASS1 will be the surviving class; CLASS2 should not be used after this
1601 Any invalid entries in CLASS2 will not be copied. */
1604 merge_equiv_classes (struct table_elt
*class1
, struct table_elt
*class2
)
1606 struct table_elt
*elt
, *next
, *new;
1608 /* Ensure we start with the head of the classes. */
1609 class1
= class1
->first_same_value
;
1610 class2
= class2
->first_same_value
;
1612 /* If they were already equal, forget it. */
1613 if (class1
== class2
)
1616 for (elt
= class2
; elt
; elt
= next
)
1620 enum machine_mode mode
= elt
->mode
;
1622 next
= elt
->next_same_value
;
1624 /* Remove old entry, make a new one in CLASS1's class.
1625 Don't do this for invalid entries as we cannot find their
1626 hash code (it also isn't necessary). */
1627 if (GET_CODE (exp
) == REG
|| exp_equiv_p (exp
, exp
, 1, 0))
1629 hash_arg_in_memory
= 0;
1630 hash
= HASH (exp
, mode
);
1632 if (GET_CODE (exp
) == REG
)
1633 delete_reg_equiv (REGNO (exp
));
1635 remove_from_table (elt
, hash
);
1637 if (insert_regs (exp
, class1
, 0))
1639 rehash_using_reg (exp
);
1640 hash
= HASH (exp
, mode
);
1642 new = insert (exp
, class1
, hash
, mode
);
1643 new->in_memory
= hash_arg_in_memory
;
1648 /* Flush the entire hash table. */
1651 flush_hash_table (void)
1654 struct table_elt
*p
;
1656 for (i
= 0; i
< HASH_SIZE
; i
++)
1657 for (p
= table
[i
]; p
; p
= table
[i
])
1659 /* Note that invalidate can remove elements
1660 after P in the current hash chain. */
1661 if (GET_CODE (p
->exp
) == REG
)
1662 invalidate (p
->exp
, p
->mode
);
1664 remove_from_table (p
, i
);
1668 /* Function called for each rtx to check whether true dependence exist. */
1669 struct check_dependence_data
1671 enum machine_mode mode
;
1677 check_dependence (rtx
*x
, void *data
)
1679 struct check_dependence_data
*d
= (struct check_dependence_data
*) data
;
1680 if (*x
&& GET_CODE (*x
) == MEM
)
1681 return canon_true_dependence (d
->exp
, d
->mode
, d
->addr
, *x
,
1687 /* Remove from the hash table, or mark as invalid, all expressions whose
1688 values could be altered by storing in X. X is a register, a subreg, or
1689 a memory reference with nonvarying address (because, when a memory
1690 reference with a varying address is stored in, all memory references are
1691 removed by invalidate_memory so specific invalidation is superfluous).
1692 FULL_MODE, if not VOIDmode, indicates that this much should be
1693 invalidated instead of just the amount indicated by the mode of X. This
1694 is only used for bitfield stores into memory.
1696 A nonvarying address may be just a register or just a symbol reference,
1697 or it may be either of those plus a numeric offset. */
1700 invalidate (rtx x
, enum machine_mode full_mode
)
1703 struct table_elt
*p
;
1706 switch (GET_CODE (x
))
1710 /* If X is a register, dependencies on its contents are recorded
1711 through the qty number mechanism. Just change the qty number of
1712 the register, mark it as invalid for expressions that refer to it,
1713 and remove it itself. */
1714 unsigned int regno
= REGNO (x
);
1715 unsigned int hash
= HASH (x
, GET_MODE (x
));
1717 /* Remove REGNO from any quantity list it might be on and indicate
1718 that its value might have changed. If it is a pseudo, remove its
1719 entry from the hash table.
1721 For a hard register, we do the first two actions above for any
1722 additional hard registers corresponding to X. Then, if any of these
1723 registers are in the table, we must remove any REG entries that
1724 overlap these registers. */
1726 delete_reg_equiv (regno
);
1728 SUBREG_TICKED (regno
) = -1;
1730 if (regno
>= FIRST_PSEUDO_REGISTER
)
1732 /* Because a register can be referenced in more than one mode,
1733 we might have to remove more than one table entry. */
1734 struct table_elt
*elt
;
1736 while ((elt
= lookup_for_remove (x
, hash
, GET_MODE (x
))))
1737 remove_from_table (elt
, hash
);
1741 HOST_WIDE_INT in_table
1742 = TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1743 unsigned int endregno
1744 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
1745 unsigned int tregno
, tendregno
, rn
;
1746 struct table_elt
*p
, *next
;
1748 CLEAR_HARD_REG_BIT (hard_regs_in_table
, regno
);
1750 for (rn
= regno
+ 1; rn
< endregno
; rn
++)
1752 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, rn
);
1753 CLEAR_HARD_REG_BIT (hard_regs_in_table
, rn
);
1754 delete_reg_equiv (rn
);
1756 SUBREG_TICKED (rn
) = -1;
1760 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1761 for (p
= table
[hash
]; p
; p
= next
)
1763 next
= p
->next_same_hash
;
1765 if (GET_CODE (p
->exp
) != REG
1766 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1769 tregno
= REGNO (p
->exp
);
1771 = tregno
+ hard_regno_nregs
[tregno
][GET_MODE (p
->exp
)];
1772 if (tendregno
> regno
&& tregno
< endregno
)
1773 remove_from_table (p
, hash
);
1780 invalidate (SUBREG_REG (x
), VOIDmode
);
1784 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; --i
)
1785 invalidate (XVECEXP (x
, 0, i
), VOIDmode
);
1789 /* This is part of a disjoint return value; extract the location in
1790 question ignoring the offset. */
1791 invalidate (XEXP (x
, 0), VOIDmode
);
1795 addr
= canon_rtx (get_addr (XEXP (x
, 0)));
1796 /* Calculate the canonical version of X here so that
1797 true_dependence doesn't generate new RTL for X on each call. */
1800 /* Remove all hash table elements that refer to overlapping pieces of
1802 if (full_mode
== VOIDmode
)
1803 full_mode
= GET_MODE (x
);
1805 for (i
= 0; i
< HASH_SIZE
; i
++)
1807 struct table_elt
*next
;
1809 for (p
= table
[i
]; p
; p
= next
)
1811 next
= p
->next_same_hash
;
1814 struct check_dependence_data d
;
1816 /* Just canonicalize the expression once;
1817 otherwise each time we call invalidate
1818 true_dependence will canonicalize the
1819 expression again. */
1821 p
->canon_exp
= canon_rtx (p
->exp
);
1825 if (for_each_rtx (&p
->canon_exp
, check_dependence
, &d
))
1826 remove_from_table (p
, i
);
1837 /* Remove all expressions that refer to register REGNO,
1838 since they are already invalid, and we are about to
1839 mark that register valid again and don't want the old
1840 expressions to reappear as valid. */
1843 remove_invalid_refs (unsigned int regno
)
1846 struct table_elt
*p
, *next
;
1848 for (i
= 0; i
< HASH_SIZE
; i
++)
1849 for (p
= table
[i
]; p
; p
= next
)
1851 next
= p
->next_same_hash
;
1852 if (GET_CODE (p
->exp
) != REG
1853 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, (rtx
*) 0))
1854 remove_from_table (p
, i
);
1858 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1861 remove_invalid_subreg_refs (unsigned int regno
, unsigned int offset
,
1862 enum machine_mode mode
)
1865 struct table_elt
*p
, *next
;
1866 unsigned int end
= offset
+ (GET_MODE_SIZE (mode
) - 1);
1868 for (i
= 0; i
< HASH_SIZE
; i
++)
1869 for (p
= table
[i
]; p
; p
= next
)
1872 next
= p
->next_same_hash
;
1874 if (GET_CODE (exp
) != REG
1875 && (GET_CODE (exp
) != SUBREG
1876 || GET_CODE (SUBREG_REG (exp
)) != REG
1877 || REGNO (SUBREG_REG (exp
)) != regno
1878 || (((SUBREG_BYTE (exp
)
1879 + (GET_MODE_SIZE (GET_MODE (exp
)) - 1)) >= offset
)
1880 && SUBREG_BYTE (exp
) <= end
))
1881 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, (rtx
*) 0))
1882 remove_from_table (p
, i
);
1886 /* Recompute the hash codes of any valid entries in the hash table that
1887 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1889 This is called when we make a jump equivalence. */
1892 rehash_using_reg (rtx x
)
1895 struct table_elt
*p
, *next
;
1898 if (GET_CODE (x
) == SUBREG
)
1901 /* If X is not a register or if the register is known not to be in any
1902 valid entries in the table, we have no work to do. */
1904 if (GET_CODE (x
) != REG
1905 || REG_IN_TABLE (REGNO (x
)) < 0
1906 || REG_IN_TABLE (REGNO (x
)) != REG_TICK (REGNO (x
)))
1909 /* Scan all hash chains looking for valid entries that mention X.
1910 If we find one and it is in the wrong hash chain, move it. We can skip
1911 objects that are registers, since they are handled specially. */
1913 for (i
= 0; i
< HASH_SIZE
; i
++)
1914 for (p
= table
[i
]; p
; p
= next
)
1916 next
= p
->next_same_hash
;
1917 if (GET_CODE (p
->exp
) != REG
&& reg_mentioned_p (x
, p
->exp
)
1918 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0)
1919 && i
!= (hash
= safe_hash (p
->exp
, p
->mode
) & HASH_MASK
))
1921 if (p
->next_same_hash
)
1922 p
->next_same_hash
->prev_same_hash
= p
->prev_same_hash
;
1924 if (p
->prev_same_hash
)
1925 p
->prev_same_hash
->next_same_hash
= p
->next_same_hash
;
1927 table
[i
] = p
->next_same_hash
;
1929 p
->next_same_hash
= table
[hash
];
1930 p
->prev_same_hash
= 0;
1932 table
[hash
]->prev_same_hash
= p
;
1938 /* Remove from the hash table any expression that is a call-clobbered
1939 register. Also update their TICK values. */
1942 invalidate_for_call (void)
1944 unsigned int regno
, endregno
;
1947 struct table_elt
*p
, *next
;
1950 /* Go through all the hard registers. For each that is clobbered in
1951 a CALL_INSN, remove the register from quantity chains and update
1952 reg_tick if defined. Also see if any of these registers is currently
1955 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1956 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1958 delete_reg_equiv (regno
);
1959 if (REG_TICK (regno
) >= 0)
1962 SUBREG_TICKED (regno
) = -1;
1965 in_table
|= (TEST_HARD_REG_BIT (hard_regs_in_table
, regno
) != 0);
1968 /* In the case where we have no call-clobbered hard registers in the
1969 table, we are done. Otherwise, scan the table and remove any
1970 entry that overlaps a call-clobbered register. */
1973 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1974 for (p
= table
[hash
]; p
; p
= next
)
1976 next
= p
->next_same_hash
;
1978 if (GET_CODE (p
->exp
) != REG
1979 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1982 regno
= REGNO (p
->exp
);
1983 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (p
->exp
)];
1985 for (i
= regno
; i
< endregno
; i
++)
1986 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1988 remove_from_table (p
, hash
);
1994 /* Given an expression X of type CONST,
1995 and ELT which is its table entry (or 0 if it
1996 is not in the hash table),
1997 return an alternate expression for X as a register plus integer.
1998 If none can be found, return 0. */
2001 use_related_value (rtx x
, struct table_elt
*elt
)
2003 struct table_elt
*relt
= 0;
2004 struct table_elt
*p
, *q
;
2005 HOST_WIDE_INT offset
;
2007 /* First, is there anything related known?
2008 If we have a table element, we can tell from that.
2009 Otherwise, must look it up. */
2011 if (elt
!= 0 && elt
->related_value
!= 0)
2013 else if (elt
== 0 && GET_CODE (x
) == CONST
)
2015 rtx subexp
= get_related_value (x
);
2017 relt
= lookup (subexp
,
2018 safe_hash (subexp
, GET_MODE (subexp
)) & HASH_MASK
,
2025 /* Search all related table entries for one that has an
2026 equivalent register. */
2031 /* This loop is strange in that it is executed in two different cases.
2032 The first is when X is already in the table. Then it is searching
2033 the RELATED_VALUE list of X's class (RELT). The second case is when
2034 X is not in the table. Then RELT points to a class for the related
2037 Ensure that, whatever case we are in, that we ignore classes that have
2038 the same value as X. */
2040 if (rtx_equal_p (x
, p
->exp
))
2043 for (q
= p
->first_same_value
; q
; q
= q
->next_same_value
)
2044 if (GET_CODE (q
->exp
) == REG
)
2050 p
= p
->related_value
;
2052 /* We went all the way around, so there is nothing to be found.
2053 Alternatively, perhaps RELT was in the table for some other reason
2054 and it has no related values recorded. */
2055 if (p
== relt
|| p
== 0)
2062 offset
= (get_integer_term (x
) - get_integer_term (p
->exp
));
2063 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2064 return plus_constant (q
->exp
, offset
);
2067 /* Hash a string. Just add its bytes up. */
2068 static inline unsigned
2069 canon_hash_string (const char *ps
)
2072 const unsigned char *p
= (const unsigned char *) ps
;
2081 /* Hash an rtx. We are careful to make sure the value is never negative.
2082 Equivalent registers hash identically.
2083 MODE is used in hashing for CONST_INTs only;
2084 otherwise the mode of X is used.
2086 Store 1 in do_not_record if any subexpression is volatile.
2088 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2089 which does not have the RTX_UNCHANGING_P bit set.
2091 Note that cse_insn knows that the hash code of a MEM expression
2092 is just (int) MEM plus the hash code of the address. */
2095 canon_hash (rtx x
, enum machine_mode mode
)
2102 /* repeat is used to turn tail-recursion into iteration. */
2107 code
= GET_CODE (x
);
2112 unsigned int regno
= REGNO (x
);
2115 /* On some machines, we can't record any non-fixed hard register,
2116 because extending its life will cause reload problems. We
2117 consider ap, fp, sp, gp to be fixed for this purpose.
2119 We also consider CCmode registers to be fixed for this purpose;
2120 failure to do so leads to failure to simplify 0<100 type of
2123 On all machines, we can't record any global registers.
2124 Nor should we record any register that is in a small
2125 class, as defined by CLASS_LIKELY_SPILLED_P. */
2127 if (regno
>= FIRST_PSEUDO_REGISTER
)
2129 else if (x
== frame_pointer_rtx
2130 || x
== hard_frame_pointer_rtx
2131 || x
== arg_pointer_rtx
2132 || x
== stack_pointer_rtx
2133 || x
== pic_offset_table_rtx
)
2135 else if (global_regs
[regno
])
2137 else if (fixed_regs
[regno
])
2139 else if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
2141 else if (SMALL_REGISTER_CLASSES
)
2143 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno
)))
2154 hash
+= ((unsigned) REG
<< 7) + (unsigned) REG_QTY (regno
);
2158 /* We handle SUBREG of a REG specially because the underlying
2159 reg changes its hash value with every value change; we don't
2160 want to have to forget unrelated subregs when one subreg changes. */
2163 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2165 hash
+= (((unsigned) SUBREG
<< 7)
2166 + REGNO (SUBREG_REG (x
))
2167 + (SUBREG_BYTE (x
) / UNITS_PER_WORD
));
2175 unsigned HOST_WIDE_INT tem
= INTVAL (x
);
2176 hash
+= ((unsigned) CONST_INT
<< 7) + (unsigned) mode
+ tem
;
2181 /* This is like the general case, except that it only counts
2182 the integers representing the constant. */
2183 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
2184 if (GET_MODE (x
) != VOIDmode
)
2185 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
2187 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
2188 + (unsigned) CONST_DOUBLE_HIGH (x
));
2196 units
= CONST_VECTOR_NUNITS (x
);
2198 for (i
= 0; i
< units
; ++i
)
2200 elt
= CONST_VECTOR_ELT (x
, i
);
2201 hash
+= canon_hash (elt
, GET_MODE (elt
));
2207 /* Assume there is only one rtx object for any given label. */
2209 hash
+= ((unsigned) LABEL_REF
<< 7) + (unsigned long) XEXP (x
, 0);
2213 hash
+= ((unsigned) SYMBOL_REF
<< 7) + (unsigned long) XSTR (x
, 0);
2217 /* We don't record if marked volatile or if BLKmode since we don't
2218 know the size of the move. */
2219 if (MEM_VOLATILE_P (x
) || GET_MODE (x
) == BLKmode
)
2224 if (! RTX_UNCHANGING_P (x
) || fixed_base_plus_p (XEXP (x
, 0)))
2225 hash_arg_in_memory
= 1;
2227 /* Now that we have already found this special case,
2228 might as well speed it up as much as possible. */
2229 hash
+= (unsigned) MEM
;
2234 /* A USE that mentions non-volatile memory needs special
2235 handling since the MEM may be BLKmode which normally
2236 prevents an entry from being made. Pure calls are
2237 marked by a USE which mentions BLKmode memory. */
2238 if (GET_CODE (XEXP (x
, 0)) == MEM
2239 && ! MEM_VOLATILE_P (XEXP (x
, 0)))
2241 hash
+= (unsigned) USE
;
2244 if (! RTX_UNCHANGING_P (x
) || fixed_base_plus_p (XEXP (x
, 0)))
2245 hash_arg_in_memory
= 1;
2247 /* Now that we have already found this special case,
2248 might as well speed it up as much as possible. */
2249 hash
+= (unsigned) MEM
;
2264 case UNSPEC_VOLATILE
:
2269 if (MEM_VOLATILE_P (x
))
2276 /* We don't want to take the filename and line into account. */
2277 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
)
2278 + canon_hash_string (ASM_OPERANDS_TEMPLATE (x
))
2279 + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
))
2280 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x
);
2282 if (ASM_OPERANDS_INPUT_LENGTH (x
))
2284 for (i
= 1; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
2286 hash
+= (canon_hash (ASM_OPERANDS_INPUT (x
, i
),
2287 GET_MODE (ASM_OPERANDS_INPUT (x
, i
)))
2288 + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
2292 hash
+= canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x
, 0));
2293 x
= ASM_OPERANDS_INPUT (x
, 0);
2294 mode
= GET_MODE (x
);
2306 i
= GET_RTX_LENGTH (code
) - 1;
2307 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
2308 fmt
= GET_RTX_FORMAT (code
);
2313 rtx tem
= XEXP (x
, i
);
2315 /* If we are about to do the last recursive call
2316 needed at this level, change it into iteration.
2317 This function is called enough to be worth it. */
2323 hash
+= canon_hash (tem
, 0);
2325 else if (fmt
[i
] == 'E')
2326 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2327 hash
+= canon_hash (XVECEXP (x
, i
, j
), 0);
2328 else if (fmt
[i
] == 's')
2329 hash
+= canon_hash_string (XSTR (x
, i
));
2330 else if (fmt
[i
] == 'i')
2332 unsigned tem
= XINT (x
, i
);
2335 else if (fmt
[i
] == '0' || fmt
[i
] == 't')
2344 /* Like canon_hash but with no side effects. */
2347 safe_hash (rtx x
, enum machine_mode mode
)
2349 int save_do_not_record
= do_not_record
;
2350 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2351 unsigned hash
= canon_hash (x
, mode
);
2352 hash_arg_in_memory
= save_hash_arg_in_memory
;
2353 do_not_record
= save_do_not_record
;
2357 /* Return 1 iff X and Y would canonicalize into the same thing,
2358 without actually constructing the canonicalization of either one.
2359 If VALIDATE is nonzero,
2360 we assume X is an expression being processed from the rtl
2361 and Y was found in the hash table. We check register refs
2362 in Y for being marked as valid.
2364 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2365 that is known to be in the register. Ordinarily, we don't allow them
2366 to match, because letting them match would cause unpredictable results
2367 in all the places that search a hash table chain for an equivalent
2368 for a given value. A possible equivalent that has different structure
2369 has its hash code computed from different data. Whether the hash code
2370 is the same as that of the given value is pure luck. */
2373 exp_equiv_p (rtx x
, rtx y
, int validate
, int equal_values
)
2379 /* Note: it is incorrect to assume an expression is equivalent to itself
2380 if VALIDATE is nonzero. */
2381 if (x
== y
&& !validate
)
2383 if (x
== 0 || y
== 0)
2386 code
= GET_CODE (x
);
2387 if (code
!= GET_CODE (y
))
2392 /* If X is a constant and Y is a register or vice versa, they may be
2393 equivalent. We only have to validate if Y is a register. */
2394 if (CONSTANT_P (x
) && GET_CODE (y
) == REG
2395 && REGNO_QTY_VALID_P (REGNO (y
)))
2397 int y_q
= REG_QTY (REGNO (y
));
2398 struct qty_table_elem
*y_ent
= &qty_table
[y_q
];
2400 if (GET_MODE (y
) == y_ent
->mode
2401 && rtx_equal_p (x
, y_ent
->const_rtx
)
2402 && (! validate
|| REG_IN_TABLE (REGNO (y
)) == REG_TICK (REGNO (y
))))
2406 if (CONSTANT_P (y
) && code
== REG
2407 && REGNO_QTY_VALID_P (REGNO (x
)))
2409 int x_q
= REG_QTY (REGNO (x
));
2410 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
2412 if (GET_MODE (x
) == x_ent
->mode
2413 && rtx_equal_p (y
, x_ent
->const_rtx
))
2420 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2421 if (GET_MODE (x
) != GET_MODE (y
))
2432 return XEXP (x
, 0) == XEXP (y
, 0);
2435 return XSTR (x
, 0) == XSTR (y
, 0);
2439 unsigned int regno
= REGNO (y
);
2440 unsigned int endregno
2441 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
2442 : hard_regno_nregs
[regno
][GET_MODE (y
)]);
2445 /* If the quantities are not the same, the expressions are not
2446 equivalent. If there are and we are not to validate, they
2447 are equivalent. Otherwise, ensure all regs are up-to-date. */
2449 if (REG_QTY (REGNO (x
)) != REG_QTY (regno
))
2455 for (i
= regno
; i
< endregno
; i
++)
2456 if (REG_IN_TABLE (i
) != REG_TICK (i
))
2462 /* For commutative operations, check both orders. */
2470 return ((exp_equiv_p (XEXP (x
, 0), XEXP (y
, 0), validate
, equal_values
)
2471 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 1),
2472 validate
, equal_values
))
2473 || (exp_equiv_p (XEXP (x
, 0), XEXP (y
, 1),
2474 validate
, equal_values
)
2475 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 0),
2476 validate
, equal_values
)));
2479 /* We don't use the generic code below because we want to
2480 disregard filename and line numbers. */
2482 /* A volatile asm isn't equivalent to any other. */
2483 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
2486 if (GET_MODE (x
) != GET_MODE (y
)
2487 || strcmp (ASM_OPERANDS_TEMPLATE (x
), ASM_OPERANDS_TEMPLATE (y
))
2488 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
2489 ASM_OPERANDS_OUTPUT_CONSTRAINT (y
))
2490 || ASM_OPERANDS_OUTPUT_IDX (x
) != ASM_OPERANDS_OUTPUT_IDX (y
)
2491 || ASM_OPERANDS_INPUT_LENGTH (x
) != ASM_OPERANDS_INPUT_LENGTH (y
))
2494 if (ASM_OPERANDS_INPUT_LENGTH (x
))
2496 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
2497 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x
, i
),
2498 ASM_OPERANDS_INPUT (y
, i
),
2499 validate
, equal_values
)
2500 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
),
2501 ASM_OPERANDS_INPUT_CONSTRAINT (y
, i
)))
2511 /* Compare the elements. If any pair of corresponding elements
2512 fail to match, return 0 for the whole things. */
2514 fmt
= GET_RTX_FORMAT (code
);
2515 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2520 if (! exp_equiv_p (XEXP (x
, i
), XEXP (y
, i
), validate
, equal_values
))
2525 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2527 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2528 if (! exp_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2529 validate
, equal_values
))
2534 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2539 if (XINT (x
, i
) != XINT (y
, i
))
2544 if (XWINT (x
, i
) != XWINT (y
, i
))
2560 /* Return 1 if X has a value that can vary even between two
2561 executions of the program. 0 means X can be compared reliably
2562 against certain constants or near-constants. */
2565 cse_rtx_varies_p (rtx x
, int from_alias
)
2567 /* We need not check for X and the equivalence class being of the same
2568 mode because if X is equivalent to a constant in some mode, it
2569 doesn't vary in any mode. */
2571 if (GET_CODE (x
) == REG
2572 && REGNO_QTY_VALID_P (REGNO (x
)))
2574 int x_q
= REG_QTY (REGNO (x
));
2575 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
2577 if (GET_MODE (x
) == x_ent
->mode
2578 && x_ent
->const_rtx
!= NULL_RTX
)
2582 if (GET_CODE (x
) == PLUS
2583 && GET_CODE (XEXP (x
, 1)) == CONST_INT
2584 && GET_CODE (XEXP (x
, 0)) == REG
2585 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
2587 int x0_q
= REG_QTY (REGNO (XEXP (x
, 0)));
2588 struct qty_table_elem
*x0_ent
= &qty_table
[x0_q
];
2590 if ((GET_MODE (XEXP (x
, 0)) == x0_ent
->mode
)
2591 && x0_ent
->const_rtx
!= NULL_RTX
)
2595 /* This can happen as the result of virtual register instantiation, if
2596 the initial constant is too large to be a valid address. This gives
2597 us a three instruction sequence, load large offset into a register,
2598 load fp minus a constant into a register, then a MEM which is the
2599 sum of the two `constant' registers. */
2600 if (GET_CODE (x
) == PLUS
2601 && GET_CODE (XEXP (x
, 0)) == REG
2602 && GET_CODE (XEXP (x
, 1)) == REG
2603 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0)))
2604 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
2606 int x0_q
= REG_QTY (REGNO (XEXP (x
, 0)));
2607 int x1_q
= REG_QTY (REGNO (XEXP (x
, 1)));
2608 struct qty_table_elem
*x0_ent
= &qty_table
[x0_q
];
2609 struct qty_table_elem
*x1_ent
= &qty_table
[x1_q
];
2611 if ((GET_MODE (XEXP (x
, 0)) == x0_ent
->mode
)
2612 && x0_ent
->const_rtx
!= NULL_RTX
2613 && (GET_MODE (XEXP (x
, 1)) == x1_ent
->mode
)
2614 && x1_ent
->const_rtx
!= NULL_RTX
)
2618 return rtx_varies_p (x
, from_alias
);
2621 /* Canonicalize an expression:
2622 replace each register reference inside it
2623 with the "oldest" equivalent register.
2625 If INSN is nonzero and we are replacing a pseudo with a hard register
2626 or vice versa, validate_change is used to ensure that INSN remains valid
2627 after we make our substitution. The calls are made with IN_GROUP nonzero
2628 so apply_change_group must be called upon the outermost return from this
2629 function (unless INSN is zero). The result of apply_change_group can
2630 generally be discarded since the changes we are making are optional. */
2633 canon_reg (rtx x
, rtx insn
)
2642 code
= GET_CODE (x
);
2661 struct qty_table_elem
*ent
;
2663 /* Never replace a hard reg, because hard regs can appear
2664 in more than one machine mode, and we must preserve the mode
2665 of each occurrence. Also, some hard regs appear in
2666 MEMs that are shared and mustn't be altered. Don't try to
2667 replace any reg that maps to a reg of class NO_REGS. */
2668 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
2669 || ! REGNO_QTY_VALID_P (REGNO (x
)))
2672 q
= REG_QTY (REGNO (x
));
2673 ent
= &qty_table
[q
];
2674 first
= ent
->first_reg
;
2675 return (first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
2676 : REGNO_REG_CLASS (first
) == NO_REGS
? x
2677 : gen_rtx_REG (ent
->mode
, first
));
2684 fmt
= GET_RTX_FORMAT (code
);
2685 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2691 rtx
new = canon_reg (XEXP (x
, i
), insn
);
2694 /* If replacing pseudo with hard reg or vice versa, ensure the
2695 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2696 if (insn
!= 0 && new != 0
2697 && GET_CODE (new) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
2698 && (((REGNO (new) < FIRST_PSEUDO_REGISTER
)
2699 != (REGNO (XEXP (x
, i
)) < FIRST_PSEUDO_REGISTER
))
2700 || (insn_code
= recog_memoized (insn
)) < 0
2701 || insn_data
[insn_code
].n_dups
> 0))
2702 validate_change (insn
, &XEXP (x
, i
), new, 1);
2706 else if (fmt
[i
] == 'E')
2707 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2708 XVECEXP (x
, i
, j
) = canon_reg (XVECEXP (x
, i
, j
), insn
);
2714 /* LOC is a location within INSN that is an operand address (the contents of
2715 a MEM). Find the best equivalent address to use that is valid for this
2718 On most CISC machines, complicated address modes are costly, and rtx_cost
2719 is a good approximation for that cost. However, most RISC machines have
2720 only a few (usually only one) memory reference formats. If an address is
2721 valid at all, it is often just as cheap as any other address. Hence, for
2722 RISC machines, we use `address_cost' to compare the costs of various
2723 addresses. For two addresses of equal cost, choose the one with the
2724 highest `rtx_cost' value as that has the potential of eliminating the
2725 most insns. For equal costs, we choose the first in the equivalence
2726 class. Note that we ignore the fact that pseudo registers are cheaper than
2727 hard registers here because we would also prefer the pseudo registers. */
2730 find_best_addr (rtx insn
, rtx
*loc
, enum machine_mode mode
)
2732 struct table_elt
*elt
;
2734 struct table_elt
*p
;
2735 int found_better
= 1;
2736 int save_do_not_record
= do_not_record
;
2737 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2742 /* Do not try to replace constant addresses or addresses of local and
2743 argument slots. These MEM expressions are made only once and inserted
2744 in many instructions, as well as being used to control symbol table
2745 output. It is not safe to clobber them.
2747 There are some uncommon cases where the address is already in a register
2748 for some reason, but we cannot take advantage of that because we have
2749 no easy way to unshare the MEM. In addition, looking up all stack
2750 addresses is costly. */
2751 if ((GET_CODE (addr
) == PLUS
2752 && GET_CODE (XEXP (addr
, 0)) == REG
2753 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
2754 && (regno
= REGNO (XEXP (addr
, 0)),
2755 regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
2756 || regno
== ARG_POINTER_REGNUM
))
2757 || (GET_CODE (addr
) == REG
2758 && (regno
= REGNO (addr
), regno
== FRAME_POINTER_REGNUM
2759 || regno
== HARD_FRAME_POINTER_REGNUM
2760 || regno
== ARG_POINTER_REGNUM
))
2761 || GET_CODE (addr
) == ADDRESSOF
2762 || CONSTANT_ADDRESS_P (addr
))
2765 /* If this address is not simply a register, try to fold it. This will
2766 sometimes simplify the expression. Many simplifications
2767 will not be valid, but some, usually applying the associative rule, will
2768 be valid and produce better code. */
2769 if (GET_CODE (addr
) != REG
)
2771 rtx folded
= fold_rtx (copy_rtx (addr
), NULL_RTX
);
2772 int addr_folded_cost
= address_cost (folded
, mode
);
2773 int addr_cost
= address_cost (addr
, mode
);
2775 if ((addr_folded_cost
< addr_cost
2776 || (addr_folded_cost
== addr_cost
2777 /* ??? The rtx_cost comparison is left over from an older
2778 version of this code. It is probably no longer helpful. */
2779 && (rtx_cost (folded
, MEM
) > rtx_cost (addr
, MEM
)
2780 || approx_reg_cost (folded
) < approx_reg_cost (addr
))))
2781 && validate_change (insn
, loc
, folded
, 0))
2785 /* If this address is not in the hash table, we can't look for equivalences
2786 of the whole address. Also, ignore if volatile. */
2789 hash
= HASH (addr
, Pmode
);
2790 addr_volatile
= do_not_record
;
2791 do_not_record
= save_do_not_record
;
2792 hash_arg_in_memory
= save_hash_arg_in_memory
;
2797 elt
= lookup (addr
, hash
, Pmode
);
2801 /* We need to find the best (under the criteria documented above) entry
2802 in the class that is valid. We use the `flag' field to indicate
2803 choices that were invalid and iterate until we can't find a better
2804 one that hasn't already been tried. */
2806 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2809 while (found_better
)
2811 int best_addr_cost
= address_cost (*loc
, mode
);
2812 int best_rtx_cost
= (elt
->cost
+ 1) >> 1;
2814 struct table_elt
*best_elt
= elt
;
2817 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2820 if ((GET_CODE (p
->exp
) == REG
2821 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2822 && ((exp_cost
= address_cost (p
->exp
, mode
)) < best_addr_cost
2823 || (exp_cost
== best_addr_cost
2824 && ((p
->cost
+ 1) >> 1) > best_rtx_cost
)))
2827 best_addr_cost
= exp_cost
;
2828 best_rtx_cost
= (p
->cost
+ 1) >> 1;
2835 if (validate_change (insn
, loc
,
2836 canon_reg (copy_rtx (best_elt
->exp
),
2845 /* If the address is a binary operation with the first operand a register
2846 and the second a constant, do the same as above, but looking for
2847 equivalences of the register. Then try to simplify before checking for
2848 the best address to use. This catches a few cases: First is when we
2849 have REG+const and the register is another REG+const. We can often merge
2850 the constants and eliminate one insn and one register. It may also be
2851 that a machine has a cheap REG+REG+const. Finally, this improves the
2852 code on the Alpha for unaligned byte stores. */
2854 if (flag_expensive_optimizations
2855 && ARITHMETIC_P (*loc
)
2856 && GET_CODE (XEXP (*loc
, 0)) == REG
)
2858 rtx op1
= XEXP (*loc
, 1);
2861 hash
= HASH (XEXP (*loc
, 0), Pmode
);
2862 do_not_record
= save_do_not_record
;
2863 hash_arg_in_memory
= save_hash_arg_in_memory
;
2865 elt
= lookup (XEXP (*loc
, 0), hash
, Pmode
);
2869 /* We need to find the best (under the criteria documented above) entry
2870 in the class that is valid. We use the `flag' field to indicate
2871 choices that were invalid and iterate until we can't find a better
2872 one that hasn't already been tried. */
2874 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2877 while (found_better
)
2879 int best_addr_cost
= address_cost (*loc
, mode
);
2880 int best_rtx_cost
= (COST (*loc
) + 1) >> 1;
2881 struct table_elt
*best_elt
= elt
;
2882 rtx best_rtx
= *loc
;
2885 /* This is at worst case an O(n^2) algorithm, so limit our search
2886 to the first 32 elements on the list. This avoids trouble
2887 compiling code with very long basic blocks that can easily
2888 call simplify_gen_binary so many times that we run out of
2892 for (p
= elt
->first_same_value
, count
= 0;
2894 p
= p
->next_same_value
, count
++)
2896 && (GET_CODE (p
->exp
) == REG
2897 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0)))
2899 rtx
new = simplify_gen_binary (GET_CODE (*loc
), Pmode
,
2902 new_cost
= address_cost (new, mode
);
2904 if (new_cost
< best_addr_cost
2905 || (new_cost
== best_addr_cost
2906 && (COST (new) + 1) >> 1 > best_rtx_cost
))
2909 best_addr_cost
= new_cost
;
2910 best_rtx_cost
= (COST (new) + 1) >> 1;
2918 if (validate_change (insn
, loc
,
2919 canon_reg (copy_rtx (best_rtx
),
2929 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2930 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2931 what values are being compared.
2933 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2934 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2935 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2936 compared to produce cc0.
2938 The return value is the comparison operator and is either the code of
2939 A or the code corresponding to the inverse of the comparison. */
2941 static enum rtx_code
2942 find_comparison_args (enum rtx_code code
, rtx
*parg1
, rtx
*parg2
,
2943 enum machine_mode
*pmode1
, enum machine_mode
*pmode2
)
2947 arg1
= *parg1
, arg2
= *parg2
;
2949 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2951 while (arg2
== CONST0_RTX (GET_MODE (arg1
)))
2953 /* Set nonzero when we find something of interest. */
2955 int reverse_code
= 0;
2956 struct table_elt
*p
= 0;
2958 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2959 On machines with CC0, this is the only case that can occur, since
2960 fold_rtx will return the COMPARE or item being compared with zero
2963 if (GET_CODE (arg1
) == COMPARE
&& arg2
== const0_rtx
)
2966 /* If ARG1 is a comparison operator and CODE is testing for
2967 STORE_FLAG_VALUE, get the inner arguments. */
2969 else if (COMPARISON_P (arg1
))
2971 #ifdef FLOAT_STORE_FLAG_VALUE
2972 REAL_VALUE_TYPE fsfv
;
2976 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2977 && code
== LT
&& STORE_FLAG_VALUE
== -1)
2978 #ifdef FLOAT_STORE_FLAG_VALUE
2979 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2980 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
2981 REAL_VALUE_NEGATIVE (fsfv
)))
2986 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2987 && code
== GE
&& STORE_FLAG_VALUE
== -1)
2988 #ifdef FLOAT_STORE_FLAG_VALUE
2989 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2990 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
2991 REAL_VALUE_NEGATIVE (fsfv
)))
2994 x
= arg1
, reverse_code
= 1;
2997 /* ??? We could also check for
2999 (ne (and (eq (...) (const_int 1))) (const_int 0))
3001 and related forms, but let's wait until we see them occurring. */
3004 /* Look up ARG1 in the hash table and see if it has an equivalence
3005 that lets us see what is being compared. */
3006 p
= lookup (arg1
, safe_hash (arg1
, GET_MODE (arg1
)) & HASH_MASK
,
3010 p
= p
->first_same_value
;
3012 /* If what we compare is already known to be constant, that is as
3014 We need to break the loop in this case, because otherwise we
3015 can have an infinite loop when looking at a reg that is known
3016 to be a constant which is the same as a comparison of a reg
3017 against zero which appears later in the insn stream, which in
3018 turn is constant and the same as the comparison of the first reg
3024 for (; p
; p
= p
->next_same_value
)
3026 enum machine_mode inner_mode
= GET_MODE (p
->exp
);
3027 #ifdef FLOAT_STORE_FLAG_VALUE
3028 REAL_VALUE_TYPE fsfv
;
3031 /* If the entry isn't valid, skip it. */
3032 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
3035 if (GET_CODE (p
->exp
) == COMPARE
3036 /* Another possibility is that this machine has a compare insn
3037 that includes the comparison code. In that case, ARG1 would
3038 be equivalent to a comparison operation that would set ARG1 to
3039 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3040 ORIG_CODE is the actual comparison being done; if it is an EQ,
3041 we must reverse ORIG_CODE. On machine with a negative value
3042 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3045 && GET_MODE_CLASS (inner_mode
) == MODE_INT
3046 && (GET_MODE_BITSIZE (inner_mode
)
3047 <= HOST_BITS_PER_WIDE_INT
)
3048 && (STORE_FLAG_VALUE
3049 & ((HOST_WIDE_INT
) 1
3050 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
3051 #ifdef FLOAT_STORE_FLAG_VALUE
3053 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
3054 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
3055 REAL_VALUE_NEGATIVE (fsfv
)))
3058 && COMPARISON_P (p
->exp
)))
3063 else if ((code
== EQ
3065 && GET_MODE_CLASS (inner_mode
) == MODE_INT
3066 && (GET_MODE_BITSIZE (inner_mode
)
3067 <= HOST_BITS_PER_WIDE_INT
)
3068 && (STORE_FLAG_VALUE
3069 & ((HOST_WIDE_INT
) 1
3070 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
3071 #ifdef FLOAT_STORE_FLAG_VALUE
3073 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
3074 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
3075 REAL_VALUE_NEGATIVE (fsfv
)))
3078 && COMPARISON_P (p
->exp
))
3085 /* If this non-trapping address, e.g. fp + constant, the
3086 equivalent is a better operand since it may let us predict
3087 the value of the comparison. */
3088 else if (!rtx_addr_can_trap_p (p
->exp
))
3095 /* If we didn't find a useful equivalence for ARG1, we are done.
3096 Otherwise, set up for the next iteration. */
3100 /* If we need to reverse the comparison, make sure that that is
3101 possible -- we can't necessarily infer the value of GE from LT
3102 with floating-point operands. */
3105 enum rtx_code reversed
= reversed_comparison_code (x
, NULL_RTX
);
3106 if (reversed
== UNKNOWN
)
3111 else if (COMPARISON_P (x
))
3112 code
= GET_CODE (x
);
3113 arg1
= XEXP (x
, 0), arg2
= XEXP (x
, 1);
3116 /* Return our results. Return the modes from before fold_rtx
3117 because fold_rtx might produce const_int, and then it's too late. */
3118 *pmode1
= GET_MODE (arg1
), *pmode2
= GET_MODE (arg2
);
3119 *parg1
= fold_rtx (arg1
, 0), *parg2
= fold_rtx (arg2
, 0);
3124 /* If X is a nontrivial arithmetic operation on an argument
3125 for which a constant value can be determined, return
3126 the result of operating on that value, as a constant.
3127 Otherwise, return X, possibly with one or more operands
3128 modified by recursive calls to this function.
3130 If X is a register whose contents are known, we do NOT
3131 return those contents here. equiv_constant is called to
3134 INSN is the insn that we may be modifying. If it is 0, make a copy
3135 of X before modifying it. */
3138 fold_rtx (rtx x
, rtx insn
)
3141 enum machine_mode mode
;
3148 /* Folded equivalents of first two operands of X. */
3152 /* Constant equivalents of first three operands of X;
3153 0 when no such equivalent is known. */
3158 /* The mode of the first operand of X. We need this for sign and zero
3160 enum machine_mode mode_arg0
;
3165 mode
= GET_MODE (x
);
3166 code
= GET_CODE (x
);
3176 /* No use simplifying an EXPR_LIST
3177 since they are used only for lists of args
3178 in a function call's REG_EQUAL note. */
3180 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3181 want to (e.g.,) make (addressof (const_int 0)) just because
3182 the location is known to be zero. */
3188 return prev_insn_cc0
;
3192 /* If the next insn is a CODE_LABEL followed by a jump table,
3193 PC's value is a LABEL_REF pointing to that label. That
3194 lets us fold switch statements on the VAX. */
3197 if (insn
&& tablejump_p (insn
, &next
, NULL
))
3198 return gen_rtx_LABEL_REF (Pmode
, next
);
3203 /* See if we previously assigned a constant value to this SUBREG. */
3204 if ((new = lookup_as_function (x
, CONST_INT
)) != 0
3205 || (new = lookup_as_function (x
, CONST_DOUBLE
)) != 0)
3208 /* If this is a paradoxical SUBREG, we have no idea what value the
3209 extra bits would have. However, if the operand is equivalent
3210 to a SUBREG whose operand is the same as our mode, and all the
3211 modes are within a word, we can just use the inner operand
3212 because these SUBREGs just say how to treat the register.
3214 Similarly if we find an integer constant. */
3216 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3218 enum machine_mode imode
= GET_MODE (SUBREG_REG (x
));
3219 struct table_elt
*elt
;
3221 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
3222 && GET_MODE_SIZE (imode
) <= UNITS_PER_WORD
3223 && (elt
= lookup (SUBREG_REG (x
), HASH (SUBREG_REG (x
), imode
),
3225 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
3227 if (CONSTANT_P (elt
->exp
)
3228 && GET_MODE (elt
->exp
) == VOIDmode
)
3231 if (GET_CODE (elt
->exp
) == SUBREG
3232 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
3233 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
3234 return copy_rtx (SUBREG_REG (elt
->exp
));
3240 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3241 We might be able to if the SUBREG is extracting a single word in an
3242 integral mode or extracting the low part. */
3244 folded_arg0
= fold_rtx (SUBREG_REG (x
), insn
);
3245 const_arg0
= equiv_constant (folded_arg0
);
3247 folded_arg0
= const_arg0
;
3249 if (folded_arg0
!= SUBREG_REG (x
))
3251 new = simplify_subreg (mode
, folded_arg0
,
3252 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
3257 if (GET_CODE (folded_arg0
) == REG
3258 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (folded_arg0
)))
3260 struct table_elt
*elt
;
3262 /* We can use HASH here since we know that canon_hash won't be
3264 elt
= lookup (folded_arg0
,
3265 HASH (folded_arg0
, GET_MODE (folded_arg0
)),
3266 GET_MODE (folded_arg0
));
3269 elt
= elt
->first_same_value
;
3271 if (subreg_lowpart_p (x
))
3272 /* If this is a narrowing SUBREG and our operand is a REG, see
3273 if we can find an equivalence for REG that is an arithmetic
3274 operation in a wider mode where both operands are paradoxical
3275 SUBREGs from objects of our result mode. In that case, we
3276 couldn-t report an equivalent value for that operation, since we
3277 don't know what the extra bits will be. But we can find an
3278 equivalence for this SUBREG by folding that operation in the
3279 narrow mode. This allows us to fold arithmetic in narrow modes
3280 when the machine only supports word-sized arithmetic.
3282 Also look for a case where we have a SUBREG whose operand
3283 is the same as our result. If both modes are smaller
3284 than a word, we are simply interpreting a register in
3285 different modes and we can use the inner value. */
3287 for (; elt
; elt
= elt
->next_same_value
)
3289 enum rtx_code eltcode
= GET_CODE (elt
->exp
);
3291 /* Just check for unary and binary operations. */
3292 if (UNARY_P (elt
->exp
)
3293 && eltcode
!= SIGN_EXTEND
3294 && eltcode
!= ZERO_EXTEND
3295 && GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
3296 && GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0))) == mode
3297 && (GET_MODE_CLASS (mode
)
3298 == GET_MODE_CLASS (GET_MODE (XEXP (elt
->exp
, 0)))))
3300 rtx op0
= SUBREG_REG (XEXP (elt
->exp
, 0));
3302 if (GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
3303 op0
= fold_rtx (op0
, NULL_RTX
);
3305 op0
= equiv_constant (op0
);
3307 new = simplify_unary_operation (GET_CODE (elt
->exp
), mode
,
3310 else if (ARITHMETIC_P (elt
->exp
)
3311 && eltcode
!= DIV
&& eltcode
!= MOD
3312 && eltcode
!= UDIV
&& eltcode
!= UMOD
3313 && eltcode
!= ASHIFTRT
&& eltcode
!= LSHIFTRT
3314 && eltcode
!= ROTATE
&& eltcode
!= ROTATERT
3315 && ((GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
3316 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0)))
3318 || CONSTANT_P (XEXP (elt
->exp
, 0)))
3319 && ((GET_CODE (XEXP (elt
->exp
, 1)) == SUBREG
3320 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 1)))
3322 || CONSTANT_P (XEXP (elt
->exp
, 1))))
3324 rtx op0
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 0));
3325 rtx op1
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 1));
3327 if (op0
&& GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
3328 op0
= fold_rtx (op0
, NULL_RTX
);
3331 op0
= equiv_constant (op0
);
3333 if (op1
&& GET_CODE (op1
) != REG
&& ! CONSTANT_P (op1
))
3334 op1
= fold_rtx (op1
, NULL_RTX
);
3337 op1
= equiv_constant (op1
);
3339 /* If we are looking for the low SImode part of
3340 (ashift:DI c (const_int 32)), it doesn't work
3341 to compute that in SImode, because a 32-bit shift
3342 in SImode is unpredictable. We know the value is 0. */
3344 && GET_CODE (elt
->exp
) == ASHIFT
3345 && GET_CODE (op1
) == CONST_INT
3346 && INTVAL (op1
) >= GET_MODE_BITSIZE (mode
))
3349 < GET_MODE_BITSIZE (GET_MODE (elt
->exp
)))
3350 /* If the count fits in the inner mode's width,
3351 but exceeds the outer mode's width,
3352 the value will get truncated to 0
3354 new = CONST0_RTX (mode
);
3356 /* If the count exceeds even the inner mode's width,
3357 don't fold this expression. */
3360 else if (op0
&& op1
)
3361 new = simplify_binary_operation (GET_CODE (elt
->exp
), mode
, op0
, op1
);
3364 else if (GET_CODE (elt
->exp
) == SUBREG
3365 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
3366 && (GET_MODE_SIZE (GET_MODE (folded_arg0
))
3368 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
3369 new = copy_rtx (SUBREG_REG (elt
->exp
));
3375 /* A SUBREG resulting from a zero extension may fold to zero if
3376 it extracts higher bits than the ZERO_EXTEND's source bits.
3377 FIXME: if combine tried to, er, combine these instructions,
3378 this transformation may be moved to simplify_subreg. */
3379 for (; elt
; elt
= elt
->next_same_value
)
3381 if (GET_CODE (elt
->exp
) == ZERO_EXTEND
3383 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt
->exp
, 0))))
3384 return CONST0_RTX (mode
);
3392 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3393 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3394 new = lookup_as_function (XEXP (x
, 0), code
);
3396 return fold_rtx (copy_rtx (XEXP (new, 0)), insn
);
3400 /* If we are not actually processing an insn, don't try to find the
3401 best address. Not only don't we care, but we could modify the
3402 MEM in an invalid way since we have no insn to validate against. */
3404 find_best_addr (insn
, &XEXP (x
, 0), GET_MODE (x
));
3407 /* Even if we don't fold in the insn itself,
3408 we can safely do so here, in hopes of getting a constant. */
3409 rtx addr
= fold_rtx (XEXP (x
, 0), NULL_RTX
);
3411 HOST_WIDE_INT offset
= 0;
3413 if (GET_CODE (addr
) == REG
3414 && REGNO_QTY_VALID_P (REGNO (addr
)))
3416 int addr_q
= REG_QTY (REGNO (addr
));
3417 struct qty_table_elem
*addr_ent
= &qty_table
[addr_q
];
3419 if (GET_MODE (addr
) == addr_ent
->mode
3420 && addr_ent
->const_rtx
!= NULL_RTX
)
3421 addr
= addr_ent
->const_rtx
;
3424 /* If address is constant, split it into a base and integer offset. */
3425 if (GET_CODE (addr
) == SYMBOL_REF
|| GET_CODE (addr
) == LABEL_REF
)
3427 else if (GET_CODE (addr
) == CONST
&& GET_CODE (XEXP (addr
, 0)) == PLUS
3428 && GET_CODE (XEXP (XEXP (addr
, 0), 1)) == CONST_INT
)
3430 base
= XEXP (XEXP (addr
, 0), 0);
3431 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
3433 else if (GET_CODE (addr
) == LO_SUM
3434 && GET_CODE (XEXP (addr
, 1)) == SYMBOL_REF
)
3435 base
= XEXP (addr
, 1);
3436 else if (GET_CODE (addr
) == ADDRESSOF
)
3437 return change_address (x
, VOIDmode
, addr
);
3439 /* If this is a constant pool reference, we can fold it into its
3440 constant to allow better value tracking. */
3441 if (base
&& GET_CODE (base
) == SYMBOL_REF
3442 && CONSTANT_POOL_ADDRESS_P (base
))
3444 rtx constant
= get_pool_constant (base
);
3445 enum machine_mode const_mode
= get_pool_mode (base
);
3448 if (CONSTANT_P (constant
) && GET_CODE (constant
) != CONST_INT
)
3450 constant_pool_entries_cost
= COST (constant
);
3451 constant_pool_entries_regcost
= approx_reg_cost (constant
);
3454 /* If we are loading the full constant, we have an equivalence. */
3455 if (offset
== 0 && mode
== const_mode
)
3458 /* If this actually isn't a constant (weird!), we can't do
3459 anything. Otherwise, handle the two most common cases:
3460 extracting a word from a multi-word constant, and extracting
3461 the low-order bits. Other cases don't seem common enough to
3463 if (! CONSTANT_P (constant
))
3466 if (GET_MODE_CLASS (mode
) == MODE_INT
3467 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
3468 && offset
% UNITS_PER_WORD
== 0
3469 && (new = operand_subword (constant
,
3470 offset
/ UNITS_PER_WORD
,
3471 0, const_mode
)) != 0)
3474 if (((BYTES_BIG_ENDIAN
3475 && offset
== GET_MODE_SIZE (GET_MODE (constant
)) - 1)
3476 || (! BYTES_BIG_ENDIAN
&& offset
== 0))
3477 && (new = gen_lowpart (mode
, constant
)) != 0)
3481 /* If this is a reference to a label at a known position in a jump
3482 table, we also know its value. */
3483 if (base
&& GET_CODE (base
) == LABEL_REF
)
3485 rtx label
= XEXP (base
, 0);
3486 rtx table_insn
= NEXT_INSN (label
);
3488 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
3489 && GET_CODE (PATTERN (table_insn
)) == ADDR_VEC
)
3491 rtx table
= PATTERN (table_insn
);
3494 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
3495 < XVECLEN (table
, 0)))
3496 return XVECEXP (table
, 0,
3497 offset
/ GET_MODE_SIZE (GET_MODE (table
)));
3499 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
3500 && GET_CODE (PATTERN (table_insn
)) == ADDR_DIFF_VEC
)
3502 rtx table
= PATTERN (table_insn
);
3505 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
3506 < XVECLEN (table
, 1)))
3508 offset
/= GET_MODE_SIZE (GET_MODE (table
));
3509 new = gen_rtx_MINUS (Pmode
, XVECEXP (table
, 1, offset
),
3512 if (GET_MODE (table
) != Pmode
)
3513 new = gen_rtx_TRUNCATE (GET_MODE (table
), new);
3515 /* Indicate this is a constant. This isn't a
3516 valid form of CONST, but it will only be used
3517 to fold the next insns and then discarded, so
3520 Note this expression must be explicitly discarded,
3521 by cse_insn, else it may end up in a REG_EQUAL note
3522 and "escape" to cause problems elsewhere. */
3523 return gen_rtx_CONST (GET_MODE (new), new);
3531 #ifdef NO_FUNCTION_CSE
3533 if (CONSTANT_P (XEXP (XEXP (x
, 0), 0)))
3539 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
3540 validate_change (insn
, &ASM_OPERANDS_INPUT (x
, i
),
3541 fold_rtx (ASM_OPERANDS_INPUT (x
, i
), insn
), 0);
3551 mode_arg0
= VOIDmode
;
3553 /* Try folding our operands.
3554 Then see which ones have constant values known. */
3556 fmt
= GET_RTX_FORMAT (code
);
3557 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3560 rtx arg
= XEXP (x
, i
);
3561 rtx folded_arg
= arg
, const_arg
= 0;
3562 enum machine_mode mode_arg
= GET_MODE (arg
);
3563 rtx cheap_arg
, expensive_arg
;
3564 rtx replacements
[2];
3566 int old_cost
= COST_IN (XEXP (x
, i
), code
);
3568 /* Most arguments are cheap, so handle them specially. */
3569 switch (GET_CODE (arg
))
3572 /* This is the same as calling equiv_constant; it is duplicated
3574 if (REGNO_QTY_VALID_P (REGNO (arg
)))
3576 int arg_q
= REG_QTY (REGNO (arg
));
3577 struct qty_table_elem
*arg_ent
= &qty_table
[arg_q
];
3579 if (arg_ent
->const_rtx
!= NULL_RTX
3580 && GET_CODE (arg_ent
->const_rtx
) != REG
3581 && GET_CODE (arg_ent
->const_rtx
) != PLUS
)
3583 = gen_lowpart (GET_MODE (arg
),
3584 arg_ent
->const_rtx
);
3599 folded_arg
= prev_insn_cc0
;
3600 mode_arg
= prev_insn_cc0_mode
;
3601 const_arg
= equiv_constant (folded_arg
);
3606 folded_arg
= fold_rtx (arg
, insn
);
3607 const_arg
= equiv_constant (folded_arg
);
3610 /* For the first three operands, see if the operand
3611 is constant or equivalent to a constant. */
3615 folded_arg0
= folded_arg
;
3616 const_arg0
= const_arg
;
3617 mode_arg0
= mode_arg
;
3620 folded_arg1
= folded_arg
;
3621 const_arg1
= const_arg
;
3624 const_arg2
= const_arg
;
3628 /* Pick the least expensive of the folded argument and an
3629 equivalent constant argument. */
3630 if (const_arg
== 0 || const_arg
== folded_arg
3631 || COST_IN (const_arg
, code
) > COST_IN (folded_arg
, code
))
3632 cheap_arg
= folded_arg
, expensive_arg
= const_arg
;
3634 cheap_arg
= const_arg
, expensive_arg
= folded_arg
;
3636 /* Try to replace the operand with the cheapest of the two
3637 possibilities. If it doesn't work and this is either of the first
3638 two operands of a commutative operation, try swapping them.
3639 If THAT fails, try the more expensive, provided it is cheaper
3640 than what is already there. */
3642 if (cheap_arg
== XEXP (x
, i
))
3645 if (insn
== 0 && ! copied
)
3651 /* Order the replacements from cheapest to most expensive. */
3652 replacements
[0] = cheap_arg
;
3653 replacements
[1] = expensive_arg
;
3655 for (j
= 0; j
< 2 && replacements
[j
]; j
++)
3657 int new_cost
= COST_IN (replacements
[j
], code
);
3659 /* Stop if what existed before was cheaper. Prefer constants
3660 in the case of a tie. */
3661 if (new_cost
> old_cost
3662 || (new_cost
== old_cost
&& CONSTANT_P (XEXP (x
, i
))))
3665 /* It's not safe to substitute the operand of a conversion
3666 operator with a constant, as the conversion's identity
3667 depends upon the mode of it's operand. This optimization
3668 is handled by the call to simplify_unary_operation. */
3669 if (GET_RTX_CLASS (code
) == RTX_UNARY
3670 && GET_MODE (replacements
[j
]) != mode_arg0
3671 && (code
== ZERO_EXTEND
3672 || code
== SIGN_EXTEND
3674 || code
== FLOAT_TRUNCATE
3675 || code
== FLOAT_EXTEND
3678 || code
== UNSIGNED_FLOAT
3679 || code
== UNSIGNED_FIX
))
3682 if (validate_change (insn
, &XEXP (x
, i
), replacements
[j
], 0))
3685 if (GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
3686 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
3688 validate_change (insn
, &XEXP (x
, i
), XEXP (x
, 1 - i
), 1);
3689 validate_change (insn
, &XEXP (x
, 1 - i
), replacements
[j
], 1);
3691 if (apply_change_group ())
3693 /* Swap them back to be invalid so that this loop can
3694 continue and flag them to be swapped back later. */
3697 tem
= XEXP (x
, 0); XEXP (x
, 0) = XEXP (x
, 1);
3709 /* Don't try to fold inside of a vector of expressions.
3710 Doing nothing is harmless. */
3714 /* If a commutative operation, place a constant integer as the second
3715 operand unless the first operand is also a constant integer. Otherwise,
3716 place any constant second unless the first operand is also a constant. */
3718 if (COMMUTATIVE_P (x
))
3721 || swap_commutative_operands_p (const_arg0
? const_arg0
3723 const_arg1
? const_arg1
3726 rtx tem
= XEXP (x
, 0);
3728 if (insn
== 0 && ! copied
)
3734 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
3735 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
3736 if (apply_change_group ())
3738 tem
= const_arg0
, const_arg0
= const_arg1
, const_arg1
= tem
;
3739 tem
= folded_arg0
, folded_arg0
= folded_arg1
, folded_arg1
= tem
;
3744 /* If X is an arithmetic operation, see if we can simplify it. */
3746 switch (GET_RTX_CLASS (code
))
3752 /* We can't simplify extension ops unless we know the
3754 if ((code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
3755 && mode_arg0
== VOIDmode
)
3758 /* If we had a CONST, strip it off and put it back later if we
3760 if (const_arg0
!= 0 && GET_CODE (const_arg0
) == CONST
)
3761 is_const
= 1, const_arg0
= XEXP (const_arg0
, 0);
3763 new = simplify_unary_operation (code
, mode
,
3764 const_arg0
? const_arg0
: folded_arg0
,
3766 if (new != 0 && is_const
)
3767 new = gen_rtx_CONST (mode
, new);
3772 case RTX_COMM_COMPARE
:
3773 /* See what items are actually being compared and set FOLDED_ARG[01]
3774 to those values and CODE to the actual comparison code. If any are
3775 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3776 do anything if both operands are already known to be constant. */
3778 if (const_arg0
== 0 || const_arg1
== 0)
3780 struct table_elt
*p0
, *p1
;
3781 rtx true_rtx
= const_true_rtx
, false_rtx
= const0_rtx
;
3782 enum machine_mode mode_arg1
;
3784 #ifdef FLOAT_STORE_FLAG_VALUE
3785 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3787 true_rtx
= (CONST_DOUBLE_FROM_REAL_VALUE
3788 (FLOAT_STORE_FLAG_VALUE (mode
), mode
));
3789 false_rtx
= CONST0_RTX (mode
);
3793 code
= find_comparison_args (code
, &folded_arg0
, &folded_arg1
,
3794 &mode_arg0
, &mode_arg1
);
3795 const_arg0
= equiv_constant (folded_arg0
);
3796 const_arg1
= equiv_constant (folded_arg1
);
3798 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3799 what kinds of things are being compared, so we can't do
3800 anything with this comparison. */
3802 if (mode_arg0
== VOIDmode
|| GET_MODE_CLASS (mode_arg0
) == MODE_CC
)
3805 /* If we do not now have two constants being compared, see
3806 if we can nevertheless deduce some things about the
3808 if (const_arg0
== 0 || const_arg1
== 0)
3810 /* Some addresses are known to be nonzero. We don't know
3811 their sign, but equality comparisons are known. */
3812 if (const_arg1
== const0_rtx
3813 && nonzero_address_p (folded_arg0
))
3817 else if (code
== NE
)
3821 /* See if the two operands are the same. */
3823 if (folded_arg0
== folded_arg1
3824 || (GET_CODE (folded_arg0
) == REG
3825 && GET_CODE (folded_arg1
) == REG
3826 && (REG_QTY (REGNO (folded_arg0
))
3827 == REG_QTY (REGNO (folded_arg1
))))
3828 || ((p0
= lookup (folded_arg0
,
3829 (safe_hash (folded_arg0
, mode_arg0
)
3830 & HASH_MASK
), mode_arg0
))
3831 && (p1
= lookup (folded_arg1
,
3832 (safe_hash (folded_arg1
, mode_arg0
)
3833 & HASH_MASK
), mode_arg0
))
3834 && p0
->first_same_value
== p1
->first_same_value
))
3836 /* Sadly two equal NaNs are not equivalent. */
3837 if (!HONOR_NANS (mode_arg0
))
3838 return ((code
== EQ
|| code
== LE
|| code
== GE
3839 || code
== LEU
|| code
== GEU
|| code
== UNEQ
3840 || code
== UNLE
|| code
== UNGE
3842 ? true_rtx
: false_rtx
);
3843 /* Take care for the FP compares we can resolve. */
3844 if (code
== UNEQ
|| code
== UNLE
|| code
== UNGE
)
3846 if (code
== LTGT
|| code
== LT
|| code
== GT
)
3850 /* If FOLDED_ARG0 is a register, see if the comparison we are
3851 doing now is either the same as we did before or the reverse
3852 (we only check the reverse if not floating-point). */
3853 else if (GET_CODE (folded_arg0
) == REG
)
3855 int qty
= REG_QTY (REGNO (folded_arg0
));
3857 if (REGNO_QTY_VALID_P (REGNO (folded_arg0
)))
3859 struct qty_table_elem
*ent
= &qty_table
[qty
];
3861 if ((comparison_dominates_p (ent
->comparison_code
, code
)
3862 || (! FLOAT_MODE_P (mode_arg0
)
3863 && comparison_dominates_p (ent
->comparison_code
,
3864 reverse_condition (code
))))
3865 && (rtx_equal_p (ent
->comparison_const
, folded_arg1
)
3867 && rtx_equal_p (ent
->comparison_const
,
3869 || (GET_CODE (folded_arg1
) == REG
3870 && (REG_QTY (REGNO (folded_arg1
)) == ent
->comparison_qty
))))
3871 return (comparison_dominates_p (ent
->comparison_code
, code
)
3872 ? true_rtx
: false_rtx
);
3878 /* If we are comparing against zero, see if the first operand is
3879 equivalent to an IOR with a constant. If so, we may be able to
3880 determine the result of this comparison. */
3882 if (const_arg1
== const0_rtx
)
3884 rtx y
= lookup_as_function (folded_arg0
, IOR
);
3888 && (inner_const
= equiv_constant (XEXP (y
, 1))) != 0
3889 && GET_CODE (inner_const
) == CONST_INT
3890 && INTVAL (inner_const
) != 0)
3892 int sign_bitnum
= GET_MODE_BITSIZE (mode_arg0
) - 1;
3893 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
3894 && (INTVAL (inner_const
)
3895 & ((HOST_WIDE_INT
) 1 << sign_bitnum
)));
3896 rtx true_rtx
= const_true_rtx
, false_rtx
= const0_rtx
;
3898 #ifdef FLOAT_STORE_FLAG_VALUE
3899 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3901 true_rtx
= (CONST_DOUBLE_FROM_REAL_VALUE
3902 (FLOAT_STORE_FLAG_VALUE (mode
), mode
));
3903 false_rtx
= CONST0_RTX (mode
);
3928 rtx op0
= const_arg0
? const_arg0
: folded_arg0
;
3929 rtx op1
= const_arg1
? const_arg1
: folded_arg1
;
3930 new = simplify_relational_operation (code
, mode
, mode_arg0
, op0
, op1
);
3935 case RTX_COMM_ARITH
:
3939 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3940 with that LABEL_REF as its second operand. If so, the result is
3941 the first operand of that MINUS. This handles switches with an
3942 ADDR_DIFF_VEC table. */
3943 if (const_arg1
&& GET_CODE (const_arg1
) == LABEL_REF
)
3946 = GET_CODE (folded_arg0
) == MINUS
? folded_arg0
3947 : lookup_as_function (folded_arg0
, MINUS
);
3949 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
3950 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg1
, 0))
3953 /* Now try for a CONST of a MINUS like the above. */
3954 if ((y
= (GET_CODE (folded_arg0
) == CONST
? folded_arg0
3955 : lookup_as_function (folded_arg0
, CONST
))) != 0
3956 && GET_CODE (XEXP (y
, 0)) == MINUS
3957 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
3958 && XEXP (XEXP (XEXP (y
, 0), 1), 0) == XEXP (const_arg1
, 0))
3959 return XEXP (XEXP (y
, 0), 0);
3962 /* Likewise if the operands are in the other order. */
3963 if (const_arg0
&& GET_CODE (const_arg0
) == LABEL_REF
)
3966 = GET_CODE (folded_arg1
) == MINUS
? folded_arg1
3967 : lookup_as_function (folded_arg1
, MINUS
);
3969 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
3970 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg0
, 0))
3973 /* Now try for a CONST of a MINUS like the above. */
3974 if ((y
= (GET_CODE (folded_arg1
) == CONST
? folded_arg1
3975 : lookup_as_function (folded_arg1
, CONST
))) != 0
3976 && GET_CODE (XEXP (y
, 0)) == MINUS
3977 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
3978 && XEXP (XEXP (XEXP (y
, 0), 1), 0) == XEXP (const_arg0
, 0))
3979 return XEXP (XEXP (y
, 0), 0);
3982 /* If second operand is a register equivalent to a negative
3983 CONST_INT, see if we can find a register equivalent to the
3984 positive constant. Make a MINUS if so. Don't do this for
3985 a non-negative constant since we might then alternate between
3986 choosing positive and negative constants. Having the positive
3987 constant previously-used is the more common case. Be sure
3988 the resulting constant is non-negative; if const_arg1 were
3989 the smallest negative number this would overflow: depending
3990 on the mode, this would either just be the same value (and
3991 hence not save anything) or be incorrect. */
3992 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
3993 && INTVAL (const_arg1
) < 0
3994 /* This used to test
3996 -INTVAL (const_arg1) >= 0
3998 But The Sun V5.0 compilers mis-compiled that test. So
3999 instead we test for the problematic value in a more direct
4000 manner and hope the Sun compilers get it correct. */
4001 && INTVAL (const_arg1
) !=
4002 ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1))
4003 && GET_CODE (folded_arg1
) == REG
)
4005 rtx new_const
= GEN_INT (-INTVAL (const_arg1
));
4007 = lookup (new_const
, safe_hash (new_const
, mode
) & HASH_MASK
,
4011 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
4012 if (GET_CODE (p
->exp
) == REG
)
4013 return simplify_gen_binary (MINUS
, mode
, folded_arg0
,
4014 canon_reg (p
->exp
, NULL_RTX
));
4019 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4020 If so, produce (PLUS Z C2-C). */
4021 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
)
4023 rtx y
= lookup_as_function (XEXP (x
, 0), PLUS
);
4024 if (y
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
4025 return fold_rtx (plus_constant (copy_rtx (y
),
4026 -INTVAL (const_arg1
)),
4033 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4034 case IOR
: case AND
: case XOR
:
4036 case ASHIFT
: case LSHIFTRT
: case ASHIFTRT
:
4037 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4038 is known to be of similar form, we may be able to replace the
4039 operation with a combined operation. This may eliminate the
4040 intermediate operation if every use is simplified in this way.
4041 Note that the similar optimization done by combine.c only works
4042 if the intermediate operation's result has only one reference. */
4044 if (GET_CODE (folded_arg0
) == REG
4045 && const_arg1
&& GET_CODE (const_arg1
) == CONST_INT
)
4048 = (code
== ASHIFT
|| code
== ASHIFTRT
|| code
== LSHIFTRT
);
4049 rtx y
= lookup_as_function (folded_arg0
, code
);
4051 enum rtx_code associate_code
;
4055 || 0 == (inner_const
4056 = equiv_constant (fold_rtx (XEXP (y
, 1), 0)))
4057 || GET_CODE (inner_const
) != CONST_INT
4058 /* If we have compiled a statement like
4059 "if (x == (x & mask1))", and now are looking at
4060 "x & mask2", we will have a case where the first operand
4061 of Y is the same as our first operand. Unless we detect
4062 this case, an infinite loop will result. */
4063 || XEXP (y
, 0) == folded_arg0
)
4066 /* Don't associate these operations if they are a PLUS with the
4067 same constant and it is a power of two. These might be doable
4068 with a pre- or post-increment. Similarly for two subtracts of
4069 identical powers of two with post decrement. */
4071 if (code
== PLUS
&& const_arg1
== inner_const
4072 && ((HAVE_PRE_INCREMENT
4073 && exact_log2 (INTVAL (const_arg1
)) >= 0)
4074 || (HAVE_POST_INCREMENT
4075 && exact_log2 (INTVAL (const_arg1
)) >= 0)
4076 || (HAVE_PRE_DECREMENT
4077 && exact_log2 (- INTVAL (const_arg1
)) >= 0)
4078 || (HAVE_POST_DECREMENT
4079 && exact_log2 (- INTVAL (const_arg1
)) >= 0)))
4082 /* Compute the code used to compose the constants. For example,
4083 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4085 associate_code
= (is_shift
|| code
== MINUS
? PLUS
: code
);
4087 new_const
= simplify_binary_operation (associate_code
, mode
,
4088 const_arg1
, inner_const
);
4093 /* If we are associating shift operations, don't let this
4094 produce a shift of the size of the object or larger.
4095 This could occur when we follow a sign-extend by a right
4096 shift on a machine that does a sign-extend as a pair
4099 if (is_shift
&& GET_CODE (new_const
) == CONST_INT
4100 && INTVAL (new_const
) >= GET_MODE_BITSIZE (mode
))
4102 /* As an exception, we can turn an ASHIFTRT of this
4103 form into a shift of the number of bits - 1. */
4104 if (code
== ASHIFTRT
)
4105 new_const
= GEN_INT (GET_MODE_BITSIZE (mode
) - 1);
4110 y
= copy_rtx (XEXP (y
, 0));
4112 /* If Y contains our first operand (the most common way this
4113 can happen is if Y is a MEM), we would do into an infinite
4114 loop if we tried to fold it. So don't in that case. */
4116 if (! reg_mentioned_p (folded_arg0
, y
))
4117 y
= fold_rtx (y
, insn
);
4119 return simplify_gen_binary (code
, mode
, y
, new_const
);
4123 case DIV
: case UDIV
:
4124 /* ??? The associative optimization performed immediately above is
4125 also possible for DIV and UDIV using associate_code of MULT.
4126 However, we would need extra code to verify that the
4127 multiplication does not overflow, that is, there is no overflow
4128 in the calculation of new_const. */
4135 new = simplify_binary_operation (code
, mode
,
4136 const_arg0
? const_arg0
: folded_arg0
,
4137 const_arg1
? const_arg1
: folded_arg1
);
4141 /* (lo_sum (high X) X) is simply X. */
4142 if (code
== LO_SUM
&& const_arg0
!= 0
4143 && GET_CODE (const_arg0
) == HIGH
4144 && rtx_equal_p (XEXP (const_arg0
, 0), const_arg1
))
4149 case RTX_BITFIELD_OPS
:
4150 new = simplify_ternary_operation (code
, mode
, mode_arg0
,
4151 const_arg0
? const_arg0
: folded_arg0
,
4152 const_arg1
? const_arg1
: folded_arg1
,
4153 const_arg2
? const_arg2
: XEXP (x
, 2));
4160 return new ? new : x
;
4163 /* Return a constant value currently equivalent to X.
4164 Return 0 if we don't know one. */
4167 equiv_constant (rtx x
)
4169 if (GET_CODE (x
) == REG
4170 && REGNO_QTY_VALID_P (REGNO (x
)))
4172 int x_q
= REG_QTY (REGNO (x
));
4173 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
4175 if (x_ent
->const_rtx
)
4176 x
= gen_lowpart (GET_MODE (x
), x_ent
->const_rtx
);
4179 if (x
== 0 || CONSTANT_P (x
))
4182 /* If X is a MEM, try to fold it outside the context of any insn to see if
4183 it might be equivalent to a constant. That handles the case where it
4184 is a constant-pool reference. Then try to look it up in the hash table
4185 in case it is something whose value we have seen before. */
4187 if (GET_CODE (x
) == MEM
)
4189 struct table_elt
*elt
;
4191 x
= fold_rtx (x
, NULL_RTX
);
4195 elt
= lookup (x
, safe_hash (x
, GET_MODE (x
)) & HASH_MASK
, GET_MODE (x
));
4199 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
4200 if (elt
->is_const
&& CONSTANT_P (elt
->exp
))
4207 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4208 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4209 least-significant part of X.
4210 MODE specifies how big a part of X to return.
4212 If the requested operation cannot be done, 0 is returned.
4214 This is similar to gen_lowpart_general in emit-rtl.c. */
4217 gen_lowpart_if_possible (enum machine_mode mode
, rtx x
)
4219 rtx result
= gen_lowpart_common (mode
, x
);
4223 else if (GET_CODE (x
) == MEM
)
4225 /* This is the only other case we handle. */
4229 if (WORDS_BIG_ENDIAN
)
4230 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
4231 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
4232 if (BYTES_BIG_ENDIAN
)
4233 /* Adjust the address so that the address-after-the-data is
4235 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
4236 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
4238 new = adjust_address_nv (x
, mode
, offset
);
4239 if (! memory_address_p (mode
, XEXP (new, 0)))
4248 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4249 branch. It will be zero if not.
4251 In certain cases, this can cause us to add an equivalence. For example,
4252 if we are following the taken case of
4254 we can add the fact that `i' and '2' are now equivalent.
4256 In any case, we can record that this comparison was passed. If the same
4257 comparison is seen later, we will know its value. */
4260 record_jump_equiv (rtx insn
, int taken
)
4262 int cond_known_true
;
4265 enum machine_mode mode
, mode0
, mode1
;
4266 int reversed_nonequality
= 0;
4269 /* Ensure this is the right kind of insn. */
4270 if (! any_condjump_p (insn
))
4272 set
= pc_set (insn
);
4274 /* See if this jump condition is known true or false. */
4276 cond_known_true
= (XEXP (SET_SRC (set
), 2) == pc_rtx
);
4278 cond_known_true
= (XEXP (SET_SRC (set
), 1) == pc_rtx
);
4280 /* Get the type of comparison being done and the operands being compared.
4281 If we had to reverse a non-equality condition, record that fact so we
4282 know that it isn't valid for floating-point. */
4283 code
= GET_CODE (XEXP (SET_SRC (set
), 0));
4284 op0
= fold_rtx (XEXP (XEXP (SET_SRC (set
), 0), 0), insn
);
4285 op1
= fold_rtx (XEXP (XEXP (SET_SRC (set
), 0), 1), insn
);
4287 code
= find_comparison_args (code
, &op0
, &op1
, &mode0
, &mode1
);
4288 if (! cond_known_true
)
4290 code
= reversed_comparison_code_parts (code
, op0
, op1
, insn
);
4292 /* Don't remember if we can't find the inverse. */
4293 if (code
== UNKNOWN
)
4297 /* The mode is the mode of the non-constant. */
4299 if (mode1
!= VOIDmode
)
4302 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
);
4305 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4306 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4307 Make any useful entries we can with that information. Called from
4308 above function and called recursively. */
4311 record_jump_cond (enum rtx_code code
, enum machine_mode mode
, rtx op0
,
4312 rtx op1
, int reversed_nonequality
)
4314 unsigned op0_hash
, op1_hash
;
4315 int op0_in_memory
, op1_in_memory
;
4316 struct table_elt
*op0_elt
, *op1_elt
;
4318 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4319 we know that they are also equal in the smaller mode (this is also
4320 true for all smaller modes whether or not there is a SUBREG, but
4321 is not worth testing for with no SUBREG). */
4323 /* Note that GET_MODE (op0) may not equal MODE. */
4324 if (code
== EQ
&& GET_CODE (op0
) == SUBREG
4325 && (GET_MODE_SIZE (GET_MODE (op0
))
4326 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
4328 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
4329 rtx tem
= gen_lowpart (inner_mode
, op1
);
4331 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
4332 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op1
, 0),
4333 reversed_nonequality
);
4336 if (code
== EQ
&& GET_CODE (op1
) == SUBREG
4337 && (GET_MODE_SIZE (GET_MODE (op1
))
4338 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
4340 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
4341 rtx tem
= gen_lowpart (inner_mode
, op0
);
4343 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
4344 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op0
, 0),
4345 reversed_nonequality
);
4348 /* Similarly, if this is an NE comparison, and either is a SUBREG
4349 making a smaller mode, we know the whole thing is also NE. */
4351 /* Note that GET_MODE (op0) may not equal MODE;
4352 if we test MODE instead, we can get an infinite recursion
4353 alternating between two modes each wider than MODE. */
4355 if (code
== NE
&& GET_CODE (op0
) == SUBREG
4356 && subreg_lowpart_p (op0
)
4357 && (GET_MODE_SIZE (GET_MODE (op0
))
4358 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
4360 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
4361 rtx tem
= gen_lowpart (inner_mode
, op1
);
4363 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
4364 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op1
, 0),
4365 reversed_nonequality
);
4368 if (code
== NE
&& GET_CODE (op1
) == SUBREG
4369 && subreg_lowpart_p (op1
)
4370 && (GET_MODE_SIZE (GET_MODE (op1
))
4371 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
4373 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
4374 rtx tem
= gen_lowpart (inner_mode
, op0
);
4376 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
4377 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op0
, 0),
4378 reversed_nonequality
);
4381 /* Hash both operands. */
4384 hash_arg_in_memory
= 0;
4385 op0_hash
= HASH (op0
, mode
);
4386 op0_in_memory
= hash_arg_in_memory
;
4392 hash_arg_in_memory
= 0;
4393 op1_hash
= HASH (op1
, mode
);
4394 op1_in_memory
= hash_arg_in_memory
;
4399 /* Look up both operands. */
4400 op0_elt
= lookup (op0
, op0_hash
, mode
);
4401 op1_elt
= lookup (op1
, op1_hash
, mode
);
4403 /* If both operands are already equivalent or if they are not in the
4404 table but are identical, do nothing. */
4405 if ((op0_elt
!= 0 && op1_elt
!= 0
4406 && op0_elt
->first_same_value
== op1_elt
->first_same_value
)
4407 || op0
== op1
|| rtx_equal_p (op0
, op1
))
4410 /* If we aren't setting two things equal all we can do is save this
4411 comparison. Similarly if this is floating-point. In the latter
4412 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4413 If we record the equality, we might inadvertently delete code
4414 whose intent was to change -0 to +0. */
4416 if (code
!= EQ
|| FLOAT_MODE_P (GET_MODE (op0
)))
4418 struct qty_table_elem
*ent
;
4421 /* If we reversed a floating-point comparison, if OP0 is not a
4422 register, or if OP1 is neither a register or constant, we can't
4425 if (GET_CODE (op1
) != REG
)
4426 op1
= equiv_constant (op1
);
4428 if ((reversed_nonequality
&& FLOAT_MODE_P (mode
))
4429 || GET_CODE (op0
) != REG
|| op1
== 0)
4432 /* Put OP0 in the hash table if it isn't already. This gives it a
4433 new quantity number. */
4436 if (insert_regs (op0
, NULL
, 0))
4438 rehash_using_reg (op0
);
4439 op0_hash
= HASH (op0
, mode
);
4441 /* If OP0 is contained in OP1, this changes its hash code
4442 as well. Faster to rehash than to check, except
4443 for the simple case of a constant. */
4444 if (! CONSTANT_P (op1
))
4445 op1_hash
= HASH (op1
,mode
);
4448 op0_elt
= insert (op0
, NULL
, op0_hash
, mode
);
4449 op0_elt
->in_memory
= op0_in_memory
;
4452 qty
= REG_QTY (REGNO (op0
));
4453 ent
= &qty_table
[qty
];
4455 ent
->comparison_code
= code
;
4456 if (GET_CODE (op1
) == REG
)
4458 /* Look it up again--in case op0 and op1 are the same. */
4459 op1_elt
= lookup (op1
, op1_hash
, mode
);
4461 /* Put OP1 in the hash table so it gets a new quantity number. */
4464 if (insert_regs (op1
, NULL
, 0))
4466 rehash_using_reg (op1
);
4467 op1_hash
= HASH (op1
, mode
);
4470 op1_elt
= insert (op1
, NULL
, op1_hash
, mode
);
4471 op1_elt
->in_memory
= op1_in_memory
;
4474 ent
->comparison_const
= NULL_RTX
;
4475 ent
->comparison_qty
= REG_QTY (REGNO (op1
));
4479 ent
->comparison_const
= op1
;
4480 ent
->comparison_qty
= -1;
4486 /* If either side is still missing an equivalence, make it now,
4487 then merge the equivalences. */
4491 if (insert_regs (op0
, NULL
, 0))
4493 rehash_using_reg (op0
);
4494 op0_hash
= HASH (op0
, mode
);
4497 op0_elt
= insert (op0
, NULL
, op0_hash
, mode
);
4498 op0_elt
->in_memory
= op0_in_memory
;
4503 if (insert_regs (op1
, NULL
, 0))
4505 rehash_using_reg (op1
);
4506 op1_hash
= HASH (op1
, mode
);
4509 op1_elt
= insert (op1
, NULL
, op1_hash
, mode
);
4510 op1_elt
->in_memory
= op1_in_memory
;
4513 merge_equiv_classes (op0_elt
, op1_elt
);
4514 last_jump_equiv_class
= op0_elt
;
4517 /* CSE processing for one instruction.
4518 First simplify sources and addresses of all assignments
4519 in the instruction, using previously-computed equivalents values.
4520 Then install the new sources and destinations in the table
4521 of available values.
4523 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4524 the insn. It means that INSN is inside libcall block. In this
4525 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4527 /* Data on one SET contained in the instruction. */
4531 /* The SET rtx itself. */
4533 /* The SET_SRC of the rtx (the original value, if it is changing). */
4535 /* The hash-table element for the SET_SRC of the SET. */
4536 struct table_elt
*src_elt
;
4537 /* Hash value for the SET_SRC. */
4539 /* Hash value for the SET_DEST. */
4541 /* The SET_DEST, with SUBREG, etc., stripped. */
4543 /* Nonzero if the SET_SRC is in memory. */
4545 /* Nonzero if the SET_SRC contains something
4546 whose value cannot be predicted and understood. */
4548 /* Original machine mode, in case it becomes a CONST_INT.
4549 The size of this field should match the size of the mode
4550 field of struct rtx_def (see rtl.h). */
4551 ENUM_BITFIELD(machine_mode
) mode
: 8;
4552 /* A constant equivalent for SET_SRC, if any. */
4554 /* Original SET_SRC value used for libcall notes. */
4556 /* Hash value of constant equivalent for SET_SRC. */
4557 unsigned src_const_hash
;
4558 /* Table entry for constant equivalent for SET_SRC, if any. */
4559 struct table_elt
*src_const_elt
;
4563 cse_insn (rtx insn
, rtx libcall_insn
)
4565 rtx x
= PATTERN (insn
);
4571 /* Records what this insn does to set CC0. */
4572 rtx this_insn_cc0
= 0;
4573 enum machine_mode this_insn_cc0_mode
= VOIDmode
;
4577 struct table_elt
*src_eqv_elt
= 0;
4578 int src_eqv_volatile
= 0;
4579 int src_eqv_in_memory
= 0;
4580 unsigned src_eqv_hash
= 0;
4582 struct set
*sets
= (struct set
*) 0;
4586 /* Find all the SETs and CLOBBERs in this instruction.
4587 Record all the SETs in the array `set' and count them.
4588 Also determine whether there is a CLOBBER that invalidates
4589 all memory references, or all references at varying addresses. */
4591 if (GET_CODE (insn
) == CALL_INSN
)
4593 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
4595 if (GET_CODE (XEXP (tem
, 0)) == CLOBBER
)
4596 invalidate (SET_DEST (XEXP (tem
, 0)), VOIDmode
);
4597 XEXP (tem
, 0) = canon_reg (XEXP (tem
, 0), insn
);
4601 if (GET_CODE (x
) == SET
)
4603 sets
= alloca (sizeof (struct set
));
4606 /* Ignore SETs that are unconditional jumps.
4607 They never need cse processing, so this does not hurt.
4608 The reason is not efficiency but rather
4609 so that we can test at the end for instructions
4610 that have been simplified to unconditional jumps
4611 and not be misled by unchanged instructions
4612 that were unconditional jumps to begin with. */
4613 if (SET_DEST (x
) == pc_rtx
4614 && GET_CODE (SET_SRC (x
)) == LABEL_REF
)
4617 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4618 The hard function value register is used only once, to copy to
4619 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4620 Ensure we invalidate the destination register. On the 80386 no
4621 other code would invalidate it since it is a fixed_reg.
4622 We need not check the return of apply_change_group; see canon_reg. */
4624 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4626 canon_reg (SET_SRC (x
), insn
);
4627 apply_change_group ();
4628 fold_rtx (SET_SRC (x
), insn
);
4629 invalidate (SET_DEST (x
), VOIDmode
);
4634 else if (GET_CODE (x
) == PARALLEL
)
4636 int lim
= XVECLEN (x
, 0);
4638 sets
= alloca (lim
* sizeof (struct set
));
4640 /* Find all regs explicitly clobbered in this insn,
4641 and ensure they are not replaced with any other regs
4642 elsewhere in this insn.
4643 When a reg that is clobbered is also used for input,
4644 we should presume that that is for a reason,
4645 and we should not substitute some other register
4646 which is not supposed to be clobbered.
4647 Therefore, this loop cannot be merged into the one below
4648 because a CALL may precede a CLOBBER and refer to the
4649 value clobbered. We must not let a canonicalization do
4650 anything in that case. */
4651 for (i
= 0; i
< lim
; i
++)
4653 rtx y
= XVECEXP (x
, 0, i
);
4654 if (GET_CODE (y
) == CLOBBER
)
4656 rtx clobbered
= XEXP (y
, 0);
4658 if (GET_CODE (clobbered
) == REG
4659 || GET_CODE (clobbered
) == SUBREG
)
4660 invalidate (clobbered
, VOIDmode
);
4661 else if (GET_CODE (clobbered
) == STRICT_LOW_PART
4662 || GET_CODE (clobbered
) == ZERO_EXTRACT
)
4663 invalidate (XEXP (clobbered
, 0), GET_MODE (clobbered
));
4667 for (i
= 0; i
< lim
; i
++)
4669 rtx y
= XVECEXP (x
, 0, i
);
4670 if (GET_CODE (y
) == SET
)
4672 /* As above, we ignore unconditional jumps and call-insns and
4673 ignore the result of apply_change_group. */
4674 if (GET_CODE (SET_SRC (y
)) == CALL
)
4676 canon_reg (SET_SRC (y
), insn
);
4677 apply_change_group ();
4678 fold_rtx (SET_SRC (y
), insn
);
4679 invalidate (SET_DEST (y
), VOIDmode
);
4681 else if (SET_DEST (y
) == pc_rtx
4682 && GET_CODE (SET_SRC (y
)) == LABEL_REF
)
4685 sets
[n_sets
++].rtl
= y
;
4687 else if (GET_CODE (y
) == CLOBBER
)
4689 /* If we clobber memory, canon the address.
4690 This does nothing when a register is clobbered
4691 because we have already invalidated the reg. */
4692 if (GET_CODE (XEXP (y
, 0)) == MEM
)
4693 canon_reg (XEXP (y
, 0), NULL_RTX
);
4695 else if (GET_CODE (y
) == USE
4696 && ! (GET_CODE (XEXP (y
, 0)) == REG
4697 && REGNO (XEXP (y
, 0)) < FIRST_PSEUDO_REGISTER
))
4698 canon_reg (y
, NULL_RTX
);
4699 else if (GET_CODE (y
) == CALL
)
4701 /* The result of apply_change_group can be ignored; see
4703 canon_reg (y
, insn
);
4704 apply_change_group ();
4709 else if (GET_CODE (x
) == CLOBBER
)
4711 if (GET_CODE (XEXP (x
, 0)) == MEM
)
4712 canon_reg (XEXP (x
, 0), NULL_RTX
);
4715 /* Canonicalize a USE of a pseudo register or memory location. */
4716 else if (GET_CODE (x
) == USE
4717 && ! (GET_CODE (XEXP (x
, 0)) == REG
4718 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
))
4719 canon_reg (XEXP (x
, 0), NULL_RTX
);
4720 else if (GET_CODE (x
) == CALL
)
4722 /* The result of apply_change_group can be ignored; see canon_reg. */
4723 canon_reg (x
, insn
);
4724 apply_change_group ();
4728 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4729 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4730 is handled specially for this case, and if it isn't set, then there will
4731 be no equivalence for the destination. */
4732 if (n_sets
== 1 && REG_NOTES (insn
) != 0
4733 && (tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)) != 0
4734 && (! rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
))
4735 || GET_CODE (SET_DEST (sets
[0].rtl
)) == STRICT_LOW_PART
))
4737 src_eqv
= fold_rtx (canon_reg (XEXP (tem
, 0), NULL_RTX
), insn
);
4738 XEXP (tem
, 0) = src_eqv
;
4741 /* Canonicalize sources and addresses of destinations.
4742 We do this in a separate pass to avoid problems when a MATCH_DUP is
4743 present in the insn pattern. In that case, we want to ensure that
4744 we don't break the duplicate nature of the pattern. So we will replace
4745 both operands at the same time. Otherwise, we would fail to find an
4746 equivalent substitution in the loop calling validate_change below.
4748 We used to suppress canonicalization of DEST if it appears in SRC,
4749 but we don't do this any more. */
4751 for (i
= 0; i
< n_sets
; i
++)
4753 rtx dest
= SET_DEST (sets
[i
].rtl
);
4754 rtx src
= SET_SRC (sets
[i
].rtl
);
4755 rtx
new = canon_reg (src
, insn
);
4758 sets
[i
].orig_src
= src
;
4759 if ((GET_CODE (new) == REG
&& GET_CODE (src
) == REG
4760 && ((REGNO (new) < FIRST_PSEUDO_REGISTER
)
4761 != (REGNO (src
) < FIRST_PSEUDO_REGISTER
)))
4762 || (insn_code
= recog_memoized (insn
)) < 0
4763 || insn_data
[insn_code
].n_dups
> 0)
4764 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new, 1);
4766 SET_SRC (sets
[i
].rtl
) = new;
4768 if (GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
4770 validate_change (insn
, &XEXP (dest
, 1),
4771 canon_reg (XEXP (dest
, 1), insn
), 1);
4772 validate_change (insn
, &XEXP (dest
, 2),
4773 canon_reg (XEXP (dest
, 2), insn
), 1);
4776 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
4777 || GET_CODE (dest
) == ZERO_EXTRACT
4778 || GET_CODE (dest
) == SIGN_EXTRACT
)
4779 dest
= XEXP (dest
, 0);
4781 if (GET_CODE (dest
) == MEM
)
4782 canon_reg (dest
, insn
);
4785 /* Now that we have done all the replacements, we can apply the change
4786 group and see if they all work. Note that this will cause some
4787 canonicalizations that would have worked individually not to be applied
4788 because some other canonicalization didn't work, but this should not
4791 The result of apply_change_group can be ignored; see canon_reg. */
4793 apply_change_group ();
4795 /* Set sets[i].src_elt to the class each source belongs to.
4796 Detect assignments from or to volatile things
4797 and set set[i] to zero so they will be ignored
4798 in the rest of this function.
4800 Nothing in this loop changes the hash table or the register chains. */
4802 for (i
= 0; i
< n_sets
; i
++)
4806 struct table_elt
*elt
= 0, *p
;
4807 enum machine_mode mode
;
4810 rtx src_related
= 0;
4811 struct table_elt
*src_const_elt
= 0;
4812 int src_cost
= MAX_COST
;
4813 int src_eqv_cost
= MAX_COST
;
4814 int src_folded_cost
= MAX_COST
;
4815 int src_related_cost
= MAX_COST
;
4816 int src_elt_cost
= MAX_COST
;
4817 int src_regcost
= MAX_COST
;
4818 int src_eqv_regcost
= MAX_COST
;
4819 int src_folded_regcost
= MAX_COST
;
4820 int src_related_regcost
= MAX_COST
;
4821 int src_elt_regcost
= MAX_COST
;
4822 /* Set nonzero if we need to call force_const_mem on with the
4823 contents of src_folded before using it. */
4824 int src_folded_force_flag
= 0;
4826 dest
= SET_DEST (sets
[i
].rtl
);
4827 src
= SET_SRC (sets
[i
].rtl
);
4829 /* If SRC is a constant that has no machine mode,
4830 hash it with the destination's machine mode.
4831 This way we can keep different modes separate. */
4833 mode
= GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
4834 sets
[i
].mode
= mode
;
4838 enum machine_mode eqvmode
= mode
;
4839 if (GET_CODE (dest
) == STRICT_LOW_PART
)
4840 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
4842 hash_arg_in_memory
= 0;
4843 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
4845 /* Find the equivalence class for the equivalent expression. */
4848 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, eqvmode
);
4850 src_eqv_volatile
= do_not_record
;
4851 src_eqv_in_memory
= hash_arg_in_memory
;
4854 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4855 value of the INNER register, not the destination. So it is not
4856 a valid substitution for the source. But save it for later. */
4857 if (GET_CODE (dest
) == STRICT_LOW_PART
)
4860 src_eqv_here
= src_eqv
;
4862 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4863 simplified result, which may not necessarily be valid. */
4864 src_folded
= fold_rtx (src
, insn
);
4867 /* ??? This caused bad code to be generated for the m68k port with -O2.
4868 Suppose src is (CONST_INT -1), and that after truncation src_folded
4869 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4870 At the end we will add src and src_const to the same equivalence
4871 class. We now have 3 and -1 on the same equivalence class. This
4872 causes later instructions to be mis-optimized. */
4873 /* If storing a constant in a bitfield, pre-truncate the constant
4874 so we will be able to record it later. */
4875 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
4876 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
4878 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
4880 if (GET_CODE (src
) == CONST_INT
4881 && GET_CODE (width
) == CONST_INT
4882 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
4883 && (INTVAL (src
) & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
4885 = GEN_INT (INTVAL (src
) & (((HOST_WIDE_INT
) 1
4886 << INTVAL (width
)) - 1));
4890 /* Compute SRC's hash code, and also notice if it
4891 should not be recorded at all. In that case,
4892 prevent any further processing of this assignment. */
4894 hash_arg_in_memory
= 0;
4897 sets
[i
].src_hash
= HASH (src
, mode
);
4898 sets
[i
].src_volatile
= do_not_record
;
4899 sets
[i
].src_in_memory
= hash_arg_in_memory
;
4901 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4902 a pseudo, do not record SRC. Using SRC as a replacement for
4903 anything else will be incorrect in that situation. Note that
4904 this usually occurs only for stack slots, in which case all the
4905 RTL would be referring to SRC, so we don't lose any optimization
4906 opportunities by not having SRC in the hash table. */
4908 if (GET_CODE (src
) == MEM
4909 && find_reg_note (insn
, REG_EQUIV
, NULL_RTX
) != 0
4910 && GET_CODE (dest
) == REG
4911 && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
4912 sets
[i
].src_volatile
= 1;
4915 /* It is no longer clear why we used to do this, but it doesn't
4916 appear to still be needed. So let's try without it since this
4917 code hurts cse'ing widened ops. */
4918 /* If source is a paradoxical subreg (such as QI treated as an SI),
4919 treat it as volatile. It may do the work of an SI in one context
4920 where the extra bits are not being used, but cannot replace an SI
4922 if (GET_CODE (src
) == SUBREG
4923 && (GET_MODE_SIZE (GET_MODE (src
))
4924 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
4925 sets
[i
].src_volatile
= 1;
4928 /* Locate all possible equivalent forms for SRC. Try to replace
4929 SRC in the insn with each cheaper equivalent.
4931 We have the following types of equivalents: SRC itself, a folded
4932 version, a value given in a REG_EQUAL note, or a value related
4935 Each of these equivalents may be part of an additional class
4936 of equivalents (if more than one is in the table, they must be in
4937 the same class; we check for this).
4939 If the source is volatile, we don't do any table lookups.
4941 We note any constant equivalent for possible later use in a
4944 if (!sets
[i
].src_volatile
)
4945 elt
= lookup (src
, sets
[i
].src_hash
, mode
);
4947 sets
[i
].src_elt
= elt
;
4949 if (elt
&& src_eqv_here
&& src_eqv_elt
)
4951 if (elt
->first_same_value
!= src_eqv_elt
->first_same_value
)
4953 /* The REG_EQUAL is indicating that two formerly distinct
4954 classes are now equivalent. So merge them. */
4955 merge_equiv_classes (elt
, src_eqv_elt
);
4956 src_eqv_hash
= HASH (src_eqv
, elt
->mode
);
4957 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, elt
->mode
);
4963 else if (src_eqv_elt
)
4966 /* Try to find a constant somewhere and record it in `src_const'.
4967 Record its table element, if any, in `src_const_elt'. Look in
4968 any known equivalences first. (If the constant is not in the
4969 table, also set `sets[i].src_const_hash'). */
4971 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
4975 src_const_elt
= elt
;
4980 && (CONSTANT_P (src_folded
)
4981 /* Consider (minus (label_ref L1) (label_ref L2)) as
4982 "constant" here so we will record it. This allows us
4983 to fold switch statements when an ADDR_DIFF_VEC is used. */
4984 || (GET_CODE (src_folded
) == MINUS
4985 && GET_CODE (XEXP (src_folded
, 0)) == LABEL_REF
4986 && GET_CODE (XEXP (src_folded
, 1)) == LABEL_REF
)))
4987 src_const
= src_folded
, src_const_elt
= elt
;
4988 else if (src_const
== 0 && src_eqv_here
&& CONSTANT_P (src_eqv_here
))
4989 src_const
= src_eqv_here
, src_const_elt
= src_eqv_elt
;
4991 /* If we don't know if the constant is in the table, get its
4992 hash code and look it up. */
4993 if (src_const
&& src_const_elt
== 0)
4995 sets
[i
].src_const_hash
= HASH (src_const
, mode
);
4996 src_const_elt
= lookup (src_const
, sets
[i
].src_const_hash
, mode
);
4999 sets
[i
].src_const
= src_const
;
5000 sets
[i
].src_const_elt
= src_const_elt
;
5002 /* If the constant and our source are both in the table, mark them as
5003 equivalent. Otherwise, if a constant is in the table but the source
5004 isn't, set ELT to it. */
5005 if (src_const_elt
&& elt
5006 && src_const_elt
->first_same_value
!= elt
->first_same_value
)
5007 merge_equiv_classes (elt
, src_const_elt
);
5008 else if (src_const_elt
&& elt
== 0)
5009 elt
= src_const_elt
;
5011 /* See if there is a register linearly related to a constant
5012 equivalent of SRC. */
5014 && (GET_CODE (src_const
) == CONST
5015 || (src_const_elt
&& src_const_elt
->related_value
!= 0)))
5017 src_related
= use_related_value (src_const
, src_const_elt
);
5020 struct table_elt
*src_related_elt
5021 = lookup (src_related
, HASH (src_related
, mode
), mode
);
5022 if (src_related_elt
&& elt
)
5024 if (elt
->first_same_value
5025 != src_related_elt
->first_same_value
)
5026 /* This can occur when we previously saw a CONST
5027 involving a SYMBOL_REF and then see the SYMBOL_REF
5028 twice. Merge the involved classes. */
5029 merge_equiv_classes (elt
, src_related_elt
);
5032 src_related_elt
= 0;
5034 else if (src_related_elt
&& elt
== 0)
5035 elt
= src_related_elt
;
5039 /* See if we have a CONST_INT that is already in a register in a
5042 if (src_const
&& src_related
== 0 && GET_CODE (src_const
) == CONST_INT
5043 && GET_MODE_CLASS (mode
) == MODE_INT
5044 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
5046 enum machine_mode wider_mode
;
5048 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
5049 GET_MODE_BITSIZE (wider_mode
) <= BITS_PER_WORD
5050 && src_related
== 0;
5051 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
5053 struct table_elt
*const_elt
5054 = lookup (src_const
, HASH (src_const
, wider_mode
), wider_mode
);
5059 for (const_elt
= const_elt
->first_same_value
;
5060 const_elt
; const_elt
= const_elt
->next_same_value
)
5061 if (GET_CODE (const_elt
->exp
) == REG
)
5063 src_related
= gen_lowpart (mode
,
5070 /* Another possibility is that we have an AND with a constant in
5071 a mode narrower than a word. If so, it might have been generated
5072 as part of an "if" which would narrow the AND. If we already
5073 have done the AND in a wider mode, we can use a SUBREG of that
5076 if (flag_expensive_optimizations
&& ! src_related
5077 && GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 1)) == CONST_INT
5078 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5080 enum machine_mode tmode
;
5081 rtx new_and
= gen_rtx_AND (VOIDmode
, NULL_RTX
, XEXP (src
, 1));
5083 for (tmode
= GET_MODE_WIDER_MODE (mode
);
5084 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
5085 tmode
= GET_MODE_WIDER_MODE (tmode
))
5087 rtx inner
= gen_lowpart (tmode
, XEXP (src
, 0));
5088 struct table_elt
*larger_elt
;
5092 PUT_MODE (new_and
, tmode
);
5093 XEXP (new_and
, 0) = inner
;
5094 larger_elt
= lookup (new_and
, HASH (new_and
, tmode
), tmode
);
5095 if (larger_elt
== 0)
5098 for (larger_elt
= larger_elt
->first_same_value
;
5099 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
5100 if (GET_CODE (larger_elt
->exp
) == REG
)
5103 = gen_lowpart (mode
, larger_elt
->exp
);
5113 #ifdef LOAD_EXTEND_OP
5114 /* See if a MEM has already been loaded with a widening operation;
5115 if it has, we can use a subreg of that. Many CISC machines
5116 also have such operations, but this is only likely to be
5117 beneficial on these machines. */
5119 if (flag_expensive_optimizations
&& src_related
== 0
5120 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5121 && GET_MODE_CLASS (mode
) == MODE_INT
5122 && GET_CODE (src
) == MEM
&& ! do_not_record
5123 && LOAD_EXTEND_OP (mode
) != NIL
)
5125 enum machine_mode tmode
;
5127 /* Set what we are trying to extend and the operation it might
5128 have been extended with. */
5129 PUT_CODE (memory_extend_rtx
, LOAD_EXTEND_OP (mode
));
5130 XEXP (memory_extend_rtx
, 0) = src
;
5132 for (tmode
= GET_MODE_WIDER_MODE (mode
);
5133 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
5134 tmode
= GET_MODE_WIDER_MODE (tmode
))
5136 struct table_elt
*larger_elt
;
5138 PUT_MODE (memory_extend_rtx
, tmode
);
5139 larger_elt
= lookup (memory_extend_rtx
,
5140 HASH (memory_extend_rtx
, tmode
), tmode
);
5141 if (larger_elt
== 0)
5144 for (larger_elt
= larger_elt
->first_same_value
;
5145 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
5146 if (GET_CODE (larger_elt
->exp
) == REG
)
5148 src_related
= gen_lowpart (mode
,
5157 #endif /* LOAD_EXTEND_OP */
5159 if (src
== src_folded
)
5162 /* At this point, ELT, if nonzero, points to a class of expressions
5163 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5164 and SRC_RELATED, if nonzero, each contain additional equivalent
5165 expressions. Prune these latter expressions by deleting expressions
5166 already in the equivalence class.
5168 Check for an equivalent identical to the destination. If found,
5169 this is the preferred equivalent since it will likely lead to
5170 elimination of the insn. Indicate this by placing it in
5174 elt
= elt
->first_same_value
;
5175 for (p
= elt
; p
; p
= p
->next_same_value
)
5177 enum rtx_code code
= GET_CODE (p
->exp
);
5179 /* If the expression is not valid, ignore it. Then we do not
5180 have to check for validity below. In most cases, we can use
5181 `rtx_equal_p', since canonicalization has already been done. */
5182 if (code
!= REG
&& ! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
5185 /* Also skip paradoxical subregs, unless that's what we're
5188 && (GET_MODE_SIZE (GET_MODE (p
->exp
))
5189 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p
->exp
))))
5191 && GET_CODE (src
) == SUBREG
5192 && GET_MODE (src
) == GET_MODE (p
->exp
)
5193 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5194 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p
->exp
))))))
5197 if (src
&& GET_CODE (src
) == code
&& rtx_equal_p (src
, p
->exp
))
5199 else if (src_folded
&& GET_CODE (src_folded
) == code
5200 && rtx_equal_p (src_folded
, p
->exp
))
5202 else if (src_eqv_here
&& GET_CODE (src_eqv_here
) == code
5203 && rtx_equal_p (src_eqv_here
, p
->exp
))
5205 else if (src_related
&& GET_CODE (src_related
) == code
5206 && rtx_equal_p (src_related
, p
->exp
))
5209 /* This is the same as the destination of the insns, we want
5210 to prefer it. Copy it to src_related. The code below will
5211 then give it a negative cost. */
5212 if (GET_CODE (dest
) == code
&& rtx_equal_p (p
->exp
, dest
))
5216 /* Find the cheapest valid equivalent, trying all the available
5217 possibilities. Prefer items not in the hash table to ones
5218 that are when they are equal cost. Note that we can never
5219 worsen an insn as the current contents will also succeed.
5220 If we find an equivalent identical to the destination, use it as best,
5221 since this insn will probably be eliminated in that case. */
5224 if (rtx_equal_p (src
, dest
))
5225 src_cost
= src_regcost
= -1;
5228 src_cost
= COST (src
);
5229 src_regcost
= approx_reg_cost (src
);
5235 if (rtx_equal_p (src_eqv_here
, dest
))
5236 src_eqv_cost
= src_eqv_regcost
= -1;
5239 src_eqv_cost
= COST (src_eqv_here
);
5240 src_eqv_regcost
= approx_reg_cost (src_eqv_here
);
5246 if (rtx_equal_p (src_folded
, dest
))
5247 src_folded_cost
= src_folded_regcost
= -1;
5250 src_folded_cost
= COST (src_folded
);
5251 src_folded_regcost
= approx_reg_cost (src_folded
);
5257 if (rtx_equal_p (src_related
, dest
))
5258 src_related_cost
= src_related_regcost
= -1;
5261 src_related_cost
= COST (src_related
);
5262 src_related_regcost
= approx_reg_cost (src_related
);
5266 /* If this was an indirect jump insn, a known label will really be
5267 cheaper even though it looks more expensive. */
5268 if (dest
== pc_rtx
&& src_const
&& GET_CODE (src_const
) == LABEL_REF
)
5269 src_folded
= src_const
, src_folded_cost
= src_folded_regcost
= -1;
5271 /* Terminate loop when replacement made. This must terminate since
5272 the current contents will be tested and will always be valid. */
5277 /* Skip invalid entries. */
5278 while (elt
&& GET_CODE (elt
->exp
) != REG
5279 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
5280 elt
= elt
->next_same_value
;
5282 /* A paradoxical subreg would be bad here: it'll be the right
5283 size, but later may be adjusted so that the upper bits aren't
5284 what we want. So reject it. */
5286 && GET_CODE (elt
->exp
) == SUBREG
5287 && (GET_MODE_SIZE (GET_MODE (elt
->exp
))
5288 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt
->exp
))))
5289 /* It is okay, though, if the rtx we're trying to match
5290 will ignore any of the bits we can't predict. */
5292 && GET_CODE (src
) == SUBREG
5293 && GET_MODE (src
) == GET_MODE (elt
->exp
)
5294 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5295 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt
->exp
))))))
5297 elt
= elt
->next_same_value
;
5303 src_elt_cost
= elt
->cost
;
5304 src_elt_regcost
= elt
->regcost
;
5307 /* Find cheapest and skip it for the next time. For items
5308 of equal cost, use this order:
5309 src_folded, src, src_eqv, src_related and hash table entry. */
5311 && preferable (src_folded_cost
, src_folded_regcost
,
5312 src_cost
, src_regcost
) <= 0
5313 && preferable (src_folded_cost
, src_folded_regcost
,
5314 src_eqv_cost
, src_eqv_regcost
) <= 0
5315 && preferable (src_folded_cost
, src_folded_regcost
,
5316 src_related_cost
, src_related_regcost
) <= 0
5317 && preferable (src_folded_cost
, src_folded_regcost
,
5318 src_elt_cost
, src_elt_regcost
) <= 0)
5320 trial
= src_folded
, src_folded_cost
= MAX_COST
;
5321 if (src_folded_force_flag
)
5323 rtx forced
= force_const_mem (mode
, trial
);
5329 && preferable (src_cost
, src_regcost
,
5330 src_eqv_cost
, src_eqv_regcost
) <= 0
5331 && preferable (src_cost
, src_regcost
,
5332 src_related_cost
, src_related_regcost
) <= 0
5333 && preferable (src_cost
, src_regcost
,
5334 src_elt_cost
, src_elt_regcost
) <= 0)
5335 trial
= src
, src_cost
= MAX_COST
;
5336 else if (src_eqv_here
5337 && preferable (src_eqv_cost
, src_eqv_regcost
,
5338 src_related_cost
, src_related_regcost
) <= 0
5339 && preferable (src_eqv_cost
, src_eqv_regcost
,
5340 src_elt_cost
, src_elt_regcost
) <= 0)
5341 trial
= copy_rtx (src_eqv_here
), src_eqv_cost
= MAX_COST
;
5342 else if (src_related
5343 && preferable (src_related_cost
, src_related_regcost
,
5344 src_elt_cost
, src_elt_regcost
) <= 0)
5345 trial
= copy_rtx (src_related
), src_related_cost
= MAX_COST
;
5348 trial
= copy_rtx (elt
->exp
);
5349 elt
= elt
->next_same_value
;
5350 src_elt_cost
= MAX_COST
;
5353 /* We don't normally have an insn matching (set (pc) (pc)), so
5354 check for this separately here. We will delete such an
5357 For other cases such as a table jump or conditional jump
5358 where we know the ultimate target, go ahead and replace the
5359 operand. While that may not make a valid insn, we will
5360 reemit the jump below (and also insert any necessary
5362 if (n_sets
== 1 && dest
== pc_rtx
5364 || (GET_CODE (trial
) == LABEL_REF
5365 && ! condjump_p (insn
))))
5367 SET_SRC (sets
[i
].rtl
) = trial
;
5368 cse_jumps_altered
= 1;
5372 /* Look for a substitution that makes a valid insn. */
5373 else if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), trial
, 0))
5375 rtx
new = canon_reg (SET_SRC (sets
[i
].rtl
), insn
);
5377 /* If we just made a substitution inside a libcall, then we
5378 need to make the same substitution in any notes attached
5379 to the RETVAL insn. */
5381 && (GET_CODE (sets
[i
].orig_src
) == REG
5382 || GET_CODE (sets
[i
].orig_src
) == SUBREG
5383 || GET_CODE (sets
[i
].orig_src
) == MEM
))
5385 rtx note
= find_reg_equal_equiv_note (libcall_insn
);
5387 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0),
5392 /* The result of apply_change_group can be ignored; see
5395 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new, 1);
5396 apply_change_group ();
5400 /* If we previously found constant pool entries for
5401 constants and this is a constant, try making a
5402 pool entry. Put it in src_folded unless we already have done
5403 this since that is where it likely came from. */
5405 else if (constant_pool_entries_cost
5406 && CONSTANT_P (trial
)
5407 /* Reject cases that will abort in decode_rtx_const.
5408 On the alpha when simplifying a switch, we get
5409 (const (truncate (minus (label_ref) (label_ref)))). */
5410 && ! (GET_CODE (trial
) == CONST
5411 && GET_CODE (XEXP (trial
, 0)) == TRUNCATE
)
5412 /* Likewise on IA-64, except without the truncate. */
5413 && ! (GET_CODE (trial
) == CONST
5414 && GET_CODE (XEXP (trial
, 0)) == MINUS
5415 && GET_CODE (XEXP (XEXP (trial
, 0), 0)) == LABEL_REF
5416 && GET_CODE (XEXP (XEXP (trial
, 0), 1)) == LABEL_REF
)
5418 || (GET_CODE (src_folded
) != MEM
5419 && ! src_folded_force_flag
))
5420 && GET_MODE_CLASS (mode
) != MODE_CC
5421 && mode
!= VOIDmode
)
5423 src_folded_force_flag
= 1;
5425 src_folded_cost
= constant_pool_entries_cost
;
5426 src_folded_regcost
= constant_pool_entries_regcost
;
5430 src
= SET_SRC (sets
[i
].rtl
);
5432 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5433 However, there is an important exception: If both are registers
5434 that are not the head of their equivalence class, replace SET_SRC
5435 with the head of the class. If we do not do this, we will have
5436 both registers live over a portion of the basic block. This way,
5437 their lifetimes will likely abut instead of overlapping. */
5438 if (GET_CODE (dest
) == REG
5439 && REGNO_QTY_VALID_P (REGNO (dest
)))
5441 int dest_q
= REG_QTY (REGNO (dest
));
5442 struct qty_table_elem
*dest_ent
= &qty_table
[dest_q
];
5444 if (dest_ent
->mode
== GET_MODE (dest
)
5445 && dest_ent
->first_reg
!= REGNO (dest
)
5446 && GET_CODE (src
) == REG
&& REGNO (src
) == REGNO (dest
)
5447 /* Don't do this if the original insn had a hard reg as
5448 SET_SRC or SET_DEST. */
5449 && (GET_CODE (sets
[i
].src
) != REG
5450 || REGNO (sets
[i
].src
) >= FIRST_PSEUDO_REGISTER
)
5451 && (GET_CODE (dest
) != REG
|| REGNO (dest
) >= FIRST_PSEUDO_REGISTER
))
5452 /* We can't call canon_reg here because it won't do anything if
5453 SRC is a hard register. */
5455 int src_q
= REG_QTY (REGNO (src
));
5456 struct qty_table_elem
*src_ent
= &qty_table
[src_q
];
5457 int first
= src_ent
->first_reg
;
5459 = (first
>= FIRST_PSEUDO_REGISTER
5460 ? regno_reg_rtx
[first
] : gen_rtx_REG (GET_MODE (src
), first
));
5462 /* We must use validate-change even for this, because this
5463 might be a special no-op instruction, suitable only to
5465 if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new_src
, 0))
5468 /* If we had a constant that is cheaper than what we are now
5469 setting SRC to, use that constant. We ignored it when we
5470 thought we could make this into a no-op. */
5471 if (src_const
&& COST (src_const
) < COST (src
)
5472 && validate_change (insn
, &SET_SRC (sets
[i
].rtl
),
5479 /* If we made a change, recompute SRC values. */
5480 if (src
!= sets
[i
].src
)
5484 hash_arg_in_memory
= 0;
5486 sets
[i
].src_hash
= HASH (src
, mode
);
5487 sets
[i
].src_volatile
= do_not_record
;
5488 sets
[i
].src_in_memory
= hash_arg_in_memory
;
5489 sets
[i
].src_elt
= lookup (src
, sets
[i
].src_hash
, mode
);
5492 /* If this is a single SET, we are setting a register, and we have an
5493 equivalent constant, we want to add a REG_NOTE. We don't want
5494 to write a REG_EQUAL note for a constant pseudo since verifying that
5495 that pseudo hasn't been eliminated is a pain. Such a note also
5496 won't help anything.
5498 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5499 which can be created for a reference to a compile time computable
5500 entry in a jump table. */
5502 if (n_sets
== 1 && src_const
&& GET_CODE (dest
) == REG
5503 && GET_CODE (src_const
) != REG
5504 && ! (GET_CODE (src_const
) == CONST
5505 && GET_CODE (XEXP (src_const
, 0)) == MINUS
5506 && GET_CODE (XEXP (XEXP (src_const
, 0), 0)) == LABEL_REF
5507 && GET_CODE (XEXP (XEXP (src_const
, 0), 1)) == LABEL_REF
))
5509 /* We only want a REG_EQUAL note if src_const != src. */
5510 if (! rtx_equal_p (src
, src_const
))
5512 /* Make sure that the rtx is not shared. */
5513 src_const
= copy_rtx (src_const
);
5515 /* Record the actual constant value in a REG_EQUAL note,
5516 making a new one if one does not already exist. */
5517 set_unique_reg_note (insn
, REG_EQUAL
, src_const
);
5521 /* Now deal with the destination. */
5524 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5525 to the MEM or REG within it. */
5526 while (GET_CODE (dest
) == SIGN_EXTRACT
5527 || GET_CODE (dest
) == ZERO_EXTRACT
5528 || GET_CODE (dest
) == SUBREG
5529 || GET_CODE (dest
) == STRICT_LOW_PART
)
5530 dest
= XEXP (dest
, 0);
5532 sets
[i
].inner_dest
= dest
;
5534 if (GET_CODE (dest
) == MEM
)
5536 #ifdef PUSH_ROUNDING
5537 /* Stack pushes invalidate the stack pointer. */
5538 rtx addr
= XEXP (dest
, 0);
5539 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
5540 && XEXP (addr
, 0) == stack_pointer_rtx
)
5541 invalidate (stack_pointer_rtx
, Pmode
);
5543 dest
= fold_rtx (dest
, insn
);
5546 /* Compute the hash code of the destination now,
5547 before the effects of this instruction are recorded,
5548 since the register values used in the address computation
5549 are those before this instruction. */
5550 sets
[i
].dest_hash
= HASH (dest
, mode
);
5552 /* Don't enter a bit-field in the hash table
5553 because the value in it after the store
5554 may not equal what was stored, due to truncation. */
5556 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
5557 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
5559 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
5561 if (src_const
!= 0 && GET_CODE (src_const
) == CONST_INT
5562 && GET_CODE (width
) == CONST_INT
5563 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
5564 && ! (INTVAL (src_const
)
5565 & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
5566 /* Exception: if the value is constant,
5567 and it won't be truncated, record it. */
5571 /* This is chosen so that the destination will be invalidated
5572 but no new value will be recorded.
5573 We must invalidate because sometimes constant
5574 values can be recorded for bitfields. */
5575 sets
[i
].src_elt
= 0;
5576 sets
[i
].src_volatile
= 1;
5582 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5584 else if (n_sets
== 1 && dest
== pc_rtx
&& src
== pc_rtx
)
5586 /* One less use of the label this insn used to jump to. */
5588 cse_jumps_altered
= 1;
5589 /* No more processing for this set. */
5593 /* If this SET is now setting PC to a label, we know it used to
5594 be a conditional or computed branch. */
5595 else if (dest
== pc_rtx
&& GET_CODE (src
) == LABEL_REF
)
5597 /* Now emit a BARRIER after the unconditional jump. */
5598 if (NEXT_INSN (insn
) == 0
5599 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
5600 emit_barrier_after (insn
);
5602 /* We reemit the jump in as many cases as possible just in
5603 case the form of an unconditional jump is significantly
5604 different than a computed jump or conditional jump.
5606 If this insn has multiple sets, then reemitting the
5607 jump is nontrivial. So instead we just force rerecognition
5608 and hope for the best. */
5613 new = emit_jump_insn_after (gen_jump (XEXP (src
, 0)), insn
);
5614 JUMP_LABEL (new) = XEXP (src
, 0);
5615 LABEL_NUSES (XEXP (src
, 0))++;
5617 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5618 note
= find_reg_note (insn
, REG_NON_LOCAL_GOTO
, 0);
5621 XEXP (note
, 1) = NULL_RTX
;
5622 REG_NOTES (new) = note
;
5628 /* Now emit a BARRIER after the unconditional jump. */
5629 if (NEXT_INSN (insn
) == 0
5630 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
5631 emit_barrier_after (insn
);
5634 INSN_CODE (insn
) = -1;
5636 /* Do not bother deleting any unreachable code,
5637 let jump/flow do that. */
5639 cse_jumps_altered
= 1;
5643 /* If destination is volatile, invalidate it and then do no further
5644 processing for this assignment. */
5646 else if (do_not_record
)
5648 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
5649 invalidate (dest
, VOIDmode
);
5650 else if (GET_CODE (dest
) == MEM
)
5652 /* Outgoing arguments for a libcall don't
5653 affect any recorded expressions. */
5654 if (! libcall_insn
|| insn
== libcall_insn
)
5655 invalidate (dest
, VOIDmode
);
5657 else if (GET_CODE (dest
) == STRICT_LOW_PART
5658 || GET_CODE (dest
) == ZERO_EXTRACT
)
5659 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
5663 if (sets
[i
].rtl
!= 0 && dest
!= SET_DEST (sets
[i
].rtl
))
5664 sets
[i
].dest_hash
= HASH (SET_DEST (sets
[i
].rtl
), mode
);
5667 /* If setting CC0, record what it was set to, or a constant, if it
5668 is equivalent to a constant. If it is being set to a floating-point
5669 value, make a COMPARE with the appropriate constant of 0. If we
5670 don't do this, later code can interpret this as a test against
5671 const0_rtx, which can cause problems if we try to put it into an
5672 insn as a floating-point operand. */
5673 if (dest
== cc0_rtx
)
5675 this_insn_cc0
= src_const
&& mode
!= VOIDmode
? src_const
: src
;
5676 this_insn_cc0_mode
= mode
;
5677 if (FLOAT_MODE_P (mode
))
5678 this_insn_cc0
= gen_rtx_COMPARE (VOIDmode
, this_insn_cc0
,
5684 /* Now enter all non-volatile source expressions in the hash table
5685 if they are not already present.
5686 Record their equivalence classes in src_elt.
5687 This way we can insert the corresponding destinations into
5688 the same classes even if the actual sources are no longer in them
5689 (having been invalidated). */
5691 if (src_eqv
&& src_eqv_elt
== 0 && sets
[0].rtl
!= 0 && ! src_eqv_volatile
5692 && ! rtx_equal_p (src_eqv
, SET_DEST (sets
[0].rtl
)))
5694 struct table_elt
*elt
;
5695 struct table_elt
*classp
= sets
[0].src_elt
;
5696 rtx dest
= SET_DEST (sets
[0].rtl
);
5697 enum machine_mode eqvmode
= GET_MODE (dest
);
5699 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5701 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
5704 if (insert_regs (src_eqv
, classp
, 0))
5706 rehash_using_reg (src_eqv
);
5707 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
5709 elt
= insert (src_eqv
, classp
, src_eqv_hash
, eqvmode
);
5710 elt
->in_memory
= src_eqv_in_memory
;
5713 /* Check to see if src_eqv_elt is the same as a set source which
5714 does not yet have an elt, and if so set the elt of the set source
5716 for (i
= 0; i
< n_sets
; i
++)
5717 if (sets
[i
].rtl
&& sets
[i
].src_elt
== 0
5718 && rtx_equal_p (SET_SRC (sets
[i
].rtl
), src_eqv
))
5719 sets
[i
].src_elt
= src_eqv_elt
;
5722 for (i
= 0; i
< n_sets
; i
++)
5723 if (sets
[i
].rtl
&& ! sets
[i
].src_volatile
5724 && ! rtx_equal_p (SET_SRC (sets
[i
].rtl
), SET_DEST (sets
[i
].rtl
)))
5726 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == STRICT_LOW_PART
)
5728 /* REG_EQUAL in setting a STRICT_LOW_PART
5729 gives an equivalent for the entire destination register,
5730 not just for the subreg being stored in now.
5731 This is a more interesting equivalence, so we arrange later
5732 to treat the entire reg as the destination. */
5733 sets
[i
].src_elt
= src_eqv_elt
;
5734 sets
[i
].src_hash
= src_eqv_hash
;
5738 /* Insert source and constant equivalent into hash table, if not
5740 struct table_elt
*classp
= src_eqv_elt
;
5741 rtx src
= sets
[i
].src
;
5742 rtx dest
= SET_DEST (sets
[i
].rtl
);
5743 enum machine_mode mode
5744 = GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
5746 /* It's possible that we have a source value known to be
5747 constant but don't have a REG_EQUAL note on the insn.
5748 Lack of a note will mean src_eqv_elt will be NULL. This
5749 can happen where we've generated a SUBREG to access a
5750 CONST_INT that is already in a register in a wider mode.
5751 Ensure that the source expression is put in the proper
5754 classp
= sets
[i
].src_const_elt
;
5756 if (sets
[i
].src_elt
== 0)
5758 /* Don't put a hard register source into the table if this is
5759 the last insn of a libcall. In this case, we only need
5760 to put src_eqv_elt in src_elt. */
5761 if (! find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
5763 struct table_elt
*elt
;
5765 /* Note that these insert_regs calls cannot remove
5766 any of the src_elt's, because they would have failed to
5767 match if not still valid. */
5768 if (insert_regs (src
, classp
, 0))
5770 rehash_using_reg (src
);
5771 sets
[i
].src_hash
= HASH (src
, mode
);
5773 elt
= insert (src
, classp
, sets
[i
].src_hash
, mode
);
5774 elt
->in_memory
= sets
[i
].src_in_memory
;
5775 sets
[i
].src_elt
= classp
= elt
;
5778 sets
[i
].src_elt
= classp
;
5780 if (sets
[i
].src_const
&& sets
[i
].src_const_elt
== 0
5781 && src
!= sets
[i
].src_const
5782 && ! rtx_equal_p (sets
[i
].src_const
, src
))
5783 sets
[i
].src_elt
= insert (sets
[i
].src_const
, classp
,
5784 sets
[i
].src_const_hash
, mode
);
5787 else if (sets
[i
].src_elt
== 0)
5788 /* If we did not insert the source into the hash table (e.g., it was
5789 volatile), note the equivalence class for the REG_EQUAL value, if any,
5790 so that the destination goes into that class. */
5791 sets
[i
].src_elt
= src_eqv_elt
;
5793 invalidate_from_clobbers (x
);
5795 /* Some registers are invalidated by subroutine calls. Memory is
5796 invalidated by non-constant calls. */
5798 if (GET_CODE (insn
) == CALL_INSN
)
5800 if (! CONST_OR_PURE_CALL_P (insn
))
5801 invalidate_memory ();
5802 invalidate_for_call ();
5805 /* Now invalidate everything set by this instruction.
5806 If a SUBREG or other funny destination is being set,
5807 sets[i].rtl is still nonzero, so here we invalidate the reg
5808 a part of which is being set. */
5810 for (i
= 0; i
< n_sets
; i
++)
5813 /* We can't use the inner dest, because the mode associated with
5814 a ZERO_EXTRACT is significant. */
5815 rtx dest
= SET_DEST (sets
[i
].rtl
);
5817 /* Needed for registers to remove the register from its
5818 previous quantity's chain.
5819 Needed for memory if this is a nonvarying address, unless
5820 we have just done an invalidate_memory that covers even those. */
5821 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
5822 invalidate (dest
, VOIDmode
);
5823 else if (GET_CODE (dest
) == MEM
)
5825 /* Outgoing arguments for a libcall don't
5826 affect any recorded expressions. */
5827 if (! libcall_insn
|| insn
== libcall_insn
)
5828 invalidate (dest
, VOIDmode
);
5830 else if (GET_CODE (dest
) == STRICT_LOW_PART
5831 || GET_CODE (dest
) == ZERO_EXTRACT
)
5832 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
5835 /* A volatile ASM invalidates everything. */
5836 if (GET_CODE (insn
) == INSN
5837 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
5838 && MEM_VOLATILE_P (PATTERN (insn
)))
5839 flush_hash_table ();
5841 /* Make sure registers mentioned in destinations
5842 are safe for use in an expression to be inserted.
5843 This removes from the hash table
5844 any invalid entry that refers to one of these registers.
5846 We don't care about the return value from mention_regs because
5847 we are going to hash the SET_DEST values unconditionally. */
5849 for (i
= 0; i
< n_sets
; i
++)
5853 rtx x
= SET_DEST (sets
[i
].rtl
);
5855 if (GET_CODE (x
) != REG
)
5859 /* We used to rely on all references to a register becoming
5860 inaccessible when a register changes to a new quantity,
5861 since that changes the hash code. However, that is not
5862 safe, since after HASH_SIZE new quantities we get a
5863 hash 'collision' of a register with its own invalid
5864 entries. And since SUBREGs have been changed not to
5865 change their hash code with the hash code of the register,
5866 it wouldn't work any longer at all. So we have to check
5867 for any invalid references lying around now.
5868 This code is similar to the REG case in mention_regs,
5869 but it knows that reg_tick has been incremented, and
5870 it leaves reg_in_table as -1 . */
5871 unsigned int regno
= REGNO (x
);
5872 unsigned int endregno
5873 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
5874 : hard_regno_nregs
[regno
][GET_MODE (x
)]);
5877 for (i
= regno
; i
< endregno
; i
++)
5879 if (REG_IN_TABLE (i
) >= 0)
5881 remove_invalid_refs (i
);
5882 REG_IN_TABLE (i
) = -1;
5889 /* We may have just removed some of the src_elt's from the hash table.
5890 So replace each one with the current head of the same class. */
5892 for (i
= 0; i
< n_sets
; i
++)
5895 if (sets
[i
].src_elt
&& sets
[i
].src_elt
->first_same_value
== 0)
5896 /* If elt was removed, find current head of same class,
5897 or 0 if nothing remains of that class. */
5899 struct table_elt
*elt
= sets
[i
].src_elt
;
5901 while (elt
&& elt
->prev_same_value
)
5902 elt
= elt
->prev_same_value
;
5904 while (elt
&& elt
->first_same_value
== 0)
5905 elt
= elt
->next_same_value
;
5906 sets
[i
].src_elt
= elt
? elt
->first_same_value
: 0;
5910 /* Now insert the destinations into their equivalence classes. */
5912 for (i
= 0; i
< n_sets
; i
++)
5915 rtx dest
= SET_DEST (sets
[i
].rtl
);
5916 rtx inner_dest
= sets
[i
].inner_dest
;
5917 struct table_elt
*elt
;
5919 /* Don't record value if we are not supposed to risk allocating
5920 floating-point values in registers that might be wider than
5922 if ((flag_float_store
5923 && GET_CODE (dest
) == MEM
5924 && FLOAT_MODE_P (GET_MODE (dest
)))
5925 /* Don't record BLKmode values, because we don't know the
5926 size of it, and can't be sure that other BLKmode values
5927 have the same or smaller size. */
5928 || GET_MODE (dest
) == BLKmode
5929 /* Don't record values of destinations set inside a libcall block
5930 since we might delete the libcall. Things should have been set
5931 up so we won't want to reuse such a value, but we play it safe
5934 /* If we didn't put a REG_EQUAL value or a source into the hash
5935 table, there is no point is recording DEST. */
5936 || sets
[i
].src_elt
== 0
5937 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5938 or SIGN_EXTEND, don't record DEST since it can cause
5939 some tracking to be wrong.
5941 ??? Think about this more later. */
5942 || (GET_CODE (dest
) == SUBREG
5943 && (GET_MODE_SIZE (GET_MODE (dest
))
5944 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
5945 && (GET_CODE (sets
[i
].src
) == SIGN_EXTEND
5946 || GET_CODE (sets
[i
].src
) == ZERO_EXTEND
)))
5949 /* STRICT_LOW_PART isn't part of the value BEING set,
5950 and neither is the SUBREG inside it.
5951 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5952 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5953 dest
= SUBREG_REG (XEXP (dest
, 0));
5955 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
5956 /* Registers must also be inserted into chains for quantities. */
5957 if (insert_regs (dest
, sets
[i
].src_elt
, 1))
5959 /* If `insert_regs' changes something, the hash code must be
5961 rehash_using_reg (dest
);
5962 sets
[i
].dest_hash
= HASH (dest
, GET_MODE (dest
));
5965 if (GET_CODE (inner_dest
) == MEM
5966 && GET_CODE (XEXP (inner_dest
, 0)) == ADDRESSOF
)
5967 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
5968 that (MEM (ADDRESSOF (X))) is equivalent to Y.
5969 Consider the case in which the address of the MEM is
5970 passed to a function, which alters the MEM. Then, if we
5971 later use Y instead of the MEM we'll miss the update. */
5972 elt
= insert (dest
, 0, sets
[i
].dest_hash
, GET_MODE (dest
));
5974 elt
= insert (dest
, sets
[i
].src_elt
,
5975 sets
[i
].dest_hash
, GET_MODE (dest
));
5977 elt
->in_memory
= (GET_CODE (sets
[i
].inner_dest
) == MEM
5978 && (! RTX_UNCHANGING_P (sets
[i
].inner_dest
)
5979 || fixed_base_plus_p (XEXP (sets
[i
].inner_dest
,
5982 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5983 narrower than M2, and both M1 and M2 are the same number of words,
5984 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5985 make that equivalence as well.
5987 However, BAR may have equivalences for which gen_lowpart
5988 will produce a simpler value than gen_lowpart applied to
5989 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5990 BAR's equivalences. If we don't get a simplified form, make
5991 the SUBREG. It will not be used in an equivalence, but will
5992 cause two similar assignments to be detected.
5994 Note the loop below will find SUBREG_REG (DEST) since we have
5995 already entered SRC and DEST of the SET in the table. */
5997 if (GET_CODE (dest
) == SUBREG
5998 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))) - 1)
6000 == (GET_MODE_SIZE (GET_MODE (dest
)) - 1) / UNITS_PER_WORD
)
6001 && (GET_MODE_SIZE (GET_MODE (dest
))
6002 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
6003 && sets
[i
].src_elt
!= 0)
6005 enum machine_mode new_mode
= GET_MODE (SUBREG_REG (dest
));
6006 struct table_elt
*elt
, *classp
= 0;
6008 for (elt
= sets
[i
].src_elt
->first_same_value
; elt
;
6009 elt
= elt
->next_same_value
)
6013 struct table_elt
*src_elt
;
6016 /* Ignore invalid entries. */
6017 if (GET_CODE (elt
->exp
) != REG
6018 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
6021 /* We may have already been playing subreg games. If the
6022 mode is already correct for the destination, use it. */
6023 if (GET_MODE (elt
->exp
) == new_mode
)
6027 /* Calculate big endian correction for the SUBREG_BYTE.
6028 We have already checked that M1 (GET_MODE (dest))
6029 is not narrower than M2 (new_mode). */
6030 if (BYTES_BIG_ENDIAN
)
6031 byte
= (GET_MODE_SIZE (GET_MODE (dest
))
6032 - GET_MODE_SIZE (new_mode
));
6034 new_src
= simplify_gen_subreg (new_mode
, elt
->exp
,
6035 GET_MODE (dest
), byte
);
6038 /* The call to simplify_gen_subreg fails if the value
6039 is VOIDmode, yet we can't do any simplification, e.g.
6040 for EXPR_LISTs denoting function call results.
6041 It is invalid to construct a SUBREG with a VOIDmode
6042 SUBREG_REG, hence a zero new_src means we can't do
6043 this substitution. */
6047 src_hash
= HASH (new_src
, new_mode
);
6048 src_elt
= lookup (new_src
, src_hash
, new_mode
);
6050 /* Put the new source in the hash table is if isn't
6054 if (insert_regs (new_src
, classp
, 0))
6056 rehash_using_reg (new_src
);
6057 src_hash
= HASH (new_src
, new_mode
);
6059 src_elt
= insert (new_src
, classp
, src_hash
, new_mode
);
6060 src_elt
->in_memory
= elt
->in_memory
;
6062 else if (classp
&& classp
!= src_elt
->first_same_value
)
6063 /* Show that two things that we've seen before are
6064 actually the same. */
6065 merge_equiv_classes (src_elt
, classp
);
6067 classp
= src_elt
->first_same_value
;
6068 /* Ignore invalid entries. */
6070 && GET_CODE (classp
->exp
) != REG
6071 && ! exp_equiv_p (classp
->exp
, classp
->exp
, 1, 0))
6072 classp
= classp
->next_same_value
;
6077 /* Special handling for (set REG0 REG1) where REG0 is the
6078 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6079 be used in the sequel, so (if easily done) change this insn to
6080 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6081 that computed their value. Then REG1 will become a dead store
6082 and won't cloud the situation for later optimizations.
6084 Do not make this change if REG1 is a hard register, because it will
6085 then be used in the sequel and we may be changing a two-operand insn
6086 into a three-operand insn.
6088 Also do not do this if we are operating on a copy of INSN.
6090 Also don't do this if INSN ends a libcall; this would cause an unrelated
6091 register to be set in the middle of a libcall, and we then get bad code
6092 if the libcall is deleted. */
6094 if (n_sets
== 1 && sets
[0].rtl
&& GET_CODE (SET_DEST (sets
[0].rtl
)) == REG
6095 && NEXT_INSN (PREV_INSN (insn
)) == insn
6096 && GET_CODE (SET_SRC (sets
[0].rtl
)) == REG
6097 && REGNO (SET_SRC (sets
[0].rtl
)) >= FIRST_PSEUDO_REGISTER
6098 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets
[0].rtl
))))
6100 int src_q
= REG_QTY (REGNO (SET_SRC (sets
[0].rtl
)));
6101 struct qty_table_elem
*src_ent
= &qty_table
[src_q
];
6103 if ((src_ent
->first_reg
== REGNO (SET_DEST (sets
[0].rtl
)))
6104 && ! find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
6107 /* Scan for the previous nonnote insn, but stop at a basic
6111 prev
= PREV_INSN (prev
);
6113 while (prev
&& GET_CODE (prev
) == NOTE
6114 && NOTE_LINE_NUMBER (prev
) != NOTE_INSN_BASIC_BLOCK
);
6116 /* Do not swap the registers around if the previous instruction
6117 attaches a REG_EQUIV note to REG1.
6119 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6120 from the pseudo that originally shadowed an incoming argument
6121 to another register. Some uses of REG_EQUIV might rely on it
6122 being attached to REG1 rather than REG2.
6124 This section previously turned the REG_EQUIV into a REG_EQUAL
6125 note. We cannot do that because REG_EQUIV may provide an
6126 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6128 if (prev
!= 0 && GET_CODE (prev
) == INSN
6129 && GET_CODE (PATTERN (prev
)) == SET
6130 && SET_DEST (PATTERN (prev
)) == SET_SRC (sets
[0].rtl
)
6131 && ! find_reg_note (prev
, REG_EQUIV
, NULL_RTX
))
6133 rtx dest
= SET_DEST (sets
[0].rtl
);
6134 rtx src
= SET_SRC (sets
[0].rtl
);
6137 validate_change (prev
, &SET_DEST (PATTERN (prev
)), dest
, 1);
6138 validate_change (insn
, &SET_DEST (sets
[0].rtl
), src
, 1);
6139 validate_change (insn
, &SET_SRC (sets
[0].rtl
), dest
, 1);
6140 apply_change_group ();
6142 /* If INSN has a REG_EQUAL note, and this note mentions
6143 REG0, then we must delete it, because the value in
6144 REG0 has changed. If the note's value is REG1, we must
6145 also delete it because that is now this insn's dest. */
6146 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
6148 && (reg_mentioned_p (dest
, XEXP (note
, 0))
6149 || rtx_equal_p (src
, XEXP (note
, 0))))
6150 remove_note (insn
, note
);
6155 /* If this is a conditional jump insn, record any known equivalences due to
6156 the condition being tested. */
6158 last_jump_equiv_class
= 0;
6159 if (GET_CODE (insn
) == JUMP_INSN
6160 && n_sets
== 1 && GET_CODE (x
) == SET
6161 && GET_CODE (SET_SRC (x
)) == IF_THEN_ELSE
)
6162 record_jump_equiv (insn
, 0);
6165 /* If the previous insn set CC0 and this insn no longer references CC0,
6166 delete the previous insn. Here we use the fact that nothing expects CC0
6167 to be valid over an insn, which is true until the final pass. */
6168 if (prev_insn
&& GET_CODE (prev_insn
) == INSN
6169 && (tem
= single_set (prev_insn
)) != 0
6170 && SET_DEST (tem
) == cc0_rtx
6171 && ! reg_mentioned_p (cc0_rtx
, x
))
6172 delete_insn (prev_insn
);
6174 prev_insn_cc0
= this_insn_cc0
;
6175 prev_insn_cc0_mode
= this_insn_cc0_mode
;
6180 /* Remove from the hash table all expressions that reference memory. */
6183 invalidate_memory (void)
6186 struct table_elt
*p
, *next
;
6188 for (i
= 0; i
< HASH_SIZE
; i
++)
6189 for (p
= table
[i
]; p
; p
= next
)
6191 next
= p
->next_same_hash
;
6193 remove_from_table (p
, i
);
6197 /* If ADDR is an address that implicitly affects the stack pointer, return
6198 1 and update the register tables to show the effect. Else, return 0. */
6201 addr_affects_sp_p (rtx addr
)
6203 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
6204 && GET_CODE (XEXP (addr
, 0)) == REG
6205 && REGNO (XEXP (addr
, 0)) == STACK_POINTER_REGNUM
)
6207 if (REG_TICK (STACK_POINTER_REGNUM
) >= 0)
6209 REG_TICK (STACK_POINTER_REGNUM
)++;
6210 /* Is it possible to use a subreg of SP? */
6211 SUBREG_TICKED (STACK_POINTER_REGNUM
) = -1;
6214 /* This should be *very* rare. */
6215 if (TEST_HARD_REG_BIT (hard_regs_in_table
, STACK_POINTER_REGNUM
))
6216 invalidate (stack_pointer_rtx
, VOIDmode
);
6224 /* Perform invalidation on the basis of everything about an insn
6225 except for invalidating the actual places that are SET in it.
6226 This includes the places CLOBBERed, and anything that might
6227 alias with something that is SET or CLOBBERed.
6229 X is the pattern of the insn. */
6232 invalidate_from_clobbers (rtx x
)
6234 if (GET_CODE (x
) == CLOBBER
)
6236 rtx ref
= XEXP (x
, 0);
6239 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
6240 || GET_CODE (ref
) == MEM
)
6241 invalidate (ref
, VOIDmode
);
6242 else if (GET_CODE (ref
) == STRICT_LOW_PART
6243 || GET_CODE (ref
) == ZERO_EXTRACT
)
6244 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
6247 else if (GET_CODE (x
) == PARALLEL
)
6250 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
6252 rtx y
= XVECEXP (x
, 0, i
);
6253 if (GET_CODE (y
) == CLOBBER
)
6255 rtx ref
= XEXP (y
, 0);
6256 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
6257 || GET_CODE (ref
) == MEM
)
6258 invalidate (ref
, VOIDmode
);
6259 else if (GET_CODE (ref
) == STRICT_LOW_PART
6260 || GET_CODE (ref
) == ZERO_EXTRACT
)
6261 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
6267 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6268 and replace any registers in them with either an equivalent constant
6269 or the canonical form of the register. If we are inside an address,
6270 only do this if the address remains valid.
6272 OBJECT is 0 except when within a MEM in which case it is the MEM.
6274 Return the replacement for X. */
6277 cse_process_notes (rtx x
, rtx object
)
6279 enum rtx_code code
= GET_CODE (x
);
6280 const char *fmt
= GET_RTX_FORMAT (code
);
6297 validate_change (x
, &XEXP (x
, 0),
6298 cse_process_notes (XEXP (x
, 0), x
), 0);
6303 if (REG_NOTE_KIND (x
) == REG_EQUAL
)
6304 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), NULL_RTX
);
6306 XEXP (x
, 1) = cse_process_notes (XEXP (x
, 1), NULL_RTX
);
6313 rtx
new = cse_process_notes (XEXP (x
, 0), object
);
6314 /* We don't substitute VOIDmode constants into these rtx,
6315 since they would impede folding. */
6316 if (GET_MODE (new) != VOIDmode
)
6317 validate_change (object
, &XEXP (x
, 0), new, 0);
6322 i
= REG_QTY (REGNO (x
));
6324 /* Return a constant or a constant register. */
6325 if (REGNO_QTY_VALID_P (REGNO (x
)))
6327 struct qty_table_elem
*ent
= &qty_table
[i
];
6329 if (ent
->const_rtx
!= NULL_RTX
6330 && (CONSTANT_P (ent
->const_rtx
)
6331 || GET_CODE (ent
->const_rtx
) == REG
))
6333 rtx
new = gen_lowpart (GET_MODE (x
), ent
->const_rtx
);
6339 /* Otherwise, canonicalize this register. */
6340 return canon_reg (x
, NULL_RTX
);
6346 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6348 validate_change (object
, &XEXP (x
, i
),
6349 cse_process_notes (XEXP (x
, i
), object
), 0);
6354 /* Find common subexpressions between the end test of a loop and the beginning
6355 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6357 Often we have a loop where an expression in the exit test is used
6358 in the body of the loop. For example "while (*p) *q++ = *p++;".
6359 Because of the way we duplicate the loop exit test in front of the loop,
6360 however, we don't detect that common subexpression. This will be caught
6361 when global cse is implemented, but this is a quite common case.
6363 This function handles the most common cases of these common expressions.
6364 It is called after we have processed the basic block ending with the
6365 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6366 jumps to a label used only once. */
6369 cse_around_loop (rtx loop_start
)
6373 struct table_elt
*p
;
6375 /* If the jump at the end of the loop doesn't go to the start, we don't
6377 for (insn
= PREV_INSN (loop_start
);
6378 insn
&& (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) >= 0);
6379 insn
= PREV_INSN (insn
))
6383 || GET_CODE (insn
) != NOTE
6384 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
)
6387 /* If the last insn of the loop (the end test) was an NE comparison,
6388 we will interpret it as an EQ comparison, since we fell through
6389 the loop. Any equivalences resulting from that comparison are
6390 therefore not valid and must be invalidated. */
6391 if (last_jump_equiv_class
)
6392 for (p
= last_jump_equiv_class
->first_same_value
; p
;
6393 p
= p
->next_same_value
)
6395 if (GET_CODE (p
->exp
) == MEM
|| GET_CODE (p
->exp
) == REG
6396 || (GET_CODE (p
->exp
) == SUBREG
6397 && GET_CODE (SUBREG_REG (p
->exp
)) == REG
))
6398 invalidate (p
->exp
, VOIDmode
);
6399 else if (GET_CODE (p
->exp
) == STRICT_LOW_PART
6400 || GET_CODE (p
->exp
) == ZERO_EXTRACT
)
6401 invalidate (XEXP (p
->exp
, 0), GET_MODE (p
->exp
));
6404 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6405 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6407 The only thing we do with SET_DEST is invalidate entries, so we
6408 can safely process each SET in order. It is slightly less efficient
6409 to do so, but we only want to handle the most common cases.
6411 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6412 These pseudos won't have valid entries in any of the tables indexed
6413 by register number, such as reg_qty. We avoid out-of-range array
6414 accesses by not processing any instructions created after cse started. */
6416 for (insn
= NEXT_INSN (loop_start
);
6417 GET_CODE (insn
) != CALL_INSN
&& GET_CODE (insn
) != CODE_LABEL
6418 && INSN_UID (insn
) < max_insn_uid
6419 && ! (GET_CODE (insn
) == NOTE
6420 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
6421 insn
= NEXT_INSN (insn
))
6424 && (GET_CODE (PATTERN (insn
)) == SET
6425 || GET_CODE (PATTERN (insn
)) == CLOBBER
))
6426 cse_set_around_loop (PATTERN (insn
), insn
, loop_start
);
6427 else if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == PARALLEL
)
6428 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
6429 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
6430 || GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
6431 cse_set_around_loop (XVECEXP (PATTERN (insn
), 0, i
), insn
,
6436 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6437 since they are done elsewhere. This function is called via note_stores. */
6440 invalidate_skipped_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
6442 enum rtx_code code
= GET_CODE (dest
);
6445 && ! addr_affects_sp_p (dest
) /* If this is not a stack push ... */
6446 /* There are times when an address can appear varying and be a PLUS
6447 during this scan when it would be a fixed address were we to know
6448 the proper equivalences. So invalidate all memory if there is
6449 a BLKmode or nonscalar memory reference or a reference to a
6450 variable address. */
6451 && (MEM_IN_STRUCT_P (dest
) || GET_MODE (dest
) == BLKmode
6452 || cse_rtx_varies_p (XEXP (dest
, 0), 0)))
6454 invalidate_memory ();
6458 if (GET_CODE (set
) == CLOBBER
6463 if (code
== STRICT_LOW_PART
|| code
== ZERO_EXTRACT
)
6464 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
6465 else if (code
== REG
|| code
== SUBREG
|| code
== MEM
)
6466 invalidate (dest
, VOIDmode
);
6469 /* Invalidate all insns from START up to the end of the function or the
6470 next label. This called when we wish to CSE around a block that is
6471 conditionally executed. */
6474 invalidate_skipped_block (rtx start
)
6478 for (insn
= start
; insn
&& GET_CODE (insn
) != CODE_LABEL
;
6479 insn
= NEXT_INSN (insn
))
6481 if (! INSN_P (insn
))
6484 if (GET_CODE (insn
) == CALL_INSN
)
6486 if (! CONST_OR_PURE_CALL_P (insn
))
6487 invalidate_memory ();
6488 invalidate_for_call ();
6491 invalidate_from_clobbers (PATTERN (insn
));
6492 note_stores (PATTERN (insn
), invalidate_skipped_set
, NULL
);
6496 /* If modifying X will modify the value in *DATA (which is really an
6497 `rtx *'), indicate that fact by setting the pointed to value to
6501 cse_check_loop_start (rtx x
, rtx set ATTRIBUTE_UNUSED
, void *data
)
6503 rtx
*cse_check_loop_start_value
= (rtx
*) data
;
6505 if (*cse_check_loop_start_value
== NULL_RTX
6506 || GET_CODE (x
) == CC0
|| GET_CODE (x
) == PC
)
6509 if ((GET_CODE (x
) == MEM
&& GET_CODE (*cse_check_loop_start_value
) == MEM
)
6510 || reg_overlap_mentioned_p (x
, *cse_check_loop_start_value
))
6511 *cse_check_loop_start_value
= NULL_RTX
;
6514 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6515 a loop that starts with the label at LOOP_START.
6517 If X is a SET, we see if its SET_SRC is currently in our hash table.
6518 If so, we see if it has a value equal to some register used only in the
6519 loop exit code (as marked by jump.c).
6521 If those two conditions are true, we search backwards from the start of
6522 the loop to see if that same value was loaded into a register that still
6523 retains its value at the start of the loop.
6525 If so, we insert an insn after the load to copy the destination of that
6526 load into the equivalent register and (try to) replace our SET_SRC with that
6529 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6532 cse_set_around_loop (rtx x
, rtx insn
, rtx loop_start
)
6534 struct table_elt
*src_elt
;
6536 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6537 are setting PC or CC0 or whose SET_SRC is already a register. */
6538 if (GET_CODE (x
) == SET
6539 && GET_CODE (SET_DEST (x
)) != PC
&& GET_CODE (SET_DEST (x
)) != CC0
6540 && GET_CODE (SET_SRC (x
)) != REG
)
6542 src_elt
= lookup (SET_SRC (x
),
6543 HASH (SET_SRC (x
), GET_MODE (SET_DEST (x
))),
6544 GET_MODE (SET_DEST (x
)));
6547 for (src_elt
= src_elt
->first_same_value
; src_elt
;
6548 src_elt
= src_elt
->next_same_value
)
6549 if (GET_CODE (src_elt
->exp
) == REG
&& REG_LOOP_TEST_P (src_elt
->exp
)
6550 && COST (src_elt
->exp
) < COST (SET_SRC (x
)))
6554 /* Look for an insn in front of LOOP_START that sets
6555 something in the desired mode to SET_SRC (x) before we hit
6556 a label or CALL_INSN. */
6558 for (p
= prev_nonnote_insn (loop_start
);
6559 p
&& GET_CODE (p
) != CALL_INSN
6560 && GET_CODE (p
) != CODE_LABEL
;
6561 p
= prev_nonnote_insn (p
))
6562 if ((set
= single_set (p
)) != 0
6563 && GET_CODE (SET_DEST (set
)) == REG
6564 && GET_MODE (SET_DEST (set
)) == src_elt
->mode
6565 && rtx_equal_p (SET_SRC (set
), SET_SRC (x
)))
6567 /* We now have to ensure that nothing between P
6568 and LOOP_START modified anything referenced in
6569 SET_SRC (x). We know that nothing within the loop
6570 can modify it, or we would have invalidated it in
6573 rtx cse_check_loop_start_value
= SET_SRC (x
);
6574 for (q
= p
; q
!= loop_start
; q
= NEXT_INSN (q
))
6576 note_stores (PATTERN (q
),
6577 cse_check_loop_start
,
6578 &cse_check_loop_start_value
);
6580 /* If nothing was changed and we can replace our
6581 SET_SRC, add an insn after P to copy its destination
6582 to what we will be replacing SET_SRC with. */
6583 if (cse_check_loop_start_value
6585 && !can_throw_internal (insn
)
6586 && validate_change (insn
, &SET_SRC (x
),
6589 /* If this creates new pseudos, this is unsafe,
6590 because the regno of new pseudo is unsuitable
6591 to index into reg_qty when cse_insn processes
6592 the new insn. Therefore, if a new pseudo was
6593 created, discard this optimization. */
6594 int nregs
= max_reg_num ();
6596 = gen_move_insn (src_elt
->exp
, SET_DEST (set
));
6597 if (nregs
!= max_reg_num ())
6599 if (! validate_change (insn
, &SET_SRC (x
),
6605 if (CONSTANT_P (SET_SRC (set
))
6606 && ! find_reg_equal_equiv_note (insn
))
6607 set_unique_reg_note (insn
, REG_EQUAL
,
6609 if (control_flow_insn_p (p
))
6610 /* p can cause a control flow transfer so it
6611 is the last insn of a basic block. We can't
6612 therefore use emit_insn_after. */
6613 emit_insn_before (move
, next_nonnote_insn (p
));
6615 emit_insn_after (move
, p
);
6623 /* Deal with the destination of X affecting the stack pointer. */
6624 addr_affects_sp_p (SET_DEST (x
));
6626 /* See comment on similar code in cse_insn for explanation of these
6628 if (GET_CODE (SET_DEST (x
)) == REG
|| GET_CODE (SET_DEST (x
)) == SUBREG
6629 || GET_CODE (SET_DEST (x
)) == MEM
)
6630 invalidate (SET_DEST (x
), VOIDmode
);
6631 else if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6632 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
6633 invalidate (XEXP (SET_DEST (x
), 0), GET_MODE (SET_DEST (x
)));
6636 /* Find the end of INSN's basic block and return its range,
6637 the total number of SETs in all the insns of the block, the last insn of the
6638 block, and the branch path.
6640 The branch path indicates which branches should be followed. If a nonzero
6641 path size is specified, the block should be rescanned and a different set
6642 of branches will be taken. The branch path is only used if
6643 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6645 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6646 used to describe the block. It is filled in with the information about
6647 the current block. The incoming structure's branch path, if any, is used
6648 to construct the output branch path. */
6651 cse_end_of_basic_block (rtx insn
, struct cse_basic_block_data
*data
,
6652 int follow_jumps
, int after_loop
, int skip_blocks
)
6656 int low_cuid
= INSN_CUID (insn
), high_cuid
= INSN_CUID (insn
);
6657 rtx next
= INSN_P (insn
) ? insn
: next_real_insn (insn
);
6658 int path_size
= data
->path_size
;
6662 /* Update the previous branch path, if any. If the last branch was
6663 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6664 If it was previously PATH_NOT_TAKEN,
6665 shorten the path by one and look at the previous branch. We know that
6666 at least one branch must have been taken if PATH_SIZE is nonzero. */
6667 while (path_size
> 0)
6669 if (data
->path
[path_size
- 1].status
!= PATH_NOT_TAKEN
)
6671 data
->path
[path_size
- 1].status
= PATH_NOT_TAKEN
;
6678 /* If the first instruction is marked with QImode, that means we've
6679 already processed this block. Our caller will look at DATA->LAST
6680 to figure out where to go next. We want to return the next block
6681 in the instruction stream, not some branched-to block somewhere
6682 else. We accomplish this by pretending our called forbid us to
6683 follow jumps, or skip blocks. */
6684 if (GET_MODE (insn
) == QImode
)
6685 follow_jumps
= skip_blocks
= 0;
6687 /* Scan to end of this basic block. */
6688 while (p
&& GET_CODE (p
) != CODE_LABEL
)
6690 /* Don't cse out the end of a loop. This makes a difference
6691 only for the unusual loops that always execute at least once;
6692 all other loops have labels there so we will stop in any case.
6693 Cse'ing out the end of the loop is dangerous because it
6694 might cause an invariant expression inside the loop
6695 to be reused after the end of the loop. This would make it
6696 hard to move the expression out of the loop in loop.c,
6697 especially if it is one of several equivalent expressions
6698 and loop.c would like to eliminate it.
6700 If we are running after loop.c has finished, we can ignore
6701 the NOTE_INSN_LOOP_END. */
6703 if (! after_loop
&& GET_CODE (p
) == NOTE
6704 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
6707 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6708 the regs restored by the longjmp come from
6709 a later time than the setjmp. */
6710 if (PREV_INSN (p
) && GET_CODE (PREV_INSN (p
)) == CALL_INSN
6711 && find_reg_note (PREV_INSN (p
), REG_SETJMP
, NULL
))
6714 /* A PARALLEL can have lots of SETs in it,
6715 especially if it is really an ASM_OPERANDS. */
6716 if (INSN_P (p
) && GET_CODE (PATTERN (p
)) == PARALLEL
)
6717 nsets
+= XVECLEN (PATTERN (p
), 0);
6718 else if (GET_CODE (p
) != NOTE
)
6721 /* Ignore insns made by CSE; they cannot affect the boundaries of
6724 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) > high_cuid
)
6725 high_cuid
= INSN_CUID (p
);
6726 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) < low_cuid
)
6727 low_cuid
= INSN_CUID (p
);
6729 /* See if this insn is in our branch path. If it is and we are to
6731 if (path_entry
< path_size
&& data
->path
[path_entry
].branch
== p
)
6733 if (data
->path
[path_entry
].status
!= PATH_NOT_TAKEN
)
6736 /* Point to next entry in path, if any. */
6740 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6741 was specified, we haven't reached our maximum path length, there are
6742 insns following the target of the jump, this is the only use of the
6743 jump label, and the target label is preceded by a BARRIER.
6745 Alternatively, we can follow the jump if it branches around a
6746 block of code and there are no other branches into the block.
6747 In this case invalidate_skipped_block will be called to invalidate any
6748 registers set in the block when following the jump. */
6750 else if ((follow_jumps
|| skip_blocks
) && path_size
< PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH
) - 1
6751 && GET_CODE (p
) == JUMP_INSN
6752 && GET_CODE (PATTERN (p
)) == SET
6753 && GET_CODE (SET_SRC (PATTERN (p
))) == IF_THEN_ELSE
6754 && JUMP_LABEL (p
) != 0
6755 && LABEL_NUSES (JUMP_LABEL (p
)) == 1
6756 && NEXT_INSN (JUMP_LABEL (p
)) != 0)
6758 for (q
= PREV_INSN (JUMP_LABEL (p
)); q
; q
= PREV_INSN (q
))
6759 if ((GET_CODE (q
) != NOTE
6760 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_LOOP_END
6761 || (PREV_INSN (q
) && GET_CODE (PREV_INSN (q
)) == CALL_INSN
6762 && find_reg_note (PREV_INSN (q
), REG_SETJMP
, NULL
)))
6763 && (GET_CODE (q
) != CODE_LABEL
|| LABEL_NUSES (q
) != 0))
6766 /* If we ran into a BARRIER, this code is an extension of the
6767 basic block when the branch is taken. */
6768 if (follow_jumps
&& q
!= 0 && GET_CODE (q
) == BARRIER
)
6770 /* Don't allow ourself to keep walking around an
6771 always-executed loop. */
6772 if (next_real_insn (q
) == next
)
6778 /* Similarly, don't put a branch in our path more than once. */
6779 for (i
= 0; i
< path_entry
; i
++)
6780 if (data
->path
[i
].branch
== p
)
6783 if (i
!= path_entry
)
6786 data
->path
[path_entry
].branch
= p
;
6787 data
->path
[path_entry
++].status
= PATH_TAKEN
;
6789 /* This branch now ends our path. It was possible that we
6790 didn't see this branch the last time around (when the
6791 insn in front of the target was a JUMP_INSN that was
6792 turned into a no-op). */
6793 path_size
= path_entry
;
6796 /* Mark block so we won't scan it again later. */
6797 PUT_MODE (NEXT_INSN (p
), QImode
);
6799 /* Detect a branch around a block of code. */
6800 else if (skip_blocks
&& q
!= 0 && GET_CODE (q
) != CODE_LABEL
)
6804 if (next_real_insn (q
) == next
)
6810 for (i
= 0; i
< path_entry
; i
++)
6811 if (data
->path
[i
].branch
== p
)
6814 if (i
!= path_entry
)
6817 /* This is no_labels_between_p (p, q) with an added check for
6818 reaching the end of a function (in case Q precedes P). */
6819 for (tmp
= NEXT_INSN (p
); tmp
&& tmp
!= q
; tmp
= NEXT_INSN (tmp
))
6820 if (GET_CODE (tmp
) == CODE_LABEL
)
6825 data
->path
[path_entry
].branch
= p
;
6826 data
->path
[path_entry
++].status
= PATH_AROUND
;
6828 path_size
= path_entry
;
6831 /* Mark block so we won't scan it again later. */
6832 PUT_MODE (NEXT_INSN (p
), QImode
);
6839 data
->low_cuid
= low_cuid
;
6840 data
->high_cuid
= high_cuid
;
6841 data
->nsets
= nsets
;
6844 /* If all jumps in the path are not taken, set our path length to zero
6845 so a rescan won't be done. */
6846 for (i
= path_size
- 1; i
>= 0; i
--)
6847 if (data
->path
[i
].status
!= PATH_NOT_TAKEN
)
6851 data
->path_size
= 0;
6853 data
->path_size
= path_size
;
6855 /* End the current branch path. */
6856 data
->path
[path_size
].branch
= 0;
6859 /* Perform cse on the instructions of a function.
6860 F is the first instruction.
6861 NREGS is one plus the highest pseudo-reg number used in the instruction.
6863 AFTER_LOOP is 1 if this is the cse call done after loop optimization
6864 (only if -frerun-cse-after-loop).
6866 Returns 1 if jump_optimize should be redone due to simplifications
6867 in conditional jump instructions. */
6870 cse_main (rtx f
, int nregs
, int after_loop
, FILE *file
)
6872 struct cse_basic_block_data val
;
6876 val
.path
= xmalloc (sizeof (struct branch_path
)
6877 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH
));
6879 cse_jumps_altered
= 0;
6880 recorded_label_ref
= 0;
6881 constant_pool_entries_cost
= 0;
6882 constant_pool_entries_regcost
= 0;
6884 gen_lowpart
= gen_lowpart_if_possible
;
6887 init_alias_analysis ();
6891 max_insn_uid
= get_max_uid ();
6893 reg_eqv_table
= xmalloc (nregs
* sizeof (struct reg_eqv_elem
));
6895 #ifdef LOAD_EXTEND_OP
6897 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
6898 and change the code and mode as appropriate. */
6899 memory_extend_rtx
= gen_rtx_ZERO_EXTEND (VOIDmode
, NULL_RTX
);
6902 /* Reset the counter indicating how many elements have been made
6904 n_elements_made
= 0;
6906 /* Find the largest uid. */
6908 max_uid
= get_max_uid ();
6909 uid_cuid
= xcalloc (max_uid
+ 1, sizeof (int));
6911 /* Compute the mapping from uids to cuids.
6912 CUIDs are numbers assigned to insns, like uids,
6913 except that cuids increase monotonically through the code.
6914 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6915 between two insns is not affected by -g. */
6917 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
6919 if (GET_CODE (insn
) != NOTE
6920 || NOTE_LINE_NUMBER (insn
) < 0)
6921 INSN_CUID (insn
) = ++i
;
6923 /* Give a line number note the same cuid as preceding insn. */
6924 INSN_CUID (insn
) = i
;
6927 ggc_push_context ();
6929 /* Loop over basic blocks.
6930 Compute the maximum number of qty's needed for each basic block
6931 (which is 2 for each SET). */
6936 cse_end_of_basic_block (insn
, &val
, flag_cse_follow_jumps
, after_loop
,
6937 flag_cse_skip_blocks
);
6939 /* If this basic block was already processed or has no sets, skip it. */
6940 if (val
.nsets
== 0 || GET_MODE (insn
) == QImode
)
6942 PUT_MODE (insn
, VOIDmode
);
6943 insn
= (val
.last
? NEXT_INSN (val
.last
) : 0);
6948 cse_basic_block_start
= val
.low_cuid
;
6949 cse_basic_block_end
= val
.high_cuid
;
6950 max_qty
= val
.nsets
* 2;
6953 fnotice (file
, ";; Processing block from %d to %d, %d sets.\n",
6954 INSN_UID (insn
), val
.last
? INSN_UID (val
.last
) : 0,
6957 /* Make MAX_QTY bigger to give us room to optimize
6958 past the end of this basic block, if that should prove useful. */
6964 /* If this basic block is being extended by following certain jumps,
6965 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6966 Otherwise, we start after this basic block. */
6967 if (val
.path_size
> 0)
6968 cse_basic_block (insn
, val
.last
, val
.path
, 0);
6971 int old_cse_jumps_altered
= cse_jumps_altered
;
6974 /* When cse changes a conditional jump to an unconditional
6975 jump, we want to reprocess the block, since it will give
6976 us a new branch path to investigate. */
6977 cse_jumps_altered
= 0;
6978 temp
= cse_basic_block (insn
, val
.last
, val
.path
, ! after_loop
);
6979 if (cse_jumps_altered
== 0
6980 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
6983 cse_jumps_altered
|= old_cse_jumps_altered
;
6996 if (max_elements_made
< n_elements_made
)
6997 max_elements_made
= n_elements_made
;
7000 end_alias_analysis ();
7002 free (reg_eqv_table
);
7004 gen_lowpart
= gen_lowpart_general
;
7006 return cse_jumps_altered
|| recorded_label_ref
;
7009 /* Process a single basic block. FROM and TO and the limits of the basic
7010 block. NEXT_BRANCH points to the branch path when following jumps or
7011 a null path when not following jumps.
7013 AROUND_LOOP is nonzero if we are to try to cse around to the start of a
7014 loop. This is true when we are being called for the last time on a
7015 block and this CSE pass is before loop.c. */
7018 cse_basic_block (rtx from
, rtx to
, struct branch_path
*next_branch
,
7023 rtx libcall_insn
= NULL_RTX
;
7025 int no_conflict
= 0;
7027 /* This array is undefined before max_reg, so only allocate
7028 the space actually needed and adjust the start. */
7030 qty_table
= xmalloc ((max_qty
- max_reg
) * sizeof (struct qty_table_elem
));
7031 qty_table
-= max_reg
;
7035 /* TO might be a label. If so, protect it from being deleted. */
7036 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
7039 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
7041 enum rtx_code code
= GET_CODE (insn
);
7043 /* If we have processed 1,000 insns, flush the hash table to
7044 avoid extreme quadratic behavior. We must not include NOTEs
7045 in the count since there may be more of them when generating
7046 debugging information. If we clear the table at different
7047 times, code generated with -g -O might be different than code
7048 generated with -O but not -g.
7050 ??? This is a real kludge and needs to be done some other way.
7052 if (code
!= NOTE
&& num_insns
++ > 1000)
7054 flush_hash_table ();
7058 /* See if this is a branch that is part of the path. If so, and it is
7059 to be taken, do so. */
7060 if (next_branch
->branch
== insn
)
7062 enum taken status
= next_branch
++->status
;
7063 if (status
!= PATH_NOT_TAKEN
)
7065 if (status
== PATH_TAKEN
)
7066 record_jump_equiv (insn
, 1);
7068 invalidate_skipped_block (NEXT_INSN (insn
));
7070 /* Set the last insn as the jump insn; it doesn't affect cc0.
7071 Then follow this branch. */
7076 insn
= JUMP_LABEL (insn
);
7081 if (GET_MODE (insn
) == QImode
)
7082 PUT_MODE (insn
, VOIDmode
);
7084 if (GET_RTX_CLASS (code
) == RTX_INSN
)
7088 /* Process notes first so we have all notes in canonical forms when
7089 looking for duplicate operations. */
7091 if (REG_NOTES (insn
))
7092 REG_NOTES (insn
) = cse_process_notes (REG_NOTES (insn
), NULL_RTX
);
7094 /* Track when we are inside in LIBCALL block. Inside such a block,
7095 we do not want to record destinations. The last insn of a
7096 LIBCALL block is not considered to be part of the block, since
7097 its destination is the result of the block and hence should be
7100 if (REG_NOTES (insn
) != 0)
7102 if ((p
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
7103 libcall_insn
= XEXP (p
, 0);
7104 else if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
7106 /* Keep libcall_insn for the last SET insn of a no-conflict
7107 block to prevent changing the destination. */
7113 else if (find_reg_note (insn
, REG_NO_CONFLICT
, NULL_RTX
))
7117 cse_insn (insn
, libcall_insn
);
7119 if (no_conflict
== -1)
7125 /* If we haven't already found an insn where we added a LABEL_REF,
7127 if (GET_CODE (insn
) == INSN
&& ! recorded_label_ref
7128 && for_each_rtx (&PATTERN (insn
), check_for_label_ref
,
7130 recorded_label_ref
= 1;
7133 /* If INSN is now an unconditional jump, skip to the end of our
7134 basic block by pretending that we just did the last insn in the
7135 basic block. If we are jumping to the end of our block, show
7136 that we can have one usage of TO. */
7138 if (any_uncondjump_p (insn
))
7142 free (qty_table
+ max_reg
);
7146 if (JUMP_LABEL (insn
) == to
)
7149 /* Maybe TO was deleted because the jump is unconditional.
7150 If so, there is nothing left in this basic block. */
7151 /* ??? Perhaps it would be smarter to set TO
7152 to whatever follows this insn,
7153 and pretend the basic block had always ended here. */
7154 if (INSN_DELETED_P (to
))
7157 insn
= PREV_INSN (to
);
7160 /* See if it is ok to keep on going past the label
7161 which used to end our basic block. Remember that we incremented
7162 the count of that label, so we decrement it here. If we made
7163 a jump unconditional, TO_USAGE will be one; in that case, we don't
7164 want to count the use in that jump. */
7166 if (to
!= 0 && NEXT_INSN (insn
) == to
7167 && GET_CODE (to
) == CODE_LABEL
&& --LABEL_NUSES (to
) == to_usage
)
7169 struct cse_basic_block_data val
;
7172 insn
= NEXT_INSN (to
);
7174 /* If TO was the last insn in the function, we are done. */
7177 free (qty_table
+ max_reg
);
7181 /* If TO was preceded by a BARRIER we are done with this block
7182 because it has no continuation. */
7183 prev
= prev_nonnote_insn (to
);
7184 if (prev
&& GET_CODE (prev
) == BARRIER
)
7186 free (qty_table
+ max_reg
);
7190 /* Find the end of the following block. Note that we won't be
7191 following branches in this case. */
7194 val
.path
= xmalloc (sizeof (struct branch_path
)
7195 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH
));
7196 cse_end_of_basic_block (insn
, &val
, 0, 0, 0);
7199 /* If the tables we allocated have enough space left
7200 to handle all the SETs in the next basic block,
7201 continue through it. Otherwise, return,
7202 and that block will be scanned individually. */
7203 if (val
.nsets
* 2 + next_qty
> max_qty
)
7206 cse_basic_block_start
= val
.low_cuid
;
7207 cse_basic_block_end
= val
.high_cuid
;
7210 /* Prevent TO from being deleted if it is a label. */
7211 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
7214 /* Back up so we process the first insn in the extension. */
7215 insn
= PREV_INSN (insn
);
7219 if (next_qty
> max_qty
)
7222 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7223 the previous insn is the only insn that branches to the head of a loop,
7224 we can cse into the loop. Don't do this if we changed the jump
7225 structure of a loop unless we aren't going to be following jumps. */
7227 insn
= prev_nonnote_insn (to
);
7228 if ((cse_jumps_altered
== 0
7229 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
7230 && around_loop
&& to
!= 0
7231 && GET_CODE (to
) == NOTE
&& NOTE_LINE_NUMBER (to
) == NOTE_INSN_LOOP_END
7232 && GET_CODE (insn
) == JUMP_INSN
7233 && JUMP_LABEL (insn
) != 0
7234 && LABEL_NUSES (JUMP_LABEL (insn
)) == 1)
7235 cse_around_loop (JUMP_LABEL (insn
));
7237 free (qty_table
+ max_reg
);
7239 return to
? NEXT_INSN (to
) : 0;
7242 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7243 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7246 check_for_label_ref (rtx
*rtl
, void *data
)
7248 rtx insn
= (rtx
) data
;
7250 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7251 we must rerun jump since it needs to place the note. If this is a
7252 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7253 since no REG_LABEL will be added. */
7254 return (GET_CODE (*rtl
) == LABEL_REF
7255 && ! LABEL_REF_NONLOCAL_P (*rtl
)
7256 && LABEL_P (XEXP (*rtl
, 0))
7257 && INSN_UID (XEXP (*rtl
, 0)) != 0
7258 && ! find_reg_note (insn
, REG_LABEL
, XEXP (*rtl
, 0)));
7261 /* Count the number of times registers are used (not set) in X.
7262 COUNTS is an array in which we accumulate the count, INCR is how much
7263 we count each register usage. */
7266 count_reg_usage (rtx x
, int *counts
, int incr
)
7276 switch (code
= GET_CODE (x
))
7279 counts
[REGNO (x
)] += incr
;
7293 /* If we are clobbering a MEM, mark any registers inside the address
7295 if (GET_CODE (XEXP (x
, 0)) == MEM
)
7296 count_reg_usage (XEXP (XEXP (x
, 0), 0), counts
, incr
);
7300 /* Unless we are setting a REG, count everything in SET_DEST. */
7301 if (GET_CODE (SET_DEST (x
)) != REG
)
7302 count_reg_usage (SET_DEST (x
), counts
, incr
);
7303 count_reg_usage (SET_SRC (x
), counts
, incr
);
7307 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x
), counts
, incr
);
7312 count_reg_usage (PATTERN (x
), counts
, incr
);
7314 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7317 note
= find_reg_equal_equiv_note (x
);
7320 rtx eqv
= XEXP (note
, 0);
7322 if (GET_CODE (eqv
) == EXPR_LIST
)
7323 /* This REG_EQUAL note describes the result of a function call.
7324 Process all the arguments. */
7327 count_reg_usage (XEXP (eqv
, 0), counts
, incr
);
7328 eqv
= XEXP (eqv
, 1);
7330 while (eqv
&& GET_CODE (eqv
) == EXPR_LIST
);
7332 count_reg_usage (eqv
, counts
, incr
);
7337 if (REG_NOTE_KIND (x
) == REG_EQUAL
7338 || (REG_NOTE_KIND (x
) != REG_NONNEG
&& GET_CODE (XEXP (x
,0)) == USE
)
7339 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7340 involving registers in the address. */
7341 || GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7342 count_reg_usage (XEXP (x
, 0), counts
, incr
);
7344 count_reg_usage (XEXP (x
, 1), counts
, incr
);
7348 /* Iterate over just the inputs, not the constraints as well. */
7349 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
7350 count_reg_usage (ASM_OPERANDS_INPUT (x
, i
), counts
, incr
);
7360 fmt
= GET_RTX_FORMAT (code
);
7361 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7364 count_reg_usage (XEXP (x
, i
), counts
, incr
);
7365 else if (fmt
[i
] == 'E')
7366 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7367 count_reg_usage (XVECEXP (x
, i
, j
), counts
, incr
);
7371 /* Return true if set is live. */
7373 set_live_p (rtx set
, rtx insn ATTRIBUTE_UNUSED
, /* Only used with HAVE_cc0. */
7380 if (set_noop_p (set
))
7384 else if (GET_CODE (SET_DEST (set
)) == CC0
7385 && !side_effects_p (SET_SRC (set
))
7386 && ((tem
= next_nonnote_insn (insn
)) == 0
7388 || !reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
7391 else if (GET_CODE (SET_DEST (set
)) != REG
7392 || REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
7393 || counts
[REGNO (SET_DEST (set
))] != 0
7394 || side_effects_p (SET_SRC (set
))
7395 /* An ADDRESSOF expression can turn into a use of the
7396 internal arg pointer, so always consider the
7397 internal arg pointer live. If it is truly dead,
7398 flow will delete the initializing insn. */
7399 || (SET_DEST (set
) == current_function_internal_arg_pointer
))
7404 /* Return true if insn is live. */
7407 insn_live_p (rtx insn
, int *counts
)
7410 if (flag_non_call_exceptions
&& may_trap_p (PATTERN (insn
)))
7412 else if (GET_CODE (PATTERN (insn
)) == SET
)
7413 return set_live_p (PATTERN (insn
), insn
, counts
);
7414 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
7416 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7418 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
7420 if (GET_CODE (elt
) == SET
)
7422 if (set_live_p (elt
, insn
, counts
))
7425 else if (GET_CODE (elt
) != CLOBBER
&& GET_CODE (elt
) != USE
)
7434 /* Return true if libcall is dead as a whole. */
7437 dead_libcall_p (rtx insn
, int *counts
)
7441 /* See if there's a REG_EQUAL note on this insn and try to
7442 replace the source with the REG_EQUAL expression.
7444 We assume that insns with REG_RETVALs can only be reg->reg
7445 copies at this point. */
7446 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
7450 set
= single_set (insn
);
7454 new = simplify_rtx (XEXP (note
, 0));
7456 new = XEXP (note
, 0);
7458 /* While changing insn, we must update the counts accordingly. */
7459 count_reg_usage (insn
, counts
, -1);
7461 if (validate_change (insn
, &SET_SRC (set
), new, 0))
7463 count_reg_usage (insn
, counts
, 1);
7464 remove_note (insn
, find_reg_note (insn
, REG_RETVAL
, NULL_RTX
));
7465 remove_note (insn
, note
);
7469 if (CONSTANT_P (new))
7471 new = force_const_mem (GET_MODE (SET_DEST (set
)), new);
7472 if (new && validate_change (insn
, &SET_SRC (set
), new, 0))
7474 count_reg_usage (insn
, counts
, 1);
7475 remove_note (insn
, find_reg_note (insn
, REG_RETVAL
, NULL_RTX
));
7476 remove_note (insn
, note
);
7481 count_reg_usage (insn
, counts
, 1);
7485 /* Scan all the insns and delete any that are dead; i.e., they store a register
7486 that is never used or they copy a register to itself.
7488 This is used to remove insns made obviously dead by cse, loop or other
7489 optimizations. It improves the heuristics in loop since it won't try to
7490 move dead invariants out of loops or make givs for dead quantities. The
7491 remaining passes of the compilation are also sped up. */
7494 delete_trivially_dead_insns (rtx insns
, int nreg
)
7498 int in_libcall
= 0, dead_libcall
= 0;
7499 int ndead
= 0, nlastdead
, niterations
= 0;
7501 timevar_push (TV_DELETE_TRIVIALLY_DEAD
);
7502 /* First count the number of times each register is used. */
7503 counts
= xcalloc (nreg
, sizeof (int));
7504 for (insn
= next_real_insn (insns
); insn
; insn
= next_real_insn (insn
))
7505 count_reg_usage (insn
, counts
, 1);
7511 /* Go from the last insn to the first and delete insns that only set unused
7512 registers or copy a register to itself. As we delete an insn, remove
7513 usage counts for registers it uses.
7515 The first jump optimization pass may leave a real insn as the last
7516 insn in the function. We must not skip that insn or we may end
7517 up deleting code that is not really dead. */
7518 insn
= get_last_insn ();
7519 if (! INSN_P (insn
))
7520 insn
= prev_real_insn (insn
);
7522 for (; insn
; insn
= prev
)
7526 prev
= prev_real_insn (insn
);
7528 /* Don't delete any insns that are part of a libcall block unless
7529 we can delete the whole libcall block.
7531 Flow or loop might get confused if we did that. Remember
7532 that we are scanning backwards. */
7533 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
7537 dead_libcall
= dead_libcall_p (insn
, counts
);
7539 else if (in_libcall
)
7540 live_insn
= ! dead_libcall
;
7542 live_insn
= insn_live_p (insn
, counts
);
7544 /* If this is a dead insn, delete it and show registers in it aren't
7549 count_reg_usage (insn
, counts
, -1);
7550 delete_insn_and_edges (insn
);
7554 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
7561 while (ndead
!= nlastdead
);
7563 if (dump_file
&& ndead
)
7564 fprintf (dump_file
, "Deleted %i trivially dead insns; %i iterations\n",
7565 ndead
, niterations
);
7568 timevar_pop (TV_DELETE_TRIVIALLY_DEAD
);
7572 /* This function is called via for_each_rtx. The argument, NEWREG, is
7573 a condition code register with the desired mode. If we are looking
7574 at the same register in a different mode, replace it with
7578 cse_change_cc_mode (rtx
*loc
, void *data
)
7580 rtx newreg
= (rtx
) data
;
7583 && GET_CODE (*loc
) == REG
7584 && REGNO (*loc
) == REGNO (newreg
)
7585 && GET_MODE (*loc
) != GET_MODE (newreg
))
7593 /* Change the mode of any reference to the register REGNO (NEWREG) to
7594 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7595 any instruction which modifies NEWREG. */
7598 cse_change_cc_mode_insns (rtx start
, rtx end
, rtx newreg
)
7602 for (insn
= start
; insn
!= end
; insn
= NEXT_INSN (insn
))
7604 if (! INSN_P (insn
))
7607 if (reg_set_p (newreg
, insn
))
7610 for_each_rtx (&PATTERN (insn
), cse_change_cc_mode
, newreg
);
7611 for_each_rtx (®_NOTES (insn
), cse_change_cc_mode
, newreg
);
7615 /* BB is a basic block which finishes with CC_REG as a condition code
7616 register which is set to CC_SRC. Look through the successors of BB
7617 to find blocks which have a single predecessor (i.e., this one),
7618 and look through those blocks for an assignment to CC_REG which is
7619 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7620 permitted to change the mode of CC_SRC to a compatible mode. This
7621 returns VOIDmode if no equivalent assignments were found.
7622 Otherwise it returns the mode which CC_SRC should wind up with.
7624 The main complexity in this function is handling the mode issues.
7625 We may have more than one duplicate which we can eliminate, and we
7626 try to find a mode which will work for multiple duplicates. */
7628 static enum machine_mode
7629 cse_cc_succs (basic_block bb
, rtx cc_reg
, rtx cc_src
, bool can_change_mode
)
7632 enum machine_mode mode
;
7633 unsigned int insn_count
;
7636 enum machine_mode modes
[2];
7641 /* We expect to have two successors. Look at both before picking
7642 the final mode for the comparison. If we have more successors
7643 (i.e., some sort of table jump, although that seems unlikely),
7644 then we require all beyond the first two to use the same
7647 found_equiv
= false;
7648 mode
= GET_MODE (cc_src
);
7650 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
7655 if (e
->flags
& EDGE_COMPLEX
)
7659 || e
->dest
->pred
->pred_next
7660 || e
->dest
== EXIT_BLOCK_PTR
)
7663 end
= NEXT_INSN (BB_END (e
->dest
));
7664 for (insn
= BB_HEAD (e
->dest
); insn
!= end
; insn
= NEXT_INSN (insn
))
7668 if (! INSN_P (insn
))
7671 /* If CC_SRC is modified, we have to stop looking for
7672 something which uses it. */
7673 if (modified_in_p (cc_src
, insn
))
7676 /* Check whether INSN sets CC_REG to CC_SRC. */
7677 set
= single_set (insn
);
7679 && GET_CODE (SET_DEST (set
)) == REG
7680 && REGNO (SET_DEST (set
)) == REGNO (cc_reg
))
7683 enum machine_mode set_mode
;
7684 enum machine_mode comp_mode
;
7687 set_mode
= GET_MODE (SET_SRC (set
));
7688 comp_mode
= set_mode
;
7689 if (rtx_equal_p (cc_src
, SET_SRC (set
)))
7691 else if (GET_CODE (cc_src
) == COMPARE
7692 && GET_CODE (SET_SRC (set
)) == COMPARE
7694 && rtx_equal_p (XEXP (cc_src
, 0),
7695 XEXP (SET_SRC (set
), 0))
7696 && rtx_equal_p (XEXP (cc_src
, 1),
7697 XEXP (SET_SRC (set
), 1)))
7700 comp_mode
= targetm
.cc_modes_compatible (mode
, set_mode
);
7701 if (comp_mode
!= VOIDmode
7702 && (can_change_mode
|| comp_mode
== mode
))
7709 if (insn_count
< ARRAY_SIZE (insns
))
7711 insns
[insn_count
] = insn
;
7712 modes
[insn_count
] = set_mode
;
7713 last_insns
[insn_count
] = end
;
7716 if (mode
!= comp_mode
)
7718 if (! can_change_mode
)
7721 PUT_MODE (cc_src
, mode
);
7726 if (set_mode
!= mode
)
7728 /* We found a matching expression in the
7729 wrong mode, but we don't have room to
7730 store it in the array. Punt. This case
7734 /* INSN sets CC_REG to a value equal to CC_SRC
7735 with the right mode. We can simply delete
7740 /* We found an instruction to delete. Keep looking,
7741 in the hopes of finding a three-way jump. */
7745 /* We found an instruction which sets the condition
7746 code, so don't look any farther. */
7750 /* If INSN sets CC_REG in some other way, don't look any
7752 if (reg_set_p (cc_reg
, insn
))
7756 /* If we fell off the bottom of the block, we can keep looking
7757 through successors. We pass CAN_CHANGE_MODE as false because
7758 we aren't prepared to handle compatibility between the
7759 further blocks and this block. */
7762 enum machine_mode submode
;
7764 submode
= cse_cc_succs (e
->dest
, cc_reg
, cc_src
, false);
7765 if (submode
!= VOIDmode
)
7767 if (submode
!= mode
)
7770 can_change_mode
= false;
7778 /* Now INSN_COUNT is the number of instructions we found which set
7779 CC_REG to a value equivalent to CC_SRC. The instructions are in
7780 INSNS. The modes used by those instructions are in MODES. */
7783 for (i
= 0; i
< insn_count
; ++i
)
7785 if (modes
[i
] != mode
)
7787 /* We need to change the mode of CC_REG in INSNS[i] and
7788 subsequent instructions. */
7791 if (GET_MODE (cc_reg
) == mode
)
7794 newreg
= gen_rtx_REG (mode
, REGNO (cc_reg
));
7796 cse_change_cc_mode_insns (NEXT_INSN (insns
[i
]), last_insns
[i
],
7800 delete_insn (insns
[i
]);
7806 /* If we have a fixed condition code register (or two), walk through
7807 the instructions and try to eliminate duplicate assignments. */
7810 cse_condition_code_reg (void)
7812 unsigned int cc_regno_1
;
7813 unsigned int cc_regno_2
;
7818 if (! targetm
.fixed_condition_code_regs (&cc_regno_1
, &cc_regno_2
))
7821 cc_reg_1
= gen_rtx_REG (CCmode
, cc_regno_1
);
7822 if (cc_regno_2
!= INVALID_REGNUM
)
7823 cc_reg_2
= gen_rtx_REG (CCmode
, cc_regno_2
);
7825 cc_reg_2
= NULL_RTX
;
7834 enum machine_mode mode
;
7835 enum machine_mode orig_mode
;
7837 /* Look for blocks which end with a conditional jump based on a
7838 condition code register. Then look for the instruction which
7839 sets the condition code register. Then look through the
7840 successor blocks for instructions which set the condition
7841 code register to the same value. There are other possible
7842 uses of the condition code register, but these are by far the
7843 most common and the ones which we are most likely to be able
7846 last_insn
= BB_END (bb
);
7847 if (GET_CODE (last_insn
) != JUMP_INSN
)
7850 if (reg_referenced_p (cc_reg_1
, PATTERN (last_insn
)))
7852 else if (cc_reg_2
&& reg_referenced_p (cc_reg_2
, PATTERN (last_insn
)))
7857 cc_src_insn
= NULL_RTX
;
7859 for (insn
= PREV_INSN (last_insn
);
7860 insn
&& insn
!= PREV_INSN (BB_HEAD (bb
));
7861 insn
= PREV_INSN (insn
))
7865 if (! INSN_P (insn
))
7867 set
= single_set (insn
);
7869 && GET_CODE (SET_DEST (set
)) == REG
7870 && REGNO (SET_DEST (set
)) == REGNO (cc_reg
))
7873 cc_src
= SET_SRC (set
);
7876 else if (reg_set_p (cc_reg
, insn
))
7883 if (modified_between_p (cc_src
, cc_src_insn
, NEXT_INSN (last_insn
)))
7886 /* Now CC_REG is a condition code register used for a
7887 conditional jump at the end of the block, and CC_SRC, in
7888 CC_SRC_INSN, is the value to which that condition code
7889 register is set, and CC_SRC is still meaningful at the end of
7892 orig_mode
= GET_MODE (cc_src
);
7893 mode
= cse_cc_succs (bb
, cc_reg
, cc_src
, true);
7894 if (mode
!= VOIDmode
)
7896 if (mode
!= GET_MODE (cc_src
))
7898 if (mode
!= orig_mode
)
7900 rtx newreg
= gen_rtx_REG (mode
, REGNO (cc_reg
));
7902 /* Change the mode of CC_REG in CC_SRC_INSN to
7903 GET_MODE (NEWREG). */
7904 for_each_rtx (&PATTERN (cc_src_insn
), cse_change_cc_mode
,
7906 for_each_rtx (®_NOTES (cc_src_insn
), cse_change_cc_mode
,
7909 /* Do the same in the following insns that use the
7910 current value of CC_REG within BB. */
7911 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn
),
7912 NEXT_INSN (last_insn
),