* diagnostic.c (diagnostic_action_after_output): Remove max error
[official-gcc.git] / gcc / rtlanal.c
bloba882200a4b47f4f48e491fb2ecaa8095e6beb3df
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
74 static unsigned int
75 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
80 template <typename T>
81 typename T::value_type *
82 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
86 if (base == array.stack)
88 if (i < LOCAL_ELEMS)
90 base[i] = x;
91 return base;
93 gcc_checking_assert (i == LOCAL_ELEMS);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
103 unsigned int length = array.heap->length ();
104 if (length > i)
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
110 else
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
121 template <typename T>
122 size_t
123 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
129 size_t orig_end = end;
130 if (__builtin_expect (INSN_P (x), false))
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
155 else if (format[i] == 'E')
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
179 return end - orig_end;
182 template <typename T>
183 void
184 generic_subrtx_iterator <T>::free_array (array_type &array)
186 vec_free (array.heap);
189 template <typename T>
190 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
192 template class generic_subrtx_iterator <const_rtx_accessor>;
193 template class generic_subrtx_iterator <rtx_var_accessor>;
194 template class generic_subrtx_iterator <rtx_ptr_accessor>;
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
202 rtx_unstable_p (const_rtx x)
204 const RTX_CODE code = GET_CODE (x);
205 int i;
206 const char *fmt;
208 switch (code)
210 case MEM:
211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
213 case CONST:
214 CASE_CONST_ANY:
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
224 return 0;
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
229 return 0;
230 return 1;
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
257 return 0;
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
267 bool
268 rtx_varies_p (const_rtx x, bool for_alias)
270 RTX_CODE code;
271 int i;
272 const char *fmt;
274 if (!x)
275 return 0;
277 code = GET_CODE (x);
278 switch (code)
280 case MEM:
281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
283 case CONST:
284 CASE_CONST_ANY:
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
297 return 0;
298 if (x == pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
304 return 0;
305 return 1;
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
318 /* Fall through. */
320 default:
321 break;
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
328 if (rtx_varies_p (XEXP (x, i), for_alias))
329 return 1;
331 else if (fmt[i] == 'E')
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
336 return 1;
339 return 0;
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
346 static HOST_WIDE_INT
347 get_initial_register_offset (int from, int to)
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
458 static int
459 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
460 machine_mode mode, bool unaligned_mems)
462 enum rtx_code code = GET_CODE (x);
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
468 HOST_WIDE_INT actual_offset = offset;
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477 #endif
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
483 switch (code)
485 case SYMBOL_REF:
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
490 tree decl;
491 HOST_WIDE_INT decl_size;
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
522 return 0;
524 case LABEL_REF:
525 return 0;
527 case REG:
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
535 #ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537 #else
538 HOST_WIDE_INT red_zone_size = 0;
539 #endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
547 if (x == frame_pointer_rtx)
549 if (FRAME_GROWS_DOWNWARD)
551 high_bound = STARTING_FRAME_OFFSET;
552 low_bound = high_bound - get_frame_size ();
554 else
556 low_bound = STARTING_FRAME_OFFSET;
557 high_bound = low_bound + get_frame_size ();
560 else if (x == hard_frame_pointer_rtx)
562 HOST_WIDE_INT sp_offset
563 = get_initial_register_offset (STACK_POINTER_REGNUM,
564 HARD_FRAME_POINTER_REGNUM);
565 HOST_WIDE_INT ap_offset
566 = get_initial_register_offset (ARG_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
569 #if STACK_GROWS_DOWNWARD
570 low_bound = sp_offset - red_zone_size - stack_boundary;
571 high_bound = ap_offset
572 + FIRST_PARM_OFFSET (current_function_decl)
573 #if !ARGS_GROW_DOWNWARD
574 + crtl->args.size
575 #endif
576 + stack_boundary;
577 #else
578 high_bound = sp_offset + red_zone_size + stack_boundary;
579 low_bound = ap_offset
580 + FIRST_PARM_OFFSET (current_function_decl)
581 #if ARGS_GROW_DOWNWARD
582 - crtl->args.size
583 #endif
584 - stack_boundary;
585 #endif
587 else if (x == stack_pointer_rtx)
589 HOST_WIDE_INT ap_offset
590 = get_initial_register_offset (ARG_POINTER_REGNUM,
591 STACK_POINTER_REGNUM);
593 #if STACK_GROWS_DOWNWARD
594 low_bound = - red_zone_size - stack_boundary;
595 high_bound = ap_offset
596 + FIRST_PARM_OFFSET (current_function_decl)
597 #if !ARGS_GROW_DOWNWARD
598 + crtl->args.size
599 #endif
600 + stack_boundary;
601 #else
602 high_bound = red_zone_size + stack_boundary;
603 low_bound = ap_offset
604 + FIRST_PARM_OFFSET (current_function_decl)
605 #if ARGS_GROW_DOWNWARD
606 - crtl->args.size
607 #endif
608 - stack_boundary;
609 #endif
611 else
613 /* We assume that accesses are safe to at least the
614 next stack boundary.
615 Examples are varargs and __builtin_return_address. */
616 #if ARGS_GROW_DOWNWARD
617 high_bound = FIRST_PARM_OFFSET (current_function_decl)
618 + stack_boundary;
619 low_bound = FIRST_PARM_OFFSET (current_function_decl)
620 - crtl->args.size - stack_boundary;
621 #else
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - stack_boundary;
624 high_bound = FIRST_PARM_OFFSET (current_function_decl)
625 + crtl->args.size + stack_boundary;
626 #endif
629 if (offset >= low_bound && offset <= high_bound - size)
630 return 0;
631 return 1;
633 /* All of the virtual frame registers are stack references. */
634 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
635 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
636 return 0;
637 return 1;
639 case CONST:
640 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
641 mode, unaligned_mems);
643 case PLUS:
644 /* An address is assumed not to trap if:
645 - it is the pic register plus a constant. */
646 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
647 return 0;
649 /* - or it is an address that can't trap plus a constant integer. */
650 if (CONST_INT_P (XEXP (x, 1))
651 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
652 size, mode, unaligned_mems))
653 return 0;
655 return 1;
657 case LO_SUM:
658 case PRE_MODIFY:
659 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
660 mode, unaligned_mems);
662 case PRE_DEC:
663 case PRE_INC:
664 case POST_DEC:
665 case POST_INC:
666 case POST_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
670 default:
671 break;
674 /* If it isn't one of the case above, it can cause a trap. */
675 return 1;
678 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
681 rtx_addr_can_trap_p (const_rtx x)
683 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
686 /* Return true if X is an address that is known to not be zero. */
688 bool
689 nonzero_address_p (const_rtx x)
691 const enum rtx_code code = GET_CODE (x);
693 switch (code)
695 case SYMBOL_REF:
696 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
698 case LABEL_REF:
699 return true;
701 case REG:
702 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
703 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
704 || x == stack_pointer_rtx
705 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
706 return true;
707 /* All of the virtual frame registers are stack references. */
708 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
709 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
710 return true;
711 return false;
713 case CONST:
714 return nonzero_address_p (XEXP (x, 0));
716 case PLUS:
717 /* Handle PIC references. */
718 if (XEXP (x, 0) == pic_offset_table_rtx
719 && CONSTANT_P (XEXP (x, 1)))
720 return true;
721 return false;
723 case PRE_MODIFY:
724 /* Similar to the above; allow positive offsets. Further, since
725 auto-inc is only allowed in memories, the register must be a
726 pointer. */
727 if (CONST_INT_P (XEXP (x, 1))
728 && INTVAL (XEXP (x, 1)) > 0)
729 return true;
730 return nonzero_address_p (XEXP (x, 0));
732 case PRE_INC:
733 /* Similarly. Further, the offset is always positive. */
734 return true;
736 case PRE_DEC:
737 case POST_DEC:
738 case POST_INC:
739 case POST_MODIFY:
740 return nonzero_address_p (XEXP (x, 0));
742 case LO_SUM:
743 return nonzero_address_p (XEXP (x, 1));
745 default:
746 break;
749 /* If it isn't one of the case above, might be zero. */
750 return false;
753 /* Return 1 if X refers to a memory location whose address
754 cannot be compared reliably with constant addresses,
755 or if X refers to a BLKmode memory object.
756 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
757 zero, we are slightly more conservative. */
759 bool
760 rtx_addr_varies_p (const_rtx x, bool for_alias)
762 enum rtx_code code;
763 int i;
764 const char *fmt;
766 if (x == 0)
767 return 0;
769 code = GET_CODE (x);
770 if (code == MEM)
771 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
773 fmt = GET_RTX_FORMAT (code);
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775 if (fmt[i] == 'e')
777 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
778 return 1;
780 else if (fmt[i] == 'E')
782 int j;
783 for (j = 0; j < XVECLEN (x, i); j++)
784 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
785 return 1;
787 return 0;
790 /* Return the CALL in X if there is one. */
793 get_call_rtx_from (rtx x)
795 if (INSN_P (x))
796 x = PATTERN (x);
797 if (GET_CODE (x) == PARALLEL)
798 x = XVECEXP (x, 0, 0);
799 if (GET_CODE (x) == SET)
800 x = SET_SRC (x);
801 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
802 return x;
803 return NULL_RTX;
806 /* Return the value of the integer term in X, if one is apparent;
807 otherwise return 0.
808 Only obvious integer terms are detected.
809 This is used in cse.c with the `related_value' field. */
811 HOST_WIDE_INT
812 get_integer_term (const_rtx x)
814 if (GET_CODE (x) == CONST)
815 x = XEXP (x, 0);
817 if (GET_CODE (x) == MINUS
818 && CONST_INT_P (XEXP (x, 1)))
819 return - INTVAL (XEXP (x, 1));
820 if (GET_CODE (x) == PLUS
821 && CONST_INT_P (XEXP (x, 1)))
822 return INTVAL (XEXP (x, 1));
823 return 0;
826 /* If X is a constant, return the value sans apparent integer term;
827 otherwise return 0.
828 Only obvious integer terms are detected. */
831 get_related_value (const_rtx x)
833 if (GET_CODE (x) != CONST)
834 return 0;
835 x = XEXP (x, 0);
836 if (GET_CODE (x) == PLUS
837 && CONST_INT_P (XEXP (x, 1)))
838 return XEXP (x, 0);
839 else if (GET_CODE (x) == MINUS
840 && CONST_INT_P (XEXP (x, 1)))
841 return XEXP (x, 0);
842 return 0;
845 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
846 to somewhere in the same object or object_block as SYMBOL. */
848 bool
849 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
851 tree decl;
853 if (GET_CODE (symbol) != SYMBOL_REF)
854 return false;
856 if (offset == 0)
857 return true;
859 if (offset > 0)
861 if (CONSTANT_POOL_ADDRESS_P (symbol)
862 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
863 return true;
865 decl = SYMBOL_REF_DECL (symbol);
866 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
867 return true;
870 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
871 && SYMBOL_REF_BLOCK (symbol)
872 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
873 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
874 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
875 return true;
877 return false;
880 /* Split X into a base and a constant offset, storing them in *BASE_OUT
881 and *OFFSET_OUT respectively. */
883 void
884 split_const (rtx x, rtx *base_out, rtx *offset_out)
886 if (GET_CODE (x) == CONST)
888 x = XEXP (x, 0);
889 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
891 *base_out = XEXP (x, 0);
892 *offset_out = XEXP (x, 1);
893 return;
896 *base_out = x;
897 *offset_out = const0_rtx;
900 /* Return the number of places FIND appears within X. If COUNT_DEST is
901 zero, we do not count occurrences inside the destination of a SET. */
904 count_occurrences (const_rtx x, const_rtx find, int count_dest)
906 int i, j;
907 enum rtx_code code;
908 const char *format_ptr;
909 int count;
911 if (x == find)
912 return 1;
914 code = GET_CODE (x);
916 switch (code)
918 case REG:
919 CASE_CONST_ANY:
920 case SYMBOL_REF:
921 case CODE_LABEL:
922 case PC:
923 case CC0:
924 return 0;
926 case EXPR_LIST:
927 count = count_occurrences (XEXP (x, 0), find, count_dest);
928 if (XEXP (x, 1))
929 count += count_occurrences (XEXP (x, 1), find, count_dest);
930 return count;
932 case MEM:
933 if (MEM_P (find) && rtx_equal_p (x, find))
934 return 1;
935 break;
937 case SET:
938 if (SET_DEST (x) == find && ! count_dest)
939 return count_occurrences (SET_SRC (x), find, count_dest);
940 break;
942 default:
943 break;
946 format_ptr = GET_RTX_FORMAT (code);
947 count = 0;
949 for (i = 0; i < GET_RTX_LENGTH (code); i++)
951 switch (*format_ptr++)
953 case 'e':
954 count += count_occurrences (XEXP (x, i), find, count_dest);
955 break;
957 case 'E':
958 for (j = 0; j < XVECLEN (x, i); j++)
959 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
960 break;
963 return count;
967 /* Return TRUE if OP is a register or subreg of a register that
968 holds an unsigned quantity. Otherwise, return FALSE. */
970 bool
971 unsigned_reg_p (rtx op)
973 if (REG_P (op)
974 && REG_EXPR (op)
975 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
976 return true;
978 if (GET_CODE (op) == SUBREG
979 && SUBREG_PROMOTED_SIGN (op))
980 return true;
982 return false;
986 /* Nonzero if register REG appears somewhere within IN.
987 Also works if REG is not a register; in this case it checks
988 for a subexpression of IN that is Lisp "equal" to REG. */
991 reg_mentioned_p (const_rtx reg, const_rtx in)
993 const char *fmt;
994 int i;
995 enum rtx_code code;
997 if (in == 0)
998 return 0;
1000 if (reg == in)
1001 return 1;
1003 if (GET_CODE (in) == LABEL_REF)
1004 return reg == LABEL_REF_LABEL (in);
1006 code = GET_CODE (in);
1008 switch (code)
1010 /* Compare registers by number. */
1011 case REG:
1012 return REG_P (reg) && REGNO (in) == REGNO (reg);
1014 /* These codes have no constituent expressions
1015 and are unique. */
1016 case SCRATCH:
1017 case CC0:
1018 case PC:
1019 return 0;
1021 CASE_CONST_ANY:
1022 /* These are kept unique for a given value. */
1023 return 0;
1025 default:
1026 break;
1029 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1030 return 1;
1032 fmt = GET_RTX_FORMAT (code);
1034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1036 if (fmt[i] == 'E')
1038 int j;
1039 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1040 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1041 return 1;
1043 else if (fmt[i] == 'e'
1044 && reg_mentioned_p (reg, XEXP (in, i)))
1045 return 1;
1047 return 0;
1050 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1051 no CODE_LABEL insn. */
1054 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1056 rtx_insn *p;
1057 if (beg == end)
1058 return 0;
1059 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1060 if (LABEL_P (p))
1061 return 0;
1062 return 1;
1065 /* Nonzero if register REG is used in an insn between
1066 FROM_INSN and TO_INSN (exclusive of those two). */
1069 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1070 const rtx_insn *to_insn)
1072 rtx_insn *insn;
1074 if (from_insn == to_insn)
1075 return 0;
1077 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1078 if (NONDEBUG_INSN_P (insn)
1079 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1080 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1081 return 1;
1082 return 0;
1085 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1086 is entirely replaced by a new value and the only use is as a SET_DEST,
1087 we do not consider it a reference. */
1090 reg_referenced_p (const_rtx x, const_rtx body)
1092 int i;
1094 switch (GET_CODE (body))
1096 case SET:
1097 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1098 return 1;
1100 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1101 of a REG that occupies all of the REG, the insn references X if
1102 it is mentioned in the destination. */
1103 if (GET_CODE (SET_DEST (body)) != CC0
1104 && GET_CODE (SET_DEST (body)) != PC
1105 && !REG_P (SET_DEST (body))
1106 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1107 && REG_P (SUBREG_REG (SET_DEST (body)))
1108 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1109 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1110 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1111 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1112 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1113 return 1;
1114 return 0;
1116 case ASM_OPERANDS:
1117 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1118 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1119 return 1;
1120 return 0;
1122 case CALL:
1123 case USE:
1124 case IF_THEN_ELSE:
1125 return reg_overlap_mentioned_p (x, body);
1127 case TRAP_IF:
1128 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1130 case PREFETCH:
1131 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1133 case UNSPEC:
1134 case UNSPEC_VOLATILE:
1135 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1136 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1137 return 1;
1138 return 0;
1140 case PARALLEL:
1141 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1142 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1143 return 1;
1144 return 0;
1146 case CLOBBER:
1147 if (MEM_P (XEXP (body, 0)))
1148 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1149 return 1;
1150 return 0;
1152 case COND_EXEC:
1153 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1154 return 1;
1155 return reg_referenced_p (x, COND_EXEC_CODE (body));
1157 default:
1158 return 0;
1162 /* Nonzero if register REG is set or clobbered in an insn between
1163 FROM_INSN and TO_INSN (exclusive of those two). */
1166 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1167 const rtx_insn *to_insn)
1169 const rtx_insn *insn;
1171 if (from_insn == to_insn)
1172 return 0;
1174 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn) && reg_set_p (reg, insn))
1176 return 1;
1177 return 0;
1180 /* Return true if REG is set or clobbered inside INSN. */
1183 reg_set_p (const_rtx reg, const_rtx insn)
1185 /* After delay slot handling, call and branch insns might be in a
1186 sequence. Check all the elements there. */
1187 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1189 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1190 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1191 return true;
1193 return false;
1196 /* We can be passed an insn or part of one. If we are passed an insn,
1197 check if a side-effect of the insn clobbers REG. */
1198 if (INSN_P (insn)
1199 && (FIND_REG_INC_NOTE (insn, reg)
1200 || (CALL_P (insn)
1201 && ((REG_P (reg)
1202 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1203 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1204 GET_MODE (reg), REGNO (reg)))
1205 || MEM_P (reg)
1206 || find_reg_fusage (insn, CLOBBER, reg)))))
1207 return true;
1209 return set_of (reg, insn) != NULL_RTX;
1212 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1213 only if none of them are modified between START and END. Return 1 if
1214 X contains a MEM; this routine does use memory aliasing. */
1217 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1219 const enum rtx_code code = GET_CODE (x);
1220 const char *fmt;
1221 int i, j;
1222 rtx_insn *insn;
1224 if (start == end)
1225 return 0;
1227 switch (code)
1229 CASE_CONST_ANY:
1230 case CONST:
1231 case SYMBOL_REF:
1232 case LABEL_REF:
1233 return 0;
1235 case PC:
1236 case CC0:
1237 return 1;
1239 case MEM:
1240 if (modified_between_p (XEXP (x, 0), start, end))
1241 return 1;
1242 if (MEM_READONLY_P (x))
1243 return 0;
1244 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1245 if (memory_modified_in_insn_p (x, insn))
1246 return 1;
1247 return 0;
1249 case REG:
1250 return reg_set_between_p (x, start, end);
1252 default:
1253 break;
1256 fmt = GET_RTX_FORMAT (code);
1257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1259 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1260 return 1;
1262 else if (fmt[i] == 'E')
1263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1264 if (modified_between_p (XVECEXP (x, i, j), start, end))
1265 return 1;
1268 return 0;
1271 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1272 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1273 does use memory aliasing. */
1276 modified_in_p (const_rtx x, const_rtx insn)
1278 const enum rtx_code code = GET_CODE (x);
1279 const char *fmt;
1280 int i, j;
1282 switch (code)
1284 CASE_CONST_ANY:
1285 case CONST:
1286 case SYMBOL_REF:
1287 case LABEL_REF:
1288 return 0;
1290 case PC:
1291 case CC0:
1292 return 1;
1294 case MEM:
1295 if (modified_in_p (XEXP (x, 0), insn))
1296 return 1;
1297 if (MEM_READONLY_P (x))
1298 return 0;
1299 if (memory_modified_in_insn_p (x, insn))
1300 return 1;
1301 return 0;
1303 case REG:
1304 return reg_set_p (x, insn);
1306 default:
1307 break;
1310 fmt = GET_RTX_FORMAT (code);
1311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1313 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1314 return 1;
1316 else if (fmt[i] == 'E')
1317 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1318 if (modified_in_p (XVECEXP (x, i, j), insn))
1319 return 1;
1322 return 0;
1325 /* Helper function for set_of. */
1326 struct set_of_data
1328 const_rtx found;
1329 const_rtx pat;
1332 static void
1333 set_of_1 (rtx x, const_rtx pat, void *data1)
1335 struct set_of_data *const data = (struct set_of_data *) (data1);
1336 if (rtx_equal_p (x, data->pat)
1337 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1338 data->found = pat;
1341 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1342 (either directly or via STRICT_LOW_PART and similar modifiers). */
1343 const_rtx
1344 set_of (const_rtx pat, const_rtx insn)
1346 struct set_of_data data;
1347 data.found = NULL_RTX;
1348 data.pat = pat;
1349 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1350 return data.found;
1353 /* Add all hard register in X to *PSET. */
1354 void
1355 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1357 subrtx_iterator::array_type array;
1358 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1360 const_rtx x = *iter;
1361 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1362 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1366 /* This function, called through note_stores, collects sets and
1367 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1368 by DATA. */
1369 void
1370 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1372 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1373 if (REG_P (x) && HARD_REGISTER_P (x))
1374 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1377 /* Examine INSN, and compute the set of hard registers written by it.
1378 Store it in *PSET. Should only be called after reload. */
1379 void
1380 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1382 rtx link;
1384 CLEAR_HARD_REG_SET (*pset);
1385 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1386 if (CALL_P (insn))
1388 if (implicit)
1389 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1391 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1392 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1394 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1395 if (REG_NOTE_KIND (link) == REG_INC)
1396 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1399 /* Like record_hard_reg_sets, but called through note_uses. */
1400 void
1401 record_hard_reg_uses (rtx *px, void *data)
1403 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1406 /* Given an INSN, return a SET expression if this insn has only a single SET.
1407 It may also have CLOBBERs, USEs, or SET whose output
1408 will not be used, which we ignore. */
1411 single_set_2 (const rtx_insn *insn, const_rtx pat)
1413 rtx set = NULL;
1414 int set_verified = 1;
1415 int i;
1417 if (GET_CODE (pat) == PARALLEL)
1419 for (i = 0; i < XVECLEN (pat, 0); i++)
1421 rtx sub = XVECEXP (pat, 0, i);
1422 switch (GET_CODE (sub))
1424 case USE:
1425 case CLOBBER:
1426 break;
1428 case SET:
1429 /* We can consider insns having multiple sets, where all
1430 but one are dead as single set insns. In common case
1431 only single set is present in the pattern so we want
1432 to avoid checking for REG_UNUSED notes unless necessary.
1434 When we reach set first time, we just expect this is
1435 the single set we are looking for and only when more
1436 sets are found in the insn, we check them. */
1437 if (!set_verified)
1439 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1440 && !side_effects_p (set))
1441 set = NULL;
1442 else
1443 set_verified = 1;
1445 if (!set)
1446 set = sub, set_verified = 0;
1447 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1448 || side_effects_p (sub))
1449 return NULL_RTX;
1450 break;
1452 default:
1453 return NULL_RTX;
1457 return set;
1460 /* Given an INSN, return nonzero if it has more than one SET, else return
1461 zero. */
1464 multiple_sets (const_rtx insn)
1466 int found;
1467 int i;
1469 /* INSN must be an insn. */
1470 if (! INSN_P (insn))
1471 return 0;
1473 /* Only a PARALLEL can have multiple SETs. */
1474 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1476 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1477 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1479 /* If we have already found a SET, then return now. */
1480 if (found)
1481 return 1;
1482 else
1483 found = 1;
1487 /* Either zero or one SET. */
1488 return 0;
1491 /* Return nonzero if the destination of SET equals the source
1492 and there are no side effects. */
1495 set_noop_p (const_rtx set)
1497 rtx src = SET_SRC (set);
1498 rtx dst = SET_DEST (set);
1500 if (dst == pc_rtx && src == pc_rtx)
1501 return 1;
1503 if (MEM_P (dst) && MEM_P (src))
1504 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1506 if (GET_CODE (dst) == ZERO_EXTRACT)
1507 return rtx_equal_p (XEXP (dst, 0), src)
1508 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1509 && !side_effects_p (src);
1511 if (GET_CODE (dst) == STRICT_LOW_PART)
1512 dst = XEXP (dst, 0);
1514 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1516 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1517 return 0;
1518 src = SUBREG_REG (src);
1519 dst = SUBREG_REG (dst);
1522 /* It is a NOOP if destination overlaps with selected src vector
1523 elements. */
1524 if (GET_CODE (src) == VEC_SELECT
1525 && REG_P (XEXP (src, 0)) && REG_P (dst)
1526 && HARD_REGISTER_P (XEXP (src, 0))
1527 && HARD_REGISTER_P (dst))
1529 int i;
1530 rtx par = XEXP (src, 1);
1531 rtx src0 = XEXP (src, 0);
1532 int c0 = INTVAL (XVECEXP (par, 0, 0));
1533 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1535 for (i = 1; i < XVECLEN (par, 0); i++)
1536 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1537 return 0;
1538 return
1539 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1540 offset, GET_MODE (dst)) == (int) REGNO (dst);
1543 return (REG_P (src) && REG_P (dst)
1544 && REGNO (src) == REGNO (dst));
1547 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1548 value to itself. */
1551 noop_move_p (const rtx_insn *insn)
1553 rtx pat = PATTERN (insn);
1555 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1556 return 1;
1558 /* Insns carrying these notes are useful later on. */
1559 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1560 return 0;
1562 /* Check the code to be executed for COND_EXEC. */
1563 if (GET_CODE (pat) == COND_EXEC)
1564 pat = COND_EXEC_CODE (pat);
1566 if (GET_CODE (pat) == SET && set_noop_p (pat))
1567 return 1;
1569 if (GET_CODE (pat) == PARALLEL)
1571 int i;
1572 /* If nothing but SETs of registers to themselves,
1573 this insn can also be deleted. */
1574 for (i = 0; i < XVECLEN (pat, 0); i++)
1576 rtx tem = XVECEXP (pat, 0, i);
1578 if (GET_CODE (tem) == USE
1579 || GET_CODE (tem) == CLOBBER)
1580 continue;
1582 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1583 return 0;
1586 return 1;
1588 return 0;
1592 /* Return nonzero if register in range [REGNO, ENDREGNO)
1593 appears either explicitly or implicitly in X
1594 other than being stored into.
1596 References contained within the substructure at LOC do not count.
1597 LOC may be zero, meaning don't ignore anything. */
1599 bool
1600 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1601 rtx *loc)
1603 int i;
1604 unsigned int x_regno;
1605 RTX_CODE code;
1606 const char *fmt;
1608 repeat:
1609 /* The contents of a REG_NONNEG note is always zero, so we must come here
1610 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1611 if (x == 0)
1612 return false;
1614 code = GET_CODE (x);
1616 switch (code)
1618 case REG:
1619 x_regno = REGNO (x);
1621 /* If we modifying the stack, frame, or argument pointer, it will
1622 clobber a virtual register. In fact, we could be more precise,
1623 but it isn't worth it. */
1624 if ((x_regno == STACK_POINTER_REGNUM
1625 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1626 && x_regno == ARG_POINTER_REGNUM)
1627 || x_regno == FRAME_POINTER_REGNUM)
1628 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1629 return true;
1631 return endregno > x_regno && regno < END_REGNO (x);
1633 case SUBREG:
1634 /* If this is a SUBREG of a hard reg, we can see exactly which
1635 registers are being modified. Otherwise, handle normally. */
1636 if (REG_P (SUBREG_REG (x))
1637 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1639 unsigned int inner_regno = subreg_regno (x);
1640 unsigned int inner_endregno
1641 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1642 ? subreg_nregs (x) : 1);
1644 return endregno > inner_regno && regno < inner_endregno;
1646 break;
1648 case CLOBBER:
1649 case SET:
1650 if (&SET_DEST (x) != loc
1651 /* Note setting a SUBREG counts as referring to the REG it is in for
1652 a pseudo but not for hard registers since we can
1653 treat each word individually. */
1654 && ((GET_CODE (SET_DEST (x)) == SUBREG
1655 && loc != &SUBREG_REG (SET_DEST (x))
1656 && REG_P (SUBREG_REG (SET_DEST (x)))
1657 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1658 && refers_to_regno_p (regno, endregno,
1659 SUBREG_REG (SET_DEST (x)), loc))
1660 || (!REG_P (SET_DEST (x))
1661 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1662 return true;
1664 if (code == CLOBBER || loc == &SET_SRC (x))
1665 return false;
1666 x = SET_SRC (x);
1667 goto repeat;
1669 default:
1670 break;
1673 /* X does not match, so try its subexpressions. */
1675 fmt = GET_RTX_FORMAT (code);
1676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1678 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1680 if (i == 0)
1682 x = XEXP (x, 0);
1683 goto repeat;
1685 else
1686 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1687 return true;
1689 else if (fmt[i] == 'E')
1691 int j;
1692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1693 if (loc != &XVECEXP (x, i, j)
1694 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1695 return true;
1698 return false;
1701 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1702 we check if any register number in X conflicts with the relevant register
1703 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1704 contains a MEM (we don't bother checking for memory addresses that can't
1705 conflict because we expect this to be a rare case. */
1708 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1710 unsigned int regno, endregno;
1712 /* If either argument is a constant, then modifying X can not
1713 affect IN. Here we look at IN, we can profitably combine
1714 CONSTANT_P (x) with the switch statement below. */
1715 if (CONSTANT_P (in))
1716 return 0;
1718 recurse:
1719 switch (GET_CODE (x))
1721 case STRICT_LOW_PART:
1722 case ZERO_EXTRACT:
1723 case SIGN_EXTRACT:
1724 /* Overly conservative. */
1725 x = XEXP (x, 0);
1726 goto recurse;
1728 case SUBREG:
1729 regno = REGNO (SUBREG_REG (x));
1730 if (regno < FIRST_PSEUDO_REGISTER)
1731 regno = subreg_regno (x);
1732 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1733 ? subreg_nregs (x) : 1);
1734 goto do_reg;
1736 case REG:
1737 regno = REGNO (x);
1738 endregno = END_REGNO (x);
1739 do_reg:
1740 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1742 case MEM:
1744 const char *fmt;
1745 int i;
1747 if (MEM_P (in))
1748 return 1;
1750 fmt = GET_RTX_FORMAT (GET_CODE (in));
1751 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1752 if (fmt[i] == 'e')
1754 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1755 return 1;
1757 else if (fmt[i] == 'E')
1759 int j;
1760 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1761 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1762 return 1;
1765 return 0;
1768 case SCRATCH:
1769 case PC:
1770 case CC0:
1771 return reg_mentioned_p (x, in);
1773 case PARALLEL:
1775 int i;
1777 /* If any register in here refers to it we return true. */
1778 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1779 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1780 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1781 return 1;
1782 return 0;
1785 default:
1786 gcc_assert (CONSTANT_P (x));
1787 return 0;
1791 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1792 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1793 ignored by note_stores, but passed to FUN.
1795 FUN receives three arguments:
1796 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1797 2. the SET or CLOBBER rtx that does the store,
1798 3. the pointer DATA provided to note_stores.
1800 If the item being stored in or clobbered is a SUBREG of a hard register,
1801 the SUBREG will be passed. */
1803 void
1804 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1806 int i;
1808 if (GET_CODE (x) == COND_EXEC)
1809 x = COND_EXEC_CODE (x);
1811 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1813 rtx dest = SET_DEST (x);
1815 while ((GET_CODE (dest) == SUBREG
1816 && (!REG_P (SUBREG_REG (dest))
1817 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1818 || GET_CODE (dest) == ZERO_EXTRACT
1819 || GET_CODE (dest) == STRICT_LOW_PART)
1820 dest = XEXP (dest, 0);
1822 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1823 each of whose first operand is a register. */
1824 if (GET_CODE (dest) == PARALLEL)
1826 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1827 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1828 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1830 else
1831 (*fun) (dest, x, data);
1834 else if (GET_CODE (x) == PARALLEL)
1835 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1836 note_stores (XVECEXP (x, 0, i), fun, data);
1839 /* Like notes_stores, but call FUN for each expression that is being
1840 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1841 FUN for each expression, not any interior subexpressions. FUN receives a
1842 pointer to the expression and the DATA passed to this function.
1844 Note that this is not quite the same test as that done in reg_referenced_p
1845 since that considers something as being referenced if it is being
1846 partially set, while we do not. */
1848 void
1849 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1851 rtx body = *pbody;
1852 int i;
1854 switch (GET_CODE (body))
1856 case COND_EXEC:
1857 (*fun) (&COND_EXEC_TEST (body), data);
1858 note_uses (&COND_EXEC_CODE (body), fun, data);
1859 return;
1861 case PARALLEL:
1862 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1863 note_uses (&XVECEXP (body, 0, i), fun, data);
1864 return;
1866 case SEQUENCE:
1867 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1868 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1869 return;
1871 case USE:
1872 (*fun) (&XEXP (body, 0), data);
1873 return;
1875 case ASM_OPERANDS:
1876 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1877 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1878 return;
1880 case TRAP_IF:
1881 (*fun) (&TRAP_CONDITION (body), data);
1882 return;
1884 case PREFETCH:
1885 (*fun) (&XEXP (body, 0), data);
1886 return;
1888 case UNSPEC:
1889 case UNSPEC_VOLATILE:
1890 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1891 (*fun) (&XVECEXP (body, 0, i), data);
1892 return;
1894 case CLOBBER:
1895 if (MEM_P (XEXP (body, 0)))
1896 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1897 return;
1899 case SET:
1901 rtx dest = SET_DEST (body);
1903 /* For sets we replace everything in source plus registers in memory
1904 expression in store and operands of a ZERO_EXTRACT. */
1905 (*fun) (&SET_SRC (body), data);
1907 if (GET_CODE (dest) == ZERO_EXTRACT)
1909 (*fun) (&XEXP (dest, 1), data);
1910 (*fun) (&XEXP (dest, 2), data);
1913 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1914 dest = XEXP (dest, 0);
1916 if (MEM_P (dest))
1917 (*fun) (&XEXP (dest, 0), data);
1919 return;
1921 default:
1922 /* All the other possibilities never store. */
1923 (*fun) (pbody, data);
1924 return;
1928 /* Return nonzero if X's old contents don't survive after INSN.
1929 This will be true if X is (cc0) or if X is a register and
1930 X dies in INSN or because INSN entirely sets X.
1932 "Entirely set" means set directly and not through a SUBREG, or
1933 ZERO_EXTRACT, so no trace of the old contents remains.
1934 Likewise, REG_INC does not count.
1936 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1937 but for this use that makes no difference, since regs don't overlap
1938 during their lifetimes. Therefore, this function may be used
1939 at any time after deaths have been computed.
1941 If REG is a hard reg that occupies multiple machine registers, this
1942 function will only return 1 if each of those registers will be replaced
1943 by INSN. */
1946 dead_or_set_p (const_rtx insn, const_rtx x)
1948 unsigned int regno, end_regno;
1949 unsigned int i;
1951 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1952 if (GET_CODE (x) == CC0)
1953 return 1;
1955 gcc_assert (REG_P (x));
1957 regno = REGNO (x);
1958 end_regno = END_REGNO (x);
1959 for (i = regno; i < end_regno; i++)
1960 if (! dead_or_set_regno_p (insn, i))
1961 return 0;
1963 return 1;
1966 /* Return TRUE iff DEST is a register or subreg of a register and
1967 doesn't change the number of words of the inner register, and any
1968 part of the register is TEST_REGNO. */
1970 static bool
1971 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1973 unsigned int regno, endregno;
1975 if (GET_CODE (dest) == SUBREG
1976 && (((GET_MODE_SIZE (GET_MODE (dest))
1977 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1978 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1979 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1980 dest = SUBREG_REG (dest);
1982 if (!REG_P (dest))
1983 return false;
1985 regno = REGNO (dest);
1986 endregno = END_REGNO (dest);
1987 return (test_regno >= regno && test_regno < endregno);
1990 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1991 any member matches the covers_regno_no_parallel_p criteria. */
1993 static bool
1994 covers_regno_p (const_rtx dest, unsigned int test_regno)
1996 if (GET_CODE (dest) == PARALLEL)
1998 /* Some targets place small structures in registers for return
1999 values of functions, and those registers are wrapped in
2000 PARALLELs that we may see as the destination of a SET. */
2001 int i;
2003 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2005 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2006 if (inner != NULL_RTX
2007 && covers_regno_no_parallel_p (inner, test_regno))
2008 return true;
2011 return false;
2013 else
2014 return covers_regno_no_parallel_p (dest, test_regno);
2017 /* Utility function for dead_or_set_p to check an individual register. */
2020 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2022 const_rtx pattern;
2024 /* See if there is a death note for something that includes TEST_REGNO. */
2025 if (find_regno_note (insn, REG_DEAD, test_regno))
2026 return 1;
2028 if (CALL_P (insn)
2029 && find_regno_fusage (insn, CLOBBER, test_regno))
2030 return 1;
2032 pattern = PATTERN (insn);
2034 /* If a COND_EXEC is not executed, the value survives. */
2035 if (GET_CODE (pattern) == COND_EXEC)
2036 return 0;
2038 if (GET_CODE (pattern) == SET)
2039 return covers_regno_p (SET_DEST (pattern), test_regno);
2040 else if (GET_CODE (pattern) == PARALLEL)
2042 int i;
2044 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2046 rtx body = XVECEXP (pattern, 0, i);
2048 if (GET_CODE (body) == COND_EXEC)
2049 body = COND_EXEC_CODE (body);
2051 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2052 && covers_regno_p (SET_DEST (body), test_regno))
2053 return 1;
2057 return 0;
2060 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2061 If DATUM is nonzero, look for one whose datum is DATUM. */
2064 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2066 rtx link;
2068 gcc_checking_assert (insn);
2070 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2071 if (! INSN_P (insn))
2072 return 0;
2073 if (datum == 0)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == kind)
2077 return link;
2078 return 0;
2081 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2082 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2083 return link;
2084 return 0;
2087 /* Return the reg-note of kind KIND in insn INSN which applies to register
2088 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2089 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2090 it might be the case that the note overlaps REGNO. */
2093 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2095 rtx link;
2097 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2098 if (! INSN_P (insn))
2099 return 0;
2101 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2102 if (REG_NOTE_KIND (link) == kind
2103 /* Verify that it is a register, so that scratch and MEM won't cause a
2104 problem here. */
2105 && REG_P (XEXP (link, 0))
2106 && REGNO (XEXP (link, 0)) <= regno
2107 && END_REGNO (XEXP (link, 0)) > regno)
2108 return link;
2109 return 0;
2112 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2113 has such a note. */
2116 find_reg_equal_equiv_note (const_rtx insn)
2118 rtx link;
2120 if (!INSN_P (insn))
2121 return 0;
2123 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2124 if (REG_NOTE_KIND (link) == REG_EQUAL
2125 || REG_NOTE_KIND (link) == REG_EQUIV)
2127 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2128 insns that have multiple sets. Checking single_set to
2129 make sure of this is not the proper check, as explained
2130 in the comment in set_unique_reg_note.
2132 This should be changed into an assert. */
2133 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2134 return 0;
2135 return link;
2137 return NULL;
2140 /* Check whether INSN is a single_set whose source is known to be
2141 equivalent to a constant. Return that constant if so, otherwise
2142 return null. */
2145 find_constant_src (const rtx_insn *insn)
2147 rtx note, set, x;
2149 set = single_set (insn);
2150 if (set)
2152 x = avoid_constant_pool_reference (SET_SRC (set));
2153 if (CONSTANT_P (x))
2154 return x;
2157 note = find_reg_equal_equiv_note (insn);
2158 if (note && CONSTANT_P (XEXP (note, 0)))
2159 return XEXP (note, 0);
2161 return NULL_RTX;
2164 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2165 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2168 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2170 /* If it's not a CALL_INSN, it can't possibly have a
2171 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2172 if (!CALL_P (insn))
2173 return 0;
2175 gcc_assert (datum);
2177 if (!REG_P (datum))
2179 rtx link;
2181 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2182 link;
2183 link = XEXP (link, 1))
2184 if (GET_CODE (XEXP (link, 0)) == code
2185 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2186 return 1;
2188 else
2190 unsigned int regno = REGNO (datum);
2192 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2193 to pseudo registers, so don't bother checking. */
2195 if (regno < FIRST_PSEUDO_REGISTER)
2197 unsigned int end_regno = END_REGNO (datum);
2198 unsigned int i;
2200 for (i = regno; i < end_regno; i++)
2201 if (find_regno_fusage (insn, code, i))
2202 return 1;
2206 return 0;
2209 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2210 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2213 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2215 rtx link;
2217 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2218 to pseudo registers, so don't bother checking. */
2220 if (regno >= FIRST_PSEUDO_REGISTER
2221 || !CALL_P (insn) )
2222 return 0;
2224 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2226 rtx op, reg;
2228 if (GET_CODE (op = XEXP (link, 0)) == code
2229 && REG_P (reg = XEXP (op, 0))
2230 && REGNO (reg) <= regno
2231 && END_REGNO (reg) > regno)
2232 return 1;
2235 return 0;
2239 /* Return true if KIND is an integer REG_NOTE. */
2241 static bool
2242 int_reg_note_p (enum reg_note kind)
2244 return kind == REG_BR_PROB;
2247 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2248 stored as the pointer to the next register note. */
2251 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2253 rtx note;
2255 gcc_checking_assert (!int_reg_note_p (kind));
2256 switch (kind)
2258 case REG_CC_SETTER:
2259 case REG_CC_USER:
2260 case REG_LABEL_TARGET:
2261 case REG_LABEL_OPERAND:
2262 case REG_TM:
2263 /* These types of register notes use an INSN_LIST rather than an
2264 EXPR_LIST, so that copying is done right and dumps look
2265 better. */
2266 note = alloc_INSN_LIST (datum, list);
2267 PUT_REG_NOTE_KIND (note, kind);
2268 break;
2270 default:
2271 note = alloc_EXPR_LIST (kind, datum, list);
2272 break;
2275 return note;
2278 /* Add register note with kind KIND and datum DATUM to INSN. */
2280 void
2281 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2283 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2286 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2288 void
2289 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2291 gcc_checking_assert (int_reg_note_p (kind));
2292 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2293 datum, REG_NOTES (insn));
2296 /* Add a register note like NOTE to INSN. */
2298 void
2299 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2301 if (GET_CODE (note) == INT_LIST)
2302 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2303 else
2304 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2307 /* Remove register note NOTE from the REG_NOTES of INSN. */
2309 void
2310 remove_note (rtx insn, const_rtx note)
2312 rtx link;
2314 if (note == NULL_RTX)
2315 return;
2317 if (REG_NOTES (insn) == note)
2318 REG_NOTES (insn) = XEXP (note, 1);
2319 else
2320 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2321 if (XEXP (link, 1) == note)
2323 XEXP (link, 1) = XEXP (note, 1);
2324 break;
2327 switch (REG_NOTE_KIND (note))
2329 case REG_EQUAL:
2330 case REG_EQUIV:
2331 df_notes_rescan (as_a <rtx_insn *> (insn));
2332 break;
2333 default:
2334 break;
2338 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2340 void
2341 remove_reg_equal_equiv_notes (rtx_insn *insn)
2343 rtx *loc;
2345 loc = &REG_NOTES (insn);
2346 while (*loc)
2348 enum reg_note kind = REG_NOTE_KIND (*loc);
2349 if (kind == REG_EQUAL || kind == REG_EQUIV)
2350 *loc = XEXP (*loc, 1);
2351 else
2352 loc = &XEXP (*loc, 1);
2356 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2358 void
2359 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2361 df_ref eq_use;
2363 if (!df)
2364 return;
2366 /* This loop is a little tricky. We cannot just go down the chain because
2367 it is being modified by some actions in the loop. So we just iterate
2368 over the head. We plan to drain the list anyway. */
2369 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2371 rtx_insn *insn = DF_REF_INSN (eq_use);
2372 rtx note = find_reg_equal_equiv_note (insn);
2374 /* This assert is generally triggered when someone deletes a REG_EQUAL
2375 or REG_EQUIV note by hacking the list manually rather than calling
2376 remove_note. */
2377 gcc_assert (note);
2379 remove_note (insn, note);
2383 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2384 return 1 if it is found. A simple equality test is used to determine if
2385 NODE matches. */
2387 bool
2388 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2390 const_rtx x;
2392 for (x = listp; x; x = XEXP (x, 1))
2393 if (node == XEXP (x, 0))
2394 return true;
2396 return false;
2399 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2400 remove that entry from the list if it is found.
2402 A simple equality test is used to determine if NODE matches. */
2404 void
2405 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2407 rtx_expr_list *temp = *listp;
2408 rtx_expr_list *prev = NULL;
2410 while (temp)
2412 if (node == temp->element ())
2414 /* Splice the node out of the list. */
2415 if (prev)
2416 XEXP (prev, 1) = temp->next ();
2417 else
2418 *listp = temp->next ();
2420 return;
2423 prev = temp;
2424 temp = temp->next ();
2428 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
2431 A simple equality test is used to determine if NODE matches. */
2433 void
2434 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2436 rtx_insn_list *temp = *listp;
2437 rtx_insn_list *prev = NULL;
2439 while (temp)
2441 if (node == temp->insn ())
2443 /* Splice the node out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = temp->next ();
2446 else
2447 *listp = temp->next ();
2449 return;
2452 prev = temp;
2453 temp = temp->next ();
2457 /* Nonzero if X contains any volatile instructions. These are instructions
2458 which may cause unpredictable machine state instructions, and thus no
2459 instructions or register uses should be moved or combined across them.
2460 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2463 volatile_insn_p (const_rtx x)
2465 const RTX_CODE code = GET_CODE (x);
2466 switch (code)
2468 case LABEL_REF:
2469 case SYMBOL_REF:
2470 case CONST:
2471 CASE_CONST_ANY:
2472 case CC0:
2473 case PC:
2474 case REG:
2475 case SCRATCH:
2476 case CLOBBER:
2477 case ADDR_VEC:
2478 case ADDR_DIFF_VEC:
2479 case CALL:
2480 case MEM:
2481 return 0;
2483 case UNSPEC_VOLATILE:
2484 return 1;
2486 case ASM_INPUT:
2487 case ASM_OPERANDS:
2488 if (MEM_VOLATILE_P (x))
2489 return 1;
2491 default:
2492 break;
2495 /* Recursively scan the operands of this expression. */
2498 const char *const fmt = GET_RTX_FORMAT (code);
2499 int i;
2501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2503 if (fmt[i] == 'e')
2505 if (volatile_insn_p (XEXP (x, i)))
2506 return 1;
2508 else if (fmt[i] == 'E')
2510 int j;
2511 for (j = 0; j < XVECLEN (x, i); j++)
2512 if (volatile_insn_p (XVECEXP (x, i, j)))
2513 return 1;
2517 return 0;
2520 /* Nonzero if X contains any volatile memory references
2521 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2524 volatile_refs_p (const_rtx x)
2526 const RTX_CODE code = GET_CODE (x);
2527 switch (code)
2529 case LABEL_REF:
2530 case SYMBOL_REF:
2531 case CONST:
2532 CASE_CONST_ANY:
2533 case CC0:
2534 case PC:
2535 case REG:
2536 case SCRATCH:
2537 case CLOBBER:
2538 case ADDR_VEC:
2539 case ADDR_DIFF_VEC:
2540 return 0;
2542 case UNSPEC_VOLATILE:
2543 return 1;
2545 case MEM:
2546 case ASM_INPUT:
2547 case ASM_OPERANDS:
2548 if (MEM_VOLATILE_P (x))
2549 return 1;
2551 default:
2552 break;
2555 /* Recursively scan the operands of this expression. */
2558 const char *const fmt = GET_RTX_FORMAT (code);
2559 int i;
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2563 if (fmt[i] == 'e')
2565 if (volatile_refs_p (XEXP (x, i)))
2566 return 1;
2568 else if (fmt[i] == 'E')
2570 int j;
2571 for (j = 0; j < XVECLEN (x, i); j++)
2572 if (volatile_refs_p (XVECEXP (x, i, j)))
2573 return 1;
2577 return 0;
2580 /* Similar to above, except that it also rejects register pre- and post-
2581 incrementing. */
2584 side_effects_p (const_rtx x)
2586 const RTX_CODE code = GET_CODE (x);
2587 switch (code)
2589 case LABEL_REF:
2590 case SYMBOL_REF:
2591 case CONST:
2592 CASE_CONST_ANY:
2593 case CC0:
2594 case PC:
2595 case REG:
2596 case SCRATCH:
2597 case ADDR_VEC:
2598 case ADDR_DIFF_VEC:
2599 case VAR_LOCATION:
2600 return 0;
2602 case CLOBBER:
2603 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2604 when some combination can't be done. If we see one, don't think
2605 that we can simplify the expression. */
2606 return (GET_MODE (x) != VOIDmode);
2608 case PRE_INC:
2609 case PRE_DEC:
2610 case POST_INC:
2611 case POST_DEC:
2612 case PRE_MODIFY:
2613 case POST_MODIFY:
2614 case CALL:
2615 case UNSPEC_VOLATILE:
2616 return 1;
2618 case MEM:
2619 case ASM_INPUT:
2620 case ASM_OPERANDS:
2621 if (MEM_VOLATILE_P (x))
2622 return 1;
2624 default:
2625 break;
2628 /* Recursively scan the operands of this expression. */
2631 const char *fmt = GET_RTX_FORMAT (code);
2632 int i;
2634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2636 if (fmt[i] == 'e')
2638 if (side_effects_p (XEXP (x, i)))
2639 return 1;
2641 else if (fmt[i] == 'E')
2643 int j;
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 if (side_effects_p (XVECEXP (x, i, j)))
2646 return 1;
2650 return 0;
2653 /* Return nonzero if evaluating rtx X might cause a trap.
2654 FLAGS controls how to consider MEMs. A nonzero means the context
2655 of the access may have changed from the original, such that the
2656 address may have become invalid. */
2659 may_trap_p_1 (const_rtx x, unsigned flags)
2661 int i;
2662 enum rtx_code code;
2663 const char *fmt;
2665 /* We make no distinction currently, but this function is part of
2666 the internal target-hooks ABI so we keep the parameter as
2667 "unsigned flags". */
2668 bool code_changed = flags != 0;
2670 if (x == 0)
2671 return 0;
2672 code = GET_CODE (x);
2673 switch (code)
2675 /* Handle these cases quickly. */
2676 CASE_CONST_ANY:
2677 case SYMBOL_REF:
2678 case LABEL_REF:
2679 case CONST:
2680 case PC:
2681 case CC0:
2682 case REG:
2683 case SCRATCH:
2684 return 0;
2686 case UNSPEC:
2687 return targetm.unspec_may_trap_p (x, flags);
2689 case UNSPEC_VOLATILE:
2690 case ASM_INPUT:
2691 case TRAP_IF:
2692 return 1;
2694 case ASM_OPERANDS:
2695 return MEM_VOLATILE_P (x);
2697 /* Memory ref can trap unless it's a static var or a stack slot. */
2698 case MEM:
2699 /* Recognize specific pattern of stack checking probes. */
2700 if (flag_stack_check
2701 && MEM_VOLATILE_P (x)
2702 && XEXP (x, 0) == stack_pointer_rtx)
2703 return 1;
2704 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2705 reference; moving it out of context such as when moving code
2706 when optimizing, might cause its address to become invalid. */
2707 code_changed
2708 || !MEM_NOTRAP_P (x))
2710 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2711 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2712 GET_MODE (x), code_changed);
2715 return 0;
2717 /* Division by a non-constant might trap. */
2718 case DIV:
2719 case MOD:
2720 case UDIV:
2721 case UMOD:
2722 if (HONOR_SNANS (x))
2723 return 1;
2724 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2725 return flag_trapping_math;
2726 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2727 return 1;
2728 break;
2730 case EXPR_LIST:
2731 /* An EXPR_LIST is used to represent a function call. This
2732 certainly may trap. */
2733 return 1;
2735 case GE:
2736 case GT:
2737 case LE:
2738 case LT:
2739 case LTGT:
2740 case COMPARE:
2741 /* Some floating point comparisons may trap. */
2742 if (!flag_trapping_math)
2743 break;
2744 /* ??? There is no machine independent way to check for tests that trap
2745 when COMPARE is used, though many targets do make this distinction.
2746 For instance, sparc uses CCFPE for compares which generate exceptions
2747 and CCFP for compares which do not generate exceptions. */
2748 if (HONOR_NANS (x))
2749 return 1;
2750 /* But often the compare has some CC mode, so check operand
2751 modes as well. */
2752 if (HONOR_NANS (XEXP (x, 0))
2753 || HONOR_NANS (XEXP (x, 1)))
2754 return 1;
2755 break;
2757 case EQ:
2758 case NE:
2759 if (HONOR_SNANS (x))
2760 return 1;
2761 /* Often comparison is CC mode, so check operand modes. */
2762 if (HONOR_SNANS (XEXP (x, 0))
2763 || HONOR_SNANS (XEXP (x, 1)))
2764 return 1;
2765 break;
2767 case FIX:
2768 /* Conversion of floating point might trap. */
2769 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2770 return 1;
2771 break;
2773 case NEG:
2774 case ABS:
2775 case SUBREG:
2776 /* These operations don't trap even with floating point. */
2777 break;
2779 default:
2780 /* Any floating arithmetic may trap. */
2781 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2782 return 1;
2785 fmt = GET_RTX_FORMAT (code);
2786 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2788 if (fmt[i] == 'e')
2790 if (may_trap_p_1 (XEXP (x, i), flags))
2791 return 1;
2793 else if (fmt[i] == 'E')
2795 int j;
2796 for (j = 0; j < XVECLEN (x, i); j++)
2797 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2798 return 1;
2801 return 0;
2804 /* Return nonzero if evaluating rtx X might cause a trap. */
2807 may_trap_p (const_rtx x)
2809 return may_trap_p_1 (x, 0);
2812 /* Same as above, but additionally return nonzero if evaluating rtx X might
2813 cause a fault. We define a fault for the purpose of this function as a
2814 erroneous execution condition that cannot be encountered during the normal
2815 execution of a valid program; the typical example is an unaligned memory
2816 access on a strict alignment machine. The compiler guarantees that it
2817 doesn't generate code that will fault from a valid program, but this
2818 guarantee doesn't mean anything for individual instructions. Consider
2819 the following example:
2821 struct S { int d; union { char *cp; int *ip; }; };
2823 int foo(struct S *s)
2825 if (s->d == 1)
2826 return *s->ip;
2827 else
2828 return *s->cp;
2831 on a strict alignment machine. In a valid program, foo will never be
2832 invoked on a structure for which d is equal to 1 and the underlying
2833 unique field of the union not aligned on a 4-byte boundary, but the
2834 expression *s->ip might cause a fault if considered individually.
2836 At the RTL level, potentially problematic expressions will almost always
2837 verify may_trap_p; for example, the above dereference can be emitted as
2838 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2839 However, suppose that foo is inlined in a caller that causes s->cp to
2840 point to a local character variable and guarantees that s->d is not set
2841 to 1; foo may have been effectively translated into pseudo-RTL as:
2843 if ((reg:SI) == 1)
2844 (set (reg:SI) (mem:SI (%fp - 7)))
2845 else
2846 (set (reg:QI) (mem:QI (%fp - 7)))
2848 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2849 memory reference to a stack slot, but it will certainly cause a fault
2850 on a strict alignment machine. */
2853 may_trap_or_fault_p (const_rtx x)
2855 return may_trap_p_1 (x, 1);
2858 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2859 i.e., an inequality. */
2862 inequality_comparisons_p (const_rtx x)
2864 const char *fmt;
2865 int len, i;
2866 const enum rtx_code code = GET_CODE (x);
2868 switch (code)
2870 case REG:
2871 case SCRATCH:
2872 case PC:
2873 case CC0:
2874 CASE_CONST_ANY:
2875 case CONST:
2876 case LABEL_REF:
2877 case SYMBOL_REF:
2878 return 0;
2880 case LT:
2881 case LTU:
2882 case GT:
2883 case GTU:
2884 case LE:
2885 case LEU:
2886 case GE:
2887 case GEU:
2888 return 1;
2890 default:
2891 break;
2894 len = GET_RTX_LENGTH (code);
2895 fmt = GET_RTX_FORMAT (code);
2897 for (i = 0; i < len; i++)
2899 if (fmt[i] == 'e')
2901 if (inequality_comparisons_p (XEXP (x, i)))
2902 return 1;
2904 else if (fmt[i] == 'E')
2906 int j;
2907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2908 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2909 return 1;
2913 return 0;
2916 /* Replace any occurrence of FROM in X with TO. The function does
2917 not enter into CONST_DOUBLE for the replace.
2919 Note that copying is not done so X must not be shared unless all copies
2920 are to be modified.
2922 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2923 those pointer-equal ones. */
2926 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2928 int i, j;
2929 const char *fmt;
2931 if (x == from)
2932 return to;
2934 /* Allow this function to make replacements in EXPR_LISTs. */
2935 if (x == 0)
2936 return 0;
2938 if (all_regs
2939 && REG_P (x)
2940 && REG_P (from)
2941 && REGNO (x) == REGNO (from))
2943 gcc_assert (GET_MODE (x) == GET_MODE (from));
2944 return to;
2946 else if (GET_CODE (x) == SUBREG)
2948 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2950 if (CONST_INT_P (new_rtx))
2952 x = simplify_subreg (GET_MODE (x), new_rtx,
2953 GET_MODE (SUBREG_REG (x)),
2954 SUBREG_BYTE (x));
2955 gcc_assert (x);
2957 else
2958 SUBREG_REG (x) = new_rtx;
2960 return x;
2962 else if (GET_CODE (x) == ZERO_EXTEND)
2964 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
2966 if (CONST_INT_P (new_rtx))
2968 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2969 new_rtx, GET_MODE (XEXP (x, 0)));
2970 gcc_assert (x);
2972 else
2973 XEXP (x, 0) = new_rtx;
2975 return x;
2978 fmt = GET_RTX_FORMAT (GET_CODE (x));
2979 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2981 if (fmt[i] == 'e')
2982 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
2983 else if (fmt[i] == 'E')
2984 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2985 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
2986 from, to, all_regs);
2989 return x;
2992 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2993 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2995 void
2996 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2998 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2999 rtx x = *loc;
3000 if (JUMP_TABLE_DATA_P (x))
3002 x = PATTERN (x);
3003 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3004 int len = GET_NUM_ELEM (vec);
3005 for (int i = 0; i < len; ++i)
3007 rtx ref = RTVEC_ELT (vec, i);
3008 if (XEXP (ref, 0) == old_label)
3010 XEXP (ref, 0) = new_label;
3011 if (update_label_nuses)
3013 ++LABEL_NUSES (new_label);
3014 --LABEL_NUSES (old_label);
3018 return;
3021 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3022 field. This is not handled by the iterator because it doesn't
3023 handle unprinted ('0') fields. */
3024 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3025 JUMP_LABEL (x) = new_label;
3027 subrtx_ptr_iterator::array_type array;
3028 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3030 rtx *loc = *iter;
3031 if (rtx x = *loc)
3033 if (GET_CODE (x) == SYMBOL_REF
3034 && CONSTANT_POOL_ADDRESS_P (x))
3036 rtx c = get_pool_constant (x);
3037 if (rtx_referenced_p (old_label, c))
3039 /* Create a copy of constant C; replace the label inside
3040 but do not update LABEL_NUSES because uses in constant pool
3041 are not counted. */
3042 rtx new_c = copy_rtx (c);
3043 replace_label (&new_c, old_label, new_label, false);
3045 /* Add the new constant NEW_C to constant pool and replace
3046 the old reference to constant by new reference. */
3047 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3048 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3052 if ((GET_CODE (x) == LABEL_REF
3053 || GET_CODE (x) == INSN_LIST)
3054 && XEXP (x, 0) == old_label)
3056 XEXP (x, 0) = new_label;
3057 if (update_label_nuses)
3059 ++LABEL_NUSES (new_label);
3060 --LABEL_NUSES (old_label);
3067 void
3068 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3069 bool update_label_nuses)
3071 rtx insn_as_rtx = insn;
3072 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3073 gcc_checking_assert (insn_as_rtx == insn);
3076 /* Return true if X is referenced in BODY. */
3078 bool
3079 rtx_referenced_p (const_rtx x, const_rtx body)
3081 subrtx_iterator::array_type array;
3082 FOR_EACH_SUBRTX (iter, array, body, ALL)
3083 if (const_rtx y = *iter)
3085 /* Check if a label_ref Y refers to label X. */
3086 if (GET_CODE (y) == LABEL_REF
3087 && LABEL_P (x)
3088 && LABEL_REF_LABEL (y) == x)
3089 return true;
3091 if (rtx_equal_p (x, y))
3092 return true;
3094 /* If Y is a reference to pool constant traverse the constant. */
3095 if (GET_CODE (y) == SYMBOL_REF
3096 && CONSTANT_POOL_ADDRESS_P (y))
3097 iter.substitute (get_pool_constant (y));
3099 return false;
3102 /* If INSN is a tablejump return true and store the label (before jump table) to
3103 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3105 bool
3106 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3108 rtx label;
3109 rtx_insn *table;
3111 if (!JUMP_P (insn))
3112 return false;
3114 label = JUMP_LABEL (insn);
3115 if (label != NULL_RTX && !ANY_RETURN_P (label)
3116 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3117 && JUMP_TABLE_DATA_P (table))
3119 if (labelp)
3120 *labelp = label;
3121 if (tablep)
3122 *tablep = as_a <rtx_jump_table_data *> (table);
3123 return true;
3125 return false;
3128 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3129 constant that is not in the constant pool and not in the condition
3130 of an IF_THEN_ELSE. */
3132 static int
3133 computed_jump_p_1 (const_rtx x)
3135 const enum rtx_code code = GET_CODE (x);
3136 int i, j;
3137 const char *fmt;
3139 switch (code)
3141 case LABEL_REF:
3142 case PC:
3143 return 0;
3145 case CONST:
3146 CASE_CONST_ANY:
3147 case SYMBOL_REF:
3148 case REG:
3149 return 1;
3151 case MEM:
3152 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3153 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3155 case IF_THEN_ELSE:
3156 return (computed_jump_p_1 (XEXP (x, 1))
3157 || computed_jump_p_1 (XEXP (x, 2)));
3159 default:
3160 break;
3163 fmt = GET_RTX_FORMAT (code);
3164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3166 if (fmt[i] == 'e'
3167 && computed_jump_p_1 (XEXP (x, i)))
3168 return 1;
3170 else if (fmt[i] == 'E')
3171 for (j = 0; j < XVECLEN (x, i); j++)
3172 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3173 return 1;
3176 return 0;
3179 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3181 Tablejumps and casesi insns are not considered indirect jumps;
3182 we can recognize them by a (use (label_ref)). */
3185 computed_jump_p (const rtx_insn *insn)
3187 int i;
3188 if (JUMP_P (insn))
3190 rtx pat = PATTERN (insn);
3192 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3193 if (JUMP_LABEL (insn) != NULL)
3194 return 0;
3196 if (GET_CODE (pat) == PARALLEL)
3198 int len = XVECLEN (pat, 0);
3199 int has_use_labelref = 0;
3201 for (i = len - 1; i >= 0; i--)
3202 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3203 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3204 == LABEL_REF))
3206 has_use_labelref = 1;
3207 break;
3210 if (! has_use_labelref)
3211 for (i = len - 1; i >= 0; i--)
3212 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3213 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3214 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3215 return 1;
3217 else if (GET_CODE (pat) == SET
3218 && SET_DEST (pat) == pc_rtx
3219 && computed_jump_p_1 (SET_SRC (pat)))
3220 return 1;
3222 return 0;
3227 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3228 the equivalent add insn and pass the result to FN, using DATA as the
3229 final argument. */
3231 static int
3232 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3234 rtx x = XEXP (mem, 0);
3235 switch (GET_CODE (x))
3237 case PRE_INC:
3238 case POST_INC:
3240 int size = GET_MODE_SIZE (GET_MODE (mem));
3241 rtx r1 = XEXP (x, 0);
3242 rtx c = gen_int_mode (size, GET_MODE (r1));
3243 return fn (mem, x, r1, r1, c, data);
3246 case PRE_DEC:
3247 case POST_DEC:
3249 int size = GET_MODE_SIZE (GET_MODE (mem));
3250 rtx r1 = XEXP (x, 0);
3251 rtx c = gen_int_mode (-size, GET_MODE (r1));
3252 return fn (mem, x, r1, r1, c, data);
3255 case PRE_MODIFY:
3256 case POST_MODIFY:
3258 rtx r1 = XEXP (x, 0);
3259 rtx add = XEXP (x, 1);
3260 return fn (mem, x, r1, add, NULL, data);
3263 default:
3264 gcc_unreachable ();
3268 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3269 For each such autoinc operation found, call FN, passing it
3270 the innermost enclosing MEM, the operation itself, the RTX modified
3271 by the operation, two RTXs (the second may be NULL) that, once
3272 added, represent the value to be held by the modified RTX
3273 afterwards, and DATA. FN is to return 0 to continue the
3274 traversal or any other value to have it returned to the caller of
3275 for_each_inc_dec. */
3278 for_each_inc_dec (rtx x,
3279 for_each_inc_dec_fn fn,
3280 void *data)
3282 subrtx_var_iterator::array_type array;
3283 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3285 rtx mem = *iter;
3286 if (mem
3287 && MEM_P (mem)
3288 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3290 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3291 if (res != 0)
3292 return res;
3293 iter.skip_subrtxes ();
3296 return 0;
3300 /* Searches X for any reference to REGNO, returning the rtx of the
3301 reference found if any. Otherwise, returns NULL_RTX. */
3304 regno_use_in (unsigned int regno, rtx x)
3306 const char *fmt;
3307 int i, j;
3308 rtx tem;
3310 if (REG_P (x) && REGNO (x) == regno)
3311 return x;
3313 fmt = GET_RTX_FORMAT (GET_CODE (x));
3314 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3316 if (fmt[i] == 'e')
3318 if ((tem = regno_use_in (regno, XEXP (x, i))))
3319 return tem;
3321 else if (fmt[i] == 'E')
3322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3323 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3324 return tem;
3327 return NULL_RTX;
3330 /* Return a value indicating whether OP, an operand of a commutative
3331 operation, is preferred as the first or second operand. The more
3332 positive the value, the stronger the preference for being the first
3333 operand. */
3336 commutative_operand_precedence (rtx op)
3338 enum rtx_code code = GET_CODE (op);
3340 /* Constants always become the second operand. Prefer "nice" constants. */
3341 if (code == CONST_INT)
3342 return -8;
3343 if (code == CONST_WIDE_INT)
3344 return -7;
3345 if (code == CONST_DOUBLE)
3346 return -7;
3347 if (code == CONST_FIXED)
3348 return -7;
3349 op = avoid_constant_pool_reference (op);
3350 code = GET_CODE (op);
3352 switch (GET_RTX_CLASS (code))
3354 case RTX_CONST_OBJ:
3355 if (code == CONST_INT)
3356 return -6;
3357 if (code == CONST_WIDE_INT)
3358 return -6;
3359 if (code == CONST_DOUBLE)
3360 return -5;
3361 if (code == CONST_FIXED)
3362 return -5;
3363 return -4;
3365 case RTX_EXTRA:
3366 /* SUBREGs of objects should come second. */
3367 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3368 return -3;
3369 return 0;
3371 case RTX_OBJ:
3372 /* Complex expressions should be the first, so decrease priority
3373 of objects. Prefer pointer objects over non pointer objects. */
3374 if ((REG_P (op) && REG_POINTER (op))
3375 || (MEM_P (op) && MEM_POINTER (op)))
3376 return -1;
3377 return -2;
3379 case RTX_COMM_ARITH:
3380 /* Prefer operands that are themselves commutative to be first.
3381 This helps to make things linear. In particular,
3382 (and (and (reg) (reg)) (not (reg))) is canonical. */
3383 return 4;
3385 case RTX_BIN_ARITH:
3386 /* If only one operand is a binary expression, it will be the first
3387 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3388 is canonical, although it will usually be further simplified. */
3389 return 2;
3391 case RTX_UNARY:
3392 /* Then prefer NEG and NOT. */
3393 if (code == NEG || code == NOT)
3394 return 1;
3395 /* FALLTHRU */
3397 default:
3398 return 0;
3402 /* Return 1 iff it is necessary to swap operands of commutative operation
3403 in order to canonicalize expression. */
3405 bool
3406 swap_commutative_operands_p (rtx x, rtx y)
3408 return (commutative_operand_precedence (x)
3409 < commutative_operand_precedence (y));
3412 /* Return 1 if X is an autoincrement side effect and the register is
3413 not the stack pointer. */
3415 auto_inc_p (const_rtx x)
3417 switch (GET_CODE (x))
3419 case PRE_INC:
3420 case POST_INC:
3421 case PRE_DEC:
3422 case POST_DEC:
3423 case PRE_MODIFY:
3424 case POST_MODIFY:
3425 /* There are no REG_INC notes for SP. */
3426 if (XEXP (x, 0) != stack_pointer_rtx)
3427 return 1;
3428 default:
3429 break;
3431 return 0;
3434 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3436 loc_mentioned_in_p (rtx *loc, const_rtx in)
3438 enum rtx_code code;
3439 const char *fmt;
3440 int i, j;
3442 if (!in)
3443 return 0;
3445 code = GET_CODE (in);
3446 fmt = GET_RTX_FORMAT (code);
3447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3449 if (fmt[i] == 'e')
3451 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3452 return 1;
3454 else if (fmt[i] == 'E')
3455 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3456 if (loc == &XVECEXP (in, i, j)
3457 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3458 return 1;
3460 return 0;
3463 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3464 and SUBREG_BYTE, return the bit offset where the subreg begins
3465 (counting from the least significant bit of the operand). */
3467 unsigned int
3468 subreg_lsb_1 (machine_mode outer_mode,
3469 machine_mode inner_mode,
3470 unsigned int subreg_byte)
3472 unsigned int bitpos;
3473 unsigned int byte;
3474 unsigned int word;
3476 /* A paradoxical subreg begins at bit position 0. */
3477 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3478 return 0;
3480 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3481 /* If the subreg crosses a word boundary ensure that
3482 it also begins and ends on a word boundary. */
3483 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3484 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3485 && (subreg_byte % UNITS_PER_WORD
3486 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3488 if (WORDS_BIG_ENDIAN)
3489 word = (GET_MODE_SIZE (inner_mode)
3490 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3491 else
3492 word = subreg_byte / UNITS_PER_WORD;
3493 bitpos = word * BITS_PER_WORD;
3495 if (BYTES_BIG_ENDIAN)
3496 byte = (GET_MODE_SIZE (inner_mode)
3497 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3498 else
3499 byte = subreg_byte % UNITS_PER_WORD;
3500 bitpos += byte * BITS_PER_UNIT;
3502 return bitpos;
3505 /* Given a subreg X, return the bit offset where the subreg begins
3506 (counting from the least significant bit of the reg). */
3508 unsigned int
3509 subreg_lsb (const_rtx x)
3511 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3512 SUBREG_BYTE (x));
3515 /* Fill in information about a subreg of a hard register.
3516 xregno - A regno of an inner hard subreg_reg (or what will become one).
3517 xmode - The mode of xregno.
3518 offset - The byte offset.
3519 ymode - The mode of a top level SUBREG (or what may become one).
3520 info - Pointer to structure to fill in.
3522 Rather than considering one particular inner register (and thus one
3523 particular "outer" register) in isolation, this function really uses
3524 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3525 function does not check whether adding INFO->offset to XREGNO gives
3526 a valid hard register; even if INFO->offset + XREGNO is out of range,
3527 there might be another register of the same type that is in range.
3528 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3529 register, since that can depend on things like whether the final
3530 register number is even or odd. Callers that want to check whether
3531 this particular subreg can be replaced by a simple (reg ...) should
3532 use simplify_subreg_regno. */
3534 void
3535 subreg_get_info (unsigned int xregno, machine_mode xmode,
3536 unsigned int offset, machine_mode ymode,
3537 struct subreg_info *info)
3539 int nregs_xmode, nregs_ymode;
3540 int mode_multiple, nregs_multiple;
3541 int offset_adj, y_offset, y_offset_adj;
3542 int regsize_xmode, regsize_ymode;
3543 bool rknown;
3545 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3547 rknown = false;
3549 /* If there are holes in a non-scalar mode in registers, we expect
3550 that it is made up of its units concatenated together. */
3551 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3553 machine_mode xmode_unit;
3555 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3556 xmode_unit = GET_MODE_INNER (xmode);
3557 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3558 gcc_assert (nregs_xmode
3559 == (GET_MODE_NUNITS (xmode)
3560 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3561 gcc_assert (hard_regno_nregs[xregno][xmode]
3562 == (hard_regno_nregs[xregno][xmode_unit]
3563 * GET_MODE_NUNITS (xmode)));
3565 /* You can only ask for a SUBREG of a value with holes in the middle
3566 if you don't cross the holes. (Such a SUBREG should be done by
3567 picking a different register class, or doing it in memory if
3568 necessary.) An example of a value with holes is XCmode on 32-bit
3569 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3570 3 for each part, but in memory it's two 128-bit parts.
3571 Padding is assumed to be at the end (not necessarily the 'high part')
3572 of each unit. */
3573 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3574 < GET_MODE_NUNITS (xmode))
3575 && (offset / GET_MODE_SIZE (xmode_unit)
3576 != ((offset + GET_MODE_SIZE (ymode) - 1)
3577 / GET_MODE_SIZE (xmode_unit))))
3579 info->representable_p = false;
3580 rknown = true;
3583 else
3584 nregs_xmode = hard_regno_nregs[xregno][xmode];
3586 nregs_ymode = hard_regno_nregs[xregno][ymode];
3588 /* Paradoxical subregs are otherwise valid. */
3589 if (!rknown
3590 && offset == 0
3591 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3593 info->representable_p = true;
3594 /* If this is a big endian paradoxical subreg, which uses more
3595 actual hard registers than the original register, we must
3596 return a negative offset so that we find the proper highpart
3597 of the register. */
3598 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3599 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3600 info->offset = nregs_xmode - nregs_ymode;
3601 else
3602 info->offset = 0;
3603 info->nregs = nregs_ymode;
3604 return;
3607 /* If registers store different numbers of bits in the different
3608 modes, we cannot generally form this subreg. */
3609 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3610 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3611 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3612 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3614 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3615 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3616 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3618 info->representable_p = false;
3619 info->nregs
3620 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3621 info->offset = offset / regsize_xmode;
3622 return;
3624 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3626 info->representable_p = false;
3627 info->nregs
3628 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3629 info->offset = offset / regsize_xmode;
3630 return;
3632 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3633 would go outside of XMODE. */
3634 if (!rknown
3635 && GET_MODE_SIZE (ymode) + offset > GET_MODE_SIZE (xmode))
3637 info->representable_p = false;
3638 info->nregs = nregs_ymode;
3639 info->offset = offset / regsize_xmode;
3640 return;
3642 /* Quick exit for the simple and common case of extracting whole
3643 subregisters from a multiregister value. */
3644 /* ??? It would be better to integrate this into the code below,
3645 if we can generalize the concept enough and figure out how
3646 odd-sized modes can coexist with the other weird cases we support. */
3647 if (!rknown
3648 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3649 && regsize_xmode == regsize_ymode
3650 && (offset % regsize_ymode) == 0)
3652 info->representable_p = true;
3653 info->nregs = nregs_ymode;
3654 info->offset = offset / regsize_ymode;
3655 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3656 return;
3660 /* Lowpart subregs are otherwise valid. */
3661 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3663 info->representable_p = true;
3664 rknown = true;
3666 if (offset == 0 || nregs_xmode == nregs_ymode)
3668 info->offset = 0;
3669 info->nregs = nregs_ymode;
3670 return;
3674 /* This should always pass, otherwise we don't know how to verify
3675 the constraint. These conditions may be relaxed but
3676 subreg_regno_offset would need to be redesigned. */
3677 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3678 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3680 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3681 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3683 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3684 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3685 HOST_WIDE_INT off_low = offset & (ysize - 1);
3686 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3687 offset = (xsize - ysize - off_high) | off_low;
3689 /* The XMODE value can be seen as a vector of NREGS_XMODE
3690 values. The subreg must represent a lowpart of given field.
3691 Compute what field it is. */
3692 offset_adj = offset;
3693 offset_adj -= subreg_lowpart_offset (ymode,
3694 mode_for_size (GET_MODE_BITSIZE (xmode)
3695 / nregs_xmode,
3696 MODE_INT, 0));
3698 /* Size of ymode must not be greater than the size of xmode. */
3699 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3700 gcc_assert (mode_multiple != 0);
3702 y_offset = offset / GET_MODE_SIZE (ymode);
3703 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3704 nregs_multiple = nregs_xmode / nregs_ymode;
3706 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3707 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3709 if (!rknown)
3711 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3712 rknown = true;
3714 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3715 info->nregs = nregs_ymode;
3718 /* This function returns the regno offset of a subreg expression.
3719 xregno - A regno of an inner hard subreg_reg (or what will become one).
3720 xmode - The mode of xregno.
3721 offset - The byte offset.
3722 ymode - The mode of a top level SUBREG (or what may become one).
3723 RETURN - The regno offset which would be used. */
3724 unsigned int
3725 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3726 unsigned int offset, machine_mode ymode)
3728 struct subreg_info info;
3729 subreg_get_info (xregno, xmode, offset, ymode, &info);
3730 return info.offset;
3733 /* This function returns true when the offset is representable via
3734 subreg_offset in the given regno.
3735 xregno - A regno of an inner hard subreg_reg (or what will become one).
3736 xmode - The mode of xregno.
3737 offset - The byte offset.
3738 ymode - The mode of a top level SUBREG (or what may become one).
3739 RETURN - Whether the offset is representable. */
3740 bool
3741 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3742 unsigned int offset, machine_mode ymode)
3744 struct subreg_info info;
3745 subreg_get_info (xregno, xmode, offset, ymode, &info);
3746 return info.representable_p;
3749 /* Return the number of a YMODE register to which
3751 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3753 can be simplified. Return -1 if the subreg can't be simplified.
3755 XREGNO is a hard register number. */
3758 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3759 unsigned int offset, machine_mode ymode)
3761 struct subreg_info info;
3762 unsigned int yregno;
3764 #ifdef CANNOT_CHANGE_MODE_CLASS
3765 /* Give the backend a chance to disallow the mode change. */
3766 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3767 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3768 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3769 /* We can use mode change in LRA for some transformations. */
3770 && ! lra_in_progress)
3771 return -1;
3772 #endif
3774 /* We shouldn't simplify stack-related registers. */
3775 if ((!reload_completed || frame_pointer_needed)
3776 && xregno == FRAME_POINTER_REGNUM)
3777 return -1;
3779 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3780 && xregno == ARG_POINTER_REGNUM)
3781 return -1;
3783 if (xregno == STACK_POINTER_REGNUM
3784 /* We should convert hard stack register in LRA if it is
3785 possible. */
3786 && ! lra_in_progress)
3787 return -1;
3789 /* Try to get the register offset. */
3790 subreg_get_info (xregno, xmode, offset, ymode, &info);
3791 if (!info.representable_p)
3792 return -1;
3794 /* Make sure that the offsetted register value is in range. */
3795 yregno = xregno + info.offset;
3796 if (!HARD_REGISTER_NUM_P (yregno))
3797 return -1;
3799 /* See whether (reg:YMODE YREGNO) is valid.
3801 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3802 This is a kludge to work around how complex FP arguments are passed
3803 on IA-64 and should be fixed. See PR target/49226. */
3804 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3805 && HARD_REGNO_MODE_OK (xregno, xmode))
3806 return -1;
3808 return (int) yregno;
3811 /* Return the final regno that a subreg expression refers to. */
3812 unsigned int
3813 subreg_regno (const_rtx x)
3815 unsigned int ret;
3816 rtx subreg = SUBREG_REG (x);
3817 int regno = REGNO (subreg);
3819 ret = regno + subreg_regno_offset (regno,
3820 GET_MODE (subreg),
3821 SUBREG_BYTE (x),
3822 GET_MODE (x));
3823 return ret;
3827 /* Return the number of registers that a subreg expression refers
3828 to. */
3829 unsigned int
3830 subreg_nregs (const_rtx x)
3832 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3835 /* Return the number of registers that a subreg REG with REGNO
3836 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3837 changed so that the regno can be passed in. */
3839 unsigned int
3840 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3842 struct subreg_info info;
3843 rtx subreg = SUBREG_REG (x);
3845 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3846 &info);
3847 return info.nregs;
3851 struct parms_set_data
3853 int nregs;
3854 HARD_REG_SET regs;
3857 /* Helper function for noticing stores to parameter registers. */
3858 static void
3859 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3861 struct parms_set_data *const d = (struct parms_set_data *) data;
3862 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3863 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3865 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3866 d->nregs--;
3870 /* Look backward for first parameter to be loaded.
3871 Note that loads of all parameters will not necessarily be
3872 found if CSE has eliminated some of them (e.g., an argument
3873 to the outer function is passed down as a parameter).
3874 Do not skip BOUNDARY. */
3875 rtx_insn *
3876 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3878 struct parms_set_data parm;
3879 rtx p;
3880 rtx_insn *before, *first_set;
3882 /* Since different machines initialize their parameter registers
3883 in different orders, assume nothing. Collect the set of all
3884 parameter registers. */
3885 CLEAR_HARD_REG_SET (parm.regs);
3886 parm.nregs = 0;
3887 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3888 if (GET_CODE (XEXP (p, 0)) == USE
3889 && REG_P (XEXP (XEXP (p, 0), 0)))
3891 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3893 /* We only care about registers which can hold function
3894 arguments. */
3895 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3896 continue;
3898 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3899 parm.nregs++;
3901 before = call_insn;
3902 first_set = call_insn;
3904 /* Search backward for the first set of a register in this set. */
3905 while (parm.nregs && before != boundary)
3907 before = PREV_INSN (before);
3909 /* It is possible that some loads got CSEed from one call to
3910 another. Stop in that case. */
3911 if (CALL_P (before))
3912 break;
3914 /* Our caller needs either ensure that we will find all sets
3915 (in case code has not been optimized yet), or take care
3916 for possible labels in a way by setting boundary to preceding
3917 CODE_LABEL. */
3918 if (LABEL_P (before))
3920 gcc_assert (before == boundary);
3921 break;
3924 if (INSN_P (before))
3926 int nregs_old = parm.nregs;
3927 note_stores (PATTERN (before), parms_set, &parm);
3928 /* If we found something that did not set a parameter reg,
3929 we're done. Do not keep going, as that might result
3930 in hoisting an insn before the setting of a pseudo
3931 that is used by the hoisted insn. */
3932 if (nregs_old != parm.nregs)
3933 first_set = before;
3934 else
3935 break;
3938 return first_set;
3941 /* Return true if we should avoid inserting code between INSN and preceding
3942 call instruction. */
3944 bool
3945 keep_with_call_p (const rtx_insn *insn)
3947 rtx set;
3949 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3951 if (REG_P (SET_DEST (set))
3952 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3953 && fixed_regs[REGNO (SET_DEST (set))]
3954 && general_operand (SET_SRC (set), VOIDmode))
3955 return true;
3956 if (REG_P (SET_SRC (set))
3957 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3958 && REG_P (SET_DEST (set))
3959 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3960 return true;
3961 /* There may be a stack pop just after the call and before the store
3962 of the return register. Search for the actual store when deciding
3963 if we can break or not. */
3964 if (SET_DEST (set) == stack_pointer_rtx)
3966 /* This CONST_CAST is okay because next_nonnote_insn just
3967 returns its argument and we assign it to a const_rtx
3968 variable. */
3969 const rtx_insn *i2
3970 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3971 if (i2 && keep_with_call_p (i2))
3972 return true;
3975 return false;
3978 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3979 to non-complex jumps. That is, direct unconditional, conditional,
3980 and tablejumps, but not computed jumps or returns. It also does
3981 not apply to the fallthru case of a conditional jump. */
3983 bool
3984 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3986 rtx tmp = JUMP_LABEL (jump_insn);
3987 rtx_jump_table_data *table;
3989 if (label == tmp)
3990 return true;
3992 if (tablejump_p (jump_insn, NULL, &table))
3994 rtvec vec = table->get_labels ();
3995 int i, veclen = GET_NUM_ELEM (vec);
3997 for (i = 0; i < veclen; ++i)
3998 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3999 return true;
4002 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4003 return true;
4005 return false;
4009 /* Return an estimate of the cost of computing rtx X.
4010 One use is in cse, to decide which expression to keep in the hash table.
4011 Another is in rtl generation, to pick the cheapest way to multiply.
4012 Other uses like the latter are expected in the future.
4014 X appears as operand OPNO in an expression with code OUTER_CODE.
4015 SPEED specifies whether costs optimized for speed or size should
4016 be returned. */
4019 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4020 int opno, bool speed)
4022 int i, j;
4023 enum rtx_code code;
4024 const char *fmt;
4025 int total;
4026 int factor;
4028 if (x == 0)
4029 return 0;
4031 if (GET_MODE (x) != VOIDmode)
4032 mode = GET_MODE (x);
4034 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4035 many insns, taking N times as long. */
4036 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4037 if (factor == 0)
4038 factor = 1;
4040 /* Compute the default costs of certain things.
4041 Note that targetm.rtx_costs can override the defaults. */
4043 code = GET_CODE (x);
4044 switch (code)
4046 case MULT:
4047 /* Multiplication has time-complexity O(N*N), where N is the
4048 number of units (translated from digits) when using
4049 schoolbook long multiplication. */
4050 total = factor * factor * COSTS_N_INSNS (5);
4051 break;
4052 case DIV:
4053 case UDIV:
4054 case MOD:
4055 case UMOD:
4056 /* Similarly, complexity for schoolbook long division. */
4057 total = factor * factor * COSTS_N_INSNS (7);
4058 break;
4059 case USE:
4060 /* Used in combine.c as a marker. */
4061 total = 0;
4062 break;
4063 case SET:
4064 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4065 the mode for the factor. */
4066 mode = GET_MODE (SET_DEST (x));
4067 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4068 if (factor == 0)
4069 factor = 1;
4070 /* FALLTHRU */
4071 default:
4072 total = factor * COSTS_N_INSNS (1);
4075 switch (code)
4077 case REG:
4078 return 0;
4080 case SUBREG:
4081 total = 0;
4082 /* If we can't tie these modes, make this expensive. The larger
4083 the mode, the more expensive it is. */
4084 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4085 return COSTS_N_INSNS (2 + factor);
4086 break;
4088 default:
4089 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4090 return total;
4091 break;
4094 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4095 which is already in total. */
4097 fmt = GET_RTX_FORMAT (code);
4098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4099 if (fmt[i] == 'e')
4100 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4101 else if (fmt[i] == 'E')
4102 for (j = 0; j < XVECLEN (x, i); j++)
4103 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4105 return total;
4108 /* Fill in the structure C with information about both speed and size rtx
4109 costs for X, which is operand OPNO in an expression with code OUTER. */
4111 void
4112 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4113 struct full_rtx_costs *c)
4115 c->speed = rtx_cost (x, mode, outer, opno, true);
4116 c->size = rtx_cost (x, mode, outer, opno, false);
4120 /* Return cost of address expression X.
4121 Expect that X is properly formed address reference.
4123 SPEED parameter specify whether costs optimized for speed or size should
4124 be returned. */
4127 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4129 /* We may be asked for cost of various unusual addresses, such as operands
4130 of push instruction. It is not worthwhile to complicate writing
4131 of the target hook by such cases. */
4133 if (!memory_address_addr_space_p (mode, x, as))
4134 return 1000;
4136 return targetm.address_cost (x, mode, as, speed);
4139 /* If the target doesn't override, compute the cost as with arithmetic. */
4142 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4144 return rtx_cost (x, Pmode, MEM, 0, speed);
4148 unsigned HOST_WIDE_INT
4149 nonzero_bits (const_rtx x, machine_mode mode)
4151 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4154 unsigned int
4155 num_sign_bit_copies (const_rtx x, machine_mode mode)
4157 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4160 /* Return true if nonzero_bits1 might recurse into both operands
4161 of X. */
4163 static inline bool
4164 nonzero_bits_binary_arith_p (const_rtx x)
4166 if (!ARITHMETIC_P (x))
4167 return false;
4168 switch (GET_CODE (x))
4170 case AND:
4171 case XOR:
4172 case IOR:
4173 case UMIN:
4174 case UMAX:
4175 case SMIN:
4176 case SMAX:
4177 case PLUS:
4178 case MINUS:
4179 case MULT:
4180 case DIV:
4181 case UDIV:
4182 case MOD:
4183 case UMOD:
4184 return true;
4185 default:
4186 return false;
4190 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4191 It avoids exponential behavior in nonzero_bits1 when X has
4192 identical subexpressions on the first or the second level. */
4194 static unsigned HOST_WIDE_INT
4195 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4196 machine_mode known_mode,
4197 unsigned HOST_WIDE_INT known_ret)
4199 if (x == known_x && mode == known_mode)
4200 return known_ret;
4202 /* Try to find identical subexpressions. If found call
4203 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4204 precomputed value for the subexpression as KNOWN_RET. */
4206 if (nonzero_bits_binary_arith_p (x))
4208 rtx x0 = XEXP (x, 0);
4209 rtx x1 = XEXP (x, 1);
4211 /* Check the first level. */
4212 if (x0 == x1)
4213 return nonzero_bits1 (x, mode, x0, mode,
4214 cached_nonzero_bits (x0, mode, known_x,
4215 known_mode, known_ret));
4217 /* Check the second level. */
4218 if (nonzero_bits_binary_arith_p (x0)
4219 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4220 return nonzero_bits1 (x, mode, x1, mode,
4221 cached_nonzero_bits (x1, mode, known_x,
4222 known_mode, known_ret));
4224 if (nonzero_bits_binary_arith_p (x1)
4225 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4226 return nonzero_bits1 (x, mode, x0, mode,
4227 cached_nonzero_bits (x0, mode, known_x,
4228 known_mode, known_ret));
4231 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4234 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4235 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4236 is less useful. We can't allow both, because that results in exponential
4237 run time recursion. There is a nullstone testcase that triggered
4238 this. This macro avoids accidental uses of num_sign_bit_copies. */
4239 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4241 /* Given an expression, X, compute which bits in X can be nonzero.
4242 We don't care about bits outside of those defined in MODE.
4244 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4245 an arithmetic operation, we can do better. */
4247 static unsigned HOST_WIDE_INT
4248 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4249 machine_mode known_mode,
4250 unsigned HOST_WIDE_INT known_ret)
4252 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4253 unsigned HOST_WIDE_INT inner_nz;
4254 enum rtx_code code;
4255 machine_mode inner_mode;
4256 unsigned int mode_width = GET_MODE_PRECISION (mode);
4258 /* For floating-point and vector values, assume all bits are needed. */
4259 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4260 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4261 return nonzero;
4263 /* If X is wider than MODE, use its mode instead. */
4264 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4266 mode = GET_MODE (x);
4267 nonzero = GET_MODE_MASK (mode);
4268 mode_width = GET_MODE_PRECISION (mode);
4271 if (mode_width > HOST_BITS_PER_WIDE_INT)
4272 /* Our only callers in this case look for single bit values. So
4273 just return the mode mask. Those tests will then be false. */
4274 return nonzero;
4276 /* If MODE is wider than X, but both are a single word for both the host
4277 and target machines, we can compute this from which bits of the
4278 object might be nonzero in its own mode, taking into account the fact
4279 that on many CISC machines, accessing an object in a wider mode
4280 causes the high-order bits to become undefined. So they are
4281 not known to be zero. */
4283 if (!WORD_REGISTER_OPERATIONS
4284 && GET_MODE (x) != VOIDmode
4285 && GET_MODE (x) != mode
4286 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4287 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4288 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4290 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4291 known_x, known_mode, known_ret);
4292 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4293 return nonzero;
4296 /* Please keep nonzero_bits_binary_arith_p above in sync with
4297 the code in the switch below. */
4298 code = GET_CODE (x);
4299 switch (code)
4301 case REG:
4302 #if defined(POINTERS_EXTEND_UNSIGNED)
4303 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4304 all the bits above ptr_mode are known to be zero. */
4305 /* As we do not know which address space the pointer is referring to,
4306 we can do this only if the target does not support different pointer
4307 or address modes depending on the address space. */
4308 if (target_default_pointer_address_modes_p ()
4309 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4310 && REG_POINTER (x)
4311 && !targetm.have_ptr_extend ())
4312 nonzero &= GET_MODE_MASK (ptr_mode);
4313 #endif
4315 /* Include declared information about alignment of pointers. */
4316 /* ??? We don't properly preserve REG_POINTER changes across
4317 pointer-to-integer casts, so we can't trust it except for
4318 things that we know must be pointers. See execute/960116-1.c. */
4319 if ((x == stack_pointer_rtx
4320 || x == frame_pointer_rtx
4321 || x == arg_pointer_rtx)
4322 && REGNO_POINTER_ALIGN (REGNO (x)))
4324 unsigned HOST_WIDE_INT alignment
4325 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4327 #ifdef PUSH_ROUNDING
4328 /* If PUSH_ROUNDING is defined, it is possible for the
4329 stack to be momentarily aligned only to that amount,
4330 so we pick the least alignment. */
4331 if (x == stack_pointer_rtx && PUSH_ARGS)
4332 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4333 alignment);
4334 #endif
4336 nonzero &= ~(alignment - 1);
4340 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4341 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4342 known_mode, known_ret,
4343 &nonzero_for_hook);
4345 if (new_rtx)
4346 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4347 known_mode, known_ret);
4349 return nonzero_for_hook;
4352 case CONST_INT:
4353 /* If X is negative in MODE, sign-extend the value. */
4354 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4355 && mode_width < BITS_PER_WORD
4356 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4357 != 0)
4358 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4360 return UINTVAL (x);
4362 case MEM:
4363 #ifdef LOAD_EXTEND_OP
4364 /* In many, if not most, RISC machines, reading a byte from memory
4365 zeros the rest of the register. Noticing that fact saves a lot
4366 of extra zero-extends. */
4367 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4368 nonzero &= GET_MODE_MASK (GET_MODE (x));
4369 #endif
4370 break;
4372 case EQ: case NE:
4373 case UNEQ: case LTGT:
4374 case GT: case GTU: case UNGT:
4375 case LT: case LTU: case UNLT:
4376 case GE: case GEU: case UNGE:
4377 case LE: case LEU: case UNLE:
4378 case UNORDERED: case ORDERED:
4379 /* If this produces an integer result, we know which bits are set.
4380 Code here used to clear bits outside the mode of X, but that is
4381 now done above. */
4382 /* Mind that MODE is the mode the caller wants to look at this
4383 operation in, and not the actual operation mode. We can wind
4384 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4385 that describes the results of a vector compare. */
4386 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4387 && mode_width <= HOST_BITS_PER_WIDE_INT)
4388 nonzero = STORE_FLAG_VALUE;
4389 break;
4391 case NEG:
4392 #if 0
4393 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4394 and num_sign_bit_copies. */
4395 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4396 == GET_MODE_PRECISION (GET_MODE (x)))
4397 nonzero = 1;
4398 #endif
4400 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4401 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4402 break;
4404 case ABS:
4405 #if 0
4406 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4407 and num_sign_bit_copies. */
4408 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4409 == GET_MODE_PRECISION (GET_MODE (x)))
4410 nonzero = 1;
4411 #endif
4412 break;
4414 case TRUNCATE:
4415 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4416 known_x, known_mode, known_ret)
4417 & GET_MODE_MASK (mode));
4418 break;
4420 case ZERO_EXTEND:
4421 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4422 known_x, known_mode, known_ret);
4423 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4424 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4425 break;
4427 case SIGN_EXTEND:
4428 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4429 Otherwise, show all the bits in the outer mode but not the inner
4430 may be nonzero. */
4431 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4432 known_x, known_mode, known_ret);
4433 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4435 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4436 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4437 inner_nz |= (GET_MODE_MASK (mode)
4438 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4441 nonzero &= inner_nz;
4442 break;
4444 case AND:
4445 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4446 known_x, known_mode, known_ret)
4447 & cached_nonzero_bits (XEXP (x, 1), mode,
4448 known_x, known_mode, known_ret);
4449 break;
4451 case XOR: case IOR:
4452 case UMIN: case UMAX: case SMIN: case SMAX:
4454 unsigned HOST_WIDE_INT nonzero0
4455 = cached_nonzero_bits (XEXP (x, 0), mode,
4456 known_x, known_mode, known_ret);
4458 /* Don't call nonzero_bits for the second time if it cannot change
4459 anything. */
4460 if ((nonzero & nonzero0) != nonzero)
4461 nonzero &= nonzero0
4462 | cached_nonzero_bits (XEXP (x, 1), mode,
4463 known_x, known_mode, known_ret);
4465 break;
4467 case PLUS: case MINUS:
4468 case MULT:
4469 case DIV: case UDIV:
4470 case MOD: case UMOD:
4471 /* We can apply the rules of arithmetic to compute the number of
4472 high- and low-order zero bits of these operations. We start by
4473 computing the width (position of the highest-order nonzero bit)
4474 and the number of low-order zero bits for each value. */
4476 unsigned HOST_WIDE_INT nz0
4477 = cached_nonzero_bits (XEXP (x, 0), mode,
4478 known_x, known_mode, known_ret);
4479 unsigned HOST_WIDE_INT nz1
4480 = cached_nonzero_bits (XEXP (x, 1), mode,
4481 known_x, known_mode, known_ret);
4482 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4483 int width0 = floor_log2 (nz0) + 1;
4484 int width1 = floor_log2 (nz1) + 1;
4485 int low0 = ctz_or_zero (nz0);
4486 int low1 = ctz_or_zero (nz1);
4487 unsigned HOST_WIDE_INT op0_maybe_minusp
4488 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4489 unsigned HOST_WIDE_INT op1_maybe_minusp
4490 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4491 unsigned int result_width = mode_width;
4492 int result_low = 0;
4494 switch (code)
4496 case PLUS:
4497 result_width = MAX (width0, width1) + 1;
4498 result_low = MIN (low0, low1);
4499 break;
4500 case MINUS:
4501 result_low = MIN (low0, low1);
4502 break;
4503 case MULT:
4504 result_width = width0 + width1;
4505 result_low = low0 + low1;
4506 break;
4507 case DIV:
4508 if (width1 == 0)
4509 break;
4510 if (!op0_maybe_minusp && !op1_maybe_minusp)
4511 result_width = width0;
4512 break;
4513 case UDIV:
4514 if (width1 == 0)
4515 break;
4516 result_width = width0;
4517 break;
4518 case MOD:
4519 if (width1 == 0)
4520 break;
4521 if (!op0_maybe_minusp && !op1_maybe_minusp)
4522 result_width = MIN (width0, width1);
4523 result_low = MIN (low0, low1);
4524 break;
4525 case UMOD:
4526 if (width1 == 0)
4527 break;
4528 result_width = MIN (width0, width1);
4529 result_low = MIN (low0, low1);
4530 break;
4531 default:
4532 gcc_unreachable ();
4535 if (result_width < mode_width)
4536 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4538 if (result_low > 0)
4539 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4541 break;
4543 case ZERO_EXTRACT:
4544 if (CONST_INT_P (XEXP (x, 1))
4545 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4546 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4547 break;
4549 case SUBREG:
4550 /* If this is a SUBREG formed for a promoted variable that has
4551 been zero-extended, we know that at least the high-order bits
4552 are zero, though others might be too. */
4554 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4555 nonzero = GET_MODE_MASK (GET_MODE (x))
4556 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4557 known_x, known_mode, known_ret);
4559 inner_mode = GET_MODE (SUBREG_REG (x));
4560 /* If the inner mode is a single word for both the host and target
4561 machines, we can compute this from which bits of the inner
4562 object might be nonzero. */
4563 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4564 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4566 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4567 known_x, known_mode, known_ret);
4569 #ifdef LOAD_EXTEND_OP
4570 /* If this is a typical RISC machine, we only have to worry
4571 about the way loads are extended. */
4572 if (WORD_REGISTER_OPERATIONS
4573 && ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4574 ? val_signbit_known_set_p (inner_mode, nonzero)
4575 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4576 || !MEM_P (SUBREG_REG (x))))
4577 #endif
4579 /* On many CISC machines, accessing an object in a wider mode
4580 causes the high-order bits to become undefined. So they are
4581 not known to be zero. */
4582 if (GET_MODE_PRECISION (GET_MODE (x))
4583 > GET_MODE_PRECISION (inner_mode))
4584 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4585 & ~GET_MODE_MASK (inner_mode));
4588 break;
4590 case ASHIFTRT:
4591 case LSHIFTRT:
4592 case ASHIFT:
4593 case ROTATE:
4594 /* The nonzero bits are in two classes: any bits within MODE
4595 that aren't in GET_MODE (x) are always significant. The rest of the
4596 nonzero bits are those that are significant in the operand of
4597 the shift when shifted the appropriate number of bits. This
4598 shows that high-order bits are cleared by the right shift and
4599 low-order bits by left shifts. */
4600 if (CONST_INT_P (XEXP (x, 1))
4601 && INTVAL (XEXP (x, 1)) >= 0
4602 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4603 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4605 machine_mode inner_mode = GET_MODE (x);
4606 unsigned int width = GET_MODE_PRECISION (inner_mode);
4607 int count = INTVAL (XEXP (x, 1));
4608 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4609 unsigned HOST_WIDE_INT op_nonzero
4610 = cached_nonzero_bits (XEXP (x, 0), mode,
4611 known_x, known_mode, known_ret);
4612 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4613 unsigned HOST_WIDE_INT outer = 0;
4615 if (mode_width > width)
4616 outer = (op_nonzero & nonzero & ~mode_mask);
4618 if (code == LSHIFTRT)
4619 inner >>= count;
4620 else if (code == ASHIFTRT)
4622 inner >>= count;
4624 /* If the sign bit may have been nonzero before the shift, we
4625 need to mark all the places it could have been copied to
4626 by the shift as possibly nonzero. */
4627 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4628 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4629 << (width - count);
4631 else if (code == ASHIFT)
4632 inner <<= count;
4633 else
4634 inner = ((inner << (count % width)
4635 | (inner >> (width - (count % width)))) & mode_mask);
4637 nonzero &= (outer | inner);
4639 break;
4641 case FFS:
4642 case POPCOUNT:
4643 /* This is at most the number of bits in the mode. */
4644 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4645 break;
4647 case CLZ:
4648 /* If CLZ has a known value at zero, then the nonzero bits are
4649 that value, plus the number of bits in the mode minus one. */
4650 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4651 nonzero
4652 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4653 else
4654 nonzero = -1;
4655 break;
4657 case CTZ:
4658 /* If CTZ has a known value at zero, then the nonzero bits are
4659 that value, plus the number of bits in the mode minus one. */
4660 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4661 nonzero
4662 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4663 else
4664 nonzero = -1;
4665 break;
4667 case CLRSB:
4668 /* This is at most the number of bits in the mode minus 1. */
4669 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4670 break;
4672 case PARITY:
4673 nonzero = 1;
4674 break;
4676 case IF_THEN_ELSE:
4678 unsigned HOST_WIDE_INT nonzero_true
4679 = cached_nonzero_bits (XEXP (x, 1), mode,
4680 known_x, known_mode, known_ret);
4682 /* Don't call nonzero_bits for the second time if it cannot change
4683 anything. */
4684 if ((nonzero & nonzero_true) != nonzero)
4685 nonzero &= nonzero_true
4686 | cached_nonzero_bits (XEXP (x, 2), mode,
4687 known_x, known_mode, known_ret);
4689 break;
4691 default:
4692 break;
4695 return nonzero;
4698 /* See the macro definition above. */
4699 #undef cached_num_sign_bit_copies
4702 /* Return true if num_sign_bit_copies1 might recurse into both operands
4703 of X. */
4705 static inline bool
4706 num_sign_bit_copies_binary_arith_p (const_rtx x)
4708 if (!ARITHMETIC_P (x))
4709 return false;
4710 switch (GET_CODE (x))
4712 case IOR:
4713 case AND:
4714 case XOR:
4715 case SMIN:
4716 case SMAX:
4717 case UMIN:
4718 case UMAX:
4719 case PLUS:
4720 case MINUS:
4721 case MULT:
4722 return true;
4723 default:
4724 return false;
4728 /* The function cached_num_sign_bit_copies is a wrapper around
4729 num_sign_bit_copies1. It avoids exponential behavior in
4730 num_sign_bit_copies1 when X has identical subexpressions on the
4731 first or the second level. */
4733 static unsigned int
4734 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4735 machine_mode known_mode,
4736 unsigned int known_ret)
4738 if (x == known_x && mode == known_mode)
4739 return known_ret;
4741 /* Try to find identical subexpressions. If found call
4742 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4743 the precomputed value for the subexpression as KNOWN_RET. */
4745 if (num_sign_bit_copies_binary_arith_p (x))
4747 rtx x0 = XEXP (x, 0);
4748 rtx x1 = XEXP (x, 1);
4750 /* Check the first level. */
4751 if (x0 == x1)
4752 return
4753 num_sign_bit_copies1 (x, mode, x0, mode,
4754 cached_num_sign_bit_copies (x0, mode, known_x,
4755 known_mode,
4756 known_ret));
4758 /* Check the second level. */
4759 if (num_sign_bit_copies_binary_arith_p (x0)
4760 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4761 return
4762 num_sign_bit_copies1 (x, mode, x1, mode,
4763 cached_num_sign_bit_copies (x1, mode, known_x,
4764 known_mode,
4765 known_ret));
4767 if (num_sign_bit_copies_binary_arith_p (x1)
4768 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4769 return
4770 num_sign_bit_copies1 (x, mode, x0, mode,
4771 cached_num_sign_bit_copies (x0, mode, known_x,
4772 known_mode,
4773 known_ret));
4776 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4779 /* Return the number of bits at the high-order end of X that are known to
4780 be equal to the sign bit. X will be used in mode MODE; if MODE is
4781 VOIDmode, X will be used in its own mode. The returned value will always
4782 be between 1 and the number of bits in MODE. */
4784 static unsigned int
4785 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4786 machine_mode known_mode,
4787 unsigned int known_ret)
4789 enum rtx_code code = GET_CODE (x);
4790 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4791 int num0, num1, result;
4792 unsigned HOST_WIDE_INT nonzero;
4794 /* If we weren't given a mode, use the mode of X. If the mode is still
4795 VOIDmode, we don't know anything. Likewise if one of the modes is
4796 floating-point. */
4798 if (mode == VOIDmode)
4799 mode = GET_MODE (x);
4801 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4802 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4803 return 1;
4805 /* For a smaller object, just ignore the high bits. */
4806 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4808 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4809 known_x, known_mode, known_ret);
4810 return MAX (1,
4811 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4814 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4816 /* If this machine does not do all register operations on the entire
4817 register and MODE is wider than the mode of X, we can say nothing
4818 at all about the high-order bits. */
4819 if (!WORD_REGISTER_OPERATIONS)
4820 return 1;
4822 /* Likewise on machines that do, if the mode of the object is smaller
4823 than a word and loads of that size don't sign extend, we can say
4824 nothing about the high order bits. */
4825 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4826 #ifdef LOAD_EXTEND_OP
4827 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4828 #endif
4830 return 1;
4833 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4834 the code in the switch below. */
4835 switch (code)
4837 case REG:
4839 #if defined(POINTERS_EXTEND_UNSIGNED)
4840 /* If pointers extend signed and this is a pointer in Pmode, say that
4841 all the bits above ptr_mode are known to be sign bit copies. */
4842 /* As we do not know which address space the pointer is referring to,
4843 we can do this only if the target does not support different pointer
4844 or address modes depending on the address space. */
4845 if (target_default_pointer_address_modes_p ()
4846 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4847 && mode == Pmode && REG_POINTER (x)
4848 && !targetm.have_ptr_extend ())
4849 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4850 #endif
4853 unsigned int copies_for_hook = 1, copies = 1;
4854 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4855 known_mode, known_ret,
4856 &copies_for_hook);
4858 if (new_rtx)
4859 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4860 known_mode, known_ret);
4862 if (copies > 1 || copies_for_hook > 1)
4863 return MAX (copies, copies_for_hook);
4865 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4867 break;
4869 case MEM:
4870 #ifdef LOAD_EXTEND_OP
4871 /* Some RISC machines sign-extend all loads of smaller than a word. */
4872 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4873 return MAX (1, ((int) bitwidth
4874 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4875 #endif
4876 break;
4878 case CONST_INT:
4879 /* If the constant is negative, take its 1's complement and remask.
4880 Then see how many zero bits we have. */
4881 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4882 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4883 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4884 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4886 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4888 case SUBREG:
4889 /* If this is a SUBREG for a promoted object that is sign-extended
4890 and we are looking at it in a wider mode, we know that at least the
4891 high-order bits are known to be sign bit copies. */
4893 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4895 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4896 known_x, known_mode, known_ret);
4897 return MAX ((int) bitwidth
4898 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4899 num0);
4902 /* For a smaller object, just ignore the high bits. */
4903 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4905 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4906 known_x, known_mode, known_ret);
4907 return MAX (1, (num0
4908 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4909 - bitwidth)));
4912 #ifdef LOAD_EXTEND_OP
4913 /* For paradoxical SUBREGs on machines where all register operations
4914 affect the entire register, just look inside. Note that we are
4915 passing MODE to the recursive call, so the number of sign bit copies
4916 will remain relative to that mode, not the inner mode. */
4918 /* This works only if loads sign extend. Otherwise, if we get a
4919 reload for the inner part, it may be loaded from the stack, and
4920 then we lose all sign bit copies that existed before the store
4921 to the stack. */
4923 if (WORD_REGISTER_OPERATIONS
4924 && paradoxical_subreg_p (x)
4925 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4926 && MEM_P (SUBREG_REG (x)))
4927 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4928 known_x, known_mode, known_ret);
4929 #endif
4930 break;
4932 case SIGN_EXTRACT:
4933 if (CONST_INT_P (XEXP (x, 1)))
4934 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4935 break;
4937 case SIGN_EXTEND:
4938 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4939 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4940 known_x, known_mode, known_ret));
4942 case TRUNCATE:
4943 /* For a smaller object, just ignore the high bits. */
4944 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4945 known_x, known_mode, known_ret);
4946 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4947 - bitwidth)));
4949 case NOT:
4950 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4951 known_x, known_mode, known_ret);
4953 case ROTATE: case ROTATERT:
4954 /* If we are rotating left by a number of bits less than the number
4955 of sign bit copies, we can just subtract that amount from the
4956 number. */
4957 if (CONST_INT_P (XEXP (x, 1))
4958 && INTVAL (XEXP (x, 1)) >= 0
4959 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4961 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4962 known_x, known_mode, known_ret);
4963 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4964 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4966 break;
4968 case NEG:
4969 /* In general, this subtracts one sign bit copy. But if the value
4970 is known to be positive, the number of sign bit copies is the
4971 same as that of the input. Finally, if the input has just one bit
4972 that might be nonzero, all the bits are copies of the sign bit. */
4973 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4974 known_x, known_mode, known_ret);
4975 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4976 return num0 > 1 ? num0 - 1 : 1;
4978 nonzero = nonzero_bits (XEXP (x, 0), mode);
4979 if (nonzero == 1)
4980 return bitwidth;
4982 if (num0 > 1
4983 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
4984 num0--;
4986 return num0;
4988 case IOR: case AND: case XOR:
4989 case SMIN: case SMAX: case UMIN: case UMAX:
4990 /* Logical operations will preserve the number of sign-bit copies.
4991 MIN and MAX operations always return one of the operands. */
4992 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4993 known_x, known_mode, known_ret);
4994 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4995 known_x, known_mode, known_ret);
4997 /* If num1 is clearing some of the top bits then regardless of
4998 the other term, we are guaranteed to have at least that many
4999 high-order zero bits. */
5000 if (code == AND
5001 && num1 > 1
5002 && bitwidth <= HOST_BITS_PER_WIDE_INT
5003 && CONST_INT_P (XEXP (x, 1))
5004 && (UINTVAL (XEXP (x, 1))
5005 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5006 return num1;
5008 /* Similarly for IOR when setting high-order bits. */
5009 if (code == IOR
5010 && num1 > 1
5011 && bitwidth <= HOST_BITS_PER_WIDE_INT
5012 && CONST_INT_P (XEXP (x, 1))
5013 && (UINTVAL (XEXP (x, 1))
5014 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5015 return num1;
5017 return MIN (num0, num1);
5019 case PLUS: case MINUS:
5020 /* For addition and subtraction, we can have a 1-bit carry. However,
5021 if we are subtracting 1 from a positive number, there will not
5022 be such a carry. Furthermore, if the positive number is known to
5023 be 0 or 1, we know the result is either -1 or 0. */
5025 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5026 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5028 nonzero = nonzero_bits (XEXP (x, 0), mode);
5029 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5030 return (nonzero == 1 || nonzero == 0 ? bitwidth
5031 : bitwidth - floor_log2 (nonzero) - 1);
5034 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5035 known_x, known_mode, known_ret);
5036 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5037 known_x, known_mode, known_ret);
5038 result = MAX (1, MIN (num0, num1) - 1);
5040 return result;
5042 case MULT:
5043 /* The number of bits of the product is the sum of the number of
5044 bits of both terms. However, unless one of the terms if known
5045 to be positive, we must allow for an additional bit since negating
5046 a negative number can remove one sign bit copy. */
5048 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5049 known_x, known_mode, known_ret);
5050 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5051 known_x, known_mode, known_ret);
5053 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5054 if (result > 0
5055 && (bitwidth > HOST_BITS_PER_WIDE_INT
5056 || (((nonzero_bits (XEXP (x, 0), mode)
5057 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5058 && ((nonzero_bits (XEXP (x, 1), mode)
5059 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5060 != 0))))
5061 result--;
5063 return MAX (1, result);
5065 case UDIV:
5066 /* The result must be <= the first operand. If the first operand
5067 has the high bit set, we know nothing about the number of sign
5068 bit copies. */
5069 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5070 return 1;
5071 else if ((nonzero_bits (XEXP (x, 0), mode)
5072 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5073 return 1;
5074 else
5075 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5076 known_x, known_mode, known_ret);
5078 case UMOD:
5079 /* The result must be <= the second operand. If the second operand
5080 has (or just might have) the high bit set, we know nothing about
5081 the number of sign bit copies. */
5082 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5083 return 1;
5084 else if ((nonzero_bits (XEXP (x, 1), mode)
5085 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5086 return 1;
5087 else
5088 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5089 known_x, known_mode, known_ret);
5091 case DIV:
5092 /* Similar to unsigned division, except that we have to worry about
5093 the case where the divisor is negative, in which case we have
5094 to add 1. */
5095 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5096 known_x, known_mode, known_ret);
5097 if (result > 1
5098 && (bitwidth > HOST_BITS_PER_WIDE_INT
5099 || (nonzero_bits (XEXP (x, 1), mode)
5100 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5101 result--;
5103 return result;
5105 case MOD:
5106 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5107 known_x, known_mode, known_ret);
5108 if (result > 1
5109 && (bitwidth > HOST_BITS_PER_WIDE_INT
5110 || (nonzero_bits (XEXP (x, 1), mode)
5111 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5112 result--;
5114 return result;
5116 case ASHIFTRT:
5117 /* Shifts by a constant add to the number of bits equal to the
5118 sign bit. */
5119 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5120 known_x, known_mode, known_ret);
5121 if (CONST_INT_P (XEXP (x, 1))
5122 && INTVAL (XEXP (x, 1)) > 0
5123 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5124 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5126 return num0;
5128 case ASHIFT:
5129 /* Left shifts destroy copies. */
5130 if (!CONST_INT_P (XEXP (x, 1))
5131 || INTVAL (XEXP (x, 1)) < 0
5132 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5133 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5134 return 1;
5136 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5137 known_x, known_mode, known_ret);
5138 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5140 case IF_THEN_ELSE:
5141 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5142 known_x, known_mode, known_ret);
5143 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5144 known_x, known_mode, known_ret);
5145 return MIN (num0, num1);
5147 case EQ: case NE: case GE: case GT: case LE: case LT:
5148 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5149 case GEU: case GTU: case LEU: case LTU:
5150 case UNORDERED: case ORDERED:
5151 /* If the constant is negative, take its 1's complement and remask.
5152 Then see how many zero bits we have. */
5153 nonzero = STORE_FLAG_VALUE;
5154 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5155 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5156 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5158 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5160 default:
5161 break;
5164 /* If we haven't been able to figure it out by one of the above rules,
5165 see if some of the high-order bits are known to be zero. If so,
5166 count those bits and return one less than that amount. If we can't
5167 safely compute the mask for this mode, always return BITWIDTH. */
5169 bitwidth = GET_MODE_PRECISION (mode);
5170 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5171 return 1;
5173 nonzero = nonzero_bits (x, mode);
5174 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5175 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5178 /* Calculate the rtx_cost of a single instruction. A return value of
5179 zero indicates an instruction pattern without a known cost. */
5182 insn_rtx_cost (rtx pat, bool speed)
5184 int i, cost;
5185 rtx set;
5187 /* Extract the single set rtx from the instruction pattern.
5188 We can't use single_set since we only have the pattern. */
5189 if (GET_CODE (pat) == SET)
5190 set = pat;
5191 else if (GET_CODE (pat) == PARALLEL)
5193 set = NULL_RTX;
5194 for (i = 0; i < XVECLEN (pat, 0); i++)
5196 rtx x = XVECEXP (pat, 0, i);
5197 if (GET_CODE (x) == SET)
5199 if (set)
5200 return 0;
5201 set = x;
5204 if (!set)
5205 return 0;
5207 else
5208 return 0;
5210 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5211 return cost > 0 ? cost : COSTS_N_INSNS (1);
5214 /* Returns estimate on cost of computing SEQ. */
5216 unsigned
5217 seq_cost (const rtx_insn *seq, bool speed)
5219 unsigned cost = 0;
5220 rtx set;
5222 for (; seq; seq = NEXT_INSN (seq))
5224 set = single_set (seq);
5225 if (set)
5226 cost += set_rtx_cost (set, speed);
5227 else
5228 cost++;
5231 return cost;
5234 /* Given an insn INSN and condition COND, return the condition in a
5235 canonical form to simplify testing by callers. Specifically:
5237 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5238 (2) Both operands will be machine operands; (cc0) will have been replaced.
5239 (3) If an operand is a constant, it will be the second operand.
5240 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5241 for GE, GEU, and LEU.
5243 If the condition cannot be understood, or is an inequality floating-point
5244 comparison which needs to be reversed, 0 will be returned.
5246 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5248 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5249 insn used in locating the condition was found. If a replacement test
5250 of the condition is desired, it should be placed in front of that
5251 insn and we will be sure that the inputs are still valid.
5253 If WANT_REG is nonzero, we wish the condition to be relative to that
5254 register, if possible. Therefore, do not canonicalize the condition
5255 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5256 to be a compare to a CC mode register.
5258 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5259 and at INSN. */
5262 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5263 rtx_insn **earliest,
5264 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5266 enum rtx_code code;
5267 rtx_insn *prev = insn;
5268 const_rtx set;
5269 rtx tem;
5270 rtx op0, op1;
5271 int reverse_code = 0;
5272 machine_mode mode;
5273 basic_block bb = BLOCK_FOR_INSN (insn);
5275 code = GET_CODE (cond);
5276 mode = GET_MODE (cond);
5277 op0 = XEXP (cond, 0);
5278 op1 = XEXP (cond, 1);
5280 if (reverse)
5281 code = reversed_comparison_code (cond, insn);
5282 if (code == UNKNOWN)
5283 return 0;
5285 if (earliest)
5286 *earliest = insn;
5288 /* If we are comparing a register with zero, see if the register is set
5289 in the previous insn to a COMPARE or a comparison operation. Perform
5290 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5291 in cse.c */
5293 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5294 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5295 && op1 == CONST0_RTX (GET_MODE (op0))
5296 && op0 != want_reg)
5298 /* Set nonzero when we find something of interest. */
5299 rtx x = 0;
5301 /* If comparison with cc0, import actual comparison from compare
5302 insn. */
5303 if (op0 == cc0_rtx)
5305 if ((prev = prev_nonnote_insn (prev)) == 0
5306 || !NONJUMP_INSN_P (prev)
5307 || (set = single_set (prev)) == 0
5308 || SET_DEST (set) != cc0_rtx)
5309 return 0;
5311 op0 = SET_SRC (set);
5312 op1 = CONST0_RTX (GET_MODE (op0));
5313 if (earliest)
5314 *earliest = prev;
5317 /* If this is a COMPARE, pick up the two things being compared. */
5318 if (GET_CODE (op0) == COMPARE)
5320 op1 = XEXP (op0, 1);
5321 op0 = XEXP (op0, 0);
5322 continue;
5324 else if (!REG_P (op0))
5325 break;
5327 /* Go back to the previous insn. Stop if it is not an INSN. We also
5328 stop if it isn't a single set or if it has a REG_INC note because
5329 we don't want to bother dealing with it. */
5331 prev = prev_nonnote_nondebug_insn (prev);
5333 if (prev == 0
5334 || !NONJUMP_INSN_P (prev)
5335 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5336 /* In cfglayout mode, there do not have to be labels at the
5337 beginning of a block, or jumps at the end, so the previous
5338 conditions would not stop us when we reach bb boundary. */
5339 || BLOCK_FOR_INSN (prev) != bb)
5340 break;
5342 set = set_of (op0, prev);
5344 if (set
5345 && (GET_CODE (set) != SET
5346 || !rtx_equal_p (SET_DEST (set), op0)))
5347 break;
5349 /* If this is setting OP0, get what it sets it to if it looks
5350 relevant. */
5351 if (set)
5353 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5354 #ifdef FLOAT_STORE_FLAG_VALUE
5355 REAL_VALUE_TYPE fsfv;
5356 #endif
5358 /* ??? We may not combine comparisons done in a CCmode with
5359 comparisons not done in a CCmode. This is to aid targets
5360 like Alpha that have an IEEE compliant EQ instruction, and
5361 a non-IEEE compliant BEQ instruction. The use of CCmode is
5362 actually artificial, simply to prevent the combination, but
5363 should not affect other platforms.
5365 However, we must allow VOIDmode comparisons to match either
5366 CCmode or non-CCmode comparison, because some ports have
5367 modeless comparisons inside branch patterns.
5369 ??? This mode check should perhaps look more like the mode check
5370 in simplify_comparison in combine. */
5371 if (((GET_MODE_CLASS (mode) == MODE_CC)
5372 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5373 && mode != VOIDmode
5374 && inner_mode != VOIDmode)
5375 break;
5376 if (GET_CODE (SET_SRC (set)) == COMPARE
5377 || (((code == NE
5378 || (code == LT
5379 && val_signbit_known_set_p (inner_mode,
5380 STORE_FLAG_VALUE))
5381 #ifdef FLOAT_STORE_FLAG_VALUE
5382 || (code == LT
5383 && SCALAR_FLOAT_MODE_P (inner_mode)
5384 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5385 REAL_VALUE_NEGATIVE (fsfv)))
5386 #endif
5388 && COMPARISON_P (SET_SRC (set))))
5389 x = SET_SRC (set);
5390 else if (((code == EQ
5391 || (code == GE
5392 && val_signbit_known_set_p (inner_mode,
5393 STORE_FLAG_VALUE))
5394 #ifdef FLOAT_STORE_FLAG_VALUE
5395 || (code == GE
5396 && SCALAR_FLOAT_MODE_P (inner_mode)
5397 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5398 REAL_VALUE_NEGATIVE (fsfv)))
5399 #endif
5401 && COMPARISON_P (SET_SRC (set)))
5403 reverse_code = 1;
5404 x = SET_SRC (set);
5406 else if ((code == EQ || code == NE)
5407 && GET_CODE (SET_SRC (set)) == XOR)
5408 /* Handle sequences like:
5410 (set op0 (xor X Y))
5411 ...(eq|ne op0 (const_int 0))...
5413 in which case:
5415 (eq op0 (const_int 0)) reduces to (eq X Y)
5416 (ne op0 (const_int 0)) reduces to (ne X Y)
5418 This is the form used by MIPS16, for example. */
5419 x = SET_SRC (set);
5420 else
5421 break;
5424 else if (reg_set_p (op0, prev))
5425 /* If this sets OP0, but not directly, we have to give up. */
5426 break;
5428 if (x)
5430 /* If the caller is expecting the condition to be valid at INSN,
5431 make sure X doesn't change before INSN. */
5432 if (valid_at_insn_p)
5433 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5434 break;
5435 if (COMPARISON_P (x))
5436 code = GET_CODE (x);
5437 if (reverse_code)
5439 code = reversed_comparison_code (x, prev);
5440 if (code == UNKNOWN)
5441 return 0;
5442 reverse_code = 0;
5445 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5446 if (earliest)
5447 *earliest = prev;
5451 /* If constant is first, put it last. */
5452 if (CONSTANT_P (op0))
5453 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5455 /* If OP0 is the result of a comparison, we weren't able to find what
5456 was really being compared, so fail. */
5457 if (!allow_cc_mode
5458 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5459 return 0;
5461 /* Canonicalize any ordered comparison with integers involving equality
5462 if we can do computations in the relevant mode and we do not
5463 overflow. */
5465 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5466 && CONST_INT_P (op1)
5467 && GET_MODE (op0) != VOIDmode
5468 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5470 HOST_WIDE_INT const_val = INTVAL (op1);
5471 unsigned HOST_WIDE_INT uconst_val = const_val;
5472 unsigned HOST_WIDE_INT max_val
5473 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5475 switch (code)
5477 case LE:
5478 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5479 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5480 break;
5482 /* When cross-compiling, const_val might be sign-extended from
5483 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5484 case GE:
5485 if ((const_val & max_val)
5486 != (HOST_WIDE_INT_1U
5487 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5488 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5489 break;
5491 case LEU:
5492 if (uconst_val < max_val)
5493 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5494 break;
5496 case GEU:
5497 if (uconst_val != 0)
5498 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5499 break;
5501 default:
5502 break;
5506 /* Never return CC0; return zero instead. */
5507 if (CC0_P (op0))
5508 return 0;
5510 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5513 /* Given a jump insn JUMP, return the condition that will cause it to branch
5514 to its JUMP_LABEL. If the condition cannot be understood, or is an
5515 inequality floating-point comparison which needs to be reversed, 0 will
5516 be returned.
5518 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5519 insn used in locating the condition was found. If a replacement test
5520 of the condition is desired, it should be placed in front of that
5521 insn and we will be sure that the inputs are still valid. If EARLIEST
5522 is null, the returned condition will be valid at INSN.
5524 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5525 compare CC mode register.
5527 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5530 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5531 int valid_at_insn_p)
5533 rtx cond;
5534 int reverse;
5535 rtx set;
5537 /* If this is not a standard conditional jump, we can't parse it. */
5538 if (!JUMP_P (jump)
5539 || ! any_condjump_p (jump))
5540 return 0;
5541 set = pc_set (jump);
5543 cond = XEXP (SET_SRC (set), 0);
5545 /* If this branches to JUMP_LABEL when the condition is false, reverse
5546 the condition. */
5547 reverse
5548 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5549 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5551 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5552 allow_cc_mode, valid_at_insn_p);
5555 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5556 TARGET_MODE_REP_EXTENDED.
5558 Note that we assume that the property of
5559 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5560 narrower than mode B. I.e., if A is a mode narrower than B then in
5561 order to be able to operate on it in mode B, mode A needs to
5562 satisfy the requirements set by the representation of mode B. */
5564 static void
5565 init_num_sign_bit_copies_in_rep (void)
5567 machine_mode mode, in_mode;
5569 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5570 in_mode = GET_MODE_WIDER_MODE (mode))
5571 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5572 mode = GET_MODE_WIDER_MODE (mode))
5574 machine_mode i;
5576 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5577 extends to the next widest mode. */
5578 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5579 || GET_MODE_WIDER_MODE (mode) == in_mode);
5581 /* We are in in_mode. Count how many bits outside of mode
5582 have to be copies of the sign-bit. */
5583 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5585 machine_mode wider = GET_MODE_WIDER_MODE (i);
5587 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5588 /* We can only check sign-bit copies starting from the
5589 top-bit. In order to be able to check the bits we
5590 have already seen we pretend that subsequent bits
5591 have to be sign-bit copies too. */
5592 || num_sign_bit_copies_in_rep [in_mode][mode])
5593 num_sign_bit_copies_in_rep [in_mode][mode]
5594 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5599 /* Suppose that truncation from the machine mode of X to MODE is not a
5600 no-op. See if there is anything special about X so that we can
5601 assume it already contains a truncated value of MODE. */
5603 bool
5604 truncated_to_mode (machine_mode mode, const_rtx x)
5606 /* This register has already been used in MODE without explicit
5607 truncation. */
5608 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5609 return true;
5611 /* See if we already satisfy the requirements of MODE. If yes we
5612 can just switch to MODE. */
5613 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5614 && (num_sign_bit_copies (x, GET_MODE (x))
5615 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5616 return true;
5618 return false;
5621 /* Return true if RTX code CODE has a single sequence of zero or more
5622 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5623 entry in that case. */
5625 static bool
5626 setup_reg_subrtx_bounds (unsigned int code)
5628 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5629 unsigned int i = 0;
5630 for (; format[i] != 'e'; ++i)
5632 if (!format[i])
5633 /* No subrtxes. Leave start and count as 0. */
5634 return true;
5635 if (format[i] == 'E' || format[i] == 'V')
5636 return false;
5639 /* Record the sequence of 'e's. */
5640 rtx_all_subrtx_bounds[code].start = i;
5642 ++i;
5643 while (format[i] == 'e');
5644 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5645 /* rtl-iter.h relies on this. */
5646 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5648 for (; format[i]; ++i)
5649 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5650 return false;
5652 return true;
5655 /* Initialize rtx_all_subrtx_bounds. */
5656 void
5657 init_rtlanal (void)
5659 int i;
5660 for (i = 0; i < NUM_RTX_CODE; i++)
5662 if (!setup_reg_subrtx_bounds (i))
5663 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5664 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5665 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5668 init_num_sign_bit_copies_in_rep ();
5671 /* Check whether this is a constant pool constant. */
5672 bool
5673 constant_pool_constant_p (rtx x)
5675 x = avoid_constant_pool_reference (x);
5676 return CONST_DOUBLE_P (x);
5679 /* If M is a bitmask that selects a field of low-order bits within an item but
5680 not the entire word, return the length of the field. Return -1 otherwise.
5681 M is used in machine mode MODE. */
5684 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5686 if (mode != VOIDmode)
5688 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5689 return -1;
5690 m &= GET_MODE_MASK (mode);
5693 return exact_log2 (m + 1);
5696 /* Return the mode of MEM's address. */
5698 machine_mode
5699 get_address_mode (rtx mem)
5701 machine_mode mode;
5703 gcc_assert (MEM_P (mem));
5704 mode = GET_MODE (XEXP (mem, 0));
5705 if (mode != VOIDmode)
5706 return mode;
5707 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5710 /* Split up a CONST_DOUBLE or integer constant rtx
5711 into two rtx's for single words,
5712 storing in *FIRST the word that comes first in memory in the target
5713 and in *SECOND the other.
5715 TODO: This function needs to be rewritten to work on any size
5716 integer. */
5718 void
5719 split_double (rtx value, rtx *first, rtx *second)
5721 if (CONST_INT_P (value))
5723 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5725 /* In this case the CONST_INT holds both target words.
5726 Extract the bits from it into two word-sized pieces.
5727 Sign extend each half to HOST_WIDE_INT. */
5728 unsigned HOST_WIDE_INT low, high;
5729 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5730 unsigned bits_per_word = BITS_PER_WORD;
5732 /* Set sign_bit to the most significant bit of a word. */
5733 sign_bit = 1;
5734 sign_bit <<= bits_per_word - 1;
5736 /* Set mask so that all bits of the word are set. We could
5737 have used 1 << BITS_PER_WORD instead of basing the
5738 calculation on sign_bit. However, on machines where
5739 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5740 compiler warning, even though the code would never be
5741 executed. */
5742 mask = sign_bit << 1;
5743 mask--;
5745 /* Set sign_extend as any remaining bits. */
5746 sign_extend = ~mask;
5748 /* Pick the lower word and sign-extend it. */
5749 low = INTVAL (value);
5750 low &= mask;
5751 if (low & sign_bit)
5752 low |= sign_extend;
5754 /* Pick the higher word, shifted to the least significant
5755 bits, and sign-extend it. */
5756 high = INTVAL (value);
5757 high >>= bits_per_word - 1;
5758 high >>= 1;
5759 high &= mask;
5760 if (high & sign_bit)
5761 high |= sign_extend;
5763 /* Store the words in the target machine order. */
5764 if (WORDS_BIG_ENDIAN)
5766 *first = GEN_INT (high);
5767 *second = GEN_INT (low);
5769 else
5771 *first = GEN_INT (low);
5772 *second = GEN_INT (high);
5775 else
5777 /* The rule for using CONST_INT for a wider mode
5778 is that we regard the value as signed.
5779 So sign-extend it. */
5780 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5781 if (WORDS_BIG_ENDIAN)
5783 *first = high;
5784 *second = value;
5786 else
5788 *first = value;
5789 *second = high;
5793 else if (GET_CODE (value) == CONST_WIDE_INT)
5795 /* All of this is scary code and needs to be converted to
5796 properly work with any size integer. */
5797 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5798 if (WORDS_BIG_ENDIAN)
5800 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5801 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5803 else
5805 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5806 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5809 else if (!CONST_DOUBLE_P (value))
5811 if (WORDS_BIG_ENDIAN)
5813 *first = const0_rtx;
5814 *second = value;
5816 else
5818 *first = value;
5819 *second = const0_rtx;
5822 else if (GET_MODE (value) == VOIDmode
5823 /* This is the old way we did CONST_DOUBLE integers. */
5824 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5826 /* In an integer, the words are defined as most and least significant.
5827 So order them by the target's convention. */
5828 if (WORDS_BIG_ENDIAN)
5830 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5831 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5833 else
5835 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5836 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5839 else
5841 long l[2];
5843 /* Note, this converts the REAL_VALUE_TYPE to the target's
5844 format, splits up the floating point double and outputs
5845 exactly 32 bits of it into each of l[0] and l[1] --
5846 not necessarily BITS_PER_WORD bits. */
5847 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5849 /* If 32 bits is an entire word for the target, but not for the host,
5850 then sign-extend on the host so that the number will look the same
5851 way on the host that it would on the target. See for instance
5852 simplify_unary_operation. The #if is needed to avoid compiler
5853 warnings. */
5855 #if HOST_BITS_PER_LONG > 32
5856 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5858 if (l[0] & ((long) 1 << 31))
5859 l[0] |= ((unsigned long) (-1) << 32);
5860 if (l[1] & ((long) 1 << 31))
5861 l[1] |= ((unsigned long) (-1) << 32);
5863 #endif
5865 *first = GEN_INT (l[0]);
5866 *second = GEN_INT (l[1]);
5870 /* Return true if X is a sign_extract or zero_extract from the least
5871 significant bit. */
5873 static bool
5874 lsb_bitfield_op_p (rtx x)
5876 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5878 machine_mode mode = GET_MODE (XEXP (x, 0));
5879 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5880 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5882 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5884 return false;
5887 /* Strip outer address "mutations" from LOC and return a pointer to the
5888 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5889 stripped expression there.
5891 "Mutations" either convert between modes or apply some kind of
5892 extension, truncation or alignment. */
5894 rtx *
5895 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5897 for (;;)
5899 enum rtx_code code = GET_CODE (*loc);
5900 if (GET_RTX_CLASS (code) == RTX_UNARY)
5901 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5902 used to convert between pointer sizes. */
5903 loc = &XEXP (*loc, 0);
5904 else if (lsb_bitfield_op_p (*loc))
5905 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5906 acts as a combined truncation and extension. */
5907 loc = &XEXP (*loc, 0);
5908 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5909 /* (and ... (const_int -X)) is used to align to X bytes. */
5910 loc = &XEXP (*loc, 0);
5911 else if (code == SUBREG
5912 && !OBJECT_P (SUBREG_REG (*loc))
5913 && subreg_lowpart_p (*loc))
5914 /* (subreg (operator ...) ...) inside and is used for mode
5915 conversion too. */
5916 loc = &SUBREG_REG (*loc);
5917 else
5918 return loc;
5919 if (outer_code)
5920 *outer_code = code;
5924 /* Return true if CODE applies some kind of scale. The scaled value is
5925 is the first operand and the scale is the second. */
5927 static bool
5928 binary_scale_code_p (enum rtx_code code)
5930 return (code == MULT
5931 || code == ASHIFT
5932 /* Needed by ARM targets. */
5933 || code == ASHIFTRT
5934 || code == LSHIFTRT
5935 || code == ROTATE
5936 || code == ROTATERT);
5939 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5940 (see address_info). Return null otherwise. */
5942 static rtx *
5943 get_base_term (rtx *inner)
5945 if (GET_CODE (*inner) == LO_SUM)
5946 inner = strip_address_mutations (&XEXP (*inner, 0));
5947 if (REG_P (*inner)
5948 || MEM_P (*inner)
5949 || GET_CODE (*inner) == SUBREG
5950 || GET_CODE (*inner) == SCRATCH)
5951 return inner;
5952 return 0;
5955 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5956 (see address_info). Return null otherwise. */
5958 static rtx *
5959 get_index_term (rtx *inner)
5961 /* At present, only constant scales are allowed. */
5962 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5963 inner = strip_address_mutations (&XEXP (*inner, 0));
5964 if (REG_P (*inner)
5965 || MEM_P (*inner)
5966 || GET_CODE (*inner) == SUBREG
5967 || GET_CODE (*inner) == SCRATCH)
5968 return inner;
5969 return 0;
5972 /* Set the segment part of address INFO to LOC, given that INNER is the
5973 unmutated value. */
5975 static void
5976 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5978 gcc_assert (!info->segment);
5979 info->segment = loc;
5980 info->segment_term = inner;
5983 /* Set the base part of address INFO to LOC, given that INNER is the
5984 unmutated value. */
5986 static void
5987 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5989 gcc_assert (!info->base);
5990 info->base = loc;
5991 info->base_term = inner;
5994 /* Set the index part of address INFO to LOC, given that INNER is the
5995 unmutated value. */
5997 static void
5998 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6000 gcc_assert (!info->index);
6001 info->index = loc;
6002 info->index_term = inner;
6005 /* Set the displacement part of address INFO to LOC, given that INNER
6006 is the constant term. */
6008 static void
6009 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6011 gcc_assert (!info->disp);
6012 info->disp = loc;
6013 info->disp_term = inner;
6016 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6017 rest of INFO accordingly. */
6019 static void
6020 decompose_incdec_address (struct address_info *info)
6022 info->autoinc_p = true;
6024 rtx *base = &XEXP (*info->inner, 0);
6025 set_address_base (info, base, base);
6026 gcc_checking_assert (info->base == info->base_term);
6028 /* These addresses are only valid when the size of the addressed
6029 value is known. */
6030 gcc_checking_assert (info->mode != VOIDmode);
6033 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6034 of INFO accordingly. */
6036 static void
6037 decompose_automod_address (struct address_info *info)
6039 info->autoinc_p = true;
6041 rtx *base = &XEXP (*info->inner, 0);
6042 set_address_base (info, base, base);
6043 gcc_checking_assert (info->base == info->base_term);
6045 rtx plus = XEXP (*info->inner, 1);
6046 gcc_assert (GET_CODE (plus) == PLUS);
6048 info->base_term2 = &XEXP (plus, 0);
6049 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6051 rtx *step = &XEXP (plus, 1);
6052 rtx *inner_step = strip_address_mutations (step);
6053 if (CONSTANT_P (*inner_step))
6054 set_address_disp (info, step, inner_step);
6055 else
6056 set_address_index (info, step, inner_step);
6059 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6060 values in [PTR, END). Return a pointer to the end of the used array. */
6062 static rtx **
6063 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6065 rtx x = *loc;
6066 if (GET_CODE (x) == PLUS)
6068 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6069 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6071 else
6073 gcc_assert (ptr != end);
6074 *ptr++ = loc;
6076 return ptr;
6079 /* Evaluate the likelihood of X being a base or index value, returning
6080 positive if it is likely to be a base, negative if it is likely to be
6081 an index, and 0 if we can't tell. Make the magnitude of the return
6082 value reflect the amount of confidence we have in the answer.
6084 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6086 static int
6087 baseness (rtx x, machine_mode mode, addr_space_t as,
6088 enum rtx_code outer_code, enum rtx_code index_code)
6090 /* Believe *_POINTER unless the address shape requires otherwise. */
6091 if (REG_P (x) && REG_POINTER (x))
6092 return 2;
6093 if (MEM_P (x) && MEM_POINTER (x))
6094 return 2;
6096 if (REG_P (x) && HARD_REGISTER_P (x))
6098 /* X is a hard register. If it only fits one of the base
6099 or index classes, choose that interpretation. */
6100 int regno = REGNO (x);
6101 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6102 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6103 if (base_p != index_p)
6104 return base_p ? 1 : -1;
6106 return 0;
6109 /* INFO->INNER describes a normal, non-automodified address.
6110 Fill in the rest of INFO accordingly. */
6112 static void
6113 decompose_normal_address (struct address_info *info)
6115 /* Treat the address as the sum of up to four values. */
6116 rtx *ops[4];
6117 size_t n_ops = extract_plus_operands (info->inner, ops,
6118 ops + ARRAY_SIZE (ops)) - ops;
6120 /* If there is more than one component, any base component is in a PLUS. */
6121 if (n_ops > 1)
6122 info->base_outer_code = PLUS;
6124 /* Try to classify each sum operand now. Leave those that could be
6125 either a base or an index in OPS. */
6126 rtx *inner_ops[4];
6127 size_t out = 0;
6128 for (size_t in = 0; in < n_ops; ++in)
6130 rtx *loc = ops[in];
6131 rtx *inner = strip_address_mutations (loc);
6132 if (CONSTANT_P (*inner))
6133 set_address_disp (info, loc, inner);
6134 else if (GET_CODE (*inner) == UNSPEC)
6135 set_address_segment (info, loc, inner);
6136 else
6138 /* The only other possibilities are a base or an index. */
6139 rtx *base_term = get_base_term (inner);
6140 rtx *index_term = get_index_term (inner);
6141 gcc_assert (base_term || index_term);
6142 if (!base_term)
6143 set_address_index (info, loc, index_term);
6144 else if (!index_term)
6145 set_address_base (info, loc, base_term);
6146 else
6148 gcc_assert (base_term == index_term);
6149 ops[out] = loc;
6150 inner_ops[out] = base_term;
6151 ++out;
6156 /* Classify the remaining OPS members as bases and indexes. */
6157 if (out == 1)
6159 /* If we haven't seen a base or an index yet, assume that this is
6160 the base. If we were confident that another term was the base
6161 or index, treat the remaining operand as the other kind. */
6162 if (!info->base)
6163 set_address_base (info, ops[0], inner_ops[0]);
6164 else
6165 set_address_index (info, ops[0], inner_ops[0]);
6167 else if (out == 2)
6169 /* In the event of a tie, assume the base comes first. */
6170 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6171 GET_CODE (*ops[1]))
6172 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6173 GET_CODE (*ops[0])))
6175 set_address_base (info, ops[0], inner_ops[0]);
6176 set_address_index (info, ops[1], inner_ops[1]);
6178 else
6180 set_address_base (info, ops[1], inner_ops[1]);
6181 set_address_index (info, ops[0], inner_ops[0]);
6184 else
6185 gcc_assert (out == 0);
6188 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6189 or VOIDmode if not known. AS is the address space associated with LOC.
6190 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6192 void
6193 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6194 addr_space_t as, enum rtx_code outer_code)
6196 memset (info, 0, sizeof (*info));
6197 info->mode = mode;
6198 info->as = as;
6199 info->addr_outer_code = outer_code;
6200 info->outer = loc;
6201 info->inner = strip_address_mutations (loc, &outer_code);
6202 info->base_outer_code = outer_code;
6203 switch (GET_CODE (*info->inner))
6205 case PRE_DEC:
6206 case PRE_INC:
6207 case POST_DEC:
6208 case POST_INC:
6209 decompose_incdec_address (info);
6210 break;
6212 case PRE_MODIFY:
6213 case POST_MODIFY:
6214 decompose_automod_address (info);
6215 break;
6217 default:
6218 decompose_normal_address (info);
6219 break;
6223 /* Describe address operand LOC in INFO. */
6225 void
6226 decompose_lea_address (struct address_info *info, rtx *loc)
6228 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6231 /* Describe the address of MEM X in INFO. */
6233 void
6234 decompose_mem_address (struct address_info *info, rtx x)
6236 gcc_assert (MEM_P (x));
6237 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6238 MEM_ADDR_SPACE (x), MEM);
6241 /* Update INFO after a change to the address it describes. */
6243 void
6244 update_address (struct address_info *info)
6246 decompose_address (info, info->outer, info->mode, info->as,
6247 info->addr_outer_code);
6250 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6251 more complicated than that. */
6253 HOST_WIDE_INT
6254 get_index_scale (const struct address_info *info)
6256 rtx index = *info->index;
6257 if (GET_CODE (index) == MULT
6258 && CONST_INT_P (XEXP (index, 1))
6259 && info->index_term == &XEXP (index, 0))
6260 return INTVAL (XEXP (index, 1));
6262 if (GET_CODE (index) == ASHIFT
6263 && CONST_INT_P (XEXP (index, 1))
6264 && info->index_term == &XEXP (index, 0))
6265 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6267 if (info->index == info->index_term)
6268 return 1;
6270 return 0;
6273 /* Return the "index code" of INFO, in the form required by
6274 ok_for_base_p_1. */
6276 enum rtx_code
6277 get_index_code (const struct address_info *info)
6279 if (info->index)
6280 return GET_CODE (*info->index);
6282 if (info->disp)
6283 return GET_CODE (*info->disp);
6285 return SCRATCH;
6288 /* Return true if RTL X contains a SYMBOL_REF. */
6290 bool
6291 contains_symbol_ref_p (const_rtx x)
6293 subrtx_iterator::array_type array;
6294 FOR_EACH_SUBRTX (iter, array, x, ALL)
6295 if (SYMBOL_REF_P (*iter))
6296 return true;
6298 return false;
6301 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6303 bool
6304 contains_symbolic_reference_p (const_rtx x)
6306 subrtx_iterator::array_type array;
6307 FOR_EACH_SUBRTX (iter, array, x, ALL)
6308 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6309 return true;
6311 return false;
6314 /* Return true if X contains a thread-local symbol. */
6316 bool
6317 tls_referenced_p (const_rtx x)
6319 if (!targetm.have_tls)
6320 return false;
6322 subrtx_iterator::array_type array;
6323 FOR_EACH_SUBRTX (iter, array, x, ALL)
6324 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6325 return true;
6326 return false;