* system.h: Poison NO_RECURSIVE_FUNCTION_CSE.
[official-gcc.git] / gcc / cfgloopmanip.c
blob9e10d8e6ccb537cedad2bebabb10798dee0def5c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "cfglayout.h"
30 #include "output.h"
32 static struct loop * duplicate_loop (struct loops *, struct loop *,
33 struct loop *);
34 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
35 static void copy_loops_to (struct loops *, struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static bool loop_delete_branch_edge (edge, int);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (basic_block, void *);
41 static int find_path (edge, basic_block **);
42 static bool alp_enum_p (basic_block, void *);
43 static void add_loop (struct loops *, struct loop *);
44 static void fix_loop_placements (struct loops *, struct loop *);
45 static bool fix_bb_placement (struct loops *, basic_block);
46 static void fix_bb_placements (struct loops *, basic_block);
47 static void place_new_loop (struct loops *, struct loop *);
48 static void scale_loop_frequencies (struct loop *, int, int);
49 static void scale_bbs_frequencies (basic_block *, int, int, int);
50 static basic_block create_preheader (struct loop *, int);
51 static void fix_irreducible_loops (basic_block);
53 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
55 /* Splits basic block BB after INSN, returns created edge. Updates loops
56 and dominators. */
57 edge
58 split_loop_bb (basic_block bb, rtx insn)
60 edge e;
62 /* Split the block. */
63 e = split_block (bb, insn);
65 /* Add dest to loop. */
66 add_bb_to_loop (e->dest, e->src->loop_father);
68 return e;
71 /* Checks whether basic block BB is dominated by DATA. */
72 static bool
73 rpe_enum_p (basic_block bb, void *data)
75 return dominated_by_p (CDI_DOMINATORS, bb, data);
78 /* Remove basic blocks BBS from loop structure and dominance info,
79 and delete them afterwards. */
80 static void
81 remove_bbs (basic_block *bbs, int nbbs)
83 int i;
85 for (i = 0; i < nbbs; i++)
87 remove_bb_from_loops (bbs[i]);
88 delete_basic_block (bbs[i]);
92 /* Find path -- i.e. the basic blocks dominated by edge E and put them
93 into array BBS, that will be allocated large enough to contain them.
94 E->dest must have exactly one predecessor for this to work (it is
95 easy to achieve and we do not put it here because we do not want to
96 alter anything by this function). The number of basic blocks in the
97 path is returned. */
98 static int
99 find_path (edge e, basic_block **bbs)
101 if (e->dest->pred->pred_next)
102 abort ();
104 /* Find bbs in the path. */
105 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
106 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
107 n_basic_blocks, e->dest);
110 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
111 Let L be a loop to that BB belongs. Then every successor of BB must either
112 1) belong to some superloop of loop L, or
113 2) be a header of loop K such that K->outer is superloop of L
114 Returns true if we had to move BB into other loop to enforce this condition,
115 false if the placement of BB was already correct (provided that placements
116 of its successors are correct). */
117 static bool
118 fix_bb_placement (struct loops *loops, basic_block bb)
120 edge e;
121 struct loop *loop = loops->tree_root, *act;
123 for (e = bb->succ; e; e = e->succ_next)
125 if (e->dest == EXIT_BLOCK_PTR)
126 continue;
128 act = e->dest->loop_father;
129 if (act->header == e->dest)
130 act = act->outer;
132 if (flow_loop_nested_p (loop, act))
133 loop = act;
136 if (loop == bb->loop_father)
137 return false;
139 remove_bb_from_loops (bb);
140 add_bb_to_loop (bb, loop);
142 return true;
145 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
146 enforce condition condition stated in description of fix_bb_placement. We
147 start from basic block FROM that had some of its successors removed, so that
148 his placement no longer has to be correct, and iteratively fix placement of
149 its predecessors that may change if placement of FROM changed. Also fix
150 placement of subloops of FROM->loop_father, that might also be altered due
151 to this change; the condition for them is similar, except that instead of
152 successors we consider edges coming out of the loops. */
153 static void
154 fix_bb_placements (struct loops *loops, basic_block from)
156 sbitmap in_queue;
157 basic_block *queue, *qtop, *qbeg, *qend;
158 struct loop *base_loop;
159 edge e;
161 /* We pass through blocks back-reachable from FROM, testing whether some
162 of their successors moved to outer loop. It may be necessary to
163 iterate several times, but it is finite, as we stop unless we move
164 the basic block up the loop structure. The whole story is a bit
165 more complicated due to presence of subloops, those are moved using
166 fix_loop_placement. */
168 base_loop = from->loop_father;
169 if (base_loop == loops->tree_root)
170 return;
172 in_queue = sbitmap_alloc (last_basic_block);
173 sbitmap_zero (in_queue);
174 SET_BIT (in_queue, from->index);
175 /* Prevent us from going out of the base_loop. */
176 SET_BIT (in_queue, base_loop->header->index);
178 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
179 qtop = queue + base_loop->num_nodes + 1;
180 qbeg = queue;
181 qend = queue + 1;
182 *qbeg = from;
184 while (qbeg != qend)
186 from = *qbeg;
187 qbeg++;
188 if (qbeg == qtop)
189 qbeg = queue;
190 RESET_BIT (in_queue, from->index);
192 if (from->loop_father->header == from)
194 /* Subloop header, maybe move the loop upward. */
195 if (!fix_loop_placement (from->loop_father))
196 continue;
198 else
200 /* Ordinary basic block. */
201 if (!fix_bb_placement (loops, from))
202 continue;
205 /* Something has changed, insert predecessors into queue. */
206 for (e = from->pred; e; e = e->pred_next)
208 basic_block pred = e->src;
209 struct loop *nca;
211 if (TEST_BIT (in_queue, pred->index))
212 continue;
214 /* If it is subloop, then it either was not moved, or
215 the path up the loop tree from base_loop do not contain
216 it. */
217 nca = find_common_loop (pred->loop_father, base_loop);
218 if (pred->loop_father != base_loop
219 && (nca == base_loop
220 || nca != pred->loop_father))
221 pred = pred->loop_father->header;
222 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
224 /* No point in processing it. */
225 continue;
228 if (TEST_BIT (in_queue, pred->index))
229 continue;
231 /* Schedule the basic block. */
232 *qend = pred;
233 qend++;
234 if (qend == qtop)
235 qend = queue;
236 SET_BIT (in_queue, pred->index);
239 free (in_queue);
240 free (queue);
243 /* Basic block from has lost one or more of its predecessors, so it might
244 mo longer be part irreducible loop. Fix it and proceed recursively
245 for its successors if needed. */
246 static void
247 fix_irreducible_loops (basic_block from)
249 basic_block bb;
250 basic_block *stack;
251 int stack_top;
252 sbitmap on_stack;
253 edge *edges, e;
254 unsigned n_edges, i;
256 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
257 return;
259 on_stack = sbitmap_alloc (last_basic_block);
260 sbitmap_zero (on_stack);
261 SET_BIT (on_stack, from->index);
262 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
263 stack[0] = from;
264 stack_top = 1;
266 while (stack_top)
268 bb = stack[--stack_top];
269 RESET_BIT (on_stack, bb->index);
271 for (e = bb->pred; e; e = e->pred_next)
272 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
273 break;
274 if (e)
275 continue;
277 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
278 if (bb->loop_father->header == bb)
279 edges = get_loop_exit_edges (bb->loop_father, &n_edges);
280 else
282 n_edges = 0;
283 for (e = bb->succ; e; e = e->succ_next)
284 n_edges++;
285 edges = xmalloc (n_edges * sizeof (edge));
286 n_edges = 0;
287 for (e = bb->succ; e; e = e->succ_next)
288 edges[n_edges++] = e;
291 for (i = 0; i < n_edges; i++)
293 e = edges[i];
295 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
297 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
298 continue;
300 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
301 if (TEST_BIT (on_stack, e->dest->index))
302 continue;
304 SET_BIT (on_stack, e->dest->index);
305 stack[stack_top++] = e->dest;
308 free (edges);
311 free (on_stack);
312 free (stack);
315 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
316 and update loop structure stored in LOOPS and dominators. Return true if
317 we were able to remove the path, false otherwise (and nothing is affected
318 then). */
319 bool
320 remove_path (struct loops *loops, edge e)
322 edge ae;
323 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
324 int i, nrem, n_bord_bbs, n_dom_bbs;
325 sbitmap seen;
327 if (!loop_delete_branch_edge (e, 0))
328 return false;
330 /* We need to check whether basic blocks are dominated by the edge
331 e, but we only have basic block dominators. This is easy to
332 fix -- when e->dest has exactly one predecessor, this corresponds
333 to blocks dominated by e->dest, if not, split the edge. */
334 if (e->dest->pred->pred_next)
335 e = loop_split_edge_with (e, NULL_RTX)->pred;
337 /* It may happen that by removing path we remove one or more loops
338 we belong to. In this case first unloop the loops, then proceed
339 normally. We may assume that e->dest is not a header of any loop,
340 as it now has exactly one predecessor. */
341 while (e->src->loop_father->outer
342 && dominated_by_p (CDI_DOMINATORS,
343 e->src->loop_father->latch, e->dest))
344 unloop (loops, e->src->loop_father);
346 /* Identify the path. */
347 nrem = find_path (e, &rem_bbs);
349 n_bord_bbs = 0;
350 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
351 seen = sbitmap_alloc (last_basic_block);
352 sbitmap_zero (seen);
354 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
355 for (i = 0; i < nrem; i++)
356 SET_BIT (seen, rem_bbs[i]->index);
357 for (i = 0; i < nrem; i++)
359 bb = rem_bbs[i];
360 for (ae = rem_bbs[i]->succ; ae; ae = ae->succ_next)
361 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
363 SET_BIT (seen, ae->dest->index);
364 bord_bbs[n_bord_bbs++] = ae->dest;
368 /* Remove the path. */
369 from = e->src;
370 if (!loop_delete_branch_edge (e, 1))
371 abort ();
372 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
374 /* Cancel loops contained in the path. */
375 for (i = 0; i < nrem; i++)
376 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
377 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
379 remove_bbs (rem_bbs, nrem);
380 free (rem_bbs);
382 /* Find blocks whose dominators may be affected. */
383 n_dom_bbs = 0;
384 sbitmap_zero (seen);
385 for (i = 0; i < n_bord_bbs; i++)
387 basic_block ldom;
389 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
390 if (TEST_BIT (seen, bb->index))
391 continue;
392 SET_BIT (seen, bb->index);
394 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
395 ldom;
396 ldom = next_dom_son (CDI_DOMINATORS, ldom))
397 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
398 dom_bbs[n_dom_bbs++] = ldom;
401 free (seen);
403 /* Recount dominators. */
404 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
405 free (dom_bbs);
407 /* These blocks have lost some predecessor(s), thus their irreducible
408 status could be changed. */
409 for (i = 0; i < n_bord_bbs; i++)
410 fix_irreducible_loops (bord_bbs[i]);
411 free (bord_bbs);
413 /* Fix placements of basic blocks inside loops and the placement of
414 loops in the loop tree. */
415 fix_bb_placements (loops, from);
416 fix_loop_placements (loops, from->loop_father);
418 return true;
421 /* Predicate for enumeration in add_loop. */
422 static bool
423 alp_enum_p (basic_block bb, void *alp_header)
425 return bb != (basic_block) alp_header;
428 /* Given LOOP structure with filled header and latch, find the body of the
429 corresponding loop and add it to LOOPS tree. */
430 static void
431 add_loop (struct loops *loops, struct loop *loop)
433 basic_block *bbs;
434 int i, n;
436 /* Add it to loop structure. */
437 place_new_loop (loops, loop);
438 loop->level = 1;
440 /* Find its nodes. */
441 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
442 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
443 bbs, n_basic_blocks, loop->header);
445 for (i = 0; i < n; i++)
446 add_bb_to_loop (bbs[i], loop);
447 add_bb_to_loop (loop->header, loop);
449 free (bbs);
452 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
453 by NUM/DEN. */
454 static void
455 scale_bbs_frequencies (basic_block *bbs, int nbbs, int num, int den)
457 int i;
458 edge e;
460 for (i = 0; i < nbbs; i++)
462 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
463 bbs[i]->count = RDIV (bbs[i]->count * num, den);
464 for (e = bbs[i]->succ; e; e = e->succ_next)
465 e->count = (e->count * num) /den;
469 /* Multiply all frequencies in LOOP by NUM/DEN. */
470 static void
471 scale_loop_frequencies (struct loop *loop, int num, int den)
473 basic_block *bbs;
475 bbs = get_loop_body (loop);
476 scale_bbs_frequencies (bbs, loop->num_nodes, num, den);
477 free (bbs);
480 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
481 latch to header and update loop tree stored in LOOPS and dominators
482 accordingly. Everything between them plus LATCH_EDGE destination must
483 be dominated by HEADER_EDGE destination, and back-reachable from
484 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
485 FALLTHRU_EDGE (SWITCH_BB) to original destination of HEADER_EDGE and
486 BRANCH_EDGE (SWITCH_BB) to original destination of LATCH_EDGE.
487 Returns newly created loop. */
489 struct loop *
490 loopify (struct loops *loops, edge latch_edge, edge header_edge,
491 basic_block switch_bb)
493 basic_block succ_bb = latch_edge->dest;
494 basic_block pred_bb = header_edge->src;
495 basic_block *dom_bbs, *body;
496 unsigned n_dom_bbs, i;
497 sbitmap seen;
498 struct loop *loop = xcalloc (1, sizeof (struct loop));
499 struct loop *outer = succ_bb->loop_father->outer;
500 int freq, prob, tot_prob;
501 gcov_type cnt;
502 edge e;
504 loop->header = header_edge->dest;
505 loop->latch = latch_edge->src;
507 freq = EDGE_FREQUENCY (header_edge);
508 cnt = header_edge->count;
509 prob = switch_bb->succ->probability;
510 tot_prob = prob + switch_bb->succ->succ_next->probability;
511 if (tot_prob == 0)
512 tot_prob = 1;
514 /* Redirect edges. */
515 loop_redirect_edge (latch_edge, loop->header);
516 loop_redirect_edge (BRANCH_EDGE (switch_bb), succ_bb);
518 loop_redirect_edge (header_edge, switch_bb);
519 loop_redirect_edge (FALLTHRU_EDGE (switch_bb), loop->header);
521 /* Update dominators. */
522 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
523 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
525 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
527 /* Compute new loop. */
528 add_loop (loops, loop);
529 flow_loop_tree_node_add (outer, loop);
531 /* Add switch_bb to appropriate loop. */
532 add_bb_to_loop (switch_bb, outer);
534 /* Fix frequencies. */
535 switch_bb->frequency = freq;
536 switch_bb->count = cnt;
537 for (e = switch_bb->succ; e; e = e->succ_next)
538 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
539 scale_loop_frequencies (loop, prob, tot_prob);
540 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
542 /* Update dominators of blocks outside of LOOP. */
543 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
544 n_dom_bbs = 0;
545 seen = sbitmap_alloc (last_basic_block);
546 sbitmap_zero (seen);
547 body = get_loop_body (loop);
549 for (i = 0; i < loop->num_nodes; i++)
550 SET_BIT (seen, body[i]->index);
552 for (i = 0; i < loop->num_nodes; i++)
554 basic_block ldom;
556 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
557 ldom;
558 ldom = next_dom_son (CDI_DOMINATORS, ldom))
559 if (!TEST_BIT (seen, ldom->index))
561 SET_BIT (seen, ldom->index);
562 dom_bbs[n_dom_bbs++] = ldom;
566 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
568 free (body);
569 free (seen);
570 free (dom_bbs);
572 return loop;
575 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
576 the LOOP was removed. After this function, original loop latch will
577 have no successor, which caller is expected to fix somehow. */
578 void
579 unloop (struct loops *loops, struct loop *loop)
581 basic_block *body;
582 struct loop *ploop;
583 unsigned i, n;
584 basic_block latch = loop->latch;
585 edge *edges;
586 unsigned n_edges;
588 /* This is relatively straightforward. The dominators are unchanged, as
589 loop header dominates loop latch, so the only thing we have to care of
590 is the placement of loops and basic blocks inside the loop tree. We
591 move them all to the loop->outer, and then let fix_bb_placements do
592 its work. */
594 body = get_loop_body (loop);
595 edges = get_loop_exit_edges (loop, &n_edges);
596 n = loop->num_nodes;
597 for (i = 0; i < n; i++)
598 if (body[i]->loop_father == loop)
600 remove_bb_from_loops (body[i]);
601 add_bb_to_loop (body[i], loop->outer);
603 free(body);
605 while (loop->inner)
607 ploop = loop->inner;
608 flow_loop_tree_node_remove (ploop);
609 flow_loop_tree_node_add (loop->outer, ploop);
612 /* Remove the loop and free its data. */
613 flow_loop_tree_node_remove (loop);
614 loops->parray[loop->num] = NULL;
615 flow_loop_free (loop);
617 remove_edge (latch->succ);
618 fix_bb_placements (loops, latch);
620 /* If the loop was inside an irreducible region, we would have to somehow
621 update the irreducible marks inside its body. While it is certainly
622 possible to do, it is a bit complicated and this situation should be
623 very rare, so we just remark all loops in this case. */
624 for (i = 0; i < n_edges; i++)
625 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
626 break;
627 if (i != n_edges)
628 mark_irreducible_loops (loops);
629 free (edges);
632 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
633 FATHER of LOOP such that all of the edges coming out of LOOP belong to
634 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
635 LOOP changed. */
637 fix_loop_placement (struct loop *loop)
639 basic_block *body;
640 unsigned i;
641 edge e;
642 struct loop *father = loop->pred[0], *act;
644 body = get_loop_body (loop);
645 for (i = 0; i < loop->num_nodes; i++)
646 for (e = body[i]->succ; e; e = e->succ_next)
647 if (!flow_bb_inside_loop_p (loop, e->dest))
649 act = find_common_loop (loop, e->dest->loop_father);
650 if (flow_loop_nested_p (father, act))
651 father = act;
653 free (body);
655 if (father != loop->outer)
657 for (act = loop->outer; act != father; act = act->outer)
658 act->num_nodes -= loop->num_nodes;
659 flow_loop_tree_node_remove (loop);
660 flow_loop_tree_node_add (father, loop);
661 return 1;
663 return 0;
666 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
667 condition stated in description of fix_loop_placement holds for them.
668 It is used in case when we removed some edges coming out of LOOP, which
669 may cause the right placement of LOOP inside loop tree to change. */
670 static void
671 fix_loop_placements (struct loops *loops, struct loop *loop)
673 struct loop *outer;
675 while (loop->outer)
677 outer = loop->outer;
678 if (!fix_loop_placement (loop))
679 break;
681 /* Changing the placement of a loop in the loop tree may alter the
682 validity of condition 2) of the description of fix_bb_placement
683 for its preheader, because the successor is the header and belongs
684 to the loop. So call fix_bb_placements to fix up the placement
685 of the preheader and (possibly) of its predecessors. */
686 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
687 loop = outer;
691 /* Creates place for a new LOOP in LOOPS structure. */
692 static void
693 place_new_loop (struct loops *loops, struct loop *loop)
695 loops->parray =
696 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
697 loops->parray[loops->num] = loop;
699 loop->num = loops->num++;
702 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
703 created loop into LOOPS structure. */
704 static struct loop *
705 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
707 struct loop *cloop;
708 cloop = xcalloc (1, sizeof (struct loop));
709 place_new_loop (loops, cloop);
711 /* Initialize copied loop. */
712 cloop->level = loop->level;
714 /* Set it as copy of loop. */
715 loop->copy = cloop;
717 /* Add it to target. */
718 flow_loop_tree_node_add (target, cloop);
720 return cloop;
723 /* Copies structure of subloops of LOOP into TARGET loop, placing
724 newly created loops into loop tree stored in LOOPS. */
725 static void
726 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
728 struct loop *aloop, *cloop;
730 for (aloop = loop->inner; aloop; aloop = aloop->next)
732 cloop = duplicate_loop (loops, aloop, target);
733 duplicate_subloops (loops, aloop, cloop);
737 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
738 into TARGET loop, placing newly created loops into loop tree LOOPS. */
739 static void
740 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
742 struct loop *aloop;
743 int i;
745 for (i = 0; i < n; i++)
747 aloop = duplicate_loop (loops, copied_loops[i], target);
748 duplicate_subloops (loops, copied_loops[i], aloop);
752 /* Redirects edge E to basic block DEST. */
753 static void
754 loop_redirect_edge (edge e, basic_block dest)
756 if (e->dest == dest)
757 return;
759 redirect_edge_and_branch_force (e, dest);
762 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
763 just test whether it is possible to remove the edge. */
764 static bool
765 loop_delete_branch_edge (edge e, int really_delete)
767 basic_block src = e->src;
768 int irr;
769 edge snd;
771 if (src->succ->succ_next)
773 basic_block newdest;
775 /* Cannot handle more than two exit edges. */
776 if (src->succ->succ_next->succ_next)
777 return false;
778 /* And it must be just a simple branch. */
779 if (!any_condjump_p (BB_END (src)))
780 return false;
782 snd = e == src->succ ? src->succ->succ_next : src->succ;
783 newdest = snd->dest;
784 if (newdest == EXIT_BLOCK_PTR)
785 return false;
787 /* Hopefully the above conditions should suffice. */
788 if (!really_delete)
789 return true;
791 /* Redirecting behaves wrongly wrto this flag. */
792 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
794 if (!redirect_edge_and_branch (e, newdest))
795 return false;
796 src->succ->flags &= ~EDGE_IRREDUCIBLE_LOOP;
797 src->succ->flags |= irr;
799 return true;
801 else
803 /* Cannot happen -- we are using this only to remove an edge
804 from branch. */
805 abort ();
808 return false; /* To avoid warning, cannot get here. */
811 /* Check whether LOOP's body can be duplicated. */
812 bool
813 can_duplicate_loop_p (struct loop *loop)
815 int ret;
816 basic_block *bbs = get_loop_body (loop);
818 ret = can_copy_bbs_p (bbs, loop->num_nodes);
819 free (bbs);
821 return ret;
825 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
826 LOOPS structure and dominators. E's destination must be LOOP header for
827 this to work, i.e. it must be entry or latch edge of this loop; these are
828 unique, as the loops must have preheaders for this function to work
829 correctly (in case E is latch, the function unrolls the loop, if E is entry
830 edge, it peels the loop). Store edges created by copying ORIG edge from
831 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
832 original LOOP body, the other copies are numbered in order given by control
833 flow through them) into TO_REMOVE array. Returns false if duplication is
834 impossible. */
836 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
837 unsigned int ndupl, sbitmap wont_exit,
838 edge orig, edge *to_remove,
839 unsigned int *n_to_remove, int flags)
841 struct loop *target, *aloop;
842 struct loop **orig_loops;
843 unsigned n_orig_loops;
844 basic_block header = loop->header, latch = loop->latch;
845 basic_block *new_bbs, *bbs, *first_active;
846 basic_block new_bb, bb, first_active_latch = NULL;
847 edge ae, latch_edge;
848 edge spec_edges[2], new_spec_edges[2];
849 #define SE_LATCH 0
850 #define SE_ORIG 1
851 unsigned i, j, n;
852 int is_latch = (latch == e->src);
853 int scale_act = 0, *scale_step = NULL, scale_main = 0;
854 int p, freq_in, freq_le, freq_out_orig;
855 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
856 int add_irreducible_flag;
858 if (e->dest != loop->header)
859 abort ();
860 if (ndupl <= 0)
861 abort ();
863 if (orig)
865 /* Orig must be edge out of the loop. */
866 if (!flow_bb_inside_loop_p (loop, orig->src))
867 abort ();
868 if (flow_bb_inside_loop_p (loop, orig->dest))
869 abort ();
872 bbs = get_loop_body (loop);
874 /* Check whether duplication is possible. */
875 if (!can_copy_bbs_p (bbs, loop->num_nodes))
877 free (bbs);
878 return false;
880 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
882 /* In case we are doing loop peeling and the loop is in the middle of
883 irreducible region, the peeled copies will be inside it too. */
884 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
885 if (is_latch && add_irreducible_flag)
886 abort ();
888 /* Find edge from latch. */
889 latch_edge = loop_latch_edge (loop);
891 if (flags & DLTHE_FLAG_UPDATE_FREQ)
893 /* Calculate coefficients by that we have to scale frequencies
894 of duplicated loop bodies. */
895 freq_in = header->frequency;
896 freq_le = EDGE_FREQUENCY (latch_edge);
897 if (freq_in == 0)
898 freq_in = 1;
899 if (freq_in < freq_le)
900 freq_in = freq_le;
901 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
902 if (freq_out_orig > freq_in - freq_le)
903 freq_out_orig = freq_in - freq_le;
904 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
905 prob_pass_wont_exit =
906 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
908 scale_step = xmalloc (ndupl * sizeof (int));
910 for (i = 1; i <= ndupl; i++)
911 scale_step[i - 1] = TEST_BIT (wont_exit, i)
912 ? prob_pass_wont_exit
913 : prob_pass_thru;
915 if (is_latch)
917 prob_pass_main = TEST_BIT (wont_exit, 0)
918 ? prob_pass_wont_exit
919 : prob_pass_thru;
920 p = prob_pass_main;
921 scale_main = REG_BR_PROB_BASE;
922 for (i = 0; i < ndupl; i++)
924 scale_main += p;
925 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
927 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
928 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
930 else
932 scale_main = REG_BR_PROB_BASE;
933 for (i = 0; i < ndupl; i++)
934 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
935 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
937 for (i = 0; i < ndupl; i++)
938 if (scale_step[i] < 0 || scale_step[i] > REG_BR_PROB_BASE)
939 abort ();
940 if (scale_main < 0 || scale_main > REG_BR_PROB_BASE
941 || scale_act < 0 || scale_act > REG_BR_PROB_BASE)
942 abort ();
945 /* Loop the new bbs will belong to. */
946 target = e->src->loop_father;
948 /* Original loops. */
949 n_orig_loops = 0;
950 for (aloop = loop->inner; aloop; aloop = aloop->next)
951 n_orig_loops++;
952 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
953 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
954 orig_loops[i] = aloop;
956 loop->copy = target;
958 n = loop->num_nodes;
960 first_active = xmalloc (n * sizeof (basic_block));
961 if (is_latch)
963 memcpy (first_active, bbs, n * sizeof (basic_block));
964 first_active_latch = latch;
967 /* Record exit edge in original loop body. */
968 if (orig && TEST_BIT (wont_exit, 0))
969 to_remove[(*n_to_remove)++] = orig;
971 spec_edges[SE_ORIG] = orig;
972 spec_edges[SE_LATCH] = latch_edge;
974 for (j = 0; j < ndupl; j++)
976 /* Copy loops. */
977 copy_loops_to (loops, orig_loops, n_orig_loops, target);
979 /* Copy bbs. */
980 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop);
982 /* Note whether the blocks and edges belong to an irreducible loop. */
983 if (add_irreducible_flag)
985 for (i = 0; i < n; i++)
986 new_bbs[i]->rbi->duplicated = 1;
987 for (i = 0; i < n; i++)
989 new_bb = new_bbs[i];
990 if (new_bb->loop_father == target)
991 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
993 for (ae = new_bb->succ; ae; ae = ae->succ_next)
994 if (ae->dest->rbi->duplicated
995 && (ae->src->loop_father == target
996 || ae->dest->loop_father == target))
997 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
999 for (i = 0; i < n; i++)
1000 new_bbs[i]->rbi->duplicated = 0;
1003 /* Redirect the special edges. */
1004 if (is_latch)
1006 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1007 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1008 loop->header);
1009 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1010 latch = loop->latch = new_bbs[1];
1011 e = latch_edge = new_spec_edges[SE_LATCH];
1013 else
1015 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1016 loop->header);
1017 redirect_edge_and_branch_force (e, new_bbs[0]);
1018 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1019 e = new_spec_edges[SE_LATCH];
1022 /* Record exit edge in this copy. */
1023 if (orig && TEST_BIT (wont_exit, j + 1))
1024 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1026 /* Record the first copy in the control flow order if it is not
1027 the original loop (i.e. in case of peeling). */
1028 if (!first_active_latch)
1030 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1031 first_active_latch = new_bbs[1];
1034 /* Set counts and frequencies. */
1035 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1037 scale_bbs_frequencies (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1038 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1041 free (new_bbs);
1042 free (orig_loops);
1044 /* Update the original loop. */
1045 if (!is_latch)
1046 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1047 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1049 scale_bbs_frequencies (bbs, n, scale_main, REG_BR_PROB_BASE);
1050 free (scale_step);
1053 /* Update dominators of outer blocks if affected. */
1054 for (i = 0; i < n; i++)
1056 basic_block dominated, dom_bb, *dom_bbs;
1057 int n_dom_bbs,j;
1059 bb = bbs[i];
1060 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1061 for (j = 0; j < n_dom_bbs; j++)
1063 dominated = dom_bbs[j];
1064 if (flow_bb_inside_loop_p (loop, dominated))
1065 continue;
1066 dom_bb = nearest_common_dominator (
1067 CDI_DOMINATORS, first_active[i], first_active_latch);
1068 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1070 free (dom_bbs);
1072 free (first_active);
1074 free (bbs);
1076 return true;
1079 /* A callback for make_forwarder block, to redirect all edges except for
1080 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1081 whether to redirect it. */
1083 static edge mfb_kj_edge;
1084 static bool
1085 mfb_keep_just (edge e)
1087 return e != mfb_kj_edge;
1090 /* A callback for make_forwarder block, to update data structures for a basic
1091 block JUMP created by redirecting an edge (only the latch edge is being
1092 redirected). */
1094 static void
1095 mfb_update_loops (basic_block jump)
1097 struct loop *loop = jump->succ->dest->loop_father;
1099 if (dom_computed[CDI_DOMINATORS])
1100 set_immediate_dominator (CDI_DOMINATORS, jump, jump->pred->src);
1101 add_bb_to_loop (jump, loop);
1102 loop->latch = jump;
1105 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1106 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1107 entry; otherwise we also force preheader block to have only one successor.
1108 The function also updates dominators. */
1110 static basic_block
1111 create_preheader (struct loop *loop, int flags)
1113 edge e, fallthru;
1114 basic_block dummy;
1115 struct loop *cloop, *ploop;
1116 int nentry = 0;
1117 bool irred = false;
1119 cloop = loop->outer;
1121 for (e = loop->header->pred; e; e = e->pred_next)
1123 if (e->src == loop->latch)
1124 continue;
1125 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1126 nentry++;
1128 if (!nentry)
1129 abort ();
1130 if (nentry == 1)
1132 for (e = loop->header->pred; e->src == loop->latch; e = e->pred_next);
1133 if (!(flags & CP_SIMPLE_PREHEADERS)
1134 || !e->src->succ->succ_next)
1135 return NULL;
1138 mfb_kj_edge = loop_latch_edge (loop);
1139 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1140 mfb_update_loops);
1141 dummy = fallthru->src;
1142 loop->header = fallthru->dest;
1144 /* The header could be a latch of some superloop(s); due to design of
1145 split_block, it would now move to fallthru->dest. */
1146 for (ploop = loop; ploop; ploop = ploop->outer)
1147 if (ploop->latch == dummy)
1148 ploop->latch = fallthru->dest;
1150 /* Reorganize blocks so that the preheader is not stuck in the middle of the
1151 loop. */
1152 for (e = dummy->pred; e; e = e->pred_next)
1153 if (e->src != loop->latch)
1154 break;
1155 move_block_after (dummy, e->src);
1157 loop->header->loop_father = loop;
1158 add_bb_to_loop (dummy, cloop);
1160 if (irred)
1162 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1163 dummy->succ->flags |= EDGE_IRREDUCIBLE_LOOP;
1166 if (dump_file)
1167 fprintf (dump_file, "Created preheader block for loop %i\n",
1168 loop->num);
1170 return dummy;
1173 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1174 of FLAGS see create_preheader. */
1175 void
1176 create_preheaders (struct loops *loops, int flags)
1178 unsigned i;
1179 for (i = 1; i < loops->num; i++)
1180 create_preheader (loops->parray[i], flags);
1181 loops->state |= LOOPS_HAVE_PREHEADERS;
1184 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1185 successor. */
1186 void
1187 force_single_succ_latches (struct loops *loops)
1189 unsigned i;
1190 struct loop *loop;
1191 edge e;
1193 for (i = 1; i < loops->num; i++)
1195 loop = loops->parray[i];
1196 if (loop->latch != loop->header
1197 && !loop->latch->succ->succ_next)
1198 continue;
1200 for (e = loop->header->pred; e->src != loop->latch; e = e->pred_next)
1201 continue;
1203 loop_split_edge_with (e, NULL_RTX);
1205 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1208 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1209 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1210 be ok after this function. The created block is placed on correct place
1211 in LOOPS structure and its dominator is set. */
1212 basic_block
1213 loop_split_edge_with (edge e, rtx insns)
1215 basic_block src, dest, new_bb;
1216 struct loop *loop_c;
1217 edge new_e;
1219 src = e->src;
1220 dest = e->dest;
1222 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1224 /* Create basic block for it. */
1226 new_bb = split_edge (e);
1227 add_bb_to_loop (new_bb, loop_c);
1228 new_bb->flags = insns ? BB_SUPERBLOCK : 0;
1230 new_e = new_bb->succ;
1231 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1233 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1234 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1237 if (insns)
1238 emit_insn_after (insns, BB_END (new_bb));
1240 if (dest->loop_father->latch == src)
1241 dest->loop_father->latch = new_bb;
1243 return new_bb;
1246 /* Uses the natural loop discovery to recreate loop notes. */
1247 void
1248 create_loop_notes (void)
1250 rtx insn, head, end;
1251 struct loops loops;
1252 struct loop *loop;
1253 basic_block *first, *last, bb, pbb;
1254 struct loop **stack, **top;
1256 #ifdef ENABLE_CHECKING
1257 /* Verify that there really are no loop notes. */
1258 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1259 if (GET_CODE (insn) == NOTE
1260 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1261 abort ();
1262 #endif
1264 flow_loops_find (&loops, LOOP_TREE);
1265 free_dominance_info (CDI_DOMINATORS);
1266 if (loops.num > 1)
1268 last = xcalloc (loops.num, sizeof (basic_block));
1270 FOR_EACH_BB (bb)
1272 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1273 last[loop->num] = bb;
1276 first = xcalloc (loops.num, sizeof (basic_block));
1277 stack = xcalloc (loops.num, sizeof (struct loop *));
1278 top = stack;
1280 FOR_EACH_BB (bb)
1282 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1284 if (!first[loop->num])
1286 *top++ = loop;
1287 first[loop->num] = bb;
1290 if (bb == last[loop->num])
1292 /* Prevent loops from overlapping. */
1293 while (*--top != loop)
1294 last[(*top)->num] = EXIT_BLOCK_PTR;
1296 /* If loop starts with jump into it, place the note in
1297 front of the jump. */
1298 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1299 if (insn
1300 && GET_CODE (insn) == BARRIER)
1301 insn = PREV_INSN (insn);
1303 if (insn
1304 && GET_CODE (insn) == JUMP_INSN
1305 && any_uncondjump_p (insn)
1306 && onlyjump_p (insn))
1308 pbb = BLOCK_FOR_INSN (insn);
1309 if (!pbb || !pbb->succ || pbb->succ->succ_next)
1310 abort ();
1312 if (!flow_bb_inside_loop_p (loop, pbb->succ->dest))
1313 insn = BB_HEAD (first[loop->num]);
1315 else
1316 insn = BB_HEAD (first[loop->num]);
1318 head = BB_HEAD (first[loop->num]);
1319 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1320 BB_HEAD (first[loop->num]) = head;
1322 /* Position the note correctly wrto barrier. */
1323 insn = BB_END (last[loop->num]);
1324 if (NEXT_INSN (insn)
1325 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
1326 insn = NEXT_INSN (insn);
1328 end = BB_END (last[loop->num]);
1329 emit_note_after (NOTE_INSN_LOOP_END, insn);
1330 BB_END (last[loop->num]) = end;
1335 free (first);
1336 free (last);
1337 free (stack);
1339 flow_loops_free (&loops);