1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
39 #include "splay-tree.h"
41 #include "langhooks.h"
47 /* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
52 struct S { int i; double d; };
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
70 past immediate descendants, however, since we propagate all
71 grandchildren up one level.
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
77 struct alias_set_entry
GTY(())
79 /* The alias set number, as stored in MEM_ALIAS_SET. */
80 HOST_WIDE_INT alias_set
;
82 /* The children of the alias set. These are not just the immediate
83 children, but, in fact, all descendants. So, if we have:
85 struct T { struct S s; float f; }
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
89 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
95 typedef struct alias_set_entry
*alias_set_entry
;
97 static int rtx_equal_for_memref_p (rtx
, rtx
);
98 static rtx
find_symbolic_term (rtx
);
99 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
100 static void record_set (rtx
, rtx
, void *);
101 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
103 static rtx
find_base_value (rtx
);
104 static int mems_in_disjoint_alias_sets_p (rtx
, rtx
);
105 static int insert_subset_children (splay_tree_node
, void*);
106 static tree
find_base_decl (tree
);
107 static alias_set_entry
get_alias_set_entry (HOST_WIDE_INT
);
108 static rtx
fixed_scalar_and_varying_struct_p (rtx
, rtx
, rtx
, rtx
,
110 static int aliases_everything_p (rtx
);
111 static bool nonoverlapping_component_refs_p (tree
, tree
);
112 static tree
decl_for_component_ref (tree
);
113 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
114 static int nonoverlapping_memrefs_p (rtx
, rtx
);
115 static int write_dependence_p (rtx
, rtx
, int, int);
117 static int nonlocal_mentioned_p_1 (rtx
*, void *);
118 static int nonlocal_mentioned_p (rtx
);
119 static int nonlocal_referenced_p_1 (rtx
*, void *);
120 static int nonlocal_referenced_p (rtx
);
121 static int nonlocal_set_p_1 (rtx
*, void *);
122 static int nonlocal_set_p (rtx
);
123 static void memory_modified_1 (rtx
, rtx
, void *);
125 /* Set up all info needed to perform alias analysis on memory references. */
127 /* Returns the size in bytes of the mode of X. */
128 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
130 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
134 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
137 /* Cap the number of passes we make over the insns propagating alias
138 information through set chains. 10 is a completely arbitrary choice. */
139 #define MAX_ALIAS_LOOP_PASSES 10
141 /* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
149 the stack, frame, and argument pointers.
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
160 static GTY(()) varray_type reg_base_value
;
161 static rtx
*new_reg_base_value
;
163 /* We preserve the copy of old array around to avoid amount of garbage
164 produced. About 8% of garbage produced were attributed to this
166 static GTY((deletable
)) varray_type old_reg_base_value
;
168 /* Static hunks of RTL used by the aliasing code; these are initialized
169 once per function to avoid unnecessary RTL allocations. */
170 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
172 #define REG_BASE_VALUE(X) \
173 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
174 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
176 /* Vector of known invariant relationships between registers. Set in
177 loop unrolling. Indexed by register number, if nonzero the value
178 is an expression describing this register in terms of another.
180 The length of this array is REG_BASE_VALUE_SIZE.
182 Because this array contains only pseudo registers it has no effect
184 static GTY((length("alias_invariant_size"))) rtx
*alias_invariant
;
185 unsigned GTY(()) int alias_invariant_size
;
187 /* Vector indexed by N giving the initial (unchanging) value known for
188 pseudo-register N. This array is initialized in init_alias_analysis,
189 and does not change until end_alias_analysis is called. */
190 static GTY((length("reg_known_value_size"))) rtx
*reg_known_value
;
192 /* Indicates number of valid entries in reg_known_value. */
193 static GTY(()) unsigned int reg_known_value_size
;
195 /* Vector recording for each reg_known_value whether it is due to a
196 REG_EQUIV note. Future passes (viz., reload) may replace the
197 pseudo with the equivalent expression and so we account for the
198 dependences that would be introduced if that happens.
200 The REG_EQUIV notes created in assign_parms may mention the arg
201 pointer, and there are explicit insns in the RTL that modify the
202 arg pointer. Thus we must ensure that such insns don't get
203 scheduled across each other because that would invalidate the
204 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
205 wrong, but solving the problem in the scheduler will likely give
206 better code, so we do it here. */
207 static bool *reg_known_equiv_p
;
209 /* True when scanning insns from the start of the rtl to the
210 NOTE_INSN_FUNCTION_BEG note. */
211 static bool copying_arguments
;
213 /* The splay-tree used to store the various alias set entries. */
214 static GTY ((param_is (struct alias_set_entry
))) varray_type alias_sets
;
216 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
217 such an entry, or NULL otherwise. */
219 static inline alias_set_entry
220 get_alias_set_entry (HOST_WIDE_INT alias_set
)
222 return (alias_set_entry
)VARRAY_GENERIC_PTR (alias_sets
, alias_set
);
225 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
226 the two MEMs cannot alias each other. */
229 mems_in_disjoint_alias_sets_p (rtx mem1
, rtx mem2
)
231 #ifdef ENABLE_CHECKING
232 /* Perform a basic sanity check. Namely, that there are no alias sets
233 if we're not using strict aliasing. This helps to catch bugs
234 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
235 where a MEM is allocated in some way other than by the use of
236 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
237 use alias sets to indicate that spilled registers cannot alias each
238 other, we might need to remove this check. */
239 if (! flag_strict_aliasing
240 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
244 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
247 /* Insert the NODE into the splay tree given by DATA. Used by
248 record_alias_subset via splay_tree_foreach. */
251 insert_subset_children (splay_tree_node node
, void *data
)
253 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
258 /* Return 1 if the two specified alias sets may conflict. */
261 alias_sets_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
265 /* If have no alias set information for one of the operands, we have
266 to assume it can alias anything. */
267 if (set1
== 0 || set2
== 0
268 /* If the two alias sets are the same, they may alias. */
272 /* See if the first alias set is a subset of the second. */
273 ase
= get_alias_set_entry (set1
);
275 && (ase
->has_zero_child
276 || splay_tree_lookup (ase
->children
,
277 (splay_tree_key
) set2
)))
280 /* Now do the same, but with the alias sets reversed. */
281 ase
= get_alias_set_entry (set2
);
283 && (ase
->has_zero_child
284 || splay_tree_lookup (ase
->children
,
285 (splay_tree_key
) set1
)))
288 /* The two alias sets are distinct and neither one is the
289 child of the other. Therefore, they cannot alias. */
293 /* Return 1 if the two specified alias sets might conflict, or if any subtype
294 of these alias sets might conflict. */
297 alias_sets_might_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
299 if (set1
== 0 || set2
== 0 || set1
== set2
)
306 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
307 has any readonly fields. If any of the fields have types that
308 contain readonly fields, return true as well. */
311 readonly_fields_p (tree type
)
315 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
316 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
319 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
320 if (TREE_CODE (field
) == FIELD_DECL
321 && (TREE_READONLY (field
)
322 || readonly_fields_p (TREE_TYPE (field
))))
328 /* Return 1 if any MEM object of type T1 will always conflict (using the
329 dependency routines in this file) with any MEM object of type T2.
330 This is used when allocating temporary storage. If T1 and/or T2 are
331 NULL_TREE, it means we know nothing about the storage. */
334 objects_must_conflict_p (tree t1
, tree t2
)
336 HOST_WIDE_INT set1
, set2
;
338 /* If neither has a type specified, we don't know if they'll conflict
339 because we may be using them to store objects of various types, for
340 example the argument and local variables areas of inlined functions. */
341 if (t1
== 0 && t2
== 0)
344 /* If one or the other has readonly fields or is readonly,
345 then they may not conflict. */
346 if ((t1
!= 0 && readonly_fields_p (t1
))
347 || (t2
!= 0 && readonly_fields_p (t2
))
348 || (t1
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t1
))
349 || (t2
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t2
)))
352 /* If they are the same type, they must conflict. */
354 /* Likewise if both are volatile. */
355 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
358 set1
= t1
? get_alias_set (t1
) : 0;
359 set2
= t2
? get_alias_set (t2
) : 0;
361 /* Otherwise they conflict if they have no alias set or the same. We
362 can't simply use alias_sets_conflict_p here, because we must make
363 sure that every subtype of t1 will conflict with every subtype of
364 t2 for which a pair of subobjects of these respective subtypes
365 overlaps on the stack. */
366 return set1
== 0 || set2
== 0 || set1
== set2
;
369 /* T is an expression with pointer type. Find the DECL on which this
370 expression is based. (For example, in `a[i]' this would be `a'.)
371 If there is no such DECL, or a unique decl cannot be determined,
372 NULL_TREE is returned. */
375 find_base_decl (tree t
)
379 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
382 /* If this is a declaration, return it. */
383 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
386 /* Handle general expressions. It would be nice to deal with
387 COMPONENT_REFs here. If we could tell that `a' and `b' were the
388 same, then `a->f' and `b->f' are also the same. */
389 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
392 return find_base_decl (TREE_OPERAND (t
, 0));
395 /* Return 0 if found in neither or both are the same. */
396 d0
= find_base_decl (TREE_OPERAND (t
, 0));
397 d1
= find_base_decl (TREE_OPERAND (t
, 1));
408 d0
= find_base_decl (TREE_OPERAND (t
, 0));
409 d1
= find_base_decl (TREE_OPERAND (t
, 1));
410 d2
= find_base_decl (TREE_OPERAND (t
, 2));
412 /* Set any nonzero values from the last, then from the first. */
413 if (d1
== 0) d1
= d2
;
414 if (d0
== 0) d0
= d1
;
415 if (d1
== 0) d1
= d0
;
416 if (d2
== 0) d2
= d1
;
418 /* At this point all are nonzero or all are zero. If all three are the
419 same, return it. Otherwise, return zero. */
420 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
427 /* Return 1 if all the nested component references handled by
428 get_inner_reference in T are such that we can address the object in T. */
431 can_address_p (tree t
)
433 /* If we're at the end, it is vacuously addressable. */
434 if (! handled_component_p (t
))
437 /* Bitfields are never addressable. */
438 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
441 /* Fields are addressable unless they are marked as nonaddressable or
442 the containing type has alias set 0. */
443 else if (TREE_CODE (t
) == COMPONENT_REF
444 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
445 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
446 && can_address_p (TREE_OPERAND (t
, 0)))
449 /* Likewise for arrays. */
450 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
451 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
452 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
453 && can_address_p (TREE_OPERAND (t
, 0)))
459 /* Return the alias set for T, which may be either a type or an
460 expression. Call language-specific routine for help, if needed. */
463 get_alias_set (tree t
)
467 /* If we're not doing any alias analysis, just assume everything
468 aliases everything else. Also return 0 if this or its type is
470 if (! flag_strict_aliasing
|| t
== error_mark_node
472 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
475 /* We can be passed either an expression or a type. This and the
476 language-specific routine may make mutually-recursive calls to each other
477 to figure out what to do. At each juncture, we see if this is a tree
478 that the language may need to handle specially. First handle things that
484 /* Remove any nops, then give the language a chance to do
485 something with this tree before we look at it. */
487 set
= lang_hooks
.get_alias_set (t
);
491 /* First see if the actual object referenced is an INDIRECT_REF from a
492 restrict-qualified pointer or a "void *". */
493 while (handled_component_p (inner
))
495 inner
= TREE_OPERAND (inner
, 0);
499 /* Check for accesses through restrict-qualified pointers. */
500 if (TREE_CODE (inner
) == INDIRECT_REF
)
502 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
504 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
506 /* If we haven't computed the actual alias set, do it now. */
507 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
509 /* No two restricted pointers can point at the same thing.
510 However, a restricted pointer can point at the same thing
511 as an unrestricted pointer, if that unrestricted pointer
512 is based on the restricted pointer. So, we make the
513 alias set for the restricted pointer a subset of the
514 alias set for the type pointed to by the type of the
516 HOST_WIDE_INT pointed_to_alias_set
517 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
519 if (pointed_to_alias_set
== 0)
520 /* It's not legal to make a subset of alias set zero. */
521 DECL_POINTER_ALIAS_SET (decl
) = 0;
524 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
525 record_alias_subset (pointed_to_alias_set
,
526 DECL_POINTER_ALIAS_SET (decl
));
530 /* We use the alias set indicated in the declaration. */
531 return DECL_POINTER_ALIAS_SET (decl
);
534 /* If we have an INDIRECT_REF via a void pointer, we don't
535 know anything about what that might alias. Likewise if the
536 pointer is marked that way. */
537 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
538 || (TYPE_REF_CAN_ALIAS_ALL
539 (TREE_TYPE (TREE_OPERAND (inner
, 0)))))
543 /* Otherwise, pick up the outermost object that we could have a pointer
544 to, processing conversions as above. */
545 while (handled_component_p (t
) && ! can_address_p (t
))
547 t
= TREE_OPERAND (t
, 0);
551 /* If we've already determined the alias set for a decl, just return
552 it. This is necessary for C++ anonymous unions, whose component
553 variables don't look like union members (boo!). */
554 if (TREE_CODE (t
) == VAR_DECL
555 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
556 return MEM_ALIAS_SET (DECL_RTL (t
));
558 /* Now all we care about is the type. */
562 /* Variant qualifiers don't affect the alias set, so get the main
563 variant. If this is a type with a known alias set, return it. */
564 t
= TYPE_MAIN_VARIANT (t
);
565 if (TYPE_ALIAS_SET_KNOWN_P (t
))
566 return TYPE_ALIAS_SET (t
);
568 /* See if the language has special handling for this type. */
569 set
= lang_hooks
.get_alias_set (t
);
573 /* There are no objects of FUNCTION_TYPE, so there's no point in
574 using up an alias set for them. (There are, of course, pointers
575 and references to functions, but that's different.) */
576 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
579 /* Unless the language specifies otherwise, let vector types alias
580 their components. This avoids some nasty type punning issues in
581 normal usage. And indeed lets vectors be treated more like an
583 else if (TREE_CODE (t
) == VECTOR_TYPE
)
584 set
= get_alias_set (TREE_TYPE (t
));
587 /* Otherwise make a new alias set for this type. */
588 set
= new_alias_set ();
590 TYPE_ALIAS_SET (t
) = set
;
592 /* If this is an aggregate type, we must record any component aliasing
594 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
595 record_component_aliases (t
);
600 /* Return a brand-new alias set. */
602 static GTY(()) HOST_WIDE_INT last_alias_set
;
607 if (flag_strict_aliasing
)
610 VARRAY_GENERIC_PTR_INIT (alias_sets
, 10, "alias sets");
612 VARRAY_GROW (alias_sets
, last_alias_set
+ 2);
613 return ++last_alias_set
;
619 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
620 not everything that aliases SUPERSET also aliases SUBSET. For example,
621 in C, a store to an `int' can alias a load of a structure containing an
622 `int', and vice versa. But it can't alias a load of a 'double' member
623 of the same structure. Here, the structure would be the SUPERSET and
624 `int' the SUBSET. This relationship is also described in the comment at
625 the beginning of this file.
627 This function should be called only once per SUPERSET/SUBSET pair.
629 It is illegal for SUPERSET to be zero; everything is implicitly a
630 subset of alias set zero. */
633 record_alias_subset (HOST_WIDE_INT superset
, HOST_WIDE_INT subset
)
635 alias_set_entry superset_entry
;
636 alias_set_entry subset_entry
;
638 /* It is possible in complex type situations for both sets to be the same,
639 in which case we can ignore this operation. */
640 if (superset
== subset
)
646 superset_entry
= get_alias_set_entry (superset
);
647 if (superset_entry
== 0)
649 /* Create an entry for the SUPERSET, so that we have a place to
650 attach the SUBSET. */
651 superset_entry
= ggc_alloc (sizeof (struct alias_set_entry
));
652 superset_entry
->alias_set
= superset
;
653 superset_entry
->children
654 = splay_tree_new_ggc (splay_tree_compare_ints
);
655 superset_entry
->has_zero_child
= 0;
656 VARRAY_GENERIC_PTR (alias_sets
, superset
) = superset_entry
;
660 superset_entry
->has_zero_child
= 1;
663 subset_entry
= get_alias_set_entry (subset
);
664 /* If there is an entry for the subset, enter all of its children
665 (if they are not already present) as children of the SUPERSET. */
668 if (subset_entry
->has_zero_child
)
669 superset_entry
->has_zero_child
= 1;
671 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
672 superset_entry
->children
);
675 /* Enter the SUBSET itself as a child of the SUPERSET. */
676 splay_tree_insert (superset_entry
->children
,
677 (splay_tree_key
) subset
, 0);
681 /* Record that component types of TYPE, if any, are part of that type for
682 aliasing purposes. For record types, we only record component types
683 for fields that are marked addressable. For array types, we always
684 record the component types, so the front end should not call this
685 function if the individual component aren't addressable. */
688 record_component_aliases (tree type
)
690 HOST_WIDE_INT superset
= get_alias_set (type
);
696 switch (TREE_CODE (type
))
699 if (! TYPE_NONALIASED_COMPONENT (type
))
700 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
705 case QUAL_UNION_TYPE
:
706 /* Recursively record aliases for the base classes, if there are any. */
707 if (TYPE_BINFO (type
) != NULL
&& TYPE_BINFO_BASETYPES (type
) != NULL
)
710 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type
)); i
++)
712 tree binfo
= TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type
), i
);
713 record_alias_subset (superset
,
714 get_alias_set (BINFO_TYPE (binfo
)));
717 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
718 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
719 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
723 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
731 /* Allocate an alias set for use in storing and reading from the varargs
734 static GTY(()) HOST_WIDE_INT varargs_set
= -1;
737 get_varargs_alias_set (void)
739 if (varargs_set
== -1)
740 varargs_set
= new_alias_set ();
745 /* Likewise, but used for the fixed portions of the frame, e.g., register
748 static GTY(()) HOST_WIDE_INT frame_set
= -1;
751 get_frame_alias_set (void)
754 frame_set
= new_alias_set ();
759 /* Inside SRC, the source of a SET, find a base address. */
762 find_base_value (rtx src
)
766 switch (GET_CODE (src
))
774 /* At the start of a function, argument registers have known base
775 values which may be lost later. Returning an ADDRESS
776 expression here allows optimization based on argument values
777 even when the argument registers are used for other purposes. */
778 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
779 return new_reg_base_value
[regno
];
781 /* If a pseudo has a known base value, return it. Do not do this
782 for non-fixed hard regs since it can result in a circular
783 dependency chain for registers which have values at function entry.
785 The test above is not sufficient because the scheduler may move
786 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
787 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
788 && regno
< VARRAY_SIZE (reg_base_value
))
790 /* If we're inside init_alias_analysis, use new_reg_base_value
791 to reduce the number of relaxation iterations. */
792 if (new_reg_base_value
&& new_reg_base_value
[regno
]
793 && REG_N_SETS (regno
) == 1)
794 return new_reg_base_value
[regno
];
796 if (VARRAY_RTX (reg_base_value
, regno
))
797 return VARRAY_RTX (reg_base_value
, regno
);
803 /* Check for an argument passed in memory. Only record in the
804 copying-arguments block; it is too hard to track changes
806 if (copying_arguments
807 && (XEXP (src
, 0) == arg_pointer_rtx
808 || (GET_CODE (XEXP (src
, 0)) == PLUS
809 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
810 return gen_rtx_ADDRESS (VOIDmode
, src
);
815 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
818 /* ... fall through ... */
823 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
825 /* If either operand is a REG that is a known pointer, then it
827 if (REG_P (src_0
) && REG_POINTER (src_0
))
828 return find_base_value (src_0
);
829 if (REG_P (src_1
) && REG_POINTER (src_1
))
830 return find_base_value (src_1
);
832 /* If either operand is a REG, then see if we already have
833 a known value for it. */
836 temp
= find_base_value (src_0
);
843 temp
= find_base_value (src_1
);
848 /* If either base is named object or a special address
849 (like an argument or stack reference), then use it for the
852 && (GET_CODE (src_0
) == SYMBOL_REF
853 || GET_CODE (src_0
) == LABEL_REF
854 || (GET_CODE (src_0
) == ADDRESS
855 && GET_MODE (src_0
) != VOIDmode
)))
859 && (GET_CODE (src_1
) == SYMBOL_REF
860 || GET_CODE (src_1
) == LABEL_REF
861 || (GET_CODE (src_1
) == ADDRESS
862 && GET_MODE (src_1
) != VOIDmode
)))
865 /* Guess which operand is the base address:
866 If either operand is a symbol, then it is the base. If
867 either operand is a CONST_INT, then the other is the base. */
868 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
869 return find_base_value (src_0
);
870 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
871 return find_base_value (src_1
);
877 /* The standard form is (lo_sum reg sym) so look only at the
879 return find_base_value (XEXP (src
, 1));
882 /* If the second operand is constant set the base
883 address to the first operand. */
884 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
885 return find_base_value (XEXP (src
, 0));
889 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
899 return find_base_value (XEXP (src
, 0));
902 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
904 rtx temp
= find_base_value (XEXP (src
, 0));
906 if (temp
!= 0 && CONSTANT_P (temp
))
907 temp
= convert_memory_address (Pmode
, temp
);
919 /* Called from init_alias_analysis indirectly through note_stores. */
921 /* While scanning insns to find base values, reg_seen[N] is nonzero if
922 register N has been set in this function. */
923 static char *reg_seen
;
925 /* Addresses which are known not to alias anything else are identified
926 by a unique integer. */
927 static int unique_id
;
930 record_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
936 if (GET_CODE (dest
) != REG
)
939 regno
= REGNO (dest
);
941 if (regno
>= VARRAY_SIZE (reg_base_value
))
944 /* If this spans multiple hard registers, then we must indicate that every
945 register has an unusable value. */
946 if (regno
< FIRST_PSEUDO_REGISTER
)
947 n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
954 reg_seen
[regno
+ n
] = 1;
955 new_reg_base_value
[regno
+ n
] = 0;
962 /* A CLOBBER wipes out any old value but does not prevent a previously
963 unset register from acquiring a base address (i.e. reg_seen is not
965 if (GET_CODE (set
) == CLOBBER
)
967 new_reg_base_value
[regno
] = 0;
976 new_reg_base_value
[regno
] = 0;
980 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
981 GEN_INT (unique_id
++));
985 /* If this is not the first set of REGNO, see whether the new value
986 is related to the old one. There are two cases of interest:
988 (1) The register might be assigned an entirely new value
989 that has the same base term as the original set.
991 (2) The set might be a simple self-modification that
992 cannot change REGNO's base value.
994 If neither case holds, reject the original base value as invalid.
995 Note that the following situation is not detected:
997 extern int x, y; int *p = &x; p += (&y-&x);
999 ANSI C does not allow computing the difference of addresses
1000 of distinct top level objects. */
1001 if (new_reg_base_value
[regno
] != 0
1002 && find_base_value (src
) != new_reg_base_value
[regno
])
1003 switch (GET_CODE (src
))
1007 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1008 new_reg_base_value
[regno
] = 0;
1011 /* If the value we add in the PLUS is also a valid base value,
1012 this might be the actual base value, and the original value
1015 rtx other
= NULL_RTX
;
1017 if (XEXP (src
, 0) == dest
)
1018 other
= XEXP (src
, 1);
1019 else if (XEXP (src
, 1) == dest
)
1020 other
= XEXP (src
, 0);
1022 if (! other
|| find_base_value (other
))
1023 new_reg_base_value
[regno
] = 0;
1027 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1028 new_reg_base_value
[regno
] = 0;
1031 new_reg_base_value
[regno
] = 0;
1034 /* If this is the first set of a register, record the value. */
1035 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1036 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1037 new_reg_base_value
[regno
] = find_base_value (src
);
1039 reg_seen
[regno
] = 1;
1042 /* Called from loop optimization when a new pseudo-register is
1043 created. It indicates that REGNO is being set to VAL. f INVARIANT
1044 is true then this value also describes an invariant relationship
1045 which can be used to deduce that two registers with unknown values
1049 record_base_value (unsigned int regno
, rtx val
, int invariant
)
1051 if (invariant
&& alias_invariant
&& regno
< alias_invariant_size
)
1052 alias_invariant
[regno
] = val
;
1054 if (regno
>= VARRAY_SIZE (reg_base_value
))
1055 VARRAY_GROW (reg_base_value
, max_reg_num ());
1057 if (GET_CODE (val
) == REG
)
1059 VARRAY_RTX (reg_base_value
, regno
)
1060 = REG_BASE_VALUE (val
);
1063 VARRAY_RTX (reg_base_value
, regno
)
1064 = find_base_value (val
);
1067 /* Clear alias info for a register. This is used if an RTL transformation
1068 changes the value of a register. This is used in flow by AUTO_INC_DEC
1069 optimizations. We don't need to clear reg_base_value, since flow only
1070 changes the offset. */
1073 clear_reg_alias_info (rtx reg
)
1075 unsigned int regno
= REGNO (reg
);
1077 if (regno
>= FIRST_PSEUDO_REGISTER
)
1079 regno
-= FIRST_PSEUDO_REGISTER
;
1080 if (regno
< reg_known_value_size
)
1082 reg_known_value
[regno
] = reg
;
1083 reg_known_equiv_p
[regno
] = false;
1088 /* If a value is known for REGNO, return it. */
1091 get_reg_known_value (unsigned int regno
)
1093 if (regno
>= FIRST_PSEUDO_REGISTER
)
1095 regno
-= FIRST_PSEUDO_REGISTER
;
1096 if (regno
< reg_known_value_size
)
1097 return reg_known_value
[regno
];
1105 set_reg_known_value (unsigned int regno
, rtx val
)
1107 if (regno
>= FIRST_PSEUDO_REGISTER
)
1109 regno
-= FIRST_PSEUDO_REGISTER
;
1110 if (regno
< reg_known_value_size
)
1111 reg_known_value
[regno
] = val
;
1115 /* Similarly for reg_known_equiv_p. */
1118 get_reg_known_equiv_p (unsigned int regno
)
1120 if (regno
>= FIRST_PSEUDO_REGISTER
)
1122 regno
-= FIRST_PSEUDO_REGISTER
;
1123 if (regno
< reg_known_value_size
)
1124 return reg_known_equiv_p
[regno
];
1130 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1132 if (regno
>= FIRST_PSEUDO_REGISTER
)
1134 regno
-= FIRST_PSEUDO_REGISTER
;
1135 if (regno
< reg_known_value_size
)
1136 reg_known_equiv_p
[regno
] = val
;
1141 /* Returns a canonical version of X, from the point of view alias
1142 analysis. (For example, if X is a MEM whose address is a register,
1143 and the register has a known value (say a SYMBOL_REF), then a MEM
1144 whose address is the SYMBOL_REF is returned.) */
1149 /* Recursively look for equivalences. */
1150 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1152 rtx t
= get_reg_known_value (REGNO (x
));
1156 return canon_rtx (t
);
1159 if (GET_CODE (x
) == PLUS
)
1161 rtx x0
= canon_rtx (XEXP (x
, 0));
1162 rtx x1
= canon_rtx (XEXP (x
, 1));
1164 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1166 if (GET_CODE (x0
) == CONST_INT
)
1167 return plus_constant (x1
, INTVAL (x0
));
1168 else if (GET_CODE (x1
) == CONST_INT
)
1169 return plus_constant (x0
, INTVAL (x1
));
1170 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1174 /* This gives us much better alias analysis when called from
1175 the loop optimizer. Note we want to leave the original
1176 MEM alone, but need to return the canonicalized MEM with
1177 all the flags with their original values. */
1178 else if (GET_CODE (x
) == MEM
)
1179 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1184 /* Return 1 if X and Y are identical-looking rtx's.
1185 Expect that X and Y has been already canonicalized.
1187 We use the data in reg_known_value above to see if two registers with
1188 different numbers are, in fact, equivalent. */
1191 rtx_equal_for_memref_p (rtx x
, rtx y
)
1198 if (x
== 0 && y
== 0)
1200 if (x
== 0 || y
== 0)
1206 code
= GET_CODE (x
);
1207 /* Rtx's of different codes cannot be equal. */
1208 if (code
!= GET_CODE (y
))
1211 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1212 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1214 if (GET_MODE (x
) != GET_MODE (y
))
1217 /* Some RTL can be compared without a recursive examination. */
1221 return REGNO (x
) == REGNO (y
);
1224 return XEXP (x
, 0) == XEXP (y
, 0);
1227 return XSTR (x
, 0) == XSTR (y
, 0);
1232 /* There's no need to compare the contents of CONST_DOUBLEs or
1233 CONST_INTs because pointer equality is a good enough
1234 comparison for these nodes. */
1238 return (XINT (x
, 1) == XINT (y
, 1)
1239 && rtx_equal_for_memref_p (XEXP (x
, 0),
1246 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1248 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1249 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1250 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1251 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1252 /* For commutative operations, the RTX match if the operand match in any
1253 order. Also handle the simple binary and unary cases without a loop. */
1254 if (COMMUTATIVE_P (x
))
1256 rtx xop0
= canon_rtx (XEXP (x
, 0));
1257 rtx yop0
= canon_rtx (XEXP (y
, 0));
1258 rtx yop1
= canon_rtx (XEXP (y
, 1));
1260 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1261 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1262 || (rtx_equal_for_memref_p (xop0
, yop1
)
1263 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1265 else if (NON_COMMUTATIVE_P (x
))
1267 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1268 canon_rtx (XEXP (y
, 0)))
1269 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1270 canon_rtx (XEXP (y
, 1))));
1272 else if (UNARY_P (x
))
1273 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1274 canon_rtx (XEXP (y
, 0)));
1276 /* Compare the elements. If any pair of corresponding elements
1277 fail to match, return 0 for the whole things.
1279 Limit cases to types which actually appear in addresses. */
1281 fmt
= GET_RTX_FORMAT (code
);
1282 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1287 if (XINT (x
, i
) != XINT (y
, i
))
1292 /* Two vectors must have the same length. */
1293 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1296 /* And the corresponding elements must match. */
1297 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1298 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1299 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1304 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1305 canon_rtx (XEXP (y
, i
))) == 0)
1309 /* This can happen for asm operands. */
1311 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1315 /* This can happen for an asm which clobbers memory. */
1319 /* It is believed that rtx's at this level will never
1320 contain anything but integers and other rtx's,
1321 except for within LABEL_REFs and SYMBOL_REFs. */
1329 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1330 X and return it, or return 0 if none found. */
1333 find_symbolic_term (rtx x
)
1339 code
= GET_CODE (x
);
1340 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1345 fmt
= GET_RTX_FORMAT (code
);
1346 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1352 t
= find_symbolic_term (XEXP (x
, i
));
1356 else if (fmt
[i
] == 'E')
1363 find_base_term (rtx x
)
1366 struct elt_loc_list
*l
;
1368 #if defined (FIND_BASE_TERM)
1369 /* Try machine-dependent ways to find the base term. */
1370 x
= FIND_BASE_TERM (x
);
1373 switch (GET_CODE (x
))
1376 return REG_BASE_VALUE (x
);
1379 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1389 return find_base_term (XEXP (x
, 0));
1392 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1394 rtx temp
= find_base_term (XEXP (x
, 0));
1396 if (temp
!= 0 && CONSTANT_P (temp
))
1397 temp
= convert_memory_address (Pmode
, temp
);
1403 val
= CSELIB_VAL_PTR (x
);
1406 for (l
= val
->locs
; l
; l
= l
->next
)
1407 if ((x
= find_base_term (l
->loc
)) != 0)
1413 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1420 rtx tmp1
= XEXP (x
, 0);
1421 rtx tmp2
= XEXP (x
, 1);
1423 /* This is a little bit tricky since we have to determine which of
1424 the two operands represents the real base address. Otherwise this
1425 routine may return the index register instead of the base register.
1427 That may cause us to believe no aliasing was possible, when in
1428 fact aliasing is possible.
1430 We use a few simple tests to guess the base register. Additional
1431 tests can certainly be added. For example, if one of the operands
1432 is a shift or multiply, then it must be the index register and the
1433 other operand is the base register. */
1435 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1436 return find_base_term (tmp2
);
1438 /* If either operand is known to be a pointer, then use it
1439 to determine the base term. */
1440 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1441 return find_base_term (tmp1
);
1443 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1444 return find_base_term (tmp2
);
1446 /* Neither operand was known to be a pointer. Go ahead and find the
1447 base term for both operands. */
1448 tmp1
= find_base_term (tmp1
);
1449 tmp2
= find_base_term (tmp2
);
1451 /* If either base term is named object or a special address
1452 (like an argument or stack reference), then use it for the
1455 && (GET_CODE (tmp1
) == SYMBOL_REF
1456 || GET_CODE (tmp1
) == LABEL_REF
1457 || (GET_CODE (tmp1
) == ADDRESS
1458 && GET_MODE (tmp1
) != VOIDmode
)))
1462 && (GET_CODE (tmp2
) == SYMBOL_REF
1463 || GET_CODE (tmp2
) == LABEL_REF
1464 || (GET_CODE (tmp2
) == ADDRESS
1465 && GET_MODE (tmp2
) != VOIDmode
)))
1468 /* We could not determine which of the two operands was the
1469 base register and which was the index. So we can determine
1470 nothing from the base alias check. */
1475 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1476 return find_base_term (XEXP (x
, 0));
1484 return REG_BASE_VALUE (frame_pointer_rtx
);
1491 /* Return 0 if the addresses X and Y are known to point to different
1492 objects, 1 if they might be pointers to the same object. */
1495 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1496 enum machine_mode y_mode
)
1498 rtx x_base
= find_base_term (x
);
1499 rtx y_base
= find_base_term (y
);
1501 /* If the address itself has no known base see if a known equivalent
1502 value has one. If either address still has no known base, nothing
1503 is known about aliasing. */
1508 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1511 x_base
= find_base_term (x_c
);
1519 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1522 y_base
= find_base_term (y_c
);
1527 /* If the base addresses are equal nothing is known about aliasing. */
1528 if (rtx_equal_p (x_base
, y_base
))
1531 /* The base addresses of the read and write are different expressions.
1532 If they are both symbols and they are not accessed via AND, there is
1533 no conflict. We can bring knowledge of object alignment into play
1534 here. For example, on alpha, "char a, b;" can alias one another,
1535 though "char a; long b;" cannot. */
1536 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1538 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1540 if (GET_CODE (x
) == AND
1541 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1542 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1544 if (GET_CODE (y
) == AND
1545 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1546 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1548 /* Differing symbols never alias. */
1552 /* If one address is a stack reference there can be no alias:
1553 stack references using different base registers do not alias,
1554 a stack reference can not alias a parameter, and a stack reference
1555 can not alias a global. */
1556 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1557 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1560 if (! flag_argument_noalias
)
1563 if (flag_argument_noalias
> 1)
1566 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1567 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1570 /* Convert the address X into something we can use. This is done by returning
1571 it unchanged unless it is a value; in the latter case we call cselib to get
1572 a more useful rtx. */
1578 struct elt_loc_list
*l
;
1580 if (GET_CODE (x
) != VALUE
)
1582 v
= CSELIB_VAL_PTR (x
);
1585 for (l
= v
->locs
; l
; l
= l
->next
)
1586 if (CONSTANT_P (l
->loc
))
1588 for (l
= v
->locs
; l
; l
= l
->next
)
1589 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1592 return v
->locs
->loc
;
1597 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1598 where SIZE is the size in bytes of the memory reference. If ADDR
1599 is not modified by the memory reference then ADDR is returned. */
1602 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1606 switch (GET_CODE (addr
))
1609 offset
= (n_refs
+ 1) * size
;
1612 offset
= -(n_refs
+ 1) * size
;
1615 offset
= n_refs
* size
;
1618 offset
= -n_refs
* size
;
1626 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1629 addr
= XEXP (addr
, 0);
1630 addr
= canon_rtx (addr
);
1635 /* Return nonzero if X and Y (memory addresses) could reference the
1636 same location in memory. C is an offset accumulator. When
1637 C is nonzero, we are testing aliases between X and Y + C.
1638 XSIZE is the size in bytes of the X reference,
1639 similarly YSIZE is the size in bytes for Y.
1640 Expect that canon_rtx has been already called for X and Y.
1642 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1643 referenced (the reference was BLKmode), so make the most pessimistic
1646 If XSIZE or YSIZE is negative, we may access memory outside the object
1647 being referenced as a side effect. This can happen when using AND to
1648 align memory references, as is done on the Alpha.
1650 Nice to notice that varying addresses cannot conflict with fp if no
1651 local variables had their addresses taken, but that's too hard now. */
1654 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1656 if (GET_CODE (x
) == VALUE
)
1658 if (GET_CODE (y
) == VALUE
)
1660 if (GET_CODE (x
) == HIGH
)
1662 else if (GET_CODE (x
) == LO_SUM
)
1665 x
= addr_side_effect_eval (x
, xsize
, 0);
1666 if (GET_CODE (y
) == HIGH
)
1668 else if (GET_CODE (y
) == LO_SUM
)
1671 y
= addr_side_effect_eval (y
, ysize
, 0);
1673 if (rtx_equal_for_memref_p (x
, y
))
1675 if (xsize
<= 0 || ysize
<= 0)
1677 if (c
>= 0 && xsize
> c
)
1679 if (c
< 0 && ysize
+c
> 0)
1684 /* This code used to check for conflicts involving stack references and
1685 globals but the base address alias code now handles these cases. */
1687 if (GET_CODE (x
) == PLUS
)
1689 /* The fact that X is canonicalized means that this
1690 PLUS rtx is canonicalized. */
1691 rtx x0
= XEXP (x
, 0);
1692 rtx x1
= XEXP (x
, 1);
1694 if (GET_CODE (y
) == PLUS
)
1696 /* The fact that Y is canonicalized means that this
1697 PLUS rtx is canonicalized. */
1698 rtx y0
= XEXP (y
, 0);
1699 rtx y1
= XEXP (y
, 1);
1701 if (rtx_equal_for_memref_p (x1
, y1
))
1702 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1703 if (rtx_equal_for_memref_p (x0
, y0
))
1704 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1705 if (GET_CODE (x1
) == CONST_INT
)
1707 if (GET_CODE (y1
) == CONST_INT
)
1708 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1709 c
- INTVAL (x1
) + INTVAL (y1
));
1711 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1714 else if (GET_CODE (y1
) == CONST_INT
)
1715 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1719 else if (GET_CODE (x1
) == CONST_INT
)
1720 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1722 else if (GET_CODE (y
) == PLUS
)
1724 /* The fact that Y is canonicalized means that this
1725 PLUS rtx is canonicalized. */
1726 rtx y0
= XEXP (y
, 0);
1727 rtx y1
= XEXP (y
, 1);
1729 if (GET_CODE (y1
) == CONST_INT
)
1730 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1735 if (GET_CODE (x
) == GET_CODE (y
))
1736 switch (GET_CODE (x
))
1740 /* Handle cases where we expect the second operands to be the
1741 same, and check only whether the first operand would conflict
1744 rtx x1
= canon_rtx (XEXP (x
, 1));
1745 rtx y1
= canon_rtx (XEXP (y
, 1));
1746 if (! rtx_equal_for_memref_p (x1
, y1
))
1748 x0
= canon_rtx (XEXP (x
, 0));
1749 y0
= canon_rtx (XEXP (y
, 0));
1750 if (rtx_equal_for_memref_p (x0
, y0
))
1751 return (xsize
== 0 || ysize
== 0
1752 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1754 /* Can't properly adjust our sizes. */
1755 if (GET_CODE (x1
) != CONST_INT
)
1757 xsize
/= INTVAL (x1
);
1758 ysize
/= INTVAL (x1
);
1760 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1764 /* Are these registers known not to be equal? */
1765 if (alias_invariant
)
1767 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1768 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1770 i_x
= r_x
>= alias_invariant_size
? 0 : alias_invariant
[r_x
];
1771 i_y
= r_y
>= alias_invariant_size
? 0 : alias_invariant
[r_y
];
1773 if (i_x
== 0 && i_y
== 0)
1776 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1777 ysize
, i_y
? i_y
: y
, c
))
1786 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1787 as an access with indeterminate size. Assume that references
1788 besides AND are aligned, so if the size of the other reference is
1789 at least as large as the alignment, assume no other overlap. */
1790 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1792 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1794 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1796 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1798 /* ??? If we are indexing far enough into the array/structure, we
1799 may yet be able to determine that we can not overlap. But we
1800 also need to that we are far enough from the end not to overlap
1801 a following reference, so we do nothing with that for now. */
1802 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1804 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1807 if (GET_CODE (x
) == ADDRESSOF
)
1809 if (y
== frame_pointer_rtx
1810 || GET_CODE (y
) == ADDRESSOF
)
1811 return xsize
<= 0 || ysize
<= 0;
1813 if (GET_CODE (y
) == ADDRESSOF
)
1815 if (x
== frame_pointer_rtx
)
1816 return xsize
<= 0 || ysize
<= 0;
1821 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1823 c
+= (INTVAL (y
) - INTVAL (x
));
1824 return (xsize
<= 0 || ysize
<= 0
1825 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1828 if (GET_CODE (x
) == CONST
)
1830 if (GET_CODE (y
) == CONST
)
1831 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1832 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1834 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1837 if (GET_CODE (y
) == CONST
)
1838 return memrefs_conflict_p (xsize
, x
, ysize
,
1839 canon_rtx (XEXP (y
, 0)), c
);
1842 return (xsize
<= 0 || ysize
<= 0
1843 || (rtx_equal_for_memref_p (x
, y
)
1844 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1851 /* Functions to compute memory dependencies.
1853 Since we process the insns in execution order, we can build tables
1854 to keep track of what registers are fixed (and not aliased), what registers
1855 are varying in known ways, and what registers are varying in unknown
1858 If both memory references are volatile, then there must always be a
1859 dependence between the two references, since their order can not be
1860 changed. A volatile and non-volatile reference can be interchanged
1863 A MEM_IN_STRUCT reference at a non-AND varying address can never
1864 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1865 also must allow AND addresses, because they may generate accesses
1866 outside the object being referenced. This is used to generate
1867 aligned addresses from unaligned addresses, for instance, the alpha
1868 storeqi_unaligned pattern. */
1870 /* Read dependence: X is read after read in MEM takes place. There can
1871 only be a dependence here if both reads are volatile. */
1874 read_dependence (rtx mem
, rtx x
)
1876 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1879 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1880 MEM2 is a reference to a structure at a varying address, or returns
1881 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1882 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1883 to decide whether or not an address may vary; it should return
1884 nonzero whenever variation is possible.
1885 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1888 fixed_scalar_and_varying_struct_p (rtx mem1
, rtx mem2
, rtx mem1_addr
,
1890 int (*varies_p
) (rtx
, int))
1892 if (! flag_strict_aliasing
)
1895 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1896 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1897 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1901 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1902 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1903 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1910 /* Returns nonzero if something about the mode or address format MEM1
1911 indicates that it might well alias *anything*. */
1914 aliases_everything_p (rtx mem
)
1916 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1917 /* If the address is an AND, its very hard to know at what it is
1918 actually pointing. */
1924 /* Return true if we can determine that the fields referenced cannot
1925 overlap for any pair of objects. */
1928 nonoverlapping_component_refs_p (tree x
, tree y
)
1930 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1934 /* The comparison has to be done at a common type, since we don't
1935 know how the inheritance hierarchy works. */
1939 fieldx
= TREE_OPERAND (x
, 1);
1940 typex
= DECL_FIELD_CONTEXT (fieldx
);
1945 fieldy
= TREE_OPERAND (y
, 1);
1946 typey
= DECL_FIELD_CONTEXT (fieldy
);
1951 y
= TREE_OPERAND (y
, 0);
1953 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1955 x
= TREE_OPERAND (x
, 0);
1957 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1959 /* Never found a common type. */
1963 /* If we're left with accessing different fields of a structure,
1965 if (TREE_CODE (typex
) == RECORD_TYPE
1966 && fieldx
!= fieldy
)
1969 /* The comparison on the current field failed. If we're accessing
1970 a very nested structure, look at the next outer level. */
1971 x
= TREE_OPERAND (x
, 0);
1972 y
= TREE_OPERAND (y
, 0);
1975 && TREE_CODE (x
) == COMPONENT_REF
1976 && TREE_CODE (y
) == COMPONENT_REF
);
1981 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1984 decl_for_component_ref (tree x
)
1988 x
= TREE_OPERAND (x
, 0);
1990 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1992 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1995 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1996 offset of the field reference. */
1999 adjust_offset_for_component_ref (tree x
, rtx offset
)
2001 HOST_WIDE_INT ioffset
;
2006 ioffset
= INTVAL (offset
);
2009 tree field
= TREE_OPERAND (x
, 1);
2011 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
2013 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
2014 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2017 x
= TREE_OPERAND (x
, 0);
2019 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2021 return GEN_INT (ioffset
);
2024 /* Return nonzero if we can determine the exprs corresponding to memrefs
2025 X and Y and they do not overlap. */
2028 nonoverlapping_memrefs_p (rtx x
, rtx y
)
2030 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2033 rtx moffsetx
, moffsety
;
2034 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2036 /* Unless both have exprs, we can't tell anything. */
2037 if (exprx
== 0 || expry
== 0)
2040 /* If both are field references, we may be able to determine something. */
2041 if (TREE_CODE (exprx
) == COMPONENT_REF
2042 && TREE_CODE (expry
) == COMPONENT_REF
2043 && nonoverlapping_component_refs_p (exprx
, expry
))
2046 /* If the field reference test failed, look at the DECLs involved. */
2047 moffsetx
= MEM_OFFSET (x
);
2048 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2050 tree t
= decl_for_component_ref (exprx
);
2053 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
2056 else if (TREE_CODE (exprx
) == INDIRECT_REF
)
2058 exprx
= TREE_OPERAND (exprx
, 0);
2059 if (flag_argument_noalias
< 2
2060 || TREE_CODE (exprx
) != PARM_DECL
)
2064 moffsety
= MEM_OFFSET (y
);
2065 if (TREE_CODE (expry
) == COMPONENT_REF
)
2067 tree t
= decl_for_component_ref (expry
);
2070 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2073 else if (TREE_CODE (expry
) == INDIRECT_REF
)
2075 expry
= TREE_OPERAND (expry
, 0);
2076 if (flag_argument_noalias
< 2
2077 || TREE_CODE (expry
) != PARM_DECL
)
2081 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2084 rtlx
= DECL_RTL (exprx
);
2085 rtly
= DECL_RTL (expry
);
2087 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2088 can't overlap unless they are the same because we never reuse that part
2089 of the stack frame used for locals for spilled pseudos. */
2090 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
2091 && ! rtx_equal_p (rtlx
, rtly
))
2094 /* Get the base and offsets of both decls. If either is a register, we
2095 know both are and are the same, so use that as the base. The only
2096 we can avoid overlap is if we can deduce that they are nonoverlapping
2097 pieces of that decl, which is very rare. */
2098 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
2099 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2100 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2102 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
2103 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2104 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2106 /* If the bases are different, we know they do not overlap if both
2107 are constants or if one is a constant and the other a pointer into the
2108 stack frame. Otherwise a different base means we can't tell if they
2110 if (! rtx_equal_p (basex
, basey
))
2111 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2112 || (CONSTANT_P (basex
) && REG_P (basey
)
2113 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2114 || (CONSTANT_P (basey
) && REG_P (basex
)
2115 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2117 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2118 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2120 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2121 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2124 /* If we have an offset for either memref, it can update the values computed
2127 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2129 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2131 /* If a memref has both a size and an offset, we can use the smaller size.
2132 We can't do this if the offset isn't known because we must view this
2133 memref as being anywhere inside the DECL's MEM. */
2134 if (MEM_SIZE (x
) && moffsetx
)
2135 sizex
= INTVAL (MEM_SIZE (x
));
2136 if (MEM_SIZE (y
) && moffsety
)
2137 sizey
= INTVAL (MEM_SIZE (y
));
2139 /* Put the values of the memref with the lower offset in X's values. */
2140 if (offsetx
> offsety
)
2142 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2143 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2146 /* If we don't know the size of the lower-offset value, we can't tell
2147 if they conflict. Otherwise, we do the test. */
2148 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2151 /* True dependence: X is read after store in MEM takes place. */
2154 true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx x
,
2155 int (*varies
) (rtx
, int))
2157 rtx x_addr
, mem_addr
;
2160 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2163 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2164 This is used in epilogue deallocation functions. */
2165 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2167 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2170 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2173 /* Unchanging memory can't conflict with non-unchanging memory.
2174 A non-unchanging read can conflict with a non-unchanging write.
2175 An unchanging read can conflict with an unchanging write since
2176 there may be a single store to this address to initialize it.
2177 Note that an unchanging store can conflict with a non-unchanging read
2178 since we have to make conservative assumptions when we have a
2179 record with readonly fields and we are copying the whole thing.
2180 Just fall through to the code below to resolve potential conflicts.
2181 This won't handle all cases optimally, but the possible performance
2182 loss should be negligible. */
2183 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2186 if (nonoverlapping_memrefs_p (mem
, x
))
2189 if (mem_mode
== VOIDmode
)
2190 mem_mode
= GET_MODE (mem
);
2192 x_addr
= get_addr (XEXP (x
, 0));
2193 mem_addr
= get_addr (XEXP (mem
, 0));
2195 base
= find_base_term (x_addr
);
2196 if (base
&& (GET_CODE (base
) == LABEL_REF
2197 || (GET_CODE (base
) == SYMBOL_REF
2198 && CONSTANT_POOL_ADDRESS_P (base
))))
2201 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2204 x_addr
= canon_rtx (x_addr
);
2205 mem_addr
= canon_rtx (mem_addr
);
2207 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2208 SIZE_FOR_MODE (x
), x_addr
, 0))
2211 if (aliases_everything_p (x
))
2214 /* We cannot use aliases_everything_p to test MEM, since we must look
2215 at MEM_MODE, rather than GET_MODE (MEM). */
2216 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2219 /* In true_dependence we also allow BLKmode to alias anything. Why
2220 don't we do this in anti_dependence and output_dependence? */
2221 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2224 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2228 /* Canonical true dependence: X is read after store in MEM takes place.
2229 Variant of true_dependence which assumes MEM has already been
2230 canonicalized (hence we no longer do that here).
2231 The mem_addr argument has been added, since true_dependence computed
2232 this value prior to canonicalizing. */
2235 canon_true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2236 rtx x
, int (*varies
) (rtx
, int))
2240 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2243 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2244 This is used in epilogue deallocation functions. */
2245 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2247 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2250 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2253 /* If X is an unchanging read, then it can't possibly conflict with any
2254 non-unchanging store. It may conflict with an unchanging write though,
2255 because there may be a single store to this address to initialize it.
2256 Just fall through to the code below to resolve the case where we have
2257 both an unchanging read and an unchanging write. This won't handle all
2258 cases optimally, but the possible performance loss should be
2260 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2263 if (nonoverlapping_memrefs_p (x
, mem
))
2266 x_addr
= get_addr (XEXP (x
, 0));
2268 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2271 x_addr
= canon_rtx (x_addr
);
2272 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2273 SIZE_FOR_MODE (x
), x_addr
, 0))
2276 if (aliases_everything_p (x
))
2279 /* We cannot use aliases_everything_p to test MEM, since we must look
2280 at MEM_MODE, rather than GET_MODE (MEM). */
2281 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2284 /* In true_dependence we also allow BLKmode to alias anything. Why
2285 don't we do this in anti_dependence and output_dependence? */
2286 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2289 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2293 /* Returns nonzero if a write to X might alias a previous read from
2294 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2295 honor the RTX_UNCHANGING_P flags on X and MEM. */
2298 write_dependence_p (rtx mem
, rtx x
, int writep
, int constp
)
2300 rtx x_addr
, mem_addr
;
2304 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2307 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2308 This is used in epilogue deallocation functions. */
2309 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2311 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2314 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2319 /* Unchanging memory can't conflict with non-unchanging memory. */
2320 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2323 /* If MEM is an unchanging read, then it can't possibly conflict with
2324 the store to X, because there is at most one store to MEM, and it
2325 must have occurred somewhere before MEM. */
2326 if (! writep
&& RTX_UNCHANGING_P (mem
))
2330 if (nonoverlapping_memrefs_p (x
, mem
))
2333 x_addr
= get_addr (XEXP (x
, 0));
2334 mem_addr
= get_addr (XEXP (mem
, 0));
2338 base
= find_base_term (mem_addr
);
2339 if (base
&& (GET_CODE (base
) == LABEL_REF
2340 || (GET_CODE (base
) == SYMBOL_REF
2341 && CONSTANT_POOL_ADDRESS_P (base
))))
2345 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2349 x_addr
= canon_rtx (x_addr
);
2350 mem_addr
= canon_rtx (mem_addr
);
2352 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2353 SIZE_FOR_MODE (x
), x_addr
, 0))
2357 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2360 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2361 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2364 /* Anti dependence: X is written after read in MEM takes place. */
2367 anti_dependence (rtx mem
, rtx x
)
2369 return write_dependence_p (mem
, x
, /*writep=*/0, /*constp*/1);
2372 /* Output dependence: X is written after store in MEM takes place. */
2375 output_dependence (rtx mem
, rtx x
)
2377 return write_dependence_p (mem
, x
, /*writep=*/1, /*constp*/1);
2380 /* Unchanging anti dependence: Like anti_dependence but ignores
2381 the UNCHANGING_RTX_P property on const variable references. */
2384 unchanging_anti_dependence (rtx mem
, rtx x
)
2386 return write_dependence_p (mem
, x
, /*writep=*/0, /*constp*/0);
2389 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2390 something which is not local to the function and is not constant. */
2393 nonlocal_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2402 switch (GET_CODE (x
))
2405 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2407 /* Global registers are not local. */
2408 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2409 && global_regs
[subreg_regno (x
)])
2417 /* Global registers are not local. */
2418 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2433 /* Constants in the function's constants pool are constant. */
2434 if (CONSTANT_POOL_ADDRESS_P (x
))
2439 /* Non-constant calls and recursion are not local. */
2443 /* Be overly conservative and consider any volatile memory
2444 reference as not local. */
2445 if (MEM_VOLATILE_P (x
))
2447 base
= find_base_term (XEXP (x
, 0));
2450 /* A Pmode ADDRESS could be a reference via the structure value
2451 address or static chain. Such memory references are nonlocal.
2453 Thus, we have to examine the contents of the ADDRESS to find
2454 out if this is a local reference or not. */
2455 if (GET_CODE (base
) == ADDRESS
2456 && GET_MODE (base
) == Pmode
2457 && (XEXP (base
, 0) == stack_pointer_rtx
2458 || XEXP (base
, 0) == arg_pointer_rtx
2459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2460 || XEXP (base
, 0) == hard_frame_pointer_rtx
2462 || XEXP (base
, 0) == frame_pointer_rtx
))
2464 /* Constants in the function's constant pool are constant. */
2465 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2470 case UNSPEC_VOLATILE
:
2475 if (MEM_VOLATILE_P (x
))
2487 /* Returns nonzero if X might mention something which is not
2488 local to the function and is not constant. */
2491 nonlocal_mentioned_p (rtx x
)
2495 if (GET_CODE (x
) == CALL_INSN
)
2497 if (! CONST_OR_PURE_CALL_P (x
))
2499 x
= CALL_INSN_FUNCTION_USAGE (x
);
2507 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2510 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2511 something which is not local to the function and is not constant. */
2514 nonlocal_referenced_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2521 switch (GET_CODE (x
))
2527 return nonlocal_mentioned_p (x
);
2530 /* Non-constant calls and recursion are not local. */
2534 if (nonlocal_mentioned_p (SET_SRC (x
)))
2537 if (GET_CODE (SET_DEST (x
)) == MEM
)
2538 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2540 /* If the destination is anything other than a CC0, PC,
2541 MEM, REG, or a SUBREG of a REG that occupies all of
2542 the REG, then X references nonlocal memory if it is
2543 mentioned in the destination. */
2544 if (GET_CODE (SET_DEST (x
)) != CC0
2545 && GET_CODE (SET_DEST (x
)) != PC
2546 && GET_CODE (SET_DEST (x
)) != REG
2547 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2548 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
2549 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2550 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2551 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2552 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2553 return nonlocal_mentioned_p (SET_DEST (x
));
2557 if (GET_CODE (XEXP (x
, 0)) == MEM
)
2558 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2562 return nonlocal_mentioned_p (XEXP (x
, 0));
2565 case UNSPEC_VOLATILE
:
2569 if (MEM_VOLATILE_P (x
))
2581 /* Returns nonzero if X might reference something which is not
2582 local to the function and is not constant. */
2585 nonlocal_referenced_p (rtx x
)
2589 if (GET_CODE (x
) == CALL_INSN
)
2591 if (! CONST_OR_PURE_CALL_P (x
))
2593 x
= CALL_INSN_FUNCTION_USAGE (x
);
2601 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2604 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2605 something which is not local to the function and is not constant. */
2608 nonlocal_set_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2615 switch (GET_CODE (x
))
2618 /* Non-constant calls and recursion are not local. */
2627 return nonlocal_mentioned_p (XEXP (x
, 0));
2630 if (nonlocal_mentioned_p (SET_DEST (x
)))
2632 return nonlocal_set_p (SET_SRC (x
));
2635 return nonlocal_mentioned_p (XEXP (x
, 0));
2641 case UNSPEC_VOLATILE
:
2645 if (MEM_VOLATILE_P (x
))
2657 /* Returns nonzero if X might set something which is not
2658 local to the function and is not constant. */
2661 nonlocal_set_p (rtx x
)
2665 if (GET_CODE (x
) == CALL_INSN
)
2667 if (! CONST_OR_PURE_CALL_P (x
))
2669 x
= CALL_INSN_FUNCTION_USAGE (x
);
2677 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2680 /* Mark the function if it is pure or constant. */
2683 mark_constant_function (void)
2686 int nonlocal_memory_referenced
;
2688 if (TREE_READONLY (current_function_decl
)
2689 || DECL_IS_PURE (current_function_decl
)
2690 || TREE_THIS_VOLATILE (current_function_decl
)
2691 || current_function_has_nonlocal_goto
2692 || !targetm
.binds_local_p (current_function_decl
))
2695 /* A loop might not return which counts as a side effect. */
2696 if (mark_dfs_back_edges ())
2699 nonlocal_memory_referenced
= 0;
2701 init_alias_analysis ();
2703 /* Determine if this is a constant or pure function. */
2705 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2707 if (! INSN_P (insn
))
2710 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2711 || volatile_refs_p (PATTERN (insn
)))
2714 if (! nonlocal_memory_referenced
)
2715 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2718 end_alias_analysis ();
2720 /* Mark the function. */
2724 else if (nonlocal_memory_referenced
)
2726 cgraph_rtl_info (current_function_decl
)->pure_function
= 1;
2727 DECL_IS_PURE (current_function_decl
) = 1;
2731 cgraph_rtl_info (current_function_decl
)->const_function
= 1;
2732 TREE_READONLY (current_function_decl
) = 1;
2738 init_alias_once (void)
2742 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2743 /* Check whether this register can hold an incoming pointer
2744 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2745 numbers, so translate if necessary due to register windows. */
2746 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2747 && HARD_REGNO_MODE_OK (i
, Pmode
))
2748 static_reg_base_value
[i
]
2749 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2751 static_reg_base_value
[STACK_POINTER_REGNUM
]
2752 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2753 static_reg_base_value
[ARG_POINTER_REGNUM
]
2754 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2755 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2756 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2757 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2758 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2759 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2763 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2764 to be memory reference. */
2765 static bool memory_modified
;
2767 memory_modified_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
2769 if (GET_CODE (x
) == MEM
)
2771 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2772 memory_modified
= true;
2777 /* Return true when INSN possibly modify memory contents of MEM
2778 (ie address can be modified). */
2780 memory_modified_in_insn_p (rtx mem
, rtx insn
)
2784 memory_modified
= false;
2785 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2786 return memory_modified
;
2789 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2793 init_alias_analysis (void)
2795 unsigned int maxreg
= max_reg_num ();
2801 timevar_push (TV_ALIAS_ANALYSIS
);
2803 reg_known_value_size
= maxreg
- FIRST_PSEUDO_REGISTER
;
2804 reg_known_value
= ggc_calloc (reg_known_value_size
, sizeof (rtx
));
2805 reg_known_equiv_p
= xcalloc (reg_known_value_size
, sizeof (bool));
2807 /* Overallocate reg_base_value to allow some growth during loop
2808 optimization. Loop unrolling can create a large number of
2810 if (old_reg_base_value
)
2812 reg_base_value
= old_reg_base_value
;
2813 /* If varray gets large zeroing cost may get important. */
2814 if (VARRAY_SIZE (reg_base_value
) > 256
2815 && VARRAY_SIZE (reg_base_value
) > 4 * maxreg
)
2816 VARRAY_GROW (reg_base_value
, maxreg
);
2817 VARRAY_CLEAR (reg_base_value
);
2818 if (VARRAY_SIZE (reg_base_value
) < maxreg
)
2819 VARRAY_GROW (reg_base_value
, maxreg
);
2823 VARRAY_RTX_INIT (reg_base_value
, maxreg
, "reg_base_value");
2826 new_reg_base_value
= xmalloc (maxreg
* sizeof (rtx
));
2827 reg_seen
= xmalloc (maxreg
);
2828 if (! reload_completed
&& flag_old_unroll_loops
)
2830 /* ??? Why are we realloc'ing if we're just going to zero it? */
2831 alias_invariant
= xrealloc (alias_invariant
,
2832 maxreg
* sizeof (rtx
));
2833 memset (alias_invariant
, 0, maxreg
* sizeof (rtx
));
2834 alias_invariant_size
= maxreg
;
2837 /* The basic idea is that each pass through this loop will use the
2838 "constant" information from the previous pass to propagate alias
2839 information through another level of assignments.
2841 This could get expensive if the assignment chains are long. Maybe
2842 we should throttle the number of iterations, possibly based on
2843 the optimization level or flag_expensive_optimizations.
2845 We could propagate more information in the first pass by making use
2846 of REG_N_SETS to determine immediately that the alias information
2847 for a pseudo is "constant".
2849 A program with an uninitialized variable can cause an infinite loop
2850 here. Instead of doing a full dataflow analysis to detect such problems
2851 we just cap the number of iterations for the loop.
2853 The state of the arrays for the set chain in question does not matter
2854 since the program has undefined behavior. */
2859 /* Assume nothing will change this iteration of the loop. */
2862 /* We want to assign the same IDs each iteration of this loop, so
2863 start counting from zero each iteration of the loop. */
2866 /* We're at the start of the function each iteration through the
2867 loop, so we're copying arguments. */
2868 copying_arguments
= true;
2870 /* Wipe the potential alias information clean for this pass. */
2871 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2873 /* Wipe the reg_seen array clean. */
2874 memset (reg_seen
, 0, maxreg
);
2876 /* Mark all hard registers which may contain an address.
2877 The stack, frame and argument pointers may contain an address.
2878 An argument register which can hold a Pmode value may contain
2879 an address even if it is not in BASE_REGS.
2881 The address expression is VOIDmode for an argument and
2882 Pmode for other registers. */
2884 memcpy (new_reg_base_value
, static_reg_base_value
,
2885 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2887 /* Walk the insns adding values to the new_reg_base_value array. */
2888 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2894 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2895 /* The prologue/epilogue insns are not threaded onto the
2896 insn chain until after reload has completed. Thus,
2897 there is no sense wasting time checking if INSN is in
2898 the prologue/epilogue until after reload has completed. */
2899 if (reload_completed
2900 && prologue_epilogue_contains (insn
))
2904 /* If this insn has a noalias note, process it, Otherwise,
2905 scan for sets. A simple set will have no side effects
2906 which could change the base value of any other register. */
2908 if (GET_CODE (PATTERN (insn
)) == SET
2909 && REG_NOTES (insn
) != 0
2910 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2911 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2913 note_stores (PATTERN (insn
), record_set
, NULL
);
2915 set
= single_set (insn
);
2918 && GET_CODE (SET_DEST (set
)) == REG
2919 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2921 unsigned int regno
= REGNO (SET_DEST (set
));
2922 rtx src
= SET_SRC (set
);
2925 if (REG_NOTES (insn
) != 0
2926 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2927 && REG_N_SETS (regno
) == 1)
2928 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2929 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2930 && ! rtx_varies_p (XEXP (note
, 0), 1)
2931 && ! reg_overlap_mentioned_p (SET_DEST (set
),
2934 set_reg_known_value (regno
, XEXP (note
, 0));
2935 set_reg_known_equiv_p (regno
,
2936 REG_NOTE_KIND (note
) == REG_EQUIV
);
2938 else if (REG_N_SETS (regno
) == 1
2939 && GET_CODE (src
) == PLUS
2940 && GET_CODE (XEXP (src
, 0)) == REG
2941 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
2942 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2944 t
= plus_constant (t
, INTVAL (XEXP (src
, 1)));
2945 set_reg_known_value (regno
, t
);
2946 set_reg_known_equiv_p (regno
, 0);
2948 else if (REG_N_SETS (regno
) == 1
2949 && ! rtx_varies_p (src
, 1))
2951 set_reg_known_value (regno
, src
);
2952 set_reg_known_equiv_p (regno
, 0);
2956 else if (GET_CODE (insn
) == NOTE
2957 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2958 copying_arguments
= false;
2961 /* Now propagate values from new_reg_base_value to reg_base_value. */
2962 if (maxreg
!= (unsigned int) max_reg_num())
2964 for (ui
= 0; ui
< maxreg
; ui
++)
2966 if (new_reg_base_value
[ui
]
2967 && new_reg_base_value
[ui
] != VARRAY_RTX (reg_base_value
, ui
)
2968 && ! rtx_equal_p (new_reg_base_value
[ui
],
2969 VARRAY_RTX (reg_base_value
, ui
)))
2971 VARRAY_RTX (reg_base_value
, ui
) = new_reg_base_value
[ui
];
2976 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2978 /* Fill in the remaining entries. */
2979 for (i
= 0; i
< (int)reg_known_value_size
; i
++)
2980 if (reg_known_value
[i
] == 0)
2981 reg_known_value
[i
] = regno_reg_rtx
[i
+ FIRST_PSEUDO_REGISTER
];
2983 /* Simplify the reg_base_value array so that no register refers to
2984 another register, except to special registers indirectly through
2985 ADDRESS expressions.
2987 In theory this loop can take as long as O(registers^2), but unless
2988 there are very long dependency chains it will run in close to linear
2991 This loop may not be needed any longer now that the main loop does
2992 a better job at propagating alias information. */
2998 for (ui
= 0; ui
< maxreg
; ui
++)
3000 rtx base
= VARRAY_RTX (reg_base_value
, ui
);
3001 if (base
&& GET_CODE (base
) == REG
)
3003 unsigned int base_regno
= REGNO (base
);
3004 if (base_regno
== ui
) /* register set from itself */
3005 VARRAY_RTX (reg_base_value
, ui
) = 0;
3007 VARRAY_RTX (reg_base_value
, ui
)
3008 = VARRAY_RTX (reg_base_value
, base_regno
);
3013 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
3016 free (new_reg_base_value
);
3017 new_reg_base_value
= 0;
3020 timevar_pop (TV_ALIAS_ANALYSIS
);
3024 end_alias_analysis (void)
3026 old_reg_base_value
= reg_base_value
;
3027 ggc_free (reg_known_value
);
3028 reg_known_value
= 0;
3029 reg_known_value_size
= 0;
3030 free (reg_known_equiv_p
);
3031 reg_known_equiv_p
= 0;
3032 if (alias_invariant
)
3034 free (alias_invariant
);
3035 alias_invariant
= 0;
3036 alias_invariant_size
= 0;
3040 #include "gt-alias.h"